Air Quality Division

Air Monitoring &
Quality Assurance
Program

555 Cordova St., 1st Floor Anchorage, AK 99501

Phone: (907) 269-7577 Fax: (907) 269-7508

www.dec.alaska.gov/air/

2019 Annual Air Quality Monitoring Network Plan

Alaska Department of Environmental Conservation

Public Comment Draft

May 23, 2019

TABLE OF CONTENTS

Ta	able of Contents	2
Li	ist of Tables	3
Ех	xecutive Summary	4
1	Introduction	5
2	Air Quality Monitoring Priorities	6
3	State of Alaska Ambient Air Monitoring Network	7
	3.1 Minimum Monitoring Requirements	
	3.1.2 Appendix D & E Siting Forms	10
	3.2 Current Monitoring Sites	11
	3.3 Siting Criteria	
	3.3.2 Particulate Matter (PM ₁₀ and PM _{2.5}) Sites	12
	3.4 NCore Site	15
	3.5 Monitoring Methods, Designation, and Sampling Frequency	15
4	Network Modifications completed in 2018 and 2019	31
	4.1 PM _{2.5} Collocation	31
	4.2 PM ₁₀ Collocation	31
	4.3 Discontinuation of Palmer PM _{2.5} and PM ₁₀ Monitoring	31
	4.4 Discontinuation of Parkgate PM _{2.5} Monitoring	31
	4.5 Discontinuation of the SOB PM _{2.5} Monitoring	31
	4.1 Speciation and PM _{2.5} Collocation at Hurst Road	32
5	Planned Network Modifications For 2020	32

LIST OF TABLES

Table 3-1: Alaska's Core Based Statistical Areas	8
Table 3-2: Minimum Monitoring Requirements for Alaskan CBSAs	9
Table 3-3: AQS Monitoring Sites as of May 2019	11
Table 3-4: CO Monitoring Sites in Anchorage and Fairbanks May 2019	12
Table 3-5: PM Monitoring Sites in Alaska as of May 2019	
Table 3-6: NCore Gaseous¹ Monitoring and Meteorological Monitoring as of January 2019 in Alaska	15
Table 3-7: Anchorage MSA: AQS Codes January 2020	17
Table 3-8: FNSB monitors: AQS Codes as of May 2019	18
Table 3-9: Juneau μSA: AQS Codes as of January 2020	24
Table 3-10: Bethel: AQS Codes as of January 2020	24
Table 3-11: January 2020 Site Level Monitoring Objectives	25
Table 3-12: Anchorage MSA Instrument-Level Monitoring Purposes	26
Table 3-13: January 2020 FNSB Instrument-Level Monitoring Purposes	27
Table 3-14: Juneau Instrument-Level Monitoring Purposes	29
Table 3-15: Bethel Instrument-Level Monitoring Purposes	29
Table 3-16: Monitors required by Nonattainment Area (NAA) or Limited Maintenance Plan (LMP)	30
Table 3-17: Collocations January 2020	30
Table A-1 PM _{2.5} Network Evaluation Form	34
Table A-2 PM ₁₀ Network Evaluation Form	36
Table A-3 CO Site Evaluation Form	37
Table A-4 O₃ Network Evaluation Form	38
Table A-5 SO2 Network Evaluation Form	39
Table A-6 NO2 Network Evaluation Form	40
Table B-1 Summary of Appendix E Forms: PM _{2.5} , PM ₁₀ , & PM _{10-2.5}	42
Table B-2 Summary of Appendix E Forms: CO	43
Table B-3 Summary of Appendix E Forms: O ₃ , SO ₂ , NO, NOx, NO ₂ , and NO _y	
Table B-4 Blank Part 58 Appendix E Form for PM	45
Table B-5 Blank Part 58 Appendix E Form for CO	46
Table B-6 Blank Part 58 Appendix E Form for O₃	47
Table B-7 Blank Part 58 Appendix E Form for SO ₂	48
Table B-8 Blank Part 58 Appendix E Form for NO, NOx, NO2, and NOy	49
Table B-9 Roadway ADT for CO, O3, SO2, and NO suite Part 58 Appendix E Forms	50
Table E-1 PM _{2.5} DV under local/actual conditions (μg/m³); exceedance exceptional event values not included	57
Table E-2 DV O₃ (ppb)	58
Table E-3 DV SO ₂ (ppb)	58
Table E-4 DV NO2 (ppb)	58
Table F-5 PM ₁₀ DV under standard conditions: exceedance excentional event values not included	59

EXECUTIVE SUMMARY

This 2019 Annual Monitoring Plan describes the Alaska air quality monitoring network under the Alaska Department of Environmental Conservation's (DEC) oversight and spells out anticipated changes to the network for the calendar year 2020.

Most of the air monitoring activities are focused on population centers and areas that have shown in the past to have air quality problems. Due to budget cuts over the past several years DEC continues to reduce the ambient monitoring network to include only regulatory required sites. Looking ahead, DEC does not expect to expand the network during the next several years due to fiscal constraints.

The most significant changes to the network during 2019 will be:

- Shutdown of Palmer SPM PM₁₀ and PM_{2.5} site
- Shutdown of Fairbanks SOB PM_{2.5} site
- Establishment of Fairbanks A-Street SLAMS (max impact site)
- Addition of chemical speciation monitoring at North Pole Hurst Road site

There are no proposed changes to the network for 2020.

1 Introduction

The Code of Federal Regulations (CFR) Title 40 §58.10 requires each state agency to adopt and submit to the U.S. Environmental Protection Agency (EPA) Regional Administrator an annual monitoring network plan which shall provide for the establishment and maintenance of an air quality surveillance system that consists of a network made up of the following types of monitoring stations:

- State and local air monitoring stations (SLAMS) including monitors that are designated as:
 - o Federal Reference Method (FRM), or
 - o Federal Equivalent Method (FEM)
 - National Core Multi-pollutant Monitoring Stations (NCore)
 - PM_{2.5} Chemical Speciation Network (CSN), and
 - Special Purpose Monitoring (SPM) stations.

The plan shall include a statement of purpose for each monitor and evidence that siting and operation of each monitor meets the requirements of appendices A, C, D, and E of 40 CFR 58 where applicable.

The annual monitoring network plan must be made available for public inspection for at least 30 days prior to submission to EPA. Any annual monitoring network plan that proposes SLAMS network modifications, including new monitoring sites, is subject to the approval of the EPA Regional Administrator, who shall provide opportunity for public comment and shall approve or disapprove the plan and schedule within 120 days. If the State or local agency has already provided a public comment opportunity on its plan and has made no changes subsequent to that comment opportunity, and has submitted the received comments together with the plan, then the Regional Administrator is not required to provide a separate opportunity for comment.

This 2019 Annual Monitoring Plan describes the Alaska air quality monitoring network under the State's oversight and spells out anticipated changes to the network for the calendar year 2020. This plan shall include all required stations to be operational by January 1, 2020. Specific locations for the required monitors shall be included in the annual network plan which is due to be submitted to the EPA Regional Administrator by July 1, 2019.

The annual monitoring network plan must contain the following information for each existing and proposed site:

- 1. The AQS site identification number;
- 2. The location, including street address and geographical coordinates;
- 3. The sampling and analysis method(s) for each measured parameter;
- 4. The operating schedules for each monitor;
- 5. Any proposals to remove or move a monitoring station within a period of 18 months following plan submittal;

- 6. The minimum monitoring requirements for spatial scale of representativeness for each monitor as defined in 40 CFR 58, Appendix D;
- 7. The minimum monitoring requirements for probe and monitoring path siting criteria as defined in 40 CFR 58, Appendix E;
- 8. The identification of any sites that are suitable and sites that are not suitable for comparison against the annual PM_{2.5} NAAQS as described in 40 CFR 58.30;
- 9. The Metropolitan Statistical Area, Core-Based Statistical Area, Combined Statistical Area or other area represented by the monitor;
- 10. The designation of any lead monitors as either source-oriented or non-source-oriented according to 40 CFR 58, Appendix D;
- 11. Any source-oriented monitors for which a waiver has been requested or granted by the EPA Regional Administrator as allowed for under paragraph 4.5(a)(ii) of 40 CFR 58, Appendix D; and
- 12. Any source-oriented or non-source-oriented site for which a waiver has been requested or granted by the EPA Regional Administrator for the use of Pb-PM₁₀ monitoring in lieu of lead total suspended particulate (Pb-TSP) monitoring as allowed for under paragraph 2.10 of 40 CFR 58, Appendix C.

2 AIR QUALITY MONITORING PRIORITIES

In 1970 the Congress of the United States created the U.S. Environmental Protection Agency (EPA) and promulgated the Clean Air Act (CAA). Title I of the CAA established National Ambient Air Quality Standards (NAAQS) to protect public health. NAAQS were developed for six *criteria pollutants*: particulate matter (PM), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and lead (Pb). Particulate matter has two associated NAAQS: one for fine particulate matter less than 2.5 micrometers in aerodynamic diameter (PM_{2.5}) and one for coarse particulate matter less than 10 micrometers in aerodynamic diameter (PM₁₀). Threshold limits established under the NAAQS to protect human health are known as primary standards. The primary health standards are to protect the most sensitive of the human population, including those people with existing respiratory or other chronic health conditions, children, and the elderly. Secondary standards established under the NAAQS are to protect the public welfare and the environment. Since promulgation of the original CAA, the EPA has continued to revise the NAAQS based on its assessment of national air quality trends and on current (and ongoing) health studies.

To protect public health and assess compliance with NAAQS, DEC established an air quality monitoring program. The State of Alaska has a large geographical area with a small population. Anchorage and the Matanuska-Susitna (Mat-Su) Valley have the bulk of the 737,483¹ residents in the state, about 54% of the overall population. The remainder of the population is distributed among the cities of Juneau and Fairbanks with populations of about 30,000-40,000 and many

6

¹ Population estimate data obtained from the 2018 US Census, https://www.census.gov/quickfacts/ak

scattered and isolated small villages, most of which are off the road system and have populations ranging from 16 to 10,000 people. The total area of the state is approximately 665,384 square miles (1.7 million square kilometers)².

In accordance with the National Monitoring Strategy, DEC plans air monitoring activities using the following criteria:

- Monitor in larger communities to cover the largest possible population exposure;
- Monitor in designated smaller towns and villages that are representative of multiple communities in a region; and
- Monitor in response to air quality concerns, as funding and staffing levels allow.

The Air Monitoring & Quality Assurance (AMQA) program of the DEC Air Quality Division has a relatively small staff of professionals who conduct the State's air quality assessment efforts. To enhance the quality of work performed statewide, DEC's staff works closely with the Municipality of Anchorage (MOA), the Fairbanks North Star Borough (FNSB), the Matanuska-Susitna Borough, the City & Borough of Juneau (CBJ), and environmental staff in other, smaller communities to assess air quality levels statewide. To continue to protect public health and the environment, air quality monitoring is focused on seven primary issues by descending priority:

- 1. Fine particulate matter $(PM_{2.5})$ monitoring;
- 2. Coarse particulate matter (PM_{10}) monitoring;
- 3. Wildland fire monitoring $(PM_{2.5})$;
- 4. Carbon monoxide (CO) monitoring;
- 5. Rural community and tribal village monitoring (primarily PM₁₀);
- 6. Lead (Pb) monitoring; and
- 7. Ozone (O₃) monitoring.

3 STATE OF ALASKA AMBIENT AIR MONITORING NETWORK

3.1 MINIMUM MONITORING REQUIREMENTS

Minimum monitoring requirements are based on several factors including pollutant levels and populations in statistically defined metropolitan areas. The definitions for the statistical based metropolitan areas are provided by the US Office of Management and Budget (OMB) and the Census Bureau (Census).

Alaska has four statistical areas as designated by OMB in 2009 with updated boundaries based on the 2013 Census data³. The four Core Based Statistical Areas (CBSA) include two

² https://www.census.gov/geo/reference/state-area.html#n1

³ https://www2.census.gov/geo/maps/metroarea/stcbsa_pg/Feb2013/cbsa2013_AK.pdf

Metropolitan Statistical Areas (MSA) and two Micropolitan Areas (μ SA), see Table 3-1 below. The two MSAs are the Anchorage MSA which includes the entire Municipality of Anchorage and the entire Matanuska-Susitna Borough and the Fairbanks MSA which is comprised of the Fairbanks North Star Borough. The two Micropolitan Areas are the Juneau μ SA and the Ketchikan μ SA, which encompass the City and Borough of Juneau and the Ketchikan Gateway Borough, respectively.

