
Alaska's 2011 Air Monitoring Network Plan

Appendices and Glossary

Prepared by:

State of Alaska Department of Environmental Conservation Division of Air Quality Air Monitoring and Quality Assurance Section 619 E Ship Creek Ave. Suite 249 Anchorage, AK 99501

Table of Contents

Appendix A:	1
Designations	1
Appendix B:	1
Siting Criteria	1
Carbon Monoxide Sites	
Particulate Matter (PM10 and PM2.5) Sites	2
APPENDIX C:	1
Network Site Summary	1
Appendix D:	1
Glossary	

APPENDIX A:

Designations

Non-attainment: any area that does not meet, or that contributes to poor ambient air quality in a nearby area that does not meet, the national primary or secondary ambient air quality standard for any pollutant on the national ambient air quality standards list.

Attainment: any area that meets the national primary or secondary ambient air quality standard for the pollutant.

Unclassifiable: any area that cannot be classified on the basis of available information as meeting or not meeting the national primary or secondary ambient air quality standard for the pollutant.

Maintenance: any area that is going through the transition from being designated a non-attainment area to attainment.

Note: Further information regarding designation can be found at: <u>http://epa.gov/air/oaqps/greenbk/define.html</u> <u>http://www.epa.gov/air/caa/</u>

APPENDIX B:

Siting Criteria

The Federal Environmental Protection Agency (EPA) Region 10 requested that the Alaska Department of Environmental Conservation (DEC) staff provide a table which demonstrates that each monitoring site complies with siting criteria identified in 40 CFR Part 58 Appendix E. Included are two tables: one for CO sites and one for PM sites. Certain sites have been found to have had their monitoring scale incorrectly designated. A discussion of the monitoring scale changes follows each table.

Carbon Monoxide Sites

Carbon monoxide (CO) inlet probes should be at least 1 meter away, both vertically and horizontally, from any supporting structure or wall. For microscale sites the probe height must be between 2.5 and 3.5 meters, whereas for other scale sites the probe must be between 3 and 15 meters high.

A probe must have unrestricted airflow for at least 270 degrees, or 180 degrees if it is located on the side of a building. Obstructions must be a minimum distance away equal to twice the distance by which the height of the obstruction exceeds the height of the probe. Trees should not be present between the dominant CO source or roadway and the inlet probe.

The following is a list with definitions on monitoring site scaling;

Microscale—defines the concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.

Middle Scale—defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.

Neighborhood Scale—defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range.

Urban Scale—defines the overall, citywide conditions with dimensions on the order of 4 to 50 kilometers. This scale would usually require more than one site for definition.

The following table (Table B-1) lists all CO monitoring sites in Anchorage and Fairbanks (including SPM) and how they fit the siting criteria from Appendix E of 40 CFR Part 58.

Site Name	Monitoring Scale	Probe Distance from Wall (meters)	Height (meters)	Unrestricted Air Flow	Spacing from Roadway (meters)	Trees
Garden	Neighborhood	1	3	180 degrees unobstructed	7	Yes
Turnagain	Neighborhood	1	3	180 degrees unobstructed	12 from 500 VPD roadway	Yes
DHHS	Neighborhood	1	3	270 degrees unobstructed	28	None
Parkgate	Neighborhood	1	2.5	180 degrees unobstructed	22	None
Old Post Office	Microscale	1	3	180 degrees unobstructed	3	None

Table B-1 CO monitoring sites in Anchorage and Fairbanks.

In the 2000 network assessment the Garden Site was stated to be "micro" scale based on the probes vicinity to the roadway. After further review of Appendix E and Appendix D of EPA 40 CFR 58, EPA-450/3-75-077, and further discussion within DEC, we are now classifying this site as "neighborhood" scale.

Particulate Matter (PM₁₀ and PM_{2.5}) Sites

For microscale sites particulate matter inlets must be between 2 and 7 meters from ground level. For other siting scales the probe must be between 2 and 15 meters high.

A sampler must have at least 2 meters separation from walls, parapets, penthouses, etc... A sampler must have unrestricted airflow for at least 270 degrees, or 180 degrees for street canyon sites. Obstructions must be a minimum distance away from the sampler with the separation equal to twice the distance by which the height of the obstruction exceeds the height of the sampler inlet.

