

Liquefaction Plant Best Available Control Technology (BACT) Analysis

April 30, 2018

AKLNG-4030-HSE-RTA-DOC-00001

Alaska LNG

3201 C Street, Suite 200 Anchorage, Alaska 99503 T: 907-330-6300 www.alaska-lng.com

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001 Revision No. 2 4/30/2018 Page 2

Public

REVISION HISTORY

Rev	Date	Description	Originator	Reviewer	Approver
0	09-14-2017	Issued for Information	B. Leininger		JVA
1	1-16-2018	Issued for ADEC Submittal	J. Pfeiffer		
2	4-30-2018	Added Condensate & Diesel Tanks, and Condensate Loading	B. Leininger		KS
Appro	over Signature*	Kars 2820			

^{*}This signature approves the most recent version of this document.

MODIFICATION HISTORY

Rev	Section	Modification
1	All	Updated as an AGDC document, revised to exclude information subject to equipment manufacturer non-disclosure agreements
1	All	Shift from JVA DCN USAL-PL-SRZZZ-00-000002-000 to AGDC DCN
1	Appendices	Security Classifications for Appendices A & D are Public, whereas, Appendices B & C are Confidential/Trade Secret
2	8, 9, and 10	Added Condensate Tank and Diesel Fuel Storage Tank BACT Analyses sections. Security Classification for Appendix E is Public.
	-	

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 3

Public

TABLE OF CONTENTS

EX	EXECUTIVE SUMMARY9		
1.	СОМ	PRESSION TURBINES	10
	1.1.	Power Generation Turbines	11
	1.2.	Vent Gas Disposal (Flare / Thermal Oxidizer)	11
	1.3.	Compression Ignition Engines	11
2.	PURF	POSE AND SCOPE	12
3.	BACT	Methodology	13
4.	сом	PRESSION TURBINES	16
	4.1.	NOx BACT Analysis	16
		4.1.1. Step 1: Identify All Control Technologies	16
		4.1.2. Step 2: Eliminate Technically Infeasible Options	20
		4.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	21
		4.1.4. Step 4: Evaluate Most Effective Controls and Document Results	21
		4.1.5. Step 5: Select BACT	23
	4.2.	CO BACT Analysis	23
		4.2.1. Step 1: Identify All Control Technologies	23
		4.2.2. Step 2: Eliminate Technically Infeasible Options	24
		4.2.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	25
		4.2.4. Step 4: Evaluate Most Effective Controls and Document Results	
		4.2.5. Step 5: Select BACT	26
	4.3.	SO ₂ BACT Analysis	26
		4.3.1. Step 1: Identify All Control Technologies	
		4.3.2. Step 2: Eliminate Technically Infeasible Options	26
		4.3.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	
		4.3.4. Step 4: Evaluate Most Effective Controls and Document Results	26
		4.3.5. Step 5: Select BACT	26
	4.4.	PM and VOC BACT Analysis	26
		4.4.1. Step 1: Identify All Control Technologies	
		4.4.2. Step 2: Eliminate Technically Infeasible Options	27
		4.4.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	27
		4.4.4. Step 4: Evaluate Most Effective Controls and Document Results	27
		4.4.5. Step 5: Select BACT	27
	4.5.	GHG BACT Analysis	
		4.5.1. Step 1: Identify All Control Technologies	
		4.5.2. Step 2: Eliminate Technically Infeasible Options	
		4.5.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	33

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2
4/30/2018

Page 4

Public

		4.5.4. Step 4: Evaluate Most Effective Controls and Document Results	33
		4.5.5. Step 5: Select BACT	34
	4.6.	Conclusions	34
5.	POW	ER GENERATION TURBINES	35
	5.1.	NOx BACT Analysis	35
		5.1.1. Step 1: Identify All Control Technologies	35
		5.1.2. Step 2: Eliminate Technically Infeasible Options	36
		5.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	
		5.1.4. Step 4: Evaluate Most Effective Controls and Document Results	
		5.1.5. Step 5: Select BACT	
	5.2.	CO BACT Analysis	
		5.2.1. Step 1: Identify All Control Technologies	
		5.2.2. Step 2: Eliminate Technically Infeasible Options	
		5.2.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	
		5.2.4. Step 4: Evaluate Most Effective Controls and Document Results	
		5.2.5. Step 5: Select BACT	
	5.3.	SO ₂ , VOC, and PM BACT Analysis	
	5.4.	GHG BACT Analysis	
		5.4.1. Step 1: Identify All Control Technologies	
		5.4.2. Step 2: Eliminate Technically Infeasible Options	
		5.4.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	
		5.4.4. Step 4: Evaluate Most Effective Controls and Document Results	
		5.4.5. Step 5: Select BACT	
	5.5.	Conclusions	
6.		GAS DISPOSAL (FLARES AND THERMAL OXIDIZER)	
	6.1.	VOC and GHG "Top-Down" BACT Analysis	
		6.1.1. Step 1: Identify All Control Technologies	
		6.1.2. Step 2: Eliminate Technically Infeasible Options	
		6.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	
		6.1.4. Step 4: Evaluate Most Effective Controls and Document Results	
		6.1.5. Step 5: Select BACT	
	6.2.	Conclusions	48
7.	СОМ	PRESSION IGNITION ENGINES – FIREWATER PUMP/INSTRUMENT AIR COMPRESSOR	
	7.1.	Conclusions	49
8.	DIESI	EL FUEL STORAGE TANKS	50
	8.1.	VOC and GHG "Top-Down" BACT Analysis	
		8.1.1. Step 1: Identify All Control Technologies	
		8.1.2. Step 2: Eliminate Technically Infeasible Options	
		8.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	52

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 5

Public

		8.1.4. Step 4: Evaluate Most Effective Controls and Document Results	
		8.1.5. Step 5: Select BACT	53
	8.2.	Conclusions	53
9.	CONE	PENSATE STORAGE TANKS	53
	9.1.	VOC and GHG "Top-Down" BACT Analysis	53
		9.1.1. Step 1: Identify All Control Technologies	53
		9.1.2. Step 2: Eliminate Technically Infeasible Options	
		9.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	
		9.1.4. Step 4: Evaluate Most Effective Controls and Document Results	
		9.1.5. Step 5: Select BACT	
	9.2.	Conclusions	56
10.	COND	PENSATE TANK LOADING	56
	10.1.	VOC and GHG "Top-Down" BACT Analysis	56
		10.1.1. Step 1: Identify All Control Technologies	56
		10.1.2. Step 2: Eliminate Technically Infeasible Options	57
		10.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness	
		10.1.4. Step 4: Evaluate Most Effective Controls and Document Results	
		10.1.5. Step 5: Select BACT	
	10.2.	Conclusions	59
11.	CARB	ON CAPTURE AND SEQUESTRATION (CCS)	59
	11.1.	Overview of CCS	59
	11.2.	CCS Feasibility	61
	11.3.	Economic Analysis	61
	11.4.	Conclusions	62
12.	REFER	RENCES	63
List	of Tal	ales	
	Table		10
	Table	2: BACT Determination for the Power Generation Turbines	11
	Table	3: BACT Determination for Vent Gas Disposal (Flare / Thermal Oxidizer)	11
	Table		
	Table	·	
	Table	,	
		10: Remaining Control Options and Control Effectiveness	
		11: Economic Analysis	
		12: Control Technology Options Determined to be Technically Infeasible	
	iable	12. Control recliniology Options Determined to be reclinically lineasible	30

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 6

Public

Table 13: Remaining Control Options and Control Effectiveness	38
Table 14: Economic Analysis	39
Table 15: Control Technology Options Determined to be Technically Infeasible	40
Table 16: Remaining Control Options and Control Effectiveness	41
Table 17: Economic Analysis	42
Table 18: Remaining Control Options and Control Effectiveness	44
Table 19: Remaining Control Options and Control Effectiveness	47
Table 20: Remaining Control Options and Control Effectiveness	52
Table 21: Thermal Oxidizer with Vapor Recovery System Cost and Control Effectiveness	53
Table 22: Remaining Control Options and Control Effectiveness	55
Table 23: Remaining Control Options and Control Effectiveness	58
Table 24: Economic Analysis	62

List of Appendices

- A: Summary of BACT Determinations
- B: BACT Cost Effectiveness Calculations (Compression Turbines)
- C: BACT Cost Effectiveness Calculations (Power Generation Turbines)
- D: Alaska LNG Minutes of Meeting with ADEC, BACT and Dispersion Modeling Overview, GTP and Liquefaction Facilities, May 18, 2016
- E: Emissions and BACT Cost Effectiveness Calculations (Diesel Tanks, Condensate Tanks, Condensate Loading)

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 7

Public

ACRONYMS AND ABBREVIATIONS

%	percent
°F	•
	Alaska Administrative Code
	Alaska Department of Environmental Conservation
A/F	
	Best Available Control Technology
BOG	
BP	_
CAA	
	Carbon Capture and Sequestration
	Code of Federal Regulations
CH ₄	_
CO	
CO ₂	
	carbon dioxide equivalent
	Dry Low NOx (Oxides of Nitrogen) Combustor
	U.S. Department of Defense
EOR	·
	U.S. Environmental Protection Agency
	grams per brake horsepower-hour
GHG	
	global warming potential
GTP	
HC	hydrocarbon
Hp-hr	horsepower-hour
kW	kilowatt
kWhr	kilowatt hour
LAER	lowest achievable emission rate
lb	pounds mass
LNG	liquefied natural gas
MMBtu	million British thermal units
MW	megawatt
N ₂	nitrogen
N ₂ O	nitrous oxide
NO	nitric oxide
NO ₂	nitrogen dioxide
NOx	oxides of nitrogen
NSCR	Non-Selective Catalytic Reduction
NSPS	New Source Performance Standards

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 8	

O₂.....oxygen PGF.....power generation facility PMparticulate matter ppmparts per million ppmvparts per million by volume ppmvdparts per million by dry volume ppmvd@15%O₂.....parts per million by dry volume corrected to 15% oxygen Pre-FEED......Pre-Front End Engineering and Design ProjectAlaska LNG Project PSDPrevention of Significant Deterioration RACT.....Reasonably Available Control Technology RBLCRACT/BACT/LAER Clearinghouse scf.....standard cubic foot SCRSelective Catalytic Reduction SF₆sulfur hexafluoride SNCR.....Selective Non-Catalytic Reduction SO₂.....sulfur dioxide SO_x.....oxides of sulfur tpytons per year UDLNultra-dry low NOx combustor ULSD.....ultra-low sulfur diesel

VOCvolatile organic compound

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 9

Public

EXECUTIVE SUMMARY

The Alaska LNG Project (Project) would be subject to Prevention of Significant Deterioration (PSD) permitting under Alaska Administrative Code. Permitting under these regulations would require the Project to install Best Available Control Technology (BACT) on the permitted equipment at the Liquefaction Plant, located in Nikiski, and at the Gas Treatment Plant (GTP) on the North Slope. BACT is determined following the United States Environmental Protection Agency (EPA) "Top-Down" analysis approach, which identifies each control technology, and then considers in the evaluation the technical feasibility, commercial availability, costs, and site-specific factors to ultimately make a control technology determination. BACT determinations are always evaluated on a case-by-case basis.

To support the design for theAlaska Liquefaction Plant, the Pre-Front End Engineering Design (Pre-FEED) and Optimization phase included a BACT analysis for various project options and driver selections. This report provides the BACT analysis for the mechanical drive compression turbines, the power generation turbines, vent gas disposal (flares and thermal oxidizer), as well as for the emergency compression ignition (diesel) engines for firewater and air. This analysis provides a review of the possible technologies and emissions limits that could be imposed as BACT for these devices. The information provided in this analysis would be used to support Liquefaction Plant design decisions regarding emission control technologies and BACT emission limits.

The analysis focuses on the following pollutants: nitrogen oxides (NOx), sulfur dioxide (SO_2), carbon monoxide (CO), particulate matter (PM – in all of its forms), volatile organic compounds (VOCs) and greenhouse gases (GHGs). Emission controls for each of these pollutants are evaluated and a BACT determination is made following the EPA "Top-Down" approach. Based on the information considered in the analysis, the presumptive BACT determinations are shown in Table 1, Table 2, Table 3, and Table 4 below.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 10

1. COMPRESSION TURBINES

Relative to nitrogen oxides (NOx), the Best Available Control Technology (BACT) analysis did not find that installation of Selective Catalytic Reduction (SCR) was cost-effective to reduce NOx emissions below 9 parts per million by volume (ppmv). The cost-effectiveness of this control option was approximately \$15,000 per ton of NOx, which is in excess of the Alaska Department of Environmental Conservation (ADEC)-recommended upper bound cost-effectiveness threshold of \$10,000 per ton.

The Alaska LNG Project's (Project) proposal to install a catalyst bed to control carbon monoxide (CO) emissions achieves the most stringent level of control for this pollutant. BACT determinations for comparable gas compression and liquefied natural gas (LNG) facilities have set emission limits at 10 ppmv CO and lower, thus requiring a catalyst bed.

The BACT determination for sulfur dioxide (SO₂), particulate matter (PM) or volatile organic compounds (VOCs) is based on use of pipeline-quality natural gas and good combustion practices achieve the most stringent level of controls for these pollutants (Table 1).

The greenhouse gas (GHG) BACT determination relies upon efficiency improvement measures to reduce overall fuel use, which in turn results in lower GHG emissions. One GHG control strategy addressed in the analysis relates to alternative driver selections, such as the use of turbines of an aero-derivative design over modern light high-efficiency industrial turbines such as the compression turbine model evaluated here. Note, the evaluated model has achieved 38 percent (%) efficiency, which is only slightly lower that an aero-derivative machine. The analysis found that while aero-derivative turbines achieve thermal efficiencies greater than comparable industrial turbines, adopting the option as BACT was not cost-effective as compared to current and projected cost benchmarks for carbon pollution. The use of aero-derivative turbine technology would only be considered cost-effective for mitigating GHG emissions at fuel costs of approximately \$7.50 per million British thermal units (MMBtu) and greater.

Table 1: BACT Determination for the Compression Turbines

Pollutant	BACT Determination
NOx	Installation of ultra-dry low NOx (UDLN) technology on the turbines to achieve 9 ppmv NOx @ 15% oxygen (O ₂)
SO ₂	Good Combustion Practices/Clean Fuels
СО	Installation of CO catalyst to achieve 10 ppmv CO or lower @ 15% O ₂
PM	Good Combustion Practices/Clean Fuels
VOC	Good Combustion Practices/Clean Fuels
GHGs	Use of low-carbon fuel (i.e., natural gas) and implementation of energy efficiency measures (e.g., good combustion practice, periodic burner tunings, instrumentation and controls to optimize fuel gas combustion, etc.)

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Dago 11	

1.1. Power Generation Turbines

For NOx, the BACT analysis did not find that installation of SCR was cost-effective to reduce NOx emissions below 9 ppmv. The cost-effectiveness of this control option was approximately \$28,000 per ton of NOx, which is in excess of the ADEC-recommended upper bound cost-effectiveness threshold of \$10,000 per ton.

For CO, catalyst controls are recommended given the prevalence of this technology employed at other Alaska and comparable liquefaction facilities.

The same BACT observations made for the compression turbines for SO₂, PM and VOC apply to the power generation turbines.

The GHG BACT determination reflects the most stringent measures implemented by other comparable sources (Table 2).

Table 2: BACT Determination for the Power Generation Turbines

Pollutant	BACT Determination
NOx	Installation of UDLN technology on the turbines to achieve 9 ppmv NOx @ 15% O ₂
SO ₂	Good Combustion Practices/Clean Fuels
СО	Installation of CO catalyst to achieve 10 ppmv CO or lower @ 15% O ₂
PM	Good Combustion Practices/Clean Fuels
VOC	Good Combustion Practices/Clean Fuels
GHGs	Use of combined cycle turbine using low-carbon fuel (i.e., natural gas) and implementation of energy efficiency measures

1.2. Vent Gas Disposal (Flare / Thermal Oxidizer)

The BACT determination found that proposed waste gas minimization techniques proposed by the Project meet current BACT (Table 3). The waste gas minimization techniques minimize not only VOC and GHGs, but also combustion contaminants (e.g., NOx, CO, SO₂, and PM).

Table 3: BACT Determination for Vent Gas Disposal (Flare / Thermal Oxidizer)

Pollutant	BACT Determination
VOC	Waste gas minimization, waste gas recovery and flare/thermal oxidizer design
GHG	Waste gas minimization, waste gas recovery and flare/thermal oxidizer design

1.3. Compression Ignition Engines

The United States (U.S.) Environmental Protection Agency (EPA) has established emissions standards for internal combustion engines. Manufacturers are required to produce engines that meet the EPA Tiered Emission Standards. Meeting EPA standards constitutes current BACT for all pollutants. BACT determination for the compression ignition engines is provided in Table 4.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 12

Table 4: BACT Determination for the Compression Ignition Engines

Pollutant	BACT Determination
NOx	Good Combustion Practices/Clean Fuels Compliance with 40 CFR New Source Performance Standards (NSPS) Subpart IIII or 40 Code of Federal Regulations (CFR) Part 1039, as applicable
SO ₂	Good Combustion Practices; use of ULSD
СО	Good Combustion Practices/Clean Fuels Compliance with 40 CFR NSPS Subpart IIII or 40 CFR Part 1039, as applicable
PM	Good Combustion Practices/Clean Fuels Compliance with 40 CFR NSPS Subpart IIII or 40 CFR Part 1039, as applicable
VOC	Good Combustion Practices/Clean Fuels Compliance with 40 CFR NSPS Subpart IIII or 40 CFR Part 1039, as applicable
GHGs	Good Combustion Practices/Clean Fuels

2. PURPOSE AND SCOPE

Per Alaska Administrative Code (AAC) Title 18, Section 50.306 (Prevention of Significant Deterioration [PSD]), evaluation of a stationary source that requires a PSD permit prior to construction must include a control technology review, as required by the CFR Title 40, Section 52.21(j), incorporated by reference per 18 AAC 50.040(h). 40 CFR 52.21(j)(2) specifies that "[a] new major stationary source shall apply best available control technology for each regulated New Source Review pollutant that it would have the potential to emit in significant amounts." BACT analyses are case-by-case evaluations and include consideration of cost, technical feasibility, commercial availability, and site-specific factors. EPA requires a "Top-Down" BACT analysis approach be used in these evaluations.

This report provides the BACT analysis for the mechanical drive compression turbines, the power generation turbines, waste gas mitigating devices (flare and thermal oxidizer), as well as for the emergency compression ignition (diesel) engines. This analysis provides a review of the possible technologies and emission limits that could be imposed as BACT for these devices. The information provided in this analysis would be used to support Liquefaction Plant design decisions regarding emission control technologies and permit emission limits that constitute BACT.

This BACT analysis addresses NOx, SO₂, CO, PM – including fine particulate (known as PM₁₀) and ultrafine particulate (known as PM_{2.5}), VOCs) and GHG emissions. The following key assumptions and boundary conditions were used to prepare this analysis:

- This BACT analysis is based on the Project design and equipment emissions at the time of this report's development.
- Vendor cost data were used to the extent feasible in this analysis. Where vendor data were
 unavailable, data from the EPA Air Pollution Control Cost Manual, Sixth Edition, January 2002 were
 used. The bases for all cost figures are documented in this analysis.
- NOx and CO emissions control limits and expectations for performance are based on vendor quotes, as given for Liquefaction Plant operating conditions.

Liquefaction Plant Best Available Control Technology (BACT) Analysis Public AKLNG-4030-HSE-RTA-DOC-00001 Revision No. 2 4/30/2018 Page 13

- Technical data and costs from *Study 12.3.4 Liquefaction Compressor Driver Selection Study Report* (USAL-CB-PRTEC-00-00009-000, Revision 1) were relied upon in the analysis.
- Preliminary guidance provided by ADEC during a May 2016 meeting to discuss Project BACT issues was incorporated into this analysis (See Appendix D)

3. BACT METHODOLOGY

BACT is defined in the Federal PSD regulations at 40 CFR 52.21(b)(12) as:

...an emission limitation, including a visible emission standard, based on the maximum degree of reduction for each pollutant subject to regulation...which would be emitted from any proposed major stationary source or major modification which the Administrator, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification...

This BACT analysis follows the "Top-Down" methodology described in the EPA *New Source Review Workshop Manual.* The "Top-Down" process involves the identification of all applicable control technologies according to control effectiveness. The "top", or most stringent, control alternative is evaluated first. If the most stringent alternative is shown to be technically infeasible, economically unreasonable, or if environmental or other impacts are severe enough to preclude its use, then the next most stringent control technology is similarly evaluated. This process continues until the emissions control method under consideration is not eliminated by technical, economic, energy, environmental, or other impacts.

The five steps of a Top-Down BACT Analysis are described in the following steps, below:

- 1. Identify all available control technologies with practical potential for application to the specific emission unit for the regulated pollutant under evaluation.
- 2. Eliminate all technically infeasible control technologies.
- 3. Rank remaining control technologies by control effectiveness and tabulate a control hierarchy.
- 4. Evaluate most effective controls and document results.
- 5. Select BACT, which will be the most effective practical option not rejected, based on economic, environmental, energy and other impacts.

A further summary of each step is provided below.

Step 1

_

Identify potential control technologies for the LNG Plant based on information found on the EPA's Reasonably Available Control Technology (RACT)/BACT/Lowest Achievable Emission Rate (LAER) Clearinghouse (collectively referred to as RBLC), state websites, Freedom of Information Act requests, recent Alaskan projects with similar emissions units, and vendor input.

DRAFT New Source Review Workshop Manual, EPA, Office of Air Quality Planning and Standards, October 1990.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001 Revision No. 2 4/30/2018

Page 14

Public

Step 2

Evaluate the operating principles, control efficiencies and technical feasibility of each potential control technology; technologies determined to be technically infeasible are eliminated in this step.

Step 3

The remaining technologies that are technically feasible are ranked based on control effectiveness.

Step 4

Under Step 4, energy, environmental, and cost-effectiveness impacts are evaluated. This evaluation begins with the analysis of the most stringent control option and continues until a technology under consideration cannot be eliminated based on adverse energy, environmental, or economic impacts. The factors that are considered in these analyses are as follows:

- Energy Impacts: The energy requirements of a control technology can be examined to determine if the use of that technology results in any significant or unusual energy penalties or benefits. Energy impacts may be in the form of additional energy required to operate the emitting unit, or additional energy required to operate the control device.
- Environmental Impacts: Installation of control devices may result in environmental impacts separate from the pollutant being controlled. Environmental impacts may include solid or hazardous waste generation, discharges of polluted water from a control device, visibility impacts, increased emissions of other criteria or non-criteria pollutants, increased water consumption, and land use impacts from waste disposal. The environmental impact analysis is made taking consideration of site-specific circumstances.
- **Economic Impacts**: For a technology to be considered BACT, it must be considered "cost effective." The economic or "cost-effectiveness" analysis is conducted in a manner consistent with EPA's *Air Pollution Control Cost Manual*, Sixth Edition and subsequent revisions. For this analysis, the cost data are obtained primarily from vendor supplied information and supplemented with estimates provided in the EPA's *Control Cost Manual* where vendor supplied information was not available.
- Cost effectiveness thresholds are not published, nor guaranteed by regulatory agencies; however, based on other BACT evaluations in Alaska, the threshold at which a NOx, SO₂, CO, PM or VOC control technology evaluated is likely to be considered cost effective is \$3,000 per ton of pollutant removed or less. If the evaluated cost is greater than \$10,000 per ton of pollutant removed, then the technology will likely not be considered cost effective. Evaluations where the cost-effectiveness is calculated to be between \$3,000 and \$10,000 should be validated with ADEC.

At the time of developing this analysis, ADEC and EPA have not provided formal guidance on a cost-effectiveness threshold for GHG reductions. However, the following benchmarks are considered reasonable measures for determining what would be cost-effective:

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 15

\$21 per ton of carbon dioxide equivalent (CO₂-e), based on the annual average secondary market price for California and Quebec Cap-and-Trade GHG allowances escalated by 7% in the year 2020.²

∘ \$12 - \$40 per ton of CO₂-e escalating from 2016 to 2030 based on Alaska LNG estimates.

Step 5

The most stringent control that has not been eliminated in all prior steps is selected as BACT. With the control technology selection, a BACT emission target is established. The BACT target becomes a limit, which applies at all times, except during specific conditions listed in the permit (e.g., start-up and shutdown). Where a BACT emission limit cannot be achieved in operation, an alternative work practice or emissions limit must be proposed. That alternative limit must go through the same BACT analysis steps noted above.

Greenhouse Gases (GHGs)

EPA recommends that the same "Top-Down" analysis approach used for criteria pollutants be used in evaluating GHGs subject to BACT. The analysis that follows has been prepared, consistent with this guidance.

With respect to what constitutes "GHGs," Title 40 Code of Federal Regulations Section 52.21 (Prevention of Significant Deterioration) Paragraph (b)(49)(i) defines GHGs to include the following: CO₂, methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (SF₆). Mass emissions of GHGs are converted into carbon dioxide equivalent (CO₂e) emissions for ease of comparison. CO₂-e is a quantity that equates the global warming potential (GWP) of a given mixture and amount of GHGs, to the amount of CO₂ that would have the same GWP in the atmosphere over a 100-year period. GWPs for these GHGs are provided in 40 CFR Part 98 (Mandatory Greenhouse Gas Reporting) Table A-1 (Global Warming Potentials).

As direct CO₂ emissions account for more than 99% of the combustion-related GHGs associated with the Project, and CH₄ and NOx account for less than 1% of the combustion-related turbine GHG emissions (measured as CO₂e), this analysis of BACT focuses on CO₂ as a surrogate for CO₂e.

² See the California Carbon Dashboard [(http://calcarbondash.org/, produced by the Climate Policy Initiative) based on data reported by the Intercontinental Exchange (ICE), End of Day Reports]. The year 2020 was used in the analysis based on the timing of permit issuance. The BACT that is employed for a Project is considered at the time the permit is issued, and is not revisited during the operating life of the facility.

³ See *PSD and Title V Permitting Guidance for Greenhouse Gases*, U.S. Environmental Protection Agency, Document No. EPA-457/B-11-001, March 2011, available at www.epa.gov/sites/production/files/2015-12/documents/ghgpermittingguidance.pdf

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 16

Public

4. COMPRESSION TURBINES

This section of the BACT analysis addresses the control technology options for the mechanical drive turbines, which provide refrigerant compression at the LNG Plant. This analysis is organized as follows:

- Section 4.1 NOx BACT Analysis
- Section 4.2 CO BACT Analysis
- Section 4.3 SO₂ BACT Analysis
- Section 4.4 PM and VOC BACT Analysis
- Section 4.5 GHG BACT Analysis
- Section 4.6 Conclusions

4.1. NOx BACT Analysis

NOx is formed during the combustion process due to high temperature zones in the combustion burner or chamber. This BACT analysis evaluates control techniques and technologies used to mitigate NOx emissions from the compression turbines with a rated output of nominally 115 megawatts (MW) per unit.

4.1.1. Step 1: Identify All Control Technologies

EPA, state, and local BACT clearinghouses/databases would classify the compression turbines as "Simple Cycle Natural-Gas Fired Combustion Turbines Greater than 25 MW." This class or category of source was used to investigate of the types of controls installed as BACT in recent permitting decisions. Appendix A includes a summary of NOx controls that have been installed between 2010 and the present to satisfy BACT for comparable Alaskan projects and LNG projects in the Continental U.S.

The compression turbines can be equipped with Dry Low-NOx (DLN) burners or UDLN technology. The DLN technology, which represents the "base case" for this analysis achieves 25 ppmv NOx at 15% O_2 . The UDLN technology, which is discussed below, can achieve NOx emission concentrations of 9 ppmv or lower at 15% O_2 .

Control technologies identified for NOx control of simple cycle gas turbines include the following:

- 1. DLN or UDLN Burners
- 2. Water/Steam Injection
- 3. Selective Catalytic Reduction (SCR)
- 4. Selective Non-Catalytic Reduction (SNCR)
- 5. Non-Selective Catalytic Reduction (NSCR)
- 6. XONON™
- 7. SCONOx™

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 17	

These control methods may be used alone or in combination to achieve various degrees of NOx emissions control. Each technology is summarized below.

DLN and UDLN Burners

DLN combustors (marketed under many similar names such as SoLoNOx or DLE) utilize multistage premix combustors where the air and fuel is mixed at a lean (high oxygen) fuel-to-air ratio. The excess air in the lean mixture acts as a heat sink, which lowers peak combustion temperatures and also ensures a more homogeneous mixture, both resulting in greatly reduced NOx formation rates. DLN combustors have the potential to reduce NOx emissions by 40 to 60%; this technology has an expected NOx performance of approximately 25 ppmv at $15\% O_2$.

It is possible to equip the base model with compression turbine "Ultra-Low" (UDLN) combustors, reducing NOx emissions from 25 ppmv (DLN) to 9 ppmv (UDLN). This technology is relatively new and performance data is limited; however, for the purpose of this analysis, this option is deemed feasible and examined in the economic analysis below. Note that UDLN combustors have been studied and are considered selectable by the Project.

Water or Steam Injection

Water or steam injection is a commonly used control technique for combustion turbine applications (particularly for turbines/services for which dry low NOx combustors are not available). Water/steam injection involves the introduction of water or steam into the combustion zone of the turbine. The injected fluid provides a heat sink, which absorbs some of the heat of reaction, causing a lower flame temperature resulting in lower thermal NOx formation. The process requires approximately 0.8 to 1.0 pound of water or steam per pound of fuel burned. The water source used requires demineralization to avoid leaving deposits and causing corrosion on turbine internals. Demineralization incurs additional cost and complexity to turbine operation and utilities. Water/steam injection also increases CO emissions as it lowers the combustion temperature. Depending on baseline uncontrolled NOx levels, water or steam injection can reduce NOx by 60% or more.

Selective Catalytic Reduction (SCR)

SCR is a post-combustion gas treatment technique used to reduce NOx emissions from exhaust streams. In the SCR process, ammonia (anhydrous, aqueous or as urea) is used as the reducing agent and is injected into the flue gas upstream of a catalyst bed. The function of the catalyst is to lower the activation energy of the NOx decomposition reaction. NOx and ammonia combine at the catalyst surface forming an ammonium salt intermediate, which subsequently decomposes to produce elemental nitrogen and water. SCR works best where inlet NOx concentrations and exhaust temperatures are constant. The operating temperature of conventional SCR systems ranges from 400 degrees Fahrenheit (°F) to 800°F. High temperature SCR relies on special material reaction grids and can operate at higher temperature ranges between 700°F to 1,075°F. High temperature SCR is most frequently installed on simple cycle turbines. Depending on the overall ammonia-to-NOx ratio, NOx removal efficiencies can be as high as 80 to 90%. When used in series with DLN combustors, or water/steam injection, SCR can result in low single digit NOx levels in the range of 2 ppmv to 5 ppmv.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 18

Public

As part of this BACT analysis, installations and operating experience of SCR systems at locations in Alaska were given special consideration. SCR units installed in Alaska have demonstrated a wider range of NOx reduction performance ranging from as low as 25% and up to 90%. Installations of SCR systems in the RACT/BACT/LAER Clearinghouse have shown that SCR can reduce NOx from turbines to as low as 2 ppmv; however, only while under very stringent operational control. Variability of NOx control efficiencies on SCR installations in Alaska are the result of its use on variable load applications, mechanical drive applications, as well as the difficulty in maintaining uniform ammonia injection rates due to varying ambient temperatures and load ranges. Alaska units specifically evaluated in this analysis are listed below.

- Teck Cominco Alaska, Inc. has installed SCR on the most recent engine addition at the Red Dog Mine located 90 miles north of Kotzebue, Alaska. This unit utilizes urea and required an open catalyst cell structure to improve the NOx conversion to ~90% reduction.
- SCR is planned for the Healy Unit 2, which is located in Healy, Alaska, just south of Fairbanks at the edge of Denali National Park. However, the installation is not complete at the time of this analysis so there is no documentation regarding the operations.
- The Southcentral Power Project at the Anchorage Airport (Chugach Electric Association) includes SCR on each of the LM6000PF turbines. These SCR units utilize 29% aqueous ammonia and only reduce NOx emissions by approximately 25% (resulting in 11 ppmv instead of 15 ppmv).
- Kenai Nitrogen Operations (Agrium): Agrium proposed the installation of SCR on each of five simple cycle GGT-744 Solar Turbine/Generator sets. The SCR units have NOx limits of 7 ppmv at 15% O₂.
- Anchorage Municipal Light & Power permitted in 2013 two LM6000 turbines with DLN and SCR.
 SCR was used in this case to avoid PSD permitting.

SCR has the potential to reduce NOx emissions by 70 to 90% and is considered technically feasible in this analysis. As noted above, SCR units installed and operated in Alaska face design and operation challenges primarily due to low and wide ranges of ambient temperature. SCR may be combined with DLN and UDLN combustion technology to achieve NOx emission rates as low as 2 ppmv @ 15% O₂. This analysis conservatively assumes that SCR could be combined with DLN or UDLN, with either combination achieving the same 2 ppmv level of NOx control.

The selected mechanical drive turbines are anticipated to exhaust at a temperature of approximately 1,000°F, which is at the high end of the recommended temperature for high temperature SCR (700°F to 1,075°F). To optimize exhaust temperature, quenching, or air tempering, would be required to lower exhaust gas temperatures to acceptable SCR temperature ranges.

Selective Non-Catalytic Reduction (SNCR)

SNCR reduces NOx into nitrogen and water vapor by the reaction of the exhaust gas with a reducing agent, such as urea or ammonia; this technology does not require a catalyst. The SNCR system performance is dependent upon the reagent injector location and temperature in order to achieve proper reagent/exhaust gas mixing for maximum NOx reduction. SNCR systems require a fairly narrow

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 19

Public

temperature range for reagent injection to achieve a specific NOx reduction efficiency. The optimum temperature range for injection of reagent is approximately 1,500°F to 1,900°F. The NOx reduction efficiency of an SNCR system decreases rapidly at temperatures outside the optimum temperature window. In theory, selective non-catalytic reduction can achieve the same efficiency as SCR; however, the practical constraints of temperature, time, and mixing often lead to worse results in practice.

Non-Selective Catalytic Reduction (NSCR)

NSCR uses a catalyst to simultaneously reduce NOx, CO, and hydrocarbon (HC) to water, CO₂, and nitrogen (N₂). The catalyst is usually a noble metal. The control efficiency achieved for NOx ranges from 80% to 90%. The operating temperature for NSCR ranges from about 700°F to 1,500°F, depending on the catalyst. For NOx reductions of 90%, the temperature must be between 800°F to 1,200°F. In addition, NSCR requires a low excess oxygen concentration in the exhaust gas stream (typically less than 1%) in order to be effective because the oxygen must be depleted before the reduction chemistry can proceed. As such, NSCR is only effective with rich-burn gas-fired units that operate at all times with an air to fuel ratio controller at or close to stoichiometric conditions.

SCONOx™

The SCONOX™ technology was originally developed by Goal Line Environmental Technologies, Inc. to treat exhaust gas of natural gas and diesel fired turbines. Now offered by EmeraChem, the technology is marketed under the name EMx. The EMx catalytic absorption system uses a potassium carbonate coated catalyst to reduce nitrogen oxide emissions. The catalyst oxidizes CO to CO₂, and NO to NO₂ and potassium nitrates (KNO₂/KNO₃). The catalyst is regenerated by passing dilute hydrogen gas over the catalyst bed, which converts the KNO₂ and KNO₃ to K₂CO₃, water, and elemental nitrogen. The catalyst is renewed and available for further absorption while the water and nitrogen are exhausted. In order to maintain continuous operation during catalyst regeneration, the system is furnished in arrays of 5 module catalyst sections. During operation, 4 of the 5 modules are online and treating flue gas, while one module is isolated from the flue gas for regeneration. NOx reduction in the system occurs in an operating temperature range of 300°F to 700°F, and therefore, must be installed in the appropriate temperature section of the waste heat recovery unit. Additionally, the EMx catalyst must be recoated, or "washed" every 6 months to 1 year, depending on the sulfur content of the fuel. The "washing" consists of removing the catalyst modules from the unit and placing each module in a potassium carbonate reagent tank, which is the active ingredient of the catalyst.

The EMx catalyst is subject to reduced performance and deactivation due to exposure to sulfur oxides, requiring an additional catalytic oxidation/absorption system (SMx) upstream of the EMx catalyst. The SMx catalyst is regenerated in the same manner as the EMx catalyst.

Commercial experience with EMx is limited, with a majority of the units operating on units of 15 MW or less. No known installations exist in low ambient temperature settings. At least one installation of EMx has reported difficulties meeting permit limits. While EMx might be applicable in theory, it is not considered feasible for the LNG Plant because it has limited commercial experience and has not been demonstrated in low ambient temperature settings.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Pago 20

XONON™

XONON™ is a catalytic technology developed by Catalytica Energy Systems, Inc. and is now owned by Kawasaki. XONON™ uses partial combustion of fuel in the catalyst module followed by complete combustion downstream of the catalyst in the burnout zone. Partial combustion within the catalyst produces no NOx. Homogeneous combustion downstream of the catalyst usually produces little NOx as combustion occurs at a uniformly low temperature. A small amount of fuel is combusted in a pre-burner, which results in a small amount of NOx emissions.

XONON™ was not identified as BACT in the RBLC and is considered technically infeasible because it is not yet commercially available. This catalyst technology is currently being tested by turbine manufacturers.

4.1.2. Step 2: Eliminate Technically Infeasible Options

This section summarizes the technical feasibility of each potential NOx control technology; technologies determined to be technically infeasible are summarized in Table 5, below.

Table 5: Control Technology Options Determined to be Technically Infeasible

Technology Alternative Basis	
Water/Steam Injection	The base model turbine is equipped with DLN combustors. Water/steam injection is not compatible with burners equipped with DLN.
SNCR	The exhaust temperature of the combustion turbine is less than the optimum temperature range (1,500°F to 1,900°F) for SNCR.
NSCR	The oxygen concentration of the combustion turbine is approximately 15% O_2 , which is much higher than the optimum oxygen concentration range for NSCR.
SCONOx™	There are no documented installations of this type of control on large combustion turbines.
XONON™	There are no documented installations of this type of control on large combustion turbines.

Water/Steam Injection

Water/steam injection has the potential to reduce NOx emissions by 20% to 30%. Water/steam injection is not used in conjunction with DLN combustors. As the base model compressor turbine is equipped with DLN combustors, water/steam injection is not considered further in this analysis.

Selective Non-Catalytic Reduction (SNCR)

The turbine is anticipated to exhaust at a temperature of approximately 1,000°F, which is well below the recommended temperature (1,500°F to 1,900°F) for an SNCR system to achieve the desired NOx reduction efficiency. The NOx reduction efficiency of SNCR decreases rapidly at temperatures outside the optimum temperature window, additionally, operations below this temperature window result in excessive ammonia emissions (ammonia slip). As such, SNCR is not considered technically feasible for this analysis.

Non-Selective Catalytic Reduction (NSCR)

NSCR requires a low excess oxygen concentration in the exhaust gas stream (typically below 1%) in order to be effective, as the oxygen must be depleted before the reduction chemistry can proceed. As such,

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Daga 21

NSCR is only effective with rich-burn gas-fired units that operate at all times with an air to fuel ratio controller at or close to stoichiometric conditions. As gas turbines typically operated with an excess oxygen concentration of approximately 15%, the evaluated model is outside of the acceptable operating range for NSCR and is not considered technically feasible for this analysis.

SCONOx™

SCONOx™ technology has an operating temperature range of 300°F to 700°F. As noted above, the turbine is anticipated to exhaust at a temperature of approximately 1,000°F, which is above the recommended temperature for SCONOx™. To optimize exhaust temperature, quenching would be required to lower exhaust gas temperatures to acceptable SCONOx™ temperature ranges. SCONOx™ technology is still in the early stages of market introduction. Issues that may impact application of the technology include relatively high capital cost, a large reactor size compared to SCR, increased system complexity, high utilities cost and demand (steam, natural gas, compressed air and electricity are required), and a gradual rise in NOx emissions over time requiring a 1 to 2 day renewal of catalyst. Commercial experience with this technology is limited, with a majority of the SCONOx™ units operating on turbines units of 15 MW or less. No known installations exist in low ambient temperature settings similar to Alaska. At least one installation of SCONOx™ has reported trouble meeting permit limits. While SCONOx™ might be applicable in theory, it is not considered feasible for this Project as it has limited commercial experience and has not been demonstrated in low ambient temperature settings.

XONON™

The XONON™ catalyst has only ever been paired with the 1.5 MW Kawasaki M1A-13 simple cycle gas turbine generator. As this catalyst technology has only been applied in the smaller gas turbines manufactured by Kawasaki, and as testing and implementation of this control system among different gas turbine manufacturers and on larger units has not been performed, this technology is unproven for the size class proposed for this Project and is not considered technically feasible for this analysis.

4.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 6, below. These technologies are ranked by control efficiency.

Table 6: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%) or Emissions Target (ppmv)
1	DLN plus SCR or UDLN plus SCR	25% to 90% (as low as 2 ppmv @ 15% O ₂)
2	UDLN	9 ppmv @ 15% O ₂

4.1.4. Step 4: Evaluate Most Effective Controls and Document Results

This section summarizes the energy, environmental, and economic impacts of the control technologies noted above. The cost-effectiveness calculations use a "NOx emission base case" of 25 ppmv (NSPS limit) and emission control endpoints of 2 ppmv (DLN or UDLN plus SCR) or 9 ppmv (UDLN only). It should be noted that a base-case emission rate of 25 ppmv is used because it represents the base-case offering from

Liquefaction Plant Best Available Control	
Technology (BACT) Analysis	

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 22

the turbine vendor. An aggressive endpoint of 2 ppmv in the SCR evaluation provides a conservative evaluation of cost-effectiveness. A controlled NOx emission rate of 5 ppmv would be a more achievable performance objective to accommodate fluctuations in operations and site-specific conditions in Alaska (e.g., temperature fluctuations between summer and winter, etc.).

4.1.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible NOx controls evaluated in this BACT analysis.

4.1.4.2. Environmental Impact Analysis

For this analysis, operation of SCR would result in some "slip" of ammonia releases to the environment as well as disposal of spent catalyst. Neither ammonia slip nor waste disposal considerations are expected to preclude use of SCR as a potential control device for this BACT analysis.

4.1.4.3. Economic Analysis

Economic analysis of costs to install NOx control is based on the following key factors:

- Size of the turbine;
- Baseline emissions levels;
- · Controlled emissions levels; and
- Emission control installation and operating costs.

The cost-effectiveness of DLN and SCR, and UDLN are summarized in Table 7, below. As shown in this table, DLN plus SCR is not cost-effective, as it exceeds the \$10,000 per ton cost-effectiveness guideline.

Table 7: Economic Analysis

Estimated NOx Emissions from Alternate Control Technologies		
	Control Technolo	ogy Alternatives*
	DLN and SCR	UDLN
Control Option	1	2
Uncontrolled Baseline ppmvd@15%O2	25	25
Uncontrolled emissions (tpy)	467	467
Controlled emissions ppmvd@15%O2 **	2	9
Controlled emissions (tpy)	37	168
NOx emission reduction (tpy)	430	299
Total Annualized Operating Cost	\$6,418,598	\$1,146,328
Cost of NOx removal (\$/ton)	\$14,941	\$3,836

^{*} UDLN plus SCR was not evaluated for cost-effectiveness since DLN with SCR achieves comparable levels of control, and cost-effectiveness for DLN with SCR exceeds the BACT cost-effectiveness threshold. UDLN plus SCR would have higher costs and would result in a cost-effectiveness in excess of \$15,000 per ton.

^{**} Anticipated level of control. Permit limits may be set higher to accommodate fluctuations in emissions from variable operations. Analyzing cost-effectiveness at the 2 ppmv level results in more conservative results.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 23

4.1.5. Step 5: Select BACT

The cost-effective analysis of feasible controls shows that UDLN alone constitutes BACT for NOx in this analysis. DLN plus SCR was eliminated at Step 4 as a potential control option.

While UDLN alone constitutes BACT in this analysis, it should be noted that DLN plus SCR is a common BACT emissions control approach for turbine installations, including LNG projects (see Appendix A for other comparable BACT determinations).

4.2. CO BACT Analysis

Carbon monoxide is formed during the combustion process as a result of incomplete fuel combustion. Factors contributing to incomplete fuel combustion include, low air temperatures, insufficient combustion zone turbulence and residence times, inadequate amounts of excess air, as well as competing combustion conditions employed to mitigate NOx formation. This BACT analysis evaluates control techniques and technologies used to mitigate CO emissions.

4.2.1. Step 1: Identify All Control Technologies

As noted above, EPA, state, and local BACT clearinghouses/databases would classify the compression turbines as "Simple Cycle Natural-Gas Fired Combustion Turbines Greater than 25 MW." This class or category of source was used to investigate of the types of controls installed as BACT in recent permitting decisions. Appendix A includes a summary of CO controls that have been installed between 2010 and present to satisfy BACT for comparable Alaska projects and LNG projects in the Continental U.S.

Control technologies identified for CO control of simple cycle gas turbines include the following:

- Good Combustion Practices/Clean Fuel
- Catalytic Oxidation
- SCONOx™
- NSCR

These control methods may be used alone or in combination to achieve the various degrees of CO emissions control. Each technology is summarized below.

Good Combustion Practices/Clean Fuel

The rate of CO emissions is dependent on fuel choice and good combustion practices including proper mixing of fuel and combustion air, as well as adequate residence time at temperatures to complete the oxidation process. The compression turbine base model is designed to combust natural gas and optimizes CO emissions through use of natural gas and good combustion practices.

CO Oxidation Catalyst

Catalytic oxidation is a flue gas control that oxidizes CO to CO_2 in the presence of a noble metal catalyst; no reaction reagent is necessary. Catalytic oxidizers can provide oxidation efficiencies of 80% or greater at temperatures between 750°F and 1,000°F; the efficiency of the oxidation temperature quickly

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
D 24

deteriorates as the temperature decreases. The temperature of the turbine is expected to exhaust at approximately 1,000°F or less, remaining within the temperature range for CO oxidation catalysts.

SCONOx™

As discussed in the NOx BACT analysis above, SCONOx[™] reduces CO emissions by oxidizing the CO to CO₂. This technology combines catalytic conversion of CO with an absorption and regeneration process without using ammonia reagent. SCONOx[™] catalyst must operate in a temperature range of 300°F to 700°F, and therefore, turbine exhaust temperature must be reduced through the installation of a cooling system prior to entry to the SCONOx[™] system. Notably, demonstrated applications for this technology are currently limited to combined cycle combustion turbine units rated less than 40 MW.

Non-Selective Catalytic Reduction (NSCR)

As discussed in the NOx BACT analysis, above, NSCR uses a catalyst reaction to reduce CO to CO₂. The catalyst is usually a noble metal. The operating temperature for NSCR system ranges from about 700°F to 1,500°F, depending on the catalyst. NSCR requires a low excess oxygen concentration in the exhaust gas stream (typically less than 1%) to be effective because the oxygen must be depleted before the reduction chemistry can proceed. As such, NSCR is only effective with rich-burn gas-fired units that operate at all times with an air-to-fuel (A/F) ratio controller at or close to stoichiometric conditions.

4.2.2. Step 2: Eliminate Technically Infeasible Options

This section summarizes the potential technical feasibility for CO control of each air pollution control technology; technologies determined to be technically infeasible are summarized in Table 8, below.

Table 8: Control Technology Options Determined to be Technically Infeasible

Technology Alternative	Basis
SCONOx™	There are no documented installations of this type of control on large simple cycle combustion turbines.
NSCR	The oxygen concentration of the combustion turbine is approximately 15% O_2 , which is much higher than the optimum oxygen concentration range for NSCR.

SCONOx™

SCONOx™ technology is still in the early stages of market introduction. Issues that may impact application of the technology include relatively high capital cost, a large reactor size, increased system complexity, high utilities cost and demand (steam, natural gas, compressed air and electricity are required), and a gradual decrease in effectiveness over time, requiring a 1 to 2 day renewal of catalyst. Commercial experience with this technology is limited, with a majority of the units operating on units of 15 MW or less. No known installations exist in low ambient temperature settings similar to Alaska. At least one installation of has reported trouble meeting permit limits. While SCONOx™ may be applicable in theory, it is not considered feasible for the LNG Project because it has limited commercial experience and has not been demonstrated in low ambient temperature settings.

Liquefaction Plant Best Available Contro	ı
Technology (BACT) Analysis	

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 25

Non-Selective Catalytic Reduction (NSCR)

NSCR requires a low excess oxygen concentration in the exhaust gas stream (typically below 1%) to be effective, as the oxygen must be depleted before the reduction chemistry can proceed. As such, NSCR is only effective with rich-burn gas-fired units that operate at all times with an A/F ratio controller at or close to stoichiometric conditions. As gas turbines typically operate with an excess oxygen concentration of approximately 15%, it is outside of the acceptable operating range for NSCR and is not considered technically feasible for this analysis.

4.2.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 9, below. These technologies are ranked by control efficiency.

Table 9: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%) or Emissions Target (ppmv)
1	CO Catalyst	10 ppmv (or lower) at 15% O_2
2	Good Combustion Practices/Clean Fuels	50 ppmv at 15% O_2 (varies with loading and ambient temperature and maintenance of NOx target)

This analysis assumes a 10 ppmv (or lower) controlled emissions level similar to other LNG turbines of this size. This BACT analysis also identifies other installations, which achieve less than 10 ppmv CO (e.g., Point Thompson Production Facility with a CO limit of 2.5 ppmv at 15% O_2); therefore, BACT for CO would be based on the vendor guarantee for this unit, which may be lower than 10 ppmv.

4.2.4. Step 4: Evaluate Most Effective Controls and Document Results

This section summarizes the energy, environmental, and economic impacts of the control technologies noted above.

4.2.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible CO controls evaluated in this BACT analysis.

4.2.4.2. Environmental Impact Analysis

Implementation of good combustion practices/clean fuels is not expected to cause an environmental impact. Operation of a CO catalyst would result in the disposal of spent catalyst; however, waste disposal considerations are not expected to preclude use of a CO catalyst as a potential control device for this BACT analysis. This conclusion is based on comparable BACT determinations for other facilities.

4.2.4.3. Economic Impact Analysis

The Project proposes to install a CO catalyst bed as part of the compression turbine design. Additionally, good combustion practices/clean fuels would be implemented. As both technically feasible options would be implemented for this Project, economic analysis is not required.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

/	AKLNG-4030-HSE-RTA-DOC-00001
	Revision No. 2
	4/30/2018
	Page 26

4.2.5. Step 5: Select BACT

This BACT analysis concludes, similar to other comparable projects evaluated, that good combustion practices/clean fuels, as well as operation of an oxidation catalyst likely constitutes BACT for a gas turbine of this type and application (see Appendix A for a list of other BACT determinations reviewed).

4.3. SO₂ BACT Analysis

SO₂ is formed as a result of the combustion of sulfur compounds in fuels. This BACT analysis evaluates control techniques and technologies used to mitigate SO₂ emissions.

4.3.1. Step 1: Identify All Control Technologies

The only technique identified to mitigate SO_2 emissions for simple cycle gas turbines at an LNG Plant is the use of clean fuels (i.e., pipeline quality natural gas). The compression turbine base model is designed to combust natural gas, which is low in sulfur.

4.3.2. Step 2: Eliminate Technically Infeasible Options

Use of pipeline quality natural gas is a common BACT control for gas turbines and is considered a technically feasible control option for the LNG turbines for the purposes of this analysis.

4.3.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

Use of pipeline quality natural gas is a common BACT control for gas turbines and is considered a technically feasible control option for the LNG turbines for the purposes of this analysis. As this is the only control option considered, ranking by emissions control effectiveness is unnecessary.

4.3.4. Step 4: Evaluate Most Effective Controls and Document Results

Since the use of clean fuels would be implemented for this Project, economic analysis is not required.

4.3.5. Step 5: Select BACT

Use of clean fuels has been chosen to satisfy BACT for reduction of SO₂ emissions. This is consistent with the BACT required of other comparable projects.

4.4. PM and VOC BACT Analysis

PM and VOC are emitted from gas turbines. Excessive amounts of these pollutants can occur from incomplete fuel combustion, including low air temperatures, insufficient combustion zone turbulence and residence times, inadequate amounts of excess air, as well as competing combustion conditions employed to mitigate NOx formation. This analysis evaluates control techniques and technologies used to mitigate PM and VOC emissions.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 27

Public

4.4.1. Step 1: Identify All Control Technologies

Good combustion practice/clean fuels is identified as the main technique to mitigate PM and VOC from natural gas combustion. The rate of PM and VOC emissions is dependent on fuel choice and good combustion practices, including proper mixing of fuel and combustion air, as well as adequate residence time at temperatures to complete the oxidation process. The compression turbine base model is designed to combust natural gas and minimize PM and VOC emissions through good combustion practices.

CO catalyst also has the potential to reduce VOC emissions from combustion turbines. As CO catalyst has already been selected for use as BACT (see Section 4.2), no further evaluation of this technology for VOC control is provided.

4.4.2. Step 2: Eliminate Technically Infeasible Options

The use of good combustion practices/clean fuels, is a common PM and VOC BACT control for gas turbines and is considered a technically feasible control option for the LNG turbines for the purposes of this analysis.

4.4.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

Good combustion practices/clean fuel is a common PM and VOC BACT control for gas turbines and is considered a technically feasible control option for the LNG turbines for the purposes of this analysis. As this is the only control option considered, ranking by emissions control effectiveness is unnecessary.

4.4.4. Step 4: Evaluate Most Effective Controls and Document Results

As good combustion practices/clean fuel would be implemented for this Project, economic analysis is not required.

4.4.5. Step 5: Select BACT

Good combustion practices/clean fuels constitutes BACT for the reduction of PM and VOC emissions.

4.5. GHG BACT Analysis

CO₂, a GHG, is the main combustion product from gas turbines. Incomplete combustion would also cause methane to be emitted, which is also a GHG. This section describes the techniques that would be employed to reduce GHGs from the compression turbines.

4.5.1. Step 1: Identify All Control Technologies

This review focused on simple cycle natural-gas fired combustion turbines greater than 25 MW from year 2010 to the present. A summary of the data collected by this review is included in Appendix A.

Control technologies identified for GHG control of simple cycle gas turbines include the following:

- Use of Low-Carbon Fuel
- Design and Operational Energy Efficiency

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030	-HSE-RTA-DOC-00001
	Revision No. 2
	4/30/2018
•	Page 28

- Alternate Design Electric Compressors
- Use of Heat Recovery (Combined Heat and Power or Combined Cycle)
- Alternate Design Use of Aero-Derivative Turbines

These control methods may be used alone or in combination to achieve the various degrees of GHG emissions control. Each of the control methods is described below.

Notably, another emission control technique, which is identified in the EPA GHG BACT guidance, is the use of Carbon Capture and Sequestration (CCS), which is discussed in its own section (see Section 8, Carbon Capture and Sequestration). As shown in the BACT analysis for CCS, the technology is potentially infeasible and is not cost-effective. CCS will not be discussed further in this section of the analysis.

Use of Low-Carbon Fuel

Pipeline quality natural gas and boil-off gas (BOG) (i.e., fuel gas predominately consisting of methane) is the cleanest and lowest-carbon fuel available at the LNG Facility.

Design and Operational Energy Efficiency

Design and operational energy efficiencies affecting emissions and efficiency include the following:

- Output Efficiency per Heat Input
- Periodic Burner Tuning
- Proper Instrumentation and Controls
- Reliability

Each of these is summarized below.

- Efficiency: Turbine models under consideration should be evaluated for output efficiency compared to the heat input rate. More efficient models require less heat input for the equivalent amount of fuel consumed. Additionally, turbine hot air recirculation should be minimized per vendor recommendations.
- Periodic Burner Tuning: Periodic inspections and tuning should be planned in order to maintain/restore high efficient and low-emissions operation.
- Instrumentation and Controls: Control systems should be of the type to monitor and modulate fuel flow and/or combustion air, and other vital parameters in order to achieve optimal high efficiency low-emission performance for full load and part-load conditions.
- Reliability: Turbine models under consideration should be evaluated for reliability of design for the specific operational design and range of conditions.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 29

Alternate Design – Electric Compressors

Motor driven gas compression systems use electricity as the power source for the compressor rather than a gas turbine compressor. Electrically driven motors for compressors of this size require a large source of electrical power.

Use of Waste Heat Recovery (Combined Heat and Power or Combined Cycle)

Simple Cycle Turbines with heat recovery or turbines with a combined cycle configuration convert exhaust heat into mechanical energy (steam or electricity or both), increasing the overall net efficiency of the system.

Alternate Design - Use of Aero-Derivative Turbines

Aero-Derivative turbines are used in gas compression and electrical power generation operations due to their ability to be shut down and handle load changes quickly. They are also used in the marine industry due to their reduced weight. In general, aero-derivative machines are more efficient than industrial machines of comparable size and capacity.

4.5.1.1. Technologies Excluded Based on a Fundamental Change to the Nature of the Source

The EPA has recognized that the list of potential control technologies in Step 1 of a BACT analysis should not redefine the nature of the source proposed by an applicant. As stated by the EPA in its guidance, "BACT should generally not be applied to regulate the applicant's purpose or objective for the proposed facility." Notwithstanding this guideline, permitting agencies are provided discretion in recommending minor changes or adjustments to a BACT proposal, which achieve lower overall emissions without disrupting the applicant's basic business purpose for the facility.

To evaluate whether or not a proposed control technology or strategy "fundamentally redefines the nature of the source," EPA has established a framework to evaluate control technologies during the permitting process. This framework is briefly summarized below, along with its applicability to the LNG Plant and the mechanical drive turbines:

1. **Evaluation of Basic Design and Purpose**: First, the basic design, purpose, and objectives should be evaluated based on the information provided as part of the permitting process.

Relative to the LNG Plant, the purpose or objective of the LNG turbines is to compress refrigerants required for the liquefaction process. The purpose of the turbines is not to produce power; rather, power is generated onsite by a separate and independent power generation facility (PGF), which is designed to specifically meet the power demands of the operation. The facility cannot be connected to the grid due to the significant electrical power needs of the facility, and the

.

⁴ PSD and Title V Permitting Guidance for Greenhouse Gases (EPA-457/B-11-001), U.S. Environmental Protection Agency, March 2011, page 26, available at http://www.epa.gov/sites/production/files/2015-12/documents/ghgpermittingguidance.pdf

IBID, pgs. 26-31

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 30

unavailability of sufficient off site on-demand power to provide anything other than the essential power required by the plant.

- 2. **Design Features Analysis:** Second, the proposed design is then evaluated to determine which design elements are inherent to the facility purpose and should not be changed, versus the design elements that may be changed to achieve pollutant emissions reductions without disrupting the applicant's basic business purpose for the proposed facility.
 - With respect to the LNG Plant, simple cycle turbines are the best design in meeting the operational requirements of the refrigerant compressor drivers. Once ready, a simple-cycle combustion turbine can be started and reach full load in a matter of minutes. These units can also be shut down almost instantaneously. As a result, simple cycle turbines are typically used for services that require variable loads and quick recovery time. Additionally, as the majority of the natural gas treatment occurs at the GTP, there would be only minor needs for excess heat or power that could be provided by recovering the heat from the mechanical drive turbines. Specifically, the Project has proposed use of compression turbines operating in simple cycle mode as it is one of the most efficient commercially proven industrial gas turbines available in terms of its heat rate (approximately 39% based on lower heat value).
- 3. Exclusion of Control Technologies that Potentially Redefine the Source: Third, a control technology can be excluded from consideration as BACT if it can be shown that application of the control option would disrupt the facility's basic/fundamental purpose or objective. Justification for excluding an option should not rely upon later steps of the Top-Down BACT process, including:
 - a. Technical Feasibility (Step 2)
 - b. Cost Impacts (Step 4)
 - c. Energy Impacts (Step 4)

Of the potential GHG control technologies noted above in Section 4.5.1, the following technologies redefine the nature of the proposed source and were removed from additional consideration in the BACT analysis:

- Use of Motors to Drive Electric Compressors
- Use of Turbines in Combined Cycle Mode

Use of aero-derivative turbines possibly redefines the nature of the source; however, this option is carried forward in the BACT analysis for the reasons set forth below.

Electric Compressors

Use of electric motors to drive compressors has been removed from further consideration as a potential control technology, as its use would fundamentally redefine the nature of the proposed source as follows:

• As noted above, the LNG Plant would not be connected to the local electrical power grid as the grid does not provide adequate energy to power the facility.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNO	G-4030-HSE-RTA-DOC-00001
	Revision No. 2
	4/30/2018
	Page 31

 Use of motors to drive compressors may not constitute control technology because use of large electric motors would require installation of significant additional PGF capacity in excess of the equivalent turbine horsepower, which may actually result in increased GHG emissions from the facility.

• Use of electric motors to drive compressors would fundamentally alter the facility's PGF base load profile, requiring the PGF to be redesigned with added capacity to ensure adequate power availability and system reliability.

