

16 May 2019

Mr. Aaron Simpson Alaska Department of Environmental Conservation Division of Air Quality 410 Willoughby Avenue, Suite 303 Juneau, Alaska 99811-1800

Re: Prevention of Significant Deterioration Construction Permit Application Kenai Nitrogen Operations Kenai, Alaska

Dear Mr. Simpson:

Agrium U.S. Inc. (Agrium) was issued Air Quality Control Construction Permit AQ0083CPT06 on 6 January 2015 for the proposed restart of a portion of its Kenai Nitrogen Operations (KNO) fertilizer operation in Kenai, Alaska. As a result of certain design changes related to the project, Agrium is submitting a request for a new Prevention of Significant Deterioration (PSD) Construction Permit pursuant to 18 AAC 50.306 for this project. Changes from the original design relate to the five (5) Solar Turbines at the facility, the five (5) Waste Heat Boilers, and the three (3) Package Boilers. The proposed changes are described in greater detail below.

KNO now plans to replace the existing natural gas-fired Solar Turbines (Units 55, 56, 57, 58, and 59), with higher capacity natural gas-fired turbines. The existing Solar Turbines are rated at 37.6 MMBtu/hr, each and the proposed replacement Solar Turbines will be rated at 55.443 MMBtu/hr, each.

Due to the increased capacity and higher combustion temperatures of the replacement Solar Turbines, the supplemental heat input requirements for the existing Waste Heat Boilers (Units 50, 51, 52, 53, and 54) will be reduced. The Waste Heat Boilers are currently identified as having heat input capacities of 50.0 MMBtu/hr, each. Upon the replacement of the Solar Turbines, the heat input requirements of the Waste Heat Boilers will be 46.729 MMBtu/hr, each.

In addition to the changes related to the Solar Turbines and Waste Heat Boilers described above, KNO has made the decision to change the proposed nitrogen oxide (NOx) control technology for the three package boilers (Units 44, 48, and 49). NOx emissions from these units were proposed to be controlled through the

Aaron Simpson ADEC KNO PSD Application 16 May 2019 Page 2

use of ultra-low NOx burners and flue gas recirculation. KNO is now proposing to control NOx emissions from the three package boilers through the use of Selective Catalytic Reduction (SCR) control technology.

The following documents are included to provide ADEC with the necessary information to process Agrium's request for a PSD Construction Permit for KNO:

- Emission Unit Information forms for the units modified from the original design are provided in Attachment A. Application forms pertaining to units that have not been modified from the original design are incorporated by reference from the original application.
- Revised emission calculations for modified units are provided in Attachment B to this request. Emission calculations for units that have not been modified are incorporated by reference from the original application. Electronic copies of emission calculation spreadsheets for all units will be provided to ADEC separately.
- A detailed top-down BACT analysis for the Solar Turbines, Waste Heat Boilers, and Package Boilers is provided in Attachment C to this request. This document also includes an update to the BACT analysis for units that have not changed from the original design.
- Attachment D to this request contains an updated air quality impact analysis for the project that incorporates revised emission rates/stack parameters for units that have changed from the original design and addresses growth in the area since the date of the original PSD Construction Permit.

If you have any questions regarding this information, please contact Ted Hartman of Agrium at (913) 302-7469 or Dave Jordan of ERM at (317) 706-2006.

Sincerely

Frederick C. Werth Manager, Kenai Plant

cc: Ted Hartman, Agrium David Jordan, ERM Aaron Simpson ADEC KNO PSD Application 16 May 2019 Page 3

Enclosure: Attachment A – ADEC Forms Attachment B – Emission Calculations Attachment C – BACT Analysis Attachment D – Modeling Analysis Attachment A Application Forms

Alaska Department of Environmental Conservation AIR QUALITY CONSTRUCTION PERMIT APPLICATION

Project Information Form

Section 1 Stationa	ry Source Information					
Stationary Source Name:	Agrium Kenai Nitrogen Operations				SIC	:
Project Name (if differe	ent):	Stationary S	ource	Frederick We	erth	
Source Physical Addre	ss: Mile 21 Kenai Spur Highway	City: Kenai		State: AK	Zip	: 99611
			(907) 776-8 ess: Frederic	ck.Werth@Nut		
UTM Coordinates (m) or Latitude/Longitude (NAD 27)		Northing: 22	2120449	Easting: 193	0150	Zone: 6
		Latitude: 60	° 48' 28"	Longitude: 15	1°22' 45"	
Section 2 Legal O		Section 3	Operator (<i>i</i>	f different from	owner)	
Name: Agrium U.S. Inc		Name:				
Mailing Address: 5296	Harvest Lake Drive	Mailing Addr	ess: 47901 K	enai Spur Hwy	и., Р.О. Вох	(575
City: Loveland	State: CO Zip: 80538	City: Kenai		State: AK	Zip: 99	611
Telephone:		Telephone: (9				
E-Mail Address:		E-Mail Addre	ss: Frederick	.Werth@nutr	ien.com	
Section 4 Designa	ted Agent (for service of process)	Section 5	Billing Cor	ntact Person (if different j	from owner
Name:		Name: Freder				
Mailing Address:	Status 7		ess: 47901 Ke	enai Spur Hwy		
City:	State: Zip:	City: Kenai	07) 776 044	State: A	K Zıp	o: 499611
Physical Address: City:	State: Zip:	Telephone: (9			<u></u>	
Telephone :	State. Zip.	E-Mail Addres	ss: Frederick.	.Werth@nutri	en.com	
E-Mail Address:						
	ion Contact					
Name: Ted Hartman						
Mailing Address: 7540	W. 160 th St., Ste. 130	City: Overland		State: KS	Zip: 66	085
		Telephone: (92				
		E-Mail Addres	s: Ted.Hartm	nan@nutrien.c	com	
Section 7 Major P	ermit Classification(s)	Section 8	Minor Perr	nit Classificat	tion(s)	
(Check all tha	t apply)		Check all that			
⊠ 18 AAC 50	0.306		AAC 50.502((b)(1)		
□ 18 AAC 5	0.311		AAC 50.502((b)(2)		
□ 18 AAC 50	0.316		AAC 50.502((b)(3)		
			AAC 50.502(
			AAC 50.502((b)(5)		
			AAC 50.502(b)(6)		
			AAC 50.502(
			AAC 50.502((c)(2)(B)		
			AAC 50.502(
			AAC 50.508(
			AAC 50.508(
			AAC 50.508(
		L 10	AAC 30.308((0)		

PROJECT IDENTIFICATION FORM

Section 9 Project Description

Provide/attach a short narrative describing the project. Discuss the purpose for conducting this project, what emission units/activities will be added/modified under this project (i.e., project scope), and the project timeline. If the project is a modification to an existing stationary source, describe how this project will affect the existing process. Include any other discussion that may assist the Department in understanding your project or processing your application. Include a schedule of construction and the desired date for permit issuance.

If this application includes an Owner Requested Limit or a request to revise an existing permit term or condition, describe the intent of the limit, and provide sample language for the limit, and for monitoring, record keeping, and reporting for showing compliance with the limit.

Add additional pages if necessary.

Agrium is proposing to replace the existing natural gas-fired Solar Turbines (Units 55, 56, 57, 58, and 59) with higher capacity natural gas-fired turbines. The existing Solar Turbines are rated at 37.6 MMBtu/hr, each. The proposed replacement Solar Turbines are rated at 55.443 MMBtu/hr, each.

Due to the increased capacity and higher combustion temperatures of the replacement Solar Turbines, the supplemental heat input requirements for the existing Waste Heat Boilers (Units 50, 51, 52, 53, and 54) will be reduced. The Waste Heat Boilers are currently identified as having heat input capacities of 50.0 MMBtu/hr, each. Upon the replacement of the Solar Turbines, the heat input requirements of the Waste Heat Boilers will be 46.729 MMBtu/hr, each.

Agrium is providing top-down BACT analyses for the Solar Turbines and Waste Heat Boilers in Attachment C to this request. Revised emission calculations are provided in Attachment B to this request. In addition, Agrium has performed an updated air quality impact analysis.

In addition, Agrium is proposing to install SCR for NOx control on the Package Boilers (Units 44, 48, and 49). These emission units went through PSD BACT as part of the permitting for AQ0083CPT06. Under the Air Quality Control Construction Permit, BACT for NOx was identified as use of ultra low NOx burners. A top-down BACT analysis for the Package Boilers is provided in Attachment C to this request.

PROJECT IDENTIFICATION FORM

Section 10 Certification

This certification applies to the Air Quality Control Construction Permit Application	n for the
submitted to the Department on:	(Stationary Source Name)

Type of Application

- Initial Application
- Change to Initial Application

The application is **NOT** complete unless the certification of truth, accuracy, and completeness on this form bears the **signature of a responsible official** of the firm making the application. (18 AAC 50.205)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS

"Based on information and belief formed after reasonable inquiry, I certify that the statements and information in and attached to this document are true, accurate, and complete."

Signature: The Cubit	Date: 5/20/2019
Printed Name: FRED C. WERTH	Title: PLANT MANAGER

Section 11 Attachments

Attachments Included. List attachments:

Section 12 Mailing Address

Submit the construction permit application to the Permit Intake Clerk in the Department's Anchorage office. Submitting to a different office will delay processing. The mailing address and phone number for the Anchorage office is:

Permit Intake Clerk Alaska Department of Environmental Conservation Air Permit Program 619 E. Ship Creek, Suite 249 Anchorage, Alaska 99501 (907) 269-6881

e

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 **Emission Unit Identification**

Emission Unit No.: 6B-708A

Section 3 **Emission Unit Description**

Equipment Boiler	Make: Cleaver Brooks
Туре:	
Model (attach Vendor Specs): TBD	Serial No.: TBD
Maximum Rated Capacity or Maximum Design Throughput: 243	3 mmBtu/hr
Note: Rated capacity or design throughput may become a permit li	nit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate	e: 0.	24 MMscf/hr		
Materials Processed: Water	Maximum Material Processing Rate:				
Describe Method of Operation: Natural gas fired boiler to generate steam for process and heating.					
See attached for additional details.					
Schedule of Operation (indicate the maximum operatio	on for each time period): 3	-hr	3 hr		
	8	-hr	8 hr		
	2	4-hr	24 hr		
	Ľ	Days/yr	365 days		

Section 5 Exhaust Parameters

Stack	30.48	Base	39.63	Stack Inner Exhaust	1.67	Actual Flow	31.9	Exit Temp	422
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack heigh	t greater t	han 65 meters?	YE	$S \square NO \boxtimes$					
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If ye	attached. If yes, this calculation must be attached in order for your application to be complete.								

Plans Showing Emission Unit and Exhaust Point Location Section 6

 \boxtimes A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached. \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: 6B-708A

Section 7 Emission Control Information (<i>if applicable</i>) NOTE:	For PSD and Nonattainment Major Sources and Modifications,			
for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.				
Control Equipment:	Pollutant(s) Controlled:			
Provide a physical description of the control equipment:				

See attached for additional details.

Provide a description of the significant operating parameters and set points for the control equipment:

See attached for additional details			
This control equipment is necessary:	To comply with an emission standard	To avoid a project classification	Other – Indicate purpose of control equipment:

Control Equipment:		Pollutant(s) Controlled:	
Provide a physical description of the c	ontrol equipment:		
See attached for additional details.			•
Provide a description of the significant	t operating parameters and se	t points for the control equ	iipment:
See attached for additional details.			
This control equipment is	To comply with	To avoid a project	Other – Indicate purpose of control
necessary:	an emission standard	classification	equipment:

Emission Unit No.: 6B-708A

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required.	

Include multiple copies of this page if more space is required

Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis Section 10

	Mass Emission Rate (grams/second)						
Regulated Air Pollutant	1-hr 3-hr 8-hr 24-hr Ar						
Carbon Monoxide	1.13		1.13				
Nitrogen Oxides	0.30		_		0.30		
PM-10				0.23			
PM-2.5				0.23	0.23		
Sulfur Oxides							

Emission Unit No.: 6B-708A

Section 11 Emission Control Information for PS	D and/or Nonattainment Major Sources and Modifications Only
Control Equipment: SCR	Pollutant(s) Controlled: NOx
Provide a physical description of the control equipme	nt: The boilers will be equipped with SCR to control NOx emissions.
See attached for additional details.	
Provide a description of the significant operating para	meters and set points for the control equipment: TBD
See attached for additional details.	
This control equipment is proposed as BACT	LAER for pollutant(s): NOx
Proposed BACT/LAER performance limit: (see a	attached) lbs/hr for pollutant:
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits	
If the control equipment is proposed as BACT or I must be attached in order for your application to be c	LAER, a detailed BACT analysis or LAER demonstration is attached. <i>Note: This omplete</i> .
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Control Equipment:	Pollutant(s) Controlled:
Provide a physical description of the control equipme	nt:
See attached for additional details.	motors and act points for the control action of the
Provide a description of the significant operating para	meters and set points for the control equipment:
See attached for additional details.	LAER for pollutant(s):
Proposed BACT/LAER performance limit:	lbs/hr for pollutant:
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits	
If the control equipment is proposed as BACT or I must be attached in order for your application to be c	LAER, a detailed BACT analysis or LAER demonstration is attached. <i>Note: This omplete</i> .
Emission Unit No.: 6B-708A	

Section 12 Attachments

Attachments Included. List attachments:

Alaska Department of Environmental Conservation Air Quality Control Construction Permit Application

FORM F - EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: 6B-708B

Section 3 Emission Unit Description

Equipment Boiler	Make: Cleaver Brooks
Туре:	
Model (attach Vendor Specs): TBD	Serial No.: TBD
Maximum Rated Capacity or Maximum Design Throughput: 243	3 MMBtu/hr
Note: Rated capacity or design throughput may become a permit lip	nit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate:	0.24 MMscf/hr
Materials Processed: Water	Maximum Material Processing Rate:	TBD
Describe Method of Operation: Natural gas-fired boiles	r to generate steam for process use and heating	
See attached for additional details.		
Schedule of Operation (indicate the maximum operation	on for each time period): 3-hr	3 hr
	8-hr	8 hr
	24-hr	24 hr
	Davs	yr 365 days

Section 5 Exhaust Parameters

beenion e	L'Anaust 1	urumeters							
Stack	30.48	Base	39.63	Stack Inner Exhaust	1.67	Actual Flow	31.9	Exit Temp	422
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack heig	Is stack height greater than 65 meters? YES NO								
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If y	es, this cal	culation must be a	attached i	n order for your application to b	e compl	lete.			

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: 6B-708B

Section 7	Emission Control	Information (if a	applicable) N	OTE: For PSD	and Nonatt	ainment M	Aajor Sources a	nd Modifications,
for control e	equipment installed	for BACT/LAER	purposes, skij	o this section a	nd complete	Section 1	1 instead.	

Control Equipment:	CI/LAEK purposes, skip inis	Pollutant(s) Controlled:	
Provide a physical description of the c	control equipment.		
Trovide a physical description of the e	onuor equipment.		
See attached for additional details Provide a description of the significan		t points for the control or	inmont.
Provide a description of the significant	t operating parameters and se	t points for the control equ	npment.
See attached for additional details			
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
	I		
Control Equipment:		Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c	t operating parameters and se		.ipment:
Provide a physical description of the c	t operating parameters and se	t points for the control equ	
Provide a physical description of the c See attached for additional details Provide a description of the significan See attached for additional details This control equipment is	t operating parameters and se	t points for the control equ	Other – Indicate purpose of control
Provide a physical description of the c	t operating parameters and se	t points for the control equ	

Emission Unit No.: 6B-708B

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?			If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

	Mass Emission Rate (grams/second)						
Regulated Air Pollutant	1-hr	3-hr	8-hr	24-hr	Annual		
Carbon Monoxide	1.13		1.13				
Nitrogen Oxides	0.30				0.30		
PM-10				0.23			
PM-2.5				0.23	0.23		
Sulfur Oxides							

Emission Unit No.: 6B-708B

	for PSD and/or No	nattainment Major Sources and Modifications Only			
Control Equipment: SCR		Pollutant(s) Controlled: NOx			
Provide a physical description of the control equipment: The boiler will be equipped with SCR to control NOx emissions.					
\boxtimes See attached for additional details.					
Provide a description of the significant operation	ng parameters and se	et points for the control equipment: TBD			
See attached for additional details. This control equipment is proposed as BAC	T 🛛 LAER 🗌	for pollutant(s):			
Proposed BACT/LAER performance limit:	(see attached)	lbs/hr for pollutant:			
		lbs/hr for pollutant:			
		lbs/hr for pollutant:			
Note: The proposed BACT/LAER performance	CT or LAER, a deta	iled BACT analysis or LAER demonstration is attached. <i>Note: This</i>			
Control Equipment:		Pollutant(s) Controlled:			
Provide a physical description of the control ed	quipment:				
See attached for additional details. Provide a description of the significant operati	na personators and so	at points for the control equipment:			
See attached for additional details.This control equipment is proposed asBAC		for pollutant(s):			
Proposed BACT/LAER performance limit:		lbs/hr for pollutant:			
		lbs/hr for pollutant:			
		lbs/hr for pollutant:			
Note: The proposed BACT/LAER performance					
☐ If the control equipment is proposed as BA <i>must be attached in order for your application</i>		iled BACT analysis or LAER demonstration is attached. Note: This			
Emission Unit No.: 6B-708B					

Section 12 Attachments

Attachments Included. List attachments:

Alaska Department of Environmental Conservation Air Quality Control Construction Permit Application

FORM F - EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: 6B-708C

Section 3 Emission Unit Description

Equipment Boiler	Make: Cleaver Brooks
Туре:	
Model (attach Vendor Specs): TBD	Serial No.: TBD
Maximum Rated Capacity or Maximum Design Throughput: 243	3 MMBtu/hr
Note: Rated capacity or design throughput may become a permit lip	mit

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate	: (0.24 MMscf/hr	
Materials Processed: Water	Maximum Material Processing Rate:]	ГВD	
Describe Method of Operation:				
See attached for additional details.				
Schedule of Operation (indicate the maximum operation	i ,	hr hr	<u>3 hr</u> 8 hr	
	8- 2/	hr -hr	24 hr	
		avs/vr	365 days	

Section 5 Exhaust Parameters

beenion e	L'Andust 1	urumeters							
Stack	30.48	Base	39.63	Stack Inner Exhaust	1.67	Actual Flow	31.9	Exit Temp	422
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If y	ves. this cal	culation must be a	attached i	n order for your application to b	e compl	lete.			

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: 6B-708C

Section 7	Emission Control	Information (if a	upplicable) N	OTE: For PSD	and Nonattair	nment Major Source	s and Modifications,
for control e	equipment installed	for BACT/LAER p	ourposes, skip	o this section an	d complete Se	ction 11 instead.	

Control Equipment:	CI/LAER purposes, skip inis	Pollutant(s) Controlled:	non 11 moreun
Provide a physical description of the c	control equipment:	()	
	· · · · · · · · · · · · · · · · · · ·		
See attached for additional details.			
Provide a description of the significan		t points for the control equ	ipment:
			•
See attached for additional details.			
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the c			inment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c	t operating parameters and se		
Provide a physical description of the c See attached for additional details. Provide a description of the significan See attached for additional details.	t operating parameters and se	t points for the control equ	
Provide a physical description of the c See attached for additional details. Provide a description of the significan See attached for additional details. See attached for additional details.	t operating parameters and se	t points for the control equ	Other – Indicate purpose of control
Provide a physical description of the c See attached for additional details. Provide a description of the significan See attached for additional details.	t operating parameters and se	t points for the control equ	

Emission Unit No.: 6B-708C

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?			If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	ned in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

	Mass Emission Rate (grams/second)					
Regulated Air Pollutant	1-hr 3-hr 8-hr 24-hr Annu					
Carbon Monoxide	1.13		1.13			
Nitrogen Oxides	0.30				0.30	
PM-10				0.23		
PM-2.5				0.23	0.23	
Sulfur Oxides						

Emission Unit No.: 6B-708C

	for PSD and/or Nor	nattainment Major Sources and Modifications Only
Control Equipment: SCR		Pollutant(s) Controlled: NOx
Provide a physical description of the control ec	quipment: The boiler	will be equipped with SCR to control NOx emissions.
See attached for additional details.		
Provide a description of the significant operation	ng parameters and se	t points for the control equipment:
See attached for additional details.		
	T 🛛 LAER 🗌	for pollutant(s): NOx
Proposed BACT/LAER performance limit:	(see attached)	lbs/hr for pollutant:
		lbs/hr for pollutant:
		lbs/hr for pollutant:
Note: The proposed BACT/LAER performance	limits may become t	-
\square If the control equipment is proposed as BA	CT or LAER, a detai	led BACT analysis or LAER demonstration is attached. Note: This
must be attached in order for your application	to be complete.	
Control Equipment:		Pollutant(s) Controlled:
Provide a physical description of the control ec	quipment:	
	1 1	
See attached for additional details.		t mainta from the second and a second
Provide a description of the significant operation	ng parameters and se	t points for the control equipment:
See attached for additional details.		
This control equipment is proposed as BAC	T LAER	for pollutant(s):
Proposed BACT/LAER performance limit:		lbs/hr for pollutant:
		lbs/hr for pollutant:
		lbs/hr for pollutant:
Note: The proposed BACT/LAER performance		
☐ If the control equipment is proposed as BA <i>must be attached in order for your application</i>		led BACT analysis or LAER demonstration is attached. Note: This
Emission Unit No.: 6B-708C		

Section 12 Attachments

Attachments Included. List attachments:

Alaska Department of Environmental Conservation Air Quality Control Construction Permit Application

FORM F - EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: GGT-744A

Section 3 Emission Unit Description

Equipment	Turbine	Make: Solar
Type:		
Model (attach Ve	endor Specs): GSC-4701	Serial No.:
Maximum Rated	Capacity or Maximum Design Throughput: 55.	443 MMBtu/hr
Note: Rated capa	city or design throughput may become a permit lin	nit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate:	0.05 MMscf/hr
Materials Processed: NA	Maximum Material Processing Rate:	NA
Describe Method of Operation: Natural gas-fired comb	bustion turbine to generate electricity for the p	lant
See attached for additional details.		
Schedule of Operation (indicate the maximum operation	on for each time period): 3-h	r <u>3 hr</u>
	8-h:	r <u>8 hr</u>
	24-1	hr 24 hr
	Day	/s/yr 365 days

Section 5 Exhaust Parameters

beenon 5	L'Anaust I	arameters							
Stack	18.29	Base	39.62	Stack Inner Exhaust	1.01	Actual Flow	47.36	Exit Temp	608
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If ves, this calculation must be attached in order for your application to be complete.									

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \square A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: GGT-744A

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

Control Equipment:	IC I/LALK purposes, skip inis	Pollutant(s) Controlled:	tion 11 insteau.
Provide a physical description of the c	control aquinment:	rondun(s) controned.	
riovide a physical description of the c	control equipment.		
See attached for additional details			
Provide a description of the significant	it operating parameters and se	t points for the control equ	lipment:
See attached for additional details	•		
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controllad:	
Control Equipment:	and a low to set	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the c			.ipment:
Provide a physical description of the c			
Provide a physical description of the c			.ipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			.ipment:
Provide a physical description of the c			
Provide a physical description of the c			.ipment:
Provide a physical description of the c			ıipment:
Provide a physical description of the c			
Provide a physical description of the c	t operating parameters and se		
Provide a physical description of the c	It operating parameters and se	t points for the control equ	
Provide a physical description of the c	t operating parameters and se	t points for the control equ	Other – Indicate purpose of control
Provide a physical description of the c	It operating parameters and se	t points for the control equ	

Emission Unit No.: GGT-744A

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🗌	NO 🖂	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🗌	NO 🔀	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	ned in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attac</i>	hed in order for your
application to be complete. Include multiple copies of this page if more space is required.	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

	Mass Emission Rate (grams/second)					
Regulated Air Pollutant	1-hr	3-hr	8-hr	24-hr	Annual	
Carbon Monoxide	0.761		0.761			
Nitrogen Oxides	4.586				0.1067	
PM-10				0.0461		
PM-2.5				0.0461	0.00106	
Sulfur Oxides	0.0237	0.0237				

Emission Unit No.: GGT-744A

Section 11 Emission Control Information f	or PSD and/or Nonattair	nment Major Sour	ces and Modifications Only
Control Equipment: SCR Control System	Pollu	itant(s) Controlled:	NOx
Provide a physical description of the control equ exhaust	ipment: SCR to control N	Ox emissions from	Waste Heat Boiler/Solar Turbine
CAllaust			
See attached for additional details. Provide a description of the significant operating	a noromotors and sat point	a for the control or	inmont
Frovide a description of the significant operating	2 parameters and set point	s for the control equ	inpinent.
See attached for additional details. This control equipment is proposed as BACT	LAER for	nollytont(a)	
This control equipment is proposed as BACT		pollutant(s):	
Proposed BACT/LAER performance limit:	(see attached) lbs/h	r for pollutant:	NOx
	lbs/h	r for pollutant:	
	lbs/h	r for pollutant:	
Note: The proposed BACT/LAER performance l			
\square If the control equipment is proposed as BAC		ACT analysis or LA	ER demonstration is attached. Note: This
must be attached in order for your application to	o be complete.		
Control Equipment:	Pollr	tant(s) Controlled:	
Provide a physical description of the control equ			
riovide a physical description of the control equ	ipilioni.		
See attached for additional details.			
Provide a description of the significant operating	p parameters and set point	s for the control equ	ipment:
	5 purameters and set point	is for the control eq	<i>a</i> rpinenti
See attached for additional details. This control equipment is proposed as BACT	LAER for	pollutant(s):	
This control equipment is proposed as BACT		polititalit(s).	
Proposed BACT/LAER performance limit:	lbs/h	r for pollutant:	
_	lbs/h	r for pollutant:	
	lbs/h	r for pollutant:	
Note: The proposed BACT/LAER performance l			
If the control equipment is proposed as BAC <i>must be attached in order for your application to</i>		ACT analysis or LA	ER demonstration is attached. <i>Note: This</i>
			Revision Date: 9/8/03

Emission Unit No.: <u>GGT-744A</u> Section 12 Attachments

Attachments Included. List attachments:

Alaska Department of Environmental Conservation Air Quality Control Construction Permit Application

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: GGT-744B

Section 3 Emission Unit Description

Equipment	Turbine	Make: Solar
Type:		
Model (attach Ve	endor Specs): GSC-4701	Serial No.:
	• · · ·	
Maximum Rated	Capacity or Maximum Design Throughput: 55.	443 MMBtu/hr
Note: Rated cape	acity or design throughput may become a permit li	nit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate:	0.05 MMscf/hr
Materials Processed: NA	Maximum Material Processing Rate:	NA
Describe Method of Operation: Natural gas-fired comb	bustion turbine to generate electricity for the pl	ant
See attached for additional details.		
Schedule of Operation (indicate the maximum operation	on for each time period): 3-h	3 hr
	8-hi	8 hr
	24-1	nr 24 hr
	Day	s/yr 365 days

Section 5 Exhaust Parameters

beenon 5	L'Anaust I	arameters							
Stack	18.29	Base	39.62	Stack Inner Exhaust	1.01	Actual Flow	47.36	Exit Temp	608
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If ves, this calculation must be attached in order for your application to be complete.									

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: GGT-744B

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

Control Equipment:		Pollutant(s) Controlled:	uon 11 insieaa.
Provide a physical description of the c	control equipment.		
	ond of equipment.		
See attached for additional details			
Provide a description of the significant	t operating parameters and se	et points for the control equ	iipment:
See attached for additional details			
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
· · · · · · · · · · · · · · · · ·	an emission standard	classification	equipment:
			1 1
Control Equipment:		Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the c			inmont
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			
Provide a physical description of the c	t operating parameters and se		ipment:
Provide a physical description of the c	t operating parameters and se	t points for the control equ	ipment:
Provide a physical description of the c	t operating parameters and se		

Emission Unit No.: GGT-744B

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🗌	NO 🖂	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🗌	NO 🛛	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attac application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

		Mas	s Emission Rate (g	grams/second)	
Regulated Air Pollutant	1-hr	Annual			
Carbon Monoxide	0.761		0.761		
Nitrogen Oxides	4.586				0.1067
PM-10				0.0461	
PM-2.5				0.0461	0.00106
Sulfur Oxides	0.0237	0.0237			

Emission Unit No.: GGT-744B

Section 11 Emission Control Information for PSD and/or	Nonattainment Major Sources and Modifications Only
Control Equipment: SCR Control System	Pollutant(s) Controlled: NOx
Provide a physical description of the control equipment: SCR to exhaust	control NOx emissions from Waste Heat Boiler/Solar Turbine
See attached for additional details.	
Provide a description of the significant operating parameters and	d set points for the control equipment:
See attached for additional details. This control equipment is proposed as BACT ALER	for pollutant(s):
This control equipment is proposed as BACT A LAEK	
Proposed BACT/LAER performance limit: (see attached)	lbs/hr for pollutant: NOx
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become	<i>the permit limits.</i> letailed BACT analysis or LAER demonstration is attached. <i>Note: This</i>
must be attached in order for your application to be complete.	etailed BACT analysis of LAER demonstration is attached. <i>Note: This</i>
musi de unueneu în oraci for your application to de complete.	
Control Equipment:	Pollutant(s) Controlled:
Provide a physical description of the control equipment:	
See attached for additional details.	
Provide a description of the significant operating parameters and	d set points for the control equipment:
See attached for additional details.	
This control equipment is proposed as BACT LAER	for pollutant(s):
Proposed BACT/LAER performance limit:	lbs/hr for pollutant:
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may becom	
☐ If the control equipment is proposed as BACT or LAER, a d <i>must be attached in order for your application to be complete.</i>	letailed BACT analysis or LAER demonstration is attached. Note: This
AIR QUALITY CONTROL CONSTRUCTION PERMIT APPLICATION FORM F	Page 4 of 5 Revision Date: 9/8/03

Emission Unit No.:GGT-744BSection 12Attachments

Attachments Included. List attachments:

Alaska Department of Environmental Conservation Air Quality Control Construction Permit Application

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: <u>GGT-744C</u>

Section 3 Emission Unit Description

Equipment	Turbine	Make: Solar
Туре:		
Model (attach Ve	endor Specs): GSC-4701	Serial No.:
Maximum Rated	Capacity or Maximum Design Throughput: 55.	442 MMBtu/hr
Note: Rated cape	acity or design throughput may become a permit li	nit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate:	0.05 MMscf/hr		
Materials Processed: NA	Maximum Material Processing Rate:	NA		
Describe Method of Operation: Natural gas-fired comb	bustion turbine to generate electricity for the plan	nt		
See attached for additional details.				
Schedule of Operation (indicate the maximum operation	on for each time period): 3-hr	3 hr		
	8-hr	8 hr		
	24-hr	24 hr		
	Days/	/yr 365 days		

Section 5 Exhaust Parameters

beenon 5	L'Anaust I	arameters							
Stack	18.29	Base	39.62	Stack Inner Exhaust	1.01	Actual Flow	47.36	Exit Temp	608
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If y	es. this cal	culation must be d	ittached i	n order for vour application to b	e compl	lete.			

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: GGT-744C

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

Control Equipment:	IC I/LALK purposes, skip inis	Pollutant(s) Controlled:	tion 11 insteau.
Provide a physical description of the c	control aquinment:	rondun(s) controned.	
riovide a physical description of the c	control equipment.		
See attached for additional details			
Provide a description of the significant	it operating parameters and se	t points for the control equ	lipment:
See attached for additional details	•		
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controllad:	
Control Equipment:	and a low to set	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the c			.ipment:
Provide a physical description of the c			
Provide a physical description of the c			.ipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			.ipment:
Provide a physical description of the c			
Provide a physical description of the c			.ipment:
Provide a physical description of the c			ıipment:
Provide a physical description of the c			
Provide a physical description of the c	t operating parameters and se		
Provide a physical description of the c	It operating parameters and se	t points for the control equ	
Provide a physical description of the c	t operating parameters and se	t points for the control equ	Other – Indicate purpose of control
Provide a physical description of the c	It operating parameters and se	t points for the control equ	

Emission Unit No.: GGT-744C

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🗌	NO 🖂	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES	NO 🛛	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attac application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

		Mas	s Emission Rate (g	rams/second)	
Regulated Air Pollutant	1-hr	24-hr	Annual		
Carbon Monoxide	0.761		0.761		
Nitrogen Oxides	4.586				0.1067
PM-10				0.0461	
PM-2.5				0.0461	0.00106
Sulfur Oxides	0.0237	0.0237			

Emission Unit No.: GGT-744C

Section 11 Emission Control Information for PSD and/or Nonattainment Major Sources and Modifications Only	
Control Equipment: SCR Control System	Pollutant(s) Controlled: NOx
Provide a physical description of the control equipment: SCR to control NOx emissions from Waste Heat Boiler/Solar Turbine exhaust	
See attached for additional details.	
Provide a description of the significant operating parameters and set points for the control equipment:	
See attached for additional details. This control equipment is proposed as BACT Z L	LAER for pollutant(s):
This control equipment is proposed as BACT A	
Proposed BACT/LAER performance limit: (see attac	ched) lbs/hr for pollutant: NOx
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become permit limits.	
If the control equipment is proposed as BACT or LAER, a detailed BACT analysis or LAER demonstration is attached. <i>Note: This must be attached in order for your application to be complete.</i>	
musi be undered in order jor your appreation to be comp	
Control Equipment:	Pollutant(s) Controlled:
Provide a physical description of the control equipment:	
See attached for additional details.	
Provide a description of the significant operating parameters and set points for the control equipment:	
See attached for additional details.	
	LAER for pollutant(s):
Proposed BACT/LAER performance limit:	lbs/hr for pollutant:
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become permit limits.	
If the control equipment is proposed as BACT or LAER, a detailed BACT analysis or LAER demonstration is attached. <i>Note: This must be attached in order for your application to be complete.</i>	
AIR QUALITY CONTROL CONSTRUCTION PERMIT APPLICA	

Emission Unit No.:GGT-744CSection 12Attachments

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: GGT-744D

Section 3 Emission Unit Description

Equipment Turbine	Make: Solar
Туре:	
Model (attach Vendor Specs): GSC-4701	Serial No.:
Maximum Rated Capacity or Maximum Design Throughput: 55	.442 MMBtu/hr
Note: Rated capacity or design throughput may become a permit li	mit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate:	0.05 MMscf/hr
Materials Processed: NA	Maximum Material Processing Rate:	NA
Describe Method of Operation: Natural gas-fired comb	bustion turbine to generate electricity for the plan	nt
See attached for additional details.		
Schedule of Operation (indicate the maximum operation	on for each time period): 3-hr	3 hr
	8-hr	8 hr
	24-hr	24 hr
	Days/	yr 365 days

Section 5 Exhaust Parameters

Dection 5	LAnuast I	arameters							
Stack	10.98	Base	46	Stack Inner Exhaust	1.22	Actual Flow	22.1	Exit Temp	417
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If y	ves, this cal	culation must be a	ittached i	n order for your application to b	e compl	lete.			

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: GGT-744D

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

Control Equipment:	te 1/Lilla purposes, skip inis	Pollutant(s) Controlled:	non 11 msteut.
		Fonutanit(s) Controlled.	
Provide a physical description of the c	control equipment:		
See attached for additional details			
Provide a description of the significant		t points for the control equ	uinment:
riovide a description of the significant	a operating parameters and se	to points for the control equ	uipinein.
See attached for additional details	I. Contraction of the second se		
This control equipment is necessary:	. To comply with	To avoid a project	Other – Indicate purpose of control
This control equipment is necessary.	an emission standard		
	an emission standard	classification	equipment:
	·		l
Control Equipment:	·	Pollutant(s) Controlled:	
Control Equipment:		Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the c			
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c			uipment:
Provide a physical description of the c	t operating parameters and se		uipment:
Provide a physical description of the c	It operating parameters and se	t points for the control equ	
Provide a physical description of the c	t operating parameters and se	t points for the control equivalent of the c	 Other – Indicate purpose of control
Provide a physical description of the c	It operating parameters and se	t points for the control equ	
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equivalent of the c	 Other – Indicate purpose of control

Emission Unit No.: GGT-744D

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🗌	NO 🖂	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🗌	NO 🔀	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attac application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

Regulated Air Pollutant	Mass Emission Rate (grams/second)					
	1-hr	3-hr	8-hr	24-hr	Annual	
Carbon Monoxide	0.761		0.761			
Nitrogen Oxides	4.586				0.1067	
PM-10				0.0461		
PM-2.5				0.0461	0.00106	
Sulfur Oxides	0.0237	0.0237				

Emission Unit No.: GGT-744D

Section 11 Emission Control Information for PSD and/or Nor	nattainment Major Sources and Modifications Only
Control Equipment: SCR Control System	Pollutant(s) Controlled: NOx
Provide a physical description of the control equipment: SCR to con	ntrol NOx emissions from Waste Heat Boiler/Solar Turbine
exhaust	
See attached for additional details.	
Provide a description of the significant operating parameters and se	t points for the control equipment:
See attached for additional details.	
This control equipment is proposed as BACT ALAER	for pollutant(s):
Proposed BACT/LAER performance limit: (see attached)	lbs/hr for pollutant: NOx
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become p	
\boxtimes If the control equipment is proposed as BACT or LAER, a detai	led BACT analysis or LAER demonstration is attached. Note: This
must be attached in order for your application to be complete.	
Control Equipment:	Pollutant(s) Controlled:
	Ponutani(s) Controlled:
Provide a physical description of the control equipment:	
See attached for additional details.	
Provide a description of the significant operating parameters and se	t points for the control equipment:
See attached for additional details.	
This control equipment is proposed as BACT LAER	for pollutant(s):
Proposed BACT/LAER performance limit:	lbs/hr for pollutant:
	lbs/hr for pollutant:
	1
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become p	ermit limits.
If the control equipment is proposed as BACT or LAER, a detai	led BACT analysis or LAER demonstration is attached. Note: This
must be attached in order for your application to be complete.	
AIR QUALITY CONTROL CONSTRUCTION PERMIT APPLICATION	4 of 5 Revision Date: 9/8/03

Emission Unit No.: <u>GGT-744D</u> Section 12 Attachments

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: GGT-744E

Section 3 Emission Unit Description

Equipment Turbine	Make: Solar
Туре:	
Model (attach Vendor Specs): GSC-4701	Serial No.:
Maximum Rated Capacity or Maximum Design Throughput: 55	.442 MMBtu/hr
Note: Rated capacity or design throughput may become a permit li	mit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Rate:	0.05 MMscf/hr
Materials Processed: NA	Maximum Material Processing Rate:	NA
Describe Method of Operation: Natural gas-fired comb	bustion turbine to generate electricity for the plan	nt
See attached for additional details.		
Schedule of Operation (indicate the maximum operation	on for each time period): 3-hr	3 hr
	8-hr	8 hr
	24-hr	24 hr
	Days/	yr 365 days

Section 5 Exhaust Parameters

beenon 5	L'Anaust I	arameters							
Stack	18.29	Base	39.62	Stack Inner Exhaust	1.01	Actual Flow	47.36	Exit Temp	608
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If y	es. this cal	culation must be d	ittached i	n order for vour application to b	e compl	lete.			

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: GGT-744E

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

		Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:		
	ond of equipment.		
See attached for additional details.			•
Provide a description of the significant	t operating parameters and se	t points for the control equ	iipment:
See attached for additional details.			
This control equipment is necessary:	\Box To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment.	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	ontrol equipment:	Pollutant(s) Controlled:	
	ontrol equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	ontrol equipment:	Pollutant(s) Controlled:	
	ontrol equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			
Provide a physical description of the c	t operating parameters and se		ipment:
Provide a physical description of the c See attached for additional details. Provide a description of the significan See attached for additional details.	t operating parameters and se	t points for the control equ	-
Provide a physical description of the c	t operating parameters and se		ipment:

Emission Unit No.: GGT-744E

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🗌	NO 🖂	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🗌	NO 🛛	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attac application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

	Mass Emission Rate (grams/second)					
Regulated Air Pollutant	1-hr	24-hr	Annual			
Carbon Monoxide	0.761		0.761			
Nitrogen Oxides	4.586				0.1067	
PM-10				0.0461		
PM-2.5				0.0461	0.00106	
Sulfur Oxides	0.0237	0.0237				

Emission Unit No.: GGT-744E

Section 11 Emission Control Information for PSD and/or	Nonattainment Major Sources and Modifications Only
Control Equipment: SCR Control System	Pollutant(s) Controlled: NOx
Provide a physical description of the control equipment: SCR to	control NOx emissions from Waste Heat Boiler/Solar Turbine
exhaust	
See attached for additional details.	
Provide a description of the significant operating parameters and	d set points for the control equipment:
See attached for additional details.	
This control equipment is proposed as BACT ALER	for pollutant(s):
Proposed BACT/LAER performance limit: (see attached)	lbs/hr for pollutant: NOx
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become	ne permit limits.
	etailed BACT analysis or LAER demonstration is attached. Note: This
must be attached in order for your application to be complete.	
Control Equipment:	Pollutant(s) Controlled:
Provide a physical description of the control equipment:	Tonutan(3) Controlled.
riovide a physical description of the control equipment.	
See attached for additional details.	
Provide a description of the significant operating parameters and	d set points for the control equipment:
See attached for additional details.	
This control equipment is proposed as BACT LAER	for pollutant(s):
Proposed BACT/LAER performance limit:	lbs/hr for pollutant:
	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may becom	
☐ If the control equipment is proposed as BACT or LAER, a d <i>must be attached in order for your application to be complete.</i>	etailed BACT analysis or LAER demonstration is attached. Note: This
AIR QUALITY CONTROL CONSTRUCTION PERMIT APPLICATION FORM F	Page 4 of 5 Revision Date: 9/8/03

Emission Unit No.: <u>GGT-744E</u> Section 12 Attachments

ADEC USE ONLY Receiving Date:

ADEC Control #:

FORM J – NEW SOURCE PERFORMANCE STANDARDS

Section 1 Stationary Source Inform	mation	Section 2 Emission Unit Identification			
Source Name: Agrium Kenai Nitrogen	Operations (KNO)	Emission Unit No.:	GGT-	See Form F for this Emission Unit	
			744A, B,	No.	
			C, D, E	-	
Source Physical Address:Mile 21 Kena	ai Spur Highway	🛛 New			
Source i hysical Address. whic 21 Ken	ai opui mgnway	Modified	I		
City:Kenai		Reconstr			
Section 3 40 CFR Part 60 Subpart	Α				
List applicable sections of Subpart A:				8(f), 60.11(d), 60.11(g), 60.12,	
	60.13(b), 60.13(d), 60.13		/ //		
	00.15(0), 00.15(d), 00.15	(0), 00.15(1), 0	0.13(II), 00.14((a), 00.14(g), 00.13(d)	
Section 4 Applicable Subpart: 4	0 CFR Part 60 Subpart	KKKK			
List applicable sections:				40(a), 60.4355(a), 60.4360,	
	60.4365, 60.4370(b) & (c), 60.4375, 60	.4385(a) & (c),	60.4395, 60.4400, 60.4415	
T · . 1 · · 1 · ·					
List applicable emission standards:	111 71				
60.4320(a): NOX - 25 ppm or 1.2 lb/M 60.4330(a)(1) & (a)(2): SO2 - 110 ng/J		do not burn f	uel with notent	ial sulfur emissions >26 ng SO2 /I	
(0.06 lb SO2/MMBtu)	(0.9 10/141 w 11)gross output		uer with potent	tai suntui chiissions >20 ng 502 /j	
(0.00 10 502/1000000)					
See attached for additional details.					
List inapplicable sections of subpart:	60 4325 60 4330(b) 60 /	1333(b) 60 43	25 60 4340(h)	60,4345,60,4350,60,4370(a)	
List mapplicable sections of subpart.	60.4380, 60.4390, 60.440		55, 00.4540(0)	, 60.4345, 60.4350, 60.4370(a),	
	00.1500, 00.1550, 00.110	5,00.1110			
Description of inapplicability of sectio	ns of subpart:				
60.4325: Only burns natural gas.	L				
60.4330(b): Not located in a noncontin					
60.4333(b): Does not have a common	steam header.				
60.4335: Will not use stack injection.		L'a CMC			
60.4340(b): Will perform annual perfo 60.4345, 60.4350, 60.4380, 60.4405, 6		lling CMS			
60.4370(a): Do not use fuel oil.	0.4410. Not using a CIVIS				
60.4390: Not an emergency or research	h & development turbine.				
See attached for additional details.					
List Monitoring, Record Keeping and	Reporting Requirements:				
60.4340(a): Annual performance test.					
60.4355(a): Develop & keep on site a p		1	1 4 1 10		
60.4360 & 60.4365: Monitor the total a limit by showing the fuel quality chara					
60.4370(b) & (c): Test fuel sulfur daily					
60.4375(a): Submit reports of excess e					
60.4375(b): Submit reports of excess e					
		L	A		

60.4400: Perform initial performance test within 60 days of reaching maximum production rate but no later than 180 days after initial startup.

60.4415: Conduct an annual performance test for sulfur.

See attached for additional details.

Section 5 Attachments

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: B-705A

Section 3 Emission Unit Description

Equipment Boiler	Make: Certified & Nebraska Boiler Co.
Туре:	
Model (attach Vendor Specs): K-611	Serial No.: W-2169
Maximum Rated Capacity or Maximum Design Throughput: 46.	729 MMBtu/Hr
Note: Rated capacity or design throughput may become a permit li	mit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption	Rate: 0.	.05 MMscf/hr			
Materials Processed: Water	Maximum Material Processing Rate:					
Describe Method of Operation: Waste heat boiler that g	generates steam using heat from Solar ?	Γurbine and τ	natural gas combustion.			
See attached for additional details.						
Schedule of Operation (indicate the maximum operatio	on for each time period):	3-hr	3 hr			
		8-hr	8 hr			
		24-hr	24 hr			
		Days/yr	365 days			

Section 5 Exhaust Parameters

Section e		arameters							
Stack	30.48	Base	39.62	Stack Inner Exhaust	1.22	Actual Flow	23.38	Exit Temp	416
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If	ves. this cal	culation must be a	attached i	n order for vour application to b	e compl	lete.			

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: B-705A

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

Control Equipment:	IC I/LAEK purposes, skip inis	Pollutant(s) Controlled:	
Provide a physical description of the c	control equipment.		
	control equipment.		
See attached for additional details Provide a description of the significant		t points for the control or	inmont
Provide a description of the significant	it operating parameters and se	a points for the control equ	npment.
See attached for additional details			
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the o			
Provide a physical description of the c			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			
Provide a physical description of the o			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			
Provide a physical description of the of a second s	t operating parameters and se		ipment:
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	Other – Indicate purpose of control
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	

Emission Unit No.: B-705A

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🗌	NO 🛛	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be application to be complete.</i>	e attached in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	hed in order for your
Include multiple conject of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

		Mass	Emission Rate (gi	rams/second)		
Regulated Air Pollutant	1-hr 3-hr 8-hr 24-hr Annua					
Carbon Monoxide	1.403		1.403			
Nitrogen Oxides	0.329				0.329	
PM-10				0.090		
PM-2.5				0.090	0.090	
Sulfur Oxides	0.020	0.020				

Emission Unit No.: B-705A

Section 11 Emission Control Information for PSD and/or Nonatt	ainment Major Sources and Modifications Only
Control Equipment: SCR PC	ollutant(s) Controlled: NOx
Provide a physical description of the control equipment: A SCR control	l system will be installed on the exhaust from the Waste Heat
Boiler/Solar Turbine. A BACT analysis is attached.	
See attached for additional details.	
Provide a description of the significant operating parameters and set po	ints for the control equipment: TBD
	1 1
See attached for additional details.	
This control equipment is proposed as BACT 🛛 LAER 🗌	for pollutant(s): NOx
Proposed BACT/LAER performance limit: (See Attached) lbs	s/hr for pollutant:
Ib:	s/hr for pollutant:
	s/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become perm	
If the control equipment is proposed as BACT or LAER, a detailed I <i>must be attached in order for your application to be complete.</i>	SACI analysis of LAER demonstration is attached. <i>Note: This</i>
must be underted in order for your appreament to be complete.	
Control Equipment: Po	ollutant(s) Controlled:
Provide a physical description of the control equipment:	
See attached for additional details.	interferentent and inneret
Provide a description of the significant operating parameters and set po	ints for the control equipment:
See attached for additional details.	
	for pollutant(s):
Proposed BACT/LAER performance limit:	s/hr for pollutant:
lbs	s/hr for pollutant:
	s/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become perm	
L If the control equipment is proposed as BACT or LAER, a detailed <i>must be attached in order for your application to be complete.</i>	DACT analysis of LAEK demonstration is attached. Note: 1 Ms
AIR QUALITY CONTROL CONSTRUCTION PERMIT APPLICATION	
FORM F Page 4 o	f 5 Revision Date: 9/8/03

Emission Unit No.: B-705A Section 12 Attachments

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: B-705B

Section 3 Emission Unit Description

Equipment Boiler	Make: Certified & Nebraska Boiler Co.
Туре:	
Model (attach Vendor Specs): K-611	Serial No.: W-2171
Maximum Rated Capacity or Maximum Design Throughput: 46.	729 MMBtu/hr
Note: Rated capacity or design throughput may become a permit li	nit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption Ra	ate: 0.	.05 MMscf/hr		
Materials Processed: Water	Maximum Material Processing Rate:				
Describe Method of Operation: Waste heat boiler that generates steam using heat from Solar Turbine and natural gas combustion.					
See attached for additional details.					
Schedule of Operation (indicate the maximum operation	on for each time period):	3-hr	3 hr		
		8-hr	8 hr		
		24-hr	24 hr		
		Days/yr	365 days		

Section 5 Exhaust Parameters

Decenon e									
Stack	30.48	Base	39.62	Stack Inner Exhaust	1.22	Actual Flow	23.38	Exit Temp	416
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If	ves. this cal	culation must be a	attached i	n order for your application to b	e compl	lete.			

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: B-705B

Section 7 Emission Control Information (*if applicable*) NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.

Control Equipment:	IC I/LAEK purposes, skip inis	Pollutant(s) Controlled:	uon 11 msieuu.
		Tonutani(s) Controlled.	
Provide a physical description of the o	control equipment:		
See attached for additional details			
Provide a description of the significant		t points for the control equ	upment:
	a operating parameters and se	e points for the control eq	aipinent.
See attached for additional details			
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the o	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the o		Pollutant(s) Controlled:	
Provide a physical description of the o			
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			
Provide a physical description of the of a second s	t operating parameters and se		uipment:
Provide a physical description of the of see attached for additional details Provide a description of the significant of the si	t operating parameters and se	t points for the control equ	-
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	 Other – Indicate purpose of control
Provide a physical description of the of see attached for additional details Provide a description of the significant of the si	t operating parameters and se	t points for the control equ	-

Emission Unit No.: B-705B

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🗌	NO 🛛	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required.	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

		Mass	Emission Rate (gr	rams/second)		
Regulated Air Pollutant	1-hr 3-hr 8-hr 24-hr Annu					
Carbon Monoxide	1.403		1.403			
Nitrogen Oxides	0.329				0.329	
PM-10				0.090		
PM-2.5				0.090	0.090	
Sulfur Oxides	0.020	0.020				

Emission Unit No.: B-705B

Section 11 Emission Control Information	for PSD and/or No	nattainment Major Sources and Modifications Only
Control Equipment: SCR		Pollutant(s) Controlled: NOx
Provide a physical description of the control eq Boiler/Solar Turbine. A BACT analysis is atta		ntrol system will be installed on the exhaust from the Waste Heat
Boner/Solar Furbine. A BACT analysis is atta-	cheu	
See attached for additional details		
See attached for additional details. Provide a description of the significant operatir	ig parameters and se	t points for the control equipment: TBD
	S parameters and se	
See attached for additional details.		
This control equipment is proposed as BAC	T 🛛 LAER 🗌	for pollutant(s):
Proposed BACT/LAER performance limit:	(See Attached)	lbs/hr for pollutant:
		lbs/hr for pollutant:
		lbs/hr for pollutant:
Note: The proposed BACT/LAER performance		
		led BACT analysis or LAER demonstration is attached. Note: This
must be attached in order for your application	to be complete.	
Control Equipment:		Pollutant(s) Controlled:
Provide a physical description of the control eq	uipment:	
See attached for additional details.		
Provide a description of the significant operating	ng parameters and se	t points for the control equipment:
See attached for additional details.		
This control equipment is proposed as BAC	T LAER	for pollutant(s):
Proposed BACT/LAER performance limit:		lbs/hr for pollutant:
		lbs/hr for pollutant:
		lbs/hr for pollutant:
Note: The proposed BACT/LAER performance	limits may become r	
		led BACT analysis or LAER demonstration is attached. <i>Note: This</i>
must be attached in order for your application	to be complete.	
AIR QUALITY CONTROL CONSTRUCTION PERMI		e 4 of 5 Revision Date: 9/8/03

Emission Unit No.:B-705BSection 12Attachments

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: B-705C

Section 3 Emission Unit Description

Equipment Boiler	Make: Certified & Nebraska Boiler Co.
Туре:	
Model (attach Vendor Specs): K-611	Serial No.: W-2170
Maximum Rated Capacity or Maximum Design Throughput: 46.	729 MMBtu/hr
Note: Rated capacity or design throughput may become a permit li	mit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption	Rate: 0.	.05 MMscf/hr		
Materials Processed: Water	Maximum Material Processing Rate:				
Describe Method of Operation: Waste heat boiler that generates steam using heat from Solar Turbine and natural gas combustion.					
See attached for additional details.					
Schedule of Operation (indicate the maximum operatio	n for each time period):	3-hr	3 hr		
		8-hr	8 hr		
		24-hr	24 hr		
		Days/yr	365 days		

Section 5 Exhaust Parameters

Decenon e									
Stack	30.48	Base	39.62	Stack Inner Exhaust	1.22	Actual Flow	23.38	Exit Temp	416
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If yes, this calculation must be attached in order for your application to be complete.									

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \square A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: B-705C

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

Control Equipment:	IC I/LAEK purposes, skip inis	Pollutant(s) Controlled:	
Provide a physical description of the c	control equipment.		
	control equipment.		
See attached for additional details Provide a description of the significant		t points for the control or	inmont
Provide a description of the significant	it operating parameters and se	a points for the control equ	npment.
See attached for additional details			
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the c			ipment:
Provide a physical description of the o			
Provide a physical description of the of a second s	t operating parameters and se		ipment:
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	Other – Indicate purpose of control
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	

Emission Unit No.: B-705C

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🗌	NO 🛛	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

	Mass Emission Rate (grams/second)					
Regulated Air Pollutant	1-hr	3-hr	8-hr	24-hr	Annual	
Carbon Monoxide	1.403		1.403			
Nitrogen Oxides	0.329				0.329	
PM-10				0.090		
PM-2.5				0.090	0.090	
Sulfur Oxides	0.020	0.020				

Emission Unit No.: <u>B-705C</u>

Section 11 Emission Control Information for PSD and/or Nonat	ttainment Major Sources and Modifications Only
Control Equipment: SCR P	Pollutant(s) Controlled: NOx
Provide a physical description of the control equipment: A SCR control	ol system will be installed on the exhaust from the Waste Heat
Boiler/Solar Turbine. A BACT analysis is attached	
See attached for additional details.	
Provide a description of the significant operating parameters and set p	oints for the control equipment: TBD
See attached for additional details.	
This control equipment is proposed as BACT 🛛 LAER	for pollutant(s):
Proposed BACT/LAER performance limit: (see attached)	bs/hr for pollutant:
11	bs/hr for pollutant:
	bs/hr for pollutant:
<i>Note: The proposed BACT/LAER performance limits may become per</i>	
If the control equipment is proposed as BACT or LAER, a detailed <i>must be attached in order for your application to be complete.</i>	I BACT analysis of LAER demonstration is attached. <i>Note: This</i>
Control Equipment: P	Pollutant(s) Controlled:
Provide a physical description of the control equipment:	
See attached for additional details. Provide a description of the significant operating parameters and set p	coints for the control equipment:
riovide a description of the significant operating parameters and set p	onits for the control equipment.
See attached for additional details.	<u> </u>
This control equipment is proposed as BACT LAER	for pollutant(s):
Proposed BACT/LAER performance limit:	bs/hr for pollutant:
	bs/hr for pollutant:
11	bs/hr for pollutant:
Note: The proposed BACT/LAER performance limits may become per	mit limits.
If the control equipment is proposed as BACT or LAER, a detailed	
<i>must be attached in order for your application to be complete.</i> AIR QUALITY CONTROL CONSTRUCTION PERMIT APPLICATION	
FORM F Page 4	of 5 Revision Date: 9/8/03

Emission Unit No.:B-705CSection 12Attachments

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: B-705D

Section 3 Emission Unit Description

Equipment Boiler	Make: Certified & Nebraska Boiler Co.
Туре:	
Model (attach Vendor Specs): K-611	Serial No.: W-2173
Maximum Rated Capacity or Maximum Design Throughput: 46.	729 MMBtu/hr
Note: Rated capacity or design throughput may become a permit li	mit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption F	Rate: 0	.05 MMscf/hr		
Materials Processed: Water	Maximum Material Processing Rate:				
Describe Method of Operation: Waste heat boiler that generates steam using heat from Solar Turbine and natural gas combustion.					
See attached for additional details.					
Schedule of Operation (indicate the maximum operatio	on for each time period):	3-hr	3 hr		
		8-hr	8 hr		
		24-hr	24 hr		
		Days/yr	365 days		

Section 5 Exhaust Parameters

Decenon e									
Stack	30.48	Base	39.62	Stack Inner Exhaust	1.22	Actual Flow	23.38	Exit Temp	416
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached. If yes, this calculation must be attached in order for your application to be complete.									

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: B-705D

Section 7 Emission Control Information (*if applicable*) NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.

Control Equipment:	IC I/LAEK purposes, skip inis	Pollutant(s) Controlled:	uon 11 msieuu.
		Tonutani(s) Controlled.	
Provide a physical description of the o	control equipment:		
See attached for additional details			
Provide a description of the significant		t points for the control equ	upment:
	a operating parameters and se	e points for the control eq	aipinent.
See attached for additional details	•		
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the o	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the o		Pollutant(s) Controlled:	
Provide a physical description of the o			
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			uipment:
Provide a physical description of the o			
Provide a physical description of the of a second s	t operating parameters and se		uipment:
Provide a physical description of the of see attached for additional details Provide a description of the significant of the si	t operating parameters and se	t points for the control equ	-
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	 Other – Indicate purpose of control
Provide a physical description of the of see attached for additional details Provide a description of the significant of the si	t operating parameters and se	t points for the control equ	-

Emission Unit No.: B-705D

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🗌	NO 🛛	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	ned in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attach application to be complete.</i>	hed in order for your
Include multiple copies of this page if more space is required.	

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

	Mass Emission Rate (grams/second)						
Regulated Air Pollutant	1-hr	3-hr	8-hr	24-hr	Annual		
Carbon Monoxide	1.403		1.403				
Nitrogen Oxides	0.329				0.329		
PM-10				0.090			
PM-2.5				0.090	0.090		
Sulfur Oxides	0.020	0.020					

Emission Unit No.: B-705D

Section 11 Emission Control Information f	for PSD and/or Nonatta	ainment Major Sources and Modifications Only
Control Equipment: SCR	Ро	llutant(s) Controlled: NOx
		system will be installed on the exhaust from the Waste Heat
Boiler/Solar Turbine. A BACT analysis is attac	ched	
See attached for additional details.		
Provide a description of the significant operatin	g parameters and set poi	nts for the control equipment: TBD
See attached for additional details.		11
This control equipment is proposed as BACT	$\Gamma \boxtimes LAER \square f$	for pollutant(s):
Proposed BACT/LAER performance limit:	(see attached) lbs	/hr for pollutant:
_	lbs	/hr for pollutant:
	lbs	/hr for pollutant:
Note: The proposed BACT/LAER performance		
		BACT analysis or LAER demonstration is attached. Note: This
must be attached in order for your application t	o be complete.	
Control Equipment:	Ро	llutant(s) Controlled:
Provide a physical description of the control equ	uipment:	
	1	
See attached for additional details.		
Provide a description of the significant operatin	g parameters and set poi	nts for the control equipment:
See attached for additional details.		
This control equipment is proposed as BAC	Γ LAER f	for pollutant(s):
Proposed BACT/LAER performance limit:	lbs	/hr for pollutant:
-	lbs	/hr for pollutant:
-	lbs	/hr for pollutant:
Note: The proposed BACT/LAER performance	limits may become perm	it limits.
	CT or LAER, a detailed	BACT analysis or LAER demonstration is attached. Note: This
AIR QUALITY CONTROL CONSTRUCTION PERMI		
FORM F	Page 4 of	5 Revision Date: 9/8/03

Emission Unit No.: B-705D Section 12 Attachments

FORM F – EMISSION UNIT INFORMATION

Section 1 Stationary Source Information

Source Name: Agrium Kenai Nitrogen Operations (KNO) Source Physical Address: Mile 21 Kenai Spur Highway City: Kenai

Include a copy of this form for each emission unit that will emit a regulated air pollutant.

Section 2 Emission Unit Identification

Emission Unit No.: B-705E

Section 3 Emission Unit Description

Equipment Boiler	Make: Certified & Nebraska Boiler Co.
Туре:	
Model (attach Vendor Specs): K-611	Serial No.: W-2172
Maximum Rated Capacity or Maximum Design Throughput: 46.	729 MMBtu/hr
Note: Rated capacity or design throughput may become a permit li	mit.

Section 4 Fuels and Materials Processed

Fuel Type(s): Natural Gas	Maximum Design Fuel Consumption	Rate: 0.	.05 MMscf/hr				
Materials Processed: Water	Maximum Material Processing Rate:						
Describe Method of Operation: Waste heat boiler that g	generates steam using heat from Solar T	urbine and 1	natural gas combustion.				
See attached for additional details.							
Schedule of Operation (indicate the maximum operatio	n for each time period):	3-hr	3 hr				
		8-hr	8 hr				
		24-hr	24 hr				
		Days/yr	365 days				

Section 5 Exhaust Parameters

Stack	21.34	Base	34.15	Stack Inner Exhaust	1.22	Actual Flow	88.3	Exit Temp	416
Height (m):		Elevation (m):		Diameter or Dimensions (m):		Rate (acm/s):		(deg K):	
Is stack height greater than 65 meters? YES NO									
If yes, a calculation of good engineering practices stack height, including any computer modeling analyses or field studies, is									
attached If yes, this calculation must be attached in order for your application to be complete									

Section 6 Plans Showing Emission Unit and Exhaust Point Location

A set of plans showing the location of the emission unit, associated buildings and other nearby structures is attached.

 \boxtimes A table of building dimensions is attached.

Note: These must be attached in order for your application to be complete.

Emission Unit No.: B-705E

Section 7 Emission Control Information (*if applicable*) *NOTE: For PSD and Nonattainment Major Sources and Modifications, for control equipment installed for BACT/LAER purposes, skip this section and complete Section 11 instead.*

Control Equipment:	IC I/LAEK purposes, skip inis	Pollutant(s) Controlled:	
Provide a physical description of the c	control equipment.		
	control equipment.		
See attached for additional details Provide a description of the significant		t points for the control or	inmont
Provide a description of the significant	it operating parameters and se	a points for the control equ	npment.
See attached for additional details			
This control equipment is necessary:	To comply with	To avoid a project	Other – Indicate purpose of control
	an emission standard	classification	equipment:
Control Equipment:		Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Control Equipment: Provide a physical description of the c	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
	control equipment:	Pollutant(s) Controlled:	
Provide a physical description of the c		Pollutant(s) Controlled:	
Provide a physical description of the o			
Provide a physical description of the c			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			
Provide a physical description of the o			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			ipment:
Provide a physical description of the o			
Provide a physical description of the of a second s	t operating parameters and se		ipment:
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	Other – Indicate purpose of control
Provide a physical description of the operation of the operation of the operation of the significant of the	t operating parameters and se	t points for the control equ	

Emission Unit No.: B-705E

Section 8 Applicable Federal Emission Limits

New Source Performance Standard (NSPS) Affected Facility?	YES 🗌	NO 🛛	If yes, complete Form J.
National Emission Standard for Hazardous Air Pollutants (NESHAP) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.
Maximum Achievable Control Technology (MACT) Affected Facility?	YES 🖂	NO 🗌	If yes, complete Form K.

Other Emission Limits listed in 18 AAC 50.040

Emission Limit or Standard	Regulation Citation
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be at application to be complete.</i>	tached in order for your

Section 9 Applicable State Emission Limits (listed in 18 AAC 50.050 through 18 AAC 50.090)

Emission Limit or Standard	Regulation Citation	
Visible emissions, excluding condensed water vapor, from an industrial process or fuel-burning equipment may not reduce visibility through the exhaust effluent by more than 20 percent averaged over any six consecutive minutes.	18 AAC 50.055 (a)	
Particulate matter emitted from an industrial process or fuel-burning equipment may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains.	18 AAC 50.055 (b)	
Sulfur-compound emissions, expressed as sulfur dioxide, from an industrial process or from fuel- burning equipment may not exceed 500 ppm averaged over a period of three hours.	18 AAC 50.055 (c)	
A demonstration of compliance for each emission limit or standard is attached. <i>Note: This must be attached application to be complete.</i>	hed in order for your	
Include multiple copies of this page if more space is required		

Include multiple copies of this page if more space is required.

Section 10 Mass Emission Rates for Facilities Requiring an Air Quality Impact Analysis

Regulated Air Pollutant	Mass Emission Rate (grams/second)					
	1-hr	3-hr	8-hr	24-hr	Annual	
Carbon Monoxide	0.693		0.693			
Nitrogen Oxides	0.0567				0.0567	
PM-10				0.0469		
PM-2.5				0.0469	0.0469	
Sulfur Oxides	0.00085	0.00085				

FORM F – EMISSION UNIT INFORMATION

Emission Unit No.: B-705E

Section 11 Emission Control Information f	or PSD and/or Nonattainment Major Sources and Modifications Only
Control Equipment:	Pollutant(s) Controlled:
	ipment: A SCR control system will be installed on the exhaust from the Waste Heat
Boiler/Solar Turbine. A BACT analysis is attac	neu
See attached for additional details.	
	g parameters and set points for the control equipment:
See attached for additional details.	
This control equipment is proposed as BACT	LAER for pollutant(s):
Proposed BACT/LAER performance limit:	lbs/hr for pollutant:
	lbs/hr for pollutant:
-	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance	
	T or LAER, a detailed BACT analysis or LAER demonstration is attached. <i>Note: This</i>
must be attached in order for your application t	o be complete.
Control Equipment:	Pollutant(s) Controlled:
Provide a physical description of the control equ	ipment:
See attached for additional details.	
Provide a description of the significant operatin	g parameters and set points for the control equipment:
See attached for additional details. This control equipment is proposed as BACT	LAED for nollistant(a)
This control equipment is proposed as BACT	LAER for pollutant(s):
Proposed BACT/LAER performance limit:	lbs/hr for pollutant:
_	lbs/hr for pollutant:
	lbs/hr for pollutant:
Note: The proposed BACT/LAER performance	
L If the control equipment is proposed as BAC <i>must be attached in order for your application t</i>	T or LAER, a detailed BACT analysis or LAER demonstration is attached. <i>Note: This o be complete.</i>
AIR QUALITY CONTROL CONSTRUCTION PERMI FORM F	T APPLICATION Page 4 of 5 Revision Date: 9/8/03

Emission Unit No.:B-705ESection 12Attachments

Attachments Included. List attachments:

Alaska Department of Environmental Conservation Air Quality Control Construction Permit Application

ADEC USE ONLY Receiving Date:

ADEC Control #:

FORM K – NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Source Name: Agrium Kenai Nitroger	mation Section		J nit Identifica	lion
	Operations (KNO) Emission	on Unit No.:	B-705A, B,	See Form F for this Emission
			C, D, E	Unit No.
Source Physical Address:Mile 21 Ker	ai Spur Highway 🛛 🖾 New	v		Complete this form for each unit
		dified		subject to a NESHAP. See
City:Kenai	🗌 Rec	onstructed		Instruction Manual.
· · ·				
Section 3 Applicable Subpart:	l0 CFR Part 🛛 61 🗌 🛛 63 🛛	🛛 🛛 Subpart A	4	
List applicable sections of Subpart A:	63.4, 63.6(e), 63.9(b), 63.9(h), 63.10(b), 63	3.10(d)	
		_		
Section 4 Applicable Subpart:	0 CFR Part 61 🗌 63 🛛	🛛 Subpart	DDDDD	
List applicable sections:				d), 63.7540(a)(10), 63.7540(a)(13),
				a), 63.7550(b), 63.7550(c)(1),
	<u>63.7550(d)(1) - (d)(2), 63.75</u>			
List applicable pollutant(s):		•		pthalene, Toluene, Acenaphthene,
	Acenaphthylene, Anthracen			
	Benzo(g,h,i)perylene, Benzo			
	Dimethylbenz(a)anthracene			
	Methylchloranthene, 2-Meth	nyInaphthalene	, Phenanthrene,	, Pyrene
List applicable application standards. N				
List applicable emission standards: N	one			
See attached for additional details				
See attached for additional details				
See attached for additional details	63.7500(a), 63.7500(c), 63.7	7500(d), 63.750)5(c) - (e), 63.7	510(a) - (f), 63.7510(h),
`	63.7500(a), 63.7500(c), 63.7			510(a) - (f), 63.7510(h), h), 63.7515(i), 63.7520, 63.7521,
`	63.7500(a), 63.7500(c), 63.7	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
`	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u>	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u>	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u>	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u>	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u>	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits.	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits.	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (c</u> subject to emission limits.	(c), 63.7515(e)	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast 63.7510(i) - (j): New source.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits.	(c), 63.7515(e) c) - (i), 63.7535	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast 63.7510(i) - (j): New source. 63.7515(a) - (c): Not required to cond	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits.	(c), 63.7515(e) c) - (i), 63.7535	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast 63.7510(i) - (j): New source. 63.7515(a) - (c): Not required to conc 63.7515(e) - (g): Not required to conc	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits.	(c), 63.7515(e) c) - (i), 63.7535	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast 63.7515(a) - (c): Not required to conc 63.7515(e) - (g): Not required to conc 63.7515(h): Only burn gas 1 fuels.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits. uct performance tests. uct performance tests or fuel a d.	(c), 63.7515(e) c) - (i), 63.7535	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast 63.7515(a) - (c): Not required to cond 63.7515(e) - (g): Not required to cond 63.7515(h): Only burn gas 1 fuels. 63.7515(i): No CO monitoring requir 63.7520: Not required to conduct perf 63.7521: Burns natural gas.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits. uct performance tests. uct performance tests or fuel a d. ormance tests.	(c), 63.7515(e) c) - (i), 63.7535	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast 63.7510(i) - (j): New source. 63.7515(a) - (c): Not required to cond 63.7515(e) - (g): Not required to cond 63.7515(h): Only burn gas 1 fuels. 63.7515(i): No CO monitoring required 63.7520: Not required to conduct performance.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits. uct performance tests. uct performance tests or fuel a d. ormance tests.	(c), 63.7515(e) c) - (i), 63.7535	- (g), 63.7515(h), 63.7515(i), 63.7520, 63.7521,
List inapplicable sections: Description of inapplicability: 63.7500(a): Burns gas 1 fuels. 63.7500(c): Not a limited-use boiler. 63.7500(d): Burns gas 1 fuels. 63.7505(c) - (e), 63.7510(a) - (f): Not 63.7510(h): Does not burn solid wast 63.7515(a) - (c): Not required to cond 63.7515(e) - (g): Not required to cond 63.7515(h): Only burn gas 1 fuels. 63.7515(i): No CO monitoring requir 63.7520: Not required to conduct perf 63.7521: Burns natural gas.	<u>63.7500(a), 63.7500(c), 63.7</u> <u>3.7510(i) - (j), 63.7515(a) -</u> <u>63.7525, 63.7530(a) - (c), (e</u> subject to emission limits. uct performance tests. uct performance tests or fuel a d. ormance tests. perating limits.	(<u>c), 63.7515(e)</u> <u>e) - (i), 63.7535</u> nalyses.	<u>- (g), 63.7515(</u> , 63.7540(b), 6	h), 63.7515(i), 63.7520, 63.7521,

63.7535: Not required to monitor emissions.63.7540(b): Not subject to emission limits.63.7540(c): Only burns natural gas.