Microscale sampler inlets must be located between 5 and 15 meters from the nearest traffic lane for traffic corridor sites, and between 2 and 10 meters for street canyon sites. The minimum separation distance between the probe and nearest traffic lane for middle, neighborhood, or urban scale sites depends upon the number of vehicles per day (VPD) that use the roadway according to a rather complicated table in Appendix E of 40 CFR Part 58. TableB-2 lists all PM monitoring sites in Alaska (including SPM) and how they fit the siting criteria from Appendix E of 40 CFR Part 58.

Site Name	Monitoring Scale	Height (meters)	Spacing from Obstructions (meters)	Spacing from Roadway (meters)	Traffic (VPD)	Trees
Garden	Neighborhood	10	12m to 5m tall penthouse	10	< 5,000	None
Tudor	Microscale	3.3	None	7	46,900	
DHHS	Middle	3	None	28	15,120	None
Parkgate	Neighborhood	6	13m to 4m tall penthouse	44	11,000	None
Harrison Court	Neighborhood	4	> 8	150	Unknown, probably < 5,000	None
Palmer	Neighborhood	4	> 8	18	Unknown, probably < 5,000	None
Wasilla	Neighborhood	4	> 8	20	16,494	None
State Office Building	Neighborhood	6	30m to 3.75m tall penthouse	20	7,400	1 tree at 10m away
TAC (Peger Road)	Neighborhood	2.5	> 60	222	7651	None
North Pole	Neighborhood	4	>20	~ 300 to Richardson Highway	10,400	Several to east > 30m
Floyd Dryden	Neighborhood	6	Furnace flue @ 20m, 4m penthouse @ 15m	65	12,770	12 meter tall @ 25m away

Table B-2: PM monitoring sites in Alaska

APPENDIX C:

Network Site Summary

State Code	County Code	Site ID	Parameter Code	POC	Method Code	Unit Code	Frequency	Parameter Description	Instrumentation	City Name	Street Address	Notes
02	020	0018	88101	1	117	105	1/6	Pm2.5 - Local Conditions	Partisol 2000	Anchorage	TRINITY CHRISTIAN CHURCH/3000 E 16TH	
02	020	0018	81102	1	063	001	1/6	Pm10 Total 0- 10um Stp	Anderson Hi-Vol	Anchorage	TRINITY CHRISTIAN CHURCH/3000 E 16TH	
02	020	0018	42101	1	054	007	cont	Carbon Monoxide	Thermo 48C	Anchorage	TRINITY CHRISTIAN CHURCH/3000 E 16TH	
							cont	Ozone	Teledyne AP1 400E	Anchorage	TRINITY CHRISTIAN CHURCH/3000 E 16TH	Not (yet) reported to AQS
							cont	Pm2.5 - Local Conditions	Met One BAM 1020X	Anchorage	TRINITY CHRISTIAN CHURCH/3000 E 16TH	Not reported to AQS
							cont	Pm10 – Local Conditions	Met One BAM 2010X	Anchorage	TRINITY CHRISTIAN CHURCH/3000 E 16TH	Not reported to AQS
							1/3	Pm2.5 Raw Data	Thermo TEOM	Anchorage	TRINITY CHRISTIAN CHURCH/3000 E 16TH	Not reported to AQS
02	020	0044	81102	2	063	001	1/6	Pm10 Total 0- 10um Stp	Anderson Hi-Vol	Anchorage	3335 E TUDOR RD ANCHORAGE AK 99508	
02	020	0044	85101	1	063	105	1/6	Pm10 - Lc	Anderson Hi-Vol	Anchorage	3335 E TUDOR RD ANCHORAGE AK 99508	
02	020	0044	81102	1	063	001	1/3	Pm10 Total 0- 10um Stp	Anderson Hi-Vol	Anchorage	3335 E TUDOR RD ANCHORAGE AK 99508	
							cont	Pm10 - Lc	Thermo TEOM	Anchorage	3335 E TUDOR RD ANCHORAGE AK 99508	Not reported to AQS
02	020	0048	42101	1	054	007	cont	Carbon Monoxide	Thermo 48C	Anchorage	3201 TURNAGAIN STREET	
02	020	0050	42101	1	054	007	cont	Carbon Monoxide	Thermo 48C	Anchorage	727 L STREET	
02	020	0050	81101	3	170	105	cont	Pm2.5 - Local Conditions	Met One BAM 1020X	Anchorage	727 L STREET	
02	020	0050	85101	1	122	105	cont	Pm10 – Local Conditions	Met One BAM 2010X	Anchorage	727 L STREET	
02	020	1004	85101	1	063	105	1/6	Pm10 - Lc	Anderson Hi-Vol	Eagle River	PARKGATE-EAGLE RIVER, EAGLE RIVER	
02	020	1004	42101	1	054	007	cont	Carbon Monoxide	Thermo 48C	Eagle River	PARKGATE-EAGLE RIVER, EAGLE RIVER	
							cont	Ozone	Teledyne AP1 400E	Eagle River	PARKGATE-EAGLE RIVER, EAGLE RIVER	Not (yet) reported to AQS
			81101	3	170	105	cont	Pm2.5 - Local Conditions	Met One BAM 1020X	Eagle River	PARKGATE-EAGLE RIVER, EAGLE RIVER	