Use of Heat Recovery (Combined Heat and Power or Combined Cycle)

Use of heat recovery or turbines in a combined cycle mode has been removed from further consideration as a potential control technology, as its use would fundamentally redefine the nature of the proposed source as follows:

- The heat recovered from the proposed mechanical drive turbines has no useful purpose at the LNG facility. All heat requirements are satisfied by the efficient design of the facilities.
- The proposed facility would not be connected to the local external power grid and must generate
 its own electric power. The facility has been designed to generate its own electric power including
 design elements to ensure reliable and consistent electric power availability. The facility's PGF has
 been designed to have the flexibility to adjust the loads to meet facility demand, independent of
 the mechanical drive turbines.
- The proposed facility would be supplied with gas already treated at the GTP. As such, very little additional treatment is required, greatly reducing the need for heat within the plant. The heat that is required is low enough to be mostly provided by electricity and the waste heat recovered at the power plant and within the processing facilities. Thus, there is no need for additional waste heat recovery from the mechanical drive turbines.
- The proposed facility chose a simple cycle turbine design to avoid the complications of a combined cycle plant, adding to the reliability of refrigerant compression operations by separating power production from the mechanical drivers and reducing the chance of PGF upset conditions affecting the liquefaction process.
- Simple cycle turbines for mechanical drive provide for added flexibility to variable load conditions
 avoiding impacts to the liquefaction trains performance demands. Additionally, the selection of
 simple cycle mechanical driver turbines was based on an engineered process matching power
 performance and quality requirements with engine models and availability.

Aero-Derivative Turbines

Use of natural gas-fired aero-derivative turbines potentially redefines the source, as their use would require a complete redesign of the compression and liquefaction processes at the facility. Turbines vary in size and capacity. The physical capacity of a specific aero-derivative turbine selection alone would necessitate a change in plant configuration (e.g., four aero-derivative gas turbines vs. two turbines of the evaluated model per liquefaction train). Additionally, the performance characteristics of an aero-

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 32

Public

derivative turbine (e.g., operational flexibility, reliability, etc.) would need to be considered in the plant redesign. Turbines of different designs have unique operational and maintenance requirements. Simply put, a "like for like" replacement of an industrial turbine for an aero-derivative turbine is not possible or feasible without completely changing the configuration of the process facilities and revising the emissions profiles from the plant.

Despite arguments supporting the elimination of aero-derivative turbines from further consideration, this BACT analysis carries the aero-derivative turbine type forward as a potential GHG control option or strategy. The turbine type is carried forward because other comparable LNG projects have incorporated them into their design, including:

- Sabine Pass: The proposed combustion turbines for the Sabine Pass Liquefaction Project M3 (finalized December 6, 2011) and the Sabine Pass Liquefaction Project M4 (not yet finalized, submitted September 20, 2013) are aero-derivative compressor turbines.
- Trunkline Project: The Lake Charles Liquefaction Export Terminal Project (also referred to as the Trunkline Project – not yet finalized, submitted December 20, 2013) proposed aero-derivative compressor turbines.
- **Corpus Christi**: The Corpus Christi Liquefaction Project (GHG BACT draft issued by EPA Region 6 on July 8, 2013) includes 18 aero-derivative compressor turbines.

4.5.2. Step 2: Eliminate Technically Infeasible Options

This section summarizes the technical feasibility for GHG control of each air pollution control technology; no technologies evaluated by this analysis (other than those deemed to redefine the source) are determined to be technically infeasible.

Low-Carbon Fuels

Low-Carbon Fuel is considered a technically feasible control option for the purposes of this analysis. The proposed compression turbines would be fueled with pipeline quality natural gas, predominantly consisting of methane. This is the cleanest and lowest-carbon fuel available for use in combustion turbines.

Operational Energy Efficiencies

Use of operational energy efficiency measures is considered a technically feasible control option for the purposes of this analysis. Efficiency measures that could be incorporated into the Project include periodic tune-ups to maximize operational efficiency (according to manufacturer's specifications), operating in accordance with general good combustion practices, and/or installing fuel and oxygen sensors to maintain optimum combustion properties to reduce emissions while also considering operational safety.

Aero-Derivative Turbines

For the purposes of this analysis, aero-derivative turbines are deemed technically feasible, as they have been incorporated into other LNG facility designs. As referenced in permitting documents for other projects, aero-derivative turbines are an attractive option, as they typically represent the most efficient

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 33	

simple-cycle turbine design available. Thermal efficiency increases between 4% and 8% are possible over comparable industrial/frame design turbines.

4.5.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 10, below. These technologies are ranked by control efficiency.

Table 10: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%)
1	Aero-Derivative Design	4% – 8% increased thermal efficiency over comparable industrial/frame design turbines
2	Operational Efficiencies/ Low Carbon Fuels	Variable

4.5.4. Step 4: Evaluate Most Effective Controls and Document Results

The only technology evaluated for cost-effectiveness is the use of aero-derivative turbines. The other measures identified in Step 3 would already be incorporated into the design and operation of the gas turbines; no analysis of cost is required for these options.

4.5.4.1. Energy Impact Analysis

As GHG controls incorporate energy efficiency elements and do not result in impacts, an energy impact analysis is not required.

4.5.4.2. Environmental Impact Analysis

Relative to GHG controls, none of the proposed GHG measures result in adverse environmental impacts.

4.5.4.3. Economic Analysis

Table 11 summarizes the incremental cost analysis to achieve GHG reductions via changes in turbine design and thermal efficiency. For purposes of calculating the cost of incremental GHG reductions, the analysis treats the evaluated compression turbine model as the base case, and calculates the additional cost per ton of using an aero-derivative design to further reduce GHG emissions. The economic analysis relies upon efficiency improvement measures to reduce overall fuel use, which in turn results in lower GHG emissions. The analysis found that while aero-derivative turbines achieve thermal efficiencies of four to 8% greater than comparable industrial turbines on a per machine basis, adopting the option as BACT was not cost-effective as compared to projected \$12 to \$40 per ton of CO₂-e projected cost benchmarks for carbon pollution (see Table 11).

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 34

Public

Table 11: Economic Analysis

Estimated Cost-Effectiveness for GHG Reductions						
	Turbine Technology Alternatives					
	Evaluated Model (Industrial)	Aero-Derivative	Difference			
GHG Emissions (tons/year)	3,060,573	2,694,852	365,721			
Total Incremental Annualized Cost	\$553,075,457	\$564,678,098	\$11,602,641*			
Incremental Cost of GHG Reductions (\$/ton) Calculated at a Fuel Cost of \$7.50/MMBtu			\$32*			

Note: Incremental annualized cost considers differential capital, operational, and maintenance costs for the evaluated model and the Aero-derivative cases.

4.5.5. Step 5: Select BACT

This BACT analysis concludes that use of low-carbon fuel and implementation of operational energy efficiency measures achieve BACT for the evaluated simple cycle gas turbine. The BACT determination is consistent with other comparable projects (see Appendix A for a full list of BACT determinations reviewed).

Notably, EPA encourages comparisons of the proposed design with other similar facilities as a demonstration of efficiency. The compression turbine yields 1,163 pounds carbon dioxide per megawatthour (lb CO₂/MWh) as the base case emission level for the evaluated turbine model, which is more efficient than most industrial turbine designs.

4.6. Conclusions

The objective of this analysis was to examine turbines used as the mechanical driver selected for refrigerant compression. The analysis considered the technology, feasibility, cost, and other site-specific factors to control of emissions. The BACT analysis confirmed the following levels of control for the compressor turbine drivers:

- NOx: UDLN achieving 9 ppmv NOx @ 15% O₂
- CO: CO Catalyst achieving 10 ppmv (or lower) CO @ 15% O₂
- SO₂: Clean Fuels
- PM and VOC: Good Combustion Practices/Clean Fuels
- GHGs: Use of pipeline quality natural gas, implementation of measures to improve overall
 efficiency of the gas turbine operations. Installation of an aero-derivative turbine would only be
 considered BACT if turbine fuel costs are \$7.50/MMBtu or greater.

^{*}Aero-derivative turbine technology could be considered cost-effective for mitigating GHG emissions at turbine fuel costs of greater than \$7.50/MMBtu. Note that actual Project economics considers fuel costs negligible.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 35

Notably, the BACT determinations for NOx and GHGs did not incorporate the most stringent and feasible control option. The most stringent control options were eliminated in the analysis based on technical feasibility and/or cost-effectiveness.

Relative to CO, the most stringent control option was selected.

Relative to SO₂, PM and VOC, this BACT analysis did not identify any more stringent control technologies that could impact compression turbine design.

It also should be noted that NOx and GHG BACT determinations made for the compressor turbine driver option cannot be extended to other potential driver selections or options. BACT is always a case-by-case analysis and the conclusions will vary based on design and other site-specific considerations.

5. POWER GENERATION TURBINES

This section of the BACT analysis addresses the Power Generation Turbines to be used to generate power at the LNG Plant. These turbines would be in a combined cycle configuration. This analysis provides a review of the possible technologies and emission limits that could be imposed as BACT, including estimated cost of each technology.

The turbines are equipped with DLN technology capable of achieving 15 ppmv NOx and 15 ppmv CO at $15\% O_2$. These emissions levels represent the "base case" conditions for this analysis.

This BACT analysis is organized, as follows:

- Section 5.1 NOx BACT Analysis
- Section 5.2 CO BACT Analysis
- Section 5.3 SO₂, VOC, and PM BACT Analysis
- Section 5.4 GHG BACT Analysis
- Section 5.5 Conclusions

5.1. NOx BACT Analysis

NOx is formed during the combustion process due to high temperature zones in the combustion burner or chamber. This BACT analysis evaluates control techniques and technologies used to mitigate NOx emissions from the gas turbine.

5.1.1. Step 1: Identify All Control Technologies

This review focuses on natural gas-fired combustion turbines greater than 25 MW from year 2010 to the present. A summary of the data collected by this review is included in Appendix A.

Control technologies identified for NOx control of gas turbines include the following:

- 1. DLN
- 2. Water/Steam Injection

Liquefaction Plant Best Available Control Technology (BACT) Analysis Public AKLNG-4030-HSE-RTA-DOC-00001 Revision No. 2 4/30/2018 Page 36

- 3. SCR
- 4. SNCR
- 5. NSCR
- 6. XONON™
- 7. SCONOx™

These control methods may be used alone or in combination to achieve the various degrees of NOx emissions control. A description of each of these control technologies is provided in Section 4.1 of this document. Conditions specific to the turbine are provided below.

Dry Low NOx Burners

The Power Generation Turbine base model is equipped with DLN combustors; this technology has an expected NOx performance of approximately 15 ppmv @ $15\% O_2$.

It is also possible to equip the base model with "Ultra-Low" combustors, reducing NOx emissions from 15 ppmv @ 15% O_2 (DLN) to 9 ppmv @ 15% O_2 (UDLN). This technology is new and performance data is limited, but is considered by the Project to be "selectable" in power generation service.

5.1.2. Step 2: Eliminate Technically Infeasible Options

This section summarizes the operating principles, NOx control efficiency and technical feasibility of each potential NOx control technology; technologies determined to be technically infeasible are summarized in Table 12, below.

Table 12: Control Technology Options Determined to be Technically Infeasible

Technology Alternative	Basis
Water/Steam Injection	The base model turbine is equipped with DLN combustors. Water/steam injection is not compatible with burners equipped with DLN.
SNCR	The exhaust temperature of the combustion turbine is less than the optimum temperature range (1,500°F to 1,900°F) for SNCR.
NSCR	The oxygen concentration of the combustion turbine is approximately 15% O_2 , which is much higher than the optimum oxygen concentration range for NSCR.
XONON™	There are no documented installations of this type of control on large combustion turbines.
SCONOx™	There are no documented installations of this type of control on large combustion turbines.

Water/Steam Injection

Water/steam injection has the potential to reduce NOx emissions by 20% to 30%. Water/steam injection is not used in conjunction with DLN combustors. As the base model is equipped with DLN combustors, water/steam injection is not considered further in this analysis.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 37

Selective Non-Catalytic Reduction (SNCR)

The turbine is anticipated to exhaust at a temperature of approximately 800-900°F, which is well below the recommended temperature (1,500°F to 1,900°F) for an SNCR system to achieve the desired NOx reduction efficiency. The NOx reduction efficiency of SNCR decreases rapidly at temperatures outside the optimum temperature window, additionally, operations below this temperature window result in excessive ammonia emissions (ammonia slip). As such, SNCR is not considered technically feasible for this analysis.

Non-Selective Catalytic Reduction (NSCR)

NSCR requires a low excess oxygen concentration in the exhaust gas stream (typically below 1%) to be effective, as the oxygen must be depleted before the reduction chemistry can proceed. As such, NSCR is only effective with rich-burn gas-fired units that operate at all times with an A/F ratio controller at or close to stoichiometric conditions. As gas turbines typically operated with an excess oxygen concentration of approximately 15% it is outside of the acceptable operating range for NSCR and is not considered technically feasible for this analysis.

XONON™

The XONON™ catalyst has only ever been paired with the 1.5 MW Kawasaki M1A-13 simple cycle gas turbine generator. As this catalyst technology has only been applied in the smaller gas turbines manufactured by Kawasaki, and as testing and implementation of this control system among different gas turbine manufacturers and on larger units has not been performed, this technology is unproven for the size class proposed for this Project and is not considered technically feasible for this analysis.

SCONOx™

SCONOx™ technology has an operating temperature range of 300°F to 700°F. As noted above, the turbine is anticipated to exhaust at a temperature of approximately 800°F to 900°F, which is above the recommended temperature for SCONOx™. To optimize exhaust temperature, quenching would be required to lower exhaust gas temperatures to acceptable SCONOx™ temperature ranges. SCONOx™ technology is still in the early stages of market introduction. Issues that may impact application of the technology include relatively high capital cost, a large reactor size compared to SCR, increased system complexity, high utilities cost and demand (steam, natural gas, compressed air and electricity are required), and a gradual rise in NOx emissions over time requiring a 1 to 2 day renewal of catalyst. Commercial experience with this technology is limited, with a majority of the SCONOx™ units operating on turbines units of 15 MW or less. No known installations exist in low ambient temperature settings similar to Alaska. At least one installation of SCONOx™ has reported challenges in meeting permit limits in California. While SCONOx™ might be applicable in theory, it is not considered feasible for this Project

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 38	

as it has limited commercial experience and has not been demonstrated in low ambient temperature settings.

5.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 13, below. These technologies are ranked by control efficiency.

Table 13: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%) or Emissions Target (ppmv)
1	DLN plus SCR or UDLN plus SCR	25% to 90% (as low as 2 ppmv @ 15% O ₂)
2	UDLN	9 ppmv @ 15% O₂

5.1.4. Step 4: Evaluate Most Effective Controls and Document Results

This section summarizes the energy, environmental, and economic impacts of the control technologies noted above. The cost-effectiveness calculations use a "NOx emission base case" of 15 ppmv (base-case offering from the manufacturer) and emission control endpoints of 2 ppmv (DLN or UDLN plus SCR) or 9 ppmv (UDLN only). It should be noted that a base-case emission rate of 15 ppmv is used because it represents the base-case offering from the manufacturer. An aggressive endpoint of 2 ppmv in the SCR evaluation provides a conservative evaluation of cost-effectiveness. A controlled NOx emission rate of 5 ppmv would be a more likely performance objective to accommodate fluctuations in operations and site-specific conditions in Alaska (e.g., temperature fluctuations between summer and winter, etc.).

5.1.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible NOx controls evaluated in this BACT analysis.

5.1.4.2. Environmental Impact Analysis

For this analysis, operation of SCR would result in some "slip" of ammonia releases to the environment as well as disposal of spent catalyst. Neither ammonia slip nor waste disposal considerations are expected to preclude use of SCR as a potential control device for this BACT analysis.

5.1.4.3. Economic Analysis

Economic analysis of costs to install NOx control is based on the following key factors:

- Size of the turbine
- Baseline emissions levels
- Controlled emissions levels
- Emission control installation and operating costs

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018

The cost-effectiveness of DLN and SCR, and UDLN are summarized in Table 14, below. As shown in this table, DLN plus SCR is not cost-effective, as it exceeds the \$10,000 per ton guideline.

Table 14: Economic Analysis

Estimated NOx Emissions from Alternate Control Technologies		
	Control Technolog	y Alternatives*
	DLN and SCR	UDLN
Control Option	1	2
Uncontrolled Baseline ppmvd@15%O2	15	15
Uncontrolled emissions (tpy)	103	103
Controlled emissions ppmvd@15%O ₂ **	2	9
Controlled emissions (tpy)	14	62
NOx emission reduction (tpy)	90	41
Total Annualized Operating Cost	\$2,547,259	\$52,831
Cost of NOx removal (\$/ton)	\$28,417	\$1,277

^{*} UDLN plus SCR was not evaluated for cost-effectiveness since DLN with SCR achieves comparable levels of controls, and cost-effectiveness for DLN with SCR exceeds the BACT cost-effectiveness threshold. UDLN plus SCR would have higher costs and would result in a cost-effectiveness in excess of \$28,417 per ton.

5.1.5. Step 5: Select BACT

The cost effective analysis of feasible controls shows that UDLN alone constitutes BACT for NOx in this analysis. DLN plus SCR was eliminated at Step 4 as a potential control option.

While UDLN alone constitutes BACT in this analysis, it should be noted that DLN plus SCR is a common BACT emissions control approach for turbine installations, including LNG projects (see Appendix A for other comparable BACT determinations).

5.2. CO BACT Analysis

CO is formed during the combustion process as a result of incomplete fuel combustion. Factors contributing to incomplete fuel combustion include, low air temperatures, insufficient combustion zone turbulence and residence times, inadequate amounts of excess air, as well as competing combustion conditions employed to mitigate NOx formation. This BACT analysis evaluates control techniques and technologies used to mitigate CO emissions.

5.2.1. Step 1: Identify All Control Technologies

This review focused on natural gas-fired combustion turbines greater than 25 MW from year 2010 to the present. A summary of the data collected by this review is included in Appendix A.

Control technologies identified as potential CO control technologies for combined cycle gas turbines include the following:

^{**} Anticipated level of control. Permit limits may be set higher to accommodate fluctuations in emissions from variable operations. Analyzing cost-effectiveness at the 2 ppmv level results in more conservative results.

Liquefaction Plant Best Available Control	
Technology (BACT) Analysis	

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 40

- Good Combustion Practices/Clean Fuel
- Catalytic Oxidation
- SCONOx™
- NSCR

These control methods may be used alone or in combination to achieve the various degrees of CO emissions control. A description of each of these control technologies is provided in Section 4.2.1of this document.

5.2.2. Step 2: Eliminate Technically Infeasible Options

This section summarizes the potential technical feasibility for CO control of each air pollution control technology; technologies determined to be technically infeasible are summarized in Table 15, below.

Table 15: Control Technology Options Determined to be Technically Infeasible

Technology Alternative	Basis	
SCONOx™	There are no documented installations of this type of control on large combustion turbines.	
NSCR The oxygen concentration of the combustion turbine is approximately 15% O ₂ which higher than the optimum oxygen concentration range for NSCR.		

SCONOx™

SCONOx™ technology is still in the early stages of market introduction. Issues that may impact application of the technology include relatively high capital cost, a large reactor size, increased system complexity, high utilities cost and demand (steam, natural gas, compressed air and electricity are required), and a gradual decrease in effectiveness over time, requiring a one to two day renewal of catalyst. Commercial experience with this technology is limited, with a majority of the units operating on units of 15 MW or less. No known installations exist in low ambient temperature settings similar to Alaska. At least one installation of has reported challenges in meeting permit limits. While SCONOx™ may be applicable in theory, it is not considered feasible for the LNG Project because it has limited commercial experience and has not been demonstrated in low ambient temperature settings.

Non-Selective Catalytic Reduction (NSCR)

NSCR requires a low excess oxygen concentration in the exhaust gas stream (typically below 1%) to be effective, as the oxygen must be depleted before the reduction chemistry can proceed. As such, NSCR is only effective with rich-burn gas-fired units that operate at all times with an A/F ratio controller at or close to stoichiometric conditions. As gas turbines typically operate with an excess oxygen concentration of approximately 15%, it is outside of the acceptable operating range for NSCR and is not considered technically feasible for this analysis.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 41	

5.2.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 16, below. These technologies are ranked by control efficiency.

Table 16: Remaining Control Options and Control Effectiveness

Rank Control Technology		Control Efficiency (%) or Emissions Target (ppmv)
1	CO Catalyst	10 ppmv (or lower) at 15% O_2
2	Good Combustion Practices/ Clean Fuels	15 ppmv or more at 15% O₂

This analysis assumes a 10 ppmv (or lower) controlled emissions level similar to other LNG turbines of this size.

5.2.4. Step 4: Evaluate Most Effective Controls and Document Results

This section summarizes the energy, environmental, and economic impacts of the control technologies noted above.

5.2.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible CO controls evaluated in this BACT analysis.

5.2.4.2. Environmental Impact Analysis

For this analysis, implementation of good combustion practices/clean fuels is not expected to cause an environmental impact. Operation of a CO catalyst would result in the disposal of spent catalyst; however, waste disposal considerations are not expected to preclude use of a CO catalyst as a potential control device for this BACT analysis.

5.2.4.3. Economic Impact Analysis

Economic analysis of costs to install CO control is based on the following key factors:

- Capacity of the turbine
- Baseline emissions levels
- Controlled emissions levels
- Emission control installation and operating costs

The cost-effectiveness of a CO catalyst installation on the power generation turbines is summarized in Table 17, below. As shown in this table, CO catalyst is above the ADEC cost-effectiveness threshold guidance of \$10,000 per ton.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001 Revision No. 2 4/30/2018 Page 42

Table 17: Economic Analysis

Control Technology	CO Catalyst
Control Option	1
Uncontrolled Baseline ppmvd@15%O2	15
Uncontrolled emissions (tpy)	62
Controlled emissions ppmvd@15%O2	5
Controlled emissions (tpy)	21
CO emission reduction (tpy)	42
Total Annualized Operating Cost	\$663,165
Cost of CO removal (\$/ton)	\$15,801

While the cost-effectiveness shown in Table 17 is higher than the "rule of thumb" cost-effectiveness range, ADEC may be inclined to discount the cost-effectiveness result in the BACT determination for the following reasons:

- Other recent Alaska permitting actions have required CO catalysts to reduce CO emissions. For example, the Point Thomson BACT determination issued in 2012 sets a reasonable precedent for these CO controls.
- The above cost-effectiveness calculations used an aggressive baseline emission rate (i.e., 15 ppmv CO). If ADEC were to require that a more relaxed baseline emission rate be used in the calculations (e.g., 25 or 50 ppmv CO), the installation of CO catalyst would become cost-effective.

5.2.5. Step 5: Select BACT

This BACT analysis concludes, similar to other comparable projects evaluated, that good combustion practices/clean fuels, as well as operation of an oxidation catalyst likely constitutes BACT for a gas turbine of this type and application (see Appendix A for a list of other BACT determinations reviewed).

5.3. SO₂, VOC, and PM BACT Analysis

The SO₂, VOC, and PM BACT analysis for the power generation turbine is identical to the compressor turbines; see Sections 4.3 and 4.4, above.

5.4. GHG BACT Analysis

CO₂, a GHG, is the main combustion product from gas turbines. Incomplete combustion would cause methane to be emitted, which is also a GHG. This section describes the techniques that would be employed to reduce GHGs from the power generation turbines.

5.4.1. Step 1: Identify All Control Technologies

This analysis focused on natural-gas fired combustion turbines greater than 25 MW from year 2010 to the present. A summary of the data collected by this review is included in Appendix A.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 43

Control technologies identified for GHG control of combined cycle gas turbines include the following:

- Use of Low-Carbon Fuel
- Design and Operational Energy Efficiency
- Alternate Design Use of Grid Power

These control methods may be used alone or in combination to achieve the various degrees of GHG emissions control. Each of the control methods are described below.

Notably, another emission control technique, which is identified in the EPA GHG BACT guidance, is the use of CCS, which is discussed in its own section (see Section 8). As shown in the BACT analysis for CCS, the technology is potentially infeasible and is not cost-effective. CCS will not be discussed further in this section of the analysis.

Use of Low-Carbon Fuel

Use of pipeline quality natural gas and BOG (i.e., fuel gas predominately consisting of methane) is the cleanest and lowest-carbon fuel available at the LNG Plant.

Design and Operational Energy Efficiency

Design and operational energy efficiencies affecting emissions and efficiency include the following:

- Output Efficiency per Heat Input
- Periodic Burner Tuning
- Proper Instrumentation and Controls
- Reliability

Each of these is summarized below.

- **Efficiency**: Turbine models under consideration should be evaluated for output efficiency compared to the heat input rate. More efficient models require less heat input for the equivalent amount of fuel consumed.
- **Periodic Burner Tuning**: Periodic inspections and tuning should be planned in order to maintain/restore high efficient and low-emissions operation.
- **Instrumentation and Controls**: Control systems should be of the type to monitor and modulate fuel flow and/or combustion air, and other vital parameters in order to achieve optimal high efficiency low-emission performance for full load and part-load conditions.
- **Reliability**: Turbine models under consideration should be evaluated for reliability of design for the specific operational design and conditions.

Alternate Design – Use of Electrical Grid Power

Connection to the electrical grid power system in order to eliminate the need to install power generation turbines at the LNG Plant was considered.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page ΛΛ	

5.4.2. Step 2: Eliminate Technically Infeasible Options

The only technology eliminated at Step 2 is the use of electrical grid power as the primary power source. This technology choice is infeasible as the grid does not provide adequate energy to meet the normal operating requirements of the facility. Electrical grid primary power is not an option for the Project.

5.4.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 18, below. These technologies are ranked by control efficiency.

Table 18: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%)
1	Combined Cycle Turbine (Base Case)	No change to control efficiency; however, fewer combined cycle turbines would be required to be installed as compared to simple cycle turbines.
2	Operational Efficiencies/ Low Carbon Fuels	Variable

5.4.4. Step 4: Evaluate Most Effective Controls and Document Results

The only technology evaluated for control-effectiveness is the use of combined cycle vs simple cycle turbines. The other measures identified in Step 3 would be incorporated into the design and operation of the gas turbines; no analysis of cost is required for these options.

5.4.4.1. Energy Impact Analysis

Since GHG controls incorporate energy efficiency elements and do not result in impacts, an energy impact analysis is not required.

5.4.4.2. Environmental Impact Analysis

Relative to GHG controls, none of the proposed GHG measures result in adverse environmental impacts.

5.4.4.3. Economic Analysis

An economic analysis is not required as the Project proposes to implement all of the above measures listed in Step 3.

5.4.5. Step 5: Select BACT

This BACT analysis concludes that use of a combined cycle turbine using low-carbon fuel, and implementing operational energy efficiency measures achieves BACT for the power generation gas turbines. The BACT determination is consistent with other comparable projects (see Appendix A for a full list of BACT determinations reviewed).

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 45

Public

5.5. Conclusions

The objective of this analysis was to examine the power generation combustion turbine as the driver selection for power generation. The analysis considered the technology, feasibility, cost, and other site-specific factors to control of NOx, CO, PM, SO₂, VOC, and GHG emissions. The BACT analysis confirmed the following levels of control for the combustion turbine drivers:

- NOx: UDLN achieving 9 ppmv NOx @ 15% O₂
- CO: CO Catalyst achieving 10 ppmv CO or lower @ 15% O₂
- SO₂: Clean Fuels
- PM and VOC: Good Combustion Practices/Clean Fuels
- GHGs: Use of a combined cycle turbine using low-carbon fuel, and implementing operational energy efficiency measures

Notably, the BACT determinations for NOx did not incorporate the most stringent and feasible control option. The most stringent control option, SCR, was eliminated in the analysis based on cost-effectiveness.

The installation of a catalyst bed to control CO emissions achieves the most stringent level of control for this pollutant.

Relative to SO₂, PM, and VOC, this BACT analysis did not identify any more stringent control technologies that could impact turbine design.

For GHGs, the most stringent controls, which have been achieved in practice, are proposed for the gas turbine generators.

6. VENT GAS DISPOSAL (FLARES AND THERMAL OXIDIZER)

Vent gases may be emitted by the facility during periods of blowdown, start-up, shutdown, and malfunction events. Vent gases at the LNG Plant would contain VOC and high concentrations of methane, which has a relatively high GHG GWP. Vapor recovery, flares and thermal oxidizers are used to control these emissions.

The LNG Plant would have three flare gas systems (i.e., wet, dry, and low-pressure), to route relief vapors from separate sections of the plant into their respective flare collection headers. The wet flare gas system would control waste gas streams containing a significant concentration of water (i.e., around the molecular sieve dehydration beds), or contain a significant concentration of heavier compounds, which could freeze out at colder temperatures (i.e., pressure relief and de-pressuring flow from the debutanizer column). The dry flare gas system would be used for safe disposal of dry hydrocarbons streams discharged downstream of the dehydration unit both under emergency condition and during a start-up condition. The low-pressure BOG flare gas system would be used for safe disposal of low-pressure operational releases from the LNG Storage and Loading System and intermittent maintenance purging of inert gas from LNG carriers. A thermal oxidizer would be used to control off-gas emissions from the condensate

Liquefaction Plant Best Available Control	
Technology (BACT) Analysis	

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 46

tank. Gases from storage tanks and LNG carrier loading would be captured and reused as fuel gas, where possible.

This analysis provides a review of the possible technologies and emission limits that could be imposed as BACT for vent gas from the wet gas hydrocarbon streams and the dry gas hydrocarbon streams. Technologies considered for the third vent gas disposal system handling the emissions from the condensate storage and loading operations are discussed later in Sections 9 and 10 of this document.

6.1. VOC and GHG "Top-Down" BACT Analysis

This BACT analysis evaluates control techniques and technologies used to mitigate waste gas emissions, which can result in VOC and GHG emissions.

6.1.1. Step 1: Identify All Control Technologies

Control technologies identified to mitigate emissions include the following:

- Flare Gas Reduction Best Practices
- Flare Gas Recovery
- Flare/Thermal Oxidizer Design

These control methods may be used alone or in combination to achieve the various degrees of emissions control. Each technology is summarized below.

Notably, another emission control technique, which is identified in the EPA GHG BACT guidance, is the use of CCS, which is discussed in its own section (see Section 8). As shown in the BACT analysis for CCS, the technology is potentially infeasible and is not cost-effective. CCS will not be discussed further in this section of the analysis.

Flare Gas Reduction Best Practices

The most practical way to reduce the amount of emissions generated from combustion in a flare/thermal oxidizer is to minimize the amount of waste gas produced. The LNG Plant would be designed to avoid routine continuous flaring (other than pilot gas used to maintain the presence of a flame and purge gas used to prevent oxygen ingress into the flare systems). Additionally, LNG would maintain and follow an Operations Emissions Management Plan, part of which would be flare gas reduction provisions to reduce the frequency, magnitude and duration of flaring events. The plan would present procedures and process controls that would be used to minimize or prevent emissions from the flares while providing for safe operation of the facility. The plan would address anticipated causes of flaring including emergency, operational upsets and commissioning/start-up/shutdown/maintenance activities.

Flare Gas Recovery

Flare gas recovery is a method of capturing streams normally diverted to the flare for re-use in the facility as fuel gas.

Flare/Thermal Oxidizer Design

Liquefaction Plant Best Available Control	
Technology (BACT) Analysis	

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 47	

Proper flare design can improve the thermal destruction of waste gases and also the combustion efficiency of the flare. Design considerations include maintaining a pilot flame, ensuring the heating value of the flare gas is adequate and restricting the velocity of low-BTU flare gas for flame stability.

Thermal oxidizers are not subject to 40 CFR 60.18 requirements; however, good combustion practices including proper mixing of fuel and combustion air would minimize combustion emissions.

6.1.2. Step 2: Eliminate Technically Infeasible Options

None of the technologies discussed in Section 6.1.1 are infeasible. None are eliminated at this step.

Flare Gas Reduction Best Practices

Flare gas reduction best practices are a common BACT control for flares/thermal oxidizers and are considered a technically feasible control option for flares/thermal oxidizers for the purposes of this analysis.

Flare Gas Recovery

Flare gas recovery is a common BACT control for flares/thermal oxidizers and is considered a technically feasible control option for flares/thermal oxidizers for the purposes of this analysis. Flare gas recovery is most applicable for facilities that continuously vent gases with fuel value to the flare.

Flare gas recovery becomes infeasible for gases that contain significant concentrations of inert materials. Inert gases can disrupt the operation of the fuel gas system or freeze in the liquefaction system. Hydrocarbon gases that are contaminated with significant concentrations of inert gases are best disposed at a flare or thermal oxidizer using good combustion practice.

Flare/Thermal Oxidizer Design

Flare/thermal oxidizer is a common BACT control for waste gas minimization and is considered a technically feasible control option for the purposes of this analysis.

6.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 19, below. These technologies are ranked by control efficiency.

Table 19: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%) or Emissions Target (ppmv)
1	Flare Gas Reduction Best Practices	Variable
2	Flare Gas Recovery	Variable
3	Flare/Thermal Oxidizer Design	Variable

Liquefaction Plant Best Available Control Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 48

Public

6.1.4. Step 4: Evaluate Most Effective Controls and Document Results

6.1.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible emissions controls evaluated in this BACT analysis.

6.1.4.2. Environmental Impact Analysis

For this analysis, implementation of good combustion practices/clean fuels is not expected to cause an environmental impact.

6.1.4.3. Economic Impact Analysis

As flare gas reduction best practices, flare gas recovery and flare/thermal oxidizer design would be implemented for this Project, economic analysis is not required.

6.1.5. Step 5: Select BACT

This BACT analysis concludes that a combination of flare gas reduction best practices, flare gas recovery and flare/thermal oxidizer design meet BACT for waste gas emissions mitigations.

6.2. Conclusions

The objective of this analysis was to examine the mitigation of waste gas emissions mitigation for the facility. The analysis considered the technology, feasibility, cost, and other site-specific factors to control waste gas emissions. Flare gas reduction best practices, flare gas recovery, and flare/thermal oxidizer design achieve the most stringent level of controls for this pollutant.

7. COMPRESSION IGNITION ENGINES – FIREWATER PUMP/INSTRUMENT AIR COMPRESSOR

This BACT analysis addresses the 627 kW emergency diesel firewater pump (operating less than 100 hours per year, in non-emergency use) and 224 kW emergency diesel instrument air compressor (operating less than 100 hours per year, in non-emergency use) that would be installed at the facility. This analysis provides a review of the possible technologies and emission limits that could be imposed as BACT. Relative to internal combustion engines, only a cursory BACT analysis was performed.

Control technologies identified for NOx, SO₂, CO, PM, VOC, and GHGs include the following:

- Good Combustion Practices/Clean Fuels (All Pollutants)
- Compliance with 40 CFR NSPS Subpart IIII (NOx, VOC, CO, and PM)
- Diesel Particulate Filters (PM)
- CO Catalyst (CO and VOC)

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

(LNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 49	

Selective Catalytic Reduction (NOx)⁶

These control methods may be used alone or in combination to achieve the various degrees of emissions control. Each technology is summarized below.

Notably, another emission control technique, which is identified in the EPA GHG BACT guidance, is the use of CCS, which is discussed in its own section (see Section 8). As shown in the BACT analysis for CCS, the technology is potentially infeasible and is not cost-effective. CCS will not be discussed further in this section of the analysis.

Good Combustion Practices/Clean Fuels

The rate of combustion emissions is dependent upon fuel choice and good combustion practices including proper mixing of fuel and combustion air as well as the proper operation and maintenance of the engines. These engines are designed to combust low-sulfur diesel fuel and optimized to minimize combustion emissions through use of good combustion practices.

Compliance with 40 CFR NSPS Subpart IIII

These compression ignition engines would be subject to 40 CFR NSPS Subpart IIII emission limits. Based on the horsepower rating and service of these engines, these engines are subject to the following EPA Tier 3 standards: CO - 2.6 grams per brake horsepower-hour (g/bhp-hr); non-methane hydrocarbon + NOx - 3.0 g/bhp-hr; PM - 0.15 g/bhp-hr.

Diesel Particulate Filter, CO Catalyst, and SCR

Due to the limited use and the urgent nature of emergency situations, emergency type engines are not typically required to install diesel particulate filters, CO or SCR catalysts.

7.1. Conclusions

Based on the foregoing, the likely BACT for compression ignition engines would be compliance with NSPS Subpart IIII and the combustion of clean fuels. Compliance with this NSPS would require installation of engines that meet EPA Tier 3 standards.

_

⁶ There are other potential catalytic type control technologies that could be analyzed as part of this compression ignition BACT analysis; however, SCR is the most commonly utilized catalytic control technology for BACT applicability and is the focus of this analysis.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 50	

8. DIESEL FUEL STORAGE TANKS

This BACT analysis addresses the three diesel fuel storage tanks needed for support equipment at the facility. A summary of the required storage tanks is provided below:

Tank Emission Unit ID	Equipment Description	Product Stored
24	Diesel Storage Tank	ULSD
25	Air Compressor Diesel Day Tank	ULSD
26	Firewater Pump Diesel Day Tank	ULSD

This analysis provides a review of the possible technologies and emission limits that could be imposed as BACT.

8.1. VOC and GHG "Top-Down" BACT Analysis

VOC is released to the atmosphere due to working and breathing losses from the tanks. This BACT analysis evaluates control techniques and technologies used to mitigate VOC emissions from the tanks.

8.1.1. Step 1: Identify All Control Technologies

Control technologies identified to mitigate emissions include the following:

- Floating Roof (External or Internal)
- Vapor Recovery System
- Flare or Thermal Oxidizer
- Submerged Fill

The following subsections discuss the general operating principles of each technology and their potential technical feasibility for VOC control of the LNG condensate and fuel storage tanks.

Floating Roof Tanks

External floating roof tanks are designed with a roof consisting of a double deck or pontoon single deck which rests or floats on the liquid being contained. An internal floating roof includes a fixed roof over the floating roof, to protect the floating roof from damage and deterioration. In general, the floating roof covers the entire liquid surface except for a small perimeter rim space. Under normal floating conditions, the roof floats essentially flat and is centered within the tank shell. The floating roof must be designed with perimeter seals (primary and secondary seals) which slide against the tank wall as the roof moves up and down. The use of perimeter seals minimizes emissions of VOCs from the tank. Sources of emissions from floating roof tanks include standing storage loss and withdrawal losses. Standing losses occur due to improper fits between tank seal and the tank shell. Withdrawal losses occur when liquid is removed from the tank, lowering the floating roof, revealing a liquid on the tank walls which vaporize.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 51

Vapor Recovery System

A vapor recovery system (VRS) can be used to draw vapors out of the storage tank, which are routed through a compressor. Compressed vapors may be used onsite as fuel for combustion units or routed to sales gas compressors for further compression to pipeline specifications. VRSs can recover over 95% of the hydrocarbon emissions that accumulate in the storage tanks.

Flare/Thermal Oxidizer Design

Proper flare design can improve the thermal destruction of waste gases recovered from the tanks and also the combustion efficiency of the flare. Design considerations include maintaining a pilot flame, ensuring the heating value of the flare gas is adequate and restricting the velocity of low-BTU flare gas for flame stability. A continuously lit pilot ensures that vent gases are combusted at the flare tip. A properly operated flare can achieve a destruction efficiency of 98 percent or greater.

Thermal oxidizers are not subject to 40 CFR 60.18 requirements; however, good combustion practices including proper mixing of fuel and combustion air would minimize combustion emissions. Thermal oxidizers can achieve control efficiencies greater than 98 percent.

Submerged Fill

The use of submerged fill during tank loading operations can reduce vaporization of the liquid on the between 40 - 60% from traditional splash loading operations. Note that the use of submerged fill is a control technique specific to the filling of a tank and does not affect the day-to-day emissions of the tank.

8.1.2. Step 2: Eliminate Technically Infeasible Options

Floating Roof Tanks

An external floating roof tank would not be technically feasible in the harsh environment where the proposed tanks will be operated. Snow and ice on the tank surfaces will potentially damage the roofs and seals – making such a system impractical.

Internal floating roof tanks have the potential to be an effective emission control system for the tanks. However, due to the small size of the diesel fuel storage tanks (less than 20,000 gal), the tanks are expected to be horizontal, square or rectangular in shape, not suitable for internal floating roofs. Should the tanks be installed underground, internal floating roofs would also not be technically feasible.

Flare/Thermal Oxidizer Design

Flare/thermal oxidizer is a technically feasible control option for the diesel fuel storage tanks. However, it is not identified as BACT for small (<20,000 gal) diesel fuel storage tanks in the BACT Clearinghouse databases (See Appendix E). Notwithstanding, this technology is carried forward for further analysis in this BACT determination.

Vapor Recovery System

Use of a vapor recovery system to control VOC emissions is a common BACT control for storage tanks and is considered technically feasible for this application when operated in conjunction with a flare/thermal oxidizer. If operated alone, the VRS would either need an outlet from the plant for the recovered vapors,

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 52

or the vapors would be used for fuel gas for the external combustion devices. Use of recovered vapors from diesel storage is not desirable for the external combustion equipment as they compromise the quality of the gas burned. The external combustion devices, particularly the gas turbines, must meet exacting emissions specifications for NOx and CO. However, if the vapors are routed to a thermal oxidizer/flare installed specifically to capture and combust the vapors from the diesel tanks, then a VRS is technically feasible.

Submerged Fill

Submerged fill operation is a common BACT control for the diesel fuel storage tanks and is considered a technically feasible control option for the purposes of this analysis.

8.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 20, below. These technologies are ranked by control efficiency.

Table 20: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%) or Emissions Target (ppmv)
1	Flare/Thermal Oxidizer Design with Vapor Recovery System	>98%
2	Submerged Fill	40 – 60%

8.1.4. Step 4: Evaluate Most Effective Controls and Document Results

8.1.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible emissions controls evaluated in this BACT analysis.

8.1.4.2. Environmental Impact Analysis

For this analysis, implementation of the technologies noted above is not expected to cause an environmental impact.

8.1.4.3. Economic Impact Analysis

The most-effective control system remaining that is not already part of the Project includes the installation of a vapor recovery system routed to a thermal oxidizer/flare. The cost of installing a vapor recovery system with vapors routed to a thermal oxidizer for destruction of the emissions from the diesel tanks was considered based on equipment cost equations developed by EPA in the US EPA Air Pollution Control Cost Manual.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Dogo F2

Table 21: Thermal Oxidizer with Vapor Recovery System Cost and Control Effectiveness

	Thermal Oxidizer with Vapor Recovery
Baseline VOC emissions (tpy)	0.0015
Control Efficiency	98%
Controlled emissions (tpy)	0.00003
VOC emission reduction (tpy)	0.00151
Total Annualized Operating Cost	\$81,901
Cost of VOC removal (\$/ton)	\$54,260,681

Based on the calculations summarized in Table 21, the use of a thermal oxidizer would not be cost-effective, and the control technologies have been eliminated for further consideration.

8.1.5. Step 5: Select BACT

This BACT analysis concludes that the use of a fixed roof tank and submerged fill operations is BACT for the diesel fuel storage tanks.

8.2. Conclusions

Based on the foregoing, the likely BACT for the diesel fuel storage tanks is a fixed roof tank with submerged fill.

9. CONDENSATE STORAGE TANKS

This BACT analysis addresses the two condensate storage tanks needed to store residual condensate recovered from the pipeline. A summary of the required storage tanks is provided below:

Tank Emission Unit ID	Equipment Description	Product Stored
21	Condensate Storage Tank	Condensate
22	Offspec Condensate Storage Tank	Condensate

This analysis provides a review of the possible technologies and emission limits that could be imposed as BACT.

9.1. VOC and GHG "Top-Down" BACT Analysis

VOC is released to the atmosphere due to working and breathing losses from the tanks. This BACT analysis evaluates control techniques and technologies used to mitigate VOC emissions from the tanks.

9.1.1. Step 1: Identify All Control Technologies

Control technologies identified to mitigate emissions include the following:

- Floating Roof (External or Internal)
- Vapor Recovery System

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

NG-4030-HSE-RTA-DOC-0000)1
Revision No.	. 2
4/30/20:	18
Page ¹	54

- Flare or Thermal Oxidizer
- Submerged Fill

The following subsections discuss the general operating principles of each technology and their potential technical feasibility for VOC control of the LNG condensate storage tanks.

Floating Roof Tanks

External floating roof tanks are designed with a roof consisting of a double deck or pontoon single deck which rests or floats on the liquid being contained. An internal floating roof includes a fixed roof over the floating roof, to protect the floating roof from damage and deterioration. In general, the floating roof covers the entire liquid surface except for a small perimeter rim space. Under normal floating conditions, the roof floats essentially flat and is centered within the tank shell. The floating roof must be designed with perimeter seals (primary and secondary seals) which slide against the tank wall as the roof moves up and down. The use of perimeter seals minimizes emissions of VOCs from the tank. Sources of emissions from floating roof tanks include standing storage loss and withdrawal losses. Standing losses occur due to improper fits between tank seal and the tank shell. Withdrawal losses occur when liquid is removed from the tank, lowering the floating roof, revealing a liquid on the tank walls which vaporize.

Flare/Thermal Oxidizer Design

Proper flare design can improve the thermal destruction of waste gases recovered from the tanks and also the combustion efficiency of the flare. Design considerations include maintaining a pilot flame, ensuring the heating value of the flare gas is adequate and restricting the velocity of low-BTU flare gas for flame stability. A continuously lit pilot ensures that vent gases are combusted at the flare tip. A properly operated flare can achieve a destruction efficiency of 98 percent or greater.

Thermal oxidizers are not subject to 40 CFR 60.18 requirements; however, good combustion practices including proper mixing of fuel and combustion air would minimize combustion emissions.

Vapor Recovery System

A vapor recovery system (VRS) can be used to draw vapors out of the storage tank, which are routed through a compressor. Compressed vapors may be used onsite as fuel for combustion units or routed to sales gas compressors for further compression to pipeline specifications. VRSs can recover over 95% of the hydrocarbon emissions that accumulate in the storage tanks.

Submerged Fill

The use of submerged fill during tank loading operations can reduce vaporization of the liquid on the between 40 - 60% from traditional splash loading operations. Note that the use of submerged fill is a control technique specific to the filling of a tank and does not affect the day-to-day emissions of the tank.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Dago EE	

9.1.2. Step 2: Eliminate Technically Infeasible Options

Floating Roof Tanks

An external floating roof tank would not be technically feasible in the harsh environment where the proposed tanks will be operated. Snow and ice on the tank surfaces will potentially damage the roofs and seals – making such a system impractical.

Both internal and external floating roof tanks are infeasible in the application because the vapor pressure of condensate can be quite high (i.e., exceed 11 psia) under certain temperature conditions. This highly volatile liquid would compromise the integrity of the seal systems on these tank types.

Flare/Thermal Oxidizer Design

Flare/thermal oxidizer is a common BACT control for condensate storage tanks and is considered a technically feasible control option for the purposes of this analysis.

Vapor Recovery System

Use of a vapor recovery system to control VOC emissions is a common BACT control for storage tanks and is considered technically feasible for this application when operated in conjunction with a flare/thermal oxidizer. If operated alone, the VRS would either need an outlet from the plant for the recovered vapors, or the vapors would be used for fuel gas for the external combustion devices. Use of recovered vapors from condensate storage is not desirable for the external combustion equipment as they compromise the quality of the gas burned. The external combustion devices, particularly the gas turbines, must meet exacting emissions specifications for NOx and CO. However, if the vapors collected and routed to a thermal oxidizer/flare installed specifically to capture and combust the vapors from the condensate tanks, then a VRS, is technically feasible.

Notably, the design of the proposed vapor recovery system for the project includes a vapor balance feature, which allows vapors from the condensate loading operation (discussed in Section 10) to be commingled with condensate tank vapors and balanced in the system. Vapors from both the loading operation and the condensate tanks themselves are controlled by a thermal oxidizer.

Submerged Fill

Submerged fill operation is a common BACT control for the condensate storage tanks is considered a technically feasible control option for the purposes of this analysis.

9.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 22, below. These technologies are ranked by control efficiency.

Table 22: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%) or Emissions Target (ppmv)
1	Flare/Thermal Oxidizer with vapor balance/recovery system	>98%
2	Submerged Fill	Variable

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 56

9.1.4. Step 4: Evaluate Most Effective Controls and Document Results

The use of a vapor recovery system to recover vapors from the condensate tanks and route to a flare/thermal oxidizer is anticipated to provide the most effective control system for the condensate storage tanks.

9.1.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible emissions controls evaluated in this BACT analysis.

9.1.4.2. Environmental Impact Analysis

For this analysis, implementation of a vapor balance system routed to a flare/thermal oxidizer is not expected to cause an environmental impact.

9.1.4.3. Economic Impact Analysis

As a vapor balance system routed to a flare/thermal oxidizer would be implemented for this Project, economic analysis is not required because the technology is the highest rank in Step 3.

9.1.5. Step 5: Select BACT

This BACT analysis concludes that a vapor balance system routed to a flare/thermal oxidizer to control emissions from condensate storage tanks meets BACT.

9.2. Conclusions

Based on the foregoing, the likely BACT for the condensate storage tanks is capture and recovery through a vapor balance system and combustion of vapors in a properly designed flare/thermal oxidizer.

10.CONDENSATE TANK LOADING

This BACT analysis addresses the use of a condensate loading system for transporting the condensate of offsite sales. A review of the possible technologies and emission limits that could be imposed as BACT is described below.

10.1. VOC and GHG "Top-Down" BACT Analysis

VOC is released to the atmosphere due to loading losses that occur as the product is transferred from the tank to the trucks. This BACT analysis evaluates control techniques and technologies used to mitigate VOC emissions from the loading operation as found in EPA's RBLC (See Appendix E).

10.1.1. Step 1: Identify All Control Technologies

Control technologies identified to mitigate emissions include the following:

• Vapor Recovery System with Carbon Adsorption

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 57

Flare or Thermal Oxidizer

Submerged Fill

The following subsections discuss the general operating principles of each technology and their potential technical feasibility for VOC control of the condensate loading operation.

Vapor Recovery System with Carbon Adsorption

A vapor recovery system (VRS) combined with carbon adsorption can be used to capture vapors displaced from the truck as condensate is pumped into the truck tank. Condensate vapors are collected from the loading rack and routed to a carbon adsorption vessel which adsorbs the hydrocarbon the vapor stream, releasing clean air via vents in the vessel. The system maintains two carbon vessels – one which is actively collecting the hydrocarbon vapors, the other is regenerating via vacuum and purge air stripping methods. The vacuum pump extracts the hydrocarbon vapor routing it to an absorption column where the concentrated hydrocarbon vapor is liquefied and then returned to the original product storage tank. VRS combined with carbon adsorption can recover on the order of 98% of the hydrocarbon emissions that would otherwise be released during the loading process.

Flare/Thermal Oxidizer Design

Proper flare design can improve the thermal destruction of waste gases recovered during loading operation, and can improve the combustion efficiency of the flare. Design considerations include maintaining a pilot flame, ensuring the heating value of the flare gas is adequate and restricting the velocity of low-BTU flare gas for flame stability. A continuously lit pilot ensures that vent gases are combusted at the flare tip. A properly operated flare can achieve a destruction efficiency of 98 percent or greater.

Thermal oxidizers are not subject to 40 CFR 60.18 requirements; however, good combustion practices including proper mixing of fuel and combustion air would minimize combustion emissions.

Submerged Fill

The use of submerged fill during tank loading operations can reduce vaporization of the liquid between 40 – 60% from traditional splash loading operations.

10.1.2. Step 2: Eliminate Technically Infeasible Options

Vapor Recovery System with Carbon Adsorption

Use of a vapor recovery system to control VOC emissions is a common BACT control for loading operations and is considered technically feasible for this application.

Flare/Thermal Oxidizer Design

Flare/thermal oxidizer is a common BACT control for loading operations and is considered a technically feasible control option for the purposes of this analysis.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001	
Revision No. 2	
4/30/2018	
Page 58	

Submerged Fill

Submerged fill operation is a common BACT control for the condensate loading operation and is considered a technically feasible control option for the purposes of this analysis.

10.1.3. Step 3: Rank Remaining Control Technologies by Control Effectiveness

The emission control technologies not eliminated by practical or operational limitations are listed in Table 23, below. These technologies are ranked by control efficiency.

Table 23: Remaining Control Options and Control Effectiveness

Rank	Control Technology	Control Efficiency (%) or Emissions Target (ppmv)
1	Flare/Thermal Oxidizer with vapor balance/recovery system	>98%
2	Vapor Recovery with Carbon Adsorption	98%
3	Submerged Fill	Variable

10.1.4. Step 4: Evaluate Most Effective Controls and Document Results

While a vapor recovery system with regenerative carbon adsorption may provide a similar level of emission reduction as the use of a flare/thermal oxidizer, the project proposes to use a thermal oxidizer to control the emissions from the loading operation. Therefore, a vapor recovery system with carbon absorption is eliminated for further consideration in this BACT analysis.

Notably, the design of the proposed system for the project includes a vapor balance feature, which allows for vapors to be commingled with condensate tank vapors and balanced in the system with the tanks. Vapors from the loading operation and the condensate tanks themselves are controlled by a thermal oxidizer. Additionally, the loading operation itself will include submerged fill to help minimize vapors recovered and combusted at the thermal oxidizer.

10.1.4.1. Energy Impact Analysis

No unusual energy impacts were identified for the technically feasible emissions controls evaluated in this BACT analysis.

10.1.4.2. Environmental Impact Analysis

For this analysis, implementation of submerged filling with a vapor balance/recovery system routed to a flare/thermal oxidizer is not expected to cause an environmental impact.

10.1.4.3. Economic Impact Analysis

As submerged filling with a vapor balance/recovery system routed to a flare/thermal oxidizer would be implemented for this Project, economic analysis is not required because the technology is the highest rank in Step 3.

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 59

Public

10.1.5. Step 5: Select BACT

This BACT analysis concludes that submerged filling with a vapor balance/recovery system routed to a flare/thermal oxidizer to control emissions from condensate storage tanks meets BACT.

10.2. Conclusions

Based on the foregoing, the likely BACT for the condensate loading operations is submerged filling with a vapor balance/recovery system routed to a flare/thermal oxidizer.

11.CARBON CAPTURE AND SEQUESTRATION (CCS)

For the purposes of a BACT analysis for GHG, EPA classifies CCS as an add-on pollution control technology that is "available" for facilities emitting CO₂. Technical feasibility and cost have generally eliminated this GHG reduction technology from further consideration in all BACT analyses reviewed at EPA, state, and local BACT clearinghouses and databases. Below is a description of the technology and its potential application to the LNG Plant.

11.1. Overview of CCS

CCS consists of two main operations: (1) CO₂ capture, compression and transport; and (2) sequestration (storage). To capture CO₂, CCS systems generally involve use of adsorption or absorption processes to remove CO₂ from exhaust gas, with subsequent desorption to produce a concentrated CO₂ stream. Research into technically and economically feasible capture systems is ongoing and is the focus of many large scale grants from the U.S. Department of Energy.

In the CCS process, the concentrated CO₂ would be compressed to "supercritical" temperature and pressure, a state in which CO₂ exists neither as a liquid nor a gas, but instead has physical properties of both liquids and gases. The supercritical CO₂ would then be transported to an appropriate location for underground injection into a suitable geological storage reservoir such as a deep saline aquifer or depleted coal seam, or used in crude oil production for enhanced oil recovery. Transportation of "supercritical" temperature and pressure CO₂ can be accomplished via truck, ship, or pipeline depending on the location of the generation site and the storage site. However, unless the storage site is relatively close to the site of generation, this transportation is costly and increases significantly with distance. The concentration of CO₂ is required because injection of exhaust streams containing high levels of N, O₂, and dilute CO₂ is not technically feasible. Adequate techniques for compression of CO₂ exist, but such compression systems require large amounts of energy, typically then resulting in the generation of even more CO₂.

Carbon sequestration is the long-term isolation of CO₂ from the atmosphere through physical, chemical, biological, or engineered processes. In general, carbon sequestration is achieved through storage in geologic formations or in terrestrial ecosystems, or through conversion into commercial products. Without an existing market to use recovered CO₂, the material would instead require sequestration, or permanent storage. Geologic sequestration refers to the injection and storage of captured CO₂ in an underground location where it will not readily escape into the atmosphere, such as within deep rock formations at pressures and temperatures where CO₂ is in the supercritical phase (typically 0.5 miles or

Liquefaction Plant Best Available Control
Technology (BACT) Analysis

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 60

Public

more below ground surface). In general, CO₂ storage could be successful in porous, high-permeability rock formations or deep saline aquifer formations that are overlain by a thick, continuous layer of low-permeability rock, such as shale, where CO₂ may remain immobilized beneath the ground surface for extended periods of time. Other geologic formations deemed suitable for geologic sequestration include coal beds that are too thin or deep to be cost effectively mined and depleted oil and gas reservoirs, where in addition to CO₂ storage, economic gains may also be achieved (most notably through the use of enhanced oil recovery to obtain residual oil in mature oil fields).

An understanding of site-specific geologic studies and formation characteristics is critical to determine the ultimate CO₂ storage capacity and, ultimately the feasibility of geologic sequestration, for a particular area. Other factors to consider when determining the feasibility (both technical and economic) of geologic sequestration are:

- The cost, constructability, safety and potential environmental impacts of infrastructure necessary for the transportation of captured CO₂ from the source to the ultimate geologic sequestration site;
- The amount of measurement, monitoring (baseline, operational, etc.); and
- Verification of CO₂ distribution required following injection into the subsurface to ensure the risk of leakage of CO₂ is minimized or eliminated.

Potential uses/long term storage options for CO₂ are described below:

Enhanced Oil Recovery

Enhanced Oil Recovery (EOR) injection systems pump CO_2 into partially depleted oil reservoirs. Injection enhances the recovery of oil from partially depleted reservoirs allowing additional recovery. EOR systems have been used to enhance oil recovery at many oil reservoirs. Optimal EOR operation is dependent upon reservoir temperature, pressure, depth, net pay, permeability, remaining oil and water saturations, porosity, and fluid properties such as API gravity and viscosity.

Saline Aquifer Injection

Saline aquifer injection systems pump CO₂ into deep saline aquifers. Saline aquifers may be the largest long-term subsurface CCS option. Such aquifers are generally saline and are usually hydraulically separated from the shallower "sweet water" aquifers and surface water supplies accessible by drinking water wells. The injected CO₂ displaces the existing liquid and is trapped as a free phase (pure CO₂), which is referred to as "hydrodynamic trapping." A fraction of the CO₂ will dissolve into the existing fluid. The ultimate CO₂ sequestration capacity of a given aquifer is the difference between the total capacity for CO₂ at saturation and the total inorganic carbon currently in solution in that aquifer. The solubility of CO₂ depends on the pressure, temperature, and salinity of the formation water. Low salinity, low temperature, and high pressure environment is the most effective for sequestering CO₂ in widespread, deep, saline aquifers. The potential sequestration capacity of deep horizontal reservoirs is many times that of depleted, really restricted, structural or stratigraphic oil and gas reservoirs.

Liquefaction Plant Best Available Control	
Technology (BACT) Analysis	

AKLNG-40	30-HSE-RTA-DOC-00001
	Revision No. 2
	4/30/2018

Page 61

Public

Sequestration of CO_2 is generally accomplished via available geologic reservoirs that must be either local to the point of capture, or accessible via pipeline to enable the transportation of recovered CO_2 to the permanent storage location. The *United States 2012 Carbon Utilization and Storage Atlas* (Fourth Edition published by the U.S. Department of Energy, Office of Fossil Energy) identifies an extensive saline aquifer directly below Nikiski as being "screened, high sequestration potential." However, this area has not had detailed evaluation for CO_2 sequestration and lies in a fault zone. Thus, this saline aquifer is not deemed to be suitable for CCS at this time by the Project.

Oceanic Dispersion

Ocean dispersion has not yet been deployed or demonstrated and is still in the research phase. This CCS system would inject CO_2 directly into the ocean at depths greater than 3,000 feet. Injection is achieved by transporting CO_2 via pipelines or ships to an ocean storage site where it is injected. The dissolved and dispersed CO_2 would subsequently become part of the global carbon cycle. At this depth, it is theorized that most of the CO_2 would be isolated from the atmosphere for centuries.

11.2. CCS Feasibility

CCS has many technical challenges from facility design and operation to transport and ultimate disposal of CO₂ streams. At present, it is unclear if the technology could be employed at the LNG Plant. Detailed design studies would be required to assess CCS feasibility, including the investigation of possible uses and/or disposal of the recovered CO₂ stream. Additional work would be required to address legal liability and permitting concerns. A detailed assessment of the feasibility of CCS is beyond the scope of this analysis.

11.3. Economic Analysis

This section presents a summary cost analysis for CCS as potentially applied to the LNG Plant. Costs presented below are based on data from other comparable facility analyses, or data provided by the EPA.

