ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Page 1 of 21

INFORMATION REQUEST REFERENCE INFORMATION

Agency	Date of Request	Letter Request No.	AGDC ID No.
ADEC	12-3-2019	N/A	N/A

REQUEST:

Provide additional information to support the use of facility specific cost factors and vendor data to the EPA Cost Control Manual equations (6th edition) used to evaluate cost effectiveness for Selective Catalytic Reduction. Alternatively, provide updated cost effectiveness calculations using EPA default cost factors and equations.

RESPONSE:

AGDC has reviewed the cost-effectiveness calculations and updated them based on ADEC input. The revised cost effectiveness calculations continue to demonstrate that installation of a selective catalytic reduction (SCR) system on the Gas Treatment Plant (GTP) and Liquefaction (LNG) facility turbines is not cost effective under both the procedures described in the 2002 (6th Edition) and 2019 versions (7th Edition) of the EPA Cost Control Manual. The updated results are summarized in the table below, and backup for the calculations are included in Appendix A (6th edition) and Appendix B (7th edition):

Facility	Unit	EPA 6th Edition Cost Manual (\$/ton NOx Removed)	EPA 7th Edition Cost Manual (\$/ton NOx Removed)
		Facility Specific Cost Factors Applied	EPA Default Calculation Tool Applied
GTP	CO ₂ Compressor Turbines	\$16,333	\$10,941
GTP	Power Generation Turbines	\$25,402	\$13,428
GTP	Treated Gas Compressor Turbines	\$14,200	\$10,895
LNG	Compressor Turbines	\$18,164	\$11,241
LNG	Power Generation Turbines	\$24,588	\$10,904

The 6th edition cost estimates were updated as follows:

- AGDC obtained vendor quotes for the potential turbine models being considered for the Project. Appendix C to this response provides the budgetary cost quotations.
- Appendix C to this response provides back-up documentation to support the site-specific assumptions used in the cost calculations. Some of the assumptions used in prior cost effectiveness calculations have been updated based on a review of the current engineering data.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Page 2 of 21

- AGDC has updated the baseline NOx assumptions used in the cost-effectiveness calculations for the compressor turbines at the LNG plant. AGDC has surveyed possible turbine vendors and determined that baseline NOx values are between 9 and 15ppmv @ 15% O₂. For the purposes of the analysis, AGDC has assumed the upper bound of the range (i.e., 15ppmv NOx), consistent with the analysis for the other GTP and LNG turbines proposed for the Project.
- Where supplemental fire is anticipated for the turbine operations, the NOx from duct fire burning has also been considered in the cost-effectiveness calculations. Duct firing is expected at the GTP CO₂ and Treated Gas Compressors.
- The controlled NOx emissions target in the cost effectiveness calculations is assumed to be 2ppmv @ 15% O₂. While this level of control has been achieved elsewhere in BACT/LAER determinations, we believe it is an aggressive level of NOx control, considering the environment where these turbines will operate. AGDC believes that 5ppmv NOx would be a more reasonable level. Nevertheless, to assure the cost effectiveness calculations are conservative, a 2ppmv NOx target was used in the analysis.

For completeness, AGDC modeled cost effectiveness using both the EPA 6th and 7th editions. However, it is important to note the 6th edition cost-effectiveness results are likely more accurate for the Alaska LNG Project than the 7th edition results, because the 7th edition has limited capability for the user to enter site specific information. Site-specific conditions for both the GTP and the Liquefaction Facility are significantly different from the 'standard' EPA model because of the increased transportation requirements to get equipment to Alaska and the operating conditions. The 7th edition cost effectiveness calculations are biased low in the following respects:

- SCR cost data for simple cycle gas turbines is based on limited vendor data collected in the 1990's for typical units expected to be installed within the contiguous United States.
- EPA vendor data does not reflect additional expenses of installing large scale equipment in Alaska including the costs of modularization of the turbines and the unique installation method on the North Slope (i.e., sea lifts to the facility locations);
- The study does not appear to leverage any other data or information that is specific to installations in the Alaska.

The cost effectiveness calculations and supporting data are attached to this response. The key assumptions used to prepare the calculations are summarized below.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Page 3 of 21

GTP ASSUMPTIONS:

The key facility-specific cost factors which differ from the typical EPA factors described in the 6th edition cost effectiveness calculation method for GTP include:

Cost Category	GTP	Comments Regarding AGDC Approach
Direct Capital Costs	-	
Purchased Equipment Costs		AeriNOx Quote (1/7/2020)
Ammonia System	0%	Included in Purchased Equipment Costs
Instrumentation & Controls	0%	Included in Purchased Equipment Costs
Freight	10.7%	Updated based on ratios from the GTP estimated freight costs provided in Appendix C.
Taxes (Enter sales tax rate in "% Applied")	0%	No sales tax in Alaska.
Direct Installation Costs:		
Foundation & Supports	8.8%	50% of North Slope module pile foundations and supporting structural steel installation cost ratio Supporting information is provided in Appendix C.
Erection and Handling	31%	Includes 30% of the Structural Steel portion of the installation cost ratio and 1% of the mechanical portion. . See Appendix C.
Electrical	3.8%	50% of Electrical portion of the installation cost ratio, includes instrumentation
Piping	5.2%	10% of Piping portion of the installation cost ratio
Insulation	6.8%	30% Insulation portion of the installation cost ratio
Indirect Costs:		
Engineering & Supervision	16%	Site engineering and construction management plus North Slope engineering and construction management.
Construction and Field Expenses	0%	Did not include.
Contractor Fees	0%	Did not include.
Startup-up	0%	Did not include.
Performance Testing	0%	Did not include.

Other facility-specific costs included in the cost effectiveness evaluation for GTP:

Data Element	6 th Edition Values Applied	Sources for Value
Purchased Equipment Costs	\$4,100,000	January 2020 Quote - Power Generation Units
	\$3,500,000	January 2020 Quote - CO2 Compression Units
	\$4,100,000	January 2020 Quote – Treated Gas Compression Units
Site Preparation	\$45,000	January 2020 Quote

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Page 4 of 21

Data Element	6 th Edition Values Applied	Sources for Value
Construction and Field Expenses	\$120,000	January 2020 Quote – Construction Supervision
Reagent Cost (\$/gallon)	\$5.67/gallon	Ammonia cost per Brenntag quote (June 15, 2015). See Appendix C.
Electricity Cost (\$/kWh)	0.16	Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in 2017: https://www.eia.gov/electricity/data.php#sales
Higher Heating Value (HHV) (Btu/scf)	1077	HHV per GTP Fuel Gas specifications.

LNG ASSUMPTIONS:

The LNG facility-specific cost factors that were applied generally fall within the typical EPA factors described in the 6th edition cost effectiveness calculation method. Cost factors specifically applied for LNG cost estimates are summarized below:

Cost Category		Comments Regarding AGDC Approach
Purchased Equipment:		
Purchased Equipment Costs		AeriNOx Quote (1/7/2020)
Ammonia System	0%	Included in Purchased Equipment Costs
Instrumentation & Controls	0%	Included in Purchased Equipment Costs
Taxes (Enter sales tax rate in "% Applied")	0.0%	No sales tax in Alaska

Other facility-specific costs included in the cost effectiveness evaluation for LNG:

Data Element	6 th Edition Values Applied	Sources for Value
Purchased Equipment Costs	\$7,800,000	January 2020 Quote - Compression Units
	\$4,100,000	January 2020 Quote - Power Generation Units
Site Preparation	\$45,000	January 2020 Quote
Construction and Field Expenses \$120,00		January 2020 Quote – Construction Supervision
Reagent Cost (\$/gallon)	\$2.24/gallon	Ammonia cost based on \$0.30/pound (Weekly Fertilizer Review, 4/2015)
Electricity Cost (\$/kWh)	0.16	Updated electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in 2017: https://www.eia.gov/electricity/data.php#sales
Higher Heating Value (HHV) (Btu/scf)	1087	HHV per LNG Fuel Gas specifications.

APPENDICES:

Appendix A – 6th Edition Cost Effectiveness Calculations – Facility Specific Cost Factor Analysis:

- Appendix A.1 GTP Power Generation Turbines
- Appendix A.2 GTP CO2 Compressor Turbines
- Appendix A.3 GTP Treated Gas Compressor Turbines
- Appendix A.4 LNG Power Generation Turbines
- Appendix A.5 LNG Compressor Turbines

Appendix B – 7th Edition Cost Effectiveness Calculations – EPA Default Analysis:

- Appendix B.1 GTP Power Generation Turbines
- Appendix B.2 GTP CO2 Compressor Turbines
- Appendix B.3 GTP Treated Gas Compressor Turbines
- Appendix B.4 LNG Power Generation Turbines
- Appendix B.5 LNG Compressor Turbines

Appendix C – Supporting Information:

- Appendix C.1 AeriNOx SCR quote (January 2020)
- Appendix C.2 Brentag ammonia cost quote (2015)
- Appendix C.3 GTP Cost Estimate Basis for SCR Cost Evaluation (Confidential)

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A

APPENDIX A - 6TH EDITION COST EFFECTIVENESS CALCULATIONS – FACILITY SPECIFIC COST FACTOR ANALYSIS

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.1

APPENDIX A.1

GTP Power Generation Turbines

Alaska LNG Project Natural Gas Turbines Power Gen SCR Cost Effectiveness Analysis

Cost Quantification:

			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
			Direct Capital (Costs	
urchased Equipment:			•		
Purchased Equipment Costs	\$4,100,000		-	А	AeriNOx Quote (1/7/2020)
Ammonia System	\$0		-	В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	C = 0.00 x A	Included in Purchased Equipment Costs
Freight		\$459,610	11.2%	D = 0.11 x (A+B)	Cost factor based on ratios from the GTP estimate equipment to freight costs
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$4,559,610		-	PE	
irect Installation Costs:		•	•		
Foundation & Supports		\$1,504,671	33%	0.33 x PE	33% based on cost to modularize equipment.
Erection and Handling		\$1,550,267	34%	0.34 x PE	34% based on NS sea lift logistics costs vs equipment costs Did not include any NS installation costs
Electrical		\$0	0%	0.00 x PE	Part of Foundation and Supports
Piping		\$0	0%	0.00 x PE	Part of Foundation and Supports
Insulation		\$0	0%	0.00 x PE	Part of Foundation and Supports
Painting		\$0	0%	0.00 x PE	Part of Foundation and Supports
Site Preparation	\$45,000		-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$3,099,939		-	DI	
otal Direct Capital Costs (DC)	\$7,659,549		-	DC = PE + DI	

Indirect Capital Costs								
Indirect Costs:								
Engineering & Supervision	\$1,504,671	33%		33% based on MFS const management and Const staff, no eng costs included				
Construction and Field Expenses	\$0	0%	0.00 x PE	Did not include.				
Contractor Fees	\$0	0%	0.00 x PE	Did not include.				
Startup-up	\$0	0%	0.00 x PE	Did not include.				
Performance Testing	\$0	0%	0.00 x PE	Did not include.				
Total Indirect Costs (TIC)	\$1,504,671	-	IC					

Capital Investment:					
Project Contingency		\$1,374,633.00	15%	$E = 0.15 \times (DC + IC)$	OAQPS (15% of DC & TIC)
Preproduction Cost		\$316,165.59	3%	F = 0.03 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$10,031	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below
Total Capital Investment	\$10,865,050		-	TCI = DC + IC + E + F + G	

Alaska LNG Project Natural Gas Turbines Power Gen SCR Cost Effectiveness Analysis

			Direct An	nual Costs	
Direct Annual Costs:					
Operating Labor			-		Vendor Supplied
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)
Maintenance Labor		\$162,976	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)
Maintenance Materials		\$162,976	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)
Annual Reagent Cost		\$261,522	-	q*Cost*[op hr/yr]	See parameters below
Annual Electricity Cost		\$152,882	-	See parameters below	See parameters below
Catalyst Replacement		\$76,236	-	See parameters below	See parameters below
Catalyst Disposal Cost		\$7,624	10%	0.100 x Cat Repl	Engineering Estimate
Fuel Penalty Costs (specify)			-		Vendor Supplied
Other Maintenance Cost (specify)			-		Vendor Supplied
Total Direct Annual Costs	\$824,215		-	DAC	

		Indirect A	nnual Costs	
Indirect Annual Costs:				
Overhead	\$195,571	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)
Property Tax	\$108,650	1.0%	0.0100 x TCI	OAQPS (1%)
Insurance	\$108,650	1.0%	0.010 x TCI	OAQPS (1%)
General Administrative	\$217,301	2.0%	0.020 x TCI	OAQPS (2%)
Total Indirect Annual Costs	\$630,173	-	DAC	

Capital Recovery Cost							
Equipment Life (years)		10	-	n	Vendor Supplied		
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06		
Capital Recovery Factor	0.1424		-	$CRF = i/(1-(1+i)^{-n})$	-		
Capital Recovery Cost (CRC)	\$1,546,939		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)		
Total Annual Costs	\$3,001,326		-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)		

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	100.61	
Controlled NOx Emissions (tpy)	13.41	
NOx Reduction (tpy)	87.20	

Total Annual Costs	\$3,001,326
Cost Effectiveness (\$/ton/yr)	\$34,421

Reference Calculated below Calculated below Calculated below

Calculated above	
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)	

Alaska LNG Project **Natural Gas Turbines** Power Gen SCR Cost Effectiveness Analysis

Design Parameters:

Enter values in boxes below. Where default value is available, entered value will override default. Required data is highlighted yellow.