See attached for additional details.

List Monitoring, Record Keeping and Reporting Requirements:

63.7515(d): Annual tune-up must be no more than 13 months after the previous tune-up.

63.7530(d): Submit a signed statement in the Notification of Compliance Status report that indicates you conducted a tune-up of the unit.

63.7540(a)(10): Conduct an annual tune-up.

63.7540(d): Meet the work practice standards in Table 3.

63.7545(a): Submit to the Administrator all of the notifications in 63.9(b) by the dates specified.

63.7545(c): Submit an Initial Notification not later than 15 days after the actual date of startup of the affected source.

63.7550(a): Submit each applicable report required by Table 9.

63.7555(a): Keep a copy of each notification and report submitted, including all supporting documentation; records of compliance demonstrations and performance evaluations.

63.7555(i) - (j): Maintain records of the calendar date, time, occurrence and duration of each startup and shutdown and type(s) and amount(s) of fuels used during each startup and shutdown.

63.7560: Maintain records so they are readily avaliable for expedious review. Keep records for 5 years, at least 2 years on site.

See attached for additional details

FORM K - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Emission Unit No.: B-705A, B, C, D, E

Section 5 Case-By-Case MACT (Complete this section only if applicable.)

40 CFR Part 63, Subpart B

List applicable pollutant(s):

List case-by-case MACT standards:

See attached for additional details.

List Monitoring, Record Keeping and Reporting Requirements to show compliance with case-by-case MACT standards:

See attached for additional details

Supporting documentation for Case-By-Case MACT determination is attached. *Note: If you are subject to a case-by-case MACT determination, this must be attached for your application to be complete.*

Section 6 Attachments

Attachments Included. List attachments:

Attachment B Emission Calculations

Stack ID	44
Tag Number	6B-708C
Source Name	Package Boiler

Operating Paran	Note		
Heat Input	243.0	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.24	(MMscf/hr)	
Maximum Fuel Osage	2087	(MMscf/yr)	
Operating Time:	24	(hr/day)	1
Operating Time:	8760	(hr/year)	1

Pollutant	Emission	Unit	Emissi	on Rate	Note
Foliulani	Factor	Onit	(lb/hr)	(tpy)	Note
NO _x	0.01	lb/mmBtu	2.4	10.6	
CO	0.037	lb/mmBtu	9.0	39.4	
SO ₂	0.600	(lb/MMscf)	1.4E-01	0.6	3
PM (Filterable)	1.9	(lb/MMscf)	0.5	2.0	3
PM ₁₀ (total)	7.6	(lb/MMscf)	1.8	7.9	3
PM _{2.5} (total)	7.6	(lb/MMscf)	1.8	7.9	3
VOC	5.5	(lb/MMscf)	1.3	5.7	3
Lead	0.0005	(lb/MMscf)	1.2E-04	5.2E-04	3
NH3	10	ppmv			5
CO ₂	120000	(lb/MMscf)	2.859E+04	1.252E+05	3
N ₂ O (low NOx burner)	0.64	(lb/MMscf)	1.525E-01	6.678E-01	3
Methane	2.3	(lb/MMscf)	5.479E-01	2.400E+00	3
CO ₂ e			2.865E+04	1.255E+05	4

Notes:

(1) Design Data

(2) BACT

(3) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-2, July 1998

(4) 40 CFR Part 98 Table A-1 Global Warming Potentials

(5) Ammonia Slip

(BACT assumed to be equal to 0.01 lb/mmBtu for new boiler with SCR) (BACT assumed to be equal to 50 ppm @ 3% O2, or approximately 0.037 lb/mmBtu)

Stack ID	48
Tag Number	6B-708B
Source Name	Package Boiler

Operating Param	Note		
Heat Input	243.0	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.24	(MMscf/hr)	
Maximum Fuel Osage	2087	(MMscf/yr)	
Operating Time:	24	(hr/day)	1
Operating Time:	8760	(hr/year)	1

Pollutant	Emission	ssion Unit mission Rat		e	Note
Pollutant	Factor	Unit	(lb/hr)	(tpy)	Note
NO _x	0.01	lb/mmBtu	2.4	10.6	2
CO	0.037	lb/mmBtu	9.0	39.4	2
SO ₂	0.600	(lb/MMscf)	1.4E-01	0.6	3
PM (Filterable)	1.9	(lb/MMscf)	0.5	2.0	3
PM ₁₀ (total)	7.6	(lb/MMscf)	1.8	7.9	3
PM _{2.5} (total)	7.6	(lb/MMscf)	1.8	7.9	3
VOC	5.5	(lb/MMscf)	1.3	5.7	3
Lead	0.0005	(lb/MMscf)	1.2E-04	5.2E-04	3
NH3	10	ppmv			5
CO ₂	120000	(lb/MMscf)	2.859E+04	1.252E+05	3
N ₂ O (low NOx burner)	0.64	(lb/MMscf)	1.525E-01	6.678E-01	3
Methane	2.3	(lb/MMscf)	5.479E-01	2.400E+00	3
CO ₂ e			2.865E+04	1.255E+05	4

Notes:

(1) Design Data

(2) BACT

(3) USEPA AP-42 Chapter 1.4 *Natural Gas Combustion*, Table 1.4-2, July 1998 (4) 40 CFR Part 98 Table A-1 Global Warming Potentials

(5) Ammonia Slip

(BACT assumed to be equal to 0.01 lb/mmBtu for new boiler with SCR) (BACT assumed to be equal to 50 ppm @ 3% O2, or approximately 0.037 lb/mmBtu)

Stack ID	49
Tag Number	6B-708A
Source Name	Package Boiler

Operating Paran	Note		
Heat Input	243.0	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.24	(MMscf/hr)	
Maximum Fuel Osage	2087	(MMscf/yr)	
Operating Time:	24	(hr/day)	1
Operating Time:	8760	(hr/year)	1

Pollutant	Emission	Unit	Emissi	Emission Rate		
Pollulani	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.01	lb/mmBtu	2.4	10.6	2	
CO	0.037	lb/mmBtu	9.0	39.4	2	
SO ₂	0.600	(lb/MMscf)	1.4E-01	0.6	3	
PM (Filterable)	1.9	(lb/MMscf)	0.5	2.0	3	
PM ₁₀ (total)	7.6	(lb/MMscf)	1.8	7.9	3	
PM _{2.5} (total)	7.6	(lb/MMscf)	1.8	7.9	3	
VOC	5.5	(lb/MMscf)	1.3	5.7	3	
Lead	0.0005	(lb/MMscf)	1.2E-04	5.2E-04	3	
NH3	10	ppmv			5	
CO ₂	120000	(lb/MMscf)	2.859E+04	1.252E+05	3	
N ₂ O (low NOx burner)	0.64	(lb/MMscf)	1.525E-01	6.678E-01	3	
Methane	2.3	(lb/MMscf)	5.479E-01	2.400E+00	3	
CO ₂ e			2.865E+04	1.255E+05	4	

Notes:

(1) Design Data

(2) BACT

(3) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-2, July 1998
(4) 40 CFR Part 98 Table A-1 Global Warming Potentials

(5) Ammonia Slip

(BACT assumed to be equal to 0.01 lb/mmBtu for new boiler with SCR) (BACT assumed to be equal to 50 ppm @ 3% O2, or approximately 0.037 lb/mmBtu)

Stack ID 50 Tag Number B-705A Source Name Waste Heat Boiler

Operating Pa	Note		
Heat Input	46.7	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.05	(MMscf/hr)	
On anotic a Times	24	(hr/day)	1
Operating Time:	8760	(hr/year)	1

Pollutant	Emission	Unit	Emission Rate		Note	
Foliutant	Factor	Unit	(lb/hr)	(tpy)	NOLE	
NO _x	0.008	lb/mmBtu	0.37	1.6	1	(BACT proposed to be SCR achieving 7 ppmv NOx @15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.008 lb/mmBtu NOx emission rate from Waste Heat Boilers)
CO	0.109	lb/mmBtu	5.09	22.3	1	(BACT proposed to be 50 ppm CO @ 15% O2, or approximately 0.109 lb/mmBtu)
SO ₂	0.6	(lb/MMscf)	2.7E-02	0.1	2	
PM (Filterable)	1.9	(lb/MMscf)	0.09	0.4	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
VOC	5.5	(lb/MMscf)	0.25	1.1	3	(BACT proposed to be 0.0054 lb/MMBtu (3-hr average))
Lead	0.0005	(lb/MMscf)	2.3E-05	0.0	3	
NH3	10	ppmv			5	
CO ₂	120000	(lb/MMscf)	5.5E+03	2.41E+04	3	
N ₂ O	2.2	(lb/MMscf)	1.0E-01	0.4	3	
Methane	2.3	(lb/MMscf)	1.1E-01	0.5	3	
CO ₂ e			5.5E+03	2.42E+04	4	(BACT proposed to be a combined CO2e emission limit of 121,112 tons per year from all turbines)

Notes:

(1) Proposed BACT (2) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-1, July 1998 (3) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-2, July 1998 (4) 40 CFR Part 98 Table A-1 Global Warming Potentials (5) Ammonia Slip

Stack ID 51 Tag Number B-705B Source Name Waste Heat Boiler

Operating Pa	Note		
Heat Input	46.7	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.05	(MMscf/hr)	
Operating Time:	24	(hr/day)	1
Operating time.	8760	(hr/year)	1

Pollutant	Emission	Unit	Emissio	n Rate	Note	
Pollutant	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.008	lb/mmBtu	0.37	1.6	1	(BACT proposed to be SCR achieving 7 ppmv NOx @ 15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.008 lb/mmBtu NOx emission rate from Waste Heat Boilers)
CO	0.109	lb/mmBtu	5.09	22.3	1	(BACT proposed to be 50 ppm CO @ 15% O2, or approximately 0.109 lb/mmBtu)
SO ₂	0.6	(lb/MMscf)	2.7E-02	0.1	2	
PM (Filterable)	1.9	(lb/MMscf)	0.09	0.4	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
VOC	5.5	(lb/MMscf)	0.25	1.1	3	(BACT proposed to be 0.0054 lb/MMBtu (3-hr average))
Lead	0.0005	(lb/MMscf)	2.3E-05	0.0	3	
NH3	10	ppmv			5	
CO ₂	120000	(lb/MMscf)	5.5E+03	2.41E+04	3	
N ₂ O	2.2	(lb/MMscf)	1.0E-01	0.4	3	
Methane	2.3	(lb/MMscf)	1.1E-01	0.5	3	1
CO ₂ e			5.5E+03	2.42E+04	4	(BACT proposed to be a combined CO2e emission limit of 121,112 tons per year from all turbines)

Notes:

(1) Proposed BACT (2) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-1, July 1998 (3) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-2, July 1998 (4) 40 CFR Part 98 Table A-1 Global Warming Potentials (5) Ammonia Slip

Stack ID 52 Tag Number B-705C Source Name Waste Heat Boiler

Operating Pa	Note		
Heat Input	46.7	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.05	(MMscf/hr)	
Operating Time:	24	(hr/day)	1
Operating Time.	8760	(hr/year)	1

Pollutant	Emission	Unit	Emissio	n Rate	Note	
Pollutant	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.008	lb/mmBtu	0.37	1.6	1	(BACT proposed to be SCR achieving 7 ppmv NOx @ 15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.008 lb/mmBtu NOx emission rate from Waste Heat Boilers)
CO	0.109	lb/mmBtu	5.09	22.3	1	(BACT proposed to be 50 ppm CO @ 15% O2, or approximately 0.109 lb/mmBtu)
SO ₂	0.6	(lb/MMscf)	2.7E-02	0.1	2	
PM (Filterable)	1.9	(lb/MMscf)	0.09	0.4	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
VOC	5.5	(lb/MMscf)	0.25	1.1	3	(BACT proposed to be 0.0054 lb/MMBtu (3-hr average))
Lead	0.0005	(lb/MMscf)	2.3E-05	0.0	3	
NH3	10	ppmv			5	
CO ₂	120000	(lb/MMscf)	5.5E+03	2.41E+04	3	
N ₂ O	2.2	(lb/MMscf)	1.0E-01	0.4	3	
Methane	2.3	(lb/MMscf)	1.1E-01	0.5	3	
CO ₂ e			5.5E+03	2.42E+04	4	(BACT proposed to be a combined CO2e emission limit of 121,112 tons per year from all turbines)

Notes:

Notes: (1) Proposed BACT (2) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-1, July 1998 (3) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-2, July 1998 (4) 40 CFR Part 98 Table A-1 Global Warming Potentials (5) Ammonia Slip

Stack ID 53 Tag Number B-705D Source Name Waste Heat Boiler

Operating Pa	Note		
Heat Input	46.7	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.05	(MMscf/hr)	
Operating Time:	24	(hr/day)	1
Operating Time:	8760	(hr/year)	1

Pollutant	Emission	Unit	Emissio	n Rate	Note	1
Pollutant	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.008	lb/mmBtu	0.37	1.6	1	(BACT proposed to be SCR achieving 7 ppmv NOx @15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.008 lb/mmBlu NOx emission rate from Waste Heat Boilers)
CO	0.109	lb/mmBtu	5.09	22.3	1	(BACT proposed to be 50 ppm CO @ 15% O2, or approximately 0.109 lb/mmBtu)
SO ₂	0.6	(lb/MMscf)	2.7E-02	0.1	2	
PM (Filterable)	1.9	(lb/MMscf)	0.09	0.4	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
VOC	5.5	(lb/MMscf)	0.25	1.1	3	(BACT proposed to be 0.0054 lb/MMBtu (3-hr average))
Lead	0.0005	(lb/MMscf)	2.3E-05	0.0	3	
NH3	10	ppmv			5	
CO ₂	120000	(lb/MMscf)	5.5E+03	2.41E+04	3	
N ₂ O	2.2	(lb/MMscf)	1.0E-01	0.4	3	
Methane	2.3	(lb/MMscf)	1.1E-01	0.5	3	
CO ₂ e			5.5E+03	2.42E+04	4	(BACT proposed to be a combined CO2e emission limit of 121,112 tons per year from all turbines)

Notes:

(1) Proposed BACT (2) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-1, July 1998 (3) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-2, July 1998 (4) 40 CFR Part 98 Table A-1 Global Warming Potentials (5) Ammonia Slip

Stack ID 54 Tag Number B-705E Source Name Waste Heat Boiler

Operating Pa	Note		
Heat Input	46.7	(MMBtu/hr)	1
Fuel Heating Value	1020	(Btu/scf)	1
Maximum Fuel Usage	0.05	(MMscf/hr)	
Operating Time:	24	(hr/day)	1
Operating time.	8760	(hr/year)	1

Pollutant	Emission	Unit	Emissio	n Rate	Note	1
Follutant	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.008	lb/mmBtu	0.37	1.6	1	(BACT proposed to be SCR achieving 7 ppmv NOx @15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.008 lb/mmBtu NOx emission rate from Waste Heat
CO	0.109	lb/mmBtu	5.09	22.3	1	(BACT proposed to be 50 ppm CO @ 15% O2, or approximately 0.109 lb/mmBtu)
SO ₂	0.6	(lb/MMscf)	2.7E-02	0.1	2	
PM (Filterable)	1.9	(lb/MMscf)	0.09	0.4	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.6	(lb/MMscf)	0.35	1.5	1	(BACT proposed to be 0.0074 lb/MMBtu)
VOC	5.5	(lb/MMscf)	0.25	1.1	3	(BACT proposed to be 0.0054 lb/MMBtu (3-hr average))
Lead	0.0005	(lb/MMscf)	2.3E-05	0.0	3	
NH3	10	ppmv			5	
CO ₂	120000	(lb/MMscf)	5.5E+03	2.41E+04	3	
N ₂ O	2.2	(lb/MMscf)	1.0E-01	0.4	3	1
Methane	2.3	(lb/MMscf)	1.1E-01	0.5	3]
CO ₂ e			5.5E+03	2.42E+04	4	(BACT proposed to be a combined CO2e emission limit of 121,112 tons per year from all turbines)

Notes: (1) Proposed BACT (2) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-1, July 1998 (3) USEPA AP-42 Chapter 1.4 Natural Gas Combustion, Table 1.4-2, July 1998 (4) 40 CFR Part 98 Table A-1 Global Warming Potentials (5) Ammonia Slip

Stack ID 55 Tag Number GGT-744A Source Name Solar Turbine/Generator Set

Operating P	Note		
Heat Input	55.4	(MMBtu/hr)	1
Bypass Hours	204.0	(hr/yr)	
NOx Emissions during bypass hours	36.4	lb/hr	
Operating Time:	24	(hr/day)	1
Operating Time.	8760	(hr/year)	1

(hours per year Solar Turbine would operate without Waste Heat Boiler (bypassing the SCR control system)

(highest hourly emission rate based on worst case Solar NOx generation rate (0.656 lbs/MMBtu) considering both HHV and LHV)

Pollutant	Emission	Unit	Emissio	n Rate	Note	
Follutant	Factor	onic	(lb/hr)	(tpy)	Note	
NO _x	0.041	(lb/MMBtu)	2.27	13.44	1	(BACT proposed to be SCR achieving 7 ppmv NOx @15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.041 lb/mmBtu NOx emission rate from Solar Turbine)
CO	0.109	(lb/MMBtu)	6.04	26.47	1	(BACT proposed to be 50 ppm @ 15% O2, or approximately 0.109 lb/MMBtu)
SO ₂	3.4E-03	(lb/MMBtu)	0.19	0.83	2,3	
PM (Filterable)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
CO ₂	1.1E+02	(lb/MMBtu)	6.10E+03	2.67E+04	2	
N ₂ O	3.0E-03	(lb/MMBtu)	0.17	0.73	2	
Methane	8.6E-03	(lb/MMBtu)	0.48	2.09	2	
CO ₂ e			6.16E+03	2.70E+04	4	(BACT proposed to be a combined CO2e emission limit of 134,909 tons per year from all turbines)
VOC	2.1E-03	(lb/MMBtu)	0.12	0.51	1	(BACT proposed to be 0.0021 lb/MMBtu (3-hr average))

Notes:

Proposed BACT
 USEPA AP-42 Chapter 3.1 Stationary Gas Turbines, Table 3.1-2a, April 2000
 Assumed factor for natural gas usage, see note h in Table 3.1-1a
 40 40 CFR Part 98 Table A-1 Global Warming Potentials

Computation of Annual Emissions for Q/D (Incremental Increase Based on Max 24-hour Emissions Multiplied by 365)

Maximum Hours per day =

	lb/hr lb/	/day t/yr	t/yr increase over baseline
NOx	36.4	874.08 159.5196	144.4
PM10	no change		
SO2	no change		

Stack ID 56 Tag Number GGT-744B Source Name Solar Turbine/Generator Set

Operating F	Note		
Heat Input	55.4	(MMBtu/hr)	1
Bypass Hours	204.0	(hr/yr)	
NOx Emissions during bypass hours	36.4	lb/hr	
Operating Time:	24	(hr/day)	1
Operating Time.	8760	(hr/year)	1

(hours per year Solar Turbine would operate without Waste Heat Boiler (bypassing the SCR control system)

(highest hourly emission rate based on worst case Solar NOx generation rate (0.656 lbs/MMBtu) considering both HHV and LHV)

Pollutant	Emission	Unit	Emissio	n Rate	Note	
Pollutant	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.041	(lb/MMBtu)	2.27	13.44	1	(BACT proposed to be SCR achieving 7 ppmv NOx @ 15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.041 lb/mmBtu NOx emission rate from Solar Turbine)
CO	0.109	(lb/MMBtu)	6.04	26.47	1	(BACT proposed to be 50 ppm @ 15% O2, or approximately 0.109 lb/MMBtu)
SO ₂	3.4E-03	(lb/MMBtu)	0.19	0.83	2,3	
PM (Filterable)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
CO ₂	1.1E+02	(lb/MMBtu)	6.10E+03	2.67E+04	2	
N ₂ O	3.0E-03	(lb/MMBtu)	0.17	0.73	2	
Methane	8.6E-03	(lb/MMBtu)	0.48	2.09	2	
CO ₂ e			6.16E+03	2.70E+04	4	(BACT proposed to be a combined CO2e emission limit of 134,909 tons per year from all turbines)
VOC	2.1E-03	(lb/MMBtu)	0.12	0.51	1	(BACT proposed to be 0.0021 lb/MMBtu (3-hr average))
						-

Notes:

(1) Proposed BACT

(2) USEPA AP-42 Chapter 3.1 Stationary Gas Turbines, Table 3.1-2a, April 2000
(3) Assumed factor for natural gas usage, see note h in Table 3.1-1a
(4) 40 CFR Part 98 Table A-1 Global Warming Potentials

Computation of Annual Emissions for Q/D (Incremental Increase Based on Max 24-hour Emissions Multiplied by 365)

Maximum Hours per day = 24

	lb/hr ll	b/day	t/yr	t/yr increase over baseline
NOx	36.4	874.08	159.5196	144.4
PM10 SO2	no change no change			

Stack ID 57 Tag Number GGT-744C Source Name Solar Turbine/Generator Set

Operating P	Note		
Heat Input	55.4	(MMBtu/hr)	1
Bypass Hours	204.0	(hr/yr)	
NOx Emissions during bypass hours	36.4	lb/hr	
	24	(hr/day)	1
Operating Time:	8760	(hr/year)	1

(hours per year Solar Turbine would operate without Waste Heat Boiler (bypassing the SCR control system)

(highest hourly emission rate based on worst case Solar NOx generation rate (0.656 lbs/MMBtu) considering both HHV and LHV)

Pollutant	Emission	Unit	Emissio	n Rate	Note	
Pollutant	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.041	(lb/MMBtu)	2.27	13.44	1	(BACT proposed to be SCR achieving 7 ppmv NOx @15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.041 lb/mmBtu NOx emission rate from Solar Turbine
CO	0.109	(lb/MMBtu)	6.04	26.47	1	(BACT proposed to be 50 ppm @ 15% O2, or approximately 0.109 lb/MMBtu)
SO ₂	3.4E-03	(lb/MMBtu)	0.19	0.83	2,3	
PM (Filterable)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
CO ₂	1.1E+02	(lb/MMBtu)	6.10E+03	2.67E+04	2	
N ₂ O	3.0E-03	(lb/MMBtu)	0.17	0.73	2	
Methane	8.6E-03	(lb/MMBtu)	0.48	2.09	2	
CO ₂ e			6.16E+03	2.70E+04	4	(BACT proposed to be a combined CO2e emission limit of 134,909 tons per year from all turbines)
VOC	2.1E-03	(lb/MMBtu)	0.12	0.51	1	(BACT proposed to be 0.0021 lb/MMBtu (3-hr average))

Notes:

Proposed BACT
 USEPA AP-42 Chapter 3.1 Stationary Gas Turbines, Table 3.1-2a, April 2000
 Assumed factor for natural gas usage, see note h in Table 3.1-1a
 40 40 CFR Part 98 Table A-1 Global Warming Potentials

Computation of Annual Emissions for Q/D (Incremental Increase Based on Max 24-hour Emissions Multiplied by 365)

No change (maximum of two Solar Turbines at one time would be operated in bypass mode)

Stack ID 58 Tag Number GGT-744D Source Name Solar Turbine/Generator Set

Operating P	Note		
Heat Input	55.4	(MMBtu/hr)	1
Bypass Hours	204.0	(hr/yr)	
NOx Emissions during bypass hours	36.4	lb/hr	
Operating Time:	24	(hr/day)	1
Operating Time.	8760	(hr/year)	1

(hours per year Solar Turbine would operate without Waste Heat Boiler (bypassing the SCR control system)

(highest hourly emission rate based on worst case Solar NOx generation rate (0.656 lbs/MMBtu) considering both HHV and LHV)

Pollutant	Emission	Unit	Emissio	n Rate	Note	
Fonutant	Factor	Onit	(lb/hr)	(tpy)	NOLE	
NO _x	0.041	(lb/MMBtu)	2.27	13.44	1	(BACT proposed to be SCR achieving 7 ppmv NOx @15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately
CO	0.109	(lb/MMBtu)	6.04	26.47	1	(BACT proposed to be 50 ppm @ 15% O2, or approximately 0.109 lb/MMBtu)
SO ₂	3.4E-03	(lb/MMBtu)	0.19	0.83	2,3	
PM (Filterable)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
CO ₂	1.1E+02	(lb/MMBtu)	6.10E+03	2.67E+04	2	
N ₂ O	3.0E-03	(lb/MMBtu)	0.17	0.73	2	
Methane	8.6E-03	(lb/MMBtu)	0.48	2.09	2	
CO ₂ e			6.16E+03	2.70E+04	4	(BACT proposed to be a combined CO2e emission limit of 134,909 tons per year from all turbines)
VOC	2.1E-03	(lb/MMBtu)	0.12	0.51	1	(BACT proposed to be 0.0021 lb/MMBtu (3-hr average))

Notes:

(1) Proposed BACT

(2) USEPA AP-42 Chapter 3.1 Stationary Gas Turbines, Table 3.1-2a, April 2000

(3) Assumed factor for natural gas usage, see note h in Table 3.1-1a

(4) 40 CFR Part 98 Table A-1 Global Warming Potentials

Computation of Annual Emissions for Q/D (Incremental Increase Based on Max 24-hour Emissions Multiplied by 365)

No change (maximum of two Solar Turbines at one time would be operated in bypass mode)

ely 0.041 lb/mmBtu NOx emission rate from Solar Turbine)

Stack ID 59 Tag Number GGT-744E Source Name Solar Turbine/Generator Set

Operating Parameters							
Heat Input	55.4	(MMBtu/hr)	1				
Bypass Hours	204.0	(hr/yr)					
NOx Emissions during bypass hours	36.4	lb/hr					
Operating Time:	24	(hr/day)	1				
Operating Time.	8760	(hr/year)	1				

(hours per year Solar Turbine would operate without Waste Heat Boiler (bypassing the SCR control system)

(highest hourly emission rate based on worst case Solar NOx generation rate (0.656 lbs/MMBtu) considering both HHV and LHV)

Pollutant	Emission	Unit	Emissio	n Rate	Note	
Pollutant	Factor	Unit	(lb/hr)	(tpy)	Note	
NO _x	0.041	(lb/MMBtu)	2.27	13.44	1	(BACT proposed to be SCR achieving 7 ppmv NOx @15% O2 for combined Solar Turbine/Waste Heat Boiler exhaust, or approximately 0.041 lb/mmBtu NOx emission rate from Solar Turbine)
CO	0.109	(lb/MMBtu)	6.04	26.47	1	(BACT proposed to be 50 ppm @ 15% O2, or approximately 0.109 lb/MMBtu)
SO ₂	3.4E-03	(lb/MMBtu)	0.19	0.83	2,3	
PM (Filterable)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM ₁₀ (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
PM _{2.5} (total)	7.4E-03	(lb/MMBtu)	0.41	1.80	1	(BACT proposed to be 0.0074 lb/MMBtu)
CO ₂	1.1E+02	(lb/MMBtu)	6.10E+03	2.67E+04	2	
N ₂ O	3.0E-03	(lb/MMBtu)	0.17	0.73	2	
Methane	8.6E-03	(lb/MMBtu)	0.48	2.09	2	
CO ₂ e			6.16E+03	2.70E+04	4	(BACT proposed to be a combined CO2e emission limit of 134,909 tons per year from all turbines)
VOC	2.1E-03	(lb/MMBtu)	0.12	0.51	1	(BACT proposed to be 0.0021 lb/MMBtu (3-hr average))

Notes:

Proposed BACT
 Proposed BACT
 USEPA AP-42 Chapter 3.1 Stationary Gas Turbines, Table 3.1-2a, April 2000
 Assumed factor for natural gas usage, see note h in Table 3.1-1a
 40 40 CFR Part 98 Table A-1 Global Warming Potentials

Computation of Annual Emissions for Q/D (Incremental Increase Based on Max 24-hour Emissions Multiplied by 365)

No change (maximum of two Solar Turbines at one time would be operated in bypass mode)

Attachment C BACT Analysis

BACT Analysis

Agrium Kenai, Alaska

Kenai Nitrogen Operation

15 May 2019 Project No.: 0497868

Signature Page

15 May 2019

BACT Analysis

Kenai Nitrogen Operation

David R. Jada

Daniel R. Findo

Daniel Guido

Principal Consultant

Partner-In-Charge

Jason Krawczyk Project Manager

David Jordan

ERM Indianapolis Office 8425 Woodfield Crossing Boulevard Suite 560-W Indianapolis, IN 46240

© Copyright 2019 by ERM Worldwide Group Ltd and / or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

CONTENTS

1.	BEST	AVAILAB	LE CONTROL TECHNOLOGY (BACT) BACKGROUND	3						
	1.1		on	-						
	1.2		y Basis for BACT Analysis							
	1.3	Five-Step	Top-Down BACT Process	4						
2.	SUMM		AFFECTED EMISSION UNITS AND POLLUTANTS	6						
	2.1	Brief Facility Description								
	2.2	Package B	Boilers Units (Units 44, 48, and 49)	6						
	2.3		at Boilers (Units 50, 51, 52, 53, and 54)							
	2.4	Solar Turk	pine/Generator Sets (Units 55, 56, 57, 58, and 59)	7						
3.			UTANT BEST AVAILABLE CONTROL TECHNOLOGY (BACT) ANALY							
	3.1	Package E	Boilers (Units 44, 48, and 49)	8						
		3.1.1	BACT Evaluation for CO Emissions from the Package Boilers							
		3.1.2	BACT Evaluation for VOC Emissions from the Package Boilers							
		3.1.3	BACT Evaluation for NO _X Emissions from the Package Boilers							
		3.1.4	BACT Evaluation for PM/PM ₁₀ /PM _{2.5} Emissions from the Package Boilers							
	3.2	Waste He	at Boilers (Units 50, 51, 52, 53, and 54)	14						
		3.2.1	BACT Evaluation for CO Emissions from the Waste Heat Boilers	14						
		3.2.2	BACT Evaluation for VOC Emissions from the Waste Heat Boilers	15						
		3.2.3	BACT Evaluation for NO _X Emissions from the Waste Heat Boilers	16						
		3.2.4	BACT Evaluation for PM/PM ₁₀ /PM _{2.5} Emissions from the Waste Heat Boilers	17						
	3.3	Solar Turb	bine/Generator Sets (Units 55, 56, 57, 58, and 59)							
		3.3.1	BACT Evaluation for CO Emissions from the Solar Turbine/Generator Sets							
		3.3.2	BACT Evaluation for VOC Emissions from the Solar Turbine/Generator Sets							
		3.3.3	BACT Evaluation for NO _x Emissions from the Solar Turbine/Generator Sets							
		3.3.4	BACT Evaluation for PM/PM ₁₀ /PM _{2.5} Emissions from the Solar Turbine/Generator Sets							
4.	GREE	NHOUSE	GAS (GHG) BEST AVAILABLE CONTROL TECHNOLOGY (BACT)							
	ANAL	YSIS		27						
	4.1	Package B	Boilers (Units 44, 48, and 49)	27						
		4.1.1	BACT Evaluation for GHG Emissions from the Package Boilers	27						
	4.2	Waste He	at Boilers (Units 50, 51, 52, 53, and 54)	30						
		4.2.1	BACT Evaluation for GHG Emissions from the Waste Heat Boilers	30						
	4.3	Solar Turk	pines/Generator Sets (Units 55, 56, 57, 58, and 59)	31						
		4.3.1	BACT Evaluation for GHG Emissions from the Solar Turbines/Generator Sets							
5.	BEST		LE CONTROL TECHNOLOGY (BACT) ANALYSIS UPDATES	33						
	5.1		Tank Flare (Unit 11)							
	5.2		eformer (Unit 12)							
	5.3		eater (Unit 13)							
	5.4		(Unit 14)							
	5.5		re and Emergency Flare (Units 22 and 23)							
	5.6	Urea Grar	nulation (Units 35 and 36)	34						
	5.7	0	ower (Unit 40)							
	5.8		prage Tank (Unit 41A)							
	5.9		prage Tanks (Units 41B and 41C)							
	5.10		Doading (Unit 47)							
	5.11		erial Handling Units (Unit 47A, 47B, 47C, and 47D)							
	5.12 5.13		ell Pump (Unit 65) Fire Pump (Unit 66)							
	5.15	Gasuine i	ו וופ ר מוווף (טווג טט)	ათ						

List of Tables

Table 1	NOx Control Efficiencies for the Package Boilers	11
Table 2	NOx Control Efficiencies for the Waste Heat Boilers	17
Table 3	NOx Control Efficiencies for the Solar Turbine/Generator Sets	23

APPENDIX ARBLC SUMMARYAPPENDIX BCOST ESTIMATES

1. BEST AVAILABLE CONTROL TECHNOLOGY (BACT) BACKGROUND

1.1 Introduction

Agrium U.S. Inc. (Agrium) was issued Air Quality Control Construction Permit AQ0083CPT06 on 6 January 2015 for the proposed restart of a portion of it fertilizer production facility (Facility) at the Kenai Nitrogen Operation in Kenai, Alaska. In a letter dated 4 March 2016, the Alaska Department of Environmental Conservation (ADEC) extended the deadline by which construction must commence by eighteen (18) months until 6 January 2018. In a second letter dated 3 October 2017, the ADEC extended the deadline by which construction must commence by an additional eighteen (18) months until 6 July 2019.

Since the issuance of the ADEC letter dated 3 October 2017, Agrium has decided to replace the five (5) existing 37.6 MMBtu/hr Solar Turbines identified as Units 55, 56, 57, 58, and 59. The replacement Solar Turbines will each have a maximum rated heat input capacity of 55.443 MMBtu/hr. The new Solar Turbines will utilize the existing Waste Heat Boilers (Units 50, 51, 52, 53, and 54) for heat recovery. Due to the increase in heat input capacities of the new Solar Turbines, the required supplemental heat input capacity of the 50.0 MMBtu/hr Waste Heat Boilers have decreased. The Waste Heat Boilers once integrated with the new Solar Turbines, will now only have heat input capacities of 46.729 MMBtu/hr, each. Since the heat input capacities of the Waste Heat Boilers are changing, as are the potential emissions, Agrium is providing updated top-down BACT analyses for these affected units, in addition to the top-down BACT analyses for the new Solar Turbines.

In addition, Agrium is proposing to install Selective Catalytic Reduction (SCR) for NOx control on the Package Boilers (Units 44, 48, and 49). These emission units went through PSD BACT as part of the permitting for AQ0083CPT06. Under the Air Quality Control Construction Permit, BACT for NOx was identified as use of ultra low NOx burners. SCR is considered to provide the same, if not a higher, control efficiency than the use of ultra low NOx burners.

This document is presented as Attachment C to the 2019 Prevention of Significant Deterioration (PSD) permit application for the Facility and presents the Best Available Control Technology (BACT) review for the affected units at the Facility. It also contains an evaluation of BACT for the unaffected units originally permitted in the PSD Construction Permit. In addition, this document includes information contained in appendices as follows:

- Appendix A RBLC Search Summary This appendix includes the search results of the USEPA RACT/BACT/LAER Clearinghouse (RBLC) database to identify the permit limits on similar sources in the United States. The table also includes permit limit information for recently issued permits that are not in the RBLC.
- Appendix B Cost Estimates This appendix includes information on the cost estimates for various air pollution control equipment.

This document incorporates by reference additional information contained in the original application that has not changed from the original application, including process descriptions.

1.2 Regulatory Basis for BACT Analysis

Section 163(3) of the Clean Air Act (CAA) defines Best Available Control Technology (BACT) as:

"An emission limitation based on the maximum degree of reduction of each pollutant subject to regulation under [the CAA] emitted from or which results from any major emitting facility, which the permitting authority, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such facility through application of production processes and available methods, systems, and techniques, including fuel cleaning, clean fuels, or treatment or innovative fuel combustion techniques for control of each such pollutant." Based on projected potential emission rates, BACT is required for the following criteria pollutants:

- Nitrogen Oxides (NOx)
- Carbon Monoxide (CO)
- Volatile Organic Compounds (VOC)
- Particulate Matter (PM)
- Particulate Matter ≤ 10 microns in aerodynamic diameter (PM₁₀)
- Particulate Matter ≤ 2.5 microns in aerodynamic diameter (PM_{2.5})

In addition, the proposed project is subject to a BACT review for the greenhouse gas (GHG) pollutants under EPA's Tailoring Rule. The regulated GHGs include the following:

- Carbon Dioxide (CO₂)
- Methane (CH₄)
- Nitrous Oxide (N₂O)
- Carbon Dioxide Equivalent (CO₂e)

Where CO2e represents the CO2 equivalence of the emissions. CO2e emissions are calculated as the sum of the mass emissions of each individual GHGs adjusted for its respective global warming potential (GWP). The GWP values are included in Table A-1 of the Greenhouse Gas Mandatory Reporting Rule found in 40 CFR 98, Subpart A.

1.3 Five-Step Top-Down BACT Process

This BACT analysis is conducted following EPA's "top-down" BACT approach, as described in EPA's *Draft New Source Review Workshop Manual* (EPA 1990). The five basic steps of a top-down BACT analysis are listed below:

- Step 1: Identify potential control technologies
- Step 2: Eliminate technically infeasible options
- Step 3: Rank remaining control technologies by control effectiveness
- Step 4: Evaluate the most effective controls and document results
- Step 5: Select BACT

The first step is to identify potentially "available" control options for each emission unit triggering PSD, for each pollutant under review. Available options consist of a comprehensive list of those technologies with a potentially practical application to the emission unit in question. The list includes technologies used to satisfy BACT requirements, innovative technologies, and controls applied to similar source categories.

For this analysis, the following sources were investigated to identify potentially available control technologies:

- EPA's RACT/BACT/LAER Clearinghouse (RBLC) database.
- EPA's New Source Review website.
- In-house experts.
- State air regulatory agency contacts.
- Technical articles and publications.
- A number of permits issued for similar sources that have not yet been entered into the RBLC.
- Guidance documents and personal communications with federal and state agencies.

After identifying potential technologies, the second step is to eliminate technically infeasible options from further consideration. To be considered feasible for BACT, a technology must be commercially available and applicable to a given emission unit.

The third step is to rank the technologies not eliminated in Step 2 in order of descending control effectiveness for each pollutant of concern. If the highest ranked technology is proposed as BACT, it is not necessary to perform technical or economic evaluation of the selected or less effective control technologies identified as outlined in Step 4. Potential adverse impacts, however, must still be identified and evaluated.

The fourth step entails an evaluation of energy, environmental, and economic impacts for determining a final level of control. The evaluation begins with the most stringent control option and continues until a technology under consideration cannot be eliminated based on adverse energy, environmental, or economic impacts. The economic or "cost-effectiveness" analysis is conducted in a manner consistent with EPA's *OAQPS Control Cost Manual, Sixth Edition1* and subsequent revisions.

Cost effectiveness is expressed in terms of dollars per ton of pollutant removed (\$/ton). The costs in the numerator of that expression are determined by adding the annualized capital cost and the annual operation and maintenance costs of a given control device under evaluation. Annualized costs are determined by the following equation:

Annualized equipment cost in \$/yr = PV(i / [1 - (1 + i) -n])

Where: PV = Present value of the equipment; i = Interest rate (cost of money); and n = Number of years of the life of the equipment.

The annual mass (ton) of pollutant removed is determined by multiplying the annual uncontrolled emission rate by the expected control efficiency. The uncontrolled emission rate may, in some cases, be the rate after some level of control. In addition, the annual emission rate may be the potential to emit, or a level based on limited hours of operation.

The fifth and final step is to select as BACT the emission limit from application of the most effective of the remaining technologies under consideration for each pollutant of concern.

¹ USEPA, OAQPS Control Cost Manual, Sixth Edition (Research Triangle Park, NC, 2002)

2. SUMMARY OF AFFECTED EMISSION UNITS AND POLLUTANTS

2.1 Brief Facility Description

Air Quality Control Construction Permit AQ0083CPT06 permitted Agrium to construct a facility consisting of an agricultural fertilizer production facility. The facility will consist of three (3) distinct plants:

- 1. Plant 4 Ammonia Plant
- 2. Plant 5 Urea Plant
- 3. Plant 6 Supporting Utility Plant

Each plant within the permitted facility includes several emission units. In the synthetic ammonia production process, natural gas molecules are reduced to carbon and hydrogen. The hydrogen is then purified and reacted with nitrogen to produce ammonia. Ammonia is synthesized by reacting hydrogen with nitrogen at a molar ratio of 3 to 1, then compressing and cooling the gas. Nitrogen is obtained from the air, while hydrogen is obtained from the catalytic steam reforming of natural gas.

Generally, there are six process steps to produce synthetic ammonia using the catalytic steam reforming process as follows:

- 1. Natural gas desulfurization,
- 2. Catalytic steam reforming,
- 3. Carbon monoxide (CO) shift,
- 4. Carbon dioxide (CO2) removal,
- 5. Methanation, and
- 6. Ammonia synthesis.

The synthetic ammonia produced at the Ammonia Plant is used as feedstock for the Urea Plant at the facility and will also be sold as a product. In the Urea Plant, urea is produced by reacting ammonia and CO₂.

A more detailed description of the permitted facility and associated air emission units is provided in the Appendix A of the original BACT analysis.

2.2 Package Boilers Units (Units 44, 48, and 49)

The three (3) Package Boilers at the plant are natural gas-fired boilers used to generate steam for plant operations. Emissions of regulated pollutants from the Package Boilers include:

- Nitrogen Oxides (NOx)
- Carbon Monoxide (CO)
- Volatile Organic Compounds (VOC)
- Particulate Matter (PM)
- Particulate Matter ≤ 10 microns in aerodynamic diameter (PM10)
- Particulate Matter ≤ 2.5 microns in aerodynamic diameter (PM2.5)
- Carbon Dioxide (CO2)
- Methane (CH4)
- Nitrous Oxide (N2O)
- Carbon Dioxide Equivalent (CO2e)

2.3 Waste Heat Boilers (Units 50, 51, 52, 53, and 54)

The five (5) Waste Heat Boilers at the plant are natural gas-fired units used to generate steam for the plant using natural gas and waste heat from the turbines. Emissions of regulated pollutants from the Waste Heat Boilers include:

- Nitrogen Oxides (NOx)
- Carbon Monoxide (CO)
- Volatile Organic Compounds (VOC)

- Particulate Matter (PM)
- Particulate Matter ≤ 10 microns in aerodynamic diameter (PM10)
- Particulate Matter ≤ 2.5 microns in aerodynamic diameter (PM2.5)
- Carbon Dioxide (CO2)
- Methane (CH4)
- Nitrous Oxide (N2O)
- Carbon Dioxide Equivalent (CO2e)

2.4 Solar Turbine/Generator Sets (Units 55, 56, 57, 58, and 59)

The five (5) proposed Solar Turbines/Generator Sets are natural gas-fired units primarily used to generate electricity for use at the plant site. Emissions of regulated pollutants from the Solar Turbines include:

- Nitrogen Oxides (NOx)
- Carbon Monoxide (CO)
- Volatile Organic Compounds (VOC)
- Particulate Matter (PM)
- Particulate Matter ≤ 10 microns in aerodynamic diameter (PM10)
- Particulate Matter ≤ 2.5 microns in aerodynamic diameter (PM2.5)
- Carbon Dioxide (CO2)
- Methane (CH4)
- Nitrous Oxide (N2O)
- Carbon Dioxide Equivalent (CO2e)

3. CRITERIA POLLUTANT BEST AVAILABLE CONTROL TECHNOLOGY (BACT) ANALYSIS

Criteria pollutants subject to BACT Analysis for this project include:

- Carbon Monoxide (CO)
- Nitrogen Oxides (NOX)
- Volatile Organic Compounds (VOC)
- Particulate Matter (PM)
- Particulate Matter ≤ 10 microns in aerodynamic diameter (PM10)
- Particulate Matter ≤ 2.5 microns in aerodynamic diameter (PM_{2.5})

Generally, these pollutants are the result of natural gas combustion at the planned facility; although, sources other than combustion sources are included at the facility. The sections below include a BACT Analysis for the regulated criteria air pollutants emitted from each emission unit. Greenhouse gas (GHG) pollutants are addressed in Section 4.0 of this document.

3.1 Package Boilers (Units 44, 48, and 49)

KNO currently has three existing natural gas-fired package boilers at its facility. As a part of the BACT Analysis, KNO has evaluated the costs to retro-fit these boilers as compared to the costs of constructing new units. KNO has determined that it is most cost effective to replace the three existing package boilers with three new package boilers. As a result, this analysis will focus on BACT for new boilers rather than for existing boilers. The following subsections present the step-by-step BACT review for the Package Boilers for each applicable criteria pollutant including CO, NO_X, VOC, and PM/PM₁₀/PM_{2.5}.

The boilers are subject to the boiler MACT standard under 40 CFR Part 63, Subpart DDDDD; however, there are no emission limits in that rule for natural gas combustion sources that will impact this BACT. The Package Boilers are also subject to a New Source Performance Standard (NSPS) under 40 CFR Part 60 Subpart Db.

3.1.1 BACT Evaluation for CO Emissions from the Package Boilers

Step 1 – Identify All Available Control Technologies

Review of the RBLC database identified two control technologies for control of CO emissions from natural gas-fired boilers - Good Combustion Practices (GCP), and in a couple instances, an Oxidation Catalyst (OC). Emission limits range from 0.0013 to 0.84 lb/mmBtu for natural gas combustion. Available control technologies for the control of CO emissions include good combustion practices, oxidation catalyst, and thermal oxidation. Most of the RBLC entries used the AP-42 emission factor for open combustion of natural gas. The Iowa Fertilizer Corporation (IFC) boiler used a much lower emission rate and the RBLC entry shows that compliance is unverified.

Step 2 – Eliminate Technically Infeasible Options

Oxidation Catalyst

Oxidation catalysts use a noble metal catalyst to reduce the activation energy of the oxidation reaction:

 $2CO \textbf{+} O_2 \rightarrow 2CO_2$

Although oxidation catalysts are used to reduce CO emissions from natural gas-fired combustion turbines, they have limited demonstration in reducing CO emissions from natural gas-fired boilers. To be effective, the oxidation catalyst must be placed in a location with gas temperatures of at least 600 °F. The typical excess oxygen levels in natural gas-fired boilers and heaters are in the range of 3 –

6%. These low excess oxygen levels limit the potential effectiveness of an oxidation catalyst on a boiler or furnace exhaust; however, this technology is carried forward for control of CO emissions from the Package Boilers.

Thermal Oxidation

Thermal oxidation has never been required nor used on a natural gas-fired boiler, and the effectiveness of the technology in reducing CO emissions from natural gas-fired boilers is questionable. Thermal oxidation would involve injecting additional air into the flue gas and heating the oxygen enriched mixture to approximately 1,500 °F to oxidize CO to carbon dioxide. However, since the combustion of the reheat fuel would itself result in CO emissions, there is no evidence that thermal oxidation would result in overall reductions in CO emission.

Since thermal oxidation has never been demonstrated on a natural gas-fired boiler, and because there is no evidence that it could reduce CO emissions, thermal oxidation is not a technically feasible CO control technology for the Package Boilers.

Good Combustion Practices

GCPs typically include the following elements:

- 1. Sufficient residence time to complete combustion
- 2. Providing and Maintaining proper air/fuel ratio
- 3. High temperatures and low oxygen levels in the primary combustion zone
- 4. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency
- 5. Proper fuel gas supply system designed to minimize effects of contaminants or fluctuations in pressure and flow on the fuel gas delivered

Combustion efficiency is dependent on the gas residence time, the combustion temperature, and the amount of mixing in the combustion zone. Each of these parameters is incorporated into the design of the burners and the fire box of a boiler or furnace to optimize combustion and minimize fuel consumption. In addition to the above parameters the level of oxygen in the boiler is important to GCP. Therefore, combustion control is accomplished primarily through boiler design as it relates to time, temperature, and mixing, and through boiler operation as it relates to excess oxygen levels. Combustion design for modern boilers is intended to simultaneously minimize formation of CO and NOx emissions. This is a difficult task, since emissions of NOx and emissions of CO are inversely related. That is, measures used to reduce NOx emissions often lead to increases in CO emissions. Therefore, the boiler design to minimize CO emissions is interrelated with the boiler design to minimize NOx formation.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

GCPs are planned for the fuel burning equipment at the facility and represent the baseline BACT for the boilers; therefore, an oxidation catalyst represents the highest ranked level of control for CO emissions from the Package Boilers.

Step 4 – Evaluate Most Effective Controls and Document Results

The cost to install a catalytic oxidation system was evaluated and determined to have an estimated cost of \$29,000 per ton of CO removed. A cost summary spreadsheet is provided in Appendix B. For CO emissions this level of cost is considered to be economically infeasible. A CO-catalyst for control of CO emission from the Package Boilers is eliminated from further consideration as representing BACT for this source.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as the BACT for CO emissions from the Package Boilers. CO Emissions from the Package Boilers will be limited to 50 ppmv at 3% O₂. Initial compliance with the proposed emission limit will be demonstrated by conducting an initial stack test.

3.1.2 BACT Evaluation for VOC Emissions from the Package Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of VOC emissions from the Package Boilers are the same as the CO emission control options - GCPs, oxidation catalyst, and thermal oxidation.

Step 2 – Eliminate Technically Infeasible Options

For the same reasons given for CO control from the Package Boilers exhaust, thermal oxidation is eliminated from further consideration. A CO oxidation catalyst will provide some level of control of VOC emissions in addition to CO emissions and is carried forward in this review along with the baseline control provided by GCP.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

GCPs are planned for the fuel burning equipment at the facility and represent the baseline BACT for the boilers; therefore, an oxidation catalyst represents the highest ranked level of control for VOC emissions from the Package Boilers.

Step 4 – Evaluate Most Effective Controls and Document Results

A cost estimate for a CO-catalyst to control VOC emissions from the Package Boilers is included in Appendix B of this document. The cost estimate shows that the cost of control is \$248,400 per ton of VOC controlled. This level of cost is excessive and the CO-catalyst option is dropped from further consideration as representing BACT for VOC emissions from the Package Boilers.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as the BACT for VOC emissions from the Package Boilers. VOC Emissions from the Package Boilers will be limited to 0.0054 lb/MMBtu.

3.1.3 BACT Evaluation for NO_x Emissions from the Package Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of NO_X emissions from the Package Boilers include Selective Catalytic Reduction (SCR), Selective Non-Catalytic Reduction (SNCR), Low-NO_X Burners (LNB), Ultra Low-NO_X Burners (ULNB), and Good Combustion Practices (GCP).

Step 2 – Eliminate Technically Infeasible Options

Selective Catalytic Reduction (SCR)

Selective Catalytic Reduction (SCR) is a control technology in which ammonia or urea is injected into the exhaust gas before it is passed over a catalyst. The gas stream then reacts with the catalyst to form nitrogen (N₂). Optimum NO_X reduction occurs between 480°F and 800°F². SCR systems typically operate at reduction efficiencies of 70% to 90%³. A typical SCR system consists of reagent storage, reagent injection equipment, catalyst housing and catalyst, and associated system control instrumentation. SCR is technically feasible for control of NOx emissions from the Package Boilers and is carried forward in this BACT review.

Selective Non-Catalytic Reduction (SNCR)

Selective Non-Catalytic Reduction (SNCR) involves the injection of ammonia or urea into the postcombustion flue gas. Typical SNCR reduction efficiencies are 30% to 50%⁴. NO_X reduction reactions

² U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for SCR. http://www.epa.gov/ttncatc1/dir1/fscr.pdf.

³ U.S. EPA, Office of Air Quality Planning and Standards. OAQPS Control Cost Manual Section 4-2 Chapter 2, 6th edition. EPA 452/B-02-001. Research Triangle Park, NC. January 2002.

⁴ Ibid.

occur at temperatures between 1600°F and 2100°F⁵. A typical SNCR system consists of reagent storage, multi-level reagent-injection equipment, and associated control instrumentation. The SNCR reagent storage and handling systems are similar to those for SCR systems. However, because of higher stoichiometric ratios, both ammonia and urea SNCR processes require three or four times more reagent as SCR systems to achieve a high level of NOx reductions.

Effluent gas temperatures from the Package Boilers exhaust undergo extensive heat recovery and are not high enough to effectively utilize SNCR so the reagent would need to be injected into the Package Boilers. The gas residence times in the temperature window of greater than one second are needed for optimal SNCR performance while the catalytic reformer design residence time range is less than a second. In addition, review of available literature and the RBLC database indicate that there are no installations of SNCR for control of NO_X emissions from package boilers of this type. This is likely because SCR can be implemented and achieve a higher level of control. For these reasons, SNCR is not technically feasible and is eliminated from further consideration.

Low NO_x Burners

Low NO_X Burners are used to minimize combustion related NO_X emissions by reducing peak flame temperatures. The basic principle involves reducing the temperature of combustion to minimize the formation of thermal NO_X in the combustion process.

Ultra Low NO_X Burners

Ultra Low NO_X burners use a similar technique as Low NO_X Burners, however they also employ flue gas recirculation to lower the flame temperature and achieve lower NO_X formation than LNB.

Good Combustion Practices

Good Combustion Practices are outline in the CO BACT review for the Package Boilers.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

The remaining control technologies and their associated control efficiencies are shown in the table below.

Control Technology	Control Efficiency
SCR and Low NOx Burners	85% - 95%
SCR	70% - 90%
Ultra Low NO _X Burners	50% - 90%
Low NO _X Burners6	40% - 60%
Good Combustion Practices	N/A

Table 1NOx Control Efficiencies for the Package Boilers

Step 4 – Evaluate Most Effective Controls and Document Results

KNO has been provided with design specifications for boilers using SCR capable of meeting 0.01 lb/MMBtu. This emission rate is comparable to units identified in the RBLC that have been permitted using SCR. Because no RBLC entries required the use of SCR and Low NOx burners, the cost to install low NOx burners on these boilers has not been evaluated.

Step 5 – Select BACT

Agrium proposes the use of SCR as BACT for NO_X emissions from the Package Boilers. NO_X Emissions from the Package Boilers will be limited to 0.01 lb/MMBtu. This limit is comparable to the

⁵ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for SNCR.

http://www.epa.gov/ttn/catc/dir1/fsncr.pdf .

⁶ U.S. EPA Technical Bulletin – Nitrogen Oxides (NO_x), why and how they are controlled. EPA-456/F-99-006R. November 1999.

top level BACT determinations for natural gas-fired package boilers. Compliance with the proposed emission limit will be demonstrated through the use of NO_x CEMS.

3.1.4 BACT Evaluation for PM/PM₁₀/PM_{2.5} Emissions from the Package Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of PM/PM₁₀/PM_{2.5} emissions from the Package Boilers include fabric filters, cartridge filters, mechanical separators, wet and dry electrostatic precipitators (ESP), wet scrubbers, venturi scrubbers, and good combustion practices. It is important to note that the estimated particulate matter emission rate from the Package Boilers stack is 7.6 lb/MMscf or 0.007 gr/dscf. This is a low level of particulate emission and is too low for add-on control.

Step 2 – Eliminate Technically Infeasible Options

Fabric Filters

Fabric Filters or baghouses are comprised of an array of filter bags contained in housing. Air passes through the filter media from the "dirty" to the "clean" side of the bag. These devices undergo periodic bag cleaning based on the build-up of filtered material on the bag as measured by pressure drop across the device. The cleaning cycle is set to allow operation within a range of design pressure drop. Fabric Filters are characterized by the type of cleaning cycle - mechanical-shaker, pulse-jet, and reverse-air. Fabric Filter systems have control efficiencies of 99% to 99.9%7, and are generally specified to meet a discharge concentration of filterable particulate (e.g., 0.01 grains per dry standard cubic feet). Because the filterable particulate emissions resulting from natural gas combustion are so low (0.007 gr/dscf), Fabric Filters are not used to control particulate emissions from natural gas combustion sources. For this reason Fabric Filters are considered technically infeasible and are dropped from further consideration in this BACT review.

Cartridge Collectors

Cartridge Collectors involve the use of filter media supported on a wire framework to collect filterable particulate matter from an air stream or exhaust. Typical Cartridge Collectors have control efficiencies of 99.99% to 99.999%8. Use of a HEPA type filter can achieve even greater control efficiency. Cartridge Collectors generally do not have a means of self-cleaning and are replaced when the pressure drop across the filter becomes excessive and impedes air flow or fan operation. Cartridge Filters are not practical for use to control emissions from a continuous operation and have never been used to control filterable particulate emissions from a natural gas combustion source. For these reasons Cartridge Collectors are not carried forward in this BACT review.

Mechanical Separators

Separators are often referred to as "precleaners," and are typically used to reduce the inlet loading of PM/PM₁₀/PM_{2.5} to control devices further downstream by removing large particles. Typical inlet grain loading values for Separators are 4 – 110 gr/ft³ 9. Mechanical Separators are never used for particulate control from natural gas combustion sources because the small particle size and low filterable particulate emissions from natural gas combustion. Mechanical Separators are considered technically infeasible and are not carried further in this evaluation.

⁷ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/ff-shaker.pdf, http://www.epa.gov/ttn/catc/dir1/ff-revar.pdf, http://www.epa.gov/ttn/catc/dir1/ff-pulse.pdf

⁸ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/ff-cartr.pdf

⁹ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fmechan.pdf

Wet and Dry Electrostatic Precipitators (ESP)

Wet and Dry Electrostatic Precipitators (ESPs) remove particles from a gas stream by electrically charging particles with a discharge electrode in the gas path and then collecting the charged particles on grounded. The inlet air is quenched with water on a Wet ESP to saturate the gas stream and ensure a wetted surface on the collection plate. This wetted surface along with a period deluge of water is what cleans the collection plate surface. Wet ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 99% and 99.9%10. Wet ESPs have the advantage of controlling some amount of condensable particulate matter. The collection plates in a Dry ESP are periodically cleaned by a rapper or hammer that sends a shock wave that knocks the collected particulate off the plate. Dry ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 99% and 99.9%11. Both Wet and Dry ESPs are considered to be technically infeasible for filterable and condensable particulate matter control from the Package Boilers because of the low level of emissions from natural gas combustion (0.007 gr/dscf) and are not carried forward in this BACT review.

Wet Scrubbers

Wet Scrubbers use a scrubbing solution to remove PM/PM₁₀/PM_{2.5} from an exhaust gas streams. The mechanism for particulate collection is impaction and interception by water droplets. Wet Scrubbers are configured as counter-flow, cross-flow, or concurrent flow, but typically employ counter-flow where the scrubbing fluid is in the opposite direction as the gas flow. Wet Scrubbers have control efficiencies of 50% - 99%12. One advantage of wet Scrubbers is that they can be effective on condensable particulate matter. A disadvantage of a Wet Scrubber is that they consume water and produce wastewater and sludge. Wet Scrubbers are never used for particulate control on natural gas fired combustion units because of the low particulate emissions resulting from natural gas combustion (0.007 gr/dscf). Wet Scrubbers are considered to be technically infeasible for filterable and condensable particulate matter control from the Package Boilers and are not carried forward in this BACT review.

Venturi Scrubbers

Venturi Scrubbers for the gas and liquid (scrubbing fluid) into a venturi throat to enhance the gasliquid contact to remove particulate matter removal. The PM/PM₁₀/PM_{2.5} containing droplets are then settled out by gravity in an expanded section of the exhaust duct. Venturi Scrubbers control streams with inlet grain loadings of 0.1 – 50 gr/ft³ and have control efficiencies of 70% - 99%13. Like other wet control systems, Venturi Scrubbers have the advantage of controlling some level of condensable particulate matter. Venturi Scrubbers are never used for particulate control on natural gas fired combustion units because of the low particulate emissions resulting from natural gas combustion (0.007 gr/dscf). Venturi Scrubbers are considered to be technically infeasible for filterable and condensable particulate matter control from the Package Boilers and are not carried forward in this BACT review.

Good Combustion Practices

Good Combustion Practices typically include the following elements:

- 1. Sufficient residence time to complete combustion
- 2. Providing proper air/fuel ratio
- 3. High temperatures and low oxygen levels in the primary combustion zone

¹⁰ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fwespwpi.pdf

¹¹ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fdespwpi.pdf

¹² U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fpack.pdf, http://www.epa.gov/ttn/catc/dir1/fsprytwr.pdf

¹³ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fventuri.pdf

- 4. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency
- 5. Proper fuel gas supply system design to minimize effects of contaminants or fluctuations in pressure and flow on the fuel gas delivered

A review of the RBLC for reformers also indicates that no add-on controls have been implemented to control PM/PM₁₀/PM_{2.5} emissions from natural gas fired boilers. This is due to the fact that natural gas contains almost no inert materials and generates very little particulate matter emissions. Therefore all add-on controls are considered technically infeasible.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

Based on the analysis above, the only technically feasible control technology for control of $PM/PM_{10}/PM_{2.5}$ emissions from the Package Boilers is the use of Good Combustion Practices. Therefore no ranking is necessary.

Step 4 – Evaluate Most Effective Controls and Document Results

The only remaining control technology is the use of Good Combustion Practices. Therefore no further evaluation is necessary.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as BACT for PM/PM₁₀/PM_{2.5} emissions from the Package Boilers. PM/PM₁₀/PM_{2.5} Emissions from the Package Boilers will be limited to 0.0074 lb/MMBtu. Agrium will record total fuel usage for the Package Boilers to ensure compliance.

3.2 Waste Heat Boilers (Units 50, 51, 52, 53, and 54)

KNO operates five natural gas fired waste heat boilers that utilize waste heat from the five solar turbines to generate steam. The following subsections present the step-by-step BACT review for the waste heat boilers for each applicable criteria pollutant including CO, NO_X, VOC, and PM/PM₁₀/PM_{2.5}.

3.2.1 BACT Evaluation for CO Emissions from the Waste Heat Boilers

Step 1 – Identify All Available Control Technologies

Review of the RBLC database identified two control technologies for control of CO emissions from natural gas-fired boilers - Good Combustion Practices (GCP), and in one instance, an Oxidation Catalyst (OC). Emission limits range from 0.035 to 0.14 lb/mmBtu for natural gas combustion. Available control technologies for the control of CO emissions include good combustion practices, oxidation catalyst, and thermal oxidation.

Step 2 – Eliminate Technically Infeasible Options

Oxidation Catalyst

Oxidation catalysts use a noble metal catalyst to reduce the activation energy of the oxidation reaction:

$2CO + O_2 \rightarrow 2CO_2$

Although oxidation catalysts are used to reduce CO emissions from natural gas-fired combustion turbines, they have limited demonstration in reducing CO emissions from natural gas-fired boilers. To be effective, the oxidation catalyst must be placed in a location with gas temperatures of at least 600 °F. The typical excess oxygen levels in natural gas-fired boilers and heaters are in the range of 3 - 6%. In contrast to typical natural gas-fired boilers, the Waste heat boilers operate at a high excess air due to Waste heat from combustion turbines. As a result, oxidation catalysts are not practical for these units. Oxidation catalyst is eliminated as a viable control option.

Thermal Oxidation

Thermal oxidation has never been required nor used on a natural gas-fired boiler, and the effectiveness of the technology in reducing CO emissions from natural gas-fired boilers is questionable. Thermal oxidation would involve injecting additional air into the flue gas and heating the oxygen enriched mixture to approximately 1,500 °F to oxidize CO to carbon dioxide. However, since the combustion of the reheat fuel would itself result in CO emissions, there is no evidence that thermal oxidation would result in overall reductions in CO emission.

Since thermal oxidation has never been demonstrated on a natural gas-fired boiler, and because there is no evidence that it could reduce CO emissions, thermal oxidation is not a technically feasible CO control technology for the Waste Heat Boilers.

Good Combustion Practices

GCPs typically include the following elements:

- 1. Sufficient residence time to complete combustion
- 2. Providing and Maintaining proper air/fuel ratio
- 3. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency
- 4. Proper fuel gas supply system designed to minimize effects of contaminants or fluctuations in pressure and flow on the fuel gas delivered

Combustion efficiency is dependent on the gas residence time, the combustion temperature, and the amount of mixing in the combustion zone. Each of these parameters is incorporated into the design of the burners and the fire box of a boiler or furnace to optimize combustion and minimize fuel consumption. In addition to the above parameters the level of oxygen in the boiler is important to GCP. Therefore, combustion control is accomplished primarily through boiler design as it relates to time, temperature, and mixing, and through boiler operation as it relates to excess oxygen levels. Combustion design for modern boilers is intended to simultaneously minimize formation of CO and NOx emissions.

This is a difficult task, since emissions of NOx and emissions of CO are inversely related. That is, measures used to reduce NOx emissions often lead to increases in CO emissions.

Therefore, the boiler design to minimize CO emissions is interrelated with the boiler design to minimize NOx formation.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

GCPs are planned for the fuel burning equipment at the facility and represent the baseline BACT for the boilers. Because no other feasible control options are available for CO control from Waste Heat Boilers, this is considered to be the best control option available.

Step 4 – Evaluate Most Effective Controls and Document Results

GCPs are considered to be the best control technology available. As a result, no further analysis of control options is necessary.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as the BACT for CO emissions from the Waste Heat Boilers. CO Emissions from the Waste Heat Boilers will be limited to 50 ppmv at 15% O₂. Initial compliance with the proposed emission limit will be demonstrated by conducting an initial stack test.

3.2.2 BACT Evaluation for VOC Emissions from the Waste Heat Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of VOC emissions from the Waste Heat Boilers are the same as the CO emission control options - GCPs, oxidation catalyst, and thermal oxidation.

Step 2 – Eliminate Technically Infeasible Options

For the same reasons given for CO control from the Waste Heat Boilers oxidation catalyst and thermal oxidation are eliminated from further consideration.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

GCPs are planned for the fuel burning equipment at the facility and represent the best available controls for VOC emissions from Waste Heat Boilers.

Step 4 – Evaluate Most Effective Controls and Document Results

GCPs are considered to be the best control technology available. As a result, no further analysis of control options is necessary.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as the BACT for VOC emissions from the Waste Heat Boilers. VOC emissions from the Waste Heat Boilers will be limited to 0.0054 lb/MMBtu.

3.2.3 BACT Evaluation for NO_X Emissions from the Waste Heat Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of NO_X emissions from the Waste Heat Boilers include Selective Catalytic Reduction (SCR), Selective Non-Catalytic Reduction (SNCR), Low-NO_X Burners (LNB), Ultra Low-NO_X Burners (ULNB), and Good Combustion Practices (GCP).

Step 2 – Eliminate Technically Infeasible Options

Selective Catalytic Reduction (SCR)

Selective Catalytic Reduction (SCR) is a control technology in which ammonia or urea is injected into the exhaust gas before it is passed over a catalyst. The gas stream then reacts with the catalyst to form nitrogen (N₂). Optimum NO_X reduction occurs between 480°F and 800°F¹⁴. SCR systems typically operate at reduction efficiencies of 70% to 90%¹⁵. A typical SCR system consists of reagent storage, reagent injection equipment, catalyst housing and catalyst, and associated system control instrumentation. SCR is technically feasible for control of NOx emissions from the Waste Heat Boilers and is carried forward in this BACT review.

Selective Non-Catalytic Reduction (SNCR)

Selective Non-Catalytic Reduction (SNCR) involves the injection of ammonia or urea into the postcombustion flue gas. Typical SNCR reduction efficiencies are 30% to 50%¹⁶. NO_X reduction reactions occur at temperatures between 1600°F and 2100°F¹⁷. A typical SNCR system consists of reagent storage, multi-level reagent-injection equipment, and associated control instrumentation. The SNCR reagent storage and handling systems are similar to those for SCR systems. However, because of higher stoichiometric ratios, both ammonia and urea SNCR processes require three or four times more reagent as SCR systems to achieve a high level of NOx reductions.

Effluent gas temperatures from the Waste Heat Boilers exhaust undergo extensive heat recovery and are not high enough to effectively utilize SNCR so the reagent would need to be injected into the Waste Heat Boilers. The gas residence times in the temperature window of greater than one second are needed for optimal SNCR performance while the Waste Heat Boiler design residence time range

¹⁴ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for SCR. http://www.epa.gov/ttncatc1/dir1/fscr.pdf.

¹⁵ U.S. EPA, Office of Air Quality Planning and Standards. OAQPS Control Cost Manual Section 4-2 Chapter 2, 6th edition. EPA 452/B-02-001. Research Triangle Park, NC. January 2002.

¹⁶ Ibid.

¹⁷ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for SNCR. http://www.epa.gov/ttn/catc/dir1/fsncr.pdf.

is less than a second. In addition, review of available literature and the RBLC database indicate that there are no installations of SNCR for control of NO_x emissions from boilers of this size. This is likely because SCR can be implemented and achieve a higher level of control. For these reasons, SNCR is not technically feasible and is eliminated from further consideration.

Low NO_X Burners

Low NO_X Burners are used to minimize combustion related NO_X emissions by reducing peak flame temperatures. The basic principle involves reducing the temperature of combustion to minimize the formation of thermal NO_X in the combustion process.

Ultra Low NOX Burners

Ultra Low NO_X burners use a similar technique as Low NO_X Burners, however they also employ flue gas recirculation to lower the flame temperature and achieve lower NOx formation than LNB.

Good Combustion Practices

Good Combustion Practices are outlined in the CO BACT review for the Waste Heat Boilers.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

The remaining control technologies and their associated control efficiencies are shown in the table below.

Control Technology	Control Efficiency
SCR/Low NOx Burners	85%-95%
SCR	70% - 92%
Ultra Low NO _X Burners	50% - 70%
Low NO _X Burners18	40% - 60%
Good Combustion Practices	N/A

Table 2 NOx Control Efficiencies for the Waste Heat Boilers

Step 4 – Evaluate Most Effective Controls and Document Results

Low NOx Burners in combination with SCR is identified as the most effective control technology available. Because the Waste Heat Boilers at KNO are existing units, the Waste Heat Boilers would need to be retrofitted with replacement burners. KNO has performed an analysis of the cost to install low NOx burners on each of the Waste Heat Boilers, which would allow the unit to meet a lower NOx emission rate. This cost analysis is provided in Appendix B. This analysis shows that the additional cost incurred by installing low NOx burners would be \$111,105/ton of NOx controlled. KNO considers this cost to be above the level that is reasonable for NOx control costs.

Step 5 – Select BACT

Agrium proposes the use of SCR as BACT for NO_X emissions from the Waste Heat Boilers. NO_X Emissions from the Waste Heat Boilers will be limited to 0.008 lb/MMBtu, or a stack NO_X emission rate of 7 ppmv at 15% O₂. Due to the relatively small size of these units, the fact they are existing units, and costs to install low NO_X Burners, SCR is considered to be the best control technology available to limit NO_X from these units.