Economic analysis of CCS systems is based on the following key factors:

- CO₂ capture costs
- Constructions and operation costs of CO₂ transfer (pipeline, container, rail, etc.)
- Costs to secure the rights for the geologic reservoir
- Operational costs of the sequestration facility

Costs presented below are based on the information from a comparable U.S. LNG liquefaction plant (see notes 1, 2 and 3 in Table 20, below). Comparable costs were determined based on transport to a disposal site within 25 miles of the LNG Plant. The cost-effectiveness of CCS is summarized in Table 20, below. As shown in this table, CCS is not cost-effective, as it greatly exceeds typical benchmarks for GHG control discussed in Section 3, and the \$12 - \$40 per ton benchmark set by the Project.

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001
Revision No. 2
4/30/2018
Page 62

Table 24: Economic Analysis

	Control Cost 1,3	Total Cost		
Capture and Compression	\$132.28/ton	\$447,300,000		
Transport (20-inch pipe/25 miles)	\$9.18/ton	\$31,000,000		
Operating	\$19.23/ton	\$65,000,000		
Total Annualized CCS Costs		\$543,300,000		
CO ₂ Removed Per Year (Tons) ²	1.2 million			
Cost of CO ₂ removal (\$/ton)	\$455			

¹ Costs were taken on a per ton basis from "Golden Pass Products LNG Export Project - Application for a Prevention of Significant Deterioration (PSD) for Greenhouse Gas Emissions," June 2014.

11.4. Conclusions

This analysis concludes that CCS is potentially infeasible and definitely not cost effective for this Project.

² Estimated GHG emission from Emission Calculations 194210-USAL-CB-PCCAL-00-000014-000 and 194210-USAL-CB-PCCAL-00-000014-002.

³ DOD AREA COST FACTORS (ACF) PAX Newsletter No 3.2.1, dated 25 Mar 2015 TABLE – 4-1, UFC 3-701-01, Change 7, March 2015

Liquefaction Plant Best Available Control Technology (BACT) Analysis

Public

AKLNG-4030-HSE-RTA-DOC-00001

Revision No. 2

4/30/2018

Page 63

12.REFERENCES

Reference Number	Document Number	Document Title
[1]	USAL-CB-SRZZZ-00-000005-000 Revision 0	APP Preliminary BACT Analysis.
[2]	USAKL-PT-BYRFP-00-0001	Alaska LNG Project – LNG Facility Pre-Feed Scope of Services
[3]	EPA/452/B-02-001	Air Pollution Control Cost Manual, Sixth Edition, January 2002, http://www.epa.gov/ttncatc1/dir1/c allchs.pdf.
[4]	USAL-CB-PRTEC-00-000009-000	Alaska LNG Study 12.3.4 – Liquefaction Compressor Driver Selection Study Report.
[5]	USAI-PS-BPDCC-00-000002-005	Alaska LNG Minutes of Meeting with ADEC, BACT and Dispersion Modeling Overview, GTP and Liquefaction Facilities, May 18, 2016. Reference included in Appendix D.
[6]	USAI-PE-SRZZZ-00-000001-000	Alaska LNG BACT Survey Report.
[7]	EPA-457/B-11-001	U.S. EPA, PSD and Title V Permitting Guidance for Greenhouse Gases.
[8]	NA	U.S. EPA, Draft New Source Review Workshop Manual, Chapter B. Research Triangle Park, North Carolina, October. 1990.
[9]	NA	U.S. EPA's database "Reasonably Available Control Technology (RACT), BACT, and Lowest Achievable Emission Rate (LAER) Clearinghouse" (RBLC). April 2015.
[10]	DE-FC02-97CHIO877	U.S. Department of Energy / ONSITE SYCOM Energy Corporation, Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines. U.S. Department of Energy Environmental Programs Chicago Operations Office 9800 South Cass Avenue Chicago, IL 60439. 1999.
[11]	NA	EPA Office of Air Quality Planning and Standards, June 17, 2011: Panel Outreach with SERS; Rulemaking for Greenhouse Gas Emissions from Electric Utility Steam Generating Units.

	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
ALASKA LNG	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

APPENDIX A

Summary of BACT Determinations

Loading Operations

Summary of BACT Determinat Project	Location	Process	Date	Product Loaded	Throughput	VOC BACT	VOC BACT Limit	Control Efficiency	Other Requirements
Gasoline Terminals		42.002			· · · · · · · · · · · · · · · · · · ·	100 27.0.		- Control Eliteration	other requirements
COUNTRYMARK REFINING AND LOGISTICS, LLC COUNTRYMARK REFINING AND LOGISTICS, LLC	MIAMI, IN	Loading Rack	12/3/2015	Gasoline	404.71 MMGAL	Relief Stack, Vapor Knockout box, flare vapor control unit.	35 MG/L		
MARATHON PETROLEUM COMPANY LP MARATHON PETROLEUM COMPANY LP	POSEY, IN	Loading Rack	8/13/2015	Gasoline	741.2 MMGAL	Vapor Recovery Unit (Carbon Adsorption)	0.159 LB/GAL		
COUNTRYMARK REFINING & LOGISTICS, LLC COUNTRYMARK REFINING & LOGISTICS, LLC	GREENE, IN	Loading Rack	6/30/2015		46200 GAL/H	test method - 1	35 MG/LITER		
Volatile Organic Liquid Marke		42.01							
MAGELLAN TERMINALS HOLDINGS, L.P. PASADENA TERMINAL	HARRIS, TX	Tank Truck Loading	7/14/2017	Gasoline	120000 GAL/HR	Submerged fill and vented to a vapor recovery unit. Vapor collection system routed to vapor recovery unit	1 MG/LTR	Vapor collection system 100% capture efficiency	NSPS XX MACT R
MAGELLAN TERMINALS HOLDINGS, L.P. PASADENA TERMINAL	HARRIS, TX	Tank Truck Loading	7/14/2017	Denatured ethanol	120000 GAL/HR	Submerged fill and vented to a vapor recovery unit.	4.48 T/YR	Air eliminator venting will result in emissions to the atmosphere at less than 3 lb/hr for air purging in truck tanks.	NSPS XX MACT R
MAGELLAN TERMINALS HOLDINGS, L.P. PASADENA TERMINAL	HARRIS, TX	Tank Truck Unloading	7/14/2017	Pressurized Butane	0	Specialized connection system of transfer valves that minimize the volume of piping containing residual butane after unloading	33 T/YR		NSPS XX MACT R
PHILLIPS 66 PIPELINE LLC BEAUMONT TERMINAL	JEFFERSON, TX	Truck and railcar loading	6/8/2016	VOLs and refined petroleum products	0	Loading vapors of materials with a TVP of 0.5 psia or greater are controlled by a flare.	28.83 T/YR	Railcar capture efficiency of 100% will be verified annually by Class DOT-111AW or Class DOT-115AW testing, and truck capture efficiency of 100% will be verified annually by DOT testing specified in 49 CFR 180.407.	· ·
PHILLIPS 66 PIPELINE LLC BEAUMONT TERMINAL	JEFFERSON, TX	Truck and railcar loading	6/8/2016	VOLs and refined petroleum products	0	Flare	0.376 LB/MMBTU		Good combustion practices

Loading Operations

Project	Location	Process	Date	Product Loaded	Throughput	VOC BACT	VOC BACT Limit	Control Efficiency	Other Requirements
PHILLIPS 66 PIPELINE LLC	JEFFERSON, TX	Truck and		VOLs and refined	0	Flare	4885.75 T/YR	Railcar capture efficiency of 100% will be	Good combustion
BEAUMONT TERMINAL		railcar loading		petroleum products				verified annually by Class DOT-111AW or	practices
								Class DOT-115AW testing, and truck	
			6/8/2016					capture efficiency of 100% will be	
								verified annually by DOT testing	
								specified in 49 CFR 180.407.	
Other									
I									
SEMGAS LP ROSE VALLEY	WOODS, OK	TRUCK	3/1/2013	CONDENSATE	9198000	Enclosed Flare			
PLANT	WOODS, OK	LOADING	3/1/2013	CONDLINGATE	GAL/YR	Enclosed Flare			
GULF CROSSING PIPELINE CO.									
	OUACHITA, LA	TRUCK	6/24/2008	CONDENSATE	5760 BBL/YR	Submerged loading and dedicated			
	OUACIITA, LA	LOADING	0, 24, 2008	CONDLINGATE	3700 BBL/TK	service.			
COMPRESSOR STATION									

Condensate Storage

Location	Process	Date	Product Stored	Tank Capacity	VOC BACT	VOC BACT Limit	Control Efficiency	Other Requirements
ixed Roof Tanks	42.005							
OUACHITA, LA	Storage Tank	6/24/2008	Condensate	100 BBL	Submerged fill pipe			
WELD, CO	Storage Tank	1/13/2014	Condensate	4 X 1,000 BBL	Enclosed combustor		95%	
WOODS, OK	Storage Tank	3/1/2013	Condensate	4 X 1,000 BBL	Flare.			
вескнам, ок	Petroleum Storage-Fixed Roof Tanks	9/12/2012	Condensate		Flare.		95%	Closed Vent and Control.
BECKHAM, OK	Petroleum Storage-Fixed Roof Tanks	9/12/2012	Condensate		Flare.			Closed Vent and Control.
	WELD, CO WOODS, OK	WELD, CO Storage Tank WOODS, OK Storage Tank Petroleum Storage-Fixed Roof Tanks Petroleum Storage-Fixed Roof Tanks Petroleum Storage-Fixed Roof Tanks	WELD, CO Storage Tank WOODS, OK Storage Tank Petroleum Storage-Fixed Roof Tanks Petroleum Storage-Fixed Petroleum Storage-Fixed Roof Tanks	OUACHITA, LA Storage Tank 6/24/2008 Condensate WELD, CO Storage Tank 1/13/2014 Condensate WOODS, OK Storage Tank 3/1/2013 Condensate BECKHAM, OK Petroleum Storage-Fixed Roof Tanks 9/12/2012 Condensate BECKHAM, OK Storage-Fixed 9/12/2012 Condensate	OUACHITA, LA Storage Tank 6/24/2008 Condensate 100 BBL WELD, CO Storage Tank 1/13/2014 Condensate 4 X 1,000 BBL WOODS, OK Storage Tank 3/1/2013 Condensate 4 X 1,000 BBL BECKHAM, OK Petroleum Storage-Fixed Roof Tanks 9/12/2012 Condensate BECKHAM, OK Storage-Fixed 9/12/2012 Condensate	OUACHITA, LA Storage Tank 6/24/2008 Condensate 100 BBL Submerged fill pipe WELD, CO Storage Tank 1/13/2014 Condensate 4 X 1,000 BBL Enclosed combustor WOODS, OK Storage Tank 3/1/2013 Condensate 4 X 1,000 BBL Flare. BECKHAM, OK Petroleum Storage-Fixed Roof Tanks 9/12/2012 Condensate Flare. BECKHAM, OK Storage-Fixed Petroleum Storage-Fixed Roof Tanks 9/12/2012 Condensate Flare.	OUACHITA, LA Storage Tank 6/24/2008 Condensate 100 BBL Submerged fill pipe WELD, CO Storage Tank 1/13/2014 Condensate 4 X 1,000 BBL Enclosed combustor WOODS, OK Storage Tank 3/1/2013 Condensate 4 X 1,000 BBL Flare. BECKHAM, OK Petroleum Storage-Fixed Roof Tanks 9/12/2012 Condensate Flare. BECKHAM, OK Storage-Fixed Petroleum Storage-Fixed Roof Tanks 9/12/2012 Condensate Flare.	OUACHITA, LA Storage Tank 6/24/2008 Condensate 100 BBL Submerged fill pipe WELD, CO Storage Tank 1/13/2014 Condensate 4 X 1,000 BBL Enclosed combustor 95% WOODS, OK Storage Tank 3/1/2013 Condensate 4 X 1,000 BBL Flare. BECKHAM, OK Petroleum Storage-Fixed Roof Tanks 9/12/2012 Condensate Flare. BECKHAM, OK Petroleum Storage-Fixed 9/12/2012 Condensate Flare.

Diesel Storage

Project	Location	Process	Date	Product Stored	Tank Capacity	VOC BACT	VOC BACT Limit	Control Efficiency	Other Requirements
Petroleum Liquid Storage in	Fixed Roof Tanks	42.005							
ST. JOSEPH ENERGY CENTER ST. JOSEPH ENERGY CENTER	ST. JOSEPH, IN	Diesel Storage Tanks	6/22/2017	Diesel	650 GALLONS	Fixed Roof Tank			Good design and operating practices
ST. JOSEPH ENERGY CENTER ST. JOSEPH ENERGY CENTER	ST. JOSEPH, IN	DIESEL STORAGE TANK TK50	6/22/2017	Diesel	5000 GALLONS	Fixed Roof Tank			Good design and operating practices
BASF PEONY CHEMICAL MANUFACTURING FACILITY	BRAZORIA, TX	Diesel Storage Tanks	4/1/2015	Diesel	10708 gallons/yr	low vapor pressure fuel, submerged fill, white tank	0.02 LB/H		The tanks are painted white. Loading is done via submerged piping. The volatile organic compound (VOC) vapor pressure of the diesel and lube oil stored is below 0.0002 pounds per square inch actual (psia), so a fixed roof is reasonable.

Simple Cycle Combustion Turbines and Heaters

	Determinations (2		D ''	04-1	No. DACT	NO- BACT : :	00 0467	00.04.07.1.1.11	V00 B + 07	V00 5 1 0 7 1 1 1 1	DIA DA CT	DM DAGT!: "	OUO DA CT	0110 5 4 6 7 1 1 1
		App	Permit	Status	NOx BACT	NOx BACT Limit	CO BACT	CO BACT Limit	VOC BACT	VOC BACT Limit	PM BACT	PM BACT Limit	GHG BACT	GHG BACT Limit
Natural Gas/Dual F	uel Simple Cycle (Combustion	Turbines ≤ 2	5MW		1.5 0.450/		0.5 0.450/						
Point Thomson Production Facility	8 MW Gas Fired Simple Cycle CTs	7/9/2011	8/20/2012	Final	DLN (SoloNOx) and inlet air heating	15 ppmv @ 15% O ₂ ; 60 ppmv @ 15% O ₂ w/o SoloNOx (limited hours)	Catalytic oxidizer	2.5 ppmv @ 15% O ₂ ; 1350 ppmv @ 15% O ₂ w/o SoloNOx (limited hours)			Good operation and combustion practices	0.0066 lb/MMBti (average rate)	DLN with inlet air heating and good combustion practice	
Point Thomson Production Facility	8 MW Dual Fueled Simple Cycle CTs (Gas)	7/9/2011	8/20/2012	Final	DLN (SoloNOx) and inlet air heating	25 ppmv @ 15% O ₂ ; 60 ppmv @ 15% O ₂ w/o SoloNOx (limited hours)	Catalytic oxidizer	5 ppmv @ 15% O ₂ ; 1350 ppmv @ 15% O ₂ w/o SoloNOx (limited hours)			Good operation and combustion practices	0.0066 lb/MMBti (average rate)	DLN with inlet air heating, good combustion practice, and waste heat recovery	
Production Facility	8 MW Dual Fueled Simple Cycle CTs (Diesel)	7/9/2011	8/20/2012	Final	DLN (SoloNOx) and inlet air heating	96 ppmv @ 15% O ₂ ; 120 ppmv @ 15% O ₂ w/o SoloNOx (limited hours)	Catalytic oxidizer	5 ppmv @ 15% O ₂ ; 462-981 ppmv @ 15% O ₂ w/o SoloNOx (load- dependent, limited hours)			Good operation and combustion practices	0.012 lb/MMBti (average rate)	DLN with inlet air heating, good combustion practice, and waste heat recovery	
Kenai Nitrogen	Five (5) Natural Ga s Fired Combustio n Turbines	11/24/2014	1/6/2015	Final	Selective Catalytic Red uction	7 ppmv at 15% O ₂		50 ppmv at 15% O ₂	2	0.0021 lb/MMBtu		0.0074 lb/MMBtu		59.61 Tons/MMScf
Company Thetford	Two (2) 13 MW natural gas simple cycle turbines - Peaker Units	5/8/2013	7/25/2013	Final	Dry Low-NOx combustors	0.090 lb/MMBtu	Good combustion	0.1100 lb/MMBtu	Efficient combustion, natural gas fuel	0.017 lb/MMBtu	Efficient combustion, natural gas fuel	0.010 lb/MMBtu	Efficient combustion; energy efficiency	20141 Tons/year
	Solar Turbine, 4.37 MW	5/23/2012	7/9/2012	Final	SoLoNOx Burner (Ultra lean premix)	5 ppmv at 15% O2				7 ppmv at 15% O2				
Cheniere Corpus Christi Pipeline - Sinton Compressor Station	Two Solar Titan 130S Turbines	9/4/2012	12/2/2013	Final	DLN (SoloNOx)	25 ppmv @ 15% O2	DLN (SoloNOx)	50 ppmv @ 15% O2						
Natural Gas Simple	e Cycle Combustic	n Turbines >	25MW	1	ļ				ļ		!		-	
Guadalupe Generating Station	Two (2) Natural Gas Simple-Cycle peaking combustion turbines	9/24/2012	10/4/2013	Final	DLN Burners, Limited operation	9 ppmv at 15% O ₂	DLN Burners, Limited operation	9 ppmv at 15% O ₂						
	87 MW Simple Cycle CT	7/20/2012	7/16/2014	Final	SCR (LAER)	2.0 ppmv @ 15% O ₂ (LAER)	Oxidation catalyst	4.0 ppmv @ 15% O ₂	Oxidation catalyst	2.0 ppmv @ 15% O ₂	Natural gas fuel; ammonia slip limited to 10 ppmv @ 15% O ₂		Efficient design, including waste heat recovery; natural gas o BOG fuel; good combustion practices; air intake chiller; and oxidation catalyst	r 738 lbs CO ₂ /MWh (365-day rolling average)
Corpus Christi Liquefaction Project	37 MW Simple Cycle CT	8/1/2012	9/12/2014	Final	Water injection	25 ppmv @ 15% O ₂	Good combustion practices	29 ppmv @ 15% O	Pipeline quality natural gas fuel and maintenance of optimum combustion conditions and practices	0.6 lb/hr	Good combustion practices and natural gas fuel		BOG or natural gas fuel; efficient CTs with waste heat recovery or ethylene units; and good combustion, operating, and maintenance practices	
Liquotootion	853.9 MMBtu/hr Simple Cycle CT	8/21/2012	10/1/2013	Final	Dry LNB with good combustion practices	15 ppmv @ 15% O ₂	Good combustion practices and natural gas fuel	0.040 lb/MMBtu	Good combustion practices and natural gas fuel		Good combustion practices and natural gas fuel		Natural gas fired high thermal efficiency turbines with good combustion/operating practices	

Project	Item	Арр	Permit	Status	NOx BACT	NOx BACT Limit	CO BACT	CO BACT Limit	VOC BACT	VOC BACT Limit	PM BACT	PM BACT Limit	GHG BACT	GHG BACT Limit
Sabine Pass Liquefaction Expansion Project (M5)	34.3 MW (286 MMBtu/hr) Simple Cycle CTs (Refrigeration and Power Generation)	9/20/2013	6/3/2015	Final	Water injection (refrig.); DLN (power gen)	1 1		50 ppmv at 15% O2 (refrig) and 58.4 ppmv at 15% O2 (Power Gen)	Good combustion practices	0.66 lb/hr	Good combustion practices and natural gas fuel		Natural gas fuel; good combustion/operating practices (CO ₂); fuels selection, energy efficient design, adoption of best operational practices (CH ₄)	
Lake Charles Liquefaction Expor Terminal Project	t 467 MMBtu/hr Simple Cycle CTs	12/20/2013	5/1/2015	Final	LNB and SCR		Catalytic oxidation and CO turndown	10 ppmv @ 15% O ₂ (3-hour average)	Good combustion practices and catalytic oxidation		Good combustion practices and clean fue	el	Low-carbon fuels, catalytic oxidation, design energy efficiency, and operational energy efficiency	

Project	T Determinations (2	Арр	Permit	Status	NOx BACT	NOx BACT Limit	CO BACT	CO BACT Limit	VOC BACT	VOC BACT Limit	PM BACT	PM BACT Limit	GHG BACT	GHG BACT Limit
Heaters	1100000	11- 1-		1000000			1		1		1 =		10110 =1111	
Point Thomson Production Facility	Diesel Fired Heaters	7/9/2011	8/20/2012	Final	LNB	4 lb/1000 gal (vendor guarantee)	Good combustion practices	5 lb/1000 gal			Good operational practices	0.25 lb/1000 gal	Good combustion practices	
Freeport LNG Liquefaction Project - Pre Treatment Facility	130 MMBtu/hr Heating Medium Heaters	7/20/2012	7/16/2014	Final	ULNB (LAER)	5.0 ppmv @ 3% O ₂ (LAER)	Natural gas fuel and good combustion practices	25 ppmv @ 3% O ₂ (one hour average)	Gaseous fuel		Gaseous fuel		Efficient heater and system design, including insulation and waste heat recovery from the CT; natural gas or BOG fuel; good combustion practices; and limiting hours of use	117 lb CO ₂ e/MMBtu for each heater (12- month rolling average)
Galena Park Terminal (KM Liquids)	129 MMBtu/hr Heaters	2/23/2012	6/12/2013	Final	ULNB and SCR	0.01 lb/MMBtu	Good combustion practices	50 ppmv						
Oregon LNG Bidirectional Terminal Project	115 MMBtu/hr Regasification Process Heaters	7/2/2013		Proposed	ULNB		Good combustion practices				Good combustion practices and natural gas fuel		Natural gas fuel; good combustion, operating, and maintenance practices; efficient heater design; and limiting the heaters to 2,880 operating hours (total) per year	155,000 short tons of CO ₂ per year for all the heaters as a group (12-month rolling average)
Oregon LNG Bidirectional Terminal Project	86/92 MMBtu/hr Process Heaters	7/2/2013		Proposed	ULNB		Good combustion practices				Good combustion practices and natural gas fuel		Natural gas fuel; good combustion, operating, and maintenance practices; and efficient heater design	155,000 short tons of CO ₂ per year for all the heaters as a group (12-month rolling average)
Lake Charles Liquefaction Export Terminal Project	110 MMBtu/hr Hot Oil Heater	12/20/2013	5/1/2015	Final	LNB and good combustion practices		Good combustion practices		Good combustion practices		Good combustion practices		(none proposed)	
Elba Island LNG Liquefaction Project	122 MMBtu/hr Heating Medium Heaters	1/2/2014		Proposed			Low-carbon fuel selection (natural gas), efficient heater design with heat recovery from the thermal oxidizers, good combustion practices, and good operating and maintenance practices	0.04845 lb/MMBtu					Low-carbon fuel selection (natural gas), efficient heater design and heat recovery when practical, good combustion practices, and good operating and maintenance practices	rolling total)

Combined Cycle Combustion Turbines

Summary of BACT Determinations (2010 - 2015)	
--	--

Summary of BACT Determinations (2010 - 20	115)	Г		1	1	1	1	1			1		1	1	Г
Project	Item	Code	Арр	Permit	Status	NOx BACT	NOx BACT Limit	CO BACT	CO BACT Limit	VOC BACT	VOC BACT Limit	PM BACT	PM BACT Limit	GHG BACT	GHG BACT Limit
Natural Gas/Dual Fuel Combined Cycle Com SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8) GE LM2500+G4	LA-0257	12/06/2011 ACT			water injection	20 PPMV AT 15% O2	Good combustion practices and fueled by natural gas	58.4 PPMV AT 15% O2	Good combustion practices and fueled by natural gas		Good combustion practices and fueled by natural gas			
DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	TWO GENERAL ELECTRIC (SE) FRAME YEA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST		06/09/2014 ACT			USE OF DRY LOW-NOX COMBUSTOR TURBINE DESIGN (DLM1), USE OF FACILITY PROCESS FUEL GAS AND PIPELINE NATURAL GAS DURING NORMAL OPERATION AND SCR SYSTEM	2.5 PMVD @ 15% O2 3-HOUR BLOCK AVERAGE, EXCLUDING SU/SD	EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS, USE OF AN OXIDATION CATALYST AND EFFICIENT COMBUSTION	1.5 PMVD @ 15% O2 3-HOUR BLOCK AVERAGE, EXLUDING SU/SD	THE USE OF PROCESS FUEL GAS AND PIPELINE NATURAL GAS, GOOD COMBUSTION PRACTICES, AND USE OF AN OXIDATION CATALYST	0.7 PPMVD @ 15% O2 3-HOUR BLOCK AVERAGE, EXCLUDING SU/SD	EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS AND GOOD COMBUSTION PRACTICES	0.0033 LBMMBTU 3- HOUR BLOCK AVERAGE	HIGH EFFICIENCY GE FFICIENCY GE FFICIENCY GE TEA CTS WITH HRSGS EQUIPPED WITH DLN1 COMBUSTORS AND EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS	117 LEMMBTU 3- HOUR BLOCK AVERAGE
BASIN ELECTRIC POWER COOPERATIVE DEER CREEK STATION BROOKINGS, SD	Combustion turbine/heat recovery steam generator	*SD-0005	06/29/2010 ACT		Draft	Selective catalytic reduction	3 PPMVD AT 15% O2 3-HOUR, EXCLUDES SSM	Catalytic oxidation	PERIODS SSM			Good Combustion	0.01 LB/H 3- HOUR		
BRITISH PETROLEUM EXPLORATION ALASKA (BPXA) ENDICOTT PRODUCTION FACILITY, LIBERTY DEVELOPMENT PROJECT PRUDHOE BAY, AK	EU ID 10A, TURBINE	AK-0066	06/15/2009 ACT		Final	DRY LOW NOX COMBUSTORS (DLN)	25 PPMV AT 15% O2 WHEN AMBIENT TEMPERATURE => 10 DEG-F	CATALYTIC OXIDATION	5 PPMV @ 15% O2 WHEN AMBIENT TEMPERATURE => 10 DEG-F						
CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ	Combined Cycle Combustion Turbine w/o duct burner two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)	NJ-0079	07/25/2012 ACT		Final	DLN combustion system with SCR on each of the two combustion turbines and use of only natural gas as fuel.	BASED ON 1-HR	good combadaon		Oxidation catalyst and good combustion practices, use of natural gas a clear burning fuel	2.9 LB/H AVERAGE OF THREE TESTS	Use of Natural gas,a clean burning fuel.	12.1 LB/H AVERAGE OF THREE TESTS		
HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine	NJ-0080	11/01/2012 ACT		Final	Selective Catalytic Reduction (SCR) System and use of natural gas a cleat burning fuel	ROLLING AVE		2 PPMVD 3-HR ROLLING AVE BASED ON 1-HR BLOCK AVE	Oxidation Catalyst and Good combustion Practices and use of natural gas a clean burning fuel	1 PPMVD 3-HR ROLLING AVERAGE BASED ON 1-HR BLOCK	Use of natural gas a clean burning fuel	11 LB/H AVERAGE OF THREE TESTS	Good Combustion Practices	887 LB/MW-H CONSCUTV 12 MONTH PERIOD ROLLING 1 MONTH
PANDA SHERMAN POWER LLC PANDA SHERMAN POWER STATION GRAYSON, TX	2 Siemens SGT6-5000F or 2 GE Frame 7FA. Both capable of combined or simple cycle operation. 488 MMBtu/hr duct burners.	TX-0551	02/03/2010 ACT		Final	Dry low NOx combustors and Selective Catalytic Reduction	9 PPMVD @ 15% O2, RLNG 24-HR AVG, SIMPLE CYCLE 2 PPMVD @ 15% O2, RLNG 24-HR AVG, COMBINED CYCLE	Good combustion practices	4 PPMVD @ 15% O2, RLNG 24-HR AVG, SIMPLE CYCLE 15 PPMVD @ 15% O2, RLNG 24-HR AVG, COMBINED CYCLE	Good combustion practices	1 PPMVD @ 15% 02, 3-HR AVG, SIMPLE CYCLE MODE 4 PPMVD @ 15% 02, 3-HR AVG, COMBINED CYCLE MODE				
STARK POWER GENERATION II HOLDINGS, LLC WOLF HOLLOW POWER PLANT NO. 2 HOOD, TX	Project will be either 2 MHI501G gas turbines plus 230 MMBtu/hr duct burner firing for each turbine or 2 GE 7FA gas turbines plus 570 MMBtu/hr duct burner firing for each turbine.	TX-0552	03/03/2010 ACT		Final	Dry low NOx combustors plus selective catalytic reduction	2 PPMVD @ 15% O2, ROLLING 24- HR AVG, FULL LOAD	Good combustion practices	10 PPMVD @ 15% O2, ROLLING 3-HR AVG, MHI501G	Good combustion practices	4 PPMVD @ 15% O2, 3-HR AVG, MHI501G				
NRG TEXAS POWER LLC WA PARISH ELECTRIC GENERATING STATION - DEMONSTRATION PROJECT FORT BEND, TX	General Electric (GE) Frame 7EA (or a similar sized unit), which is rated at a maximum base-load electric output of approximately 80 megawatts (MW), HRSG duct burner has a maximum heat input capacity of 225 million Britis thermal units per hour (MMBuhr) based on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Unit solvent.	TX-0625	12/19/2012 ACT		Final	DLN combusters on the turbine and selective catalytic reduction (SCR)		oxidation catalyst	4 PPMVD 24 HR ROLLING, AT 15% OXYGEN	oxidation catalyst	2 PPMVD INITIAL STACK TEST	good combustion and use of natural gas	16.58 LB/H 1 HR		
M & G RESINS USA LLC UTILITY PLANT NUECES, TX	General Electric LM6000 natural gas-fired combustion turbine equipped with lean pre-mix low-NOx combustors. One heat recovery steam generator (HRSG) with 265 million British therma untils per hour (MMBturh) natural gas-fired duct burner system containing a selective catalytic reduction system (SCR)	(TX-0704	12/02/2014 ACT		Final	Selective Catalytic Reduction	2 PPMVD @15% O2, 24-HR ROLLING AVERAGE	oxidation catalyst	4 PPMVD @15% O2, 24-HR ROLLING AVERAGE	oxidation catalyst	4 PPMVD @15% O2, 24-HR ROLLING AVERAGE				
NRG TEXAS POWER LLC W. A. PARISH ELECTRIC GENERATING STATION FORT BEND, TX	GE 7EA turbine, 225 million British thermal units per hour duct burner. Steam created in the heat recovery steam generator will be used as processteam.	TX-0737	12/21/2012 ACT		Final	Selective catalytic reduction	2 PPMVD @ 15% O2 3-HR AVERAGE	Oxidation catalyst	4 PPMVD @ 15% O2 24-HR AVERAGE	Oxidation catalyst	2 PPMVD @ 15% O2				

AK LNG Pre-BACT Analysis ALASKA LNG

Combined Cycle Combustion Turbines

WILLIAMS FIELD SERVICES COMPANY ECHO SPRINGS GAS PLANT CARBON, WY	12,555 HP SOLAR MARS100-15000S OR 16,162 HP SOLAR TITAN 130-20502S TURBINE	WY-0067	04/01/2009 ACT		Final	GOOD COMBUSTION PRACTICES	15 PPMV	GOOD COMBUSTION PRACTICES		GOOD COMBUSTION PRACTICES	25 PPMV				
Natural Gas/Dual Fuel Combined Cycle Coml	bustion Turbines > 25MW														
Project	Item	Code	App	Permit	Status	NOx BACT	NOx BACT Limit	CO BACT	CO BACT Limit	VOC BACT	VOC BACT Limit	PM BACT	PM BACT Limit	GHG BACT	GHG BACT Limit
BASIN ELECTRIC POWER COOPERATIVE DEER CREEK STATION BROOKINGS, SD	Combustion Turbine - 1,713 million Btus per hour (Lower Heating Value) heat input Duct Burner-615.2 million Btus per hour (Lower Heating Value heat input	*CD 000E	06/29/2010 ACT		Draft	Selective catalytic reduction	3 PPMVD AT 15% O2 3-HOUR, EXCLUDES SSM	Catalytic oxidation	2 PPMVD @ 15% O2 3-HOUR, EXCLUDES SSM PERIODS			Good Combustion	0.01 LB/H 3- HOUR		
CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ	WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated heat input of 2,307 million British thermal units per hour (MiRbuthr), that will utilize pipeline natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbtuhr).	NJ-0079	07/25/2012 ACT		Final	DLN combustion system with SCR on each of the two combustion turbines and use of only natural gas as fuel.	ROLLING AVE BASED ON 1-HR	Oxidation Catalyst good combustion practices and use only natural gas a clean burning fuel	ROLLING AVE	oxidation Catalyst and Good Combustion Practices and use of Clean fuel (Natural gas)	2 PPMVD 3-HR ROLLING AVERAGE BASED ON 1-HR BLK				
PANDA SHERMAN POWER LLC PANDA SHERMAN POWER STATION GRAYSON, TX	2 Siemens SGT6-5000F or 2 GE Frame 7FA. Both capable of combined or simple cycle operation. 468 MMBtu/hr duct burners.	TX-0551	02/03/2010 ACT		Final		9 PPMVD @ 15% O2, ROLLNG 24- HR AVG, SIMPLE CYCLE		4 PPMVD @ 15% O2, ROLLNG 24- HR AVG, SIMPLE CYCLE		1 PPMVD @ 15% O2, 3-HR AVG, SIMPLE CYCLE MODE				
STARK POWER GENERATION II HOLDINGS, LLC WOLF HOLLOW POWER PLANT NO. 2 HOOD, TX	Project will be either 2 MHI501G gas turbines plus 230 MMBtu/hr duct burner firing for each turbine or 2 GE 7FA gas turbines plus 570 MMBtu/hr duct burner firing for each turbine.	TX-0552	03/03/2010 ACT		Final	Dry low NOx combustors plus selective catalytic reduction	2 PPMVD @ 15% O2, ROLLING 24- HR AVG, FULL LOAD	Good combustion practices	10 PPMVD @ 15% O2, ROLLING 3-HR AVG, MHI501G	Good combustion practices	4 PPMVD @ 15% O2, 3-HR AVG, MHI501G				
NRG TEXAS POWER LLC WA PARISH ELECTRIC GENERATING STATION - DEMONSTRATION PROJECT FORT BEND, TX	General Electric (GE) Frame 7EA (or a similar sized unit), which is rated at a maximum base-load electric output of approximately 80 megawatts (MW). HRSG duct burner has a maximum heat input capacity of 225 million Brits thermal units per hour (MiBfuhr) based on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Unit solvent.	TX-0625	12/19/2012 ACT		Final	DLN combusters on the turbine and selective catalytic reduction (SCR)	2 PPMVD 3-HR ROLLING AVG, AT 15% OXYGEN	oxidation catalyst	4 PPMVD 24 HR ROLLING, AT 15% OXYGEN	proper design and operation, good solvent maintenance, LDAR program	3.1 PPMV	good combustion and use of natural gas	16.58 LB/H 1 HR		
M & G RESINS USA LLC UTILITY PLANT NUECES, TX	General Electric LM6000 natural gas-fired combustion turbine equipped with lean pre-mix low-NOx combustors. One heat recovery steam generator (HRSG) with 263 million British therma units per hour (MMBturh) natural gas-fired duct burner system containing a selective catalytic reduction system (SCR)	TX-0704	12/02/2014 ACT		Final	Selective Catalytic Reduction	2 PPMVD @15% O2, 24-HR ROLLING AVERAGE	oxidation catalyst	4 PPMVD @15% O2, 24-HR ROLLING AVERAGE	oxidation catalyst	4 PPMVD @15% O2, 24-HR ROLLING AVERAGE				
NRG TEXAS POWER LLC W. A. PARISH ELECTRIC GENERATING STATION FORT BEND, TX	GE 7EA turbine, 225 million British thermal units per hour duct burner. Steam created in the heat recovery steam generator will be used as process steam.	TX-0737	12/21/2012 ACT		Final	Selective catalytic reduction	2 PPMVD @ 15% O2 3-HR AVERAGE	oxidation catalyst	4 PPMVD @ 15% O2 24-HR AVERAGE	oxidation catalyst	2 PPMVD @ 15% O2				

Note: LNG and Alaska BACT determinations are highlighted.

Large Natural Gas, Combined Cycle Turbine: 8/26/2016

h Date: 8/26/20

DLN or Efficienc Use of Comb SoLoNox y NG Pract Throughput & ssion Limit Emission Limit 1E ission Limit 2 Efficiency % Pollutant/ Compliance Notes RBLC ID Facility Name & Location
GEISINGER MEDICAL CENTER **Type** 6.210 Process Notes

0.8 ton of total hazardous air pollutant in Natural Gas Primary Fue & Units & Units & Units ppmv @ 15% O2 SCR Injection GEISINGER MED CTR/DANVILLE OMBUSTION TURBINE any 12 consecutive month period: and LB/MMBTU CASE-BY-0.7 ton of formaldehyde in any 12 ONTOUR, PA *PA-0289 06/18/2010 ACT GEISINGER MEDICAL CENTER COMBINED HEAT AND POWER 0.8 ton of total hazardous air pollutant in Natural Gas 5.62 MMBTU/H Volatile 0.6 LB/H IN 11.9 LB/H SUB-TRUE GEISINGER MED CTR/DANVILLE COMBUSTION TURBINE any 12 consecutive month period; and 0.7 ton of formaldehyde in any 12 Organic SOI ONOX ZERO NON-SOLONOX CASE-BY-ONTOUR PA secutive month period is (VOC) 15 PPM @15% 42 PPM @15% *PA-0289 06/18/2010 ACT GEISINGER MEDICAL CENTER COMBINED HEAT AND POWER 0.8 ton of total hazardous air pollutant in Natural Gas 5.62 MMBT O2 IN SOLONOX O2 DURING MODE SUB-ZERO AMBIENT,, NON-GEISINGER MED CTR/DANVILLE COMBUSTION TURBINE any 12 consecutive month period; and 0.7 ton of formaldehyde in any 12 CASE-BY-MONTOUR, PA ecutive month period. SOLONOX 25 PPM @ 15% | 100 PPM @ 159 COMBINED HEAT AND POWER *PA-0289 06/18/2010 ACT GEISINGER MEDICAL CENTER 0.8 ton of total hazardous air pollutant in Natural Gas 6.62 MMBTU/H Carbon GEISINGER MED CTR/DANVILLE COMBUSTION TURBINE ny 12 consecutive month period; and O2 IN SOLONOX O2 SUB-ZERO CASE-BY-0.7 ton of formaldehyde in any 12 MONTOUR, PA AMBIENT NON SOLONOX Combustion Turbine - 1,713 million Btus Natural Gas 23.2 LB/H 3- 18.6 LB/H 3-*SD-0005 06/29/2010 ACT BASIN ELECTRIC POWER 0.01 LB/H 3-BACT-TRUE TRUE 00 Megawatts COOPERATIVE DEER CREEK STATION BROOKINGS, SD per hour (Lower Heating Value) heat input Duct Burner- 615.2 million Btus per HOUR / WITH HOUR / DUCT FIRING WITHOUT DUCT our (Lower Heating Value) heat inpu *SD-0005 06/29/2010 ACT BASIN ELECTRIC POWER Combustion Turbine - 1,713 million Btus Natural Gas 00 Megawatts Carbon Catalytic oxi 10.5 LB/H 3-HOUR, PER SS PERIOD
EXCLUDES SSM STARTUP AND
M PERIODS SHUTDOWN COOPERATIVE DEER CREEK STATION BROOKINGS, SD per hour (Lower Heating Value) heat input Duct Burner- 615.2 million Btus per 15% O2 3-EXCLUDES SSM PERIODS our (Lower Heating Value) heat inpu PERIODS BASIN ELECTRIC POWER 3 PPMVD AT *SD-0005 06/29/2010 ACT Combustion Turbine - 1 713 million Blus Natural Gas 25.8 LB/H 3-TRUF Combustion turbine/heat recovery s 300 Megawatts Nitrogen ective catalytic reduction COOPERATIVE DEER CREEK STATION BROOKINGS, SD per hour (Lower Heating Value) heat input Duct Burner- 615.2 million Btus per 5% O2 3-HOUR, PER SS PERIOD EXCLUDES SSM STARTUP OR nour (Lower Heating Value) heat input EXCLUDES SSM SHUTDOWN AL-0282 01/22/2014 ACT LENZING FIBERS, INC. LENZING Gas Turbine with HRSG Natural Gas Particulat Good combustion practices 0.0075 BACT-FALSE IBERS, INC. MOBILE, AL e matter, filterable LB/MMBTU AL-0282 01/22/2014 ACT LENZING FIBERS, INC. LENZING Gas Turbine with HRSG Natural Gas 1.6 PPM PPM FALSE CO oxidation catalyst and good IBERS, INC. MOBILE, AL ombustion practices VD @15% O2 WITH DUCT ds (VOC) 137908 TPY OF AL-0282 01/22/2014 ACT LENZING FIBERS, INC. LENZING Gas Turbine with HRSG Natural Gas Carbon G BACT-FALSE Good combustion practice IBERS, INC. MOBILE, AL CO2E 12 -MONTH (CO2e) ROLLING 1/06/2012 ACT GROSSMONT HOSPITAL Nitrogen SoLoNOX BURNERS PPMVD@159 Cogeneration gas turbine Manufacturer: Solar Turbines, Model 50- natural gas 9 ppmy with duct burner in ROSSMONT HOSPITAL SAN DIEGO 6400 R. 4.6 MW - Natural gas fired with O2 1 HOUR CASE-BYoperation, 5 ppmy when duct burner is not in operation. SCR is not cost effective (2.5 ppmy) Other pollutants are below BACT hresholds.
The turbines shall be equipped 01/13/2014 ACT DCP MIDSTREAM, LP LUCERNE GAS Two natural gas fired combustion turbines equipped with low NOX burner H Carbon Waste heat recovery, thermal Dioxide efficiency, tune-ups & maintenance 42268 TON CO2E PER ROCESSING PLANT WELD, CO EFFICIENCY with waste heat recovery units ite rated at 9,055 horsepower each YEAR (EACH) (WHRU) to increase the efficient use of waste heat for process meet a BACT limit of 40% minimum thermal efficiency on a 12-month rolling average basis Tune-ups and maintenance shall be required annually for the life of 283 MMBTU/H, Particulat GOOD COMBUSTION PRACTICES e matter, AND PROPER DESIGN filterable IN-0173 06/04/2014 ACT MIDWEST FERTILIZER TWO (2) NATURAL GAS FIRED NATURAL GAS FIRED, OPEN-SIMPLE NATURAL GAS 0.0019 BACT-FALSE ORPORATION MIDWEST COMBUSTION TURBINES CYCLE COMBUSTION TURBINES LB/MMBTU 3-H FERTILIZER CORPORATION POSE TH HEAT RECOVERY TWO (2) NATURAL GAS FIRED NATURAL GAS FIRED, OPEN-SIMPLE NATURAL GAS 283 MMBTU/H, Particulat GOOD COMBUSTION PRACTICES 06/04/2014 ACT 0.0076 BACT-FALSE CORPORATION MIDWEST FERTILIZER CORPORATION POSEY COMBUSTION TURBINES CYCLE COMBUSTION TURBINES e matter, AND PROPER DESIGN total < 10 LB/MMBTU 3-H VITH HEAT RECOVERY AVERAGE NATURAL GAS FIRED, OPEN-SIMPLE NATURAL GAS 283 MMBTU/H, Particulat GOOD COMBUSTION PRACTICES 06/04/2014 ACT MIDWEST FERTILIZER TWO (2) NATURAL GAS FIRED 0.0076 BACT-CORPORATION MIDWEST COMBUSTION TURBINES CYCLE COMBUSTION TURBINES e matter, AND PROPER DESIGN LB/MMBTU 3-HF FERTILIZER CORPORATION POSES TH HEAT RECOVERY VERAGE TWO (2) NATURAL GAS FIRED NATURAL GAS FIRED, OPEN-SIMPLE NATURAL GAS 283 MMBTU/H, Carbon GOOD COMBUSTION PRACTICES 0.03 LB/MMBTU 06/04/2014 ACT 0.03 BACT-FALSE CORPORATION MIDWEST COMBUSTION TURBINES CYCLE COMBUSTION TURBINES Monoxide AND PROPER DESIGN 3-HR AVERAGE AT > 50% PEAK FERTILIZER CORPORATION POSEY ITH HEAT RECOVERY 06/04/2014 ACT MIDWEST FERTILIZER THREE (3) AUXILARY BOILERS NATURAL GAS USAGE IN EACH NATURAL GAS Particulat GOOD COMBUSTION PRACTICES 1.9 LB/MMCF 3-BACT-FALSE IN-0173 CORPORATION MIDWEST BOILER NOT TO EXCEED 1501.91 e matter, filterable AND PROPER DESIGN HR AVERAGE FERTILIZER CORPORATION POSES TWO (2) NATURAL GAS FIRED NATURAL GAS FIRED, OPEN-SIMPLE NATURAL GAS 283 MMBTU/H, Carbon GOOD COMBUSTION PRACTICES 12666 BTU/KW- 116.89 06/04/2014 ACT CO2 EMISSIONS SHALL NOT CORPORATION MIDWEST COMBUSTION TURBINES CYCLE COMBUSTION TURBINES Dioxide AND PROPER DESIGN H. MINIMUM LB/MMBTU 3-H EXCEED 144.890 TON/YEAR FERTILIZER CORPORATION POSES ITH HEAT RECOVERY CONTINUOUS AVERAGE MIDWEST FERTILIZER WO (2) NATURAL GAS FIRED .5 PPMVD AT CORPORATION MIDWEST COMBUSTION TURBINES CYCLE COMBUSTION TURBINES Organic AND PROPER DESIGN 15% OXYGEN FERTILIZER CORPORATION POSEY WITH HEAT RECOVERY HR AVERAGE Nitrogen Oxides RECIRCULATION MIDWEST FERTILIZER HREE (3) AUXILARY BOILERS NATURAL GAS 06/04/2014 ACT NATURAL GAS USAGE IN FACH 20.4 LB/MMCF FALSE ORPORATION MIDWEST BOILER NOT TO EXCEED 1501.91 MMBTU/H, R AVERAGE FERTILIZER CORPORATION POSES MIDWEST FERTILIZER TWO (2) NATURAL GAS FIRED NATURAL GAS FIRED, OPEN-SIMPLE NATURAL GAS 283 MMBTU/H, Nitrogen DRY LOW NOX COMBUSTORS 22.65 PPMVD 06/04/2014 ACT IN-0173 BACT-FALSE AT 15% OXYGEN 3-HR AVERAGE AT > 50% PEAK CORPORATION MIDWEST COMBUSTION TURBINES CYCLE COMBUSTION TURBINES FERTILIZER CORPORATION POSEY VITH HEAT RECOVERY

neters: Large Natural Gas, Combined Cycle Turbines

		T	I	1	T			1		Chandred			Cons. bu		F-tit-d					Cood
				Process			Throughput &			Standard Emission Limit Emission Limit Emission L			Case by Case		Efficiency		Water DLN or			Comb Duplicate
IN-0173	Date 06/04/2014 ACT	Facility Name & Location MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	Process THREE (3) AUXILARY BOILERS	Type 16.210	Process Notes NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	Primary Fuel NATURAL GAS	218.6 MMBTU/H, EACH		t Control Method Description GOOD COMBUSTION PRACTICES AND PROPER DESIGN	& Units & Units & Units 37.22 LB/MMCF 0 3-HR AVERAGE	ts ppm	/ @ 15% O2 Ib/MMBtu	Basis BACT- PSD	Other Factors N	% Pollutant/ Compliance Notes	Draft? FALSE	SCR Injection OxCat SoLoNox	У	NG	Pract ?
IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH	Volatile Organic Compoun ds (VOC)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	5 0 5.5 LB/MMCF 3- 0 HR AVERAGE			BACT- PSD	N		FALSE				2
IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH	Carbon Dioxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN: AIR INLET CONTROLS, HEAT RECOVERY CONDENSATE AND BLOWDOWN	HR AVERAGE EFFICIENC (HHV)			BACT- PSD	N		FALSE				2
									HEAT RECOVERY											
IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH	Particulat e matter, total < 10 ŵ (TPM10)		5 0 7.6 LB/MMCF 3- 0 HR AVERAGE			BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT		TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, EACH	Particulat e matter, filterable (FPM)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0 0.0019 0 LB/MMBTU 3-HR AVERAGE		0.001	9 BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, EACH	Particulat e matter, total < 10 µ (TPM10)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0 0.0076 LB/MMBTU 3-HR AVERAGE		0.007	6 BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	TWO (2) NATURAL GAS FIRED	16.210	NATURAL GAS FIRED, OPEN-SIMPLE	NATURAL GAS	283 MMBTU/H,	Particulat	GOOD COMBUSTION PRACTICES			0.007	6 BACT-	N		FALSE				1
		CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	COMBUSTION TURBINES		CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY		EACH	e matter, total < 2.5 µ (TPM2.5)	AND PROPER DESIGN 5	LB/MMBTU 3-HR AVERAGE			PSD							
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, EACH	Carbon Monoxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0 0.03 LB/MMBTU 0 3-HR AVERAGE AT > 50% PEAK LOAD		0.0	3 BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH		GOOD COMBUSTION PRACTICES AND PROPER DESIGN	5 0 1.9 LB/MMCF 3- 0 HR AVERAGE			BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY		283 MMBTU/H, EACH	Dioxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	H, MINIMUM LB/MMBTU CONTINUOUS AVERAGE	J 3-HR		BACT- PSD	N	CO2 EMISSIONS SHALL NOT EXCEED 144,890 TON/YEAR	FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, EACH		GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0 2.5 PPMVD AT 0 15% OXYGEN 1- HR AVERAGE		2.5	BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH	Oxides (NOx)	LOW NOX BURNERS, FLUE GAS RECIRCULATION	0 20.4 LB/MMCF 3-0 HR AVERAGE			BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, EACH	Nitrogen Oxides (NOx)	DRY LOW NOX COMBUSTORS	0 22.65 PPMVD 0 AT 15% OXYGEN 3-HR AVERAGE AT > 50% PEAK LOAD		22.65	BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH	Monoxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	37.22 LB/MMCF 0 3-HR AVERAGE			BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH		GOOD COMBUSTION PRACTICES AND PROPER DESIGN	5 0 5.5 LB/MMCF 3- 0 HR AVERAGE			BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH	Carbon Dioxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN: AIR INLET CONTROLS, HEAT RECOVERY CONDENSATE AND BLOWDOWN HEAT RECOVERY	TON/MMCF 3- EFFICIENC HR AVERAGE (HHV)			BACT- PSD	N		FALSE				2
IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H, EACH			3 0 7.6 LB/MMCF 3- 0 HR AVERAGE			BACT- PSD	N		FALSE				2
NJ-0079	07/25/2012 ACT	CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ	Combined Cycle Combustion Turbine with Duct Burner	16.210	Woodbridge Energy Center (WEC), located at Riverside Drive in Woodbridg Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated hea input of 2,307 million British thermal unit per hour (MMBtu/hr), hat will utilize prelimin and gas only, with 2 HRSGs 2 Duct Burners (each 500 MMbtu/hr).		40297.6 mmcubic ft/year	Carbon Dioxide Equivalen t (CO2e)	1	0 925 LBMW-H 0 BASED ON 12 MONTH PERIOD, ROLLING 1 MNTH			BACT- PSD	U		FALSE				TRUE 1
NJ-0079	07/25/2012 ACT	CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ	Combined Cycle Combustion Turbine with Duct Burner	16.210	Woodbridge Energy Center (WEC), located at Riverside Drive in Woodbridge Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated hea input of 2,307 million British thermal unit per hour (MMBturh), that will utilize pipeline natural gas only, with 2 HRSGs 2 Duct Burners (each 500 MMbtu/hr).		40297.6 mmcubic ft/year		Oxidation Catalyst; Good Combustic Practices	or0 12.1 LB/H 2 PPMVD 3 AVERAGE OF ROLLING THREE 1-HOUR AVERAGE TESTS BASED ON BLOCK			BACT- PSD	U	77.000	FALSE				2
NJ-0079	07/25/2012 ACT	CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ		w/c16.210	The above natural gas use is combined for two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)	natural gas	40297.6 mmcubic ft/year	Particulat e matter, filterable < 10 ŵ (FPM10)		0 12.1 LB/H 0 AVERAGE OF THREE TESTS			OTHER CASE-BY- CASE	U		FALSE				2

Large Natural Gas, Combined Cycle Turbines 8/26/2016

C Search Date: 8/26/2016

DLN or SoLoNox y NG Good Comb Water Throughput & ssion Limit Er mission Limit 1 ssion Limit 2 Efficiency % Pollutant/ Compliance Notes Process Notes
The above natural gas use is combined for two GE 7FA CC turbines (each with RBLC ID Facility Name & Location
CPV SHORE, LLC WOODBRIDGE **Type** 6.210 Primary Fue Units Pollutant Control Method Description
0297.6 Particulat use of natural gas only which is a & Units & Units 12.1 LB/H & Units ppmv @ 15% O2 Other Factors SCR Injection Date 07/25/2012 ACT ENERGY CENTER MIDDLESEX, NJ e matter, clean burning fuel AVERAGE OF THREE TESTS CASE-BYnum heat input of 2, 307 filterable < 2.5 µ maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 PM2.5) NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE Combined Cycle Combustion Turbine ENERGY CENTER MIDDLESEX, NJ with Duct Burner Woodbridge Energy Center (WEC), Natural gas located at Riverside Drive in Woodbridge Particulat Good Combustion Practices and us FALSE nmcubic ft/year e matter, of Natural gas,a clean burning fuel. AVERAGE OF THREE TESTS Township (Middlesex County) New Jersey, 07095, will be a new 700 MW < 10 µ combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated he input of 2,307 million British thermal units per hour (MMBtu/hr), that will utilize pipeline natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbtu/hr). NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE Combined Cycle Combustion Turbine ENERGY CENTER MIDDLESEX, NJ with Duct Burner Woodbridge Energy Center (WEC), Natural gas located at Riverside Drive in Woodbridge Particulat Good Combustion Practices and use e matter, of Natural gas,a clean burning fuel. 40297.6 FALSE 19.1 LB/H AVERAGE OF THREE TESTS CASE-BY-Township (Middlesex County), New < 2.5 Âu Jersey, 07095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated h input of 2.307 million British thermal units per hour (MMBtu/hr), that will utilize pipeline natural gas only, with 2 HRSG Duct Burners (each 500 MMbtu/hr) NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ Woodbridge Energy Center (WEC), Natural gas located at Riverside Drive in Woodbridge 0297.6 Nitrogen Coxides Catalytic Reduction System 77.000 FALSE Combined Cycle Combustion Turbine with Duct Burner 19.8 LB/H 2 PPMVD 3 FIR AVERAGE OF ROLLING AVE THREE 1- HOUR BASED ON 1-HR BLOCK AVE Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility. WEC will consist of two General Electric (GE) combustion turbine generators CTGs) each with a maximum rated he input of 2,307 million British thermal units per hour (MMBtu/hr), that will utilize pipeline natural gas only, with 2 HRSGs 2 Duct Burners (each 500 MMbtu/hr). 0297.6 Nitrogen nucubic ft/year Oxides DLN combustion system with SCR on each of the two combustion NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE Combined Cycle Combustion Turbine w/c 16.210 ENERGY CENTER MIDDLESEX, NJ duct burner 2 PPMVD 3-HR 16.8 LB/H LAER 77.000 FALSE The above natural gas use is combined natural gas for two GE 7FA CC turbines (each with a on each of the two combustion turbines and use of only natural gas ROLLING AVE AVERAGE OF maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each BASED ON 1-HR THREE TESTS with a maximum heat input of 500 MMBtu/hr)
The above natural gas use is combined natural gas 2 PPMVD 3-HR 10.2 LB/H NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE Combined Cycle Combustion Turbine w/ 16.210 Carbon Oxidation Catalyst, good combustic 7.000 FALSE ENERGY CENTER MIDDLESEX N.I. for two GE 7FA CC turbines (each with a mcubic ft/year le practices and use only natural gas a ROLLING AVE AVERAGE OF BASED ON 1-HR THREE TESTS num heat input of 2 307 MMBtu/hr)and two duct burners (each BLOCK with a maximum heat input of 500 MMBtu/hr)
Woodbridge Energy Center (WEC), Natural gas 0297.6 Volatile oxidation Catalyst and Good Organic Combustion Practices and use of Clean fuel (Natural gas) 2 PPMVD 3-HR 6.9 LB/H ROLLING AVERAGE OF AVERAGE THREE TESTS. NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ Combined Cycle Combustion Turbine with Duct Burner FALSE ROLLING AVERAGE BASED ON 1-HR Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility. WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated h input of 2.307 million British thermal units per hour (MMBtu/hr), that will utilize pipeline natural gas only, with 2 HRSG 2 Duct Burners (each 500 MMbtu/hr). NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ 0297.6 Volatile Oxidation catalyst and good combustion practices, use of nature Compoun gas a clean burning fuel FALSE Combined Cycle Combustion Turbine w/c16.210 The above natural gas use is combined natural gas for two GE 7FA CC turbines (each with a AVERAGE OF THREE TESTS mum heat input of 2, 307 maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 The above natural gas use is combined natural gas for two GE 7FA CC turbines (each with a 0297.6 Sulfur Use of only natural gas a clean burning fuel N.I-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ Combined Cycle Combustion Turbine w/o FALSE AVERAGE OF THREE TESTS CASE-BYmum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)
The above natural gas use is combined for two GE 7FA CC turbines (each with a NJ-0079 CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ 07/25/2012 ACT 40297.6 Particulat use of natural gas only which is a ematter, filterable FALSE Combined Cycle Combustion Turbine w/c16.210 duct burner AVERAGE OF THREE TESTS CASE-BYmaximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)
Woodbridge Energy Center (WEC), Natural gas NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE Combined Cycle Combustion Turbine ENERGY CENTER MIDDLESEX, NJ with Duct Burner Sulfur Good Combustion Practices and use 4.9 LB/H FALSE ocated at Riverside Drive in Woodb mcubic ft/vear Dioxide of Natural gas,a clean burning fuel. AVERAGE OF THREE TESTS CASE-BY-Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated h input of 2.307 million British thermal units per hour (MMBtu/hr), that will utilize pipeline natural gas only, with 2 HRSG: 2 Duct Burners (each 500 MMbtu/hr). NJ-0079 07/25/2012 ACT CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ 0297.6 Particulat Good Combustion Practices and use mucubic ft/year e matter, of Natural gas,a clean burning fuel. Combined Cycle Combustion Turbine 16.210 with Duct Burner Woodbridge Energy Center (WEC), Natural gas located at Riverside Drive in Woodbridge FALSE AVERAGE OF CASE-BY-Township (Middlesex County) New THREE TEST Jersey, 07095, will be a new 700 MW combined-cycle power generating facility. WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated h input of 2,307 million British thermal units per hour (MMBtu/hr), that will utilize pipeline natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbtu/hr).