Combustion Unit Sizing			
			Reference
Turbine heat capacity:	418.00	MMBtu/hr	
Duct burner heat capacity, if applicable:		MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
c	or 🛛	lb NOx/MMscf	
c	or 15	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (defaul	t)	ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:		lb NOx/MMBtu	
C	or	Ib NOx/MMscf	
C	or	ppmv @ 3% O2	
or (defaul	t)	ppmv @ 3% O2	
Controlled NOx concentration:		lb NOx/MMBtu	
	or	lb NOx/MMscf	
	or 2	ppmv @ 15% O2	Most stringent limit identified as BACT
Natural Gas Properties	L		
			Reference
HHV [Default: 1050 Btu/scf]	1077	Btu/scf	
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where de	efault value is availab	le, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis of	of the parameters be	ow:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	2		
Calculated Power demand:	111.8	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines Power Gen SCR Cost Effectiveness Analysis

			Electricity pricing per Department of Energy appual retail
			Electricity pricing per Department of Energy, annual retail
			sales of electricity to industrial customers in Alaska in
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	2017.
Aqueous Ammonia Costs: Enter values below or parame	eters to estimate.		
			Reference
Aqueous ammonia cost:	\$5.67	\$/gallon	Ammonia cost per Brenntag quote (June 15, 2015).
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	
If aqueous ammonia consumption rate not known, estin	nate on the basis of t	he parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m _{sol})	40.97	lb/hr	OAQPS (Section 4.2, Ch. 2)
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	5.3	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
			Reference
Initial catalyst cost:	\$245,091		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	
Interest Rate	7.00%	%	ADEC Default

OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

* OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

\$76,236

Annual Catalyst Replacement Cost

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.2

APPENDIX A.2

GTP CO₂ Compressor Turbines

Alaska LNG Project Natural Gas Turbines CO₂ Compression SCR Cost Effectiveness Analysis

Cost Quantification:

			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
			Direct Capital	Costs	
urchased Equipment:					
Purchased Equipment Costs	\$3,500,000)	-	А	AeriNOx Quote (1/7/2020)
Ammonia System	\$0)	-	В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	C = 0.00 x A	Included in Purchased Equipment Costs
Freight		\$392,350	11.2%	D = 0.11 x (A+B)	Cost factor based on ratios from the GTP estimate equipment to freight costs
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$3,892,350)		PE	
Direct Installation Costs:	·		·		
Foundation & Supports		\$1,284,476	33%	0.33 x PE	33% based on cost to modularize equipment.
Erection and Handling		\$1,323,399	34%	0.34 x PE	34% based on NS sea lift logistics costs vs equipment costs
					Did not include any NS installation costs
Electrical		\$0	0%	0.00 x PE	Part of Foundation and Supports
Piping		\$0	0%	0.00 x PE	Part of Foundation and Supports
Insulation		\$0	0%	0.00 x PE	Part of Foundation and Supports
Painting		\$0	0%	0.00 x PE	Part of Foundation and Supports
Site Preparation	\$45,000)	-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$2,652,875	j	-	DI	
otal Direct Capital Costs (DC)	\$6,545,225	5	-	DC = PE + DI	

Indirect Capital Costs								
Indirect Costs:								
Engineering & Supervision	\$1,284,476	33%		33% based on MFS const management and Const staff, no eng costs included				
Construction and Field Expenses	\$0	0%	0.00 x PE	Did not include.				
Contractor Fees	\$0	0%	0.00 x PE	Did not include.				
Startup-up	\$0	0%	0.00 x PE	Did not include.				
Performance Testing	\$0	0%	0.00 x PE	Did not include.				
Total Indirect Costs (TIC)	\$1,284,476	-	IC					

Capital Investment:					
Project Contingency		\$1,174,455.00	15%	$E = 0.15 \times (DC + IC)$	OAQPS (15% of DC & TIC)
Preproduction Cost		\$270,124.65	3%	F = 0.03 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$12,327	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below
Total Capital Investment	\$9,286,606		-	TCI = DC + IC + E + F + G	

Alaska LNG Project Natural Gas Turbines CO₂ Compression SCR Cost Effectiveness Analysis

		Direct Ar	inual Costs	
Direct Annual Costs:				
Operating Labor		-		Vendor Supplied
Supervisory Labor	\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)
Maintenance Labor	\$139,299	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)
Maintenance Materials	\$139,299	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)
Annual Reagent Cost	\$321,376	-	q*Cost*[op hr/yr]	See parameters below
Annual Electricity Cost	\$158,395	-	See parameters below	See parameters below
Catalyst Replacement	\$93,268	-	See parameters below	See parameters below
Catalyst Disposal Cost	\$9,327	10%	0.100 x Cat Repl	Engineering Estimate
Fuel Penalty Costs (specify)		-		Vendor Supplied
Other Maintenance Cost (specify)		-		Vendor Supplied
Total Direct Annual Costs	\$860,964	-	DAC	

Indirect Annual Costs							
Indirect Annual Costs:	Indirect Annual Costs:						
Overhead	\$167,159	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)			
Property Tax	\$92,866	1.0%	0.0100 x TCI	OAQPS (1%)			
Insurance	\$92,866	1.0%	0.010 x TCI	OAQPS (1%)			
General Administrative	\$185,732	2.0%	0.020 x TCI	OAQPS (2%)			
Total Indirect Annual Costs	\$538,623	-	DAC				

Capital Recovery Cost								
Equipment Life (years)		10	-	n	Vendor Supplied			
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06			
Capital Recovery Factor	0.1424		-	CRF = i/(1-(1+i)^-n)	-			
Capital Recovery Cost (CRC)	\$1,322,204		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)			
Total Annual Costs	\$2,721,791		-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)			

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	141.86	
Controlled NOx Emissions (tpy)	16.12	
NOx Reduction (tpy)	125.74	

Total Annual Costs	\$2,721,791	
Cost Effectiveness (\$/ton/yr)	\$21,646	

Reference Calculated below Calculated below Calculated below

Calculated above
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines CO₂ Compression SCR Cost Effectiveness Analysis

Design Parameters:

Enter values in boxes below. Where default value is available, entered value will override default. Required data is highlighted yellow.

Combustion Unit Sizing			
			Reference
Turbine heat capacity:	311.00	MMBtu/hr	
Duct burner heat capacity, if applicable:	191.22	MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
or	-	lb NOx/MMscf	
or	15.00	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)		ppmv @ 15% O2	
			· · · · · · · · · · · · · · · · · · ·
Duct burner uncontrolled NOx concentration:	0.08	lb NOx/MMBtu	
or		lb NOx/MMscf	
or		ppmv @ 3% O2	
or (default)		ppmv @ 3% O2	
		⊐ .	
Controlled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or	2	ppmv @ 15% O2	Most stringent limit identified as BACT
Natural Gas Properties			
			Reference
HHV [Default: 1050 Btu/scf]	1,077	Btu/scf	
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where def	fault value is available	entered number overrides default	
Annual Electricity costs. Enter values below. Where del			Reference
Power demand:		kw	Calculated below
If power demand is not known, estimate on the basis of	f the parameters belo		· · · · · · · · · · · · · · · · · · ·
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]		1	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	4		
Calculated Power demand:	115.8	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Appendix A.2 - BACT Cost Effectiveness (CO₂ Compressor Drivers)

GTP BACT ANALYSIS 6th Edition EPA Cost Control Manual

Alaska LNG Project **Natural Gas Turbines** CO₂ Compression SCR Cost Effectiveness Analysis

Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in 2017.
Aqueous Ammonia Costs: Enter values below or parame	ters to estimate.		-
			Reference
Aqueous ammonia cost:	\$5.67	\$/gallon	Ammonia cost per Brenntag quote (June 15, 2015).
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	Calculated below
If aqueous ammonia consumption rate not known, estim	ate on the basis of t	he parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m _{sol})	50.35	lb/hr	OAQPS (Section 4.2, Ch. 2)
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	6.5	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
· ·			Reference
Initial catalyst cost:	\$299,848		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	Vendor Supplied
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$93,268		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

* OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.3

APPENDIX A.3

GTP Treated Gas Compressor Turbines

Alaska LNG Project

Natural Gas Turbines

TG Compression SCR Cost Effectiveness Analysis

Cost Quantification:

			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
a selected F a factor of			Direct Capital C	LOSTS	
Purchased Equipment:					
Purchased Equipment Costs	\$4,100,000		-	А	AeriNOx Quote (1/7/2020)
Ammonia System	\$0			В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	C = 0.00 x A	Included in Purchased Equipment Costs
Freight		\$459,610	11.2%	D = 0.11 x (A+B)	Cost factor based on ratios from the GTP estimate
				D = 0.11 x (A+B)	equipment to freight costs
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$4,559,610			PE	
Direct Installation Costs:					
Foundation & Supports		\$1,504,671	33%	0.33 x PE	33% based on cost to modularize equipment.
Erection and Handling		\$1,550,267	34%		34% based on NS sea lift logistics costs vs equipment
-				0.34 x PE	costs
					Did not include any NS installation costs
Electrical		\$0	0%	0.00 x PE	Part of Foundation and Supports
Piping		\$0	0%	0.00 x PE	Part of Foundation and Supports
Insulation		\$0	0%	0.00 x PE	Part of Foundation and Supports
Painting		\$0	0%	0.00 x PE	Part of Foundation and Supports
Site Preparation	\$45,000		-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$3,099,939		-	DI	
Total Direct Capital Costs (DC)	\$7,659,549		-	DC = PE + DI	

Indirect Capital Costs								
Indirect Costs:								
Engineering & Supervision	\$	1,504,671	33%	0.33 x PE	33% based on MFS const management and Const staff, n eng costs included			
Construction and Field Expenses		\$0	0%	0.00 x PE	Did not include.			
Contractor Fees		\$0	0%	0.00 x PE	Did not include.			
Startup-up		\$0	0%	0.00 x PE	Did not include.			
Performance Testing		\$0	0%	0.00 x PE	Did not include.			
Total Indirect Costs (TIC)	\$1,504,671		-	IC				

Capital Investment:									
Project Contingency		\$1,374,633.00	15%	$E = 0.15 \times (DC + IC)$	OAQPS (15% of DC & TIC)				
Preproduction Cost		\$316,165.59	3%	F = 0.03 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)				
Inventory Capital (initial reagent fill)		\$17,266	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below				
Total Capital Investment	\$10,872,285		-	TCI = DC + IC + E + F + G					

Alaska LNG Project Natural Gas Turbines TG Compression SCR Cost Effectiveness Analysis

Direct Annual Costs								
Direct Annual Costs:								
Operating Labor			-		Vendor Supplied			
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)			
Maintenance Labor		\$163,084	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)			
Maintenance Materials		\$163,084	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)			
Annual Reagent Cost		\$450,161	-	q*Cost*[op hr/yr]	See parameters below			
Annual Electricity Cost		\$212,891	-	See parameters below	See parameters below			
Catalyst Replacement		\$130,613	-	See parameters below	See parameters below			
Catalyst Disposal Cost		\$13,061	10%	0.100 x Cat Repl	Engineering Estimate			
Fuel Penalty Costs (specify)			-		Vendor Supplied			
Other Maintenance Cost (specify)			-		Vendor Supplied			
Total Direct Annual Costs	\$1,132,895		-	DAC				

Indirect Annual Costs									
Indirect Annual Costs:	Indirect Annual Costs:								
Overhead	\$195,701	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)					
Property Tax	\$108,723	1.0%	0.0100 x TCI	OAQPS (1%)					
Insurance	\$108,723	1.0%	0.010 x TCI	OAQPS (1%)					
General Administrative	\$217,446	2.0%	0.020 x TCI	OAQPS (2%)					
Total Indirect Annual Costs	\$630,593	-	DAC						

Capital Recovery Cost									
Equipment Life (years)		10	-	n	Vendor Supplied				
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06				
Capital Recovery Factor	0.1424		-	CRF = i/(1-(1+i)^-n)	-				
Capital Recovery Cost (CRC)	\$1,547,969		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)				
Total Annual Costs	\$3,311,457		-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)				

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	200.35	
Controlled NOx Emissions (tpy)	22.55	
NOx Reduction (tpy)	177.80	

Total Annual Costs	\$3,311,457	
Cost Effectiveness (\$/ton/yr)	\$18,625	

Reference
Calculated below
Calculated below
Calculated below

Calculated above	٦
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)	

Alaska LNG Project **Natural Gas Turbines** TG Compression SCR Cost Effectiveness Analysis

Design Parameters:

Enter values in boxes below. Where default value is available, entered value will override default. Required data is highlighted yellow.