Table 3-1: Alaska's Core Based Statistical Areas

Core Based	Population*	Includes:	
Statistical Areas			
Anchorage, MSA	399,148	Municipality of Anchorage	291,538
		Matanuska-Susitna Borough	107,610
Fairbanks, MSA	98,971		
Juneau, µSA	32,113	-	
Ketchikan, µSA	13,918		

^{*(}based on 2018 Census Estimates, https://www.census.gov/programs-surveys/popest.html)

The minimum number of sites required for the Alaskan CBSAs for the six criteria pollutants are summarized for the Alaska network in Table 3-2. No monitoring is required for lead anywhere in the Alaskan CBSAs. No air quality monitoring sites are currently required for the Ketchikan µSA.

Monitoring in the Juneau μ SA focuses on particulate matter monitoring. One monitoring site is required for PM₁₀ based on the PM₁₀ Limited Maintenance Plan. The Mendenhall Valley had been designated as a PM₁₀ non-attainment area and has met the standard since 1994. No PM_{2.5} monitoring site is required; however, a single continuous PM_{2.5} monitor is used to issue burn curtailments by the local government.

CO monitoring is required in the Anchorage and Fairbanks MSAs based on the Limited Maintenance Plans for the MSAs. Both areas had been previously designated as non-attainment and have been able to lower their concentrations. Neither MSA has had a violation of the CO standard since 2000.

The Anchorage MSA triggered the PM₁₀ monitoring requirement of 3-4 monitors based on four exceedances elevated concentrations in 2016 and 2018 (see Table E-5 in **Appendix E**). The exceedances result from high wind events that pick up dust from frozen, but not snow-covered, braided river beds. These high wind events occur semi-regularly in fall and occasionally in early spring. DEC has flagged the events in AQS and has amassed relevant supporting evidence for exceptional event waiver requests (EEWR). As EPA and the state are currently focused on PM_{2.5}, DEC plans to prepare EEWRs for the events when EPA starts another PM₁₀ designation process and/or if EPA requests that DEC submit them for approval. Thus, DEC requests that exceptional events not be used to calculate minimum requirements for the Anchorage MSA and that the all

sites be considered medium concentration. Table 3-2 relies on data that exclude the Mat-Su 2018 and 2016 high wind events.

Based on a 2017 DV of 32 μ g/m³, the minimum requirement for Anchorage MSA PM_{2.5} monitoring was one site for the 2018 Annual Monitoring Plan. However based on a 2018 DV of 26, no PM_{2.5} monitoring sites are required for this 2019 Annual Monitoring Plan. Currently, the Anchorage MSA PM_{2.5} monitoring network of two sites exceeds the minimum requirements specified. The minimum requirement for PM_{2.5} monitoring in the Fairbanks MSA is one monitoring site. The Fairbanks PM_{2.5} monitor requirement is based on the elevated concentrations measured in Fairbanks and North Pole. DEC's Fairbanks PM_{2.5} monitoring network exceeds this requirement because of its status as a serious nonattainment area.

Table 3-2: Minimum Monitoring Requirements for Alaskan CBSAs

Criteria	Pollutant	SLAMS site requirement					
	Comments	Anchorage MSA	Fairbanks MSA	Juneau µSA	Ketchikan μSA		
DM.	Most recent 3 year design value ≥ 85% of NAAQS	0	1	0	0		
PM _{2.5}	Most recent 3 year design value < 85% of NAAQS	0	0	0	0		
PM ₁₀	Two monitoring sites based on PM ₁₀ Limited Maintenance Plans (Juneau and Eagle River)	1-2	0	0	0		
Pb	Waiver for source oriented monitoring - see section 3.1.1	0	0	0	0		
СО	Two monitoring sites based on CO Limited Maintenance Plans (Fairbanks and Anchorage); Fairbanks also meets NCore requirement	0	0	0	0		
0	Most recent 3 year design value ≥ 85% of NAAQS	0	0	0	0		
O ₃	See EPA O ₃ NAAQS waiver ¹	0^1	0	0	0		
SO ₂	NCore site requirement	0	0	0	0		
NO ₂	NCore site requirement	0	0	0	0		

¹ EPA 5-Year Ozone NAAQS Monitoring Requirement Waiver: http://dec.alaska.gov/media/10956/2017-airmonitoring-network-plan-ozone-waiver.pdf

3.1.1 LEAD

To meet source-oriented lead monitoring requirements and after consultation with EPA, DEC decided to pursue a modeling demonstration to show that lead concentrations at the ambient boundary of the Red Dog Mine meet the new lead standard. On August 11, 2016, EPA approved the State of Alaska's waiver request for lead monitoring at the Red Dog Mine based on the

results of dispersion modeling. The results of the modeling showed that the maximum ambient air 3-month rolling average lead concentration at the mine boundary did not exceed 50 percent of the lead NAAQS. Pursuant to 40 CFR Part 58, Appendix D, section 4.5(a)(ii), this waiver must be renewed every 5 years as part of the Alaska 5-year Air Monitoring Network Assessment. A copy of the EPA approval letter can be found at https://dec.alaska.gov/media/10608/red-dog-mine-lead-monitoring-waiver-letter-epa-081116.pdf.

3.1.2 APPENDIX D & E SITING FORMS

In 2014 EPA Region 10 provided network evaluation forms to determine compliance with design and minimum monitoring requirements for each of the criteria pollutants under 40 CFR 58, Appendix D. These evaluation forms were reviewed and updated, when necessary, in 2019 by DEC and are presented in **Appendix A**. In 2014, EPA Region 10 provided siting evaluation forms to determine compliance with siting requirements for each of the criteria pollutants under 40 CFR 58, Appendix E. These site evaluation forms were reviewed and updated, when necessary, in 2019 by DEC and are summarized by MSA in **Appendix B**.

3.2 CURRENT MONITORING SITES

DEC operates and maintains a number of ambient air monitoring networks throughout Alaska. Table 3-3 provides the site name, address, geographic coordinates, and identification number for all the air monitoring sites for which data are submitted to the EPA Air Quality System (AQS) database as of May 2019. NCore parameters measured are PM₁₀, PM_{2.5}, PM_{10-2.5}, CO, O₃, SO₂, NO₂, NO₃, NO₃, NO₄, NO₅, NO₅, NO₆, NO₇, NO₇, CSN, and meteorological parameters.

Table 3-3: AQS Monitoring Sites as of May 2019

Oite Name	, A al al	1 a444 a da // a a a a 44 a da 4	400 ID	A
Site Name	Address	Latitude/Longitude ¹	AQS ID	Agency
Garden	3000 East 16th Ave.	61.205861N	02-020-0018	DEC
Gurden	Anchorage, AK	149.824602W	02 020 0010	
Laurel	4335 Laurel St.	61.181312N	02-020- 0045	DEC
Laurer	Anchorage, AK	149.834083W	02-020-0043	DLC
	11723 Old Glenn			
Parkgate	Hwy.	61.326700N	02-020-1004	DEC
	Eagle River, AK	149.569707W		
State Office Devilding	675 Seventh Ave.	64.840833N	02 000 0010	DEC
State Office Building	Fairbanks, AK	147.723056W	02-090-0010	DEC
	809 Pioneer Road	64.845307N	02 000 0024	DEG
NCore	Fairbanks, AK	147.72552W	02-090-0034	DEC
	3288 Hurst Rd.	64.762973N		
Hurst Road ²	North Pole, AK	147.310297W	02-090-0035	DEC
	397 Hamilton Ave	64.84593		
A Street	Fairbanks, AK	147.69327W	02-090-0040	DEC
	Harrison Court	61.534100N		
Butte ³		149.0351855W	02-170-0008	DEC
	Butte, AK	149.0331833 W		
Palmer	South Gulkana St.	61.599322N	02-170-0012	DEC
Tunner	Palmer, AK	149.103611W	02 170 0012	DEC
	370A 4 th Ave	60.79583N	0.	
Bethel	Bethel, AK	161.767W	02-050-0001	DEC
	3800 Mendenhall	58.388889N		
Floyd Dryden Middle School	Dryden Middle School Loop Road		02-110-0004	DEC
-	Juneau, AK	134.565556W		

Coordinates for latitude and longitude are consistent with the World Geodetic System (WGS 84).

3.3 SITING CRITERIA

In 2014, EPA Region 10 provided site evaluation forms to determine compliance with 40 CFR 58 Appendix E requirements for monitoring path and siting criteria. These forms were

² Hurst Road is the new name for the North Pole Fire Station site. It was changed in 2018 at Fairbanks North Star Borough's request.

³ DEC has requested a siting waiver from EPA for the Butte site. The waiver is going through EPA's process as of May 2019.

distributed to the individual site operators for completion. Summaries of the site evaluation forms are presented in three tables – PM, CO and all other gaseous pollutants – in **Appendix B** of this report. Monitoring site photos and location maps can be found at: http://dec.alaska.gov/air/air-monitoring/monitoring-site-information/.

3.3.1 CARBON MONOXIDE SITES

Carbon monoxide (CO) inlet probes should be at least 1 meter away, both vertically and horizontally, from any supporting structure or wall. For micro-scale sites the probe height must be between 2.5 and 3.5 meters, whereas for other scale sites the probe must be between 3 and 15 meters high.

A probe must have unrestricted airflow for at least 270 degrees, or 180 degrees if it is located on the side of a building. Obstructions must be a minimum distance away equal to twice the distance by which the height of the obstruction exceeds the height of the probe. Trees should not be present between the dominant CO source or roadway and the inlet probe.

The following table (Table 3-4) lists the CO monitoring sites in Anchorage and Fairbanks.

Table 3-41: CO Monitoring Sites in Anchorage and Fairbanks May 2019

Site Name	Monitoring Scale	Probe Distance from Wall (meters)	Height (meters)	Unrestricted Air Flow	Spacing from Roadway (meters)	Trees
Garden 02-020-0018	Neighborhood	1	3	180 degrees unobstructed except for a tree 2.3 m from probe	7.6	Yes ¹
NCore 02-090-0034	Neighborhood	Not applicable	3	360 degrees unobstructed	70	>20 m

One spruce tree 7.3m tall, 2.3 m to drip line

3.3.2 PARTICULATE MATTER (PM₁₀ AND PM_{2.5}) SITES

For micro-scale sites, particulate matter inlets must be between 2 and 7 meters from ground level. For other siting scales the probe must be between 2 and 15 meters high.

A sampler must have at least 2 meters separation from walls, parapets, penthouses, etc. A sampler must have unrestricted airflow for at least 270 degrees, or 180 degrees for street canyon sites. Obstructions must be a minimum distance away from the sampler with the separation equal to twice the distance by which the height of the obstruction exceeds the height of the sampler inlet.

Micro-scale sampler inlets must be located between 5 and 15 meters from the nearest traffic lane for traffic corridor sites, and between 2 and 10 meters for street canyon sites. The minimum separation distance between the probe and nearest traffic lane for middle, neighborhood, or urban scale sites depends upon the number of vehicles per day (VPD) that use the roadway according to a table in Appendix E of 40 CFR 58. Table 3-5 lists all PM monitoring sites in Alaska and how they fit the siting criteria from Appendix E of 40 CFR 58 (also see Appendix B).