Large Natural Gas, Combined Cycle Turbines 8/26/2016

DLN or SoLoNox Efficienc Use of Pract
TRUE Throughput & ssion Limit Emission Limit 1 ssion Limit 2 Case Efficiency Water RBLC ID Facility Name & Location
HESS NEWARK ENERGY CENTER **Type** 6.210 Process Notes oughput is for 2 turbines, 2 Primary Fue **Control Method Description** & Units & Units 887 LB/MW-H & Units ppmv @ 15% O2 Pollutant/ Compliance Notes
CO2 Monitored by CO2 CEMs. SCR Injection LC HESS NEWARK ENERGY ct burners and 1 auxiliary boiler CONSCUTV 12 MONTH PERIOD CH4 and Nitrous oxide monito ENTER ESSEX. NJ ROLLING 1 MONTH HESS NEWARK ENERGY CENTER /01/2012 AC bined Cycle Combustion Turbine Fuel: Annual throughout is for 2 turbin 39463 MMCubir lective Catalytic Reduction (SCR LLC HESS NEWARK ENERGY System and use of natural gas a AVERAGE OF ROLLING AVE THREE TESTS BASED ON 1-HR CENTER ESSEX NJ CO2e = 2 000 268 t/vr for the facility (2 clean burning fuel turbines 2 duct burners and 1 auxiliar BLOCK AVE boiler, 1 emergency generator and 1 fir HESS NEWARK ENERGY CENTER, Combined cylce turbine with duct burner 16.210 * Annual throughput is for 2 turbines, 2 natural gas 39463 mmcubic Volatile Oxidation catalyst I PPMVD 3-HR 5.7 LB/H NJ-0080 11/01/2012 ACT AER FALSE LC HESS NEWARK ENERGY uct burners and 1 auxiliary boiler ROLLING AVERAGE AVERAGE OF THREE TESTS CENTER ESSEX, NJ is (VOC) BASED ON 1-HF BLOCK 10.2 LB/H HESS NEWARK ENERGY CENTER, Fuel: Annual throughput is for 2 turbines, natural gas 39463 MMCubic Carbon Oxidation Catalyst and Good ombined Cycle Combustion Turbin LLC HESS NEWARK ENERGY de combustion Practices and use of AVERAGE OF ROLLING AVE THREE TESTS BASED ON 1-HR natural gas a clean burning fuel CENTER ESSEX, NJ CO2e = 2.000.268 t/vr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fir BLOCK AVE HESS NEWARK ENERGY CENTER, NJ-0080 Fuel: Annual throughput is for 2 turbine 39463 MMCubic Particulat Use of natural gas a clean burning FALSE 11/01/2012 ACT 11 LB/H BACT-Combined Cycle Combustion Turbine e matter, fue filterable < 10 ŵ LC HESS NEWARK ENERGY 2 duct burners and 1 auxiliary boiler AVERAGE OF THREE TESTS CENTER ESSEX, NJ CO2e = 2.000.268 t/vr for the facility (2 turbines, 2 duct burners and 1 auxiliar boiler, 1 emergency generator and 1 fil HESS NEWARK ENERGY CENTER Fuel: Annual throughout is for 2 turbine mbined Cycle Combustion Turbine 39463 MMCubic Particulat Use of Natural Gas a clean burning e matter, fuel filterable < 2.5 ŵ LLC HESS NEWARK ENERGY duct burners and 1 auxiliary boiler AVERAGE OF THREE TESTS CENTER ESSEX INJ CO2e = 2,000,268 t/yr for the facility (2 turbines, 2 duct burners and 1 auxiliar boiler, 1 emergency generator and 1 fire HESS NEWARK ENERGY CENTER, Combined cylce turbine with duct burner 16.210 * Annual throughput is for 2 turbines, 2 Particulat Use of natural gas a clean burning NJ-0080 39463 mmcubic FALSE 1/01/2012 ACT 13.2 LB/H e matter, fue filterable < 10 ŵ LC HESS NEWARK ENERGY ct burners and 1 auxiliary boiler AVERAGE OF THREE TESTS CENTER ESSEX, NJ HESS NEWARK ENERGY CENTER, NJ-0080 11/01/2012 ACT FALSE * Annual throughput is for 2 turbines. 2 13.2 LB/H e matter, filterable < 2.5 ŵ LC HESS NEWARK ENERGY uct burners and 1 auxiliary boiler AVERAGE OF THREE TESTS CENTER ESSEX. NJ HESS NEWARK ENERGY CENTER, 2 PPMVD 3-HR 10.2 LB/H 1/01/2012 AC Carbon Ox * Annual throughout is for 2 turbines. 2 39463 mmcu LLC HESS NEWARK ENERGY uct burners and 1 auxiliary boiler ROLLING AVERAGE AVERAGE OF THREE TESTS CENTER ESSEX, NJ BASED ON 1-HF BLOCK 2 PPMVD 3-HR HESS NEWARK ENERGY CENTER FALSE N.I-0080 AFR 90,000 1/01/2012 ACT ombined cylce turbine with duct burne * Annual throughput is for 2 turbines 2 natural gas 39463 mmcubic Nitrogen Selelctive catalytic reduction (SCR) I C HESS NEWARK ENERGY uct burners and 1 auxiliary boiler ROLLING AVERAGE AVERAGE OF THREE TESTS CENTER ESSEX INJ BASED ON 1-H 39463 mmcubic Sulfur Use of natural gas, a clean low sulfu NJ-0080 HESS NEWARK ENERGY CENTER bined cylce turbine with duct burn * Annual throughput is for 2 turbines, 2 FALSE C HESS NEWARK ENERGY uct burners and 1 auxiliary boiler AVERAGE OF CENTER ESSEX, NJ HESS NEWARK ENERGY CENTER, (SO2)
39463 MMCubic Sulfur Use of natural gas a clean low sulfur THREE TESTS 2.8 LB/H Fuel: Annual throughput is for 2 turbines, natural gas NJ-0080 Combined Cycle Combustion Turbine FALSE 1/01/2012 ACT AVERAGE OF THREE TESTS LC HESS NEWARK ENERGY 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 t/yr for the facility (2 Dioxide (SO2) CENTER ESSEX, NJ turbines, 2 duct burners and 1 auxiliar boiler, 1 emergency generator and 1 fir 39463 MMCubic Volatile Oxidation Catalyst and Good Compoun natural gas a clean burning fuel HESS NEWARK ENERGY CENTER, Fuel: Annual throughput is for 2 turbine NJ-0080 11/01/2012 ACT 1 PPMVD 3-HR FALSE Combined Cycle Combustion Turbine LLC HESS NEWARK ENERGY 2 duct burners and 1 auxiliary boiler AVERAGE OF ROLLING THREE TESTS AVERAGE CENTER ESSEX, NJ CO2e = 2.000.268 t/vr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fir BASED ON 1-H BLOCK NJ-0080 11/01/2012 ACT HESS NEWARK ENERGY CENTER, Fuel: Annual throughput is for 2 turbines 39463 MMCubic Particulat Good combustion Practices and use FALSE Combined Cycle Combustion Turbine LC HESS NEWARK ENERGY 2 duct burners and 1 auxiliary boiler e matter, of natural gas a clean burning fuel filterable AVERAGE OF CENTER ESSEX NJ CO2e = 2,000,268 t/yr for the facility (2 THREE TESTS turbines 2 duct burners and 1 auxiliar boiler, 1 emergency generator and 1 fir NJ-0080 1/01/2012 ACT HESS NEWARK ENERGY CENTER mbined cylce turbine with duct burn * Annual throughput is for 2 turbines, 2 39463 mmcubi Particulat Use of natural gas a clean burning FALSE LC HESS NEWARK ENERGY uct burners and 1 auxiliary boiler e matter, fue filterable AVERAGE OF THREE TESTS CENTER ESSEX, NJ Siemens SGT6-5000F or 2 GE Frame Natural Gas /olatile 1 PPMVD @ 15% O2, 3-HR PANDA SHERMAN POWER LLC Natural Gas-fired Turbines TX-0551 2/03/2010 ACT FALSE RUE ood combustion practices PANDA SHERMAN POWER STATION 7FA. Both capable of combined or sim Organio 15% O2, 3-HF AVG, SIMPLE RAYSON, TX cycle operation. 468 MMBtu/hr duct COMBINED s (VOC) CYCLE MODE TX-0551 PANDA SHERMAN POWER LLC 2 Siemens SGT6-5000F or 2 GE Frame Natural Gas PPMVD@ FALSE TRUE 02/03/2010 ACT Natural Gas-fired Turbine PANDA SHERMAN POWER STATION 7FA. Both capable of combined or simple cycle operation. 468 MMBtu/hr duct 15% O2. 15% O2. RLN ROLLNG 24-HR 24-HR AVG. GRAYSON, TX AVG. SIMPLE COMBINED 9 PPMVD @ TX-0551 PANDA SHERMAN POWER LLC 2 Siemens SGT6-5000F or 2 GE Frame Natural Gas Nitrogen Dry low NOx combustors and Simple Cycle mode bypasses SCR_FALSE 02/03/2010 ACT Natural Gas-fired Turbines 00 MW BACT-PANDA SHERMAN POWER STATION 7FA. Both capable of combined or sin cycle operation. 468 MMBtu/hr duct ective Catalytic Reduction 15% O2. 15% O2. RLNG ROLLNG 24-HR 24-HR AVG. RAYSON, TX AVG, SIMPLE COMBINED YCLE 1 PPMVD @ TX-0552 STARK POWER GENERATION II Project will be either 2 MHI501G gas atural gas-fired turbines 10 PPMVD @ natural gas Carbon Good combustion practices RUF HOLDINGS LLC WOLF HOLLOW turbines plus 230 MMBtu/hr duct burne 15% O2 15% O2 POWER PLANT NO 2 HOOD, TX firing for each turbine or 2 GF 7FA gas ROLLING 3-HR ROLLING 3-HR turbines plus 570 MMBtu/hr duct burn AVG MHI501G AVG GE 7FA firing for each turbine.

Proiect will be either 2 MHI501G gas 4 PPMVD @ 15% O2, 3-HR 3 PPMVD @ 15% 02, 3-HR AVG, MHI501G AVG, GE 7FA TX-0552 STARK POWER GENERATION II Natural gas-fired turbines FALSE TRUE 03/03/2010 ACT natural gas od combustion practices HOLDINGS, LLC WOLF HOLLOV turbines plus 230 MMBtu/hr duct bur OWER PLANT NO. 2 HOOD, TX firing for each turbine or 2 GE 7FA gas turbines plus 570 MMBtu/hr duct burn ds (VOC) firing for each turbine. Project will be either 2 MHI501G gas Natural gas-fired turbines Reduced load for GE 7FA is 50% FALSE STARK POWER GENERATION II Nitrogen Dry low NOx combustors plus 9 PPMVD @ 03/03/2010 AC PPMVD @ of full load or less Reduced load HOLDINGS, LLC WOLF HOLLOW turbines plus 230 MMBtu/hr duct burn elective catalytic reduction 15% O2, ROLLING 24-HR ROLLING 3-HR OWER PLANT NO. 2 HOOD. TX firing for each turbine or 2 GE 7FA gas for MHI501G is 60% of full load or turbines plus 570 MMBtu/hr duct bur AVG, FULL LOAD AVG, REDUCED LOAD firing for each turbine.

Large Natural Gas, Combined Cycle Turbines 8/26/2016

DLN or Efficienc Use of Comb SoLoNox y NG Pract Throughput & Units 0 MW Efficiency % Pollutant/ Compliance Notes Water nission Limit Emission Limit 1 Emission Limit 2 Control Method Description RBLC ID Facility Name & Location NRG TEXAS POWER LLC WA Type 6.210 Process Notes
General Electric (GE) Frame 7EA (or a Primary Fuel & Units & Units & Units ppmv @ 15% O2 Other Factors SCR Injection Date 12/19/2012 ACT PARISH ELECTRIC GENERATING similar sized unit), which is rated at a maximum base-load electric output of STATION - DEMONSTRATION PROJECT FORT BEND. TX approximately 80 megawatts (MW). HRSG duct burner has a maximum he input capacity of 225 million British thermal units per hour (MMBtu/hr) bas on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Un TX-0625 12/19/2012 ACT NRG TEXAS POWER LLC WA ogeneration turbine General Electric (GE) Frame 7EA (or a natural gas Particulat good combustion and use of natural 16.58 LB/H 1 HR FALSE PARISH ELECTRIC GENERATING similar sized unit), which is rated at a maximum base-load electric output of e matter, gas total < 2.5 STATION - DEMONSTRATION PROJECT FORT BEND, TX approximately 80 megawatts (MW). HRSG duct burner has a maximum he input capacity of 225 million British thermal units per hour (MMBtu/hr) bas on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Unit solvent. NRG TEXAS POWER LLC WA TX-0625 12/19/2012 ACT eneration turbine General Electric (GE) Frame 7EA (or a natural gas Nitrogen DLN combusters on the turbine and 2 PPMVD 3-HR PARISH ELECTRIC GENERATING similar sized unit), which is rated at a maximum base-load electric output of elective catalytic reduction (SCR ROLLING AVG, AT 15% STATION - DEMONSTRATION PROJECT FORT BEND. TX approximately 80 megawatts (MW). OXYGEN HRSG duct burner has a maximum he input capacity of 225 million British thermal units per hour (MMBtu/hr) bas on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Un TX-0625 12/19/2012 ACT NRG TEXAS POWER LLC WA eneration turbine General Electric (GE) Frame 7EA (or a natural gas ation catalyst PARISH ELECTRIC GENERATING similar sized unit), which is rated at a INITIAL STACK STATION - DEMONSTRATION maximum base-load electric output of is (VOC) PROJECT FORT BEND, TX approximately 80 megawatts (MW). HRSG duct burner has a maximum he input capacity of 225 million British thermal units per hour (MMBtu/hr) bas on the high heating value (HHV) of the fuel fired. The steam will be used for th regeneration of the Demonstration Uni NRG TEXAS POWER LLC WA 12/19/2012 ACT Up to 590,000 acfm of coal-fired boiler none TX-0625 CO2 Capture Demonstration Unit Volatile proper design and operation, good Organic solvent maintenance, LDAR program These are emissions from a CO2- FALSE stripped gas stream after it has passed through an amine absorbe PARISH ELECTRIC GENERATING exhaust is treated by an amine treat STATION - DEMONSTRATION ROJECT FORT BEND, TX ds (VOC) TX-0625 12/19/2012 ACT NRG TEXAS POWER LLC WA General Electric (GE) Frame 7EA (or a natural gas Carbon eneration turbine PARISH ELECTRIC GENERATING similar sized unit), which is rated at a ROLLING, AT STATION - DEMONSTRATION maximum base-load electric output of 15% OXYGEN PROJECT FORT BEND TX approximately 80 megawatts (MW) HRSG duct burner has a maximum he input capacity of 225 million British hermal units per hour (MMBtu/hr) bas on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Un General Electric LM6000 natural gas-natural gas natural gas fuel, includes PM and FALSE TX-0704 12/02/2014 ACT M & G RESINS USA LLC UTILITY cogeneration turbine BACT-LANT NUECES, TX fired combustion turbine equipped with lean pre-mix low-NOx combustors. One total < 2.5 heat recovery steam generator (HRSG with 263 million British thermal units p hour (MMBtu/hr) natural gas-fired dud burner system containing a selective catalytic reduction system (SCR) TX-0704 12/02/2014 ACT M & G RESINS USA LLC UTILITY General Electric LM6000 natural gas-2 PPMVD @15 O2, 24-HR ROLLING AVERAGE LANT NUECES. TX fired combustion turbine equipped with lean pre-mix low-NOx combustors. One heat recovery steam generator (HRSG with 263 million British thermal units pe hour (MMBtu/hr) natural gas-fired duc burner system containing a selective catalytic reduction system (SCR) General Electric LM6000 natural gas-fired combustion turbine equipped with TX-0704 12/02/2014 ACT M & G RESINS USA LLC UTILITY cogeneration turbine 4 PPMVD @1 FALSE O2, 24-HR ROLLING AVERAGE PLANT NUFCES, TX lean pre-mix low-NOx combustors. One heat recovery steam generator (HRSG) with 263 million British thermal units pe hour (MMBtu/hr) natural gas-fired duc catalytic reduction system (SCR) General Electric LM6000 natural gas-12/02/2014 ACT M & G RESINS USA LLC UTILITY ogeneration turbine PPMVD @1 O2, 24-HR ROLLING AVERAGE PLANT NUECES, TX ired combustion turbine equipped with lean pre-mix low-NOx combustors. One heat recovery steam generator (HRSG) s (VOC) with 263 million British thermal units p hour (MMBtu/hr) natural gas-fired dud ourner system containing a selective catalytic reduction system (SCR) TX-0737 12/21/2012 ACT NRG TEXAS POWER LLC W. A. GE 7EA turbine, 225 million British BACT-FALSE ombined cycle combustion turbine Natural gas as fuel and good natural gas thermal units per hour duct burner. Steam created in the heat recovery steam generator will be used as pro-PARISH ELECTRIC GENERATING STATION FORT BEND, TX e matter, total < 2.5 combustion practices. This includes PM and PM10. . PM2.5 TX-0737 NRG TEXAS POWER LLC W. A. GE 7EA turbine 225 million British 12/21/2012 ACT mbined cycle combustion turbine natural gas Volatile 2 PPMVD @ FALSE ARISH ELECTRIC GENERATING nermal units per hour duct burner 15% O2 Steam created in the heat recovery STATION FORT BEND TX steam generator will be used as pro ds (VOC) steam.
GE 7EA turbine, 225 million British 12/21/2012 AC NRG TEXAS POWER LLC W. A. nbined cycle combustion turbine natural gas ctive catalytic reduction PARISH ELECTRIC GENERATING STATION FORT BEND, TX thermal units per hour duct burner. Steam created in the heat recovery 15% O2 3-HR /ERAGE steam generator will be used as pro NRG TEXAS POWER LLC W. A. GE 7EA turbine, 225 million British TX-0737 12/21/2012 ACT Combined cycle combustion turbine Carbon Oxidation catalyst PPMVD @ FALSE natural gas 80 MW BACTthermal units per hour duct burner. Steam created in the heat recovery steam generator will be used as pro-PARISH ELECTRIC GENERATING 15% O2 24-HR STATION FORT BEND, TX AVERAGE

BACT Analysis: RBLC Seach Parame

						1		_						1=4					
RBLC II *LA-0295	Date 07/12/2016 ACT	Facility Name & Location EQUISTAR CHEMICALS, LP WESTLAKE FACILITY CALCASIEU, LA	Process Solar Titan 130 Gas Turbine with Unfired 1 HRSG (3-08, EQT 323)	Process Type 16.210	Process Notes Primary Fuel Turbine is subject to 40 CPR 60 Subpart Natural Gas KKKK. Output power at generator: 14.111	Throughput & Units 159.46 MM BTU/HR	Pollutant Control Method Description Volatile Good combustion practices, includir Organic good equipment design, use of Compoun gaseous fuels for good mixing, and	& Units ng 2.5 PPMVD @ 15% O2	nit Emission Limi 1 & Units		ppmv @ 15% O2		Case Basis BACT- U	Other Factors		SD	SCR Injection OxCat	DLN or Efficienc Use of SoloNox NS NS Pract	pricate Pemission Limit 1 1.64 LB/HR
*LA-0295	07/12/2016 ACT	EQUISTAR CHEMICALS, LP WESTLAKE FACILITY CALCASIEU, LA	Solar Titan 130 Gas Turbine with Unfired 1 HRSG (3-08, EQT 323)	16.210	Turbine is subject to 40 CFR 60 Subpart Natural Gas KKKK. Output power at generator: 14.111 MW	159.46 MM BTU/HR	Nitrogen Oxides and good combustion (SoLoNOx) of (NOx) of gaseous fuels for good mixing, ar proper combustion techniques (see notes below)	15% O2 ISEANNUAL INDAVERAGE	14.25 LB/HR HOURLY MAXIMUM	0		B. P:	BACT- U		Good combustion practices shall include monitoring of the flue gas oxygen content, combustion air flow, fuel consumption, and flue gas temperature. These parameters shall be maintained within the manufacturer&"'s recommended operating guidelines or within a rang that is otherwise indicative of proper operation of the emissions unit.	TRUE			1
*PA-0289	06/18/2010 ACT	GEISINGER MEDICAL CENTER GEISINGER MED CTR/DANVILLE MONTOUR, PA	COMBINED HEAT AND POWER 1 COMBUSTION TURBINE	16.210	ton of total hazardous air pollutant in Natural Gas any 12 consecutive month period; and 0.: ton of formaldehyde in any 12 consecutive month period.	55.62 MMBTU/H	H Formalde hyde	0	0.0029 LB/MMBTU	0			OTHER U CASE-BY- CASE			TRUE			14.25 LB/HR 1 0.0029 LB/M
*PA-0289	06/18/2010 ACT	GEISINGER MEDICAL CENTER GEISINGER MED CTR/DANVILLE MONTOUR, PA	COMBINED HEAT AND POWER COMBUSTION TURBINE	16.210	0.8 ton of total hazardous air pollutant in Natural Gas any 12 consecutive month period; and 0.: ton of formaldehyde in any 12 consecutive month period.	55.62 MMBTU/H	H Volatile Organic Compoun ds (VOC)	0	0.6 LB/H IN SOLONOX MODE	11.9 LB/H SUB- ZERO NON- SOLONOX MODE		C	OTHER U CASE-BY- CASE			TRUE			1 0.6 LB/H IN
*PA-0289	06/18/2010 ACT	GEISINGER MEDICAL CENTER GEISINGER MED CTR/DANVILLE MONTOUR, PA	COMBINED HEAT AND POWER 1 COMBUSTION TURBINE	16.210	0.8 ton of total hazardous air pollutant in Natural Gas any 12 consecutive month period; and 0.1 ton of formaldehyde in any 12 consecutive month period.	55.62 MMBTU/H	H Nitrogen SoLoNOx combustor Oxides (NOx)	0	15 PPM @15% O2 IN SOLONOX MODE	42 PPM @15% O2 DURING SUB-ZERO AMBIENT., NO SOLONOX	15 N-	C.	OTHER U CASE-BY- CASE			TRUE			1
*PA-0289	06/18/2010 ACT	GEISINGER MEDICAL CENTER GEISINGER MED CTR/DANVILLE MONTOUR, PA	COMBINED HEAT AND POWER 1 COMBUSTION TURBINE	16.210	0.8 ton of total hazardous air pollutant in Natural Gas any 12 consecutive month period; and 0.1 ton of formaldehyde in any 12 consecutive month period.	55.62 MMBTU/I	H Carbon Monoxide	0	25 PPM @ 15% O2 IN SOLONOX MODE	6 100 PPM @ 15 O2 SUB-ZERO AMBIENT NON SOLONOX		C.	OTHER U CASE-BY- CASE			TRUE			15 PPM @15%
*SD-0005	06/29/2010 ACT	BASIN ELECTRIC POWER COOPERATIVE DEER CREEK STATION BROOKINGS, SD	Combustion turbine/heat recovery steam 1 generator	16.210	Combustion Turbine - 1,713 million Blus Natural Gas per hour (Lower Heating Value) heat inpu Duct Burne - 615.2 million Blus per hour (Lower Heating Value) heat input	300 Megawatts	Carbon Monoxide	2 PPMVD @ 15% O2 3- HOUR, EXCLUDES SS PERIODS		840 POUNDS PER SS PERIO SM STARTUP AND SHUTDOWN	DD D	B. P:	BACT- U			TRUE			25 PPM @ 15
*SD-0005	06/29/2010 ACT	BASIN ELECTRIC POWER COOPERATIVE DEER CREEK STATION BROOKINGS, SD	Combustion turbine/heat recovery steam 1 generator	16.210	Combustion Turbine - 1,713 million Blus Natural Gas per hour (Lower Heating Value) heat inpu Dud Burner - 615.2 million Blus per hour (Lower Heating Value) heat input	300 Megawatts	Particulat Good Combustion e matter, total < 10 ŵ (TPM10)	0.01 LB/H 3- HOUR	23.2 LB/H 3- HOUR / WITH DUCT FIRING				BACT- U			TRUE		TRUE	10.5 LB/H 3
*SD-0005	06/29/2010 ACT	BASIN ELECTRIC POWER COOPERATIVE DEER CREEK STATION BROOKINGS, SD	Combustion turbine/heat recovery steam 1 generator	16.210	Combustion Turbine - 1,713 million Btus Natural Gas per hour (Lower Heating Value) heat inpu Duct Burner - 615.2 million Btus per hour (Lower Heating Value) heat input	300 Megawatts		3 PPMVD AT 15% O2 3- HOUR, EXCLUDES SS		220 POUNDS PER SS PERIO SM STARTUP OR SHUTDOWN			BACT- U PSD			TRUE	TRUE		23.2 LB/H 3
AK-0066	06/15/2009 ACT	BRITISH PETROLEUM EXPLORATION ALASKA (BPXA) ENDICOTT PRODUCTION FACILITY, LIBERTY DEVELOPMENT PROJECT PRUDHOE BAY, AK	EU ID 10A, TURBINE 1	16.210	FUEL GAS	7.5 KW	Sulfur Dioxide (SO2)	0	0.06 LB/MMBTU BASED ON HEAT INPUT	U 0		0.06 B	BACT- U		BASELINE BACT SELECTED THIS WAS ALSO THE LIMIT USED IN MODELLING DEMONSTRATIONS	FALSE			25.8 LB/H 3
AK-0066	06/15/2009 ACT	BRITISH PETROLEUM EXPLORATION ALASKA (BPXA) ENDICOTT PRODUCTION FACILITY, LIBERTY DEVELOPMENT PROJECT PRUDHOE BAY, AK	·	16.210	FUEL GAS	7.5 KW	Nitrogen Oxides (NOx)	0	15% O2 WHEN AMBIENT	120 PPMV AT 15% O2 WHEN AMBIENT TEMPERATUR < 10 DEG-F		B _P	BACT- U	70.000	BASELINE SELECTED AS BACT	FALSE			0.06 LB/MMB
AK-0066	06/15/2009 ACT	BRITISH PETROLEUM EXPLORATION ALASKA (BPXA) ENDICOTT PRODUCTION FACILITY, LIBERTY DEVELOPMENT PROJECT PRUDHOE BAY, AK	·	16.210	FUEL GAS	7.5 KW	Carbon Monoxide	0	O2 WHEN AMBIENT	6 15 PPMV @ 15 O2 WHEN AMBIENT TEMPERATUR < 10 DEG-F		B. P:	BACT- U	90.000	BPXA ESTIMATED THE COST EFFECTIVENESS AT \$2,900/TON, WHICH THE ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DETERMINED WAS ALSO REASONABLE FOR BACT.	FALSE			25 PPMV AT
AL-0282	01/22/2014 ACT	LENZING FIBERS, INC. LENZING FIBERS, INC. MOBILE, AL	Gas Turbine with HRSG 1	16.210	Natural Gas	25 MW	Particulat Good combustion practices. e matter, filterable (FPM)	0	0.0075 LB/MMBTU	0		0.0075 B	BACT- U			FALSE			5 PPMV @ 15 1 0.0075 LB/M
		FIBERS, INC. MOBILE, AL		16.210	Natural Gas	25 MW	Volatile Organic Compoun ds (VOC)	0	1.6 PPM PPM VD @15% O2 WITH DUCT BURNERS	0	1.6	B. P:	BACT- U PSD			FALSE			1.6 PPM PPM
AL-0282	01/22/2014 ACT	LENZING FIBERS, INC. LENZING FIBERS, INC. MOBILE, AL	Gas Turbine with HRSG 1	16.210	Natural Gas	25 MW	Carbon Dioxide Equivalen t (CO2e)	0	137908 TPY OF CO2E 12 - MONTH ROLLING	F 0		B. P:	BACT- U			FALSE			1 137908 TPY
	11/06/2012 ACT 01/13/2014 ACT	GROSSMONT HOSPITAL GROSSMONT HOSPITAL SAN DIEGO, CA DCP MIDSTREAM, LP LUCERNE GAS		16.210	Manufacturer: Solar Turbines. Model 50- natural gas 6400 R. 4.6 MW - Natural gas fired with Duct Two natural gas fired combustion natural gas	0 72.73 MMBTU/i	Nitrogen Oxides (NOx) H Carbon Waste heat recovery, thermal	0	9 PPMVD@159 O2 1 HOUR 42268 TON	% 0 40 % THERMA	9	C.	DTHER U CASE-BY- CASE		9 ppmv with duct burner in operation. 5 ppmv when duct burner is not i operation. SCR is not cost effective (2.5 ppmv). Other pollutants are below BACT thresholds. The turbines shall be equipped with waste heat recovery units (WHRU				9 PPMVD@15%
		PROCESSING PLANT WELD, CO			turbines equipped with low NOX burners, site rated at 9,055 horsepower each.		Dioxide efficiency, tune-ups & maintenance. Equivalen t (CO2e)	-	CO2E PER YEAR (EACH)			Pi	PSD		increase the efficient use of waste heat for process heating. The combustion turbines and the WHRUs system shall meet a BACT limit c 40% minimum thermal efficiency on a 12-month rolling average basis. Tune-ups and maintenance shall be required annually for the life of the turbines.	,			42268 TON C
CT-0155	08/27/2008 ACT	WESLEYAN UNIVERSITY WESLEYAN UNIVERSITY, CT	N 2.4 MW NATURAL GAS FIRED COGENERATION FACILITY WITH SCR/OXIDATION CATALYST	16.210	NATURAL GAS	22.3 MMBTU/H	Nitrogen Oxides (NOx)	0	0.18 G/B-HP-H SHORT TERM EMISSION LIMITS	5.82 T/YR ANNUAL EMISSIOM LIM	IT		Other U Case-by- Case	83.600		FALSE			0.18 G/B-HP
CT-0155	08/27/2008 ACT	WESLEYAN UNIVERSITY WESLEYAN UNIVERSITY, CT	N 2.4 MW NATURAL GAS FIRED COGENERATION FACILITY WITH SCR/OXIDATION CATALYST	16.210	NATURAL GAS	22.3 MMBTU/H	Carbon Monoxide OXIDATION CATALYST	0	0.48 G/B-HP-H SHORT TERM EMISSION LIMI		IT	C	Other U Case-by- Case	84.000		FALSE			1
	06/12/2008 ACT	CUTRALE CITRUS JUICES USA AUBURNDALE CITRUS FACILITY POLK, FL	W/EXISTING DUCT BURNER #2	16.210	ANNUAL EPA METHOD 20 OR 7E AS PER NSPS SUBPART KKKK. SYSTEM GENRATES 4.4 NATURAL GAS		Nitrogen DRY LOW NOX BURNERS (NOX)	0	25 PPMVD HR AVG/CORRECT ED TO 25% O2	T .	25	P	BACT- U	85.000				TRUE	0.48 G/B-HP 2 25 PPMVD HR
	06/12/2008 ACT	CUTRALE CITRUS JUICES USA AUBURNDALE CITRUS FACILITY POLK, FL	W/EXISTING DUCT BURNER #1	16.210	MEGAWATTS. NEW COGEN SYSTEM TURBINES #1 WIEXISTING DUCT BURNER #1.	62.7 MMBTU/H	Oxides (NOx)	0	AVG/CORRECT ED TO 25% O2	T .	25		BACT- U					TRUE	2 25 PPMVD HR
FL-0314	06/02/2008 ACT 06/04/2014 ACT	CUTRALE CITRUS JUICES USA LEESBURG CITRUS FACILITY LAKE, FL MIDWEST FERTILIZER	EXISTING STEAM GENERATOR	16.210	SYSTEM GENERATES 4 MW NATURAL GAS ELECTRIC NATURAL GAS USAGE IN EACH NATURAL GAS	62.7 MMBTU/H	Nitrogen Oxides (NOx) Particulat GOOD COMBUSTION PRACTICES	0	25 PPMVD HR AV/CORRECTE D TO 25% O2 1.9 LB/MMCF 3	E	25	P	BACT- U BACT- N	85.000	ANNUAL EPA METHOD 20 OR 7E AS PER SUBPART KKKK.	FALSE			1 25 PPMVD HR
		CORPORATION MIDWEST FERTILIZER CORPORATION POSEY IN	,		BOILER NOT TO EXCEED 1501.91 MMCF/YR	MMBTU/H, EACH	e matter, filterable (FPM)		HR AVERAGE			P	PSD						1.9 LB/MMCF
IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY IN	```	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	218.6 MMBTU/H, EACH	Nitrogen LOW NOX BURNERS, FLUE GAS Oxides (NOx)	0	20.4 LB/MMCF HR AVERAGE				BACT- N			FALSE			2 20.4 LB/MMC

BACT Analysis: RBLC Seach Paramet

Г	BLC ID	Date	Facility Name & Location Process	Process Type Process Notes		Throughput & Units Po			it Emission Limit	Case by Case Basis Other Factors	Estimated Efficiency % Pollutant/ Compliance Notes	Wate Draft? SCR Injection		Use of Comb Duplicate NG Pract ? Emission Limit
IN-			Facility Name & Location Process MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, JOHN CORPORATIO	16.210 Process Notes 16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	Primary Fuel NATURAL GAS	218.6 Ca	control Method Description co	37.22 LB/MMCF 3-HR AVERAGE	2 & Units ppmv @ 15% O2 lb/MMBtu	BACT- N PSD	% Pollutant/ Compliance Notes	FALSE SCR Injection	on Oxcat Solonox y	NG Pract ? Emission Limit
IN-	0173 06	04/2014 ACT	MIDWEST FERTILIZER THREE (3) AUXILARY BOILERS CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	MMBTU/H, Or EACH Co	latile GOOD COMBUSTION PRACTICES 0 aparic AND PROPER DESIGN (VOC)	5.5 LB/MMCF 3 HR AVERAGE	- 0	BACT- PSD N		FALSE		2
IN-	0173 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS		rbon GOOD COMBUSTION PRACTICES 0 xxide AND PROPER DESIGN: AIR INLET CONTROLS, HEAT RECOVERY CONDENSATE AND BLOWDOWN HEAT RECOVERY	59.61 T/MMCF : HR AVERAGE	3- 80 % THERMAL EFFICIENCY (HHV)	BACT- PSD N		FALSE		5.5 LB/MMCF
IN-	0173 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	MMBTU/H, e i EACH toi µ	riculat GOOD COMBUSTION PRACTICES 0 natter, AND PROPER DESIGN	7.6 LB/MMCF 3 HR AVERAGE	- 0	BACT- PSD N		FALSE		59.61 T/MMC
IN-	0173 06	04/2014 ACT	MIDWEST FERTILIZER TWO (2) NATURAL GAS FIRED COMPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH e	riticulat anatter, AND PROPER DESIGN AND PROPER DESIGN BM (A)	0.0019 LB/MMBTU 3-H AVERAGE	0 0.00	019 BACT- N PSD N		FALSE		7.6 LB/MMCF
IN-	0173 06/	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST ERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH e to	GOOD COMBUSTION PRACTICES 0 natter, AND PROPER DESIGN	0.0076 LB/MMBTU 3-H AVERAGE	0 0.00	076 BACT- N PSD N		FALSE		0.0019 LB/M
IN-	0173 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH e to	riculat GOOD COMBUSTION PRACTICES 0 natter, AND PROPER DESIGN at < 2.5	0.0076 LB/MMBTU 3-H AVERAGE		076 BACT- N PSD N		FALSE		0.0076 LB/M
IN-	0173 06		MIDWEST FERTILIZER CORPORATION MIDWEST ERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY		EACH M	rbon GOOD COMBUSTION PRACTICES 0 noxide AND PROPER DESIGN	0.03 LB/MMBTU 3-HR AVERAGE AT > 50% PEAK LOAD		0.03 BACT- PSD N		FALSE		0.0076 LB/M
IN-	06/	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FINANCIAL TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES FINANCIAL TRANSPORTER FINANCIAL TRANS	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS		rbon GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN	12666 BTU/KW- H, MINIMUM CONTINUOUS	LB/MMBTU 3-HR	BACT- PSD N	CO2 EMISSIONS SHALL NOT EXCEED 144,890 TON/YEAR	FALSE		2 12666 BTU/K
IN-	0173 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH O	latile GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN mpoun (VOC)	2.5 PPMVD AT 15% OXYGEN 1 HR AVERAGE	0 2.5	BACT- PSD N		FALSE		2 2 5 PPMVD A
IN-	0173 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH O:	rogen DRY LOW NOX COMBUSTORS 0 iddes Ox)	22.65 PPMVD AT 15% OXYGEN 3-HR AVERAGE AT > 50% PEAK LOAD	0 22.65	BACT- PSD N		FALSE		2 22.65 PPMVD
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER THREE (3) AUXILARY BOILERS CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 Pa MMBTU/H, e EACH fill	rdiculat GOOD COMBUSTION PRACTICES 0 anatter, AND PROPER DESIGN erable PM)	1.9 LB/MMCF 3 HR AVERAGE	- 0	BACT- PSD N		FALSE		2 22.05 FF MVD
IN-	0180 06/	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 Ni MMBTU/H, O: EACH (N	rogen ides Dx) LOW NOX BURNERS, FLUE GAS 0 RECIRCULATION	20.4 LB/MMCF HR AVERAGE	3-0	BACT- PSD		FALSE		2 1.9 LB/MMCF
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS		rbon GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN	37.22 LB/MMCF 3-HR AVERAGE	E 0	BACT- PSD N		FALSE		2 37.22 LB/MM
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	MMBTU/H, Or EACH Co	latile GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN mpoun (VOC)	5.5 LB/MMCF 3 HR AVERAGE	- 0	BACT- N PSD		FALSE		2 5.5 LB/MMCF
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS		rbon GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN: AIR INLET CONTROLS, HEAT RECOVERY CONDENSATE AND BLOWDOWN HEAT RECOVERY	59.61 TON/MMCF 3- HR AVERAGE	80 % THERMAL EFFICIENCY (HHV)	BACT- PSD N		FALSE		2 59.61 TON/M
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER THREE (3) AUXILARY BOILERS CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	MMBTU/H, e to EACH to	rticulat GOOD COMBUSTION PRACTICES 0 natter, al < 10 PM10)	7.6 LB/MMCF 3 HR AVERAGE	- 0	BACT- N PSD N		FALSE		2 7.6 LB/MMCF
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH e filt	rticulat GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN prable M)	0.0019 LB/MMBTU 3-H AVERAGE	0 0.000	D19 BACT- N PSD N		FALSE		2 0.0019 LB/M
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH e to	rticulat GOOD COMBUSTION PRACTICES 0 natter, al < 10 PM10)	0.0076 LB/MMBTU 3-H AVERAGE		076 BACT- N PSD N		FALSE		0.0076 LB/M
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH e to	rticulat GOOD COMBUSTION PRACTICES 0 natter, AND PROPER DESIGN al < 2.5	0.0076 LB/MMBTU 3-H AVERAGE	0 0.00	076 BACT- N PSD N		FALSE		1 0.0076 LB/M
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, Ca EACH M	rbon GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN	0.03 LB/MMBTU 3-HR AVERAGE AT > 50% PEAK LOAD		0.03 BACT- PSD N		FALSE		2
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST COMBUSTION TURBINES FERTILIZER CORPORATION POSEY,	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, Ca EACH Di	rbon GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN	12666 BTU/KW- H, MINIMUM CONTINUOUS	LB/MMBTU 3-HR	BACT- N PSD N	CO2 EMISSIONS SHALL NOT EXCEED 144,890 TONYEAR	FALSE		0.03 LB/MMB
IN-	0180 06	04/2014 ACT	IN MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER COMBUSTION TURBINES FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH O	latile GOOD COMBUSTION PRACTICES 0 AND PROPER DESIGN (VOC)	2.5 PPMVD AT 15% OXYGEN 1 HR AVERAGE	0 2.5	BACT- PSD N		FALSE		12666 BTU/K
IN-	0180 06	04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	16.210 NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	EACH O:	rogen DRY LOW NOX COMBUSTORS 0 ides 0x)	22.65 PPMVD AT 15% OXYGEN 3-HR AVERAGE AT > 50% PEAK LOAD	0 22.65	BACT- N PSD		FALSE		2.5 PPMVD A 2 22.65 PPMVD

BACT Analysis: RBLC Seach Param

				T											
	BLC ID D 079 07/25/201		IDGE Combined Cycle Combustion Turbin	Process Type e w/c16.210	Process Notes The above natural gas use is combined for two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBu/hr)and two duct burners (each with a maximum heat input of 500		Throughput & En	& Units	Emission Limit 1.8 Units 2.8 Units 2.1 LB/H 0 AVERAGE OF HREE TESTS	2 Ib/MMBtu Case by Case Basis OTHER CASE-BY-CASE	Other Factors # Sestimated Efficiency # W	Pollutant/ Compliance Notes Draft? FALSE	SCR Injection OxC	DLN or Efficienc Use of NG	Good Comb Duplicate ? Emission Limit
NJ-0	079 07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ duct burner	e w/c16.210	MMBtu/hr) The above natural gas use is combined for two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)	natural gas	40297.6 Particulat use of natural gas only which is a or natur	A	12.1 LB/H 0 WERAGE OF IHREE TESTS	OTHER CASE-BY- CASE	U	FALSE			12.1 LB/H A
NJ-0	07/25/201		IDGE Combined Cycle Combustion Turbin duct burner		The above natural gas use is combined for two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr) and two duct burners (each with a maximum heat input of 500 MMBtu/hr)		40297.6 Nitrogen mmcubic ft/year Oxides each of the two combustion system with SCR or 0 each of the two combustion turbines and use of only natural gas as fuel.	R B B	2 PPMVD 3-HR 16.8 LB/H 20LLING AVE AVERAGE OF ASSED ON 1-HR THREE TESTS BLOCK	2 LAER	U 77.000	FALSE			2 PPMVD 3-H
NJ-0	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ duct burner	e w/d16.210	The above natural gas use is combined for two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)	natural gas	40297.6 Carbon Oxidation Catalyst, good combustion 0 mmcubic fityear Monoxide practices and use only natural gas a clean burning fuel	R	2 PPMVD 3-HR 10.2 LB/H 2 ROLLING AVE AVERAGE OF ASSED ON 1-HR THREE TESTS BLOCK	2 BACT- PSD	U 77.000	FALSE			2 PPMVD 3-H
NJ-0		ENERGY CENTER MIDDLES			The above natural gas use is combined for two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)		40297.6 Volatile Oxidation catalyst and good 0 Ombustion practices, use of natural Compound gas a clean burning fuel	A	2.9 LB/H AVERAGE OF THREE TESTS	LAER	U	FALSE			2.9 LB/H AV
NJ-0	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ duct burner	e w/d16.210	The above natural gas use is combined for two GE 7FA CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)	natural gas	40297.6 Suffur Use of only natural gas a clean 0 mmcubic ft/year Dioxide burning fuel (SO2)	A	I.1 LBIH 0 AVERAGE OF THREE TESTS	OTHER CASE-BY- CASE	U	FALSE			4.1 LB/H AV
NJ-0	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE EX, NJ Combined Cycle Combustion Turbin duct burner	e w/c16.210	The above natural gas use is combined for two GE 774. CC turbines (each with a maximum heat input of 2, 307 MMBtu/hr)and two duct burners (each with a maximum heat input of 500 MMBtu/hr)	natural gas	40297.6 Particulat luse of natural gas only which is a 0 mmcubic ft/year ematter, clean burning fuel (FPM)	A	I.8 LBIH AVERAGE OF THREE TESTS	OTHER CASE-BY- CASE	U	FALSE			4.8 LB/H AV
NJ-C	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ with Duct Burner	e 16.210	Woodbridge Energy Center (WEC) to cloaded at Reverside Drive in Woodbridge Township (Middlesex County), New Jersey, 0709 St, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (CEI) combustion turbine generators (CTGs) each with a maximum rated heat input of 2, 307 million British thermal units per hour (MMBurlur), that will utilize plenine natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbtuthy).		40297.6 Carbon Oxidation Catalyst: Good Combustior 0 Monoxide Practices	A	12.1 LBH 2 PPM/O 3-HR VERAGE OF ROLLING HHREE 1-HOUR AVERAGE BASED ON 1-HR BLOCK	BACT- PSD	U 77.000	FALSE			2 12.1 LB/H A
NJ-C	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ with Duct Burner	e 16.210	Woodbridge Energy Center (WEC), located at Reverside Drive in Woodbridge Township (Middlesex County), New Jersey, (7095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion is urbine generations (CTG) set a maximum rated heat input of 2,07 million British thermal unite per hour (MMBsurlyn, that will utility prelimin and the set of the set		40297.6 Particulat Good Combustion Practices and use 0 of Natural gas, a clean burning fuel. of Natural gas, a clean burning fuel. (FPM10)	A	19.1 LBH 0 WERAGE OF HIREE TESTS	BACT- PSD	U	FALSE			2 19.1 LB/H A
NJ-C	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin with Duct Burner	e 16.210	Woodbridge Energy Center (WEC) to located at Reverside Drive in Woodbridge Township (Middlesex County), New Jersey, 07096, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (CEI) combustion furthing generators (CTGs) each with a maximum rated heat input of 2,307 million British thermal units per hour (MMBButh), that will utilize per hour (MMBButh), that will utilize 2 Duct Burners (each 500 MMbbuth).		40297.6 particulat community of Natural gas, a clean burning fuel. of Natural gas, a clean burning fuel. (FPM2.5)	A	19.1 LBH 0 VERAGE OF THREE TESTS	OTHER CASE-BY- CASE	U	FALSE			2 19.1 LB/H A
NJ-0	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ with Duct Burner	e 16.210	Woodbridge Energy Center (WEC) to called at Reverside Drive in Woodbridge Township (Middlesex County), New Jersey, 0709 S, will be a new 700 MW combined-sycle power generating facility WEC will consist of two General Electric (CEI) combustion turbine generators (CTGs) each with a maximum rated heat input of 2,907 million British hermal units per hour (MMBullyr), that willing pipeline natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbltur).		40297.6 Nitrogen Low NOx burners and Selective Oxides (NOx) Catalytic Reduction System Oxides Catalytic Reduction System	A T	IS & LBH 2 PPAYO 3 HR VERAGE OF ROLLING AVE HHREE 1- BASED ON 1-HR BLOCK AVE	LAER	Y 77,000	FALSE			2 19.8 LB/H A
NJ-C	07/25/201	2 ACT CPV SHORE, LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ with Duct Burner	e 16.210	Woodbridge Energy Center (WEC) located at Riverside Drive in Woodbridge Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (CEG) exombusition turbine generators (CTGs) each with a maximum rated heat input of 2.907 million British thermal units per hour (MMBurthr), that will utilize pipeline natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbturhr).		40297.6 Volatitie oxidation Catalyst and Good or Combustion Practices and use of Companio Compounds (VOC)	R A B	PPPMOT 3-HR 6 9 LBH 2 OKULING AVERAGE OF WERAGE THREE TESTS. SASED ON 1-HR	2 LAER	U	FALSE			2 PPMVD 3-H
NJ-C	07/25/201	2 ACT CPV SHORE LLC WOODBR ENERGY CENTER MIDDLES	IDGE Combined Cycle Combustion Turbin EX, NJ with Duct Burner	e 16.210	Woodbridge Energy Center (WEC) located at Riverside Drive in Woodbridge Township (Middlesex County), New Jersey, (7095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion turbine generations (CTGs) each with a maximum rated heat input of 2,307 million British thermal units per hour (MMBurlnr), that will utilize pipeline natural gas only, with 2 HRSCs, 2 Duct Burners (each 500 MMbtu/hr).		40297.6 Sulfur Good Combustion Practices and use 0 of Natural gas, a clean burning fuel.	А	19.1EM 0 WERAGE OF	OTHER CASE-BY- CASE	U	FALSE			2 4.9 LB/H AV

BACT Analysis: RBLC Seach Paramete

	RBLC ID	Date	Facility Name & Location	Process	Process	Process Notes	Primary Fuel	Throughput 8 Units	k Pollutant	Em	Standard nission Limit E & Units	Emission Limit	Emission Limit 2 & Units ppmv @ 15% O2 lb	· amp	ase by Case Basis Other Factors	Estimated Efficiency % Pollutant/ Compliance Notes	Wa Wa	ter DLN or Efficienc	Use of Comb	Ouplicate ? Emission Limit
			CPV SHORE, LLC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ	Combined Cycle Combustion Turbine	Type 16.210	Woodbridge Energy Center (WEC), tocated at Riverside Drive in Woodbridge Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility. WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated heat input of 2.307 million British thermal units per hour (MMButhyr), that will utilize pipeline natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbtu/hr).	Natural gas	40297.6	Particulat	Good Combustion Practices and use 0 of Natural gas, a clean burning fuel.	8. A	L2 LB/H WERAGE OF HREE TESTS.	2 2 0 ms ppm @ 15% 2 m	0	dedata Orini Pactors NEEP USE EPY-	A Foliation Compliance votes	FALSE IIII	UAUST SULUNIA Y	NO Fract	2 Elission Climit
N.	-0079 0	7/25/2012 ACT	CPV SHORE, ILC WOODBRIDGE ENERGY CENTER MIDDLESEX, NJ	Combined Cycle Combustion Turbine with Duct Burner	16.210	Woodbridge Energy Center (WEC), tocated at Riverside Drive in Woodbridge Township (Middlesex County), New Jersey, 07095, will be a new 700 MW combined-cycle power generating facility WEC will consist of two General Electric (GE) combustion turbine generators (CTGs) each with a maximum rated heat input of 2,307 million British thermal units per hour (MMBurhy), that will utilize pipeline natural gas only, with 2 HRSGs, 2 Duct Burners (each 500 MMbtu/hr).		40297.6 mmcubic ft/year		Good combustion practices 0	B M P R	125 LB/MW-H JASED ON 12 JONTH PERIOD, ROLLING 1 JINTH	0		CCT. U		FALSE		TRUE	925 LB/MW-H
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine	16.210	Fuel: Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 tlyr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fire pump)		39463 MMCubi ft/yr	Oxides	Selective Catalytic Reduction (SCR) 0 System and use of natural gas a clean burning fuel	A	VERAGE OF HREE TESTS	2 PPMVD 3-HR ROLLING AVE BASED ON 1-HR BLOCK AVE	L	JER U	90.000	FALSE			0.75 LB/H A
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine	16.210	Fuel: Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 byr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fire pump)		39463 MMCubi ft/yr	Monoxide	Oxidation Catalyst and Good combustion Practices and use of natural gas a clean burning fuel	A	VERAGE OF HREE TESTS	2 PPMVD 3-HR ROLLING AVE BASED ON 1-HR BLOCK AVE		ACT- SD	90.000	FALSE			2
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine	16.210	Fuel: Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 byr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fire pump)	natural gas	39463 MMCubii ft/yr	c Particulat e matter, filterable < 10 µ (FPM10)		A	1 LB/H AVERAGE OF THREE TESTS	0		ACT- DD		FALSE			10.2 LB/H A
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine	16.210	Fuel: Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 tlyr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fire pump)		39463 MMCubi ft/yr	Particulat e matter, filterable < 2.5 ŵ (FPM2.5)		A	1 LB/H AVERAGE OF THREE TESTS	0	N	A U		FALSE			2 11 LB/H AVE
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine	16.210	Fuel: Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 tlyr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fire pump)		39463 MMCubi ft/yr	C Sulfur Dioxide (SO2)	Use of natural gas a clean low sulfur 0 fuel	A	2.8 LB/H AVERAGE OF THREE TESTS	0	N	A U		FALSE			2.8 LB/H AV
			LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine		Fuel: Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 byr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fire pump)		39463 MMCubi ft/yr	Organic	Oxidation Catalyst and Good combustion Practices and use of natural gas a clean burning fuel	A T	VERAGE OF THREE TESTS		L	JER U		FALSE			2.9 LB/H AV
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined Cycle Combustion Turbine	16.210	Fuel: Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler CO2e = 2,000,268 tlyr for the facility (2 turbines, 2 duct burners and 1 auxiliary boiler, 1 emergency generator and 1 fire pump)	natural gas	39463 MMCubi ft/yr		Good combustion Practices and use 0 of natural gas a clean burning fuel	A	i.6 LB/H AVERAGE OF THREE TESTS	0	N	A U		FALSE			2
			HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	·		* Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler		39463 mmcubio ft/year*	Organic Compoun ds (VOC)		R A B B		5.7 LB/H 1 AVERAGE OF THREE TESTS		ACT- U		FALSE			1 PPMVD 3-H
		1/01/2012 ACT	LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined cylce turbine with duct burner Combined cylce turbine with duct burner		*Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler *Annual throughput is for 2 turbines, 2		ft/year*	e matter, filterable < 10 ŵ (FPM10)		A T	3.2 LB/H AVERAGE OF THREE TESTS			SD		FALSE			13.2 LB/H A
N.	-0000 1	110112012 ACT	LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined cycle tarbine with duct burner	10.210	duct burners and 1 auxiliary boiler	nawai yas	ft/year*	e matter, filterable < 2.5 ŵ (FPM2.5)	fuel	A T	AVERAGE OF THREE TESTS		N	A U		PALSE			13.2 LB/H A
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined cylce turbine with duct burner	16.210	* Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler	natural gas	39463 mmcubio ft/year*	Carbon Monoxide	Oxidation catalyst 0	R A B	PPMVD 3-HR ROLLING AVERAGE BASED ON 1-HR BLOCK	AVERAGE OF THREE TESTS		ACT- U SD	90.000	FALSE			2 PPMVD 3-H
		1/01/2012 ACT	LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined cylce turbine with duct burner		* Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler		ft/year*	Oxides (NOx)		2 R A B	PPMVD 3-HR ROLLING AVERAGE BASED ON 1-HR BLOCK	AVERAGE OF THREE TESTS		ier u	90.000	FALSE			2 PPMVD 3-H
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX NJ	Combined cylce turbine with duct burner	16.210	* Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler	natural gas	39463 mmcubio ft/year*	Sulfur Dioxide (SO2)	Use of natural gas, a clean low sulfur 0 fuel	A	2.5 LB/H AVERAGE OF THREE TESTS	0	N	A U		FALSE			2 2.5 LB/H AV
N.	-0080 1	1/01/2012 ACT		Combined cylce turbine with duct burner	16.210	* Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler	natural gas	39463 mmcubio ft/year*			7. A	'.9 LB/H AVERAGE OF THREE TESTS	0	N	A U		FALSE			2.5 LB/H AV 2 7.9 LB/H AV
N.	-0080 1	1/01/2012 ACT	HESS NEWARK ENERGY CENTER, LLC HESS NEWARK ENERGY CENTER ESSEX, NJ	Combined cylce turbine with duct burner	16.210	* Annual throughput is for 2 turbines, 2 duct burners and 1 auxiliary boiler	natural gas	39463 mmcubio ft/year*	Carbon Dioxide Equivalen t (CO2e)		C M P R	87 LB/MW-H CONSCUTV 12 MONTH PERIOD ROLLING 1	0		ACT- SD	CO2 Monitored by CO2 CEMs, CH4 and Nitrous oxide monitored by calculations	FALSE		TRUE	1 887 LB/MW-H
N'	-0101 0	3/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 1	16.210	COMBINED CYCLE WITH DUCT BURNERS AT 115 MMBTU/HR EACH WITH TWO (2) DUCT BURNERS	NATURAL GAS	155 MMBTU/H EACH	e Matter (PM)	SULFUR IN GAS ASSIGNED MAX 1.2 GR/100 SCF; WORK PRACTICE TO MINIMIZE NHZ SLIP.	6	i.5 LB/H ABOV 1 HOUR AVG	0.022 LB/MMBTU ABOVE 1 HOUR AVG W/DUCT FIRING		ACT- SD		FALSE			3 6.5 LB/H AB

RBLC BACT SUMMARY ALASKA LNG

BACT Analysis:
RBLC Seach Parameters:
RBLC Search Date:

Small Natural Gas, Combined Cycle Turbines

				Process		Throughput &		Standard Emission Lim	it Emission Limit	it Emission Limit			Case by Case	Estimated Efficiency			Water	DLN or Efficienc Use of Cor	od nb Duplicate	
NY-0101	Date 03/12/2008 ACT	Facility Name & Location CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	Process COMBUSTION TURBINES 1	Type 16.210	Process Notes Primary Fuel COMBINED CYCLE WITH DUCT BURNERS AT 115 MMBTUHR EACH WITH TWO (2) DUCT BURNERS Primary Fuel NATURAL GAS	Units	Pollutant Control Method Description Particulat SULFUR IN GAS ASSIGNED MAX e matter, 1.2 GR/100 SCF; WORK filterable PRACTICE TO MINIMIZE NHZ SLI	& Units	1 & Units 6.7 LB/H ABOVE/BELOW	2 & Units 0.023 V LB/MMBTU ABOV/BELOW 1 HOUR AVG	ppmv @ 15% O2	lb/MMBtu B	BASIS BACT- U	Other Factors %	Pollutant/ Compliance Notes	Draft?	? SCR Injection OxCat	SoloNox y NG Pre	ct ? I	Emission Limit
							(FPM2.5)			W/DUCT FIRING										6.7 LB/H AB
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 1	16.210	COMBINED CYCLE WITH DUCT BURNERS AT 115 MMBTUHR EACH WITH TWO (2) DUCT BURNERS	155 MMBTU/H EACH	Particulat sULFUR IN GAS ASSIGNED MAX e matter, 1.2 GR/100 SCF; WORK filterable PRACTICE TO MINIMIZE NHZ SLI (FPM10)		6.7 LB/H ABOVE/BELOW 1 HOUR AVG	0.023 V LB/MMBTU ABOVE/BELOW 1 HOUR AVG W/DUCT FIRING			BACT- U	J		FALSE	E		3	C 71 D#1 AD
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 2	16.210	TWO COMBUSTION TURBINES WITH NATURAL GAS TWO DUCT BURNERS	155 MMBTU/H	Sulfuric SULFUR IN GAS ASSUMED MAX Acid (mist, vapors,	0.005 LB/MMBTU WITH DUCT FIRING, 1 HOU	1.4 LB/H ABOVE 0F, 1 HOUR AVG	E 1.5 LB/H BELOW OF, 1 HOUR AVG			BACT- U	J		FALSE	E		2	6.7 LB/H AB
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 2	16.210	TWO COMBUSTION TURBINES WITH NATURAL GAS TWO DUCT BURNERS	155 MMBTU/H	Particulat SULFUR IN GAS ASSUMED MAX e matter, 12 GR/100 SCF; WORK filterable PACTICE TO MINIMIZE NH3 SLIP. (FPM2.5)	10 % OPACITY	3.9 LB/H ABOVE O'F, 1 HOUR AVG	E 0.023 LB/MMBTU NO DUCT FIRING, 1 HOUR AVG			BACT- U			FALSE	E		3	1.4 LB/FI AB
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 2	16.210	TWO COMBUSTION TURBINES WITH NATURAL GAS TWO DUCT BURNERS	155 MMBTU/H	Particulat SULFUR IN GAS ASSUMED MAX. e Matter (PM) PRACTICE TO MINIMIZE NH3 SLIP.	10 % OPACITY	ABOVE/BELOW	0.023 V LB/MMBTU WITH DUCT FIRING, 1 HOUR		B.	BACT- U	J		FALSE	E		3	3.9 LB/H AB
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 2	16.210	TWO COMBUSTION TURBINES WITH NATURAL GAS TWO DUCT BURNERS	155 MMBTU/H	Particulat e matter, 1.2 GR/100 SCF;WORK PRACTICE filterable (10 ŵ (FPM10)	10 % OPACITY	BELOW 0F, 1	0.023 LB/MMBTU NO DUCT FIRING, 1 HOUR AVG			BACT- U	J		FALSI	E		3	4.1 LB/H BE
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 3	16.210	NATURAL GAS	155 MMBTU/H	Sulfuric SULFUR IN GAS ASSUMED MAX Acid (mist, vapors,	LB/MMBTU NO	0.24 LB/H ABOVE 0'F, 1 1 HOUR AVG	0.25 LB/H BELOW 0'F, 1 HOUR AVG			BACT- U	J		FALSI	E		2	
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 3	16.210	NATURAL GAS	155 MMBTU/H	etc) Particulat e Matter (PM) Particulat MINIMIZE NH3 SLIP.	20 % OPACITY	6.3 LB/H ABOVE 0'F, 1 HOUR AVG	E 6.5 LB/MMBTU NO DUCT FIRING, 1 HOUR			BACT- U	J		FALSI	E		3	0.24 LB/H A 6.3 LB/H AB
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 3	16.210	NATURAL GAS	155 MMBTU/H	Particulat e matter, 15 PPM; WORK PRACTICE TO filterable (10 Å) (FPM10)		0'F, 1 HOUR				BACT- U	J	20 PERCENT OPACITY	FALSI	E		3	6.3 LB/H AB
NY-0101	03/12/2008 ACT	CORNELL UNIVERSITY CORNELL COMBINED HEAT & POWER PROJECT TOMPKINS, NY	COMBUSTION TURBINES 3	16.210	NATURAL GAS	155 MMBTU/H	Particulat uLTRA LOW SULFUR DIESEL AT e matter, 15 PPM, WORK PRACTICE TO filterable (2.5 Åu (FPM2.5)	0.04 LB/MMBTU NO DUCT FIRING, 1 HOU AVG	0°F, 1 HOUR	E 6.5 LB/H BELWO 0'F, 1 HOUR AVG		B. P:	BACT- U	J	20 OPACITY	FALSI	E		3	6.3 LB/H AV
TX-0498	05/08/2006 ACT	SIGNAL HILLS SIGNAL HILLS WICHITA FALLS POWER LP	TURBINES (3)	16.210	NATURAL GAS	20 MW	Sulfur Dioxide	0	0.06 LB/H	0.26 T/YR			BACT- U	J		FALSI	E		1	0.3 LB/H AV
TX-0498	05/08/2006 ACT	WICHITA, TX SIGNAL HILLS SIGNAL HILLS WICHITA FALLS POWER LP	TURBINES (3)	16.210	NATURAL GAS	20 MW	(SO2) Volatile Organic	0	0.87 LB/H	3.83 T/YR			BACT- U	J		FALSI	E		1	0.06 LB/H
		WICHITA, TX					Compoun ds (VOC)													0.87 LB/H
TX-0498	05/08/2006 ACT	SIGNAL HILLS SIGNAL HILLS WICHITA FALLS POWER LP WICHITA TX	TURBINES (3)	16.210	NATURAL GAS	20 MW	Particulat e Matter (PM)	0	1.04 LB/H	4.57 T/YR			SACT- U	J		FALSI	E		1	1.04 LB/H
TX-0498	05/08/2006 ACT	SIGNAL HILLS SIGNAL HILLS WICHITA FALLS POWER LP	TURBINES (3)	16.210	NATURAL GAS	20 MW	Carbon Monoxide	0	32 LB/H	140 T/YR		B. P:	BACT- U PSD	J		FALSI	E		1	
TX-0498	05/08/2006 ACT	WICHITA, TX SIGNAL HILLS SIGNAL HILLS WICHITA FALLS POWER LP	TURBINES (3)	16.210	NATURAL GAS	20 MW	Nitrogen Oxides	0	52 LB/H	228 T/YR		B.	BACT- U	J		FALSI	E		1	32 LB/H
TX-0551	02/03/2010 ACT	WICHITA, TX PANDA SHERMAN POWER LLC PANDA SHERMAN POWER STATION GRAYSON, TX	Natural Gas-fired Turbines	16.210	2 Siemens SGT6-5000F or 2 GE Frame Natural Gas 7FA. Both capable of combined or simple cycle operation. 468 MMBtu/hr duct burners.	600 MW	(NOx) Volatile Good combustion practices Organic Compoun ds (VOC)	0	1 PPMVD @ 15% O2, 3-HR AVG, SIMPLE CYCLE MODE	COMBINED	1		BACT- U	J		FALSI	E	TRI		52 LB/H 1 PPMVD @ 1
TX-0551	02/03/2010 ACT	PANDA SHERMAN POWER LLC PANDA SHERMAN POWER STATION GRAYSON, TX	Natural Gas-fired Turbines	16.210	2 Siemens SGT6-5000F or 2 GE Frame 7FA. Both capable of combined or simple cycle operation. 468 MMBtu/hr duct burners.	600 MW	Carbon Monoxide Good combustion practices	0	4 PPMVD @ 15% O2, ROLLNG 24-HR AVG, SIMPLE CYCLE		4		BACT- U	J		FALSE	E	TRI		4 PPMVD @ 1
TX-0551	02/03/2010 ACT	PANDA SHERMAN POWER LLC PANDA SHERMAN POWER STATION GRAYSON, TX	Natural Gas-fired Turbines		2 Siemens SC76-5000F or 2 GE Frame Natural Gas 7FA. Both capable of combined or simple cycle operation. 468 MMBtu/hr duct burners.	600 MW	Nitrogen Oxides (NOx) Dry low NOx combustors and Selective Catalytic Reduction	0	9 PPMVD @ 15% O2, ROLLNG 24-HR	15% O2, RLNG 24-HR AVG, COMBINED	9	B. P:	BACT- U	J	Simple Cycle mode bypasses SCR	FALSE	E		1	9 PPMVD @ 1
TX-0552	03/03/2010 ACT	STARK POWER GENERATION II HOLDINGS, LLC WOLF HOLLOW POWER PLANT NO. 2 HOOD, TX	Natural gas-fired turbines	16.210	Project will be either 2 MHI501G gas lurbines plus 230 MMBlu/br duct burner filring for each turbine or 2 GE TFA gas lurbines plus 570 MMBlu/br duct burner filring for each turbine.	600 MW	Carbon Monoxide Good combustion practices	0	CYCLE 10 PPMVD @ 15% O2, ROLLING 3-HR AVG, MHI501G	15% O2, ROLLING 3-HR	10		BACT- U	J		FALSI	E	TRI	JE 1	10 PPMVD @
TX-0552	03/03/2010 ACT	STARK POWER GENERATION II HOLDINGS, LLC WOLF HOLLOW POWER PLANT NO. 2 HOOD, TX	Natural gas-fired turbines	16.210	Project will be either 2 MHISD1G gas hatural gas hatura	600 MW	Nitrogen Dry low NOx combustors plus Oxides selective catalytic reduction (NOx)	0	15% O2, ROLLING 24-HR AVG, FULL	9 PPMVD @ 15% O2, R ROLLING 3-HR AVG, REDUCED LOAD	2		BACT- U	J	Reduced load for GE 7FA is 50% of full load or less Reduced MHI501G is 60% of full load or less	load for FALSI	E		1	2 PPMVD @ 1
	03/03/2010 ACT	STARK POWER GENERATION II HOLDINGS, LLC WOLF HOLLOW POWER PLANT NO. 2 HOOD, TX	Natural gas-fired turbines	16.210	Project will be either 2 MH501G gas burbines plus 230 MMBbu/hr duct burner filting for each turbine or 2 GE FFA gas burbines plus 570 MMBbu/hr duct burner filting for each turbine.	600 MW	Volatile Organic Compoun ds (VOC)	0	AVG, MHI501G	15% O2, 3-HR	4	Pi	BACT- U			FALSE		TRI	JE 1	4 PPMVD @ 1
	12/19/2012 ACT	NRG TEXAS POWER LLC WA PARISH ELECTRIC GENERATING STATION -DEMONSTRATION PROJECT FORT BEND, TX	CO2 Capture Demonstration Unit	16.210	Up to \$09,000 acfm of coal-fired boiler none exhaust is treated by an amine treatment system	590000 acfm	Volatile proper design and operation, good Organic solvent maintenance, LDAR prograt Compoun ds (VOC)	m	3.1 PPMV	U	3.1		AER U		These are emissions from a CO2-stripped gas stream after it through an amine absorber unit.	nas passed FALS			2	3.1 PPMV
TX-0625	12/19/2012 ACT	INIS TEXAS POWER LLD WA PARISH ELECTRIC GENERATING STATION DEMONSTRATION PROJECT FORT BEND, TX	Cogeneration turbine	16.210	General Electric (GE) Frame 7EA (or a similar sized unit), which is rated at a ta maximum base-load electric output of approximately 90 megawatts (MW). HRSG duct burner has a maximum heat input capacity 0225 million British thermal units per hour (MMBturhr) based on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Unit solvent.	80 MW	Particulat good combustion and use of natura gas total < 1 gas (TPM10)	1 0	16.58 LB/H 1 HR	R Ö			BACT- U			FALSI	E		1	16.58 LB/H