Combustion Unit Sizing			
			Reference
Turbine heat capacity:	418.00	MMBtu/hr	
Duct burner heat capacity, if applicable:	284.64	MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or	15.00	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)		ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:	0.08	lb NOx/MMBtu	
or		lb NOx/MMscf	
or		ppmv @ 3% O2	
or (default)		ppmv @ 3% O2	
Controlled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or	2	ppmv @ 15% O2	Most stringent limit identified as BACT
Natural Gas Properties			
			Reference
HHV [Default: 1050 Btu/scf]	1077	Btu/scf	GTP Fuel Gas Specificaiton
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
Operational Parameters			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
	0700	111/ ¥1	
Annual Electricity Costs: Enter values below. Where def	ault value is availab	le, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis of	the parameters be	ow:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	4		
Calculated Power demand:	155.7	kW	OAQPS Egn 2.48 (Section 4.2, Ch. 2)

OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines TG Compression SCR Cost Effectiveness Analysis

		-	
			Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	2017.
Aqueous Ammonia Costs: Enter values below or parame	eters to estimate.		
			Reference
Aqueous ammonia cost:	\$5.67	\$/gallon	Ammonia cost per Brenntag quote (June 15, 2015).
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	
If aqueous ammonia consumption rate not known, estin	nate on the basis of the	parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m _{sol})	70.53	lb/hr	OAQPS (Section 4.2, Ch. 2)
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	9.1	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
·			Reference
Initial catalyst cost:	\$419,909		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	Vendor Supplied
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$130,613		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

* OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.4

APPENDIX A.4

LNG Power Generation Turbines

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

Cost Quantification:

			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
	•				
			Direct Capital	Costs	
Purchased Equipment:					
Purchased Equipment Costs	\$4,100,000		-	А	AeriNOx Quote (1/7/2020)
Ammonia System	\$0		-	В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	C = 0.00 x A	Included in Purchased Equipment Costs
Freight		\$205,000	5%	D = 0.05 x (A+B)	OAQPS (5% of PE)
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$4,305,000		-	PE	
Direct Installation Costs:					
Foundation & Supports		\$430,500	10%	0.10 x PE	OAQPS (4-12% of PE)
Erection and Handling		\$1,506,750	35%	0.35 x PE	OAQPS (14-50% of PE)
Electrical		\$258,300	6%	0.06 x PE	OAQPS (1-8% of PE)
Piping		\$344,400	8%	0.08 x PE	OAQPS (1-30% of PE)
Insulation		\$86,100	2%	0.02 x PE	OAQPS (1-7% of PE)
Painting		\$172,200	4%	0.04 x PE	OAQPS (1-4% of PE)
Site Preparation	\$45,000		-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$2,843,250		-	DI	
Total Direct Capital Costs (DC)	\$7,148,250		_	DC = PE + DI	

			Indirect C	apital Costs	
Indirect Costs:					
Engineering & Supervision		\$645,750	15%	0.15 x PE	OAQPS (10-20% of PE)
Construction and Field Expenses		\$430,500	10%	0.10 x PE	OAQPS (5-20% of PE)
Contractor Fees		\$215,250	5%	0.05 x PE	OAQPS (0-10% of PE)
Startup-up		\$43,050	1%	0.01 x PE	OAQPS (1-2% of PE)
Performance Testing		\$43,050	1%	0.01 x PE	OAQPS (1% of PE)
Total Indirect Costs (TIC)	\$1,377,600		-	IC	

Capital Investment:					
Project Contingency		\$1,278,877.50	15%	$E = 0.15 \times (DC + IC)$	OAQPS (15% of DC & TIC)
Preproduction Cost		\$196,094.55	2%	F = 0.02 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$4,077	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below
Total Capital Investment	\$10,004,899		-	TCI = DC + IC + E + F + G	

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

			Direct An	nual Costs	
Direct Annual Costs:					
Operating Labor			-		Vendor Supplied
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)
Maintenance Labor		\$150,073	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)
Maintenance Materials		\$150,073	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)
Annual Reagent Cost		\$106,283	-	q*Cost*[op hr/yr]	See parameters below
Annual Electricity Cost		\$188,137	-	See parameters below	See parameters below
Catalyst Replacement		\$78,424	-	See parameters below	See parameters below
Catalyst Disposal Cost		\$7,842	10%	0.100 x Cat Repl	Engineering Estimate
Fuel Penalty Costs (specify)			-		Vendor Supplied
Other Maintenance Cost (specify)			-		Vendor Supplied
Total Direct Annual Costs	\$680,834		-	DAC	

Indirect Annual Costs							
Indirect Annual Costs:							
Overhead		\$180,088	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)		
Property Tax		\$100,049	1.0%	0.0100 x TCI	OAQPS (1%)		
Insurance		\$100,049	1.0%	0.010 x TCI	OAQPS (1%)		
General Administrative		\$200,098	2.0%	0.020 x TCI	OAQPS (2%)		
Total Indirect Annual Costs	\$580,284		-	DAC			

			Capital Reco	overy Cost	
Equipment Life (years)		10	-	n	Vendor Supplied
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06
Capital Recovery Factor	0.1424		-	CRF = i/(1-(1+i)^-n)	-
Capital Recovery Cost (CRC)	\$1,424,472		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)
Total Annual Costs	\$2,685,591		-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	103.50	
Controlled NOx Emissions (tpy)	13.80	
NOx Reduction (tpy)	89.70	

Total Annual Costs	\$2,685,591	
Cost Effectiveness (\$/ton/yr)	\$29,940	

Reference
Calculated below
Calculated below
Calculated below
Calculated below

Calculated above
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

Design Parameters:

Enter values in boxes below. Where default value is available, entered value will override default. Required data is highlighted yellow.

Combustion Unit Sizing			
			Reference
Turbine heat capacity:	430.00	MMBtu/hr	
Duct burner heat capacity, if applicable:		MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
0	r	lb NOx/MMscf	
0	r 15	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)		ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:		lb NOx/MMBtu	
	r	lb NOx/MMscf	
0		ppmv @ 3% O2	
or (default)		ppmv @ 3% O2	
	/		
Controlled NOx concentration:		lb NOx/MMBtu	
01	r	lb NOx/MMscf	
01	r 2	ppmv @ 15% O2	Most stringent limit identified as BACT
Natural Gas Properties			
			Reference
HHV [Default: 1050 Btu/scf]	1087	Btu/scf	LNG Fuel Gas Specification
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
- •			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where de	fault value is availab	le, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis of	f the parameters bel	ow:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	3		
Calculated Power demand:	137.6	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

-			
			Electricity pricing per Department of Energy, annual retail
			sales of electricity to industrial customers in Alaska in
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	2017.
Aqueous Ammonia Costs: Enter values below or parame	ters to estimate.		
			Reference
			Ammonia cost as specified in AKLNG Supporting Data (USAL-CB-
			SRZZZ-00-000005-500): \$0.30/pound (Weekly Fertilizer Review,
Aqueous ammonia cost:	\$2.24	\$/gallon	4/2015)
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	
If aqueous ammonia consumption rate not known, estim	hate on the basis of	he parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m _{sol})	42.15	lb/hr	OAQPS
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	5.4	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
			Reference
Initial catalyst cost:	\$252,127		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$78,424		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

* OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.5

APPENDIX A.5

LNG Compressor Turbines

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

Cost Quantification:

		Default %	EPA Equation /	
Cost Category	Project Cost Default Estimat	e Applied	Estimate Basis	Reference
		Direct Ca	pital Costs	
urchased Equipment:				
Purchased Equipment Costs	\$7,800,000	-	A	AeriNOx Quote (1/7/2020)
Ammonia System	\$0		В	Included in Purchased Equipment Costs
Instrumentation & Controls	\$	0 0%	C = 0.00 x A	Included in Purchased Equipment Costs
Freight	\$390,00	0 5%	D = 0.05 x (A+B)	OAQPS (5% of PE)
Taxes (Enter sales tax rate in "% Applied")	\$	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$8,190,000	-	PE	
virect Installation Costs:				
Foundation & Supports	\$819,00	0 10%	0.10 x PE	OAQPS (4-12% of PE)
Erection and Handling	\$2,866,50	0 35%	0.35 x PE	OAQPS (14-50% of PE)
Electrical	\$491,40	0 6%	0.06 x PE	OAQPS (1-8% of PE)
Piping	\$655,20	0 8%	0.08 x PE	OAQPS (1-30% of PE)
Insulation	\$163,80	0 2%	0.02 x PE	OAQPS (1-7% of PE)
Painting	\$327,60	0 4%	0.04 x PE	OAQPS (1-4% of PE)
Site Preparation	\$45,000	-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$5,368,500	-	DI	
otal Direct Capital Costs (DC)	\$13,558,500	-	DC = PE + DI	

Indirect Capital Costs					
Indirect Costs:					
Engineering & Supervision		\$1,228,500	15%	0.15 x PE	OAQPS (10-20% of PE)
Construction and Field Expenses		\$819,000	10%	0.10 x PE	OAQPS (5-20% of PE)
Contractor Fees		\$409,500	5%	0.05 x PE	OAQPS (0-10% of PE)
Startup-up		\$81,900	1%	0.01 x PE	OAQPS (1-2% of PE)
Performance Testing		\$81,900	1%	0.01 x PE	OAQPS (1% of PE)
Total Indirect Costs (TIC)	\$2,620,800		-	IC	

Capital Investment:					
Project Contingency		2426895	15%	$E = 0.15 \times (DC + IC)$	OAQPS (15% of DC & TIC)
Preproduction Cost		\$372,123.90	2%	$F = 0.02 \times (DC+IC+Cont)$	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$11,035	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below
Total Capital Investment	\$18,989,354		-	TCI = DC + IC + E + F + G	

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

			Direct An	inual Costs	
Direct Annual Costs:					
Operating Labor			-		Vendor Supplied
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)
Maintenance Labor		\$284,840	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)
Maintenance Materials	\$284,840		-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)
Annual Reagent Cost	\$287,707		-	q*Cost*[op hr/yr]	See parameters below
Annual Electricity Cost	\$425,728		-	See parameters below	See parameters below
Catalyst Replacement		\$212,293	-	See parameters below	See parameters below
Catalyst Disposal Cost		\$21,229	10%	0.100 x Cat Repl	Engineering Estimate
Fuel Penalty Costs (specify)			-		Vendor Supplied
Other Maintenance Cost (specify)			-		Vendor Supplied
Total Direct Annual Costs	\$1,516,638		-	DAC	

Indirect Annual Costs					
Indirect Annual Costs:					
Overhead		\$341,808	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)
Property Tax		\$189,894	1.0%	0.0100 x TCI	OAQPS (1%)
Insurance		\$189,894	1.0%	0.010 x TCI	OAQPS (1%)
General Administrative		\$379,787	2.0%	0.020 x TCI	OAQPS (2%)
Total Indirect Annual Costs	\$1,101,383		-	DAC	

Capital Recovery Cost					
Equipment Life (years)		10	-	n	Vendor Supplied
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06
Capital Recovery Factor	0.1424		-	CRF = i/(1-(1+i)^-n)	-
Capital Recovery Cost (CRC)	\$2,703,657		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)
Total Annual Costs	\$5,321,677		-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	280.17	
Controlled NOx Emissions (tpy)	37.36	
NOx Reduction (tpy)	242.81	

Total Annual Costs	\$5,321,677	
Cost Effectiveness (\$/ton/yr)	\$21,917	

	Reference
Calculated below	
Calculated below	
Calculated below	

Calculated above
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

Design Parameters:

Enter values in boxes below. Where default value is available, entered value will override default. Required data is highlighted yellow.

