ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION Air Permits Program

PRELIMINARY BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION for

Fort Wainwright US Army Garrison and Doyon Utilities

Prepared by: Aaron Simpson Supervisor: James R. Plosay Preliminary Date: March 22, 2018

http://adecteams.dec.alaska.gov/sites/AQ/crossprogramprojects/SIPBACT/Shared Documents/DRAFT_BACTdeterminations/Fort Wainwright/Fort Wainwright Preliminary BACT Determination.docx

Table of Contents

1.	INTRODUCTION	1
2.	BACT EVALUATION	1
3.	BACT DETERMINATION FOR NOX	5
	 NOx BACT for the Industrial Coal-Fired Boilers NOx BACT for the Diesel-Fired Boilers NOx BACT for the Large Diesel-Fired Engines, Fire Pumps, and Generators NOx BACT for the Small Emergency Engines, Fire Pumps, and Generators 	. 11 . 13
4.	BACT DETERMINATION FOR PM-2.5	. 20
	 PM-2.5 BACT for the Industrial Coal-Fired Boilers PM-2.5 BACT for the Diesel-Fired Boilers PM-2.5 BACT for the Large Diesel-Fired Engines, Fire Pumps, and Generators PM-2.5 BACT for the Small Emergency Engines, Fire Pumps, and Generators PM-2.5 BACT for the Material Handling 	. 23 . 25 . 29
5.	BACT DETERMINATION FOR SO ₂	. 35
	 SO₂ BACT for the Industrial Coal-Fired Boilers SO₂ BACT for the Diesel-Fired Boilers SO₂ BACT for the Large Diesel-Fired Engines, Fire Pumps, and Generators SO₂ BACT for the Small Emergency Engines, Fire Pumps, and Generators 	. 39 . 41
6.	BACT DETERMINATION SUMMARY	. 47

Abbreviations/Acronyms

AACAlaska Adn AAAQSAlaska Am DepartmentAlaska Dep BACTBest Availa CFBCirculating	pient Air Quality Standards
DepartmentAlaska Dep BACTBest Availa	
BACTBest Availa	artment of Environmental Conservation
BACTBest Availa	
CI DCirculating	
CFRCode of Fee	
CyclonesMechanical	
DFPDiesel Parti	culate Filter
DLNDry Low N	
DOCDiesel Oxid	
EPAEnvironmer	
ESPElectrostati	
EUEmission U	
FITRFuel Injecti	
GCPsGood Comb	
HAPHazardous	
ITRIgnition Tir	
LEALow Excess	
LNBLow NOx I	
MR&RsMonitoring	
	hission Standards for Hazardous Air Pollutants
NSCRNon-Selecti	
NSPSNew Source	
ORLOwner Req	
PSDPrevention	
PTEPotential to	
	ng Internal Combustion Engine, Internal Combustion Engine
SCRSelective C	
SIPAlaska Stat	
SNCRSelective N	on Catalytic Reduction
ULSDUltra Low S	
nits and Measures	Juliu Diesei
gal/hrgallons per	hour
g/kWhgrams per k	ilowatt hour
g/hp-hrgrams per h	
hr/daybours per da	
hr/yrhours per ye	
hphorsepower	
lb/hrpounds per	hour
lb/MMBtupounds per	
lb/1000 galpounds per	
kWkilowatts	1,000 galiolis
	ish thermal units per hour
MMBtu/hrmillion Brit MMscf/hrmillion stan	
ppmvparts per mi	lion by yolymp
tpytons per yea	1
ollutants	
COCarbon Mo	
HAPHazardous	
NOxOxides of N	
SO ₂ Sulfur Diox	lue Mottor with an aprodumentia diameter not arreading 2.5 with the
	Matter with an aerodynamic diameter not exceeding 2.5 microns
Pivi-10Particulate	Matter with an aerodynamic diameter not exceeding 10 microns

1. INTRODUCTION

Fort Wainwright is a military installation located within and adjacent to the city of Fairbanks, Alaska, in the Tanana River Valley. The EUs located within the military installation at Fort Wainwright are either owned and operated by a private utility company, Doyon Utilities, LLC. (DU), or by U.S. Army Garrison Fort Wainwright (FWA). The two entities, DU and FWA, comprise a single stationary source operating under two permits.

In a letter dated April 24, 2015, the Alaska Department of Environmental Conservation (Department) requested the stationary sources expected to be major stationary sources in the particulate matter with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers (PM-2.5) serious nonattainment area perform a voluntary Best Available Control Technology (BACT) review in support of the state agency's required SIP submittal once the nonattainment area is re-classified as a Serious PM-2.5 nonattainment area. The designation of the area as "Serious" with regard to nonattainment of the 2006 24-hour PM-2.5 ambient air quality standards was published in Federal Register Vol. 82, No. 89, May 10, 2017, pages 21703-21706, with an effective date of June 9, 2017.¹

This report addresses the significant EUs listed in the DU permit AQ1121TVP02, Revision 2 and the FWA permit AQ0236TVP03, Revision 2. This report provides the Department's preliminary review of the BACT analysis for PM-2.5 and BACT analyses provided for oxides of nitrogen (NOx) and sulfur dioxide (SO₂) emissions, which are precursor pollutants that can form PM-2.5 in the atmosphere post combustion.

The following sections review Fort Wainwright's BACT analysis for technical accuracy and adherence to accepted engineering cost estimation practices.

2. BACT EVALUATION

A BACT analysis is an evaluation of all technically available control technologies for equipment emitting the triggered pollutants and a process for selecting the best option based on feasibility, economics, energy, and other impacts. 40 CFR 52.21(b)(12) defines BACT as a site-specific determination on a case-by-case basis. The Department's goal is to identify BACT for the permanent emission units (EUs) at Fort Wainwright that emit NOx, PM-2.5, and SO₂, establish emission limits which represent BACT, and assess the level of monitoring, recordkeeping, and reporting (MR&R) necessary to ensure Fort Wainwright applies BACT for the EUs. The Department based the BACT review on the five-step top-down approach set forth in Federal Register Volume 61, Number 142, July 23, 1996 (Environmental Protection Agency). Table A and Table B present the EUs subject to BACT review.

¹ ¹ Federal Register, Vol. 82, No. 89, Wednesday May 10, 2017 (<u>https://dec.alaska.gov/air/anpms/comm/docs/2017-09391-CFR.pdf</u>)

EU ID ¹	Description of EU	Rating/Size	Location
			Central Heating
1	Coal-Fired Boiler 3	230 MMBtu/hr	and Power Plant
			(CHPP)
2	Coal-Fired Boiler 4	230 MMBtu/hr	CHPP
3	Coal-Fired Boiler 5	230 MMBtu/hr	CHPP
4	Coal-Fired Boiler 6	230 MMBtu/hr	CHPP
5	Coal-Fired Boiler 7	230 MMBtu/hr	CHPP
6	Coal-Fired Boiler 8	230 MMBtu/hr	CHPP
7a	South Coal Handling Dust Collector DC-01	13,150 acfm	CHPP
7b	South Underbunker Dust Collector DC-02	884 acfm	CHPP
7c	North Coal Handling Dust Collector NDC-1	9,250 acfm	CHPP
8	Backup Generator Engine	2,937 hp	CHPP
9	Emergency Generator Engine	353 hp	Building 1032
10	Emergency Generator Engine	762 hp	Building 1060
11	Emergency Generator Engine	762 hp	Building 1060
12	Emergency Generator Engine	82 hp	Building 1193
13	Emergency Generator Engine	587 hp	Building 1555
14	Emergency Generator Engine	320 hp	Building 1563
15	Emergency Generator Engine	1,059 hp	Building 2117
16	Emergency Generator Engine	212 hp	Building 2117
17	Emergency Generator Engine	176 hp	Building 2088
18	Emergency Generator Engine	212 hp	Building 2296
19	Emergency Generator Engine	71 hp	Building 3004
20	Emergency Generator Engine	35 hp	Building 3028
21	Emergency Generator Engine	95 hp	Building 3407
22	Emergency Generator Engine	35 hp	Building 3565
23	Emergency Generator Engine	155 hp	Building 3587
24	Emergency Generator Engine	50 hp	Building 3703
25	Emergency Generator Engine	18 hp	Building 5108
26	Emergency Generator	68 hp	Building 1620
27	Emergency Generator	274 hp	Building 1054
28	Emergency Generator	274 hp	Building 4390
29	Emergency Pump Engine	75 hp	Building 1056
30	Emergency Pump Engine	75 hp	Building 3403
31	Emergency Pump Engine	75 hp	Building 3724
32	Emergency Pump Engine	75 hp	Building 4162
33	Emergency Pump Engine	75 hp	Building 1002
34	Emergency Pump Engine	220 hp	Building 3405
35	Emergency Pump Engine	55 hp	Building 4023
36	Emergency Pump Engine	220 hp	Building 3563
51a	DC-1 Fly Ash Dust Collector	3,620 acfm	CHPP
51b	DC-2 Bottom Ash Dust Collector	3,620 acfm	CHPP
52	Coal Storage Pile	N/A	CHPP

Table A: Privatized Emission Units Subject to BACT Review

EU ID ¹	Description of EU	Rating/Size	Location
8	Backup Diesel-Fired Boiler 1	19 MMBtu/hr	Basset Hospital
9	Backup Diesel-Fired Boiler 2	19 MMBtu/hr	Basset Hospital
10	Backup Diesel-Fired Boiler 3	19 MMBtu/hr	Basset Hospital
11	Backup Diesel-Electric Generator 1	900 kW	Basset Hospital
12	Backup Diesel-Electric Generator 2	900 kW	Basset Hospital
13	Backup Diesel-Electric Generator 3	900 kW	Basset Hospital
22	VOC Extraction and Combustion	N/A	
23	Fort Wainwright Landfill	1.97 million cubic meters	
24	Aerospace Activities	N/A	
26	Emergency Generator	324 hp	Building 2132
27	Emergency Generator	67 hp	Building 1580
28	Emergency Generator	398 hp	Building 3406
29	Emergency Generator	47 hp	Building 3567
30	Fire Pump	275 hp	Building 2089
31	Fire Pump #1	235 hp	Building 1572
32	Fire Pump #2	235 hp	Building 1572
33	Fire Pump #3	235 hp	Building 1572
34	Fire Pump #4	235 hp	Building 1572
35	Fire Pump #1	240 hp	Building 2080
36	Fire Pump #2	240 hp	Building 2080
37	Fire Pump	105 kW	Building 3498
38	Fire Pump #1	120 hp	Building 5009
39	Fire Pump #2	120 hp	Building 5009
40	Waste Oil-Fired Boiler	2.6 MMBtu/hr	Building 5007
???	Distillate Fired Boilers (23)	Varies	Varies
???	Waste Oil-Fired Boiler	2.5 gal/hr	Building 3476
???	Waste Oil-Fired Boiler	2.5 gal/hr	Building 3476

Table B: Fort Wainwright Army Emission Units Subject to BACT Review

Five-Step BACT Determinations

The following sections explain the steps used to determine BACT for NOx, PM-2.5, and SO₂ for the applicable equipment.

Step 1 Identify All Potentially Available Control Technologies

The Department identifies all available control technologies for the EU and the pollutant under consideration. This includes technologies used throughout the world or emission reductions through the application of available control techniques, changes in process design, and/or operational limitations. To assist in identifying available controls, the Department reviews available controls listed on the Reasonably Available Control Technology (RACT), BACT, and Lowest Achievable Emission Rate (LAER) Clearinghouse (RBLC). The RBLC is an EPA database where permitting agencies nationwide post imposed BACT for PSD sources. In addition to the RBLC search, the Department used several search engines to look for emerging and tried technologies used to control NOx, PM-2.5, and SO₂ emissions from equipment similar to those listed in Table A and Table B.

Step 2 Eliminate Technically Infeasible Control Technologies:

The Department evaluates the technical feasibility of each control option based on source specific factors in relation to each EU subject to BACT. Based on sound documentation and demonstration, the Department eliminates control technologies deemed technically infeasible due to physical, chemical, and engineering difficulties.

Step 3 Rank the Remaining Control Technologies by Control Effectiveness

The Department ranks the remaining control technologies in order of control effectiveness with the most effective at the top.

Step 4 Evaluate the Most Effective Controls and Document the Results as Necessary

The Department reviews the detailed information in the BACT analysis about the control efficiency, emission rate, emission reduction, cost, environmental, and energy impacts for each option to decide the final level of control. The analysis must present an objective evaluation of both the beneficial and adverse energy, environmental, and economic impacts. A proposal to use the most effective option does not need to provide the detailed information for the less effective option. If cost is not an issue, a cost analysis is not required. Cost effectiveness for a control option is defined as the total net annualized cost of control divided by the tons of pollutant removed per year. Annualized cost includes annualized equipment purchase, erection, electrical, piping, insulation, painting, site preparation, buildings, supervision, transportation, operation, maintenance, replacement parts, overhead, raw materials, utilities, engineering, start-up costs, financing costs, and other contingencies related to the control option. Sections 3, 4, and 5, present the Department's preliminary BACT determinations for NOx, PM-2.5, and SO₂.

Step 5 Select BACT

The Department selects the most effective control option not eliminated in Step 4 as BACT for the pollutant and EU under review and lists the final BACT requirements determined for each EU in this step. A project may achieve emission reductions through the application of available technologies, changes in process design, and/or operational limitations. The Department reviewed Fort Wainwright's BACT analysis and made preliminary BACT determinations for NOx, PM-2.5, and SO₂ for Fort Wainwright. These preliminary BACT determinations are based on the information submitted by Fort Wainwright in their analysis, information from vendors, suppliers, sub-contractors, RBLC, and an exhaustive internet search.

3. BACT DETERMINATION FOR NOx

The NOx controls proposed in this section are not planned to be implemented. The optional preliminary precursor demonstration (as allowed under 40 C.F.R. 51.1006) for the precursor gas NOx for point sources illustrates that NOx controls are not needed. DEC is planning to submit with the Serious SIP a final precursor demonstration as justification not to require NOx controls. Please see the preliminary precursor demonstration for NOx posted at http://dec.alaska.gov/air/anpms/communities/fbks-pm2-5-serious-sip-development. The PM2.5 NAAQS Final SIP Requirements Rule states if the state determines through a precursor demonstration that controls for a precursor gas are not needed for attaining the standard, then the controls identified as BACT/BACM or Most Stringent Measure for the precursor gas are not required to be implemented.² Final approval of the precursor demonstration is at the time of the Serious SIP approval.

Fort Wainwright has six existing 230 million British Thermal Units (MMBtu)/hr spreader-stoker type boilers that burn coal to produce steam for stationary source-wide heating and power. It also contains small and large emergency engines, fire pumps, and generators, diesel-fired boilers, and material handling equipment subject to BACT. The Department reviewed the control technologies Fort Wainwright identified in their analysis and made a preliminary NOx BACT finding for the EUs listed in Tables A and B.

The Department based its NOx assessment on BACT determinations found in the RBLC, internet research, and BACT analyses submitted to the Department by Golden Valley Electric Association (GVEA) for the North Pole Power Plant and Zehnder Facility, Aurora Energy, LLC (Aurora) for the Chena Power Plant, U.S. Army Corps of Engineers (US Army) for Fort Wainwright, and the University of Alaska Fairbanks (UAF) for the Campus Power Plant.

3.1 NOx BACT for the Industrial Coal-Fired Boilers

Possible NOx emission control technologies for coal-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 11.110, Coal Combustion in Industrial Size Boilers and Furnaces. The search results for coal-fired boilers are summarized in Table 3-1.