3.2.4 BACT Evaluation for PM/PM₁₀/PM_{2.5} Emissions from the Waste Heat Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of PM/PM₁₀/PM_{2.5} emissions from the Waste Heat Boilers include fabric filters, cartridge filters, mechanical separators, wet and dry electrostatic precipitators (ESP), wet scrubbers,

¹⁸ U.S. EPA Technical Bulletin – Nitrogen Oxides (NOX), why and how they are controlled. EPA-456/F-99-006R. November 1999.

venturi scrubbers, and good combustion practices. It is important to note that the estimated particulate matter emission rate from the Waste Heat Boilers stack is 7.6 lb/MMscf or 0.007 gr/dscf, which is a low level of particulate emission.

Step 2 – Eliminate Technically Infeasible Options

Fabric Filters

Fabric Filters or baghouses are comprised of an array of filter bags contained in housing. Air passes through the filter media from the "dirty" to the "clean" side of the bag. These devices undergo periodic bag cleaning based on the build-up of filtered material on the bag as measured by pressure drop across the device. The cleaning cycle is set to allow operation within a range of design pressure drop. Fabric Filters are characterized by the type of cleaning cycle - mechanical-shaker, pulse-jet, and reverse-air. Fabric Filter systems have control efficiencies of 99% to 99.9%^{19,} and are generally specified to meet a discharge concentration of filterable particulate (e.g., 0.01 grains per dry standard cubic feet). Because the filterable particulate emissions resulting from natural gas combustion are so low (0.007 gr/dscf), Fabric Filters are not used to control particulate emissions from natural gas combustion sources. For this reason Fabric Filters are considered technically infeasible and are dropped from further consideration in this BACT review.

Cartridge Collectors

Cartridge Collectors involve the use of filter media supported on a wire framework to collect filterable particulate matter from an air stream or exhaust. Typical Cartridge Collectors have control efficiencies of 99.99% to 99.999%²⁰. Use of a HEPA type filter can achieve even greater control efficiency. Cartridge Collectors generally do not have a means of self-cleaning and are replaced when the pressure drop across the filter becomes excessive and impedes air flow or fan operation. Cartridge Filters are not practical for use to control emissions from a continuous operation and have never been used to control filterable particulate emissions from a natural gas combustion source. For these reasons Cartridge Collectors are not carried forward in this BACT review.

Mechanical Separators

Separators are often referred to as "precleaners," and are typically used to reduce the inlet loading of PM/PM₁₀/PM_{2.5} to control devices further downstream by removing large particles. Typical inlet grain loading values for Separators are 4 – 110 gr/ft^{3 21}. Mechanical Separators are never used for particulate control from natural gas combustion sources because the small particle size and low filterable particulate emissions from natural gas combustion. Mechanical Separators are considered technically infeasible and are not carried further in this evaluation.

Wet and Dry Electrostatic Precipitators (ESP)

Wet and Dry Electrostatic Precipitators (ESPs) remove particles from a gas stream by electrically charging particles with a discharge electrode in the gas path and then collecting the charged particles on grounded. The inlet air is quenched with water on a Wet ESP to saturate the gas stream and ensure a wetted surface on the collection plate. This wetted surface along with a period deluge of water is what cleans the collection plate surface. Wet ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 99% and 99.9%²². Wet ESPs have the advantage of controlling some amount of condensable particulate matter. The collection plates in a Dry ESP are periodically cleaned by a rapper or hammer that sends a shock wave that

¹⁹ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/ff-shaker.pdf, http://www.epa.gov/ttn/catc/dir1/ff-revar.pdf, http://www.epa.gov/ttn/catc/dir1/ff-pulse.pdf

²⁰ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/ff-cartr.pdf

²¹ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fmechan.pdf

²² U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fwespwpi.pdf

knocks the collected particulate off the plate. Dry ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 99% and 99.9%²³. Both Wet and Dry ESPs are considered to be technically infeasible for filterable and condensable particulate matter control from the Waste Heat Boilers because of the low level of emissions from natural gas combustion (0.007 gr/dscf) and are not carried forward in this BACT review.

Wet Scrubbers

Wet Scrubbers use a scrubbing solution to remove PM/PM₁₀/PM_{2.5} from an exhaust gas streams. The mechanism for particulate collection is impaction and interception by water droplets. Wet Scrubbers are configured as counter-flow, cross-flow, or concurrent flow, but typically employ counter-flow where the scrubbing fluid is in the opposite direction as the gas flow. Wet Scrubbers have control efficiencies of 50% - 99%²⁴. One advantage of wet Scrubbers is that they can be effective on condensable particulate matter. A disadvantage of a Wet Scrubber is that they consume water and produce Wastewater and sludge. Wet Scrubbers are never used for particulate control on natural gas fired combustion units because of the low particulate emissions resulting from natural gas combustion (0.007 gr/dscf). Wet Scrubbers are considered to be technically infeasible for filterable and condensable particulate matter control from the Waste Heat Boilers and are not carried forward in this BACT review.

Venturi Scrubbers

Venturi Scrubbers for the gas and liquid (scrubbing fluid) into a venturi throat to enhance the gasliquid contact to remove particulate matter removal. The PM/PM₁₀/PM_{2.5} containing droplets are then settled out by gravity in an expanded section of the exhaust duct. Venturi Scrubbers control streams with inlet grain loadings of 0.1 - 50 gr/ft³ and have control efficiencies of 70% - 99%²⁵. Like other wet control systems, Venturi Scrubbers have the advantage of controlling some level of condensable particulate matter. Venturi Scrubbers are never used for particulate control on natural gas fired combustion units because of the low particulate emissions resulting from natural gas combustion (0.007 gr/dscf). Venturi Scrubbers are considered to be technically infeasible for filterable and condensable particulate matter control from the Waste Heat Boilers and are not carried forward in this BACT review.

Good Combustion Practices

Good Combustion Practices typically include the following elements:

- 1. Sufficient residence time to complete combustion
- 2. Providing proper air/fuel ratio
- 3. High temperatures and low oxygen levels in the primary combustion zone
- 4. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency
- 5. Proper fuel gas supply system design to minimize effects of contaminants or fluctuations in pressure and flow on the fuel gas delivered

A review of the RBLC for boilers also indicates that no add-on controls have been implemented to control PM/PM₁₀/PM_{2.5} emissions from boilers at existing or recently permitted facilities. This is due to the fact that natural gas contains almost inert materials and generates very little particulate matter emissions. Therefore all add-on controls are considered technically infeasible.

²³ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fdespwpi.pdf

²⁴ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fpack.pdf, http://www.epa.gov/ttn/catc/dir1/fsprytwr.pdf

²⁵ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fventuri.pdf

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

Based on the analysis above, the only technically feasible control technology for control of PM/PM₁₀/PM_{2.5} emissions from the Waste Heat Boilers is the use of Good Combustion Practices. Therefore no ranking is necessary.

Step 4 – Evaluate Most Effective Controls and Document Results

The only remaining control technology is the use of Good Combustion Practices. Therefore no further evaluation is necessary.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as BACT for PM/PM₁₀/PM_{2.5} emissions from the Waste Heat Boilers. PM/PM₁₀/PM_{2.5} Emissions from the Waste Heat Boilers will be limited to 0.0074 lb/MMBtu. Agrium will record total fuel usage for the Waste Heat Boilers to ensure compliance.

3.3 Solar Turbine/Generator Sets (Units 55, 56, 57, 58, and 59)

The five Solar Turbines at the facility are natural gas fired combustion turbines used to generate electricity. The following subsections present the step-by-step BACT review for the Solar Turbines for each applicable criteria pollutant including CO, NO_X, VOC, and PM/PM₁₀/PM_{2.5}.

3.3.1 BACT Evaluation for CO Emissions from the Solar Turbine/Generator Sets

Step 1 – Identify All Available Control Technologies

Review of the RBLC database identified two control technologies for control of CO emissions from natural gas-fired combustion turbines - Good Combustion Practices (GCP), and in two instances, an Oxidation Catalyst (OC). Available control technologies for the control of CO emissions include good combustion practices, oxidation catalyst, and thermal oxidation.

Step 2 - Eliminate Technically Infeasible Options

Oxidation Catalyst

Oxidation catalysts use a noble metal catalyst to reduce the activation energy of the oxidation reaction:

$$2CO + O_2 \rightarrow 2CO_2$$

Oxidation catalysts have been used to control CO emissions from combustion turbines in other applications, although the configuration of these units directs exhaust from the Solar Turbines through Waste Heat Boilers prior to discharge.

Thermal Oxidation

Thermal oxidation has never been required nor used on a natural gas-fired combustion turbine, and the effectiveness of the technology in reducing CO emissions from natural gas-fired combustion turbine is questionable. Thermal oxidation would involve injecting additional air into the flue gas and heating the oxygen enriched mixture to approximately 1,500 °F to oxidize CO to carbon dioxide. However, since the combustion of the reheat fuel would itself result in CO emissions, there is no evidence that thermal oxidation would result in overall reductions in CO emission.

Since thermal oxidation has never been demonstrated on a natural gas-fired combustion turbine, and because there is no evidence that it could reduce CO emissions, thermal oxidation is not a technically feasible CO control technology for the Solar Turbines.

Good Combustion Practices

GCPs typically include the following elements:

- 1. Sufficient residence time to complete combustion
- 2. Providing and Maintaining proper air/fuel ratio
- 3. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency
- 4. Proper fuel gas supply system designed to minimize effects of contaminants or fluctuations in pressure and flow on the fuel gas delivered

Combustion efficiency is dependent on the gas residence time, the combustion temperature, and the amount of mixing in the combustion zone. Each of these parameters is incorporated into the design of the burners and the combustion zone of a turbine to optimize combustion and minimize fuel consumption. In addition to the above parameters the level of oxygen in the combustion turbine is important to GCP. Therefore, combustion control is accomplished primarily through combustion turbine design as it relates to time, temperature, and mixing, and through combustion turbine operation as it relates to excess oxygen levels. Combustion design for modern combustion turbines is intended to simultaneously minimize formation of CO and NOx emissions. This is a difficult task, since emissions of NOx and emissions of CO are inversely related. That is, measures used to reduce NOx emissions often lead to increases in CO emissions. Therefore, the design to minimize CO emissions is interrelated with the design to minimize NOx formation.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

GCPs are planned for the fuel burning equipment at the facility and represent the baseline BACT. The use of an oxidation catalyst represents the highest ranked level of control for CO emissions from the Solar Turbines.

Step 4 – Evaluate Most Effective Controls and Document Results

A cost estimate for a CO-catalyst oxidizer for control of the CO emissions from Solar Turbines was performed. Due to the current design of these units, the evaluation was performed considering the exhaust and CO emissions from each Waste Heat Boiler/Solar Turbine combined unit. The computed cost to control CO using catalyst oxidation was computed to be \$21,600 per ton. For CO emissions this level of cost is considered to be economically infeasible. A CO-catalyst for control of CO emission from the Solar Turbine/Generator Sets is eliminated from further consideration as representing BACT for this source.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as the BACT for CO emissions from the Solar Turbines. CO Emissions from the Solar Turbines will be limited to 50 ppmv at 15% O₂. Initial compliance with the proposed emission limit will be demonstrated by conducting an initial stack test.

3.3.2 BACT Evaluation for VOC Emissions from the Solar Turbine/Generator Sets

Step 1 – Identify All Available Control Technologies

Options for the control of VOC emissions are the same as the CO emission control options - GCPs, oxidation catalyst, and thermal oxidation.

Step 2 – Eliminate Technically Infeasible Options

For the same reasons given for CO control from the exhaust, thermal oxidation is eliminated from further consideration. A CO oxidation catalyst will provide some level of control of VOC emissions in addition to CO emissions and is carried forward in this review along with the baseline control provided by GCP.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

GCPs are planned for the fuel burning equipment at the facility and represent the baseline BACT for the Solar Turbines; therefore, an oxidation catalyst represents the highest ranked level of control for VOC emissions from the Solar Turbines.

Step 4 – Evaluate Most Effective Controls and Document Results

A cost estimate for a CO-catalyst to control VOC emissions from the Solar Turbine is included in Appendix B of this document. As with the CO analysis above, this analysis is performed using the combined exhaust from a Solar Turbine/Waste Heat Boiler combined unit. The cost estimate shows that the cost of control is in excess of \$809,800 per ton. This level of cost is excessive and the CO-catalyst option is dropped from further consideration as representing BACT for VOC emissions from the Solar Turbines.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as the BACT for VOC emissions from the Solar Turbines. VOC Emissions from the Solar Turbines will be limited to 0.0021 lb/MMBtu.

3.3.3 BACT Evaluation for NO_x Emissions from the Solar Turbine/Generator Sets

Step 1 – Identify All Available Control Technologies

Options for the control of NO_x emissions from the include Selective Catalytic Reduction (SCR), Selective Non-Catalytic Reduction (SNCR), Low-NO_x Burners (LNB), Ultra Low-NO_x Burners (ULNB), Dry Low Emission (DLE) Combustion Technology, Water Injection, and Good Combustion Practices (GCP).

Step 2 – Eliminate Technically Infeasible Options

Selective Catalytic Reduction (SCR)

Selective Catalytic Reduction (SCR) is a control technology in which ammonia or urea is injected into the exhaust gas before it is passed over a catalyst. The gas stream then reacts with the catalyst to form nitrogen (N₂). Optimum NO_X reduction occurs between 480°F and 800°F²⁶. SCR systems typically operate at reduction efficiencies of 70% to 90%²⁷. A typical SCR system consists of reagent storage, reagent injection equipment, catalyst housing and catalyst, and associated system control instrumentation. SCR is technically feasible for control of NOx emissions from the Solar Turbines and is carried forward in this BACT review.

Selective Non-Catalytic Reduction (SNCR)

Selective Non-Catalytic Reduction (SNCR) involves the injection of ammonia or urea into the postcombustion flue gas. Typical SNCR reduction efficiencies are 30% to 50%²⁸. NO_X reduction reactions occur at temperatures between 1600°F and 2100°F²⁹. A typical SNCR system consists of reagent storage, multi-level reagent-injection equipment, and associated control instrumentation. The SNCR reagent storage and handling systems are similar to those for SCR systems. However, because of higher stoichiometric ratios, both ammonia and urea SNCR processes require three or four times more reagent as SCR systems to achieve a high level of NOx reductions.

Effluent gas temperatures from the exhaust undergo extensive heat recovery and are not high enough to effectively utilize SNCR so the reagent would need to be injected into the . The gas residence times

²⁶ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for SCR. http://www.epa.gov/ttncatc1/dir1/fscr.pdf.

 ²⁷ U.S. EPA, Office of Air Quality Planning and Standards. OAQPS Control Cost Manual Section 4-2 Chapter 2, 6th edition.
 EPA 452/B-02-001. Research Triangle Park, NC. January 2002.

²⁸ Ibid.

²⁹ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for SNCR. http://www.epa.gov/ttn/catc/dir1/fsncr.pdf.

in the temperature window of greater than one second are needed for optimal SNCR performance while the Solar Turbine design residence time range is less than a second. In addition, review of available literature and the RBLC database indicate that there are no installations of SNCR for control of NO_x emissions from combustion turbines of this size. This is likely because SCR can be implemented and achieve a higher level of control. For these reasons, SNCR is not technically feasible and is eliminated from further consideration.

Dry Low Emissions (DLE) Combustion Technology

Dry Low Emissions (DLE)³⁰ combustion technology, sometimes also referred to as Dry Low NOx (DLN), is a lean pre-mix combustion system design. DLE pre-mixes the gaseous fuel and compressed air so that there are no local zones of high temperatures, or "hot spots," where high levels of NOx would form. Lean premixed combustion requires specially designed mixing chambers and mixture inlet zones to avoid flashback of the flame. Optimized application of DLN combustion requires an integrated approach for combustor and turbine design. The DLE combustor becomes an intrinsic part of the turbine design, and specific combustor designs must be developed for each turbine application. While NOx levels as low as 9 ppm have been achieved, most manufacturers typically offer a range of 15-25 ppm DLN/DLE combustion systems when operating on natural gas.

Water Injection

Table 3

Water injection is frequently used to limit NOx emissions from combustion turbines, and is considered to be an available technology for the Solar Turbines for this smaller size capacity.

Good Combustion Practices

Good Combustion Practices are outline in the CO BACT review for the Solar Turbines.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

Dry Low Emission Technology

Good Combustion Practices

The remaining control technologies and their associated control efficiencies are shown in the table below.

NOx Control Efficiencies for the Solar Turbine/Generator Sets

50% - 70%

50% - 70%

N/A

Control Technology	Control Efficiency
SCR/Water Injection Combination	80% - 95%
SCR	70% - 92%

Step 4 – Evaluate Most Effective Controls and Document Results

Water Injection

As illustrated in the table above, the combination of SCR and water injection is expected to result in the greatest level of NOx control from the Solar Turbines. KNO has made the decision to install SCR on the combined exhaust from the Solar Turbine/Waste Heat Boiler, and evaluated the cost that would be incurred through further control with the use of water injection. A cost analysis is provided in Appendix B, and estimates the cost of NOx control at \$12,291 per ton of NOx controlled. KNO considers this cost to be excessive, and has eliminated water injection from further consideration as BACT.

Step 5 – Select BACT

Agrium proposes the use of SCR on the Solar Turbines for NO_X emissions at the Waste Heat Boiler outlet of 7 ppmv at 15% O_2 . For the Solar Turbines, this will be equivalent to a NOx emission limit of 0.041 lb/MMBtu. Compliance with the proposed emission limit will be demonstrated by conducting an initial stack test to obtain an emission rate.

³⁰ U.S. EPA Combined Heat and Power Partnership, Catalog of CHP Technologies, Section 3. Technology Characterization – Combustion Turbines. https://www.epa.gov/sites/production/files/2015-

 $^{07/}documents/catalog_of_chp_technologies_section_3_technology_characterization_-_combustion_turbines.pdf$

3.3.4 BACT Evaluation for PM/PM₁₀/PM_{2.5} Emissions from the Solar **Turbine/Generator Sets**

Step 1 – Identify All Available Control Technologies

Options for the control of PM/PM₁₀/PM_{2.5} emissions from the include fabric filters, cartridge filters, mechanical separators, wet and dry electrostatic precipitators (ESP), wet scrubbers, venturi scrubbers, and good combustion practices. It is important to note that the estimated particulate matter emission rate from the stack is 7.6 lb/MMscf or 0.007 gr/dscf, which is a low level of particulate emissions.

Step 2 – Eliminate Technically Infeasible Options

Fabric Filters

BACT ANALYSIS

Fabric Filters or baghouses are comprised of an array of filter bags contained in housing. Air passes through the filter media from the "dirty" to the "clean" side of the bag. These devices undergo periodic bag cleaning based on the build-up of filtered material on the bag as measured by pressure drop across the device. The cleaning cycle is set to allow operation within a range of design pressure drop. Fabric Filters are characterized by the type of cleaning cycle - mechanical-shaker, pulse-jet, and reverse-air. Fabric Filter systems have control efficiencies of 99% to 99.9%³¹, and are generally specified to meet a discharge concentration of filterable particulate (e.g., 0.01 grains per dry standard cubic feet). Because the filterable particulate emissions resulting from natural gas combustion are so low (0.007 gr/dscf), Fabric Filters are not used to control particulate emissions from natural gas combustion sources. For this reason Fabric Filters are considered technically infeasible and are dropped from further consideration in this BACT review.

Cartridge Collectors

Cartridge Collectors involve the use of filter media supported on a wire framework to collect filterable particulate matter from an air stream or exhaust. Typical Cartridge Collectors have control efficiencies of 99.99% to 99.999%³². Use of a HEPA type filter can achieve even greater control efficiency. Cartridge Collectors generally do not have a means of self-cleaning and are replaced when the pressure drop across the filter becomes excessive and impedes air flow or fan operation. Cartridge Filters are not practical for use to control emissions from a continuous operation and have never been used to control filterable particulate emissions from a natural gas combustion source. For these reasons Cartridge Collectors are not carried forward in this BACT review.

Mechanical Separators

Separators are often referred to as "precleaners," and are typically used to reduce the inlet loading of PM/PM₁₀/PM_{2.5} to control devices further downstream by removing large particles. Typical inlet grain loading values for Separators are 4 – 110 gr/ft^{3 33}. Mechanical Separators are never used for particulate control from natural gas combustion sources because the small particle size and low filterable particulate emissions from natural gas combustion. Mechanical Separators are considered technically infeasible and are not carried further in this evaluation.

Wet and Dry Electrostatic Precipitators (ESP)

Wet and Dry Electrostatic Precipitators (ESPs) remove particles from a gas stream by electrically charging particles with a discharge electrode in the gas path and then collecting the charged particles on grounded. The inlet air is quenched with water on a Wet ESP to saturate the gas stream and ensure a wetted surface on the collection plate. This wetted surface along with a period deluge of

³¹ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/ff-shaker.pdf, http://www.epa.gov/ttn/catc/dir1/ff-revar.pdf, http://www.epa.gov/ttn/catc/dir1/ffpulse.pdf

³² U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/ff-cartr.pdf

³³ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fmechan.pdf

water is what cleans the collection plate surface. Wet ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 99% and 99.9%³⁴. Wet ESPs have the advantage of controlling some amount of condensable particulate matter. The collection plates in a Dry ESP are periodically cleaned by a rapper or hammer that sends a shock wave that knocks the collected particulate off the plate. Dry ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 99% and 99.9%³⁵. Both Wet and Dry ESPs are considered to be technically infeasible for filterable and condensable particulate matter control from the Solar Turbines because of the low level of emissions from natural gas combustion (0.007 gr/dscf) and are not carried forward in this BACT review.

Wet Scrubbers

Wet Scrubbers use a scrubbing solution to remove PM/PM₁₀/PM_{2.5} from an exhaust gas streams. The mechanism for particulate collection is impaction and interception by water droplets. Wet Scrubbers are configured as counter-flow, cross-flow, or concurrent flow, but typically employ counter-flow where the scrubbing fluid is in the opposite direction as the gas flow. Wet Scrubbers have control efficiencies of 50% - 99%³⁶. One advantage of wet Scrubbers is that they can be effective on condensable particulate matter. A disadvantage of a Wet Scrubber is that they consume water and produce e water and sludge. Wet Scrubbers are never used for particulate control on natural gas fired combustion units because of the low particulate emissions resulting from natural gas combustion (0.007 gr/dscf). Wet Scrubbers are considered to be technically infeasible for filterable and condensable particulate matter control from the Solar Turbines and are not carried forward in this BACT review.

Venturi Scrubbers

Venturi Scrubbers for the gas and liquid (scrubbing fluid) into a venturi throat to enhance the gasliquid contact to remove particulate matter removal. The PM/PM₁₀/PM_{2.5} containing droplets are then settled out by gravity in an expanded section of the exhaust duct. Venturi Scrubbers control streams with inlet grain loadings of 0.1 - 50 gr/ft³ and have control efficiencies of 70% - 99%³⁷. Like other wet control systems, Venturi Scrubbers have the advantage of controlling some level of condensable particulate matter. Venturi Scrubbers are never used for particulate control on natural gas fired combustion units because of the low particulate emissions resulting from natural gas combustion (0.007 gr/dscf). Venturi Scrubbers are considered to be technically infeasible for filterable and condensable particulate matter control from the Solar Turbines and are not carried forward in this BACT review.

Good Combustion Practices

Good Combustion Practices typically include the following elements:

- 1. Sufficient residence time to complete combustion
- 2. Providing proper air/fuel ratio
- 3. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency
- 4. Proper fuel gas supply system design to minimize effects of contaminants or fluctuations in pressure and flow on the fuel gas delivered

A review of the RBLC for reformers also indicates that no add-on controls have been implemented to control $PM/PM_{10}/PM_{2.5}$ emissions from combustion turbines at existing or recently permitted facilities.

³⁴ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fwespwpi.pdf

³⁵ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fdespwpi.pdf

³⁶ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fpack.pdf, http://www.epa.gov/ttn/catc/dir1/fsprytwr.pdf

³⁷ U.S. EPA Clean Air Technology Center, Air Pollution Control Technology Fact Sheet for Fabric Filters. http://www.epa.gov/ttn/catc/dir1/fventuri.pdf

This is due to the fact that natural gas contains almost inert materials and generates very little particulate matter emissions. Therefore all add-on controls are considered technically infeasible.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

Based on the analysis above, the only technically feasible control technology for control of $PM/PM_{10}/PM_{2.5}$ emissions from the Waste Heat Boilers is the use of Good Combustion Practices. Therefore no ranking is necessary.

Step 4 – Evaluate Most Effective Controls and Document Results

The only remaining control technology is the use of Good Combustion Practices. Therefore no further evaluation is necessary.

Step 5 – Select BACT

Agrium proposes the use of Good Combustion Practices as BACT for PM/PM₁₀/PM_{2.5} emissions from the Solar Turbines. PM/PM₁₀/PM_{2.5} emissions from the Solar Turbines will be limited to 0.0074 lb/MMBtu. Agrium will record total fuel usage for the Solar Turbines to ensure compliance.

4. GREENHOUSE GAS (GHG) BEST AVAILABLE CONTROL TECHNOLOGY (BACT) ANALYSIS

The GHGs subject to BACT Analysis for this project include:

- Carbon Dioxide (CO₂)
- Methane (CH₄)
- Nitrous Oxide (N₂O)
- Carbon Dioxide Equivalent (CO_{2e})

The sections below include a BACT Analysis for all GHGs emitted from each emission unit.

4.1 Package Boilers (Units 44, 48, and 49)

4.1.1 BACT Evaluation for GHG Emissions from the Package Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of GHG emissions from the Package Boilers include:

Carbon Capture and Sequestration (CCS)

Carbon Capture

Post-combustion carbon capture technologies include absorption processes (liquid), hybrid solutions (mixed physical and chemical solvent), adsorption processes (solid surface, ionic liquid), and physical separation (membrane, cryogenic separation). These technologies are in various stages of development, ranging from the laboratory bench-scale through pilot-scale demonstrations which have been applied to coal-fired generation units and industrial facilities, such as refineries, cement plants, and biofuels plants. Numerous large-scale demonstration projects are also being planned and constructed throughout the United States and globally.

The CO₂ absorption processes under investigation include chemical and physical absorption. In chemical absorption, CO₂ is scrubbed from the flue gas through a chemical reaction with the scrubbing medium. In physical absorption systems, there is no chemical reaction between the CO₂ and the scrubbing medium. Generally, the energy to regenerate, or desorb the CO₂ from the scrubbing medium, is greater for chemical absorption than physical absorption, because the chemical reaction must be reversed in the chemical desorption/regeneration process.

Chemical absorption is characterized by the occurrence of a chemical reaction between the gas component being absorbed and a component in the liquid to form a compound. The most prevalent chemical absorbents under investigation for CO_2 removal from flue gas are amine solvents. An amine is a class of basic, nitrogen-containing organic compounds derived from ammonia. Gas scrubbing systems employing amine solvents are used for a wide variety of gas or liquid hydrocarbon treatment applications where hydrogen sulfide (H₂S) or CO_2 is present in a gas or in a liquid hydrocarbon feed stream.

Close contact between the gas and the liquid amine solution is provided to promote the mass transfer between the target compound and the amine. Several amine solvents are commercially used in scrubbing solutions including monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diisopropanolamine (DIPA), diglycolamine (DGA), methyldiethanolamine (MDEA), n-methylethanolamine (NMEA), alkanolamine and various proprietary mixtures of these amines. A simple amine scrubbing solution consists of one or more of these amine solvents diluted to a typical 10 – 60 percent concentration range with water.

Other chemical absorbents currently under laboratory or bench-scale evaluation include a number of inorganic sorbents. A lithium-silicate based ceramic material38 developed by Toshiba is reported as

³⁸ Toshiba website - www.toshiba.co.jp/about/press/2003_06/pr2301.htm

having the ability to absorb CO_2 at up to 500 times its volume. Regeneration of the material and release of the CO_2 occurs when the material is heated above 1,300°F.

In physical absorption, the chemical component being absorbed is more soluble in the liquid absorbent than the other gas components in a gas mixture, but that chemical component does not react chemically with the absorbent. Physical absorbents under investigation for CO_2 capture include propylene carbonate, SelexolTM, RectisolTM and MorphysorbTM. Close contact between the scrubbing solvent and the gas forces the CO_2 into solution. Although the energy required to regenerate physical sorbents is lower than that of chemical sorbents, they are less effective than chemical sorbents at removing CO_2 in dilute gas streams.

A hybrid absorption approach involves a mixture of chemical and physical sorbents. In theory, the sorbent mixture can be tailored to the specific application. This process is also currently used to remove intermediate concentrations of CO₂ from natural gas in natural gas production.

Adsorption is a physical separation process. Laboratory evaluations of natural zeolite, manufactured zeolite molecular sieves, and activated carbon have all shown that these materials preferentially adsorb CO_2 over nitrogen, oxygen, and water vapor at elevated pressures. These materials show promise for CO_2 capture from high pressure gas streams. However, they have not shown high CO_2 capture potential for the dilute, lower pressure exhaust from a conventional combustion process. Desorption of the CO_2 is accomplished by reducing the pressure, known as a "pressure swing," on the adsorbed CO_2 , thus regenerating the adsorbent material and releasing the CO_2 for subsequent sequestration.

The physical separation technologies available utilize membrane separation and cryogenic separation. These technologies, including polymer-based membrane separation of CO_2 , are in the initial stages of investigation. Membrane separation is potentially less energy intensive than other methods of CO_2 capture, because there is no chemical reaction or phase change in the process. Currently, the membrane materials being tested are prone to chemical and thermal degradation. In cryogenic separation of CO_2 , the gas is cooled and compressed to condense CO_2 . This process is only effective on dry gas streams with very high CO_2 concentrations and is not applicable to the dilute gas streams from a traditional combustion source.

There is ongoing research into algae strains that can uptake CO_2 from a concentrated stream and produce bio-fuel. The mechanism for CO_2 uptake is photosynthesis. This research is in the early stages, and there are no commercial products available at this time for treating CO_2 from traditional combustion sources.

Carbon Sequestration

To achieve the objective of reducing the atmospheric concentration of greenhouse gases (i.e., CO_2), CO_2 must be kept out of the atmosphere once it is captured. This process is referred to as carbon sequestration. Carbon sequestration is the long-term isolation of CO_2 from the atmosphere through physical, chemical, biological, or engineered processes. In general, carbon sequestration is achieved through storage in geologic formations or terrestrial ecosystems, or through conversion into commercial products.

Although beneficial reuse options are developing with solutions such as the use of captured material to enhance oil or gas recovery from well fields in the petroleum industry, currently, the demand for CO_2 for such applications is well below the ultimate quantity of CO_2 that is available for capture. Without a market to use the recovered CO_2 , the material would instead require sequestration, or permanent storage. Geologic sequestration refers to the injection and storage of captured CO_2 in an underground location where it will not readily escape into the atmosphere, such as within deep rock formations at pressures and temperatures where CO_2 is in the supercritical phase (typically ½ mile or more below ground surface). In general, CO_2 storage could be successful in porous, high-permeability rock formations or deep saline formations that are overlain by a thick, continuous layer of low-permeability rock, such as a shale, where CO_2 may remain immobilized beneath the ground surface for extended periods of time. Other geologic formations deemed suitable for geologic sequestration

include coal beds that are too thin or deep to be cost effectively mined and depleted oil and gas reservoirs, where in addition to CO₂ storage, economic gains may also be achieved (most notably through the use of enhanced oil recovery to obtain residual oil in mature oil fields).

An understanding of site-specific geologic studies and formation characteristics is critical to determine the ultimate CO_2 storage capacity and, ultimately the feasibility of geologic sequestration, for a particular area. Other factors to consider when determining the feasibility (both technical and economic) of geologic sequestration are the cost, constructability, and potential environmental impacts of infrastructure necessary for the transportation of captured CO_2 from the source to the ultimate geologic sequestration site; and the amount of measurement, monitoring (baseline, operational, etc.), and verification of CO_2 distribution required following injection into the subsurface to ensure the risk of leakage of CO_2 is minimized or eliminated.

Cogeneration/Combined Heat and Power (CHP)

Combined Heat and Power (CHP) or Cogeneration involves the production of useable heat and electricity from a single source. The use of CHP results in significant energy gains. Significant reductions in GHG emissions are achieved by recovering energy which would otherwise go to Waste.

Energy Efficient Design

Energy efficient designs can reduce the natural gas required to produce the necessary amount of steam. Therefore emissions of GHGs are reduced. Energy efficient design elements for boilers include combustion control optimization, tuning, instrumentation and controls, economizer, blowdown heat recovery, and condensate return system.

Alternative Fuels

The production of steam is the primary function of the Package Boilers. Natural gas is the lowest GHG-emitting fossil fuel that can be used for steam production. Natural gas also serves as the ammonia process used in several plant operations.

Step 2 – Eliminate Technically Infeasible Options

CCS technologies were identified in Step 1 as potentially feasible control alternatives. Although there are a number of completed or planned CCS projects, they are generally subsidized with government funding and are considered in the demonstration phase of the technology. The specific carbon capture technologies discussed in Step 1 are also in the developmental stage and none have been demonstrated in practice and generally rely on government subsidies for demonstration-phase funding.

Although the capture technologies for CO₂ are developing, after CO₂ is separated (captured), it must be prepared for beneficial reuse or transport to a sequestration or storage facility, if a storage facility is not locally available for direct injection. In order to transport CO₂, it must be compressed and delivered via pipeline to a storage facility.

According to a U.S. Department of Energy report, there is currently no enhanced oil recovery (EOR) underway in Alaska³⁹. The report speculates that as the North Slope oil fields mature, EOR may be used to economically recover more reserves. The North Slope oil field is over 600 miles from the Agrium facility in Nikiski, Alaska. Closer to the facility, the Cook Inlet is a mature offshore oil field approximately 140 miles from Nikiski. Given that there is currently no EOR in Alaska and that the closest candidate oilfield would require extensive underwater piping, EOR is excluded from the evaluation of CCS options for the project.

Without a market to use the recovered CO_2 , the material would instead require sequestration, or permanent storage. Sequestration of CO_2 is generally accomplished via available geologic reservoirs that must be either local to the point of capture, or accessible via pipeline to enable the transportation of recovered CO_2 to the permanent storage location. The United States 2012 Carbon Utilization and Storage Atlas (Fourth Edition published by the U.S. Department of Energy, Office of

 $^{^{39}}$ Basin Oriented Strategies for CO_2 Enhanced Oil Recovery, USDOE, March 2005

Fossil Energy) identifies an extensive saline aquifer directly below Nikiski as being "screened, high sequestration potential;" however, this area has not had detailed evaluation for CO₂ sequestration and lies in a fault zone. This saline aquifer is not deemed to be suitable for CCS at this time. In addition, CCS technologies for the ammonia production industry are considered to be in the research phase ^[1]. Therefore CCS is considered to be currently technically infeasible and is eliminated from further consideration for GHG BACT.

Furthermore, a review of the RBLC database from natural gas-fired heaters and boilers indicates that add-on control technologies have never been required or applied to reduce GHG emissions.

The Package Boilers are used to provide process steam to the plant. Significant process modifications would be required to convert the Package Boilers to CHP. These modifications would alter the purpose of the Package Boilers therefore CHP is considered to be technically infeasible. The plant already utilizes Solar Turbines to generate electricity for the plant.

The production of steam is the primary function of the Package Boilers. Natural gas is the lowest GHG-emitting fossil fuel that can be used for steam production. Because natural gas is an inherently low GHG emitting fuel and it is inherently available to the plant, alternative fuel firing is considered technically infeasible for the Package Boilers.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

The only remaining control technology is Energy Efficient Design, therefore no ranking is necessary.

Step 4 – Evaluate Most Effective Controls and Document Results

The only remaining control technology is Energy Efficient Design, therefore no further evaluation is necessary.

Step 5 – Select BACT

Agrium proposes the use of Energy Efficient Design as GHG BACT for the Package Boilers. Agrium proposes the following as energy efficient design parameters for the Package Boilers:

- Air inlet controls, heat recovery and condensate recovery;
- Package Boilers shall be designed to achieve a thermal efficiency of 80%; and
- CO₂ emissions from the package boilers shall not exceed 59.61 MMcf of natural gas combusted or 376,500 tpy (combined).

4.2 Waste Heat Boilers (Units 50, 51, 52, 53, and 54)

4.2.1 BACT Evaluation for GHG Emissions from the Waste Heat Boilers

Step 1 – Identify All Available Control Technologies

Options for the control of GHG emissions from the Waste Heat Boilers include:

Carbon Capture and Sequestration (CCS)

A detailed description of CCS is discussed in the GHG BACT Analysis for the Package Boilers.

Cogeneration/Combined Heat and Power (CHP)

Combined Heat and Power (CHP) or Cogeneration involves the production of useable heat and electricity from a single source. The use of CHP results in significant energy gains. Significant reductions in GHG emissions are achieved by recovering energy which would otherwise go to waste.

Energy Efficient Design

Energy efficient designs can reduce the natural gas required to produce the necessary amount of steam. Therefore emissions of GHGs are reduced. Energy efficient design elements for boilers

^[1] Carbon Dioxide Capture and Storage in the Nitrogen and Syngas Industries," R. Strait and M. Nagvekar of KBR Technology, Nitrogen+Syngas, January/February 2010.

include combustion control optimization, tuning, instrumentation and controls, economizer, blowdown heat recovery, and condensate return system.

Alternative Fuels

Natural gas is the lowest GHG-emitting fossil fuel that can be used for steam production.

Step 2 – Eliminate Technically Infeasible Options

As discussed in the GHG BACT Analysis for the Package Boilers, CCS is not a technically feasible control technology. Therefore CCS is removed from consideration as a possible control technology.

The Waste Heat Boilers are used to recover energy from the Solar Turbines to provide process steam to the plant. In combination with the Solar Turbines these units are considered to be CHP.

The production of steam is the primary function of the Waste Heat Boilers. Natural gas is the lowest GHG-emitting fossil fuel that can be used for steam production. Because natural gas is an inherently low GHG emitting fuel and it is inherently available to the plant, alternative fuel firing is considered technically infeasible for the Waste Heat Boilers.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

The highest-ranking control technology is combined heat and power.

Step 4 – Evaluate Most Effective Controls and Document Results

The highest-ranking control technology is combined heat and power, therefore no further evaluation is necessary.

Step 5 – Select BACT

Agrium proposes the use of combined heat and power as GHG BACT for the Waste Heat Boilers. The 3-hour average CO_{2e} emissions from each waste heat boiler will be limited to 59.61 tons per million cubic foot (MMcf) and the combined CO_{2e} emissions from all waste heat boilers will be limited to 121,500 tons per year.

4.3 Solar Turbines/Generator Sets (Units 55, 56, 57, 58, and 59)

4.3.1 BACT Evaluation for GHG Emissions from the Solar Turbines/Generator Sets

Step 1 – Identify All Available Control Technologies

Options for the control of GHG emissions from the Solar Turbines include:

Carbon Capture and Sequestration (CCS)

A detailed description of CCS is discussed in the GHG BACT Analysis for the Waste Heat Boilers.

Cogeneration/Combined Heat and Power (CHP)

Combined Heat and Power (CHP) or Cogeneration involves the production of useable heat and electricity from a single source. The use of CHP results in significant energy gains. Significant reductions in GHG emissions are achieved by recovering energy which would otherwise go to waste.

Alternative Fuels

The generation of electricity is the primary function of the Solar Turbines. Natural gas is the lowest GHG-emitting fossil fuel that can be used for combustion turbines.

Step 2 – Eliminate Technically Infeasible Options

As discussed in the GHG BACT Analysis for the Waste Heat Boilers, CCS is not a technically feasible control technology. Therefore CCS is removed from consideration as a possible control technology.

The Solar Turbines are used to generate electricity for the plant. By recovering energy from the Solar Turbines through the Waste Heat Boilers, the unit falls within the scope of combined heat and power.

Step 3 – Rank Remaining Control Technologies by Control Effectiveness

The only remaining control technology is combined heat and power.

Step 4 – Evaluate Most Effective Controls and Document Results

The only remaining control technology is Energy Efficient Design, therefore no further evaluation is necessary.

Step 5 – Select BACT

Agrium proposes the use of combined heat and power as GHG BACT for the Solar Turbines. The 3-hr average CO₂e emissions from each Solar Turbine will be limited to 59.61 tons/MMcf and the combined CO₂e emissions from all Solar Turbines will be limited to 135,000 tons per year.

5. BEST AVAILABLE CONTROL TECHNOLOGY (BACT) ANALYSIS UPDATES

This section of the analysis is provided as a supplement to the BACT analyses performed for the original PSD Construction Permit application for KNO, submitted in October 2014. This section provides an evaluation of RACT/BACT/LAER Clearinghouse (RBLC) results associated with permits issued since the original PSD permit was issued in January 2015. Based on the information provided below, KNO concludes that no new permits have been issued since the issuance of AQ0083COT06 that contain BACT limits that are inconsistent with the BACT determinations made for KNO as part of the original PSD Construction Permit.

Tables summarizing RBLC entries since the issuance of AQ0083COT06 are provided in Attachment B to this request. The results of all three analyses for emission units contained in the KNO PSD permit are summarized below:

5.1 Ammonia Tank Flare (Unit 11)

Ammonia Tank Flare (Unit 11) – One permit was identified with permit limits for ammonia tank flare emissions that was issued since January 2015. This permit was issued to Midwest Fertilizer Company LLC (RBLC ID IN-0263), and contained limits for PM10, PM2.5, NOx, CO, VOC, and CO2e. Emissions of all pollutants were controlled using "pilot and purge gas shall be natural gas, and process flaring minimization practices; operated with a flame present at all times; continuously monitored."

Emission limits established are consistent with standard emission factors for flares and natural gas combustion and are consistent with RBLC BACT determinations utilized as a basis for the KNO permit. The BACT approach and emission factors contained in this permit are consistent with those contained in the KNO permit.

5.2 Primary Reformer (Unit 12)

Two permits were identified that have been issued since January 2015. The first was a permit issued to Topchem Pollock, LLC (RBLC ID LA-0306), which was issued 20 December 2016 and updated 8 August 2017. This permit contains limits for CO and PM_{2.5} that were based on good combustion practices, with a limit for CO based on an emission rate of 0.0824 lb/mmBtu of natural gas combusted and a PM_{2.5} emission rate of 0.00745 lb/mmBtu of natural gas combusted. This is consistent with the control technology selected as BACT for the Primary Reformer for KNO and is based on consistent emission factors for CO and PM_{2.5}. The Topchem permit also contained a limit for CO_{2e} emissions that was established at 363,287 tons per year using control technology described as "energy efficiency measure". The ton per year limit established in this permit is consistent with the emission factor utilized for CO_{2e} emissions in the KNO permit.

The other permit issued was for the Agrium facility in Borger, Texas (RBLC ID TX-0814). This permit contained a limit for CO_{2e} emissions of 564,019 tons per year utilizing "good engineering practices". This is consistent with the approach utilized by KNO.

5.3 Startup Heater (Unit 13)

KNO identified several permits issued to facilities with startup heaters that have been issued since January 2015. This includes Gerdau Macsteel, Inc. – Gerdau Macsteel Monroe (RBLC ID MI-0438), Topchem Pollock LLC (RBLC ID LA-0306), Midwest Fertilizer Company LLC (RBLC ID IN-0263), Lake Charles Methanol LLC (RBLC ID LA-0305), Indeck Niles, LLC (RBLC ID MI-0423 (draft)), and Holland Board of Public Works (RBLC ID MI-0424). BACT controls for nearly all of these units were established as good combustion practices and the use of natural gas. Emission limits corresponding to BACT determinations for startup heaters relate to standard emission factors for natural gas combustion.

The NOx BACT control requirement for the unit identified in RBLC ID MI-0438, revised February 2019, was established as low NOx burners in addition to the use of natural gas and good combustion practices. The Michigan LAER/BACT requiring low NOx burners is for a new unit, not yet constructed,

and the low NOx burners are being incorporated into the design parameters. The startup heater at Agrium KNO is an existing unit and was not designed with low NOx burner technology. During the permitting of AQ0083CPT06, there were other RBLC entries containing low NOx burners as a required control, however; the Agrium KNO BACT for NOx was determined to be limited use of the unit at 200 hours per year and an emission limit of 0.098 lb/MMBtu.

The BACT approach and emission limits contained in these permits are consistent with limits incorporated into, and evaluated against, during the permitting of AQ0083CPT06.

5.4 CO₂ Vent (Unit 14)

KNO identified two ammonia plant permits with CO₂ Vent Stack emissions that have been added to RBLC since January 2015. Each is briefly discussed below:

- Agrium US permit for facility in Borger, Texas (RBLC ID TX-0814). This permit limits CO_{2e} emissions to 843,150 tons per year using "good combustion practices".
- Topchem Pollock, LLC permit (RBLC ID LA-0306) with limit of 162,511 tons per year based on the use of pipeline quality natural gas and good combustion practices.

The BACT approach and technology are consistent with RBLC permit limits that existed at the time the KNO PSD permit was issued, and is consistent with limits set in the final KNO permit.

5.5 Small Flare and Emergency Flare (Units 22 and 23)

KNO identified three permits with BACT limits that were issued to sources with flares since the first January 2015. These facilities were Topchem Pollock, LLC (RBLC ID LA-0306), Midwest Fertilizer Company LLC (RBLC ID IN-0263), and Agrium US, Inc. (RBLC ID TX-0814). These permits included limits for PM₁₀, PM_{2.5}, NOx, CO, VOC, and CO_{2e}. Emissions of all pollutants were controlled using BACT described as "pilot and purge gas shall be natural gas", correct flare design, good combustion practices, process flaring minimization practices, and operation of flares with a flame present at all times. Emission limits established are consistent with standard emission factors for flares and natural gas combustion.

The BACT control measures and corresponding emission limits are consistent with BACT control measures and emission factors utilized by KNO for these units.

5.6 Urea Granulation (Units 35 and 36)

KNO identified one permit issued since January 2015 with limits established for urea granulation operations. This permit was issued to Midwest Fertilizer Company LLC (RBLC ID IN-0263). This permit contained limits for PM, PM₁₀, and PM_{2.5} of 0.163 pounds per ton of material for a three-hour average. This limit was established on the basis of a wet scrubber. Although this permit was issued since the issuance of Agrium KNO's permit, this limit was contained in an earlier permit to Midwest Fertilizer Company LLC that was included in the ADEC Technical Analysis Report (TAR) that accompanied the final permit. Thus, no new emission limits for urea granulation operations have been established since the KNO permit was issued.

5.7 Cooling Tower (Unit 40)

Several BACT determinations for cooling towers have been made since January 2015, including cooling towers located at ammonia fertilizer manufacturing facilities. For particulate matter, the required BACT control technology is the use of high efficiency drift eliminators, with drift rates set as low as 0.0005%. These determinations are consistent with BACT determinations at the time the KNO BACT analysis was performed. Thus, no more stringent emission limits for BACT have been established for cooling towers since the KNO permit was issued.

As noted in the original KNO BACT analysis, the KNO cooling tower is a cross-flow tower that cannot achieve the lower drift elimination rates that counter flow cooling towers can achieve. Thus, no new information exists to change the BACT determination made for the KNO facility.

5.8 UF-85 Storage Tank (Unit 41A)

One permit has been issued since January 2015 with a BACT limit for urea storage tanks. This permit was issued to Toyota Motors Motor Vehicle Assembly Plant (TX-0846) and contained no numerical emission limitation. The BACT for these units was identified as the tank to be a white fixed roof storage tank equipped with a submerged fill tank. The KNO BACT is the most stringent limitation, with VOC emissions limited to 0.00004 lb/hr. Thus, no new information exists to change the BACT determination made for the KNO facility.

5.9 MDEA Storage Tanks (Units 41B and 41C)

No permits since the issuance of AQ0083CPT06 were identified with BACT emission limits specific to MDEA storage tanks. One permit has been issued since January 2015 with a BACT limit for storage tanks under process code 42.009. This permit was issued to Toyota Motors Motor Vehicle Assembly Plant (TX-0846) and was specific to storage tanks storing very low vapor pressure non gasoline automotive fluids – gear lube, engine oil, diesel fuel, urea, ATF, etc. Thus, no new information exists to change the BACT determination made for the KNO facility.

5.10 Urea Ship Loading (Unit 47)

No permits since the issuance of AQ0083CPT06 were identified with BACT emission limits for ship loading operations.

5.11 Urea Material Handling Units (Unit 47A, 47B, 47C, and 47D)

One permit was identified with permit limits for urea handling operations that was issued since January 2015. This permit was issued to Midwest Fertilizer Company LLC (RBLC ID IN-0263) for truck and rail loading operations, and contained limits for PM, PM₁₀, and PM_{2.5}. BACT was determined to be the use of baghouse dust collectors, and emissions were limited to 0.15 pounds per hour for PM, PM₁₀, and PM_{2.5}. This RBLC entry corresponds to a revised BACT limit for truck and rail loading operations originally included in RBLC ID IN-0180, permitted June 4, 2014 and was available for consideration during the permitting of AQ0083CPT06. The use of baghouse dust collectors is consistent with the BACT determination for KNO's urea handling units permitted in AQ0083CPT06.

5.12 Diesel Well Pump (Unit 65)

Several permits have been issued since January 2015 with BACT limits for small diesel-fired internal combustion engines. KNO did not document the RACT/BACT/LAER Clearinghouse (RBLC) results to identify the permits issued since January 2015. The technology and air quality considerations made as a part of the initial permit review for small internal combustion engines, under process type 17.210, remain the same. BACT for nearly all of the units evaluated initially between 2004 and 2014, as well as those issued since, is good combustion practices, occasionally coupled with limited use requirements. KNO's original BACT is consistent with the more recent determinations included in RBLC. Thus, no new information exists to change the BACT determination made for the KNO facility.

5.13 Gasoline Fire Pump (Unit 66)

Several permits have been issued since January 2015 with BACT limits for internal combustion engines identified as fire pumps. KNO did not document the RACT/BACT/LAER Clearinghouse (RBLC) results to identify the permits issued since January 2015. The technology and air quality considerations made as a part of the initial permit review for small internal combustion engines, under process type 17.200, remain the same. BACT for nearly all of the units evaluated initially between 2004 and 2014, as well as those issued since, is good combustion practices, occasionally coupled with limited use requirements. KNO's original BACT is consistent with the more recent ones included in the RBLC. Thus, no new information exists to change the BACT determination made for the KNO facility.

APPENDIX A

RBLC SUMMARY

KNO Restart RBLC Search Summary Search: "Reformer" - Fertilizer Plants only Unit 12 - Primary Reformer

Internet No.1.0 MADE	Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Topole Add. LG CASM Topole Add. LG Cold Project State Res 10, 1973. Topole Add. LG Cold Project State Res 10, 1973. Cold Project State Res 10, 1973. Topole Add. LG LSOV Topole Add. State Res 10, 1973. Topole Add. State Res 10, 1973. Cold Project State Res 10, 1973. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Energy Efficiency Measure (note: 111.72 kg/MM BTU of CO2, 0.001 kg/MM BTU of CH4,</td>								Energy Efficiency Measure (note: 111.72 kg/MM BTU of CO2, 0.001 kg/MM BTU of CH4,
Table Table 1.400 LADDS DEPORT August BAD CO Pare Result BAD BAD Col Pare Result BAD BAD Col Pare Result BAD BAD Col Pare Result BAD BAD State Table 2.400 Col Pare Result BAD BAD Pare Result BAD BAD BAD Col Pare Result BAD BAD BAD Col Pare Result BAD	Topchem Pollock, LLC	LA-0306	12/20/2016, updated 8/8/17	CO2e	Primary Reformer Stack RS-16-1 (EQT029)	363287	tpy	
Types Pack LL LOOS ExaMPL and the set of t					, , , ,			
Golden Right LG LASS Partinities and Partinites and Partinities and Partinities and Partinities and P	Topchem Pollock, LLC	LA-0306	12/20/2016, updated 8/8/17					
Open B, Prof. Prof. Prof. Dock my property protection Dock my property protection 0 data en integral Addition Proj. Pr	Topchem Pollock, LLC			PM2.5				
Open B, Prof. Prof. Prof. Dock my property protection Dock my property protection 0 data en integral Addition Proj. Pr	Topchem Pollock, LLC				, , , ,	10.99	tpy	0 /
And Parket Nump. Control of Parket Nump. Control Nump. <thcontrol nump.<="" th=""> Control Nump. Co</thcontrol>	,							
International Fording Action (10) (10) (100) </td <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td>			, ,					
International Fording Action (10) (10) (100) </td <td>CE Industries Nitrogen LLC</td> <td>14-0106</td> <td>7/12/2013</td> <td>СНА</td> <td>Primary Reformer</td> <td>0.0023</td> <td>Ib/MMBtu average of 3 stack tests</td> <td>Good operating practices & use of patural gas</td>	CE Industries Nitrogen LLC	14-0106	7/12/2013	СНА	Primary Reformer	0.0023	Ib/MMBtu average of 3 stack tests	Good operating practices & use of patural gas
General Manage Col ASSA ASSA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CF NADER 10: Dragstownik Startigen Cold, A 251 Startigen								
Circle Margen LLC Molla Molla Molla (1997) Margen Margen LLC Molla (1997)								
C Instant Stephen, LLCNY-50 $-1/12211 0 0 0 0 0 0 0 0 0 $								· · · · · · · · · · · · · · · · · · ·
Construct Construct Priority Economic Construct								
Com Petitic Organy BLOB Control (Control (Contro) (Control (Control (Control (Contro) (Control (Con								
Cite Value Action Fibo Sec2001 S0 Princip Monor 4.48 PMARE Constraint and antimations Cite Value Stream Action 772201 S00 Princip Monor Monor 1012 PMARES 32 voice Insurance Constraint and antimations Cite Value Stream Action 1012 Princip Monor Mon								
Of Index Bilders USD Prinz Betran					,		, ,	
Name Facility Configure Add B (119) Manage Statuture (117) Manage Statuture (202) Manage Statuture (202) <t< td=""><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td></t<>					,			
Orac Valley Rouzins, 11.0 180 9.00001 000 Prinzy Rouzins, 11.0 60.61 0.00000 (model) 0.000000 (model) 0.0000								
Conc Values Fib BEADOR 1000 Particle Mathematics STREE Strates and Top and the North perced Conc Containant Perced Conc Values Marcina A. Solar Provide Marcina A Solar Solar Marcina Marcina Solar Marcina <t< td=""><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td></t<>					,			
CF Indexis Nampe, LLC Iv-010 Private Relation Management Estable Relation Management Scale generating grantmers & see inhunding and mean generating and generati					,			
Ioan Foldards Mode 1 1026201 COde Network Soud Confuging Tacona built Soud Confuging Tacona built Soud Confuging Tacona built Conf Database Magory, LLC AC406 1122211 RCO Printsy Before RCO RCO <t< td=""><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td></t<>					,			
CF Instants Wright, LD Autility Photons Mode Photons Mode Photons Mode Discip Mode Stand St								
Insole Ferring Campary A-108 10020001 WO Process Reference GLOBE MMBBBL encodes of a stack best GC Name of LLC College A-2084 -11/2010 SC SC SC Name of LLC College A-2084 -0.00201 SC SC SC Name of LLC College -0.00201 SC SC SC SC Name of LLC College -0.00201 SC SC SC SC Name of LLC College -0.00201 SC SC SC SC Name of LLC College -0.00201 SC SC SC SC Name of LLC College -0.00201 SC SC SC SC Name of LLC College -0.00201 SC SC SC SC Name of LLC College -0.00201 SC NAME SC SC SC Name of N					,		1, 8	
Altons 60 PA-096 PH/00 en Operation (2, 2) an analyse (1) (2) / 1 and (2) / 1 an								
Air Product ad Chernols, Inc. J-4054 9-42012 (Not. National Mathematication Mathemat					· · ·			
Air Podates and Chemocals. Inc. A.0454 9.440000 No. Petermine 0.0151 Modeling average U.N. and SCR Cores Fetting Company A.1050 10.020001 NO. Prinato Reference 6.8 pares disc reginage CR Cores Fetting Company A.1050 10.020001 NO. Prinato Reference 6.8 pares disc reginage CR Air Podates and Chemostis. Inc. A.4024 4.940001 Reference 0.005 Modelin Line and Reference 0.005								
Image Fields Company Add 50 10022000 No. Primary Reference Set	;							
Invasi Facting Company IA-105 10/2023 (N/A) Primes Reformer 6.5 Deny 43 Sol values, control relations, contrelation relations, contrelation relations, contrelation relatio	;						8	
Oth Valley Resources, L.C. TBO 9 602/0131 Nov. Primary Reference 9 primer 30 day rolling arrange SCR AP Poddut and Chemicals, Inc. A.4284 9.4/2021 PM Netheres 1.22 Ghr how/six arrange Proper equipment designs, good combustor practices, and gascus fuel AP Poddut and Chemicals, Inc. A.4284 9.4/2021 PM Netheres 0.007 EMM88bi services Proper equipment designs, good combustor practices, and gascus fuel AP Poddut and Chemicals, Inc. A.4206 9.4/2021 PM Primary Reformer 0.0000 EMM88bi services of stack tests Good operating practices & a use of natural gas CF Industres Kinzgen, LLC IA-0106 9.7/122012 PM Primary Reformer 0.0000 EMM88bi services of stack tests Good operating practices & a use of natural gas Gene Sampary IA-0106 9.7/122012 PM Primary Reformer 0.0000 EMM88bi services of stack tests Good operating practices & a use of natural gas IA-0106 IM-0106 IM-0106 9.002002 PM10 Primary Reformer 1.00000 Primary Stack tests Good operating practices & a use of natural gas IA-0106 IM-0106 IM-0106 9.002002 PM10 Rolemany Reformer 1.12 by Rolemig Torunintitual Good operating practinces & a								
Air Poddas and Chemicals, Inc. LA 684 9.49021 PM Reformants Final Application Proper capament designs, pool combustion practices, and gaseous fuel Airbonds of LL LDG Gleerion PA-005 Minone Site, LL CG Gleerion PA-005 Minone Site, LL CG Gleerion PA-005 Minone Site, LG Gleerion Proper capament designs, pool combustion practices, and gaseous fuel Airbond Site, LL CG Gleerion PA-005 Minone Site, LG Gleerion PA-005 Minone Site, LG Gleerion Proper capament designs, pool combustion practices, and gaseous fuel Option Site, Si					,		, ,	
Air Podducts and Chemicals, Inc. L0242 94/2012 PM Reformers 0.0075 [bt/MMBBs. PM PM PM Altona GT, LLCC Gleetron PA-0255 11/62013 PM Reformers 0.2 Graine/DSCP Unloown Altona GT, LLCC Gleetron PA-0255 11/62013 PM Pmary Reformer 0.024 Status 1000 Status 10000 Status 100000 Status 100000 Status 1000000000000000000000000000000000000								
Allowa GTL LLOGBetton PA 028 11/16/2113 PM Convestion References 0.2 Grains/DSCF University CF Industes Ningon, ILC IA 0106 77/20013 PM Reformers 0.0024 [Ib/MBII: arong the distances Good operating pactodes. As use of natural gas. CF Industes Ningon, ILC IA-0106 77/20013 PM Pmay, Reformer 11.2 (by/ Rains) 2.5 (montpactodes). Good operating pactodes. As use of natural gas. None Areilizer Company IA-0106 19/2024 PM Pmay, Reformer 11.1 (by/ Rains) 2.5 (montpactodes). Good Combuston Practices. None Areilizer Company IA-0106 19/2024 PM Pmay, Reformer 11.3 (bx/pact rafts). Good Combuston Practices. None Areilizer Company IA-0106 19/2024 PM Pmay, Reformer 10.2 (bi/space rafts). Good Combuston Practices. Are Podets and Chemical, Inc. L-0264 0.40/2011 PM Pmay, Reformer 0.00/27 (bi/MBII: average) Good Combuston Practices. Good Combuston Practices. CF Industes Ningon, ILC L-0264 0.40/2011 PM Pmay, Reformer 0.00/27 (bi/MBII: average) Good Combuston Practices. Good Combuston Practices. Monton Interfices.								
Alkona OTLLCG/bierton PA28 11/16/013 PM Reformance 0.22 Grain-DSSF Unknown CF Industries Nurgen, LLC IA-0106 7/12/2013 PM Primary Reformer 0.0024 bMMBu average of stack tests Good operating practocs & sue of natural gas OW Interfailed Company IA-0106 7/12/2013 PM Primary Reformer 0.0024 bMMBu average of stack tests Good operating practocs & sue of natural gas OW Interfailed Company IA-0106 7/12/2013 PM Primary Reformer 0.0024 bMMBu average of stack tests Good Operating practocs & sue of natural gas OW Interfailed Company IA-0106 7/12/2013 PM Primary Reformer 11.24 bP/ hold in an informany Product and Chemicals in the informany Reformer 11.24 bP/ hold in an informany Product and Chemicals in the informany Reformer 11.24 bP/ hold in an informany Primary Reformer								
CFI Industes Nurgen, LLC IA-0106 77122013 PM Pmony Reformer 0.0224 EMMBlia verage of stack tests Good operating practices & use of natural gas Items / Fettilizer Company IA-0105 102822012 PM Prinary Reformer 0.0224 EMMBlia verage of stack tests Good operating practices & use of natural gas Items / Fettilizer Company IA-0105 102822012 PM Prinary Reformer 0.0224 EMMBlia verage of stack tests Good Combustion Practices & use of natural gas One Valley Resources, LLC IB IB Stack tests Good Combustion Practices & use of natural gas One Valley Resources, LLC IB ID Prinary Reformer 1.13 IDMMBlia verage of Stack tests Good Combustion Practices & use of natural gas One Valley Resources, LLC IA-0105 T122033 PM10 Prinary Reformer 0.0224 EMMBlia verage of Stack tests Good operating practices & use of natural gas One Valley Resources, LLC IA-0105 T122033 PM10 Prinary Reformer 1.0204 MMMBlia verage of Stack tests Good Combustion Practices & use of natural gas Dive Marking Versources, LLC IA								
CF Industres Nitrogen, LLC A-0106 17/12/0013 PMa Pready Referred 11.2 Py Roling 12 month total Good computing practices as used natural gas. Iowa Fertilizer Company A-0105 10/26/2012 PM Primary Reformer 0.0024 B/MMEMU sertiges of Lessing Good Combustion Practices Iowa Fertilizer Company A-0105 10/26/2012 PM Primary Reformer 11.3 B/MMEM sertiges Priode stand Chemicals, inc. A-0264 9.4/2011 PM10 Reformers 11.24 B/hr hourty average Proper equipment designs, good combustion practices, and gaseous fuel A/Products and Chemicals, inc. L-0264 9.4/2011 PM10 Reformers 0.0022 D/MMEM average d1.3 stack hosts Good Combustion Practices, and gaseous fuel A/Products and Chemicals, inc. L-0264 9.4/2012 PM10 Primary Reformer 0.0022 D/MMEM average d1.3 stack hosts Good Combustion Practices, and gaseous fuel A/Products and Chemicals, inc. L-0264 9.4/2012 PM23.5 Reformer 0.0022 D/MMEM average d1.3 stack hosts Good Combustion Practices, and gaseous fuel A/Products and Cheminals, in								
Iowa Fertilizer Company A-0105 10/28/2012 PMa Pertoary Reformer 0.0024 DiMMBits average of 3 stack tests Good Combustion Practices ONA Valley Resources, LLC TBD 9/25/2013 PM Prinary Reformer 1.9 DNMM of 3 hour average Good Combustion Practices, and gaseous fuel Air Poducts and Chemicals, Inc. L-A0254 9/4/2012 PM10 Reformers 0.0075 DNMMBits average of 3 stack tests Good Combustion Practices, and gaseous fuel CF Industries Minopen, LLC LA-0264 9/4/2012 PM10 Prinary Reformer 0.0075 DNMMBits average of 3 stack tests Good operuing practices & use of natural gas CF Industries Minopen, LLC LA-0105 11/26/2012 PM10 Prinary Reformer 0.0075 DNMBits average of 3 stack tests Good Combustion Practices Stack tests Good Combustion Practices, and gaseous fuel CF Industries Minopen, LLC LA-0105 11/26/2012 PM10 Prinary Reformer 1.0026 DNMBits average of 3 stack tests Good Combustion Practices, and gaseous fuel CF Industries Minopen, LLC LA-0105 PM2012 PM205 PM2012 PM205								
Iowa Fertilare Company (A-105 (D28/2012) PM Prmary Reformer (119) Ioma/year rolling 12 month total Good Combuston Practices Onlo Subalty Resources, LLC 180 9.02/2013) PM Prmary Reformer 11.34 [bith fourly average Good Combuston Practices Air Poducts and Chemicals, Inc. LA-0224 9.4/2012 [PM10 Reformers 0.0076 [bitMuBu Proper equipment designs, good combustion practices, and gaeous fuel CF Industries Mrogen, LLC LA-0264 9.4/2012 [PM10 Primary Reformer 0.0076 [bitMuBu Good operating practices & use of natural gas CF Industries Mrogen, LLC LA-0106 7.1/22013 [PM10 Primary Reformer 0.0076 [bitMuBu Good Operating practices & use of natural gas Own Fertilizer Company A0106 7.1/22013 [PM10 Primary Reformer 0.012 Distance Window and Stance Machines Good Operating practices & use of natural gas Own Fertilizer Company A0106 7.1/22013 [PM10 Primary Reformer 0.012 Distance Window and Stance Machines Good Operating practices and season stual gas Own Saint Mission Machines Mission Machines					,			
Ohio Valley Resources, LLC TDD 92/25/013 PMI Prinning Reformer 1.9 Ib/MME 1 hour average Oood Combustion Practices Air Products and Chemicals, Inc. LA-0264 94/2012 PMIO Reformers 0.0075 Ib/MME 1 worage Proper equipment designs, good combustion practices, and gaseous luel Air Products and Chemicals, Inc. LA-0264 94/2012 PMIO Reformers 0.0075 Ib/MME 1 worage of 3 stack tests Good operating practices Stack nets Good Combustion Practices					,			
Air Poducisa nd Chemicals, Inc. L-4024 94/2012 PM10 Reformers 11.24 [bh/houfy average Proper equipment designs, good combuston practices, and gaseous fuel Air Poducisa nd, Chemicals, Inc. L-4026 94/2012 PM10 Reformers 0.0075 IbMMBiu average of 3 stack tests Good operating practices & use of natural gas CF Industries Mirogen, LLC IA-016 71/22013 PM10 Primary Reformer 0.0024 IbMMBiu average of 3 stack tests Good operating practices & use of natural gas Itoma Fertilizer Company IA-016 10/252012 PM10 Primary Reformer 0.0024 IbMMBiu average Good Combustion Practices Good Combustion Practices Aire and average Good Combustion Practices Aire and average Good Combustion Practices Aire and average Aire and average Good Combustion Practices Aire and average Aire and average Good Combustion Practices Aire and average Aire and average Good Combustion Practices Aire and average Aire and averand average and average Aire and averan					,			
Air Potocks and Chemicals, Inc. L-4/264 9/4/2012 Photomers 0.0075 IbMMBru Proper equipment designs, good combustion practices, and gaseous fuel CF Industries Mirrogen, LLC IA-0106 7/12/2013 PM10 Primary Reformer 0.00276 IbMMBru average of 3 stack tests Good operating practices & use of natural gas Owar Fartilizer Company IA-0105 10/26/2012 PM10 Primary Reformer 0.0024 IbMMBru average of 3 stack tests Good Combustion Practices Iowar Fartilizer Company IA-0105 10/26/2012 PM10 Primary Reformer 11.9 tons/veer roling 12 month total Good Combustion Practices Iowar Sertilizer Company IA-0105 10/26/2012 PM2.5 Reformers 11.24 to/ht hourly average Good Combustion Practices Invarias Mirrogen, LLC IA-0264 9/4/2012 PM2.5 Reformer 0.0075 IbMMR/Bu average of 3 stack tests Good doperating practices & use of natural gas Navajo Refining Company LLC Avajos Refinin VM-0050 1/2/4/2007 MV10.5 Reformer Heater 0.0024 IbMMR/Bu average of 3 stack tests Good doperating practices & use of natural gas Navajo Refining Viceo Refinin VM-00					•			
CF Industries Nitrogen, LLC IA-0106 7/12/2013 PM10 Primary Reformer 0.0024 DMMMBitu average of 3 stack tests Good operating practices & use of natural gas Iowa Ferlitzer Company IA-0105 10/28/2012 PM10 Primary Reformer 0.0024 EMMMBitu average of 3 stack tests Good operating practices & use of natural gas Iowa Ferlitzer Company IA-0105 10/28/2012 PM10 Primary Reformer 1.1.2 by Refitiger 2 month total Good operating practices & use of natural gas Ohio Valdey Resources, LLC TBD 9/25/2013 PM10 Primary Reformer 1.1.2 by Refitiger 2 month total Good Combustion Practices Good combustion practices, and gaseous fuel Air Products and Chemicals, Inc. IA-0264 9/4/2012 PM2.5 Reformers 0.0007 BitMMBitu average of 3 stack tests Good operating practices & use of natural gas Navajo Refining (Company LLC Navajo Refinin NH-0050 12/14/2001 PM16 Stam Methane Reformer Heater 2.62 bitwh fourly Gascous Fuel Combustion Practices, and gascous fuel Navajo Refining (Company LLC Navajo Refinin NH-0050 12/14/2001 PM16 Stam Methane Reformer Heater 2.62 bitwh fourly Gascous Fuel Combustion P								
CF Industries Nirogen, LLC IA-0105 771/2013 [PM10 Primary Reformer 11.2 [py Rolling 12 month total Good operating parcices & use of natural gas Iowar Fertilizer Company IA-0105 10/262012 [PM10 Primary Reformer 0.0024 [bM18tu average of 3 tack tests Good Combustion Practices Iowar Sertilizer Company IA-0105 10/262012 [PM10 Primary Reformer 7.6 DM140tu average of 3 tack tests Good Combustion Practices Iowar Sertilizer Company IA-0105 10/262012 [PM2.5 Reformer 7.6 DM140ta 3 hour average Good Combustion Practices ageous fuel Air Products and Chemicals, Inc. LA-0274 91/2012 [PM2.5 Reformers 0.0024 IoM18bitu average of 3 tack tests Good Operating Inscripts & age of antural gas Air Products and Chemicals, Inc. LA-0274 91/2012 [PM2.5 Reformer 0.0024 IoM18bitu average of 3 tack tests Good Operating Inscripts & age of antural gas Air Products and Chemicals, Inc. LA-0274 91/2112 (P071 PM10 Steam Methane Reformer Heater 2.16 [pv Gasous Fuel Combustion Practices age of antural gas Navajo Refining Company LLC Navajo Refinin NM-0050 121/142007 [V0C								
Inva Fertilizer Company IA-0105 1102/2012 PM10 Primary Reformer 0.0024 [b/MMBit_average of 3 stack tests Good Combustion Practices Onivo Fertilizer Company IA-0105 102/2012 PM10 Primary Reformer 7.6 Ib/MM61 average Good Combustion Practices Oniv Otaliar Resources, LLC TBD 9/25/2013 PM10 Primary Reformer 7.6 Ib/MM61 average Good Combustion Practices An Products and Chemicals, Inc. IA-0264 9/4/2012 PM2.5 Reformers 0.0075 Ib/MM61 average Proper equipment designs, good combustion practices, and gaseous fuel CF Industries Nitrogen, LLC IA-0264 9/4/2012 PM2.5 Primary Reformer 0.0075 Ib/MM81ta average Good Combustion Practices, and gaseous fuel CF Industries Nitrogen, LLC IA-0264 9/4/2012 PM2.5 Primary Reformer 0.0075 Ib/MM81ta average Good Combustion Practices, and gaseous fuel Navajo Refining VLO avaijo Refinin NN-0050 12/14/2007 PM10 Steam Methane Reformer Heater 2.16 [pr Steack tests Good Combustion Only Navajo Refining RN-0050 12/14/2007 VOC Ste								
iowa Fertilizer Compary IA-0105 10/26/2012 PMI0 Primary Reformer 11.9 lons/year rolling 12 month total Good Combustion Practices Onlo Valley Representations, Inc. LA-0264 9/4/2012 PMA2.5 Reformers 11.2 Hib/th rourly average Proder equipment designs, good combustion practices, and gaseous fuel Air Products and Chemicals, Inc. LA-0264 9/4/2012 PMA2.5 Reformers 0.0075 Ib/MMB1u Proper equipment designs, good combustion practices, and gaseous fuel CF Industries Nitrogen, LLC LA-0264 9/4/2012 PMA2.5 Reformers 0.0075 Ib/MMB1u average of 3 stack tests Good operating practices & use of natural gas Navajo Refining Company LLC Navajo Refinin NM-0500 12/1/4/2007 Steam Mehane Reformer Heater 2.62 Ib/MMB1u hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0500 12/1/4/2007 Steam Mehane Reformer Heater 0.044 Ib/shr Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refinin NM-0500 12/1/4/2007 Steam Mehane Reformer Heater 0.049 Ib/shr Selective Catalytic Reduction Navajo Refining NM-0500 12/1/4/2007 Steam Mehane Reformer Heater 0.044 Ib/shr S					,		1, 8	
Ohio Valley Resources LLC TBD 9/25/2013 PM10 Primary Reformer 7.6 Ih/MMd 3 hour average Good Combustion Practices Air Poducts and Chemicals, Inc. LA-0264 9/4/2012 PM2.5 Reformers 11.24 Ib/th rohurly average Proper equipment designs, good combustion practices, and gaseous fuel Air Poducts and Chemicals, Inc. LA-0264 9/4/2012 PM2.5 Reformers 0.0075 Ib/MMBu average 03 stack tests Good Operating practices & due of natural gas Reforming Company LLC Navajo Refinin MM-0050 12/14/2007 PM10 Steam Methane Reformer Heater 2.52 Ib/M hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin MM-0050 12/14/2007 SO2 Steam Methane Reformer Heater 2.16 (py Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refinin MM-0050 12/14/2007 SO2 Steam Methane Reformer Heater 0.005 lib/MM8tu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin MM-0050 12/14/2007 SO2 Steam Methane Reformer Heater 0.005 lib/MM8tu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin MM-0050 12/14/2007 SOC Ste					,			
Air Products and Chemicals, Inc. LA-0264 9/4/2012 PM2.5 Reformers 11.24 Inh hourdy average Proper equipment designs, good combustion practices, and gaseous fuel Air Products and Chemicals, Inc. LA-0264 9/4/2012 PM2.5 Reformers 0.0076 D/MMBtu Proper equipment designs, good combustion practices, and gaseous fuel Air Products and Chemicals, Inc. LA-0264 9/4/2012 PM2.5 Reformers 0.0076 D/MMBtu Proper equipment designs, good combustion practices, and gaseous fuel Navajo Refining Company LLC Navajo Refinin NM-0500 12/14/2007 Siteam Mehane Reformer Heater 2.52 lbs/hr hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0500 12/14/2007 Sol2 Steam Mehane Reformer Heater 0.494 lbs/hr Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0500 12/14/2007 VOC Steam Mehane Reformer Heater 0.005 lb/MMBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0505 12/14/2007 VOC Steam Mehane Reformer Heater 1.68 lbs/hr Steictive Catalytic Reduction Navajo Refining NM-0505 Navajo Refining Company LLC Navajo Refinin NM-0505 1/16/2013 SOx Reformers Steictive Catalytic Reduction Navajo Refining NM-0505<					,			
Air Products and Chemicals, Inc. LA 0264 9/4/2012 Reformers 0.0075 Ib/MMBú Proper equipment designs, good combustion practices, and gaseous fuel CF Industries Nitrogen, LLC IA-0106 7/12/2013 PM2.5 Primary Reformer 0.0075 Ib/MMBú Good operating practices & use of natural gas Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 SO2 Steam Methane Reformer Heater 2.5105/hr hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 SO2 Steam Methane Reformer Heater 2.16 [by Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 SO2 Steam Methane Reformer Heater 0.048 [bs/hr Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.049 Bs/hr Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.049 Ib/hr Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 1.069 Ib/hr Io/hr								
CF Industries Nitrogen, LLC IA-0106 7/12/2013 Primary Reformer 0.0024 [bMMBtu average of 3 stack tests Good operating practices & use of natural gas Navajo Refining Company LLC Navajo Refinin (NM-0050 12/14/2007 [SO2 Steam Methane Reformer Heater 2.52 [bs/h hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin (NM-0050 12/14/2007 [SO2 Steam Methane Reformer Heater 2.61 [bs/hr Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin (NM-0050 12/14/2007 [SO2 Steam Methane Reformer Heater 0.003 [bMMBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin (NM-0050 12/14/2007 [VOC Steam Methane Reformer Heater 0.003 [bM/MBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin (NM-0050 12/14/2007 [VOC Steam Methane Reformer Heater 1.69 [bs/hr hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin (NM-0050 12/14/2007 [VOC Steam Methane Reformer Heater 0.600 [PPMVD expressed as SO2 Unknown Reformer Feater 0.600 [PPMVD expressed as SO2 Unknown Good Operating practices & use of natural gas Iven Feilizer Company IA-0105 10/26/2012 [Visible Emissions Primary Reformer 0 <				-				
Navajo Refining Company LLC Navajo Refining MM-0050 12/14/2007 IPM10 Steam Methane Reformer Heater 2.52 lbs/hr hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refining Company LLC Navajo Refining MM-0050 12/14/2007 ISO2 Steam Methane Reformer Heater 2.61 lbs/hr Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 ISO2 Steam Methane Reformer Heater 0.494 lbs/hr Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refining Company LLC Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 IVOC Steam Methane Reformer Heater 0.005 lb/MMBu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 IVOC Steam Methane Reformer Heater 0.005 lb/MMBu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 IVOC Steam Methane Reformer Heater 0.005 lb/MMBu hourly Gaseous Fuel Combustion Only Altorna GTL LL/C/Gilberton PA-0285 11/16/2013 ISOx Reformer Heater 0.00 0% Good operation practices & use of natural gas Or Industries Nitrogen, LLC IA-0105 10/26/2012 Visible Emissions Primary Reformer 0% Good operation Practices & use of natural gas Owar Entrinzer Company OK-0134 Primary Reformer 0% IS bb/hr <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 SQ2 Steam Methane Reformer Heater 2.16 py Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.0494 lbs/hr Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.005 lbs/MMBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 1.69 lbs/hr hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 1.69 lbs/hr hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 1.69 lbs/hr hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.00 PMVD expressed as SO2 Unknown Chouse Start Company IA-0105 10/26/2012 Visible Emissions Primary Reformer 0 % Good Operation Practices Unknown Iowa Fertilizer Company OK-0134								
Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 SO2 Steam Methane Reformer Heater 0.404 [bs/hr Selective Catalytic Reduction Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.005 [b/MMBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.005 [b/MMBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.005 [b/MMBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 0.005 [b/MMBtu hourly Gaseous Fuel Combustion Only Altona GTL LLC/Gilberton PA-0285 1/16/2013 Stox Reformers 500 PMVD expressed as SO2 Unknown Iowa Fertilizer Company IA-0105 10/26/212 Visible Emissions Primary Reformer 0 % Good Operation Practices use of natural gas Iowa Fertilizer Company OK-0134 Primary Reformer 1.68 Is/hr Unknown Unknown Pryor Plant Chemical Company								
Navajo Refining Company LLC Navajo Refinin NM-050 12/14/2007 VOC Steam Methane Reformer Heater 0.005 lb/MMBtu hourly Gaseous Fuel Combustion Only Navajo Refining Company LLC Navajo Refinin NM-050 12/14/2007 VOC Steam Methane Reformer Heater 1.69 lbs/hr hourly Gaseous Fuel Combustion Only Natona GT LLC/Gilberton PA-0285 1/16/2013 SOx Reformers 500 PPMVD expressed as SO2 Unknown CF Industries Nitrogen, LLC IA-0106 7/12/2013 Visible Emissions Primary Reformer 0 % Good operating practices & use of natural gas Iowa Fertilizer Company IA-0105 10/26/2012 Visible Emissions Primary Reformer 0 % Good Operating Practices Iowa Fertilizer Company OK-0134 Primary Reformer 0 % Good Operating Practices Pryor Plant Chemical Company OK-0134 Primary Reformer 1.68 lbs/hr Unknown Pryor Plant Chemical Company OK-0134 Primary Reformer 1.26 lbs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0134 Primary Reformer 1.26 lbs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0134 Primary Reformer 1.26 lbs/hr 24-hr Natural Gas Pryor Plant Chem								
Navajo Refining Company LLC Navajo Refining NM-0050 12/14/2007 VOC Steam Methane Reformer Heater 1.69 Ibs/hr hourly Gaseous Fuel Combustion Only Altoona GTL LLC/Gilberton PA-0285 1/16/2013 [SOx Reformers 500 PPMVD expressed as SO2 Unknown CF Industrise Nitrogen, LLC IA-0106 7/12/2013 [Visible Emissions Primary Reformer 0 % Good Operation Practices & use of natural gas Ok-0134 Primary Reformer 0 % Good Operation Practices OK-0134 Primary Reformer 0 % Good Operation Practices OK-0134 Pryor Plant Chemical Company OK-0135 2/23/2009 PM Primary Reformer 1.68 lbs/hr Pryor Plant Chemical Company OK-0135 2/23/2009 PM10 Primary Reformer 1.26 lbs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0134								
Altona GTL LLC/Gilberton PA-0285 1/16/2013 SOx Reformers 500 PPMVD expressed as SO2 Unknown CF Industries Nitrogen, LLC IA-0106 7/12/2013 Visible Emissions Primary Reformer 0 % Good operating practices & use of natural gas Iowa Fertilizer Company IA-0105 10/26/2012 Visible Emissions Primary Reformer 0 % Good Operation Practices Veryor Plant Chemical Company OK-0134								
CF Industries Nitrogen, LLC IA-0106 7/12/2013 Visible Emissions Primary Reformer 0 % Good operating practices & use of natural gas lowa Fertilizer Company IA-0105 10/26/2012 Visible Emissions Primary Reformer 0 % Good Operating practices & use of natural gas lowa Fertilizer Company OK-0134 0 % Good Operation Practices Pryor Plant Chemical Company OK-0135 2/23/2009 PM Primary Reformer 1.68 lbs/hr Unknown Pryor Plant Chemical Company OK-0134 0 Primary Reformer 1.26 lbs/hr Unknown Pryor Plant Chemical Company OK-0134 2/23/2009 PM10 Primary Reformer 1.26 lbs/hr Unknown Pryor Plant Chemical Company OK-0134 0 Primary Reformer 1.35 lbs/hr Natural Gas Pryor Plant Chemical Company OK-0134 0 Primary Reformer 0.2 lb/MMBtu Natural Gas Pryor Plant Chemical Company OK-0134 2/23/2009 SO2 Primary Reformer 0.2 lb/MMBtu Natural Gas								
Iowa Fertilizer Company IA-0105 10/26/2012 Visible Emissions Primary Reformer 0 % Good Operation Practices OK-0134 Primary Reformer 1.68 Ibs/hr Unknown OK-0134 Primary Reformer 1.68 Ibs/hr Unknown OK-0134 Primary Reformer 1.68 Ibs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0135 2/23/2009 PMI0 Primary Reformer 1.26 Ibs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 1.35 Ib/hr Natural Gas Pryor Plant Chemical Company OK-0134 Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 1.35 Ib/hr Natural Gas Pryor Plant Chemical Company OK-0134 OK-0134 OK-0134 <td< td=""><td>Altoona GTL LLC/Gilberton</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Altoona GTL LLC/Gilberton							
OK-0134 OK-0135 2/23/2009 PM Primary Reformer 1.68 bs/hr Unknown OK-0135 0/20109 PM Primary Reformer 1.68 bs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0135 2/23/2009 PM10 Primary Reformer 1.26 bs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 1.35 bs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 1.35 b/hr Natural Gas Pryor Plant Chemical Company OK-0134 Primary Reformer 0.2 b/MMBtu Natural Gas Pryor Plant Chemical Company OK-0134 Primary Reformer 0.2 b/MMBtu Natural Gas								
Pryor Plant Chemical Company OK-0135 2/23/2009 PM Primary Reformer 1.68 Ibs/hr Unknown Pryor Plant Chemical Company OK-0135 2/23/2009 PM10 Primary Reformer 1.26 Ibs/hr 24-hr Inknown Pryor Plant Chemical Company OK-0135 2/23/2009 PM10 Primary Reformer 1.26 Ibs/hr 24-hr Inknown Pryor Plant Chemical Company OK-0136 2/23/2009 PX0 Primary Reformer 1.26 Ibs/hr 24-hr Inknown Pryor Plant Chemical Company OK-0136 2/23/2009 SQ2 Primary Reformer 1.35 Inknown Inknown Pryor Plant Chemical Company OK-0136 2/23/2009 SQ2 Primary Reformer 0.20 Inknown Inknown Pryor Plant Chemical Company OK-0136 2/23/2009 SQ2 Primary Reformer 0.20 Inknown Inknown Pryor Plant Chemical Company OK-0136 2/23/2009 SQ2 Primary Reformer 0.20 Inknown Inknown Pryor Plant Chemical Company OK-0136 2/23/2009 SQ2 Primary Reformer 0.20 Inknown	Iowa Fertilizer Company		10/26/2012	Visible Emissions	Primary Reformer	0	%	Good Operation Practices
OK-0134 OK-0135 2/23/2009 PM10 Primary Reformer 1.26 Ibs/hr 24-hr Unknown Pryor Plant Chemical Company OK-0134 OK-0135 2/23/2009 SO2 Primary Reformer 1.35 Ib/hr Natural Gas Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 0.2 Ib/MMBtu Natural Gas Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 0.2 Ib/MMBtu Natural Gas	Pryor Plant Chemical Company		2/23/2000	PM	Primary Reformer	1.68	lbs/br	l Inknown
OK-0134 OK-0134 Pryor Plant Chemical Company OK-0135 OK-0134 2/23/2009 SO2 Pryor Plant Chemical Company OK-0134 Pryor Plant Chemical Company OK-0135 OK-0134 2/23/2009 SO2 Primary Reformer 0.2 Ib/MMBtu Natural Gas	, , , , , , , , , , , , , , , , , , , ,	OK-0134						
Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 1.35 b/hr Natural Gas Pryor Plant Chemical Company OK-0135 2/23/2009 SO2 Primary Reformer 0.2 b/MBtu Natural Gas OK-0134 OK-0134 OK-0134 OK-0134 OK-0134 OK-0134 OK-0134	Pryor Plant Chemical Company		2/23/2009	PM10	Primary Reformer	1.26	lbs/hr 24-hr	Unknown
OK-0134 OK-0135 2/23/2009 SO2 Primary Reformer 0.2 Ib/MMBtu Natural Gas OK-0134 OK-0134 OK-0134 OK-0134 OK-0134 OK-0134 OK-0134 OK-0134	Pryor Plant Chemical Company		2/23/2009	SO2	Primary Reformer	1.35	lb/hr	Natural Gas
OK-0134 OK		OK-0134						
	Pryor Plant Chemical Company		2/23/2009	SO2	Primary Reformer	0.2	Ib/MMBtu	Natural Gas
	Pryor Plant Chemical Company	OK-0135	2/23/2009	voc	Primary Reformer	1.21	lbs/hr	Unknown