State Code	County Code	Site ID	Parameter Code	POC	Method Code	Unit Code	Frequency	Parameter Description	Instrumentation	City Name	Street Address	Notes
			85101	1	122	105	cont	Pm10 – Local Conditions	Met One BAM 2010X	Eagle River	PARKGATE-EAGLE RIVER, EAGLE RIVER	
02	020	1004	81102	1	063	001	1/6	Pm10 Total 0- 10um Stp	Anderson Hi-Vol	Eagle River	PARKGATE-EAGLE RIVER, EAGLE RIVER	
02	090	0002	42101	1	054	007	cont	Carbon Monoxide	Thermo 48C	Fairbanks	FEDERAL BLDG/2ND & CUSHMAN	
02	090	0010	88101	1	117	105	1/3	Pm2.5 - Local Conditions	Partisol 2000	Fairbanks	STATE OFFICE BUILDING/675 7TH AVE	
02	090	0010	88101	2	117	105	1/6	Pm2.5 - Local Conditions	Partisol 2000	Fairbanks	STATE OFFICE BUILDING/675 7TH AVE	
02	090	0010	88501	3	731	105	cont	Pm2.5 - Local Conditions	Met One BAM FEM	Fairbanks	STATE OFFICE BUILDING/675 7TH AVE	
02	090	0010	88502	6	810	105	1/3	Pm2.5 - Local Conditions	Met One SASS	Fairbanks	STATE OFFICE BUILDING/675 7TH AVE	
							1/3	Pm2.5 - Local Conditions	Partisol 2000	Fairbanks	TAC/3175 PEGER RD	Not reported to AQS
							cont	Pm2.5 - Local Conditions	Met One BAM	Fairbanks	TAC/3175 PEGER RD	Not reported to AQS
							1/3	Pm2.5 - Local Conditions	Met One SASS	Fairbanks	TAC/3175 PEGER RD	Not reported to AQS
							cont	Black Carbon	Magee Scientific Aethalometer	Fairbanks	TAC/3175 PEGER RD	Not reported to AQS
							1/3	Pm2.5 - Local Conditions	Partisol 2000	North Pole	NORTH POLE ELEMENTARY SCHOOL 250 SNOWMAN LANE	Not reported to AQS
							cont	Pm2.5 Raw Data	Thermo TEOM/FTMS	North Pole	NORTH POLE ELEMENTARY SCHOOL 250 SNOWMAN LANE	Not reported to AQS
							cont	Black Carbon	Magee Scientific Aethalometer	North Pole	NORTH POLE ELEMENTARY SCHOOL 250 SNOWMAN LANE	Not reported to AQS
							1/3	Pm2.5 - Local Conditions	Met One SASS	North Pole	NORTH POLE ELEMENTARY SCHOOL 250 SNOWMAN LANE	Not reported to AQS
02	110	0004	81101	3	170	105	cont	Pm2.5 Local Conditions	Met One BAM FEM	Juneau	F DRYDEN JR HIGH/MENDENHALL LOOP RD	
02	110	0004	85101	1	126	105	1/6	Pm10 – Local Conditions Primary	Partisol 2000	Juneau	F DRYDEN JR HIGH/MENDENHALL LOOP RD	
02	110	0004	85101	1	126	105	1/6	Pm10 – Local Conditions	Partisol 2000	Juneau	F DRYDEN JR HIGH/MENDENHALL LOOP RD	
02	110	0004	88101	1	117	105	1/6	Pm2.5 - Local Conditions	Partisol 2000	Juneau	F DRYDEN JR HIGH/MENDENHALL LOOP RD	
02	170	0008	81102	1	063	001	1/6	Pm10 Total 0- 10um Stp	Anderson Hi-Vol	Mat-Su Valley	HARRISON COURT/BUTTE	
02	170	0008	85101	1	122	105	cont	Pm10 Total 0- 10um Stp	Met One BAM	Mat-Su Valley	HARRISON COURT/BUTTE	