Control Technology	Number of Determinations	Emission Limits (lb/MMBtu)
Selective Catalytic Reduction	9	0.05 - 0.08
Selective Non-Catalytic Reduction	18	0.07 - 0.36
Low NOx Burners	18	0.07 - 0.3
Overfire Air	8	0.07 - 0.3
Good Combustion Practices	2	0.1 - 0.6

 Table 3-1. RBLC Summary of NOx Control for Industrial Coal-Fired Boilers

RBLC Review

A review of similar units in the RBLC indicates selective catalytic reduction, selective noncatalytic reduction, low NOx burners, overfire air, and good combustion practices are the

² <u>https://www.gpo.gov/fdsys/pkg/FR-2016-08-24/pdf/2016-18768.pdf</u>

principle NOx control technologies installed on industrial coal-fired boilers. The lowest NOx emission rate in the RBLC is 0.05 lb/MMBtu.

Step 1- Identification of NOx Control Technologies for the Industrial Coal-Fired Boilers From research, the Department identified the following technologies as available for control of NOx emissions from industrial coal-fired boilers:

(a) Selective Catalytic Reduction $(SCR)^3$

SCR is a post-combustion gas treatment technique for reducing nitric oxide (NO) and nitrogen dioxide (NO₂) in the boiler exhaust stream to molecular nitrogen (N₂), water, and oxygen (O₂). In the SCR process, aqueous or anhydrous ammonia (NH₃) is injected into the flue gas upstream of a catalyst bed. The catalyst lowers the activation energy of the NOx decomposition reaction. NOx and NH₃ combine at the catalyst surface forming an ammonium salt intermediate, which subsequently decomposes to produce elemental N₂ and water. Depending on the overall NH₃-to-NOx ratio, removal efficiencies are generally 70 to 90 percent. Challenges associated with using SCR on industrial boilers include a narrow window of acceptable inlet and exhaust temperatures (500°F to 800°F), emission of NH₃ into the atmosphere (NH₃ slip) caused by non-stoichiometric reduction reaction, and disposal of depleted catalysts. The Department considers SCR a technically feasible control technology for the industrial coal-fired boilers.

(b) Selective Non-Catalytic Reduction (SNCR)⁴

SNCR involves the non-catalytic decomposition of NOx in the flue gas to N_2 and water using reducing agents such as urea or NH₃. The process utilizes a gas phase homogeneous reaction between NOx and the reducing agent within a specific temperature window. The reducing agent must be injected into the flue gas at a location in the unit that provides the optimum reaction temperature and residence time. The NH₃ process (trade name-Thermal DeNOx) requires a reaction temperature window of 1,600°F to 2,200°F. In the urea process (trade name–NO_xOUT), the optimum temperature ranges between 1,600°F and 2,100°F. Expected NOx removal efficiencies are typically between 40 to 62 percent, according to the RBLC, or between 30 and 50 percent reduction, according to the EPA fact sheet (EPA-452/F-03-031). The Department considers SNCR a technically feasible control technology for the industrial coal-fired boilers.

(c) Non-Selective Catalytic Reduction (NSCR)

NSCR simultaneously reduces NOx and oxidizes CO and hydrocarbons in the exhaust gas to N₂, carbon dioxide (CO₂), and water. The catalyst, usually a noble metal, causes the reducing gases in the exhaust stream (hydrogen, methane, and CO) to reduce both NO and NO₂ to N₂ at a temperature between 800°F and 1,200°F, below the expected temperature of the coal-fired boiler flue gas. NSCR requires a low excess O₂ concentration in the exhaust gas stream to be effective because the O₂ must be depleted before the reduction chemistry can proceed. NSCR is only effective with rich-burn gas-

³ <u>https://www3.epa.gov/ttncatc1/dir1/fscr.pdf</u>

⁴ <u>https://www3.epa.gov/ttncatc1/dir1/fsncr.pdf</u>

fired units that operate at all times with an air/fuel ratio controller at or close to stoichiometric conditions. Coal-fired boilers operate under conditions far more fuel-lean than required to support NSCR. The Department's research did not identify NSCR as a control technology used to control NOx emissions from large coal-fired boilers installed at any facility after 2005. The Department does not consider NSCR a technically feasible control technology for the industrial coal-fired boilers.

(d) Low NOx Burners (LNBs)

Using LNBs can reduce formation of NOx through careful control of the fuel-air mixture during combustion. Control techniques used in LNBs includes staged air, and staged fuel, as well as other methods that effectively lower the flame temperature. Experience suggests that significant reduction in NOx emissions can be realized using LNBs. The U.S. EPA reports that LNBs have achieved reduction up to 80%, but actual reduction depends on the type of fuel and varies considerably from one installation to another. Typical reductions range from 40% - 60% but under certain conditions, higher reductions are possible. Air staging or two-stage combustion, is generally described as the introduction of overfire air into the boiler or furnace. Overfire air is the injection of air above the main combustion zone. As indicated by EPA's AP-42, LNBs are applicable to tangential and wall-fired boilers of various sizes but are not applicable to other boiler types such as cyclone furnaces or stokers. The Department does not consider LNBs a technically feasible control technology for the existing stoker type coal-fired boilers.

(e) Circulating Fluidized Bed (CFB)

In a fluidized bed combustor, fuel is introduced to a bed of either sorbent (limestone) or inert material (usually sand) that is fluidized by an upward flow of air. This upward air flow allows for better mixing of the gas and solids to create a better heat transfer and chemical reactions. Combustion takes place in the bed at a lower temperature than other boiler types which lowers the formation of thermally generated NOx. For the purposes of this report, a control technology does not include passive control measures that act to prevent pollutants from forming such as inherent process design features or characteristics. The Department does not consider CFB a technically feasible control technology to retrofit the existing coal-fired boilers.

(f) Low Excess Air (LEA)

Boiler operation with low excess air is considered an integral part of good combustion practices because this process can maximize the boiler efficiency while controlling the formation of NOx. Boilers operated with five to seven percent excess air typically have peak NOx formation from both peak combustion temperatures and chemical reactions. At both lower and higher excess air concentrations the formation of NOx is reduced. At higher levels of excess air, an increase in the formation of CO occurs. CO can increase exponentially at very high levels of excess air and the combustion efficiency is greatly reduced. As a result, the preference is to reduce excess air such that both NOx and CO generation is minimized and the boiler efficiency is optimized. Only one RLBC entry identified low excess air technology as a NOx control alternative for a mass-feed stoker designed boiler. Boilers are regularly designed to operate with low excess air as described

in the previous LNB discussion. The Department considers LEA a technically feasible control technology for the industrial coal-fired boilers.

(g) Good Combustion Practices (GCPs)

GCPs typically include the following elements:

- 1. Sufficient residence time to complete combustion;
- 2. Providing and maintaining proper air/fuel ratio;
- 3. High temperatures and low oxygen levels in the primary combustion zone; and
- 4. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency.

Combustion efficiency is dependent on the gas residence time, the combustion temperature, and the amount of mixing in the combustion zone. GCPs are accomplished primarily through combustion chamber design as it relates to residence time, combustion temperature, air-to-fuel mixing, and excess oxygen levels. The Department considers GCPs a technically feasible control technology for the industrial coal-fired boilers.

(h) Fuel Switching

This evaluation considers retrofit of existing coal-fired boilers. It is assumed that use of another type of coal would not reduce NOx emissions. Therefore, the Department does not consider the use of an alternate fuel to be a technically feasible control technology for the industrial coal-fired boilers.

(i) Steam / Water Injection

Steam/water injection into the combustion zone reduces the firing temperature in the combustion chamber and has been traditionally associated with reducing NOx emissions from gas combustion turbines but not coal-fired boilers. In addition, steam/water has several disadvantages, including increases in carbon monoxide and un-burned hydrocarbon emissions and increased fuel consumption. Further, the Department found that steam or water injection is not listed in the EPA RBLC for use in any coal-fired boilers and it would be less efficient at controlling NOx emissions than SCR. Therefore, the Department does not consider steam or water injection to be a technically feasible control option for the existing coal-fired boilers.

(j) Reburn

Reburn is a combustion hardware modification in which the NOx produced in the main combustion zone is reduced in a second combustion zone downstream. This technique involves withholding up to 40 percent (at full load) of the heat input to the main combustion zone and introducing that heat input above the top row of burners to create a reburn zone. Reburn fuel (natural gas, oil, or pulverized coal) is injected with either air or flue gas to create a fuel-rich zone that reduces the NOx created in the main combustion zone to nitrogen and water vapor. The fuel-rich combustion gases from the reburn zone are completely combusted by injecting overfire air above the reburn zone. Reburn may be applicable to many boiler types firing coal as the primary fuel, including tangential, wallfired, and cyclone boilers. However, the application and effectiveness are site-specific because each boiler is originally designed to achieve specific steam conditions and capacity which may be altered due to reburn. Commercial experience is limited; however, this limited experience does indicate NOx reduction of 50 to 60 percent from uncontrolled levels may be achieved. Reburn combustion control would require significant changes to the design of the existing boilers. Therefore, the Department does not consider reburn to be a technically feasible control technology to retrofit the existing industrial coal-fired boilers.

Step 2 - Eliminate Technically Infeasible NOx Control Technologies for the Coal-Fired Boilers As explained in Step 1 of Section 3.1, the Department does not consider non-selective catalytic reduction, low NOx burners, circulating fluidized beds, fuel switching, steam/water injection, or reburn as technically feasible technologies to control NO_x emissions from existing industrial coal-fired boilers.

Step 3 - Rank the Remaining NOx Control Technologies for Industrial Coal-Fired Boilers The following control technologies have been identified and ranked by efficiency for the control of NOx emissions from the coal-fired industrial boilers:

- (a) Selective Catalytic Reduction
- (b) Selective Non-Catalytic Reduction
- (g) Good Combustion Practices
- (f) Low Excess Air

(70% - 90% Control) (30% - 50% Control) (Less than 40% Control) (10% - 20% Control)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright provided an economic analysis for the installation of selective catalytic reduction and selective non-catalytic reduction. A summary of the analysis is shown below:

Control Alternative	Potential to Emit (tpy)	Emission Reduction (tpy)	Total Capital Investment (\$)	Total Annual Costs (\$/year)	Cost Effectiveness (\$/ton)
SCR	???	88	\$13,860,931	\$2,222,777	\$25,166
SNCR	???	52	\$5,598,476	\$936,162	\$17,852

	• • • • •	1 • • • • •		α i
Toblo 4_7 Hort Woins	wright Freenomie A	notveie for Tochn	100 IV HOOGINIA NI IV	1 'Antrole
Table 3-2. Fort Wainv		натумя пог і ссінн	ILANY FEASIDIE INVA	V JUHLI UIS
				001101010

Fort Wainwright contends that the economic analysis indicates the level of NOx reduction does not justify the use of selective catalytic reduction or selective non-catalytic reduction for the coal-fired boilers based on the excessive cost per ton of NOx removed per year.

Fort Wainwright proposes the following as BACT for NOx emissions from the coal-fired boilers:

- (a) NOx emissions from the operation of the coal-fired boilers will be controlled with good combustion practices and injection of overfire air with oxygen trim systems.
- (b) NOx emissions from the coal-fired boilers will not exceed 0.46 lb/MMBtu over a 3-hour averaging period.
- (c) Initial compliance with the proposed NOx emission limit will be demonstrated by conducting a performance test to obtain an emission rate.

Department Evaluation of BACT for NOx Emissions from the Industrial Coal-Fired Boilers

The Department revised the cost analyses provided by Fort Wainwright for the installation of SCR and SNCR using the cost estimating procedures identified in EPA's May 2016 Air Pollution Control Cost Estimation Spreadsheet for Selective Catalytic Reduction,⁵ and Selective Non-Catalytic Reduction,⁶ using the unrestricted potential to emit from the six coal-fired boilers, a baseline emission rate of 0.5 lb NOx/MMBtu,⁷ a retrofit factor of 1.0 for projects of average retrofit difficulty, a NOx removal efficiency of 80% and 40% for SCR and SNCR respectively, and a 20 year equipment life. A summary of the analysis is shown below:

Control Alternative	Potential to Emit (tpy)	Emission Reduction (tpy)	Total Capital Investment (\$)	Total Annualized Costs (\$/year)	Cost Effectiveness (\$/ton)
SCR	1,452	1,162	\$38,610,446	\$5,207,927	\$5,219
SNCR	1,452	581	\$5,991,239	\$1,272,051	\$2,549
Capital Recovery Factor = 0.094 (7% interest rate for a 20 year equipment life)					

Table 3-3. Department Econor	mic Analysis for 7	Fechnically Feasibl	e NOx Controls
···· · · · · · · · · · · · ·			

The Department's preliminary economic analysis indicates the level of NOx reduction justifies the use of selective catalytic reduction or selective non-catalytic reduction as BACT for the coal-fired boilers located in the Serious PM-2.5 nonattainment area.

Step 5 - Preliminary Selection of NOx BACT for the Industrial Coal-Fired Boilers

The Department's preliminary finding is that selective catalytic reduction and selective noncatalytic reduction are both economically and technically feasible control technologies for NOx. Since selective catalytic reduction has a higher control efficiency, it is selected as BACT to control NOx emissions from the industrial coal-fired boilers.

The Department's preliminary finding is that BACT for NOx emissions from the coal-fired boilers is as follows:

- (a) NOx emissions from DU EUs 1 through 6 shall be controlled by operating and maintaining SCR at all times the units are in operation;
- (b) NOx emissions from DU EUs 1 through 6 shall not exceed 0.1 lb/MMBtu averaged over a 3-hour period; and
- (c) Initial compliance with the proposed NOx emission limit will be demonstrated by conducting a performance test to obtain an emission rate.

Table 3-4 lists the proposed NOx BACT determination for this facility along with those for other coal-fired boilers in the Serious PM-2.5 nonattainment area.

⁵ <u>https://www3.epa.gov/ttn/ecas/docs/scr_cost_manual_spreadsheet_2016_vf.xlsm</u>

⁶ https://www3.epa.gov/ttn/ecas/docs/sncr cost manual spreadsheet 2016 vf.xlsm

 ⁷ New Source Performance Standards, Subpart Da – Technical Support for Proposed Revisions to NOx Standard, U.S. EPA, Office of Air Quality Planning and Standards, EPA-453/R-94-012, June 1997.

Facility	Process Description	Capacity	Limitation	Control Method
Fort Wainwright	6 Coal-Fired Boilers	1,380 MMBtu/hr	0.10 lb/MMBtu ⁸	Selective Catalytic Reduction
UAF	Dual Fuel-Fired Boiler	295.6 MMBtu/hr	0.04 lb/MMBtu9	Selective Catalytic Reduction
Chena	4 Coal-Fired Boilers	497 MMBtu/hr	0.10 lb/MMBtu ⁷	Selective Catalytic Reduction

Table 3-4. Comparison of NOx BACT for Coal-Fired Boilers at Nearby Power Plants

3.2 NOx BACT for the Diesel-Fired Boilers

Possible NOx emission control technologies for diesel-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 13.220, Commercial/Institutional Size Boilers (<100 MMBtu/hr). The search results for diesel-fired boilers are summarized in Table 3-5.

Table 3-5. RBLC Summary of NOx Control for Diesel-Fired Boilers

Control Technology	Number of Determinations	Emission Limits (g/hp-hr)
Low-NOx Burner	8	0.023 - 0.14
Good Combustion Practices	1	0.01
No Control Specified	2	0.070 - 0.12

RBLC Review

A review of similar units in the RBLC indicates low-NOx burners and good combustion practices are the principle NOx control technologies installed on diesel-fired boilers. The lowest NOx emission rate listed in the RBLC is 0.01 lb/MMBtu.

Step 1 - Identification of NOx Control Technologies for the Diesel-Fired Boilers

From research, the Department identified the following technologies as available for control of NOx emissions from diesel-fired boilers:

(a) Low NOx Burners (LNBs)

The theory of LNBs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. The Department considers LNB a technically feasible control technology for the diesel-fired boilers.

(b) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the diesel-fired boilers.