Combustion Unit Sizing			
			Reference
Turbine heat capacity:	1164.00	MMBtu/hr	
Duct burner heat capacity, if applicable:		MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
	or	lb NOx/MMscf	
	or 15.00	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (defau	lt)	ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:		lb NOx/MMBtu	
	or	lb NOx/MMscf	
	or	ppmv @ 3% O2	
or (defau	lt)	ppmv @ 3% O2	
	·/		
Controlled NOx concentration:		lb NOx/MMBtu	
	or	lb NOx/MMscf	
	or 2	ppmv @ 15% O2	Most stringent limit identified as BACT
		Pp @ 15/0 01	
Natural Gas Properties			
			Reference
HHV [Default: 1050 Btu/scf]	1087	Btu/scf	LNG Fuel Gas Specification
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
-			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
	L		
Annual Electricity Costs: Enter values below. Where d	efault value is availab	le, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis	of the parameters be	ow:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	2		
Calculated Power demand:	311.4	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

		-	
			Electricity pricing per Department of Energy, annual retail
			sales of electricity to industrial customers in Alaska in
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	2017.
Aqueous Ammonia Costs: Enter values below or parame	eters to estimate.		
			Reference
			Ammonia cost as specified in AKLNG Supporting Data (USAL-CB-
			SRZZZ-00-000005-500): \$0.30/pound (Weekly Fertilizer Review,
Aqueous ammonia cost:	\$2.24	\$/gallon	4/2015)
Aqueous ammonia storage volume:		gallons	Calculated below
or	14	days' worth	Engineering Estimate
		_	
Aqueous ammonia consumption rate:		gal/hr	Calculated below
If aqueous ammonia consumption rate not known, estim	ate on the basis of the	e parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m _{sol})	114.10	lb/hr	Calculated below
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	14.7	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
			Reference
Initial catalyst cost:	\$682,502		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	Vendor Supplied
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$212,293		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

* OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B

APPENDIX B – 7[™] EDITION COST EFFECTIVENESS CALCULATIONS – EPA DEFAULT ANALYSIS

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.1

APPENDIX B.1

GTP Power Generation Turbines

Data Inputs			
Enter the following data for your combustion uni	it:		
Is the combustion unit a utility or industrial boiler? Is the SCR for a new boiler or retrofit of an existing boiler?	Industrial New Construction	What type of fuel does the unit burn?	
Complete all of the highlighted data fields:		Not applicable to units burning fuel oil or natural gas	
What is the maximum heat input rate (QB)?	418 MMBtu/hou		
What is the higher heating value (HHV) of the fuel? HHV per GTP Fuel Gas specifications. What is the estimated actual annual fuel consumption?	1,077 Btu/scf	Enter the sulfur content (%S) = percent by weight	
Enter the net plant heat input rate (NPHR)	9.486 MMBtu/MW	Fraction in	
If the NPHR is not known, use the default NPHR value:	Coal 10 MMBtu/N Fuel Oil 11 MMBtu/N Natural Gas 8.2 MMBtu/I	MW Sub-Bituminous 0 0.41 8,826 MW Lignite 0 0.82 6,685 MW Please click the calculate button to calculate weighted average values based on the data in the table above. Vertical state is a state of the calculate of the calculate is a state of the calculate is a state of the calculate is a state of the calculate of the calculate is a state of the calculate is a state of the calculate of the calculate is a state of the calculate is a state of the calculate of the calculate is a state of the calculate is a state of the calculate is a state of the calculate of the calculate is a state of the calculate is a state of the calculate of the calculate is a state of the calculate is a state of the calculate of the calculate is a state of the calculate of the calculate of the calculate is a state of the calculate of t	
Plant Elevation	46 Feet above s	For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows 85 and 86 on the <i>Cost Estimate</i> tab. Please select your preferred method:	

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})	365	days
Number of days the boiler operates (t _{plant})	365	days
Inlet NO _x Emissions (NOx _{in}) to SCR	0.055	lb/MMBtu
Outlet NO _x Emissions (NOx _{out}) from SCR	0.0074	lb/MMBtu
Stoichiometric Ratio Factor (SRF)	1.050	
*The SRF value of 1.05 is a default value. User should enter actual value, if known.		

Ammonia

Notes: Inlet Nox 15 ppmv per Gas Turbine Vendor. Outlet NOx 2 ppmv per EPA.

Estimated operating life of the catalyst (H _{catalyst})	
Estimated SCR equipment life	
* For industrial boilers, the typical equipment life is between 20 and 25 years.	

Density of reagent as stored (p_{stored})

Number of days reagent is stored (t_{storage})

26,280	hours
20	Years*

19 percent 58 lb/cubic feet 14 days

Number of SCR reactor cha

Number of catalyst layers

Number of empty catalyst

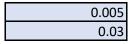
Ammonia Slip (Slip) provide Volume of the catalyst laye (Enter "UNK" if value is not Flue gas flow rate (Q_{fluegas}) (Enter "UNK" if value is not

Gas temperature at the SCR inlet (T)

Base case fuel gas volumetric flow rate factor (Q_{fuel})

Salact the	reagent used
Select the	reagent useu

Enter the cost data for the proposed SCR:


Desired dollar-year	2017	
CEPCI for 2017	567.5 Enter the CEPCI value for 2017 541.7 2016 CEPCI	CEPC
Annual Interest Rate (i)	5.5 Percent*	* 5.5 p https:/
Reagent (Cost _{reag})	5.670 \$/gallon for 19% ammonia	Ammo
Electricity (Cost _{elect})	0.1600 \$/kWh	Electri in Alas
Catalyst cost (CC _{replace})	\$/cubic foot (includes removal and disposal/regeneration of existing 227.00 catalyst and installation of new catalyst	* \$227 if knov
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60,
Operator Hours/Day	4.00 hours/day*	* 4 ho

 \bullet

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

ambers (n _{scr})	1	
(R _{layer})	1	
t layers (R _{empty})	1	
ded by vendor	5	ppm
rers (Vol _{catalyst}) ot known)	1,578	Cubic feet
) ot known)	590350	acfm

750 °F 1412.32 ft³/min-MMBtu/hour

Densities of typical SCR reagents: 71 lbs/ft³ 50% urea solution 29.4% aqueous NH₃ 56 lbs/ft³

PCI = Chemical Engineering Plant Cost Index

5 percent is the default bank prime rate. User should enter current bank prime rate (available at os://www.federalreserve.gov/releases/h15/.)

monia cost per Brenntag quote (June 15, 2015).

ctricity pricing per Department of Energy, annual retail sales of electricity to industrial customers laska: https://www.eia.gov/electricity/data.php#sales

227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, nown.

60/hour is a default value for the operator labor rate. User should enter actual value, if known.

hours/day is a default value for the operator labor. User should enter actual value, if known.

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	418	MMBtu/hour
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	3,399,888,579	scf/Year
Actual Annual fuel consumption (Mactual) =		3,399,888,579	scf/Year
Heat Rate Factor (HRF) =	NPHR/10 =	0.95	
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	8760	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	86.6	percent
NOx removed per hour =	NOx _{in} x EF x Q _B =	19.91	lb/hour
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	87.19	tons/year
NO _x removal factor (NRF) =	EF/80 =	1.08	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	590,350	acfm
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	374.11	/hour
Residence Time	1/V _{space}	0.00	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00	
SO_2 Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =		
Elevation Factor (ELEVF) =	14.7 psia/P =		
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia
Retrofit Factor (RF)	New Construction	0.80	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at

https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

ot applicable; factor applies only to al-fired boilers

ot applicable; elevation factor does ot apply to plants located at evations below 500 feet.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) ^Y -1), where $Y = H_{catalyts}/(t_{SCR} x 24$ hours) rounded to the nearest integer	0.3157	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	1,578.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	615	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	4	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	707	ft ²
Reactor length and width dimensions for a square	()0.5	26.6	foot
reactor =	(A _{SCR})	20.0	leet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	30	feet

Reagent Data:

Type of reagent used	Ammonia		Molecular Weight of Reagent (MW) = 17.03 g/mole Density = 58 lb/ft ³
Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	8	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	41	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	5	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	1,800	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^{n}/(1+i)^{n} - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	228.83	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers				
For Oil and Natural Gas-Fired Utility Boilers between 25MW and	d 500 MW:			
	TCI = 86,380 x (200/B _{MW}) ^{0.35} x B _{MW} x ELEVF x RF			
For Oil and Natural Gas-Fired Utility Boilers >500 MW:				
	TCI = 62,680 x B_{MW} x ELEVF x RF			
For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/	/hour :			
	TCI = 7,850 x (2,200/Q _B) ^{0.35} x Q _B x ELEVF x RF			
For Natural Gas-Fired Industrial Boilers between 205 and 4,100	MMBTU/hour :			
	TCI = 10,530 x (1,640/Q _B) ^{0.35} x Q _B x ELEVF x RF			
For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:				
	TCI = 5,700 x Q_B x ELEVF x RF			
For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:				
	TCI = 7,640 x Q_B x ELEVF x RF			
Total Capital Investment (TCI) =	\$5,952,307	in 2017 dollars		

	Annual Costs	
	Total Annual Cost (TAC) TAC = Direct Annual Costs + Indirect Annual Co	osts
Direct Annual Costs (DAC) = Indirect Annual Costs (IDAC) = Total annual costs (TAC) = DAC + IDAC		\$724,437 in 2017 dollars \$501,193 in 2017 dollars \$1,225,630 in 2017 dollars
	Direct Annual Costs (DAC)	
DAC =	= (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electric	city Cost) + (Annual Catalyst Cost)
Annual Maintenance Cost = Annual Reagent Cost = Annual Electricity Cost = Annual Catalyst Replacement Cost =	$0.005 \times TCI =$ $m_{sol} \times Cost_{reag} \times t_{op} =$ $P \times Cost_{elect} \times t_{op} =$	\$29,762 in 2017 dollars \$260,858 in 2017 dollars \$320,732 in 2017 dollars \$113,086 in 2017 dollars
Direct Annual Cost =	n _{scr} x Vol _{cat} x (CC _{replace} /R _{layer}) x FWF	\$724,437 in 2017 dollars
	Indirect Annual Cost (IDAC) IDAC = Administrative Charges + Capital Recovery	
Administrative Charges (AC) = Capital Recovery Costs (CR)= Indirect Annual Cost (IDAC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) = CRF x TCI = AC + CR =	\$2,985 in 2017 dollars \$498,208 in 2017 dollars \$501,193 in 2017 dollars
	Cost Effectiveness	
	Cost Effectiveness = Total Annual Cost/ NOx Remov	ved/year
Total Annual Cost (TAC) = NOx Removed = Cost Effectiveness =		\$1,225,630 per year in 2017 dollars 87 tons/year \$14,056 per ton of NOx removed in 2017 dollars

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.2

APPENDIX B.2

GTP CO₂ Compressor Turbines

Enter the following data for your combustion unit:		
Is the combustion unit a utility or industrial boiler?	Industrial 🗸	What type of fuel does the unit burn?
Is the SCR for a new boiler or retrofit of an existing boiler?	Construction T	
Complete all of the highlighted data fields:		
		Not applicable to units burning fuel oil or natural gas
What is the maximum heat input rate (QB)?	502.22 MMBtu/hour	Type of coal burned: Not Applicable
What is the higher heating value (HHV) of the fuel? HHV per GTP Fuel Gas specifications.	1,077 Btu/scf	Enter the sulfur content (%S) = percent by weight
What is the estimated actual annual fuel consumption?	4,084,909,192 scf/Year	
Enter the net plant heat input rate (NPHR)	11.398 MMBtu/MW	Not applicable to units buring fuel oil or natural gas Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.
		Fraction in
If the NPHR is not known, use the default NPHR value:	Fuel TypeDefault NPHRCoal10 MMBtu/MWFuel Oil11 MMBtu/MWNatural Gas8.2 MMBtu/MW	Coal TypeCoal Blend%SHHV (Btu/lb)Bituminous01.8411,841Sub-Bituminous00.418,826Lignite00.826,685
Plant Elevation	46 Feet above sea level	values based on the data in the table above.
Plant Elevation		For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})

365 days 365 days Number of SCR reactor chambers (n_{scr})

Number of catalyst layers (R_{layer})

Number of days the boiler operates (t_{plant})

1	
3	

Inlet NO _x Emissions (NOx _{in}) to SCR	0.06452 lb/MMBtu	Number of empty catalyst layers (R _{empty})
Outlet NO _x Emissions (NOx _{out}) from SCR	0.0074 lb/MMBtu	Ammonia Slip (Slip) provided by vendor
Stoichiometric Ratio Factor (SRF)	1.050	Volume of the catalyst layers (Vol _{catalyst}) (Enter "UNK" if value is not known)
*The SRF value of 1.05 is a default value. User should enter actual value, if k	nown.	Flue gas flow rate (Q _{fluegas}) (Enter "UNK" if value is not known)
Notes: Weighted average inlet Nox (Main Burner - 0.055 lb/M	MBtu, Supplemental Firing - 0.08 lb/MMBtu) per Gas Turbine Ver	ndor. Outlet NOx 2 ppmv per EPA.
Estimated operating life of the catalyst (H _{catalyst})	26,280 hours	
Estimated SCR equipment life * For industrial boilers, the typical equipment life is between 20 and 25 year	20 Years*	Gas temperature at the SCR inlet (T)
For muustrial bollers, the typical equipment me is between 20 and 25 year	5.	Base case fuel gas volumetric flow rate factor (Q
Concentration of reagent as stored (C _{stored})	19 percent	
Density of reagent as stored (ρ_{stored})	58 lb/cubic feet	
Number of days reagent is stored (t _{storage})	14 days	Densities of
		50% urea so
		29.4% aqueo
Select the reagent used	Ammonia 🔻	
the cost data for the proposed SCR:		