Table 3-5: PM Monitoring Sites in Alaska as of May 2019

Site Name AQS Codes	Monitoring Scale PM ₁₀	Monitoring Scale PM _{2.5}	Height (meters)	Spacing from Obstructions (meters)	Spacing from Roadway (meters)	Traffic (VPD)	Trees within 10 meters?
Garden 02-020-0018	Neighborhood	Neighborhood	11	no obstructions	14	1275 Sunrise Dr. 2014 Airport Heights Dr.	no
Laurel 02-020-0045	Microscale	-	6.4	no obstructions	11	34,617 Tudor Rd	no
Parkgate 02-020-1004	Neighborhood	Neighborhood	10.4	no obstructions	44	12,511 Old Glenn Hwy	no
Butte 02-170-0008	Neighborhood	Neighborhood	4.7	no obstructions	150	Old Glenn Hwy, 5,891 ²	yes 5.5 m
Palmer 02-170-0012	Neighborhood	Neighborhood	4	no obstructions	>20	Unknown, probably < 51,000	no
A Street 02-090-0040	-	Neighborhood	4	no obstructions	5.8	1943 Hamilton Ave	no
State Office Building 02-090-0010	-	Neighborhood	7	no obstructions	20	3785 Barnette St	no
NCore 02-090-0034	Neighborhood	Neighborhood	4.5	no obstructions	70	4865 Philips Field Rd	no
Hurst Road 02-090-0035	-	Neighborhood	4.3	no obstructions	27 to Hurst Rd	4714 Hurst Rd	no
Floyd Dryden 02-110-0004	Neighborhood	Neighborhood	8	no obstructions	100	16,904 Glacier Hwy	no
Bethel ³ 02-050-0001	Neighborhood	Neighborhood	5	no obstructions	>30 to Fifth Ave	6340 Ridgecrest Dr.	no

¹ Average annual traffic count 2012-2017 traffic data accessed at: http://akdot.maps.arcgis.com/home/webmap/viewer.html?webmap=7c1e1029fdb64d7a86449d55ef05e21c&extent=180,54.7188,-127.111,70.3005

McKechnie Loop has only local neighborhood traffic and the site is at the end of a gravel cul-de-sac on Harrison

Court (with three houses).

³ Site is next to a gravel pad/road

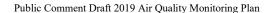
3.4 NCORE SITE

The NCore site pollutant monitors listed in Table 3-6 are representative at a neighborhood scale. Meteorological monitoring is representative at a microscale. Table 3-6 also lists additional relevant siting information.

Table 3-6: NCore Gaseous¹ Monitoring and Meteorological Monitoring as of January 2019 in Alaska

Parameter Name	Monitoring Scale	Height (meters)	Spacing from Obstructions (meters)	Spacing from Roadway (meters)	Traffic (VPD)	Trees < 10 m?
NOy, NO & diff	Neighborhood	3^2	no obstructions	70	4865^{3}	None
NO ₂ , NOx & NO	Neighborhood	3	no obstructions	70	4865	None
O ₃	Neighborhood	3	75 m to 12 m building	70	4865	None
SO ₂ (1 hr & 5 min)	Neighborhood	3	no obstructions	70	4865	None
T _{amb} , WS & WD (2 m)	Microscale	2	no obstructions	70	4865	None
T _{amb} , WS & WD (10 m)	Microscale	10	no obstructions	70	4865	None
Relative Humidity	Neighborhood	4	no obstructions	70	4865	None
Barometric Pressure	Neighborhood	4	no obstructions	70	4865	None

¹ Excluding CO.


http://akdot.maps.arcgis.com/home/webmap/viewer.html?webmap=7c1e1029fdb64d7a86449d55ef05e21c&extent=180,54.7188,-127.111,70.3005

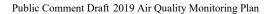
3.5 MONITORING METHODS, DESIGNATION, AND SAMPLING FREQUENCY

Tables 3-7 to 3-17 present information for current sites (and monitors) used in coding the data submitted by DEC to the AQS database. The information provided in Tables 3-7 to 3-17 for each monitoring site includes pollutant parameter name, monitor designation, the AQS parameter codes and parameter occurrence codes (POC), the AQS method code, the frequency of sampling, and the instrumentation used. The monitor designation states the purpose for which the data are

² Probe height is 3 meters rather than the 10 meters recommended in order to remain below the unusually low winter inversion layer.

³ 2013-2017 Philips Field Road traffic data accessed at:

to be used, such as: for State & Local Air Monitoring Stations (SLAMS) to demonstrate NAAQS compliance, Special Purpose Monitoring sites (SPM) for general air quality assessments, and the Chemical Speciation Network (CSN) for atmospheric chemistry assessments. AQS parameter, method and units codes are specific to the pollutant, instrumentation, and sampling equipment used, and how the concentration units are expressed in either local conditions or corrected to standard conditions for temperature and pressure. The 5-digit parameter code identifies the parameter being measured e.g. PM₁₀, SO₂, or wind speed. The 1-digit POC code is the parameter occurrence code. As suggested by Region 10 EPA, DEC uses the POC to indicate whether the sampler or instrument is (1) a primary data source, or (2) a secondary data source such as a collocated sampler, or (3) that an instrument is measuring on a continuous basis. The AQS method code provides information specific to the analytical technique used for the pollutant determination such as instrumental analysis using chemiluminescence for nitric oxide or gravimetric analysis for particulate. The notation presented in the sample frequency indicates how often the pollutant concentration is determined. For example, 1/6 indicates that one sample is collected every sixth day according to the national EPA air monitoring schedule. Continuous indicates that an instrument is continuously analyzing a sample stream providing a pollutant concentration on a real-time basis (e.g. 1-min SO₂ reading) or a near-real time basis (e.g. 1-hour PM_{2.5} reading from a beta attenuation monitor, a BAM). The equipment information column identifies on-site equipment (either a sampler or instrument) specific to the AQS parameter code.


Other monitoring sites operated by DEC to gather data related to rural road dust and wildland fires, but that are not submitted to the AQS database are discussed in **Appendix C**. The IMPROVE monitoring sites operated in Alaska under the federal program to characterize and protect scenic visibility around National Parks and designated wilderness areas are described in **Appendix D**.

A summary of pollutant concentration data calculated as NAAQS design values, maxima, or as averages are presented in **Appendix E**.

Table 3-7: Anchorage MSA: AQS Codes January 2020; STD = standard conditions of temperature and pressure; LC = local (actual) conditions of temperature and pressure

Site Name/ Location/ AQS ID	Pollutant Parameter	Monitor Designation	Monitor Starting Date	AQS Parameter/ Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
	PM _{10STD} / PM _{10LC}	SLAMS	1/1/2009 STD 01/1/2015 LC	81102-3/ 85101-3	122	Continuous	Met-One BAM 1020X
Garden Site/ Anchorage 02-020-0018	PM _{2.5LC}	SLAMS	1/1/2009	88101-3	170	Continuous	Met-One BAM 1020X (VSCC)
02-020-0018	СО	SLAMS	1/1/1979	42101-1	554	Continuous	Thermo Scientific. Inst. Model 48i
Laurel/ Anchorage 02-020-0045	PM _{10STD} / PM _{10LC}	SPM	5/28/2015	81102-3/ 85101-3	122	Continuous	Met-One BAM 1020X
Parkgate/ Eagle River 02-020-1004	PM _{10STD} / PM _{10LC}	SLAMS	1/1/2009 STD 01/01/2015 LC	81102-3/ 85101-3	122	Continuous	Met-One BAM 1020X
	PM _{10STD} / PM _{10LC}	SLAMS	7/31/2018	81102-3/ 85101-3	126	1/6	Thermo Scientific Partisol 2000i
Butte/ Matanuska-	PM _{10STD} / PM _{10LC}	SPM	4/11/1998	81102-3/ 85101-3	122	Continuous	Met-One BAM 1020X Coarse
Susitna Valley 02-170-0008	PM _{2.5LC}	SLAMS	8/10/2011	88101-3	170	Continuous	Met-One BAM 1020X Coarse (VSCC)

THO MANAGEMENT OF THE PARTY OF
STATE OF ALLSELD

Site Name/ Location/ AQS ID	Pollutant Parameter	Monitor Designation	Monitor Starting Date	AQS Parameter/ Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
Butte/ Matanuska- Susitna Valley 02-170-0008	PM _{2.5LC}	SLAMS	7/31/2018	88101-1	143	1/6	Thermo Scientific Partisol 2000i (VSCC)

Table 3-8: FNSB monitors: AQS Codes as of May 2019; STD = standard conditions of temperature and pressure; LC = local (actual) conditions of temperature and pressure

Site Name/Location	Pollutant Parameter	Monitor Designation	AQS Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
	$\begin{array}{c} PM_{10STD}/\\ PM_{10LC} \end{array}$	NCORE	2/15/2011	81102-3/ 85101-3	122	Continuous	Met-One BAM 1020X Coarse
NCore/ Fairbanks	$\mathrm{PM}_{2.5\mathrm{LC}}$	NCORE	2/15/2011	88501-3	731	Continuous	Met-One BAM 1020X Coarse (SCC)
02-090-0034	PM _{10STD} / PM _{10LC} collocate	NCORE	11/10/2012	81102-1/ 85101-1	126	1/3	Thermo Scientific Partisol 2000i
	PM _{2.5LC}	NCORE	11/4/2009	88101-1	145	1/1	Thermo Scientific Sequential Partisol 2025i (VSCC)

Public Comment Draft 2019 Air Quality Monitoring Plan

Site Name/Location	Pollutant Parameter	Monitor Designation	AQS Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
	PM2.5 _{LC}	NCORE	5/8/2013	88101-2	143	1/3	Thermo Scientific Partisol 2000i (VSCC)
	PM _{10LC} - PM _{2.5LC}	NCORE	2/15/2011	86101-1	175/176	1/3	paired Thermo Scientific Partisols 2000i
	СО	NCORE	8/1/2011	42101-1	554	Continuous	Thermo Scientific 48i-TLE
	SO ₂ (1-hr)	NCORE	8/1/2011	42401-1	560	Continuous	Thermo Scientific 43i-TLE
	SO ₂ (5-min)	NCORE	8/18/2011	42401-2	560	Continuous	Thermo Scientific 43i-TLE
NCore/ Fairbanks	NO _Y	NCORE	01/01/2013 10/5/2012 AQS	42600-1	674	Continuous	Thermo Scientific 42iY-TLE
02-090-0034	NO	NCORE	10/5/2012	42601-2	574	Continuous	Thermo Scientific 42iY-TLE
	NO _Y -NO	NCORE	10/5/2012	42612-1	674	Continuous	Thermo Scientific 42iY-TLE
	NO_X	NCORE	7/1/2014	42603-1	574	Continuous	Thermo Scientific 42i-TL
	NO	NCORE	3/1/2014 10/5/2012	42601-1	574	Continuous	Thermo Scientific 42i-TLE
	NO ₂	NCORE	3/1/2014	42602-1	574	Continuous	Thermo Scientific 42i-TLE

Public Comment Draft 2019 Air Quality Monitoring Plan

Site Name/Location	Pollutant Parameter	Monitor Designation	AQS Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
	O ₃	NCORE	8/1/2011	44201-1	87	Continuous	Teledyne API 400E
	WD ¹ 10 m	NCORE	4/5/2011	61104-1	061	Continuous	Met-One Sonic Anemometer
	WS ¹ 10 m	NCORE	4/5/2011	61103-2	061	Continuous	Met-One Sonic Anemometer
NCore/ Fairbanks 02-090-0034	ВР	NCORE	4/5/2011	64101-1	014	Continuous	Met-One BAM 1020X Barometer
	RH	NCORE	11/4/2013	62201	061	Continuous	Met-One BAM 1020X Relative Humidity Sensor
	Ambient Temp @ 2 m	NCORE	4/1/2011	62101-2	061	Continuous	Met-One Temp Sensor
	Ambient Temp @ 10 m	NCORE	4/1/2011	62101-1	061	Continuous	Met-One Temp Sensor
	PM _{2.5LC} Speciation	NCORE/CSN	1/1/2015	Multiple ²	Multiple ²	1/3	URG 3000N
	PM _{2.5LC} Speciation	NCORE/CSN	1/1/2015	Multiple ²	Multiple ²	1/3	Met-One Super SASS PM _{2.5} LC

Public Comment Draft 2019 Air Quality Monitoring Plan

Site Name/Location	Pollutant Parameter	Monitor Designation	AQS Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
	PM _{2.5LC}	SLAMS	~7/1/2019	88101-1	145	1/1	Thermo Scientific Sequential Partisol 2025i (VSCC)
	PM _{2.5LC}	SLAMS	11/29/2018	88501-3	731	Continuous	Met-One BAM 1020X (SCC)
A Street/ Fairbanks	WD ¹ 3 m	SPM	TBD	61104-1	061	Continuous	Met-One Sonic Anemometer
02-090-0040	WS ¹ 3 m	SPM	TBD	61103-1	061	Continuous	Met-One Sonic Anemometer
	WD¹ 10 m	SPM	1/31//2019	61104-1	061	Continuous	Met-One Sonic Anemometer
	WS ¹ 10 m	SPM	1/31/2019	61103-1	061	Continuous	Met-One Sonic Anemometer
Hurst Road/ North Pole 02-090-0035	PM _{2.5LC}	SLAMS	3/1/2012	88101-1	145	1/1	Thermo Scientific Sequential Partisol 2025i (VSCC)
	PM _{2.5LC} collocate	SLAMS	~7/1/2018	88101-2	145	1/3	Thermo Scientific Sequential Partisol 2025i (VSCC)

