MEMORANDUM

State of Alaska

Department of Environmental Conservation Division of Air and Water Quality - Air Quality Maintenance

TO: John Stone, Chief

DATE: March 24, 1998

FILE: 74.05.02

FROM: John Kuterbach Air Quality Maintenance SUBJECT: Maximum SO₂ Concentration from the combustion of #2 diesel fuel

EPA in their Title V permit reviews is requiring the department to demonstrate that limiting fuel sulfur to 0.5% will ensure compliance with our 500 ppmv SO₂ limit. This memorandum sets forth engineering calculations which demonstrate that combustion of #2 diesel fuel containing up to 0.5% sulfur will always comply with the 500 ppmv SO₂ limit regardless of the engine involved. I recommend that we reference these calculations in future "statements of basis" that we send to EPA with our draft operating permits.

Summary

This engineering calculation examined the stoichiometric combustion of #2 diesel fuel and calculated the maximum sulfur dioxide content of the flue gases. Typically, combustion of #2 diesel fuel can produce up to 338 ppmv SO_2 in the flue gas. Although this figure varies proportionally with the carbon content of the diesel fuel, the figure will never exceed the 500ppm limit.

I conclude that combustion of #2 diesel fuel with air will always comply with the 500ppmv emission limit. The ASTM specification for #2 diesel fuel limits sulfur to 0.5% or less.

Assumptions

All constituents of the fuel are burned proportionally

Any excess air typical of combustion would tend to dilute the SO₂ concentration in the flue gas, therefore only theoretical air is considered.

#2 diesel fuel is composed of Carbon, Hydrogen, Sulfur, and negligible amounts of Water and ash. Ignore the water because the standard is a dry standard and the water will drop out of any calculations. Ignore the ash as negligible unless the study predicts an SO₂ concentration greater than 450 ppm. Typical #2 diesel fuel is composed of 87% Carbon, 12.5% Hydrogen, and 0.5% Sulfur Calculations.

Using normal air for combustion (79% N_2 and 21% $O_2)\text{:}$

For each lb-mole of Oxygen in Air, there is 3.76 lb-mole Nitrogen (1 lb-mole O_2) = (0.79/0.21) = 3.76 lb-mole N_2

The stoichiometric equations are: $C + O_2 + 3.76 N_2 = CO_2 + 3.76 N_2$ $2H_2 + O_2 + 3.76 N_2 = 2H_2O + 3.76 N_2$ $S + O_2 + 3.76 N_2 = SO_2 + 3.76 N_2$

To calculate the dry exhaust gases (CO₂, N₂, SO₂) the following equations are used:

moles $CO_2 = (lb C) \times (1 lb$ -mole C/12.01 lb C) x (l lb-mole CO₂/1 lb mole C) moles $N_2 = (lb C) \times (1 lb$ -mole C/12.01 lb C) x (3.76 lb-mole N₂/lb-mole C) $\begin{array}{l} + \,(lb \,\,H_2) \;x\;(1 \,\,lb\text{-mole}\,\,H_2/2.016\,\,lb\,\,H_2)\;x\;(3.76\,\,lb\text{-mole}\,\,N_2/2\,\,lb\text{-mole}\,\,H_2) \\ + \,(lb\,\,S)\;x\;(1\,\,lb\text{-mole}\,\,S/32.06\,\,lb\,\,S)\;x\;(3.76\,\,lb\text{-mole}\,\,N_2/lb\text{-mole}\,\,S) \\ moles\;SO_2 = + \,(lb\,\,S)\;x\;(1\,\,lb\text{-mole}\,\,S/32.06\,\,lb\,\,S)\;x\;(lb\text{-mole}\,\,SO_2/1\,\,lb\text{-mole}\,\,S) \end{array}$

Condensing these equations leaves:

 $\begin{array}{l} moles \ CO_2 = lb \ C/12.01 \\ moles \ N_2 = 3.76 \ x \ [(lb \ C/12.01) + (lb \ H_2/4.032) + (lb \ S/32.06)] \\ moles \ SO_2 = lb \ S/32.06 \end{array}$

Then, by Avogadro's Law and the definition of mole:

ppmv SO₂ = 1,000,000 x [moles SO₂/(moles CO₂ + moles N₂ + moles SO₂)]

Results

Using 100 pounds of fuel as a basis, we examined the following three cases:

Case	Pounds in Fuel		
	Carbon	Hydrogen	Sulfur
1	87	12.5	0.5
2	96	3.5	0.5
3	78	21.5	0.5

Case 1 is the normal case, Case 2 increases carbon by 10 percent, and Case 3 decreases carbon by 10 percent.

	Case 1	Case 2	Case 3
moles CO ₂	7.24	7.99	6.49
moles N ₂	38.94	33.36	44.51
moles SO ₂	0.0156	0.0156	0.0156
Total Dry Moles	46.196	41.366	51.016
ppmv SO ₂	338	377	306

Conclusion

The above calculations show that #2 diesel fuel combusted with air will always comply with the 500 ppmv SO_2 limit. The calculations use the conservative assumptions of complete combustion and no excess air. The real-world includes partial combustion and excess air, both of which would tend to dilute the SO_2 concentration in the exhaust effluent.

The equations above can be used as an initial screening for other petroleum fuels even with a higher sulfur content or significant ash.

If you agree this memorandum has value, please share it with the rest of the AQM staff.