State Code	County Code	Site ID	Parameter Code	POC	Method Code	Unit Code	Frequency	Parameter Description	Instrumentation	City Name	Street Address	Notes
02	170	0008	88101	1	117	105	1/3	Pm2.5 - Local Conditions	Partisol 2000	Mat-Su Valley	HARRISON COURT/BUTTE	
							cont	Pm2.5 - Local Conditions	Met One BAM 1020X	Mat-Su Valley	PALMER	Not reported to AQS
							cont	Pm10 – Local Conditions	Met One BAM 2010X	Mat-Su Valley	PALMER	Not reported to AQS
							cont	Pm2.5 - Local Conditions	Met One BAM 1020X	Mat-Su Valley	WASILLA	Not reported to AQS
							cont	Pm10 – Local Conditions	Met One BAM 2010X	Mat-Su Valley	WASILLA	Not reported to AQS
							1/6	Pm2.5 - Local Conditions	Partisol 2000	Mat-Su Valley	WASILLA	Not reported to AQS
							1/6	TSP-Pb Stp	General Metal Works High-Vol	Noatak	NOATAK	Not (yet) reported to AQS
							1/6	TSP-Pb Stp	General Metal Works High-Vol	Noatak	NOATAK	Not (yet) reported to AQS

APPENDIX D:

Glossary

SLAMS: State and local monitoring station

The SLAMS consist of a network or roughly 4000 monitoring station nation-wide. Distribution depends largely on the needs of the State and local air pollution control agencies to meet their respective State Implementation plan (SIP) requirements. The SIPs provide for the implementation, maintenance and enforcement of the NAAQS in each air quality control region with in a state. The State of Alaska monitoring network currently has 13 SLAMS sites for carbon monoxide and PM.

NAMS: national air monitoring station

The NAMS are a subset of the SLAMS network with emphasis on urban and multi- source areas. There are no current NAMS*-designated monitors in the monitoring network

SPMS: special purpose monitoring station

Special Purpose monitoring stations are not permanently established and can be adjusted to accommodate changing needs and priorities for special studies needed by the State and local agencies. The SPMS are used to supplement the fixed monitoring network as circumstances require.

Air Quality Index (AQI)

The AQI is an index for reporting daily air quality and what associated health concerns the public should be aware of. The AQI focuses on health effects that might happen with in a few hours or days of breathing polluted air. The AQI rates the air quality in 6 steps from good to hazardous.

 μ g/sm^{3:} micro-gram per standard cubic meter.

TEOM – FDMS: Thermo Election Inc. Tapered Element Oscillating Microbalance Filter Dynamic Measurement System continuous monitoring sampler. This sampler can sample for coarse or fine particulate matter.

BAM 1020: Met-One Inc. Beta Attenuation Monitor model 1020 continuous monitoring sampler. This sampler can sample for course and fine particulate matter.

Course particulate matter: PM_{10} – particulate matter less than or equal to 10 microns in size.

Fine particulate matter: PM_{2.5} – particulate matter less than or equal to 2.5 microns