CEPCI for 2017 567.5 Enter the CEPCI value for 2017 541.7 2016 CEPCI CEPCI = Chemical Annual Interest Rate (i) 5.5 Percent* * 5.5 percent is the https://www.federal Reagent (Cost _{reag}) 5.670 \$/gallon for 19% ammonia Ammonia cost per B Electricity (Cost _{elect}) 0.1600 \$/kWh Electricity pricing per in Alaska: https://www.federal	
Annual Interest Rate (i) 5.5 Percent* https://www.federa Reagent (Cost _{reag}) 5.670 \$/gallon for 19% ammonia Ammonia cost per B	cal En
Reagent (Cost _{reag}) 5.670 \$/gallon for 19% ammonia	
	r Brenn
Catalyst cost (CC replace)\$/cubic foot (includes removal and disposal/regeneration of existing catalyst and installation of new catalyst* \$227/cf is a defau if known.	ult val
Operator Labor Rate 60.00 \$/hour (including benefits)* * \$60/hour is a def	efault v
Operator Hours/Day * 4 hours/day* * 4 hours/day is a c	ı defau

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) = 0.005 0.03

1	
5	ppm
1,929	Cubic feet
268183	acfm

	750	°F
(_{fuel})	534.00	ft ³ /min-MMBtu/hour

71 lbs/ft³ 56 lbs/ft³

sities of typical SCR reagents: 5 urea solution 1% aqueous NH₃

ngineering Plant Cost Index

ault bank prime rate. User should enter current bank prime rate (available at erve.gov/releases/h15/.)

ntag quote (June 15, 2015).

epartment of Energy, annual retail sales of electricity to industrial customers .eia.gov/electricity/data.php#sales

lue for the catalyst cost based on 2016 prices. User should enter actual value,

value for the operator labor rate. User should enter actual value, if known.

ult value for the operator labor. User should enter actual value, if known.

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Annual Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	502	MMBtu/hour	1
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	4,084,909,192	scf/Year	
Actual Annual fuel consumption (Mactual) =		4,084,909,192	scf/Year	
Heat Rate Factor (HRF) =	NPHR/10 =	1.14		
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction	
Total operating time for the SCR (t_{op}) =	CF _{total} x 8760 =	8760	hours	1
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	88.6	percent	1
NOx removed per hour =	$NOx_{in} x EF x Q_B =$	28.70	lb/hour	1
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	125.70	tons/year	1
NO _x removal factor (NRF) =	EF/80 =	1.11		1
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	268,183	acfm	1
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	139.03	/hour	
Residence Time	1/V _{space}	0.01	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia	not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	New Construction	0.80		

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
	(interest rate)(1/((1+ interest rate) ^Y -1) , where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer		Fraction

Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	1,929.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	279	ft ²
$\Pi = \Pi =$	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	321	ft ²
Reactor length and width dimensions for a square reactor =	(A _{SCR}) ^{0.5}	17.9	feet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	50	feet

Reagent Data:

Type of reagent used

Molecular Weight of Reagent (MW) = 17.03 g/moleDensity = 58 lb/ft^3

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	(NOx _{in} x Q _B x EF x SRF x MW _R)/MW _{NOx} =	11	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	59	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	8	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	2,600	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Ammonia

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	297.52	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers				
For Oil and Natural Gas-Fired Utility Boilers betw	veen 25MW and 500 MW:			
	TCI = 86,380 x (200/B _{MW}) ^{0.35} x B _{MW} x ELEVF x RF			
For Oil and Natural Gas-Fired Utility Boilers >500	0 MW:			
	TCI = 62,680 x B_{MW} x ELEVF x RF			
For Oil-Fired Industrial Boilers between 275 and	5,500 MMBTU/hour :			
	TCI = 7,850 x (2,200/Q _B) ^{0.35} x Q _B x ELEVF x RF			
For Natural Gas-Fired Industrial Boilers between	1 205 and 4,100 MMBTU/hour :			
	TCI = 10,530 x (1,640/Q _B) ^{0.35} x Q _B x ELEVF x RF			
For Oil-Fired Industrial Boilers >5,500 MMBtu/ho	our:			
	TCI = 5,700 x Q_B x ELEVF x RF			
For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:				
$TCI = 7,640 \times Q_B \times ELEVF \times RF$				
Total Capital Investment (TCI) =	\$6,706,591	in 2017 dollars		

	Annual Costs	
	Total Annual Cost (TAC)	
TAC = Direct	t Annual Costs + Indirect Annual Costs	
Direct Annual Costs (DAC) =	\$872,673 in 2017 dollars	
Indirect Annual Costs (IDAC) =	\$564,372 in 2017 dollars	
Total annual costs (TAC) = DAC + IDAC	\$1,437,045 in 2017 dollars	
Γ	Direct Annual Costs (DAC)	
DAC = (Annual Maintenance Cost) + (Annu	al Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)	

Annual Maintenance Cost =	0.005 x TCI =	\$33,533 in 2017 dollars
Annual Reagent Cost =	m _{sol} x Cost _{reag} x t _{op} =	\$376,057 in 2017 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$417,003 in 2017 dollars

Appendix B.2 - BACT Cost Effectiveness (CO2 Compressor Generator)

GTP BACT ANALYSIS 7th Edition EPA Cost Control Manual

Annual Catalyst Replacement Cost =

Direct Annual Cost =

\$46,080 in 2017 dollars

 $n_{scr} x Vol_{cat} x (CC_{replace}/R_{layer}) x FWF$

\$872,673 in 2017 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$3,030 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$561,342 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$564,372 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$1,437,045 per year in 2017 dollars
NOx Removed =	126 tons/year
Cost Effectiveness =	\$11,432 per ton of NOx removed in 2017 dollars

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.5

APPENDIX B.3

GTP Treated Gas Compressor Turbines

Data Inputs			
Enter the following data for your combustion unit:			
Is the combustion unit a utility or industrial boiler? Is the SCR for a new boiler or retrofit of an existing boiler?	Industrial v Construction	What type of fuel does the unit burn?	
Complete all of the highlighted data fields:		Not applicable to units burning fuel oil or natural gas	
What is the maximum heat input rate (QB)?	702.64 MMBtu/hour	Type of coal burned:	
What is the higher heating value (HHV) of the fuel? HHV per GTP Fuel Gas specifications.	1,077 Btu/scf	Enter the sulfur content (%S) = percent by weight	
What is the estimated actual annual fuel consumption?	5,715,066,295 scf/Year	Not applicable to units buring fuel oil or natural gas	
Enter the net plant heat input rate (NPHR)	15.946 MMBtu/MW	Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided. Fraction in Coal Type Coal Blend %S HHV (Btu/lb)	
If the NPHR is not known, use the default NPHR value:	Fuel TypeDefault NPHRCoal10 MMBtu/MWFuel Oil11 MMBtu/MWNatural Gas8.2 MMBtu/MW	Bituminous01.8411,841Sub-Bituminous00.418,826Lignite00.826,685	
Plant Elevation	46 Feet above sea level	For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows	

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})

365 days 365 days Number of SCR reactor chambers (n_{scr})

Number of catalyst layers (R_{layer})

Number of days the boiler operates (t_{plant})

1	
3	

	Ammonia	•	
Select the reagent used	•	_	29.4
Number of days reagent is stored (t _{storage})		14 days	<u>Den</u> 50%
Density of reagent as stored (ρ_{stored})		58 lb/cubic feet	
Concentration of reagent as stored (C _{stored})		19 percent	Base case fuel gas volumetric flow rate f
* For industrial boilers, the typical equipment life is between 20 a	and 25 years.		Pace case fuel gas volumetric flow rate f
Estimated SCR equipment life		20 Years*	Gas temperature at the SCR inlet (T)
Estimated operating life of the catalyst $(H_{catalyst})$		26,280 hours	
Notes: Weighted average inlet Nox (Main Burner - 0.0	055 lb/MMBtu, Supplen	nental Firing - 0.08 lb/MMBtu) per Gas Turbing	e Vendor. Outlet NOx 2 ppmv per EPA.
*The SRF value of 1.05 is a default value. User should enter actua	i value, if known.		Flue gas flow rate (Q _{fluegas}) (Enter "UNK" if value is not known)
Stoichiometric Ratio Factor (SRF)		1.050	(Enter "UNK" if value is not known)
Outlet NO _x Emissions (NOx _{out}) from SCR		0.0074 lb/MMBtu	Ammonia Slip (Slip) provided by vendor Volume of the catalyst layers (Vol _{catalyst})
Inlet NO _x Emissions (NOx _{in}) to SCR		0.0651 lb/MMBtu	Number of empty catalyst layers (R _{empty}

Desired dollar-year	2017	
CEPCI for 2017	567.5 Enter the CEPCI value for 2017 541.7 2016 CEPCI	CEPCI = Chemical Er
Annual Interest Rate (i)	5.5 Percent*	* 5.5 percent is the defa https://www.federalrese
Reagent (Cost _{reag})	5.670 \$/gallon for 19% ammonia	Ammonia cost per Brenr
Electricity (Cost _{elect})	0.1600 \$/kWh	Electricity pricing per De in Alaska: https://www.
Catalyst cost (CC _{replace})	\$/cubic foot (includes removal and disposal/regeneration of existing 227.00 catalyst and installation of new catalyst	* \$227/cf is a default va if known.
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60/hour is a default
Operator Hours/Day	4.00 hours/day*	* 4 hours/day is a defau

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) = 0.005 0.03

1	
5	ppm
2,692	Cubic feet
385879	acfm

750 °F ctor (Q_{fuel}) 549.18 ft³/min-MMBtu/hour

> 71 lbs/ft³ 56 lbs/ft³

sities of typical SCR reagents: ourea solution 1% aqueous NH₃

ngineering Plant Cost Index

ault bank prime rate. User should enter current bank prime rate (available at erve.gov/releases/h15/.)

ntag quote (June 15, 2015).

epartment of Energy, annual retail sales of electricity to industrial customers .eia.gov/electricity/data.php#sales

lue for the catalyst cost based on 2016 prices. User should enter actual value,

value for the operator labor rate. User should enter actual value, if known.

ult value for the operator labor. User should enter actual value, if known.