⁸ Calculated using an 80 percent NOx control efficiency for selective catalytic reduction, assuming a baseline of 0.5 lb NOx / MMBtu (New Source Performance Standards, Subpart Da – Technical Support for Proposed Revisions to NOx Standard, U.S. EPA, Office of Air Quality Planning and Standards, EPA-453/R-94-012, June 1997).

⁹ Calculated using an 80 percent NOx control efficiency for selective catalytic reduction, assuming a baseline of 0.20 lb NOx / MMBtu for circulating fluidized bed, dual fuel-fired boiler.

(c) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. The Department considers GCPs a technically feasible control technology for the diesel-fired boilers.

(d) Flue Gas Recirculation (FGR)

Flue gas recirculation involves extracting a portion of the flue gas from the economizer section or air heater outlet and readmitting it to the furnace through the furnace hopper, the burner windbox, or both. This method reduces the concentration of oxygen in the combustion zone and may reduce NOx by as much as 40 to 50 percent in some boilers. Chapter 1.3-7 from AP-42 indicates that FGR can require extensive modifications to the burner and windbox and can result in possible flame instability at high FGR rates. The Department does not consider FGR a technically feasible control technology for the diesel-fired boilers.

Step 2 - Eliminate Technically Infeasible NOx Control Technologies for the Diesel-Fired Boilers

As explained in Step 1 of Section 3.2, the Department does not consider flue gas recirculation as technically feasible technology for the diesel-fired boilers.

Step 3 - Rank the Remaining NOx Control Technologies for the Diesel-Fired Boilers

The following control technologies have been identified and ranked by efficiency for the control of NOx emissions from the diesel-fired boilers.

(b)	Limited Operation	(94% Control)
(a)	Low NOx Burners	(35% - 55% Control)
(c)	Good Combustion Practices	(Less than 40% Control)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for NOx emissions from the diesel-fired boilers:

- (a) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation;
- (b) Combined operating limit of 600 hours per year for FWA EUs 8, 9, and 10; and
- (c) Limiting operation of the other 24 diesel-fired boilers to testing, maintenance, and emergency use with the exception of the waste fuel boilers.

Department Evaluation of BACT for NOx Emissions from the Diesel-Fired Boilers.

The Department reviewed Fort Wainwright's proposal and finds that the 27 diesel-fired boilers have a combined potential to emit (PTE) of less than three tons per year (tpy) for NOx based on non-emergency operation of 500 hours per year. At three tpy, the cost effectiveness in terms of dollars per ton for add-on pollution control for these units is economically infeasible.

Step 5 - Preliminary Selection of NOx BACT for the Diesel-Fired Boilers

The Department's preliminary finding is that BACT for NOx emissions from the diesel-fired boilers is as follows:

- (a) NOx emissions from the diesel-fired boilers shall not exceed 20 lb/1000 gallons of diesel fuel;
- (b) Combined operating limit of 600 hours per year for FWA EUs 8, 9, and 10;
- (c) Limit non-emergency operation of the 27 diesel fired boilers, with the exception of the waste-fuel boilers, to no more than 500 hours per year, for maintenance checks and readiness testing; and
- (d) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation.

Table 3-6 lists the proposed NOx BACT determination for this facility along with those for other diesel-fired boilers rated at less than 100 MMBtu/hr in the Serious PM-2.5 nonattainment area.

Table 3-6. Comparison of NOx BACT for the Diesel-Fired Boilers at Nearby Power Plants

Facility	Process Description	Capacity	Limitation	Control Method		
	27 D' 1 E' 1 D 'I		0.15 11 0.0 (D)	Limited Operation		
Fort Wainwright	vright 27 Diesel-Fired Boilers < 100 MMBtu/hr 0.15 lb/MMBtu		Good Combustion Practices			
	2 Discal Finad Dailana	< 100 MM (h.r.		 Limited Operation 		
UAF	3 Diesel-Fired Boilers	< 100 MIMBtu/nr	0.0027 ID/MIMBtu	Good Combustion Practices		
GVEA Zehnder	2 Diesel-Fired Boilers	< 100 MMBtu/hr	0.10 lb/MMBtu	Low NOx Burners		

3.3 NOx BACT for the Large Diesel-Fired Engines, Fire Pumps, and Generators

Possible NOx emission control technologies for large engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process codes 17.100 to 17.190, Large Internal Combustion Engines (>500 hp). The search results for large diesel-fired engines are summarized in Table 3-7.

Table 3-7. RBLC Summary of NOx Control for Large Diesel-Fired Engines

Control Technology	Number of Determinations	Emission Limits (g/hp-hr)
Selective Catalytic Reduction	3	0.5 - 0.7
Other Add-On Control	1	1.0
Federal Emission Standards	13	3.0 - 6.9
Good Combustion Practices	31	3.0 - 13.5
No Control Specified	60	2.8 - 14.1

RBLC Review

A review of similar units in the RBLC indicates selective catalytic reduction, good combustion practices, and compliance with the federal emission standards are the principle NOx control technologies installed on large diesel-fired engines. The lowest NOx emission rate listed in the RBLC is 0.5 g/hp-hr.

Step 1 - Identification of NOx Control Technology for the Large Diesel-Fired Engines

From research, the Department identified the following technologies as available for control of NOx emissions from diesel-fired engines rated at 500 hp or greater:

(a) Selective Catalytic Reduction

The theory of SCR was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. The Department considers SCR a technically feasible control technology for the large diesel-fired engines.

(b) Turbocharger and Aftercooler

Turbocharger technology involves the process of compressing intake air in a turbocharger upstream of the air/fuel injection. This process boosts the power output of the engine. The air compression increases the temperature of the intake air so an aftercooler is used to reduce the intake air temperature. Reducing the intake air temperature helps lower the peak flame temperature which reduces NOx formation in the combustion chamber. The Department considers turbocharger and aftercooler a technically feasible control technology for the large diesel-fired engines.

(c) Fuel Injection Timing Retard (FITR)

FITR reduces NOx emissions by the delay of the fuel injection in the engine from the time the compression chamber is at minimum volume to a time the compression chamber is expanding. Timing adjustments are relatively straightforward. The larger volume in the compression chamber produces a lower peak flame temperature. With the use of FITR the engine becomes less fuel efficient, particulate matter emissions increase, and there is a limit with respect to the degree the timing may be retarded because an excessive timing delay can cause the engine to misfire. The timing retard is generally limited to no more than three degrees. Diesel engines may also produce more black smoke due to a decrease in exhaust temperature and incomplete combustion. FITR can achieve up to 50 percent NOx reduction. Due to the increase in particulate matter emissions resulting from FITR, this technology will not be carried forward.

(d) Ignition Timing Retard (ITR)

ITR lowers NOx emissions by moving the ignition event to later in the power stroke, after the piston has begun to move downward. Because the combustion chamber volume is not at a minimum, the peak flame temperature is not as high, which lowers combustion temperature and produces less thermal NOx. Use of ITR can cause an increase in fuel usage, an increase in particulate matter emissions, and engine misfiring. ITR can achieve between 20 to 30 percent NOx reduction. Due to the increase in the particulate matter emissions resulting from ITR, this technology will not be carried forward.

(e) Federal Emission Standards

RBLC NOx determinations for federal emission standards require the engines meet the requirements of 40 C.F.R. 60 Subpart IIII, 40 C.F.R 63 Subpart ZZZZ, non-road engines (NREs), or EPA tier certifications. Subpart IIII applies to stationary compression ignition internal combustion engines that are manufactured or reconstructed after July 11, 2005. The Department considers meeting the technology based New Source Performance

Standards (NSPS) of Subpart IIII as a technically feasible control technology for the large diesel-fired engines.

(f) Limited Operation

FWA EUs 11, 12, and 13 currently operate under a combined annual limit of less than 600 hours per year to avoid classification as a Prevention of Significant Deterioration (PSD) major modification for NOx. Limiting the operation of emissions units reduces the potential to emit of those units. The Department considers limited operation a technically feasible control technology for the large diesel-fired engines.

(g) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. The Department considers GCPs a technically feasible control technology for the large diesel-fired engines.

Step 2 - Eliminate Technically Infeasible NOx Control Technologies for the Large Engines

As explained in Step 1 of Section 3.3, the Department does not consider fuel injection timing retard and ignition timing retard as technically feasible technologies to control NOx emissions from the large diesel-fired engines.

Step 3 - Rank the Remaining NOx Control Technologies for the Large Diesel-Fired Engines The following control technologies have been identified and ranked by efficiency for the control of NOx emissions from the large diesel-fired engines.

- (f) Limited Operation (94% Control)
- (a) Selective Catalytic Reduction (90% Control)
- (g) Good Combustion Practices (Less than 40% Control)
- (b) Turbocharger and Aftercooler (6% 12% Control)
- (e) Federal Emission Standards (Baseline)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for NOx emissions from the large diesel-fired engines:

- (a) Combined operating limit of 600 hours per year for FWA EUs 11, 12, and 13; and
- (b) For engines manufactured after the applicability dates of 40 C.F.R. 60 Subpart IIII, BACT is selected as compliance with 40 C.F.R Part 60 Subpart IIII. For older engines, compliance with 40 C.F.R. 63 Subpart ZZZZ is proposed as BACT.

Department Evaluation of BACT for NOx Emissions from the Large Diesel-Fired Engines

The Department reviewed Fort Wainwright's proposal and finds that NOx emissions from the large diesel-fired engines can additionally be controlled by limiting the use of the units during non-emergency operation as well as complying with the applicable federal emission standards.

Step 5 - Preliminary Selection of NOx BACT for the Large Diesel-Fired Engines

The Department's preliminary finding is that the BACT for NOx emissions from the large dieselfired engines is as follows:

- (a) Combined operating limit of 600 hours per year for FWA EUs 11, 12, and 13;
- (b) Limit non-emergency operation of DU EUs 8, 10, 11, 13, and 15 to no more than 500 hours per year each for maintenance checks and readiness testing;
- (c) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation; and
- (d) Comply with the numerical BACT emission limits listed in Table 3-8 for NOx.

Location	EU	Year	Description	Size	Status	BACT Limit	Proposed BACT
DU	8	2009	Generator Engine	2,937 hp	Certified Engine	6.4 g/kW-hr	
DU	10	2010	Generator Engine	762 hp	Certified Engine	6.4 g/kW-hr	Limited Operation for
DU	11	2010	Generator Engine	762 hp	Certified Engine	6.4 g/kW-hr	Non-Emergency Use
DU	13	2008	Generator Engine	587 hp	Certified Engine	4.0 g/kW-hr	(500 hours per year each)
DU	15	2005	Generator Engine	1,059 hp	Manufacturer Information	5.75 g/hp-hr	Good Combustion Practices
FWA	11	2003	Caterpillar 3512	1,206 hp	AP-42 Table 3.4-1	0.024 lb/hp-hr	T
FWA	12	2003	Caterpillar 3512	1,206 hp	AP-42 Table 3.4-1	0.024 lb/hp-hr	Limit combined operation to 600 hours per year
FWA	13	2003	Caterpillar 3512	1,206 hp	AP-42 Table 3.4-1	0.024 lb/hp-hr	to ooo nours per year

 Table 3-8 Proposed NOx BACT Limits for the Large Diesel-Fired Engines

Table 3-9 lists the proposed NOx BACT determination for this facility along with those for other diesel-fired engines rated at more than 500 hp located in the Serious PM-2.5 nonattainment area.

Table 3-9. Comparison	of NOx BACT for	Large Diesel-Fired	Engines at Nearb	v Power Plants
_		0	0	

Facility	Process Description	Capacity	Limitation	Control Method
				Limited Operation
Fort Wainwright	8 Large Diesel-Fired Engines	> 500 hp	4.77 – 10.88 g/hp-hr	Good Combustion Practices
				Federal Emission Standards
				Selective Catalytic Reduction
UAF	Large Diesel-Fired Engine	13,266	0.0020 g/hp-hr	Turbocharger and Aftercooler
UAP	Large Dieser-Pried Elignie	hp	0.0020 g/np-m	Good Combustion Practices
				Limited Operation
				Turbocharger and Aftercooler
GVEA North Pole	Large Diesel-Fired Engine	600 hp	10.88 g/hp-hr	Good Combustion Practices
				Limited Operation
				Turbocharger and Aftercooler
GVEA Zehnder	2 Large Diesel-Fired Engines	11,000 hp (each)	3.69 g/hp-hr	Good Combustion Practices
		r (see)		Limited Operation

3.4 NOx BACT for the Small Emergency Engines, Fire Pumps, and Generators

Possible NOx emission control technologies for small engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 17.210, Small Internal Combustion Engines (<500 hp). The search results for small diesel-fired engines are summarized in Table 3-10.

Control Technology	Number of Determinations	Emission Limits (g/hp-hr)	
Federal Emission Standards	5	2.2 - 4.8	
Good Combustion Practices	25	2.0-9.5	
Limited Operation	4	3.0	
No Control Specified	25	2.6 - 5.6	

RBLC Review

A review of similar units in the RBLC indicates limited operation, good combustion practices, and compliance with the federal emission standards are the principle NOx control technologies for small diesel-fired engines. The lowest NOx emission rate listed in the RBLC is 2.0 g/hp-hr.

Step 1 - Identification of NOx Control Technology for the Small Diesel-Fired Engines

From research, the Department identified the following technologies as available for control of NOx emissions from diesel-fired engines rated at less than 500 hp:

(a) Selective Catalytic Reduction

The theory of SCR was discussed in detail in the NOx BACT for the coal-fired boiler and will not be repeated here. The Department considers SCR a technically feasible control technology for the small diesel-fired engines.

(b) Turbocharger and Aftercooler

The theory of turbocharger and aftercooler was discussed in detail in the NOx BACT for the large diesel-fired engine and will not be repeated here. The Department considers a turbocharger and aftercooler a technically feasible control technology for the small diesel-fired engines.

(c) Ignition Timing Retard (ITR)

The theory of ITR was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. Due to the increase in particulate matter emissions resulting from ITR, this technology will not be carried forward.

(d) Federal Emission Standards

RBLC NOx determinations for federal emission standards require the engines meet the requirements of 40 C.F.R. 60 Subpart IIII, 40 C.F.R 63 Subpart ZZZZ, non-road engines (NREs), or EPA tier certifications. Subpart IIII applies to stationary compression ignition internal combustion engines that are manufactured or reconstructed after July 11, 2005. The Department considers meeting the technology based NSPS of Subpart IIII as a technically feasible control technology for the small diesel-fired engines.

(e) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation as a technically feasible control technology for the small diesel-fired engines.

(f) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the large dual fired boiler and will not be repeated here. The Department considers GCPs a technically feasible control technology for the small diesel-fired engines.

Step 2 - Eliminate Technically Infeasible NOx Control Technologies for the Small Engines As explained in Step 1 of Section 3.4, the Department does not consider ignition timing retard as a technically feasible technology to control NOx emissions from the small diesel-fired engines.

Step 3 - Rank the Remaining NOx Control Technologies for the Small Engines

The following control technologies have been identified and ranked by efficiency for the control of NOx emissions from the small diesel-fired engines.

- (e) Limited Operation (94% Control)
- (a) Selective Catalytic Reduction (90% Control)
- (b) Turbocharger and Aftercooler (6% 12% Control)
- (f) Good Combustion Practices (Less than 40% Control)
- (d) Federal Emission Standards (Baseline)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for NOx emissions from the small diesel-fired engines:

- (a) Good Combustion Practices; and
- (b) For engines manufactured after the applicability dates of 40 C.F.R. 60 Subpart IIII, BACT is selected as compliance with 40 C.F.R Part 60 Subpart IIII. For older engines, compliance with 40 C.F.R. 63 Subpart ZZZZ is proposed as BACT.