Notes: Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they do not flare common process gas. Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they are not natural gas fired.

KNO Restart RBLC Search Summary Search: "CO2 Vent", "CO2 Stripper" - All Results Included Unit 14 - CO₂ Vent

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Praxair Inc - Praxair Clear Lake Plant	TX-0830	10/19/201	7 CO2e	HyCO CO2 Stripper MSS	C)	No controls feasible.
Praxair Inc - Praxair Clear Lake Plant	TX-0830	10/19/201	7 CO	HyCO CO2 Stripper MSS	3.3	3 tpy	No controls feasible.
Praxair Inc - Praxair Clear Lake Plant	TX-0827	10/19/201	7 CO2e	HyCO CO2 Stripper MSS	C)	No controls feasible. Emissions included in sitewide gro
Praxair Inc - Praxair Clear Lake Plant	TX-0827	10/19/2017	7 CO	HyCO CO2 Stripper MSS	3.3	3 tpy	No controls feasible.
	TV 0044				0.00150		Good engineering practices to minimize CO2e emission with cannot be sold. (730,000 TPY Urea and 702,625 T Carbon dioxide (CO2) as a raw material to produce ure
Agrium US, Inc	TX-0814	1/5/2017(draft)	CO2e	CO2 Stripper Vent	843150	tpy	ammonia process will be vented to the atmosphere)
		6/30/16, 4/26/17		Acid Gas Removal Unit/CO2			
Lake Charles Methanol, LLC	LA-0305	update	CO	Vent	No Numeric Limit	No Numeric Limit	Thermal Oxidizers
		6/30/16, 4/26/17		Acid Gas Removal Unit/CO2			
Lake Charles Methanol, LLC	LA-0305	update	CO2e	Vent	No Numeric Limit	No Numeric Limit	Thermal Oxidizers
		12/20/2016 (draft),		CO2 Stripper Column CO2SC-			
Topchem Pollock, LLC	LA-0306	08/08/2017 update	CO2e	16-1 (EQT031)	162511	tpy	Use of pipeline quality natural gas and good combustio

CF Industries Nitrogen, LLC	IA-0106	7/12/2013 Acetaldehyde ⁽¹⁾	Carbon Dioxide Regenerator	1,226,814 tpy rolling 12 month total	Good operational practices
					Optimum Catalytic Conversion of CO to CO2 in the high
CF Industries Inc. Donaldsonville Nitrogen Complex - Ammonia Plant	LA-0236	3/3/2009 CO	CO2 Vents	5.59 lbs/hr	alkanol amine solution, or other solution to maximize the
					Optimum Catalytic Conversion of CO to CO2 in the high
CF Industries Inc. Donaldsonville Nitrogen Complex - Ammonia Plant	LA-0236	3/3/2009 CO	CO2 Vents	6.55 tons/year	alkanol amine solution, or other solution to maximize the
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 CO	Carbon Dioxide Regenerator	0.02 lb/ton of NH3 average of 3 stack tests	Good operational practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 CO	Carbon Dioxide Regenerator	9.74 tpy rolling 12 month total	Good operational practices
Iowa Fertilizer company	IA-0105	10/26/2012 CO	CO2 Regenerator	0.02 lb/ton of NH3 average of 3 stack tests	Good operational practices
Iowa Fertilizer company	IA-0105	10/26/2012 CO	CO2 Regenerator	9.65 tpy rolling 12 month total	Good operational practices
Ohio Valley Resources, LLC	TBD	9/25/2013 CO	CO2 purification process	0.0117 lb/ton of NH3 3 hour average	good operational practices and the use of a process cata
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009 CO	Selexol AGR CO2 Vent	8.7 lbs/hr	Thermal Oxidizer (Cat-Ox)
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 CO2	Carbon Dioxide Regenerator	1.26 lb/ton of NH3 30 day rollin g average ⁽²⁾	Good operational practices
Iowa Fertilizer company	IA-0105	10/26/2012 CO2	CO2 Regenerator	1.26 Tons/ton of NH3 rolling 30 day average	Good operational practices
Ohio Valley Resources, LLC	TBD	9/25/2013 CO2	CO2 purification process	1.275 ton/ton of NH3 3 hour average	Good Operational Practices
Pryor Plant Chemical Company	OK-0135	2/23/2009 CO2	Carbon dioxide vent	3.65 lbs/hr 1 hour/8 hour	good operation practices
Iowa Fertilizer company	IA-0105	10/26/2012 CO2e	CO2 Regenerator	1,211,847 tpy rolling 12 month total	Good operational practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009 NOx	Selexol AGR CO2 Vent	0.9 lbs/hr	Thermal Oxidizer (Cat-Ox)
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 VOC	Carbon Dioxide Regenerator	0.106 lb/ton of NH3 average of 3 stack tests	Good operational practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 VOC	Carbon Dioxide Regenerator	51.60 tpy rolling 12 month total	Good operational practices
Iowa Fertilizer company	IA-0105	10/26/2012 VOC	CO2 Regenerator	0.106 lb/ton of NH3 average of 3 stack tests	Good operational practices
Iowa Fertilizer company	IA-0105	10/26/2012 VOC	CO2 Regenerator	51.2 tpy rolling 12 month total	Good operational practices
Ohio Valley Resources, LLC	TBD	9/25/2013 VOC	CO2 purification process	0.0558 lb/ton of NH3 3 hour average	low VOC catalyst
	(4)				

⁽¹⁾ This is not correct according to Chris Roling for the Iowa DNR, most likely CO2e

 $^{\left(2\right) }$ The units may be incorrect. It might be tons/ton of NH3

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

grouped limit

sions, with emissions limited to releasing to the atmoshpere the CO2 25 TPY Ammonia Greenhouse gas (GHG) will be controlled by using urea. If the Urea Plant is not operating, the CO2 generated in the

stion practices. 0.29 Ton CO2e/Metric Ton of NH3 produced.

igh and low shift converters, and continued use of an optimum liquid the absorbing of CO2 igh and low shift converters, and continued use of an optimum liquid the absorbing of CO2

catalyst

KNO Restart RBLC Search Summary Search: "Flare" - Fertilizer Plants only Unit 22 - Plants 4 and 5 Small Flare Unit 23 - Plants 4 and 5 Emergency Flare

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
		12/20/2016,					Correct flare design and good combustion practic
Topchem Pollock, LLC	LA-0306	updated 8/8/17	PM2.5	Process Flare FL-16-1 (EQT034)	0.0	I lb/hr hourly maximum	operate more than 4 hours above normal firing ra
1		12/20/2016,					Correct flare design and good combustion practic
Topchem Pollock, LLC	LA-0306	updated 8/8/17	PM2.5	Process Flare FL-16-1 (EQT034)	0.0	2 tpy annual maximum	operate more than 4 hours above normal firing ra
		12/20/2016,					Correct flare design and good combustion practic
Topchem Pollock, LLC	LA-0306	updated 8/8/17	со	Process Flare FL-16-1 (EQT034)	0.8	7 lb/hr hourly maximum	operate more than 4 hours above normal firing ra
		12/20/2016,					Correct flare design and good combustion practic
Topchem Pollock, LLC	LA-0306	updated 8/8/17	CO	Process Flare FL-16-1 (EQT034)	3.7	tpy annual maximum	operate more than 4 hours above normal firing ra
		12/20/2016,					Correct flare design and good combustion practic
Topchem Pollock, LLC	LA-0306	updated 8/8/17	CO2e	Process Flare FL-16-1 (EQT034)	37) tpy annual maximum	operate more than 4 hours above normal firing ra
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	TPM	Back End Flare (EU-018)	0.001	9 Ib/MMBtu 3 hour average	
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	TPM	Back End Flare (EU-018)	33	hours/12 consec month	
	101 0000	3/23/17 (draft),	TDM				
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	TPM	Back End Flare (EU-018)	No Numeric Limit	No Numeric Limit	Pilot and purge gas shall be natural gas; and pro
	IN 0000	3/23/17 (draft),	DMAG		0.007		
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM10	Back End Flare (EU-018)	0.007	5 Ib/MMBtu 3 hour average	
Miduret Festilizes Company U.C.	IN 0000	3/23/17 (draft),	DMAG	Deals Feed Flores (FUL 040)	200	have 140 and the second have the second have	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM10	Back End Flare (EU-018)	33	hours/12 consec month venting	
Midwaat Fastilizer Company LLC	IN 0262	3/23/17 (draft),	DM10	Back End Flore (FUL 018)	No Numorio Limit	No Numerie Limit	Bilet and purge gee shall be petural gees and pre
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17 3/23/17 (draft),	PM10	Back End Flare (EU-018)	No Numeric Limit	No Numeric Limit	Pilot and purge gas shall be natural gas; and pro-
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM2.5	Back End Flare (EU-018)	0.007	Ib/MMBtu 3 hour average	
	111-0263	3/23/17 (draft),	PIVIZ.5	Back End Flate (EU-018)	0.007		
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM2.5	Back End Flare (EU-018)	22	hours/12 consec month venting	
	114-0203	3/23/17 (draft),	r 1viz.J	Back Ellu Flate (E0-018)			
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM2.5	Back End Flare (EU-018)	No Numeric Limit	No Numeric Limit	Pilot and purge gas shall be natural gas; and pro
	114-0203	3/23/17 (draft),	r 1viz.J	Back Ellu Flate (E0-018)	NO NUMERO LIMIC		Thot and purge gas shall be hatural gas, and pro
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	NOx	Back End Flare (EU-018)	0.06	BIb/MMBtu during normal operations 3 hour average	
	111 0203	3/23/17 (draft),	NOA	Back Elid Hale (E0-010)	0.00	s ionimized during normal operations 5 nour average	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	NOx	Back End Flare (EU-018)	624.9	Ib/hour venting operations 3 hour average	
	111 0200	3/23/17 (draft),	NOA	Dack End Fiare (E0-018)	024.3		
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	NOx	Back End Flare (EU-018)	No Numeric Limit	No Numeric Limit	Pilot and purge gas shall be natural gas; and pro
	111 0200	3/23/17 (draft),	NOA	Dack End Hare (E0-010)			
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	со	Back End Flare (EU-018)	0.3	Ib/MMBtu during normal operations 3 hour average	
	111 0200	3/23/17 (draft),	00		0.0	is minible during normal operations o nour average	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	со	Back End Flare (EU-018)	804 7	b lb/hour venting operations 3 hour average	
		3/23/17 (draft),			00111	i izvitedi terming operatione e nedi aterage	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	со	Back End Flare (EU-018)	No Numeric Limit	No Numeric Limit	Pilot and purge gas shall be natural gas; and pro-
		3/23/17 (draft),					· · · · · · · · · · · · · · · · · · ·
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	VOC	Back End Flare (EU-018)	0.005	Ib/MMBtu during normal operations 3 hour average	
······································		3/23/17 (draft),				<u> </u>	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	VOC	Back End Flare (EU-018)	11.7	B lb/hour venting operations 3 hour average	
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	VOC	Back End Flare (EU-018)	No Numeric Limit	No Numeric Limit	Pilot and purge gas shall be natural gas; and pro
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	CO2	Back End Flare (EU-018)	116.8	b/MMBtu during normal operations 3 hour average	
, ,		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	CO2	Back End Flare (EU-018)	573	tons/12 consecutive months	
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	CO2	Back End Flare (EU-018)	No Numeric Limit	No Numeric Limit	Pilot and purge gas shall be natural gas; and pro
Agrium US, Inc	TX-0814	1/5/2017(draft)	CO2e	Ammonia Emergency Flare		7 tpy	Good Engineering Practices (0.31 MMBtu/hr and
Agrium US, Inc	TX-0814	1/5/2017(draft)	CO2e	Urea Emergency Flare	141	3 tpy	Good Engineering Practices (2.76 MMBtu/hr)
Agrium US, Inc	TX-0814	1/5/2017(draft)	CO2e	Urea Emergency Flare (maintenance)		tpy	Good Engineering Practices (2000 kg/event, 36 h

ctices; Compliance with the Louisiana Non-NSPS Flare Requirements (2.17 MMBtu/hr)(Flare shall nc
rate in any 24 consecutive hours and 148 hours per year)
ctices; Compliance with the Louisiana Non-NSPS Flare Requirements (2.17 MMBtu/hr)(Flare shall nc
rate in any 24 consecutive hours and 148 hours per year)
ctices; Compliance with the Louisiana Non-NSPS Flare Requirements (2.17 MMBtu/hr)(Flare shall nc
rate in any 24 consecutive hours and 148 hours per year)
ctices; Compliance with the Louisiana Non-NSPS Flare Requirements (2.17 MMBtu/hr)(Flare shall nc
rate in any 24 consecutive hours and 148 hours per year)
ctices; Compliance with the Louisiana Non-NSPS Flare Requirements (2.17 MMBtu/hr)(Flare shall nc
rate in any 24 consecutive hours and 148 hours per year)
Tate in any 24 consecutive nours and 140 hours per year)
rocess flaring minimization practices; operated with a flame present at all times; continuously monitore
process flaring minimization practices; operated with a flame present at all times; continuously monitore
process flaring minimization practices; operated with a flame present at all times; continuously monitore
process flaring minimization practices; operated with a flame present at all times; continuously monitore
process flaring minimization practices; operated with a flame present at all times; continuously monitore
the second floring minimization provided with a flore present at all time and a time to a time the second state
rocess flaring minimization practices; operated with a flame present at all times; continuously monitore
reaction provides the provide the provided with a flame procept at all times continuously manifest
rocess flaring minimization practices; operated with a flame present at all times; continuously monitore
nd 2715 MMBtu/year)

36 hrs/event, 4 events/yr)

KNO Restart RBLC Search Summary Search: "Flare" - Fertilizer Plants only Unit 22 - Plants 4 and 5 Small Flare Unit 23 - Plants 4 and 5 Emergency Flare

Facility Name	RBLC ID	Permit Issue Date Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 CH4	Flares	No Numeric Limit	No Numeric Limit	Good operating practices & use of natural gas
	IA-0105	10/26/2012 CH4	Ammonia Flare	No Numeric Limit	No Numeric Limit	Work Practice/Good Combustion Practices
	IA-0106	7/12/2013 CO	Flares	No Numeric Limit	No Numeric Limit	Good operating practices & use of natural gas
	TBD	9/25/2013 CO	Front End Process Flare		Ib/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
	TBD	9/25/2013 CO	Front End Process Flare		lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Vallev Resources, LLC	TBD	9/25/2013 CO	Back end ammonia process vent flare	0.37	Ib/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Valley Resources, LLC	TBD	9/25/2013 CO	Back end ammonia process vent flare	804.76	lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009 CO	Process Flare	No Numeric Limit	No Numeric Limit	Good combustion practices. Meet 40 CFR 60.18
	WI-0204	8/14/2003 CO	Bypass Flare, Biomethanator		lbs/hr	Operation Limit: No more than 5040 hr/yr
Iowa Fertilizer Company	IA-0105	10/26/2012 NOx	Ammonia Flare	No Numeric Limit	No Numeric Limit	Work Practice/Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013 NOx	Front End Process Flare	0.068	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Valley Resources, LLC	TBD	9/25/2013 NOx	Front End Process Flare	595.47	lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 Visible Emissions	Flares		No Numeric Limit	Good operating practices & use of natural gas
	IA-0105	10/26/2012 Visible Emissions	Ammonia Flare	No Numeric Limit	No Numeric Limit	Work Practice/Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 VOC	Flares	No Numeric Limit	No Numeric Limit	Good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012 VOC	Ammonia Flare	No Numeric Limit	No Numeric Limit	Work Practice/Good Combustion Practices
	TBD	9/25/2013 VOC	Front End Process Flare	0.00541	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Valley Resources, LLC	TBD	9/25/2013 VOC	Front End Process Flare		lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 CO	Flare, Steam Assisted	12.8	lbs/hr	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 CO	Flare, Steam Assisted	56.07 t	tons/year 365-day sum of daily emissions	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 NOx	Flare, Steam Assisted	15.23	lbs/hr	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 NOx	Flare, Steam Assisted	66.71 t	tons/year 365-day sum of daily emissions	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 PM10	Flare, Steam Assisted	1.16	lbs/hr	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 PM10	Flare, Steam Assisted	5.08 t	tons/year 365-day sum of daily emissions	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 SOx	Flare, Steam Assisted	4.21	lbs/hr	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 SOx	Flare, Steam Assisted	18.4 t	tons/year 365-day sum of daily emissions	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 Visible Emissions	Flare, Steam Assisted	0	% opacity no NE except for 5 min during any 2 hrs	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 VOC	Flare, Steam Assisted	3.68 t	tons/year 365-day sum of daily emissions	Unknown
Sunoco, Inc. Sun Company, Inc., Toledo Refinery	OH-0308	2/23/2009 VOC	Flare, Steam Assisted	0.84	lbs/hr	Unknown
Ohio Valley Resources, LLC	TBD	9/25/2013 VOC	Back end ammonia process vent flare	0.0054	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Valley Resources, LLC	TBD	9/25/2013 VOC	Back end ammonia process vent flare	11.73	lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
United Wisconsin Grain Producers UWGP - Fuel Grade Ethanol Plan	WI-0204	8/14/2003 VOC	Bypass Flare, Biomethanator	0.3	lbs/hr	Operation Limit: No more than 5040 hr/yı
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 CO	Flares, 3500 SCFM LFG (3)	17.3	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 CO	Flares, 3500 SCFM LFG (3)	98%	Reduction	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 CO	Flares, 2500 SCFM LFG (2)	12.3	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 CO	Flares, 2500 SCFM LFG (2)	98%	Reduction	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 NOx	Flares, 2500 SCFM LFG (2)	3.6	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 NOx	Flares, 3500 SCFM LFG (3)	5.1	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 NOx	Flares, 3500 SCFM LFG (3)	98%	Reduction	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 NOx	Flares, 2500 SCFM LFG (2)	98%	Reduction	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 PM10	Flares, 2500 SCFM LFG (2)	1.6	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 PM10	Flares, 2500 SCFM LFG (2)	98%	Reduction	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfill	VA-0294	2/5/2003 PM10	Flares, 3500 SCFM LFG (3)	2.2	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 PM10	Flares, 3500 SCFM LFG (3)		Reduction	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 SO2	Flares, 2500 SCFM LFG (2)	1.4		Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 SO2	Flares, 3500 SCFM LFG (3)	1.91	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 VOC	Flares, 2500 SCFM LFG (2)	11	lbs/hr nonmethane organic carbon	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 VOC	Flares, 2500 SCFM LFG (2)	98%	Reduction	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
	VA-0294	2/5/2003 VOC	Flares, 3500 SCFM LFG (3)	0.6	lbs/hr	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LFG
WM Atlantic Waste Disposal Inc. Atlantic Waste Disposal Landfil	VA-0294	2/5/2003 VOC	Flares, 3500 SCFM LFG (3)	1.4	lbs/hr nonmethane organic carbor	Proper maintenance of the flare, including monitoring for the presence of flame, LGF flow rate, 0% opacity, measuring % methane in LF(
			•	· · · · ·	¥	

Notes: Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times. Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they do not flare common process gas.

KNO Restart RBLC Search Summary Search: "MDEA", "methyl", "42.009", "61.999" - All Results MDEA Storage Tank

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
No New Results							
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Methyl-diethanol Amine (MDEA) Storage Tank	0.	1 tons/year rolling 12 month total	Nitrogen Gas Blanket
Iowa Fertilizer Company	IA-0105	10/26/2012	VOC	MDEA Storage Tank	0.	1 tons/year rolling 12 month total	Nitrogen Gas Blanket

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu).

KNO Restart RBLC Search Summary Search: "Start up", "Start-up","Preheat" - All Results Included Unit 13 - Startup Heater

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Gerdau Macsteel Inc Gerdau Macsteel Monroe	MI-0438	10/29/2018, updated 2/19/2019	FPM	Ladle Preheater (30 mmbtu/hr burner)	0.0076	lb/MMBtu Hourly	Use of NG fuel and good combustion practices
Gerdau Macsteel Inc Gerdau Macsteel Monroe	MI-0438	10/29/2018, updated 2/19/2019	PM10	Ladle Preheater (30 mmbtu/hr burner)	0.0076	lb/MMBtu Hourly	Use of NG fuel and good combustion practices
Gerdau Macsteel Inc Gerdau Macsteel Monroe	MI-0438	10/29/2018, updated 2/19/2019	PM2.5	Ladle Preheater (30 mmbtu/hr burner)	0.0076	lb/MMBtu Hourly	Use of NG fuel and good combustion practices LAER - Low NOx burners, use of NG fuel, and good combustion
Gerdau Macsteel Inc Gerdau Macsteel Monroe	MI-0438	10/29/2018, updated 2/19/2019	NOx	Ladle Preheater (30 mmbtu/hr burner)	0.08	Ib/MMBtu Hourly	practices. NOx subject to LAER due to non-attainment for ozone, also subject to NOx BACT in NOx attainment area.
Gerdau Macsteel Inc Gerdau Macsteel Monroe	MI-0438	10/29/2018, updated 2/19/2019	со	Ladle Preheater (30 mmbtu/hr burner)	0.084	lb/MMBtu Hourly	Use of NG fuel and good combustion practices
Gerdau Macsteel Inc Gerdau Macsteel Monroe	MI-0438	10/29/2018, updated 2/19/2019	SO2	Ladle Preheater (30 mmbtu/hr burner)	0.0006	lb/MMBtu Hourly	Use of NG fuel and good combustion practices
Topchem Pollock, LLC	LA-0306	12/20/2016, updated 8/8/17	PM2.5	Ammonia Converter Start-up Heater Stack SUH-16-1 (EQT030)	0.18	lb/hr hourly maximum	Use of pipeline quality natural gas and good combustion practices
Topchem Pollock, LLC	LA-0306	12/20/2016, updated 8/8/17	PM2.5	Ammonia Converter Start-up Heater Stack SUH-16-1 (EQT030)	0.01	tpy annual maximum	Use of pipeline quality natural gas and good combustion practices
Topchem Pollock, LLC	LA-0306	12/20/2016, updated 8/8/17	со	Ammonia Converter Start-up Heater Stack SUH-16-1 (EQT030)	1.96	lb/hr hourly maximum	Use of pipeline quality natural gas and good combustion practices
Topchem Pollock, LLC	LA-0306	12/20/2016, updated 8/8/17	со	Ammonia Converter Start-up Heater Stack SUH-16-1 (EQT030)	0.12	tpy annual maximum	Use of pipeline quality natural gas and good combustion practices
Topchem Pollock, LLC	IN-0263 (draft)	12/20/2016, updated 8/8/17	CO2e	Ammonia Converter Start-up Heater Stack SUH-16-1 (EQT030)	169	tpy annual maximum	Use of pipeline quality natural gas and good combustion practices
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	FPM	Startup Heater EU-002	0.13	lb/hr 3 hour average	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	FPM	Startup Heater EU-002	200	hours/year	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	PM10	Startup Heater EU-002	0.522	lb/hr 3 hour average	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	PM10	Startup Heater EU-002	200	hours/year	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	PM2.5	Startup Heater EU-002	0.522	lb/hr 3 hour average	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	PM2.5	Startup Heater EU-002	200	hours/year	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	NOx	Startup Heater EU-002	12.611	lb/hr 3 hour average	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	NOx	Startup Heater EU-002	200	hours/year	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	со	Startup Heater EU-002	2.556	lb/hr 3 hour average	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	со	Startup Heater EU-002	200	hours/year	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	VOC	Startup Heater EU-002	0.378	lb/hr 3 hour average	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	VOC	Startup Heater EU-002	200	hours/year	Good Combustion Practices & use of natural gas (70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	CO2	Startup Heater EU-002	8184	lb/hr 3 hour average	Good Combustion Practices & use of inlet air control sensors that limit excess air(70 MMBtu/hr)
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft), updated 7/10/17	CO2	Startup Heater EU-002	200	hours/year	Good Combustion Practices & use of inlet air control sensors that limit excess air(70 MMBtu/hr)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	PM10	Gasifier Start-up Preheat Burners	No Numeric Limit	No Numeric Limit	Good engineering practices, good combustion technology, and use of clean fuels (23 MMBtu/hr each)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	PM2.5	Gasifier Start-up Preheat Burners	No Numeric Limit	No Numeric Limit	Good engineering practices, good combustion technology, and use of clean fuels (23 MMBtu/hr each)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	SO2	Gasifier Start-up Preheat Burners	No Numeric Limit	No Numeric Limit	Good engineering practices, good combustion technology, and use of clean fuels (23 MMBtu/hr each)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	NOx	Gasifier Start-up Preheat Burners	No Numeric Limit	No Numeric Limit	Good engineering practices, good combustion technology, and use of clean fuels (23 MMBtu/hr each)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	со	Gasifier Start-up Preheat Burners	No Numeric Limit	No Numeric Limit	Good engineering practices, good combustion technology, and use of clean fuels (23 MMBtu/hr each)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	CO2e	Gasifier Start-up Preheat Burners	No Numeric Limit	No Numeric Limit	Good equipment design and good combustion practices (23 MMBtu/hr each)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	PM10	WSA Preheat Burners	No Numeric Limit	No Numeric Limit	Good engineering design and practices and use of clean fuels (no size listed)
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	PM2.5	WSA Preheat Burners	No Numeric Limit	No Numeric Limit	Good engineering design and practices and use of clean fuels(no size listed)

KNO Restart RBLC Search Summary Search: "Start up", "Start-up","Preheat" - All Results Included Unit 13 - Startup Heater

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit Emission Limit Units	BACT Determination
						Good engineering design and practices and use of clean fuels (no size
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	SO2	WSA Preheat Burners	No Numeric Limit No Numeric Limit	listed)
Laka Charles Methanal LLC	1 4 0205	C/20/4C 4/2C/47 up data	NO		No Numeria Limita - No Numeria Limita	Good engineering design and practices and use of clean fuels(no size
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	NOx	WSA Preheat Burners	No Numeric Limit No Numeric Limit	listed) Good engineering design and practices and use of clean fuels (no size
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	со	WSA Preheat Burners	No Numeric Limit No Numeric Limit	listed)
						Good equipment design and good combustion practices (no size
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	CO2e	WSA Preheat Burners	No Numeric Limit No Numeric Limit	listed)
				FGFUELHTR (Two fuel pre-heaters identified as EUFUELHTR1 &		
Indeck Niles, LLC	MI-0423 (draft)	1/4/2017, 7/25/17 update	со	EUFUELHTR2)	2.22 lb/hr hourly; each unit	SIP - Good combustion practices (27 MMBtu/hr each)
				FGFUELHTR (Two fuel pre-heaters		
Indeal: Niles 11.C	MI 0400 (draft)	4/4/0047 7/05/47 un data	NOv	identified as EUFUELHTR1 &		CID. Coord combustion provisions (07 MMPtu/kr coorb)
Indeck Niles, LLC	MI-0423 (draft)	1/4/2017, 7/25/17 update	NOx	EUFUELHTR2) FGFUELHTR (Two fuel pre-heaters	2.65 lb/hr hourly; each unit	SIP - Good combustion practices (27 MMBtu/hr each)
				identified as EUFUELHTR1 &		
Indeck Niles, LLC	MI-0423 (draft)	1/4/2017, 7/25/17 update	FPM	EUFUELHTR2)	0.002 lb/MMBtu Test Protocol will Specify Avg Time	Good combustion practices (27 MMBtu/hr each)
				FGFUELHTR (Two fuel pre-heaters		
Indeels Nilse, LLC	MI-0423 (draft)	1/1/2017 7/25/17 undate	TPM10	identified as EUFUELHTR1 & EUFUELHTR2)	0.0 lb/br bourby, each fuel bester	SIP - Good combustion practices (27 MMBtu/hr each)
Indeck Niles, LLC	MI-0423 (drait)	1/4/2017, 7/25/17 update	TPINITU	FGFUELHTR (Two fuel pre-heaters	0.2 lb/hr hourly; each fuel heater	SIP - Good compusition practices (27 MMBld/hr each)
				identified as EUFUELHTR1 &		
Indeck Niles, LLC	MI-0423 (draft)	1/4/2017, 7/25/17 update	TPM2.5	EUFUELHTR2)	0.2 lb/hr hourly; each fuel heater	SIP - Good combustion practices (27 MMBtu/hr each)
				FGFUELHTR (Two fuel pre-heaters		
Indeck Niles. LLC	MI 0422 (droft)	1/1/2017 7/25/17 undate	voc	identified as EUFUELHTR1 &	0.15 lb/hr hourly; each fuel heater	Coord computition practices (27 MMPtu/br coop)
Indeck Niles, ELC	MI-0423 (draft)	1/4/2017, 7/25/17 update	VUC	EUFUELHTR2)	0.15 lb/nr houny, each ider heater	Good combustion practices (27 MMBtu/hr each) SIP - Good combustion practices and the use of pipeline quality
				FGFUELHTR (Two fuel pre-heaters		natural gas (The limit is 2,000 grains of sulfur per MMscf. The natural
				identified as EUFUELHTR1 &		gas material limit of 2000 grains of sulfur per MMscf is what the
Indeck Niles, LLC	MI-0423 (draft)	1/4/2017, 7/25/17 update	SO2	EUFUELHTR2)	2000 gr/MMscf Based upon Fuel Receipt Records	emission factor is based upon.) (27 MMBtu/hr each)
				FGFUELHTR (Two fuel pre-heaters identified as EUFUELHTR1 &		Energy officiancy measures and the use of a low earbon fuel (ningling
Indeck Niles, LLC	MI-0423 (draft)	1/4/2017, 7/25/17 update	CO2e	EUFUELHTR2)	13848 tpy combined 12-month rolling time period	Energy efficiency measures and the use of a low carbon fuel (pipeline quality natural gas) (27 MMBtu/hr each)
	Mi 0420 (drait)	1/4/2011, 1/20/17 update	0020			
	MI-0424 (draft)					
Holland Board of Public Works - East 5th Street	(update of MI-0412)	12/5/2016, 7/31/17 update	CO	EUFUELHTR (Fuel pre-heater)	0.41 lb/hr Test Protocol will Specify Avg Time	SIP - Good combustion practices (3.7 MMBtu/hr each)
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	NOx	EUFUELHTR (Fuel pre-heater)	0.55 lb/hr Test Protocol will Specify Avg Time	SIP - Good combustion practices (3.7 MMBtu/hr each)
Holiand Board of Fublic Works - East Stri Street	MI-0424 (urait)	12/3/2010, 7/31/17 upuale	INOX			SIF - Good compusition practices (3.7 Minibid/III each)
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	FPM	EUFUELHTR (Fuel pre-heater)	0.007 lb/MMBtu Test Protocol will Specify Avg Time	Good combustion practices (3.7 MMBtu/hr each)
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	TPM10	EUFUELHTR (Fuel pre-heater)	0.0075 lb/MMBtu Test Protocol will Specify Avg Time	SIP - Good combustion practices (3.7 MMBtu/hr each)
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016. 7/31/17 update	TPM2.5	EUFUELHTR (Fuel pre-heater)	0.0075 lb/MMBtu Test Protocol will Specify Ava Time	SIP - Good combustion practices (3.7 MMBtu/hr each)
	ini o iz i (didit)	12/0/2010, 1/01/11 apaato	11 112.0			
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	VOC	EUFUELHTR (Fuel pre-heater)	0.03 lb/hr Test Protocol will Specify Avg Time	Good combustion practices (3.7 MMBtu/hr each)
						SIP - Good combustion practices and the use of pipeline quality
						natural gas (The limit is 2,000 grains of sulfur per MMscf. The natural gas material limit of 2000 grains of sulfur per MMscf is what the
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	SO2	EUFUELHTR (Fuel pre-heater)	2000 gr/MMscf Based upon Fuel Receipt Records	emission factor is based upon.) (3.7 MMBtu/hr each)
Holland Board of Public Works - East 5th Street		12/5/2016, 7/31/17 update	CO2e	EUFUELHTR (Fuel pre-heater)	1934 tpy combined 12-month rolling time period	Good combustion practices (3.7 MMBtu/hr each)
CPV Fairview, LLC - CPV Fairview Energy Cent		9/2/16, 7/31/17 update	NOx	Dew Point Heater 13.8	0.011 lb/MMBtu	NSPS (12.8 MMBtu/hr)
CPV Fairview, LLC - CPV Fairview Energy Cent CPV Fairview, LLC - CPV Fairview Energy Cent		9/2/16, 7/31/17 update 9/2/16, 7/31/17 update	CO CO	Dew Point Heater 13.8 Dew Point Heater 3.2	0.08 lb/MMBtu 0.08 lb/MMBtu	NSPS (12.8 MMBtu/hr) NSPS (3.2 MMBtu/hr)
CPV Fairview, LLC - CPV Fairview Energy Cent CPV Fairview, LLC - CPV Fairview Energy Cent		9/2/16, 7/31/17 update	NOx	Dew Point Heater 3.2	0.035 lb/MMBtu	NSPS (3.2 MMBtu/hr)
						(One (1) indirect fuel-gas heater, rated at 2 mmBtu/hr heat input, which
						shall only burn natural gas, for the purpose of heating the natural gas
Mid-Kansas Electric Company, LLC - Rubart Sta	atior KS-0030 (draft)	3/31/16, 7/19/17 update	NOx	Indirect Fuel-Gas Heater	0.2 lb/hr excludes SSM	fuel prior to combustion in the Caterpillar 4SLB RICE)
				1		(One (1) indirect fuel-gas heater, rated at 2 mmBtu/hr heat input, which shall only burn natural gas, for the purpose of heating the natural gas
Mid-Kansas Electric Company, LLC - Rubart Sta	ation KS-0030 (draft)	3/31/16, 7/19/17 update	со	Indirect Fuel-Gas Heater	0.16 lb/hr excludes SSM	fuel prior to combustion in the Caterpillar 4SLB RICE)
	- (* * * *	, , , , , , , , , , , , , , , , , , , ,				(One (1) indirect fuel-gas heater, rated at 2 mmBtu/hr heat input, which
						shall only burn natural gas, for the purpose of heating the natural gas
Mid-Kansas Electric Company, LLC - Rubart Sta	atior KS-0030 (draft)	3/31/16, 7/19/17 update	VOC	Indirect Fuel-Gas Heater	0.011 lb/hr excludes SSM	fuel prior to combustion in the Caterpillar 4SLB RICE)
				1		(One (1) indirect fuel-gas heater, rated at 2 mmBtu/hr heat input, which
Mid-Kansas Electric Company, LLC - Rubart Sta	ation KS-0030 (draft)	3/31/16, 7/19/17 update	ТРМ	Indirect Fuel-Gas Heater	0.015 lb/hr excludes SSM	shall only burn natural gas, for the purpose of heating the natural gas fuel prior to combustion in the Caterpillar 4SLB RICE)
						(One (1) indirect fuel-gas heater, rated at 2 mmBtu/hr heat input, which
						shall only burn natural gas, for the purpose of heating the natural gas
Mid-Kansas Electric Company, LLC - Rubart Sta	tionKS-0030 (draft)	3/31/16, 7/19/17 update	TPM10	Indirect Fuel-Gas Heater	0.015 lb/hr excludes SSM	fuel prior to combustion in the Caterpillar 4SLB RICE)

KNO Restart RBLC Search Summary Search: "Start up", "Start-up","Preheat" - All Results Included Unit 13 - Startup Heater

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
							(One (1) indirect fuel-gas heater, rated at 2 mmBtu/hr heat input, which
							shall only burn natural gas, for the purpose of heating the natural gas
Mid-Kansas Electric Company, LLC - Rubart Station	r KS-0030 (draft)	3/31/16, 7/19/17 update	TPM2.5	Indirect Fuel-Gas Heater	0.015	lb/hr excludes SSM	fuel prior to combustion in the Caterpillar 4SLB RICE)
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	CH4	Startup Heater	0.0023	Ib/MMBtu average of 3 stack tests	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012	CH4	Startup Heater	0.0023	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	CO	Startup Heater	0.0194	Ib/MMBtu average of 3 stack tests	good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	CO	Startup Heater	0.057	tons/year rolling 12 month total	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012	CO	Startup Heater	0.0194	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012	CO	Startup Heater	0.1	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	CO	Ammonia catalyst startup heater	37.23	Ib/MMcf 3 hour average	good heater design and good combustion practices
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002	CO	Heaters	0.01	lb/MMBtu	Unknown
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002	CO	Heaters, Reboiler	0.01	lb/MMBtu	Unknown
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002	CO	Heater, CCR Reactor	0.01	lb/MMBtu	Unknown
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	CO2	Startup Heater		Ib/MMBtu average of 3 stack tests	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012		Startup Heater	117	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	CO2	Ammonia catalyst startup heater	59.61	ton/MMcf 3 hour average	good heater design and good combustion practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	CO2e	Startup Heater	345	tons/year rolling 12 month total	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012	CO2e	Startup Heater	638	tons/year rolling 12 month total	Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	N2O	Startup Heater	0.0006	Ib/MMBtu average of 3 stack tests	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012	10/26/2012 N2O		0.0006	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012	10/26/2012 NOx 5		0.119	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012	NOx	Startup Heater	0.63	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	NOx	Ammonia catalyst startup heater	183.7	Ib/MMcf 3 hour average	good heater design and good combustion practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM	Startup Heater	0.0024	Ib/MMBtu average of 3 stack tests	good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM	Startup Heater	0.007	tons/year rolling 12 month total	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012	PM	Startup Heater	0.0024	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012	PM	Startup Heater	0.01	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	PM	Ammonia catalyst startup heater	1.9	lb/MMcf 3 hour average	good heater design and good combustion practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM10	Startup Heater	0.0024	Ib/MMBtu average of 3 stack tests	good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM10	Startup Heater	0.007	tons/year rolling 12 month total	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012	PM10	Startup Heater	0.0024	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012	PM10	Startup Heater	0.01	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	PM10	Ammonia catalyst startup heater	7.6	Ib/MMcf 3 hour average	good heater design and good combustion practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Startup Heater		Ib/MMBtu average of 3 stack tests	good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM2.5	Startup Heater		tons/year rolling 12 month total	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012		Startup Heater		lb/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Startup Heater	0.01	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	PM2.5	Ammonia catalyst startup heater	7.6	Ib/MMcf 3 hour average	good heater design and good combustion practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	Visible Emissions	Startup Heater	0	%	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012	Visible Emissions	Startup Heater		% Opacity	Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	VOC	Startup Heater	0.0014	lb/MMBtu average of 3 stack tests	good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	VOC	Startup Heater		tons/year rolling 12 month total	good operating practices & use of natural gas
Iowa Fertilizer Company	IA-0105	10/26/2012		Startup Heater		Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012	VOC	Startup Heater		tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	VOC	Ammonia catalyst startup heater	5.5	Ib/MMcf 3 hour average	good heater design and good combustion practices

Notes: Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times. Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they are not used for startup.

KNO Restart RBLC Search Summary Search: "Urea" - All Results Included Unit 35 - Urea Granulators A/B Unit 36 - Urea Granulators C/D

	Permit Issue Date Pollutant	Process Name	Emission Limit Emission Limit Units	BACT Determination
IN-0263	3/23/17 (draft) PM	Urea Granulation Unit (EU-008)	0.163 lb/ton 3 hour average	Wet Scrubber
IN-0263	3/23/17 (draft) PM	Urea Granulation Unit (EU-008)	368040 tons/12 consecutive mos	Wet Scrubber
IN-0263	3/23/17 (draft) PM10	Urea Granulation Unit (EU-008)	0.163 lb/ton 3 hour average	Wet Scrubber
IN-0263	3/23/17 (draft) PM10	Urea Granulation Unit (EU-008)	368040 tons/12 consecutive mos	Wet Scrubber
IN-0263	3/23/17 (draft) PM2.5	Urea Granulation Unit (EU-008)	0.163 lb/ton 3 hour average	Wet Scrubber
IN-0263	3/23/17 (draft) PM2.5	Urea Granulation Unit (EU-008)	368040 tons/12 consecutive mos	Wet Scrubber
				good combustion practices
		Urea Granulator		good combustion practices
		Urea Granulator		good combustion practices
		Urea Granulator	117 lb/MMBtu average of 3 stack tests	good combustion practices
IA-0106	7/12/2013 CO2e	Urea Granulator	33469 tpy rolling 12 month total	good combustion practices
IA-0106	7/12/2013 N2O	Urea Granulator	0.0006 lb/MMBtu average of 3 stack tests	good combustion practices
WA-0318	7/11/2008 PM	Granular Urea Ammonium Nitrate Production	0.096 gr/dscf 24 hour average	Wet Scrubber, Mist Eliminator, and Product Hardener
WA-0318	7/11/2008 PM	Granular Urea Ammonium Nitrate Production	99.6 tons/year 12 month rolling average	Wet Scrubber, Mist Eliminator, and Product Hardener
IA-0106	7/12/2013 PM	Urea Granulator	0.11 lb/ton of urea average of 3 stack tests	good combustion practices along with a wet scrubber
IA-0106	7/12/2013 PM	Urea Granulator	85.7 tpy rolling 12 month total	good combustion practices along with a wet scrubber
IA-0105				Wet Scrubber
IA-0105				Wet Scrubber
OK-0135				Good operating practices
OK-0135	2/23/2009 PM	Granulator Scrubbers	80% Reduction	Good operating practices
ID-0017	2/10/2009 PM	Urea Granulation Vent	0.011 lb/ton	Wet Scrubber
ID-0017	2/10/2009 PM	Urea Granulation Vent	20.5 lbs/hr	Wet Scrubber
ID-0017	2/10/2009 PM	Urea Granulation Vent	20% Reduction	Wet Scrubber
IA-0106	7/12/2013 PM10	Urea Granulator	0.11 lb/ton of urea average of 3 stack tests	good combustion practices along with a wet scrubber
IA-0106	7/12/2013 PM10	Urea Granulator	85.7 tpy rolling 12 month total	good combustion practices along with a wet scrubber
IA-0105	10/26/2012 PM10	Urea Granulator	0.1 kg/metric ton average of 3 stack tests	Wet Scrubber
IA-0105	10/26/2012 PM10	Urea Granulator	60.4 tons/year rolling 12 month total	Wet Scrubber
OK-0124	5/1/2008 PM10	Urea Granulators		Wet Scrubber
OK-0135	2/23/2009 PM10	Granulator Scrubbers	0.7 lbs/hr 24-hour	Good operating practices
OK-0135	2/23/2009 PM10	Granulator Scrubbers	80% Reduction	Good operating practices
ID-0017	2/10/2009 PM10	Urea Granulation Vent	0.005 lb/ton	Wet Scrubber
ID-0017	2/10/2009 PM10		9 lbs/hr	Wet Scrubber
IA-0106	7/12/2013 PM2.5		0.108 lb/ton of urea average of 3 stack tests	good combustion practices along with a wet scrubber
IA-0106	7/12/2013 PM2.5			good combustion practices along with a wet scrubber
IA-0105	10/26/2012 PM2.5	Urea Granulator	0.025 kg/metric ton average of 3 stack tests	Wet Scrubber
IA-0105	10/26/2012 PM2.5	Urea Granulator	ů v v v v v v v v v v v v v v v v v v v	Wet Scrubber
			0 %	good combustion practices and wet scrubber
IA-0105	10/26/2012 Visible Emission	Urea Granulator	0 % opacity	Wet Scrubber
		Urea Granulator		good combustion practices and wet scrubber
IA-0106	7/12/2013 VOC			good combustion practices and wet scrubber
	IN-0263 IN-0263 IN-0263 IN-0263 IN-0263 IN-0263 IN-0263 IN-0263 IN-0106 IA-0106 IA-0105 OK-0135 OK-0135 OK-0135 ID-0017 ID-0017 ID-0017 IA-0106 IA-0105 OK-0135 OK-0135 ID-0017 ID-0017 ID-0017 IA-0106 IA-0105 OK-0135 OK-0135 OK-0135 ID-0017 ID-0017 IA-0106 IA-0106 IA-0106 IA-0106 IA-0105 IA-0105 IA-0106 IA-0105 <td< td=""><td>IN-0263 3/23/17 (draft) PM IN-0263 3/23/17 (draft) PM10 IN-0263 3/23/17 (draft) PM10 IN-0263 3/23/17 (draft) PM2.5 IA-0106 7/12/2013 CO Q IA-0106 7/12/2013 N2O PM WA-0318 7/11/2008 PM Q IA-0106 7/12/2013 PM Q IA-0105 10/26/2012 PM Q OK-0135 2/23/2009 PM Q ID-0017 2/10/2009 PM Q <</td><td>IN-0263 3/23/17 (draft) PM Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM10 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM10 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM2.5 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM2.5 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM2.5 Urea Granulator IA-0106 7/12/2013 CO Urea Granulator IA-0106 7/12/2013 CO2 Urea Granulator IA-0106 7/12/2013 CO2 Urea Granulator IA-0106 7/12/2013 CO2 Urea Granulator IA-0106 7/12/2013 N2O Urea Granulator IA-0106 7/12/2013 PM Granulator UA-0166 7/12/2013 PM Urea Granulator IA-0106 7/12/2008 PM Granulator Scrubbers <</td><td>IN-263 323/17 (draft) PM Urea Granulation Unit (EU-006) 368040 [ons/12 consecutive mos IN-263 3223/17 (draft) PM10 Urea Granulation Unit (EU-006) 0.1631b/n3 hour average IN-263 3223/17 (draft) PM10 Urea Granulation Unit (EU-006) 0.1631b/n3 hour average IN-263 3223/17 (draft) PM2.5 Urea Granulation Unit (EU-006) 0.1631b/n3 hour average IN-263 3223/17 (draft) PM2.5 Urea Granulation Unit (EU-008) 368040 [ons/12 consecutive mos IN-0106 7/12/2013 CH4 Urea Granulator 0.0023 [b/MMBu average of 3 stack tests IA-0106 7/12/2013 CO Urea Granulator 0.0194 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 CO Urea Granulator 0.0194 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 CO2 Urea Granulator 0.0100 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 CO2 Urea Granulator 0.0000 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 N2C Urea Granulator 0.0100 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 N2C Urea Granulator <t< td=""></t<></td></td<>	IN-0263 3/23/17 (draft) PM IN-0263 3/23/17 (draft) PM10 IN-0263 3/23/17 (draft) PM10 IN-0263 3/23/17 (draft) PM2.5 IA-0106 7/12/2013 CO Q IA-0106 7/12/2013 N2O PM WA-0318 7/11/2008 PM Q IA-0106 7/12/2013 PM Q IA-0105 10/26/2012 PM Q OK-0135 2/23/2009 PM Q ID-0017 2/10/2009 PM Q <	IN-0263 3/23/17 (draft) PM Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM10 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM10 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM2.5 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM2.5 Urea Granulation Unit (EU-008) IN-0263 3/23/17 (draft) PM2.5 Urea Granulator IA-0106 7/12/2013 CO Urea Granulator IA-0106 7/12/2013 CO2 Urea Granulator IA-0106 7/12/2013 CO2 Urea Granulator IA-0106 7/12/2013 CO2 Urea Granulator IA-0106 7/12/2013 N2O Urea Granulator IA-0106 7/12/2013 PM Granulator UA-0166 7/12/2013 PM Urea Granulator IA-0106 7/12/2008 PM Granulator Scrubbers <	IN-263 323/17 (draft) PM Urea Granulation Unit (EU-006) 368040 [ons/12 consecutive mos IN-263 3223/17 (draft) PM10 Urea Granulation Unit (EU-006) 0.1631b/n3 hour average IN-263 3223/17 (draft) PM10 Urea Granulation Unit (EU-006) 0.1631b/n3 hour average IN-263 3223/17 (draft) PM2.5 Urea Granulation Unit (EU-006) 0.1631b/n3 hour average IN-263 3223/17 (draft) PM2.5 Urea Granulation Unit (EU-008) 368040 [ons/12 consecutive mos IN-0106 7/12/2013 CH4 Urea Granulator 0.0023 [b/MMBu average of 3 stack tests IA-0106 7/12/2013 CO Urea Granulator 0.0194 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 CO Urea Granulator 0.0194 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 CO2 Urea Granulator 0.0100 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 CO2 Urea Granulator 0.0000 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 N2C Urea Granulator 0.0100 [b/MBbu average of 3 stack tests IA-0106 7/12/2013 N2C Urea Granulator <t< td=""></t<>

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

KNO Restart RBLC Search Summary Search: "MDEA", "methyl", "urea", "42.009", "61.999" - All Results UF-85 Tanks

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
							P2: White fixed roof storage tanks equipped
				Storage Tanks – Very Low Vapor Pressure Non Gasoline			with a submerged fill pipe. use of drain dry construction is required
Toyota Motors - Motor Vehicle				Automotive Fluids – Gear Lube, Engine Oil, Diesel fuel, Urea,			to minimize the emissions from tank
Assembly Plant	TX-0846	9/23/2018(draft)		ATF Etc. <20,000 gal each	C		entry and inspection.
	IA-0105	10/26/2012		MDEA Storage Tank	0.1	tons/year rolling 12 month total	Nitrogen Gas Blanket
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	VOC	Urea uf-85 Storage Tank	0.046	b lb/hr average of 3 stack tests	packed bed scrubber

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

KNO Restart RBLC Search Summary Search: "Cooling Tower" - All Results Included Unit 40 - Cooling Tower

Facility Name	RBLC ID	Permit Issue Date		Process Name	Emission Limit	Emission Limit Units	BACT Determination
		11/1/2018 updated	TPM (PM, PM10		0.0040		
Nucor Steel Kankakee, Inc.	IL-0126	2/19/2019 11/1/2018 updated	and PM2.5) TPM (PM, PM10	Cooling Tower	0.0010) Weight %	Drift Eliminator (BACT-
Nucor Steel Kankakee, Inc.	IL-0126	2/19/2019	and PM2.5)	Cooling Tower	4000) total dissolved solid	Drift Eliminator (BACT-
	12-0120	11/1/2018 updated	TPM (PM, PM10		4000		
Nucor Steel Kankakee, Inc.	IL-0126	2/19/2019	and PM2.5)	Cooling Tower	0.79	tpy 12-month rolling basis	Permit Limit
			-		-	-	
		10/10/2018 updated		EU-COOLTOWER (Cooling			
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019 10/10/2018 updated	FPM	Tower) EU-COOLTOWER (Cooling	0.39	tpy 12-month rolling basis	Drift Eliminator (99.0 %
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019	TPM10	Tower)	0.30	tpy 12-month rolling basis	Drift Eliminator (99.0 %
	101-0437	10/10/2018 updated		EU-COOLTOWER (Cooling	0.55		
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019	TPM2.5	Tower)	0.39	tpy 12-month rolling basis	Drift Eliminator (99.0 %
		10/10/2018 updated	1	EU-COOLTOWER (Cooling			, , , , , , , , , , , , , , , , , , ,
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019	FPM	Tower)	2200	PPM by weight monthly	Drift Eliminator (99.0 %
		10/10/2018 updated		EU-COOLTOWER (Cooling			
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019	TPM10	Tower)	2200	PPM by weight monthly	Drift Eliminator (99.0 %
Knout Insulation Inc. Albian Essilia	MI 0427	10/10/2018 updated 2/19/2019	TPM2.5	EU-COOLTOWER (Cooling	2200	PPM by weight monthly	Drift Eliminator (00.0.%)
Knauf Insulation, Inc Albion Facility	MI-0437	10/10/2018 updated		Tower) EU-COOLTOWER (Cooling	2200	PPM by weight monthly	Drift Eliminator (99.0 %
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019	FPM	Tower)	0.005	% drift rate or less	Drift Eliminator (99.0 %
		10/10/2018 updated		EU-COOLTOWER (Cooling	0.000		
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019	TPM10	Tower)	0.005	5 % drift rate or less	Drift Eliminator (99.0 %
		10/10/2018 updated	1	EU-COOLTOWER (Cooling			
Knauf Insulation, Inc Albion Facility	MI-0437	2/19/2019	TPM2.5	Tower)	0.005	5 % drift rate or less	Drift Eliminator (99.0 %
		9/16/2018 updated		Cooling Tower/Heat Exchange			
Premcor Refining Group - Valero Port Arthur Refinery	TX-0847 (draft)	2/14/2019 9/16/2018 updated	VOC	System	0.08	PPMW	Noncontact (BACT-PSI
Premcor Refining Group - Valero Port Arthur Refinery	TX-0847 (draft)	2/14/2019	TPM10	Cooling Tower/Heat Exchange System	0.001	% drift rate or less	Drift Eliminators (BACT
		9/16/2018 updated		Cooling Tower/Heat Exchange	0.001		
Premcor Refining Group - Valero Port Arthur Refinery	TX-0847 (draft)	2/14/2019	TPM2.5	System	0.001	% drift rate or less	Drift Eliminators (BACT
		1	1		ł	<u>u</u> 4	
				EUCOOLINGTWR: Cooling			
		7/16/2018 updated		Tower (14 cell wet mechanical			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	2/19/2019	FPM	draft cooling tower)	4.03	3 lb/hr hourly	High Efficiency Drift/Mis
		7/10/2010 updated		EUCOOLINGTWR: Cooling			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018 updated 2/19/2019	FPM	Tower (14 cell wet mechanical draft cooling tower)	0.0005	% drift rate or less	High Efficiency Drift/Mis
	1011-0433	2/19/2019		EUCOOLINGTWR: Cooling	0.0005		
		7/16/2018 updated		Tower (14 cell wet mechanical		PPM TDS by weight	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	2/19/2019	FPM	draft cooling tower)	3000) monthly	Permit Limit
				EUCOOLINGTWR: Cooling		<u> </u>	
		7/16/2018 updated		Tower (14 cell wet mechanical			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	2/19/2019	TPM10	draft cooling tower)	0.48	3 lb/hr	High Efficiency Drift/Mis
		7/10/0010		EUCOOLINGTWR: Cooling			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI 0425	7/16/2018 updated 2/19/2019	TPM10	Tower (14 cell wet mechanical draft cooling tower)	0.0005	0/ drift rate or less	High Efficiency Drift/Mis
	MI-0435	2/19/2019	TPM10	EUCOOLINGTWR: Cooling	0.0005	% drift rate or less	High Efficiency Drift/Mis
		7/16/2018 updated		Tower (14 cell wet mechanical		PPM TDS by weight	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	2/19/2019	TPM10	draft cooling tower)	3000) monthly	Permit Limit
				EUCOOLINGTWR: Cooling		1	
		7/16/2018 updated		Tower (14 cell wet mechanical			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	2/19/2019	TPM2.5	draft cooling tower)	0.48	3 lb/hr	High Efficiency Drift/Mis
				EUCOOLINGTWR: Cooling			
	NI 0 105	7/16/2018 updated		Tower (14 cell wet mechanical	0.000-		Llink Efficiency Deff # "
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	2/19/2019	TPM2.5	draft cooling tower) EUCOOLINGTWR: Cooling	0.0005	5 % drift rate or less	High Efficiency Drift/Mis
		7/16/2018 updated		Tower (14 cell wet mechanical		PPM TDS by weight	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	2/19/2019	TPM2.5	draft cooling tower)		monthly	Permit Limit
	0 100			<u> </u>	5000		

n

CT-PSD) 4500.00 gallons/minute throughput

CT-PSD) 4500.00 gallons/minute throughput

% efficient) (BACT-PSD-SIP) 1500.00 gallons/minute throughput

% efficient) (BACT-PSD-SIP)

% efficient) (BACT-PSD-SIP) Vendor certification of drift rate required

% efficient) (BACT-PSD-SIP) Vendor certification of drift rate required

% efficient) (BACT-PSD-SIP) Vendor certification of drift rate required

PSD)

CT-PSD)

ACT-PSD)

Mist Eliminators (BACT-PSD)

Mist Eliminators (BACT-PSD) Vendor certification of drift rate required

Mist Eliminators (BACT-PSD)

/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required

Mist Eliminators (BACT-PSD)

/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required

KNO Restart RBLC Search Summary Search: "Cooling Tower" - All Results Included Unit 40 - Cooling Tower