Public Comment Draft 2019 Air Quality Monitoring Plan

Site Name/Location	Pollutant Parameter	Monitor Designation	AQS Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
	PM _{2.5LC}	SLAMS	3/1/2012	88501-3	731	Continuous	Met-One BAM 1020X (SCC)
	PM _{2.5LC} Speciation	CSN	~9/1/2019	Multiple ³	Multiple ³	1/3	URG 3000N
	PM _{2.5LC} Speciation	CSN	~9/1/2019	Multiple ³	Multiple ³	1/3	Met-One Super SASS
	Ambient Temp 10 m	SPM	~9/1/2019	62101-1	061	Continuous	Met-One Temp Sensor
Hurst Road/ North Pole 02-090-0035	WD ¹ 10 m	SPM	~9/1/2019	61104-1	061	Continuous	Met-One Sonic Anemometer
	WS ¹ 10 m	SPM	~9/1/2019	61103-1	061	Continuous	Met-One Sonic Anemometer
	Ambient Temp 3 m	SPM	~9/1/2019	62101-2	061	Continuous	Met-One Sonic Anemometer
	WD ¹ 3 m	SPM	~9/1/2019	61104-2	061	Continuous	Met-One Sonic Anemometer

Public Comment Draft 2019 Air Quality Monitoring Plan

Site Name/Location	Pollutant Parameter	Monitor Designation	AQS Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
	WS ¹ 3 m	SPM	~9/1/2019	61103-2	061	Continuous	Met-One Sonic Anemometer
	Ambient Temp 23 m	SPM	~9/1/2019	62101-3	061	Continuous	Met-One Sonic Anemometer
Hurst Road/ North Pole 02-090-0035	WD¹ 23 m	SPM	~9/1/2019	61104-3	061	Continuous	Met-One Sonic Anemometer
	WS ¹ 23 m	SPM	~9/1/2019	61103-3	061	Continuous	Met-One Sonic Anemometer

¹ WD and WS are reported to AQS as resultant ² Multiple AQS codes are used to identify individual chemical species

Table 3-9: Juneau μ SA: AQS Codes as of January 2020; STD = standard conditions of temperature and pressure; LC = local (actual) conditions of temperature and pressure

Site Name/Location	Pollutant Parameter	Monitor Designation	Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
Floyd Dryden Middle School/ Juneau	PM _{10STD/} PM _{10LC}	SLAMS	7/30/2018	81102-3/ 85101-3	122	Continuous	Met-One BAM 1020X Coarse
02-110-0004	PM _{2.5LC}	SLAMS	8/21/2009	88101-3	170	Continuous	Met-One BAM 1020X (VSCC)

Table 3-10: Bethel: AQS Codes as of January 2020; STD = standard conditions of temperature and pressure; LC = local (actual) conditions of temperature and pressure

Site Name/Location	Pollutant Parameter	Monitor Designation	Monitor Starting Date	AQS Parameter and Occurrence Code	AQS Method Codes	Sample Frequency	Equipment
Bethel 02-050-0001	PM _{10STD} / PM _{10LC}	NCORE	5/23/2018	81102-3/ 85101-3	122	Continuous	Met-One BAM 1020X Coarse
	PM _{2.5LC}	SLAMS	5/23/2018	88501-3	731	Continuous	Met-One BAM 1020X (SCC)

Table 3-11: January 2020 Site Level Monitoring Objectives

			Monitoring Objectives
Site Name	AQS ID	Pollutant(s)	40 CFR Part 58 App D 1.1.1
Garden	02-020-0018	PM ₁₀ /PM _{2.5} /CO	(b) Typical concentrations (population density based)(d) General background concentration levels
Laurel	02-020- 0045	PM_{10}	(a) Highest concentrations expected in area(c) Impact of significant sources/source categories
Parkgate	02-020-1004	PM_{10}	(b) Typical concentrations (population density based)(d) General background concentration levels
NCore	02-090-0034	PM ₁₀ /PM _{2.5} /PM ₁₀ -2.5/CO/ SO ₂ /O ₃ / NO ₂ /NO/NOy/NOx/Speciation	(b) Typical concentrations (population density based)(d) General background concentration levels
Hurst Road	02-090-0035	PM _{2.5} /Speciation	(a) Highest concentrations expected in area
A Street	02-090-0040	PM _{2.5}	(a) Highest concentrations expected in area
Butte	02-170-0008	PM ₁₀ /PM _{2.5}	(c) Impact of significant sources/source categories(a) Highest concentrations expected in area
Bethel	02-050-0001	$PM_{10}/PM_{2.5}$	(b) Typical concentrations (population density based)(d) General background concentration levels
Floyd Dryden Middle School	02-110-0004	PM ₁₀ /PM _{2.5}	(b) Typical concentrations (population density based)(d) General background concentration levels

Table 3-12: Anchorage MSA Instrument-Level Monitoring Purposes

Site Name/ Location/AQS ID	Pollutant Parameter	AQS Parameter/ Occurrence Code	Monitoring Purpose(s)
C 1 /	PM _{10STD} /PM _{10LC}	81102-3/85101-3	-Provide timely air pollution information -Determine ambient air quality standard compliance
Garden/ Anchorage 02-020-0018	PM _{2.5LC}	88101-3	-Provide timely air pollution information -Determine ambient air quality standard compliance
02-020-0018	СО	42101-1	-Provide timely air pollution information -Determine ambient air quality standard compliance
Laurel/ Anchorage 02-020-0045	PM _{10STD} /PM _{10LC}	81102-3/85101-3	-Provide timely air pollution information -Determine ambient air quality standard compliance
Parkgate/ Eagle River 02-020-1004	PM _{10STD} /PM _{10LC}	81102-3/85101-3	-Provide timely air pollution information -Determine ambient air quality standard compliance

Table 3-13: January 2020 FNSB Instrument-Level Monitoring Purposes

Site Name/ Location/ AQS ID	Pollutant Parameter	AQS Parameter/ Occurrence Code	Monitoring Purpose(s)
LUCATION/ AQS ID	Parameter	Occurrence Code	Monitoring Purpose(s)
	PM_{10STD}	01102 2/05101 2	-Provide timely air pollution information
	$\mathrm{PM}_{10\mathrm{LC}}$	81102-3/85101-3	- Determine ambient air quality standard compliance
			-Support air pollution research studies
	$\mathrm{PM}_{2.5\mathrm{LC}}$	88101-3	-Provide timely air pollution information -Support air pollution research studies
			-Determine ambient air quality standard compliance
	$\mathrm{PM}_{2.5\mathrm{LC}}$	88101-1/2	-Support air pollution research studies
			-Determine ambient air quality standard compliance
	PM _{10LC} - PM _{2.5LC}	86101-1	-Support air pollution research studies
_			-Provide timely air pollution information
NG /F:1 1	CO	42101-1	-Determine ambient air quality standard compliance
NCore/ Fairbanks	60	42101-1	-Support air pollution research studies
02-090-0034			-Provide timely air pollution information
	SO_2	42401-1	-Determine ambient air quality standard compliance
	(1-hr)	72701 1	-Support air pollution research studies
	SO_2		-Determine ambient air quality standard compliance
	(5-min)	42401-2	-Support air pollution research studies
	NO _Y	42600-1	-Support air pollution research studies
	NO	42601-1	-Support air pollution research studies
	NO _Y -NO	42612-1	-Support air pollution research studies
	NO _X	42603-1	-Support air pollution research studies
	NO	42601-2	-Support air pollution research studies
			-Provide timely air pollution information
	NO_2	42602-1	-Determine ambient air quality standard compliance
	-		-Support air pollution research studies
			-Provide timely air pollution information
	O_3	44201-1	-Determine ambient air quality standard compliance
			-Support air pollution research studies
	WD	(1104.1	-Provide timely air pollution information
	WD	61104-1	-Support air pollution research studies
	WC	61102.1	-Provide timely air pollution information
	WS	61103-1	-Support air pollution research studies
	BP	64101-1	-Provide timely air pollution information.

Public Comment Draft 2019 Air Quality Monitoring Plan

Site Name/ Location/ AQS ID	Pollutant Parameter	AQS Parameter/ Occurrence Code	Monitoring Purpose(s)
			-Support air pollution research studies
	RH	62201-1	-Provide timely air pollution informationSupport air pollution research studies
NCore/ Fairbanks	Ambient Temp @ 2 m	62101-2	-Provide timely air pollution informationSupport air pollution research studies
02-090-0034	Ambient Temp @ 10 m	62101-1	-Provide timely air pollution informationSupport air pollution research studies
	PM _{2.5LC} Speciation	Multiple*	-Support air pollution research studies -part of CSN -Determine ambient air quality standard compliance
	PM _{2.5LC}	88501-3/88502-3	-Provide timely air pollution information
Hurst/	PM _{2.5LC} PM _{2.5LC} collocated	88101-2	-Provide timely air polition information -Determine ambient air quality standard compliance
North Pole		00101-2	-Determine amorem an quanty standard compniance
02-090-0035	Ambient Temp @ 3, 10, & 30 m	62101-2,1,3	-Provide timely air pollution information
	WD @ 10 & 30 m	61104-1,3	-Provide timely air pollution information
	WS@ 10 & 30 m	61103-1,3	-Provide timely air pollution information

Table 3-14: Juneau Instrument-Level Monitoring Purposes

Site Name/ Location/AQS ID	Pollutant Parameter	AQS Parameter/ Occurrence Code	Monitoring Purpose(s)
Floyd Dryden Middle School/	$\begin{array}{c} PM_{10STD}/\\ PM_{10LC}\\ collocated \end{array}$	81102-2/ 85101-2	-Determine ambient air quality standard compliance
Juneau 02-110-0004	PM _{2.5LC}	88101-3	-Provide timely air pollution information -Determine ambient air quality standard compliance
	PM _{2.5LC}	88101-2	-Determine ambient air quality standard compliance

Table 3-15: Bethel Instrument-Level Monitoring Purposes

Site Name/ Location/AQS ID	Pollutant Parameter	AQS Parameter/ Occurrence Code	Monitoring Purpose(s)
Bethel/	PM _{10STD} / PM _{10LC}	81102-3/85101-3	-Provide timely air pollution information -Determine ambient air quality standard compliance
02-050-0001	PM _{2.5LC}	88501-3	-Provide timely air pollution information -Determine ambient air quality standard compliance

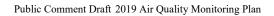


Table 3-16: Monitors required by Nonattainment Area (NAA) or Limited Maintenance Plan (LMP)

MSA or μMSA	Site Name/ Location/	AQS ID	Pollutant Parameter	AQS Parameter/ Occurrence Code	Required by NAA or LMP?
Fairbanks MSA	Hurst Road/North Pole	02-090-0035	$PM_{2.5LC}$	88101-1	Fairbanks PM _{2.5} NAA
ranoanks WSA	NCore/Fairbanks	02-090-0034	CO	42101-3	Fairbanks CO LMP
Ancharas MCA	Garden/Anchorage	02-020-0018	CO	42101-3	Anchorage CO LMP
Anchorage MSA	Parkgate/Eagle River	02-020-0045	$PM_{\rm 10STD}$	81102-3	Eagle River PM ₁₀ LMP
Juneau μMSA	Floyd Dryden Middle School/ Juneau	02-110-0004	PM_{10STD}	81102-3	Juneau PM ₁₀ LMP

Table 3-17: Collocations January 2020

Site Name/ Location/ AQS ID	Pollutant Parameter	AQS Parameter/ Occurrence Code	AQS Method Code	Equipment	Primary or Secondary
Butte/ Matanuska-	PM _{2.5LC}	88101-3	170	Met-One BAM 1020X Coarse	Primary
Susitna Valley 02-170-0008	PM _{2.5LC} collocate	88101-2	143	Thermo Scientific Partisol 2000i	Secondary
Hurst Road/ North Pole	PM _{2.5LC}	88101-1	145	Thermo Scientific Partisol 2025i	Primary
02-090-0035	PM _{2.5LC} collocate	88101-2	145	Thermo Scientific Partisol 2025i	Secondary
NCore/ Fairbanks	PM _{10STD}	81102-3/ 85101-3	122	Met-One BAM 1020X Coarse	Primary
02-090-0034	PM _{10STD} collocate	81102-2/ 85101-2	126	Thermo Scientific Partisol 2000i	Secondary
Parkgate/Eagle River 02-020-1004	PM _{10STD}	81102-3/ 85101-3	122	Met-One BAM 1020X Coarse	Primary
	PM _{10STD} collocate	81102-2/ 85101-2	126	Thermo Scientific Partisol 2000i	Secondary

4 NETWORK MODIFICATIONS COMPLETED IN 2018 AND 2019

4.1 PM_{2.5} COLLOCATION

A Thermo Scientific Sequential Partisol 2025i PM_{2.5} sampler was set-up in May 2018 at the Fairbanks SOB site and a Thermo Partisol 2000i PM_{2.5} sampler was moved from the Juneau Floyd Dryden site to the Harrison Ct in Butte in August 2018. These two sites fulfill the collocation requirements for the network (Table 3-17).