Department Evaluation of BACT for NOx Emissions from Small Diesel-Fired Engines

The Department reviewed Fort Wainwright's proposal and found that in addition to maintaining good combustion practices and complying with federal emission standards, limiting operation of the small diesel-fired engines during non-emergency operation to no more than 500 hours per year each is BACT for NOx emissions.

Step 5 - Preliminary Selection of NOx BACT for the Small Diesel-Fired Engines

The Department's preliminary finding is that the BACT for NOx emissions from the small diesel-fired engines is as follows:

(a) Limit non-emergency operation of DU EUs 9, 12, 14, 16 through 28, 29a, 30, 31a, 32, 33, 34, 35, 36, and FWA EUs 26 through 39 to no more than 500 hours per year for maintenance checks and readiness testing;

- (b) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation; and
- (c) Comply with the numerical BACT emission limits listed in Table 3-11 for NOx.

Table 3-11. Proposed NOx BACT Limits for the Small Diesel-Fired Engines

Location	EU	Year	Description	Size	Status	BACT Limit	Proposed BACT
DU	9	1988	Generator Engine	353 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	_
DU	12	2002	Generator Engine	82 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	14	2008	Generator Engine	320 hp	Certified Engine	4.0 g/kW-hr	
DU	16	2005	Generator Engine	212 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	17	2007	Generator Engine	176 hp	Permit condition 23.1c	6.9 g/hp-hr	
DU	18	2005	Generator Engine	212 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	19	2007	Generator Engine	71 hp	Certified Engine	7.5 g/kW-hr	
DU	20	1976	Generator Engine	35 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	21	2001	Generator Engine	95 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	22	1989	Generator Engine	35 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	23	2003	Generator Engine	155 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	24	1993	Generator Engine	50 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	25	2011	Generator Engine	18 hp	Certified Engine	7.5 g/kW-hr	
DU	26	2003	Generator Engine	68 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	27	2010	Generator Engine	274 hp	Certified Engine	4.0 g/kW-hr	
DU	28	2010	Generator Engine	274 hp	Certified Engine	4.0 g/kW-hr	
DU	30	1952	Lift Pump Engine	75 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	32	1955	Lift Pump Engine	75 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	Limited Operation for Non-
DU	33	1994	Lift Pump Engine	75 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	Emergency Use
DU	34	1995	Well Pump Engine	220 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	(500 hours per year each)
DU	35	2009	Well Pump Engine	55 hp	Certified Engine	4.7 g/kW-hr	Good Combustion Practices
DU	36	1995	Well Pump Engine	220 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
DU	29a	2014	Lift Pump Engine	74 hp	Certified Engine	4.7 g/kW-hr	
DU	31a	2014	Lift Pump Engine	74 hp	Certified Engine	4.7 g/kW-hr	
FWA	26	2012	QSB7-G3 NR3	295 hp	Certified Engine	4.0 g/kW-hr	
FWA	27	2009	4024HF285B	67 hp	Certified Engine	4.7 g/kW-hr	
FWA	28	2007	CAT C9 GENSET	398 hp	Certified Engine	4.0 g/kW-hr	
FWA	29	ND	TM30UCM	47 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	30	2007	JW64-UF30	275 hp	Certified Engine	4.0 g/kW-hr	
FWA	31	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	32	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	33	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	34	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	35	1977	N-855-F	240 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	36	1977	N-855-F	240 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	37	2005	JU4H-UF40	94 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	38	1996	PDFP-06YT	120 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	
FWA	39	1996	PDFP-06YT	120 hp	AP-42, Table 3.3-1	0.031 lb/hp-hr	<u> </u>

Table 3-12 lists the proposed NOx BACT determination for this facility along with those for other diesel-fired engines rated at less than 500 hp located in the Serious PM-2.5 nonattainment area.

Facility	Process Description	Capacity	Limitation	Control Method
Fort Wainwright	41 Small Diesel-Fired Engines	< 500 hp	0.024 – 0.031 lb/hp-hr	Limited Operation for Non-Emergency Use (500 hours per year each)
				Good Combustion Practices
				Turbocharger and Aftercooler
UAF	One Small Diesel-Fired Engine	< 500 hp	3.2 g/hp-hr	Good Combustion Practices
				Limited Operation
		. 500 1	0.0000 11.4.1.1.	Turbocharger and Aftercooler
GVEA Zehnder	Two Small Diesel-Fired Engines	< 500 hp	0.0022 lb/hp-hr	Limited Operation

Table 3-12. Comparison of NOx BACT for Small Diesel Engines at Nearby Power Plants

4. BACT DETERMINATION FOR PM-2.5

The Department based its PM-2.5 assessment on BACT determinations found in the RBLC, internet research, and BACT analyses submitted to the Department by GVEA for the North Pole Power Plant and Zehnder Facility, Aurora for the Chena Power Plant, US Army for Fort Wainwright, and UAF for the Combined Heat and Power Plant.

4.1 PM-2.5 BACT for the Industrial Coal-Fired Boilers

Possible PM-2.5 emission control technologies for coal-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 11.110, Coal Combustion in Industrial Size Boilers and Furnaces. The search results for coal-fired boilers are summarized in Table 4-1.

Table 4-1. RBLC Summary of PM-2.5 Control for Industrial Coal-Fired Boilers

Control Technology	Number of Determinations	Emission Limits (lb/MMBtu)
Pulse Jet Fabric Filters	4	0.012 - 0.024
Electrostatic Precipitators	2	0.02 - 0.03

RBLC Review

A review of similar units in the RBLC indicates that fabric filters and electrostatic precipitators are the principle particulate matter control technologies installed on industrial coal-fired boilers. The lowest PM-2.5 emission rate listed in RBLC is 0.012 lb/MMBtu.

Step 1 - Identification of PM-2.5 Control Technologies for the Industrial Coal-Fired Boilers From research, the Department identified the following technologies as available for control of PM-2.5 emissions from industrial coal-fired boilers:

(a) Fabric Filters

Fabric filters or baghouses are comprised of an array of filter bags contained in housing. Air passes through the filter media from the "dirty" to the "clean" side of the bag. These

devices undergo periodic bag cleaning based on the build-up of filtered material on the bag as measured by pressure drop across the device. The cleaning cycle is set to allow operation within a range of design pressure drop. Fabric filters are characterized by the type of cleaning cycle: mechanical-shaker,¹⁰ pulse-jet,¹¹ and reverse-air.¹² Fabric filter systems have control efficiencies of 95% to 99.9%, and are generally specified to meet a discharge concentration of filterable particulate (e.g., 0.01 grains per dry standard cubic feet). The Department considers fabric filters a technically feasible control technology for the industrial coal-fired boilers.

(b) Wet and Dry Electrostatic Precipitators (ESP)

ESPs remove particles from a gas stream by electrically charging particles with a discharge electrode in the gas path and then collecting the charged particles on grounded plates. The inlet air is quenched with water on a wet ESP to saturate the gas stream and ensure a wetted surface on the collection plate. This wetted surface along with a period deluge of water is what cleans the collection plate surface. Wet ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 90% and 99.9%.¹³ Wet ESPs have the advantage of controlling some amount of condensable particulate matter. The collection plates in a dry ESP are periodically cleaned by a rapper or hammer that sends a shock wave that knocks the collected particulate off the plate. Dry ESPs typically control streams with inlet grain loading values of 0.5 - 5 gr/ft³ and have control efficiencies between 99% and 99.9%.¹⁴ The Department considers ESP a technically feasible control technology for the industrial coal-fired boilers.

(c) Wet Scrubbers

Wet scrubbers use a scrubbing solution to remove $PM/PM_{10}/PM_{2.5}$ from exhaust gas streams. The mechanism for particulate collection is impaction and interception by water droplets. Wet scrubbers are configured as counter-flow, cross-flow, or concurrent flow, but typically employ counter-flow where the scrubbing fluid is in the opposite direction as the gas flow. Wet scrubbers have control efficiencies of 50% - 99%.¹⁵ One advantage of wet scrubbers is that they can be effective on condensable particulate matter. A disadvantage of wet scrubbers is that they consume water and produce water and sludge. For fine particulate control, a venturi scrubber can be used, but typical loadings for such a scrubber are 0.1-50 grains/scf. The Department considers the use of wet scrubbers a technically feasible control technology for the industrial coal-fired boilers.

¹⁰ <u>https://www3.epa.gov/ttn/catc/dir1/ff-shaker.pdf</u>

¹¹ <u>https://www3.epa.gov/ttn/catc/dir1/ff-pulse.pdf</u>

¹² <u>https://www3.epa.gov/ttn/catc/dir1/ff-revar.pdf</u>

¹³ <u>https://www3.epa.gov/ttn/catc/dir1/fwespwpi.pdf</u> <u>https://www3.epa.gov/ttn/catc/dir1/fwespwpl.pdf</u>

¹⁴ <u>https://www3.epa.gov/ttn/catc/dir1/fdespwpi.pdf</u> <u>https://www3.epa.gov/ttn/catc/dir1/fdespwpl.pdf</u>

¹⁵ <u>https://www3.epa.gov/ttn/catc/dir1/fcondnse.pdf</u> <u>https://www3.epa.gov/ttn/catc/dir1/fiberbed.pdf</u> <u>https://www3.epa.gov/ttn/catc/dir1/fventuri.pdf</u>

(d) Mechanical Collectors (Cyclones)

Cyclones are used in industrial applications to remove particulate matter from exhaust flows and other industrial stream flows. Dirty air enters a cyclone tangentially and the centrifugal force moves the particulate matter against the cone wall. The air flows in a helical pattern from the top down to the narrow bottom before exiting the cyclone straight up the center and out the top. Large and dense particles in the stream flow are forced by inertia into the walls of the cyclone where the material then falls to the bottom of the cyclone and into a collection unit. Cleaned air then exits the cyclone either for further treatment or release to the atmosphere. The narrowness of the cyclone wall and the speed of the air flow determine the size of particulate matter that is removed from the stream flow. Cyclones are most efficient at removing large particulate matter (PM-10 or greater). Conventional cyclones are expected to achieve 0 to 40 percent PM-2.5 removal. High efficiency single cyclones are expected to achieve 20 to 70 percent PM-2.5 removal. The Department considers cyclones a technically feasible control technology for the industrial coal-fired boilers.

(e) Settling Chamber

Settling chambers appear only in the biomass fired boiler RBLC inventory for particulate control, not in the coal fired boiler RBLC inventory. This type of technology is a part of the group of air pollution control collectively referred to as "pre-cleaners" because the units are often used to reduce the inlet loading of particulate matter to downstream collection devices by removing the larger, abrasive particles. The collection efficiency of settling chambers is typically less than 10 percent for PM-10. The EPA fact sheet does not include a settling chamber collection efficiency for PM-2.5. The Department does not consider settling chambers a technically feasible control technology for the industrial coal-fired boilers.

(f) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the industrial coalfired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of PM-2.5 emissions. The Department considers GCPs a technically feasible control technology for the industrial coal-fired boilers.

Step 2 - Eliminate Technically Infeasible PM-2.5 Control Technologies for the Coal-Fired Boilers As explained in Step 1 of Section 4.1, the Department does not consider a settling chamber as a technically feasible technology to control particulate matter emissions from the industrial coalfired boilers.

Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Industrial Coal-Fired Boilers The following control technologies have been identified and ranked by efficiency for the control of PM-2.5 from the industrial coal-fired boilers:

(a)	Fabric Filters	(99.9% Control)
(b)	Electrostatic Precipitator	(99.6% Control)
(c)	Wet Scrubber	(50% – 99% Control)
(d)	Cyclone	(20% – 70% Control)
(f)	Good Combustion Practices	(Less than 40% Control)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for PM-2.5 emissions from the coal-fired boilers:

- (a) PM-2.5 emissions from the operation of the coal-fired boilers shall be controlled by installing, operating, and maintaining a full steam baghouse.
- (b) PM-2.5 emissions from the coal-fired boilers shall not exceed 0.05 gr/dscf over a 3-hour averaging period.
- (c) Initial compliance with the proposed PM-2.5 emission limit will be demonstrated by conducting a performance test to obtain an emission rate.

Step 5 - Preliminary Selection of PM-2.5 BACT for the Industrial Coal-Fired Boilers

The Department's preliminary finding is that BACT for PM-2.5 emissions from the coal-fired boilers is as follows:

- (a) PM-2.5 emissions from DU EUs 1 through 6 shall be controlled by operating and maintaining fabric filters (full steam baghouse) at all times the units are in operation;
- (b) PM-2.5 emissions from DU EUs 1 through 6 shall not exceed 0.05 gr/dscf averaged over a 3-hour period; and
- (c) Initial compliance with the proposed PM-2.5 emission limit will be demonstrated by conducting a performance test to obtain an emission rate.

Table 4-2 lists the proposed PM-2.5 BACT determination for this facility along with those for other industrial coal-fired boilers in the Serious PM-2.5 nonattainment area.

Table 4-2. Comparison of PM-2.5 BACT for Coal-Fired Boilers at Nearby Power Plants

Facility	Process Description	Capacity	Limitation	Control Method
Fort Wainwright	6 Coal-Fired Boilers	1380 MMBtu/hr	0.05 gr/dscf	Full Steam Baghouse
UAF	Dual Fuel-Fired Boiler	295.6 MMBtu/hr	0.012 lb/MMBtu	Fabric Filters
Chena	4 Coal-Fired Boilers	497 MMBtu/hr		

4.2 PM-2.5 BACT for the Diesel-Fired Boilers

Possible PM-2.5 emission control technologies for diesel-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 13.220, Commercial/Institutional Size Boilers (<100 MMBtu/hr). The search results for diesel-fired boilers are summarized in Table 4-3.

Table 4-3. RBLC Summary of PM-2.5 Control for Diesel-Fired Boilers

Control Technology	Number of Determinations	Emission Limits	
		0.25 lb/gal	
Good Combustion Practices	3	0.1 tpy	
		2.17 lb/hr	

RBLC Review

A review of similar units in the RBLC indicates good combustion practices are the principle PM-2.5 control technologies installed on diesel-fired boilers. The lowest PM-2.5 emission rate listed in the RBLC is 0.1 tpy.

Step 1 - Identification of PM-2.5 Control Technology for the Diesel-Fired Boilers

From research, the Department identified the following technologies as available for control of PM-2.5 emissions from diesel-fired boilers:

(a) Scrubbers

The theory behind scrubbers was discussed in detail in the PM-2.5 BACT for the industrial coal-fired boilers and will not be repeated here. The Department considers scrubbers as a technically feasible control technology for the diesel-fired boilers.

(b) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the diesel-fired boilers.

(c) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the industrial coalfired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of PM-2.5 emissions. The Department considers GCPs a technically feasible control technology for the diesel-fired boilers.

Step 2 - Eliminate Technically Infeasible PM-2.5 Control Technologies for Diesel-Fired Boilers All identified control devices are technically feasible for the diesel-fired boilers.

Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Diesel-Fired Boilers

The following control technologies have been identified and ranked by efficiency for the control of PM-2.5 emissions from the diesel-fired boilers:

(a) Scrubber
(b) Limited Operation
(c) Good Combustion Practices
(50% - 99% Control)
(94% Control)
(Less than 40% Control)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes good combustion practices as BACT for PM-2.5 emissions from the diesel-fired boilers.

Department Evaluation of BACT for PM-2.5 Emissions from Diesel-Fired Boilers

The Department reviewed Fort Wainwright's proposal and finds that the 27 diesel fired boilers have a combined PTE of less than one tpy for PM-2.5 based on non-emergency operation of 500 hours per year. At one tpy, the cost effectiveness in terms of dollars per ton for add-on pollution control for these units is economically infeasible.