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
		7/1/2018 updated		Cooling Tower/Heat Exchange			T
Dow Chemical - LHC-9	TX-0841	2/19/2019	FPM	System	0.005	% efficiency	Drift Eliminators (BACT-
		7/1/2018 updated		Cooling Tower/Heat Exchange	0.000		
Dow Chemical - LHC-9	TX-0841	2/19/2019	TPM10	System	0.005	% efficiency	Drift Eliminators (BACT-
		7/1/2018 updated		Cooling Tower/Heat Exchange			
Dow Chemical - LHC-9	TX-0841	2/19/2019	TPM2.5	System	0.005	% efficiency	Drift Eliminators (BACT-
				EUCOOLTOWER (North Plant):			T
		6/29/2018 updated		Cooling Tower (8 cell wet			
Aarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	FPM	mechanical draft cooling tower)	5 59	tpy 12-month rolling basis	High Efficiency Drift/Mis
				EUCOOLTOWER (North Plant):			
		6/29/2018 updated		Cooling Tower (8 cell wet			
Aarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	FPM	mechanical draft cooling tower)	0.0005	% drift rate or less	High Efficiency Drift/Mis
				EUCOOLTOWER (North Plant):			
		6/29/2018 updated		Cooling Tower (8 cell wet		PPM TDS by weight	
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	FPM	mechanical draft cooling tower)		monthly	Permit Limit
				EUCOOLTOWER (North Plant):			
	NII 0 (00	6/29/2018 updated	TDMAG	Cooling Tower (8 cell wet	0.05		
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM10	mechanical draft cooling tower)		tpy 12-month rolling basis	High Efficiency Drift/Mis
		6/29/2018 updated		EUCOOLTOWER (North Plant): Cooling Tower (8 cell wet			
farshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM10	mechanical draft cooling tower)	0.0005	% drift rate or less	High Efficiency Drift/Mis
arishan Energy Genter EEG MEG North, EEG and MEG Godin EEG	Ivii-0 4 00	2/10/2010		EUCOOLTOWER (North Plant):			
		6/29/2018 updated		Cooling Tower (8 cell wet		PPM TDS by weight	
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM10	mechanical draft cooling tower)	3000	monthly	Permit Limit
				EUCOOLTOWER (North Plant):			1
		6/29/2018 updated		Cooling Tower (8 cell wet			
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM2.5	mechanical draft cooling tower)		tpy 12-month rolling basis	High Efficiency Drift/Mis
				EUCOOLTOWER (North Plant):			
		6/29/2018 updated		Cooling Tower (8 cell wet			
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM2.5	mechanical draft cooling tower) EUCOOLTOWER (North Plant):		% drift rate or less	High Efficiency Drift/Mis
		6/29/2018 updated		Cooling Tower (8 cell wet		PPM TDS by weight	
farshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM2.5	mechanical draft cooling tower)	3000	monthly	Permit Limit
alshair Energy Center EEC MEC North, EEC and MEC South EEC	1011-0435	2,10,2010	11 11/2.0	EUCOOLTOWER (South Plant)		literating	
		6/29/2018 updated		Cooling Tower (8 cell wet			
larshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	FPM	mechanical draft cooling tower)	5.59	tpy 12-month rolling basis	High Efficiency Drift/Mis
				EUCOOLTOWER (South Plant)		,, , , , , , , , , , , , , , , , , , ,	
		6/29/2018 updated		Cooling Tower (8 cell wet			
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	FPM	mechanical draft cooling tower)		% drift rate or less	High Efficiency Drift/Mis
				EUCOOLTOWER (South Plant)	:		
		6/29/2018 updated		Cooling Tower (8 cell wet		PPM TDS by weight	
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	FPM	mechanical draft cooling tower)		monthly	Permit Limit
		C/20/2010 undeted		EUCOOLTOWER (South Plant)			
Arshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	6/29/2018 updated 2/19/2019	TPM10	Cooling Tower (8 cell wet mechanical draft cooling tower)	2.95	tpy 12-month rolling basis	High Efficiency Drift/Mic
iarshair Energy Center LLC MEC North, LLC and MEC South LLC	111-0433	2/19/2019	TENTIO	EUCOOLTOWER (South Plant):		tpy 12-month rolling basis	
		6/29/2018 updated		Cooling Tower (8 cell wet			
Aarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM10	mechanical draft cooling tower)	0.0005	% drift rate or less	High Efficiency Drift/Mis
			-	EUCOOLTOWER (South Plant):			
		6/29/2018 updated		Cooling Tower (8 cell wet		PPM TDS by weight	
Iarshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM10	mechanical draft cooling tower)	3000	monthly	Permit Limit
				EUCOOLTOWER (South Plant)	:		
		6/29/2018 updated		Cooling Tower (8 cell wet			
Marshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM2.5	mechanical draft cooling tower)		tpy 12-month rolling basis	High Efficiency Drift/Mis
				EUCOOLTOWER (South Plant)			
Marshall Energy Center LLC MEC North, LLC and MEC South LLC	MI 0422	6/29/2018 updated		Cooling Tower (8 cell wet	0.0005	0/ drift roto or loop	Llink Efficiency Drift/Mic
	MI-0433	2/19/2019	TPM2.5	mechanical draft cooling tower) EUCOOLTOWER (South Plant):		% drift rate or less	High Efficiency Drift/Mis
		6/29/2018 updated		Cooling Tower (8 cell wet		PPM TSD by weight	
Marshall Energy Center LLC MEC North, LLC and MEC South LLC	MI-0433	2/19/2019	TPM2.5	mechanical draft cooling tower)	3000	monthly	High Efficiency Drift/Mis
		5/2/2018 updated			5000		<u></u>
	LA-0328	2/19/2019	TPM10	Cooling Tower 2 (P-35)	0.0005	% drift rate or less	Drift Eliminator (BACT-F
Shintech Louisiana, LLC - Plaquemines Plant 1							
Shintech Louisiana, LLC - Plaquemines Plant 1	LA-0320	5/2/2018 updated					<u>```</u>

on
ACT-PSD)
ACT-PSD)
ACT-PSD)
/Mist Eliminators (BACT-PSD) (170,000 gal/min)
/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required
/Mist Eliminators (BACT-PSD) (170,000 gal/min)
/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required
/Mist Eliminators (BACT-PSD) (170,000 gal/min)
/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required
/Mist Eliminators (BACT-PSD) (170,000 gal/min)
/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required
(Mist Elization (DAOT DOD) (470,000
/Mist Eliminators (BACT-PSD) (170,000 gal/min)
/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required
/Mist Eliminators (BACT-PSD) (170,000 gal/min)
/Mist Eliminators (BACT-PSD) Vendor certification of drift rate required
/Mist Eliminators (Permit) (170,000 gal/min)
CT-PSD, OPERATING PERMIT) (26,000 gal/min)
CT-PSD, OPERATING PERMIT) (26,000 gal/min)

KNO Restart RBLC Search Summary Search: "Cooling Tower" - All Results Included Unit 40 - Cooling Tower

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit		BACT Determination
Novi Energy - C4GT, LLC	VA-0328 (draft)	4/26/2018 updated 11/16/2018(draft)		Cooling Tower	6250	mg/I TSD - monthly water quality testing	This is pollution preven
		3/30/2018 updated		5			
Entergy Texas Inc - Montgomery County Power Station	TX-0834	2/19/2019	ТРМ	Cooling Tower	0.005	% efficiency	Drift Eliminators (BACT
Entergy Texas Inc - Montgomery County Power Station	TX-0834	3/30/2018 updated 2/19/2019	TPM10	Cooling Tower	0.005	% efficiency	Drift Eliminators (BACT
Enterry Taylog Ing. Montgomery County Dower Station	TX-0834	3/30/2018 updated 2/19/2019	TPM2.5	Cooling Tower	0.005	% efficiency	Drift Eliminators (BACT
Entergy Texas Inc - Montgomery County Power Station	17-0034	1/9/2018 updated	11 102.0		0.005	70 emolency	
Exxonmobil Oil Corporation - Exxonmobile Beaumont Refinery	TX-0832	2/19/2019	TPM	Cooling Towers	0.005	% efficiency	Drift Eliminator (BACT-
Exxonmobil Oil Corporation - Exxonmobile Beaumont Refinery	TX-0832	1/9/2018 updated 2/19/2019	TPM10	Cooling Towers	0.005	% efficiency	Drift Eliminator (BACT-
· · ·		1/9/2018 updated				, i i i i i i i i i i i i i i i i i i i	
Exxonmobil Oil Corporation - Exxonmobile Beaumont Refinery	TX-0832	2/19/2019 11/17/2017 updated	TPM2.5	Cooling Towers EUCOOLTWR (Cooling Tower	0.005	% efficiency % max drift rate (vendor	Drift Eliminator (BACT- BACT is to equip and n
Filer City Station Limited Partnership - Filer City Station	MI-0427	3/8/2018	FPM	Wet Mechanical Drift)	0.0006	certified)	chilling to cool turbine i
Filer City Station Limited Dortnarship Filer City Station	MI-0427	11/17/2017 updated 3/8/2018	FPM	EUCOOLTWR (Cooling Tower Wet Mechanical Drift)	7700	PPM TDS by weight	BACT is to equip and n chilling to cool turbine i
Filer City Station Limited Partnership - Filer City Station	IVII-0427	11/17/2017 updatec		EUCOOLTWR (Cooling Tower	7700	% max drift rate (vendor	BACT is to equip and n
Filer City Station Limited Partnership - Filer City Station	MI-0427	3/8/2018	TPM10	Wet Mechanical Drift)	0.0006	certified)	chilling to cool turbine i
Filer City Station Limited Partnership - Filer City Station	MI-0427	11/17/2017 updated 3/8/2018	TPM10	EUCOOLTWR (Cooling Tower Wet Mechanical Drift)	7700	PPM TDS by weight	BACT is to equip and n chilling to cool turbine i
	WI-0427	11/17/2017 updated		EUCOOLTWR (Cooling Tower	1100	% max drift rate (vendor	BACT is to equip and n
Filer City Station Limited Partnership - Filer City Station	MI-0427	3/8/2018	TPM2.5	Wet Mechanical Drift)	0.0006	certified)	chilling to cool turbine i
Filer City Station Limited Partnership - Filer City Station	MI-0427	11/17/2017 updated 3/8/2018	TPM2.5	EUCOOLTWR (Cooling Tower Wet Mechanical Drift)	7700	PPM TDS by weight	BACT is to equip and n chilling to cool turbine i
		10/11/2017 updated			1100		g
Kimberly-Clark Corporation - Mobile Operations - Kimberly-Clark Mobile	AL-0321	5/11/2018	FPM10	803 Cooling Tower	0.005	% drift elimination	No Controls Feasible
Kimberly-Clark Corporation - Mobile Operations - Kimberly-Clark Mobile	AL-0321	10/11/2017 updated 5/11/2018	FPM10	803 Cooling Tower	1000	mg/L TDS 12 month avg	No Controls Feasible
Kimberly-Clark Corporation - Mobile Operations - Kimberly-Clark Mobile	AL-0321	10/11/2017 updatec 5/11/2018	FPM2.5	803 Cooling Tower	0.005	% drift elimination	No Controls Feasible
		10/11/2017 updated 5/11/2018	FPM2.5				
Kimberly-Clark Corporation - Mobile Operations - Kimberly-Clark Mobile	AL-0321	5/11/2018	FPINIZ.5	803 Cooling Tower	1000	mg/L TDS 12 month avg	No Controls Feasible
		9/15/2017 updated					0.005% drift eliminator
Knauf Insulation, Inc Inwood	WV-0027	5/1/2018	TPM	Cooling Tower 3 Cells	0.04	lb/hr 3-hour avg	company or have a TD
		1	1	Eighteen Cell Cooling Tower (EU-	1	mg/l avg on a monthly	1
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft)	PM	010)		basis	High Efficiency Drift Eli
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft)	PM	Eighteen Cell Cooling Tower (EU- 010)	0.0005	% Drift	High Efficiency Drift Eli
				Eighteen Cell Cooling Tower (EU-		mg/I avg on a monthly	
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft)	PM10	010) Eighteen Cell Cooling Tower (EU-		basis	High Efficiency Drift Eli
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft)	PM10	010)	0.0005	% Drift	High Efficiency Drift Eli
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft)	PM2.5	Eighteen Cell Cooling Tower (EU- 010)		mg/l avg on a monthly basis	High Efficiency Drift Eli
			FIMZ.5	Eighteen Cell Cooling Tower (EU-		Dasis	High Efficiency Drift Eli
Midwest Fertilizer Company LLC	IN-0263 (draft)	3/23/17 (draft)	PM2.5	010)		% Drift	High Efficiency Drift Eli
Topchem Pollock, LLC	LA-0306	12/20/2016, updated 8/8/17	PM2.5	Cooling Tower CT-16-1 (EQT032)	0.001	lbs/hr	High Efficiency Drift Eli
Tanaham Ballack JJ C	LA-0306	12/20/2016, updated 8/8/17	PM2.5	Cooling Tower CT-16-1 (EQT032)	0.01	tons/year	High Efficiency Drift Eli
Topchem Pollock, LLC	LA-0306	6/30/16, 4/26/17	PIMZ.5		0.01	% three one-hour test	High Efficiency Drift Eli
Lake Charles Methanol, LLC	LA-0305	update	PM10	Cooling Towers	0.0005	average	Drift Eliminators (Unit A
Lake Charles Methanol, LLC	LA-0305	6/30/16, 4/26/17 update	PM2.5	Cooling Towers		% three one-hour test average	Drift Eliminators (Unit A
		6/7/17 draft, 8/7/17					VOC leak detection sys
Lyondell Chemical Bayport Choate Plant	TX-0823 (draft)	update	VOC	Cooling Towers	4.05	tpy	byproducts throughput)
Total Petrochemicals & Refining USA, Inc.	TX-0815 (draft)	1/17/17 draft, 1/26/17 update	VOC	Cooling Towers	27.95	tpy	coolint water VOC cond
Total Petrochemicals & Refining USA, Inc.	TX-0815 (draft)	1/17/17 draft, 1/26/17 update	PM10	Cooling Towers		No numerical limit	Drift Eliminators (99.99
		12/22/16, 4/28/17		Cooling Towers (I-CT-621, II-CT-			
Methanex - Geismar Methanol Plant	LA-0317	update	PM10	621)	0.001	% Drift Rate	Drift Eliminators (66000

n
1
ention measure. No Controls Feasible (SIP)
CT-PSD)(9,864,000 gal/hr)
CT-PSD)(9,864,000 gal/hr)
CT-PSD)(9,864,000 gal/hr)
T-PSD, NSPS Ja, MACT CC)
T-PSD, NSPS Ja, MACT CC)
T-PSD, NSPS Ja, MACT CC)
maintain four-cell evaporative cooling tower in series with mechanical e inlet air with high efficiency drift eliminators.
maintain four-cell evaporative cooling tower in series with mechanical e inlet air with high efficiency drift eliminators.
maintain four-cell evaporative cooling tower in series with mechanical e inlet air with high efficiency drift eliminators.
maintain four-cell evaporative cooling tower in series with mechanical e inlet air with high efficiency drift eliminators.
maintain four-cell evaporative cooling tower in series with mechanical e inlet air with high efficiency drift eliminators.
maintain four-cell evaporative cooling tower in series with mechanical e inlet air with high efficiency drift eliminators.
or - Restrict the make-up water to be provided from the local water DS of less than 750 ppm by weight. 3 mechanical draft cooling towers.
liminator
liminator
Eliminator
liminator
Eliminator
liminator
liminator
liminator
A = 241,843 gpm Unit B = 201,196 gpm Unit C = 72,531 gpm)
A = 241,843 gpm Unit B = 201,196 gpm Unit C = 72,531 gpm) ystem to identify leaks into the cooling water (LAER) (products and ut)
ncentration (non-contact) (MACT XX) (no additional notes)
999% efficiency)
00 gpm throughput)

KNO Restart RBLC Search Summary Search: "Cooling Tower" - All Results Included Unit 40 - Cooling Tower

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
	1.4.0047	12/22/16, 4/28/17	DMO 5	Cooling Towers (I-CT-621, II-CT-	0.004		
Methanex - Geismar Methanol Plant	LA-0317	update 12/5/16 draft,	PM2.5	621) EUCOOLTWR (Cooling Tower	0.001	% Drift Rate tpy 12-month rolling time	Drift Eliminators (6600 Mist/Drift Eliminators (
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	7/31/17 update	TPM10	Wet Mechanical Draft)	2.37	period	abatement by a dry he
		12/5/16 draft,		EUCOOLTWR (Cooling Tower	2.0.	F	Mist/Drift Eliminators (
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	7/31/17 update	TPM10	Wet Mechanical Draft)	0.005	% Drift Rate	abatement by a dry he
		12/5/16 draft,		EUCOOLTWR (Cooling Tower		tpy 12-month rolling time	Mist/Drift Eliminators (
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	7/31/17 update 12/5/16 draft,	TPM2.5	Wet Mechanical Draft) EUCOOLTWR (Cooling Tower	2.37	period	abatement by a dry he Mist/Drift Eliminators (
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	7/31/17 update	TPM2.5	Wet Mechanical Draft)	0.005	% Drift Rate	abatement by a dry he
		9/21/16, 10/11/16	11 112.0		0.000		
Nucor Steel	IN-0255	update	FPM	Hot Mill Contact Cooling Tower	0.001	% Drift Rate	Drift Eliminators (2500
		9/21/16, 10/11/16					
Nucor Steel	IN-0255	update	FPM	Hot Mill Contact Cooling Tower	0.38	lb/hr	Drift Eliminators (2500
Nucor Steel	IN-0255	9/21/16, 10/11/16 update	TPM10	Hot Mill Contact Cooling Tower	0.001	% Drift Rate	Drift Eliminators (2500
	111-0255	9/21/16, 10/11/16			0.001		Drift Eliminators (2000
Nucor Steel	IN-0255	update	TPM10	Hot Mill Contact Cooling Tower	0.19	lb/hr	Drift Eliminators (2500
		9/21/16, 10/11/16					
Nucor Steel	IN-0255	update	TPM2.5	Hot Mill Contact Cooling Tower	0.001	% Drift Rate	Drift Eliminators (2500
Numer Official	101 0055	9/21/16, 10/11/16		List Mill Contact Cooling Tower	0.004	lle /le r	Drift Elizainatara (0500
Nucor Steel	IN-0255	update	TPM2.5	Hot Mill Contact Cooling Tower	0.001	id/nr	Drift Eliminators (2500 NSPS (12-cell mechan
		9/2/16 draft, 7/31/17					shall sample, analyze,
CPV Fairview Energy Center	PA-0310 (draft)	update	ТРМ	Cooling Tower	0.8	lb/hr	shall not exceed 1500
				ŭ			NSPS (12-cell mechan
		9/2/16 draft, 7/31/17					shall sample, analyze,
CPV Fairview Energy Center	PA-0310 (draft)	update	TPM	Cooling Tower	3.4	tpy 12-month rolling basis	shall not exceed 1500
		0/2/16 droft 7/21/17	,				NSPS (12-cell mechan
CPV Fairview Energy Center	PA-0310 (draft)	9/2/16 draft, 7/31/17 update	TPM10	Cooling Tower	0.8	lb/hr	shall sample, analyze, shall not exceed 1500
		update			0.0	10/11	NSPS (12-cell mechar
		9/2/16 draft, 7/31/17					shall sample, analyze,
CPV Fairview Energy Center	PA-0310 (draft)	update	TPM10	Cooling Tower	3.4	tpy	shall not exceed 1500
							NSPS (12-cell mechan
		9/2/16 draft, 7/31/17				lle /le r	shall sample, analyze,
CPV Fairview Energy Center	PA-0310 (draft)	update	TPM2.5	Cooling Tower	0.4	lb/hr	shall not exceed 1500 NSPS (12-cell mechan
		9/2/16 draft, 7/31/17					shall sample, analyze,
CPV Fairview Energy Center	PA-0310 (draft)	update	TPM2.5	Cooling Tower	1.8	tpy	shall not exceed 1500
		9/1/16, 4/28/17					
Sasol Chemicals - Comonimer-1 Unit	LA-0277	update	VOC	Cooling Tower Y12-800			NESHAP - Comply wit
	1.4.0040	9/1/16, 4/28/17	VOO				
Sasol Chemicals -Lake Charles Chemical Complex - Comonimer-1 Unit	LA-0319	update 8/31/16, 4/28/17	VOC	cooling tower y12-800			NESHAP - Comply with
Entergy Louisiana, LLC - St. Charles Power Station	LA-0313	update	FPM10	SCPS Cooling Tower 1	1 24	lb/hr hourly maximum	High Efficiency Drift El
		8/31/16, 4/28/17			1.21		
Entergy Louisiana, LLC - St. Charles Power Station	LA-0313	update	FPM10	SCPS Cooling Tower 1	3.61	tpy annual maximum	High Efficiency Drift El
		8/31/16, 4/28/17					
Entergy Louisiana, LLC - St. Charles Power Station	LA-0313	update	FPM10	SCPS Cooling Tower 1	0.005	% Drift Rate	BACT - High Efficiency
Entergy Louisiana, LLC - St. Charles Power Station	LA-0313	8/31/16, 4/28/17 update	FPM2.5	SCPS Cooling Tower 1	1.24	lb/hr hourly maximum	High Efficiency Drift El
Entergy Louisiana, LLC - St. Chanes Fower Station	LA-0313	8/31/16, 4/28/17	FFIM2.5		1.24	id/fil flourly flaximum	High Efficiency Drift El
Entergy Louisiana, LLC - St. Charles Power Station	LA-0313	update	FPM2.5	SCPS Cooling Tower 1	3.61	tpy annual maximum	High Efficiency Drift El
		8/31/16, 4/28/17					, ,
Entergy Louisiana, LLC - St. Charles Power Station	LA-0313	update	FPM2.5	SCPS Cooling Tower 1	0.005	% Drift Rate	BACT - High Efficiency
		8/3/16, 4/28/17	TDMAG				
Indorama Ventures Olefins, LLC - Indorama Lake Charles Facility	LA-0314	update	TPM10	cooling towers - 007	0.005	% Drift Rate	Drift Eliminators (8650
Indorama Ventures Olefins, LLC - Indorama Lake Charles Facility	LA-0314	8/3/16, 4/28/17 update	TPM10	cooling towers - 007	1/100	PPM TDS	Drift Eliminators (8650
	LA-0314	8/3/16, 4/28/17			1400		
Indorama Ventures Olefins, LLC - Indorama Lake Charles Facility	LA-0314	update	TPM2.5	cooling towers - 007	0.005	% Drift Rate	Drift Eliminators (8650
·		8/3/16, 4/28/17					
Indorama Ventures Olefins, LLC - Indorama Lake Charles Facility	LA-0314	update	TPM2.5	cooling towers - 007	1400	PPM TDS	Drift Eliminators (8650
	1 4 0014	8/3/16, 4/28/17	Voo		Nie wordt in the tr		
Indorama Ventures Olefins, LLC - Indorama Lake Charles Facility	LA-0314	update	VOC	cooling towers - 007	No numeric limit		NESHAP - monitored a

on

3000 gpm throughput) 's (SIP) (A three-cell wet mechanical draft cooling tower with plume heat exchanger.) s (SIP) (A three-cell wet mechanical draft cooling tower with plume heat exchanger.) s (SIP) (A three-cell wet mechanical draft cooling tower with plume heat exchanger.) s (SIP) (A three-cell wet mechanical draft cooling tower with plume heat exchanger.) 5000 gpm throughput) nanical draft wet cooling tower with high-efficiency drift eliminator. Permittee ze, and record the circulating water TDS on a monthly basis. TDS solids 00 ppm.) hanical draft wet cooling tower with high-efficiency drift eliminator. Permittee ze, and record the circulating water TDS on a monthly basis. TDS solids 00 ppm.) hanical draft wet cooling tower with high-efficiency drift eliminator. Permittee ze, and record the circulating water TDS on a monthly basis. TDS solids 00 ppm.) nanical draft wet cooling tower with high-efficiency drift eliminator. Permittee ze, and record the circulating water TDS on a monthly basis. TDS solids 00 ppm.) nanical draft wet cooling tower with high-efficiency drift eliminator. Permittee ze, and record the circulating water TDS on a monthly basis. TDS solids 00 ppm.) hanical draft wet cooling tower with high-efficiency drift eliminator. Permittee ze, and record the circulating water TDS on a monthly basis. TDS solids 00 ppm.) with requirements of 40 CFR 63.104 (15200 gpm) with requirements of 40 CFR 63.104 Eliminators (164400 gpm) Eliminators (164400 gpm) ncy Drift Eliminators (164400 gpm) Eliminators (164400 gpm) Eliminators (164400 gpm) ncy Drift Eliminators (164400 gpm) 6500 gpm) 6500 gpm) 6500 gpm) 6500 gpm) ed as required by 40 CFR 63 subpart XX (86500 gpm)

KNO Restart RBLC Search Summary Search: "Cooling Tower" - All Results Included Unit 40 - Cooling Tower

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
		7/19/16, 11/3/16					BACT, NSPS - High Ef
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	update	FPM	Cooling Tower	0.685	lb/hr	Mechanical Induced Dr
		7/19/16, 11/3/16					BACT - High Efficiency
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	update	FPM10	Cooling Tower	0.535	lb/hr	Mechanical Induced Dr
		7/19/16, 11/3/16					BACT - High Efficiency
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	update	FPM2.5	Cooling Tower	0.223	lb/hr	Mechanical Induced Dra
							BACT - Monthly hydroc
							repair faulty equipment
							shutdown (Annual VOC
		7/12/16, 9/19/16		CGP Unit Cooling Tower (3-03,			emissions from a numb
Equistar Chemicals, LP - Westlake Facility	LA-0295	update	VOC	EQT 15)	0.13	lb/hr hourly maximum	at 12.29 TPY (GRP 13)
		7/12/16 draft,					
Flint Hills Resources Houston Chemical LLC - PL Propylene Houston Olefins Plant	TX-0803 (draft)	8/31/16 update	TPM10	Cooling Tower	0.001	% Drift Rate	BACT - Drift Eliminators
		7/12/16 draft,		o " T			
Flint Hills Resources Houston Chemical LLC - PL Propylene Houston Olefins Plant	TX-0803 (draft)	8/31/16 update	TPM2.5	Cooling Tower	0.001	% Drift Rate	BACT - Drift Eliminators
		6/24/16 draft,		o " T		D. //	
Flint Hills Resources Houston Chemical LLC - PL Propylene Houston Olefins Plant	TX-0801 (draft)	7/20/16 update	CO2e	Cooling Tower	0.005		BACT - % drift design
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	03/09/2016	TPM	Mechanical draft cooling tower	0.0005	% Drift Rate	BACT (Must have certif
							BACT - Drift Eliminators
							particulate resulting from
							"Confidential" by application
		44040 7/7/40					high efficiency drift elim
	014 0470	1/19/16, 7/7/16	TDMAG		0.001		cooling towers, but the
Commercial Metals Company - CMC Steel Oklahoma	OK-0173	update	TPM10	Cooling Towers	0.001	% Drift Rate	installed at power plant Integrated Drift Eliminat
							LA-0251. LA-0318 is for
		4/7/40 4/00/47					diesel engines), PSD-7- 2/10/15 (add a cooling t
		1/7/16, 4/28/17					. 0
Flopam, Inc Flopam Facility	LA-0318	update	TPM10	Cooling Towers	No numeric limit		collectors))
CF Industries Nitrogen, LLC Iowa Fertilizer Company	IA-0106 IA-0105	7/12/2013		Cooling Towers Cooling Tower		% Drift % Drift	Drift Eliminator Drift Eliminator
Ohio Valley Resources, LLC	TBD	9/26/2013		Cooling Towers		% Drift	High Efficiency Drift Eli
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		Cooling Tower		% of total circ flow	Drift/Mist Eliminators
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		Cooling Tower		lbs/hr	Drift/Mist Eliminators
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		Cooling Tower		Reduction	Drift/Mist Eliminators
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Cooling Towers		% Drift	Drift Eliminator
	14-0100	1/12/2013			0.0005	70 DIII	BACT is a combination
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant	LA-0248	1/27/2011	DM10	Process Water Cooling Tower	0.11	lbs/hr	the culling water and dr
	LA-0240	1/27/2011	FINITO	Frocess water Cooling rower	0.11	105/11	BACT is a combination
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant	LA-0248	1/27/2011	DM10	Process Water Cooling Tower	0.4	tons/year	the culling water and dr
Consolidated Environmental Management Inc Nucor Direct Reduction non Flant	LA-0240	1/21/2011	FINITO		0.4	ions/year	
				3 • • • • • • • • • • • • • • • • • • •			
Consolidated Environmental Management Inc. Nucer Direct Poduction Iron Plant	1 4 0248	1/27/2011	PM10	<u> </u>	0.07	lbc/br	BACT is a combination
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant	LA-0248	1/27/2011	PM10	Clean Water Cooling Tower	0.07	lbs/hr	the culling water and dr
				Clean Water Cooling Tower			the culling water and dr BACT is a combination
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant	LA-0248	1/27/2011	PM10	Clean Water Cooling Tower Clean Water Cooling Tower	0.29	tons/year	the culling water and dr BACT is a combination the culling water and dr
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0248 LA-0254	1/27/2011 8/16/2011	PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower	0.29	tons/year % Drift annual average	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0248 LA-0254 LA-0254	1/27/2011 8/16/2011 8/16/2011	PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower	0.29 0.0005 0.001	tons/year % Drift annual average % Drift annual average	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elin High Efficiency Mist Elin
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company	LA-0248 LA-0254 LA-0254 IA-0105	1/27/2011 8/16/2011 8/16/2011 10/26/2012	PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005	tons/year % Drift annual average	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elin High Efficiency Mist Elin Drift Eliminator
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008	PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit	tons/year % Drift annual average % Drift annual average % Drift	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elin High Efficiency Mist Elin Drift Eliminator High Efficiency Drift Elin
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008 9/26/2013	PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Towers	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005	tons/year % Drift annual average % Drift annual average % Drift % Drift	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir High Efficiency Drift Elir
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008 9/26/2013 2/10/2009	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Towers Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elin High Efficiency Mist Elin Drift Eliminator High Efficiency Drift Elin High Efficiency Drift Elin Drift/Mist Eliminators
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017	1/27/2011 8/16/2011 8/16/2012 10/26/2012 5/1/2008 9/26/2013 2/10/2009 2/10/2009	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Tower Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 1.5	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow lbs/hr	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elin High Efficiency Mist Elin Drift Eliminator High Efficiency Drift Elin High Efficiency Drift Elin Drift/Mist Eliminators Drift/Mist Eliminators
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center CF Industries Nitrogen, LLC	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017 IA-0106	1/27/2011 8/16/2011 8/16/2012 5/1/2008 9/26/2013 2/10/2009 2/10/2009 7/12/2013	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Tower Cooling Tower Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 1.5 0.0005	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow lbs/hr % Drift	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir High Efficiency Drift Elir Drift/Mist Eliminators Drift/Mist Eliminators Drift Eliminator
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center CF Industries Nitrogen, LLC Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017 IA-0106 LA-0254	1/27/2011 8/16/2011 8/16/2012 5/1/2008 9/26/2013 2/10/2009 2/10/2009 7/12/2013 8/16/2011	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Towers Cooling Towers	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 1.5 0.0005 0.0005	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow lbs/hr % Drift % Drift % Drift annual average	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir High Efficiency Drift Elir Drift/Mist Eliminators Drift/Mist Eliminators Drift Eliminator High Efficiency Mist Elir
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center CF Industries Nitrogen, LLC Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017 IA-0106 LA-0254 LA-0254	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008 9/26/2013 2/10/2009 2/10/2009 7/12/2013 8/16/2011 8/16/2011	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Tower Cooling Tower Cooling Towers Cooling Towers Cooling Tower Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 1.5 0.0005 0.0005 0.0005	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow lbs/hr % Drift % Drift % Drift annual average % Drift annual average	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir High Efficiency Drift Elir Drift/Mist Eliminators Drift/Mist Eliminators Drift Eliminator High Efficiency Mist Elir High Efficiency Mist Elir
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center CF Industries Nitrogen, LLC Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017 ID-0017 IA-0106 LA-0254 LA-0254 IA-0105	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008 9/26/2013 2/10/2009 7/12/2013 8/16/2011 8/16/2011 10/26/2012	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 1.5 0.0005 0.0005 0.001	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow lbs/hr % Drift % Drift annual average % Drift annual average % Drift	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir Drift/Mist Eliminators Drift/Mist Eliminators Drift/Eliminator High Efficiency Mist Elir High Efficiency Mist Elir High Efficiency Mist Elir Drift Eliminator
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center CF Industries Nitrogen, LLC Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Ohio Valley Resources, LLC	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017 IA-0106 LA-0254 LA-0254 IA-0105 TBD	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008 9/26/2013 2/10/2009 7/12/2013 8/16/2011 8/16/2011 10/26/2012 9/26/2013	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow lbs/hr % Drift % Drift annual average % Drift annual average % Drift % Drift	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir Drift/Mist Eliminators Drift/Mist Eliminators Drift/Eliminator High Efficiency Mist Elir High Efficiency Mist Elir High Efficiency Mist Elir Drift Eliminator High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center CF Industries Nitrogen, LLC Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Ohio Valley Resources, LLC CF Industries Nitrogen, LLC	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017 IA-0106 LA-0254 LA-0254 IA-0105 TBD IA-0106	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008 9/26/2013 2/10/2009 2/10/2009 7/12/2013 8/16/2011 8/16/2011 10/26/2012 9/26/2013 7/12/2013	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Towers Cooling Towers Cooling Towers Cooling Towers	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 1.5 0.0005 0.0005 0.0005 0.001 0.0005 0.0005	tons/year % Drift annual average % Drift annual average % Drift % of total circ flow lbs/hr % Drift % Drift annual average % Drift annual average % Drift % Drift	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elin Drift Eliminator High Efficiency Drift Elin Drift/Mist Eliminators Drift/Mist Eliminators Drift/Mist Eliminator High Efficiency Mist Elin High Efficiency Mist Elin Drift Eliminator High Efficiency Drift Elin Drift Eliminator High Efficiency Drift Elin Drift Eliminator
Consolidated Environmental Management Inc Nucor Direct Reduction Iron Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Koch Nitrogen Company Enid Nitrogen Plant Ohio Valley Resources, LLC Southeast Idaho Energy, LLC Power County Advanced Energy Center Southeast Idaho Energy, LLC Power County Advanced Energy Center CF Industries Nitrogen, LLC Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Entergy Louisiana LLC Ninemile Point Electric Generating Plant Iowa Fertilizer Company Ohio Valley Resources, LLC	LA-0248 LA-0254 LA-0254 IA-0105 OK-0124 TBD ID-0017 ID-0017 IA-0106 LA-0254 LA-0254 IA-0105 TBD	1/27/2011 8/16/2011 8/16/2011 10/26/2012 5/1/2008 9/26/2013 2/10/2009 2/10/2009 7/12/2013 8/16/2011 8/16/2011 10/26/2012 9/26/2013 7/12/2013	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	Clean Water Cooling Tower Clean Water Cooling Tower Cooling Tower Chiller Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Towers Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower Cooling Tower	0.29 0.0005 0.001 0.0005 No numeric limit 0.0005 0.0005 1.5 0.0005 0.0005 0.0005 0.001 0.0005 0.0005	tons/year % Drift annual average % Drift annual average % Drift % Drift % of total circ flow lbs/hr % Drift % Drift annual average % Drift annual average % Drift % Drift	the culling water and dr BACT is a combination the culling water and dr High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir Drift/Mist Eliminators Drift/Mist Eliminators Drift/Eliminator High Efficiency Mist Elir High Efficiency Mist Elir High Efficiency Mist Elir Drift Eliminator High Efficiency Mist Elir Drift Eliminator High Efficiency Drift Elir

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they do not flare common process gas.

on
n Efficiency Drift Eliminators (One 8-cell, 124,800 gallon per minute (GPM)
Draft Cooling Tower)
ncy Drift Eliminators (One 8-cell, 124,800 gallon per minute (GPM)
d Draft Cooling Tower)
ncy Drift Eliminators (One 8-cell, 124,800 gallon per minute (GPM)
d Draft Cooling Tower)
drocarbon monitoring; maintain equipment to minimize fugitive emissions;
ent at the earliest opportunity, but no later than the next scheduled unit
OC emissions from the CGP Unit Cooling Tower, along with VOC
umber of other cooling towers not addressed in the PSD permit, are capped
13). (3000 GPM)
ators
ators
gn
ertified drift rate no more than 0.0005%)
ators (For this analysis, as a simplifying conservative assumption, all of the
from the drift is considered to be PM10. Throughput Capacity/Size deemed
plicant.) (The only feasible option at this location is a wet cooling tower with
eliminators (0.001%). The emission rate is somewhat higher than many
the sizes proposed are very much smaller than the cooling towers that are
ante ratinariae atc.)

lants, refineries, etc.) ninators (PSD-LA-747 entered as LA-0240 and PSD-LA-747(M1) entered as is for PSD-747(M2), dated 7/5/12 (add dust collectors, cooling tower, and iD-747(M3), dated 5/13/13 (no BACT changes), PSD-747(M4), dated ling tower and diesel engines), and PSD-747(M5), dated 1/7/16 (add dust

Eliminator
3
on of less than or equal to 1000 milligrams per liter TDS concentration in
drift eliminators employing a drift maximum of 0.0005%
on of less than or equal to 1000 milligrams per liter TDS concentration in
I drift eliminators employing a drift maximum of 0.0005%
on of less than or equal to 1000 milligrams per liter TDS concentration in
drift eliminators employing a drift maximum of 0.0005%
on of less than or equal to 1000 milligrams per liter TDS concentration in
drift eliminators employing a drift maximum of 0.0005%
Eliminator
Eliminator
Eliminator
Eliminator
Eliminator
Eliminator
Eliminator
OC in treatment chemicals and a drift eliminator

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Venture Global Calcasieu Pass, LLC - Calcasieu Pass LNG		9/21/2018, updated		Hot Oil Heaters (HOH1 to HOH6)			
Project	LA-0331 (draft)	2/19/2019	NOx	(115 MMBtu/hr)	0.038	lb/MMBtu 3-hr average	Ultra Low NOx Burners and G
Venture Global Calcasieu Pass, LLC - Calcasieu Pass LNG		9/21/2018, updated		Hot Oil Heaters (HOH1 to HOH6)			
Project	LA-0331 (draft)	2/19/2019	CO	(115 MMBtu/hr)	0.082	lb/MMBtu 3-hr average	Exclusive Combustion of Fuel
Venture Global Calcasieu Pass, LLC - Calcasieu Pass LNG		9/21/2018, updated		Hot Oil Heaters (HOH1 to HOH6)			
Project	LA-0331 (draft)	2/19/2019	TPM10	(115 MMBtu/hr)	0.0075	lb/MMBtu 3-hr average	Exclusive Combustion of Fuel
Venture Global Calcasieu Pass, LLC - Calcasieu Pass LNG		9/21/2018, updated		Hot Oil Heaters (HOH1 to HOH6)			
Project	LA-0331 (draft)	2/19/2019	TPM2.5	(115 MMBtu/hr)	0.0075	lb/MMBtu 3-hr average	Exclusive Combustion of Fuel
Venture Global Calcasieu Pass, LLC - Calcasieu Pass LNG		9/21/2018, updated		Hot Oil Heaters (HOH1 to HOH6)			Exclusive Use of Low Sulfur Fi
Project	LA-0331 (draft)	2/19/2019	SO2	(115 MMBtu/hr)	0.0006	lb/MMBtu 3-hr average	NSPS)
Venture Global Calcasieu Pass, LLC - Calcasieu Pass LNG		9/21/2018, updated		Hot Oil Heaters (HOH1 to HOH6)			Proper Equipment Design and
Project	LA-0331 (draft)	2/19/2019	VOC	(115 MMBtu/hr)	0.0054	lb/MMBtu 3-hr average	Combustion of Fuel Gas (BAC
							Exclusive Use of Low Carbon
Venture Global Calcasieu Pass, LLC - Calcasieu Pass LNG		9/21/2018, updated		Hot Oil Heaters (HOH1 to HOH6)			and Mantenance Practices and
Project	LA-0331 (draft)	2/19/2019	CO2e	(115 MMBtu/hr)	354456	tons/year	Heaters. 40 CFR Subpart Dc)
			TPM (all PM is				
1		9/18/2018 (draft)	assumed to be	Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	PM2.5 or less)	Natural Gas/Ethane)	0.008	lbs/MMBtu	Good combustion practices, us
			TPM (all PM is				
		9/18/2018 (draft)	assumed to be	Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	PM2.5 or less)	Natural Gas/Ethane)	0.87	lb/hr	Good combustion practices, us
·			TPM (all PM is				
		9/18/2018 (draft)	assumed to be	Auxiliary Boiler (111.90 MMBtu/hr -			Good combustion practices at
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	PM2.5 or less)	Natural Gas/Ethane)	1.99	tons/year	emissions are based on 512,1
		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	Sulfuric Acid	Natural Gas/Ethane)	0.0001	lbs/MMBtu	Use of natural gas.
·		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	Sulfuric Acid	Natural Gas/Ethane)	0.02	lb/hr	Use of natural gas.
· · · · · · · · · · · · · · · · · · ·		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	Sulfuric Acid	Natural Gas/Ethane)	0.03	tons/year	Use of natural gas. Annual em
		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			Low NOx burners and good co
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	NOx	Natural Gas/Ethane)	0.011	lb/MMBtu	512,140 mmBtu/yr.
	, , , , , , , , , , , , , , , , , , ,	9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	NOx	Natural Gas/Ethane)	1.23	lb/hour	Low NOx burners and good co
	, , , , , , , , , , , , , , , , , , ,	9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	NOx	Natural Gas/Ethane)	2.82	tons/year	Low NOx burners and good co
· · · · · · · · · · · · · · · · · · ·		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			Good combustion practices at
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	со	Natural Gas/Ethane)	0.037	lb/MMBtu	gas. Annual emissions are bas
	, , , , , , , , , , , , , , , , , , ,	9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	со	Natural Gas/Ethane)	4.14	lb/hour	Good combustion practices.
		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			Good combustion practices, us
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	со	Natural Gas/Ethane)	9.47	tons/year	mmBtu/yr.
·		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	VOC	Natural Gas/Ethane)	0.008	lb/MMBtu	Good combustion practices, us
		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	VOC	Natural Gas/Ethane)	0.9	lb/hour	Good combustion practices, us
		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			Good combustion practices, us
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	VOC	Natural Gas/Ethane)	2.05	tons/year	mmBtu/yr.
		9/18/2018 (draft)		Auxiliary Boiler (111.90 MMBtu/hr -			
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	CO2e	Natural Gas/Ethane)	14768	lb/hour	Use of natural gas.
		9/18/2018 (draft)	1	Auxiliary Boiler (111.90 MMBtu/hr -		-	
ESC Brooke County Power I, LLC	WV-0032 (draft)	updated 1/2/2019	CO2e	Natural Gas/Ethane)	33790	tons/year	Use of natural gas. Annual em
	(1 1		· · · · · · · · · · · · · · · · · · ·			3
		4/26/2018, updated					Low NOx Burners (Annual limi
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	NOx	Auxiliary Boiler (902 mmcf/year)	0.011	lb/MMBtu corrected to 3% O2	based on stack test and annua
		4/26/2018, updated			0.011		Low NOx Burners (Annual limit
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	NOx	Auxiliary Boiler (902 mmcf/year)	12	lb/hr	based on stack test and annua
		4/26/2018, updated			1.2		Good Combustion Practices a
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	со	Auxiliary Boiler (902 mmcf/year)	0.037	lb/MMBtu	limit 17.1 tons/year base on fu
			100		0.007		

Good Combustion Practices (BACT-PSD NSPS)
el Gas and Good Combustion Practices (BACT-PSD NSPS)
el Gas and Good Combustion Practices (BACT-PSD NSPS)
el Gas and Good Combustion Practices (BACT-PSD NSPS) Fuel Gas and Proper Engineering Practices (BACT-PSD
d Operation, Good Combustion Practices, and Exclusive
CT-PSD NSPS)
n Fuel Gas, Good Combustion Practices, Good Operation nd Insulation (BACT Limit based on Annual Total for 6 ;) (BACT-PSD NSPS)
use of natural gas.
use of natural gas.
at all times boilers are in operation, use of natural gas. Annual 140 mmBtu/yr.
missions are based on 512,140 mmBtu/yr.
combustion practices. Annual emissions are based on
combustion practices.
combustion practices.
at all times boilers are in operation, must only combust natural
ased on 512,140 mmBtu/yr.
use of natural gas. Annual emissions are based on 512,140
use of natural gas.
use of natural gas.
use of natural gas. Annual emissions are based on 512,140
missions are based on 512,140 mmBtu/yr.
nit of 5.1 tons/yr on a 12-month rolling total. Compliance
ual fuel throughput) (BACT-PSD NSPS SIP)
nit of 5.1 tons/yr on a 12-month rolling total. Compliance Jal fuel throughput) (BACT-PSD NSPS SIP)
and Clean Fuel (Compliance based on stack test. Annual uel throughput.)(BACT-PSD SIP)
adi anoughpul/DACT-FOD OF

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
		4/26/2018, updated					Good Combustion Practices an
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	CO	Auxiliary Boiler (902 mmcf/year)	3.9	lb/hr	limit 17.1 tons/year base on fue
		4/26/2018, updated		.			Good Combustion Practices an
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	TPM10	Auxiliary Boiler (902 mmcf/year)	0.8	lb/hr	Sulfur Content of 0.4 gr/100 sc
) (A 0000 (Ja-ft)	4/26/2018, updated	TRUMA				Good Combustion Practices an
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018 4/26/2018, updated	TPM10	Auxiliary Boiler (902 mmcf/year)	3.3	tons/year 12-month rolling total	Sulfur Content of 0.4 gr/100 sci Good Combustion Practices an
Novi Energy CACT LLC	VA-0328 (draft)	4/26/2018, updated 11/16/2018	TPM2.5	Auxiliary Boiler (902 mmcf/year)	0.9	lb/br	Sulfur Content of 0.4 gr/100 sci
Novi Energy - C4GT, LLC	VA-0326 (urait)	4/26/2018, updated	TPIVIZ.5	Auxiliary Boller (902 Millici/year)	0.0	lb/hr	Good Combustion Practices an
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	TPM2.5	Auxiliary Boiler (902 mmcf/year)	3 3	tons/year 12-month rolling total	Sulfur Content of 0.4 gr/100 sci
	V/(0020 (diait)	11/10/2010	11 1012.5		0.0		The Use of Pipeline Quality Na
		4/26/2018, updated					on a 12-month rolling avg. (Cor
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	SO2	Auxiliary Boiler (902 mmcf/year)	0.0012	lb/MMBtu	limit)(BACT-PSD SIP)
							The Use of Pipeline Quality Na
		4/26/2018, updated					on a 12-month rolling avg. (Cor
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	SO2	Auxiliary Boiler (902 mmcf/year)	0.6	tons/year 12-month rolling avg	limit)(BACT-PSD SIP)
							The Use of Pipeline Quality Na
		4/26/2018, updated	Sulfuric Acid (mist,				on a 12-month rolling avg. (Cor
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	vapors, etc)	Auxiliary Boiler (902 mmcf/year)			content)(BACT-PSD SIP)
		4/26/2018, updated					
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	VOC	Auxiliary Boiler (902 mmcf/year)	0.005	lb/MMBtu	Good Combustion Practices(B/
		4/26/2018, updated					
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	VOC	Auxiliary Boiler (902 mmcf/year)	2.3	tons/year 12-month rolling avg	Good Combustion Practices(B/
		4/26/2018, updated					
Novi Energy - C4GT, LLC	VA-0328 (draft)	11/16/2018	CO2e	Auxiliary Boiler (902 mmcf/year)	53863	tons/year 12-month rolling total	Use of Natural Gas and High E
		4/40/0040	Τ	Orada Drassas Hastara (400		1	
	TV 0925	4/13/2018, updated	VOC	Crude Process Heaters (100	0.0012		Cood Combustion (Note: Brog
Targa - Channel View Terminal	TX-0835	2/19/2019	VOC	MMBtu/hr)	0.0013	lb/MMBtu	Good Combustion (Note: Proce
		11/17/2017,		EUAUXBOILER (Auxiliary Boiler)			Good Combustion Practices (C
Filer City Station Limited Partnership - Filer City Station	MI-0427	updated 3/8/2018	со	(182 MMBtu/hr)	0.04	lb/MMBtu	SIP)
There only Station Limited Farthership - There only Station	101-0421	11/17/2017,		EUAUXBOILER (Auxiliary Boiler)	0.04		LNB that incorporate intern (wit
Filer City Station Limited Partnership - Filer City Station	MI-0427	updated 3/8/2018	NOx	(182 MMBtu/hr)	0.04	lb/MMBtu 30 day rolling avg	(70% control efficiency) (SCR r
		11/17/2017,		EUAUXBOILER (Auxiliary Boiler)	0.04	io/minible oo day ronning avg	
Filer City Station Limited Partnership - Filer City Station	MI-0427	updated 3/8/2018	FPM	(182 MMBtu/hr)	0.005	lb/MMBtu	Good Combustion Practices (A
		11/17/2017,		EUAUXBOILER (Auxiliary Boiler)			
Filer City Station Limited Partnership - Filer City Station	MI-0427	updated 3/8/2018	TPM10	(182 MMBtu/hr)	0.0075	lb/MMBtu	Good Combustion Practices (A
		11/17/2017,		EUAUXBOILER (Auxiliary Boiler)			``````````````````````````````````````
Filer City Station Limited Partnership - Filer City Station	MI-0427	updated 3/8/2018	TPM2.5	(182 MMBtu/hr)	0.0075	lb/MMBtu	Good Combustion Practices (A
		11/17/2017,		EUAUXBOILER (Auxiliary Boiler)			
Filer City Station Limited Partnership - Filer City Station	MI-0427	updated 3/8/2018	CO2e	(182 MMBtu/hr)	93346	tons/year 12-month roll time period	Good Combustion Practices (A
					•	• •	.
		10/20/2017,					
Praxiar Inc Praxiar Clear Lake	TX-0830		CO	HyCO Heater (180 MMBtu/hr)	50	PPMVD@3% O2	The Use of gaseous fuel and g
		10/20/2017,					
Praxiar Inc Praxiar Clear Lake	TX-0830	updated 2/19/2019	CO2e	HyCO Heater (180 MMBtu/hr)	1148305	tons/year	Annual tune ups. Emissions are
		40/10/00/7		I	1	1	1
	T V 0007	10/19/2017,					
Praxair Inc Praxair Clear Lake Plant	TX-0827	updated 11/2/2017	СО	HyCO Heater (180 MMBtu/hr)	50	PPMVD@3% O2	The Use of gaseous fuel and g
	TV 0007	10/19/2017,	000		4440005	. ,	
Praxair Inc Praxair Clear Lake Plant	TX-0827	updated 11/2/2017	CO2e	HyCO Heater (180 MMBtu/hr)	1148305	tons/year	Annual tune ups. Emissions are
	TX-0814	1/5/2017 (droft)	0000	Deekege Deiler 1 (240 MMDhu/hr)	100050	4m) /	Cood Engineering Prostings
Agrium US, Inc	17-0014	1/5/2017 (draft) 3/23/17 (draft),	CO2e	Package Boiler 1 (240 MMBtu/hr) Natural Gas Auxiliary Boilers (EU-	123059	ipy	Good Engineering Practices
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	ТРМ	012A, EU-012B, EU-012C)	1.0	lb/MMcf 3 hour average	Proper design and good combuonly combust natural gas (218.
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-	1.9	IDAMINUCI S HOUT AVERAGE	Proper design and good combust
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	ТРМ	012A, EU-012B, EU-012C)	1977 20	MMcf per 12 consecutive months	only combust natural gas (218.
	111-0203 (ulait)	3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-	1077.39		Proper design and good combu
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	PM10	012A, EU-012B, EU-012C)	7.6	lb/MMcf 3 hour average	only combust natural gas (218.
	in-0203 (urait)	3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-	7.0	IDINING STIDUL AVERAGE	Proper design and good combust
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	PM10	012A, EU-012B, EU-012C)	1077 00	MMcf per 12 consecutive months	only combust natural gas (218.

and Clean Fuel (Compliance based on stack test. Annual fuel throughput.)(BACT-PSD SIP)
and the Use of Pipeline Quality Natural Gas with a Maximum
scf on a 12-month rolling avg.(BACT-PSD SIP) and the Use of Pipeline Quality Natural Gas with a Maximum
scf on a 12-month rolling avg.(BACT-PSD SIP)
and the Use of Pipeline Quality Natural Gas with a Maximum
scf on a 12-month rolling avg.(BACT-PSD SIP) and the Use of Pipeline Quality Natural Gas with a Maximum
scf on a 12-month rolling avg. (BACT-PSD SIP)
Natural Gas with a Maximum Sulfur Content of 0.4 gr/100 scf Compliance based on compliance with the fuel sulfur
Natural Gas with a Maximum Sulfur Content of 0.4 gr/100 scf Compliance based on compliance with the fuel sulfur
Natural Gas with a Maximum Sulfur Content of 0.4 gr/100 scf Compliance based on compliance with the fuel sulfur
(BACT-PSD SIP)
(BACT-PSD SIP)
efficiency Design and Operation(BACT-PSD SIP)
ocess Type says Refinery Flares) (LAER NSPS)
(Catalytic Reduction not economically feasible)(BACT-PSD
within the burner) FGR and Good Combustion Practices R not economically feasible)(BACT-PSD SIP)
(Add-on controls not economically feasible)(BACT-PSD)
good combustion practices (BACT-PSD NSPS)
are based on a plantwide grouped limit(BACT-PSD NSPS)
good combustion practices(BACT-PSD NSPS)
are based on a plantwide grouped limit(BACT-PSD NSPS)
nbustion practices at all times boilers are in operation, must 18.6 MMBtu/hr)
nbustion practices at all times boilers are in operation, must 18.6 MMBtu/hr)
nbustion practices at all times boilers are in operation, must 18.6 MMBtu/hr)
nbustion practices at all times boilers are in operation, must 18.6 MMBtu/hr)

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit Emission Limit Units	BACT Determination
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Proper design and good combustion practices at all times boilers are in operation, must
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	PM2.5	012A, EU-012B, EU-012C)	7.6 lb/MMcf 3 hour average	only combust natural gas (218.6 MMBtu/hr)
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Proper design and good combustion practices at all times boilers are in operation, must
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	PM2.5	012A, EU-012B, EU-012C)	1877.39 MMcf per 12 consecutive months	only combust natural gas (218.6 MMBtu/hr)
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Low NOx burners with flue gas recirculation and good combustion practices, must only
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	NOx	012A, EU-012B, EU-012C)	20.4 lb/MMcf 3 hour average	combust natural gas (218.6 MMBtu/hr)
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Low NOx burners with flue gas recirculation and good combustion practices, must only
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	NOx	012A, EU-012B, EU-012C)	1877.39 MMcf per 12 consecutive months	combust natural gas (218.6 MMBtu/hr)
	114-0203 (ulait)	3/23/17 (draft),	NOX	Natural Gas Auxiliary Boilers (EU-		Good combustion practices at all times boilers are in operation, must only combust natural
			со			
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	0	012A, EU-012B, EU-012C)	37.22 lb/MMcf 3 hour average	gas (218.6 MMBtu/hr)
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Good combustion practices at all times boilers are in operation, must only combust natural
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	CO	012A, EU-012B, EU-012C)	1877.39 MMcf per 12 consecutive months	gas (218.6 MMBtu/hr)
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Good combustion practices at all times boilers are in operation, must only combust natural
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	VOC	012A, EU-012B, EU-012C)	5.5 lb/MMcf 3 hour average	gas (218.6 MMBtu/hr)
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Good combustion practices at all times boilers are in operation, must only combust natural
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	VOC	012A, EU-012B, EU-012C)	1877.39 MMcf per 12 consecutive months	gas (218.6 MMBtu/hr)
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		Good combustion practices at all times boilers are in operation, must only combust natural
Midwest Fertilizer Company LLC	IN-0263 (draft)	updated 7/10/17	CO2	012A, EU-012B, EU-012C)	59.61 ton/MMcf 3 hour average	gas (218.6 MMBtu/hr)
						Good combustion practices at all times boilers are in operation, must only combust natural
						gas, shall be designed to achieve a minimum 80% thermal efficiency limit, each shall be
		3/23/17 (draft),		Natural Gas Auxiliary Boilers (EU-		equipped with the energy efficiency design features (1) air inlet controls, (2) heat recovery,
Midwoot Fortilizer Compony LLC	IN-0263 (draft)	updated 7/10/17	CO2	012A, EU-012B, EU-012C)	1877.39 MMcf per 12 consecutive months	(3) condensate recovery, (4) blow down heat recovery (218.6 MMBtu/hr)
Midwest Fertilizer Company LLC	11N-0203 (urait)		002	012A, EU-012B, EU-012C)		
		1/4/2017, 7/25/17			Ib/MMBtu Test protocol will specify	
Indeck Niles, LLC	MI-0423 (draft)	update	CO	EUAUXBOILER (Auxiliary Boiler)	0.04 avg time	SIP - Good combustion practices (182 MMBtu/hr)
		1/4/2017, 7/25/17			lb/MMBtu 30-day rolling avg time	NSPS, SIP - Low NOx burners/Flue gas recirculation and good combustion practices.
Indeck Niles, LLC	MI-0423 (draft)	update	NOx	EUAUXBOILER (Auxiliary Boiler)	0.04 period	(182 MMBtu/hr)
		1/4/2017, 7/25/17			Ib/MMBtu Test protocol will specify	
Indeck Niles, LLC	MI-0423 (draft)	update	FPM	EUAUXBOILER (Auxiliary Boiler)	0.005 avg time	Good combustion practices (182 MMBtu/hr)
		1/4/2017, 7/25/17				
Indeck Niles, LLC	MI-0423 (draft)	update	TPM10	EUAUXBOILER (Auxiliary Boiler)	1.36 lb/hr hourly, test protocol	SIP - Good combustion practices (182 MMBtu/hr)
······································		1/4/2017, 7/25/17	-			
Indeck Niles, LLC	MI-0423 (draft)	update	TPM2.5	EUAUXBOILER (Auxiliary Boiler)	1.36 lb/hr hourly, test protocol	Good combustion practices (182 MMBtu/hr)
	101 0420 (didit)	1/4/2017, 7/25/17	11 1012.5	ECRORDOLET (Advillary Boller)	Ib/MMBtu Test protocol will specify	
Indeck Niles, LLC	MI-0423 (draft)	update	VOC	EUAUXBOILER (Auxiliary Boiler)	0.004 avg time	Good combustion practices (182 MMBtu/hr)
	WII-0423 (UIAII)	1/4/2017, 7/25/17	100		Ib/MMscf Based on Fuel Receipt	
			000			
Indeck Niles, LLC	MI-0423 (draft)	update	SO2	EUAUXBOILER (Auxiliary Boiler)	0.6 Records	Good combustion practices and the use of pipeline quality natural gas (182 MMBtu/hr)
						NSPS, SIP - Good combustion practices and the use of pipeline quality natural gas.(2,000
		1/4/2017, 7/25/17				grains of sulfur per MMscf. The natural gas material limit of 2,000 grains of sulfur per
Indeck Niles, LLC	MI-0423 (draft)	update	SO2	EUAUXBOILER (Auxiliary Boiler)	2000 gr/MMscf Based upon Fuel Receipts	MMscf is what the emission factor is based upon) (182 MMBtu/hr)
		1/4/2017, 7/25/17				Energy efficiency measures and the use of a low carbon fuel (pipeline quality natural gas).
Indeck Niles, LLC	MI-0423 (draft)	update	CO2e	EUAUXBOILER (Auxiliary Boiler)	93346 tpy 12-month rolling time period	(182 MMBtu/hr)
		11/22/2016, 12/1/16				
Rextac, LLC - Odessa Petrochemical Plant	TX-0813 (draft)	update	VOC	Boilers	0.0005 lb/MMBtu	NSPS Db - Best combustion practices (2 boilers - 223 Mmbtu/hr)
		11/22/2016, 12/1/16				
Rextac. LLC - Odessa Petrochemical Plant	TX-0813 (draft)	update	CO2e	Boilers	63796 tpy	MACT DDDDD - Minimul thermal design efficiency of 75%
		6/30/16, 4/26/17	0020			Good engineering design and proper operation (Supplement fuel: fuel gas Boilers: 225
Lake Charles Methanol, LLC	LA-0305	update	PM10	Auxiliary Boilers and Superheaters	No Numeric Limit No Numeric Limit	MM BTU/hr each)
	LA-0303	6/30/16, 4/26/17	r WITO	Auxiliary Bollers and Superneaters		
	1 4 0005					Good engineering design and proper operation (Supplement fuel: fuel gas Boilers: 225
Lake Charles Methanol, LLC	LA-0305	update	PM2.5	Auxiliary Boilers and Superheaters	No Numeric Limit No Numeric Limit	MM BTU/hr each)
		6/30/16, 4/26/17				Fuel gases and/or pipeline quality natural gas (Supplement fuel: fuel gas Boilers: 225 MM
Lake Charles Methanol, LLC	LA-0305	update	SO2	Auxiliary Boilers and Superheaters	No Numeric Limit No Numeric Limit	BTU/hr each)
		6/30/16, 4/26/17			lbs/MMBtu 30 rolling avg, except	
Lake Charles Methanol, LLC	LA-0305	update	NOx	Auxiliary Boilers and Superheaters	0.015 SCR, SU or Maint	SCR (Supplement fuel: fuel gas Boilers: 225 MM BTU/hr each)
		6/30/16, 4/26/17				Good engineering design and good combustion practices (Supplement fuel: fuel gas
Lake Charles Methanol, LLC	LA-0305	update	со	Auxiliary Boilers and Superheaters	No Numeric Limit No Numeric Limit	Boilers: 225 MM BTU/hr each)
		6/30/16, 4/26/17				Good equipment design and good combustion practices (Supplement fuel: fuel gas
Lake Charles Methanol, LLC	LA-0305	update	CO2e	Auxiliary Boilers and Superheaters	No Numeric Limit No Numeric Limit	Boilers: 225 MM BTU/hr each)
		3/21/16, 4/28/17		Ruxinary Doners and Supernealers		Good combustion/operating/maintenance practices and fueled by natural gas (171
Magnolia LNG Facility	LA-0307	update	CO2e	Auxiliary Boilers	No Numeric Limit No Numeric Limit	MMBtu/hr)
			11.178	IAUXIIIAIV BOIIEIS	INO NUMERIC LIMIL INO NUMERIC LIMIT	

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
		3/21/16, 4/28/17					
Magnolia LNG Facility	LA-0307	update	TPM10	Auxiliary Boilers	No Numeric Limit	No Numeric Limit	Good combustion practices (17
		3/21/16, 4/28/17					
Magnolia LNG Facility	LA-0307	update	TPM2.5	Auxiliary Boilers	No Numeric Limit	No Numeric Limit	Good combustion practices (17
		3/21/16, 4/28/17					
Magnolia LNG Facility	LA-0307	update	NOx	Auxiliary Boilers	No Numeric Limit	No Numeric Limit	Low NOx Burners (171 MMBtu/
		3/21/16, 4/28/17					
Magnolia LNG Facility	LA-0307	update	CO	Auxiliary Boilers	No Numeric Limit	No Numeric Limit	Good combustion practices (17
		3/21/16, 4/28/17					
Magnolia LNG Facility	LA-0307	update	VOC	Auxiliary Boilers	No Numeric Limit	No Numeric Limit	Good combustion practices (17
		4/19/16, 5/19/16		Two Natural Gas-Fired Auxiliary			
Tennessee Valley Authority	TN-0162 (draft)	update	TPM	Boilers	0.008	lb/MMBtu	Good combustion design and p
Tenaska PA Partners LLC - Tenaska PA		2/12/16, 7/12/17		245 MMBtu natural gas fired			NSPS - Good combustion pract
Partners/Westmoreland Gen Fac	PA-0306 (draft)	update	TPM2.5	Auxiliary boiler	0.0075	lb/MMBtu 3 hr avg	exceed 1052 MMsch/yr on a 12
Tenaska PA Partners LLC - Tenaska PA		2/12/16, 7/12/17		245 MMBtu natural gas fired			NSPS - Good combustion pract
Partners/Westmoreland Gen Fac	PA-0306 (draft)	update	TPM2.5	Auxiliary boiler	4	t;py	exceed 1052 MMsch/yr on a 12
Tenaska PA Partners LLC - Tenaska PA		2/12/16, 7/12/17	Sulfuric Acid (mist,	245 MMBtu natural gas fired			NSPS - Good combustion pract
Partners/Westmoreland Gen Fac	PA-0306 (draft)	update	vapors, etc)	Auxiliary boiler	0.0049	t;py	exceed 1052 MMsch/yr on a 12
Tenaska PA Partners LLC - Tenaska PA		2/12/16, 7/12/17		245 MMBtu natural gas fired			Good combustion practices. To
Partners/Westmoreland Gen Fac	PA-0306 (draft)	update	VOC	Auxiliary boiler	0.0054	lb/MMBtu	MMsch/yr on a 12-month rolling
Tenaska PA Partners LLC - Tenaska PA		2/12/16, 7/12/17	100	245 MMBtu natural gas fired			Good combustion practices. To
Partners/Westmoreland Gen Fac	PA-0306 (draft)	update	VOC	Auxiliary boiler	2.89		MMsch/yr on a 12-month rolling
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler		lbs/hr	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler	5.52	tons/year per rolling 12 months	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler		lbs/hr	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler		tons/year per rolling 12 months	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009	PM10	Auxiliary Boiler	1.14	lbs/hr	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler		tons/year per rolling 12 months	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler		lbs/hr	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler	0.04	tons/year per rolling 12 months	Unknown
American Municipal Power Generating Station	OH-0310		Visible Emission	Auxiliary Boiler		% opacity as a 6 minute average	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler	0.83	lbs/hr	Unknown
American Municipal Power Generating Station	OH-0310	10/8/2009		Auxiliary Boiler		tons/year per rolling 12 months	Unknown
Calpine Construction Finance Co. LP Amella Energy Center	TX-0386	3/26/2002		Auxiliary Boiler		lbs/hr	Unknown
Calpine Construction Finance Co. LP Amella Energy Center	TX-0386	3/26/2002		Auxiliary Boiler		lb/MMBtu	Unknown
Calpine Construction Finance Co. LP Amella Energy Center	TX-0386	3/26/2002		Auxiliary Boiler		lbs/hr	Unknown
Calpine Turner Energy Center, LLC	OR-0046	1/6/2005		Auxiliary Boiler	No numeric limit	No numeric limit	use of natural gas
Calpine Turner Energy Center, LLC	OR-0046	1/6/2005		Auxiliary Boiler		lb/MMBtu 3-hr block	Oxidation Catalyst
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Boilers		lb/MMBtu average of 3 stack tests	proper operation and use of nat
Iowa Fertilizer Company	IA-0105	10/26/2012		Auxiliary Boiler		lb/MMBtu average of 3 stack tests	Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Boilers		Ib/MMBtu average of 3 stack tests	oxidation catalyst
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Boilers		tpy rolling 12 month total	oxidation catalyst
Iowa Fertilizer Company	IA-0105	10/26/2012		Auxiliary Boiler		Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Auxiliary Boiler	0.57	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/26/2013		Natural gas fired boilers	37.22	lb/MMcf 3 hour average	proper burning design, good co
Rocky Mountain Energy Center, LLC	CO-0052	8/11/2002		Auxiliary Boiler		lb/MMBtu	Good combustion control practi
Rocky Mountain Energy Center, LLC	CO-0052	8/11/2002	CO	Auxiliary Boiler		Reduction	Good combustion control practi
Southeast Idaho Energy, LLC Power County Advanced Energy (CID-0017	2/10/2009		250 MMBTU/H package boiler		lb/MMBtu	Good combustion practices
Southeast Idaho Energy, LLC Power County Advanced Energy 0		2/10/2009		250 MMBTU/H package boiler		lb/hr	Good combustion practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Boilers		lb/MMBtu average of 3 stack tests	proper operation and use of nat
Iowa Fertilizer Company	IA-0105	10/26/2012		Auxiliary Boiler		lb/MMBtu rolling 30 day average	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/26/2013		Natural gas fired boilers		ton/MMcf 3 hour average	proper burning design, good co
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Boilers		tpy rolling 12 month total	proper operation and use of nat
Forsyth Energy Projects, LLC Forsyth Energy Plant	NC-0101	9/29/2005		Auxiliary Boiler		lbs/hr based on 3-hr average	Low-NOx Burners, good combu
Forsyth Energy Projects, LLC Forsyth Energy Plant	NC-0101	9/29/2005		Auxiliary Boiler		lbs/hr based on 3-hr average	Low-NOx Burners, good combu
Forsyth Energy Projects, LLC Forsyth Energy Plant	NC-0101	9/29/2005		Auxiliary Boiler		lbs/hr based on 3-hr average	Low-NOx Burners, good combu
		10/00/0010	NOv	Auxiliary Boiler	0.0125	lb/MMBtu rolling 30 day average	LNB and FGR
Iowa Fertilizer Company	IA-0105	10/26/2012		· ·			
Iowa Fertilizer Company	IA-0105	10/26/2012	NOx	Auxiliary Boiler	5.52	tons/year rolling 12 month total	LNB and FGR
Iowa Fertilizer Company Ohio Valley Resources, LLC	IA-0105 TBD	10/26/2012 9/26/2013	NOx NOx	Auxiliary Boiler Natural gas fired boilers	5.52 20.4	tons/year rolling 12 month total lb/MMcf 24 hour average	LNB and FGR Ultra Low NOx Burners and Flu
Iowa Fertilizer Company	IA-0105	10/26/2012	NOx NOx NOx	Auxiliary Boiler	5.52 20.4 0.038	tons/year rolling 12 month total	

(171 MMBtu/hr)
(171 MMBtu/hr)
tu/hr)
(171 MMBtu/hr)
(171 MMBtu/hr)
d practices (450 MMBtu/hr each)
actices. Total fuel usage of the auxiliary boiler shall not 12-month rolling basis.
actices. Total fuel usage of the auxiliary boiler shall not 12-month rolling basis.
actices. Total fuel usage of the auxiliary boiler shall not 12-month rolling basis.
Total fuel usage of the auxiliary boiler shall not exceed 1052 ing basis.
Total fuel usage of the auxiliary boiler shall not exceed 1052 ling basis.
natural gas
combustion practices
actices
actices
natural gas
combustion practices
natural gas
nbustion control and clean burning, low sulfur fuel (natural gas)
nbustion control and clean burning, low sulfur fuel (natural gas)
nbustion control and clean burning, low sulfur fuel (natural gas)
Flue Gas Recirculation
hr/yr. Low NOx combustion system.
nr/yr. Low NOx combustion system.