4.2 PM₁₀ COLLOCATION

A Thermo Partisol 2000i PM₁₀ sampler was moved from the Juneau Floyd Dryden site to the Parkgate site in Eagle River in August 2018. This site along with the Thermo Partisol 2000i PM₁₀ sampler at the Fairbanks NCore site fulfill the collocation requirements for the network (Table 3-17).

4.3 DISCONTINUATION OF PALMER PM_{2.5} AND PM₁₀ MONITORING

DEC is in the process of shutting down and removing the Special Purpose Monitoring PM_{10} and $PM_{2.5}$ monitoring site in Palmer. This site is not a required site. Due to the current budgetary and staffing levels, DEC cannot continue to support this site.

4.4 DISCONTINUATION OF PARKGATE PM2.5 MONITORING

DEC is in the process of shutting down and removing the $PM_{2.5}$ monitor at the Parkgate site. This monitor is not required to meet the minimum monitoring network. Due to the current budgetary and staffing levels, DEC cannot continue to support this site.

4.5 DISCONTINUATION OF SOB PM_{2.5} MONITORING

DEC established a new PM_{2.5} monitoring site in Fairbanks, the A Street site in late 2018. The intent is to document impacts in one of the Fairbanks hot spot locations, the Hamilton Acres neighborhood. A continuous PM_{2.5} monitor was operated during the 2018/2019 winter parallel to the SOB and NCore data collection. Analysis of the data corroborated that the A Street site experiences higher PM_{2.5} concentrations than the SOB site. DEC has been in communication with EPA Region 10 staff and requested approval to discontinue the site in a letter dated May 15, 2019. Assuming concurrence from EPA, DEC will move the Thermo Scientific Sequential Partisol 2025i PM_{2.5} sampler from the SOB to the A Street site by July 1, 2019 and shut down the SOB site. The NCore site will continue to operate in the downtown Fairbanks area. The collocated Thermo Scientific Sequential Partisol 2025i PM_{2.5} sampler at the SOB site will be moved to the North Pole Hurst Road site.

4.6 SPECIATION AND PM_{2.5} COLLOCATION AT HURST ROAD

DEC will install a new sampling shelter at the North Pole Hurst Road site to accommodate additional sampling equipment by August 1, 2019. The Hurst Road site will receive the collocated Thermo Scientific Sequential Partisol 2025i PM_{2.5} sampler from the SOB site. Since the North Pole Hurst Road monitoring site is the dominating site in the nonattainment area, speciated PM_{2.5} data is necessary for attainment planning. EPA OAQPS has provided DEC with a Met One SuperSASS and URG 3000N for the site. DEC will start collecting speciation filter samples as soon as the equipment has been installed. Additionally the meteorological instrumentation and 23 meter met tower formerly at the Fairbanks Peger site will be moved to the North Pole Hurst Road SLAMS site.

5 PLANNED NETWORK MODIFICATIONS FOR 2020

There are no proposed changes to the network for 2020.

Appendix A Network Evaluation Forms

Table A-1 PM_{2.5} Network Evaluation Form

PART 58 APPENDIX D NETWORK EVALUATION FORM FOR PM2.5 STATE: ALASKA AGENCY: DEPARTMENT OF ENVIRONMENTAL CONSERVATION AQS AGENCY CODE: 02 **EVALUATION DATE**: <u>5-8-2019</u> **EVALUATOR:** <u>A. BREUNINGER</u> APPLICABLE CRITERIA MET? REQUIREMENT SECTION YES NO N/A States, and where applicable local agencies must operate the minimum number of required PM_{2.5} 4.7.1(a)SLAMS sites listed in Table D-5 of this appendix. Use the form below and Table D-5 to verify if each of your MSAs have the appropriate number of SLAMS FRM/FEM/ARM samplers. Each required SLAMS FRM/FEM/ARM monitoring stations or sites must be sited to represent 4.7.1(b)area-wide air quality in the given MSA (typically neighborhood or urban spatial scale, though micro-or middle-scale okay if it represent many such locations throughout the MSA). At least one SLAMS FRM/FEM/ARM monitoring station is to be sited at neighborhood or larger 4.7.1(b)(1) scale in an area of expected maximum concentration for each MSA where monitoring is required by 4.7.1(a). For CBSAs with a population of 1,000,000 or more persons, at least one FRM/FEM/ARM PM_{2.5} 4.7.1(b)(2)monitor is to be collocated at a near-road NO2 station. For MSAs with additional required SLAMS sites, a FRM/FEM/ARM monitoring station is to be 4.7.1(b)(3)sited in an area of poor air quality. Each State must operate continuous PM_{2.5} analyzers equal to at least one-half (round up) the 4.7.2 minimum required sites listed in Table D-5 of this appendix. At least one required continuous analyzer in each MSA must be collocated with one of the required FRM/FEM/ARM monitors, unless at least one of the required FRM/FEM/ARM monitors is itself a continuous FEM or ARM monitor, in which case no collocation requirement applies. 4.7.3 Each State shall install and operate at least one PM25 site to monitor for regional background and at least one PM_{2.5} site to monitor regional transport (note locations in comment field). Non-reference PM2.5 monitors such as IMPROVE can be used to meet this requirement. 4.7.4 Each State shall continue to conduct chemical speciation monitoring and analyses at sites designated to be part of the PM2.5 Speciation Trends Network (STN). Comments:

MSA Description ¹	MSA population ^{2,3}	Design Value for years 2015-2017 24-hr/Annual Avg. µg/m3	Minimum required number of PM2.5 SLAMS FRM/FEM/ARM sites (from Table D-5)	Present number of PM2.5 SLAMS FRM/FEM/ARM sites in MSA	Present number of continuous PM2.5 FEM/ARM analyzers in MSA	Present number of continuous PM2.5 STN analyzers in MSA
Combined Municipality of Anchorage and Matanuska-Susitna Valley Borough (MSA)	399,148		1	2	2	0
MOA Garden		20/5.8		1	1	0
Mat-Su Butte		26/5.3		1	1	0
Fairbanks North Star Borough	98,971		1	4	1*	1 speciation
A Street		na		1 (2025i)	0*	0
NCore Site		30/8.3		1 (Partisol)	0*	1 speciation
Hurst Rd		65/12.8		2 (2025i; collocated)	0*	0
City and Borough of Juneau	32,113		0	1	1	0
Floyd Dryden		23/6.2		1	1	

 $[\]underline{^1} \underline{see\ https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html}$

^{*}MetOne BAM w/ SCC; per discussion with EPA VSCC cyclone removed

Table D-5 of Appendix D to Part 58 – PM2.5 Minimum Monitoring							
Requirements	Requirements						
MSA population ^{1, 2} Most recent 3-year design value ≥85% of any PM2.5 NAAQS³ Most recent 3-year design value <85% of any PM2.5 NAAQS³ any PM2.5 NAAQS³,4							
>1 million	3	2					
500K to 1 million	2	1					
50K to <500K ⁵	1	0					

¹Minimum monitoring requirements apply to the Metropolitan statistical area (MSA).
²Population based on latest available census figures. https://www.census.gov/

²Minimum monitoring requirements apply to the metropolitan statistical area (MSA). CBSA includes both MSAs and micropolitan statistical areas.

³Population based on latest available census figures.

³The PM₂₅ National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.

⁴These minimum monitoring requirements apply in the absence of a design value. ⁵Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population.

Table A-2 PM₁₀ Network Evaluation Form

PART 58 APPENDIX D NETWORK EVALUATION FORM FOR PM10

STATE: ALASKA AGENCY: DEPARTMENT OF ENVIRONMENTAL CONSERVATION AQS AGENCY CODE: 02

EVALUATION DATE: <u>5-8-2019</u> EVALUATOR: <u>A. BREUNINGER</u>

APPLICABLE SECTION	REQUIREMENT			CRITERIA MET?		
		YES	NO	N/A		
4.6(a)	Table D-4 indicates the approximate number of permanent stations required in MSAs to characterize national and regional PM10 air quality trends and geographical patterns. Use the form below and Table D-4 to verify if your PM10 network has the appropriate number of samplers.	*				

Comments: All of the site locations are based on historical agreements among the EPA, ADEC and (where applicable) local agencies.

Two exceedances on April 9, 2016 and November 16, 2018 at Palmer, and two exceedances at Butte on April 24, 2018 and May 10, 2018 2018 cause the entire Anchorage MSA to be categorized as high concentration. DEC qualified the exceedance day data as RJ (high winds). These four days could be the basis for a 2016 EEWR and a 2018 EEWR should EPA request DEC or EPA start another PM_{10} designation process. Thus DEC assumes that medium concentration is applicable when these exceptional events are excluded from the compliance calculations (Table E-5 with assumed EEWRs).

MSA Description ¹	MSA population ^{2,3}	Minimum required number of PM10 stations (from Table D-4)	Present number of PM10 stations in MSA
Anchorage MSA (includes Mat-Su Borough)	399,148	3-4 (high conc)/1-2 (med conc; high winds EE exceedances removed)	4 (SLAMS [1 collocated], 1 SPM)
Fairbanks North Star Borough MSA	98,971	0 (low conc)	1 (NCore, collocated)
City and Borough of Juneau μSA	32,113	0 (low conc)	1 (SLAMS/LMP)

¹see http://www2.census.gov/econ/susb/data/msa codes 2007 to 2011.txt

³Population based on latest available (2018) census figures.

Table D-4 of Appendix D to Part 58 – PM10 Minimum Monitoring Requirements						
MSA population ^{1,2} High concentration ² Medium concentration ³ Low concentration ^{4,5}						
>1 million	6-10	4-8	2-4			
500K to 1 million	4-8	2-4	1-2			
250K to 500K	3-4	1-2	0-1			
100K to 250K	1-2	0-1	0			

¹Selection of urban areas and actual numbers of stations per area will be jointly determined by EPA and the State agency.

²Minimum monitoring requirements apply to the Metropolitan statistical area (MSA). CBSA includes both MSAs and micropolitan statistical areas.

²High concentration areas are those for which ambient PM10 data show ambient concentrations exceeding the PM10 NAAQS by 20 percent or more.

³Medium concentration areas are those for which ambient PM10 data show ambient concentrations exceeding 80 percent of the PM10 NAAQS.

⁴Low concentration areas are those for which ambient PM10 data show ambient concentrations less than 80 percent of the PM10 NAAQS.

⁵These minimum monitoring requirements apply in the absence of a design value.