ACT Analysis: BLC Seach Paramet

					Process			Throughput 8	R		Standard Emission Limit	Emission Limit	Emission Limit		Case by Case		Estimated Efficiency		Water	DLN or	Efficienc	Good Use of Comb	Duplicate
ļ	RBLC ID	Date 12/19/2012 ACT	Facility Name & Location NRG TEXAS POWER LLC WA	Process Cogeneration turbine	Type	Process Notes General Electric (GE) Frame 7EA (or a	Primary Fuel	Units 80 MW	Pollutant	t Control Method Description good combustion and use of natural	& Units	1 & Units 16.58 LB/H 1 HR	2 & Units ppmv @ 15%	6 O2 lb/MMBtu	Basis BACT- U	Other Factors	% Pollutant/ Compliance Notes	Draft? SCR		OxCat SoLoNox	у	NG Pract	Duplicate ? Emission Limit
			PARISH ELECTRIC GENERATING STATION -DEMONSTRATION PROJECT FORT BEND, TX	Cogeneration whome	16.210	similar sized unit), which is rated at a maximum base-load electric output of approximately 80 megawatts (MW). HRSG duct burner has a maximum heat input capacity of 225 million British thermal units per hour (MMBtuhr) based on the high heating value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Unit solvent.		SO MVV	e matter, total < 2.5 ŵ (TPM2.5)	gas	U				PSD								16.58 LB/H
•	X-0625 1	12/19/2012 ACT	NRG TEXAS POWER LLC WA PARISH ELECTRIC GENERATING STATION -DEMONSTRATION PROJECT FORT BEND, TX	Cogeneration turbine	16.210	General Electric (GE) Frame TEA (or a similar sized unit), which is rated at a maximum base-load electric output of approximately 80 megawatts (MW). HRSG duct burner has a maximum heat input capacity of 225 million British thermal units per hour (MMBlurh) based on the high healing value (HHV) of the fuel fired. The steam will be used for the regeneration of the Demonstration Unit solvent.		80 MW		DLN combusters on the turbine and selective catalytic reduction (SCR)	0	2 PPMVD 3-HR ROLLING AVG, AT 15% OXYGEN	0	2	LAER U			FALSE					2 PPMVD 3-H
•	X-0625 1	12/19/2012 ACT	NIRG TEXAS POWER LLC WA PARISH ELECTRIC GENERATING STATION -DEMONSTRATION PROJECT FORT BEND, TX	Cogeneration turbine	16.210	General Electric (GE) Frame 7EA (or a similar sized unit), which is rated at a maximum base-load electric output of approximately 80 megawatts (MW). HRSG duct burner has a maximum heat input capacity of 225 million British thermal units per hour (MMBluthr) based on the high heating value (HHV) of the tael fired. The steam will be used for the regeneration of the Demonstration Unit solvent.		80 MW	Volatile Organic Compoun ds (VOC)		0	2 PPMVD INITIAL STACK TEST	0	2	LAER U			FALSE					2 PPMVD INI
-	X-0625 1	12/19/2012 ACT	NRG TEXAS POWER LLC WA PARISH ELECTRIC GENERATING STATION -DEMONSTRATION PROJECT FORT BEND, TX	Cogeneration turbine	16.210	General Electric (GE) Frame TEA (or a similar sized unit), which is rated at a maximum base-load electric output of approximately 80 megawatis (MW). HRSG duct burner has a maximum heat input capacity of 225 million British thermal units per hour (MMBburhi) based on the high heating value (HHV) of the fuel fred. The steam will be used for the regeneration of the Demonstration Unit solvent.		80 MW	Carbon Monoxide	oxidation catalyst	0	4 PPMVD 24 HR ROLLING, AT 15% OXYGEN	0	4	BACT- PSD			FALSE					1 4 PPMVD 24
-	X-0704 1	12/02/2014 ACT	M & G RESINS USA LLC UTILITY PLANT NUECES, TX	cogeneration turbine	16.210	General Electric LM6000 natural gas-fire combustion turbine equipped with lean pre-mix low-MCx combustors. One heat recovery steam generator (HRSG) with 623 million British thermal units per hour (MMBtu/hr) natural gas-fired duct burner system containing a selective catalytic reduction system (SCR)		49 MW	Particulat e matter, total < 2.5 ŵ (TPM2.5)	5	0	0	0		BACT- PSD		natural gas fuel, includes PM and PM10	FALSE					1
-	X-0704 1	12/02/2014 ACT	M & G RESINS USA LLC UTILITY PLANT NUECES, TX	cogeneration turbine	16.210	General Electric LM6000 natural gas-fire combustion turbine equipped with lean pre-mix low-MOx combustors. One heat recovery steam generator (HRSG) with 623 million British thermal units per hour (MMBtu/hr) natural gas-fired duct burner system containing a selective catalytic reduction system (SCR)		49 MW	Nitrogen Oxides (NOx)	Selective Catalytic Reduction		2 PPMVD @15% O2, 24-HR ROLLING AVERAGE	0	2	BACT- PSD			FALSE TRUE					1 2 PPMVD @15
	X-0704 1	12/02/2014 ACT	M & G RESINS USA LLC UTILITY PLANT NUECES, TX	cogeneration turbine	16.210	General Electric LM6000 natural gas-fire combustion turbine equipped with lean pre-mix low-NOx combustors. One heat recovery steam generator (HRSG) with 263 million British thermal units per hour (MMBtu/hr) natural gas-fired duct burner system containing a selective catalytic reduction system (SCR)		49 MW	Carbon Monoxide	oxidation catalyst	0	4 PPMVD @15% O2, 24-HR ROLLING AVERAGE	0	4	BACT- PSD			FALSE					1 4 PPMVD @15
-			M & G RESINS USA LLC UTILITY PLANT NUECES, TX	cogeneration turbine	16.210	General Electric LM6000 natural gas-fire combustion turbine equipped with lean pre-mix low-Mox combustors. One heat recovery steam generator (HRSG) with 263 million British thermal units per hour (MMBuhr) natural gas-fired duct burner system containing a selective catalytic reduction system (SCR)		49 MW	Volatile Organic Compoun ds (VOC)		0	4 PPMVD @15% O2, 24-HR ROLLING AVERAGE	0	4	BACT- PSD			FALSE					1 4 PPMVD @15
			NRG TEXAS POWER LLC W. A. PARISH ELECTRIC GENERATING STATION FORT BEND, TX		16.210	thermal units per hour duct burner. Stear created in the heat recovery steam generator will be used as process steam		80 MW	Particulat e matter, total < 2.5 µ (TPM2.5)	5	0	0	0		BACT- N PSD		Natural gas as fuel and good combustion practices. This includes PM and PM10.						1 0
			NRG TEXAS POWER LLC W. A. PARISH ELECTRIC GENERATING STATION FORT BEND, TX	Combined cycle combustion turbine		GE 7EA turbine, 225 million British thermal units per hour duct burner. Stear created in the heat recovery steam generator will be used as process steam CE 7EA turbine, 236 million British.		80 MW	Volatile Organic Compoun ds (VOC)		0	2 PPMVD @ 15% O2	0	2	LAER N			FALSE					1 2 PPMVD @ 1
		12/21/2012 ACT	NRG TEXAS POWER LLC W. A. PARISH ELECTRIC GENERATING STATION FORT BEND, TX NRG TEXAS POWER LLC W. A.	Combined cycle combustion turbine Combined cycle combustion turbine	16.210	GE 7EA turbine, 225 million British thermal units per hour duct burner. Stear created in the heat recovery steam generator will be used as process steam GE 7EA turbine, 225 million British		80 MW	Nitrogen Oxides (NOx)	Selective catalytic reduction Oxidation catalyst	0	2 PPMVD @ 15% O2 3-HR AVERAGE 4 PPMVD @	0	2	BACT- N			FALSE TRUE					2 PPMVD @ 1
			NRG TEXAS POWER LLC W. A. PARISH ELECTRIC GENERATING STATION FORT BEND, TX WILLIAMS FIELD SERVICES	TURBINE S37	16.210	GE: 7-EA turbine, 225 million British thermal units per hour duct burner. Steal created in the heat recovery steam generator will be used as process steam 12,555 HP SOLAR MARS100-15000S		16162 HP	Monoxide	GOOD COMBUSTION PRACTICES	0	15% O2 24-HR AVERAGE	32.1 T/YR	15	PSD BACT- N		BASELINE	FALSE				TRUE	4 PPMVD @ 1
			COMPANY ECHO SPRINGS GAS PLANT CARBON, WY			OR 16,162 HP SOLAR TITAN 130- 20502S TURBINE			Oxides (NOx)						PSD								15 PPMV
	VY-0067	04/01/2009 ACT	WILLIAMS FIELD SERVICES COMPANY ECHO SPRINGS GAS PLANT CARBON, WY	TURBINE S37	16.210	12,555 HP SOLAR MARS100-15000S OR 16,162 HP SOLAR TITAN 130- 20502S TURBINE	NATURAL GAS	16162 HP	Carbon Monoxide	GOOD COMBUSTION PRACTICES	0	25 PPMV	32.5 T/YR	25	BACT- N PSD		BASELINE	FALSE				TRUE	1 25 PPMV
	VY-0067	04/01/2009 ACT	WILLIAMS FIELD SERVICES COMPANY ECHO SPRINGS GAS PLANT CARBON, WY	TURBINE S37	16.210	20:5025 HP SOLAR MARS100-15000S OR 16,162 HP SOLAR TITAN 130- 20502S TURBINE	NATURAL GAS	16162 HP	Volatile Organic Compoun ds (VOC)		0	25 PPV	3.7 T/YR		BACT- PSD		BASELINE	FALSE				TRUE	1 25 PPV

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

LNG Facilities from 1/1/2010 to 12/31/2015

				Process			Throughput &			Standard Emission Limit	Emission Limit	Emission Limit	Case by Case		Estimated Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes	Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors		Compliance Notes
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Particulat e matter, total (TPM)	Good combustion practices and fueled by natural gas	0	2.08 LB/H HOURLY MAXIMUM	0	BACT- PSD	J	also for PM10	
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Volatile Organic Compoun ds (VOC)	Good combustion practices and fueled by natural gas	0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	20 PPMV AT 15% O2	22.94 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Carbon Monoxide	Good combustion practices and fueled by natural gas	58.4 PPMV AT 15% OXYGEN	43.6 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)	Good combustion/operating practices and fueled by natural gas - use GE LM2500+G4 turbines	0	4872107 TONS/YR ANNUAL MAXIMUM FROM THE FACILITYWIDE	0	BACT- L PSD	J	CO2(e)	
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Particulat e matter, total (TPM)	Good combustion practices and fueled by natural gas	0	2.08 LB/H HOURLY MAXIMUM	0	BACT- PSD	J	also for PM10	and PM2.5
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Volatile Organic Compoun ds (VOC)	Good combustion practices and fueled by natural gas	0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	25 PPMV AT 15% O2	28.68 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Carbon Monoxide	Good combustion practices and fueled by natural gas	25 PPMV AT 15% O2	17.46 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)	Good combustion/operating practices and fueled by natural gas - use GE LM2500+G4 turbines	0	4872107 TONS/YR ANNUAL MAXIMUM FROM THE FACILITYWIDE	0	BACT- L PSD	J	CO2(e)	
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Particulat e matter, total (TPM)	Good combustion practices and fueled by natural gas	0	2.08 LB/H HOURLY MAXIMUM	0	BACT- PSD	J	also for PM10	and PM2.5
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Volatile Organic Compoun ds (VOC)	Good combustion practices and fueled by natural gas	0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	20 PPMV AT 15% O2	22.94 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Carbon Monoxide	Good combustion practices and fueled by natural gas	58.4 PPMV AT 15% O2	43.6 LB/H HOURLY MAXIMUM	0	BACT- PSD	J		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)	Good combustion/operating practices and fueled by natural gas - use GE LM2500+G4 turbines	0	4872107 TONS/YEAR ANNUAL MAXIMUM FROM THE FACILITYWIDE	0	BACT- L PSD	J	co2(e)	

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

Production Facilities

			Process		Throughput &			Standard Emission Limit	Emission Limit	Emission Limit	Case by Case	-	Estimated Efficiency	
AK-0081	Date 06/12/2013 ACT	Facility Name & Location EXXONMOBIL CORPORATION POINT	Process Type Combustion 16.110	Process Notes Primary Fuel Solar Turbine with SoLoNOx Natural Gas	7520 kW	Pollutant Particulat	Control Method Description Good combustion and operating	& Units	1 & Units 0.0066	2 & Units 0	Basis OTHER	Other Factors	%	Pollutant/ Compliance Notes Emission limit based on AP-42,
		THOMSON PRODUCTION FACILITY NORTH SLOPE BOROUGH, AK				e matter, total < 2.5 B5 (TPM2.5)	practices		LB/MMBTU		CASE-BY- CASE			Table 3.1-2a
AK-0081	06/12/2013 ACT	EXXONMOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY NORTH SLOPE BOROUGH, AK	Combustion 16.110	Solar Turbine with SoLoNOx Natural Gas	7520 kW	Carbon Dioxide Equivalen	Good Combustio and Operating Practices	0	0	0	OTHER CASE-BY- CASE	U		
AK-0074	07/29/2011 ACT	BP EXPLORATION (ALASKA) ENDICOTT PRODUCTION FACILITY NORTH SLOPE BOROUGH, AK	Combustion 16.150	Small simple cycle turbines burning fuel Fuel Gas gas	8717 hp	t (CO2e) Sulfur Dioxide (SO2)	Concentration of hydrogen sulfide in fuel gas shall not exceed 1,000 ppmv	0	1000 PPMV AT ANY TIME	0	BACT- PSD	U		
AK-0074	07/29/2011 ACT	BP EXPLORATION (ALASKA) ENDICOTT PRODUCTION FACILITY NORTH SLOPE BOROUGH, AK	Combustion 16.150	Small simple cycle combustion turbines Fuel Gas burning fuel gas	5400 hp	Sulfur Dioxide (SO2)	Limit hydrogen sulfide in fuel gas to no more than 1000 ppmv	0	1000 PPMV ANY TIME	0	BACT- PSD	U		
AK-0076	08/20/2012 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY NORTH SLOPE, AK	Combustion of Fuel Gas 16.150	7.52 MW with Dry Low NOx and SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle	7520 kW	Nitrogen Oxides (NOx)	Dry Low NOx and SoLoNOx. DLN combustors utilize multistage premix combustors where the air and fuel is mixed at a lean fuel to air ratio. The excess air in the lean mixture acts as a heat sink, which lowers peak combustion temperatures and also ensures a more homogeneous mixture, both resulting in greatly reduced NOX formation rates. SoLoNOx is a lean premixed process which improves combustion efficiency and reduce NOx and particulate emissions.	0	15 PPMV 15 PERCENT OXYGEN	0	BACT- PSD	Y		DLN and SoLoNOx are now basic in the industry
AK-0076	08/20/2012 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY NORTH SLOPE, AK	Combustion of Fuel Gas 16.150	7.52 MW with Dry Low NOx and SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle	7520 kW		SCR (Selective Catalytic Reduction) is a post-combustion gas treatment technique for reduction of nitric oxide (NO) and nitrogen dioxide (NO2) in the turbine exhaust stream to molecular nitrogen, water, and oxygen. This process is accomplished by using ammonia (NH3) as a reducing agent, and is injected into the flue gas upstream of the catalyst bed. By lowering the activation energy of the NOX decomposition removal efficiency of 80 to 90 percent are achievable.	0	2.5 PPMV 15% OXYGEN	0	BACT- PSD	U	85.000	
AK-0076	08/20/2012 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY NORTH SLOPE, AK	Combustion of Fuel Gas 16.150	7.52 MW with Dry Low NOx and SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle	7520 kW	Particulat e matter, filterable < 2.5 B5 (FPM2.5)		0	0.0066 LB/MMBTU	0	BACT- PSD	U		
AK-0076	08/20/2012 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY NORTH SLOPE, AK	Combustion of Fuel Gas 16.150	7.52 MW with Dry Low NOx and SoLoNOx Technology burning natural gas on the North Slope of Alaska, north	7520 kW	Carbon Dioxide	DLN with inlet heating and good combustion practices	0	0	0	BACT- PSD	U		
AK-0077	06/26/2012 ACT	BP EXPLORATION ALASKA INCORPORATED NORTHSTAR PRODUCTION FACILITY NORTH SLOPE OF ALASKA, AK	Combustion of Fuel Gas by Turbines < 16.150 25 MW	of the Artic Circle Turbines < 25 MW, no waste recovery Fuel Gas	24 MW	Sulfur Dioxide (SO2)	H2S content of fuel gas shall not exceed 300 ppmv at any time	0	300 PPMV H2S CONTENT OF FUEL GAS	0	BACT- PSD	U		
AK-0082	01/23/2015 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY USA, AK	Turbines 16.150	Four 7.52 MW Solar Turbines with SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle. Two of the turbines are dual fired units that can combust ULSD as well as Fuel Gas	7520 kW	Oxides (NOx)	Dry Low NOx and SoLoNOx. DLN combustors utilize multistage premix combustors where the air and fuel is mixed at a lean fuel to air ratio. The excess air in the lean mixture acts as a heat sink, which lowers peak combustion temperatures and also ensures a more homogeneous mixture, both resulting in greatly reduced NOX formation rates. SoLoNOx is a lean premixed process which improves combustion efficiency and reduce NOx and particulate emissions.		15 PPMV 15% OXYGEN	0	BACT- PSD	Y		
AK-0082	01/23/2015 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY USA, AK	Turbines 16.150	Four 7.52 MW Solar Turbines with SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle. Two of the turbines are dual fired units that can combust ULSD as well as Fuel Gas	7520 kW	Monoxide	SCR (Selective Catalytic Reduction) is a post-combustion gas treatment technique for reduction of nitric oxide (NO) and nitrogen dioxide (NO2) in the turbine exhaust stream to molecular nitrogen, water, and oxygen. This process is accomplished by using ammonia (NH3) as a reducing agent, and is injected into the flue gas upstream of the catalyst bed. By lowering the activation energy of the NOX decomposition removal efficiency of 80 to 90 percent are achievable.		2.5 PPMV 15% OXYGEN	0	BACT- PSD	U	85.000	

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

Production Facilities

				Process				Throughput &			Standard	Emission Limit	Emission Limit	Case by Case		Estimated Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes		Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors	%	Pollutant/ Compliance Notes
AK-0082	01/23/2015 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY USA, AK			Four 7.52 MW Solar Turbines with SoLoNOx Technology burning natural gas on the North Slope of Alaska, north	Fuel Gas		7520 kW	Particulat e matter, filterable		0	0.066 LB/MMBTU		BACT- PSD	U		
					of the Artic Circle. Two of the turbines are dual fired units that can combust ULSD as well as Fuel Gas	9			< 2.5 B5 (FPM2.5)								
AK-0082	01/23/2015 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY USA, AK	Turbines		Four 7.52 MW Solar Turbines with SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle. Two of the turbines are dual fired units that can combust ULSD as well as Fuel Gas	Fuel Gas		7520 kW	Particulat e matter, filterable < 10 B5 (FPM10)		0	0.0066 LB/MMBTU	0	BACT- PSD	U		
AK-0082	01/23/2015 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY USA, AK			Four 7.52 MW Solar Turbines with SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle. Two of the turbines are dual fired units that can combust ULSD as well as Fuel Gas			7520 kW	Volatile Organic Compoun ds (VOC)		0	2.5 PPMV	0	BACT- PSD	Ū		
AK-0082	01/23/2015 ACT	EXXON MOBIL CORPORATION POINT THOMSON PRODUCTION FACILITY USA, AK	Turbines		Four 7.52 MW Solar Turbines with SoLoNOx Technology burning natural gas on the North Slope of Alaska, north of the Artic Circle. Two of the turbines are dual fired units that can combust ULSD as well as Fuel Gas	Fuel Gas		7520 kW	Carbon Dioxide Equivalen t (CO2e)		0	89336 TONS/YEAR	0	BACT- PSD	U		

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

GHG RBLC Flare

				Process			Throughput &			Standard Emission Limit	it Emission Limi	t Emission Limi	Case by	1	Estimated Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes	Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors	Efficiency %	Pollutant/ Compliance Notes
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	FRONT END FLARE	19.310	SSM VENTING IS LIMITED TO 336 HOURS PER YEAR. HEAT INPUT OF 4 MMBTU/HR IS FOR PILOT ONLY.	NATURAL GAS	4 MMBTU/H	Carbon Dioxide	NATURAL GAS PILOT, FLARE MINIMIZATION PRACTICES	0	116.89	511.81 TON/H, R SSM VENTING HR AVERAGE	BACT-	N	75	. Silvania Somphanos Notes
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	BACK END FLARE	19.310	SSM VENTING SHALL NOT EXCEEDD 336 HOURS PER YEAR. HEAT INPUT IS PILOT ONLY.	NATURAL GAS	4 MMBTU/H	Carbon Dioxide	NATURAL GAS PILOT, FLARE MINIMIZATION PRACTICES	0	116.89 LB/MMBTU 3-H AVERAGE	127.12 LB/H, R SSM VENTING HR AVERAGE	BACT- 3-PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	AMMONIA STORAGE FLARE	19.310	HEAT INPUT IS FOR PILOT ONLY. SSN EMISSIONS HAVE SEPARATE LIMITS. SSM VENTING LIMITED 168 HOURS.	NATURAL GAS	1.5 MMBTU/H	Carbon Dioxide	NATURAL GAS PILOT, FLARE MINIMIZATION PRACTICES	0	116.89 LB/MMBTU 3-H AVERAGE	0 R	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	FRONT END FLARE	19.310	SSM VENTING IS LIMITED TO 336 HOURS PER YEAR. HEAT INPUT OF 4 MMBTU/HR IS FOR PILOT ONLY.	NATURAL GAS	4 MMBTU/H	Carbon Dioxide	NATURAL GAS PILOT, FLARE MINIMIZATION PRACTICES	0	116.89 LB/MMBTU 3-H AVERAGE	511.81 TON/H, R SSM VENTING HR AVERAGE	BACT- 3-PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	BACK END FLARE	19.310	SSM VENTING SHALL NOT EXCEEDD 336 HOURS PER YEAR. HEAT INPUT IS PILOT ONLY.	NATURAL GAS	4 MMBTU/H	Carbon Dioxide	NATURAL GAS PILOT, FLARE MINIMIZATION PRACTICES	0	116.89 LB/MMBTU 3-H AVERAGE	127.12 LB/H, R SSM VENTING HR AVERAGE	BACT- 3-PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	AMMONIA STORAGE FLARE	19.310	HEAT INPUT IS FOR PILOT ONLY. SSM EMISSIONS HAVE SEPARATE LIMITS. SSM VENTING LIMITED 168 HOURS.	NATURAL GAS	1.5 MMBTU/H	Carbon Dioxide	NATURAL GAS PILOT, FLARE MINIMIZATION PRACTICES	0	116.89 LB/MMBTU 3-H AVERAGE	0 R	BACT- PSD	N		
*TX-0638	10/12/2012 ACT	ENTERPRISE PRODUCTS OPERATING LLC MONT BELVIEU COMPLEX CHAMBERS, TX	Flare	19.390	Flare, EPA: SK25.001		0	Carbon Dioxide		0	62494 T/PY 12- MONTH ROLLING BASI:		BACT- PSD	U		Use Good Combustion Practices
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Marine Flare	19.390		natural gas	1590 MMBTU/H	Dioxide	proper plant operations and maintain the presence of the flame when the gas is routed to the flare	0	2909 TONS/YR ANNUAL MAXIMUM	0	BACT- PSD	U		CO2(e)
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Wet/Dry Gas Flares (4)	19.390		natural gas	0.26 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)	proper plant operations and maintain the presence of the flame when the gas is routed to the flare	0	133 TONS/YR ANNUAL MAXIMUM	0	BACT- PSD	U		CO2(e)

RBLC BACT SUMMARY

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant Control Method Descrip	Standard Emission Limit Emission Limit Emission Limit tion & Units 1 & Units 2 & Units	Case by nit Case Basis	Other Factors	Estimated Efficiency %	Pollutant/ Compliance Notes
*TX-0638	10/12/2012 ACT	ENTERPRISE PRODUCTS OPERATING LLC MONT BELVIEU COMPLEX CHAMBERS, TX	2 Regenerant Heaters	15.110	2 Regenerant Heaters (Combustion Units). Each unit has a maximum design beat input rate of28.5 MMBTU/HR and fired with natural gas, tired with natural gas. HR15.002A and HR15.002B.	Timay rue	28.8	Carbon Dioxide	0 14858 TYPR 12- 0 MONTH ROLLING BASIS	BACT- PSD	U Other Pactors	70	Minimum Thermal Efficiency of 85%. The emission rate is for each of the two regenerant heaters.
*TX-0638	10/12/2012 ACT	ENTERPRISE PRODUCTS OPERATING LLC MONT BELVIEU COMPLEX CHAMBERS, TX	Hot Oil Heaters	12.310	2 Hot Oil Heaters (Combustion Unit). HRI5.001A and HR1 5.001B Each unit has a maximum design heat input rate of 140 MMBTU/HR, and is fired with natural gas.	Natural Gas	140 MMBTU/H	Carbon Dioxide	0 72987 T/YR 12- 0 MONTH ROLLING BASIS	BACT- PSD	U		Minimum Thermal Efficiency of 85%. Permittee shall calculate, on a monthly basis, the amount of CO2 emitted from combustion in tons/yr using equation C-2a in 40 CPR Part 98 Subpart C, converted to short tons. The emission rate is for each of the two heaters.
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	Carbon GOOD COMBUSTION PRAC Dioxide AND PROPER DESIGN	TICES 0 59.61 T/MMCF 3- 486675 TON HR AVERAGE CO2/YR MONTHLY	BACT- PSD	N		80% THERMAL EFFICIENCY BASED ON HIGHER HEATING VALUE.
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Carbon GOOD COMBUSTION PRAC AND PROPER DESIGN, USE NATURAL GAS		BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Carbon GOOD COMBUSTION PRAC Dioxide AND PROPER DESIGN, USE NATURAL GAS		BACT- PSD	N		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 AUXILLARY BOILERS	11.390	TWO BOILERS AT 435 MMBTU/HR EACH, BOILERS EQUIPPED WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM, LOW-NOX BURNERS, CATALYTIC OXIDIZER, AND BURN 100 PERCENT PROCESS GAS DURING NORMAL OPERATIONS	PROCESS GAS	435 MMBTU/H	Carbon Dioxide Equivalen t (CO2e) COMBUSTION PRACTICES	NG (AS CO2E) 3- ICIENT HOUR BLOCK	BACT- PSD			
*TX-0638	10/12/2012 ACT	ENTERPRISE PRODUCTS OPERATING LLC MONT BELVIEU COMPLEX CHAMBERS, TX	2 Regenerant Heaters	15.110	2 Regenerant Heaters (Combustion Units). Each unit has a maximum design beat input rate of 28.5 MMBTU/HR and fired with natural gas, tired with natural gas. HR15.002A and HR15.002B.		28.8	Carbon Dioxide Equivalen t (CO2e)	0 14872 T/PY 12- 0 MONTH ROLLING BASIS	BACT- PSD	U		The emission rate is for each of the two regenerant heaters.
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR	Auxiliary boiler	13.310		natural gas	39.8 MMBtu/hr	Carbon Clean fuels Dioxide Equivalen t (CO2e)	0 117 LB 0 CO2/MMBTU 3- HR BLOCK AVERAGE	BACT- PSD	U		
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR	Auxiliary boiler	13.310		natural gas	39.8 MMBtu/hr	Carbon Clean fuels Dioxide Equivalen t (CO2e)	0 117 LB 0 CO2/MMBTU 3- HR BLOCK AVERAGE	BACT- PSD	U		
*TX-0758	08/01/2014 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	Dew-Point Heater	13.310		Natural Gas	9 MMBtu/hr	Carbon Dioxide Equivalen t (CO2e)	0 2631 TPY CO2E 0 12-MONTH ROLLING TOTAL	BACT- PSD	U		Not to exceed 5000 hrs per year on a 12-month rolling basis. The permittee shall install and maintain the gas-fired dew point heater to ensure a minimum thermal efficiency of 75%. The gas-fired dew point heater will be continuously monitored for exhaust temperature, input fuel temperature, and stack oxygen. Thermal efficiency for the heaters will be calculated monthly from these parameters using equation G-1 from American Petroleum Institute (API) methods 560 (4th ed.) Annex G.
*TX-0638	10/12/2012 ACT	ENTERPRISE PRODUCTS OPERATING LLC MONT BELVIEU COMPLEX CHAMBERS, TX	Hot Oil Heaters	12.310	2 Hot Oil Heaters (Combustion Unit). HRI5.001A and HR1 5.001B Each unit has a maximum design heat input rate of 140 MMBTU/HR, and is fired with natural gas.	Natural Gas	140 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)	0 73058 T/YR 12- 0 MONTH ROLLING BASIS	BACT- PSD	U		Permittee shall calculate the CO2e emissions on a 12-month rolling basis, based on the procedures and Global Warming Potentials (GWP) contained in Greenhouse Gas Regulations, 40 CFR Part 98, Subpart A, Table A-1, as published on October 30, 2009 (74 FR 56395). The emission rate is for each of the two heaters.

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

RBLC ID	Date	Facility Name & Location	Process	Process	Process Notes	Primary Fuel	Throughput & Units	Pollutant	Control Method Description	Standard Emission Limit & Units	Emissio	on Limit	Emission Lim			Estimated Efficiency %	Pollutant/ Compliance Notes
*IN-0218	12/11/2014 ACT	SABIC INNOVATIVE PLASTICS MT. VERNON, LC SABIC INNOVATIVE PLASTICS MT. VERNON, LC POSEY, IN	Process NATURAL GAS-FIRED AUXILIARY BOILER (AUX 2 BOILER)	Type 12.310	Process notes	NATURAL GAS	249 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)	Control metrical Description	0	133521		2 0 0 0 0 0	Ddais	Other Factors	70	THE BOILER SHALL ACHEIVE A MINIMUM 80% THERMAL EFFICIENCY (HHV); THE BOILER SHALL FIRE NATURAL GAS ONLY; BOILER INSULATION; EFFICIENT BURNER DESIGN; IMPROVED COMBUSTION MEASURES:OPTIMIZATION & DIGITAL CONTROL SYSTEM; MINIMIZATION OF AIR INFILTRATION; IMPROVED COMBUSTION MEASURES: COMBUSTION TUNING; OPERATING AND MAINTENANCE (O&M) PRACTICES; STEAM LINE MAINTENANCE.
*IN-0218	12/11/2014 ACT	SABIC INNOVATIVE PLASTICS MT. VERNON, LC SABIC INNOVATIVE PLASTICS MT. VERNON, LC POSEY, IN	NATURAL GAS-FIRED AUXILIARY BOILER (AUX BOILER)	12.310		NATURAL GAS	249 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)		0	133521	T/YR (0				THE BOILER SHALL ACHEIVE A MINIMUM 80% THERMAL EFFICIENCY (HHV); THE BOILER SHALL FIRE NATURAL GAS ONLY; BOILER INSULATION; EFFICIENT BURNER DESIGN; IMPROVED COMBUSTION MEASURES:OPTIMIZATION & DIGITAL CONTROL SYSTEM; MINIMIZATION OF AIR INFILTRATION; IMPROVED COMBUSTION MEASURES: COMBUSTION TUNING; OPERATING AND MAINTENANCE (O&M) PRACTICES; STEAM LINE MAINTENANCE.
*IN-0218	12/11/2014 ACT	SABIC INNOVATIVE PLASTICS MT. VERNON, LC SABIC INNOVATIVE PLASTICS MT. VERNON, LC POSEY, IN	NATURAL GAS-FIRED BOILER (CG1 BOILER)	12.310		NATURAL GAS	249 MMBTU/H	Carbon Dioxide Equivalen t (CO2e)		0	133521	T/YR	0				THE BOILER SHALL ACHEIVE A MINIMUM 80% THERMAL EFFICIENCY (HHV); THE BOILER SHALL FIRE NATURAL GAS ONLY; BOILER INSULATION; EFFICIENT BURNER DESIGN; IMPROVED COMBUSTION MEASURES:OPTIMIZATION & DIGITAL CONTROL SYSTEM; MINIMIZATION OF AIR MINIMIZATION OF AIR INFILTRATION; IMPROVED COMBUSTION MEASURES: COMBUSTION TUNING; OPERATING AND MAINTENANCE (O&M) PRACTICES; STEAM LINE MAINTENANCE. IF CG1 BOILER OPERATES AS AN AUXILIARY BOILER, NO ADDITIONA BACT REQUIREMENTS APPLY. BUT IF CG1 BOILER IS A PRIMARY USE BOILER, THE FOLLOWING ITEM WILL BE INCLUDED AS BACT: AIR PREHEATER OR ECONOMIZER

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant Control Method Description	Standard Emission Limit & Units	Emission Limit	Emission Limit	Case by Case Basis	Other Factors	Estimated Efficiency	Pollutant/ Compliance Notes
*TX-0757	05/12/2014 ACT	INDECK WHARTON, LIC INDECK WHARTON ENERGY CENTER WHARTON, TX	Pipeline Heater	13.310	The proposed project will be equipped with one new natural gas-fired heater (GH). The heater will have a capacity of 3 MMBtu/hr (HHV) and will be operated no more than 3,500 hours per year. This heater will serve to preheat the natural gas feed into the combustion turbines to maximize combustion efficiency. The pipeline heater represents 0.06% of the facility-wide GHG emissions.	Natural Gas	3 MMBtu/hr (HHV)	Carbon Dioxide Equivalen t (CO2e)	0	624.78 TPY CO2E 12- MONTH ROLLING TOTAL	0	BACT- PSD	U		Prolitant Compliance Notes The following specific BACT practices are proposed for the heaters: ⢢ Use of low carbon fuel (natural gas). Natural gas will be the only fuel fired in the proposed heaters. It is the lowest carbon fuel available for use at the facility. ⢢ Good heater design and operation to maximize thermal efficiency and reduce heat loss to the extent practical for heaters of this size in intermittent service. ⢢ Use of manual air/fuel controls to maximize combustion efficiency. ⢢ Clean and inspect heater burner tips and perform tune-ups as needed and per vendor recommendations. ⢢ Limit the operational use of the heaters to no more than 3,500 hours per year per heater on a 12-month rolling basis (2,500 operational hours and 1,000 hours for startup and shutdown). Use of these practices corresponds with a BACT limit of 624.86 tpy CO2e for the heater. Compliance with this limit will be determined by calculating the emissions on a monthly basis and keeping a 12-month rolling total of hours of operation, including during startup and shutdown.
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 AUXILLARY BOILERS	11.390	TWO BOILERS AT 435 MMBTU/HR EACH. BOILERS EQUIPPED WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM, LOW-NOX BURNERS, CATALYTIC OXIDIZER, AND BURN 100 PERCENT PROCESS GAS DURING NORMAL OPERATIONS	PROCESS GAS	435 MMBTU/H	Carbon EXCLUSIVE USE OF FACILITY Monoxide PROCESS FUEL GAS DURING NORMAL OPERATION, GOOD COMBUSTION PRACTICES, AND OPERATION OF AN OXIDATION CATALYST		LB/MMBTU 3- HOUR BLOCK	2618.5 LB/EVENT FOR ALL STARTUP EVENTS	BACT- PSD			35.9 LB/SHUTDOWN EVENT.
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR	Auxiliary boiler	13.310		natural gas	39.8 MMBtu/hr	Carbon Monoxide Utilize Low-NOx burners and FGR.		0.04 LB/MMBTU 3-HR BLOCK AVERAGE	0	BACT- PSD	U		
*TX-0691	05/20/2014 ACT	NRG TEXAS POWER LLC PH ROBINSON ELECTRIC GENERATING STATION GALVESTON, TX	fuel gas heater	13.310		natural gas	18 MMBtu/hr	Carbon Monoxide	0	0.054 LB/MMBTU	0	BACT- PSD	U		
*TX-0694	02/02/2015 ACT	INDECK WHARTON, L.L.C. INDECK WHARTON ENERGY CENTER WHARTON. TX	heater	13.310		natural gas	3 MMBtu/hr	Carbon Monoxide	0	0.04 LB/MMBTU 1 HOUR	0	BACT- PSD	U		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE. WY	Inlet Air Heater (EP06)	13.310		Natural Gas	16.1 MMBTU/H	Carbon good combustion practices Monoxide	2.7 T/YR		1.3 LB/H 3- HOUR AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP07)	13.310		Natural Gas	16.1 MMBTU/H	Carbon good combustion practices Monoxide	2.7 T/YR		1.3 LB/H 3- HOUR AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP08)	13.310		Natural Gas	16.1 MMBTU/H	Carbon good combustion practices Monoxide	2.7 T/YR	3-HOUR	1.3 LB/H 3- HOUR AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP09)	13.310		Natural Gas		Carbon good combustion practices Monoxide		AVERAGE	HOUR AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP10)	13.310		Natural Gas	16.1 MMBTU/H	Carbon good combustion practices Monoxide		AVERAGE	HOUR AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP11)	13.310		Natural Gas	16.1 MMBTU/H	Monoxide		AVERAGE	1.3 LB/H 3- HOUR AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	Carbon Monoxide AND PROPER DESIGN		43.45 LB/MMCF 3-HR AVERAGE	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Carbon Monoxide AND PROPER DESIGN, USE NATURAL GAS		37.23 LB/MMCF 3-HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Carbon Monoxide AND PROPER DESIGN, USE NATURAL GAS		37.23 LB/MMCF 3-HR AVERAGE	0	BACT- PSD	N		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 AUXILLARY BOILERS	11.390	TWO BOILERS AT 435 MMBTU/HR EACH. BOILERS EQUIPPED WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM, LOW-NOX BURNERS, CATALYTIC OXIDIZER, AND BURN 100 PERCENT PROCESS GAS DURING NORMAL OPERATIONS	PROCESS GAS	435 MMBTU/H	Nitrogen Oxides (NOX) NORMAL OPERATION AND USE OF A POST-COMBUSTION SCR SYSTEM AND LOW-NOX BURNERS		0.0099 LB/MMBTU 3- HOUR BLOCK AVERAGE, EXCLUDING SU/SD	2946.2 LB/EVENT FOR ALL STARTUPS				38.9 LB/SHUTDOWN EVENT

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

GHG RBLC Heaters Boilers

					1	1				Standard	T	Case by		Estimated	
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant Control M	Method Description	Emission Limit	Emission Limit Emission L	imit Case	Other Factors	Efficiency	Pollutant/ Compliance Notes
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR		13.310	Process Notes	natural gas	39.8 MMBtu/hr		Ox burners and FGR.	0	0.035 LB/MMBTU 0 3-HR BLOCK AVERAGE	BACT- PSD	U Other Pactors	76	Poliutanii Compliance Notes
*TX-0691	05/20/2014 ACT	NRG TEXAS POWER LLC PH ROBINSON ELECTRIC GENERATING STATION GALVESTON, TX	fuel gas heater	13.310		natural gas	18 MMBtu/hr	Nitrogen Oxides (NOx)		0	0.1 LB/MMBTU 0	BACT- PSD	U		
*TX-0694	02/02/2015 ACT	INDECK WHARTON, L.L.C. INDECK WHARTON ENERGY CENTER	heater	13.310		natural gas	3 MMBtu/hr	Nitrogen Oxides		0	0.1 LB/MMBTU 1 0 HOUR	BACT- PSD	U		
*WY-0070	08/28/2012 ACT	WHARTON, TX BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP06)	13.310		Natural Gas	16.1 MMBTU/H	(NOx) Nitrogen Oxides (NOx)	x Burners	0.4 T/YR	0.012 LB/MMBTU 0.2 LB/H 3- 3-HOUR HOUR AVERAGE AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP07)	13.310		Natural Gas	16.1 MMBTU/H	Nitrogen Ultra Low NO Oxides	x Burners	0.4 T/YR	0.012 LB/MMBTU 0.2 LB/H 3- 3-HOUR HOUR AVERAGE AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING	Inlet Air Heater (EP08)	13.310		Natural Gas	16.1 MMBTU/H	Nitrogen Oxides	x Burners	0.4 T/YR	0.012 LB/MMBTU 0.2 LB/H 3- 3-HOUR HOUR	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*WY-0070	08/28/2012 ACT	STATION LARAMIE, WY BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING	Inlet Air Heater (EP09)	13.310		Natural Gas	16.1 MMBTU/H	Nitrogen Oxides	x Burners	0.4 T/YR	AVERAGE AVERAGE 0.012 LB/MMBTU 0.2 LB/H 3-3-HOUR HOUR	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*WY-0070	08/28/2012 ACT	STATION LARAMIE, WY BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING	Inlet Air Heater (EP10)	13.310		Natural Gas	16.1 MMBTU/H	Oxides	x Burners	0.4 T/YR	AVERAGE AVERAGE 0.012 LB/MMBTU 0.2 LB/H 3-HOUR HOUR	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*WY-0070	08/28/2012 ACT	STATION LARAMIE, WY BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Inlet Air Heater (EP11)	13.310		Natural Gas	16.1 MMBTU/H	(NOx) Nitrogen Oxides (NOx)	x Burners	0.4 T/YR	AVERAGE AVERAGE 0.012 LB/MMBTU 0.2 LB/H 3-3-HOUR HOUR AVERAGE AVERAGE	BACT- PSD	N		limited to 4,380 hours of operation per calendar year
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	Nitrogen Oxides (NOx) SELECTIVE (NOx) BURNERS	CATALYTIC (SCR), LOW NOX	0	9 PPMVD @3% 0 OXYGEN THIRTY DAY ROLLING	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H		BUSTION PRACTICES R DESIGN, USE AS	0	AVERAGE 183.7 LB/MMCF 3-HR AVERAGE	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	IN MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H		BUSTION PRACTICES R DESIGN, USE AS	0	183.7 LB/MMCF 0 3-HR AVERAGE	BACT- PSD	N		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 AUXILLARY BOILERS	11.390	TWO BOILERS AT 435 MMBTU/HR EACH. BOILERS EQUIPPED WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM, LOW-NOX BURNERS, CATALYTIC OXIDIZER, AND BURN 100 PERCENT PROCESS GAS DURING NORMAL OPERATIONS	PROCESS GAS	435 MMBTU/H	e matter, PROCESS FUNDEMENT PROCESS FUNDEMEN	USE OF FACILITY JEL GAS DURING ERATION AND GOOD N PRACTICES	0	0.005 LB/MMBTU 0 3 HOUR BLOCK AVERAGE	BACT- PSD			
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	e matter, AND PROPE filterable	BUSTION PRACTICES R DESIGN	0	1.9 LB/MMCF 3- HR AVERAGE	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	IN MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	e matter, AND PROPE filterable	BUSTION PRACTICES R DESIGN	0	1.9 LB/MMCF 3- HR AVERAGE	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	e matter, AND PROPE filterable NATURAL GA	R DESIGN, USE	0	1.9 LB/MMCF 3- HR AVERAGE	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	e matter, AND PROPE filterable NATURAL GA	BUSTION PRACTICES R DESIGN, USE AS	0	1.9 LB/MMCF 3- HR AVERAGE	BACT- PSD	N		
*MD-0044	06/09/2014 ACT	IN DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 AUXILLARY BOILERS	11.390	TWO BOILERS AT 435 MMBTU/HR EACH. BOILERS EQUIPPED WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM, LOW-NOX BURNERS, CATALYTIC OXIDIZER, AND BURN 100 PERCENT PROCESS GAS DURING NORMAL OPERATIONS	PROCESS GAS	435 MMBTU/H	total < 10 NORMAL OP	JEL GAS DURING	0	0.014 LB/MMBTU 296.8 LB/EV 3 STACK TEST RUN AVERAGE, EXCEPT SU/SD	PSD			4.9 LB/SHUTDOWN EVENT
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR	Auxiliary boiler	13.310		natural gas	39.8 MMBtu/hr	Particulat e matter, total < 10 µ		0	0 0	BACT- PSD	U		
								(TPM10)							

RBLC BACT SUMMARY

										Standard			Case by		Estimated	
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant	Control Method Description	Emission Limit & Units	Emission Limit 1 & Units	Emission Limit	t Case Basis	Other Factors	Efficiency %	Pollutant/ Compliance Notes
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	REFORMER FURNACE	11.310	Tiocessivoles	NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	Particulat e matter, total < 10 µ (TPM10)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN		5.385 LB/MMCF 3-HR AVERAGEE	0	BACT- PSD	N	76	Tonutani Compilance Notes
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	Particulat e matter, total < 10 µ (TPM10)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0	5.385 LB/MMCF 3-HR AVERAGEE	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Particulat e matter,	GOOD COMBUSTION PRACTICES AND PROPER DESIGN, USE NATURAL GAS	0	7.6 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Particulat e matter,	GOOD COMBUSTION PRACTICES AND PROPER DESIGN, USE NATURAL GAS	0	7.6 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 AUXILLARY BOILERS	11.390	TWO BOILERS AT 435 MMBTU/HR EACH. BOILERS EQUIPPED WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM, LOW-NOX BURNERS, CATALYTIC OXIDIZER, AND BURN 100 PERCENT PROCESS GAS DURING NORMAL OPERATIONS	PROCESS GAS	435 MMBTU/H	Particulat e matter,	EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS DURING NORMAL OPERATION AND GOOD COMBUSTION PRACTICES	0	0.014 LB/MMBTU 3 STACK TEST RUN AVERAGE, EXCEPT SU/S	296.8 LB/EVENT FOR ALL STARTUPS	F BACT- PSD		4	.9 LB/SHUTDOWN EVENT
*TX-0691	05/20/2014 ACT	NRG TEXAS POWER LLC PH ROBINSON ELECTRIC GENERATING STATION GALVESTON, TX	fuel gas heater	13.310		natural gas	18 MMBtu/hr	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0	0	BACT- PSD	U		atural gas fuel, includes PM and M10
*TX-0694	02/02/2015 ACT	INDECK WHARTON, L.L.C. INDECK WHARTON ENERGY CENTER WHARTON, TX	heater	13.310		natural gas	3 MMBtu/hr	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0	0	BACT- PSD	U		atural gas fuel, includes PM and M10
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	Particulat e matter, total < 2.5 µ (TPM2.5)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0	5.385 LB/MMCF 3-HR AVERAGE	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Particulat e matter,	GOOD COMBUSTION PRACTICES AND PROPER DESIGN, USE NATURAL GAS	0	7.6 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Particulat e matter,	GOOD COMBUSTION PRACTICES AND PROPER DESIGN, USE NATURAL GAS	0	7.6 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR	Auxiliary boiler	13.310		natural gas	39.8 MMBtu/hr	Sulfuric	Good combustion practices; Utilize only natural gas.	0	0	0	BACT- PSD	U		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 AUXILLARY BOILERS	11.390	TWO BOILERS AT 435 MMBTU/HR EACH. BOILERS EQUIPPED WITH SELECTIVE CATALLYTIC REDUCTION (SCR) SYSTEM, LOW-NOX BURNERS, CATALYTIC OXIDIZER, AND BURN 100 PERCENT PROCESS GAS DURING NORMAL OPERATIONS	PROCESS GAS	435 MMBTU/H	Organic Compoun ds (VOC)	THE EXCLUSIVE USE OF PROCESS FUEL GAS DURING NORMAL OPERATION, OXIDATION CATALYST, AND GOOD COMBUSTION PRACTICES	0	0.001 LB/MMBTU 3-HOUR BLOCK AVERAGE, EXCLUDING SU/SD		T LAER		1	.8 LB/SHUTDOWN EVENT
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR	Auxiliary boiler	13.310		natural gas	39.8 MMBtu/hr	Volatile Organic Compoun ds (VOC)	Utilize Low-NOx burners and FGR.	0	0.005 LB/MMBTU 3-HR BLOCK AVERAGE	0	BACT- PSD	U		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	REFORMER FURNACE	11.310		NATURAL GAS, PROCESS GAS	950.64 MMBTU/H	Volatile Organic Compoun ds (VOC)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0	5.5 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Volatile Organic Compoun ds (VOC)	PROPER DESIGN AND GOOD COMBUSTION PRACTICES	0	5.5 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	STARTUP HEATER	15.110	NATURAL GAS USAGE SHALL NOT EXCEED 18.14 MMCF/YEAR.	NATURAL GAS	92.5 MMBTU/H	Volatile Organic Compoun ds (VOC)	PROPER DESIGN AND GOOD COMBUSTION PRACTICES	0	5.5 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

ALASKA LNG

RBLC Searc	h Date:														
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant	Control Method Description	Standard Emission Limit & Units	Emission Limi	t Emission Lim	Case by lit Case Basis	Other Factors	Estimated Efficiency % Pollutant/ Compliance Notes
*MD-0043	07/01/2014 ACT	CONSTELLATION POWER SOURCE GENERATION, INC. PERRYMAN GENERATING STATION HARFORD, MD	EMERGENCY GENERATOR	17.110	40 CFR 60 SUBPART IIII, GOOD COMBUSTION PRACTICES	ULTRA LOW SULFUR DIESEL	1300 HP	Particulat e matter, total < 10 µ (TPM10)	GOOD COMBUSTION PRACTICES, LIMITED HOURS OF OPERATION, AND EXCLUSIVE USE OF ULSD	0	0.17 G/HP-H CONDENSIBLE + FILTERABLE	0.15 G/HP-H FILTERABLE	BACT- PSD		NSPS 40 CFR 60 SUBPART IIII
*MD-0043	07/01/2014 ACT	CONSTELLATION POWER SOURCE GENERATION, INC. PERRYMAN GENERATING STATION HARFORD, MD	EMERGENCY GENERATOR	17.110	40 CFR 60 SUBPART IIII, GOOD COMBUSTION PRACTICES	ULTRA LOW SULFUR DIESEL	1300 HP	Nitrogen Oxides	GOOD COMBUSTION PRACTICES, LIMITED HOURS OF OPERATION, AND EXCLUSIVE USE OF ULSD	0	4.8 G/HP-H	6.4 G/KW-H	LAER		NSPS 40 CFR 60 SUBPART IIII
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	EMERGENCY GENERATOR	17.110	40 CFR 60, SUBPART IIII, ULTRA LOW- SULFUR DIESEL FUEL, GOOD COMBUSTION PRACTICES	ULTRA LOW SULFUR DIESEL	1550 HP	Particulat e matter, filterable (FPM)	EXCLUSIVE USE OF ULSD FUEL, GOOD COMBUSTION PRACTICES AND DESIGNED TO ACHIEVE EMISSION LIMITS	0	0.15 G/HP-H	0.2 G/KW-H	BACT- PSD		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	EMERGENCY GENERATOR	17.110	40 CFR 60, SUBPART IIII, ULTRA LOW- SULFUR DIESEL FUEL, GOOD COMBUSTION PRACTICES	ULTRA LOW SULFUR DIESEL	1550 HP		EXCLUSIVE USE OF ULSD FUEL, GOOD COMBUSTION PRACTICES AND DESIGNED TO ACHIEVE EMISSION LIMITS	0	0.17 G/HP-H	0.23 G/KW-H	BACT- PSD		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	EMERGENCY GENERATOR	17.110	40 CFR 60, SUBPART IIII, ULTRA LOW- SULFUR DIESEL FUEL, GOOD COMBUSTION PRACTICES	ULTRA LOW SULFUR DIESEL	1550 HP	Particulat e matter, total < 2.5 µ (TPM2.5)	EXCLUSIVE USE OF ULSD FUEL, GOOD COMBUSTION PRACTICES AND DESIGNED TO ACHIEVE EMISSION LIMITS	0	0.17 G/HP-H	0.23 G/KW-H	BACT- PSD		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	EMERGENCY GENERATOR	17.110	40 CFR 60, SUBPART IIII, ULTRA LOW- SULFUR DIESEL FUEL, GOOD COMBUSTION PRACTICES		1550 HP	Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICES AND DESIGNED TO ACHIEVE EMISSION LIMIT	0	+ NMHC	6.4 G/KW-H X COMBINED NO + NMHC			NSPS 40 CFR 60 SUBPART IIII
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	EMERGENCY GENERATOR	17.110	40 CFR 60, SUBPART IIII, ULTRA LOW- SULFUR DIESEL FUEL, GOOD COMBUSTION PRACTICES		1550 HP		GOOD COMBUSTION PRACTICES AND DESIGNED TO MEET EMISSION LIMIT	0	2.6 G/HP-H	3.49 G/KW-H	BACT- PSD		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	EMERGENCY GENERATOR	17.110	40 CFR 60, SUBPART IIII, ULTRA LOW- SULFUR DIESEL FUEL, GOOD COMBUSTION PRACTICES	ULTRA LOW SULFUR DIESEL	1550 HP	Volatile Organic Compoun ds (VOC)	USE ONLY ULSD, GOOD COMBUSTION PRACTICES, AND DESIGNED TO ACHIEVE EMISSION LIMIT	0	4.8 G/HP-H COMBINED NC + NMHC	6.4 G/KW-H X COMBINED NO + NMHC	LAER OX		NSPS 40 CFR 60 SUBPART IIII
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Particulat e matter, filterable (FPM)	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3 HR AVERAGE	- 0	BACT- PSD	N	
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Particulat e matter, total < 10 µ (TPM10)	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3 HR AVERAGE	- 0	BACT- PSD	N	
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Particulat e matter, total < 2.5 µ (TPM2.5)	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3 HR AVERAGE	- 0	BACT- PSD	N	
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICES	0	4.46 G/BHP-H 3 HR AVERAGE	- 0	BACT- PSD	N	
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Carbon Monoxide	GOOD COMBUSTION PRACTICES	0	2.61 G/BHP-H 3 HR AVERAGE	- 0	BACT- PSD	N	
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Volatile Organic Compoun ds (VOC)	GOOD COMBUSTION PRACTICES	0	0.31 G/BHP-H 3 HR AVERAGE	- 0	BACT- PSD	N	
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Carbon Dioxide	GOOD COMBUSTION PRACTICES	0	526.39 G/BHP-I 3-HR AVERAGE		BACT- PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Particulat e matter, filterable (FPM)	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H HR AVERAGE	3- 0	BACT- PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Particulat e matter, total < 10 µ (TPM10)	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H HR AVERAGE	3- 0	BACT- PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Particulat e matter, total < 2.5 µ (TPM2.5)	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H HR AVERAGE	3- 0	BACT- PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICES	0	4.46 G/B-HP-H HR AVERAGE	3- 0	BACT- PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Carbon Monoxide	GOOD COMBUSTION PRACTICES	0	2.61 G/B-HP-H HR AVERAGE	3- 0	BACT- PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	DIESEL FIRED EMERGENCY GENERATOR	17.110	ANNUAL OPERATING HOURS SHALL NOT EXCEED 500 HOURS. INSIGNIFICANT ACTIVITY WILL NOT BE TESTED.	NO. 2, DIESEL	3600 BHP	Volatile Organic Compoun ds (VOC)	GOOD COMBUSTION PRACTICES	0	0.31 G/B-HP-H HR AVERAGE	3- 0	BACT- PSD	N	