Step 5 - Preliminary Selection of PM-2.5 BACT for the Diesel-Fired Boilers

The Department's preliminary finding is that BACT for PM-2.5 emissions from the diesel-fired boilers is as follows:

- (a) PM-2.5 emissions from the diesel-fired boilers shall not exceed 1.1 lb/1000 gallons of diesel fuel, with the exception of the waste fuel boilers which must comply with the State particulate matter emissions standard of 0.05 grains per dry standard cubic foot under 18 AAC 50.055(b)(1);
- (b) Combined operating limit of 600 hours per year for FWA EUs 8, 9, and 10; and
- (c) Limit non-emergency operation of the 27 diesel fired boilers, with the exception of the waste-fuel boilers, to no more than 500 hours per year, for maintenance checks and readiness testing.
- (d) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation.

Table 4-4 lists the proposed PM-2.5 BACT determination for this facility along with those for other diesel-fired boilers rated at less than 100 MMBtu/hr in the Serious PM-2.5 nonattainment area.

 Table 4-4. Comparison of PM-2.5 BACT for the Diesel-Fired Boilers at Nearby Power Plants

Facility	Process Description	Capacity	Limitation	Control Method
Fort Wainwright	27 Diesel-Fired Boilers	<100 MMBtu/hr	1.1 $lb/10^3$ gallons	Good Combustion Practices
UAF	3 Diesel-Fired Boilers	< 100 MMBtu/hr	7.06 g/MMBtu	Limited Operation Good Combustion Practices
Zehnder	2 Diesel-Fired Boilers	< 100 MMBtu/hr	0.016 lb/MMBtu	Good Combustion Practices

4.3 PM-2.5 BACT for the Large Diesel-Fired Engines, Fire Pumps, and Generators

Possible PM-2.5 emission control technologies for large engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process codes 17.100-17.190, Large Internal Combustion Engines (>500 hp). The search results for large diesel-fired engines are summarized in Table 4-5.

Control Technology	Number of Determinations	Emission Limits (g/hp-hr)
Federal Emission Standards	12	0.03 - 0.02
Good Combustion Practices	28	0.03 - 0.24
Limited Operation	11	0.04 - 0.17
Low Sulfur Fuel	14	0.15 - 0.17
No Control Specified	14	0.02 - 0.15

Table 4-5. RBLC Summary of PM-2.5 Control for Large Diesel-Fired Engines

RBLC Review

A review of similar units in the RBLC indicates that good combustion practices, compliance with the federal emission standards, low ash/sulfur diesel, and limited operation are the principle PM-2.5 control technologies installed on large diesel-fired engines. The lowest PM-2.5 emission rate in the RBLC is 0.02 g/hp-hr.

Step 1 - Identification of PM-2.5 Control Technology for the Large Diesel-Fired Engines

From research, the Department identified the following technologies as available for control of PM-2.5 emissions from diesel-fired engines rated at 500 hp or greater:

(a) Diesel Particulate Filter (DPF)

DPFs are a control technology that are designed to physically filter particulate matter from the exhaust stream. Several designs exist which require cleaning and replacement of the filter media after soot has become caked onto the filter media. Regenerative filter designs are also available that burn the soot on a regular basis to regenerate the filter media. The Department considers DPF a technically feasible control technology for the large diesel-fired engines.

(b) Diesel Oxidation Catalyst (DOC)

DOC can reportedly reduce PM-2.5 emissions by 30% and PM emissions by 50%. A DOC is a form of "bolt on" technology that uses a chemical process to reduce pollutants in the diesel exhaust into decreased concentrations. They replace mufflers on vehicles, and require no modifications. More specifically, this is a honeycomb type structure that has a large area coated with an active catalyst layer. As CO and other gaseous hydrocarbon particles travel along the catalyst, they are oxidized thus reducing pollution. The Department considers DOC a technically feasible control technology for the large diesel-fired engines.

(c) Positive Crankcase Ventilation

Positive crankcase ventilation is the process of re-introducing the combustion air into the cylinder chamber for a second chance at combustion after the air has seeped into and collected in the crankcase during the downward stroke of the piston cycle. This process allows any unburned fuel to be subject to a second combustion opportunity. Any combustion products act as a heat sink during the second pass through the piston, which will lower the temperature of combustion and reduce the thermal NOx formation. The Department considers positive crankcase ventilation a technically feasible control technology for the large diesel-fired engines.

(d) Low Sulfur Fuel

Low sulfur fuel has been known to reduce particulate matter emissions. The Department considers low sulfur fuel as a feasible control technology for the large diesel-fired engines.

(e) Low Ash Diesel

Residual fuels and crude oil are known to contain ash forming components, while refined fuels are low ash. Fuels containing ash can cause excessive wear to equipment and foul engine components. The Department considers low ash diesel a technically feasible control technology for the large diesel-fired engines.

(f) Federal Emission Standards

RBLC NOx determinations for federal emission standards require the engines meet the requirements of 40 C.F.R. 60 NSPS Subpart IIII, 40 C.F.R 63 Subpart ZZZZ, non-road

engines (NREs), or EPA tier certifications. NSPS Subpart IIII applies to stationary compression ignition internal combustion engines that are manufactured or reconstructed after July 11, 2005. The Department considers NSPS Subpart IIII a technically feasible control technology for the large diesel-fired engines.

(g) Limited Operation

FWA EUs 11, 12, and 13 currently operate under a combined annual limit of less than 600 hours per year to avoid classification as a PSD major modification for NOx. Limiting the operation of emissions units reduces the potential to emit of those units. The Department considers limited operation a technically feasible control technology for the large diesel-fired engines.

(h) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of PM-2.5 emissions. The Department considers GCPs a technically feasible control technology for the large diesel-fired engine.

Step 2 - Eliminate Technically Infeasible PM-2.5 Control Technologies for the Large Engines PM-2.5 emission rates for low sulfur fuel are not available and therefore a BACT emissions rate cannot be set for low sulfur fuel. Low sulfur fuel is not a technically feasible control technology.

Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Large Diesel-Fired Engines The following control technologies have been identified and ranked by efficiency for the control of PM-2.5 emissions from the large diesel-fired engines:

(g)	Limited Operation	(94% Control)
(a)	Diesel Particulate Filters	(85% Control)
(h)	Good Combustion Practices	(Less than 40% Control)
(b)	Diesel Oxidation Catalyst	(30% Control)
(e)	Low Ash Diesel	(25% Control)
(c)	Positive Crankcase Ventilation	(10% Control)
(f)	Federal Emission Standards	(Baseline)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for PM-2.5 emissions from the large dieselfired engines:

- (a) Combined operating limit of 600 hours per year for FWA EUs 11, 12, and 13;
- (b) For engines manufactured after the applicability dates of 40 C.F.R. 60 Subpart IIII, BACT is selected as compliance with 40 C.F.R Part 60 Subpart IIII. For older engines, compliance with 40 C.F.R. 63 Subpart ZZZZ is proposed as BACT; and
- (c) Combust only ULSD.

40 CFR 60 Subpart IIII

Good Combustion Practices

Limit combined operation

to 600 hours per 12-month

Department Evaluation of BACT for PM-2.5 Emissions from the Large Diesel-Fired Engines

The Department reviewed Fort Wainwright's proposal finds that PM-2.5 emissions from the large diesel-fired engines can be controlled by limiting the use of the units during non-emergency operation as well as complying with the applicable federal emission standards.

Step 5 - Preliminary Selection of PM-2.5 BACT for the Large Diesel-Fired Engines

The Department's preliminary finding is that the BACT for PM-2.5 emissions from the large diesel-fired engines is as follows:

- (a) Combined operating limit of 600 hours per year for FWA EUs 11, 12, and 13;
- (b) Limit non-emergency operation of DU EUs 8, 10, 11, 13, and 15 to no more than 500 hours per year for maintenance checks and readiness testing;
- (c) Combust only ULSD;

DU

DU

FWA

FWA

13

15

11

12

2008

2005

2003

2003

Generator Engine

Generator Engine

Caterpillar 3512

- (d) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation; and
- (e) Comply with the numerical BACT emission limits listed in Table 4-6 for PM-2.5.

Location EU Year **BACT Limit** Description Size Status **Proposed BACT** 0.20 g/kW-hr DU 8 2009 Generator Engine 2,937 hp **Certified Engine** 40 CFR 60 Subpart IIII 10 DU 2010 **Certified Engine** 0.20 g/kW-hr 40 CFR 60 Subpart IIII Generator Engine 762 hp 0.20 g/kW-hr 2010 DU 11 Generator Engine 762 hp Certified Engine 40 CFR 60 Subpart IIII

hp

Table 4-6. Proposed PM-2.5 BACT Limits for Large Diesel-Fired Engines

587 hp

1.206 hp

Caterpillar 3512 1,206 hp AP-42 Table 3.4-1

1,059

FWA	13	2003	Caterpillar 3512	1,206 hp	AP-42 Table 3.4	-1 0.024 lb/hp-hr	rolling period.
Table 4-7 lists the proposed PM-2.5 BACT determination for this facility along with those for other							

Certified Engine

Mfg Information

AP-42 Table 3.4-1

0.20 g/kW-hr

0.09 g/hp-hr

0.024 lb/hp-hr

0.024 lb/hp-hr

1 1	y c
diesel-fired engines rated at more tha	n 500 hp located in the Serious PM-2.5 nonattainment area.
6	<u>r</u>

Facility	Process Description	Capacity	Limitation	Control Method
UAF	Large Diesel-Fired Engine	13,266 hp	0.32 g/hp-hr	Positive Crankcase Ventilation
UAF	Large Dieser-Filed Englie	13,200 lip	0.52 g/np-m	Limited Operation
				Limited Operation
Fort Wainwright	8 Large Diesel-Fired Engines	> 500 hp	0.15 – 10.9 g/hp-hr	Ultra-Low Sulfur Diesel
				Federal Emission Standards
GVEA North Pole	Large Diesel-Fired Engine	600 hp	0.0022 g/hp-hr	Positive Crankcase Ventilation
G VEA NOITH FOR	Large Dieser-Pired Engine	000 np	0.0022 g/np-m	Good Combustion Practices
GVEA Zehnder	2 Large Diesel-Fired Engines	11,000 hp	0.12 g/hp hr	Limited Operation
GVEA Zennder	2 Large Dieser-Filed Englies	(each)	0.12 g/hp-hr	Good Combustion Practices

Table 4-7. Comparison of PM-2.5 BACT for Large Diesel Engines at Nearby Power Plants

4.4 PM-2.5 BACT for the Small Emergency Engines, Fire Pumps, and Generators

Possible PM-2.5 emission control technologies for small engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 17.210, Small Internal Combustion Engines (<500 hp). The search results for diesel-fired engines are summarized in Table 4-8.

Control Technology	Number of Determinations	Emission Limits (g/hp-hr)
Federal Emission Standards	3	0.15
Good Combustion Practices	19	0.15 - 0.4
Limited Operation	7	0.15 - 0.17
Low Sulfur Fuel	7	0.15 - 0.3
No Control Specified	14	0.02 - 0.09

Table 4-8. RBLC Summary for PM-2.5 Control for Small Diesel-Fired Engines

RBLC Review

A review of similar units in the RBLC indicates low ash/sulfur diesel, compliance with federal emission standards, limited operation, and good combustion practices are the principle PM-2.5 control technologies installed on small diesel-fired engines. The lowest PM-2.5 emission rate listed in the RBLC is 0.02 g/hp-hr.

Step 1 - Identification of PM-2.5 Control Technology for the Small Diesel-Fired Engines From research, the Department identified the following technologies as available for control of PM-2.5 emissions from diesel-fired engines rated at less than 500 hp:

(a) Diesel Particulate Filter

The theory behind DPF was discussed in detail in the PM-2.5 BACT for the large dieselfired engines and will not be repeated here. The Department considers DPF a technically feasible control technology for the small diesel-fired engines.

(b) Diesel Oxidation Catalyst

The theory behind DOC was discussed in detail in the PM-2.5 BACT for the large dieselfired engines and will not be repeated here. The Department considers DOC a technically feasible control technology for the small diesel-fired engines.

(c) Low Ash Diesel

Residual fuels and crude oil are known to contain ash forming components, while refined fuels are low ash. Fuels containing ash can cause excessive wear to equipment and foul engine components. The Department considers low ash diesel a technically feasible control technology for the small diesel-fired engine.

(d) Federal Emission Standards

The theory behind federal emission standards was discussed in detail in the PM-2.5 BACT for the large diesel-fired engines and will not be repeated here. The Department considers federal emission standards a technically feasible control technology for the small diesel-fired engines.

(e) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the small diesel-fired engines.

(f) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of PM-2.5 emissions. The Department considers GCPs a technically feasible control technology for the small diesel-fired engines.

Step 2 - Eliminate Technically Infeasible PM-2.5 Control Technologies for the Small Engines All identified control technologies are technically feasible for the small diesel-fired engines.

Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Small Diesel-Fired Engines The following control technologies have been identified and ranked by efficiency for the control of PM-2.5 emissions from the small diesel-fired engines:

(94% Control)

(40% Control)

(25% Control)

(Baseline)

(60% - 90% Control)

(Less than 40% Control)

- (e) Limited Operation
- (a) Diesel Particulate Filters
- (b) Diesel Oxidation Catalyst
- (f) Good Combustion Practices
- (c) Low Ash/Sulfur Diesel
- (d) Federal Emission Standards

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for PM-2.5 emissions from the small dieselfired engines:

- (a) Good Combustion Practices;
- (b) For engines manufactured after the applicability dates of 40 C.F.R. 60 Subpart IIII, BACT is proposed as compliance with 40 C.F.R Part 60 Subpart IIII. For older engines, compliance with the 40 C.F.R. 63 Subpart ZZZZ is proposed as BACT; and
- (c) Combust only ULSD.

Department Evaluation of BACT for PM-2.5 Emissions from Small Diesel-Fired Engines

The Department reviewed Fort Wainwright's proposal and found that in addition to maintaining good combustion practices, complying with federal requirements, and combusting only ULSD: limiting operation of the small diesel-fired engines during non-emergency operation to no more than 500 hours per year each is BACT for PM-2.5.

Step 5 - Preliminary Selection of PM-2.5 BACT for the Small Diesel-Fired Engines

The Department's preliminary finding is that BACT for PM-2.5 emissions from the small dieselfired engines is as follows:

- (a) Limit non-emergency operation of DU EUs 9, 12, 14, 16 through 28, 29a, 30, 31a, 32, 33, 34, 35, 36, and FWA EUs 26 through 39 to no more than 500 hours per year each for maintenance checks and readiness testing;
- (b) Maintain good combustion practices by following the manufacturer's operating and maintenance procedures at all times of operation; and
- (c) Comply with the numerical BACT emission limits listed in Table 4-9 for PM-2.5.