Table A-3 CO Site Evaluation Form

PART 58 APPENDIX D SITE EVALUATION FORM FOR CARBON MONOXIDE (CO)

STATE: ALASKA AGENCY: DEPARTMENT OF ENVIRONMENTAL CONSERVATION AQS AGENCY CODE: 02

EVALUATION DATE: 5-8-2019 EVALUATOR: A. BREUNINGER

APPLICABLE SECTION	REQUIREMENT	OBSERVED	CRIT	CRITERIA MET?			
			YES	NO	N/A		
4.2.1(a)	One CO monitor is required to operate collocated with one required near-road NO ₂ monitor in CBSAs having a population of 1,000,000 or more persons. If a CBSA has more than one required near-road NO ₂ monitor, only one CO monitor is required to be collocated with a near-road NO ₂ monitor within that CBSA.				*		
4.2.2(a)	Has the EPA Regional Administrator required additional CO monitoring stations above the minimum number of monitors required in 4.2.1? If so, note location in comment field.		√				

Comments: The State of Alaska has no CBSA with a population of 1,000,000. Therefore, there are no near-road collocated sites for CO and NO2. The Garden Site (AQS ID 02-020-0018) is the single CO site currently operating in the Municipality of Anchorage for Limited Maintenance Plan compliance. A single CO SLAMS monitor operated for Limited Maintenance Plan compliance in the Fairbanks North Star Borough at the Old Post Office Building site (AQS 02-090-0002) until 4/30/2014. Since then the Fairbanks North Star Borough multi-pollutant NCore site (02-090-0034) currently is the single CO site for compliance with NCore requirements and for Limited Maintenance Plan compliance in Fairbanks.

MSA Description ¹	CBSA population ^{2, 3}	Minimum required	Present number of
		number of SLAMS	SLAMS CO sites
		CO sites	in MSA
Combined Municipality of Anchorage and	399,148	0	1*
Matanuska-Susitna Borough			
Fairbanks North Star Borough	98,971	0	1*

¹see http://www2.census.gov/econ/susb/data/msa_codes_2007_to_2011.txt

²Minimum monitoring requirements apply to the Core Based statistical area (CBSA). CBSA includes both metropolitan and micropolitan statistical areas.

³Population based on latest available census figures (2017).

^{*} Monitoring sites in both MSAs satisfy their respective CO Limited Maintenance Plans requirements

Table A-4 O₃ Network Evaluation Form

PART 58 APPENDIX D NETWORK EVALUATION FORM FOR OZONE (O₃)

STATE: ALASKA AGENCY: DEPARTMENT OF ENVIRONMENTAL CONSERVATION AQS AGENCY CODE: 02 EVALUATION DATE: 5-8-2019 EVALUATOR: A. BREUNINGER

APPLICABLE SECTION	REQUIREMENT	CRITERIA MET?		
		YES	NO	N/A
4.1(b)	At least one O ₃ site for each MSA, or CSA if multiple MSAs are involved, must be designed to record the maximum concentration (note location in comment field).		✓	
4.1(c)	The appropriate spatial scales for O ₃ sites are neighborhood, urban, and regional (note deviations in comment field).	√		
4.1(f)	Confirm that the monitoring agency consulted with EPA R10 when siting the maximum O3 concentration site.	✓		
4.1(i)	O_3 is being monitored at SLAMS monitoring sites during the "ozone season" as specified in Table D-3 of Appendix D to Part 58.	1		

Comments: DEC received an EPA 5-Year Ozone NAAQS Monitoring Requirement Waiver for the Anchorage MSA: http://dec.alaska.gov/media/10956/2017-air-monitoring-network-plan-ozone-waiver.pdf (Palmer O₃ was discontinued at the end of ozone season 2018. An ozone monitoring site was established in the Fairbanks North Star Borough at the multi-pollutant NCore site (AQS 02-090-0034) in August 2011 and has been operated year-round since then.

MSA Description	MSA	Minimum required number	Present number					
	population	of SLAMS O ₃ sites (from	of SLAMS O3					
		Table D-2)	sites in CBSA					
Combined Municipality of Anchorage	399,148	1	0	See EPA ozone waiver link*				
and Matanuska-Susitna Valley								
Borough (MSAs)								
Fairbanks North Star Borough	98,971	0	1**	NCore Site				
see https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html								

^{*} DEC received a EPA 5-Year Ozone NAAQS Monitoring Requirement Waiver for the Anchorage MSA

^{**} fulfills State of Alaska NCore requirement

Table D-2 of Appendix D to Part 58 - SLAMS O₃ Monitoring Minimum Requirements								
MSA population ^{1, 2}	Most recent 3-year design value concentrations ≥85% of any O ₃ NAAQS ³	Most recent 3-year design value concentrations <85% of any O ₃ NAAQS ^{3,4}						
>10 million	4	2						
4-10 million	3	1						
350,000-<4 million	2	1						
50,000-<350,0005	1	0						

¹Minimum monitoring requirements apply to the Metropolitan statistical area (MSA). CBSA includes both MSAs and micropolitan statistical areas.

Table D-3 of Appendix D to Part 58—								
Ozone Monitoring Season by State								
State Begin month End Month								
Alaska	April	October						
Idaho	May	September						
Oregon	May	September						
Washington	May	September						

²Population based on latest available census figures.

³The ozone (O3) National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.

⁴These minimum monitoring requirements apply in the absence of a design value. ⁵Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population.

Table A-5 SO₂ Network Evaluation Form

PART 58 APPENDIX D NETWORK EVALUATION FORM FOR SULFUR DIOXIDE (SO₂)

STATE: ALASKA AGENCY: DEPARTMENT OF ENVIRONMENTAL CONSERVATION AQS AGENCY CODE: 02

EVALUATION DATE: 5-8-2019 EVALUATOR: A. BREUNINGER

APPLICABLE SECTION	REQUIREMENT	CRITERIA MET?							
		YES	NO	N/A					
4.4.1	State and, where appropriate, local agencies must operate a minimum number of required SO ₂ monitoring sites (based on PWEI calculation specified in 4.4.2 – use Table 1 and 2 below to determine minimum requirement for each CBSA)	>							
4.4.2(a)(1)	Is the monitor sited within the boundaries of the parent CBSA and is it one of the following site types: population exposure, highest concentration, source impacts, general background, or regional transport?			1					
4.4.3(a)	Has the EPA Regional Administrator required additional SO ₂ monitoring stations above the minimum number of monitors required in 4.4.2? If so, note location in comment field.		*						
4.4.5(a)	Is your agency counting an existing SO2 monitor at an NCore site in a CBSA with a minimum monitoring requirement?			✓					

Comments: As evident from the calculations shown below, the State of Alaska has no CBSAs which require SO₂ monitoring. The operating SO₂ monitor is located at the multi-pollutant NCore site in the Fairbanks North Star Borough operated for compliance with NCore site requirements.

Table 1.					
CBSA Description ¹	CBSA population ^{1, 2}	total amount of SO2 in tons per year emitted within the CBSA (from 2014 NEI ⁴)	PWEI (population x total emissions ÷ 1,000,000)	Minimum required number of SO ₂ monitors in CBSA (see Table 2 below)	Present number of SO ₂ monitors in CBSA
Combined Municipality of Anchorage and Matanuska-Susitna Valley Borough (MSA)	399,148	635.5	253.7	0	0
Fairbanks North Star Borough (MSA)	98,971	2390.8	236.6	0	1*
City and Borough of Juneau (µSA)	32,113	712.7	22.9	0	0
North Slope Borough	9,872	1235.0	12.2	0	0

 $^{{^{1}} \}underline{\text{https://www.census.gov/programs-surveys/popest.html}} \ \underline{\text{\& https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html}}$

^{*}Satisfies NCore requirement

Table 2. Minimum SO ₂ Monitoring Requirements (Section 4.4.2 of App D to Part 58)							
PWEI (Population weighted Emission Index) Value	Require number of SO ₂						
	monitors						
>= 1,000,000	3						
>= 100,000 but < 1,000,000	2						
>= 5,000 but < 100,000	1						

 $^{^2}$ Minimum monitoring requirements apply to the Core Based statistical area (CBSA). CBSA includes both metropolitan and micropolitan statistical areas.

³Population based on latest available census figures (2017).

⁴see https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data

Table A-6 NO₂ Network Evaluation Form

PART 58 APPENDIX D NETWORK EVALUATION FORM FOR NITROGEN DIOXIDE (NO2)

STATE: ALASKA AGENCY: DEPARTMENT OF ENVIRONMENTAL CONSERVATION AQS AGENCY CODE: 02
EVALUATION DATE: 5-8-2019 EVALUATOR: A. BREUNINGER

APPLICABLE SECTION	REQUIREMENT	CRITERIA MET?							
		YES	NO	N/A					
4.3.2(a)	Near-road NO2 Monitors: One microscale near-road NO ₂ monitoring station in each CBSA with a population of 500,000 or more persons.			✓					
4.3.2(a)	Near-road NO2 Monitors: An additional near-road NO2monitoring station is required for any CBSA with a population of 2,500,000 persons, or in any CBSA with a population of 500,000 or more persons that has one or more roadway segments with 250,000 or greater AADT count.			*					
4.3.2(b)	Near-road NO2 Monitors: Measurements at required near-road NO2 monitor sites utilizing chemiluminescence FRMs must include at a minimum: NO, NO2, and NOx			1					
4.3.3(a)	Area-wide NO2 Monitoring: One monitoring station in each CBSA with a population of 1,000,000 or more persons to monitor a location of expected highest NO ₂ concentrations representing the neighborhood or larger spatial scales.			√					

Comments: The State of Alaska has no CBSA with a population of 500,000

Table 1					
CBSA Description ¹	CBSA	Required	Present	Required	Present
	population ^{2,3}	number of	number of	number of	number of
	(2010)	Near-road	Near-road	Area-wide	Area-wide
		NO ₂ sites	NO ₂ sites	NO ₂ sites	NO ₂ sites
Combines Municipality of Anchorage and	399,148	0	0	0	0
Matanuska-Susitna Valley Borough (MSA)					
Fairbanks North Star Borough (MSA)	98,971	0	0	0	1*
City and Borough of Juneau (µSA)	32,113	0	0	0	0

 $^{^{1}}see \ \underline{\text{https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html}$

²Minimum monitoring requirements apply to the Core Based statistical area (CBSA). CBSA includes both metropolitan and micropolitan statistical areas.

³Population based on latest available 2018 census estimates https://www.census.gov/programs-surveys/popest.html

^{*}NCore site requirement

Appendix B Summary of Monitoring Path & Siting Criteria Evaluation Forms

Public Comment Draft 2019 Air Quality Monitoring Plan

Table B-1 Summary of Appendix E Forms: PM_{2.5}, PM₁₀, & PM_{10-2.5}

	Garden	Parkgate	Laurel*	Butte	Palmer	State Office Building	Hurst Road	A Street	NCore	Floyd Dryden	Bethel
Parameter(s)	PM _{2.5} & PM ₁₀	PM _{2.5} & PM ₁₀	PM ₁₀	PM _{2.5} & PM ₁₀	PM _{2.5} & PM ₁₀	PM _{2.5}	PM _{2.5}	PM _{2.5}	PM _{2.5} , PM ₁₀ & PM _{10-2.5}	PM _{2.5} & PM ₁₀	PM2.5 & PM10
Address	1600 E 16th Ave Anchorage	11723 Old Glenn Hwy, Eagle River	4335 Laurel St Anchorage	Harrison Ct Butte	S. Gulkana Palmer	675 7th Ave Fairbanks	3288 Hurst Rd North Pole	397 Hamilton Ave, Fairbanks	809 Pioneer Rd. Fairbanks	Floyd Dryden Middle School, Juneau	4 th Ave, Bethel
AQS ID	02-020-0018	02-020-1004	02-020-0045	02-170-0008	02-170-0012	02-090-0010	02-090-0035	02-090- 0040	02-090-0034	02-110-0004	02-050-0001
2. HORIZONTAL AND VERTICAL PLACEMENT	Criteria met, 8 m	Criteria met, 7 m	Criteria met, 7 m	Criteria met, 4 m	Criteria met, 4 m	Criteria met, 6 m	Criteria met, 4 m	Criteria met, 4 m	Criteria met, 4 m	Criteria met, 7 m	Criteria met, 7 m
3. SPACING FROM MINOR SOURCES (a)	Criteria met, neighborhoo d	Criteria met	Criteria met, max impact site, winter graveled streets	Criteria met, gravel cul- de-sac	Criteria met	Criteria met, > 40 m to nearest solid fuel burning appliance	Criteria met	Criteria met	Criteria met, ~160m to Diving Duck Roasters, ~450m to power plant	Criteria met	No, on gravel pad & next to gravel roads
4. SPACING FROM OBSTRUCTIONS (a)	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted
4. SPACING FROM OBSTRUCTIONS (b)	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted	Criteria met, unrestricted
5. SPACING FROM TREES (a)	Criteria met, >10 m	Criteria met, >10 m	Criteria met, no trees within 200 m	Criteria not met, 5.5 m**	Criteria met, nearest tree > 25 m	Criteria met, >10 m	Criteria met, >10 m	Criteria met, >10 m	Criteria met, none	Criteria met, 12 m tall 25 m away	Criteria met
5. SPACING FROM TREES (c)*			Criteria met								
6. SPACING FROM ROADWAYS	Criteria met, ~14 m to road	Criteria met, 23 & 44 m to roads	Criteria met [†] , 15 m to road, maximum exposure site	Criteria met, road > 150 m	Criteria met, road > 20 m	Criteria met, 20 m to road	Criteria met, 23 m to road	Criteria met, 23 m to road	Criteria met, ~ 70 m to road	Criteria met, 65 m to road	>30m to 5 th Ave
Changes that might compromise siting?	No	No	No	No	No	No	No	No	New trees 10m	No	No