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

F	r			T	T	T		1		Standard	T	Т	Case by	Estimated	
				Process			Throughput &			Emission Limit	Emission Limit	Emission Limi		Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes	Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors %	Pollutant/ Compliance Notes
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	DIESEL FIRED EMERGENCY	17.110	ANNUAL OPERATING HOURS SHALL		3600 BHP	Carbon	GOOD COMBUSTION PRACTICES		526.39 G/B-HP-I		BACT-	N	
		CORPORATION MIDWEST	GENERATOR		NOT EXCEED 500 HOURS.			Dioxide			3-HR AVERAGE		PSD		
		FERTILIZER CORPORATION POSEY,			INSIGNIFICANT ACTIVITY WILL NOT										
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT	Four 3100 kW black start emergency	17.110	BE TESTED. Fired with ULSD	ULSD	2.32 MMBtu/hr	Carbon	Good combustion practice	0	3.5 GRAMS PER	2 0	BACT-	1	BACT = NSPS IIII: Certified IIII
FL-0340	04/22/2014 ACT	LAUDERDALE PLANT BROWARD, FL	generators	17.110	Filed with OLSD	OLSD	(HHV) per	Monoxide	Good combustion practice	ľ	KW-HR	. 0	PSD		engine meets BACT (or tests
		ENOBERBREET ENT BROWNES, TE	generators				engine	Wiorioxido					. 55		equired).
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT	Four 3100 kW black start emergency	17.110	Fired with ULSD	ULSD	2.32 MMBtu/hr	Particulat	Good combustion practice	0	0.2 GRAMS PER	0	BACT-		BACT = NSPS IIII; Certified IIII
		LAUDERDALE PLANT BROWARD, FL	generators				(HHV) per	e matter,	·		KW-HR		PSD		engine meets BACT.
							engine	total							
*51 0040	0.4/00/0044.4.0T	ELODIDA DOMEDA LIGHT	5 0400 13411 1 1 1	17.110	E: 1 31 11 0D	LHOD	0.00 141404 #	(TPM)	111.00	0	45 DDM OU!! 5!!!	2 0	DAGE		NACT NODO IIII O US LIIII
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT LAUDERDALE PLANT BROWARD, FL	Four 3100 kW black start emergency generators	17.110	Fired with ULSD	ULSD	2.32 MMBtu/hr (HHV) per	Sulfur Dioxide	ULSD required	U	15 PPM SULFUI	X 0	BACT- PSD		BACT = NSPS IIII; Certified IIII engine meets BACT. ULSD
		LAUDENDALE FLANT BROWARD, FL	generators				engine	(SO2)			INFOLL		FSD		equired in NSPS.
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Diesel Emergency Generator (EP15)	17.110		Ultra Low Sulfur Diesel	839 hp	Nitrogen	EPA Tier 2 rated	0	0	0	BACT-		mited to 500 hours of non-
		CHEYENNE PRAIRIE GENERATING						Oxides					PSD		emergency operation per calendar
		STATION LARAMIE, WY						(NOx)						,	rear
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Diesel Emergency Generator (EP15)	17.110		Ultra Low Sulfur Diesel	839 hp	Sulfur	Ultra Low Sulfur Diesel	0	0	0	OTHER		mited to 500 hours of non-
		CHEYENNE PRAIRIE GENERATING						Dioxide					CASE-BY-		emergency operation per calendar
		STATION LARAMIE, WY						(SO2)					CASE	1	rear
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Diesel Emergency Generator (EP15)	17.110		Ultra Low Sulfur Diesel	839 hp	Carbon	EPA Tier 2 rated	0	0	0	BACT-	N I	mited to 500 hours of non-
	00/20/20 12 / 10 1	CHEYENNE PRAIRIE GENERATING	Dieser Emergency Contrator (Er 10)			Januar Electric	000 1.p	Monoxide	2.71 1161 2 14164				PSD		emergency operation per calendar
		STATION LARAMIE, WY												į,	rear
*TX-0753	12/02/2014 ACT	GUADALUPE POWER PARTNERS,	Fire Water Pump Engine	17.210	Shall not exceed 100 hours of non-	ULSD	1.92 MMBtu/hr	Carbon		0	15.71 TPY CO2	0	BACT-		Not to exceed 100 hours of non-
		L.P. GUADALUPE GENERATING			emergency operation on a 12-month		(HHV)	Dioxide					PSD		emergency operation on a 12-
		STATION GUADALUPE, TX			rolling basis and shall be operated and			Equivalen							nonth rolling basis. Use of good
					maintained in accordance with the manufacturer's recommendations.			t (CO2e)							combustion practices.
*TX-0758	08/01/2014 ACT	INVENERGY THERMAL	Firewater Pump Engine	17.210	manufacturer's recommendations.	Diesel	0	Carbon		0	5 TPY CO2E 12	0	BACT-	1	Not to exceed 100 hours of non-
17-0130	55/5 1/20 17 AUT	DEVELOPMENT LLC ECTOR COUNTY		17.210		2.5501		Dioxide		ľ	MONTH	Ĭ	PSD		emergency operation on a 12-
		ENERGY CENTER ECTOR, TX						Equivalen			ROLLING TOTA	L			nonth rolling basis. Use of good
								t (CO2e)							combustion practices
*MD-0043	07/01/2014 ACT	CONSTELLATION POWER SOURCE	EMERGENCY DIESEL ENGINE FOR	17.210	40 CFR 60, SUBPART IIII, GOOD	ULTRAL LOW SULFUR DIESEL	350 HP	Particulat	GOOD COMBUSTION PRACTICES,	0	0.17 G/HP-H	0.15 G/HP-H	BART		ISPS 40 CFR 60 SUBPART IIII
		GENERATION, INC. PERRYMAN	FIRE WATER PUMP		COMBUSTION PRACTICES			e matter,	LIMITED HOURS OF OPERATION,		FILTERABLE +	FILTERABLE			
		GENERATING STATION HARFORD,						total < 10	AND EXCLUSIVE USE OF ULSD		CONDENSIBLE				
		MD						Αμ (TPM10)							
*MD-0043	07/01/2014 ACT	CONSTELLATION POWER SOURCE	EMERGENCY DIESEL ENGINE FOR	17.210	40 CFR 60, SUBPART IIII, GOOD	ULTRAL LOW SULFUR DIESEL	350 HP	Nitrogen	GOOD COMBUSTION PRACTICES,	0	3 G/HP-H	4 G/KW-H	LAER		ISPS 40 CFR 60 SUBPART IIII
WID-0043	01/01/2014 AO1	GENERATION, INC. PERRYMAN	FIRE WATER PUMP	17.210	COMBUSTION PRACTICES	DETRAL LOW GOLF GREENLE	330 111	Oxides	LIMITED HOURS OF OPERATION,	o a	3 0/111 -11	4 0/100-11	LALIX		VOI O 40 CI IX 00 OODI AIXI IIII
		GENERATING STATION HARFORD,						(NOx)	AND EXCLUSIVE USE OF ULSD						
		MD						,							
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP	5 EMERGENCY FIRE WATER PUMP	17.210	40 CFR 60, SUBPART IIII, ULTRA LOW-	ULTRA LOW SULFUR DIESEL	350 HP	Particulat	EXCLUSIVE USE OF ULSD FUEL,	0	0.15 G/BHP-H	0.2 G/KW-H	BACT-		
		COVE POINT LNG TERMINAL	ENGINES		SULFUR DIESEL FUEL, GOOD			e matter,	GOOD COMBUSTION PRACTICES				PSD		
		CALVERT, MD			COMBUSTION PRACTICES			filterable (FPM)	AND DESIGNED TO ACHIEVE						
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP	5 EMERGENCY FIRE WATER PUMP	17.210	40 CFR 60, SUBPART IIII, ULTRA LOW-	LILTRA LOW SUILEUR DIESEL	350 HP	(FPM) Particulat	EMISSION LIMITS EXCLUSIVE USE OF ULSD FUEL,	0	0.17 G/BHP-H	0.23 G/KW-H	BACT-		
WID-0044	00/09/2014 ACT	COVE POINT LNG TERMINAL	ENGINES	17.210	SULFUR DIESEL FUEL, GOOD	OLTRA LOW SOLF OR DIESEL	330 TIF	e matter.	GOOD COMBUSTION PRACTICES	ľ	0.17 G/BHF-H	0.23 G/KVV-II	PSD		
		CALVERT, MD	ENGINES		COMBUSTION PRACTICES				AND DESIGNED TO ACHIEVE				. 55		
								Âμ	EMISSION LIMITS						
								(TPM10)							
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP	5 EMERGENCY FIRE WATER PUMP	17.210	40 CFR 60, SUBPART IIII, ULTRA LOW-	ULTRA LOW SULFUR DIESEL	350 HP	Particulat		0	0.17 G/BHP-H	0.23 G/KW-H	BACT-		
		COVE POINT LNG TERMINAL	ENGINES		SULFUR DIESEL FUEL, GOOD			e matter,	GOOD COMBUSTION PRACTICES				PSD		
		CALVERT, MD			COMBUSTION PRACTICES			total < 2.5	AND DESIGNED TO ACHIEVE EMISSION LIMITS						
								Αμ (TPM2.5)	EMISSION LIMITS						
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG. LP	5 EMERGENCY FIRE WATER PUMP	17.210	40 CFR 60, SUBPART IIII, ULTRA LOW-	ULTRA LOW SULFUR DIESEL	350 HP	Nitrogen	GOOD COMBUSTION PRACTICES	0	3 G/HP-H NOX -	4 G/KW-H NOX	+ LAER		ISPS 40 CFR 60 SUBPART IIII
		COVE POINT LNG TERMINAL	ENGINES		SULFUR DIESEL FUEL, GOOD			Oxides	AND DESIGNED TO ACHIEVE		NMHC	NMHC			
		CALVERT, MD			COMBUSTION PRACTICES			(NOx)	EMISSION LIMIT						
*MD-0044	06/09/2014 ACT		5 EMERGENCY FIRE WATER PUMP	17.210	40 CFR 60, SUBPART IIII, ULTRA LOW-	ULTRA LOW SULFUR DIESEL	350 HP		GOOD COMBUSTION PRACTICES	0	3 G/HP-H	4 G/KW-H	BACT-		
		COVE POINT LNG TERMINAL	ENGINES		SULFUR DIESEL FUEL, GOOD			Monoxide	AND DESIGNED TO MEET				PSD		
*MD 0044	06/09/2014 ACT	CALVERT, MD DOMINION COVE POINT LNG, LP	5 EMERGENCY FIRE WATER PUMP	17.210	COMBUSTION PRACTICES 40 CFR 60. SUBPART IIII, ULTRA LOW-	LILTRA LOW SHI FUR DIESEL	350 HP	Volatile	EMISSION LIMIT USE ONLY ULSD, GOOD	0	3 C/UD U NOV	4 G/KW-H NOX	+ I AED		
IVID-0044	00/09/2014 ACT	COVE POINT LNG, LP	ENGINES	17.210	SULFUR DIESEL FUEL, GOOD	OLTIVA LOW SULFUR DIESEL	330 FF		COMBUSTION PRACTICES, AND	ľ	NMHC	NMHC	LAEK		
		CALVERT, MD	LIVOINES		COMBUSTION PRACTICES				DESIGNED TO ACHIEVE EMISSION		I VIIVII I O	I VIVII I O			
		,						ds (VOC)							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3	0	BACT-	N .	
		CORPORATION MIDWEST			PER YEAR. INSIGNIFICANT ACTIVITY,			e matter,			HR AVERAGE		PSD		
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.			filterable							
*IN-0173	06/04/2014 ACT	IN MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	(FPM) Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3	0	BACT-		
IIN-0173	06/04/2014 ACT	CORPORATION MIDWEST	FIRE POWP	17.210	PER YEAR. INSIGNIFICANT ACTIVITY,		300 HP	e matter,	GOOD COMBOSTION PRACTICES	U	HR AVERAGE	0	PSD	1	
		FERTILIZER CORPORATION POSEY,		1	WILL NOT BE TESTED.			total < 10			VEIVAGE		1. 55		
		IN		1				Âμ							
				<u> </u>				(TPM10)							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3	0	BACT-	N	
		CORPORATION MIDWEST		1	PER YEAR. INSIGNIFICANT ACTIVITY,			e matter,			HR AVERAGE		PSD		
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.	1		total < 2.5							
		lin .				1		Aμ (TPM2.5)							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS	1	500 HP	Nitrogen	GOOD COMBUSTION PRACTICES	0	2.83 G/BHP-H 3	. 0	BACT-	, <u> </u>	
	13,5 .,20 14 AO 1	CORPORATION MIDWEST			PER YEAR. INSIGNIFICANT ACTIVITY,	1	555 111	Oxides	1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	[-	HR AVERAGE	ľ	PSD	•	
		FERTILIZER CORPORATION POSEY,		1	WILL NOT BE TESTED.			(NOx)							
	<u></u>	IN						<u> </u>			<u> </u>				
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Carbon	GOOD COMBUSTION PRACTICES	0	2.6 G/BHP-H 3-	0	BACT-	N	
1		CORPORATION MIDWEST		1	PER YEAR. INSIGNIFICANT ACTIVITY,			Monoxide			HR AVERAGE		PSD		
1		FERTILIZER CORPORATION POSEY,		1	WILL NOT BE TESTED.										
1	i	IIIN	İ	i	i .	Î.	1	1	İ	i .	I .	1	1		

-	ı	1		1		I		1		Standard	Т	Case by	Т	Estimated	
				Process			Throughput &			Emission Limit	Emission Limit Emission Limi	Case by		Estimated Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes	Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units 2 & Units	Basis	Other Factors		ollutant/ Compliance Notes
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Volatile	GOOD COMBUSTION PRACTICES	0	0.141 G/BHP-H 3-0	BACT-	N		, , , , , , , , , , , , , , , , , , , ,
		CORPORATION MIDWEST			PER YEAR. INSIGNIFICANT ACTIVITY,			Organic			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.			Compoun							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	ds (VOC) Carbon	GOOD COMBUSTION PRACTICES	0	527.4 G/BHP-H 3-0	BACT-	N		
114-0175	00/04/2014 ACT	CORPORATION MIDWEST	I II C I OWII	17.210	PER YEAR. INSIGNIFICANT ACTIVITY,		300111	Dioxide	GOOD COMBOOTION I TRACTICES	O	HR AVERAGE	PSD	17		
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.										
		IN													
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3- 0	BACT-	N		
		CORPORATION MIDWEST			HOURS PER YEAR. INSIGNIFICANT			e matter,			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.			filterable (FPM)							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3- 0	BACT-	N		
		CORPORATION MIDWEST			HOURS PER YEAR. INSIGNIFICANT	, -		e matter,			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.			total < 10							
		IN						Äμ							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	(TPM10) Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/BHP-H 3- 0	BACT-	N		
114-0173	00/04/2014 ACT	CORPORATION MIDWEST	NAW WATER FOWE	17.210	HOURS PER YEAR. INSIGNIFICANT	DIESEL, NO. 2	300 115	e matter,	GOOD COMBOSTION FRACTICES	U	HR AVERAGE	PSD	IN .		
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.			total < 2.5							
		IN						Âμ							
								(TPM2.5)							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500 HOURS PER YEAR. INSIGNIFICANT	DIESEL, NO. 2	500 HP	Nitrogen	GOOD COMBUSTION PRACTICES	0	2.83 G/BHP-H 3- 0 HR AVERAGE	BACT- PSD	N		
		FERTILIZER CORPORATION POSEY.			ACTIVITY, WILL NOT BE TESTED.			Oxides (NOx)			HR AVERAGE	PSD			
		IN			ACTIVITY, WILE NOT BE TESTED.			(IVOX)							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Carbon	GOOD COMBUSTION PRACTICES	0	2.6 G/BHP-H 3- 0	BACT-	N		
		CORPORATION MIDWEST			HOURS PER YEAR. INSIGNIFICANT			Monoxide			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.										
*!!! 0470	00/04/0044 4 0T	IN	DAWWATED DUBAD	17.010	OPERATION NOT TO EVOLED FOR	DIEGEL NO. 0	500 HP	V 1 C	OCCE COMPLICATION PRACTICES	^	0.444.0/01/01/01/01	DAOT	XI		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500 HOURS PER YEAR. INSIGNIFICANT	DIESEL, NO. 2	500 HP	Volatile Organic	GOOD COMBUSTION PRACTICES	0	0.141 G/BHP-H 3-0 HR AVERAGE	BACT- PSD	N		
		FERTILIZER CORPORATION POSEY.			ACTIVITY, WILL NOT BE TESTED.			Compoun			TITAVEIVAGE	1 00			
		IN			,			ds (VOC)							
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Carbon	GOOD COMBUSTION PRACTICES	0	527.4 G/BHP-H 3-0	BACT-	N		
		CORPORATION MIDWEST			HOURS PER YEAR. INSIGNIFICANT			Dioxide			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.										
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H 3- 0	BACT-	N		
114-0100	00/04/2014 ACT	CORPORATION MIDWEST	I II C I OWII	17.210	PER YEAR. INSIGNIFICANT ACTIVITY,		300111	e matter,	GOOD COMBOOTION I TRACTICES	O	HR AVERAGE	PSD	"		
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.			filterable							
		IN						(FPM)							
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H 3- 0	BACT-	N		
		CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,			PER YEAR. INSIGNIFICANT ACTIVITY, WILL NOT BE TESTED.			e matter, total < 10			HR AVERAGE	PSD			
		IN			WILL NOT BE TESTED.			Âu							
		"`						(TPM10)							
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H 3- 0	BACT-	N		
		CORPORATION MIDWEST			PER YEAR. INSIGNIFICANT ACTIVITY,			e matter,			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.			total < 2.5							
		IN						Αμ (TPM2.5)							
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Nitrogen	GOOD COMBUSTION PRACTICES	0	2.83 G/B-HP-H 3- 0	BACT-	N	+	
		CORPORATION MIDWEST			PER YEAR. INSIGNIFICANT ACTIVITY,			Oxides			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.			(NOx)							
	00/04/0044407	IN	5105 01 11 10	1=010			EGG LUD					D 4 0 T			
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Carbon	GOOD COMBUSTION PRACTICES	0	2.6 G/B-HP-H 3- 0 HR AVERAGE	BACT- PSD	N		
		FERTILIZER CORPORATION POSEY.			PER YEAR. INSIGNIFICANT ACTIVITY, WILL NOT BE TESTED.			Monoxide			HR AVERAGE	PSD			
1		IN		1				1				1			
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	Volatile	GOOD COMBUSTION PRACTICES	0	0.141 G/B-HP-H 0	BACT-	N		
1		CORPORATION MIDWEST		1	PER YEAR. INSIGNIFICANT ACTIVITY,			Organic			3-HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.			Compoun							
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	FIRE PUMP	17.210	OPERATION LIMITED TO 500 HOURS		500 HP	ds (VOC) Carbon	GOOD COMBUSTION PRACTICES	0	527.4 G/B-HP-H 0	BACT-	N	+ +	
114-0100	00/04/2014 ACT	CORPORATION MIDWEST	FINE FOWIF	17.210	PER YEAR. INSIGNIFICANT ACTIVITY,		300 T IF	Dioxide	GOOD COMBOSTION FRACTICES	U	3-HR AVERAGE	PSD	IN .		
		FERTILIZER CORPORATION POSEY,			WILL NOT BE TESTED.										
		IN													
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H 3- 0	BACT-	N		
		CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,			HOURS PER YEAR. INSIGNIFICANT			e matter, filterable			HR AVERAGE	PSD			
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.			(FPM)							
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Particulat	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H 3- 0	BACT-	N	+ +	
		CORPORATION MIDWEST		1	HOURS PER YEAR. INSIGNIFICANT	·		e matter,			HR AVERAGE	PSD			
1		FERTILIZER CORPORATION POSEY,		1	ACTIVITY, WILL NOT BE TESTED.			total < 10							
1		IN		1				Aµ (TDM440)				1			
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17 210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	(TPM10)	GOOD COMBUSTION PRACTICES	0	0.15 G/B-HP-H 3- 0	BACT-	N	+	
114-0100	00/04/2014 ACT	CORPORATION MIDWEST	DAW WATER FUNIF	17.210	HOURS PER YEAR. INSIGNIFICANT	DIEGEL, INO. Z	300 FF	Particulat e matter,	COOD COMBUSTION PRACTICES	U	HR AVERAGE	PSD	13		
1		FERTILIZER CORPORATION POSEY,		1	ACTIVITY, WILL NOT BE TESTED.			total < 2.5			''	1			
1		IN		1				Âμ				1			
****	001041004::			1=0/-			E001:-	(TPM2.5)				10.00			
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500 HOURS PER YEAR. INSIGNIFICANT	DIESEL, NO. 2	500 HP	Nitrogen	GOOD COMBUSTION PRACTICES	U	2.83 G/B-HP-H 3- 0 HR AVERAGE	BACT- PSD	N		
1		FERTILIZER CORPORATION POSEY,		1	ACTIVITY, WILL NOT BE TESTED.			Oxides (NOx)			III AVERAGE	FOU			
1		IN						(1101)							

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

										Standard			Case by		Estimated	
				Process			Throughput &			Emission Limit	Emission Limit	Emission Limit	Case		Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes	Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors	%	Pollutant/ Compliance Notes
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Carbon	GOOD COMBUSTION PRACTICES	0	2.6 G/B-HP-H 3-	0	BACT- PSD	N		
		CORPORATION MIDWEST FERTILIZER CORPORATION POSEY.			HOURS PER YEAR. INSIGNIFICANT ACTIVITY. WILL NOT BE TESTED.			Monoxide			HR AVERAGE		PSD			
		IN			ACTIVITY, WILL NOT BE TESTED.											
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Volatile	GOOD COMBUSTION PRACTICES	0	0.141 G/B-HP-H	0	BACT-	N		
		CORPORATION MIDWEST			HOURS PER YEAR. INSIGNIFICANT	, -		Organic			3-HR AVERAGE		PSD			
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.			Compoun								
		IN						ds (VOC)								
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	RAW WATER PUMP	17.210	OPERATION NOT TO EXCEED 500	DIESEL, NO. 2	500 HP	Carbon	GOOD COMBUSTION PRACTICES	0	527.4 G/B-HP-H	0	BACT-	N		
		CORPORATION MIDWEST			HOURS PER YEAR. INSIGNIFICANT			Dioxide			3-HR AVERAGE		PSD			
		FERTILIZER CORPORATION POSEY,			ACTIVITY, WILL NOT BE TESTED.											
*TX-0757	05/12/2014 ACT	INDECK WHARTON, LLC INDECK	Firewater Pump Engine	17.210	Indeck will be equipped with one	ULSD	175 hp	Carbon		0	5.34 TPY CO2E	0	BACT-	IJ		BACT for the fire water pump
		WHARTON ENERGY CENTER			nominally rated 175-hp diesel-fired pump	,		Dioxide		Ī	12-MONTH		PSD			engine will be to limit operation to
		WHARTON, TX			engine to provide water in the event of a			Equivalen			ROLLING TOTAL					no more than 52 hours of non-
					fire. The fire water pump will operate a			t (CO2e)								emergency operation per year for
					maximum of 52 hours of non-emergency											the purpose of maintenance,
					operation on a 12-month rolling basis for											testing, and inspection. Indeck will
					testing and maintenance. The fire water											also monitor hours of operation for
					pump engine emissions represent											the purpose of maintenance,
					0.003% of the total facility-wide GHG											testing, and inspection for each
					emissions.											engine on a monthly basis. Compliance will be based on
																runtime hour meter readings on a
																12-month rolling basis.
																12 monar rolling basis.
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT	Emergency fire pump engine (300 HP)	17.210	Emergency engine. BACT = NSPS IIII.	USLD	29 MMBtu/hr	Carbon	Good combustion practice.	0	3.5 GRAM PER	0	BACT-	U		BACT = NSPS IIII; Certified IIII
		LAUDERDALE PLANT BROWARD, FL						Monoxide			KW-HR		PSD			engine meets BACT.
	0.4/0.0/0.04.4.4.07	EL OBJET DOMES A LIGHT	5 (000 117)	17.010		LIOL D	00.10.00									BA 07 11000 1111 0 115 11111
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT LAUDERDALE PLANT BROWARD. FL	Emergency fire pump engine (300 HP)	17.210	Emergency engine. BACT = NSPS IIII.	USLD	29 MMBtu/hr	Particulat	Good combustion practice	0	0.2 GRAM PER HP-HR	0	BACT- PSD	U		BACT = NSPS IIII; Certified IIII
		LAUDERDALE PLANT BROWARD, FL						e matter, total			HP-HK		PSD			engine meets BACT.
								(TPM)								
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT	Emergency fire pump engine (300 HP)	17.210	Emergency engine. BACT = NSPS IIII.	USLD	29 MMBtu/hr	Sulfur	Good combustion practice and ULSD	0	15 PPM SULFUR	0	BACT-	U		BACT = NSPS IIII: Certified IIII
		LAUDERDALE PLANT BROWARD, FL						Dioxide	•		IN FUEL		PSD			engine meets BACT. ULSD
								(SO2)								specified in NSPS.
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Diesel Fire Pump Engine (EP16)	17.210		Ultra Low Sulfur Diesel	327 hp	Carbon	EPA Tier 3 rated	0	0	0	BACT-	N		limited to 250 hours of non-
	ĺ	CHEYENNE PRAIRIE GENERATING						Monoxide		1			PSD			emergency operation per calendar
*1407.0070	00/00/0040 4 6=	STATION LARAMIE, WY	D: 15: D 5 : (50(2)	17.010	1		007.1	L.	EDAT: 0 4 1			2	DAGE	hi .		year
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Diesel Fire Pump Engine (EP16)	17.210		Ultra Low Sulfur Diesel	327 hp	Nitrogen	EPA Tier 3 rated	U	U	U	BACT- PSD	N		limited to 250 hours of non-
1	ĺ	CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY						Oxides (NOx)		1			PSD			emergency operation per calendar
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Diesel Fire Pump Engine (EP16)	17.210	1	Ultra Low Sulfur Diesel	327 hp	Sulfur	Ultra Low Sulfur Diesel	0	0	0	BACT-	N		limited to 250 hours of non-
**1-0070	00/20/2012 701	CHEYENNE PRAIRIE GENERATING	Diosci i lie i dilip Eligilie (El 10)	17.210		Old Low Gullar Dieser	327 HP	Dioxide	Olica Low Guilai Diesei	ľ	<u> </u>	o .	PSD	14		emergency operation per calendar
		STATION LARAMIE. WY						(SO2)		ĺ			. 55			vear
			1		II.	1		1,202/	l .				1	L .		,

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

010 - 2015, Process 15.11

12/1/2015

	T .				T			1	1		Standard	1	Ī	Case by	-	Estimated
DDI 0 ID	5.4	Forth Nove O London		Process	B N		B	Throughput &	B. II. 4	0.4.18.4.18	Emission Limit	Emission Limit		Case	0.00	Efficiency
*TX-0762	Date 09/15/2015 ACT	Facility Name & Location NRG TEXAS POWER CEDAR BAYOU	Process Simple cycle turbines greater than 25	Type 15.110	Process Notes 4 turbine options General Electric 7HA	natural gas	Primary Fuel	Units 359 MW	Pollutant Carbon	Control Method Description	& Units	1 & Units 1232 LB	2 & Units	Basis BACT-	Other Factors N	% Pollutant/ Compliance Notes 40 Code of Federal Regulations ,
	0.000	ELECTRIC GENERATING STATION CHAMBERS, TX	megawatts (MW)	16.116	å€" 359 MW GE 7FA å€" 215 MW Siemens SF5 (SF5) å€" 225 MW Mitsubishi 501G (MHI510G) å€" 263 MW	natarai gas		555	Dioxide			CO2/MWH		PSD		Part 60 (40 CFR Part 60), Subpart
*SC-0161	02/19/2014 ACT	DUKE ENERGY CAROLINAS LLC, W.S. LEE STEAM STATION , SC	COMBINED CYCLE COMBUSTION TURBINES (SIEMENS)	15.110	THE FACILITY PLANS TO INSTALL EITHER TWO GE 7FA.05 OR TWO SIEMENS SGT-5000F(5) NATURAL GAS FIRED COMBUSTION TURBINE GENERATORS, EACH EQUIPPED WITH A DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.			0	Carbon Dioxide	ENERGY EFFICIENT PROCESSES, PRACTICES, AND DESIGN	1000 LB/MWH CO2 12- OPERATING MONTH ROLLING AVERAGE	1000 LB/MWH CO2 12- OPERATING MONTH ROLLING AVERAGE	0	BACT- PSD		CO2 EQUIVALENT PSD LIMIT IS 1,000 POUNDS OF CO2 PER GROSS MEGAWATT-HOUR (LB CO2/MWH) ON A 12- OPERATING MONTH ROLLING AVERAGE FOR THE GROSS ELECTRIC OUTPUT FROM ONE COMBUSTION TURBINE PLUS THE COMMON STEAM TURBINE GENERATOR.
*SC-0161	02/19/2014 ACT	DUKE ENERGY CAROLINAS LLC, W.S. LEE STEAM STATION , SC	COMBINED CYCLE COMBUSTION TURBINES (GE)	15.110	THE FACILITY PLANS TO INSTALL EITHER TWO GE 7FA.05 OR TWO SIEMENS SGT-5000F(5) NATURAL GAS FIRED COMBUSTION TURBINE GENERATORS, EACH EQUIPPED WITH A DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.			0	Carbon Dioxide	ENERGY EFFICIENT PROCESSES, PRACTICES, AND DESIGN	1000 LB/MWH CO2 12- OPERATING MONTH ROLLING AVERAGE	1000 LB/MWH CO2 12- OPERATING MONTH ROLLING AVERAGE	0	BACT- PSD		CO2 EQUIVALENT PSD LIMIT IS 1,000 POUNDS OF CO2 PER GROSS MEGAWATT-HOUR (LB CO2/MWH) ON A 12- OPERATING MONTH ROLLING AVERAGE FOR THE GROSS ELECTRIC OUTPUT FROM ONE COMBUSTION TURBINE PLUS THE COMMON STEAM TURBINE GENERATOR.
*TX-0762	09/15/2015 ACT	NRG TEXAS POWER CEDAR BAYOU ELECTRIC GENERATING STATION CHAMBERS, TX	Combined cycle and cogeneration turbines greater than 25 MW	15.210	4 turbines options GE 7HA å€" 359 MW +a 301 million British thermal units per hour (MMBtu/hr) duct burner (DB) GE7FA å€" 215 MW + a 523 MMBtu/hr DB SF5 å€" 225 MW + 686 MMBtu/hr DE MHI510G å€" 263 MW + 686 MMBtu/hr DB			301 MMBtu/hr	Carbon Dioxide		0	825 LB CO2/MWH	0	BACT- PSD	N	40 CFR Part 60, Subpart TTTT
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL G	GAS	283 MMBTU/H, EACH	Carbon Dioxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0	12666 BTU/KW- H, MINIMUM CONTINUOUS	116.89 LB/MMBTU 3-HR AVERAGE	BACT- PSD	N	CO2 EMISSIONS SHALL NOT EXCEED 144,890 TON/YEAR
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL G	GAS	218.6 MMBTU/H, EACH	Carbon Dioxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN: AIR INLET CONTROLS, HEAT RECOVERY CONDENSATE AND BLOWDOWN HEAT RECOVERY	0	59.61 T/MMCF 3 HR AVERAGE	80 % THERMAL EFFICIENCY (HHV)	BACT- PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL G	GAS	283 MMBTU/H, EACH	Carbon Dioxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0	12666 BTU/KW- H, MINIMUM CONTINUOUS	116.89 LB/MMBTU 3-HR AVERAGE	BACT- PSD	N	CO2 EMISSIONS SHALL NOT EXCEED 144,890 TON/YEAR
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL C	GAS	218.6 MMBTU/H, EACH	Carbon Dioxide	GOOD COMBUSTION PRACTICES AND PROPER DESIGN: AIR INLET CONTROLS, HEAT RECOVERY CONDENSATE AND BLOWDOWN HEAT RECOVERY	0	59.61 TON/MMCF 3- HR AVERAGE	80 % THERMAL EFFICIENCY (HHV)	BACT- PSD	N	
*TX-0778	12/16/2015 ACT	NAVASOTA SOUTH PEAKERS OPERATING COMPANY II, LLC. UNIOI VALLEY ENERGY CENTER NIXON, TX		15.110	The CTGs will be three General Electric 7FA.04 (~183 MW each for a total of 550 MW), operating as peaking units in simple cycle mode. Each turbine will be limited to 2,500 hours of operation per year. The new CTGs will use dry low-NOx (DLN) burners and may employ evaporative cooling for power enhancement.	natural gas		183 MW	Carbon Dioxide Equivalen t (CO2e)		0	1461 LB/MW H	0	BACT- PSD	N	NSPS TTTT, SIMPLE CYCLE PEAKING TURBINE
*TX-0775	11/13/2015 ACT	NAVASOTA SOUTH PEAKERS OPERATING COMPANY II, LLC. CLEAR SPRINGS ENERGY CENTER (CSEC) GUADALUPE, TX	Simple Cycle Turbine	15.110	The CTGs will be three General Electric 7FA.04 (~183 MW each for a total of 550 MW), operating as peaking units in simple cycle mode. Each turbine will be limited to 2,500 hours of operation per year. The new CTGs will use dry low-NOx (DLN) burners and may employ evaporative cooling for power enhancement.			183 MW	Carbon Dioxide Equivalen t (CO2e)	Low carbon fuel, good combustion, efficient combined cycle design	0	1461 LB/MW H	o	BACT- PSD	N	NSPS TTTT, CTGs will operate at 2500 hours of operation per year at baseload.
*TX-0771	11/10/2015 ACT	SHAWNEE ENERGY CENTER, LLC SHAWNEE ENERGY CENTER HILL, TX	Simple cycle turbines greater than 25 K megawatts (MW)	15.110	enhancement. Siemens Model SGT6-5000 F5ee â€" 230 MW or Second turbine option: General Electric Model 7FA.05TP â€" 227 MW	natural gas		230 MW	Carbon Dioxide Equivalen t (CO2e)		0	1398 LB/MWH	0	BACT- PSD	N	Operation of the turbine is limited to 2,920 hours on a 12-month rolling average.
*TX-0735	05/19/2015 EST	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE, TX	Simple Cycle Turbine & Generator	15.110	3 additional GE 7F 5-Series Combustion Turbine Generators	natural gas		202 MW	Carbon Dioxide Equivalen t (CO2e)	Energy efficiency, good design & combustion practices	0	1304 LB CO2/MWHR	0	BACT- PSD	N	Operation of each turbine is limited to 4,572 hours per year

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

10 - 2015, Process 15.110

12/1/2015

	Date	Facility Name & Location	Process	Process Type	Process Notes Primary Fuel	Throughput of Units	& Pollutant	t Control Method Description	Standard Emission Limit & Units	Emission Limit	Emission Limit	Case by Case Basis	Other Factors	Estimated Efficiency %	Pollutant/ Compliance Notes
	015 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration Compressor Turbines	15.110	There are three LNG trains with a total of natural gas (12) GE LM2500+ DLE turbines that drive the propane and methane refrigeration compressors.	40000 hp	Carbon Dioxide Equivaler t (CO2e)	install efficient turbines, follow the turbine manufacturer's emission-	0	146754 TPY ROLLING 12- MONTH BASIS	0	BACT- PSD	U		The limit is for each turbine.
*IN-0218 12/11/20	ľ	SABIC INNOVATIVE PLASTICS MT. VERNON, LC SABIC INNOVATIVE PLASTICS MT. VERNON, LC POSEY, IN	COMBUSTION TURBINE:COGEN	15.110	NATURAL GAS	1812 MMBTU/	H Carbon Dioxide Equivalen t (CO2e)	1	0	937379 T/YR	0				COGEN SHALL USE NATURAL GAS ONLY; COGEN SHALL ACHEIVE A MINIMUM NET PLANT EFFICIENCY OF 85% (LHV)
*TX-0753 12/02/20	I	GUADALUPE POWER PARTNERS, L.P. GUADALUPE GENERATING STATION GUADALUPE, TX	Simple Cycle Combustion Turbine Generator	15.110	Natural gas-fired simple cycle combustion turbine generators (CTG) will be General Electric 7FA.05 (GE 7FA.05), each with a maximum base-load electric power output of 227 megawatts (MW, nominal). Combined gross heat rate limit of 10,279,456 MMBtu/yr.	10673 Btu/kWh	Carbon Dioxide Equivaler t (CO2e)		0	1293.3 LB CO2/MWHR (GROSS) 12- MONTH ROLLING AVERAGE (NORMAL OPER)	20.8 TONS COZ/HR 12- MONTH ROLLING AVERAGE BASIS (MSS OPER	BACT- PSD	U		BACT limits above are for each CT. The two new turbines have a combined limit of 5,000 hours of operation (including MSS) on a 12-month rolling total basis. Both CT are limited to 300 combined hours of start and 300 combined hours of start and 300 combined hours of shutdown on a 12-month rolling total basis. Stack Testing Requirements: initial compliance with the CO2 emission limits. Shall be conducted in accordance with 40 CFR 60.8 and Method 3a or 3b. Emission testing for the CT shall be performed every 5 years, plus or minus 6 months to verify continued performance at permitted emission limits.
*TX-0753 12/02/20		GUADALUPE POWER PARTNERS, L.P. GUADALUPE GENERATING STATION GUADALUPE, TX	Simple Cycle Combustion Turbine Generator	15.110	Natural gas-fired simple cycle combustion turbine generators (CTG) will be General Electric 7FA.05 (GE 7FA.05), each with a maximum base-load electric power output of 227 megawatts (MW, nominal). Combined gross heat rate limit of 10,279,456 MMBtu/yr.	10673 Btu/kWf	Carbon Dioxide Equivaler t (CO2e)		0	1293.3 LB CO2/MWHR (GROSS) 12- MONTH ROLLING AVERAGE (NORMAL OPER)	20.8 TONS COZ/HR 12- MONTH ROLLING AVERAGE BASIS (MSS OPER	BACT- PSD	U		BACT limits above are for each CT. The two new turbines have a combined limit of 5,000 hours of operation (including MSS) on a 12-month rolling total basis. Both CT are limited to 300 combined hours of start and 300 combined hours of start and 300 combined hours of shutdown on a 12-month rolling total basis. Stack Testing Requirements: initial compliance with the CO2 emission limits. Shall be conducted in accordance with 40 CFR 60.8 and Method 3a or 3b. Emission testing for the CT shall be performed every 5 years, plus or minus 6 months to verify continued performance at permitted emission limits.
*TX-0758 08/01/20		INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	Simple Cycle Combustion Turbine, GE 7FA.03	15.110	Natural Gas	11707 Btu/kWH (HHV)	Carbon Dioxide Equivaler t (CO2e)		0	1393 LB CO2/MWHR (GROSS) 2500 OPERATIONAL HR ROLLING DAILY/CT	239649 TPY COZE 12- MONTH ROLLING TOTAL	BACT- PSD	U		an emission limit of 1,393 lb CO2/MWhr gross output for the GETFA.03 combustion turbine to be utilized for this project. Each combustion turbine is limited to 2,500 operational hours on a rolling basis, plus 500 startup and shutdown events on a 1246-month rolling average. Until the 2,500 operational hour basis has been established, Invenergy should utilize the performance testing data to establish a plan whereby Invenergy may operate the emission unit in a manner that will not exceed the permitted CO2e emissions limits. To account for the additional hours of operation associated with the startup and shutdowns, each turbine is limited by fuel use associated with the 2,500 hours of operation per year. Limiting the fuel use achieves the same objective as limiting the number of hours of operation of each turbine to 2,500 hours. The fuel use limit for each combustion turbine that corresponds to the 2,500 hours of operation per 365 day basis is 4,028,700 MMBtu (HHV) on a 12-month rolling basis for the GETFA.03 combustion

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

10 - 2015, Process 15.110

12/1/2015

Process Emission Lim **Emission Limit Emission Limi** Case Efficiency Throughput 8 **Type**'5.110 RBLC ID **Date** 08/01/2014 ACT Facility Name & Location **Process Notes** 1 & Units Basis Other Factors Pollutant/ Compliance Notes **Primary Fuel** Process ollutan BACT applies during all periods DEVELOPMENT LLC ECTOR COUNTY CO2F/FVFNT oxide PSD turbine operation, including startu ENERGY CENTER ECTOR, TX EACH MSS and shutdown. MSS emissions are . (CO2e) EVENT imited to 10,502 CO2e per year and each start up and shut down event is limited to 21 tons of CO2e. The number of startups ar shutdowns is based on the number of operational hours per year (2,500 service hours per yea per turbine). All startups and shutdowns are limited to 60 minutes in duration per event. A startup of each turbine is defined as the period that begins when there is measureable fuel flow to the turbine and ends when the turbine load reaches 60 percent. shutdown of each turbine is defined as the time period that begins when the combustion turbine drops out of the normal operating low-NOx combustion mode (which equates to approximately 60% combustion turbine load) following an instruction to shut down, and endwhen flame is no longer detected n the combustion turbine combustors. The proposed ECEC project is proposing 500 JSE OF NATURAL GAS. ENERGY *MD-0043 07/01/2014 ACT CONSTELLATION POWER SOURCE 2) 60-MW SIMPLE CYCLE (2) 60-MEGAWATT PRATT & WHITNEY NATURAL GAS 120 MW 1394 LB BACT-GAS TURBINE GENERATOR OMBUSTION TURBINES, FIRING EFFICIENCY DESIGN - USE OF CO2F/MWH 12-GENERATION, INC. PERRYMAN Dioxide PSD GENERATING STATION HARFORD, Equivalen INLET FOGGING/WET NATURAL GAS PACKAGE MONTH COMPRESSION, INSULATION ROLLING, BLANKETS TO REDUCE HEAT **EXCLUDING** LOSS, AND FUEL GAS SU/SD 117 LB/MMBTU EMISSION LIMIT DOMINION COVE POINT LNG, LP TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES HIGH EFFICIENCY GE 7EA CTS WITH HRSGS EQUIPPED WITH *MD-0044 06/09/2014 ACT 2 COMBUSTION TURBINES NATURAL GAS 130 MW 117 LB/MMBTU 3 COVE POINT LNG TERMINAL IS PER TURBINE HOUR BLOCK PSD Dioxide (CTS) WITH A NOMINAL NET 87.2 LN1 COMBUSTORS AND AVERAGE (CO2e) EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE MEGAWATT (MW) RATED CAPACITY COUPLED WITH A HEAT RECOVERY TEAM GENERATOR (HRSG), QUALITY NATURAL GAS FOLIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST *CO-0075 05/30/2014 ACT BLACK HILLS ELECTRIC One (1) General Electric, simple cycle, gas turbine electric generator, Unit 6 1600 LB/MW H Turbine - simple cycle gas atural gas 375 mmbtu/hr Carbon Good Combustion Control 193555 TONS GENERATION, LLC PUEBLO AIRPORT PER YEAR GROSS GENERATING STATION PUEBLO, CO CT08), model: LM6000, SN: N/A, rated ROLLING 365-ROLLING 365t 375 MMBtu per hour. CO2e DAY AVE DAY AVE *TX-0757 05/12/2014 ACT INDECK WHARTON, LLC INDECK 1276 LB GHG BACT for Indeck is the use Simple Cycle Combustion Turbine, GE Indeck proposes to construct three Pipeline Natural Gas Carbon WHARTON ENERGY CENTER 7FA.05 entical natural gas-fired F-class simple oxide CO2/MWHR CO2E 12-PSD of modern natural gas-fired, (GROSS) 2.500 WHARTON, TX cycle combustion turbines with guivale MONTH thermally efficient simple cycle ssociated support equipment. Indeck OPERATIONAL ROLLING BASIS combustion turbines combined (CO2e) proposes that the three new combustion HR ROLLING with evaporative cooling and good urbine generators (CTGs) will be either DAILY/CT combustion and maintenance General Electric (GE) 7FA.05 or Siemer practices to maintain optimum SGT6-5000F(5). The GE 7FA.05 has a efficiency. The GE FA7.05 or ase-load electric power output of Siemens SGT6-5000F(5) turbine approximately 213 megawatts (MW, net are consistent with the BACT ominal), and the Siemens SGT6requirement and the specific goal 5000F(5) has a base-load electric power output of approximately 225 MW (net of this project. EPA is proposing an emission limit of 1.276 lb CO2/MWhr gross output on a 2,500 operational hour rolling basis for the GE 7FA.05 combustion turbine. Each combustion turbine is limited to 2.500 hours of operation, plus 300 startup and shutdown events on a 12-month rolling basis. To accou for the additional hours of operation associated with the startup and shutdowns, each turbine is limited by fuel use associated with the 2,500 hours o operation per year. Limiting the fuel use achieves the same objective as limiting the number of hours of operation of each turbine to 2.500 hours. The fuel use limit for each combustion turbine that

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

10 - 2015, Process 15.11

12/1/2015

Process Emission Limi **Emission Limit** Efficiency Throughput 8 **Emission Limi** Case Type 15.110 RBLC ID **Primary Fuel** & Units 1 & Units 2 & Units Basis Other Factors **Facility Name & Location Process Notes** Pollutant/ Compliance Notes Process ollutan 05/12/2014 ACT NDECK WHARTON, LLC INDECK Simple Cycle Combustion Turbine, SGT-GHG BACT for Indeck is the use CO2/MWHR WHARTON ENERGY CENTER 5000F(5) entical natural gas-fired F-class simple oxide CO2F 12-PSD of modern natural gas-fired. (GROSS) 2500 hermally efficient simple cycle WHARTON, TX cycle combustion turbines with sociated support equipment. Indeck (CO2e) OPERATIONAL ROLLING combustion turbines combined HR ROLLING proposes that the three new combustion with evaporative cooling and god turbine generators (CTGs) will be either DAILY/CT combustion and maintenance eneral Electric (GE) 7FA.05 or Siemer practices to maintain optimum efficiency. The GE FA7.05 or SGT6-5000F(5). The GE 7FA.05 has a base-load electric power output of Siemens SGT6-5000F(5) turbine approximately 213 megawatts (MW, net are consistent with the BACT ominal), and the Siemens SGT6requirement and the specific goa of this project. EPA is proposing 5000F(5) has a base-load electric power an emission limit of 1,337 lb output of approximately 225 MW (net CO2/MWhr gross output for the Siemens SGT6-5000F(5) combustion turbine on a 2,500 operational hour rolling basis. Each combustion turbine is limited to 2,500 hours of operation, plus 300 startup and shutdown events on a 12-month rolling basis. To account for the additional hours o peration associated with the startup and shutdowns, each turbine is limited by fuel use associated with the 2,500 hours operation per year. Limiting the fuel use achieves the same objective as limiting the number of hours of operation of each turbine to 2,500 hours. The fuel use limit for each combustion turbine that *OR-0050 03/05/2014 ACT TROUTDALE ENERGY CENTER, LLC GE LMS-100 combustion turbines, 15.110 1690 MMBtu/hr hermal efficiency Clean fuels 1707 LB OF CO2 BACTatural gas TROUTDALE ENERGY CENTER, LLC simple cycle with water injection oxide /GROSS MWH PSD MULTNOMAH, OR 365-DAY ROLLING AVERAGE *ND-0030 BASIN ELECTRIC POWER COOP atural Gas Fired Simple Cycle Turbines he heat input is for a single unit. The limit is for each unit. ligh efficiency turbines latural gas Carbon 220122 TONS 1 LONESOME CREEK GENERATING MONTH ROLLING TOTAL STATION MCKENZIE ND CO2e *ND-0029 05/14/2013 ACT Natural gas-fired turbines 15.110 51 MMBtu/h 243147 TONS 12 Turbines are GE LM6000 PC Rating is for each turbine. Natural gas Carbon COOPERATIVE PIONEER xide MONTH PSD SPRINT units that burn natural g GENERATING STATION WILLIAMS, with a HHV of 1200 Btu/scf. ROLLING . (CO2e) TOTAL/EACH *ND-0028 MONTANA-DAKOTA UTILITIES CO. Turbine is a GE Model PG 7121 (7EA) 986 MMBTU/H 413198 TONS/12 02/22/2013 ACT ombustion Turbine BACT-Natural gas Carbon MONTH 12 sed as a peaking unit oxide MONTH ROLLING TOTA (CO2e) PIO PICO ENERGY CENTER, LLC PIO COMBUSTION TURBINES (NORMAL PICO ENERGY CENTER OTAY MESA, OPERATION) CA-1223 NATURAL GAS 1328 LB/MW-H 720 H ROLLING BACT-11/19/2012 ACT Three simple cycle combustion turbine 300 MW Carbon enerators (CTG). Each CTG rated at OPERATING GROSS oxide OUTPUT HOUR AVG CO2e) LA-0257 12/06/2011 ACT SABINE PASS LNG, LP & SABINE GE LM2500+G4 286 MMBTU/H 4872107 Simple Cycle Refrigeration Compressor Natural Gas Good combustion/operating practices Carbon BACT CO2(e) PASS LIQUEFACTION, LL SABINE nd fueled by natural gas - use GE TONS/YR PSD ırbines (16) oxide PASS LNG TERMINAL CAMERON, LA Fauivalen M2500+G4 turbines ANNUAL MAXIMUM (CO2e) FROM THE FACILITYWIDE LA-0257 SABINE PASS LNG, LP & SABINE GE LM2500+G4 286 MMBTU/H 12/06/2011 ACT mple Cycle Generation Turbines (2) latural Gas Good combustion/operating practices 4872107 CO2(e) PASS LIQUEFACTION, LL SABINE ind fueled by natural gas - use GE TONS/YR PSD PASS LNG TERMINAL CAMERON, LA Equivalen LM2500+G4 turbines ΔΝΝΙΙΔΙ MAXIMUM (CO2e) FROM THE FACILITYWIDE *TX-0679 02/27/2015 ACT CORPUS CHRISTI LIQUEFACTION 40000 hp install efficient turbines, follow the Refrigeration Compressor Turbine There are three LNG trains. In total there 146754 TPY 12natural gas Carbon The limit is for each turbine. LLC CORPUS CHRISTI are (6) GE LM2500+ DLE turbines turbine manufacturer's emissio MONTH PSD Dioxide LIQUEFACTION PLANT GREGORY, TX driving the compressors in the ethylene elated written instructions for ROLLING BASIS frigeration sections (CO2e) maintenance activities including rescribed maintenance intervals to ssure good combustion and efficien peration. Compressors shall be nspected and maintained according to a written maintenance plan to aintain efficiency. TROUTDALE ENERGY CENTER, LLC Mitsubishi M501-GAC combustion TROUTDALE ENERGY CENTER, LLC turbine, combined cycle configuration *OR-0050 or ULSD; Duct burner 499 MMBtu/hr, 988 MMBtu/hr hermal efficiency Clean fuels 1000 PER GROSS MWH PSD natural gas Dioxide 365-DAY CO2e ROLLING AVERAGE

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

0 - 2015, Process 15.110

12/1/2015

				Process			Throughput 8			Standard Emission Limit	Emission Limit	Emission Limit	Case by Case		Estimated Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes	Pr	rimary Fuel Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors	%	Pollutant/ Compliance Notes
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE	Combined Cycle Refrigeration	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Carbon	Good combustion/operating practices	0	4872107	0	BACT-	U		co2(e)
		PASS LIQUEFACTION, LL SABINE	Compressor Turbines (8)					Dioxide	and fueled by natural gas - use GE		TONS/YEAR		PSD			
		PASS LNG TERMINAL CAMERON, LA						Equivalen	LM2500+G4 turbines		ANNUAL					
								t (CO2e)			MAXIMUM					
											FROM THE					
											FACILITYWIDE					

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

										Standard			Case by		Estimated
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fu	Throughput & Units	Pollutant	Control Method Description	Emission Limit & Units	Emission Limit 1 & Units	Emission Lim 2 & Units	nit Case Basis	Other Factors	Efficiency % Pollutant/ Compliance Notes
*TX-0769	10/27/2015 ACT	NAVASOTA NORTH COUNTRY PEAKERS OPERATING COMPANY I VAN ALSTYNE ENERGY CENTER (VAEC) GRAYSON, TX	Simple Cycle Turbine	15.110	The CTGs will be three General Electric 7FA.04 (~183 MW each for a total of 550 MW), operating as peaking units in simple cycle mode. Each turbine will be limited to 2,500 hours of operation per year. The new CTGs will use dry low-NOx (DLN) burners and may employ evaporative cooling for power enhancement.	natural gas	183 MW	Carbon Monoxide	DLN burners and good combustion	0	9 PPMVD @ 15% O2	0	BACT- PSD	N	CTGs will operate at 2500 hours of operation per year at baseload. NSPS KKKK
*TX-0764	10/14/2015 ACT	NACOGDOCHES POWER, LLC NACOGDOCHES POWER ELECTRIC GENERATING PLANT NACOGDOCHES, TX	Natural Gas Simple Cycle Turbine (>25 MW)	15.110	One Siemens F5 simple cycle combustion turbine generator	natural gas			dry low NOx burners, good combustion practices, limited operation	0	9 PPMVD @ 15% O2	0	BACT- PSD	N	Operation of the turbine is limited to 2,500 hours on a 12-month rolling average.
*TX-0768	10/09/2015 ACT	SHAWNEE ENERGY CENTER, LLC SHAWNEE ENERGY CENTER HILL, TX	Simple cycle turbines greater than 25 megawatts (MW)	15.110	Siemens Model SGT6-5000 F5ee â€" 230 MW or Second turbine option: General Electric Model 7FA.05TP â€" 227 MW	natural gas			dry low NOx burners and Imiited operation, clean fuel	0	9 PPMVD @ 15% O2	0	BACT- PSD	N	
*TX-0733	05/12/2015 ACT	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE. TX	Simple Cycle Turbine & Generator	15.110	3 additional GE 7F 5-Series Combustion Turbine Generators	natural gas			Good combustion practices; limited operating hours	0	9 PPMVD @ 15% O2 3-HR AVERAGE	0	BACT- PSD	N	Operation of each turbine is limited to 4,572 hours per year
*TX-0734	05/08/2015 ACT	NAVASOTA SOUTH PEAKERS OPERATING COMPANY II, LLC. CLEAR SPRINGS ENERGY CENTER (CSEC) GUADALUPE, TX	Simple Cycle Turbine	15.110	The CTGs will be three General Electric TFA.04 (~183 MW each for a total of 550 MW), operating as peaking units in simple cycle mode. Each turbine will be limited to 2,500 hours of operation per year. The new CTGs will use dry low-NOx (DLN) burners and may employ evaporative cooling for power enhancement.	natural gas	183 MW	Carbon Monoxide	DLN burners and good combustion practices	0	9 PPMVD @ 15% O2 ALL LOADS	0	BACT- PSD	N	NSPS KKKK CTGs will operate at 2500 hours of operation per year at baseload.
*TX-0694	02/02/2015 ACT	INDECK WHARTON, L.L.C. INDECK WHARTON ENERGY CENTER WHARTON, TX	(3) combustion turbines	15.110	The CTGs will either be the General Electric 7FA (~214 MW each) or the Siemens SGT6-5000F (~227 MW each), operating as peaking units in simple cycle mode	natural gas		Carbon Monoxide	DLN combustors	0	4 PPMVD @159 O2, 3-HR ROLLING AVG - SIEMENS	6 9 PPMVD @15 O2, 3-HR ROLLING AVG GE 7FA	PSD	U	
*TX-0688	12/19/2014 ACT	NRG TEXAS POWER SR BERTRON ELECTRIC GENERATION STATION HARRIS, TX	Simple cycle natural gas turbines	15.110		Natural Gas		Carbon Monoxide	Good Combustion Practices	0	9 PPM 1HR ROLLING AVG.	0	BACT- PSD	N	
*CO-0076	12/11/2014 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Turbines - two simple cycle gas	15.110	GE LMS100PA, natural gas fired, simple cycle, combustion turbine.	natural gas	799.7 mmbtu/hr each	Carbon Monoxide	Catalytic Oxidation.	0	55 LB/H 1-HR AVE / STARTUF AND SHUTDOWN	0	BACT- PSD	U	The CO limit was converted to an equivalent hourly based limit (the original permit included an event based limit) for periods of startup and shutdown.
*TX-0696	09/22/2014 ACT	TENASKA ROANA€™S PRAIRIE PARTNERS (TRPP), LLC ROANA€™S PRAIRIE GENERATING STATION GRIMES, TX	(2) simple cycle turbines	15.110	The three possible CT models are: (1) General Electric 7FA.04; (2) General Electric 7FA.05; or (3) Siemens SGT6- 5000F. will operate 2,920 hours per year at full load for each CT	natural gas		Carbon Monoxide	DLN combustors	0	9 PPMVD @159 O2, 3-HR ROLLING AVERAGE	6 0	BACT- PSD	N	will operate 2,920 hours per year at full load for each CT
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	liquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.	natural gas		Carbon Monoxide	dry low emission combustors	0	29 PPMVD @15% O2, 4 HOUR ROLLING AVERAGE	0	BACT- PSD	U	
*TX-0695	08/01/2014 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	(2) combustion turbines	15.110	(2) GE 7FA.03, 2500 hours of operation per year each	natural gas		Carbon Monoxide	DLN combustors	0	9 PPMVD @15% O2, 3-HR ROLLING AVG	6 0	BACT- PSD	U	2500 hrs/yr operation
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS			EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS, USE OF AN OXIDATION CATALYST AND EFFICIENT COMBUSTION	0	1.5 PPMVD @ 15% O2 3-HOUI BLOCK AVERAGE, EXLUDING SU/SD	562.4 LB/EVEN R FOR ALL STARTUPS	NT BACT- PSD		59.2 LB/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*TX-0691	05/20/2014 ACT	NRG TEXAS POWER LLC PH ROBINSON ELECTRIC GENERATING STATION GALVESTON, TX	(6) simple cycle turbines	15.110	General Electric Frame 7E turbines have an ISO rating of 65 MW and a nominal maximum generating capacity of 80 MW. The turbines were originally constructed as Frame 7B units that were remanufactured in 1999 and upgraded to 7E machines Each of the turbines will not exceed 20 percent annual capacity (equivalent to 1,752 full load hours) in any single year or 10 percent annual capacity factor (equivalent to 876 full load hours) averaged over any three year period, which qualifies each of the CTGs as Acid Rain Peaking Units under 40 CFR 72.2	Š		Carbon Monoxide	DLN combustors	0	25 PPMVD @15% O2, 3-HF ROLLING AVERAGE	0	BACT- PSD	N	limited use

			_	Process			Throughput &		Emission Limit		t Emission Lim			Efficiency	
*FL-0346	Date 04/22/2014 ACT	FLORIDA POWER & LIGHT	Process Five 200-MW combustion turbines	Type 15.110	Process Notes Throughput could vary slightly (+/- 120	Primary Fuel Natural gas	Units 2000 MMBtu/hr	Pollutant Control Method Description Carbon Good combustion practices	& Units	1 & Units 4 PPMVD @	2 & Units 21 LB/H	BACT-	Other Factors	%	Pollutant/ Compliance Notes Natural gas: 4.0 ppmvd @ 15%
		LAUDERDALE PLANT BROWARD, FL			MMBtu/hr) depending on final selection of turbine model and firing of natural gas or oil. Primary fuel is expected to be gas. Each turbine limited to 3300 hrs per rolling 12-month period. Of these 3300 hrs, no more than 500 may use ULSD fuel oil.	. Land a gas	(approx)	Monoxide		15% O2	2,25,1	PSD			O2, and 21.0 lb/hr. ULSD: 9.0 ppmvd@15%O2, and 49.0 lb/hr. lb/hr limits are per turbine.
*TX-0686	04/22/2014 ACT	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE, TX	Combustion Turbine-Generator(CTG)	15.110	Simple Cycle	Natural Gas	202 MW	Carbon Good combustion practices; limited hours	0	9 PPMVD 15% O2, 3HR AVG.	0	BACT- PSD	N		
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR		15.110		natural gas	1690 MMBtu/hr	Carbon Oxidation catalyst; Limit the time in startup or shutdown.	0	6 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON NG	6 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON ULSD	BACT- PSD	U		
*SC-0161	02/19/2014 ACT	DUKE ENERGY CAROLINAS LLC, W.S. LEE STEAM STATION , SC	COMBINED CYCLE COMBUSTION TURBINES (SIEMENS)	15.110	THE FACILITY PLANS TO INSTALL EITHER TWO GE 7FA.05 OR TWO SIEMENS SGT-5000F(5) NATURAL GAS FIRED COMBUSTION TURBINE GENERATORS, EACH EQUIPPED WITH A DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.		0	Carbon Monoxide OXIDATION CATALYST	0.9 PPMVD @ 15% O2 CONT. OPERATION WITHOUT DUCT BURNERS	4.7 LB/H CONT OPERATION WITHOUT DUC BURNERS	. 1804 LB/H AVG				THERE ARE ALSO CO EMISSON LIMITS ASSOCIATED WITH DUCT BURNERS (CONTINUOUS OPERATION) WHICH ARE 1.7 PPMVD @15% O2 AND 11.4 LB/HR.
*ND-0030	09/16/2013 ACT	BASIN ELECTRIC POWER COOP. LONESOME CREEK GENERATING STATION MCKENZIE, ND	Natural Gas Fired Simple Cycle Turbines	15.110	The heat input is for a single unit.	Natural gas	412 MMBtu/hr	Carbon Monoxide Oxidation Catalyst	0	6 PPMVD 8- HOUR ROLLING AVERAGE EXCEPT STARTUP	31.5 LB 30 G MINUTE TOTAL FOR STARTUP		N	90.000	The startup limit is for each unit. The three units are limited to a total combined emission rate of 54.2 pounds per hour (1-hour average) at all times.
*ND-0029	05/14/2013 ACT	BASIN ELECTRIC POWER COOPERATIVE PIONEER GENERATING STATION WILLIAMS, ND	Natural gas-fired turbines	15.110	Rating is for each turbine.	Natural gas	451 MMBtu/hr	Carbon Monoxide Catalytic oxidation system	0	6 PPMVD 8 HR ROLLING AVERAGE/EXC PT STARTUP	HR/DURING	BACT- PSD	U	95.200	average) at all limes.
*TX-0701	05/13/2013 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	Simple Cycle Combustion Turbines	15.110		natural gas	180 MW	Carbon Good combustion practices Monoxide	0	9 PPMVD 15%O2, 3HR AVERAGE	0	BACT- PSD	N		
*ND-0028	02/22/2013 ACT	MONTANA-DAKOTA UTILITIES CO. R.M. HESKETT STATION MORTON, ND	Combustion Turbine	15.110	Turbine is a GE Model PG 7121 (7EA) used as a peaking unit.	Natural gas	986 MMBTU/H	Carbon Monoxide Good Combustion	0	25 PPMVD @ 15% OXYGEN 4 H.R.A./WHEN > 50 MWE		PSD	Y		
*TX-0690	09/12/2012 ACT	NRG TEXAS POWER CEDAR BAYOU ELECTRIC GERNERATION STATION CHAMBERS, TX	Simple Cycle Combustion Turbines	15.110	The gas turbines will be one of three options: (1) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts (MW). (2) Two General Electric Model 7FA (GE7FA) CTGs each rated at nominal capability of 215 MW. (3) Two Mitsubishi Heavy Industry G Frame (MHI501G) CTGs each rated at a nominal electric output of 263 MW.	Natural Gas	225 MW	Carbon Monoxide Good Combustion Practices	0	9 PPM 1HR ROLLING AVG.	0	BACT- PSD	N		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Turbine (EP03)	15.110	Super of 200 invi.	Natural Gas	40 MW	Carbon Oxidiation Catalyst Monoxide	32.9 T/YR	6 PPMV AT 159 O2 1-HOUR	6 5.6 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Trubine (EP04)	15.110		Natural Gas	40 MW	Carbon Oxidation Catalyst Monoxide	32.9 T/YR	6 PPMV AT 159 O2 1-HOUR	6 5.6 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Turbine (EP05)	15.110		Natural Gas	40 MW	Carbon Oxidation Catalyst Monoxide	32.9 T/YR	6 PPMV AT 159 O2 1-HOUR AVERAGE	5.6 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N		
LA-0258	12/21/2011 ACT	ENTERGY GULF STATES LA LLC CALCASIEU PLANT CALCASIEU, LA	TURBINE EXHAUST STACK NO. 1 & NO. 2	15.110		NATURAL GAS	1900 MM BTU/H EACH	Carbon DRY LOW NOX COMBUSTORS Monoxide	15 PPMVD @ 15% O2	781 LB/H HOURLY MAXIMUM	5745.6 LB/H HOURLY MAXIMUM / STARTUP & SHUTDOWN ONLY	BACT- PSD	U		LIMITS ARE PER TURBINE EXHAUST STACK. AGGREGATE CO EMISSIONS FROM BOTH TURBINE EXHAUST STACKS ARE LIMITED TO 1344.53 TONS PER YEAR. STARTUP & SHUTDOWN OPERATIONS ARE LIMITED TO 520 HOURS PER YEAR.
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Carbon Good combustion practices and fueled by natural gas	58.4 PPMV AT 15% OXYGEN	43.6 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Carbon Good combustion practices and fueled by natural gas	25 PPMV AT 15% O2	17.46 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
NM-0051	05/02/2011 ACT		Normal Mode (without Power Augmentation)	15.110		natural gas	0	Carbon Good Combustion Practices as Monoxide defined in the permit.	0	77.2 LB/H HOURLY	0	BACT- PSD	N		CO BACT established in PSD-NM- 622-M2 issued 2-10-97.
NM-0051	05/02/2011 ACT	SOUTHWESTERN PUBLIC SERVICE CO. CUNNINGHAM POWER PLANT LEA. NM	Power Augmentation	15.110	Increase power output by lowering the outlet air temperatur through water inejctinos into the compressor.	natural gas	0	Carbon Good combustion practices as defined in the permit.	0	138.9 LB/H HOURLY	0	BACT- PSD	U		CO BACT established in PSD-NM-622-M2 issued 2-10-97.