Table 4-9. Proposed PM-2.5 BACT Limits for Small Diesel-Fired Engines

	-						
Location	EU	Year	Description	Size	Status	BACT Limit	Proposed BACT
DU	9	1988	Generator Engine	353 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	12	2002	Generator Engine	82 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	14	2008	Generator Engine	320 hp	Certified Engine	0.2 g/kW-hr	
DU	16	2005	Generator Engine	212 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	17	2007	Generator Engine	176 hp	Permit condition 23.1c	0.40 g/hp-hr	
DU	18	2005	Generator Engine	212 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	19	2007	Generator Engine	71 hp	Certified Engine	0.4 g/kW-hr	
DU	20	1976	Generator Engine	35 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	21	2001	Generator Engine	95 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	•
DU	22	1989	Generator Engine	35 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	23	2003	Generator Engine	155 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	24	1993	Generator Engine	50 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	25	2011	Generator Engine	18 hp	Certified Engine	0.4 g/kW-hr	
DU	26	2003	Generator Engine	68 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
DU	27	2010	Generator Engine	274 hp	Certified Engine	0.2 g/kW-hr	
DU	28	2010	Generator Engine	274 hp	Certified Engine	0.2 g/kW-hr	Limited Operation
DU	30	1952	Lift Pump Engine	75 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	for Non-Emergency
DU	32	1955	Lift Pump Engine	75 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	Use
DU	33	1994	Lift Pump Engine	75 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	(500 hours per year
DU	34	1995	Well Pump Engine	220 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	each)
DU	35	2009	Well Pump Engine	55 hp	Certified Engine	0.3 g/hp-hr	Good Combustion
DU	36	1995	Well Pump Engine	220 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	Practices
DU	29a	2014	Lift Pump Engine	74 hp	Certified Engine	0.03 g/kW-hr	Combust ULSD
DU	31a	2014	Lift Pump Engine	74 hp	Certified Engine	0.03 g/kW-hr	
FWA	26	2012	QSB7-G3 NR3	295 hp	Certified Engine	0.02 g/kW-hr	
FWA	27	2009	4024HF285B	67 hp	Certified Engine	0.3 g/kW-hr	
FWA	28	2007	CAT C9 GENSET	398 hp	Certified Engine	0.2 g/kW-hr	
FWA	29	ND	TM30UCM	47 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	30	2007	JW64-UF30	275 hp	Certified Engine	0.2 g/kW-hr	
FWA	31	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	32	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	33	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	34	1994	DDFP-04AT	235 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	35	1977	N-855-F	240 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	36	1977	N-855-F	240 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	37	2005	JU4H-UF40	94 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	38	1996	PDFP-06YT	120 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	
FWA	39	1996	PDFP-06YT	120 hp	AP-42, Table 3.3-1	7.21 E-4 lb/hp-hr	

Table 4-10 lists the proposed PM-2.5 BACT determination for this facility along with those for other diesel-fired engines rated at less than 500 hp located in the Serious PM-2.5 nonattainment area.

Table 4-10. Comparison of PM-2.5 BACT for Small Engines at Nearby Power Plants

Facility	Process Description	Capacity	Limitation	Control Method
Fort Woinwright	41 Small Diagol Fired Engines	< 500 hr	Varias	Good Combustion Practices
Fort Wainwright	41 Small Diesel-Fired Engines	< 500 hp	Varies	Limited Operation
UAF		< 500 hm	0.11 s/hz hz	Good Combustion Practices
UAF	One Small Diesel-Fired Engine	< 500 hp	0.11 g/hp-hr	Limited Operation
GVEA Zehnder	Two Small Diesel-Fired Engines	< 500 hp	0.1 lb/MMBtu	Limited Operation

4.5 PM-2.5 BACT for the Material Handling

Possible PM-2.5 emission control technologies for material handling were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process codes 99.100 - 190, Fugitive Dust Sources. The search results for material handling units are summarized in Table 4-11.

Table 4-11. RBLC Summary for PM-2.5 Control for Material Handling

Control Technology	Number of Determinations	Emission Limits
Fabric Filter / Baghouse	10	0.005 gr./dscf
Electrostatic Precipitator	3	0.032 lb/MMBtu
Wet Suppressants / Watering	3	29.9 tpy
Enclosures / Minimizing Drop Height	4	0.93 lb/hr

RBLC Review

A review of similar units in the RBLC indicates good operational practices, enclosures, fabric filters, and minimizing drop heights are the principle PM-2.5 control technologies for material handling operations.

Step 1 - Identification of PM-2.5 Control Technology for the Material Handling

From research, the Department identified the following technologies as available for PM-2.5 control of materials handling:

(a) Fabric Filters

The theory behind fabric filters was discussed in detail in the PM-2.5 BACT for the industrial coal-fired boilers and will not be repeated here. The Department considers fabric filters a technically feasible control technology for material handling.

(b) Enclosure

Enclosure structures shelter material from wind entrainment and are used to control particulate emissions. Enclosures can either fully or partially enclose the source and control efficiency is dependent on the level of enclosure.

(c) Wet and Dry Electrostatic Precipitators

The theory behind ESPs was discussed in detail in the PM-2.5 BACT for the industrial coal-fired boilers and will not be repeated here. The Department considers ESPs a technically feasible control technology for material handling.

(d) Wet Scrubbers

The theory behind wet scrubbers was discussed in detail in the PM-2.5 BACT for the industrial coal-fired boilers and will not be repeated here. The Department considers wet scrubbers a technically feasible control technology for material handling.

(e) Mechanical Collectors (Cyclones)

The theory behind cyclones was discussed in detail in the PM-2.5 BACT for the industrial coal-fired boilers and will not be repeated here. The Department considers cyclones a technically feasible control technology for material handling.

(f) Suppressants

The use of dust suppression to control particulate matter can be effective for stockpiles and transfer points exposed to the open air. Applying water or a chemical suppressant can bind the materials together into larger particles which reduces the ability to become entrained in the air either from wind or material handling activities. The Department considers the use of suppressants a technically feasible control technology for all of the material handling units.

(g) Wind Screens

A wind screen is similar to a solid fence which is used to lower wind velocities near stockpiles and material handling sites. As wind speeds increase, so do the fugitive emissions from the stockpiles, conveyors, and transfer points. The use of wind screens is appropriate for materials not already located in enclosures. Due to all of the material handling units being operated in enclosures the Department does not consider wind screens a technically feasible control technology for the material handling units.

(h) Vents/Closed System Vents/Negative Pressure Vents

Vents can control fugitive emissions by collecting fugitive emissions from enclosed loading, unloading, and transfer points and then venting emissions to the atmosphere or back into other equipment such as a storage silo. Other vent control designs include enclosing emission units and operating under a negative pressure. The Department considers vents to be a technically feasible control technology for the material handling units.

Step 2 - Eliminate Technically Infeasible PM-2.5 Controls for the Material Handling All of the identified control technologies are technically feasible for material handling.

Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Material Handling The following control technologies have been identified and ranked for control of particulates from the material handling equipment.

(a)	Fabric Filters	(50 - 99% Control)
(b)	Enclosures	(50 - 99% Control)

(d) Wet Scrubber (50% - 99%)
(c) Electrostatic Precipitator (>90% Control)
(e) Cyclone (20% -70% Control)
(f) Suppressants (less than 90% Control)
(h) Vents (less than 90% Control)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for PM-2.5 emissions from material handling based on a combination of manufacturing design and loading techniques:

- (a) PM-2.5 emissions from the South Coal Handling Dust Collector (EU 7a) shall not exceed 0.0025 gr/dscf and shall be controlled by enclosed emission points and by following manufacturer's recommendations for operations and maintenance.
- (b) PM-2.5 emissions from the South Underbunker, Fly Ash, and Bottom Ash Dust Collectors (EUs 7b, 7c, 51a, and 51b) shall not exceed 0.02 gr/dscf and shall be controlled by enclosed emission points and by following manufacturer's recommendations for operations and maintenance.
- (c) PM-2.5 emissions from the North Coal Handling Dust Collector (EU 7c) shall not exceed 0.02 gr/dscf and shall be limited to no more than 200 hours per year.
- (d) Initial compliance with the PM-2.5 emission limits, except the emission limit for EU 52, will be demonstrated by conducting a performance test to obtain an emission rate.
- (e) PM-2.5 emissions from the Emergency Coal Storage Pile and Operations (EU 52) shall not exceed 0.48 tpy and shall be controlled with chemical stabilizers, wind fencing, covered haul vehicles, watering, and wind awareness. These procedures are identified in the September 2003 Fort Wainwright Dust Control Plan, prepared by the United States Army Center for Health Promotion and Preventive Medicine Alaskan Field Office in Conjunction with Oak Ridge Institute for Science and Education.

Step 5 - Preliminary Selection of PM-2.5 BACT for the Material Handling Equipment The Department's preliminary finding is that BACT for PM-2.5 emissions from the material handling equipment is as follows:

- (a) PM-2.5 emissions from the material handling equipment shall be controlled by operating and maintaining fabric filters at all times the units are in operation;
- (b) Comply with the numerical BACT emission limits listed in Table 4-12 for PM-2.5;
- (c) PM-2.5 emissions from DU EU 52 shall not exceed 0.48 tpy. Continuous compliance with the PM-2.5 emissions limit shall be demonstrated by complying with the fugitive dust control plan identified in the applicable operating permit issued to the source in accordance with 18 AAC 50 and AS 46.14; and
- (d) Initial compliance with the PM-2.5 emission rates for the material handling units, except EU 52, shall be demonstrated with a performance test to obtain an emission rate.

EU ID	Description	Current Control	Current Emission Factor	Proposed BACT Control
7a	South Coal Handling Dust Collector	Partial Enclosure and Dust Collection	0.0025 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance
7b	South Underbunker Dust Collector	Partial Enclosure and Dust Collection	0.02 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance
7c	North Coal Handling Dust Collector	Partial Enclosure and Dust Collection	0.02 gr/dscf	Limited Operation – This source serves as backup to EU 7a and operates less than 200 hours each year
52	Emergency Coal Storage Pile and Operations	Follow Fugitive Dust Control Plan	Varies	Chemical Stabilizers, Wind Fencing, Covered Haul Vehicles, Watering, and Wind Awareness
51a	Fly Ash Dust Collector	Partial Enclosure and Dust Collection	0.02 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance
51b	Bottom Ash Dust Collector	Partial Enclosure and Dust Collection	0.02 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance

Table 4-12. PM-2.5 BACT Control Technologies Proposed for Material Handling

5. BACT DETERMINATION FOR SO₂

The Department based its SO₂ assessment on BACT determinations found in the RBLC, internet research, and BACT analyses submitted to the Department by GVEA for the North Pole Power Plant and Zehnder Facility, Aurora for the Chena Power Plant, US Army for Fort Wainwright, and UAF for the Combined Heat and Power Plant.

5.1 SO₂ BACT for the Industrial Coal-Fired Boilers

Possible SO_2 emission control technologies for coal-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 11.110, Coal Combustion in Industrial Size Boilers and Furnaces. The search results for the coalfired boilers are summarized in Table 5-1.

 Table 5-1. RBLC Summary of SO2 Control for Industrial Coal-Fired Boilers

Control Technology	Number of Determinations	Emission Limits (lb/MMBtu)
Flue Gas Desulfurization / Scrubber / Spray Dryer	10	0.06 - 0.12
Limestone Injection	10	0.055 - 0.114
Low Sulfur Coal	4	0.06 - 1.2

RBLC Review

A review of similar units in the RBLC indicates flue gas desulfurization, limestone injection, and low sulfur coal are the principle SO_2 control technologies installed on industrial coal-fired boilers. The lowest SO_2 emission rate in the RBLC is 0.055 lb/MMBtu.

Step 1- Identification of SO₂ Control Technology for the Coal-Fired Boilers

From research, the Department identified the following technologies as available for SO₂ control of industrial coal-fired boilers:

(a) Wet Scrubbers

Post combustion flue gas desulfurization techniques can remove SO_2 formed during combustion by using an alkaline reagent to absorb SO_2 in the flue gas. Flue gasses can be treated using wet, dry, or semi-dry desulfurization processes. In the wet scrubbing system, flue gas is contacted with a solution or slurry of alkaline material in a vessel providing a relatively long residence time. The SO_2 in the flue reacts with the alkali solution or slurry by adsorption and/or absorption mechanisms to form liquid-phase salts. These salts are dried to about one percent free moisture by the heat in the flue gas. These solids are entrained in the flue gas and carried from the dryer to a PM collection device, such as a baghouse.

The lime and limestone wet scrubbing process uses a slurry of calcium oxide or limestone to absorb SO₂ in a wet scrubber. Control efficiencies in excess of 91 percent for lime and 94 percent for limestone over extended periods are possible. Sodium scrubbing processes generally employ a wet scrubbing solution of sodium hydroxide or sodium carbonate to absorb SO₂ from the flue gas. Sodium scrubbers are generally limited to smaller sources because of high reagent costs and can have SO₂ removal efficiencies of up to 96.2 percent. The double or dual alkali system uses a clear sodium alkali solution for SO₂ removal followed by a regeneration step using lime or limestone to recover the sodium alkali and produce a calcium sulfite and sulfate sludge. SO₂ removal efficiencies of 90 to 96 percent are possible. The Department considers flue gas desulfurization with a wet scrubber a technically feasible control technology for the industrial coal-fired boilers.

(b) Spray Dry Absorbers (SDA)

In SDA systems, an aqueous sorbent slurry with a higher sorbent ratio than that of a wet scrubber is injected into the hot flue gases. As the slurry mixes with the flue gas, the water is evaporated and the process forms a dry waste which is collected in a baghouse or electrostatic precipitator. The Department considers flue gas desulfurization with an SDA system a technically feasible control technology for the industrial coal-fired boilers.

(c) Dry Sorbent Injection (DSI)

Dry sorbent injection systems (spray dry scrubbers) pneumatically inject a powdered sorbent directly into the furnace, the economizer, or the downstream ductwork depending on the temperature and the type of sorbent utilized. The dry waste is removed using a baghouse or electrostatic precipitator. Spray drying technology is less complex mechanically, and no more complex chemically, than wet scrubbing systems. The main advantages of the spray dryer is that this technology avoids two problems associated with wet scrubbing, corrosion and liquid waste treatment. Spray dry scrubbers are mostly used for small to medium capacity boilers and are preferable for retrofits. The Department considers flue gas desulfurization with a dry scrubber a technically feasible control technology for the industrial coal-fired boilers.

(50 – 80% Control)

(Less than 40% Control)

(30% Control)

(d) Low Sulfur Coal

Fort Wainwright purchases coal from the Usibelli Coal Mine located in Healy, Alaska. This coal mine is located 115 miles south of Fairbanks. The coal mined at Usibelli is subbituminous coal and has a relatively low sulfur content with guarantees of less than 0.4 percent by weight. Usibelli Coal Data Sheets indicate a range of 0.08 to 0.28 percent Gross As Received (GAR) percent Sulfur (%S). According to the U.S. Geological Survey, coal with less than one percent sulfur is classified as low sulfur coal. The Department considers the use of low sulfur coal a feasible control technology for the industrial coal-fired boilers.

(e) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the industrial coalfired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of SO₂ emissions. The Department considers GCPs a technically feasible control technology for the industrial coal-fired boilers.

Step 2 - Eliminate Technically Infeasible SO₂ Control Technologies for Coal-Fired Boilers All identified control devices are technically feasible for the industrial coal-fired boilers.

Step 3 - Rank the Remaining SO₂ Control Technologies for Industrial Coal-Fired Boilers

The following control technologies have been identified and ranked by efficiency for control of SO₂ emissions from the industrial coal-fired boilers:

- (a) Wet Scrubbers
 (b) Spray Dry Absorbers
 (99% Control)
 (90% Control)
- (b) Spray Dry Absorbers (c) Dry Sorbert Injection (Dust
- (c) Dry Sorbent Injection (Duct Sorbent Injection)
- (d) Low Sulfur Coal
- (e) Good Combustion Practices

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright provided an economic analysis of the installation of wet and dry scrubber systems. A summary of the analysis is shown below:

		XX7 · · · ·	4 T	Analysis for	T 1		
I Shie 5-7	HOT	wainwrigh	F R CONOMIC	A naivele for	Lechnically	Reaginie N	lo Controle
$I a D I C J - \Delta$	TULL	v v am v m 2m		Analysis IU	I COmmonly	T Casibic DO	

Control Alternative	Potential to Emit (tpy)	Emission Reduction (tpy)	Total Capital Investment (\$)	Total Annual Costs (\$/year)	Cost Effectiveness (\$/ton)
Wet Scrubber	1,767	1,749	???	???	6,900 - 13,800
Spray-Dry Scrubber	1,767	1,590	???	???	5,200 - 6,200
Dry Sorbent Injection ¹⁶ 1,767 1,414 6,191,696 6,384,196 4,516 - 5,968					
Capital Recovery Factor = 0.1424 (7% interest rate for a 10 year equipment life)					

¹⁶ Calculated using Amerair Proposal for 80% removal of SO₂ emissions.