^{*}Laurel is the only microscale site in Alaska's PM network
** EPA waiver request submitted

Table B-2 Summary of Appendix E Forms: CO

J. S.	Garden	NCore
Parameter(s)	СО	СО
Address	1600 E. 16th St. Anchorage	809 Pioneer Rd Fairbanks
AQS ID	02-020-0018	02-090-0034
2. HORIZONTAL AND VERTICAL PLACEMENT	Criteria met, 3.1 m	Criteria met, 3 m
3. SPACING FROM MINOR SOURCES	Criteria met, residential	Criteria met, ~160m to Diving Duck Roasters, ~450m to power plant
4. SPACING FROM OBSTRUCTIONS (a)	Criteria met, no obstacles	Criteria met, no obstacles
4. SPACING FROM OBSTRUCTIONS (b)	Criteria met, 180°	Criteria met, unrestricted
5. SPACING FROM TREES (a)	Criteria not met, 7.3 meter tall tree 2.3 meters away from probe	Criteria met, none (see comment below)
5. SPACING FROM TREES (c)	Criteria not met, 2.3 m from spruce dripline	Criteria met, no significant trees < 50 m
6. SPACING FROM ROADWAYS	Neighborhood scale but 7.6 meters from roadway	Neighborhood scale but 85 m from roadway
9. PROBE MATERIAL & RESIDENCE TIME (a)	FEP Teflon	Glass w/ FEP sample lines
9. PROBE MATERIAL & RESIDENCE TIME (c)	Criteria not met, 24 seconds	Criteria met, < 5 seconds
Changes that might compromise siting?	No	Trees planted 10 m away from inlet; may be an issue when they grow

Public Comment Draft 2019 Air Quality Monitoring Plan
Table B-3 Summary of Appendix E Forms: O₃, SO₂, NO, NO₂, and NO₃

		NCore							
Parameter(s)	O ₃	SO ₂	NO, NOx, NO2, & NOy						
AQS ID									
Address	809 Pioneer Rd. Fairbanks								
2. HORIZONTAL AND VERTICAL PLACEMENT	Criteria met, 3m	Criteria met, 3m	Criteria met, 3m						
3. SPACING FROM MINOR SOURCES	Criteria met, ~ 160m to Diving Duck Roasters,~450m to power plant	Criteria met, ~ 160m to Diving Duck Roasters,~450m to power plant	Criteria met, ~ 160m to Diving Duck Roasters,~450m to power plant						
3. SPACING FROM MINOR SOURCES (b)	Criteria met, no furnaces/flues								
4. SPACING FROM OBSTRUCTIONS (a)	Criteria met, no obstacles	Criteria met, no obstacles	Criteria met, no obstacles						
4. SPACING FROM OBSTRUCTIONS (b)	Criteria met, unrestricted 360° airflow	Criteria met, unrestricted 360° airflow	Criteria met, unrestricted 360° airflow						
4. SPACING FROM OBSTRUCTIONS (d)			No near-road						
5. SPACING FROM TREES (a)	Criteria met, none	Criteria met, none	Criteria met, no significant trees <50 m						
5. SPACING FROM TREES (b)		NA	NA						
5. SPACING FROM TREES (c)	NA	NA	NA						
6. SPACING FROM ROADWAYS	Criteria met, road > ~70m		NA						
9. PROBE MATERIAL & RESIDENCE TIME (a) Glass w/ FEP sample lines		Glass w/ FEP sample lines	Glass w/ FEP sample lines						
9. PROBE MATERIAL & RESIDENCE TIME (c)	< 5 seconds	< 5 seconds	< 5 seconds						
Changes that might compromise siting?	Trees planted 10 m away from inlet; may be an issue when they grow	Trees planted 10 m away from inlet; may be an issue when they grow	Trees planted 10 m away from inlet; may be an issue when they grow						

Table B-4 Blank Part 58 Appendix E Form for PM

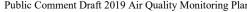
PART 58 APPE	NDIX E SITE EVALUATION FORM FOR PM2.5, PM10), PM10-2.5, and	l Pb			
SITE NAME:	SITE ADDRESS:					
AQS ID:	EVALUATION DATE: E	EVALUATOR:				
APPLICABLE SECTION	REQUIREMENT	OBSERVED	CRITERIA MET?			
			YES	NO	N/A	
2. HORIZONTAL AND VERTICAL PLACEMENT	2-15 meters above ground level for neighborhood or larger spatial scale, 2-7 meters for microscale spatial scale sites and middle spatial scale PM ₁₀ -2.5 sties. 1 meter vertically or horizontally away from any supporting structure, walls, <i>etc.</i> , and away from dusty or dirty areas. If located near the side of a building or wall, then locate on the windward side relative to the prevailing wind direction during the season of highest concentration potential.					
3. SPACING FROM MINOR SOURCES	(a) For neighborhood or larger spatial scales avoid placing the monitor near local, minor sources. The source plume should not be allowed to inappropriately impact the air quality data collected at a site. Particulate matter sites should not be located in an unpaved area unless there is vegetative ground cover year round.					
4. SPACING FROM OBSTRUCTIONS	(a) To avoid scavenging, the inlet must have unrestricted airflow and be located away from obstacles. The separation distance must be at least twice the height that the obstacle protrudes above the probe inlet.					
	(b) The inlet must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential. For particle sampling, a minimum of 2 meters of separation from walls, parapets, and structures is required for rooftop site placement.					
5. SPACING FROM TREES	(a) To reduce possible interference the inlet must be at least 10 meters or further from the drip line of trees.					
	(c) No trees should be between source and probe inlet for microscale sites.					
6. SPACING FROM ROADWAYS	Spacing from roadways is dependent on the spatial scale and ADT count. See section 6.3(b) and figure E-1 for specific requirements.					
Are there any changes	that might compromise original siting criteria?					
Other Comments:						

Table B-5 Blank Part 58 Appendix E Form for CO

PART 58 APPE	NDIX E SITE EVALUATION FORM FOR CO					
SITE NAME:	SITE ADDRESS:					
AQS ID:	EVALUATION DATE:	EVALUAT	OR:			
APPLICABLE SECTION	REQUIREMENT	OBSERVED	CRITERIA MET?			
			YES	NO	N/A	
2. HORIZONTAL AND VERTICAL PLACEMENT	For neighborhood or larger spatial scale sites the probe must be located 2-15 meters above ground level and must be at least 1 meter vertically or horizontally away from any supporting structure, walls, <i>etc.</i> , and away from dusty or dirty areas. If located near the side of a building or wall, then locate on the windward side relative to the prevailing wind direction during the season of highest concentration potential.					
3. SPACING FROM MINOR SOURCES	(a) For neighborhood scale avoid placing the monitor probe inlet near local, minor sources. The source plume should not be allowed to inappropriately impact the air quality data collected at a site.					
4. SPACING FROM OBSTRUCTIONS	(a) To avoid scavenging, the probe inlet must have unrestricted airflow and be located away from obstacles. The separation distance must be at least twice the height that the obstacle protrudes above the probe inlet (exception is street canyon or source-oriented sites where buildings and other structures are unavoidable).					
	(b) The probe inlet must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential.					
5. SPACING FROM TREES	(a) To reduce possible interference the probe inlet must be at least 10 meters or further from the drip line of trees.					
	(c) No trees should be between source and probe inlet for microscale sites.					
6. SPACING FROM ROADWAYS	2. (b) Microscale CO monitor probes in downtown areas or urban street canyon locations shall be located a minimum distance of 2 meters and a maximum distance of 10 meters from the edge of the nearest traffic lane.					
	2. (c) Microscale CO monitor inlet probes in downtown areas or urban street canyon locations shall be located at least 10 meters from an intersection and preferably at a midblock location.					
9. PROBE MATERIAL &	(a) Sampling train material must be FEP Teflon or borosilicate glass (e.g., Pyrex) for reactive gases.					
RESIDENCE TIME	(c) Sampling probes for reactive gas monitors at NCore must have a sample residence time less than 20 seconds.					
Are there any changes	that might compromise original siting criteria? If so, provide detail in comme	ent section.				

¹ Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

SITE NAME:	SITE ADDRESS:				
AQS ID	EVALUATION DATE	EVALUATOR			
APPLICABLE SECTION	REQUIREMENT	OBSERVED	CRITERIA MET?		
			YES	NO	N/A
2. HORIZONTAL AND VERTICAL PLACEMENT	2-15 meters above ground level. 1 meter vertically or horizontally away from any supporting structure, walls, <i>etc.</i> , and away from dusty or dirty areas. If located near the side of a building or wall, then locate on the windward side relative to the prevailing wind direction during the season of highest concentration potential.				
3. SPACING FROM MINOR SOURCES	(a) For neighborhood scale avoid placing the monitor probe inlet near local, minor sources. The source plume should not be allowed to inappropriately impact the air quality data collected at a site.				
	(b) To minimize scavenging effects, the probe inlet must be away from furnace or incineration flues or other minor sources of SO ₂ or NO.				
4. SPACING FROM OBSTRUCTIONS	(a) To avoid scavenging, the probe inlet must have unrestricted airflow and be located away from obstacles. The separation distance must be at least twice the height that the obstacle protrudes above the probe inlet.				
	(b) The probe inlet must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential.				
5. SPACING FROM TREES	(a) To reduce possible interference the probe inlet must be at least 10 meters or further from the drip line of trees.				
	(c) No trees should be between source and probe inlet for microscale sites.				
6. SPACING FROM ROADWAYS	See spacing requirements table below				
9. PROBE MATERIAL &	(a) Sampling train material must be FEP Teflon or borosilicate glass (e.g., Pyrex).				
RESIDENCE TIME	(c) Sampling probes for reactive gas monitors at NCore must have a sample residence time less than 20 seconds.				
Are there any changes	that might compromise original siting criteria? If so, provide detail in commo	ent section.			


¹Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

²Applicable for ozone monitors whose placement has not already been approved as of December 18, 2006.