KNO Restart **RBLC Search Summary** Search: "boiler", "heater" - All Results for boilers and heaters >100 MMBtu/hr Included Unit 44 - Package Boiler Unit 48 - Package Boiler Unit 49 - Package Boiler

Facility Name	RBLC ID	Permit Issue Date Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Southeast Idaho Energy, LLC Power County Advanced Energy	CID-0017	2/10/2009 NOx	250 MMBTU/H package boiler	0.02	lb/MMBtu	Low-NOx Burners and FGR
Southeast Idaho Energy, LLC Power County Advanced Energy		2/10/2009 NOx	250 MMBTU/H package boiler	5	lb/hr	Low-NOx Burners and FGR
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 PM	Boilers	0.0024	lb/MMBtu average of 3 stack tests	proper operation and use of na
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 PM	Boilers	4.79	tpy rolling 12 month total	proper operation and use of na
Iowa Fertilizer Company	IA-0105	10/26/2012 PM	Auxiliary Boiler	0.0024	lb/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012 PM	Auxiliary Boiler	1.06	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/26/2013 PM	Natural gas fired boilers	1.9	lb/MMcf 3 hour average	proper burning design, good co
Southeast Idaho Energy, LLC Power County Advanced Energy	CID-0017	2/10/2009 PM	250 MMBTU/H package boiler	0.0052	lb/MMBtu	Good Combustion Practices
Southeast Idaho Energy, LLC Power County Advanced Energy	CID-0017	2/10/2009 PM	250 MMBTU/H package boiler	1.3	lbs/hr	Good Combustion Practices
Liberty Generating Station	NJ-0043	3/28/2002 CO	Auxiliary Boiler	100	ppmvd @ 7% O2	CO catalyst
Liberty Generating Station	NJ-0043	3/28/2002 CO	Auxiliary Boiler		lb/hr	CO catalyst
Liberty Generating Station	NJ-0043	3/28/2002 NOx	Auxiliary Boiler	0.2	lb/MMBtu	SCR
Liberty Generating Station	NJ-0043	3/28/2002 NOx	Auxiliary Boiler		lbs/hr	SCR
Liberty Generating Station	NJ-0043	3/28/2002 PM	Auxiliary Boiler		lb/hr	unknown
Liberty Generating Station	NJ-0043	3/28/2002 PM	Auxiliary Boiler	0.008	lb/MMBtu	Unknown
Liberty Generating Station	NJ-0043	3/28/2002 PM10	Auxiliary Boiler		lb/hr	unknown
Liberty Generating Station	NJ-0043	3/28/2002 PM10	Auxiliary Boiler		lb/MMBtu	Unknown
Liberty Generating Station	NJ-0043	3/28/2002 SO2	Auxiliary Boiler	0.004	lb/MMBtu	None
Liberty Generating Station	NJ-0043	3/28/2002 SO2	Auxiliary Boiler		lbs/hr	None
Liberty Generating Station	NJ-0043	3/28/2002 VOC	Auxiliary Boiler	50	ppmvd @7% O2	CO catalyst
Liberty Generating Station	NJ-0043	3/28/2002 VOC	Auxiliary Boiler		lbs/hr	CO catalyst
Southeast Idaho Energy, LLC Power County Advanced Energy	CID-0017	2/10/2009 PM	250 MMBTU/H package boiler	20%	Reduction	Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 PM10	Boilers		lb/MMBtu average of 3 stack tests	proper operation and use of na
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 PM10	Boilers	4.79	tpy rolling 12 month total	proper operation and use of na
Iowa Fertilizer Company	IA-0105	10/26/2012 PM10	Auxiliary Boiler	0.0024	lb/MMBtu average of 3 stack tests	Good Combustion Practices
Some facilities are not shown because they are not fertilizer pro	di IA-0105	10/26/2012 PM10	Auxiliary Boiler	1.06	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/26/2013 PM10	Natural gas fired boilers		lb/MMcf 3 hour average	proper burning design, good co
Southeast Idaho Energy, LLC Power County Advanced Energy	C ID-0017	2/10/2009 PM10	250 MMBTU/H package boiler		lb/MMBtu	Good Combustion Practices
Southeast Idaho Energy, LLC Power County Advanced Energy	CID-0017	2/10/2009 PM10	250 MMBTU/H package boiler		lbs/hr	Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 PM2.5	Boilers	0.0024	lb/MMBtu average of 3 stack tests	proper operation and use of na
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 PM2.5	Boilers	4.79	tpy rolling 12 month total	proper operation and use of na
Iowa Fertilizer Company	IA-0105	10/26/2012 PM2.5	Auxiliary Boiler	0.0024	Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012 PM2.5	Auxiliary Boiler		tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/26/2013 PM2.5	Natural gas fired boilers	7.6	lb/MMcf 3 hour average	proper burning design, good co
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 Visible Emis			%	proper operation and use of na
Iowa Fertilizer Company	IA-0105	10/26/2012 Visible Emis	sion Auxiliary Boiler	C	% opacity	Good Combustion Practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 VOC	Boilers		lb/MMBtu average of 3 stack tests	proper operation and use of na
CF Industries Nitrogen, LLC	IA-0106	7/12/2013 VOC	Boilers		tpy rolling 12 month total	proper operation and use of na
Iowa Fertilizer Company	IA-0105	10/26/2012 VOC	Auxiliary Boiler		Ib/MMBtu average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012 VOC	Auxiliary Boiler		tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/26/2013 VOC	Natural gas fired boilers		lb/MMcf 3 hour average	proper burning design, good co
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 NOx	WCR Heater		lb/MMBtu	Unknown
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 PM	Heaters		lb/MMBtu	Unknown
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 PM	Heater, Reboiler		lb/MMBtu	Unknown
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 PM	WCR Heater		lb/MMBtu	Unknown
Williams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 PM	CCR Reactor	0.005	lb/MMBtu	Unknown

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times. Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they are not natural gas fired.

natural gas
natural gas
natural yas
combustion practices
natural gas
natural gas
combustion practices
natural gas
natural gas
combustion practices
natural gas
natural gao
natural gas
natural gas
combustion practices

KNO Restart RBLC Search Summary Search: "Flare" - Fertilizer Plants only Unit 11 - Ammonia Tank Flare

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determin
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM10	Ammonia Storage Flare (EU-016)	0.0075	lb/MMBtu 3 hour average	
						hours/12 consec month	
		3/23/17 (draft),				compliance determined end of	:
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM10	Ammonia Storage Flare (EU-016)	168	month	
		3/23/17 (draft),					Pilot and purge g
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM10	Ammonia Storage Flare (EU-016)	No Numeric Limit	No Numeric Limit	with a flame pres
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM2.5	Ammonia Storage Flare (EU-016)	0.0075	lb/MMBtu 3 hour average	
						hours/12 consec month	
		3/23/17 (draft),				compliance determined end of	:
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM2.5	Ammonia Storage Flare (EU-016)	168	month	
		3/23/17 (draft),					Pilot and purge g
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	PM2.5	Ammonia Storage Flare (EU-016)	No Numeric Limit	No Numeric Limit	with a flame pres
		3/23/17 (draft),				lb/hr while venting 3 hour	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	NOx	Ammonia Storage Flare (EU-016)	125	average	
		3/23/17 (draft),				Ib/MMBtu during normal	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	NOx	Ammonia Storage Flare (EU-016)	0.068	operations 3 hour average	
		3/23/17 (draft),					Pilot and purge
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	NOx	Ammonia Storage Flare (EU-016)	No Numeric Limit	No Numeric Limit	with a flame pre-
		3/23/17 (draft),				Ib/MMBtu during normal	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	СО	Ammonia Storage Flare (EU-016)	0.37	operations 3 hour average	
		3/23/17 (draft),				hours/year compliance	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	со	Ammonia Storage Flare (EU-016)	168	determined end of ea month	
		3/23/17 (draft),					Pilot and purge of
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	со	Ammonia Storage Flare (EU-016)	No Numeric Limit	No Numeric Limit	with a flame pres
		3/23/17 (draft),				lb/MMBtu during normal	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	VOC	Ammonia Storage Flare (EU-016)	0.0054	operations 3 hour average	
						hours/12 consec month	
		3/23/17 (draft),				compliance determined end of	
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	VOC	Ammonia Storage Flare (EU-016)	168	month	
		3/23/17 (draft),					Pilot and purge
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	VOC	Ammonia Storage Flare (EU-016)	No Numeric Limit	No Numeric Limit	with a flame pres
		3/23/17 (draft),					
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	CO2	Ammonia Storage Flare (EU-016)	563	tons/12 consec month	
						hours/12 consec month	
		3/23/17 (draft),				compliance determined end of	:
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	CO2	Ammonia Storage Flare (EU-016)	168	month	
		3/23/17 (draft),					Pilot and purge g
Midwest Fertilizer Company LLC	IN-0263	updated 7/10/17	CO2	Ammonia Storage Flare (EU-016)	No Numeric Limit	No Numeric Limit	with a flame pres

ination
e gas shall be natural gas; and process flaring minimization practices; operated
esent at all times; continuously monitored
gas shall be natural gas; and process flaring minimization practices; operated
esent at all times; continuously monitored
gas shall be natural gas; and process flaring minimization practices; operated
esent at all times; continuously monitored
e gas shall be natural gas; and process flaring minimization practices; operated
esent at all times; continuously monitored
gas shall be natural gas; and process flaring minimization practices; operated
esent at all times; continuously monitored
and shall be natural and process floring minimization prostings, an events
e gas shall be natural gas; and process flaring minimization practices; operated esent at all times; continuously monitored

KNO Restart RBLC Search Summary Search: "Flare" - Fertilizer Plants only Unit 11 - Ammonia Tank Flare

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	CH4	Flares	No Numeric Limit	No Numeric Limit	Good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Flares		No Numeric Limit	Good operating practices & use of natural gas
Ohio Valley Resources, LLC	TBD	9/25/2013	со	Front End Process Flare	0.37	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Valley Resources, LLC	TBD	9/25/2013	со	Front End Process Flare	3240.16	lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
			-				
Ohio Valley Resources, LLC	TBD	9/25/2013	со	Back end ammonia process vent flare	0.37	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
			-				
Ohio Valley Resources, LLC	TBD	9/25/2013	со	Back end ammonia process vent flare	804.76	lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		Process Flare		No Numeric Limit	Good combustion practices. Meet 40 CFR 60.18
United Wisconsin Grain Producers UWGP - Fuel Grade Ethanol Plant	WI-0204	8/14/2003		Bypass Flare, Biomethanator		lbs/hr	Operation Limit: No more than 5040 hr/yr
Ohio Valley Resources, LLC	TBD	9/25/2013		Ammonia Storage Flare		lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009	CO	Ammonia Storage Flare		No Numeric Limit	Good combustion practices. Meet 40 CFR 60.18
Iowa Fertilizer Company	IA-0105	10/26/2012	CO2	Ammonia Flare		No Numeric Limit	Work Practice/Good Combustion Practices
			002				
Ohio Valley Resources, LLC	TBD	9/25/2013	CO2	Front End Process Flare	511.8	ton/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
		0/20/2010	002		011.0		
Ohio Valley Resources, LLC	TBD	9/25/2013	CO2	Front End Process Flare	116.89	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
	100	0/20/2010	002		110.00	is, minible o noer avorago	
Ohio Valley Resources, LLC	TBD	9/25/2013	CO2	Back end ammonia process vent flare	116.89	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Valley Resources, LLC	TBD	9/25/2013		Ammonia Storage Flare		lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Flares	No Numeric Limit	No Numeric Limit	Good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Flares	No Numeric Limit	No Numeric Limit	Good operating practices & use of natural gas
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Flares	No Numeric Limit	No Numeric Limit	Good operating practices & use of natural gas
lowa Fertilizer Company	IA-0105	10/26/2012		Ammonia Flare		No Numeric Limit	Work Practice/Good Combustion Practices
Degussa Engineered Carbons Inc. Borger Carbon Black Plant	TX-0436	10/3/2002		Dryers, Boilers, Flare		lb/MMBtu	Good combustion practices and design
Iowa Fertilizer Company	IA-0105	10/26/2012	NOx	Ammonia Flare	No Numeric Limit	No Numeric Limit	Work Practice/Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013	NOx	Front End Process Flare	0.068	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
	100	0/20/2010	HOX .		0.000	is, minible o noer avorago	
Ohio Valley Resources, LLC	TBD	9/25/2013	NOx	Front End Process Flare	595 47	lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
	100	0/20/2010			000.47		
Ohio Valley Resources, LLC	TBD	9/25/2013	NOv	Back end ammonia process vent flare	0.068	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
	100	0/20/2010			0.000	is/minible o nour average	
Ohio Valley Resources, LLC	TBD	9/25/2013	NOx	Back end ammonia process vent flare	624 94	lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		Process Flare		No Numeric Limit	Good combustion practices. Meet 40 CFR 60.19
Ohio Valley Resources, LLC	TBD	9/25/2013		Ammonia Storage Flare		Ib/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Ohio Valley Resources, LLC	TBD	9/25/2013		Ammonia Storage Flare		lb/hr 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		Ammonia Storage Flare	No Numeric Limit	No Numeric Limit	Good combustion practices. Meet 40 CFR 60.19
CF Industries Nitrogen, LLC	IA-0106	7/12/2013		Flares		No Numeric Limit	Good operating practices & use of natural gas
or industries wittogen, ELO	14-0100	1/12/2010					
Ohio Valley Resources, LLC	TBD	9/25/2013	DM	Ammonia Storage Flare	0.0010	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Onlo valley Resources, LLC		5/25/2015			0.0013	ID/MINIBLU S HOUL average	Smokeless flare. Air or steam-assist only if unassisted flare produces smoke. Good combustion
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009	DM	Ammonia Storage Flare	No Numeric Limit	No Numeric Limit	practices. Meet 40 CFR 60.21
Southeast Idano Energy, LEC Power County Advanced Energy Center	10-0017	2/10/2003		Animonia Storage Flare			
Ohio Valley Resources, LLC	TBD	9/25/2013	PM10	Ammonia Storage Flare	0.0075	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
		3/23/2013			0.0075	is/minible 5 hour average	Smokeless flare. Air or steam-assist only if unassisted flare produces smoke. Good combustion
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009	PM10	Ammonia Storage Flare	No Numeric Limit	No Numeric Limit	practices. Meet 40 CFR 60.21
Counces rear Energy, EEO Fower County Advanced Energy Cellier	10-0017	2/10/2009					
Ohio Valley Resources, LLC	TBD	9/25/2013	PM2 5	Ammonia Storage Flare	0.0075	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
Iowa Fertilizer Company	IA-0105	10/26/2012	Visible Emissions	Ammonia Flare		%	Work Practice/Good Combustion Practices
	17-0105	10/20/2012			0	70	
Ohio Valley Resources, LLC	TBD	9/25/2013	VOC	Ammonia Storage Flare	0.0054	lb/MMBtu 3 hour average	Proper flare design and good combustion practices; and process flaring minimization practices
One valley Nesources, ELO		5/20/2015	100	Annonia Storage i late	0.0054	ioniniblu o nour average	. Topo, and process name and process name manner process and process name minimization practices

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times. Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they do not flare common process gas.

KNO Restart **RBLC Search Summary** Search: "Urea" - All Results Included Unit 47 - Urea Loading Unit 47a - Urea Transfer Unit 47b - Urea Transfer

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
				Truck and Rail Loading			Baghouse (4800 metric
Midwest Fertilizer Company LLC	IN-0263	3/23/17 (draft)	PM	Operation (EU-021A)	0.15	lb/hr 3 hour average	ton/day)
				Truck and Rail Loading			Baghouse (4800 metric
Midwest Fertilizer Company LLC	IN-0263	3/23/17 (draft)	PM10	Operation (EU-021A)	0.15	lb/hr 3 hour average	ton/day)
				Truck and Rail Loading			Baghouse (4800 metric
Midwest Fertilizer Company LLC	IN-0263	3/23/17 (draft)	PM2.5	Operation (EU-021A)	0.15	lb/hr 3 hour average	ton/day)
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM	Urea Loading		lb/ton average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM	Urea Loading	5.48	tpy rolling 12 month total	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012		Granulated Urea Transfer	0.005	gr/dscf average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM10	Urea Loading	0.0011	lb/ton average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM10	Urea Loading	2.01	tpy rolling 12 month total	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012	PM10	Granulated Urea Transfer	0.005	gr/dscf average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM2.5	Urea Loading	0.0011	lb/ton average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM2.5	Urea Loading	1.97	tpy rolling 12 month total	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012		Granulated Urea Transfer	0.0013	gr/dscf average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	Visible Emissions	Urea Loading	0	%	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012	Visible Emissions	Granulated Urea Transfer	0	% opacity	Bin Vent Filter

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
				Truck and Rail Loading			Baghouse (4800 metric
Midwest Fertilizer Company LLC	IN-0263	3/23/17 (draft)	PM	Operation (EU-021A)	0.15	lb/hr 3 hour average	ton/day)
				Truck and Rail Loading			Baghouse (4800 metric
Midwest Fertilizer Company LLC	IN-0263	3/23/17 (draft)	PM10	Operation (EU-021A)	0.15	lb/hr 3 hour average	ton/day)
				Truck and Rail Loading			Baghouse (4800 metric
Midwest Fertilizer Company LLC	IN-0263	3/23/17 (draft)	PM2.5	Operation (EU-021A)	0.15	lb/hr 3 hour average	ton/day)
			-				
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM	Urea Loading	0.003	lb/ton average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM	Urea Loading	5.48	tpy rolling 12 month total	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012	PM	Granulated Urea Transfer	0.005	gr/dscf average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM10	Urea Loading	0.0011	lb/ton average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM10	Urea Loading	2.01	tpy rolling 12 month total	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012	PM10	Granulated Urea Transfer	0.005	gr/dscf average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM2.5	Urea Loading	0.0011	lb/ton average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106	7/12/2013	PM2.5	Urea Loading	1.97	tpy rolling 12 month total	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012	PM2.5	Granulated Urea Transfer	0.0013	gr/dscf average of 3 stack tests	Bin Vent Filter
CF Industries Nitrogen, LLC	IA-0106		Visible Emissions	Urea Loading	0	%	Bin Vent Filter
Iowa Fertilizer Company	IA-0105	10/26/2012	Visible Emissions	Granulated Urea Transfer	0	% opacity	Bin Vent Filter

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

KNO Restart RBLC Search Summary Search: "16.210 - combined cycle & cogen <25 MW" - All Results Unit 55-Solar Turbines Unit 56-Solar Turbines Unit 57-Solar Turbines Unit 58-Solar Turbines Unit 59-Solar Turbines

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/2016	NOx	Solar Titan 130 Gas Turbine with Unfired HRSG (3-08, EQT 323)	14.25	5 lb/hr hourly maximum	Dry low NOx combust design, use of gaseou BTU/HR) (Output pow Good combustion prac flow, fuel consumptior manufacturer's recom proper operation of the
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/2016		Solar Titan 130 Gas Turbine with Unfired HRSG (3-08, EQT 323)	15	5 ppmv @ 15% O2 Annual Average	Dry low NOx combuste design, use of gaseous BTU/HR) (Output pow Good combustion prac flow, fuel consumption manufacturer's recom proper operation of the
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/2016	voc	Solar Titan 130 Gas Turbine with Unfired HRSG (3-08, EQT 323)	1.64	t Ib/hr hourly maximum	Good combustion prac mixing, and proper cor maximize fuel efficience 14.117 MW) Turbine is include monitoring of th gas temperature. These operating guidelines of emissions unit. PSD p the frequency of the te exceeds 75% of the period
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/2016	voc	Solar Titan 130 Gas Turbine with Unfired HRSG (3-08, EQT 323)	2.5	5 ppmv @ 15% O2 Annual Average	Good combustion prac mixing, and proper com maximize fuel efficient 14.117 MW) Turbine is include monitoring of t gas temperature. These operating guidelines o emissions unit. PSD p the frequency of the te exceeds 75% of the pro-
Matem Limited Partnership - Medical Area Total Energy Plant	MA-0041	7/1/16, 4/28/17 update	NOx	Combustion Turbine with Duct Burner		ppmv @ 15% O2 1-hour block 2 avg/excluding SS - ng firing	NSPS and SIP - Dry L Megawatt (MW) Solar permitted to burn fuel (38.8MMBtu/hr NG firii NOx(firing NG): ≤0.00 start-ups (≤3 hrs): ≤36
Matem Limited Partnership - Medical Area Total Energy Plant	MA-0041	7/1/16, 4/28/17 update	со	Combustion Turbine with Duct Burner		ppmv @ 15% O2 1-hour block 2 avg/excluding SS - ng firing	SIP - Oxidation Cataly Generator (164.6MMB Generator including a BACT under 310 CMR Ib/hr(with duct firing); o Ib per event.

ı

ustor (SoLoNOx) and good combustion practices, including good equipment ous fuels for good mixing, and proper combustion techniques (159.46 MM ower at generator: 14.117 MW) Turbine is subject to 40 CFR 60 Subpart KKKK. practices shall include monitoring of the flue gas oxygen content, combustion air ion, and flue gas temperature. These parameters shall be maintained within the promended operating guidelines or within a range that is otherwise indicative of the emissions unit.

ustor (SoLoNOx) and good combustion practices, including good equipment ous fuels for good mixing, and proper combustion techniques (159.46 MM ower at generator: 14.117 MW) Turbine is subject to 40 CFR 60 Subpart KKKK. rractices shall include monitoring of the flue gas oxygen content, combustion air ion, and flue gas temperature. These parameters shall be maintained within the promended operating guidelines or within a range that is otherwise indicative of the emissions unit.

ractices, including good equipment design, use of gaseous fuels for good combustion techniques consistent with the manufacturer's recommendations to ency and minize emissions. (159.46 MM BTU/HR) (Output power at generator: e is subject to 40 CFR 60 Subpart KKKK. Good combustion practices shall of the flue gas oxygen content, combustion air flow, fuel consumption, and flue nese parameters shall be maintained within the manufacturer's recommended s or within a range that is otherwise indicative of proper operation of the permit requires an annual stack test for VOC. If VOC < 75% of the permit limit, testing may be reduced to once every 2 years. If result of any subsequent test permit limit, resume annual testing.

ractices, including good equipment design, use of gaseous fuels for good combustion techniques consistent with the manufacturer's recommendations to ency and minize emissions. (159.46 MM BTU/HR) (Output power at generator: e is subject to 40 CFR 60 Subpart KKKK. Good combustion practices shall of the flue gas oxygen content, combustion air flow, fuel consumption, and flue hese parameters shall be maintained within the manufacturer's recommended s or within a range that is otherwise indicative of proper operation of the D permit requires an annual stack test for VOC. If VOC < 75% of the permit limit, e testing may be reduced to once every 2 years. If result of any subsequent test e permit limit, resume annual testing.

y Low NOx Combustor & Selective Catalytic Reduction (a nominal 14.4 lar Titan 130 Combustion Turbine Generator (164.6MMBtu/hr for NG firing(also lel oil)) with Heat Recovery Steam Generator including a Duct Burner) firing only). NOx limits are determined as BACT under 310 CMR 7.02(8). 0074 lb/MMBtu, ≤1.21 lb/hr(no duct firing), ≤1.51 lb/hr(with duct firing); during i36.2 lb per event, during shutdowns (≤1 hr): ≤11.2 lb per event. alyst (a nominal 14.4 Megawatt (MW) Solar Titan 130 Combustion Turbine MBtu/hr for NG firing(also permitted to burn fuel oil)) with Heat Recovery Steam

MBtu/hr for NG firing(also permitted to burn fuel oil)) with Heat Recovery Steam a Duct Burner) (38.8MMBtu/hr NG firing only). CO limits are determined as MR 7.02(8). CO(firing NG): ≤0.0045 lb/MMBtu, ≤0.74 lb/hr(no duct firing), ≤0.92); during start-ups (≤3 hrs): ≤153.7 lb per event, during shutdowns (≤1 hr): ≤41.6

KNO Restart RBLC Search Summary Search: "16.210 - combined cycle & cogen <25 MW" - All Results Unit 55-Solar Turbines Unit 56-Solar Turbines Unit 57-Solar Turbines Unit 58-Solar Turbines Unit 59-Solar Turbines

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	VOC	Combustion Turbine with Duct Burner	1.7	ppmv @ 15% O2 1-hour block avg/excluding SS - ng firing	SIP - Oxidation Catalys Generator (164.6MMBI Generator including a I BACT under 310 CMR firing), ≤0.45 lb/hr(with (≤1 hr): ≤3.3 lb per eve
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	SO2	Combustion Turbine with Duct Burner	0.6	ppmv @ 15% O2 1-hour block avg/excluding SS - ng firing	NSPS and SIP - clean Solar Titan 130 Combu fuel oil as backup)) with NG firing only). SO2 lin ≤0.0029 lb/MMBtu, ≤0. ≤1.8 lb per event, durin
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	Sulfuric Acid (mist, vapors, etc)	Combustion Turbine with Duct Burner	0.4	ppmv @ 15% O2 1-hour block avg/excluding SS - ng firing	SIP - clean fuels - using 130 Combustion Turbin backup)) with Heat Rec only). H2SO4 limits are ≤0.0029lb/MMBtu, ≤0.4 ≤1.8 lb per event, durin
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	Ammonia (NH3)	Combustion Turbine with Duct Burner	2	ppmv @ 15% O2 1-hour block avg/excluding SS - ng firing	SIP - no controls listed Generator (164.6MMBI Recovery Steam Gene determined as BACT u lb/hr(with duct firing); N ≤0.57 lb/hr(with duct fir
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	Ammonia (NH3)	Combustion Turbine with Duct Burner	0.0027	lb/MMBtu 1-hour block avg/excluding SS - ng firing	SIP - no controls listed Generator (164.6MMB Recovery Steam Gene determined as BACT u Ib/hr(with duct firing); N ≤0.57 Ib/hr(with duct fir
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	TPM10	Combustion Turbine with Duct Burner	0.02	lb/MMBtu 1-hour block avg/excluding SS - ng firing	SIP - no controls listed Generator (164.6MMBt Recovery Steam Gene NG): <3.29 lb/hr(no duo event, during shutdowr SIP - no controls listed
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	TPM2.5	Combustion Turbine with Duct Burner	0.02	lb/MMBtu 1-hour block avg/excluding SS - ng firing	Generator (164.6MMBi Recovery Steam Gene NG): ≤3.29 lb/hr(no du event, during shutdowr SIP - no controls listed
Matem Limited Partnership - Medical Area Tota	al Energy Plant MA-0041	7/1/16, 4/28/17 update	CO2e	Combustion Turbine with Duct Burner	119	lb/MMBtu 1-hour block avg/excluding SS - ng firing	Generator (164.6MMBt Recovery Steam Gene NG): ≤19,584 lb/hr(no d

ı

alyst (a nominal 14.4 Megawatt (MW) Solar Titan 130 Combustion Turbine //Btu/hr for NG firing(also permitted to burn fuel oil)) with Heat Recovery Steam a Duct Burner) (38.8M/Btu/hr NG firing only). VOC limits are determined as //R 7.02(8). VOC as CH4(firing NG): ≤0.0022 lb/M/Btu, ≤0.36 lb/hr(no duct ith duct firing); during start-ups (≤3 hrs): ≤11.4 lb per event, during shutdowns event VOC as CH4.

an fuels - using natural gas as primary fuel (a nominal 14.4 Megawatt (MW) nbustion Turbine Generator (164.6MMBtu/hr for NG firing(also permitted to burn with Heat Recovery Steam Generator including a Duct Burner) (38.8MMBtu/hr ! limits are determined as BACT under 310 CMR 7.02(8). SO2(firing NG): ≤ 0.48 lb/hr(no duct firing), ≤ 0.58 lb/hr(with duct firing); during start-ups (≤ 3 hrs): uring shutdowns (≤ 1 hr): ≤ 0.6 lb per event.

Ising natural gas as primary fuel (a nominal 14.4 Megawatt (MW) Solar Titan Irbine Generator (164.6MMBtu/hr for NG firing(also permitted to burn fuel oil as Recovery Steam Generator including a Duct Burner) (38.8MMBtu/hr NG firing are determined as BACT under 310 CMR 7.02(8). H2SO4(firing NG): ≤0.47 lb/hr(no duct firing), ≤0.58 lb/hr(with duct firing); during start-ups (≤3 hrs): uring shutdowns (≤1 hr): ≤0.6 lb per event.

ed (a nominal 14.4 Megawatt (MW) Solar Titan 130 Combustion Turbine IBtu/hr for NG firing(also permitted to burn fuel oil as backup)) with Heat nerator including a Duct Burner) (38.8MMBtu/hr NG firing only). NH3 limits are I under 310 CMR 7.02(8). NH3(firing NG): ≤0.44 lb/hr(no duct firing), ≤0.55 ; NH3(turbine firing ULSD): ≤0.0029 lb/MMBtu, ≤0.46 lb/hr(no duct firing), firing).

ed (a nominal 14.4 Megawatt (MW) Solar Titan 130 Combustion Turbine //Btu/hr for NG firing(also permitted to burn fuel oil as backup)) with Heat enerator including a Duct Burner) (38.8MMBtu/hr NG firing only). NH3 limits are T under 310 CMR 7.02(8). NH3(firing NG): ≤0.44 lb/hr(no duct firing), ≤0.55 ; NH3(turbine firing ULSD): ≤0.0029 lb/MMBtu, ≤0.46 lb/hr(no duct firing), ; firing).

ed (a nominal 14.4 Megawatt (MW) Solar Titan 130 Combustion Turbine *I*Btu/hr for NG firing(also permitted to burn fuel oil as backup)) with Heat enerator including a Duct Burner) (38.8MMBtu/hr NG firing only). PM10(firing duct firing), \leq 4.07 lb/hr(with duct firing); during start-ups (\leq 3 hrs): \leq 12.2 lb per bwns (\leq 1 hr): \leq 4.1 lb per event.

ed (a nominal 14.4 Megawatt (MW) Solar Titan 130 Combustion Turbine //Btu/hr for NG firing(also permitted to burn fuel oil as backup)) with Heat enerator including a Duct Burner) (38.8MMBtu/hr NG firing only). PM2.5(firing duct firing), \leq 4.07 lb/hr(with duct firing); during start-ups (\leq 3 hrs): \leq 12.2 lb per bwns (\leq 1 hr): \leq 4.1 lb per event.

ed (a nominal 14.4 Megawatt (MW) Solar Titan 130 Combustion Turbine //Btu/hr for NG firing(also permitted to burn fuel oil as backup)) with Heat enerator including a Duct Burner) (38.8MMBtu/hr NG firing only). CO2e(firing no duct firing), ≤24,200 lb/hr(with duct firing).

KNO Restart RBLC Search Summary Search: "16.210 - combined cycle & cogen <25 MW" - All Results Unit 55-Solar Turbines Unit 56-Solar Turbines Unit 57-Solar Turbines Unit 58-Solar Turbines Unit 59-Solar Turbines

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Wesleyan University	CT-0155	8/27/2008	B CO	2.4 MW natural gas fired cogeneration facility	0.48	G/B-HP-H short term emission limit	oxidation catalyst
Wesleyan University	CT-0155	8/27/2008	B CO	2.4 MW natural gas fired cogeneration facility	15.51	tpy annual emission limit	oxidation catalyst
Geisinger Medical Center	PA-0289	6/18/2010	со	Combined heat and power combustion turbine	25	ppm @ 15% O2 in solonox mode	Unknown
Geisinger Medical Center	PA-0289	6/18/2010	со	Combined heat and power combustion turbine	100	ppm @ 15% O2 in non solonox mode	Unknown
Geisinger Medical Center	PA-0289	6/18/2010) Formaldehyde	Combined heat and power combustion turbine	0.0029	lb/MMBtu	Unknown
Wesleyan University	CT-0155	8/27/2008	NOx	2.4 MW natural gas fired cogeneration facility	0.18	G/B-HP-H short term emission limit	Steuler Eco2pro SCR
Wesleyan University	CT-0155	8/27/2008	NOx	2.4 MW natural gas fired cogeneration facility	5.82	tpy annual emission limit	Steuler Eco2pro SCR
Cutrale Citrus Juices USA Auburndale citrus facility	FL-0313	6/12/2008	NOx	Cogen System Turbine NO.1 W/existing duct Burner #1	25	PPMVD hr average/corrected to 25%O2	dry low NOx burners
Cutrale Citrus Juices USA Leesburg citrus facility	FL-0314	6/2/2008	3 NOx	Cogen System Turbine & existing steam generator	25	PPMVD hr average/corrected to 25%O2	dry low NOx burners
Geisinger Medical Center	PA-0289	6/18/2010	NOx	Combined heat and power combustion turbine	15	ppm @ 15% O2 in solonox mode	SoLoNOx combustor
Geisinger Medical Center	PA-0289	6/18/2010) NOx	Combined heat and power combustion turbine		ppm @ 15% O2 in non solonox mode	SoLoNOx combustor
Cornell university Cornell combined heat & power project	NY-0101	3/12/2008	B PM	Combustion Turbines 1, 2, 3	6.5	lb/hr above 1 hour average	sulfur in gas assigned
Cornell university Cornell combined heat & power project	NY-0101	3/12/2008		Combustion Turbines 1, 2, 3	0.022		sulfur in gas assigned
Cornell university Cornell combined heat & power project	NY-0101	3/12/2008	8 PM10	Combustion Turbines 1, 2, 3	6.7	lb/hr above/below 1 hour average	sulfur in gas assigned
Cornell university Cornell combined heat & power project	NY-0101	3/12/2008	9 PM10	Combustion Turbines 1, 2, 3		lb/MMBtu above/below 1 hour average w/duct firing	sulfur in gas assigned
Cornell university Cornell combined heat & power project	NY-0101	3/12/2008	8 PM2.5	Combustion Turbines 1, 2, 3	6.7	lb/hr above/below 1 hour average	sulfur in gas assigned
Cornell university Cornell combined heat & power project	NY-0101	3/12/2008	9 PM2.5	Combustion Turbines 1, 2, 3	0.023	lb/MMBtu above/below 1 hour average w/duct firing	sulfur in gas assigned
Geisinger Medical Center	PA-0289	6/18/2010	VOC	Combined heat and power combustion turbine	0.6	lb/hr in solonox mode	unknown
Geisinger Medical Center	PA-0289	6/18/2010	VOC	Combined heat and power combustion turbine	11.9	lb/hr sub-zero in non-solonox mode	unknown

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

Some facilities are not shown because they are not fertilizer production facilities. These units are not directly comparable because they do not flare common process gas.

3
२
d max 1.2 gr/100scf; work practices to minimize NHZ slip
d max 1.2 gr/100scf; work practices to minimize NHZ slip
d max 1.2 gr/100scf; work practices to minimize NHZ slip
d max 1.2 gr/100scf; work practices to minimize NHZ slip
d max 1.2 gr/100scf; work practices to minimize NHZ slip
d max 1.2 gr/100scf; work practices to minimize NHZ slip

KNO Restart **RBLC Search Summary** Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 54- Waste Heat Boiler

Unit 54- Waste Heat Boiler							
Facility Name	RBLCID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	B.
Nucor Steel Kankakee, Inc.	IL-0126	11/1/2018, updated 2/19/2019	FPM	Gas-Fired Space Heaters (25 MMBtu/hr)	0.0019	lb/MMBtu Individual Units	0
Nucor Steel Kankakee, Inc.	IL-0126	11/1/2018, updated 2/19/2019	FPM	Gas-Fired Space Heaters (25 MMBtu/hr)	0.15	lb/hr (total from all units)	Pe
Nucor Steel Kankakee, Inc.	IL-0126	11/1/2018, updated 2/19/2019	NOx	Gas-Fired Space Heaters (25 MMBtu/hr)	0.1	lb/MMBtu Individual Units	G
Nucor Steel Kankakee, Inc.	IL-0126	11/1/2018, updated 2/19/2019	NOx	Gas-Fired Space Heaters (25 MMBtu/hr)	1.93	lb/hr (total from all units)	G
Nucor Steel Kankakee, Inc.	IL-0126	11/1/2018, updated 2/19/2019	CO2e	Gas-Fired Space Heaters (25 MMBtu/hr)	10197	ton/year	G of
Nucor Steel Kankakee, Inc.	IL-0126	11/1/2018, updated 2/19/2019	TPM10	Gas-Fired Space Heaters (25 MMBtu/hr)	0.0075	lb/MMBtu Individual Units	(Т
Nucor Steel Kankakee, Inc.	IL-0126	11/1/2018, updated 2/19/2019	TPM2.5	Gas-Fired Space Heaters (25 MMBtu/hr)	0.0075	lb/MMBtu Individual	(E
						1	
Green Bay Packaging, Inc Shipping Container Division	WI-0266	9/6/2018, updated 2/19/2019	voc	Natural gas-fired boiler (Boiler B01) (35 MMBtu/hr)	0.0055	lb/MMBtu	G bເ
Green Bay Packaging, Inc Shipping Container Division	WI-0266	9/6/2018, updated 2/19/2019	CO2e	Natural gas-fired boiler (Boiler B01) (35 MMBtu/hr)	160	lb CO2e/1000 lb steam	G bເ
							Т
Green Bay Packaging, Inc Shipping Container Division	WI-0266	9/6/2018, updated 2/19/2019	VOC	Space heaters (process P53) (40 MMBtu/hr)	0.0055	lb/MMBtu	G
Green Bay Packaging, Inc Shipping Container Division	WI-0266	9/6/2018, updated 2/19/2019	CO2e	Space heaters (process P53) (40 MMBtu/hr)	no numerical limit		m
				Auxiliary Boiler (96 MMBtu/hr) (used on an			U
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	NOx	intemittent basis (up to 4000 hrs/yr)	0.011	lb/MMBtu 3-hr avg	bl
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	NOx	Auxiliary Boiler (96 MMBtu/hr) (used on an internittent basis (up to 4000 hrs/yr)	1.1	lb/hr	P
				Auxiliary Boiler (96 MMBtu/hr) (used on an			
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	NOx	intemittent basis (up to 4000 hrs/yr)	2.2	ton/year	Pe
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	со	Auxiliary Boiler (96 MMBtu/hr) (used on an intemittent basis (up to 4000 hrs/yr)	0.037	lb/MMBtu 3-hr avg	G
				Auxiliary Boiler (96 MMBtu/hr) (used on an			
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	со	intemittent basis (up to 4000 hrs/yr)	3.6	lb/hr	Pe
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	со	Auxiliary Boiler (96 MMBtu/hr) (used on an internittent basis (up to 4000 hrs/yr)	7.2	ton/year	Pe
			TPM (PM, PM10	Auxiliary Boiler (96 MMBtu/hr) (used on an			
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	and PM2.5)	intemittent basis (up to 4000 hrs/yr)	0.0075	no units listed	G
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	TPM (PM, PM10 and PM2.5)	Auxiliary Boiler (96 MMBtu/hr) (used on an internittent basis (up to 4000 hrs/yr)	0.72	lb/hr	P
			TPM (PM, PM10	Auxiliary Boiler (96 MMBtu/hr) (used on an			
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	and PM2.5)	intemittent basis (up to 4000 hrs/yr)	1.44	ton/year	Pe
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	Sulfuric Acid (mist,	Auxiliary Boiler (96 MMBtu/hr) (used on an internittent basis (up to 4000 hrs/yr)	0.1	lb/br	G
OF V THEE RIVERS, LLO - EHEIGY CERTER	129	1/30/2010, upualeu 2/19/2019	vapors, etc)		0.1	lb/hr	G
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	Sulfuric Acid (mist, vapors, etc)	Auxiliary Boiler (96 MMBtu/hr) (used on an intemittent basis (up to 4000 hrs/yr)	0.2	ton/year	Pe
				Auxiliary Boiler (96 MMBtu/hr) (used on an		ton/year 12-month rolling	
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	CO2e	intemittent basis (up to 4000 hrs/yr)	22500	avg	G

BACT Determination
Operate and maintain in accordance with manufacturer's design
Permit Limit
Good combustion practices
Good combustion practices
Good combustion practices (Compliance with limit in accordance with provisions of 40 CFR Part 98)
(Test methods EPA/OAR Mthd 201 and OTM 28) (BACT-PSD)
(BACT-PSD)
Good combustion practices, use only natural gas, equip boiler with Low NOx burners and flue gas recirculation
Good combustion practices, use only natural gas, equip boiler with Low NOx burners and flue gas recirculation
1
Good combustion practices, use only natural gas, equip with Low NOx burners Good combustion practices, use only natural gas, equip with Low NOx burners
minimum design annual fuel utilization efficiency of 90%
Ultre low NOv humans and flue see resized lation of much actor, outermated
Ultra-low NOx burners and flue gas recirculation, air preheater, automated combusion managment system with O2 trim system and automated water blowdown, and good combustion practices (LAER)
Permit Limit
Permit Limit
Good Combustion Practices(BACT-PSD)
Permit Limit
Permit Limit
Good Combustion Practices(BACT-PSD)
Permit Limit
Permit Limit
Good Combustion Practices(BACT-PSD)
Permit Limit
Good Combustion Practices(BACT-PSD)

KNO Restart RBLC Search Summary Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 54- Waste Heat Boiler

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	NOx	Fuel Heater (12.80 MMBtu/hr)	0.011	lb/MMBtu
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	NOx	Fuel Heater (12.80 MMBtu/hr)	0.45	lb/hr
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	NOx	Fuel Heater (12.80 MMBtu/hr)	2.0	ton/year
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	со	Fuel Heater (12.80 MMBtu/hr)	0.08	lb/hr
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	со	Fuel Heater (12.80 MMBtu/hr)	1.02	lb/hr
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	CO	Fuel Heater (12.80 MMBtu/hr)	4.5	ton/year
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	TPM (PM, PM10 and PM2.5)	Fuel Heater (12.80 MMBtu/hr)	0.0075	lb/MMBtu
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	Sulfuric Acid (mist, vapors, etc)	Fuel Heater (12.80 MMBtu/hr)	0.014	
CPV Three Rivers, LLC - Energy Center	IL-0129	7/30/2018, updated 2/19/2019	CO2e	Fuel Heater (12.80 MMBtu/hr)	6600	ton/year 12-month rolling avg
DTF Floatric Company, Della Diver Combined Curle Dever Diant	NI 0425	7/40/2010 undeted 2/40/2010	<u></u>		0.007	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	CO	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)		lb/mmbtu hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	со	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.7	lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	NOx	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.036	lb/mmbtu hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	NOx	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	3.6	lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	FPM	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.007	lb/mmbtu hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	FPM	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.7	lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM10	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.007	lb/mmbtu hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM10	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.7	lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM2.5	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.075	lb/mmbtu hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM2.5	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	7.49	lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	VOC	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.008	lb/mmbtu hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	VOC	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.8	lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	Sulfuric Acid (mist, vapors, etc)	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)	0.34	gr s/100 scf Fuel supplier records
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	CO2e	EUAUXBOILER: Auxiliary Boiler (99.9 MMBtu/hr)		ton/year 12-month rolling time period
			1		1	Ге релое Г.
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	со	EUFUELHTR1: Natural gas fired fuel heater (20.80 MMBtu/hr)	0.77	lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	NOx	EUFUELHTR1: Natural gas fired fuel heater (20.80 MMBtu/hr)		lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	FPM	EUFUELHTR1: Natural gas fired fuel heater (20.80 MMBtu/hr)		lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM10	EUFUELHTR1: Natural gas fired fuel heater (20.80 MMBtu/hr)		lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM2.5	EUFUELHTR1: Natural gas fired fuel heater (20.80 MMBtu/hr)		lb/hr hourly
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	VOC	EUFUELHTR1: Natural gas fired fuel heater (20.80 MMBtu/hr)		lb/hr hourly
	1			, , , , , , , , , , , , , , , , , , ,		, ,

BACT Determination

LAER NSPS - Low NOx burners

Permit Limit

Permit Limit

Good Combustion Practices(BACT-PSD)

Permit Limit

Permit Limit

Good Combustion Practices(BACT-PSD)

Good Combustion Practices(BACT-PSD)

Good Combustion Practices(BACT-PSD)

Good Combustion Practices, Low Sulfur Fuel (BACT-PSD SIP)

Good Combustion Practices, Low Sulfur Fuel (BACT-PSD SIP) Low NOx Burners/Flue Gas Recirculation (SCR not cost effective) (BACT-PSD

SIP) Low NOx Burners/Flue Gas Recirculation (SCR not cost effective) (BACT-PSD SIP)

Good Combustion Practices, Low Sulfur Fuel (BACT-PSD SIP)

Good Combustion Practices (BACT-PSD SIP)

Good Combustion Practices (BACT-PSD SIP)

Good Combustion Controls (BACT-PSD SIP)

Good Combustion Controls (BACT-PSD SIP)

Good Combustion Practices, Low Sulfur Fuel (BACT-PSD NSPS SIP)

Energy Efficiency Measures, Use of Natural Gas (BACT-PSD)

Good Combustion Controls (BACT-PSD SIP)

Low NOx Burners (BACT-PSD SIP)

Low Sulfur Fuel (BACT-PSD SIP)

Low Sulfur Fuel (Oxidation catalyst is not economically feasible) (BACT-PSD SIP)

Low Sulfur Fuel (BACT-PSD SIP)

Good Combustion Controls (BACT-PSD SIP)

KNO Restart RBLC Search Summary Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 53- Waste Heat Boiler

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
			Sulfuric Acid (mist,	EUFUELHTR1: Natural gas fired fuel heater (20.80		gr s/100 scf Fuel supplier	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	vapors, etc)	MMBtu/hr)	0.34	records	Low Sulfur Fuel (BACT-PSD SIP)
						ton/year 12-month rolling	
						time period (combined	
				EUFUELHTR1: Natural gas fired fuel heater (20.80		EUFUELHTR1 and	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	CO2e	MMBtu/hr)		EUFUELHTR2)	Natural Gas Fuel (BACT-PSD)
					0010		
				EUFUELHTR2: Natural gas fired fuel heater (3.80			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	CO	MMBtu/hr)	0.14	lb/hr hourly	Good Combustion Controls (BACT-PSD SIP)
				EUFUELHTR2: Natural gas fired fuel heater (3.80			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	NOx	MMBtu/hr)	0.14	lb/hr hourly	Low NOx Burners (BACT-PSD SIP)
DTE Electric Company, Balla Diver Combined Ovela Dower Diant	MI-0435	7/16/2018 undeted 2/10/2010	FPM	EUFUELHTR2: Natural gas fired fuel heater (3.80 MMBtu/hr)	0.02	lb/br bourby	Low Sulfur Fuel (BACT-PSD SIP)
DTE Electric Company - Belle River Combined Cycle Power Plant	1011-0435	7/16/2018, updated 2/19/2019	FPIN	EUFUELHTR2: Natural gas fired fuel heater (3.80	0.03	lb/hr hourly	Low Sullur Fuel (BACT-PSD SIP)
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM10	MMBtu/hr)	0.03	lb/hr hourly	Low Sulfur Fuel (oxidation catalyst not economically feasible) (BACT-PSD SIP)
				EUFUELHTR2: Natural gas fired fuel heater (3.80	0.00		
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	TPM2.5	MMBtu/hr)	0.03	lb/hr hourly	BACT PSD SIP Low Sulfur Fuel (BACT-PSD SIP)
				EUFUELHTR2: Natural gas fired fuel heater (3.80			
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	VOC	MMBtu/hr)	0.03	lb/hr hourly	Good Combustion Controls (BACT-PSD SIP)
			Sulfuric Acid (mist,	EUFUELHTR2: Natural gas fired fuel heater (3.80		gr s/100 scf Fuel supplier	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	vapors, etc)	MMBtu/hr)	0.34	records	Low Sulfur Fuel (BACT-PSD SIP)
						ton/year 12-month rolling	
				EUFUELHTR2: Natural gas fired fuel heater (3.80		time period (combined EUFUELHTR1 and	
DTE Electric Company - Belle River Combined Cycle Power Plant	MI-0435	7/16/2018, updated 2/19/2019	CO2e	MMBtu/hr)	6310	EUFUELHTR2)	Natural Gas Fuel (BACT-PSD)
	101-0-00	1710/2010, updated 2/13/2013	0020	(MMB(d/H))	0310		
				EUAUXBOILER (North Plant): Auxiliary Boiler (61.5	5		Good Combustion Practices (oxidation catalyst not economically feasible) (BACT-
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	со	MMBtu/hr)		lb/MMBtu hourly	PSD SIP)
				EUAUXBOILER (North Plant): Auxiliary Boiler (61.5	5	lb/MMBtu 30-day rolling	Low NOx Burners/flue gas recirculation and good combustion practices (SCR not
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	NOx	MMBtu/hr)		avg time period	economically feasible) (BACT-PSD SIP)
				EUAUXBOILER (North Plant): Auxiliary Boiler (61.5	5		
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	FPM	MMBtu/hr)		lb/MMBtu hourly	Good Combustion Practices (BACT-PSD SIP)
			751440	EUAUXBOILER (North Plant): Auxiliary Boiler (61.5			Good Combustion Practices (no control equipment economically feasible) (BACT-
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	TPM10	MMBtu/hr) EUAUXBOILER (North Plant): Auxiliary Boiler (61.5	0.46	lb/hr hourly	PSD SIP)
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	ML 0400	C/20/2018 updated 2/10/2010		MMBtu/hr)		lle /le r le e unit r	Good Combustion Practices (no control equipment economically feasible) (BACT- PSD SIP)
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	TPM2.5	EUAUXBOILER (North Plant): Auxiliary Boiler (61.5		lb/hr hourly	Good Combustion Practices (oxidation catalysts not economically feasible) (BACT
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	VOC	MMBtu/hr)		lb/MMBtu hourly	PSD SIP)
		0,20,2010, updatod 2,10,2010		EUAUXBOILER (North Plant): Auxiliary Boiler (61.5		IS/MINDIA HOUNY	Good Combustion Practices and use of pipeline quality natural gas (BACT-PSD
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	SO2	MMBtu/hr)		lb/MMscf monthly	NSPS SIP)
				,			Good Combustion Practices and use of pipeline quality natural gas (emission
				EUAUXBOILER (North Plant): Auxiliary Boiler (61.5	5	gr s/100 scf Fuel supplier	factor based on natural gas material limit of 2,000 grains of sulfur per MMSCF)
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	SO2	MMBtu/hr)		records	(BACT-PSD NSPS SIP)
				EUAUXBOILER (North Plant): Auxiliary Boiler (61.5			Energy efficiency measures and the use of a low carbon fuel (pipeline quality
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	CO2e	MMBtu/hr)	31540	time period	natural gas) (BACT-PSD)
				EUAUXBOILER (South Plant): Auxiliary Boiler			Coord Combustion Describes (avidation actaluation to companying) (DACT
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	0	(61.5 MMBtu/hr)	0.00	lb/MMBtu hourly	Good Combustion Practices (oxidation catalyst not economically feasible) (BACT- PSD SIP)
Marshan Energy Center EEC - MEC NOTH, EEC and MEC Could, EEC	101-0400	0/20/2010, updated 2/10/2019		EUAUXBOILER (South Plant): Auxiliary Boiler	0.00	Ib/MMBtu 30-day rolling	Low NOx Burners/flue gas recirculation and good combustion practices (SCR not
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	NOx	(61.5 MMBtu/hr)	0.04	avg time period	economically feasible) (BACT-PSD SIP)
· · · · · · · · · · · · · · · · · · ·				EUAUXBOILER (South Plant): Auxiliary Boiler	0.01		
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	FPM	(61.5 MMBtu/hr)	0.005	lb/MMBtu hourly	Good Combustion Practices (BACT-PSD SIP)
				EUAUXBOILER (South Plant): Auxiliary Boiler			Good Combustion Practices (no control equipment economically feasible) (BACT-
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	TPM10	(61.5 MMBtu/hr)	0.46	lb/hr hourly	PSD SIP)
				EUAUXBOILER (South Plant): Auxiliary Boiler			Good Combustion Practices (no control equipment economically feasible) (BACT-
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	TPM2.5	(61.5 MMBtu/hr)	0.46	lb/hr hourly	PSD SIP)
			100	EUAUXBOILER (South Plant): Auxiliary Boiler			Good Combustion Practices (oxidation catalysts not economically feasible) (BACT
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	VOC	(61.5 MMBtu/hr)	0.004	Ib/MMBtu hourly	PSD SIP)

KNO Restart RBLC Search Summary Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 54- Waste Heat Boiler

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	SO2	EUAUXBOILER (South Plant): Auxiliary Boiler (61.5 MMBtu/hr)	1.8	lb/MMscf monthly	Good Combustion Practices and use of pipeline quality natural gas (BACT-PSD NSPS SIP)
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	SO2	EUAUXBOILER (South Plant): Auxiliary Boiler (61.5 MMBtu/hr)			Good Combustion Practices and use of pipeline quality natural gas (emission factor based on natural gas material limit of 2,000 grains of sulfur per MMSCF) (BACT-PSD NSPS SIP)
				EUAUXBOILER (South Plant): Auxiliary Boiler		ton/year 12-month rolling	Energy efficiency measures and the use of a low carbon fuel (pipeline quality
Marshall Energy Center LLC - MEC North, LLC and MEC South, LLC	MI-0433	6/29/2018, updated 2/19/2019	CO2e	(61.5 MMBtu/hr)	31540	time period	natural gas) (BACT-PSD)
Dominion Energy Transmission, Inc Mockingbird Hill Compressor Station	WV-0031	6/14/2018, updated 9/24/2018	TPM2.5	WH-1 - Boiler (8.72 MMBtu/hr)	0.28	ton/year 12-month rolling	Limited to Natural Gas (Monitoring is limit to either fuel usage or tracking hours of operation) (BACT-PSD SIP)
Dominion Energy Transmission, Inc Mockingbird Hill Compressor Station	WV-0031	6/14/2018, updated 9/24/2018	TPM10	WH-1 - Boiler (8.72 MMBtu/hr)	0.28	ton/year 12-month rolling	Limited to Natural Gas (Monitoring is limit to either fuel usage or tracking hours of operation) (BACT-PSD SIP)
Dominion Energy Transmission, Inc Mockingbird Hill Compressor Station	WV-0031	6/14/2018, updated 9/24/2018	ТРМ	WH-1 - Boiler (8.72 MMBtu/hr)	0.28	ton/year 12-month rolling	Limited to Natural Gas (Monitoring is limit to either fuel usage or tracking hours of operation) (BACT-PSD SIP) Restricted to pipeline quality natural gas and tune-up the boiler once every five
Dominion Energy Transmission, Inc Mockingbird Hill Compressor Station	WV-0031	6/14/2018, updated 9/24/2018	CO2e	WH-1 - Boiler (8.72 MMBtu/hr)	4468	ton/year 12-month rolling	
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	со	Auxiliary Boiler (77.8 MMBtu/hr)	2.88	lb/hr	Good Combustion Practices (BACT-PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	со	Auxiliary Boiler (77.8 MMBtu/hr)	6.58	tons/year	Good Combustion Practices (BACT-PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	со	Auxiliary Boiler (77.8 MMBtu/hr)	0.037	lb/MMBtu	Good Combustion Practices (BACT-PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	NOx	Auxiliary Boiler (77.8 MMBtu/hr)	0.86		Low NOx Burners/flue gas recirculation and good combustion practices (BACT- PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	NOx	Auxiliary Boiler (77.8 MMBtu/hr)	1.96		Low NOx Burners/flue gas recirculation and good combustion practices (BACT- PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	NOx	Auxiliary Boiler (77.8 MMBtu/hr)	0.0011		Low NOx Burners/flue gas recirculation and good combustion practices (BACT- PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	ТРМ	Auxiliary Boiler (77.8 MMBtu/hr)	0.6	lb/hr	Low NOx Burners/flue gas recirculation and good combustion practices (BACT- PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	ТРМ	Auxiliary Boiler (77.8 MMBtu/hr)	1.38	tons/year	Low NOx Burners/flue gas recirculation and good combustion practices (BACT- PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	ТРМ	Auxiliary Boiler (77.8 MMBtu/hr)	0.008	lb/MMBtu	Low NOx Burners/flue gas recirculation and good combustion practices (BACT- PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	VOC	Auxiliary Boiler (77.8 MMBtu/hr)	0.62	lb/hr	Use of Natural Gas, Good Combustion Practices (BACT-PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	VOC	Auxiliary Boiler (77.8 MMBtu/hr)	1.42	tons/year	Use of Natural Gas, Good Combustion Practices (BACT-PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	VOC	Auxiliary Boiler (77.8 MMBtu/hr)	0.008	lb/MMBtu	Use of Natural Gas, Good Combustion Practices (BACT-PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	Sulfuric Acid (mist, vapors, etc)	Auxiliary Boiler (77.8 MMBtu/hr)	0.0132	lb/hr	Use of Natural Gas (BACT-PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	Sulfuric Acid (mist, vapors, etc)	Auxiliary Boiler (77.8 MMBtu/hr)	0.03	tons/year	Use of Natural Gas (BACT-PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	Sulfuric Acid (mist, vapors, etc)	Auxiliary Boiler (77.8 MMBtu/hr)	0.0002	lb/MMBtu	Use of Natural Gas (BACT-PSD SIP)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	CO2e	Auxiliary Boiler (77.8 MMBtu/hr)	9107	lb/hr emission limit	Use of Natural Gas (BACT-PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	CO2e	Auxiliary Boiler (77.8 MMBtu/hr)	20837	tons/year emission limit	Use of Natural Gas (BACT-PSD)
ESC Harrison County Power, LLC - Harrison County Power Plant	WV-0029	3/27/2018, updated 6/25/2018	CO2e	Auxiliary Boiler (77.8 MMBtu/hr)	9107	lb/hr standard emission	Use of Natural Gas (BACT-PSD)
Florida Power and Light Company - Dania Beach Energy Center	FL-0363 (draft)	12/4/2017, updated 4/11/2018	со	99.8 MMBtu/hr Auxiliary Boiler	0.08	lb/MMBtu	Clean Fuel (Compliance by initial and annual stack test (EPA/OER mthd 10), or manufacturer guarantee. CO also serves as proxy for VOC.) (BACT-PSD)
Florida Power and Light Company - Dania Beach Energy Center	FL-0363 (draft)	12/4/2017, updated 4/11/2018	SO2	99.8 MMBtu/hr Auxiliary Boiler	no numeric limit		Clean Fuel (May only fire natural gas with sulfur content less than 2 grains per 100 scf. This limits SO2, SAM, PM, PM10, and PM2.5) (BACT-PSD NSPS)

KNO Restart RBLC Search Summary Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 54- Waste Heat Boiler

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit E	Emission Limit Units
Florida Power and Light Company - Dania Beach Energy Center	FL-0363 (draft)	12/4/2017, updated 4/11/2018	Sulfuric Acid (mist, vapors, etc)	99.8 MMBtu/hr Auxiliary Boiler	no numeric limit	
		, , , , , , , , , , , , , , , , ,	,			
Florida Power and Light Company - Dania Beach Energy Center	FL-0363 (draft)	12/4/2017, updated 4/11/2018	FPM	99.8 MMBtu/hr Auxiliary Boiler	no numeric limit	
Florida Power and Light Company - Dania Beach Energy Center	FL-0363 (draft)	12/4/2017, updated 4/11/2018	TPM10	99.8 MMBtu/hr Auxiliary Boiler	no numeric limit	
Florida Power and Light Company - Dania Beach Energy Center	FL-0363 (draft)	12/4/2017, updated 4/11/2018	TPM2.5	99.8 MMBtu/hr Auxiliary Boiler	no numeric limit	
	MI-0424 (draft)					
Holland Board of Public Works - East 5th Street	(update of MI- 0412)	12/5/2016, 7/31/17 update	со	EUAUXBOILER (Auxiliary Boiler)	0.077 w	o/MMBtu Test protocol vill specify avg time
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	NOx	EUAUXBOILER (Auxiliary Boiler)	0.05 w	o/MMBtu Test protocol vill specify avg time
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	FPM	EUAUXBOILER (Auxiliary Boiler)	0.0018 w	o/MMBtu Test protocol vill specify avg time
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	TPM10	EUAUXBOILER (Auxiliary Boiler)	0.007 w	o/MMBtu Test protocol vill specify avg time
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	TPM2.5	EUAUXBOILER (Auxiliary Boiler)	0.007 w	o/MMBtu Test protocol vill specify avg time
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	VOC	EUAUXBOILER (Auxiliary Boiler)	0.008 w	o/MMBtu Test protocol vill specify avg time
Holland Board of Public Works - East 5th Street	MI-0424 (draft)	12/5/2016, 7/31/17 update	CO2e	EUAUXBOILER (Auxiliary Boiler)	43283 p	py 12-month rolling time period
Rextac, LLC - Odessa Petrochemical Plant	TX-0813 (draft)	11/22/2016, 12/1/16 update	VOC	Small Boiler	0.0005 N	/MBtu/hr
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	NOx	Auxilary boiler		.lb/MMBtu Avg of 3 1-hr est runs
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	NOx	Auxilary boiler	tr 2.03 b	py 12-month rolling
						o/MMBtu Avg of 3 1-hr
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	со	Auxilary boiler	0.037 te	•
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	со	Auxilary boiler	tr 6.84 b	py 12-month rolling pasis
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	ТРМ	Auxilary boiler	0.007 lb	o/MMBtu
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	ТРМ	Auxilary boiler	tr 1.29 b	py 12-month rolling
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	TPM10	Auxilary boiler		o/MMBtu
						py 12-month rolling
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	TPM10	Auxilary boiler	1.29 b	
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	TPM2.5	Auxilary boiler	0.007 lk	o/MMBtu
					tr	py 12-month rolling
CPV Fairview, LLC - CPV Fairview Energy Center CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310 PA-0310	9/2/16, 7/31/17 update 9/2/16, 7/31/17 update	TPM2.5 TPM2.5	Auxilary boiler Auxilary boiler		py 12-month rolling

BACT Determination

Clean Fuel (May only fire natural gas with sulfur content less than 2 grains per 100 scf. This limits SO2, SAM, PM, PM10, and PM2.5) (BACT-PSD NSPS)

Clean Fuel (May only fire natural gas with sulfur content less than 2 grains per 100 scf. This limits SO2, SAM, PM, PM10, and PM2.5) (BACT-PSD NSPS)

Clean Fuel (May only fire natural gas with sulfur content less than 2 grains per 100 scf. This limits SO2, SAM, PM, PM10, and PM2.5) (BACT-PSD) Clean Fuel (May only fire natural gas with sulfur content less than 2 grains per 100 scf. This limits SO2, SAM, PM, PM10, and PM2.5) (BACT-PSD)

SIP - Good combustion practices (83.5 MMBtu/hr) SIP - Low NOx burners/Internal flue gas recirculation and good combustion practices (83.5 MMBtu/hr)

Good combustion practices (83.5 MMBtu/hr)

SIP - Good combustion practices (83.5 MMBtu/hr)

SIP - Good combustion practices (83.5 MMBtu/hr)

Good combustion practices (83.5 MMBtu/hr)

Good combustion practices (83.5 MMBtu/hr)

NSPS Dc - Best combustion practices (39.9 MMBtu/hr)

NSPS - Ultra low NOx burners, FGR, good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - Ultra low NOx burners, FGR, good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)

KNO Restart RBLC Search Summary Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 54- Waste Heat Boiler

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
						lb/MMBtu Avg of 3 1-hr	NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	VOC	Auxilary boiler	0.004	test runs	shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)
						tpy 12-month rolling	NSPS - ULSD and good combustion practices (Operation of the auxiliary boiler
CPV Fairview, LLC - CPV Fairview Energy Center	PA-0310	9/2/16, 7/31/17 update	VOC	Auxilary boiler			shall not exceed 4000 hrs in any continuous 12-month period) (92.4 MMBtu/hr)
Otener meter Denner III.O. Mideller eine Franzen Orentere III.O.	N L 0005	7/40/40 44/2/40 undete	NOx	As with much a item	0.075		NSPS - Low Nox burners and FGR and use of natural gas as a clean burning fuel
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	NOX	Auxilary boiler		initial stack test lb/MMBtu avg of three 1-	(97.5 MMBtu/hr)(4000.00 H/YR) NSPS - Low Nox burners and FGR and use of natural gas as a clean burning fuel
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	NOx	Auxilary boiler	0.01		(97.5 MMBtu/hr)(4000.00 H/YR)
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	со	Auxilary boiler	3.6	initial stack test	Use of natural gas as a clean burning fuel and good combustion practices (97.5 MMBtu/hr)(4000.00 H/YR)
							Use of natural gas as a clean burning fuel and good combustion practices (97.5
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	VOC	Auxilary boiler		•	MMBtu/hr)(4000.00 H/YR) Use of natural gas as a clean burning fuel and good combustion practices (97.5
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	FPM	Auxilary boiler		initial stack tests initially	MMBtu/hr)(4000.00 H/YR)
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	TPM10	Auxilary boiler	0.488		Use of natural gas as a clean burning fuel and good combustion practices (97.5 MMBtu/hr)(4000.00 H/YR)
Stonegale Power, LEC - Middlesex Energy Center, LEC	110-0000				0.400	•	Use of natural gas as a clean burning fuel and good combustion practices (97.5
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	TPM2.5	Auxilary boiler	0.488	initial stack tests initially	MMBtu/hr)(4000.00 H/YR)
							Use of natural gas as a clean burning fuel low sulfur fuel (SUBJECT TO NJDEP
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	SO2	Auxilary boiler	0.128		STATE-OF-THE-ART REQUIREMENTS) (97.5 MMBtu/hr)(4000.00 H/YR)
Stonegate Power, LLC - Middlesex Energy Center, LLC	NJ-0085	7/19/16, 11/3/16 update	Sulfuric Acid (Mist, Vapors, etc)	Auxilary boiler	0.01		Use of natural gas as a clean burning fuel low sulfur fuel (97.5 MMBtu/hr)(4000.00 H/YR)
		· · · ·				ppmv at 15% O2; Test	SIP - Ultra Low NOx Burners and good combustion practices (2 boilers at 6
DTE Gas Company - Milford Compressor Station	MI-0420	6/3/16, 4/27/17 update	NOx	FGAUXBOILERS	14	Protocol (each boiler) lb/MMBtu each; Test	MMBtu/hr each) SIP - Good combustion practices and clean burn fuel (pipeline quality natural gas)
DTE Gas Company - Milford Compressor Station	MI-0420	6/3/16, 4/27/17 update	со	FGAUXBOILERS	0.08	Protocol	(2 boilers at 6 MMBtu/hr each)
DTE Gas Company - Milford Compressor Station	MI-0420	6/3/16, 4/27/17 update	TPM10	FGAUXBOILERS	0.0075	lb/MMBtu each; Test Protocol	SIP - Good combustion practices and low sulfur fuel (pipeline quality natural gas) (2 boilers at 6 MMBtu/hr each)
	WI-0+20				0.0075		SIP - Good combustion practices and low sulfur fuel (pipeline quality natural gas)
DTE Gas Company - Milford Compressor Station	MI-0420	6/3/16, 4/27/17 update	TPM2.5	FGAUXBOILERS		Protocol tpy 12-month rolling time	(2 boilers at 6 MMBtu/hr each)
DTE Gas Company - Milford Compressor Station	MI-0420	6/3/16, 4/27/17 update	CO2e	FGAUXBOILERS			Use of pipeline quality natural gas and energy efficiency measures (2 boilers at 6 MMBtu/hr each)
	111 000 1		10			lb/hr avg of three 1-hour	
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	NOx	Auxiliary Boiler firing natural gas	0.8	stack tests lb/MMBtu avg of three 1-	NSPS - Low NOx burners and FGR (80 MMBtu/hr)
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	NOx	Auxiliary Boiler firing natural gas	0.01	hour stack tests	NSPS - Low NOx burners and FGR (80 MMBtu/hr)
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	со	Auxiliary Boiler firing natural gas	2.88	lb/hr avg of three 1-hour stack tests	Use of good combustion practices and use of natural gas a clean burning fuel (80 MMBtuhr)
•						lb/hr avg of three 1-hour	Use of good combustion practices and use of natural gas a clean burning fuel (80
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	VOC	Auxiliary Boiler firing natural gas	0.32	stack tests lb/hr avg of three 1-hour	MMBtuhr)
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	FPM	Auxiliary Boiler firing natural gas	0.26	stack tests	Use of natural gas a clean burning fuel (80 MMBtuhr)
	NJ-0084	3/10/16, 7/25/16 update	TPM10	Auxiliary Boiler firing natural gas		lb/hr avg of three 1-hour stack tests	Use of natural gas a clean burning fuel (80 MMBtuhr)
PSEG Fossil LLC Sewaren Generating Station	INJ-0064	3/10/16, 7/25/16 update		Auxiliary Boller Inng natural gas	0.4	lb/hr avg of three 1-hour	Use of hatural gas a clean burning fuer (80 Mixiblum)
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	TPM2.5	Auxiliary Boiler firing natural gas	0.4	stack tests	Use of natural gas a clean burning fuel (80 MMBtuhr)
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	SO2	Auxiliary Boiler firing natural gas	0.12	lb/hr	Use of natural gas a low sulfur fuel (80 MMBtu/hr)
		· · · ·	Sulfuric Acid (Mist,				
PSEG Fossil LLC Sewaren Generating Station	NJ-0084	3/10/16, 7/25/16 update	Vapors, etc)	Auxiliary Boiler firing natural gas	0.02	lb/hr	Use of natural gas a low sulfur fuel (80 MMBtu/hr)
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	со	Auxiliary Boiler, 99.8 MMBtu/hr	0.08	lb/MMBtu	Proper combustion prevents CO - only ng, limited to 2000 hours per year
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	NOx	Auxiliary Boiler, 99.8 MMBtu/hr	0.05	lb/MMBtu	Low NOx burners - only ng, limited to 2000 hours per year
I IONGA FOWER & LIGHT - OKEECHODEE CIEAT ETIETIGY CETTER					0.05		Use of natural gas with sulfur content less than 2 grains / 100 scf - only ng, limited
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	ТРМ	Auxiliary Boiler, 99.8 MMBtu/hr	10	% Opacity	to 2000 hours per year
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	SO2	Auxiliary Boiler, 99.8 MMBtu/hr	2	gr s/100 scf gas	Use of low-sulfur gas - only ng, limited to 2000 hours per year
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	SO2	Auxiliary Boiler, 99.8 MMBtu/hr	2	gr s/100 scf gas	Use of low-sulfur gas - only ng, limited to 2000 hours per year

KNO Restart RBLC Search Summary Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 54- Waste Heat Boiler

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	CO2e	Auxiliary Boiler, 99.8 MMBtu/hr	No numeric limit	No numeric limit
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	NOx	Two Natural Gas Heaters	0.1	l lb/MMBtu
Florida Power & Light - Okeechobee Clean Energy Center	FL-0356	3/9/16, 7/6/16 update	SO2	Two Natural Gas Heaters		2 gr s/100 scf gas
Commercial Metals Company - CMC Steel Oklahoma	OK-0173	1/19/2016, 7/7/16 update	CO2e	Heaters (Gas-Fired)	120) lb/MMBtu
Commercial Metals Company - CMC Steel Oklahoma	OK-0173	1/19/2016, 7/7/16 update	со	Heaters (Gas-Fired)	0.084	4 lb/MMBtu
Commercial Metals Company - CMC Steel Oklahoma	OK-0173	1/19/2016, 7/7/16 update	NOx	Heaters (Gas-Fired)	0.1	lb/MMBtu
Commercial Metals Company - CMC Steel Oklahoma	OK-0173	1/19/2016, 7/7/16 update	TPM10	Heaters (Gas-Fired)	0.0076	b/MMBtu
Commercial Metals Company - CMC Steel Oklahoma	OK-0173	1/19/2016, 7/7/16 update	TPM2.5	Heaters (Gas-Fired)	0.0076	b/MMBtu
Commercial Metals Company - CMC Steel Oklahoma	OK-0173	1/19/2016, 7/7/16 update	VOC	Heaters (Gas-Fired)	0.0055	5 lb/MMBtu
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/16, 9/19/16 update	NOx	Firetube Boiler Nos. 1 and 2 (4-08, EQT 324 & 5- 08, EQT 325)	2.75	5 lb/hr maximum
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/16, 9/19/16 update	NOx	Firetube Boiler Nos. 1 and 2 (4-08, EQT 324 & 5- 08, EQT 325)	30	ppmvd @ 3% O2 annual) average
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/16, 9/19/16 update	VOC	Firetube Boiler Nos. 1 and 2 (4-08, EQT 324 & 5- 08, EQT 325)		l lb/hr maximum

BACT Determination

Use of natural gas only - only ng, limited to 2000 hours per year

Must have NOx emission design value less than 0.1 lb/MMBtu (fueled only with ng, may operate one at a time, 10 MMBtu/hr)

Use of low-sulfur fuel (fueled only with ng, may operate one at a time, 10 MMBtu/hr)

Natural Gas Fuel (Numerous gas-fired heaters will be installed. The application requested that the sizes all be kept confidential.)