Fort Wainwright contends that the economic analysis indicates the level of SO₂ reduction does not justify the use of wet scrubbers, semi-dry scrubbers, or dry scrubber systems (dry-sorbent injection) for the coal-fired boilers based on the excessive cost per ton of SO₂ removed per year.

Fort Wainwright proposes the following as BACT for SO₂ emissions from the coal-fired boilers:

- (a) SO₂ emissions from the operation of the coal-fired boilers will be controlled by limited operation, good combustion practices, and low sulfur fuel at all times the boilers are in operation.
- (b) SO₂ emissions from the coal-fired boilers will be controlled by burning low sulfur coal at all times the boilers are in operation.
- (c) SO₂ emissions from the coal-fired boilers will not exceed 0.49 lb/MMBtu.
- (d) SO₂ emissions from the coal-fired boilers will be controlled by limiting the allowable coal combustion to no more than 300,000 tons per year.
- (e) Initial compliance with the proposed SO₂ emission limit will be demonstrated by conducting a performance test to obtain an emission rate.

Department Evaluation of BACT for SO₂ Emissions from the Industrial Coal-Fired Boilers

The Department revised the cost analysis provided for the installation of wet scrubbers, semi-dry scrubbers (spray dry absorbers), and dry scrubbers (dry sorbent injection) using the unrestricted potential to emit for the six coal-fired boilers, a baseline emission rate of 0.46 lb SO₂/MMBtu,¹⁷ an average retrofit difficulty, a SO₂ removal efficiency of 99%, 90% and 80% for wet scrubbers, spray dry absorbers and dry sorbent injection respectively, and a 20 year equipment life. A summary of the analysis is shown below:

Table 5-3. Department Economic Analysis for Technically Feasible SO2 Controls

Control Alternative	Potential to Emit (tpy)	Emission Reduction (tpy)	Total Capital Investment (\$)	Total Annual Costs (\$/year)	Cost Effectiveness (\$/ton)	
Wet Scrubber	1,767	1,750	92,078,754	18,874,782	10,788	
Spray Dry Absorbers	1,767	1,590	83,952,795	17,711,144	11,136	
Dry Sorbent Injection 1,767 1,414 10,186,401 9,098,161 6,435						
Capital Recovery Factor = 0.094 (7% interest rate for a 20 year equipment life)						

The Department's preliminary economic analysis indicates the level of SO₂ reduction justifies the use of dry sorbent injection as BACT for the coal-fired boilers located in the Serious PM-2.5 nonattainment area.

¹⁷ Calculated assuming a 0.2% sulfur content by weight (typical gross as received) and a higher heating value of 7,600 Btu/lb for Healy coal (average of gross as received range), and AP-42 Table 1.1-3 emission factors for spreader stoker boilers combusting sub-bituminous coal.

Step 5 - Preliminary Selection of SO₂ BACT for the Industrial Coal-Fired Boilers

The Department's preliminary finding is that BACT for SO₂ emissions from the coal-fired boilers is as follows:

- (a) SO₂ emissions from DU EUs 1 through 6 shall be controlled by operating and maintaining dry sorbent injection at all times the units are in operation;
- (b) SO₂ emissions from DU EUs 1 through 6 shall not exceed 0.092 lb/MMBtu averaged over a 3-hour period;
- (c) Limit the combined coal combustion in DU EUs 1 through 6 to no more than 300,000 tons per year.
- (d) Initial compliance with the SO₂ emission rate for the coal-fired boilers will be demonstrated by conducting a performance test to obtain an emission rate.

Table 5-4 lists the proposed SO₂ BACT determination for this facility along with those for other coal-fired boilers in the Serious PM-2.5 nonattainment area.

Table 5-4. Comparison of SO₂ BACT for Coal-Fired Boilers at Nearby Power Plants

Facility	Process Description	Capacity	Limitation	Control Method
				Dry Sorbent Injection
Fort Wainwright	6 Coal-Fired Boilers	1380 MMBtu/hr (combined)	0.092 lb/MMBtu ¹⁸	Limited Operation
				Low Sulfur Coal
				Dry Sorbent Injection
UAF	Dual Fuel-Fired Boiler	295.6 MMBtu/hr	0.05 lb/MMBtu	Limestone Injection
				Low Sulfur Coal
Chena	4 Coal-Fired Boilers	497 MMBtu/hr (combined)	N/A	N/A

5.2 SO₂ BACT for the Diesel-Fired Boilers

Possible SO₂ emission control technologies for diesel-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 13.220, Commercial/Institutional Size Boilers (<100 MMBtu/hr). The search results for diesel-fired boilers are summarized in Table 5-5.

Table 5-5. RBLC Summary of SO₂ Control for Diesel-Fired Boilers

Control Technology	Number of Determinations	Emission Limits (lb/MMBtu)
Low Sulfur Fuel	5	0.0036 - 0.0094
Good Combustion Practices	4	0.0005
No Control Specified	5	0.0005

 $^{^{18}}$ Calculated using an 80 percent SO₂ control efficiency, assuming a baseline of 0.46 lb SO₂ / ton (AP-42 Table 1.1-3 and 0.2 % S wt.) and a higher heating value of 7,600 Btu/lb for Healy coal.

RBLC Review

A review of similar units in the RBLC indicates that good combustion practices and combustion of low sulfur fuel are the principle SO_2 control technologies installed on diesel-fired boilers. The lowest SO_2 emission rate listed in the RBLC is 0.0005 lb/MMBtu.

Step 1 - Identification of SO₂ Control Technology for the Diesel-Fired Boilers

From research, the Department identified the following technologies as available for control of SO₂ emissions from diesel-fired boilers:

(a) Ultra-Low Sulfur Diesel

ULSD has a fuel sulfur content of 0.0015 percent sulfur by weight or less. Using ULSD would reduce SO_2 emissions because the diesel-fired boilers are combusting standard diesel that has a sulfur content of up to 0.5 percent sulfur by weight. Switching to ULSD could control 99 percent of SO_2 emissions from the diesel-fired boilers. The Department considers ULSD a technically feasible control technology for the diesel-fired boilers.

(b) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the diesel-fired boilers.

(c) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of SO_2 emissions. The Department considers GCPs a technically feasible control technology for the diesel-fired boilers.

Step 2 - Eliminate Technically Infeasible SO₂ Control Technologies for the Diesel-Fired Boilers All identified control technologies are technically feasible for the diesel-fired boilers.

Step 3 - Rank the Remaining SO2 Control Technologies for the Diesel-Fired Boilers

The following control technologies have been identified and ranked by efficiency for the control of SO₂ emissions from the diesel-fired boilers:

(a)	Ultra Low Sulfur Diesel	(99% Control)
(b)	Limited Operation	(94% Control)
(c)	Good Combustion Practices	(Less than 40% Control)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for SO₂ emissions from the diesel-fired boilers:

- (a) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation;
- (b) Combined operating limit of 600 hours per year for FWA EUs 8, 9, and 10; and
- (c) Combust only ULSD.

Department Evaluation of BACT for SO₂ Emissions from Diesel-Fired Boilers

The Department reviewed Fort Wainwright's proposal and finds that the 27 diesel fired boilers have a combined PTE of less than ten tpy for SO_2 based on non-emergency operation of 500 hours per year. At ten tpy, the cost effectiveness in terms of dollars per ton for add-on pollution control for these units is economically infeasible.

Step 5 - Preliminary Selection of SO₂ BACT for the Diesel-Fired Boilers

The Department's preliminary finding is that BACT for SO₂ emissions from the diesel-fired boilers is as follows:

- (a) SO₂ emissions from the diesel-fired boilers shall be controlled by only combusting ULSD, with the exception of the waste fuel boilers;
- (b) Combined operating limit of 600 hours per year for FWA EUs 8, 9, and 10; and
- (c) Limit non-emergency operation of the 27 diesel fired boilers, with the exception of the waste-fuel boilers, to no more than 500 hours per year, for maintenance checks and readiness testing.
- (d) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation.

Table 5-6 lists the proposed SO_2 BACT determination for this facility along with those for other diesel-fired boilers rated at less than 100 MMBtu/hr in the Serious PM-2.5 nonattainment area.

Table 5-6. Comparison of SO₂ BACT for the Diesel-Fired Boilers at Nearby Power Plants

Facility	Process Description	Capacity	Limitation	Control Method
				Limited Operation
Fort Wainwright	Diesel-Fired Boilers	< 100 MMBtu/hr	15 ppmw S in fuel	Good Combustion Practices
C				Ultra-Low Sulfur Diesel
	Waste Fuel-Fired Boilers		0.5 % S by weight	Good Combustion Practices
TIAE	2 D' 1 E' 1 D 'I			Good Combustion Practices
UAF	3 Diesel-Fired Boilers	< 100 MMBtu/hr	15 ppmw S in fuel	Ultra-Low Sulfur Diesel
		100 10 00 1		Good Combustion Practices
GVEA Zehnder	2 Diesel-Fired Boilers	< 100 MMBtu/hr	15 ppmw S in fuel	Ultra-Low Sulfur Diesel

5.3 SO₂ BACT for the Large Diesel-Fired Engines, Fire Pumps, and Generators

Possible SO₂ emission control technologies for large engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process codes 17.100 to 17.190, Large Internal Combustion Engines (>500 hp). The search results for large diesel-fired engines are summarized in Table 5-7.

Control Technology	Number of Determinations	Emission Limits (g/hp-hr)
Low Sulfur Diesel	27	0.005 - 0.02
Federal Emission Standards	6	0.001 - 0.005
Limited Operation	6	0.005 - 0.006
Good Combustion Practices	3	None Specified
No Control Specified	11	0.005 - 0.008

Table 5-7. RBLC Summary for SO₂ Control for Large Diesel-Fired Engines

RBLC Review

A review of similar units in the RBLC indicates combustion of low sulfur fuel, limited operation, good combustion practices, and compliance with the federal emission standards are the principle SO₂ control technologies installed on large diesel-fired engines. The lowest SO₂ emission rate listed in the RBLC is 0.001 g/hp-hr.

Step 1 - Identification of SO₂ Control Technology for the Large Diesel-Fired Engines

From research, the Department identified the following technologies as available for control of SO₂ emissions from diesel-fired engines rated at 500 hp or greater:

(a) Ultra-Low Sulfur Diesel

The theory of ULSD was discussed in detail in the SO₂ BACT for the diesel-fired boilers and will not be repeated here. The Department considers ULSD a technically feasible control technology for the large diesel-fired engines.

(b) Federal Emission Standards

The theory of federal emission standards was discussed in detail in the NOx BACT for the large diesel-fired engines and will not be repeated here. The Department considers meeting the technology based NSPS of Subpart IIII as a technically feasible control technology for the large diesel-fired engines.

(c) Limited Operation

FWA EUs 11, 12, and 13 currently operate under a combined annual limit of less than 600 hours per year to avoid classification as a PSD major modification for NOx. Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the large diesel-fired engines.

(d) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of SO_2 emissions. The Department considers GCPs a technically feasible control technology for the large diesel-fired engines.

Step 2 - Eliminate Technically Infeasible SO₂ Control Technologies for the Large Engines All identified control technologies are technically feasible for the large diesel-fired engines.

Step 3 - Rank the Remaining SO₂ Control Technologies for the Large Diesel-Fired Engines

The following control technologies have been identified and ranked by efficiency for the control of SO₂ emissions from the large diesel-fired engines.

(a) Ultra Low Sulfur Diesel (99% Control)
(c) Limited Operation (94% Control)
(d) Good Combustion Practices (Less than 40% Control)
(b) Federal Emission Standards (Baseline)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for SO₂ emissions from the large diesel-fired engines:

- (a) Combined operating limit of 600 hours per year for FWA EUs 11, 12, and 13; and
- (b) SO₂ emissions from the operation of the large diesel-fired engines shall be controlled with combustion of ultra-low sulfur diesel.

Department Evaluation of BACT for SO₂ Emissions from the Large Diesel-Fired Engines

The Department reviewed Fort Wainwright's proposal and finds that SO₂ emissions from the large diesel-fired engines can additionally be controlled by limiting the use of the units during non-emergency operation.

Step 5 - Preliminary Selection of SO₂ BACT for the Large Diesel-Fired Engines

The Department's preliminary finding is that BACT for SO₂ emissions from the large dieselfired engines is as follows:

- (a) SO₂ emissions from DU EUs 8, 10, 11, 13, and 15 and FWA EUs 11, 12, and 13 shall be controlled by only combusting ULSD;
- (b) Combined operating limit of 600 hours per year for FWA EUs 11, 12, and 13;
- (c) Limit non-emergency operation of DU EUs 8, 10, 11, 13, and 15 and FWA EUs 11, 12, and 13 to no more than 500 hours per year, for maintenance checks and readiness testing; and
- (d) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation.

Table 5-8 lists the proposed SO_2 BACT determination for this facility along with those for other diesel-fired engines rated at more than 500 hp located in the Serious PM-2.5 nonattainment area.

Facility	Process Description	Capacity	Limitation	Control Method
				Limited Operation
Fort Wainwright	8 Large Diesel-Fired Engines	$> 500 \ hp$	15 ppmw S in fuel	Good Combustion Practices
				Ultra-Low Sulfur Diesel
				Limited Operation
UAF	Large Diesel-Fired Engine	13,266 hp	15 ppmw S in fuel	Good Combustion Practices
				Ultra-Low Sulfur Diesel
CVEA North Data	Lanza Diagol Eined Engine	(00 h	15	Good Combustion Practices
GVEA North Pole	Large Diesel-Fired Engine	600 hp	15 ppmw S in fuel	Ultra-Low Sulfur Diesel
CVEA Zahadaa	2 Longo Dissol Eined Engines	11,000 hrs	15	Good Combustion Practices
GVEA Zehnder	2 Large Diesel-Fired Engines	11,000 np	15 ppmw S in fuel	Ultra-Low Sulfur Diesel

Table 5-8. Comparison of SO2 BACT for Large Diesel-Fired Engines at Nearby Power Plants

5.4 SO₂ BACT for the Small Emergency Engines, Fire Pumps, and Generators

Possible SO₂ emission control technologies for small engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 17.210, Small Internal Combustion Engines (<500 hp). The search results for small diesel-fired engines are summarized in Table 5-9.

Table 5-9. RBLC Summary for SO₂ Control for Small Diesel-Fired Engines

Control Technology	Number of Determinations	Emission Limits (g/hp-hr)
Low Sulfur Diesel	6	0.005 - 0.02
No Control Specified	3	0.005

RBLC Review

A review of similar units in the RBLC indicates combustion of low sulfur fuel is the principle SO_2 control technology for small diesel-fired engines. The lowest SO_2 emission rate listed in the RBLC is 0.005 g/hp-hr.

Step 1 - Identification of SO₂ Control Technology for the Small Diesel-Fired Engines

From research, the Department identified the following technologies as available for control of SO_2 emissions from diesel-fired engines rated at less than 500 hp:

(a) Ultra-Low Sulfur Diesel

The theory of ULSD was discussed in detail in the SO₂ BACT for the small diesel-fired boilers and will not be repeated here. The Department considers ULSD a technically feasible control technology for the small diesel-fired engines.

(b) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the small diesel-fired engines.

(c) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the coal-fired boilers and will not be repeated here. Proper management of the combustion process will result in a reduction of SO_2 emissions. The Department considers GCPs a technically feasible control technology for the small diesel-fired engines.

Step 2 - Eliminate Technically Infeasible SO₂ Control Technologies for the Small Engines

All identified control technologies are technically feasible for the small diesel-fired engines.

Step 3 - Rank the Remaining SO₂ Control Technologies for the Small Diesel-Fired Engines The following control technologies have been identified and ranked by efficiency for the control of SO₂ emissions from the small diesel-fired engines.