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Annual Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	703	MMBtu/hour	1
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	5,715,066,295	scf/Year	
Actual Annual fuel consumption (Mactual) =		5,715,066,295	scf/Year	
Heat Rate Factor (HRF) =	NPHR/10 =	1.59		
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction	
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	8760	hours	
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	88.7	percent	
NOx removed per hour =	NOx _{in} x EF x Q _B =	40.58	lb/hour	
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	177.74	tons/year	1
NO _x removal factor (NRF) =	EF/80 =	1.11		1
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	385,879	acfm	1
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	143.34	/hour	
Residence Time	1/V _{space}	0.01	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia	not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	New Construction	0.80		

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
	(interest rate)(1/((1+ interest rate) ^Y -1) , where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer	0.3157	Fraction

Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	2,692.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	402	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	462	ft ²
Reactor length and width dimensions for a square	$(A_{ccn})^{0.5}$	21.5	feet
reactor =	1. 2CK		
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	50	feet

Reagent Data:

Type of reagent used

Molecular Weight of Reagent (MW) = 17.03 g/moleDensity = 58 lb/ft^3

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	16	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	83	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	11	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	3,600	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Ammonia

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	480.91	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

	TCI for Oil and Natural Gas Boilers	
For Oil and Natural Gas-Fired Utility Boilers between 2	25MW and 500 MW:	
	TCI = 86,380 x (200/B _{MW}) ^{0.35} x B _{MW} x ELEVF x RF	
For Oil and Natural Gas-Fired Utility Boilers >500 MW	:	
	TCI = $62,680 \times B_{MW} \times ELEVF \times RF$	
For Oil-Fired Industrial Boilers between 275 and 5,500) MMBTU/hour :	
	TCI = 7,850 x (2,200/Q _B) ^{0.35} x Q _B x ELEVF x RF	
For Natural Gas-Fired Industrial Boilers between 205 a	and 4,100 MMBTU/hour :	
	TCI = 10,530 x (1,640/Q _B) ^{0.35} x Q _B x ELEVF x RF	
For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:		
	TCI = 5,700 x Q_B x ELEVF x RF	
For Natural Gas-Fired Industrial Boilers >4,100 MMBtu	u/hour:	
	TCI = 7,640 x Q_B x ELEVF x RF	
Total Capital Investment (TCI) =	\$8,342,517	in 2017 dollars

Anr	nual Costs
Total An	nnual Cost (TAC)
TAC = Direct Annual (Costs + Indirect Annual Costs
Direct Annual Costs (DAC) =	\$1,311,798 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$701,397 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$2,013,195 in 2017 dollars
Direct An	inual Costs (DAC)
DAC = (Annual Maintenance Cost) + (Annual Reage	nt Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$41,713 in 2017 dollars
Annual Reagent Cost =	$m_{sol} x Cost_{reag} x t_{op} =$	\$531,735 in 2017 dollars
Annual Electricity Cost =	P x Cost _{elect} x t_{op} =	\$674,044 in 2017 dollars

Appendix B.3 - BACT Cost Effectiveness (Treated Gas Compressor Generator)

GTP BACT ANALYSIS 7th Edition EPA Cost Control Manual

Annual Catalyst Replacement Cost =

Direct Annual Cost =

\$64,306 in 2017 dollars

n_{scr} x Vol_{cat} x (CC_{replace}/R_{layer}) x FWF

\$1,311,798 in 2017 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$3,129 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$698,269 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$701,397 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$2,013,195 per year in 2017 dollars	
NOx Removed =	178 tons/year	
Cost Effectiveness =	\$11,327 per ton of NOx removed in 2017 dollars	

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.5

APPENDIX B.4

LNG Power Generation Turbines

Data Inputs		
nter the following data for your combustion unit:	:	
the combustion unit a utility or industrial boiler?	Industrial 🗸	What type of fuel does the unit burn? Natural Gas
the SCR for a new boiler or retrofit of an existing boiler?	New Construction	
omplete all of the highlighted data fields:		
What is the maximum heat input rate $(OB)^2$	430 MMBtu/h	Not applicable to units burning fuel oil or natural gas Type of coal burned: Not Applicable
What is the maximum heat input rate (QB)?		Type of coal burned: Not Applicable
What is the higher heating value (HHV) of the fuel? HHV per LNG Fuel Gas specifications - RR9 - Appendix D.	1,087 Btu/scf	Enter the sulfur content (%S) = percent by weight
What is the estimated actual annual fuel consumption?	3,465,317,387 scf/Year	
		Not applicable to units buring fuel oil or natural gas
		Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the
Enter the net plant heat input rate (NPHR)	9.759 MMBtu/M	
If the NPHR is not known, use the default NPHR value:	Fuel Type Default NF	Fraction in Coal Type Coal Blend %S HHV (Btu/lb)
If the NERK IS NOT KNOWN, use the default NERK value.	Fuel TypeDefault NFCoal10 MMBtuFuel Oil11 MMBtu	u/MW Sub-Bituminous 0 0.41 8,826
	Natural Gas 8.2 MMBt	
		values based on the data in the table above.
Plant Elevation	131 Feet above	For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the
Elevation per RR9 - Appendix D, Section 1.1.		catalyst replacement cost. The equations for both methods are shown on rows 85O Method 1and 86 on the Cost Estimate tab. Please select your preferred method:O Method 2Not applicableNot applicable
nter the following design parameters for the prop		

Number of days the SCR operates (t_{SCR})
 Number of days the boiler operates (t_{plant})
 Inlet NO_x Emissions (NOx_{in}) to SCR
 Outlet NO_x Emissions (NOx_{out}) from SCR
 Stoichiometric Ratio Factor (SRF)

365	days
365	days
0.0553	lb/MMBtu
0.0074	lb/MMBtu
1.050	

Number of SCR reactor chan

Number of catalyst layers (R

Number of empty catalyst la

Ammonia Slip (Slip) provided Volume of the catalyst layer (Enter "UNK" if value is not l

mharc(n)		
mbers (n _{scr})	1	
R _{layer})	2	
ayers (R _{empty})	1	
ed by vendor	5	ppm
rs (Vol _{catalyst}) known)	1,635	Cubic feet

*The SRF value of 1.05 is a default value. User should enter actual value, if known.

Flue gas flow rate (Q_{fluegas}) (Enter "UNK" if value is not known)

Notes: Inlet Nox 15 ppmv per Gas Turbine Vendor. Outlet NOx 2 ppmv per EPA.

Estimated operating life of the catalyst (H _{catalyst})	26,280 hours	
Estimated SCR equipment life * For industrial boilers, the typical equipment life is between 20 and 25 years.	20 Years*	Gas temperature at t
For industrial bollers, the typical equipment life is between 20 and 25 years.		Base case fuel gas vo
Concentration of reagent as stored (C _{stored})	19 percent	
Density of reagent as stored (ρ_{stored})	58 lb/cubic feet	
Number of days reagent is stored (t _{storage})	14 days	

Select the reagent used

 \bullet Ammonia

Enter the cost data for the proposed SCR:

Desired dollar-year	2017	
CEPCI for 2017	567.5 Enter the CEPCI value for 2017 541.7 2016 CEPCI	CEPCI
Annual Interest Rate (i)	5.5 Percent*	* 5.5 p https:/
Reagent (Cost _{reag})	2.240 \$/gallon for 19% ammonia	Ammo
Electricity (Cost _{elect})	0.1600 \$/kWh	Electric in Alas
Catalyst cost (CC _{replace})	\$/cubic foot (includes removal and disposal/regeneration of existing 227.00 catalyst and installation of new catalyst	* \$227 if knov
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60/
Operator Hours/Day	4.00 hours/day*	* 4 ho

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance Cost Factor (MCF) =	0.005
Administrative Charges Factor (ACF) =	0.03

Maintenance and Administrative Charges Cost Factors:

351168 acfm

at the SCR inlet (T)

<mark>341</mark> ⁰F

volumetric flow rate factor (Q_{fuel})

816.67 ft³/min-MMBtu/hour

Densities of typical SCR reagents:	
50% urea solution	71 lbs/ft ³
29.4% aqueous NH_3	56 lbs/ft ³

PCI = Chemical Engineering Plant Cost Index

percent is the default bank prime rate. User should enter current bank prime rate (available at s://www.federalreserve.gov/releases/h15/.)

nonia cost based on \$0.30/pound (Weekly Fertilizer Review, 4/2015)

ricity pricing per Department of Energy, annual retail sales of electricity to industrial customers aska: https://www.eia.gov/electricity/data.php#sales

27/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, own.

50/hour is a default value for the operator labor rate. User should enter actual value, if known.

nours/day is a default value for the operator labor. User should enter actual value, if known.

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	430	MMBtu/hour
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	3,465,317,387	scf/Year
Actual Annual fuel consumption (Mactual) =		3,465,317,387	scf/Year
Heat Rate Factor (HRF) =	NPHR/10 =	0.98	
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	8760	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	86.7	percent
NOx removed per hour =	NOx _{in} x EF x Q _B =	20.61	lb/hour
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	90.26	tons/year
NO _x removal factor (NRF) =	EF/80 =	1.08	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	351,168	acfm
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	214.78	/hour
Residence Time	1/V _{space}	0.00	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00	
SO_2 Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =		C C
Elevation Factor (ELEVF) =	14.7 psia/P =		Ν
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.6	n psia e
Retrofit Factor (RF)	New Construction	0.80	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) ^Y -1), where $Y = H_{catalyts}/(t_{SCR} x)$		
	24 hours) rounded to the nearest integer	0.3157	Fraction
Catalyst volume (Vol _{catalyst}) =			
Catalyst volume (vol _{catalyst}) –	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	1,635.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	366	ft ²

ot applicable; factor applies only to al-fired boilers

ot applicable; elevation factor does ot apply to plants located at evations below 500 feet.

Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3 feet
---	--	--------

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	421	ft ²
Reactor length and width dimensions for a square	ν Δ Δ.5	20 F	foot
reactor =	(A _{SCR}) ^{0.5}	20.5	leet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	40	feet

Reagent Data:

•			
Type of reagent used	Ammonia	Molecular Weight of Reagent (MW) =	17.03 g/mole
			•

Density =

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	8	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	42	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	5	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	1,900	gallons (storage needed to store a 1

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	238.28	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

14 day reagent supply rounded to t

58 lb/ft³

Cost Estimate

Total Capital Investment (TCI)

	TCI for Oil and Natural Gas Bollers			
F	For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:			
	TCI = 86,380 x (200/B _{MW}) ^{0.35} x B _{MW} x ELEVF x RF			
F	or Oil and Natural Gas-Fired Utility Boilers >500 MW:			
	$TCI = 62,680 \times B_{MW} \times ELEVF \times RF$			
F	or Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour :			
	TCI = 7,850 x (2,200/Q _B) ^{0.35} x Q _B x ELEVF x RF			
F	or Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour :			
	$TCI = 10,530 \times (1,640/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$			
F	or Oil-Fired Industrial Boilers >5,500 MMBtu/hour:			
	$TCI = 5,700 \times Q_B \times ELEVF \times RF$			
F	or Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:			
	$TCI = 7,640 \times Q_B \times ELEVF \times RF$			
_				
Т	Total Capital Investment (TCI) =\$6,062,828in 2017 dollars			

Annual Costs

Total Annual Cost (TAC) TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$529,557 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$510,450 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$1,040,007 in 2017 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$30,314 in 2017 dollars
Annual Reagent Cost =	$m_{sol} x Cost_{reag} x t_{op} =$	\$106,678 in 2017 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$333,980 in 2017 dollars
Annual Catalyst Replacement Cost =		\$58,585 in 2017 dollars
1		

 $n_{scr} x Vol_{cat} x (CC_{replace}/R_{layer}) x FWF$

Direct Annual Cost =

\$529,557 in 2017 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$2,992 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$507,459 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$510,450 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$1,040,007 per year in 2017 dollars	
NOx Removed =	90 tons/year	
Cost Effectiveness =	\$11,522 per ton of NOx removed in 2017 dollars	

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.5

APPENDIX B.5

LNG Compressor Turbines

Data Inputs			
Enter the following data for your combustion unit:			
Is the combustion unit a utility or industrial boiler?	Industrial 🗸	What type of fuel does the unit burn? Natural Gas	
Is the SCR for a new boiler or retrofit of an existing boiler?	New Construction		
Complete all of the highlighted data fields:			
		Not applicable to units burning fuel oil or natural gas	
What is the maximum heat input rate (QB)?	1164 MMBtu/hour	Type of coal burned: Not Applicable	
What is the higher heating value (HHV) of the fuel? HHV per LNG Fuel Gas specifications - RR9 - Appendix D.	1,087 Btu/scf	Enter the sulfur content (%S) = percent by weight	
What is the estimated actual annual fuel consumption?	9,380,533,579 scf/Year		
		Not applicable to units buring fuel oil or natural gas	
		Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the	
Enter the net plant heat input rate (NPHR)	26.417 MMBtu/MW	default values provided.	
		Fraction in Coal Type Coal Blend %S HHV (Btu/lb)	
If the NPHR is not known, use the default NPHR value:	Fuel TypeDefault NPHRCoal10 MMBtu/MW	Bituminous 0 1.84 11,841	
	Fuel Oil11 MMBtu/MWNatural Gas8.2 MMBtu/MW		
		Please click the calculate button to calculate weighted average values based on the data in the table above.	
Plant Elevation	131 Feet above sea	For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the	
Elevation per RR9 - Appendix D, Section 1.1.		catalyst replacement cost. The equations for both methods are shown on rows 85O Method 1and 86 on the Cost EstimateO Method 2Image: Stress of the cost in the cost i	

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})
Number of days the boiler operates (t_{plant})
Inlet NO _x Emissions (NOx _{in}) to SCR
Outlet NO_x Emissions (NOx_{out}) from SCR
Stoichiometric Ratio Factor (SRF)

365	days
365	days
0.0553	lb/MMBtu
0.0074	lb/MMBtu
1.050	

Number of SCR reactor chan

Number of catalyst layers (R

Number of empty catalyst la

Ammonia Slip (Slip) provided Volume of the catalyst layers (Enter "UNK" if value is not k

mbers (n _{scr})	1	
R _{layer})	2	
ayers (R _{empty})	1	
ed by vendor	5	ppm
rs (Vol _{catalyst}) known)	4,080	Cubic feet

*The SRF value of 1.05 is a default value. User should enter actual value, if known.