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

									Standard			Case by		Estimated	
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant Control Method Description	Emission Limit & Units	Emission Limit 1 & Units	Emission Lim 2 & Units	it Case Basis	Other Factors	Efficiency %	Pollutant/ Compliance Notes
NJ-0076	10/27/2010 ACT	PSEG FOSSIL LLC PSEG FOSSIL LLC KEARNY GENERATING STATION HUDSON, NJ		15.110	Throughput <= 8.94xE6 MMBtu/year (HHV) combined for all six gas turbines. The 6 turbines are identical LM6000 simple cycle combustion turbines.	Natural Gas	8940000 MMBtu/year (HHV)	Carbon Oxidation Catalyst, Good combustion (Monoxide practices)	5 PPMVD@15% O2 3-HR ROLLING AVERAGE BASED ON 1-HF	5.35 LB/H AVERAGE OF THREE TESTS	OTHER CASE-BY-	N -	90.000	Totalent Compilance Notes
										BLOCK					
NJ-0077	09/16/2010 ACT	VINELAND MUNICIPAL ELECTRIC UTILITY (VMEU) HOWARD DOWN STATION CUMBERLAND, NJ	SIMPLE CYCLE (NO WASTE HEAT RECOVERY)(>25 MW)	15.110	THE PROCESS CONSISTS OF ONE NEW TRENT 60 SIMPLE CYCLE COMBUSTION TURBINE. THE TURBINE WILL GENERATE 64 MW OF ELECTRICITY USING NATURAL GAS AS A PRIMARY FUEL (UP TO 8760 HOURS PER YEAR), WITH A BACKUP FUEL OF ULTRA LOW SULFUR DIESEL FUEL (ULSD) WHICH CAN ONLY BE COMBUSTED FOR A MAXIMUM OF 500 HOURS PER YEAR AND ONLY DURING NATURAL GAS CURTAILMENT. THE MAXIMUM HEAT INPUT RATE WHILE COMBUSTING NATURAL GAS IS 590 MMBTU/HR AND THE MAXIMUM HEAT INPUT RATE OMBUSTING ULSD IS 568 MMBTU/HR. THE TURBINE WILL UTILIZE WATER INJECTION AND SELECTIVE CATALYTIC REDUCTION TO CONTROL NOX EMISSION AND A CATALYTIC OXIDIZER TO CONTROL CO AND VOC EMISSION.	NATURAL GAS	5000 MMFT3/YF	R Carbon Monoxide CATALYTIC OXIDIZER TO CONTROL CO EMISSION, IN ADDITION TO USING CLEAN BURNING FUELS, NATURAL GAS AND ULTRA LOW SULFUR DISTILLATE OIL WITH 15 PPM SULFUR BY WEIGHT		5 PPMVD@15%O: 3HR ROLLING AVERAGE BASED ON 1-HF BLOCK	AVERAGE BASED ON 1-H	OTHER CASE-BY- CASE		90.000	
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Three simple cycle combustion turbines	15.110	Three GE, LMS100PA, natural gas-fired, simple cycle CTG rated at 799.7 MMBtu per hour each,based on HHV.	natural gas	799.7 mmbtu/hr	Carbon Good Combustion Control and (Monoxide Catalytic Oxidation (CatOx)	0	10 PPMVD AT 15% O2 1-HR AVE	19.8 LB/H 30- DAY ROLLING AVE	BACT- PSD	U		Startup limit: 28.0 lb per event Shutdown limit: 36.0 lb per event compliance with BACT limits monitored via continuous emissions monitors.
GA-0139	05/14/2010 ACT	SOUTHERN POWER COMPANY DAHLBERG COMBUSDTION TURBINE ELECTRIC GENERATING FACILITY (P JACKSON, GA		15.110	THE PROCESS USES FUEL OIL FOR BACKUP AT THE RATE OF 2129 MMBUT/H	NATURAL GASE	1530 MW	Carbon GOOD COMBUSTION PRACTICES (Monoxide	0	9 PPM@15%02 3-HOUR AVERAGE/CON DITION 3.3.24	30 PPM@15%0 3-HOUR AVERAGE/CON DITION 3.3.28	PSD	U		emissions momors.
*CO-0076	12/11/2014 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Four combined cycle combution turbines	15.210	GE, LM6000 PF, natural gas fired, combined cycle combustion turbines, with HRSG and no duct burners.	natural gas	373 mmbtu/hr each	Carbon Catalytic Oxidation. (Monoxide	0	38 LB/H 4-HR ROLLING AVE / STARTUP AND SHUTDOWN	0	BACT- PSD	U		The CO limit was converted to an equivalent hourly based limit (the original permit included an event based limit) for periods of startup
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	natural gas	40000 hp	Carbon dry low emission combustors (Monoxide	0	29 PPMVD @15% O2, 4 HOUR ROLLING AVERAGE	0	BACT- PSD	U		and shutdown.
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR		15.210	or ULSD; Duct burner 499 MMBtu/hr, natural gas	natural gs	2988 MMBtu/hr	Carbon Oxidation catalyst; Limit the time in Monoxide startup or shutdown.)	3.3 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON	9 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON ULSD	BACT- PSD	U		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE. WY	Combined Cycle Turbine (EP01)	15.210		Natural Gas	40 MW	Carbon Oxidation Catalyst 3	32 T/YR	4 PPMV AT 15% O2 1-HOUR		Y BACT- PSD	U		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Combined Cycle Turbine (EP02)	15.210		Natural Gas	40 MW	Carbon Oxidation Catalyst Monoxide	32 T/YR	4 PPMV AT 15% O2 1-HOUR	3.7 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H		58.4 PPMV AT 15% O2	43.6 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Four combined cycle combution turbines	15.210	Three GE, LMS6000 PF, natural gas- fired, combined cycle CTG, rated at 373 MMBtu per hour each, based on HHV and one (1) HRSG each with no Duct Burners	natural gas	373 mmbtu/hr	Carbon Good combustion control and Monoxide catalytic oxidation	0	4 PPMVD AT 15% O2 1-HR AVE	3.3 LB/H 30-DA ROLLING AVE		U		startup limit: 140.0 lb per event shutdown limit: 15.0 lb per event compliance is monitored with continuous emissions monitors
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, EACH	Carbon GOOD COMBUSTION PRACTICES (Monoxide AND PROPER DESIGN	0	0.03 LB/MMBTU 3-HR AVERAGE AT > 50% PEAK LOAD	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H EACH	I, Carbon GOOD COMBUSTION PRACTICES (Monoxide AND PROPER DESIGN)	37.22 LB/MMCF 3-HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBTU/H, EACH	Carbon GOOD COMBUSTION PRACTICES (Monoxide AND PROPER DESIGN)	0.03 LB/MMBTU 3-HR AVERAGE AT > 50% PEAK LOAD	0	BACT- PSD	N		

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

				5						Standard	F	F	Case by		Estimated
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant	Control Method Description	Emission Limit & Units	Emission Limit 1 & Units	Emission Limit 2 & Units	Case Basis	Other Factors	Efficiency % Pollutant/ Compliance Notes
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MMBTU/H EACH	Carbon	GOOD COMBUSTION PRACTICES AND PROPER DESIGN		37.22 LB/MMCF 3-HR AVERAGE	0	BACT- PSD	N	
*TX-0701	05/13/2013 ACT	IN INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	Simple Cycle Combustion Turbines	15.110		natural gas	180 MW		Firing pipeline quality natural gas and good combustion practices.	0	0	0	BACT- PSD	N	
NM-0051	05/02/2011 ACT	SOUTHWESTERN PUBLIC SERVICE CO. CUNNINGHAM POWER PLANT LEA, NM	Normal Mode (without Power Augmentation)	15.110		natural gas	0	Nitrogen Dioxide (NO2)	Dry Low NOx Burners Type K & Good Combustion Practice	0	21 PPMVD HOUR	0	BACT- PSD	N	Limit is NOx ppmvd at 15% O2 at site conditions (not adjusted to standard conditions). Base case. No cost analysis was provided for dry low NOx burners. However, costs for other controls were evaluated.
NM-0051	05/02/2011 ACT	SOUTHWESTERN PUBLIC SERVICE CO. CUNNINGHAM POWER PLANT LEA, NM	Power Augmentation	15.110	Increase power output by lowering the outlet air temperatur through water inejctinos into the compressor.	natural gas	0	Nitrogen Dioxide (NO2)	Dry Low NOx burners, Type K. Good Combustion Practices as defined in the permit.	0	30 PPMVD HOURLY	0	BACT- PSD	U	NOx BACT during power augmentation is 30 ppmvd at 15 % O2 and site conditions (not adjusted to standard conditions).
*TX-0769	10/27/2015 ACT	NAVASOTA NORTH COUNTRY PEAKERS OPERATING COMPANY I VAN ALSTYNE ENERGY CENTER (VAEC) GRAYSON, TX	Simple Cycle Turbine	15.110	The CTGs will be three General Electric 7FA.04 (~183 MW each for a total of 550 MW), operating as peaking units in simple cycle mode. Each turbine will be limited to 2,500 hours of operation per year. The new CTGs will use dry low-NOx (DLN) burners and may employ evaporative cooling for power enhancement.	natural gas	183 MW	Nitrogen Oxides (NOx)	DLN burners	0	9 PPMVD @ 15% O2 3-HR AVERAGE	0	BACT- PSD	N	NSPS KKKK and IIII CTGs will operate at 2500 hours of operation per year at baseload.
*TX-0764	10/14/2015 ACT	NACOGDOCHES POWER, LLC NACOGDOCHES POWER ELECTRIC GENERATING PLANT NACOGDOCHES. TX	Natural Gas Simple Cycle Turbine (>25 MW)	15.110	One Siemens F5 simple cycle combustion turbine generator	natural gas	232 MW	Nitrogen Oxides (NOx)	Dry Low NOx burners, good combustion practices, limited operations	0	9 PPMVD @ 15% O2	0	BACT- PSD	N	Operation of the turbine is limited to 2,500 hours on a 12-month rolling average.
*TX-0768	10/09/2015 ACT	SHAWNEE ENERGY CENTER, LLC SHAWNEE ENERGY CENTER HILL, TX	Simple cycle turbines greater than 25 (megawatts (MW)	15.110	Siemens Model SGT6-5000 F5ee ‰ 230 MW or Second turbine option: General Electric Model 7FA.05TP ‰ 227 MW	natural gas	230 MW	Nitrogen Oxides (NOx)	Dry Low NOx burners	0	9 PPMVD @ 15% O2	0	BACT- PSD	N	Operation of the turbine is limited to 2,920 hours on a 12-month rolling average.
*TX-0733	05/12/2015 ACT	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE. TX	Simple Cycle Turbine & Generator	15.110	3 additional GE 7F 5-Series Combustion Turbine Generators	natural gas	202 MW	Nitrogen Oxides (NOx)	Dry Low NOx burners	0	9 PPMVD AT 15% O2	0	BACT- PSD	N	operation of each turbine is limited to 4,572 hours per year
*TX-0734	05/08/2015 ACT	NAVASOTA SOUTH PEAKERS OPERATING COMPANY II, LLC. CLEAR SPRINGS ENERGY CENTER (CSEC) GUADALUPE, TX	Simple Cycle Turbine	15.110	The CTGs will be three General Electric 7FA.04 (~183 MW each for a total of 550 MW), operating as peaking units in simple cycle mode. Each turbine will be limited to 2,500 hours of operation per year. The new CTGs will use dry low-NOx (DLN) burners and may employ evaporative cooling for power enhancement.	natural gas	183 MW	Nitrogen Oxides (NOx)	dry low-NOx (DLN) burners	0	9 PPMVD @ 15% O2 3-HR AVERAGE	0	BACT- PSD	N	NSPS KKKK & IIII CTGs will operate at 2500 hours of operation per year at baseload.
*TX-0694	02/02/2015 ACT	INDECK WHARTON, L.L.C. INDECK WHARTON ENERGY CENTER WHARTON, TX	(3) combustion turbines	15.110	The CTGs will either be the General Electric 7FA (~214 MW each) or the Siemens SGT6-5000F (~227 MW each), operating as peaking units in simple cycle mode	natural gas	220 MW	Nitrogen Oxides (NOx)	DLN combustors	0	9 PPMVD @15% O2, 3-HR ROLLING AVERAGE	0	BACT- PSD	U	
*TX-0688	12/19/2014 ACT	NRG TEXAS POWER SR BERTRON ELECTRIC GENERATION STATION HARRIS, TX	Simple cycle natural gas turbines	15.110		Natural Gas	225 MW	Nitrogen Oxides (NOx)	DLN	0	9 PPM 3HR ROLLING AVG.	0	BACT- PSD	N	
*CO-0076	12/11/2014 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO		15.110	GE LMS100PA, natural gas fired, simple cycle, combustion turbine.	natural gas	799.7 mmbtu/hr each	Nitrogen Oxides (NOx)	SCR and dry low NOx burners	0	23 LB/H 1-HR AVE / STARTUP AND SHUTDOWN	0	BACT- PSD	U	The NOx limit was converted to an equivalent hourly based limit (the original permit included an event based limit) for periods of startup and shutdown.
*TX-0696	09/22/2014 ACT	TENASKA ROAN'S PRAIRIE PARTNERS (TRPP), LLC ROAN'S PRAIRIE GENERATING STATION GRIMES, TX	(2) simple cycle turbines	15.110	The three possible CT models are: (1) General Electric 7FA.04; (2) General Electric 7FA.05; or (3) Siemens SGT6- 5000F. will operate 2,920 hours per year at full load for each CT	natural gas	600 MW	Nitrogen Oxides (NOx)	DLN combustors	0	9 PPMVD @15% O2, 3-HR ROLLING AVG	0	BACT- PSD	N	will operate 2,920 hours per year at full load for each CT
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	3 liquefied natural gas trains consisting o a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.	natural gas	40000 hp	Nitrogen Oxides (NOx)	Dry low emission combustors	0	25 PPMVD @ 15% O2, 4 HOUR ROLLING AVG	0	BACT- PSD	U	
*TX-0695	08/01/2014 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	(2) combustion turbines	15.110	(2) GE 7FA.03, 2500 hours of operation per year each	natural gas	180 MW	Nitrogen Oxides (NOx)	DLN combustors	0	9 PPMVD @15% O2, 3-HR ROLLING AVG	0	BACT- PSD	U	2500 hr/yr operation
*MD-0043	07/01/2014 ACT	CONSTELLATION POWER SOURCE GENERATION, INC. PERRYMAN GENERATING STATION HARFORD, MD	(2) 60-MW SIMPLE CYCLE COMBUSTION TURBINES, FIRING NATURAL GAS	15.110	(2) 60-MEGAWATT PRATT & WHITNEY GAS TURBINE GENERATOR PACKAGE	NATURAL GAS	120 MW	(NOx)	USE OF NATURAL GAS, WATER/STEAM INJECTION, AND A SELECTIVE CATAYTIC REDUCTION (SCR) SYSTEM	0	15% O2 3-HOUR BLOCK AVERAGE,	5.8 LB/H 3- HOUR BLOCK AVERAGE, EXCLUDING SU/SD	LAER		STARTUP EVENTS (1 CT OR 2 CTS) ARE LIMITED TO 36.4 LB/EVENT; AND SHUTDOWN EVENTS (1 CT OR 2 CTS) ARE LIMITED TO 9.27 LB/EVENT

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

_	1	1						1	T	Standard	ı	1	Case by	Estimate	1 1
				Process			Throughput &			Emission Limit	Emission Limit	Emission Limit		Efficienc	
RBLC ID	Date	Facility Name & Location	Process	Type	Process Notes	Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors %	Pollutant/ Compliance Notes
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM	NATURAL GAS	130 MW	Nitrogen Oxides (NOx)	USE OF DRY LOW-NOX COMBUSTOR TURBINE DESIGN (DLN1), USE OF FACILITY PROCESS FUEL GAS AND PIPELINE NATURAL GAS DURING NORMAL OPERATION AND SCR SYSTEM	0	2.5 PPMVD @ 15% O2 3-HOUF BLOCK AVERAGE, EXCLUDING SU/SD	1304.5 R LB/EVENT FOR ALL STARTUPS			48.5 LB/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*TV 0004	05/00/0044 AOT	NDO TEXAS DOMED I LO DIL		45 440	(SCR), AND OXIDATION CATALYST		05.1404/	N.P.	DIA .	0	45 DDM (D		DAGE	N	le a i
*TX-0691	05/20/2014 ACT	NRG TEXAS POWER LLC PH ROBINSON ELECTRIC GENERATING STATION GALVESTON, TX	(6) simple cycle turbines	15.110	General Electric Frame 7E turbines have an ISO rating of 65 MW and a nominal maximum generating capacity of 80 MW. The turbines were originally constructed as Frame 7B units that were remanufactured in 1999 and upgraded to 7E machines Each of the turbines will not exceed 20 percent annual capacity (equivalent to 1,752 full load hours) in any single year or 10 percent annual capacity factor (equivalent to 876 full load hours) averaged over any three year period, which qualifies each of the CTGs as Acid Rain Peaking Units under 40 CFR 72.2	-	65 MW	Nitrogen Oxides (NOx)	DLN combustors		15 PPMVD @15% O2, 3-HR ROLLING AVERAGE	0	BACT- PSD	N .	limited use
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT	Five 200-MW combustion turbines	15.110	Throughput could vary slightly (+/- 120	Natural gas	2000 MMBtu/hr	Nitrogen	Required to employ dry low-NOx	0	9 PPMVD @	77 LB/H 24-HR	BACT-	U	NOx CEMS required employing
		LAUDERDALE PLANT BROWARD, FL			MMBtu/hr) depending on final selection of turbine model and firing of natural gas or oil. Primary fuel is expected to be gas. Each turbine limited to 3300 hrs per rolling 12-month period. Of these 3300 hrs, no more than 500 may use ULSD fuel oil.	, and the second	(approx)	Oxides (NOx)	technology and wet injection. Water injection must be used when firing ULSD.		15% 02 24-HR BLOCK AVG, BY CEMS (NAT GAS)	BLOCK, BY CEMS (NAT GAS)	PSD		EPA Method 7E. For natural gas, 9.0 ppmvd@15% O2 and 77 lb/hr. For oil, 42.0 ppmvd@15% O2 and 378.0 lb/hr.
*TX-0686	04/22/2014 ACT	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK	Combustion Turbine-Generator(CTG)	15.110	Simple Cycle	Natural Gas	202 MW	Nitrogen	DLN	0	9 PPM 15% O2,		BACT- PSD	Y	
		ENERGY CENTER HALE, TX						Oxides (NOx)			3 HR. ROLLING AVG.		PSD		
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR	simple cycle with water injection	15.110		natural gas	1690 MMBtu/hr	Nitrogen Oxides (NOx)	Utilize water injection when combusting natural gas or ULSD; Utilize selective catalytic reduction (SCR) with aqueous ammonia injection at all times except during startup and shutdown; Limit the time in startup or shutdown.	0	2.5 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON NG	3.8 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON ULSD	BACT- PSD		
*ND-0030	09/16/2013 ACT	BASIN ELECTRIC POWER COOP. LONESOME CREEK GENERATING STATION MCKENZIE, ND	Natural Gas Fired Simple Cycle Turbines	15.110	The heat input is for a single unit.	Natural gas	412 MMBtu/hr	Nitrogen Oxides (NOx)	SCR	0	5 PPMVD 4 HOUR ROLLING AVERAGE EXCEPT STARTUP	18.5 LB TOTAL FOR 30 MINUTES DURING STARTUP	PSD	N 90.000	The startup limit is for each unit. The three units are limited to a total combined emission rate of 42.9 pounds per hour (1-hour average) at all times.
*ND-0029	05/14/2013 ACT	BASIN ELECTRIC POWER COOPERATIVE PIONEER GENERATING STATION WILLIAMS, ND	Natural gas-fired turbines	15.110	Rating is for each turbine.	Natural gas	451 MMBtu/hr	Nitrogen Oxides (NOx)	Water injection plus SCR	0	5 PPPMVD 4 HF ROLLING AVERAGE EXCEPT FOR STARTUP	R. 19 LB PER HOUR DURING STARTUP	BACT- PSD	U 80.000	
*TX-0701	05/13/2013 ACT	INVENERGY THERMAL		15.110		natural gas	180 MW	Nitrogen	Dry low NOx combustor	0	9 PPMVD	0	BACT-	N	
		DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX						Oxides (NOx)			15%O2, 3HR ROLLING BASIS	3	PSD		
*NID 0000	00/00/0040 * 07		Combustion Turbing	45 440	Turking in a OF Mad 180 7404 (751)	National and	000 14145711"	NI:4	Declare NOversel 19 (DIA)	200 0// 1	0 DDM (D 0 (= 0	. OC DDIA (5	DACT	V	
*ND-0028	02/22/2013 ACT	MONTANA-DAKOTA UTILITIES CO. R.M. HESKETT STATION MORTON, ND	Combustion Turbine	15.110	Turbine is a GE Model PG 7121 (7EA) used as a peaking unit.	Natural gas	986 MMBTU/H	Oxides (NOx)	Dry low-NOx combustion (DLN)	399 LB/H 1 HOUR AVG./ANY TIME	H.R.A. WHEN >	@15% OXYGEN 4 H.R.A. WHEN < 50 MWE OR < 0 DEGREES F		Y	
CA-1223	11/19/2012 ACT	PIO PICO ENERGY CENTER, LLC PIO PICO ENERGY CENTER OTAY MESA, CA	COMBUSTION TURBINES (NORMAL OPERATION)	15.110	Three simple cycle combustion turbine generators (CTG). Each CTG rated at 100 MW (nominal net).	NATURAL GAS	300 MW	Nitrogen Oxides (NOx)	WATER INJECTION, SCR	0	2.5 PPMVD @15% O2, 1-HR AVG	8.18 LB/H 1-HR AVG	BACT- PSD	U	
CA-1223	11/19/2012 ACT	PIO PICO ENERGY CENTER, LLC PIO PICO ENERGY CENTER OTAY MESA, CA	COMBUSTION TURBINES (STARTUP & SHUTDOWN PERIODS)	15.110	Three simple cycle combustion turbine generators (CTG). Each CTG rated at 100 MW (nominal net).	NATURAL GAS	300 MW	Nitrogen Oxides (NOx)	water injection and SCR system	0	22.5 LB/H STARTUP EVENTS	6 LB/H SHUTDOWN EVENTS	BACT- PSD	U	Third emission limit incorrectly entered into the Standard Limit field, RBLC SysOp moved the information into this Notes field. Here is the information: 26.60 LB/H 1-HR AVG, STARTUP & SHUTDOWN EVENTS 1) DURATION OF STARTUPS OF EACH CTG SHALL NOT EXCEED 30 MINUTES PER EVENT; 2) DURATION OF SHUTDOWNS OF EACH CTG SHALL NOT EXCEED 11 MINUTES EVENT; 3) TOTAL NUMBER OF STARTUPS SHALL NOT EXCEED 500 PER TURBINE, PER CALENDAR YEAR.

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

										Standard			Case by		imated
DDI O ID	B.4	Facility Name of Landing	5	Process	B Notes	B	Throughput &	B. II	0.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Emission Limit	Emission Limit	Emission Limi			iciency
*TX-0690	Date 09/12/2012 ACT	Facility Name & Location NRG TEXAS POWER CEDAR BAYOU ELECTRIC GERNERATION STATION CHAMBERS, TX	Process Simple Cycle Combustion Turbines	Type 15.110	Process Notes The gas turbines will be one of three options: (1) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts (MW). (2) Two General Electric Model 7FA (GE7FA) CTGs each rated at nominal capability of 215 MW. (3) Two Mitsubishi Heavy Industry G Frame (MHI501G) CTGs each rated at a nominal electric output of 263 MW.	Primary Fuel Natural Gas	Units 225 MW	Pollutant Nitrogen Oxides (NOx)	Control Method Description DLN	& Units	1 & Units 9 PPM 3HR. ROLLING AVG.	2 & Units	Basis BACT- PSD	Other Factors N	% Pollutant/ Compliance Notes
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Turbine (EP03)	15.110		Natural Gas	40 MW	Nitrogen Oxides (NOx)	SCR	36 T/YR	5 PPMV AT 15% O2 1-HOUR	7.7 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N	
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Trubine (EP04)	15.110		Natural Gas	40 MW	Nitrogen Oxides (NOx)	SCR	36 T/YR	5 PPMV AT 15% O2 1-HOUR AVERAGE	7.7 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N	
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Turbine (EP05)	15.110		Natural Gas	40 MW	Nitrogen Oxides (NOx)	SCR	36 T/YR	5 PPMV AT 15% O2 1-HOUR	7.7 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N	
LA-0258	12/21/2011 ACT	ENTERGY GULF STATES LA LLC CALCASIEU PLANT CALCASIEU, LA	TURBINE EXHAUST STACK NO. 1 & NO. 2	15.110		NATURAL GAS	1900 MM BTU/H EACH	Nitrogen Oxides (NOx)	DRY LOW NOX COMBUSTORS	17.5 PPMVD @ 15% O2	240 LB/H HOURLY MAXIMUM	798 LB/H HOURLY MAXIMUM / STARTUP & SHUTDOWN ONLY	BACT- PSD	U	LIMITS ARE PER TURBINE EXHAUST STACK. AGGREGATE NOX EMISSIONS FROM BOTH TURBINE EXHAUST STACKS ARE LIMITED TO 391.30 TONS PER YEAR. STARTUP & SHUTDOWN OPERATIONS ARE LIMITED TO 520 HOURS PER YEAR.
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	20 PPMV AT 15% O2	22.94 LB/H HOURLY MAXIMUM	0	BACT- PSD	U	
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	25 PPMV AT 15% O2	28.68 LB/H HOURLY MAXIMUM	0	BACT- PSD	U	
NJ-0076	10/27/2010 ACT	PSEG FOSSIL LLC PSEG FOSSIL LLC KEARNY GENERATING STATION HUDSON, NJ	SIMPLE CYCLE TURBINE	15.110	Throughput <= 8.94xE6 MMBtu/year (HHV) combined for all six gas turbines. The 6 turbines are identical LM6000 simple cycle combustion turbines.	Natural Gas	8940000 MMBtu/year (HHV)	Nitrogen Oxides (NOx)	SCR and Use of Clean Burning Fuel: Natural gas	0	2.5 PPMVD@15%O2 3-HR ROLLING AVERAGE BASED ON 1-HF BLOCK	THREE TESTS	OTHER CASE-BY- CASE	90.0	00
NJ-0077	09/16/2010 ACT	VINELAND MUNICIPAL ELECTRIC UTILITY (VMEU) HOWARD DOWN STATION CUMBERLAND, NJ	SIMPLE CYCLE (NO WASTE HEAT RECOVERY)(>25 MW)	15.110	THE PROCESS CONSISTS OF ONE NEW TRENT 60 SIMPLE CYCLE COMBUSTION TURBINE. THE TURBINE WILL GENERATE 64 MW OF ELECTRICITY USING NATURAL GAS AS A PRIMARY FUEL (UP TO 8760 HOURS PER YEAR), WITH A BACKUP FUEL OF ULTRA LOW SULFUR DIESEL FUEL (ULS) WHICH CAN ONLY BE COMBUSTED FOR A MAXIMUM OF 500 HOURS PER YEAR AND ONLY DURING NATURAL GAS CURTAILMENT. THE MAXIMUM HEAT INPUT RATE WHILE COMBUSTING NATURAL GAS IS 590 MMBTU/HR AND THE MAXIMUM HEAT INPUT RATE WHILE COMBUSTING ULSD IS 568 MMBTU/HR. THE TURBINE WILL UTILIZE WATER INJECTION AND SELECTIVE CATALYTIC REDUCTION TO CONTROL NOX EMISSION AND CATALYTIC OXIDIZER TO CONTROL CO AND VOC EMISSION.	NATURAL GAS	5000 MMFT3/YR	Oxides (NOx)	THE TURBINE WILL UTILIZE WATER INJECTION AND SELECTIVE CATALYTIC REDUCTION (SCR) TO CONTROL NOX EMISSION AND USE CLEAN FUELS NATURAL GAS AND ULTRA LOW SULFUR DISTILLATE OIL TO MINIMIZE NOX EMISSIONS	0	2.5 PPMVD@15%O; 3HR ROLLING AVERAGE BASED ON 1-HF BLOCK	AVERAGE BASED ON 1-H	OTHER CASE-BY- CASE	90.0	00
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO		15.110	Three GE, LMS100PA, natural gas-fired, simple cycle CTG rated at 799.7 MMBtu per hour each,based on HHV.	natural gas	799.7 mmbtu/hr	Oxides	Good combustor design, Water Injection and Selective Catalytic Reduction (SCR)	0	5 PPMVD AT 15% O2 1-HR AVE	15.5 LB/H 30- DAY ROLLING AVE	BACT- PSD	U	startup limit = 12.0 lb per event shutdown limit = 18.0 lb per event compliance with BACT limits monitored via continuous
GA-0139	05/14/2010 ACT	SOUTHERN POWER COMPANY DAHLBERG COMBUSDTION TURBINE ELECTRIC GENERATING FACILITY (P JACKSON, GA	SIMPLE CYCLE COMBUSTION TURBINE - ELECTRIC GENERATING PLANT	15.110	THE PROCESS USES FUEL OIL FOR BACKUP AT THE RATE OF 2129 MMBUT/H	NATURAL GASE	1530 MW	Oxides	DRY LOW NOX BURNERS (FIRING NATURAL GAS). WATER INJECTION (FIRING FUEL OIL).	0	3 HOUR AVERAGE/CON	42 PPM@15%0 3 HOUR AVERAGE/CON IION 3.3.27	PSD	U	emissions monitors.
GA-0139	05/14/2010 ACT	SOUTHERN POWER COMPANY DAHLBERG COMBUSDTION TURBINE ELECTRIC GENERATING FACILITY (P JACKSON, GA	SIMPLE CYCLE COMBUSTION TURBINE - ELECTRIC GENERATING PLANT	15.110	THE PROCESS USES FUEL OIL FOR BACKUP AT THE RATE OF 2129 MMBUT/H	NATURAL GASE	1530 MW	Oxides	DRY LOW NOX BURNERS (FIRING NATURAL GAS), WATER INJECTION (FIRING FUEL OIL).	0	297 T/YR 12 CONSECUTIVE MONTH AVERAGE /CONDITION	0	BACT- PSD	U	NUMERIC LIMIT CONSIST OF NG AND FO.

ALASKA LNG RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

	T	T	T	1		1	1		- 1		Standard		1	Case by	. T	Estimated	
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Pr	Through			Control Method Description	Emission Limit & Units	Emission Limit 1 & Units	Emission Limi 2 & Units		Other Factors	Efficiency %	Pollutant/ Compliance Notes
*CO-0076	12/11/2014 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Four combined cycle combution turbines		GE, LM6000 PF, natural gas fired, combined cycle combustion turbines, with HRSG and no duct burners.	natural gas	373 mmbtu each	/hr Nitroge Oxides (NOx)		CR and dry low NOx burners	0	8 LB/H 4-HR ROLLING AVE / STARTUP AND SHUTDOWN	0	BACT- PSD	U		The NOx limit was converted to an equivalent hourly based limit (the original permit included an event based limit) for periods of startup and shutdown.
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	f natural gas	40000 hp	Nitroge Oxides (NOx)		y low emission combustors	0	25 PPMVD @15% O2, 4 HOUR ROLLING AVERAGE	0	BACT- PSD	U		and shuldown.
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR		15.210	or ULSD; Duct burner 499 MMBtu/hr, natural gas	natural gs	2988 MMB	u/hr Nitroge Oxides (NOx)	co inje Uti (Se inje sta	ilize dry low-NOx burners when mbusting natural gas; Utilize water ection when combusting ULSD; ilize selective catalytic reduction CR) with aqueous ammonia ection at all times except during artup and shutdown; Limit the time startup or shutdown.	0	2 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON NG	5.5 PPMDV AT 15% O2 3-HR ROLLING AVERAGE ON ULSD	BACT- PSD	U		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Combined Cycle Turbine (EP01)	15.210		Natural Gas	40 MW	Nitroge Oxides (NOx)		CR	25.5 T/YR	3 PPMV AT 15% O2 1-HOUR	4.6 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Combined Cycle Turbine (EP02)	15.210		Natural Gas	40 MW	Nitroge Oxides (NOx)		CR	25.5 T/YR	3 PPMV AT 15% O2 1-HOUR	4.6 LB/H 30-DA ROLLING AVERAGE	Y BACT- PSD	N		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBT			ater injection	20 PPMV AT 15% O2	22.94 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Four combined cycle combution turbines	15.210	Three GE, LMS6000 PF, natural gas- fired, combined cycle CTG, rated at 373 MMBtu per hour each, based on HHV and one (1) HRSG each with no Duct Burners	natural gas	373 mmbti	/hr Nitroge Oxides (NOx)		y Low NOx (DLN) Combustor and elective Catalytic Reduction (SCR)	0	3 PPMVD AT 15% O2 1-HR AVE	4.1 LB/H 30-DA ROLLING AVE		U		startup limit: 30.0 lb per event shutdown limit: 5.0 lb per event compliance is monitored with continuous emissions monitors
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBT EACH	J/H, Nitroge Oxides (NOx)		RY LOW NOX COMBUSTORS	0	22.65 PPMVD AT 15% OXYGEN 3- HR AVERAGE AT > 50% PEAK LOAD	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MME EACH	TU/H, Nitroge Oxides (NOx)		OW NOX BURNERS, FLUE GAS ECIRCULATION	0	20.4 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBT EACH	J/H, Nitroge Oxides (NOx)		RY LOW NOX COMBUSTORS	0	22.65 PPMVD AT 15% OXYGEN 3- HR AVERAGE AT > 50% PEAK LOAD	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MME EACH	TU/H, Nitroge Oxides (NOx)	en LC RE	OW NOX BURNERS, FLUE GAS ECIRCULATION	0	20.4 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW	Particul e matte filterabl (FPM)	er, PF le QU	(CLUSIVE USE OF FACILITY ROCESS FUEL GAS OR PIPELINE JALITY NATURAL GAS AND OOD COMBUSTION PRACTICES	0	0.0033 LB/MMBTU 3- HOUR BLOCK AVERAGE	o	BACT- PSD			
NJ-0076	10/27/2010 ACT	PSEG FOSSIL LLC PSEG FOSSIL LLC KEARNY GENERATING STATION HUDSON, NJ	SIMPLE CYCLE TURBINE	15.110	Throughput <= 8.94xE6 MMBtu/year (HHV) combined for all six gas turbines. The 6 turbines are identical LM6000 simple cycle combustion turbines.	Natural Gas	8940000 MMBtu/yea (HHV)	Particul r e matte filterabl (FPM)	er, Cle le	ood combustion practice, Use of ean Burning Fuel: Natural gas	0	6 LB/H AVERAGE OF THREE TESTS	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBT EACH	J/H, Particul e matte filterabl (FPM)	er, AN le	OOD COMBUSTION PRACTICES ND PROPER DESIGN	0	0.0019 LB/MMBTU 3-HR AVERAGE	0	BACT- PSD	N		
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MME EACH		lat GO er, AN le	DOD COMBUSTION PRACTICES ND PROPER DESIGN	0	1.9 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL GAS	283 MMBT EACH	(1. 1. 11.)	lat GO er, AN le	DOD COMBUSTION PRACTICES ND PROPER DESIGN	0	0.0019 LB/MMBTU 3-HR AVERAGE	0	BACT- PSD	N		
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH BOILER NOT TO EXCEED 1501.91 MMCF/YR	NATURAL GAS	218.6 MME EACH		lat GO er, AN le	DOD COMBUSTION PRACTICES ND PROPER DESIGN	0	1.9 LB/MMCF 3- HR AVERAGE	0	BACT- PSD	N		

RBLC BACT SUMMARY

ALASKA LNG

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

PD1 2 :-	2.4	Facility No. 11 C		Process	P	B	Throughput &	0-4-18-1-15	Standard Emission Limit	Emission Limit		Case by	Other Free	Estimated Efficiency	Pallistant Committee
NM-0051	Date 05/02/2011 ACT	Facility Name & Location SOUTHWESTERN PUBLIC SERVICE	Process Normal Mode (without Power	Type 15.110	Process Notes	Primary Fuel natural gas	Units Pollutar 0 Particula		& Units	1 & Units 5.4 LB/H	2 & Units 0	Basis BACT-	Other Factors	%	PM10 BACT as established in
		CO. CUNNINGHAM POWER PLANT LEA, NM	Augmentation)				e matter filterable < 10 µ	described in the permit.		HOURLY		PSD			PSD-NM-622-M3 issued 2-10-97.
NM-0051	05/02/2011 ACT	SOUTHWESTERN PUBLIC SERVICE	Power Augmentation	15.110	Increase power output by lowering the	natural gas	(FPM10) 0 Particula	t Good combustion practices as	0	5.4 LB/H	0	BACT-	U		PM10 BACT established in PSD-
		CO. CUNNINGHAM POWER PLANT LEA, NM	S		outlet air temperatur through water inejctinos into the compressor.		e matter filterable < 10 µ (FPM10)			HOURLY		PSD			NM-622-M2 issued 2-10-97.
NJ-0077	09/16/2010 ACT	VINELAND MUNICIPAL ELECTRIC UTILITY (VMEU) HOWARD DOWN STATION CUMBERLAND, NJ	SIMPLE CYCLE (NO WASTE HEAT RECOVERY)(>25 MW)	15.110	THE PROCESS CONSISTS OF ONE NEW TRENT 60 SIMPLE CYCLE COMBUSTION TURBINE. THE TURBINE WILL GENERATE 64 MW OF ELECTRICITY USING NATURAL GAS AS A PRIMARY FUEL (UP TO 8760 HOURS PER YEAR), WITH A BACKUP FUEL OF ULTRA LOW SULFUR DIESEL FUEL (ULSD) WHICH CAN ONLY BE COMBUSTED FOR A MAXIMUM OF 500 HOURS PER YEAR AND ONLY DURING NATURAL GAS CURTAILMENT. THE MAXIMUM HEAT INPUT RATE WHILE COMBUSTING NATURAL GAS IS 590 MMBTU/HR AND THE MAXIMUM HEAT INPUT RATE WHILE COMBUSTING WHILE COMBUSTING ULSD IS 568 MMBTU/HR. THE TURBINE WILL UTILIZE WATER INJECTION AND SELECTIVE CATALYTIC REDUCTION TO CONTROL CO AND VOC EMISSION.	NATURAL GAS	5000 MMFT3/YR Particula e matter filtrable < 10 ŵ (FPM10)	NATURAL GAS AS PRIMARY FUEL AND ULTRA LOW SULFUR DISTILLATE OIL WITH 15	0	5 LB/H AVERAGE OF THREE TESTS	0	BACT- PSD	U		
*TX-0688	12/19/2014 ACT	NRG TEXAS POWER SR BERTRON ELECTRIC GENERATION STATION HARRIS, TX	Simple cycle natural gas turbines	15.110		Natural Gas	225 MW Particula e matter filterable < 2.5 ŵ (FPM2.5		0	0	0	BACT- PSD	N		Includes PM and PM10
*TX-0686	04/22/2014 ACT	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE, TX	Combustion Turbine-Generator(CTG)	15.110	Simple Cycle	Natural Gas	202 MW Particula e matter filterable < 2.5 ŵ (FPM2.5	hours; Good combustion practices	0	0	0	BACT- PSD	N		Includes PM and PM10
CA-1223	11/19/2012 ACT	PIO PICO ENERGY CENTER, LLC PIO PICO ENERGY CENTER OTAY MESA, CA		15.110	Three simple cycle combustion turbine generators (CTG). Each CTG rated at 100 MW (nominal net).	NATURAL GAS	300 MW Particula e matter filterable < 2.5 Åμ (FPM2.5	,	0	0.0065 LB/MMBTU (HHV) AT LOADS OF 80% OR HIGHER	5.5 LB/H	BACT- PSD	U		
*TX-0690	09/12/2012 ACT	NRG TEXAS POWER CEDAR BAYOU ELECTRIC GERNERATION STATION CHAMBERS, TX	Simple Cycle Combustion Turbines	15.110	The gas turbines will be one of three options: (1) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts (MW). (2) Two General Electric Model 7FA (GE7FA) CTGs each rated at nominal capability of 215 MW. (3) Two Mitsubishi Heavy Industry G Frame (MHI501G) CTGs each rated at a nominal electric output of 263 MW.	Natural Gas	225 MW Particula e matter filtrable < 2.5 ŵ (FPM2.5	Good Combustion Practices, Natural Gas	0	0	0	BACT- PSD	N		Includes PM and PM10
NJ-0077	09/16/2010 ACT	VINELAND MUNICIPAL ELECTRIC UTILITY (VMEU) HOWARD DOWN STATION CUMBERLAND, NJ	SIMPLE CYCLE (NO WASTE HEAT RECOVERY)(>25 MW)	15.110	THE PROCESS CONSISTS OF ONE NEW TRENT 60 SIMPLE CYCLE COMBUSTION TURBINE. THE TURBINE WILL GENERATE 64 MW OF ELECTRICITY USING NATURAL GAS AS A PRIMARY FUEL (UP TO 8760 HOURS PER YEAR), WITH A BACKUP FUEL OF ULTRA LOW SULFUR DIESEL FUEL (ULSD) WHICH CAN ONLY BE COMBUSTED FOR A MAXIMUM OF 500 HOURS PER YEAR AND ONLY DURING NATURAL GAS CURTAILMENT. THE MAXIMUM HEAT INPUT RATE WHILE COMBUSTING NATURAL GAS IS 590 MMBTU/HR ANE THE MAXIMUM HEAT INPUT RATE WHILE COMBUSTING ULSD IS 568 MMBTU/HR. THE TURBINE WILL UTILIZE WATER INJECTION AND SELECTIVE CATALYTIC REDUCTION TO CONTROL CO AND VOC EMISSION.		e matter filterable < 2.5 µ		0	5 LB/H AVERAGE OF THREE TESTS	0	BACT- PSD	U		
*TX-0764	10/14/2015 ACT	NACOGDOCHES POWER, LLC NACOGDOCHES POWER ELECTRIC GENERATING PLANT NACOGDOCHES, TX	Natural Gas Simple Cycle Turbine (>25 MW)	15.110	One Siemens F5 simple cycle combustion turbine generator	natural gas	232 MW Particula e matter total (TPM)		0	12.09 LB/HR	12.94 TPY	BACT- PSD	N		Operation of the turbine is limited to 2,500 hours on a 12-month rolling average.

ALASKA LNG RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

										Standard			Case by		Estimated	
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutan	t Control Method Description	Emission Limit & Units	Emission Limit	Emission Limit 2 & Units	Case Basis	Other Factors	Efficiency %	Pollutant/ Compliance Notes
	05/12/2015 ACT	GOLDEN SPREAD ELECTRIC	Simple Cycle Turbine & Generator	15.110	3 additional GE 7F 5-Series Combustion		202 MW	Particula	Pipeline quality natural gas; limited	0	0	0	BACT-	N Strict 1 dotors	70	Operation of each turbine is limited
		COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE, TX			Turbine Generators			e matter, total (TPM)	hours; good combustion practices.				PSD			to 4,572 hours per year
CA-1223	11/19/2012 ACT	PIO PICO ENERGY CENTER, LLC PIO		15.110	Three simple cycle combustion turbine	NATURAL GAS	300 MW	Particula	PUC-QUALITY NATURAL GAS	0	0.0065	5.5 LB/H	BACT-	U		
		PICO ENERGY CENTER OTAY MESA, CA	OPERATION)		generators (CTG). Each CTG rated at 100 MW (nominal net).			e matter, total			LB/MMBTU (HHV) AT		PSD			
								(TPM)			LOADS OF 80% OR HIGHER					
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING	Simple Cycle Turbine (EP03)	15.110		Natural Gas	40 MW	Particula e matter,	good combustion practices	0	4 LB/H 3-HOUR AVERAGE	17.5 TONS CALENDAR	BACT- PSD	N		
		STATION LARAMIE, WY						total			AVEIVAGE	YEAR	I OD			
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Simple Cycle Trubine (EP04)	15.110		Natural Gas	40 MW	(TPM) Particula	t good combustion practices	0	4 LB/H 3-HOUR	17.5 TONS	BACT-	N		
		CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY						e matter, total			AVERAGE	CALENDAR YEAR	PSD			
*\\\\\0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Simple Cycle Turbine (EP05)	15.110		Natural Gas	40 MW	(TPM) Particula	good combustion practices	0	4 LB/H 3-HOUR	17.5 TONS	BACT-	N		
W1 0070	00/20/2012 /(01	CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	omple dydie raibilie (Er 66)	10.110		radial Sus	TO MIN	e matter,	good compaction practices		AVERAGE	CALENDAR YEAR	PSD			
		•						total (TPM)				YEAR				
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE	Simple Cycle Refrigeration Compresso Turbines (16)	or 15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Particula e matter,	Good combustion practices and fueled by natural gas	0	2.08 LB/H HOURLY	0	BACT- PSD	U		also for PM10 and PM2.5
		PASS LNG TERMINAL CAMERON, LA	, ,					total (TPM)			MAXIMUM					
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Particula		0	2.08 LB/H HOURLY	0	BACT- PSD	U		also for PM10 and PM2.5
		PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA						e matter, total	fueled by natural gas		MAXIMUM		PSD			
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC	Three simple cycle combustion turbines	s 15.110	Three GE, LMS100PA, natural gas-fired,	natural gas	799.7 mmbtu/hr	(TPM) Particula	Use of pipeline quality natural gas	0	6.6 LB/H AVE	0	BACT-	U		
		GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO			simple cycle CTG rated at 799.7 MMBtu per hour each, based on HHV.			e matter, total	and good combustor design		OVER STACK TEST LENGTH		PSD			
*140/ 0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Combined Cycle Turbine (EP01)	15.210	per nour edon, based on thirty.	National Con-	40 MW	(TPM)				47.5.7010	DAOT			
*VV Y -0070	08/28/2012 ACT	CHEYENNE PRAIRIE GENERATING	Combined Cycle Turbine (EPUT)	15.210		Natural Gas	40 IVIVV	Particula e matter,	good combustion practices	0	4 LB/H 3-HOUR AVERAGE	17.5 TONS CALENDAR	BACT- PSD	U		
		STATION LARAMIE, WY						total (TPM)				YEAR				
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING	Combined Cycle Turbine (EP02)	15.210		Natural Gas	40 MW	Particula e matter,	good combustion practices	0	4 LB/H 3-HOUR AVERAGE	17.5 TONS CALENDAR	BACT- PSD	N		
		STATION LARAMIE, WY						total			TVLIVIOL	YEAR	1 05			
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE	Combined Cycle Refrigeration	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Particula		0	2.08 LB/H	0	BACT-	U		also for PM10 and PM2.5
		PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Compressor Turbines (8)					e matter, total	fueled by natural gas		HOURLY MAXIMUM		PSD			
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC	Four combined cycle combution turbine	es 15 210	Three GE, LMS6000 PF, natural gas-	natural gas	373 mmbtu/hr	(TPM) Particula	Use of pipeline quality natural gas	0	4.3 LB/H AVE	0	BACT-	lu		
00 00.0	0.722,20107101	GENERATION, LLC PUEBLO AIRPORT	, our combined eyers combatter tarbine	10.210	fired, combined cycle CTG, rated at 373	matarai gas	0.0	e matter,	and good combustor design		OVER STACK		PSD			
		GENERATING STATION PUEBLO, CO			MMBtu per hour each, based on HHV and one (1) HRSG each with no Duct			total (TPM)			TEST LENGTH					
*TX-0769	10/27/2015 ACT	NAVASOTA NORTH COUNTRY	Simple Cycle Turbine	15.110	Burners The CTGs will be three General Electric	natural gas	183 MW	Particula	Pipeline Quality Natural Gas	0	8.6 LB/H	0	BACT-	U		
		PEAKERS OPERATING COMPANY I VAN ALSTYNE ENERGY CENTER			7FA.04 (~183 MW each for a total of 550 MW), operating as peaking units in			e matter, total < 10					PSD			
		(VAEC) GRAYSON, TX			simple cycle mode. Each turbine will be			Âμ								
					limited to 2,500 hours of operation per year. The new CTGs will use dry low-			(TPM10)								
					NOx (DLN) burners and may employ evaporative cooling for power											
*TX-0764	10/14/2015 ACT	NACOGDOCHES POWER, LLC	Natural Gas Simple Cycle Turbine (>25	5 15 110	enhancement. One Siemens F5 simple cycle	natural gas	232 MW	Particula	Pipeline quality natural gas; limited	0	12.09 LB/HR	12.94 TPY	BACT-	N		Operation of the turbine is limited
17.0704	10/14/2010/101	NACOGDOCHES POWER ELECTRIC		10.110	combustion turbine generator	natural gas	202 11114	e matter,	hours; good combustion practices.		12.00 LB/IIIC	12.04 11 1	PSD			to 2,500 hours on a 12-month
		GENERATING PLANT NACOGDOCHES, TX						total < 10 µ								rolling average.
*TX-0768	10/09/2015 ACT	SHAWNEE ENERGY CENTER, LLC	Simple cycle turbines greater than 25	15.110	Siemens Model SGT6-5000 F5ee –	natural gas	230 MW	(TPM10) Particula	Pipeline quality natural gas; limited	0	84.1 LB/HR	152.96 TPY	BACT-	N		
		SHAWNEE ENERGY CENTER HILL, TX			230 MW or Second turbine option: General Electric Model 7FA.05TP –	, and the second		e matter, total < 10	hours; good combustion practices.				PSD			
					227 MW			Âμ								
*TX-0733	05/12/2015 ACT	GOLDEN SPREAD ELECTRIC	Simple Cycle Turbine & Generator	15.110	3 additional GE 7F 5-Series Combustion	natural gas	202 MW	(TPM10) Particula		0	0	0	BACT-	N		Operation of each turbine is limit
		COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE, TX			Turbine Generators			e matter, total < 10					PSD			to 4,572 hours per year
								Âμ (TPM10)								
*MD-0043	07/01/2014 ACT	CONSTELLATION POWER SOURCE	(2) 60-MW SIMPLE CYCLE	15.110	(2) 60-MEGAWATT PRATT & WHITNEY	NATURAL GAS	120 MW	Particula		0	5 LB/H 3 STACK		BACT-			
		GENERATION, INC. PERRYMAN GENERATING STATION HARFORD,	COMBUSTION TURBINES, FIRING NATURAL GAS		GAS TURBINE GENERATOR PACKAGE			e matter, total < 10	AND USE OF NATURAL GAS		TEST RUNS	LB/MMBTU HIGH HEAT VALUE	IPSD			
		MD						Âμ (TPM10)				(HHV)				
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES	NATURAL GAS	130 MW	Particula e matter.		0	0.007 LB/MMBTU 3 STACK TEST	J 300.8 LB/EVENT	BACT- PSD			5.6 LBS/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH
		CALVERT, MD			(CTS) WITH A NOMINAL NET 87.2			total < 10	QUALITY NATURAL GAS AND	-	RUN AVERAGE,	STARTUPS	, 50			FRAME 7 CTS PER STARTUP
					MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY			Âμ (TPM10)	GOOD COMBUSTION PRACTICES		EXCEPT SU/SD					OR SHUTDOWN EVENT.
					STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX											
					COMBUSTORS, SELECTIVE											
1			1		CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST											

ALASKA LNG RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

-	1				_			,	T		1	1	10	I French I I
				Process			Throughput &			Standard Emission Limit	Emission Limi	Emission Lin	Case by	Estimated
RBLC ID	Date	Facility Name & Location	Process	Туре	Process Notes	Primary Fuel	Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors % Pollutant/ Compliance Not
*CO-0075	05/30/2014 ACT	BLACK HILLS ELECTRIC	Turbine - simple cycle gas	15.110	One (1) General Electric, simple cycle,	natural gas	375 mmbtu/hr	Particulat	Firing of pipeline quality natural gas	0	4.8 LB/H 3-HR	0	BACT-	U
		GENERATION, LLC PUEBLO AIRPORT	Г		gas turbine electric generator, Unit 6			e matter,	as defined in 40 CFR Part 72.		AVE		PSD	
		GENERATING STATION PUEBLO, CO			(CT08), model: LM6000, SN: N/A, rated at 375 MMBtu per hour.			total < 10	Specifically, the owner or the					
					at 375 MMBtu per nour.			Αμ (TPM10)	operator shall demonstrate that the natural gas burned has total sulfur					
								(11 10110)	content less than 0.5 grains/100					
									SCF.					
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC		15.110		natural gas	1690 MMBtu/hr	Particulat	Utilize only natural gas or ULSD fuel;	0	9.1 LB/H TOTAL			U
		TROUTDALE ENERGY CENTER, LLC	simple cycle with water injection					e matter,	Limit the time in startup or shutdown.		PM 6-HR	PM 6-HR	PSD	
		MULTNOMAH, OR						total < 10			AVERAGE ON	AVERAGE ON ULSD		
								Αμ (TPM10)			NG	ULSD		
*ND-0028	02/22/2013 ACT	MONTANA-DAKOTA UTILITIES CO.	Combustion Turbine	15.110	Turbine is a GE Model PG 7121 (7EA)	Natural gas	986 MMBTU/H	Particulat	Good Combustion Practices	0	7.3 LB/H	0	BACT-	U
		R.M. HESKETT STATION MORTON,		1.57.7.5	used as a peaking unit.			e matter,			AVERAGE OF 3		PSD	
		ND						total < 10			TEST RUNS			
								Âμ						
0.1.000				15.110				(TPM10)				======		
CA-1223	11/19/2012 ACT	PICO ENERGY CENTER, LLC PIO PICO ENERGY CENTER OTAY MESA,	COMBUSTION TURBINES (NORMAL	15.110	Three simple cycle combustion turbine generators (CTG). Each CTG rated at	NATURAL GAS	300 MW	Particulat e matter,	PUC-QUALITY NATURAL GAS	0	0.0065 LB/MMBTU	5.5 LB/H	BACT- PSD	lo l
		CA	OFERATION)		100 MW (nominal net).			total < 10			(HHV) AT		FSD	
		671			Too www (nominal not).			Âu			LOADS OF 80%			
								(TPM10)			OR HIGHER			
LA-0258	12/21/2011 ACT	ENTERGY GULF STATES LA LLC		15.110		NATURAL GAS	1900 MM BTU/H	Particulat	USE OF PIPELINE NATURAL GAS	0	17 LB/H	17 LB/H	BACT-	U LIMITS ARE PER TURBINE
		CALCASIEU PLANT CALCASIEU, LA	NO. 2				EACH	e matter,			HOURLY	HOURLY	PSD	EXHAUST STACK. AGGREG
								total < 10			MAXIMUM	MAXIMUM /		PM10 EMISSIONS FROM BC
								Aμ (TPM10)				STARTUP & SHUTDOWN		TURBINE EXHAUST STACKS
								(TPIVITU)				ONLY		ARE LIMITED TO 30.94 TON PER YEAR. STARTUP &
								1				O'NE I		SHUTDOWN OPERATIONS
1														LIMITED TO 520 HOURS PE
1														YEAR.
				1				1				1		
NJ-0076	10/27/2010 ACT	PSEG FOSSIL LLC PSEG FOSSIL LLC	SIMPLE CYCLE TURBINE	15.110	Throughput <= 8.94xE6 MMBtu/year	Natural Gas	8940000	Particulat		0	6 LB/H	0	BACT-	U
		KEARNY GENERATING STATION			(HHV) combined for all six gas turbines.		MMBtu/year	e matter,	Clean Burning Fuel: Natural gas		AVERAGE OF		PSD	
		HUDSON, NJ			The 6 turbines are identical LM6000		(HHV)	total < 10			THREE TESTS			
					simple cycle combustion turbines.			Αμ (TPM10)						
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC	Three simple cycle combustion turbines	15 110	Three GE, LMS100PA, natural gas-fired,	natural das	799.7 mmbtu/hr	Particulat	Use of pipeline quality natural gas	0	6.6 LB/H AVE	0	BACT-	U
00 00.0	01722720107101	GENERATION, LLC PUEBLO AIRPORT		10.110	simple cycle CTG rated at 799.7 MMBtu	matarar gas	T COLT TIME CANTE	e matter,	and good combustor design		OVER STACK		PSD	
		GENERATING STATION PUEBLO, CO			per hour each,based on HHV.			total < 10			TEST LENGTH			
								Âμ						
				1				(TPM10)						
GA-0139	05/14/2010 ACT	SOUTHERN POWER COMPANY	SIMPLE CYCLE COMBUSTION	15.110	THE PROCESS USES FUEL OIL FOR	NATURAL GASE	1530 MW	Particulat		0	9.1 LB/H 3	69 LB/H 3 HOU		U
		ELECTRIC GENERATING FACILITY (P	TURBINE - ELECTRIC GENERATING		BACKUP AT THE RATE OF 2129 MMBUT/H			e matter,	PIPELINE QUALITY NATURAL GAS, ULTRA LOW SULFUR DISTILLATE		HOUR AVERAGE/CON	AVERAGE/CO DITION 3.3.28	N PSD	
		JACKSON, GA	FLANT		IVIVIBO 1/H			total < 10 µ	FUEL		DITION 3.3.23	DITION 3.3.20		
		JACKSON, GA						(TPM10)	I OLL		DITION 3.3.23			
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC	Mitsubishi M501-GAC combustion	15.210	or ULSD; Duct burner 499 MMBtu/hr,	natural gs	2988 MMBtu/hr	Particulat	Utilize only natural gas or ULSD fuel;	0	23.6 LB/H TOTA	L 42.3 LB/H TO1	AL BACT-	U
		TROUTDALE ENERGY CENTER, LLC			natural gas			e matter,	Limit the time in startup or shutdown.		PM 6-HR	PM 6-HR	PSD	
		MULTNOMAH, OR	with duct burner.					total < 10			AVERAGE ON	AVERAGE ON		
								Äμ			NG	ULSD		
*CO 0072	07/22/2010 ACT	BLACK HILLS ELECTRIC	Faur combined avala combution turbines	15 210	Three CE I MS6000 DE netural geo	notural gas	373 mmbtu/hr	(TPM10)	Llos of pipeline quality patural gas	0	4.3 LB/H AVE	0	BACT-	
CO-0073	07/22/2010 AC1	GENERATION, LLC PUEBLO AIRPORT	Four combined cycle combution turbines	15.210	Three GE, LMS6000 PF, natural gas- fired, combined cycle CTG, rated at 373	natural gas	3/3 111111111111	Particulat e matter,	Use of pipeline quality natural gas and good combustor design	U	OVER STACK	U	PSD	
		GENERATING STATION PUEBLO, CO			MMBtu per hour each, based on HHV			total < 10	and good combusion design		TEST LENGTH		1 00	
		02112101111100111101111012101			and one (1) HRSG each with no Duct			Âu						
					Burners			(TPM10)						
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	TWO (2) NATURAL GAS FIRED	16.210	NATURAL GAS FIRED, OPEN-SIMPLE	NATURAL GAS	283 MMBTU/H,		GOOD COMBUSTION PRACTICES	0	0.0076	0	BACT-	N
1		CORPORATION MIDWEST	COMBUSTION TURBINES		CYCLE COMBUSTION TURBINES		EACH	1	AND PROPER DESIGN		LB/MMBTU 3-H	₹	PSD	
1		FERTILIZER CORPORATION POSEY,			WITH HEAT RECOVERY			total < 10			AVERAGE			
1		lin .						Âμ (TPM10)						
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH	NATURAL GAS	218.6 MMRTU/H		GOOD COMBUSTION PRACTICES	0	7.6 LB/MMCF 3-	0	BACT-	l _N
5175	23/0 //2014 //01	CORPORATION MIDWEST	(o) Nova and Boile in	1.5.2.0	BOILER NOT TO EXCEED 1501.91		EACH	e matter,	AND PROPER DESIGN	-	HR AVERAGE	ľ	PSD	[
1		FERTILIZER CORPORATION POSEY,			MMCF/YR			total < 10	1				-	
1		IN						Âμ						
	0.010.417-7::			100:-		NATURAL TO		(TPM10)						
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	TWO (2) NATURAL GAS FIRED	16.210	NATURAL GAS FIRED, OPEN-SIMPLE	NATURAL GAS	283 MMBTU/H,	Particulat		U	0.0076 LB/MMBTU 3-H	J ⁰	BACT- PSD	IN I
1		CORPORATION MIDWEST FERTILIZER CORPORATION POSEY,	COMBUSTION TURBINES		CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY		EACH	e matter, total < 10	AND PROPER DESIGN		LB/MMBTU 3-H AVERAGE	`	P2D	
1		IN CONFORMATION POSET,			WITHEAT RECOVERT			Âu			AVENAGE			
1		***						(TPM10)						
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH	NATURAL GAS			GOOD COMBUSTION PRACTICES	0	7.6 LB/MMCF 3-	0	BACT-	N I
		CORPORATION MIDWEST			BOILER NOT TO EXCEED 1501.91		EACH	e matter,	AND PROPER DESIGN		HR AVERAGE	1	PSD	
		FERTILIZER CORPORATION POSEY,			MMCF/YR			total < 10						
		IN						Aμ						
*TV 0700	40/07/0045 407	NAVASOTA NORTH COUNTRY	Sissala Cosala Tosakin	45.440	The OTO - will be the O	-4	400 5 554	(TPM10)	Dipoline Quality Notice I Co-	0	0 6 I D// !	10	DACT	N
*TX-0769	10/27/2015 ACT	PEAKERS OPERATING COMPANY I	Simple Cycle Turbine	15.110	The CTGs will be three General Electric 7FA.04 (~183 MW each for a total of 550	naturai gas	183 MW	Particulat e matter,	Pipeline Quality Natural Gas	ľ	8.6 LB/H	ľ	BACT- PSD	¹⁴
		VAN ALSTYNE ENERGY CENTER			MW), operating as peaking units in			total < 2.5				1	1 30	
		(VAEC) GRAYSON, TX			simple cycle mode. Each turbine will be			Âu				1		
1					limited to 2,500 hours of operation per			(TPM2.5)						
1					year. The new CTGs will use dry low-			Γ "						
1					NOx (DLN) burners and may employ									
1					evaporative cooling for power									
	1			1	enhancement.			1	I	I			1	