Natural Gas Fuel (Numerous gas-fired heaters will be installed. The application requested that the sizes all be kept confidential.)

Natural Gas Fuel (Numerous gas-fired heaters will be installed. The application requested that the sizes all be kept confidential.)

Natural Gas Fuel (Numerous gas-fired heaters will be installed. The application requested that the sizes all be kept confidential.)

Natural Gas Fuel (Numerous gas-fired heaters will be installed. The application requested that the sizes all be kept confidential.)

Natural Gas Fuel (Numerous gas-fired heaters will be installed. The application requested that the sizes all be kept confidential.)

Flue gas recirculation and good combustion practices, including good equipment design, use of gaseous fuels for good mixing, and proper combustion techniques (63 MMBtu/hr - Natural Gas and Vent Gas). Aggregate NOx emissions from the boilers are capped at 10.05 TPY (GRP 11). Good combustion practices shall include monitoring of the flue gas oxygen content, combustion air flow, fuel consumption, and flue gas temperature. These parameters shall be maintained within the manufacturer's recommended operating guidelines or within a range that is otherwise indicative of proper operation of the emissions unit. The PSD permit also references the 30 ppmvd @ 3% O2 limit as a "three 1-hour testing average."

Flue gas recirculation and good combustion practices, including good equipment design, use of gaseous fuels for good mixing, and proper combustion techniques (63 MMBtu/hr - Natural Gas and Vent Gas). Aggregate NOx emissions from the boilers are capped at 10.05 TPY (GRP 11). Good combustion practices shall include monitoring of the flue gas oxygen content, combustion air flow, fuel consumption, and flue gas temperature. These parameters shall be maintained within the manufacturer's recommended operating guidelines or within a range that is otherwise indicative of proper operation of the emissions unit. The PSD permit also references the 30 ppmvd @ 3% O2 limit as a "three 1-hour testing average."

Oxidation catalyst and good combustion practices, including good equipment design, use of gaseous fuels for good mixing, and proper combustion techniques. (63 MMBtu/hr - Natural Gas and Vent Gas). Aggregate VOC emissions from the boilers are capped at 0.90 TPY (GRP 11). Good combustion practices shall include monitoring of the flue gas oxygen content, combustion air flow, fuel consumption, and flue gas temperature. These parameters shall be maintained within the manufacturer's recommended operating guidelines or within a range that is otherwise indicative of proper operation of the emissions unit. The PSD permit also references the 2.8 ppmvd @ 3% O2 limit as a "three 1-hour testing average."

KNO Restart RBLC Search Summary Search: "boiler", "heater" - All Results for boilers <100 MMBtu/hr, not included in startup Unit 50- Waste Heat Boiler Unit 51- Waste Heat Boiler Unit 52- Waste Heat Boiler Unit 53- Waste Heat Boiler Unit 54- Waste Heat Boiler

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units
				Firetube Boiler Nos. 1 and 2 (4-08, EQT 324 & 5-		ppmvd @ 3% O2 annual
Equistar Chemicals, LP - Westlake Facility	LA-0295	7/12/16, 9/19/16 update	VOC	08, EQT 325)	2.8	average
Flint Hills Resources Houson Chemical LLC - PL Propylene Houston Olefins Plant	TX-0803 (draft)	7/12/16. 8/31/16 update				
Subaru of Indiana Automotive, Inc.	IN-0239	2/18/16, 9/14/16 update	VOC	Boiler	0.005	lb/MMBtu

Pryor Plant Chemical Company	OK-0135	2/23/2009 CO	Boilers #1 and #2	6.6 lbs/hr 1 hour/8 hour	Good operating practices
Villiams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 CO	Boiler, NO. 9	0.09 lb/MMBtu	Unknown
ryor Plant Chemical Company	OK-0135	2/23/2009 Formaldehyde	Boilers #1 and #2	0.1 lb/hr	unknown
ryor Plant Chemical Company	OK-0135	2/23/2009 NOx	Boilers #1 and #2	4 lb/hr 3-H/168-H rolling cu	Ir Low NOx burners and good combustion practices
ryor Plant Chemical Company	OK-0135	2/23/2009 NOx	Boilers #1 and #2	0.2 lb/MMBtu state limit	Low NOx burners and good combustion practices
/illiams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 NOx	Boiler, NO. 9	0.084 lb/MMBtu	Unknown
ryor Plant Chemical Company	OK-0135	2/23/2009 PM	Boilers #1 and #2	0.6 lb/hr	Unknown
ryor Plant Chemical Company	OK-0135	2/23/2009 PM10	Boilers #1 and #2	0.5 lb/hr 24-hour	Unknown
/illiams Refining & Marketing, L.L.C.	TN-0153	4/3/2002 PM10	Boiler, NO. 9	0.0075 lb/MMBtu	Unknown
ryor Plant Chemical Company	OK-0135	2/23/2009 SO2	Boilers #1 and #2	0.2 lb/hr	Unknown
ryor Plant Chemical Company	OK-0135	2/23/2009 SO2	Boilers #1 and #2	0.2 lb/MMBtu state limit	unknown
ryor Plant Chemical Company	OK-0135	2/23/2009 VOC	Boilers #1 and #2	0.5 lb/hr	unknown

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

BACT Determination

Oxidation catalyst and good combustion practices, including good equipment design, use of gaseous fuels for good mixing, and proper combustion techniques. (63 MMBtu/hr - Natural Gas and Vent Gas). Aggregate VOC emissions from the boilers are capped at 0.90 TPY (GRP 11). Good combustion practices shall include monitoring of the flue gas oxygen content, combustion air flow, fuel consumption, and flue gas temperature. These parameters shall be maintained within the manufacturer's recommended operating guidelines or within a range that is otherwise indicative of proper operation of the emissions unit. The PSD permit also references the 2.8 ppmvd @ 3% O2 limit as a "three 1-hour testing average."

one stack to provide regenerative hot air to catalyst beds 38 MMBtu/hr - Miscellaneous process heaters and boilers from (this is where the description ends...)

KNO Restart RBLC Search Summary

Unit 65 - Diesel Well Pump

Unit 66 - Gasoline Fire Pump

Facility Name	RBLC ID	Permit Issue Date	Pollutant	Process Name	Emission Limit	Emission Limit Units	BACT Determination
Did not update in 2017							
	, -						
Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0254	8/16/2011	CH4	Emergency Fire Pump	0.0061	I Ib/MMBtu	Ultra low sulfur diesel and good combustion practices
Iowa Fertilizer Company	IA-0105	10/26/2012	CH4	Fire Pump	0.0001	g/kw-hr average of 3 stack tests	Good Combustion Practices
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003		Emergency Diesel Fire Pump		ð lbs/hr	Low sulfur fuel, combustion control
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003	CO	Emergency Diesel Fire Pump	0.69	o tons/year	Low sulfur fuel, combustion control
Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0254	8/16/2011	CO	Emergency Fire Pump	2.6	ð g/hp-hr	Utra low sulfur diesel and good combustion practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump	3.5	5 g/kw-hr average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump	0.45	tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013		Diesel-Fired Emergency Firewater Pump	2.6	δ g/hp-hr 3 hour average	good combustion practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		500 KW emergency generator, fire pump	No Numeric Limit	No Numeric Limit	Good combustion practices. EPA certified per NSPS III
Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0254	8/16/2011		Emergency Fire Pump		3 lb/MMBtu	proper operation and good combustion practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		5 g/kw-hr average of 3 stack tests	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013		Diesel-Fired Emergency Firewater Pump		g/hp-hr 3 hour average	good combustion practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		tpy rolling 12 month total	Good Combustion Practices
Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0254	8/16/2011		Emergency Fire Pump		1 lb/MMbtu	Ultra low sulfur diesel and good combustion practices
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003		Emergency Diesel Fire Pump		3 lbs/hr	Low sulfur fuel, combustion control
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003		Emergency Diesel Fire Pump		2 tons/year	Low sulfur fuel, combustion control
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		g/kw-hr average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		o tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013		Diesel-Fired Emergency Firewater Pump		ີອ g/hp-hr 3 hour average	good combustion practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		501 KW emergency generator, fire pump		No Numeric Limit	Good combustion practices. EPA certified per NSPS III
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003		Emergency Diesel Fire Pump		3 lbs/hr	Low sulfur fuel, combustion control
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003		Emergency Diesel Fire Pump		2 tons/year	Low sulfur fuel, combustion control
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		2 g/kw-hr average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		8 tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013		Diesel-Fired Emergency Firewater Pump		g/hp-hr 3 hour average	good combustion practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		503 KW emergency generator, fire pump	No Numeric Limit	No Numeric Limit	ULSD fuel, EPA certified per NSPS IIII
Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0254	8/16/2011		Emergency Fire Pump		5 g/hp-hr annual average	Ultra low sulfur diesel and good combustion practices
Iowa Fertilizer Company	IA-0105	10/26/2012	-	Fire Pump		g/kw-hr average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC	TBD	9/25/2013		Diesel-Fired Emergency Firewater Pump		5 g/hp-hr 3 hour average	good combustion practices
Southeast Idaho Energy, LLC Power County Advanced Energy Center	ID-0017	2/10/2009		502 KW emergency generator, fire pump	No Numeric Limit	No Numeric Limit	ULSD fuel, EPA certified per NSPS IIII
Entergy Louisiana LLC Ninemile Point Electric Generating Plant	LA-0254	8/16/2011		Emergency Fire Pump		5 g/hp-hr annual average	Ultra low sulfur diesel and good combustion practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump	-	2 g/kw-hr average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105 TBD	10/26/2012		Fire Pump		tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC		9/25/2013		Diesel-Fired Emergency Firewater Pump		5 g/hp-hr 3 hour average	good combustion practices
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003		Emergency Diesel Fire Pump		l Ibs/hr	Low sulfur fuel, combustion control
Duke Energy North America Duke Energy Washington County LLC	OH-0254	8/14/2003		Emergency Diesel Fire Pump		tons/year	Low sulfur fuel, combustion control
Iowa Fertilizer Company	IA-0105 LA-0254		Visible Emissions	Fire Pump		5 % 6 minute average	Good Combustion Practices
Entergy Louisiana LLC Ninemile Point Electric Generating Plant		8/16/2011		Emergency Fire Pump		g/hp-hr annual average	Ultra low sulfur diesel and good combustion practices
Iowa Fertilizer Company	IA-0105	10/26/2012		Fire Pump		5 g/kw-hr average of 3 stack tests	Good Combustion Practices
Iowa Fertilizer Company	IA-0105 TBD	10/26/2012 9/25/2013		Fire Pump Diesel-Fired Emergency Firewater Pump		3 tons/year rolling 12 month total	Good Combustion Practices
Ohio Valley Resources, LLC		9/20/2013		Diesei-Fileu Emergency Filewater Pump	0.14	I g/hp-hr 3 hour average	good combustion practices

Notes:

Highlighted fields represent the lowest limit in common units (e.g., lb/MMBtu). Other units may be shown; however, there is not enough information to convert to common units or averaging times.

APPENDIX B

COST ESTIMATES

Appendix B KNO Restart Oxidation Catalyst for CO&VOC Control Package Boilers

VOC Control Efficiency (%)	80
CO Control Efficiency (%)	99

Facility Input Data

Item	Value	
Total Hours per year	8760	
Economic Life, years	10	
Interest Rate (%)	7	
CFR	0.1424	
SFF		
Source(s) Controlled	Package Boilers	
Rated Heat Input (MMBtu/hr)	243	
Total Flowrate (acfm)	161,157	
VOC Emission Rate (lb/hr)	1.30	
VOC Emissions (tpy)	5.69	
CO Emission Rate (lb/hr)	8.99	
CO Emissions (tpy)	39.38	
Site Specific Electricity Cost (\$/kWh)	0.101	(Vendor provided in 2013 - Adjusted for 8.51% inflat
Site Specific Operating Labor Cost (\$/hr)	\$48.83	(Vendor provided in 2013 - Adjusted for 8.51% inflat
Site Specific Maint. Labor Cost (\$/hr)	\$48.83	(Vendor provided in 2013 - Adjusted for 8.51% inflat

Capital Costs

	Value	Basis	
Direct Costs			
1.) Purchased Equipment Cost			
a.) Equipment cost + auxiliaries	\$169,172	WE ENERGIES reference	(Vendor provided in 2013 - Adjusted for 8.51% inflatio
b.) Instrumentation	\$16,900	0.10 x A	
c.) Sales taxes	\$11,800	0.07 x A	
d.) Freight	\$8,500	0.05 x A	
Total Purchased equipment cost, (PEC)	\$206,372	B = 1.22 x A	
2.) Direct installation costs			
a.) Foundations and supports	\$16,500	0.08 x B	
b.) Handling and erection	\$28,900	0.14 x B	
c.) Electrical	\$8,300	0.04 x B	
d.) Piping	\$4,100	0.02 x B	
e.) Insulation for ductwork	\$2,100	0.01 x B	
f.) Painting	\$2,100	0.01 x B	
Total direct installation cost	\$62,000	0.30 x B	
3.) Site preparation	NA	As Required, SP	
4.) Buildings	NA	As Required, Bldg.	
Total Direct Cost, DC	\$268,400	1.30B + SP + Bldg.	
Indirect Costs (installation)			
5.) Engineering	\$20,600	0.10 x B	
6.) Construction and field expenses	\$10,300	0.05 x B	
7.) Contractor fees	\$20,600	0.10 x B	
8.) Start-up	\$4,100	0.02 x B	
9.) Performance test	\$2,100	0.01 x B	
10.) Contingencies	\$6,200	0.03 x B	
11.) Maintenance Cost			
Total Indirect Cost, IC	\$63,900	0.31B + Other	
Total Capital Investment (TCI) = DC + IC	\$332,300	1.61B + SP + Bldg. + Other	
CO Control Efficiency (%)	99		

CO Control Efficiency (%)	
---------------------------	--

Annual Costs				
Item	Value	Basis	Source]
1) Electricity				
Reagent Pump Requirement (kW)	1,000		Estimate	
Electric Power Cost (\$/kWh)	0.10			
Cost (\$/yr)	\$884,009			
2) Operating Costs				
Operating Labor Requirement (hr/hours of o	0.5	Estimate - 1/2 hr/shift	N/A	
Unit Cost (\$/hr)	\$48.83	Estimate	N/A	
Labor Cost (\$/yr)	\$26,730	Calculation	N/A	
Total Operating Costs	\$910,739		Estimate	
3) Supervisory Labor				
Cost (\$/yr)	\$4,010	15% Operating Labor	OAQPS	
4) Maintenance				
Maintenance Labor Req. (hr/year)	300.0		Estimate	
Catalyst Replacement Labor Req. (hr/yr)	560.0		Estimate	
Unit Cost (\$/hr)	\$48.83	Facility Data	Estimate	
Labor Cost (\$/yr)	\$41,990	Calculation	N/A	
Material Cost (\$/yr)	\$41,990	100% of Maintenance Labor	OAQPS	
Total Cost (\$/yr)	\$83,980	Calculation	N/A	
5) Catalyst Replacement				
Catalyst Cost (\$)	\$112,781		WE ENERGIES	(Vendor provided in 2013 - Adjusted for 8.51%
Sales Tax (\$)	\$0	0% Sales Tax	Estimate	
Catalyst Life (yrs)	5	n	Estimate	
Interest Rate (%)	7	i	Estimate	
Factor	0.174			
Annual Cost (\$/yr)	\$19,610	(Volume)(Unit Cost)(CRF)	N/A	
6) Indirect Annual Costs				
Overhead	\$68,830	60% of O&M Costs	OAQPS	
Administration	\$6,650	2% of Total Capital Investment	OAQPS	
Property Tax	\$3,320	1% of Total Capital Investment	OAQPS	
Insurance	\$3,320	1% of Total Capital Investment	OAQPS	
	\$31,250	20 yr life; 7% interest (-cat. cost)	OAQPS	
Total Indirect (\$/yr)	\$113,370			
Total Annualized Cost (\$/yr)	\$1,131,700			
Total VOC Controlled (tpy)	4.555			
Total CO Controlled (tpy)	38.982			
VOC Cost Effectiveness (\$/ton)	\$248,400			
CO Cost Effectiveness (\$/ton)	\$29,000			

Appendix B <u>KNO Restart</u> Oxidation Catalyst for CO&VOC Control Waste Heat Boiler/Solar Turbine

VOC Control Efficiency (%)	80
CO Control Efficiency (%)	99

Facility Input Data

Item	Value	
Total Hours per year	8760	
Economic Life, years	10	
Interest Rate (%)	7	
CFR	0.1424	
SFF		
Source(s) Controlled	Waste Heat Boilers/Solar Turbines	
Rated Heat Input (MMBtu/hr)	102.172	
Total Flowrate (acfm)	46,750	Original flowrate from 2013 cost estimate
VOC Emission Rate (lb/hr)	0.37	
VOC Emissions (tpy)	1.61	
CO Emission Rate (lb/hr)	11.14	
CO Emissions (tpy)	48.78	
Site Specific Electricity Cost (\$/kWh)	0.101	(Vendor provided in 2013 - Adjusted for 8.51% infla
Site Specific Operating Labor Cost (\$/hr)	\$48.83	(Vendor provided in 2013 - Adjusted for 8.51% infla
Site Specific Maint. Labor Cost (\$/hr)	\$48.83	(Vendor provided in 2013 - Adjusted for 8.51% infla

Capital Costs

	Value	Basis	
Direct Costs			
1.) Purchased Equipment Cost			
a.) Equipment cost + auxiliaries	\$71,130	WE ENERGIES reference	(Vendor provided in 2013 - Adjusted for 8.51% inflatior
b.) Instrumentation	\$7,100	0.10 x A	
c.) Sales taxes	\$5,000	0.07 x A	
d.) Freight	\$3,600	0.05 x A	
Total Purchased equipment cost, (PEC)	\$86,830	B = 1.22 x A	
2.) Direct installation costs			
a.) Foundations and supports	\$6,900	0.08 x B	
b.) Handling and erection	\$12,200	0.14 x B	
c.) Electrical	\$3,500	0.04 x B	
d.) Piping	\$1,700	0.02 x B	
e.) Insulation for ductwork	\$900	0.01 x B	
f.) Painting	\$900	0.01 x B	
Total direct installation cost	\$26,100	0.30 x B	
3.) Site preparation	NA	As Required, SP	
4.) Buildings	NA	As Required, Bldg.	
Total Direct Cost, DC	\$112,900	1.30B + SP + Bldg.	
Indirect Costs (installation)		-	
5.) Engineering	\$8,700	0.10 x B	
6.) Construction and field expenses	\$4,300	0.05 x B	
7.) Contractor fees	\$8,700	0.10 x B	
8.) Start-up	\$1,700	0.02 x B	
9.) Performance test	\$900	0.01 x B	
10.) Contingencies	\$2,600	0.03 x B	
11.) Maintenance Cost			
Total Indirect Cost, IC	\$26,900	0.31B + Other	
Total Capital Investment (TCI) = DC + IC	\$139,800	1.61B + SP + Bldg. + Other	

Annual Costs

Item	Value	Basis	Source	
1) Electricity				
Reagent Pump Requirement (kW)	1,000		Estimate	
Electric Power Cost (\$/kWh)	0.10			
Cost (\$/yr)	\$884,009			
2) Operating Costs				
Operating Labor Requirement (hr/hours of operation)	0.5	Estimate - 1/2 hr/shift	N/A	
Unit Cost (\$/hr)	\$48.83	Estimate	N/A	
Labor Cost (\$/yr)	\$26,730	Calculation	N/A	
Total Operating Costs	\$910,739		Estimate	
3) Supervisory Labor				
Cost (\$/yr)	\$4,010	15% Operating Labor	OAQPS	
4) Maintenance				
Maintenance Labor Req. (hr/year)	300.0		Estimate	
Catalyst Replacement Labor Req. (hr/yr)	230.0		Estimate	
Unit Cost (\$/hr)	\$48.83	Facility Data	Estimate	
Labor Cost (\$/yr)	\$25,880	Calculation	N/A	
Material Cost (\$/yr)	\$25,880	100% of Maintenance Labor	OAQPS	
Total Cost (\$/yr)	\$51,760	Calculation	N/A	
5) Catalyst Replacement				
Catalyst Cost (\$)	\$47,420		WE ENERGIES	(Vendor provided in 2013 - Adjusted for 8.51% inflation)
Sales Tax (\$)	\$0	0% Sales Tax	Estimate	
Catalyst Life (yrs)	5	n	Estimate	
Interest Rate (%)	7	i	Estimate	
Factor	0.174			
Annual Cost (\$/yr)	\$8,250	(Volume)(Unit Cost)(CRF)	N/A	
6) Indirect Annual Costs				
Overhead	\$49,500	60% of O&M Costs	OAQPS	
Administration	\$2,800	2% of Total Capital Investment	OAQPS	
Property Tax	\$1,400	1% of Total Capital Investment	OAQPS	
Insurance	\$1,400	1% of Total Capital Investment	OAQPS	
Capital Recovery	\$13,150	20 yr life; 7% interest (-cat. cost)	OAQPS	
Total Indirect (\$/yr)	\$68,250			
Total Annualized Cost (\$/yr)	\$1,043,000			
Total VOC Controlled (tpy)	1.288			
Total CO Controlled (tpy)	48.292			
VOC Cost Effectiveness (\$/ton)	\$809,800			
CO Cost Effectiveness (\$/ton)	\$21,600			

Appendix B <u>KNO Restart</u> Low NOx Burners for Waste Heat Boilers

SourceWaste Heat BoilerRated Heat Input (MMBtu/hr)46.729Baseline Emissions20.1

7.20%

Baseline Emissions Control Efficiency

			1
	COST COMPONENT:	COST (x \$1000)	
DIRECT COSTS			
	Purchased Equipment Costs (Included in TCI)		
	Initial Equipment Costs		
	Instrumentation		
	Freight		
	Taxes		
	Subtotal - Purchased Equipment Costs	912.57	Vendor provided in 2013 - Adjusted for 8.51% in
		912.57	(vendor provided in 2013 - Adjusted for 8.51% in
	Direct Installation Costs(Included in TCI)		
	Foundations & supports; handling & erection;		
	electrical; piping; etc. (25% of PEC)		
	Site Preparation / Buildings (25% of PEC)	044.05	() (and an analytical in 2012 Adjusted for 0.510(in
	Subtotal - Direct Installation Costs	214.85	(Vendor provided in 2013 - Adjusted for 8.51% in
TOTAL DIRECT COSTS (TDC			
INDIRECT INSTALLATION CO	OSTS Engineering Costs (10% of Purchased Equip Costs)		
	Construct. & Field Expenses (5% of Purchased Equip Costs)		
	Contractor Fees (10% Purchased Equip Costs)		
	Start-up and Performance Test (2% of Purchased Equip Costs)		
	Contingency (3% of Purchased Equip Costs)		
TOTAL INDIRECT COSTS		0.00	
TOTAL CAPITAL INVES	TMENT (TCI)	1127.42	•
	COST COMPONENT:	COST (x \$1000)	
ANNUAL DIRECT COSTS			
	on and Maintenance Labor		
oporado	Operating Labor	0.00	
	O&M Supervision	0.00	
	Maintenance Labor and Material (2.75% of PEC)	0.00	
0.1.4.4			
	I - Operation and Maintenance Labor	0.00	
Utilities			
Subtota	I - Utilities	0.00	
TOTAL ANNUAL DIREC	T COSTS	0.00]
			1
	COST COMPONENT:	COST (x \$1000)	
INDIRECT COSTS			
	Overhead (not applicable)	0.00	
	Property Tax (not applicable)	0.00	
	Insurance (negligible)	0.00	
	Administration (not applicable)	0.00	

TOTAL ANNUAL O&M COSTS	;			0.00
CAPITAL RECOVERY FACTOR	2	Equipment Life (years) =	10	
	Capital Recovery Factor	Interest Rate (%) =	7	0.1424
CAPITAL RECOVERY COSTS	TOTAL CAPITAL REQUIR	EMENT		1127.42
	TOTAL ANNUAL CAPITA	L REQUIREMENT		160.52
TOTAL ANNUALIZED COST (Total annual O&M cost and a	nnualized capital cost)			160.52
TONS OF POLLUTANT REMO	. ,	* control efficiency)		1.44
COST-EFFECTIVENESS	ENVIRONMENTAL BASIS			
	(\$ per ton pollutant remo			\$111,105

Baseline Emissions =

Heat Input Capacity (46.729 MMBtu/hr) * AP-42 CO Ef. Sm. Boiler (100 lb/10⁶ scf) * (1 MMBtu/ 1,020 scf) * (8760 hrs/1 yr) * (1 ton/2000 lbs)

Appendix B <u>KNO Restart</u> Water injection for NOx control on Solar Turbines

Solar Turbine Source Rated Heat Input (MMBtu/hr) 55.443 **Baseline Emissions** 9.96 **Control Efficiency** 76.00%

	COST COMPONENT:	COST (x \$1000)	
DIRECT COSTS			
DIRECT COSTS	Purchased Equipment Costs (Included in TCI)		
	Initial Equipment Costs		
	Instrumentation		
	Freight Taxes		
	Taxes		
	Subtotal - Purchased Equipment Costs	490.47	(Vendor provided in 2013 - Adjusted for 8.51% inflation)
	Direct Installation Costs(Included in TCI)		
	Foundations & supports; handling & erection; electrical;		
	piping; etc. (25% of PEC)		
	Site Preparation / Buildings (25% of PEC)		
	Subtotal - Direct Installation Costs	0.00	
TOTAL DIRECT COST	S (TDC)		
INDIRECT INSTALLAT	ION COSTS		
	Engineering Costs (10% of Purchased Equip Costs)		
	Construct. & Field Expenses (5% of Purchased Equip Costs)		
	Contractor Fees (10% Purchased Equip Costs)		
	Start-up and Performance Test (2% of Purchased Equip Costs)		
	Contingency (3% of Purchased Equip Costs)		
TOTAL INDIRECT COS	STS	0.00	
TOTAL CAPITAL I	NVESTMENT (TCI)	490.47	-
		1	7
	COST COMPONENT:	COST (x \$1000)	
ANNUAL DIRECT COS	70		-
	Operation and Maintenance Labor		
	Operating Labor	0.00	
	O&M Supervision	0.00	
	Maintenance Labor and Material	18.21	(Vendor provided in 2013 - Adjusted for 8.51% inflation)
	Subtotal - Operation and Maintenance Labor	18.21	
	Utilities		
	Power	4.96	(Vendor provided in 2013 - Adjusted for 8.51% inflation)
	Subtotal - Utilities	4.96	
		23.17	
		COST (v \$1000)	

	COST COMPONENT:	COST (x \$1000)
INDIRECT COSTS	Overhead (not applicable) Property Tax (not applicable) Insurance (negligible)	0.00 0.00 0.00
TOTAL INDIRECT COSTS	Administration (not applicable)	0.00

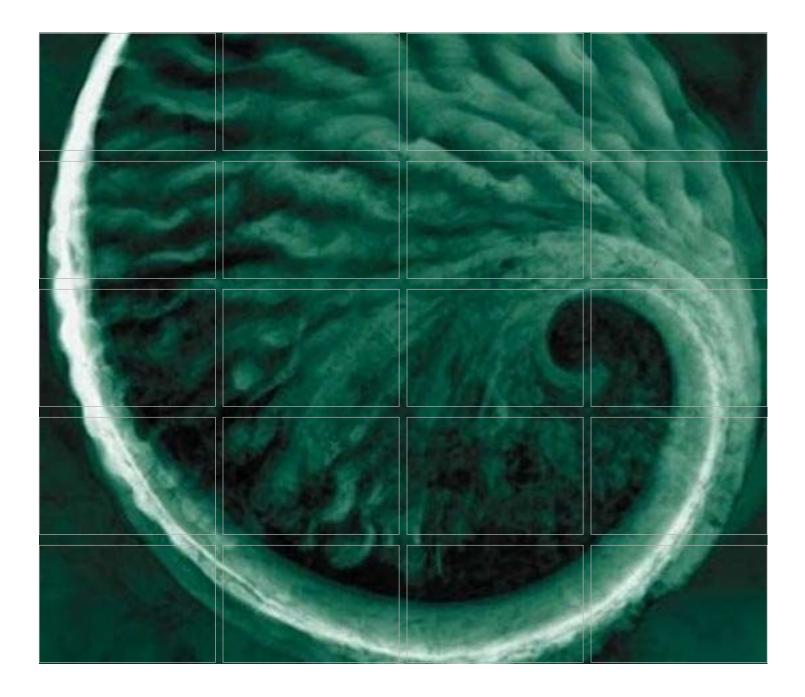
		0.00
TOTAL ANNUAL O&M COSTS		23.17
CAPITAL RECOVERY FACTOR	Equipment Life (years) = Interest Rate (%) =	10
Capital Recovery Factor		0.1424
CAPITAL RECOVERY COSTS		
TOTAL CAPITAL REQUIREM	1ENT	490.47
TOTAL ANNUAL CAPITAL F	REQUIREMENT	69.83
TOTAL ANNUALIZED COST (Total annual O&M cost and annualized capital cost)		93.00
TONS OF POLLUTANT REMOVED PER YEAR (baseline	* control efficiency)	7.57
COST-EFFECTIVENESS		
ENVIRONMENTAL BASIS		
(\$ per ton pollutant removed)	(b)	\$12,291

Baseline Emissions = Heat Input Capacity (55.443 MMBtu/hr) * SCR Controlled Emission Rate (0.041 lb/MMBtu) * (8760 hrs/1 yr) * (1 ton/2000 lbs)

ERM has over 160 offices across the following countries and territories worldwide

The Netherlands Argentina Australia New Zealand Belgium Norway Brazil Panama Canada Peru Chile Poland China Portugal Colombia Puerto Rico France Romania Germany Russia Guyana Singapore Hong Kong South Africa India South Korea Indonesia Spain Ireland Sweden Italy Switzerland Taiwan Japan Kazakhstan Tanzania Kenya Thailand UK Malaysia Mexico US Mozambique Vietnam Myanmar

ERM's Indianapolis Office


8425 Woodfield Crossing Blvd. Suite 560-W Indianapolis, IN 46240

T: 1 317 706 2000 F: 1 317 706 2010

www.erm.com

Attachment D Modeling Analysis

Dispersion Modeling Analysis

Agrium KNO Facility

May 2019 (Revision 1.0)

www.erm.com

TABLE OF CONTENTS

1.0	PROJ	ECT DESCRIPTION1
	1.1	PROJECT CLASSIFICATION1
	1.2	POLLUTANTS AND AVERAGING TIMES1
2.0	STAT	IONARY SOURCE DESCRIPTION2
3.0	PRE-	CONSTURCTION MONITORING
4.0	APPR	<i>COACH</i>
	4.1	MODEL SELECTION4
	4.2	MODEL OPTIONS4
5.0	METE	EOROLOGY
6.0	TERR	AIN AND LAND USE ANALYSIS7
7.0	EU IN	IVENTORY8
	7.1	STATIONARY SOURCE EMISSIONS
	7.2	HOTELING EMISSIONS FROM MARINE VESSELS
	7.3	OTHER SECONDARY EMISSIONS9
8.0	EU RI	ELEASE PARAMETERS11
	8.1	LOAD ANALYSIS11
	8.2	OPERATING LIMITS
	8.3	HORIZONTAL OR CAPPED STACKS12
	8.4	HAUL ROADS, STOCK PILES AND OTHER FUGITIVE EMISSIONS12
	8.5	INCREMENT MODELING CONSIDERATIONS
	8.6	OFFSITE EUS
	8.7	INTERMITTENT EMISSIONS12

	8.8	SOURCE GROUPS12
9.0	POLI	LUTANT SPECIFIC MODELING CONSIDERATIONS
	9.1	NITROGEN DIOXIDE (NO ₂)13
	9.2	PARTICULATE MATTER13
	9.3	PM ₁₀ DEPOSITION14
10.0	BUIL	DING DOWNWASH15
11.0	AMB	IENT AIR BOUNDARY18
12.0	RECE	EPTORS
13.0	OFF-	SITE EUS AND BACKGROUND AIR QUALITY DATA20
	13.1	OFF-SITE EMISSION UNITS20
	13.2	BACKGROUND CONCENTRATIONS
	13.3	INCREMENT CONSUMING SOURCES21
14.0	DESI	GN CONCENTRATIONS22
15.0	POST	T-PROCESSING
16.0	MOD	ELING RESULTS24
	16.1	SIGNIFICANT IMPACT LEVEL (SIL)24
	16.2	INCREMENT CONSUMPTION24
	16.3	NAAQS ASSESSMENT24
	16.4	SENSITIVITY ANALYSES
17.0	OZO	NE IMPACTS
18.0	QUA	LITATIVE ASSESSMENTS
	18.1	QUALITATIVE ASSESSMENT OF SECONDARY PM2.5 FORMATION
		18.1.1 PM _{2.5} Air Quality Data

		18.1.2 Assessment of Potential Secondary PM _{2.5} Impact	
	18.2	QUALITATIVE ASSESSMENT OF VOC AND NOX ON OZONE	
		18.2.1 Ozone Data Representativeness	
		18.2.2 Assessment of Potential Ozone Impacts	
19.0	CLAS	SS II VISIBILITY AND OTHER IMPACTS	
	19.1	VISIBILITY IMPACTS	
	19.2	OTHER IMPACTS	35
20.0	CLAS	55 I ANALYSES	
	20.1	AQRV Q/D ANALYSIS	
	20.2	MODELING ANALYSIS AND PROCEDURES	
	20.3	AMMONIA MODELING	
21.0	REFE	ERENCES	40

LIST OF ATTACHMENTS

ATTACHMENT A - LOAD ANALYSIS

ATTACHMENT B - SOURCES INCLUDED IN AREA-WIDE ANALYSIS

ATTACHMENT C - MAPS OF OFF-SITE SOURCES

1.0 PROJECT DESCRIPTION

This report provides a Dispersion Modeling Analysis for a Prevention of Significant Deterioration (PSD) Construction Permit application for the Agrium Kenai Nitrogen Operations (KNO). This analysis is provided as an update to the Dispersion Modeling Analysis performed for the original PSD Construction Permit application for KNO, submitted in October 2014. This analysis provides updated modeling results which incorporates changes that have occurred since the original PSD permit was issued in January 2015. The modeling results are prepared in a format consistent with the modeling protocol for this project and consistent with the ADEC document "Air Quality Modeling Protocol Outline, PSD Permit Applications", Version 1.6, dated April 19, 2018. (ADEC 2018). This report incorporates specific information from the October 2014 modeling report as referenced in this document.

1.1 PROJECT CLASSIFICATION

KNO has determined that the restart of its facility will be regulated as a major source under PSD rules for NO_X, PM₁₀, PM_{2.5}, CO, and ozone. The site will also have ammonia (NH₃) emissions which are not identified as a regulated air pollutant under Prevention of Significant Deterioration (PSD) rules, but are regulated under State of Alaska rules. The site will also be regulated as a major source of greenhouse gas (GHG) emissions under PSD rules, however no air quality assessment is required to address GHG emissions.

1.2 POLLUTANTS AND AVERAGING TIMES

Maximum hourly and annual emissions are provided for all sources associated with the restart in the Construction Permit application that accompanies this document.

There were no other revisions made for this section. See Section 1.2 of the October 2014 report for a full description of pollutants and averaging times analyzed in the modeling analysis for KNO.

2.0 STATIONARY SOURCE DESCRIPTION

A general description of processes affected by the restart of sources at the KNO facility is provided in Section 1 with a discussion of specific emission units provided in Section 8.0. The restart of the KNO facility will not alter the locations of the present structures or EUs. A Facility Layout Drawing and 3D building depiction of existing structures, EUs, fence-lines, and the ambient air boundary are provided in Figures 2 and 3 located in Section 11.0 of this document.

3.0 PRE-CONSTURCTION MONITORING

No revisions were made to this section. See Section 3 of the October 2014 report for a description of the pre-construction monitoring analysis for KNO.

4.0 APPROACH

4.1 MODEL SELECTION

The air quality modeling analyses employed the AMS/EPA Regulatory Model (AERMOD), version 18081, to incorporate updates to AERMOD since the October 2014 report, which used version 14134. AERMOD allows for simulation of multiple sources (and source types) simultaneously, while making the correct accounting for building downwash and building cavity effects.

There were no changes to the pollutants modeled in the analysis. Please see Section 4.1 of the October 2014 report for a full description of pollutant selection.

4.2 MODEL OPTIONS

The following settings were be used in the AERMOD model:

- complex terrain receptor elevations and hill scales
- rural dispersion coefficients
- regulatory default model parameters, including:
 - calm correction
 - buoyancy induced dispersion
 - final plume rise
 - default wind profile coefficients
 - default vertical potential temperature gradients
 - stack-tip downwash
 - direction specific building downwash

5.0 METEOROLOGY

The most recent five-year data set was used for the modeling analysis. The Surface Station ID is 26523 (Kenai Regional Airport, Kenai, AK), and the Upper Air Station ID is 26409 (Anchorage, AK). These data were updated by ADEC on October 23, 2015 after reprocessing the dataset with AERMINUTE 15272, and again on November 9, 2018 after reprocessing the dataset with AERMET 18081. Surface data from Kenai Regional Airport are believed to be representative of the project site because it is close by (approximately 10 miles to the south), and there is very little terrain/topographic differences between the project site and the airport site.

There were no other revisions made for this section. See Section 5 of the October 2014 report for a full description of meteorology.

Table 2- Annual Emissions

						Stationary Source	ces								
									Potentia	al to Emit	(tpy)				
Source ID	Tag Number	Source Description	NO _x	со	SO ₂	PM (filterable)	PM ₁₀	PM _{2.5}	VOC	NH ₃	Pb	CO ₂	CH4	N ₂ O	CO ₂ e
22	B-502	Plants 4 and 5 Small Flare	0.4	2.0	3.22E-03	0.01	0.04	0.04	0.77	0.0	-	644.99	0.01	1.22E-03	645.65
23	B-501	Plants 4 and 5 Emergency Flare	0.2	0.6	1.03E-03	0.00	0.01	0.01	0.25	0.0	-	206.40	0.00	3.89E-04	206.61
11	B-609	Ammonia Tank Storage System Flare	0.4	2.0	3.22E-03	0.01	0.04	0.04	0.77	-		644.99	0.01	1.22E-03	12.00
			-	-						-					
12	B-201	Primary Reformer	118.3	251.9	3.5	11.0	44.1	44.1	31.9	-	2.9E-03	695,647.06	13.33	1.28E+01	699,780.94
13	B-200	Startup Heater	0.990	0.832	0.006	0.019	0.075	0.075	0.054	-	5.0E-06	1,188.24	0.02	0.02	1,195.30
14	D-207	CO ₂ Vent	-	12.7	-	-	-	-	50.0	25.6	-	845,486.11	-	-	845,486.11
15	H-205	Organic Sulfur Removal Unit Vent	-	-	-	-	-	-	1.0E-02	-	-	-	-	-	-
16	H-269	Amine Fat Flasher Vent	-	4.6	-	-	-	-	0.964	2.1	-	13,739.00	-		13,739.00
17	F-263	PC Stripper Surge Tank Vent	-	-	-	-	-	-	0.237	0.1	-	-	-	-	-
19	C-200	H2 Vent Stack (dry gas vent)	-	126.9	-	-	-	-	-	50.0	-			-	
35	C-560A	Granulator A/B Scrubber Exhaust Vent Stack	-	-	-	43.8	43.8	43.8	1.8	200.8	-	-	-	-	-
36	C-560B	Granulator C/D Scrubber Exhaust Vent Stack	-	-	-	43.8	43.8	43.8	1.8	200.8	-	-	-	-	-
37	D- 515	Atmospheric Absorber Final Scrubber	-	-	-	-	-	-	0.096	91.1	-	73.00	-	-	73.00
38	D-511	Inerts Vent Scrubber				-	-	-	0.123	49.3		547.50	-	-	547.50
39	E-535	After Condenser Exchanger	-	-	-	-	-	-	-	-	-	-	-	-	-
40	E-711	Cooling tower	-	-	-	3.29	0.99	5.8E-03	-	2.9	-		-	-	-
41	D-514	Tank Scrubber	-	-	-	-	-	-	-	0.4	-	-	-	-	-
41A	D-513	Tank Scrubber							1.7E-04	0.9					
41B	F-209	MDEA Storage Tank							3.0E-05						
41C	F-615	MDEA Storage Tank							5.0E-06						
44	6B-708C	Package Boiler	10.6	39.4	0.6	2.0	7.9	7.9	5.7	9.4	5.2E-04	125,216.47	2.40	0.67	125,475.48
48	6B-708B	Package Boiler	10.6	39.4	0.6	2.0	7.9	7.9	5.7	9.4	5.2E-04	125,216.47	2.40	0.67	125,475.48
49	6B-708A	Package Boiler	10.6	39.4	0.6	2.0	7.9	7.9	5.7	9.4	5.2E-04	125,216.47	2.40	0.67	125,475.48
47	N/A	Urea Loading Wharf	-	-	-	0.5	0.5	0.2	-	-	-	-	-	-	-
47A		Urea Transfer				*	*	*							
47C		Urea Warehouse/Transfer (stack)				0.042	0.035	0.012							
47B		Urea Warehouse/Transfer (fugitive)				0.219	0.186	0.066							
47D		Urea Transfer				0.044	0.037	0.013							
50	B-705A	Waste Heat Boiler	1.6	22.3	1.2E-01	3.8E-01	1.5	1.5	1.1	7.36	1.0E-04	24,079.2	0.46	0.44	24,222.3
51	B-705B	Waste Heat Boiler	1.6	22.3	1.2E-01	3.8E-01	1.5	1.5	1.1	7.36	1.0E-04	24,079.2	0.46	0.44	24,222.3
52	B-705C	Waste Heat Boiler	1.6	22.3	1.2E-01	3.8E-01	1.5	1.5	1.1	7.36	1.0E-04	24,079.2	0.46	0.44	24,222.3
53	B-705D	Waste Heat Boiler	1.6	22.3	1.2E-01	3.8E-01	1.5	1.5	1.1	7.36	1.0E-04	24,079.2	0.46	0.44	24,222.3
54	B-705E	Waste Heat Boiler	1.6	22.3	1.2E-01	3.8E-01	1.5	1.5	1.1	7.36	1.0E-04	24,079.2	0.46	0.44	24,222.3
55	GGT-744A	Solar Turbine/Generator Set	13.4	26.5	0.8	1.8	1.8	1.8	0.5	-	-	2.67E+04	2.09	0.73	2.70E+04
56	GGT-744B	Solar Turbine/Generator Set	13.4	26.5	0.8	1.8	1.8	1.8	0.5	-	-	2.67E+04	2.09	0.73	2.70E+04
57	GGT-744C	Solar Turbine/Generator Set	13.4	26.5	0.8	1.8	1.8	1.8	0.5	-	-	2.67E+04	2.09	0.73	2.70E+04
58	GGT-744D	Solar Turbine/Generator Set	13.4	26.5	0.8	1.8	1.8	1.8	0.5	-	-	2.67E+04	2.09	0.73	2.70E+04
59	GGT-744E	Solar Turbine/Generator Set	13.4	26.5	0.8	1.8	1.8	1.8	0.5	-	-	2.67E+04	2.09	0.73	2.70E+04
60	F-791	Deaerator Vent	-	-	-	-	-	-	-	7.7	-	-	-	-	-
61	F-711	Degasifier Vent	-	-	-	-	-	-	-	0.1	-	-	-	-	-
65	GM-616D	Diesel Fired Well Pump	0.071	0.015	0.005	0.005	0.005	0.005	0.006	-	-	2.66	-	-	2.66
66	G-613B	Gasoline Fired Firewater Pump	0.103	0.062	5.3E-03	6.3E-03	6.3E-03	6.3E-03	0.006	-	-	9.70	-	-	9.70
Comp	N/A	Fugitive Ammonia from Components								2.2					
IEU	N/A	Building Heaters/Water Heaters	2.9	1.3E+00	1.9E-02	5.9E-02	2.4E-01		1.7E-01	-	1.6E-05	3,750.83	0.07	0.07	3,773.12
	Facility T	otal Potential to Emit	230.6	764.9	10.1	119.7	174.2	172.7	114.1	634.1	5.0E-03	2.2E+06	3.3E+01	2.1E+01	2.2E+06

6.0 TERRAIN AND LAND USE ANALYSIS

The terrain in the immediate vicinity of the project side is relatively flat, raised up from sea level to elevations at or around 130 feet ASL. Terrain elevations along the shoreline with the Cook Inlet rise quickly (within approximately 250 feet) from sea level to elevations of approximately 130 feet. The terrain elevations for sources and receptors were acquired using updated National Elevation Data (NED) and processed using AERMAP, version 18081. The NED had a resolution of 1/3 arc second.

7.0 EU INVENTORY

Changes made to tables and text are provided in this section. For further information on stationary source emissions, see Section 7 of the October 2014 report.

7.1 STATIONARY SOURCE EMISSIONS

The emissions inventory for KNO was identical with previous modeling with the exception of five (5) Solar Turbines and five (5) Waste Heat Boilers. Emission rates corresponding to the new Solar Turbines and Waste Heat Boilers were used in lieu of values used in previous modeling. Also, the package boilers will now employ SCR for control of NO₂; this will change the stack release parameters for diameter, temperature, and flow rate, as well as add ammonia emissions from ammonia slip.

All remaining sources were modeled using the same assumptions that were made in the October 2014 report. This includes assumptions on emission rates, stack parameters, building parameters, operating hours, and hoteling emissions from urea and ammonia ship loading activities. Hourly emission rates utilized in modeling are provided in Table 3.

Operating Scenarios

KNO performed short term modeling considering the four separate operating scenarios included in the October 2014 modeling analysis. A summary of each scenario and a description of any changes that were included in each are described below.

Normal Operations

The normal operations scenario included all emission units with emission rates identical to those included in the October 2014 modeling analysis with the exception of the five Solar Turbines, which were modeled with updated emission rates/bypass stack parameters, and the well pump engine and fire pump engine, which were modeled using an emission rate corresponding to 168 hours per year of operation.

Normal Operations with One Waste Heat Boiler Down

This scenario is identical with the Normal Operations scenario described above with the exception that one Solar Turbine was modeled venting through a bypass stack to simulate a situation during which the corresponding Waste Heat Boiler and SCR control system were out of service. A sensitivity analysis was performed to identify which Solar Turbine would result in the worst case offsite impact. Based on this analysis, the western-most unit (EU 55) was identified as the unit with the highest ambient impact. This unit was used in all evaluations of this operating scenario.

Reformer Startup

The parameters for this scenario were identical to those included in the October 2014 modeling analysis, with the exception that the Solar Turbine/Waste Heat Boiler emission rates were adjusted to reflect the larger Solar Turbines.

Turnaround

The parameters for this scenario were identical to those included in the October 2014 modeling analysis, with the exception that the Solar Turbine emission rates were adjusted to reflect the larger Solar Turbines.

7.2 HOTELING EMISSIONS FROM MARINE VESSELS

No revisions were made to this section.

7.3 OTHER SECONDARY EMISSIONS

No revisions were made to this section.

Table 3- Hourly Emissions

						Stationary Sou	rces								
Source									Potential to Em	it (lb/hr)					
ID	Tag Number	Source Description	NOx	СО	SO ₂	PM (filterable)	PM10	PM _{2.5}	VOC	NH₃	Pb	CO ₂	CH ₄	N ₂ O	CO ₂ e
22	B-502	Plants 4 and 5 Small Flare	2.2	2.0	0.0	0.0	0.0	0.0	0.8	6.0	-	147.26	2.78E-03	2.78E-04	147.41
23	B-501	Plants 4 and 5 Emergency Flare	54.0	0.6	0.0	0.0	0.0	0.0	0.2	150.0	-	47.12	8.89E-04	8.89E-05	47.17
11	B-609	Ammonia Tank Storage System Flare	0.1	0.5	0.0	0.0	0.0	0.0	0.2	-		147.41	0.00	2.78E-04	147.41
12	B-201	Primary Reformer	27.0	57.5	0.8	2.5	10.1	10.1	7.3	-	6.6E-04	1.59E+05	3.04E+00	2.91E+00	1.60E+05
13	B-200	Startup Heater	9.9	0.8	0.0	0.0	0.1	0.1	0.1	-	5.0E-06	11,882.35	0.23	0.22	11,952.96
14	D-207	CO ₂ Vent	-	12.7	_	-	-	-	50.0	25.6	-	193,033.36	-	_	193,033.36
15	H-205	Organic Sulfur Removal Unit Vent	_	_	-	_	_	-	0.01	0.00	-	-	_	-	-
16	H-269	Amine Fat Flasher Vent	_	4.6	-	_	_	-	0.96	2.10	-	13,739.00	_		13,739.00
17	F-263	PC Stripper Surge Tank Vent		-	_	-	_	_	0.05	0.06	_	-	_	-	-
19	C-200	H2 Vent Stack (dry gas vent)	_	126.9	_	_	_	_	0.00	50.04	_			_	
35	C-560A	Granulator A/B Scrubber Exhaust Vent Stack	_	-	_	10.0	10.0	10.0	0.40	45.83	_	_	_	_	-
36	C-560B	Granulator C/D Scrubber Exhaust Vent Stack	_	_	-	10.0	10.0	10.0	0.40	45.83	_	-	-	-	-
37	D- 515	Atmospheric Absorber Final Scrubber	_	-	_	-	-	-	0.02	20.80	_	16.67	_	_	16.67
38	D-515	Inerts Vent Scrubber					_	-	0.02	11.25		125.00		-	125.00
39	E-535	After Condenser Exchanger	_	-	_	_	_	_	0.00	0.00	_	-	-	_	-
40	E-711	Cooling tower	_	_	_	0.75	0.23	1.3E-03	0.00	0.67	_	_	_	_	-
41	D-514	Tank Scrubber	_	_	-	-	-	-	0.00	0.10	-	_	_	-	-
41A	D-513	Tank Scrubber							0.00	0.20					
41B	F-209	MDEA Storage Tank								0.20					
41C	F-615	MDEA Storage Tank													
44	6B-708A	Package Boiler	2.4	9.0	0.1	0.5	1.8	1.8	1.31	2.146	1.2E-04	28,588.24	0.55	0.15	28,647.37
48	6B-708B	Package Boiler	2.4	9.0	0.1	0.5	1.8	1.8	1.31	2.146	1.2E-04	28,588.24	0.55	0.15	28,647.37
49	6B-708C	Package Boiler	2.4	9.0	0.1	0.5	1.8	1.8	1.31	2.146	1.2E-04	28,588.24	0.55	0.15	28,647.37
47	N/A	Urea Loading Wharf		-	-	1.3	1.1	0.4	0.00	0.00	-	-	-	-	-
47A		Urea Transfer				*	*	*							
47C		Urea Warehouse/Transfer (stack)				0.10	0.08	0.03							
47B		Urea Warehouse/Transfer (fugitive)				0.50	0.43	0.15							
47D		Urea Transfer				0.10	0.09	0.03							
50	B-705A	Waste Heat Boiler	0.4	5.1	0.03	0.09	0.35	0.35	0.25	1.68	2.3E-05	5,497.53	0.11	0.10	5,530.20
51	B-705B	Waste Heat Boiler	0.4	5.1	0.03	0.09	0.35	0.35	0.25	1.68	2.3E-05	5,497.53	0.11	0.10	5,530.20
52	B-705C	Waste Heat Boiler	0.4	5.1	0.03	0.09	0.35	0.35	0.25	1.68	2.3E-05	5,497.53	0.11	0.10	5,530.20
53	B-705D	Waste Heat Boiler	0.4	5.1	0.03	0.09	0.35	0.35	0.25	1.68	2.3E-05	5,497.53	0.11	0.10	5,530.20
54	B-705E	Waste Heat Boiler	0.4	5.1	0.03	0.09	0.35	0.35	0.25	1.68	2.3E-05	5,497.53	0.11	0.10	5,530.20
55	GGT-744A	Solar Turbine/Generator Set	36.4	6.0	0.19	0.41	0.41	0.41	0.12	0.00	-	6.10E+03	0.48	0.17	6.16E+03
56	GGT-744B	Solar Turbine/Generator Set	36.4	6.0	0.19	0.41	0.41	0.41	0.12	0.00	-	6.10E+03	0.48	0.17	6.16E+03
57	GGT-744C	Solar Turbine/Generator Set	2.3	6.0	0.19	0.41	0.41	0.41	0.12	0.00	-	6.10E+03	0.48	0.17	6.16E+03
58	GGT-744D	Solar Turbine/Generator Set	2.3	6.0	0.19	0.41	0.41	0.41	0.12	0.00	-	6.10E+03	0.48	0.17	6.16E+03
59	GGT-744E	Solar Turbine/Generator Set	2.3	6.0	0.19	0.41	0.41	0.41	0.12	0.00	-	6.10E+03	0.48	0.17	6.16E+03
60	F-791	Deaerator Vent	-	-	-	-	-	-	0.00	1.75	-	-	-	-	-
61	F-711	Degasifier Vent	-	-	-	-	-	-	0.00	0.03	-	-	-	-	-
65	GM-616D	Diesel Fired Well Pump	11.9	2.6	0.8	0.8	0.8	0.8	0.97	0.00	-	442.80	-	-	442.80
66	G-613B	Gasoline Fired Firewater Pump	3.4	2.1	1.8E-01	2.1E-01	2.1E-01	2.1E-01	0.21	0.00	-	323.40	-	-	323.40
Comp	N/A	Fugitive Ammonia from Components								0.50					
IEU	N/A	Building Heaters/Water Heaters	0.7	2.9E-01	4.3E-03	1.4E-02	5.4E-02	5.4E-02	3.9E-02	-	3.6E-06	856.35	0.02	0.02	861.44
	Fac	ility Total Potential to Emit	198.1	293.2	3.3	30.2	42.4	41.1	67.4	360.7	1.1E-03	5.2E+05	7.8E+00	4.9E+00	5.2E+05

8.0 EU RELEASE PARAMETERS

Changes made to tables and text are provided in this section. For further information on stationary source emissions, see Section 7 of the October 2014 report.

8.1 LOAD ANALYSIS

KNO evaluated the more significant emission units to be included in the model and identified those which had the capability of operating at a partial load (50% or 75% of full load) for an extended period of time. For units that could potentially operate at such loads, KNO performed a load analysis to identify the load resulting in the highest ground-level concentrations. The following emission unit/load combinations were added to this analysis:

• Solar Turbines/Waste Heat Boilers – These units were evaluated at 75% load and 100% load only, as the units will not operate at lower loads for extended periods.

All other emission unit/load combinations from the October 2014 report were also included in the analysis. This included the reformer, the urea granulators, and the package boilers.

The load evaluation was performed using a 1.0 g/sec emission rate to correspond to 100% load, a 0.75 g/sec emission rate to correspond to 75% load, and a 0.50 g/sec emission rate to correspond to 50% load. Stack gas flow rate was adjusted to correspond to the operating load under consideration.

Tables summarizing the results for each of the significant emission units identified above are provided in Attachment A. The results are discussed briefly below:

- Reformer The maximum concentration for both one-hour and eight hour averaging periods occurred under the 100% load scenario. Although the maximum concentration for the 24-hour averaging period occurred under the 75% load scenario, the 100% load scenario was selected as the worst case operating load since both the one-hour and eight-hour averages were highest for this scenario.
- Urea Granulators The maximum concentration occurred under the 100% load scenario for both urea granulators.
- Package Boilers The maximum concentration occurred under the 100% load for all three package boilers.
- Solar Turbines/Waste Heat Boilers The maximum concentration for all averaging periods was highest under the 100% operating load scenario for all five waste heat boilers.

Based on this assessment, the operating scenario with the maximum predicted ground level concentrations was the 100% load for all significant emission units.

8.2 **OPERATING LIMITS**

Proposed operating limits are discussed in Section 7.1.

8.3 HORIZONTAL OR CAPPED STACKS

Any stack which has a horizontal or obstructed release is assumed to be subject to downwash and was evaluated in AERMOD using the BETA option for the October 2014 modeling report. As a result of this, AERMOD assigned an exit velocity of 0.001 m/sec to these units. Based on current stack configurations, the two MDEA storage tanks (EU41B and EU41C), scrubber (EU41), Deaerator Vent (EU60), well pump engine (EU65), fire pump engine (EU66), and urea storage warehouse baghouse (EU47C and EU47D) all have horizontal exhausts and were modeled in this manner. The use of horizontal and/or capped stacks is now a default option in AERMOD. In the updated modeling analysis, stack parameters for these sources were modified with actual air flow rates and the appropriate AERMOD keyword for horizontal or capped stacks (POINTHOR or POINTCAP).

There were no other revisions to this section.

8.4 HAUL ROADS, STOCK PILES AND OTHER FUGITIVE EMISSIONS

No revisions were made to this section.

8.5 INCREMENT MODELING CONSIDERATIONS

As the facility will be restarting from a closed status, all KNO sources were considered increment consuming.

8.6 OFFSITE EUS

Off-site sources to be included in the analysis are discussed in Section 15.0.

8.7 INTERMITTENT EMISSIONS

No revisions were made to this section.

8.8 SOURCE GROUPS

No revisions were made to this section.

9.0 POLLUTANT SPECIFIC MODELING CONSIDERATIONS

Changes made to tables and text are provided in this section. For further information on pollutant specific modeling considerations, see Section 9 of the October 2014 report.

9.1 NITROGEN DIOXIDE (NO₂)

The Guideline on Air Quality Models (GAQM, Appendix W of 40 CFR Part 51), with clarification from the US EPA March 01, 2011 memorandum¹ provides a tiered approach for modeling NO_2 from NO_X emissions with increasing levels of refinement:

• Tier 1: full conversion of NO_X to NO₂;

• Tier 2: use of model default option ARM2 for the 1-hour NO_2 standard – no further justification needed;

• Tier 3: application of the Ozone Limiting Method (OLM) or the Plume Volume Molar Ratio Method (PVMRM).

As part of the 1-hour NO₂ analysis for the proposed Agrium KNO project, ERM utilized the ARM2 Tier 2 method to determine predicted concentrations of NO₂.

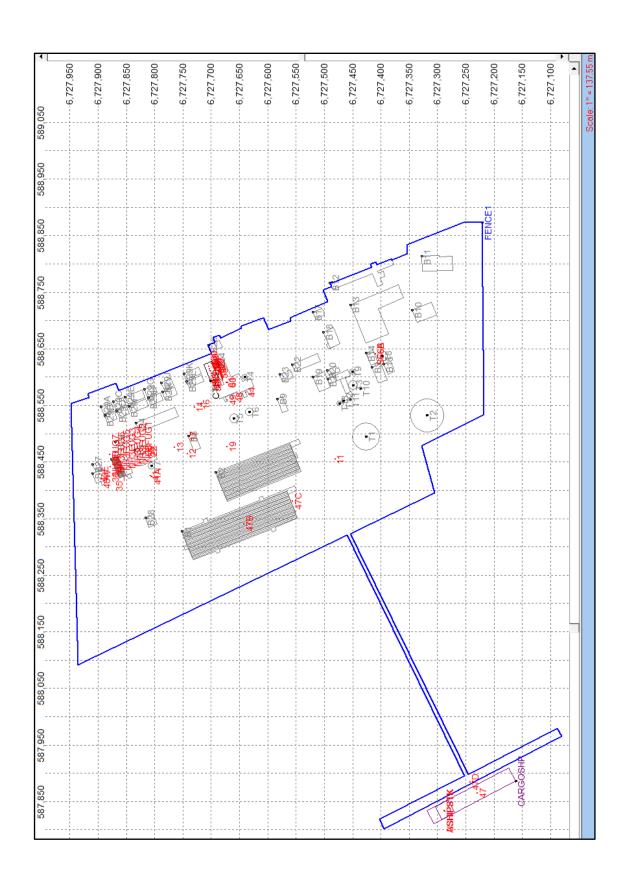
9.2 PARTICULATE MATTER

With regard to $PM_{2.5}$, the most recent guidance from EPA now allows that the 5year average of the highest 8th high concentration of the maximum 24-hour or annual averages across the 5 year meteorological data set should be compared to the $PM_{2.5}$ NAAQS. This is now consistent with the form of the standard which is based upon the average of the 98th percentile of the 24-hour values averaged over three years of monitoring.

In a guidance document issued by EPA on May 20, 2014^2 , EPA indicates that PSD modeling assessments for PM_{2.5} must include an analysis of the impacts of secondary PM_{2.5} formation on ambient PM_{2.5} air quality levels. EPA suggests that these assessments may be qualitative or quantitative in nature, but does not provide any specific procedures to be followed for either approach. KNO performed a qualitative analysis of secondary PM_{2.5} formation. This analysis is provided in Section 19.1.

 $¹_{$ "Additional clarification regarding application of appendix w modeling guidance for the 1-hour NO₂ National Ambient Air Quality Standard" from: Tyler Fox, leader, Air Quality modeling group; to: regional Air Division Directors. March 1, 2011.

² "GUIDANCE FOR PM2.5 PERMIT MODELING", STEPHEN D. PAGE, DIRECTOR, EPA OFFICE OF AIR QUALITY PLANNING AND STANDARDS, MAY 20, 2014.


9.3 PM₁₀ DEPOSITION

 PM_{10} deposition was not evaluated.

10.0 BUILDING DOWNWASH

No revisions were made to this section. See Section 10 of the October 2014 report for a description of the building downwash analysis for KNO.

ERM

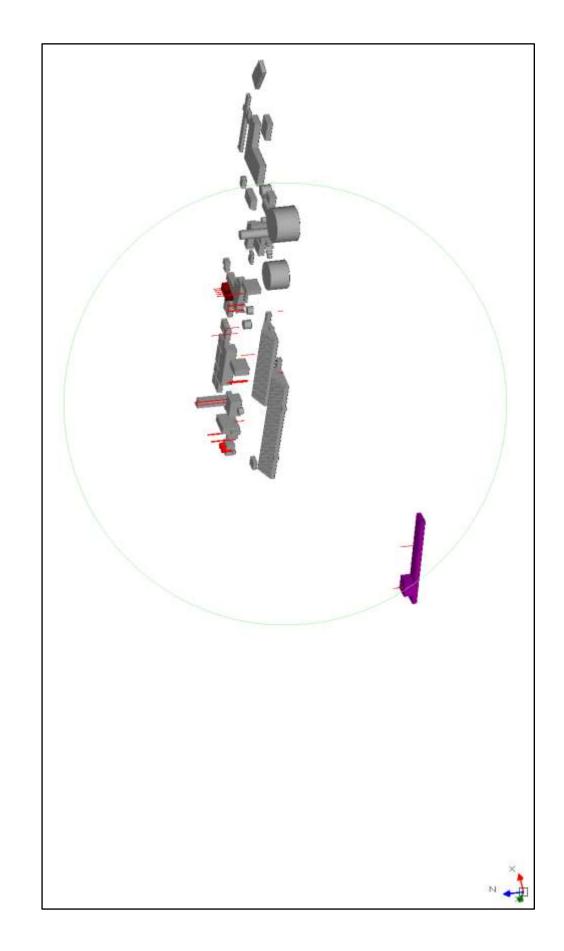


FIGURE 3- 3D VIEW OF KNO FACILITY STRUCTURES

11.0 AMBIENT AIR BOUNDARY

No revisions were made to this section. See Section 11 of the October 2014 report for a description of the ambient air boundary for KNO.

12.0 RECEPTORS

The modeling analysis used the same method for receptor placement that was used in the October 2014 report. The latest version of the AERMAP program (version 18081), with 1/3 arc second resolution NED terrain files were used to develop hill scale and terrain elevation inputs for each receptor.

There were no other revisions made to this section. See Section 12 of the October 2014 report for a full description of receptors.

13.0 OFF-SITE EUS AND BACKGROUND AIR QUALITY DATA

KNO performed an initial modeling analysis in the October 2014 modeling report to identify those pollutants that have predicted ambient concentrations above significant impact levels as defined in EPA guidance. For the current modeling analysis, it was assumed that there were no changes to the pollutants and averaging times with predicted ambient concentrations above significant impact levels. Therefore, the initial modeling analysis was not updated for this report.

KNO performed more detailed modeling analyses for pollutants with predicted ambient impacts that exceeded the significant impact concentrations summarized above. These analyses included consideration of interactive sources and background concentrations. Interactive source inventories were prepared by KNO based on an identification of sources within the potential area of concern and of permits issued to such sources. Per ADEC guidance, KNO utilized significant concentration gradients to identify the extent to which additional sources must be included in modeling analyses.

13.1 OFF-SITE EMISSION UNITS

Off-site emission units included in the October 2014 modeling analysis were also included in the updated modeling analysis. These included sources from the Conoco Phillips LNG Plant, Homer Electric Plant, Tesoro Refinery (Andeavor), and AE&EC Bernice Lake. In addition to these sources, an evaluation was completed to determine if any sources had been constructed, modified, or removed since the original modeling report was submitted. All permits issued the four facilities listed above by ADEC since October 2014 were reviewed. A table that summarizes the sources included and emissions data is provided in Attachment B.

13.2 BACKGROUND CONCENTRATIONS

Ambient Background concentrations for CO, NO₂, PM₁₀, and PM_{2.5} were determined based on the AK LNG data collected in 2015. Table 24 summarizes the background values used in the updated modeling analysis.

Table 24Ambient Background Concentrations

Pollutant	Averaging Period	Background Value (µg/m ³)
со	1-hour Average	1400
0	8-hour Average	1000
NO2	98 th Percentile 24-hr Average	30.6
NOZ	Annual Average	2.6
PM10	2 nd High 24-hr Average	30.0
PM2.5	98 th Percentile 24-hr Average	12.0
PIVIZ.5	Annual Average	3.6

The ammonia background concentration originally used in the October 2014 report to characterize existing ammonia air quality concentrations in the vicinity of the plant, 0.5 ppb, was also used in the updated modeling analysis.

13.3 INCREMENT CONSUMING SOURCES

In order to verify that PSD increments contained in §52.21(c) are protected, KNO included increment consuming sources from nearby sources in its modeling analysis. In addition to the sources included in the October 2014 modeling analysis, an evaluation was completed to determine if any sources had been constructed, modified, or removed since the original modeling report was submitted. A table that summarizes the sources included and emissions data is provided in Attachment B.

There were no other revisions to this section.

14.0 DESIGN CONCENTRATIONS

No revisions were made to this section. See Section 14 of the October 2014 report for a description of the design concentrations analysis for KNO.

15.0 POST-PROCESSING

No revisions were made to this section. This analysis does not include any updates to Class I analyses; therefore, no CALPUFF modeling or post-processing was completed.

16.0 MODELING RESULTS

16.1 SIGNIFICANT IMPACT LEVEL (SIL)

No revisions were made to this section. See Section 16.1 of the October 2014 report for the initial modeling analysis completed for KNO. The results of that analysis are also included as Table 12.

16.2 INCREMENT CONSUMPTION

Modeling was performed to determine the extent to which emissions from the project, in combination with other increment-consuming sources identified in Section 13.3 of this report, will consume air quality increment permitted for Class II areas. The results of this analysis are provided in Table 13. These results show that emissions from increment consuming sources in the vicinity of the plant will not exceed allowable Class II increments.

16.3 NAAQS ASSESSMENT

KNO performed detailed modeling analyses for pollutants with predicted ambient impacts that exceed the significant impact concentrations summarized above. These analyses included consideration of interactive sources and background concentrations. Interactive source inventories were prepared by KNO based on an identification of sources within the potential area of concern and of permits issued to such sources. Sources located in the vicinity of the site are illustrated on maps provided in Attachment C. Those included in the NAAQS assessment and modeled emission rates are summarized in Attachment B.

Results of the NAAQS modeling analysis are summarized in Table 14. These results show that the impact from KNO sources, in combination with other sources located in the area and background concentrations, will not result in an exceedance of the NAAQS.

Electronic copies of all input and output files for the modeling analyses performed will be provided to ADEC under separate cover.

16.4 SENSITIVITY ANALYSES

Sensitivity analyses provided in the October 2014 reflected operating scenarios that were not included in the complete modeling analysis. These scenarios were accounted for in this analysis, so the sensitivity analyses included in the October 2014 report are no longer necessary.

Table 12 SIL Summary
(All concentrations are in µg/m³)

Agrium KNO													
SIL Summary				Ammon	ia Ship at Dock	<			Urea Ship	at Dock			
					Short-te	erm			-	Short-t	erm		
		Annual	SIL	S1 norma l	S2 CT in bypass	S3 startup	S4 turnaround	Class II SIL	S1 normal	S2 CT in bypass	S3 startup	S4 turnaround	Class II SIL
	=				01 11 0 9 9 400	ottattap	turriar o tarita	012		- Sypuss	Startap		012
NO2 Tier 3 (OLM	7.01	1	416.1	416.1	416.1	416.1	8	298.2	298.2	298.2	298.2	8
PM10		1.49	1	17.6	17.6	17.6	17.6	5	21.6	21.6	21.7	21.6	5
PM2.5		0.89	0.3	7.69	7.69	7.70	7.67	1.2	7.69	7.69	7.70	7.67	1.2
СО													
1-hr				995.7	995.7	10244. 9	995.7	2000	996.0	996.0	10243.5	996.0	2000
8-hr				278.5	278.5	3566.2	278.5	500	274.3	274.3	3566.2	274.3	500

Note: This Table is the same as was provided in the October 2014 modeling report. It has been provided again here for continuity.