Flue gas flow rate (Q_{fluegas}) (Enter "UNK" if value is not known)

Notes: Updated assumes inlet Nox 15 ppmv. Outlet NOx 2 ppmv per EPA.

Estimated operating life of the catalyst (H _{catalyst})	26	,280	hours		
Estimated SCR equipment life * For industrial boilers, the typical equipment life is between 20 and 25 years.		20	Years*		Gas temperature at the
Tor muustral bollers, the typical equipment me is between 20 and 25 years.				_	Base case fuel gas volum
Concentration of reagent as stored (C _{stored})		19	percent		
Density of reagent as stored (ρ_{stored})		58	b/cubic feet		
Number of days reagent is stored (t _{storage})		14	days		
Select the reagent used Ammo	nia 🗸				

Enter the cost data for the proposed SCR:

Desired dollar-year	2017				
CEPCI for 2017	567.5	Enter the CEPCI value for 2017	541.7	2016 CEPCI	CEPCI
Annual Interest Rate (i)	5.5	Percent*			* 5.5 p https:/,
Reagent (Cost _{reag})	2.240	\$/gallon for 19% ammonia			Ammoi
Electricity (Cost _{elect})	0.1600	\$/kWh			Electric in Alasi
Catalyst cost (CC _{replace})	227.00	900 \$/cubic foot (includes removal and disposal/regeneration of existing catalyst and installation of new catalyst		* \$227, if know	
Operator Labor Rate	60.00	\$/hour (including benefits)*			* \$60/
Operator Hours/Day	4.00	hours/day*			* 4 ho

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance Cost Factor (MCF) =	0.005
Administrative Charges Factor (ACF) =	0.03

Maintenance and Administrative Charges Cost Factors:

1535885 acfm

e SCR inlet (T)

970 °F

metric flow rate factor (Q_{fuel})

1319.49 ft³/min-MMBtu/hour

Densities of typical SCR reagents:	
50% urea solution	71 lbs/ft ³
29.4% aqueous NH ₃	56 lbs/ft ³

PCI = Chemical Engineering Plant Cost Index

percent is the default bank prime rate. User should enter current bank prime rate (available at s://www.federalreserve.gov/releases/h15/.)

nonia cost based on \$0.30/pound (Weekly Fertilizer Review, 4/2015)

ricity pricing per Department of Energy, annual retail sales of electricity to industrial customers aska: https://www.eia.gov/electricity/data.php#sales

27/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, own.

50/hour is a default value for the operator labor rate. User should enter actual value, if known.

nours/day is a default value for the operator labor. User should enter actual value, if known.

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	1,164	MMBtu/hour
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	9,380,533,579	scf/Year
Actual Annual fuel consumption (Mactual) =		9,380,533,579	scf/Year
Heat Rate Factor (HRF) =	NPHR/10 =	2.64	
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	8760	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	86.7	percent
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	55.78	lb/hour
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	244.32	tons/year
NO _x removal factor (NRF) =	EF/80 =	1.08	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	1,535,885	acfm
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	376.44	/hour
Residence Time	1/V _{space}	0.00	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00	
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =		
Elevation Factor (ELEVF) =	14.7 psia/P =		
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.6	psia
Retrofit Factor (RF)	New Construction	0.80	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
	(interest rate)(1/((1+ interest rate) ^Y - 1), where $Y = H_{catalyts}/(t_{SCR} x)$	0.2457	Function
	24 hours) rounded to the nearest integer	0.3157	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	4,080.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	1,600	ft ²

ot applicable; factor applies only to al-fired boilers

ot applicable; elevation factor does ot apply to plants located at evations below 500 feet.

Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	2 feet
---	--	--------

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	1,840	ft ²
Reactor length and width dimensions for a square	()0.5	42.9	faat
reactor =	(A _{SCR}) ^{0.5}	42.9	leet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	37	feet

Reagent Data:

•			
Type of reagent used	Ammonia	Molecular Weight of Reagent (MW) =	17.03 g/mole
			•

Density =

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	22	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	114	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	15	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	5,000	gallons (storage needed to store a 1

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	989.	30 kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

14 day reagent supply rounded to t

58 lb/ft³

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers			
For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500	MW:		
TC	CI = 86,380 x (200/B _{MW}) ^{0.35} x B _{MW} x ELEVF x RF		
For Oil and Natural Gas-Fired Utility Boilers >500 MW:			
	TCI = 62,680 x B_{MW} x ELEVF x RF		
For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour	:		
	TCI = 7,850 x (2,200/Q _B) ^{0.35} x Q _B x ELEVF x RF		
For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMB	TU/hour :		
Т	$CI = 10,530 \text{ x} (1,640/Q_B)^{0.35} \text{ x} Q_B \text{ x} ELEVF \text{ x} RF$		
For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:			
	TCI = 5,700 x Q_B x ELEVF x RF		
For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:			
	TCI = 7,640 x Q_B x ELEVF x RF		
Total Capital Investment (TCI) =	\$11,582,176	in 2017 dollars	

Annual Costs

Total Annual Cost (TAC) TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$1,880,178 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$972,751 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$2,852,930 in 2017 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Reagent Cost = $m_{sol} x Cost_{reag} x t_{op} =$	\$288,765 in 2017 dollars
Annual Electricity Cost = P x Cost _{elect} x t _{op} =	\$1,387,308 in 2017 dollars
Annual Catalyst Replacement Cost =	\$146,194 in 2017 dollars

 $n_{scr} x Vol_{cat} x (CC_{replace}/R_{layer}) x FWF$

Direct Annual Cost =

\$1,880,178 in 2017 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$3,323 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$969,428 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$972,751 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$2,852,930 per year in 2017 dollars
NOx Removed =	244 tons/year
Cost Effectiveness =	\$11,677 per ton of NOx removed in 2017 dollars

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix C

APPENDIX C – SUPPORTING INFORMATION LNG COMPRESSOR TURBINES

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix C.1

APPENDIX C.1

AeriNOx SCR Quote (January 2020)

Lisa Kiehl

From: Sent:	Loran Novacek <inovacek@aerinox-inc.com> Tuesday, January 7, 2020 5:08 PM</inovacek@aerinox-inc.com>
То:	Joel LeBlanc
Cc:	Bart Leininger; Lisa Kiehl
Subject:	RE: SCR Sizing and Quote

Hi Joel,

Below is a very rough budgetary but should get you ballpark. This is for a horizontal duct from the turbine outlet flange to the top of the stack. I am assuming a 150ft stack height for now. We will need more customer requirements to pull together better pricing for the entire exhaust and SCR system. If CEMS is required we can include this in our scope since it allows us to drop our analyzer, used for closed loop control and use the CEMS for the feedback.

I am planning to be in the Houston area next week. Would you have time for a meeting?

ITEM	DESCRIPTION	BUDGETARY PRICE (USD)
001	SCR-OXICAT SYSTEM (Per Unit)	GTP TG COMP \$4,100,000
	 1 x Ducting / SCR Housing / Silencer 	GTP ACID GC \$3,500,000
	 1 Layer of SCR Catalyst with CS modules Ducting from Turbine Outlet to SCR 	GTP LNG \$4,100,000
	 Expansion joint at Turbine Outlet Ducting from SCR to Tailpipe Silencer / Tailpipe with Test Ports, 150ft Height 1 x Tempering Air System (2 x Blowers) 1 x Ammonia Injection Grid 1 x Recycle Gas Skid, each including: 1 x Two-Phase Injection Lance for ammonia/air 1 x Static mixer 1 x Ventilator fan 1 x SCR Control System with Touch-screen and PLC 1 x Ammonia Pump Station (2 x 100% pumps) 1 x Ammon Storage Tank, SS304 Engineering, Operation & Maintenance Documentation 	LNG MRC \$7,800,000
002	COMMISSIONING	\$45,000
	(Based on Time and Material Only – Per Unit) <u>Estimated</u> 10 man-days (Per Turbine) for the commissioning of the emission control system to meet the required emissions levels, plus all travel expenses and accommodations. We can provide qualified personnel to supervise installation at the rate of \$1,350 per man-day, plus all travel expenses. Commissioning time/expenses will be billed per the time and material rates.	
003	CONSTRUCTION SUPERVISION	\$120,000
	(Based on Time and Material Only – Per Unit) <u>Estimated</u> 60 man-days (Per Turbine) for the construction supervision/support of the emission control system. Includes	

Annendiy C	1 - RACTC	cost Effectiveness
Appendix 0.		

estimated travel expenses and accommodations. Construction	
supervision is based time/expenses will be billed per the time	
and material rates. NOT REQUIRED	

PRICE

The given prices for the SCR Emissions Control System are net prices, FCA Point of Manufacture per Incoterms 2010. All prices are in US dollars. Not included are duties, fees or taxes. Taxes will be included on each invoice unless a tax-exempt certificate is supplied.

PAYMENT

25% of the order value upon initial order;
20% of the order value with approval of engineering documents
20% of the order value upon release for manufacturing
30% of the order value with 'ready to ship' of hardware
5% of the order value after successful commissioning, not to exceed six (6) months after delivery

All payments are to be paid within 30 days after each date of invoice, net.

SCHEDULING & DELIVERY

Delivery of the drawings and technical documents is as follows:

- Preliminary Engineering Drawings Approximately 20 weeks after receipt of a purchase order for preliminary drawings with final drawings approximately 12 weeks after customer review/approval
- Ready for Shipment of the hardware is approximately 32 weeks after engineering approval

EMISSION CONTROL SYSTEM DESIGN PARAMETERS:

Parameter	Unit	GTP TG COMP	GTP GAS COMP	GTP LNG COMP	LNG MRC
Estimated Reagent Flow Rate, Based on 19% Aqueous Ammonia, Per Turbine	GPH	8.5	5.5	8.5	14
Aqueous NH3 Tank Size	USG	15,000	10,000	15,000	25,000
Total System Backpressure Contribution (AIG + SCR + Ducting / Silencer / Tailpipe)	inH₂O	<10	<10	<10	<10
Air Consumption, Per Turbine (Based on 87 psi nominal, max 160 psi, Per ISO 1.2.4	cfm	25	15	25	25

EMISSIONS GUARANTEE & WARRANTY

Emission*	Units	Current Turbine Out	Required Stack Out*		
NOx as NO ₂ **	ppm @15% O₂	15	2		

* based on 1 hour averaging with the turbine operating at 100% load **Maximum 20% volume of NOx is present as NO₂

Not included in the scope of supply:

Load signal from the turbine (4-20 mA or 0-5 VDC)

Appendix C.1 -BACT Cost Effectiveness

- Unit running signal (Digital dry contact, closed when turbine is running)
- Internet connection for remote SCR PLC access and data logging
- Ethernet connection for service requirements
- Structural and civil work necessary to complete the installation
- Aqueous Ammonia Solution (assumed to be delivered to the site)
- Heat tracing of Ammonia tank or Ammonia lines
- Air compressor for aqueous ammonia atomization (available as an option)
- Provision for electricity and connection of the power supply to the enclosure
- System integration (design and engineering) with the building structure
- Connection to the local supply and disposal network
- Platforms and other support structures not listed herein
- Any 3rd party emission certification of stack test
- Installation of all hardware
- Shipping and crating

Regards,

Loran Novacek Chief Executive Officer

AeriNOx[®] Inc.

100 S. Cherry Ave, Ste 6B Eaton, CO 80615 Main: 970-454-5639, Ext10 Cell: 970-443-3868 Email: <u>Inovacek@aerinox-inc.com</u> Web: <u>www.aerinox-inc.com</u> AeriNOx

From: Joel LeBlanc <jleblanc@algcorp.com>
Sent: Friday, January 3, 2020 5:01 PM
To: Loran Novacek <Inovacek@aerinox-inc.com>
Cc: Bart Leininger <bleininger@algcorp.com>; Lisa Kiehl <lkiehl@algcorp.com>
Subject: RE: SCR Sizing and Quote

We made some updates to the data, some of which include a correction for power output. The updates are included in the attachment.

With regards to the NOx emissions requirement, the SCR outlet should meet 2 ppm NOx.