Table B-7 Blank Part 58 Appendix E Form for SO₂

PART 58 APPE	NDIX E SITE EVALUATION FORM FOR SO2				
SITE NAME	SITE ADDRESS				
AQS ID	EVALUATION DATE EVALUATOR				
APPLICABLE SECTION	REQUIREMENT	OBSERVED	CI	RITER MET?	
			YES	NO	N/A
2. HORIZONTAL AND VERTICAL PLACEMENT	2-15 meters above ground level. 1 meter vertically or horizontally away from any supporting structure, walls, <i>etc.</i> , and away from dusty or dirty areas. If located near the side of a building or wall, then locate on the windward side relative to the prevailing wind direction during the season of highest concentration potential.				
3. SPACING FROM MINOR SOURCES	(a) For neighborhood scale avoid placing the monitor probe inlet near local, minor sources. The source plume should not be allowed to inappropriately impact the air quality data collected at a site.				
4. SPACING FROM OBSTRUCTIONS	(a) To avoid scavenging, the probe inlet must have unrestricted airflow and be located away from obstacles. The separation distance must be at least twice the height that the obstacle protrudes above the probe inlet.				
	(b) The probe inlet must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential.				
5. SPACING FROM TREES	(a) To reduce possible interference the probe inlet must be at least 10 meters or further from the drip line of trees.				
	(c) No trees should be between source and probe inlet for microscale sites.				
6. SPACING FROM ROADWAYS	There are no roadway spacing requirements for SO2.				
9. PROBE MATERIAL &	(a) Sampling train material must be FEP Teflon or borosilicate glass (e.g., Pyrex).				
RESIDENCE TIME	(c) Sampling probes for reactive gas monitors at NCore must have a sample residence time less than 20 seconds.				
Are there any changes	that might compromise original siting criteria? If so, provide detail in comme	ent section.			
Other Comments:					

Public Comment Draft 2019 Air Quality Monitoring Plan Table B-8 Blank Part 58 Appendix E Form for NO, NOx, NO₂, and NO_y

PART 58 APPE	NDIX E SITE EVALUATION FORM FOR NO, NOx, NO	2, and NOy			
SITE NAME	SITE ADDRESS				
AQS ID	EVALUATION DATE EVALUATOR				
APPLICABLE SECTION	REQUIREMENT	OBSERVED	CRIT	ERIA	MET?
·			YES	NO	N/A
2. HORIZONTAL AND VERTICAL PLACEMENT	For neighborhood or larger spatial scale sites the probe must be located 2-15 meters above ground level and must be at least 1 meter vertically or horizontally away from any supporting structure, walls, <i>etc.</i> , and away from dusty or dirty areas. Microscale near-road NO ₂ monitoring sites are required to have sampler inlets between 2 and 7 meters above ground level. If located near the side of a building or wall, then locate the sampler probe on the windward side relative to the prevailing wind direction during the season of highest concentration potential.				
3. SPACING FROM MINOR SOURCES	(a) For neighborhood scale and larger avoid placing the monitor probe inlet near local, minor sources. The source plume should not be allowed to inappropriately impact the air quality data collected at a site.				
4. SPACING FROM OBSTRUCTIONS	(a) To avoid scavenging, the probe inlet must have unrestricted airflow and be located away from obstacles. The separation distance must be at least twice the height that the obstacle protrudes above the probe inlet.				
	(b) The probe inlet must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential.	evel. If located be on the the season of the season of the proposed inlet with a season of the seaso			
	To avoid scavenging, the probe inlet must have unrestricted airflow and located away from obstacles. The separation distance must be at least ce the height that the obstacle protrudes above the probe inlet. The probe inlet must have unrestricted airflow in an arc of at least 180 grees. This arc must include the predominant wind direction for the season greatest pollutant concentration potential. For near-road NO ₂ monitoring stations, the monitor probe shall have an obstructed air flow, where no obstacles exist at or above the height of the nitor probe, between the monitor probe and the outside nearest edge of traffic lanes of the target road segment. To reduce possible interference the probe inlet must be at least 10 meters				
5. SPACING FROM TREES	(a) To reduce possible interference the probe inlet must be at least 10 meters or further from the drip line of trees.				
	(c) No trees should be between source and probe inlet for microscale sites.				
6. SPACING FROM ROADWAYS	See spacing requirements table below				
9. PROBE MATERIAL &	(a) Sampling train material must be FEP Teflon or borosilicate glass (e.g., Pyrex).				
RESIDENCE TIME	(c) Sampling probes for reactive gas monitors at NCore and at NO ₂ sites must have a sample residence time less than 20 seconds.				
Are there any changes	that might compromise original siting criteria? If so, provide detail in commen	t section.			
Other Comments:					

Table B-9 Roadway ADT for CO, O₃, SO₂, and NO suite Part 58 Appendix E Forms

Roadway average daily traffic, vehicles per day	Minimum distance ¹ (meters)
≤10,000	10
15,000	25
20,000	45
30,000	80
40,000	115
50,000	135
≥60,000	150

Appendix C Additional Monitoring Projects

Smoke Monitoring for Air Quality Advisories

Smoke from wildland fires can affect large areas and impact air quality in regions both close to and far away from the burning fire. Almost every summer, large areas of the State are impacted by smoke from wildland fires, with air quality degrading into the very unhealthy to hazardous range. DEC assists the Alaska Fire Service in assessing air quality impacts in areas affected by wildland fires and provides information needed to protect public health. The DEC Air Quality Division uses two separate methods to assess air quality impacts and issue air quality advisories statewide: monitoring data if available and visibility information. Due to current budget and staffing levels, DEC will not be able to place our own monitors in the field during the 2020 wildland fire season, but will attempt to support and leverage other agencies with sampling equipment to place monitors where needed. The DEC meteorologist or air quality staff with assistance from the National Weather Service (NWS) use meteorological and air monitoring data to forecast smoke movement and predict where air quality impacts might occur.

Volcanic Ash Monitoring

The Alaska Volcano Observatory and DEC will cooperate on volcanic ash monitoring should a volcano begin erupting. DEC uses a PM₁₀ Met One E-BAM with an AIRSIS communication system that allows the DEC meteorologist to review data in near real time and issue air quality advisories for affected areas during volcanic eruptions.

Radiation Monitoring

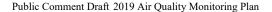
The State has three radiation monitoring network sites (RadNet) located in Anchorage, Fairbanks, and Juneau. Various agencies and groups operate the equipment. The site in Anchorage is operated by the Alaska Department of Health and Social Services. The DEC Air Quality Division operates the sites in Fairbanks and Juneau.

Juneau Cruise Ship Ambient Air Impact Saturation Study

The State of Alaska Department of Environmental Conservation (DEC) Water and Air Divisions are studying air quality in Juneau using low cost monitors prior to and during the 2019 cruise ship season. The project is a result of increased public complaints on air emissions from cruise ships and changes to ship operations and numbers.

AS 46.03.488 allows the Department to conduct monitoring of the direct and indirect effects of cruise vessels in Alaska. The last study regarding air quality impacts from cruise ships emissions in Juneau was conducted in 2000. DEC has observed changes to the cruise ship industry such as the increasing size of ships, increased number of port visits, and significant increase in the use of exhaust gas scrubbers on cruise ship engines. The Department also conducts opacity monitoring for compliance with Alaska marine vessel regulations using EPA Reference Method 9.

The Air Monitoring and Quality Assurance Program (AMQA) is conducting a preliminary saturation study in downtown Juneau prior to and during the summer cruise season of 2019 focusing on the overall ambient air quality. As the most visited cruise ship port, Juneau was


chosen for this study. A saturation study floods a small area with a large number of low-cost sensors for a short period of time, typically to answer a defined set of questions. The objectives are to:

- address ambient air quality complaints centered on the cruise ship industry emissions;
- determine which areas of downtown Juneau are most affected (maximum impact locations); and
- assess if the scale in terms of frequency, duration, spatial variability and severity of these impacts has the potential to significantly affect public health and/or violate Clean Air Act air quality standards.

The saturation study uses a tightly spaced grid of low cost particulate monitors (PM_{2.5}) and several passive sulfur dioxide (SO₂) monitors to meet these objectives. PM_{2.5} is commonly used as an indicator of exhaust plumes. Elevated SO₂ samples may confirm that the plume(s) originate from cruise ships as Juneau has no significant sources of SO₂. The pollutant data will be combined with wind speed and wind direction information, prior to and during the cruise ship season, to characterize pollution events affecting downtown Juneau. Depending on the results from the 2019 saturation study and availability of funding, DEC may conduct a more in-depth study that could include monitoring for additional pollutants and the use of higher cost/higher accuracy monitoring equipment or may establish a long term air quality monitoring network in downtown Juneau to provide a reliable baseline of air quality conditions.

Appendix D Improve Network

The Alaska Regional Haze SIP includes a monitoring plan for measuring, estimating, and characterizing air quality and visibility impairment at Alaska's four Class I areas. The haze species concentrations are measured as part of the IMPROVE monitoring network deployed throughout the United States. Alaska uses four IMPROVE monitoring stations representing three of the four Class I Areas. Three of these areas (Denali National Park and Preserve, Simeonof, and Tuxedni) have monitors deployed specifically in response to Regional Haze Rule requirements. There is no air monitoring being conducted at the Bering Sea Wilderness Area due to its remote location.

Monitoring site information and additional Regional Haze information are available at DEC's Regional Haze website, http://dec.alaska.gov/air/anpms/regional-haze. Monitoring data and additional information for the Alaskan IMPROVE sites are available from the EPA website, http://vista.cira.colostate.edu/improve.

Appendix E NAAQS Summary Tables

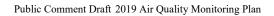


Table E-1 PM_{2.5} DV under local/actual conditions (μg/m³); exceedance exceptional event values not included

PM _{2.5} Monitoring Sites	AQS Site ID	98 th Percentile			Weigh	ited Annua	2018 Desi	gn Value	
		2018	2017	2016	2018	2017	2016	24-hour	Annual
Garden/ Anchorage	02-020-0018	17.7	26.9	16.1	5.4	5.5	6.5	20	5.8
Parkgate / Eagle River	02-020-1004	14.4	15.4	13.8	5.1	4.2	4.1	15	4.7
Butte/ Matanuska-Susitna Valley	02-170-0008	19.2	29.7	29.2	4.6	5.7	5.8	26	5.3
Palmer/ Matanuska-Susitna Valley	02-170-0012	8.5	11.1	9.2	3.3	3.2	2.8	10	3.0
State Office Building/ Fairbanks	02-090-0010	27.0*	38.0	39.7	7.6*	9.1*	8.8	35	8.5
NCore Site/ Fairbanks	02-090-0034	25.3	34.4	30.3	7.3	8.6	9.1	30	8.3
Hurst Rd/ North Pole	02-090-0035	52.8	75.5	66.8	10.8	14.0	13.7	65	12.8
A Street/Fairbanks	02-090-0040	_**	-	-	-	-	-	-	-
Floyd Dryden/Juneau	02-110-0004	22.1	22.4	24.0*	6.9	5.6	6.0*	23	6.2
Bethel	02-050-0001	_**	-	-	-	-	-	-	-

^{*} Annual values did not meet data completeness criteria.

^{**}Did not meet completeness; A Street began operation 11/29/18 Bethel began operation 6/6/18

Table E-2 DV O₃ (ppb)

			2018			2017			2016		3-Ye	ears
O₃ Monitoring Sites	Site ID	Valid Days	Percent Compl	4 th Max	Valid Days	Percent Compl	4 th Max	Valid Days	Percent Compl	4 th Max	Percent Compl	Design Value
NCore/ Fairbanks	02-090-0034	324	89	0.041	277	76	0.048	207	97	0.036	87	0.041

Table E-3 DV SO₂ (ppb)

	20				•	20	3-yrs	
SO ₂ Monitoring Sites	Site ID	99 th Percentile	Completed Quarters	99 th Percentile	Completed Quarters	99 th Percentile	Completed Quarters	Design Value
NCore/Fairbanks	02-090-0034	37	4	35	4	35	4	36

Table E-4 DV NO₂ (ppb)

		20	18	201	7	20	3-yrs	
NO ₂ Monitoring Sites	Site ID	98 th Percentile	Completed Quarters	98 th Percentile	Completed Quarters	98 th Percentile	Completed Quarters	Design Value
NCore/ Fairbanks	02-090-0034	53.8	4	54.5	4	54.9	3	54

Table E-5 PM₁₀ DV under standard conditions (μg/m³); exceedance exceptional event values not included

		2018			2017			2016		
PM ₁₀ Monitoring Sites*	Site ID	Exceed- ances	1 st Max 24-hr	2 nd Max 24-hr	Exceed- ances	1 st Max 24-hr	2 nd Max 24-hr	Exceed- ances	1 st Max 24-hr	2 nd Max 24-hr
Garden/ Anchorage	02-020-0018	0	59	59	0	68	65	0	88	84
Laurel/Anchorage	02-020-0045	0	128	102	0	99	87	0	90	76
NCore/ Fairbanks	02-090-0034	0	72	59	0	37	36	0	80	69
Butte/ Matanuska-Susitna Valley	02-170-0008	0	52 (187& 155 high wind EEs)	49	0	113	107	0	63	83
Palmer/ Matanuska-Susitna Valley	02-170-0012	0	131 (255 high wind EE)	80	1	156	119	0	112 (178 high wind EE)	94
Bethel	02-050-0001	0	108**	104**						

^{*} See Juneau and Eagle River Limited Maintenance Plans for Floyd Dryden and Parkgate ** Began operation 6/6/18; did not meet completeness