Table 13 Increment Summary (All concentrations are in µg/m³)

Agrium KNO												
INCREMENT	Summary		Ammonia	Ship at Doc	k			Urea Ship	at Dock			
				Sho	rt-term				She	ort-term		
	Annual		S1	S2 CT in	S3	S4	Class II	S1	S2 CT in	S 3	S4	Class II
		Increment	normal	bypass	startup	turnaround	Increment	normal	bypass	startup	turnaround	Increment
NO2 Tier 2 ARM2	7.93	25										
PM10	1.50	17	15.1	15.1	15.1	21.7	30	18.6	18.6	18.7	21.7	30
PM2.5	1.04	4	8.29	8.29	8.39	6.62	9	8.29	8.29	8.39	7.45	9

Table 14 NAAQS Summary (All concentrations are in µg/m³)

Agrium KNO

AAQS Summary

	Annual	Annual Conc	Bkgrnd	Total	AAQS	% of AAQS
NO2	Tier 2 (ARM2)	14.42	2.6	17.02	100	17%
PM2.	5	1.12	3.6	4.72	12	39%

	Ammon	ia Ship at																		
		Short-	term																	
	S1					S2					S3					S4				
SHORT-TERM	normal					CT in bypass					startu	р				turnaround				
	conc	Bkgrnd	total	AAQS	% of AAQS	conc	Bkgrnd	total	AAQS	% of AAQS	conc	Bkgrnd	total	AAQS	% of AAQS	conc	Bkgrnd	total	AAQS	% of AA
NO2 (1-hr)																				
Tier 2 (ARM2)	142.2	30.6	172.8	188	92%	149.0	30.6	179.6	188	96%	149.0	30.6	179.6	188	96%	149.0	30.6	179.6	188	96%
PM10																				
24-hr	13.4	30.0	43.4	150	29%	13.4	30.0	43.4	150	29%	13.4	30.0	43.4	150	29%	17.1	30.0	47.1	150	31%
PM2.5										: [
24-hr	6.03	12.0	18.0	35	52%	5.93	12.0	17.9	35	51%	5.96	12.0	18.0	35	51%	5.83	12.0	17.8	35	51%
со																				
1-hr	688.7	1400	2088.7	40000	5%	685.38	1400	2085.4	40000	5%	5476.	7 1400	6876.7	40000	17%	685.4	1400	2085.4	40000	5%
8-hr	169.6	1000	1169.6	10000	12%	168.8	1000	1168.8	10000	12%	2803.	0 1000	3803.0	10000	38%	168.7	1000	1168.7	10000	12%
Ammonia																				
8-hr	192.7	0.35	193.0	2100	9.2%	192.7	0.35	193.0	2100	9.2%	197.8	2 0.35	198.2	2100	9.4%	192.5	0.35	192.9	2100	9.2%

27

	Urea Shi	p at Dock													
		Short-	term												
	S1					S2					S 3				
SHORT-TERM	normal					CT in bypass					startup				
	conc	Bkgrnd	total	AAQS	% of AAQS	conc	Bkgrnd	total	AAQS	% of AAQS	conc	Bkgrnd	total	AAQS	% of AAC
NO2 (1-hr)															
Tier 2 (ARM2)	168.0	incl	168.0	188	89%	168.0	incl	168.0	188	89%	168.0	incl	168.0	188	89%
PM10															
24-hr	17.2	30.0	47.2	150	31%	17.2	30.0	47.2	150	31%	17.2	30.0	47.2	150	31%
PM2.5				ļ											
24-hr	6.03	12.0	18.1	35	52%	5.93	12.0	17.9	35	51%	5.96	12.0	18.0	35	51%
СО															
1-hr	688.7	1400	2088.7	40000	5%	685.43	1400	2085.4	40000	5%	5451.9	1400	6851.9	40000	17%
8-hr	169.6	1000	1169.6	10000	12%	168.8	1000	1168.8	10000	12%	2803.0	1000	3803.0	10000	38%
Ammonia				¦											
8-hr	192.7	0.35	193.0	2100	9.2%	192.7	0.35	193.0	2100	9.2%	197.82	0.35	198.2	2100	9.4%

S4				
turnaround				
conc	Bkgrnd	total	AAQS	% of AAQS
168.0	incl	168.0	188	89%
40.0		40.0	450	2224
19.2	30.0	49.2	150	33%
5.83	12.0	17.8	35	51%
685.4	1400	2085.4	40000	5%
168.8	1000	1168.8	10000	12%
192.5	0.35	192.9	2100	9.2%

17.0 OZONE IMPACTS

No revisions were made to this section. See Section 16 of the October 2014 report for ozone impacts for KNO.

18.0 QUALITATIVE ASSESSMENTS

Changes made to tables and text are provided in this section. For further information on stationary source emissions, see Section 16 of the October 2014 report.

18.1 QUALITATIVE ASSESSMENT OF SECONDARY PM2.5 FORMATION

Sections 18.1.1 and 18.1.2 describe changes made to Section 16.1 of the modeling report.

18.1.1 PM_{2.5} Air Quality Data

There were no changes made to this section.

18.1.2 Assessment of Potential Secondary PM_{2.5} Impact

Potential emissions of known PM_{2.5} precursors from the Agrium KNO Facility are shown in Table 15, along with currently permitted potential emissions from other nearby major stationary sources. The potential emissions have been updated to reflect changes to KNO emission sources and permitted emissions from nearby sources. The PM_{2.5} precursor emissions from Agrium KNO are also compared relative to the sum of the current permitted emissions from the nearby facilities.

	Potential Emissions (tpy)				
Stationary Source	NO _X	SO ₂			
Agrium KNO	230.63	10.13			
Tesoro Alaska Company, LLC - Kenai Refinery ¹	706	104			
Alaska Electric & Energy - Bernice Lake					
Combustion Turbine (BCT) Plant ²	748	4.4			
Alaska Electric & Energy Cooperative (AE&EC) -					
Nikiski Generation Plant ³	695	26			
Trans-Foreland Pipeline Company - Kenai LNG					
Plant ⁴	1,513	4.9			
Total Existing Kenai Sources:	3,662	139			
KNO Emissions Expressed as Percent of Existing					
Kenai Sources:	6.3%	7.3%			

 Table 15 – PM2.5 Precursor Emissions from Agrium KNO and Nearby Sources

¹ - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ0035TVP02, Rev. 8, December 19, 2018, ADEC AQ/APP (Juneau)

² - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ0086TVP03P, September 4, 2015, ADEC AQ/APP (Juneau)

³ - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ1190TVP01, September 30, 2009, ADEC AQ/APP (Juneau)

⁴ - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ0090TVP02P, Rev. 1, March 19, 2015, ADEC AQ/APP (Juneau)

Potential emissions of known $PM_{2.5}$ precursors from Agrium KNO are significantly less than the total of existing potential emissions from nearby stationary sources. Since the region is currently well in attainment of the 24-hr $PM_{2.5}$ NAAQS (well below 50 % of both the annual and 24-hour NAAQS), the minor increase in $PM_{2.5}$ precursors from Agrium KNO (in comparison to nearby emissions of $PM_{2.5}$ precursors) could not realistically pose a threat to the ongoing attainment of the $PM_{2.5}$ NAAQS in the region.

As noted earlier, ammonia emissions are assumed by EPA not to lead to secondary $PM_{2.5}$ formation unless a study has been performed showing that ammonia emissions in the area contribute to $PM_{2.5}$ concentrations in that area. Because ammonia is not a regulated air pollutant, there are no data available on potential ammonia emissions from other sources in the vicinity of the plant. Potential ammonia emissions from the project are 632 tons per year. Although no ammonia emissions information is available for other existing sources, the mass emissions of ammonia are relatively small in comparison to area-wide emissions of NO_x (17% of the total area-wide NO_x emissions). Due to the relatively low ammonia emissions in the area in comparison to NO_x emissions and the low existing ambient $PM_{2.5}$ air quality levels in the area, KNO does not

believe that ammonia emissions pose a threat to attainment of the $\rm PM_{2.5}$ NAAQS in the region.

18.2 QUALITATIVE ASSESSMENT OF VOC AND NOX ON OZONE

The Agrium KNO facility will have significant emissions of ozone precursors. Specifically, the potential to emit (PTE) for NO_X will be 230.63 tpy, and the PTE for VOC will be 114.12 tpy. Therefore, Agrium KNO must assess the emissions of these precursors with respect to possible ozone formation that may endanger the ozone NAAQS. Presently, USEPA does not have a recommended air quality modeling approach to assess ozone impacts in Alaska. Therefore, KNO evaluated ozone impacts using a qualitative approach by determining current ozone levels in the region, and comparing potential emissions of ozone precursors to currently permitted ozone precursor emissions from nearby stationary sources.

In order to assess potential impacts on ambient ozone, the current ozone levels in the region must be assessed. The current 8-hr ozone NAAQS is 70 ppb, based on the three year average of the 4th highest 8-hr ozone concentration annually. The current 2015-2017 USEPA ozone design value for the Denali CASTNET monitor (Monitor ID# 2-068-0003) is 51 ppb³. The 2018 4th highest ozone value for Denali is 53 ppb⁴; therefore the design value will not change significantly for 2016-2018, and would be expected to decrease to 50 ppb.

18.2.1 Ozone Data Representativeness

No revisions were made to this section. See Section 16.2.1 of the October 2014 report for the ozone data analysis for KNO.

³ HTTP://WWW.EPA.GOV/AIRTRENDS/VALUES.HTML OZONE DETAILED INFORMATION - FEBRUARY 7, 2014

⁴ HTTP://WWW.EPA.GOV/AIRQUALITY/AIRDATA/

18.2.2 Assessment of Potential Ozone Impacts

Potential emissions of ozone precursors from the Agrium KNO Facility are shown in Table 16, along with currently permitted potential emissions from other nearby major stationary sources. The ozone precursor emissions from Agrium KNO are also compared relative to the sum of the current permitted emissions from the nearby facilities.

	Potential Emissions (tpy)				
Stationary Source	NOx	VOC			
Agrium KNO	230.63	114.12			
Tesoro Alaska Company, LLC - Kenai Refinery ¹	706	1,111			
Alaska Electric & Energy - Bernice Lake					
Combustion Turbine (BCT) Plant ²	748	9.2			
Alaska Electric & Energy Cooperative (AE&EC) -					
Nikiski Generation Plant ³	695	79			
Trans-Foreland Pipeline Company - Kenai LNG					
Plant ⁴	1,513	312			
Total Existing Kenai Sources:	3,662	1,511			
KNO Emissions Expressed as Percent of Existing					
Kenai Sources:	6.3%	7.6%			

Table 16 - Ozone Precursor Emissions from Agrium KNO and Nearby Sources

¹ - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ0035TVP02, Rev. 8, December 19, 2018, ADEC AQ/APP (Juneau)

² - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ0086TVP03P, September 4, 2015, ADEC AQ/APP (Juneau)

³ - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ1190TVP01, September 30, 2009, ADEC AQ/APP (Juneau)

⁴ - Emissions from Statement of Basis of the terms and conditions for Permit No. AQ0090TVP02P, Rev. 1, March 19, 2015, ADEC AQ/APP (Juneau)

Potential emissions of ozone precursors from Agrium KNO are

significantly less than the total of existing potential emissions from nearby stationary sources. Since the region is currently well in attainment of the 8-hr ozone NAAQS (the ozone USEPA design value is just under 70 % of the ozone NAAQS), the minor increase in ozone precursors from Agrium KNO (in comparison to nearby emissions of ozone precursors) could not realistically pose a threat to the ongoing attainment of the ozone NAAQS in the region.

19.0 CLASS II VISIBILITY AND OTHER IMPACTS

As part of the modeling analysis, PSD applicants must assess whether the emissions from their stationary source, including associated growth, will impair visibility. Visibility impairment means any humanly perceptible change in visibility (visual range, contrast, or coloration) from that which would have existed under natural conditions (40 CFR 51.301 Visibility impairment). Visibility impacts can be in the form of visible plumes ("plume blight") or in a general, area-wide reduction in visibility ("regional haze").

19.1 VISIBILITY IMPACTS

A visibility analysis, separate from the Class I area analysis, is required as part of the additional impacts analysis. These should be conducted for sensitive Class II areas (places of interest). Other than an update to the project emissions of particulates and NO_X, no parameters or characteristics were changed from the October 2014 VISCREEN analysis.

The updated project emissions of 174.2 tons per year of particulates and 230.6 tons per year of NO_X were used in the Level 1 VISCREEN analysis, also using the default values of zero emissions for primary NO_2 , soot and SO_4 .

Default particle characteristics were assumed, as default to the model, as well as the following parameters (using default ozone background level of 0.04 ppm (40 ppb):

Transport Scenario Specifications:

Background Ozone:	0.04 ppm
Background Visual Range:	250.00 km
Source-Observer Distance:	50.00 km
Min. Source-Class I Distance:	50.00 km
Max. Source-Class I Distance:	53.25 km
Plume-Source-Observer Angle:	11.25 degrees
Stability:	6
Wind Speed:	1.00 m/s

Results were compared to default Class I impact thresholds (Plume Perceptibility [Delta E] of 2.0, and Plume Contrast of 0.05). Results are provided for impacts "inside" and "outside" the Class I area. According to ADEC guidance, the impacts provided for "inside" the Class I area are indicative of whether the project plume may be perceptible; the impacts provided for "outside" the Class I area are to be ignored for the Class II analysis.

The results indicate that for low viewing angles (10 degrees), the VISCREENpredicted plume parameters are above the Class I thresholds for plume perceptibility (2.0), and plume contrast (0.05). For high viewing angles (140 degrees), the predicted plume parameters were below the Class I thresholds.

These results indicate that the plume from the proposed KNO project may be visible in the Class I areas, and the integral vistas associated with these areas.

Attachment F provides the results file as produced by the VISCREEN model.

19.2 OTHER IMPACTS

As a part of a PSD analysis, the applicant must demonstrate that the project will not result in an adverse impact upon soils and vegetation in the area. KNO satisfied this requirement by demonstrating compliance with the secondary ambient air quality standards.

The applicant is also required to evaluate the impact that the project will have upon associated growth in the area of the project. When fully operational, the KNO facility will employ 140 people, raising the potential for some population growth in the area of the plant. The population of Kenai in 2017 was 7,790 while the population of neighboring Soldotna was 4,659. Thus, the number of employees for the plant in comparison to the overall population is relatively small (approximately one percent of the population of Kenai and Soldotna combined). Any impacts of growth on air quality in the area are expected to be correspondingly low. Thus, the project is not expected to result in an adverse impact on air quality in the area as a consequence of associated growth.

20.0 CLASS I ANALYSES

Air quality impacts on federally protected Class I areas must be assessed for projects meeting the criteria discussed in the 2010 Federal Land Managers' (FLM) Air Quality Related Values Work Group (FLAG) Phase I report. (Department of the Interior 2010) The 2010 FLAG Phase I report states:

"Generally, the permitting authority should notify the FLM of all new or modified major facilities proposing to locate within 100 km (62 miles) of a Class I area. In addition, the permitting authority should notify the FLM of "very large sources" with the potential to affect Class I areas proposing to locate at distances greater than 100 km. (Reference March 19, 1979, memorandum from EPA Assistant Administrator for Air, Noise, and Radiation to Regional Administrators, Regions I - X). Given the multitude of possible size/distance combinations, the FLMs cannot precisely define in advance what constitutes a "very large source" located more than 100 km away that may impact a particular Class I area. However, as discussed elsewhere in this report, the Agencies have adopted a size (Q)/distance (D) criteria to screen out from AQRV review those sources with relatively small amounts of emissions located a large distance from a Class I area. Consequently, as a minimum, the permitting authority should notify the FLM of all sources that exceed these Q/D criteria."

As required by the FLM, the Q/D analysis compares the ratio of the sum of proposed annualized maximum daily emission rates of all visibility impairing pollutants (in tons per year) and the distance to the nearest Class I area (in km) to a threshold value of 10.

The nearest Class I area to the proposed project site is Tuxedni National Wildlife Refuge. This area is 86.8 kilometers southwest of the project site. Also, Denali National Park is located 199.3 km to the north of the project site.

20.1 AQRV Q/D ANALYSIS

Per the 2010 FLAG Phase I report, the Q/D analysis must compare the ratio of the annualized 24-hour maximum allowable emissions of all visibility impairing pollutants (in tons per year, based on 24-hour maximum allowable emissions) and the distance to the nearest Class I area (in km) to a threshold value of 10.

The emissions data provided in the October 2014 report was also used in the updated Q/D analysis, with the exception of the Solar Turbines/Waste Heat Boilers. Since the Solar Turbines/Waste Heat Boilers operate intermittently, however, the following adjustments were made to intermittently operated emission units:

• EU55-59 – Solar Turbines: During normal operations, it is assumed that one Solar Turbine may be operated for as long as 24 consecutive hours in a bypass mode from the waste heat boilers (thus bypassing the SCR NO_X control system). During turnaround, it is assumed that up to two Solar Turbines could be operated in this fashion in any one 24-hour period.

As noted above, plant operations will occur under several different operating scenarios. Based on the adjustments described in the October 2014 report and above, the Q value for the proposed KNO restart is 792.7 tons per year. Using this value, the Q/D for Tuxedni is computed to be 9.1 and the Q/D value for Denali is 4.0. It should be noted, however, that this provides an unrealistic computation of Q since it is impossible for all emission units to operate in this fashion. More realistic computations of Q based on anticipated operating scenarios for KNO are:

- Normal Operations: During normal operations, the flares, startup heater, and bypass Solar Turbine emissions will not occur. This reduces Q by 366.2 tons/year to 426.5 tons/year. Using this value, the Q/D for Tuxedni is computed to be 4.9 and the Q/D value for Denali is 2.1.
- Normal Operations with One Solar Turbine on Bypass: This scenario is identical with Scenario #1 except that the excess emissions from one Solar Turbine are added to the total emissions, making Q for this scenario 571.0 tons/year. Using this value, the Q/D for Tuxedni is computed to be 6.6 and the Q/D value for Denali is 2.9.
- Startup: During the Startup operating scenario, the Startup Heater will be added to the total plant emissions, however no flares will be operated and no Solar Turbines will be operated in a bypass mode, making the total Q value 472.4 tons/year. Using this value, the Q/D for Tuxedni is computed to be 5.4 and the Q/D value for Denali is 2.4.
- Turnaround: During the Turnaround operating scenario, two Solar Turbines operating in bypass mode would be in operation, and the small flare or emergency flare could be in operation (both would not operate at the same time). The highest Q value would occur with operation of the emergency flare. The Startup Heater would not operate during Turnaround, nor would the Reformer (165.9 tons per year NOx, SO2, and PM10), any of the Waste Heat Boilers (16.4 tons per year NOx, SO2, and PM10) or any of the remaining Solar Turbines (48.2 tons per year NOx, SO2, and PM10). Total Q for this scenario would therefore be 400.2 tons per year. Using this value, the Q/D for Tuxedni is computed to be 4.6 and the Q/D value for Denali is 2.0.

Based on the fact that the Q/D value for all operating scenarios is below a value of 10, additional AQRV analyses are not required.

20.2 MODELING ANALYSIS AND PROCEDURES

KNO has proposed to rely on the previous Class I increment analysis that was provided in the October 2014 modeling analysis. An update to this analysis is not believed to be necessary for the following reasons:

- The change to larger Solar Turbines will have a negligible impact on PM_{2.5} and PM₁₀ emissions associated with the project, and thus the predicted impact for these pollutants will be unchanged from what was determined in the October 2014 modeling analysis
- The predicted NO₂ impact for the two Class I areas of concern, Denali National Park and Tuxedni National Wildlife Refuge, were well below the Class I NO₂ SIL (0.001 μ g/m³) for Denali and Tuxedni compared to the NO₂ SIL of 0.1 μ g/m³). The relatively small increase in NO_X emissions resulting from the larger Solar Turbines would not be expected to significantly change these results.

20.3 AMMONIA MODELING

Alaska Rule 18 AAC 50.010(8) contains an ambient air quality standard for ammonia of 2.1 mg/m3 for an 8-hour average, not to be exceeded more than once per year. KNO performed an air quality modeling analysis for sources involved in the restart to demonstrate that this standard will be met. The procedure followed was consistent with the procedures outlined above for other pollutants. Maximum hourly ammonia emissions were modeled for all sources included in the restart. Maximum hourly emissions are provided in Table 3. Results are summarized in Table 23 below:

Year	KNO Sources (mg/m3)	Background (mg/m3)	Total Ammonia Conc. (mg/m3)
2008	0.198	0.00035	0.1982
2009	0.194	0.00035	0.1941
2010	0.183	0.00035	0.1831
2011	0.196	0.00035	0.1961
2012	0.179	0.00035	0.1798

Table 23 – An	imonia Mol	deling Results
---------------	------------	----------------

The October 2014 modeling report included a sensitivity analysis, which concluded that there was no impact from ammonia slip from the Reformer and the Solar Turbines/Waste Heat Boilers SCR. The current modeling was performed to include the ammonia slip from the Reformer, Waste Heat Boilers SCR, and the Package Boilers SCR units. The predicted impacts presented in Table 23 are inclusive of all ammonia sources at the facility.

21.0 REFERENCES

Alaska Department of Environmental Conservation (ADEC). NO2 - NOx Instack Ratios Per Source Tests Approved by the Alaska Department of Environmental Conservation. Online Posting. Accessed May 2014. http://dec.alaska.gov/air/ap/docs/NO2-NOx%20Instack%20Ratios%20from%20Source%20Tests%208-23-13.xlsx

Alaska Department of Environmental Conservation (ADEC). 2008. *ADEC Guidance re AERMET Geometric Means; How to Calculate the Geometric Mean Bowen Ratio and the Inverse-Distance Weighted Geometric Mean Surface Roughness Length in Alaska.* Online Posting. Alaska Department of Environmental Conservation. Accessed May 2014.

http://dec.alaska.gov/air/ap/docs/Surface%20Parameter%20Geometric%20Me an%20%28Rev%202%206-17-09%29.pdf.

Alaska Department of Environmental Conservation (ADEC). April 19, 2018. *Air Quality Modeling Protocol Outline, PSD Permit Applications*. Version 1.6. The Alaska Department of Environmental Conservation (ADEC).

Department of the Interior; Natural Resource Report NPS/NRPC/NRR – 2010/232. October 2010. *Federal Land Managers' Air Quality Related Values Work Group (FLAG) Phase I Report – Revised (2010)*. US Department of the Interior; US Forest Service, National Park Service, US Fish and Wildlife Service.

Fox, Tyler, Leader, Air Quality Modeling Group. March 1, 2011. *Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO2 National Ambient Air Quality Standard*. Memorandum from United States EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

Hendrick, E.M, Tino, V.R, Hanna, S.R, Hanrahan, P.L., and Egan, B.A. 2013. *Evaluation of NO2 predictions by the plume volume molar ratio method (PVMRM) and ozone limiting method (OLM) in AERMOD using new field observations*. Journal of the Air & Waste Management Association, 63, 844-854.

Knodel, Jon. May 13, 2002. *Air Quality Criteria for Oxides of Nitrogen, Summary of Vegetation Impacts*. United States EPA, Region 7 Air Permitting and Compliance Branch.

MACTEC, 2004. *Sensitivity Analysis of PVMRM and OLM in AERMOD*. Final Report, Alaska DEC Contract No. 18-8018-04. MACTEC Federal Programs, Inc., Research Triangle Park, NC.

MACTEC, 2005. *Evaluation of Bias in AERMOD-PVMRM*. Final Report, Alaska DEC Contract No. 18-9010-12. MACTEC Federal Programs, Inc., Research Triangle Park, NC.

National Park Service (NPS) Air Resources Division (ARD). *Class I Area Modeling Receptors Database*. Online Posting. US Department of the Interior. Accessed May 2014. <u>http://www.nature.nps.gov/air/maps/receptors/index.cfm</u>

Page, Stephen D. June 29, 2010. *Guidance Concerning the Implementation of the 1hour NO2 NAAQS for the Prevention of Significant Deterioration Program.* Memorandum from EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

Page, Stephen D, Director OAQPS. March 23, 2010. *Modeling Procedures for Demonstrating Compliance with PM2.5 NAAQS*. Memorandum from EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

Page, Stephen D, Director OAQPS. March 4, 2013. *Draft Guidance for PM2.5 Permit Modeling*. Memorandum from EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

Page, Stephen D. Director OAQPS, May 20, 2014, *Guidance for PM25 Permit Modeling*. Memorandum from EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

US EPA. *US EPA's NO2/NOx ISR Database*. Online Posting. Accessed May 2014. http://www.epa.gov/ttn/scram/no2_isr_database.htm

US EPA-450-2-81-078. December 12, 1980. *A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils, and Animals*. EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

US EPA-450-4-87-007. May 1987. *Ambient Monitoring Guidelines for Prevention of Significant Deterioration (PSD)*. Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

Attachment A Load Analysis

Reformer					CO (lb/hr)	NO2 (lb/hr)	PM10 (lb/hr)	PM2.5 (lb/hr)		
					57.5	27	10.1	10.1		
									NO2	NO
			100%	75%					100%	75%
Average	Group	Rank	Chi/Q	Chi/Q					Conc	Con
1-HR	12	1ST	5.08567	6.18754					1038.07	947.
1-HR	12	1ST	4.80667	6.00626					981.12	919.
1-HR	12	1ST	4.25581	5.82143					868.68	891.
1-HR	12	1ST	5.26218	6.22942					1074.10	953.
1-HR	12	1ST	4.58071	5.76826					935.00	883.
8-HR	12	1ST	2.77339	3.4474						
8-HR	12	1ST	2.46211	3.73855						
8-HR	12	1ST	2.095	3.33071						
8-HR	12	1ST	3.47532	4.16681						
8-HR	12	1ST	3.30668	4.44495						
24-HR	12	1ST	0.92446	1.4037						
24-HR	12	1ST	0.86538	1.30691						
24-HR	12	1ST	1.03927	1.68578						
24-HR	12	1ST	1.15844	1.42511						
24-HR	12	1ST	2.306	3.23162						
24-HR	12	8TH	0.25788	0.34625						
24-HR	12	8TH	0.37531	0.61207						
24-HR	12	8TH	0.26636	0.42443						
24-HR	12	8TH	0.27164	0.58572						
24-HR	12	8TH	0.41323	0.84253						

NO2	NO2	PM10	PM10	PM2.5	PM2.5	СО	
100%	75%	100%	75%	100%	75%	100%	
Conc	Conc	Conc	Conc	Conc	Conc	Conc	
038.07	947.23					2210.7	
981.12	919.48					2089.4	
868.68	891.19					1850.0	
1074.10	953.65					2287.4	I
935.00	883.05					1991.2	Ĩ
						1205.6	
						1070.3	
						910.7	

1085.9
1358.5
1449.1

70.59	80.38	70.59	80.38
66.08	74.84	66.08	74.84
79.35	96.54	79.35	96.54
88.45	81.61	88.45	81.61
176.07	185.06	176.07	185.06
		19.69	19.83
		19.69 28.66	19.83 35.05
		28.66	35.05
		28.66 20.34	35.05 24.31
		28.66 20.34 20.74	35.05 24.31 33.54

Granulator 35					CO (lb/hr)	NO2 (lb/hr)	PM10 (lb/hr)	PM2.5 (lb/hr)								
					0	0	10	10								
									NO2	NO2	PM10	PM10	PM2.5	PM2.5	CO	со
			100%	75%					100%	75%	100%	75%	100%	75%	100%	75%
Average	Group	Rank	Chi/Q	Chi/Q					Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
1-HR	35	1ST	8.98677	10.44712					0	0					0	0
1-HR	35	1ST	8.5993	10.30399					0	0					0	0
1-HR	35	1ST	8.34609	10.25756					0	0					0	0
1-HR	35	1ST	9.11355	10.55432					0	0					0	0
1-HR	35	1ST	8.90196	10.79003					0	0					0	0
8-HR	35	1ST	5.04437	6.7766											0	0
8-HR	35	1ST	4.62582	6.00101											0	0
8-HR	35	1ST	4.80299	6.68238											0	0
8-HR	35	1ST	4.20401	4.94813											0	0
8-HR	35	1ST	4.2852	6.05376											0	0
24-HR	35	1ST	2.86137	3.76372							216.3	213.4	216.3	213.4		
24-HR	35	1ST	3.19463	3.77714							241.5	214.2	241.5	214.2		
24-HR	35	1ST	3.19774	4.226							241.7	239.6	241.7	239.6		
24-HR	35	1ST	3.28836	3.91472							248.6	222.0	248.6	222.0		
24-HR	35	1ST	3.06977	3.40858							232.1	193.3	232.1	193.3		
24-HR	35	8TH	1.11682	1.42377									84.4	80.7		
24-HR	35	8TH	1.4661	1.94834									110.8	110.5		
24-HR	35	8TH	1.67422	2.0808									126.6	118.0		
24-HR	35	8TH	1.27577	1.63928									96.4	92.9		
24-HR	35	8TH	1.2515	1.60541									94.6	91.0		
													102.6	98.6	5-yr avg	

Granulatoı 36				_	CO (lb/hr)	NO2 (lb/hr)	PM10 (lb/hr)	PM2.5 (lb/hr)								
					0	0	10	10								
									NO2	NO2	PM10	PM10	PM2.5	PM2.5	CO	CO
			100%	75%					100%	75%	100%	75%	100%	75%	100%	75%
Average	Group	Rank	Chi/Q	Chi/Q					Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
1-HR	36	1ST	8.87953	9.97043					0	0					0	0
1-HR	36	1ST	8.881	10.04693					0	0					0	0
1-HR	36	1ST	8.23653	9.80833					0	0					0	0
1-HR	36	1ST	8.8893	10.23747					0	0					0	0
1-HR	36	1ST	8.19053	9.79761					0	0					0	0
8-HR	36	1ST	5.9437	7.08113											0	0
8-HR	36	1ST	6.3886	7.42285											0	0
8-HR	36	1ST	6.1745	7.22985											0	0
8-HR	36	1ST	6.40903	7.54591											0	0
8-HR	36	1ST	5.76568	6.6215											0	0
24-HR	36	1ST	3.56007	4.31729							269.1	244.8	269.1	244.8		
24-HR	36	1ST	3.70946	4.81422							280.4	273.0	280.4	273.0		
24-HR	36	1ST	3.81549	4.35032							288.4	246.7	288.4	246.7		
24-HR	36	1ST	3.89266	4.73777							294.3	268.6	294.3	268.6		
24-HR	36	1ST	4.57553	5.18791							345.9	294.1	345.9	294.1		
24-HR	36	8TH	1.76698	2.18552									133.6	123.9		
24-HR	36	8TH	2.16028	2.87407									163.3	163.0		
24-HR	36	8TH	2.34372	2.90816									177.2	164.9		
24-HR	36	8TH	1.99492	2.62184									150.8	148.7		
24-HR	36	8TH		2.60157									153.2	147.5		
													155.6	149.6	5-yr avg	

Package Bo 44						CO (lb/hr) 9	NO2 (lb/hr) 2.4	PM10 (lb/hr) 1.8	PM2.5 (lb/hr) 1.8
			100%	75%	50%				
Average	Group	Rank	Chi/Q	Chi/Q	Chi/Q				
1-HR	44	1ST	11.47037	13.37105	17.22873				
1-HR	44	1ST	11.42826	13.36216	18.13651				
1-HR	44	1ST	11.50374	13.3683	17.51915				
1-HR	44	1ST	11.45581	13.53245	18.07492				
1-HR	44	1ST	11.45335	13.16437	17.0752				
8-HR	44	1ST	7.81401	9.08103	11.20998				
8-HR	44	1ST	8.30733	9.36355	11.91757				
8-HR	44	1ST	9.87611	11.19707	13.01138				
8-HR	44	1ST	8.21978	9.77866	13.22309				
8-HR	44	1ST	7.1212	8.71838	12.17328				
24-HR	44	1ST	5.31825	6.36752	8.10187				
24-HR	44	1ST	6.61768	7.53133	8.91229				
24-HR	44	1ST	6.69349	7.25826	7.97945				
24-HR	44	1ST	5.85289	6.60717	8.5166				
24-HR	44	1ST	5.59541	7.21527	10.39182				
24-HR	44	8TH	2.80261	3.26523	4.53055				
24-HR	44	8TH	3.7328	4.54531	6.74319				
24-HR	44	8TH	3.92992	4.49209	5.48697				
24-HR	44	8TH	2.86528	3.80137	4.77712				
24-HR	44	8TH	2.65214	3.21762	4.7007				

NO2	NO2	NO2	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	со	со	CO
100%	75%	50%	100%	75%	50%	100%	75%	50%	100%	75%	50%
Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
208.1	182.0	156.3							780.4	682.3	586.1
207.4	181.8	164.5							777.6	681.9	617.0
208.7	181.9	158.9							782.7	682.2	596.0
207.9	184.1	164.0							779.4	690.5	614.9
207.8	179.1	154.9							779.3	671.8	580.9
									531.7	463.4	381.4
									565.2	477.8	405.4
									672.0	571.4	442.6
									559.3	499.0	449.8
									484.5	444.9	414.1
			72.4	65.0	55.1	72.4	65.0	55.1			
			00.4		60.6	00.4		60.6			

90.1	76.9	60.6	90.1	76.9	60.6
91.1	74.1	54.3	91.1	74.1	54.3
79.6	67.4	57.9	79.6	67.4	57.9
76.1	73.6	70.7	76.1	73.6	70.7
			38.1	33.3	30.8
			50.8	46.4	45.9
			53.5	45.8	37.3
			39.0	38.8	32.5
			36.1	32.8	32.0
			43.5	39.4	35.7

Package Bo 48	iler					CO (lb/hr) 9	NO2 (lb/hr) 2.4	PM10 (lb/hr) 1.8	PM2.5 (lb/hr) 1.8
			100%	75%	50%				
Average	Group	Rank	Chi/Q	Chi/Q	Chi/Q				
1-HR	48	1ST	14.23583	16.39814	22.94576				
1-HR	48	1ST	14.2604	16.30467	22.83121				
1-HR	48	1ST	14.22238	16.40393	23.32776				
1-HR	48	1ST	14.14826	16.4091	28.29708				
1-HR	48	1ST	14.10994	16.28267	22.60077				
8-HR	48	1ST	11.94682	14.32839	17.58211				
8-HR	48	1ST	11.73696	13.99643	17.14299				
8-HR	48	1ST	12.51657	14.04477	16.17753				
8-HR	48	1ST	11.31481	13.72435	17.14913				
8-HR	48	1ST	12.30756	13.52915	16.58804				
24-HR	48	1ST	10.34731	13.01771	15.75362				
24-HR	48	1ST	11.19142	13.57236	15.96055				
24-HR	48	1ST	9.95031	11.72529	14.11398				
24-HR	48	1ST	8.71715	10.28788	11.99696				
24-HR	48	1ST	11.33002	12.41397	13.75127				
24-HR	48	8TH	5.29119	6.41019	7.92769				
24-HR	48	8TH	6.5361	7.92328	9.37672				
24-HR	48	8TH	6.89658	7.70145	8.90042				
24-HR	48	8TH	5.48427	6.72626	8.66255				
24-HR	48	8TH	5.74067	6.26749	7.7998				

NO2	NO2	NO2	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	CO	со	со
100%	75%	50%	100%	75%	50%	100%	75%	50%	100%	75%	50%
Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
258.3	223.1	208.2							968.6	836.8	780.6
258.7	221.9	207.1							970.3	832.0	776.7
258.0	223.2	211.6							967.7	837.1	793.6
256.7	223.3	256.7							962.6	837.3	962.7
256.0	221.6	205.0							960.0	830.9	768.9
									017.0	721.2	E09.1

812.8	731.2	598.1
798.6	714.2	583.2
851.6	716.7	550.4
769.8	700.3	583.4
837.4	690.4	564.3

132.9	107.2	140.8	132.9	107.2	
138.5	108.6	152.3	138.5	108.6	
119.7	96.0	135.4	119.7	96.0	
105.0	81.6	118.6	105.0	81.6	
126.7	93.6	154.2	126.7	93.6	
			_		
		72.0	65.4	53.9	
		88.9	80.9	63.8	
		93.8	78.6	60.6	
		74.6	68.6	58.9	
		78.1	64.0	53.1	
		81.5	71.5	58.1	5-yr avg
	138.5 119.7 105.0	138.5 108.6 119.7 96.0 105.0 81.6	138.5 108.6 152.3 119.7 96.0 135.4 105.0 81.6 118.6 126.7 93.6 154.2 72.0 88.9 93.8 74.6 78.1	138.5 108.6 152.3 138.5 119.7 96.0 135.4 119.7 105.0 81.6 118.6 105.0 126.7 93.6 154.2 126.7 72.0 65.4 88.9 80.9 93.8 78.6 74.6 68.6 78.1 64.0 64.0 64.0	138.5 108.6 119.7 96.0 105.0 81.6 126.7 93.6 72.0 65.4 88.9 80.9 93.8 78.6 60.6 74.6 78.1 64.0

Package Bo 49	oiler					CO (lb/hr) 9	NO2 (lb/hr) 2.4	PM10 (lb/hr) 1.8	PM2.5 (lb/hr) 1.8
			100%	75%	50%				
Average	Group	Rank	Chi/Q	Chi/Q	Chi/Q				
1-HR	49	1ST	13.24517	15.31068	20.8254				
1-HR	49	1ST	13.19848	15.30912	20.98919				
1-HR	49	1ST	13.2789	15.27464	21.03923				
1-HR	49	1ST	13.15321	15.38803	21.17845				
1-HR	49	1ST	13.3117	15.23793	20.6718				
8-HR	49	1ST	11.39604	12.91519	16.44441				
8-HR	49	1ST	11.27587	12.52536	16.37864				
8-HR	49	1ST	10.9022	12.71496	16.14175				
8-HR	49	1ST	10.44327	11.6134	16.34112				
8-HR	49	1ST	11.57	13.05446	14.71508				
24-HR	49	1ST	7.83627	10.08525	15.02249				
24-HR	49	1ST	8.82918	11.71993	15.06875				
24-HR	49	1ST	9.40816	10.47647	14.30724				
24-HR	49	1ST	7.77521	9.64527	14.43906				
24-HR	49	1ST	10.06118	11.58077	13,12501				

49 8TH 5.20856 6.64109 8.23921

49 8TH 4.96023 6.3612 7.79581

8TH 5.81096 6.95046 8.87404

8TH 5.85741 7.12066 8.14262

8TH 5.90749 7.4663 8.93281

24-HR

24-HR

24-HR

24-HR

24-HR

49

49

49

NO2	NO2	NO2	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	CO	со	CO
100%	75%	50%	100%	75%	50%	100%	75%	50%	100%	75%	50%
Conc											
240.3	208.3	188.9							901.2	781.3	708.5
239.5	208.3	190.4							898.0	781.2	714.0
240.9	207.9	190.9							903.5	779.5	715.7
238.6	209.4	192.1							894.9	785.2	720.5
241.5	207.4	187.5							905.7	777.6	703.2
									775.4	659.1	559.4
									767.2	639.2	557.2
									741.8	648.8	549.1
									710.5	592.6	555.9
									787.2	666.2	500.6
			106.6	102.9	102.2	106.6	102.9	102.2			
			120.1	119.6	102.5	120.1	119.6	102.5			
			128.0	106.9	97.3	128.0	106.9	97.3			
			105.8	98.4	98.2	105.8	98.4	98.2			
			136.9	118.2	89.3	136.9	118.2	89.3			

70.9	67.8	56.1	
79.1	70.9	60.4	
80.4	76.2	60.8	
67.5	64.9	53.0	
79.7	72.7	55.4	
75.5	70.5	57.1	5-yr avg

Waste Heat 50	Boiler / CT			_	CO (lb/hr)	NO2 (lb/hr)	PM10 (lb/hr)
					5.1	0.4	0.35
			100%	75%			
Average	Group	Rank	Chi/Q	Chi/Q			
1-HR	50	1ST	11.76241	14.19741			
1-HR	50	1ST	11.4153	14.07677			
1-HR	50	1ST	11.18734	13.63479			
1-HR	50	1ST	11.93023	14.0729			
1-HR	50	1ST	11.00756	13.5373			
8-HR	50	1ST	8.57904	10.76846			
8-HR	50	1ST	9.26261	11.22944			
8-HR	50	1ST	8.47289	9.86355			
8-HR	50	1ST	8.34011	10.36887			
8-HR	50	1ST	8.27749	10.02558			
24-HR	50	1ST	5.43472	6.8294			
24-HR	50	1ST	6.27755	8.10569			
24-HR	50	1ST	6.33729	7.63821			
24-HR	50	1ST	6.73475	8.69622			
24-HR	50	1ST	6.15594	8.94006			
24-HR	50	8TH	3.49391	4.92472			
24-HR	50	8TH	4.10774	5.40978			
24-HR	50	8TH	4.53105	5.73144			
24-HR	50	8TH	4.04209	5.11062			
24-HR	50	8TH	3.90679	5.17035			

PM2.5 (lb/hr) 0.35

NO2	NO2	PM10	PM10	PM2.5	PM2.5	CO	CO
100%	75%	100%	75%	100%	75%	100%	75%
Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
35.57	32.20					453.5	410.5
34.52	31.93					440.1	407.1
33.83	30.92					431.3	394.3
36.08	31.92					460.0	406.9
33.29	30.70					424.4	391.5
						330.8	311.4
						357.1	324.7

337.1	524.7
326.7	285.2
321.6	299.8
319.1	289.9

14.4	13.6	14.4	13.6	
16.6	16.1	16.6	16.1	
16.8	15.2	16.8	15.2	
17.8	17.3	17.8	17.3	
16.3	17.7	16.3	17.7	
				-
		9.2	9.8	
		10.9	10.7	
		12.0	11.4	
		10.7	10.1	
		10.3	10.3	_
		10.6	10.5	5-yr avg

Waste Heat Boiler / CT 51			CO (lb/hr)	NO2 (lb/hr)	PM10 (lb/hr)	PM2.5 (lb/hr)	
				5.1	0.4	0.35	0.35
		100%	75%				
Group	Rank	Chi/Q	Chi/Q				
51	1ST	11.681	14.10488				
51	1ST	11.89655	14.42453				
51	1ST	11.55038	14.4245				
51	1ST	12.20814	14.28141				
51	1ST	11.02962	13.75247				
51	1ST	8 69868	10 86723				
51	1ST	8.04979	9.71905				
51	1ST	6.03758	8.67125				
51	8TH	3.51036	4.76171				
51	8TH	3.95444	5.28313				
51	8TH	4.51944	5.68124				
51	8TH	3.98083	5.07482				
51	8TH	3.79301	5.08153				
	Group 51 51 51 51 51 51 51 51 51 51 51 51 51	Group Rank 51 1ST 51 8TH 51 8TH 51 8TH 51 8TH	Interpretation Interpretation Group Rank Chi/Q 51 1ST 11.681 51 1ST 11.89655 51 1ST 11.5038 51 1ST 12.20814 51 1ST 12.20814 51 1ST 12.20814 51 1ST 102962 51 1ST 8.69868 51 1ST 8.2753 51 1ST 8.2753 51 1ST 8.04979 51 1ST 8.04979 51 1ST 6.16961 51 1ST 6.26951 51 1ST 6.26951 51 1ST 6.03758 51 8TH 3.51036 51 8TH 3.95444 51 8TH 3.98083	100% 75% Group Rank Chi/Q Chi/Q 51 1ST 11.681 14.10488 51 1ST 11.89655 14.42453 51 1ST 11.5038 14.42453 51 1ST 11.5038 14.42453 51 1ST 12.20814 14.28141 51 1ST 11.02962 13.75247 51 1ST 8.69868 10.86723 51 1ST 8.69868 10.86723 51 1ST 8.2753 9.60772 51 1ST 8.4645 10.18996 51 1ST 8.4645 10.18996 51 1ST 8.4645 10.18996 51 1ST 8.64979 9.71905 51 1ST 6.16961 7.91933 51 1ST 6.26951 7.54116 51 1ST 6.03758 8.67125 51 1ST 6.03758 8.67125	(lb/hr) 5.1 100% 75% Group Rank Chi/Q 51 1ST 11.681 14.10488 51 1ST 11.89655 14.42453 51 1ST 11.5038 14.4245 51 1ST 11.20814 14.28141 51 1ST 11.02962 13.75247 51 1ST 8.69868 10.86723 51 1ST 8.2753 9.60772 51 1ST 8.2753 9.60772 51 1ST 8.04979 9.71905 51 1ST 8.04979 9.71905 51 1ST 6.16961 7.91933 51 1ST 6.26951 7.54116 51 1ST 6.03758 8.67125 51 1ST 6.03758 8.67125 51 1ST 6.1375 8.63245 51 1ST 6.13758 8.67125 51 1ST <td>$\begin{array}{c c c c c c c c } & (lb/hr) & (lb/hr) \\ \hline & (lb/hr) & (lb/hr) \\ \hline & 5.1 & 0.4 \\ \hline \\$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c } & (lb/hr) & (lb/hr) \\ \hline & (lb/hr) & (lb/hr) \\ \hline & 5.1 & 0.4 \\ \hline \\ $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

NO2 100%	NO2 75%	PM10 100%	PM10 75%	PM2.5 100%	PM2.5 75%	CO 100%	CO 75%
Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
35.32	31.99					450.4	407.9
35.97	32.71					458.7	417.1
34.93	32.71					445.3	417.1
36.92	32.39					470.7	413.0
33.35	31.19					425.3	397.7

335.4	314.2
355.7	321.5
319.1	277.8
326.4	294.7
310.4	281.0

14.5	13.2	14.5	13.2	
16.3	15.7	16.3	15.7	
16.6	15.0	16.6	15.0	
17.8	17.1	17.8	17.1	
16.0	17.2	16.0	17.2	
				-
		9.3	9.4	
		10.5	10.5	
		12.0	11.3	
		10.5	10.1	
		10.0	10.1	_
		10.5	10.3	5-yr avg

		_								
	t Boiler / Cl				CO	NO2	PM10	PM2.5		
52				-	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)		
					5.1	0.4	0.35	0.35		
									NO2	
			100%	75%					100%	
Average	Group	Rank	Chi/Q	Chi/Q					Conc	(
1-HR	52	1ST		14.20327					36.50	3
1-HR	52	1ST	12.12414	14.88392					36.66	3
1-HR	52	1ST	11.74454	14.65994					35.51	3
1-HR	52	1ST	12.04584	14.20269					36.43	3
1-HR	52	1ST	11.21717	14.32839					33.92	3
8-HR	52	1ST	8.68568	10.82349						
8-HR	52	1ST	9.07816	10.93877						
8-HR	52	1ST	8.01599	9.51129						
8-HR	52	1ST	8.91415	10.58074						
8-HR	52	1ST	7.84445	9.48277						
24-HR	52	1ST	5.47453	6.57122						
24-HR	52	1ST	6.0117	7.67767						
24-HR	52	1ST	6.16992	7.41467						
24-HR	52	1ST	6.65156	8.51515						
24-HR	52	1ST	5.97273	8.33246						
24-HR	52	8TH	3.46867	4.62819						
24-HR	52	8TH	3.95296	5.12948						
24-HR	52	8TH	4.45542	5.53389						
24-HR	52	8TH	3.86494	5.007						
24-HR	52	8TH	3.79555	5.31222						
		0	5.755555							

02	NO2	PM10	PM10	PM2.5	PM2.5	СО	со	
)%	75%	100%	75%	100%	75%	100%	75%	
nc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	
50	32.21					465.4	410.7	
66	33.76					467.5	430.4	
51	33.25					452.8	423.9	
43	32.21					464.4	410.7	
92	32.50					432.5	414.3	
						334.9	313.0	

313.0
316.3
275.0
306.0
274.2

14.5	13.0	14.5	13.0	
15.9	15.2	15.9	15.2	
16.3	14.7	16.3	14.7	
17.6	16.9	17.6	16.9	
15.8	16.5	15.8	16.5	
				_
		9.2	9.2	
		10.5	10.2	
		11.8	11.0	
		10.2	9.9	
		10.0	10.5	
		10.3	10.2	5-yr avg

Waste Hea 53	at Boiler / CT			-	CO (lb/hr) 5.1	NO2 (lb/hr) 0.4	PM10 (lb/hr) 0.35	PM2.5 (lb/hr) 0.35
			100%	75%				
Average	Group	Rank	Chi/Q	Chi/Q				
1-HR	53	1ST	12.28899	14.47924				
1-HR	53	1ST	12.26521	14.76461				
1-HR	53	1ST	11.68645	14.64905				
1-HR	53	1ST	12.46308	14.72845				
1-HR	53	1ST	11.62812	14.82803				
8-HR	53	1ST	8.57637	10.7195				
8-HR	53	1ST	8.91083	10.68103				
8-HR	53	1ST	8.04906	9.74648				
8-HR	53	1ST	9.23268	10.94588				
8-HR	53	1ST	7.9587	9.63249				
24-HR	53	1ST	5.43221	6.5045				
24-HR	53	1ST	5.84547	7.59147				
24-HR	53	1ST	6.0492	7.26653				
24-HR	53	1ST	6.55316	8.36972				
24-HR	53	1ST	6.16519	7.99313				
24-HR	53	8TH	3.39392	4.54464				
24-HR	53	8TH	3.91814	5.05991				
24-HR	53	8TH	4.26803	5.43941				
24-HR	53	8TH	3.71501	4.94122				
24-HR	53	8TH	3.80706	5.35872				

NO2	NO2	PM10	PM10	PM2.5	PM2.5	со	CO	
100%	75%	100%	75%	100%	75%	100%	75%	
Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	_
37.16	32.84					473.8	418.7	
37.09	33.49					472.9	426.9	
35.34	33.22					450.6	423.6	
37.69	33.40					480.5	425.9	
35.16	33.63					448.3	428.8	
						330.7	310.0	

330.7	310.0
343.6	308.9
310.3	281.8
356.0	316.5
306.9	278.5

14.4	12.9	14.4	12.9	
15.5	15.1	15.5	15.1	
16.0	14.4	16.0	14.4	
17.3	16.6	17.3	16.6	
16.3	15.9	16.3	15.9	
		9.0	9.0	
		10.4	10.0	
		11.3	10.8	
		9.8	9.8	
		10.1	10.6	
		10.1	10.1	5-yr av

Waste Hea 54	at Boiler / CT			-	CO (lb/hr) 5.1	NO2 (lb/hr) 0.4	PM10 (lb/hr) 0.35
					5.1	0.4	0.35
			100%	75%			
Average	Group	Rank	Chi/Q	Chi/Q			
1-HR	54	1ST	12.41894	15.01538			
1-HR	54	1ST	12.55208	14.89606			
1-HR	54	1ST	12.47213	14.52619			
1-HR	54	1ST	12.69091	15.07786			
1-HR	54	1ST	11.86372	14.84458			
8-HR	54	1ST	8.38649	10.4395			
8-HR	54	1ST	8.59463	10.32387			
8-HR	54	1ST	8.1869	9.91225			
8-HR	54	1ST	9.42575	11.17955			
8-HR	54	1ST	8.07144	9.69772			
24-HR	54	1ST	5.35017	6.38868			
24-HR	54	1ST	5.70578	7.6734			
24-HR	54	1ST	5.8983	7.08518			
24-HR	54	1ST	6.40798	8.16376			
24-HR	54	1ST	6.32956	7.74232			
24-HR	54	8TH	3.26252	4.47406			
24-HR	54	8TH	3.84028	4.92562			
24-HR	54	8TH	4.1013	5.54125			
24-HR	54	8TH	3.68628	4.81938			
24-HR	54	8TH	3.91276	5.31489			

PM2.5 (lb/hr) 0.35

NO2

100%

Conc

37.55

37.96

37.72

38.38

35.88

NO2	PM10	PM10	PM2.5	PM2.5	CO	со
75%	100%	75%	100%	75%	100%	75%
Conc	Conc	Conc	Conc	Conc	Conc	Conc
34.05					478.8	434.2
33.78					483.9	430.7
32.94					480.9	420.0
34.20					489.3	436.0
33.67					457.4	429.3
					323.3	301.9
					221 /	200 E

323.3	301.9
331.4	298.5
315.6	286.6
363.4	323.3
311.2	280.4

14.2	12.7	14.	2	12.7	
15.1	15.2	15.	1	15.2	
15.6	14.1	15.	6	14.1	
17.0	16.2	17.	0	16.2	
16.7	15.4	16.	7	15.4	
		8.6	5	8.9	
		10.	2	9.8	
		10.	9	11.0	
		9.8	3	9.6	
		10.	4	10.5	_
		10.	0	10.0	5-yr avg

Attachment B Sources Included in Area-Wide Analysis

											ADEC AEI	ADEC AEI	ADEC AEI	ADEC AEI	ADEC AEI	ADEC AEI	ADEC Permit	ADEC Permit	ADEC Permit	ADEC Permit	ADEC Permit	
			Modeling																			
Facility Name Conoco Phillips LNG Pla	Source Description	Source I	D Source ID	Easting (m)	Northing (m)	Base Elevation (ft)	Stack Height (ft)	Temperature (F)	Exit Velocity (fps)	Stack Diameter (ft)	PM2.5 (tpy)	PM10 (tpy) NOx (tpy)	SO2 (tpy)	CO (tpy)	NH3 (tpy)	PM2.5 (lb/hr	PM10 (lb/hr)	NOx (lb/hr)	SO2 (lb/hr)	CO (lb/hr)	
conoco enninps Livo Pla	nt Turbine Compressor Drive - Propane Cycle #151 (NG)	1	CP01			130	70	900	107	7	0	0	0	0	0		0.99858	0.99858	48.416	76.65	12.41	
	Turbine Compressor Drive - Propane Cycle #152 (NG)	2	CP02	588003.85	6728079.16	130	70	900	107	7	N/A	3.14	120	0.08	39		0.99858	0.99858	48.416	76.65	12.41	
	Turbine Compressor Drive - Ethylene Cycle #251 (NG)	3	CP03	588008.22	6728079.27	130	70	939	264	7	N/A	1.56	71.4	0.04	19.4		1.35102	1.35102	65.504	103.7	16.79	
	Turbine Compressor Drive - Ethylene Cycle #252 (NG)	4	CP04	588004.95	6728079.19	130	70	939	161	7	N/A	1.33	60.7	0.03	16.5		1.35102	1.35102	65.504	103.7	16.79	
	Turbine Compressor Drive - Methane Cycle #351 (NG)	5	CP05	588004.95	6728079.19	130	70	900	107	7	N/A	0.12	4.63	0	1.47		0.97878	0.97878	47.456	75.13	12.16	
	Turbine Compressor Drive - Methane Cycle #352 (NG)	6	CP06	588003.86	6728078.94	130	70	900	107	7	N/A	2.26	88.8	0.06	28.1		0.97878	0.97878	47.456	75.13	12.16	
	Turbine Compressor Drive - Fuel System #701 (NG)	7	CP07	588003.86	6728078.94	130	70	900	113	5	N/A	0.56	1.2	0.01	0.31		0.396	0.396	3.0385	30.4	8.865	
	Boiler #501 (NG)	8	CP08	588004.95	6728078.97	130	62	370	32	3	N/A	0.27	3.57	0.01	3.00		0.3572	0.3572	4.7	0.024	3.95	
	Boiler #502 (NG)	9	CP09	588004.95	6728078.97	130	62	370	32	3	N/A	0.36	4.75	0.01	3.99		0.3572	0.3572	4.7	0.024	3.95	
	Boiler #511 (NG)	10	CP10	588004.95	6728078.97	130	62	370	32	3	N/A	0.26	3.43	0.01	2.88		0.3572	0.3572	4.7	0.024	3.95	
	Emergency Generator (Diesel)	11	CP11	588004.95	6728078.97	130	14	890	108	1	N/A	0.01	0.16	0	0.03		1.03257	1.03257	14.55	32.85	3.135	
	Firewater Pump#2 (Diesel)	12	CP12	587996.21	6728078.75	130	12	890	153	1	N/A	0.01	0.13	0	0.03		0.825	0.825	11.625	26.25	2.505	
	Firewater Pump#3 (Diesel)	13	CP13	587996.24	6728077.86	130	12	890	153	1	N/A	0.01	0.13	0	0.03		0.825	0.825	11.625	26.25	2.505	
	Firewater Pump#4 (Diesel)	14	CP14	587996.24	6728077.86	130 130	12 203	890 1832	95 65.6	1 45	N/A N/A	0.01	0.08	0	0.02		0.5082	0.5082	7.161 419.33	16.17 3124	1.543 2282	
	Ground Flare (including pilot) (NG, propane, ethylene)	15	CP15 CP17	587991.05	6728111.16	130	203	1832 30	65.6 0.1	45 0.1	N/A N/A		1.98	0	10.75		162.8	162.8	419.33 2.418	3124 5.46	2282	
	Turbine #151 Lube Oil Vent (emission point for compressor seal losses)	17	CP17	588004.95	6728079.19	130	1	30	0.1	0.1	N/A	0	0.04	0	0.01		0.1716	0.1/16	2.418	5.46	0.521	
Homer Electric Plant																						
	GE Frame6 MS6001B CT	1	HEL01	588625.55	6727834.36	130	51	1017	1	10	0	0	0	0	0	0	2.88486	2.88486	111.4605	2.88486	0.47	
	GSE-1746 Detroit Diesel Startup Engine	2	HEL01 HEL02		6727823.517	130	20	250	30	10	0	0	0	0	0	0	0.455	0.455	14.56	2.3205	3.8675	
	HRSG	3	HEL02		6727834.36	130	51	1017	1	10	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ		3.509412	3.509412	57.462	3.1086	37.68	no stack data, assume same stack as Frame6 CT
	2MW Tier 2 Engine	4	HEL04						-								1.043056	1.074948	64.32	1.08406	14.74	no stack data
	Emergency Firewater Pump	5	HEL05														0.33	0.33	4.65	0.3075	1.005	no stack data
	Glycol Heater	6	HEL06														0.010431	0.010431	0.137255	0.000824	0.115294	no stack data
Tesoro Refinery																						
	Crude Heater H-101A, Unit 0001	1	TR01	589014.04	6728820.53	131	52	624	22	5	2.46	2.46	90.74	1.00	0.06	0.66	0.700913	0.700913	35	4.200913	5.593607	
	Crude Heater H-101B, Unit 0002	2	TR02	589008.38	6728828.19	131	87	496	20	4	2.86	2.86	23.05	1.16	0.06	0.77	0.824201	0.824201	9.908676	4.954338	6.598174	
	Powerformer Preheater H-201, Unit 0003	3	TR03	589101.36	6728824.93	131	106	854	14	7	0.56	0.56	7.33	0.23	0.06	0.15	0.159817	0.159817	7.945205	0.958904	1.118721	
	Powerformer Preheater H-202, Unit 0004	4	TR04	589101.36	6728824.93	131	106	854	14	7	1.05	1.05	13.82	0.43	0.06	0.28	0.255708	0.255708	12.73973	1.52968	1.780822	
	Powerformer Preheater H-203, Unit 005	5	TR05	589101.36	6728824.93	131	106	854	14	7	0.49	0.49	6.5	0.2	0.06	0.13	0.139269	0.139269	6.986301	0.844749	0.981735	
	Powerformer Reheater H-204, Unit 0006	6	TR06	589095.67	6728833.7	131	152	500	20	5	0.76	0.76	8.15	0.31	0.06	0.2	0.269406	0.269406	4.315068	1.621005	1.872146	
	Powerformer Reheater H-205, Unit 0007	7	TR07	589095.67	6728833.7	129	152	500	20	5	0.45	0.45	4.8	0.18	0.06	0.12	0.244292	0.244292	3.90411	1.461187	1.712329	
	Hydrocracker Recycle Gas Heater, H-401, Unit 0008	8	TR08	589171.77	6728850.08	129	85	498	17	4	0.45	0.45	4.86	0.18	0.06	0.12	0.194064	0.194064	3.105023	1.164384	1.369863	
	Hydrocracker Recycle Gas Heater, H-402, Unit 0009	9	TR09	589166.28	6728851.06	129	77	456	10	4	0.36	0.36	3.87	0.15	0.06	0.1	0.189498	0.189498	3.03653	1.141553	1.324201	
	Hydrocracker Fractionater Reboiler, H-403, Unit 0010	10	TR10	589155.38	6728849.67	129	75	556	25	4	1.04	1.04	8.39	0.42	0.06	0.28	0.251142	0.251142	2.990868	1.506849	1.757991	
	Hydrocracker Fractionater Reboiler, H-404, Unit 0011	11	TR11	589149.92	6728849.53	129	77	551	18	5	1.15	1.15	12.4	0.47	0.06	0.31	0.321918	0.321918	5.159817	1.940639	2.260274	
	Hot Oil Heater, H-609, Unit 0012	12	TR12	588854.71	6728634.96	134	55	536	35	3	0.18	0.18	2.4	0.07	0.06	0.05	0.002283	13.99543	0.002283	1.689498	1.96347	
	Asphalt Plant Heater, H-650, Unit 0014	14	TR14	588689.56	6728904.98	125	7	700	2	1	0.08	0.08	0.99	0	0.06	0.03	0.020548	0.593607	0.020548	0.068493	0.136986	
	Fired Steam Generator, H-701, Unit 0015	15	TR15	589034.97	6728857.82	131	40	541	30	2	0.6	0.6	7.85	0.24	0.06	0.16	0.182648	5.114155	0.182648	0.365297	1.278539	
	Fired Steam Generator, H-702, Unit 0016	16	TR16	589024.05	6728857.55	131	40	541	30	2	0.6	0.6	7.85	0.24	0.06	0.16	0.182648	5.114155	0.182648	0.365297	1.278539	
	H-704 Natural Gas Supply Heater	17	TR17														0.009132	0.009132	0.205479	0.022831	0.068493	
	Fired Steam Generator, H-801, Unit 0018	18	TR18	589007.69	6728856.03	131	40	351	28	2	0.52	0.52	6.87	0.21	0.06	0.14	0.159817	0.159817	3.196347	0.319635	1.118721	
	Hot Glycol Heater, H-802, Unit 0019	19	TR19	589139.31	6728837.01	131	15	350	8	3	0.35	0.35	4.64	0	0.06	0.14	0.054795	0.054795	1.073059	0.114155	0.388128	
	Hydrogen Reformer Furnace, H-1001, Unit 0020	20	TR20	589226.02	6728865.91	130	70	344	69	4	1.23	1.23	13.17		0.06	0.49	0.762557	0.762557	12.19178	1.52968	6.09589	
	Heaters, H-1101-1106, Units 0021-0026	21	TR21	589226.02	6728865.91	130	100	350	3	3	0.01	0.01	0.12	0	0.06	0	0.038811	0.038811	0.776254	0.159817	0.296803	sum of 22-26
	H-1102 SRU No. 1 Reheater	22	TR22_26														0.009132	0.009132	0.159817	0.045662	0.068493	common stack for EU22-26, SEE TR21
	H-1103 SRU No. 2 Reheater	23	TR22_26														0.006849	0.006849	0.114155	0.045662	0.045662	common stack for EU22-26, SEE TR21
	H-1104 SRU No. 3 Reheater	24	TR22_26														0.004566	0.004566	0.114155	0.022831	0.045662	common stack for EU22-26, SEE TR21
	H-1105 SCOT Tail Gas Burner	25 26	TR22_26														0.009132	0.009132	0.205479	0	0.068493	common stack for EU22-26, SEE TR21
	H-1106 SRU No. 4 Reheater	26	TR22_26 TR27	589100.78	6728848.31	131	46	601	,	2	0.17	0.17	2.33	0	0.06	0.07	0.009132	0.009132	0.182648	0.045662	0.068493 0.205479	common stack for EU22-26, SEE TR21
	Prip Absorber Feed Furnace, H-1201/1203, Unit 0027	27	TR27	589100.78 589100.78	6728848.31 6728848.31	131	46	601 423	2	3	0.17	0.17	2.33 4.12	0	0.06	0.07	0.052511	0.052511	1.050228 1.118721	0.114155	0.205479	
	Prip Recycle H2 Furnace, H-1202, Unit 0028 Vacuum Tower Heater, H-1701, Unit 0029	28	TR28 TR29	589100.78	6728848.31	131	52	423	35	3	1.55	1.55	4.12	0.63	0.06	0.12	0.057078	0.057078	5.707763	2.853881	3.333333	
	Duct Burner for Steam Generation, E-1400, Unit 0030	29 30	TR29 TR30	588963.65	6728869.42	131	76	399	35	4	0.21	0.21	3.57	0.65	0.06	0.42	0.474886	0.474886	5.707763	2.853881	3.333333	
	Solar Centaur Turbine	30	TR30	589284.56	6728928.65	131	28	326	76	4 4	0.21	0.21	5.49	0	0.06	0.13	0.509132	0.509132	0	0.593607	0	
	Duct Burner for Steam Generation	32	TR32	589284.56	6728928.65	131	28	320	70	4	1.29	1.29	25.32	0.02	0.06	5.84	0.616438	0.616438	11.45	1.141553	5.5	
	Solar Centaur Turbine, GT-1410, Unit 0033	33	TR33	589284.56	6728928.65	131	28	320	74	4	0.7	0.7	13.84	0.02	0.06	0.32	0.616438	0.616438	11.45	1.141553	5.5	
	Electrical Generator CAT 3412, EG-704 Unit 0034	34	TR34	589040.21	6728866.87	131	10	620	160	1	0.07	0.07	0.96	0.01	0.06	0.01	0.027397	0.027397	0.365297	0.045662	0.091324	
	Stewart-Stevens Generator, EG-801, Unit 0035	35	TR35	589173.53	6728735.35	131	10	620	35	1	0.05	0.05	0.72	0	0.06	0.01	0.034247	0.034247	0.479452	0.045662	0.114155	
	North Caterpillar CAT G399, P-605A, Unit 0036	36	TR36	588881.57	6728653.46	134	15	620	105	1	0	0	0.47	0	0.06	0	0.004566	0.004566	2.716895	0.022831	0.342466	
	South Caterpillar CAT G399, P-605B, Unit 0037	37	TR37	588845.43	6728590.16	134	20	620	105	1	-	0	6.56	0	0.06	-	0.004566	0.004566	2.716895	0.022831	0.342466	
Fugitive	Upper Tank Farm CAT 3412DT, P-708C, Unit 0040	40	TR40	589323.28	6728909.56	131					0.18	0.18	2.56	0	0.55	0.03	0.070776	0.070776	1.004566	0.114155	0.228311	not sure if this one will be in model - need other source parameters for model
	Refinery Flare, J-801, Unit 0042	42	TR42	589362.87	6728855.95	131	100	350	3	1	0	0	0.06	0	0.05	0	0.015982	0.015982	0.388128	0.022831	0.114155	
	SRU Flare, Unit 0043	43	TR43	589215.09	6728865.64	130	103	624	22	5	0	0	0.06	0	0.05	0	0.009132	0.009132	0.251142	0.022831	0.068493	
AE&EC Bernice Lake																						
	AE&EC BL - Gen Unit 1	1	AEEC2	588065.67	6729768.74	154.2	250	374	56	12	7.60	7.60	368.62		94.46	0	1.736	1.736	84.160	0.044	21.566	
	AE&EC BL - Gen Unit 2	2	AEEC3	588065.67	6729768.74	154.2	250	374	56	12	52.56	52.56	342.95		405.07	0	12.000	12.000	78.300	0.054	92.483	
	AE&EC BL - Gen Unit 3	3	AEEC4	588065.67	6729768.74	154.2	250	374	56	12	52.56	52.56	410.41	0.24	281.42	0	12.000	12.000	93.700	0.054	64.251	

Attachment C Maps of Off-Site Sources

LEGEND

AGRIUM KNO 1

- 2 BERNICE LAKE POWER PLANT
- 3 NIKISKI GENERATION PLANT
- SOLDOTNA COMUSETION TURBINE PLANT 4
- 5a COOK INLET EXPLORATORY DRILLING SOUTH
- 55 COOK INLET EXPLORATORY DRILLING NORTH

Nikiski

Salamatof

Image IBCAO @ 2014 Google

Image @ 2014 DigitalGlobe

10

60

Goo

- COSMOPOLITAN PROJECT 6 7 BELUGA RIVER POWER PLANT
- 8 BELUGA RIVER UNIT
- 9 KENAI LNG PLANT
- 10 TYONEK PLATFORM
- 11 KUSTATAN PRODUCTION SITE
- 12 OSPREY PLATFORM
- 13 COOK INLET GAS STORAGE FACILITY
- 14 DRIFT RIVER TERMINAL
- 15 SPARTAN 151 RIG, WELL #1
- 16 SPARTAN 151 RIG, WELL #2

- SPARTAN 151 RIG, WELL #3 17

 - SPARTAN 151 RIG, WELL #4
- 19 SPARTAN 151 RIG, WELL #5
- 20 ANNA PLATFORM
- 21 BAKER PLATFORM

18

- 22 BEAVER CREEK PRODUCTION FACILITY
- 26 FALLS CREEK PAD

27 GRANITE POINT PLATFORM 28 GRANITE POINT TANK FARM 29 GRASSIM OSKOLKOFF PAD 30 GRAYLING PLATFORM 31 KENAI GAS FIELD 14-6 PAD 32 KENAI GAS FIELD 34-31 PAD 33 KENAI GAS FIELD 41-18 PAD

34 KING SALMON PLATFORM 35 MONOPOD PLATFORM 36 PAXTON PRODUCTION FACILITY 37 STEELHEAD PLATFORM 38 SUSAN DIONNE PAD 39 SWANSON RIVER FIELD 40 TRADING BAY

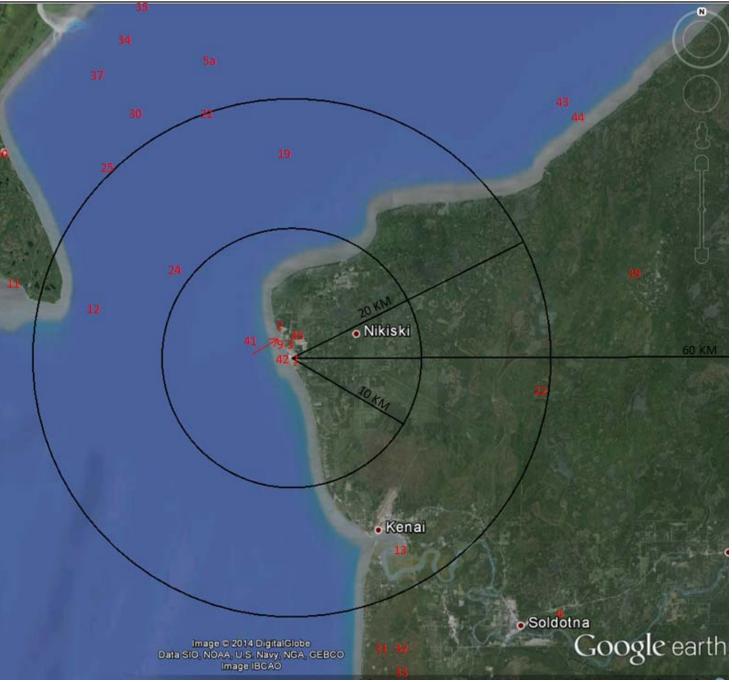
41 KENAI PIPELINE (KPL) FACILITY

42 NIKISKI TERMINAL

43 PLATFORM A (XTO)

44 PLATFORM C (XTO) 45 KENAI REFINERY

23 BRUCE PLATFORM


- 25 DOLLY VARDEN PLATFORM
- 24 DILLON PLATFORM

LEGEND

1 AGRIUM KNO 2 BERNICE LAKE POWER PLANT 3 NIKISKI GENERATION PLANT SOLDOTNA COMUSBITION TURBINE PLANT 4 COOK INLET EXPLORATORY DRILLING SOUTH 5a COOK INLET EXPLORATORY DRILLING NORTH 5b 6 COSMOPOLITAN PROJECT BELUGA RIVER POWER PLANT 7 8 BELUGA RIVER UNIT 9 KENAI LNG PLANT 10 TYONEK PLATFORM 11 KUSTATAN PRODUCTION SITE 12 OSPREY PLATFORM COOK INLET GAS STORAGE FACILITY 13 DRIFT RIVER TERMINAL 14 SPARTAN 151 RIG, WELL #1 15 SPARTAN 151 RIG, WELL #2 16 17 SPARTAN 151 RIG, WELL #3 18 SPARTAN 151 RIG, WELL #4 SPARTAN 151 RIG, WELL #5 19 20 ANNA PLATFORM 21 BAKER PLATFORM 22 BEAVER CREEK PRODUCTION FACILITY 23 BRUCE PLATFORM 24 DILLON PLATFORM 25 DOLLY VARDEN PLATFORM 26 FALLS CREEK PAD 27 GRANITE POINT PLATFORM 28 GRANITE POINT TANK FARM GRASSIM OSKOLKOFF PAD 29 GRAYLING PLATFORM 30 31 KENAI GAS FIELD 14-6 PAD 32 KENAI GAS FIELD 34-31 PAD 33 KENAI GAS FIELD 41-18 PAD 34 KING SALMON PLATFORM 35 MONOPOD PLATFORM 36 PAXTON PRODUCTION FACILITY 37 STEELHEAD PLATFORM SUSAN DIONNE PAD 38 39 SWANSON RIVER FIELD 40 TRADING BAY KENAI PIPELINE (KPL) FACILITY 41 42 NIKISKI TERMINAL 43 PLATFORM A (XTO) 44 PLATFORM C (XTO) 45 KENAI REFINERY

15 0 km

Kalgin Island