ASHWORTHLEININGERGROUP Los Angeles • San Francisco • Houston • Denver Joel LeBlanc, P.E. | Houston General Manager T: 281.806.5830 | C: 346.246.8036 | F: 805.764.6011 2219 Sawdust Rd, Suite 1604, Spring, TX 77380 jleblanc@algcorp.com | www.algcorp.com

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix C.2

APPENDIX C.2

Brentag Ammonia Cost Quote (2015)

URS					Calculation No USAG-EC-F		-00-0	00147
	CA	LCULATIO	Project No.					
Project Title:		Ala	Sheet No.	of	6			
Subject/Feature:		SCR, CO, and An	Rev:		А			
<u>SCR Ammonia</u> Supplier 19% Aq. Ammonia ISO Container Size Density	\$/gal gallons Ib/gal	Brenntag \$5.67 6000 7.74	<u>Univar</u> \$3.20 5000 7.83	<u>Comments</u> Brenntag did i Assumed valu	sity.		Ref 1, 2 1, 2 2	
Container Weight FOB	lb	46,440 Prudhoe Bay Area	39,150 Anchorage					
Trucking Cost # Trucks From		1 Prudhoe Bay Area	1 Anchorage					
То		Prudhoe Bay Area	Prudhoe Bay Area					
Distance	mi	0	860	Fairbanks to F miles per Ref	Prudhoe bay is 3 3.	500		3
Fuel Efficiency	mi/gal	4	4	Assumed ave	rage to/from site	е		3
Truck Cost	\$/100 lb \$0.00 \$19.92 Price for Fairbanks to Prudhoe Bay Ref 3, Escalated 2012 cost @ 3%/yr and adjusted for milage.							3
Fuel Surcharge Total Transit Cost	\$/gal fuel per container \$/gal	\$0.00 \$0 \$0.00	\$5.98 \$10,370 \$2.07	Assumed 30%	6			
Delivered Ammonia Cost	\$/gal \$/gal	\$5.67	\$2.07					

URS								Calculation No. USAG-EC-PCCAL-00-00014					
UILS .			CALC	Project No. 31409									
Project Title:					Sheet No.	2 of							
Subject/Feature:			S	Rev:	А								
SCR Catalyst								-					
		Case A	Cas	se B	Case C	Case D		Ref.					
Reference (for turbine data)		[7]	[7]	[7]	[7]	[7]	[7]	[8]					
Reference for Cost								[3]					
		No heat	with heat	DLN1+	DLN1								
Gas Turbine		LM6000	LM6000	Frame6	Frame6	Heater	PGT25+	Frame 7EA					
Drive		Power Gen	Power Gen	Mechanical	Mechanical			Mechanical					
Exhaust Stream													
Mass Flow	[lb/hr]	1,135,408	1,082,488	1,291,288	1,291,288	243,609	648,000.00	2,293,200.00					
Volume Flow	[ACFM]	657,282	626,647	747,520	747,520	93,493	379,037.00	1,464,659					
	[SCFM]	251,314	239,600	285,816	285,816	105,688	139,688	511,156					
Stack Diameter	[ft]	10	10	13	10								
		\$ 187,567.22	\$ 178,824.94	\$ 213,318.29	\$ 213,318.29	\$ 78,879.67	\$ 104,255.47	350,000					

Notes

1) Scaled costs from 2012 budgetary price for Frame 7EA [3] based on ACFM. New costs include 9% escalation to 2015 dollars as discussed in reference [5].

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix C.3

APPENDIX C.3

GTP Cost Estimate Basis for SCR Cost Evaluation (Confidential)

PRIVILEGED AND CONFIDENTIAL - DO NOT RELEASE

GTP Cost Factors for SCR Cost Control Calculation

Cost Category	GTP Cost Estimate Basis Line Item (see MFS and North Slope Estimate tabs)	Cost Estimate %	AGDC Factor ¹	EPA Factor ²	Comments Regarding AGDC Approach
Direct Capital Costs					
Instrumentation & Controls			0%	10%	Included in purchased equipment
Freight				5%	
	FREIGHT TO MODULE FABRICATION SITE	10%	11%		Freight from US Vendor to MFS
	MISC FREIGHT TO NORTH SLOPE	1%	11%		Freight from Lower-48 to North Slope
Taxes (Enter sales tax rate in "% Applied")			0%	3%	No sales tax in Alaska.
Direct Installation Costs:					
Foundation & Supports	NS- EARTHWORK, STRUCTURAL STEEL	9%	9%	8 - 12%	50% of North Slope module pile foundations and supporting structural steel installation cost ratio
Freeting and the diam	MFS -STRUCTURAL STEEL	30%	31%	14 - 40%	40% of the Structural Steel portion of the MFS installation cost ratio
Erection and Handling	NS - MECHANICAL / HVAC EQUIPMENT	1%	31%	14 - 40%	Mechanical portion of the MFS installation cost ratio
Electrical	MFS- ELECTRICAL, INSTRUMENATION	4%	4%	1 - 4%	50% of Electrical portion of the MFS installatin cost ratio, includes instrumentation
Piping	MFS - PIPING	5%	5%	2%	10% of Piping portion of the MFS installation cost ratio
Insulation	MFS-INSULATION	7%	7%	1%	30% Insulation portion of the MFS installation cost ratio
Indirect Capital Costs					
Indirect Costs:					
Engineering & Supervision				10%	
	MFS- GENERAL CONTRACTOR CM	5%	16%		MFS site engineering and construction management
	NS- CONTRACTOR CM @ SITE	11%]		North Slope engineering and construction management
Project Contingency			15%	3%	Level IV Cost Estimate Basis contingency

1 - Cost factors updated in January 2020 based on revised evaluation of potential costs.

2 - EPA factors as described in EPA Air Pollution Control Cost Manual, 6th Edition, EPA/452/B-01-001, January 2002.

PRIVILEGED AND CONFIDENTIAL - DO NOT RELEASE

SourceGas Treatment Plant Class IV Estimate Optimization PhaseDocument:AKLNG-4010-BBB-EST-DOC-00001(Confidential)

CLIENT: Alaska LNG PROJECT: Gas Treatment Plant LOCATION: Prudhoe Bay, Alaska JOB NO.: 31409 REV NO.: 0

OPTIMIZATION PHASE - GAS TREATMENT PLANT OVERALL MFS SUMMARY

ALASKA LNG

DATE: 07-Jul-16 PREPARED BY: IJH / MLH WAGE RATE (Blended): \$25.18

ACCT	DESCRIPTION		DIRECT HIRE		TOTAL	[%]	WEIGHT
ACCT.	DESCRIPTION —	HOURS LABOR MATERIALS					[ST]
01	DEMOLITION						
02	IMPROVEMENTS TO SITE						
03	EARTHWORK						
04	CONCRETE						
05	STRUCTURAL STEEL	31,158,788	\$784,221,019	\$276,495,489			111,420
06	MECHANICAL / HVAC EQUIPMENT	362,723	\$8,893,708	\$779,091,787			49,923
11	PIPING	4,993,879	\$123,298,190	\$114,826,059	\$238,124,249		31,587
12	ELECTRICAL	421,615	\$10,959,269	\$146,699,119	\$157,658,388	6%	13,759
13	INSTRUMENATION	225,375	\$5,735,712	\$58,324,827	\$64,060,539	3%	1,154
14	PAINTING	84,698	\$2,163,784	\$10,497,706	\$12,661,490	1%	1,108
15	INSULATION	844,154	\$23,414,643	\$79,739,753	\$103,154,396	4%	8,048
16	ARCHITECTURAL	179,802	\$5,065,259	\$20,823,161	\$25,888,421	1%	5,517
	DIRECT COSTS	38,271,034	\$963,751,585	\$1,486,497,901	\$2,450,249,486	100%	222,516
31	GENERAL CONTRACTOR CM	846,644	\$135,463,000		\$135,463,000		
32	CRAFT LABOR RELATED EXPENSES	0.0,0.1	¢,,		INCL. IN WAGE RATE		
33	TEMPORARY FACILITIES				INCL. IN WAGE RATE		
41	CONSTR EQUIP, TOOLS, SUPPLIES				INCL. IN WAGE RATE		
42	SMALL TOOLS & CONSUMABLES				INCL. IN WAGE RATE		
49	CONSTRUCTION CAMP (Not Included)				INCL. IN WAGE RATE		
51	STARTUP CRAFT SUPPORT ALLOWANCE				INCL. IN WAGE RATE		
22	FREIGHT TO MODULE FABRICATION SITI	10%	of Materials	\$148,649,790	\$148,649,790		
	INDIRECT COST	846,644	\$135,463,000	\$148,649,790	\$284,112,790		
		00 447 070			A O TO 1 000 0TO		
	TOTAL MODULE FABRICATION SHOP	39,117,678	\$1,099,214,585	\$1,635,147,691	\$2,734,362,276		

	WEIGHT
	[MT]
	100,359 45,172 28,601
	45 172
	28 601
_	12,432 1,045 998
	12,432
	1,045
	998
	7,117
	1 0 1 1
	4 911
	4,911
	4,911 200,636

SourceGas Treatment Plant Class IV Estimate Optimization Phase AKLNG-4010-Document:BBB-EST-DOC-00001(Confidential)

CLIENT: Alaska LNG PROJECT: Gas Treatment Plant LOCATION: Prudhoe Bay, Alaska JOB NO.: 31409 REV NO.: 0

OPTIMIZATION PHASE - GAS TREATMENT PLANT NORTH SLOPE SITEWORK PRIVILEGED AND CONFIDENTIAL - DO NOT RELEASE

ALASKA LNG

ACCT.	DESCRIPTION	FABRICATIO	N (CHINA & NORTI	H AMERICA)		DIRECT HIRE		SPECIALTY SUB	CONTRACTORS	ΤΟΤΑΙ	TOTAL [%] Costs		WEIGHT
ACCT.	DESCRIPTION	HOURS	LABOR	MATERIALS	HOURS	LABOR	MATERIALS	HOURS	Total	TUTAL		° [ST]	[MT]
01	DEMOLITION												
02	IMPROVEMENTS TO SITE												
03	EARTHWORK	417,136	\$19,509,499	\$82,356,940	594,618	\$52,326,431	\$15,886,804	659,829	\$324,191,851	\$494,271,525	51%		
04	CONCRETE												
05	STRUCTURAL STEEL	410,317	\$9,740,919	\$5,760,672	543,342	\$47,814,108	\$12,096,622			\$75,412,321	8%	14	13
06	MECHANICAL / HVAC EQUIPMENT				326,428	\$28,725,665	\$638,919			\$29,364,584	3%	3,128	2,838
11	PIPING	56,066	\$1,331,011	\$84,565,274	219,249	\$19,293,890	\$13,318,545			\$118,508,719	12%	520	472
12	ELECTRICAL				455,918	\$40,117,666	\$26,005,762			\$66,123,428	7%	1,421	1,289
13	INSTRUMENATION				11,826	\$849,691	\$27,375,692			\$28,225,383	3%	664	603
14	PAINTING				21	\$1,859	\$5,776			\$7,635	0%	0	0
15	INSULATION				2,694	\$237,031	\$30,217			\$267,248	0%	5	5
16	ARCHITECTURAL												
	MODULE INTERCONNECTS				1,778,464	\$156,504,832				\$156,504,832	16%		
	DIRECT FIELD COSTS	883,519	\$30,581,428	\$172,682,886	3,932,559	\$345,871,173	\$95,358,337	659,829	\$324,191,851	\$968,685,675	84%	5,753	5,220
32	CRAFT LABOR RELATED EXPENSES & INDIRECT CRA	FT			1,110,073	\$97,631,689	\$0			\$97,631,689	4%		
32	CRAFT TRAVEL				, -,	, , , , , , , , , , , , , , , , , , , ,	\$31,067,241			\$31,067,241			
41	SCAFFOLDING				705,193	\$62,022,218	\$6,004,627			\$68,026,845	2%		
51	START-UP & COMMISSIONING				509,572	\$44,817,168				\$44,817,168	2%		
42	SMALL TOOLS AND CONSUMABLES									INCL. IN WAGE RATE			
41	TEMPORARY FACILITIES				1,547,992	\$136,146,942	\$39,466,880			\$175,613,822	6%		
41	CONSTRUCTION EQUIPMENT				1,107,891	\$97,439,752	\$103,460,869			\$200,900,621	7%		
41	CONSTRUCTION EQUIPMENT HEAVY LIFT CRANES				356,446	\$31,349,625	\$38,500,000			\$69,849,625			
41	CRAFT BUSSING				499,846	\$43,961,772	\$4,500,000			\$48,461,772	2%		
22	MISC FREIGHT TO NORTH SLOPE						· · · ·		\$18,000,000	\$18,000,000	1%		
22	LOGISTICS								\$695,642,241	\$695,642,241	25%		
51	CONTRACTOR CM @ SITE				1,758,387	\$304,201,000			_	\$304,201,000	11%		
51	CONTRACTOR CM @ ANCHORAGE				236,234	\$30,237,952				\$30,237,952	1%		
	INDIRECT FIELD COSTS	883,519	\$30,581,428	\$172,682,886	11,764,194	\$1,193,679,289	\$318,357,955	659,829	\$1,037,834,092	\$2,753,135,650	100%	2.84	

DATE: 07-Jul-16 PREPARED BY: IJH / MLH WAGE RATE (Blended): \$87.95