ALASKA LNG

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

Crit Large SCT

				Process			Throughput &	:		Standard Emission Limit	Emission Limit	Emission Limi			Estimated Efficiency
*TX-0764	Date 10/14/2015 ACT	Facility Name & Location NACOGDOCHES POWER, LLC	Process Natural Gas Simple Cycle Turbine (>25	Type 15.110	Process Notes One Siemens F5 simple cycle	Primary Fuel natural gas	Units 232 MW	Pollutant Particulat	Control Method Description Pipeline quality natural gas; limited	& Units	1 & Units 12.09 LB/HR	2 & Units 12.94 TPY	Basis BACT-	Other Factors N	% Pollutant/ Compliance Notes Operation of the turbine is limited
		NACOGDOCHES POWER ELECTRIC GENERATING PLANT NACOGDOCHES, TX			combustion turbine generator			e matter, total < 2.5 µ (TPM2.5)	hours; good combustion practices.				PSD		to 2,500 hours on a 12-month rolling average.
*TX-0768	10/09/2015 ACT	SHAWNEE ENERGY CENTER, LLC SHAWNEE ENERGY CENTER HILL, TX	Simple cycle turbines greater than 25 megawatts (MW)	15.110	Siemens Model SGT6-5000 F5ee â€" 230 MW or Second turbine option: General Electric Model 7FA.05TP â€" 227 MW	natural gas	230 MW	Particulat e matter, total < 2.5 µ (TPM2.5)	Pipeline quality natural gas; limited hours; good combustion practices.	0	84.1 LB/HR	152.96 TPY	BACT- PSD	N	
*TX-0733	05/12/2015 ACT	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE, TX	Simple Cycle Turbine & Generator	15.110	3 additional GE 7F 5-Series Combustion Turbine Generators	natural gas	202 MW	Particulat e matter, total < 2.5 µ (TPM2.5)	Pipeline quality natural gas; limited hours; good combustion practices.	0	0	0	BACT- PSD	N	Operation of each turbine is limited to 4,572 hours per year
*TX-0694	02/02/2015 ACT	INDECK WHARTON, L.L.C. INDECK WHARTON ENERGY CENTER WHARTON, TX	(3) combustion turbines	15.110	The CTGs will either be the General Electric 7FA (~214 MW each) or the Siemens SGT6-5000F (~227 MW each), operating as peaking units in simple cycle mode	natural gas	220 MW	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0	0	BACT- PSD	U	natural gas fuel, includes PM and PM10
*TX-0696	09/22/2014 ACT	TENASKA ROAN'S PRAIRIE PARTNERS (TRPP), LLC ROAN'S PRAIRIE GENERATING STATION GRIMES, TX	(2) simple cycle turbines	15.110	The three possible CT models are: (1) General Electric 7FA.04; (2) General Electric 7FA.05; or (3) Siemens SGT6- 5000F. will operate 2,920 hours per year at full load for each CT	natural gas	600 MW	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0	0	BACT- PSD	N	natural gas fuel, includes PM and PM10
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	3 liquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.	natural gas	40000 hp	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0.72 LB/H 1 HOUR	0	BACT- PSD	U	Natural gas is the fuel. PM and PM10 are equal to PM2.5.
*TX-0695	08/01/2014 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	(2) combustion turbines	15.110	(2) GE 7FA.03, 2500 hours of operation per year each	natural gas	180 MW	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0	0	BACT- PSD	U	natural gas fuel, includes PM and PM10
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW	Particulat e matter,	EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS AND GOOD COMBUSTION PRACTICES	0	0.007 LB/MMBTL 3 STACK TEST RUN AVERAGE, EXCEPT SU/SD	FOR ALL	T BACT- PSD		5.6 LBS/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*CO-0075	05/30/2014 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Turbine - simple cycle gas	15.110	One (1) General Electric, simple cycle, gas turbine electric generator, Unit 6 (CT08), model: LM6000, SN: N/A, rated at 375 MMBtu per hour.	natural gas	375 mmbtu/hr	Âμ	Firing of pipeline quality natural gas as defined in 40 CFR Part 72. Specifically, the owner or the operator shall demonstrate that the natural gas burned has total sulfur content less than 0.5 grains/100 SCF.	0	4.8 LB/H 3-HR AVE	0	BACT- PSD	U	
*TX-0691	05/20/2014 ACT	NRG TEXAS POWER LLC PH ROBINSON ELECTRIC GENERATING STATION GALVESTON, TX	(6) simple cycle turbines	15.110	General Electric Frame 7E turbines have an ISO rating of 65 MW and a nominal maximum generating capacity of 80 MW. The turbines were originally constructed as Frame 7B units that were remanufactured in 1999 and upgraded to 7E machines Each of the turbines will not exceed 20 percent annual capacity (equivalent to 1,752 full load hours) in any single year or 10 percent annual capacity factor (equivalent to 876 full load hours) averaged over any three year period, which qualifies each of the CTGs as Acid Rain Peaking Units under 40 CFR 72.2		65 MW	Particulat e matter, total < 2.5 ŵ (TPM2.5)		0	0	0	BACT- PSD	U	natural gas fuel, includes PM and PM10
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT LAUDERDALE PLANT BROWARD, FL	Five 200-MW combustion turbines	15.110	Throughput could vary slightly (+/- 120 MMBtu/hr) depending on final selection of turbine model and firing of natural gas or oil. Primary fuel is expected to be gas. Each turbine limited to 3300 hrs per rolling 12-month period. Of these 3300 hrs, no more than 500 may use ULSD fuel oil.	Natural gas	2000 MMBtu/hr (approx)	Particulat e matter, total < 2.5 µ (TPM2.5)	sulfur fuel	0	0	0	BACT- PSD	U	The fuel specifications of 2.0 grains/100 standard cubic feet of natural gas and 0.0015% sulfur in the ULSD fuel together with a 10% opacity limits for visible emissions (VE) are proposed as BACT.
*ND-0030	09/16/2013 ACT	BASIN ELECTRIC POWER COOP. LONESOME CREEK GENERATING STATION MCKENZIE, ND	Natural Gas Fired Simple Cycle Turbines	15.110	The heat input is for a single unit.	Natural gas	412 MMBtu/hr	Particulat e matter, total < 2.5 µ (TPM2.5)		0	5 LB/H AVERAGE OF THREE TEST RUNS	0	BACT- PSD	N	Limit is for each unit.
*ND-0029	05/14/2013 ACT	BASIN ELECTRIC POWER COOPERATIVE PIONEER GENERATING STATION WILLIAMS, ND	Natural gas-fired turbines	15.110	Rating is for each turbine.	Natural gas	451 MMBtu/hr	Particulat e matter, total < 2.5 µ (TPM2.5)		0	5.4 LB 1 HOUR	0	BACT- PSD	U	

RBLC BACT SUMMARY

ALASKA LNG RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes		Primary Fuel	Throughput & Units	Pollutant	Control Method Description	Standard Emission Limit & Units	Emission Limit	Emission Limit	Basis	Other Factors	Estimated Efficiency % Pollutant/ Compliance Notes
*TX-0701	05/13/2013 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	Simple Cycle Combustion Turbines	15.110		natural gas		180 MW	Particulat e matter, total < 2.5 µ	Firing pipeline quality natural gas and good combustion practices	0	0	0	BACT- I PSD	N	Includes PM and PM10
ND-0028	02/22/2013 ACT	MONTANA-DAKOTA UTILITIES CO. R.M. HESKETT STATION MORTON, ND	Combustion Turbine	15.110	Turbine is a GE Model PG 7121 (7EA) used as a peaking unit.	Natural gas		986 MMBTU/H	(TPM2.5) Particulat e matter, total < 2.5 µ (TPM2.5)	Good combustion practices.	0	7.3 LB/H AVERAGE OF THREE TEST RUNS	0	BACT- PSD	U	
A-0258	12/21/2011 ACT	ENTERGY GULF STATES LA LLC CALCASIEU PLANT CALCASIEU, LA	TURBINE EXHAUST STACK NO. 1 & NO. 2	15.110		NATURAL G	AS	1900 MM BTU/H EACH	Particulat e matter, total < 2.5 µ (TPM2.5)	USE OF PIPELINE NATURAL GAS	0	17 LB/H HOURLY MAXIMUM	17 LB/H HOURLY MAXIMUM / STARTUP & SHUTDOWN ONLY	BACT- PSD	U	LIMITS ARE PER TURBINE EXHAUST STACK. AGGREGAT PM2.5 EMISSIONS FROM BOTI TURBINE EXHAUST STACKS ARE LIMITED TO 30.94 TONS PER YEAR. STARTUP & SHUTDOWN OPERATIONS AR LIMITED TO 520 HOURS PER YEAR.
NJ-0076	10/27/2010 ACT	PSEG FOSSIL LLC PSEG FOSSIL LLC KEARNY GENERATING STATION HUDSON, NJ	SIMPLE CYCLE TURBINE	15.110	Throughput <= 8.94xE6 MMBtu/year (HHV) combined for all six gas turbines. The 6 turbines are identical LM6000 simple cycle combustion turbines.	Natural Gas		8940000 MMBtu/year (HHV)	Particulat e matter, total < 2.5 µ (TPM2.5)	Good combustion practice, Use of Clean Burning Fuel: Natural gas	0	6 LB/H AVERGE OF THREE TESTS	0	BACT- Y	Y	
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	f natural gas		40000 hp	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0.72 LB/H 1 HOUR	0	BACT- I PSD	U	Natural gas is the fuel. PM and PM10 are equal to PM2.5.
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL G	AS	283 MMBTU/H, EACH	Particulat e matter, total < 2.5 µ (TPM2.5)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0	0.0076 LB/MMBTU 3-HF AVERAGE	0	BACT- I PSD	N	
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION POSEY, IN	TWO (2) NATURAL GAS FIRED COMBUSTION TURBINES	16.210	NATURAL GAS FIRED, OPEN-SIMPLE CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY	NATURAL G	AS	283 MMBTU/H, EACH	Particulat e matter, total < 2.5 µ (TPM2.5)	GOOD COMBUSTION PRACTICES AND PROPER DESIGN	0	0.0076 LB/MMBTU 3-HF AVERAGE	0	BACT- I PSD	N	
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	3 liquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.	f natural gas		40000 hp	Sulfur Dioxide (SO2)		0	0.31 LB/H 1 HOUR	0	BACT- I PSD	U	Fuel sulfur is very low for natural gas.
*TX-0695	08/01/2014 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	(2) combustion turbines	15.110	(2) GE 7FA.03, 2500 hours of operation per year each	natural gas		180 MW	Sulfur Dioxide (SO2)		0	1 GR/100 DSCF	0	BACT- I PSD	U	
TX-0701	05/13/2013 ACT	INVENERGY THERMAL DEVELOPMENT LLC ECTOR COUNTY ENERGY CENTER ECTOR, TX	Simple Cycle Combustion Turbines	15.110		natural gas		180 MW	Sulfur Dioxide (SO2)	Firing pipeline quality natural gas and good combustion practices.	0	0	0	BACT- I PSD	N	
NM-0051	05/02/2011 ACT	SOUTHWESTERN PUBLIC SERVICE CO. CUNNINGHAM POWER PLANT LEA, NM	Normal Mode (without Power Augmentation)	15.110		natural gas		0	Sulfur Dioxide (SO2)	5.25 gr/100 SCF total sulfur limit in fuel.	0	22.1 LB/H HOURLY	0	BACT- I PSD	U	SO2 BACT established in PSD- NM-622-M2 issued 2-10-97.
	05/02/2011 ACT	SOUTHWESTERN PUBLIC SERVICE CO. CUNNINGHAM POWER PLANT LEA, NM	Power Augmentation	15.110	Increase power output by lowering the outlet air temperatur through water inejctinos into the compressor.	natural gas		0	Sulfur Dioxide (SO2)	5.25 gr/scf total sulfur in fuel	0	22.1 LB/H HOURLY	0	BACT- I PSD	U	SO2 BACT established in PSD- NM-622-M2 issued 2-10-97.
TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	f natural gas		40000 hp	Sulfur Dioxide (SO2)		0	0.31 LB/H 1 HOUR	0	BACT- I	U	Fuel sulfur is very low for natural gas.
*TX-0764	10/14/2015 ACT	NACOGDOCHES POWER, LLC NACOGDOCHES POWER ELECTRIC GENERATING PLANT NACOGDOCHES, TX	Natural Gas Simple Cycle Turbine (>25 MW)	15.110	One Siemens F5 simple cycle combustion turbine generator	natural gas		232 MW	Volatile Organic Compoun ds (VOC)	Pipeline quality natural gas; limited hours; good combustion practices.	0	2 PPMVD @ 15% O2	0	BACT- I PSD	N	Operation of the turbine is limited to 2,500 hours on a 12-month rolling average.
TX-0768	10/09/2015 ACT		Simple cycle turbines greater than 25 K megawatts (MW)	15.110	Siemens Model SGT6-5000 F5ee â€" 230 MW or Second turbine option: General Electric Model 7FA.05TP â€" 227 MW	natural gas		230 MW	Volatile Organic Compoun ds (VOC)	Pipeline quality natural gas; limited hours; good combustion practices.	0	1.4 PPMV	0	BACT- I PSD	N	Operation of the turbine is limited to 2,920 hours on a 12-month rolling average.
*TX-0733	05/12/2015 ACT	GOLDEN SPREAD ELECTRIC COOPERATIVE, INC. ANTELOPE ELK ENERGY CENTER HALE, TX	Simple Cycle Turbine & Generator	15.110	3 additional GE 7F 5-Series Combustion Turbine Generators	natural gas		202 MW	Volatile Organic Compoun ds (VOC)	Good combustion practices	0	2 PPMVD @ 15% O2	0	BACT- I PSD	N	Operation of each turbine is limit to 4,572 hours per year
*TX-0696	09/22/2014 ACT	TENASKA ROANA€™S PRAIRIE PARTNERS (TRPP), LLC ROANA€™S PRAIRIE GENERATING STATION GRIMES, TX	(2) simple cycle turbines	15.110	The three possible CT models are: (1) General Electric 7FA.04; (2) General Electric 7FA.05; or (3) Siemens SGT6- 5000F. will operate 2,920 hours per year at full load for each CT	natural gas		600 MW	Volatile Organic Compoun ds (VOC)	good combustion	0	1.4 PPMVD @15% O2 GE OPTION	1 PPMVD @15% O2 SIEMENS OPTION	PSD	N	
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	3 liquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.			40000 hp	Volatile Organic Compoun ds (VOC)	good combustion practices	0	0.6 LB/H 1 HOUR	0	BACT- I	U	

ALASKA LNG RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant Control Method Description	Standard Emission Limit & Units	Emission Limit	t Emission Limi	Case by t Case Basis	Other Factors	Estimated Efficiency %	Pollutant/ Compliance Notes
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW	Volatile Organic Compoun ds (VOC) THE USE OF PROCESS FUEL GAS AND PIPELINE NATURAL GAS, COMPoun dS (VOC) AND USE OF AN OXIDATION CATALYST	0	0.7 PPMVD @ 15% O2 3-HOUF BLOCK AVERAGE, EXCLUDING SU/SD	101.1 LB/EVEN R FOR ALL STARTUPS	T LAER			4.8 LBS/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*FL-0346	04/22/2014 ACT	FLORIDA POWER & LIGHT LAUDERDALE PLANT BROWARD, FL	Five 200-MW combustion turbines	15.110	Throughput could vary slightly (+/- 120 MMBtu/hr) depending on final selection of turbine model and firing of natural gas or oil. Primary fuel is expected to be gas. Each turbine limited to 3300 hrs per rolling 12-month period. Of these 3300 hrs, no more than 500 may use ULSD fuel oil.	Natural gas	2000 MMBtu/hr (approx)	Volatile Organic Compoun ds (VOC)	0	3.77 LB/H THREE ONE-HF RUNS (NATURAL GAS	8 LB/H THREE ONE-HR RUNS (OIL)	BACT- PSD	U		Initial and annual stack tests required.
*OR-0050	03/05/2014 ACT	TROUTDALE ENERGY CENTER, LLC TROUTDALE ENERGY CENTER, LLC MULTNOMAH, OR		15.110		natural gas	1690 MMBtu/hr	Volatile Oxidation catalyst; Limit the time in startup or shutdown. Compounds (VOC)	0	0	0	BACT- PSD	U		
*SC-0161	02/19/2014 ACT	DUKE ENERGY CAROLINAS LLC, W.S. LEE STEAM STATION, SC	COMBINED CYCLE COMBUSTION TURBINES (SIEMENS)	15.110	THE FACILITY PLANS TO INSTALL EITHER TWO GE 7FA.05 OR TWO SIEMENS SGT-5000F(5) NATURAL GAS FIRED COMBUSTION TURBINE GENERATORS, EACH EQUIPPED WITH A DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.		0	Volatile OXIDATION CATALYST Organic Compoun ds (VOC)	1 PPMVD @ 15% O2 CONTINUOUS OPERATION WITHOUT DUCT BURNER	3 LB/H CONTINUOUS OPERATION WITHOUT DUC ^T BURNER	203 LB/H AVERAGE PER STARTUP AND T SHUTDOWN EVENT				THERE ARE ALSO VOC EMISSON LIMITS ASSOCIATED WITH DUCT BURNERS (CONTINUOUS OPERATION) WHICH ARE 2.0 PPMVD @15% O2 AND 7.7 LB/HR.
*SC-0161	02/19/2014 ACT	DUKE ENERGY CAROLINAS LLC, W.S. LEE STEAM STATION, SC	COMBINED CYCLE COMBUSTION TURBINES (GE)	15.110	THE FACILITY PLANS TO INSTALL EITHER TWO GE 7FA.05 OR TWO SIEMENS SGT-5000F(5) NATURAL GAS FIRED COMBUSTION TURBINE GENERATORS, EACH EQUIPPED WITH A DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.		0		1 PPMVD @ 15% O2 CONTINUOUS OPERATION WITHOUT DUCT BURNER	2.8 LB/H CONTINUOUS OPERATION WITHOUT DUCT BURNER	133.3 LB/H AVERAGE PER STARTUP AND T SHUTDOWN EVENT				THERE ARE ALSO VOC EMISSON LIMITS ASSOCIATED WITH DUCT BURNERS (CONTINUOUS OPERATION) WHICH ARE 2.0 PPMVD @15% O2 AND 7.1 LB/HR.
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Turbine (EP03)	15.110		Natural Gas	40 MW	Volatile Oxidation Catalyst Organic Compoun ds (VOC)	14 T/YR	3 PPMV AT 15% O2 3-HOUR AVERAGE	3 LB/H 3-HOUR AVERAGE	BACT- PSD	N		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Trubine (EP04)	15.110		Natural Gas	40 MW	Volatile Oxidation Catalyst Organic Compoun ds (VOC)	14 T/YR	3 PPMV AT 15% O2 3-HOUR AVERAGE	3 LB/H 3-HOUR AVERAGE	BACT- PSD	N		
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC. CHEYENNE PRAIRIE GENERATING STATION LARAMIE, WY	Simple Cycle Turbine (EP05)	15.110		Natural Gas	40 MW	Volatile Oxidation Catalyst Organic Compoun ds (VOC)	14 T/YR	3 PPMV AT 15% O2 3-HOUR AVERAGE	3 LB/H 3-HOUR AVERAGE	BACT- PSD	N		
LA-0258	12/21/2011 ACT	ENTERGY GULF STATES LA LLC CALCASIEU PLANT CALCASIEU, LA	TURBINE EXHAUST STACK NO. 1 & NO. 2	15.110		NATURAL GAS	1900 MM BTU/F EACH		3 PPMVD @ 15% O2	7 LB/H HOURLY MAXIMUM	/ 132 LB/H HOURLY MAXIMUM / STARTUP & SHUTDOWN ONLY	BACT- PSD	U		LIMITS ARE PER TURBINE EXHAUST STACK. AGGREGATE VOC EMISSIONS FROM BOTH TURBINE EXHAUST STACKS ARE LIMITED TO 45.24 TONS PER YEAR. STARTUP & SHUTDOWN OPERATIONS ARE LIMITED TO 520 HOURS PER YEAR.
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Volatile Good combustion practices and fueled by natural gas Compoun ds (VOC)	0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Volatile Good combustion practices and Organic Compoun ds (VOC)	0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
NJ-0076	10/27/2010 ACT	PSEG FOSSIL LLC PSEG FOSSIL LLC KEARNY GENERATING STATION HUDSON, NJ	SIMPLE CYCLE TURBINE	15.110	Throughput <= 8.94xE6 MMBtu/year (HHV) combined for all six gas turbines. The 6 turbines are identical LM6000 simple cycle combustion turbines.	Natural Gas	8940000 MMBtu/year (HHV)	Volatile Oxidation Catalyst and good combustion practices, use of natural ds (VOC)	0	4 PPMVD@15% O2 AVERAGE OF THREE TESTS	2.33 LB/H AVERAGE OF THREE TESTS	OTHER CASE-BY- CASE	U		
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC GENERATION, LLC PUEBLO AIRPORT GENERATING STATION PUEBLO, CO	Three simple cycle combustion turbines	15.110	Three GE, LMS100PA, natural gas-fired, simple cycle CTG rated at 799.7 MMBtu per hour each,based on HHV.	natural gas	799.7 mmbtu/hr	Volatile Good Combustion Control and Catalytic Oxidation (CatOx) Compoun ds (VOC)	0	2.5 PPMVD AT 15% O2 AVE OVER STACK TEST LENGTH	0	BACT- PSD	U		
GA-0139	05/14/2010 ACT	SOUTHERN POWER COMPANY DAHLBERG COMBUSDTION TURBINE ELECTRIC GENERATING FACILITY (P JACKSON, GA		15.110	THE PROCESS USES FUEL OIL FOR BACKUP AT THE RATE OF 2129 MMBUT/H	NATURAL GASE	1530 MW	Usolatile GOOD COMBUSTION PRACTICES Organic Compoun ds (VOC)	0	5 PPM@15%02 3 HOUR	5 PPM@15%02 3 HOUR T AVERAGE/CON DITION 3.3.28	PSD	U		
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting o a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	f natural gas	40000 hp	Volatile Good combustion practices Organic Compoun ds (VOC)	0	0.6 LB/H 1 HOUR	0	BACT- PSD	U		

ALASKA LNG

RKA I NG RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

				_						Standard			Case by	'		Estimated	
RBLC ID	B.4.	Facility Name Of Config.	Process	Process	Process Notes	Primary Fuel	Throughput &	Pollutant	Control Method Description		Emission Limit	Emission Limi	it Case Basis		Other Factors	Efficiency	Pollutant/ Compliance Notes
*OR-0050	Date 03/05/2014 ACT	Facility Name & Location TROUTDALE ENERGY CENTER, LLC		Type 15.210	or ULSD; Duct burner 499 MMBtu/hr,	natural as	Units 2988 MMBtu/hr	Volatile	Oxidation catalyst: Limit the time in	& Units	1 & Units 2 PPMDV AT	5 PPMDV AT	BACT-	11	Other Factors	%	Pollutant/ Compilance Notes
011-0030	03/03/2014 ACT	TROUTDALE ENERGY CENTER, LLC		13.210	natural gas	natural gs	2900 WWW.Dtd/Til	Organic	startup or shutdown.	0	15% O2 3-HR	15% O2 3-HR	PSD	١			
		MULTNOMAH. OR	with duct burner.		natarai gao			Compoun	otal tap of offaction		ROLLING	ROLLING	. 55				
								ds (VOC)			AVERAGE ON	AVERAGE ON					
								, ,			NG	ULSD					
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Combined Cycle Turbine (EP01)	15.210		Natural Gas	40 MW	Volatile	Oxidation Catalyst	14.7 T/YR	3 PPMV AT 15%	3 LB/H 3-HOUR		N			
		CHEYENNE PRAIRIE GENERATING						Organic			O2 1-HOUR	AVERAGE	PSD				
		STATION LARAMIE, WY						Compoun									
								ds (VOC)									
*WY-0070	08/28/2012 ACT	BLACK HILLS POWER, INC.	Combined Cycle Turbine (EP02)	15.210		Natural Gas	40 MW	Volatile	Oxidation Catalyst	14.7 T/YR	3 PPMV AT 15% O2 3-HOUR	3 LB/H 3-HOUR AVERAGE	BACT- PSD	N			
		CHEYENNE PRAIRIE GENERATING STATION LARAMIE. WY						Organic			AVERAGE	AVERAGE	PSD				
		STATION LARAMIE, WY						Compoun ds (VOC)			AVERAGE						
LA-0257	12/06/2011 ACT	SABINE PASS LNG. LP & SABINE	Combined Cycle Refrigeration	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Volatile	Good combustion practices and	0	0.66 LB/H	0	BACT-	111			
LA-0231	12/00/2011 AC1	PASS LIQUEFACTION. LL SABINE	Compressor Turbines (8)	13.210	GE LINZ300+G4	illaturai yas	200 MIMB 1 0/11	Organic	fueled by natural gas	ľ	HOURLY	U	PSD	٥			
		PASS LNG TERMINAL CAMERON, LA	Compressor Furbines (c)					Compoun	raciou by riataral gas		MAXIMUM		1 00				
		Tribo Erro TErmino Le Grane Rori, Er						ds (VOC)									
*CO-0073	07/22/2010 ACT	BLACK HILLS ELECTRIC	Four combined cycle combution turbines	15.210	Three GE, LMS6000 PF, natural gas-	natural gas	373 mmbtu/hr	Volatile	good combustion control and catalyti	0	4 PPMVD AT	0	BACT-	U			
		GENERATION, LLC PUEBLO AIRPORT	ī		fired, combined cycle CTG, rated at 373			Organic	oxidation		15% O2 AVE		PSD				
		GENERATING STATION PUEBLO, CO			MMBtu per hour each, based on HHV			Compoun			OVER STACK						
					and one (1) HRSG each with no Duct			ds (VOC)			TEST LENGTH						
					Burners					_		<u> </u>					
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	TWO (2) NATURAL GAS FIRED	16.210	NATURAL GAS FIRED, OPEN-SIMPLE	NATURAL GAS	283 MMBTU/H,	Volatile	GOOD COMBUSTION PRACTICES	0	2.5 PPMVD AT	0	BACT-	N			
		CORPORATION MIDWEST FERTILIZER CORPORATION POSEY.	COMBUSTION TURBINES		CYCLE COMBUSTION TURBINES WITH HEAT RECOVERY		EACH	Organic	AND PROPER DESIGN		15% OXYGEN 1 HR AVERAGE	•	PSD				
		FERTILIZER CORPORATION POSEY,			WITH HEAT RECOVERY			Compoun ds (VOC)			HR AVERAGE						
*IN-0173	06/04/2014 ACT	MIDWEST FERTILIZER	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH	NATURAL GAS	218.6 MMBTU/H.	. Volatile	GOOD COMBUSTION PRACTICES	0	5.5 LB/MMCF 3-	0	BACT-	N			
114-0175	00/04/2014 ACT	CORPORATION MIDWEST	THIREE (3) AGAILANT BOILENG	10.210	BOILER NOT TO EXCEED 1501.91	IVATOTOLE GAG	EACH	Organic	AND PROPER DESIGN	ľ	HR AVERAGE	0	PSD	1			
		FERTILIZER CORPORATION POSEY,			MMCF/YR		EAGIT	Compoun	AND THE ENDESIGN		THEFTURE		1 00				
		IN						ds (VOC)									
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	TWO (2) NATURAL GAS FIRED	16.210	NATURAL GAS FIRED, OPEN-SIMPLE	NATURAL GAS	283 MMBTU/H,	Volatile	GOOD COMBUSTION PRACTICES	0	2.5 PPMVD AT	0	BACT-	N			
		CORPORATION MIDWEST	COMBUSTION TURBINES		CYCLE COMBUSTION TURBINES		EACH	Organic	AND PROPER DESIGN		15% OXYGEN 1		PSD				
		FERTILIZER CORPORATION POSEY,			WITH HEAT RECOVERY			Compoun			HR AVERAGE	1					
		IN						ds (VOC)									
*IN-0180	06/04/2014 ACT	MIDWEST FERTILIZER	THREE (3) AUXILARY BOILERS	16.210	NATURAL GAS USAGE IN EACH	NATURAL GAS	218.6 MMBTU/H	, Volatile	GOOD COMBUSTION PRACTICES	0	5.5 LB/MMCF 3-	0	BACT-	N			
		CORPORATION MIDWEST			BOILER NOT TO EXCEED 1501.91		EACH	Organic	AND PROPER DESIGN		HR AVERAGE		PSD				
1		FERTILIZER CORPORATION POSEY,			MMCF/YR			Compoun									
I	1	IIN	I .	1				ds (VOC)		I			1	1		1	

ALASKA LNG

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

LNG SCT

				Drassa			Throughput 9			Standard Emission Limit	Emission Limit	Emission Limit	Case by Case		Estimated Efficiency	
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant	Control Method Description	& Units	1 & Units	2 & Units	Basis	Other Factors	%	Pollutant/ Compliance Notes
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW		EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS, USE OF AN OXIDATION CATALYST AND EFFICIENT COMBUSTION		1.5 PPMVD @ 15% O2 3-HOUR BLOCK AVERAGE, EXLUDING SU/SD	562.4 LB/EVENT FOR ALL STARTUPS	BACT- PSD			59.2 LB/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW		USE OF DRY LOW-NOX COMBUSTOR TURBINE DESIGN (DLN1), USE OF FACILITY PROCESS FUEL GAS AND PIPELINE NATURAL GAS DURING NORMAL OPERATION AND SCR SYSTEM	0	15% O2 3-HOUR	1304.5 LB/EVENT FOR ALL STARTUPS	LAER			48.5 LB/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW	(FPM)	EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS AND GOOD COMBUSTION PRACTICES	0	0.0033 LB/MMBTU 3- HOUR BLOCK AVERAGE	0	BACT- PSD			
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW	e matter, total < 10	EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS AND GOOD COMBUSTION PRACTICES	0		300.8 LB/EVENT FOR ALL STARTUPS	BACT- PSD			5.6 LBS/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT.
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW	e matter, total < 2.5	EXCLUSIVE USE OF FACILITY PROCESS FUEL GAS OR PIPELINE QUALITY NATURAL GAS AND GOOD COMBUSTION PRACTICES	0	0.007 LB/MMBTU 3 STACK TEST RUN AVERAGE, EXCEPT SU/SD		BACT- PSD			5.6 LBS/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*MD-0044	06/09/2014 ACT	DOMINION COVE POINT LNG, LP COVE POINT LNG TERMINAL CALVERT, MD	2 COMBUSTION TURBINES	15.110	TWO GENERAL ELECTRIC (GE) FRAME 7EA COMBUSTION TURBINES (CTS) WITH A NOMINAL NET 87.2 MEGAWATT (MW) RATED CAPACITY, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EQUIPPED WITH DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION SYSTEM (SCR), AND OXIDATION CATALYST	NATURAL GAS	130 MW	Compoun	THE USE OF PROCESS FUEL GAS AND PIPELINE NATURAL GAS, GOOD COMBUSTION PRACTICES, AND USE OF AN OXIDATION CATALYST	0	15% O2 3-HOUR	101.1 LB/EVENT FOR ALL STARTUPS	LAER			4.8 LBS/SHUTDOWN EVENT. LIMITS ARE TOTAL FOR BOTH FRAME 7 CTS PER STARTUP OR SHUTDOWN EVENT
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	Riquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.	natural gas	40000 hp	Carbon Monoxide	dry low emission combustors	0	29 PPMVD @15% O2, 4 HOUR ROLLING AVERAGE	0	BACT- PSD	U		
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.		40000 hp	Monoxide	dry low emission combustors	0	29 PPMVD @15% O2, 4 HOUR ROLLING AVERAGE	0	BACT- PSD	U		
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	liquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.	natural gas	40000 hp	Nitrogen Oxides (NOx)	Dry low emission combustors	0	25 PPMVD @ 15% O2, 4 HOUR ROLLING AVG	0	BACT- PSD	U		
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX		15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	natural gas	40000 hp	Nitrogen Oxides (NOx)	dry low emission combustors	0	25 PPMVD @15% O2, 4 HOUR ROLLING AVERAGE	0	BACT- PSD	U		
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX		15.110	liquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.	natural gas	40000 hp	Particulat e matter, total < 2.5 µ (TPM2.5)		0	0.72 LB/H 1 HOUR	0	BACT- PSD	U		Natural gas is the fuel. PM and PM10 are equal to PM2.5.

RBLC BACT SUMMARY

BACT Analysis: RBLC Seach Parameters: RBLC Search Date:

LNG SCT

						1				Standard			Case by		Estimated	
RBLC ID	Date	Facility Name & Location	Process	Process Type	Process Notes	Primary Fuel	Throughput & Units	Pollutant	t Control Method Description	Emission Limit & Units	Emission Limit 1 & Units	Emission Limit 2 & Units	Case Basis	Other Factors	Efficiency %	Pollutant/ Compliance Notes
	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.		40000 hp	Particulat e matter, total < 2.5 µ (TPM2.5)	5	0	0.72 LB/H 1 HOUR	0	BACT- PSD	U	,,	Natural gas is the fuel. PM and PM10 are equal to PM2.5.
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	3 liquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.		40000 hp	Sulfur Dioxide (SO2)		0	0.31 LB/H 1 HOUR	0	BACT- PSD	U		Fuel sulfur is very low for natural gas.
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	natural gas	40000 hp	Sulfur Dioxide (SO2)		0	0.31 LB/H 1 HOUR	0	BACT- PSD	U		Fuel sulfur is very low for natural gas.
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.110	Iliquefied natural gas trains consisting of a total of (12) GE LM2500+ DLE turbines drive the propane and methane section compressors.		40000 hp	Volatile Organic Compoun ds (VOC)	good combustion practices	0	0.6 LB/H 1 HOUR	0	BACT- PSD	U		
*TX-0672	09/12/2014 ACT	CORPUS CHRISTI LIQUEFACTION LLC CORPUS CHRISTI LIQUEFACTION PLANT GREGORY, TX	Refrigeration compressor turbines	15.210	3 liquefied natural gas trains consisting of a total of (6) GE LM2500+ DLE turbines that drive the ethylene section compressors with waste heat recovery for amine solution regeneration.	natural gas	40000 hp	Volatile Organic Compoun ds (VOC)		0	0.6 LB/H 1 HOUR	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Carbon Monoxide	Good combustion practices and fueled by natural gas	58.4 PPMV AT 15% OXYGEN	43.6 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H		Good combustion practices and fueled by natural gas	25 PPMV AT 15% O2	17.46 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H		Good combustion practices and fueled by natural gas	58.4 PPMV AT 15% O2	43.6 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	20 PPMV AT 15% O2	22.94 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	25 PPMV AT 15% O2	28.68 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Nitrogen Oxides (NOx)	water injection	20 PPMV AT 15% O2	22.94 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H		Good combustion practices and fueled by natural gas	0	2.08 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		also for PM10 and PM2.5
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Particulat	Good combustion practices and fueled by natural gas	0	2.08 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		also for PM10 and PM2.5
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Particulat	Good combustion practices and fueled by natural gas	0	2.08 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		also for PM10 and PM2.5
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Refrigeration Compressor Turbines (16)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Volatile		0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Simple Cycle Generation Turbines (2)	15.110	GE LM2500+G4	Natural Gas	286 MMBTU/H	Volatile	Good combustion practices and fueled by natural gas	0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		
LA-0257	12/06/2011 ACT	SABINE PASS LNG, LP & SABINE PASS LIQUEFACTION, LL SABINE PASS LNG TERMINAL CAMERON, LA	Combined Cycle Refrigeration Compressor Turbines (8)	15.210	GE LM2500+G4	natural gas	286 MMBTU/H	Volatile	Good combustion practices and fueled by natural gas	0	0.66 LB/H HOURLY MAXIMUM	0	BACT- PSD	U		

	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
ALASKA LNG	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

- Page Intentionally Left Blank -

	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
ALASKA LNG	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

APPENDIX B

BACT Cost Effectiveness Calculations

(Compression Turbines)

Content Claimed Trade Secret in accordance with AS 46.14.520

ALASKA LNG	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

- Page Intentionally Left Blank -

	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
ALASKA LNG	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

APPENDIX C

BACT Cost Effectiveness Calculations

(Power Generation Turbines)

Content Claimed Trade Secret in accordance with AS 46.14.520

ALASKA LNG	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

- Page Intentionally Left Blank -

ALASKA LNG	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

APPENDIX D

Alaska LNG Minutes of Meeting with ADEC, BACT and Dispersion Modeling Overview, GTP and Liquefaction Facilities, May 18, 2016

Alaska LNG	LNG PLANT PRE-BACT ANALYSIS	USAL-PL-SRZZZ-00-000002-000 14-SEP-16 REVISION: 0
	CONFIDENTIAL	

Appendix D

Alaska LNG Minutes of Meeting with ADEC, BACT and Dispersion Modeling Overview, GTP and Liquefaction Facilities, May 18, 2016

MINUTES OF MEETING (MOM) BACT AND DISPERSION MODELING OVERVIEW

USAI-PS-BPDCC-00-000002-005 13-OCT-15 REVISION: 1A

CONFIDENTIAL PAGE 1 OF 3

MEETING DETAILS			
Sub-Project Name	Integrated	Date of Meeting	May 18, 2016
Meeting Subject	BACT and Dispersion Modeling Overview, GTP and Liquefaction Facilities	Location	ADEC Juneau, AK offices

ATTENDEES			
Attended By	Organization	Attended By	Organization
Jim Pfeiffer	AkLNG	James Renovatio	ADEC
Bart Leininger	ALG for AkLNG	Alan Schuler	ADEC
Tom Damiana	AECOM for AkLNG		
John Kuterbach	ADEC		
Zeena Siddeek	ADEC		

DISTRIBUTION (Attendees plus the following individuals)			
Name Organization Name Organization			

	AGENDA ITEMS			
Item	Agenda Item(s)	Leader	Time	
1	Introductions and Safety Moment	Jim Pfeiffer	15 min.	
2	Project Overview and Status	Jimi Pfeiffer	30 min.	
3	BACT Considerations	Bart Leininger	30 min.	
4	Dispersion Modeling Considerations	Tom Damiana	30 min.	
5	Wind Tunnel Overview (not covered due to time constraints)	Tom Damiana	NA	
6	Next Steps	Jim Pfeiffer	15 min.	

	ACTION ITEMS			
Item	Action Items/Topics	Assigned To	Due Date	
1	Determine the appropriate baseline NOx and CO emission rate for gas turbines – BACT cost-effectiveness calculations	Zeena Siddeek	May 31, 2016	
2	Determine the appropriate interest rate to be used in BACT cost-effectiveness calculations	Zeena Siddeek	May 31, 2016	
3	Provide wind tunnel protocol to ADEC and EPA for their review and consideration.	Jim Pfeiffer	Early June 2016	
4	Provide a workshop for ADEC staff on the wind tunnel experiments.	Jim Pfeiffer	TBD	

MINUTES OF MEETING (MOM) BACT AND DISPERSION MODELING OVERVIEW

USAI-PS-BPDCC-00-000002-005 13-OCT-15 REVISION: 1A

CONFIDENTIAL

PAGE 2 OF 3

	DISCUSSION	
Item	Agenda Item(s) / Notes	Comments
1	Jim provided an overview of the project and summarized the current status of the NEPA analysis. During the discussion, Kuterbach indicated that the ADEC Commissioner will be very interested project GHG emissions and reduction/energy efficiency strategies.	Discussions about the project were characterized as preliminary and ADEC should expect the project designs to change as engineering progresses.
2	 BACT assumptions for cost-effectiveness calculations were reviewed. The following points were gleaned from the discussion: According to Siddeek, baseline NOx and CO emissions from turbines should follow the assumptions used for Pt. Thomson Project. Siddeek thought that 25 ppmv for NOx and 50 ppmv for CO was used. Siddeek would confirm the baseline that should be used in the analysis. Siddeek indicated that 7% interest is the guideline for cost-effectiveness calculations. However, lower interest rates have been used (e.g., 4%). Siddeek was going to review the Pt. Thomson BACT determination to see what was assumed. Kuterbach would not provide an exact cost-effectiveness guideline for criteria pollutant emissions (i.e., NOx, CO, etc.). He suggested that if costs were less than \$6,000 - \$7,000 per ton, a technology would be cost-effective. EPA has been looking at ADEC BACT determinations and have implied that technologies costing \$10,000 - \$12,000 per ton could be cost-effective. ADEC indicated that BACT must consider normal operations and transient operations, including start-up and shutdown. ADEC would impose numerical emissions limitations for normal operations (e.g., ppmv NOx @ 15% O₂); work practices standards (e.g., time limitations, etc.) would be imposed for transient operations. Kuterbach indicated that the permit would be issued on the basis of the control technology and BACT emission limit. ADEC expects that the control technology will be active at all times, unless otherwise specified in the permit. His example: IC engine BACT determination using water injection for NOx controls means that water injection must occur at all times, and not just to meet the associated numeric performance limit. 	
3	 GHG BACT was discussed. Below are the following points from the discussion: ADEC does not have a BACT cost-effectiveness threshold for GHGs and admitted that they have limited experience considering BACT for GHGs. ADEC indicated that Carbon Capture and Sequestration (CCS) must be evaluated in the BACT analysis. Kuterbach indicated that AkLNG must consider the feasibility and cost-effectiveness of installing facilities at GTP to concentrate and re-inject CO2 emissions from dilute streams (e.g., turbine exhaust). Kuterbach indicated that BACT must consider energy efficiency options, including heat recovery. Specifically, the analysis must consider how energy is used and the options for recovering energy from the combustion processes. For cases where waste heat recovery is not used, the analysis must address/justify the reasons why. Inherent design limitations must be explicitly stated. 	

MINUTES OF MEETING (MOM) BACT AND DISPERSION MODELING OVERVIEW

CONFIDENTIAL

PAGE 3 OF 3

	DISCUSSION	
Item	Agenda Item(s) / Notes	Comments
4	The topic of temporary raw gas usage during GTP start-up was discussed. ADEC (Kuterbach) agreed that raw gas could be used at GTP if justified under a separate BACT analysis. The separate BACT analysis may consider feasibility, duration, and cost for implementing more significant controls to achieve lower emissions. Alternative BACT limits are acceptable under these conditions.	
5	AkLNG inquired about potential expiration of the PSD permits during the extended construction period. Kuterbach stated that PSD permits do not expire due to the length of construction. They only expire if the project does not commence construction within 18 months or when construction goes dormant for 18 months or longer.	
6	The following discussion points came up during the dispersion modeling portion of the presentation. ADEC (Schuler) indicated that EPA OAQPS and ADEC will need to approve the use of the wind tunnel results to characterize downwash at CCP and CGF. Approval will be required for PSD permit issuance. ADEC agreed that EPA and ADEC approval will not be required for the NEPA analysis. However, any potential objections by EPA and ADEC should be addressed during the NEPA process. Schuler confirmed that the use of the wind tunnel results is a technical issue and not an alternative modeling approach. ADEC is looking to EPA for expertise on the wind tunnel issues because ADEC staff lacks experience with these methods. Schuler noted that the State of Idaho is requesting EPA Region X approval/expertise in using wind tunnel results in modeling. AkLNG agreed to provide the wind tunnel protocol and results to ADEC and the EPA within the next few weeks. AkLNG indicated that upper atmospheric meteorological data from Barrow, AK, and the onsite data collected from LNG will be used to demonstrate that existing met. data sources from 10 meter towers are conservative in characterizing the meteorological conditions at tall stacks. ADEC (Schuler) did not object to this approach. AkLNG confirmed that upper atmospheric met. data will be collected at Deadhorse to support the PSD permit application. Schuler noted that the Modeling Review Procedures Manual was issued on May 18 th . Schuler reminded the Project that the manual is only a guideline.	The following was not discussed with ADEC during the meeting: • Minor source modeling for the compressor stations. • AQRV (i.e., visibility) modeling, which is under consideration by the Federal Land Managers (FLMs).
7	Due to time constraints, the wind tunnel overview slides were not discussed. AkLNG agreed to provide a workshop to ADEC staff if interested.	

Bart Leininger

From: Siddeek, Fathima Z (DEC) <fathima.siddeek@alaska.gov>

Sent: Wednesday, May 25, 2016 2:59 PM

To: Bart Leininger

Cc: 'james.pfeiffer@exxonmobil.com'; Dunn, Patrick E (DEC); Siddeek, Fathima Z (DEC)

Subject: Baseline for NOx and CO controls for BACT cost effectiveness

Bart,

During the May 18th meeting, you asked what we would accept for baseline emissions for NOx and CO and the interest rates for BACT cost estimates. I did some investigation on our recent BACT decisions and here is what I found:

For NOx BACT cost estimates, we have accepted baseline emissions calculated using manufacturer guaranteed NOx emission rates for gas turbines equipped with DLN technology. We found that turbines without Dry Low NOx (DLN) are no longer available in the market. We also verified from a turbine vendor that a base model turbine without controls, will have to be designed and custom built and that it would cost significantly more.

Although we did not have to review CO BACT cost estimates for a turbine equipped with DLN, we would similarly accept baseline emissions calculated using manufacturer emission rates. ExxonMobil opted to use catalytic oxidation in their SoLoNOx turbines to reduce the CO emissions to 2.5 ppmv. Since they used maximum CO controls, we did not review BACT cost analysis.

The 1990 EPA draft guidance manual, although not legally binding, is still adopted as a guide for estimating BACT cost estimates. This manual being 26 years old, does not address this specific case, but we think that it is reasonable to assume Dry Low NOx (DLN) technology as the base for the turbine emissions.

With regard to the interest rate, we accepted 7% because a lower rate would not have altered the conclusion for cost effectiveness in all of the BACT decisions in the past 4 years.

Let me know if you have any further questions.

Zeena Siddeek Supervisor, Permits Section (Juneau Office) Division of Air Quality Alaska Department of Environmental Conservation (907) 465-5303

	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
ALASKA LNG	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

- Page Intentionally Left Blank –

	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
ALASKA LNG	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

APPENDIX E

Emissions and BACT Cost Effectiveness Calculations

(Diesel Tanks, Condensate Tanks, and Condensate Loading)

Alaska LNG Project Condensate Loading Operation Product Loading Activity Emission Calculation

Input Parameters		
S = Saturation Factor	0.60	Submerged Loading, Dedicated Normal Service
M = Molecular Weight	77	Condensate Estimate
P = True Vapor Pressure (psia)	4.275	See "Condensate Properties"
T = Liquid Temperature ⁰ R	505	45 $^{\circ}$ F + 460 = $^{\circ}$ R
C = Storage Capacity (bbl)	589,197	24,746,280 gallons (42 gallons = 1 bbl)
A = Annual Production (bbl)	589,197	24,746,280 gallons (42 gallons = 1 bbl)
R = Max Loading Rate (bbl/hr)	67.26	2,825 gallons (42 gallons = 1 bbl)
D = Max Daily Production (bbl)	1,614	67,798 gallons (42 gallons = 1 bbl)
D2 = Average Daily Production (bbl)	1,291	54,238 gallons (42 gallons = 1 bbl)
eff = Vapor Recovery Efficiency	0.95	Thermal Oxidizer plus VRU
VOC/THC = Reactivity	1.000	Assume all THC is VOC.

L_{LTHC} = Loading loss (lb/1000 gal) = 12.46 (S)(P)(M)/T =	4.8737	lbTHC/1000 gal
L_LVOC = Loading loss (lb/1000 gal) = 12.46 (S)(P)(M)*React/T =	4.8737	lb ROC/1000 gal
Total Uncontrolled Hydrocarbon Losses (VOC): Hourly		
$THL_{H} = (R)(42 \text{ gal/bbl})(L_{LROC}/1000) =$	13.77	lbs/hr
Max Daily		
$THL_D = (D)(42 \text{ gal/bbl})(L_{LROC}/1000) =$	330.43	lbs/day
Average Daily		
$THL_{D2} = (D2)(42 \text{ gal/bbl})(L_{LROC}/1000) =$	264.34	lbs/day
Quarterly		
$THL_Q = THLD(91)(1/2000) =$	15.08	TPQ
Total Emissions		
$THL_A = (A)(42 \text{ gal/bbl})(L_{LROC}/1000)(1/2000) =$	60.30	TPY
Total Controlled Hydrocarbon Losses (VOC):		
Hourly		
$THL_{HC} = (THL_H)(1-eff) =$	0.69	lbs/hr
Max Daily		He a / days
$THL_{DC} = (THL_{D})(1-eff) =$	16.52	lbs/day
Quarterly THLQ _C = (THLQ)(1-eff) =	0.75	TPQ
Total Emissions	0.75	
THL _{AC} = $(THL_A)(1-eff) =$	3.02	ТРҮ

Notes:

- 1. Data provided by the applicant
- C = Annual Transport Volume.
- 2. AP-42, (Chapter 5, 5th Edition, January 1995), Table 5.2-1
- 3. Molecular weight of condensate based on estimated mole fraction of condensate constituents.
- 4. Vapor pressure for condensate based on estimated mole fractions.
- 5. R is calculated by adding 460 to ⁰F. Average annual high temperature at the Kenai Airport used.
- 6. Assumed 24 hours/day of loading operations.
- 7. Assumed 95% capture and control efficiency for use of thermal oxidizer and VRU.

Alaska LNG Project Condensate and Diesel Tanks Tank Emission Calculations

Source	Stream	Capacity	Throughput	Turnover	
		gal	gal/year		
Tank 21	Condensate	475,890	24,746,280	52.0	
Tank 22	Condensate	126,904	15,330,000	120.8	
Tank 23	ULSD	3,520	364,600	103.6	
Tank 24	ULSD	342	17,766	51.9	
Tank 25	ULSD	342	17,766	51.9	

Source	Stream	Uncontro	olled VOC Emission	s (lb/yr)	Uncont	rolled VOC Emission	ns (tpy)
		(Working)	(Working) (Standing) (Total)		(Working)	(Standing)	(Total)
Tank 21	Condensate	146,010.07	7,556.65	153,566.72	73.01	3.78	76.78
Tank 22	Condensate	50,482.53	3,100.55	53,583.07	25.24	1.55	26.79
Tank 23	ULSD	2.44	0.32	2.76	0.00	0.00	0.00
Tank 24	ULSD	0.14	0.02	0.16	0.00	0.00	0.00
Tank 25	ULSD	0.14	0.02	0.16	0.00	0.00	0.00
Tank Totals		196,495.31	10,657.56	207,152.87	98.25	5.33	103.58

Source	Stream	Controlled VOC Emissions	
		(lb/year)	(TPY)
Tank 21	Condensate	1,535.67	0.77
Tank 22	Condensate	535.83	0.27
Tank 23	ULSD	2.76	0.00
Tank 24	ULSD	0.16	0.00
Tank 25	ULSD	0.16	0.00
Tank Totals		2,074.58	1.04

Notes:

Condensate Tanks to be controlled by a thermal oxidizer. Assume 99% control efficiency (capture and control). Diesel tank controls include the use of fixed roof tanks and submerged loading operations.

ALASKA LNG

Alaska LNG Project Diesel Storage Tanks Thermal Oxidizer Cost Effectiveness Analysis

Cost Quantification:

		Default %	EPA Equation /	
Cost Category	Project Cost Default Estimate	Applied	Estimate Basis	Reference
		Direct Ca	pital Costs	
Purchased Equipment:				
Purchased Equipment Costs	\$96,287	-	A	EPA Cost Control Manual, Equation 2.29
Instrumentation & Controls	\$2,889	3%	C = 0.03 x A	AECOM equipment estimating data
Freight	\$49,106.55	51%	D = 0.51 x (A+B)	AECOM equipment estimating data
Taxes (Enter sales tax rate in "% Applied")	\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$148,283	-	PE	
Direct Installation Costs:	·			
Foundation & Supports	\$2,966	2%	0.02 x PE	AECOM equipment estimating data
Erection and Handling	\$23,725	16%	0.16 x PE	AECOM equipment estimating data
Electrical	\$31,139	21%	0.21 x PE	AECOM equipment estimating data
Piping	\$11,863	8%	0.08 x PE	AECOM equipment estimating data
Insulation	\$10,380	7%	0.07 x PE	AECOM equipment estimating data
Painting	\$148	0%	0.00 x PE	AECOM equipment estimating data
Site Preparation	\$6,740.11	7%	Project-Specific	engineering judgement
Total Direct Installation Cost (DI)	\$86,961	_	DI	
Total Direct Capital Costs (DC)	\$235,243	-	DC = PE + DI	
		Indirect Ca	apital Costs	
Indirect Costs:			,	
Engineering & Supervision	\$41,519	28%	0.28 x PE	AECOM equipment estimating data
Construction and Field Expenses	\$13,345	9%	0.09 x PE	AECOM equipment estimating data
Contractor Fees	\$4,448	3%	0.03 x PE	AECOM equipment estimating data
Startup-up	\$2,966	2%	0.02 x PE	AECOM equipment estimating data
Performance Testing	\$1,483	1%	0.01 x PE	AECOM equipment estimating data
Total Indirect Costs (TIC)	\$63,761	-	IC	
Capital Investment:				
Project Contingency	\$44,850.74	15%	E = 0.15 x (DC+IC)	OAQPS (15% of DC & TIC)
Preproduction Cost	\$10,315.67	3%	F = 0.03 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)
Total Capital Investment	\$354,171	-	TCI = DC + IC + E + F + G	

Liquefaction BACT Analysis

ALASKA LNG

Direct Annual Costs								
Direct Annual Costs:								
Operating Labor	\$ -		-		Vendor Supplied			
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)			
Maintenance Labor		\$5,313	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)			
Maintenance Materials		\$5,313	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)			
Annual Electricity Cost		\$307	-	See parameters below	See parameters below			
Fuel Penalty Costs (specify)	\$ -		-		Vendor Supplied			
Other Maintenance Cost (specify)	\$ -		-		Vendor Supplied			
Total Direct Annual Costs	\$10,933		-	DAC				

Indirect Annual Costs							
Indirect Annual Costs:							
Overhead		\$6,375	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)		
Property Tax		\$3,542	1.0%	0.0100 x TCI	OAQPS (1%)		
Insurance		\$3,542	1.0%	0.010 x TCI	OAQPS (1%)		
General Administrative		\$7,083	2.0%	0.020 x TCI	OAQPS (2%)		
Total Indirect Annual Costs	\$20,542		-	DAC			

Capital Recovery Cost						
Equipment Life (years)	10	-	n	Vendor Supplied		
Interest Rate	7.00% 7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06		
Capital Recovery Factor	0.1424	-	CRF = i/(1-(1+i)^-n)	-		
Capital Recovery Cost (CRC)	\$50,426	-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)		

Total Annual Costs	\$81,901	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)

Cost Effectiveness Analysis:

		Reference
Uncontrolled VOC (tpy)	0.0015	Calculated below
Controlled VOC Emissions (tpy)	0.00003	Calculated below
VOC Reduction (tpy)	0.0015	Calculated below
Total Annual Costs	\$81,901	Calculated above
Cost Effectiveness (\$/ton/yr)	\$54,260,681	OAQPS Eqn 2.58 (Section 4.2, Ch. 2)

Liquefaction BACT Analysis

ALASKA LNG

Design Parameters:			
Enter values in boxes below. Where default value is Required data is highlighted yellow.	s available, entered value wi	ll override default.	
required data is nightighted yellow.			
Combustion Unit Sizing			
		_	Reference
Thermal Oxidizer Sizing	500	scfm	Engineering Estimate
VOC Emission Rates			
		_	Reference
Diesel Tank Uncontrolled Emissions	0.0015	TPY	EPA TANKS Calculations
		_	
Controlled Diesel Tank Emissions:	98%	Control Efficiency	Engineering Estimate
Operational Parameters			D. f
	0750	٦. ,	Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. When	e default value is available,	entered number overrides default.	
		_	Reference
Power demand:	0.39	kW	EPA Cost Control Manual, Equation 2.42
		_	
Electricity Cost [Default: 0.1572 \$/kWh]	0.09	\$/kWh	

Power demand estimated per EPA Cost Control Manual, Ch 3-2, Equation 2.42 for fan power demands.

ALASKA LNG	Liquefaction Plant Best Available Control	AKLNG-4030-HSE-RTA-DOC-00001
	Technology (BACT) Analysis	Revision No. 2
	Public	4/30/2018

- Page Intentionally Left Blank -