- (a) Ultra Low Sulfur Diesel (99% Control)
- (b) Limited Operation (94% Control)
- (c) Good Combustion Practices (Less than 40% Control)

Step 4 - Evaluate the Most Effective Controls

Fort Wainwright BACT Proposal

Fort Wainwright proposes the following as BACT for SO₂ emissions from the small diesel-fired engines:

- (a) Good Combustion Practices;
- (b) Combust only ULSD.

Department Evaluation of BACT for SO₂ Emissions from Small Diesel-Fired Engines

The Department reviewed Fort Wainwright's proposal and found that in addition to maintaining good combustion practices and combusting only ULSD, limiting operation of the small diesel-fired engines during non-emergency operation to no more than 500 hours per year each is BACT for SO₂.

Step 5 - Preliminary Selection of SO₂ BACT for the Small Diesel-Fired Engines

The Department's preliminary finding is that BACT for SO₂ emissions from the small dieselfired engines is as follows:

- (a) Limit non-emergency operation of DU EUs 9, 12, 14, 16 through 28, 29a, 30, 31a, 32, 33, 34, 35, 36, and FWA EUs 26 through 39 to no more than 500 hours per year each for maintenance checks and readiness testing;
- (b) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation; and
- (c) Combust only ULSD.

Table 5-10 lists the proposed SO_2 BACT determination for this facility along with those for other diesel-fired engines rated at less than 500 hp located in the Serious PM-2.5 nonattainment area.

Facility	Process Description	Capacity	Limitation	Control Method
_				Limited Operation
Fort Wainwright	41 Small Diesel-Fired Engines	< 500 hp	15 ppmw S in fuel	Ultra-Low Sulfur Diesel
Ũ				Good Combustion Practices
LIAE	One Small Dissel Fired Engine	< 500 hp	15 normers Q in frail	Limited Operation
UAF	UAF One Small Diesel-Fired Engine		15 ppmw S in fuel	Ultra-Low Sulfur Diesel
GVEA	True Small Dissel Fired Fraince	< 500 hrs	500 mmm 6 in faal	Limited Operation
Zehnder	Two Small Diesel-Fired Engines	< 500 hp	500 ppm S in fuel	Ultra-Low Sulfur Diesel

Table 5-10. Comparison of SO₂ BACT for Small Diesel-Fired Engines at Nearby Power Plants

6. BACT DETERMINATION SUMMARY

EU ID	Description	Capacity	Proposed BACT Limit	Proposed BACT Control
DU 1	Six Coal Fired Boiler 3	230 MMBtu/hr	0.058 lb/MMBtu	
DU 2	Six Coal Fired Boiler 4	230 MMBtu/hr	0.058 lb/MMBtu	
DU 3	Six Coal Fired Boiler 5	230 MMBtu/hr	0.058 lb/MMBtu	
DU 4	Six Coal Fired Boiler 6	230 MMBtu/hr	0.058 lb/MMBtu	Selective Catalytic Reduction
DU 5	Six Coal Fired Boiler 7	230 MMBtu/hr	0.058 lb/MMBtu	
DU 6	Six Coal Fired Boiler 8	230 MMBtu/hr	0.058 lb/MMBtu	
FWA 8	Backup Diesel-Fired Boiler 1	19 MMBtu/hr	0.15 lb/MMBtu	Good Combustion Practices
FWA 9	Backup Diesel-Fired Boiler 2	19 MMBtu/hr	0.15 lb/ MMBtu	Limited Operation
FWA 10	Backup Diesel-Fired Boiler 3	19 MMBtu/hr	0.15 lb/ MMBtu	(600 hours/year combined)
				Good Combustion Practices
N/A	Diesel-Fired Boilers (24)	Varies	0.15 lb/ MMBtu	Limited Operation
				(500 hours/year each, for non-emergency operation)
DU 8	Generator Engine	2,937 hp	6.4 g/kW-hr	
DU 10	Generator Engine	762 hp	6.4 g/kW-hr	Good Combustion Practices
DU 11	Generator Engine	762 hp	6.4 g/kW-hr	Limited Operation
DU 13	Generator Engine	587 hp	4.0 g/kW-hr	(500 hours/year each, for non-emergency operation)
DU 15	Generator Engine	1,059 hp	5.75 g/hp-hr	
FWA 11	Caterpillar 3512	1,206 hp	0.024 lb/hp-hr	Good Combustion Practices
FWA 12	Caterpillar 3512	1,206 hp	0.024 lb/hp-hr	Limited Operation
FWA 13	Caterpillar 3512	1,206 hp	0.024 lb/hp-hr	(600 hours/year combined)
DU 9	Generator Engine	353 hp	0.031 lb/hp-hr	
DU 12	Generator Engine	82 hp	0.031 lb/hp-hr	
DU 14	Generator Engine	320 hp	4.0 g/kW-hr	Good Combustion Practices
DU 16	Generator Engine	212 hp	0.031 lb/hp-hr	Limited Operation
DU 17	Generator Engine	176 hp	6.9 lb/hp-hr	(500 hours/year each, for non-emergency operation)
DU 18	Generator Engine	212 hp	0.031 lb/hp-hr	
DU 19	Generator Engine	71 hp	7.5 g/kW-hr	
DU 20	Generator Engine	35 hp	0.031 lb/hp-hr	

Table 6-1. Proposed NOx BACT Limits

March 22, 2018 Preliminary BACT Determination

EU ID	Description	Capacity	Proposed BACT Limit	Proposed BACT Control
DU 21	Generator Engine	95 hp	0.031 lb/hp-hr	
DU 22	Generator Engine	35 hp	0.031 lb/hp-hr	
DU 23	Generator Engine	155 hp	0.031 lb/hp-hr	
DU 24	Generator Engine	50 hp	0.031 lb/hp-hr	
DU 25	Generator Engine	18 hp	7.5 g/kW-hr	
DU 26	Generator Engine	68 hp	0.031 lb/hp-hr	
DU 27	Generator Engine	274 hp	4.0 g/kW-hr	
DU 28	Generator Engine	274 hp	4.0 g/kW-hr	
DU 30	Lift Pump Engine	75 hp	0.031 lb/hp-hr	
DU 32	Lift Pump Engine	75 hp	0.031 lb/hp-hr	
DU 33	Lift Pump Engine	75 hp	0.031 lb/hp-hr	
DU 34	Well Pump Engine	220 hp	0.031 lb/hp-hr	
DU 35	Well Pump Engine	55 hp	4.7 g/hp-hr	
DU 36	Well Pump Engine	220 hp	0.031 lb/hp-hr	
DU 29a	Lift Pump Engine	74 hp	4.7 g/kW-hr	Good Combustion Practices
DU 31a	Lift Pump Engine	74 hp	4.7 g/kW-hr	Limited Operation
FWA 26	QSB7-G3 NR3	295 hp	4.0 g/kW-hr	(500 hours/year each, for non-emergency operation)
FWA 27	4024HF285B	67 hp	4.7 g/kW-hr	
FWA 28	CAT C9 GENSET	398 hp	4.0 g/kW-hr	
FWA 29	TM30UCM	47 hp	0.031 lb/hp-hr	
FWA 30	JW64-UF30	275 hp	4.0 g/kW-hr	
FWA 31	DDFP-04AT	235 hp	0.031 lb/hp-hr	
FWA 32	DDFP-04AT	235 hp	0.031 lb/hp-hr	
FWA 33	DDFP-04AT	235 hp	0.031 lb/hp-hr	
FWA 34	DDFP-04AT	235 hp	0.031 lb/hp-hr	
FWA 35	N-855-F	240 hp	0.031 lb/hp-hr	
FWA 36	N-855-F	240 hp	0.031 lb/hp-hr	
FWA 37	JU4H-UF40	94 hp	0.031 lb/hp-hr	
FWA 38	PDFP-06YT	120 hp	0.031 lb/hp-hr	
FWA 39	PDFP-06YT	120 hp	0.031 lb/hp-hr	

EU ID	Description	Capacity	Proposed BACT Limit	Proposed BACT Control
DU 1	Six Coal Fired Boiler 3	230 MMBtu/hr	0.05 gr/dscf	
DU 2	Six Coal Fired Boiler 4	230 MMBtu/hr	0.05 gr/dscf	
DU 3	Six Coal Fired Boiler 5	230 MMBtu/hr	0.05 gr/dscf	Full Steam Baghouse
DU 4	Six Coal Fired Boiler 6	230 MMBtu/hr	0.05 gr/dscf	I'un Steam Dagnouse
DU 5	Six Coal Fired Boiler 7	230 MMBtu/hr	0.05 gr/dscf	
DU 6	Six Coal Fired Boiler 8	230 MMBtu/hr	0.05 gr/dscf	
FWA 8	Backup Diesel-Fired Boiler 1	19 MMBtu/hr	1.1 lb/1000 gal	Good Combustion Practices
FWA 9	Backup Diesel-Fired Boiler 2	19 MMBtu/hr	1.1 lb/1000 gal	Limited Operation (600 hours/year combined)
FWA 10	Backup Diesel-Fired Boiler 3	19 MMBtu/hr	1.1 lb/1000 gal	Combust ULSD
				Good Combustion Practices
N/A	Diesel-Fired Boilers	Varies	1.1 lb/1000 gal	Limited Operation (500 hours/year each, for non-emergency operation)
				Combust ULSD
DU 8	Generator Engine	2,937 hp	0.20 g/kW-hr	40 CFR 60 Subpart IIII
DU 10	Generator Engine	762 hp	0.20 g/kW-hr	Combust ULSD
DU 11	Generator Engine	762 hp	0.20 g/kW-hr	Good Combustion Practices
DU 13	Generator Engine	587 hp	0.20 g/kW-hr	Limited Operation (500 hours/year each, for non-emergency operation)
DU 15	Generator Engine	1,059 hp	0.09 g/hp-hr	Limited Operation (500 hours/year each, for non-emergency operation) Good Combustion Practices Combust ULSD
FWA 11	Caterpillar 3512	1,206 hp	0.024 lb/hp-hr	Limit Operation (600 hours/year combined)
FWA 12	Caterpillar 3512	1,206 hp	0.024 lb/hp-hr	Combust ULSD
FWA 13	Caterpillar 3512	1,206 hp	0.024 lb/hp-hr	Good Combustion Practices

March 22, 2018 Preliminary BACT Determination

EU ID	Description	Capacity	Proposed BACT Limit	Proposed BACT Control
DU 9	Generator Engine	353 hp	7.21 E-4 lb/hp-hr	
DU 12	Generator Engine	82 hp	7.21 E-4 lb/hp-hr	
DU 14	Generator Engine	320 hp	0.2 g/kW-hr	
DU 16	Generator Engine	212 hp	7.21 E-4 lb/hp-hr	
DU 17	Generator Engine	176 hp	0.40 g/hp-hr	
DU 18	Generator Engine	212 hp	7.21 E-4 lb/hp-hr	
DU 19	Generator Engine	71 hp	0.4 g/kW-hr	
DU 20	Generator Engine	35 hp	7.21 E-4 lb/hp-hr	
DU 21	Generator Engine	95 hp	7.21 E-4 lb/hp-hr	
DU 22	Generator Engine	35 hp	7.21 E-4 lb/hp-hr	
DU 23	Generator Engine	155 hp	7.21 E-4 lb/hp-hr	
DU 24	Generator Engine	50 hp	7.21 E-4 lb/hp-hr	
DU 25	Generator Engine	18 hp	0.4 g/kW-hr	
DU 26	Generator Engine	68 hp	7.21 E-4 lb/hp-hr	Limited Operation
DU 27	Generator Engine	274 hp	0.2 g/kW-hr	(500 hours/year each, for non-emergency operation)
DU 28	Generator Engine	274 hp	0.2 g/kW-hr	Good Combustion Practices
DU 30	Lift Pump Engine	75 hp	7.21 E-4 lb/hp-hr	Combust ULSD
DU 32	Lift Pump Engine	75 hp	7.21 E-4 lb/hp-hr	Combust OLSD
DU 33	Lift Pump Engine	75 hp	7.21 E-4 lb/hp-hr	
DU 34	Well Pump Engine	220 hp	7.21 E-4 lb/hp-hr	
DU 35	Well Pump Engine	55 hp	0.3 g/hp-hr	
DU 36	Well Pump Engine	220 hp	7.21 E-4 lb/hp-hr	
DU 29a	Lift Pump Engine	74 hp	0.03 g/kW-hr	
DU 31a	Lift Pump Engine	74 hp	0.03 g/kW-hr	
FWA 26	QSB7-G3 NR3	295 hp	0.02 g/kW-hr	
FWA 27	4024HF285B	67 hp	0.3 g/kW-hr	
FWA 28	CAT C9 GENSET	398 hp	0.2 g/kW-hr	
FWA 29	TM30UCM	47 hp	7.21 E-4 lb/hp-hr	
FWA 30	JW64-UF30	275 hp	0.2 g/kW-hr	
FWA 31	DDFP-04AT	235 hp	7.21 E-4 lb/hp-hr	
FWA 32	DDFP-04AT	235 hp	7.21 E-4 lb/hp-hr	

EU ID	Description	Capacity	Proposed BACT Limit	Proposed BACT Control
FWA 33	DDFP-04AT	235 hp	7.21 E-4 lb/hp-hr	
FWA 34	DDFP-04AT	235 hp	7.21 E-4 lb/hp-hr	Limited Operation
FWA 35	N-855-F	240 hp	7.21 E-4 lb/hp-hr	Limited Operation (500 hours/year each, for non-emergency operation)
FWA 36	N-855-F	240 hp	7.21 E-4 lb/hp-hr	Good Combustion Practices
FWA 37	JU4H-UF40	94 hp	7.21 E-4 lb/hp-hr	Combust ULSD
FWA 38	PDFP-06YT	120 hp	7.21 E-4 lb/hp-hr	Combust ULSD
FWA 39	PDFP-06YT	120 hp	7.21 E-4 lb/hp-hr	

Table 6-3. Proposed PM-2.5 BACT Limits for Material Handling Equipment

EU ID	Description	Proposed BACT Limit	Proposed BACT Control
7a	South Coal Handling Dust Collector	0.0025 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance
7b	South Underbunker Dust Collector	0.02 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance
7c	North Coal Handling Dust Collector	0.02 gr/dscf	Limited Operation – This source serves as backup to EU 7a and operates less than 200 hours each year
52	Emergency Coal Storage Pile and Operations	Varies	Chemical Stabilizers, Wind Fencing, Covered Haul Vehicles, Watering, and Wind Awareness
51a	Fly Ash Dust Collector	0.02 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance
51b	Bottom Ash Dust Collector	0.02 gr/dscf	Enclosed emission points and follow manufacturer recommendations for operations and maintenance

March 22, 2018 Preliminary BACT Determination

Table 6-4. Proposed SO2 BACT Limits

EU ID	Description	Capacity	Proposed BACT Limit	Proposed BACT Control
DU 1	Six Coal Fired Boiler 3	230 MMBtu/hr	0.092 lb/MMBtu	Froposed BACT Control
DU 1 DU 2	Six Coal Fired Boiler 3	230 MMBtu/hr 230 MMBtu/hr	0.092 lb/MMBtu	Dry Sorbent Injection
DU 2 DU 3	Six Coal Fired Boiler 5	230 MMBtu/hr 230 MMBtu/hr	0.092 lb/MMBtu	Limited Operation
DU 3 DU 4	Six Coal Fired Boiler 6	230 MMBtu/III 230 MMBtu/hr	0.092 lb/MMBtu	(300,000 tons/year combined)
DU 4 DU 5	Six Coal Fired Boiler 7	230 MMBtu/III 230 MMBtu/hr	0.092 lb/MMBtu	
DU 5 DU 6	Six Coal Fired Boiler 8	230 MMBtu/hr 230 MMBtu/hr	0.092 lb/MMBtu	Low Sulfur Coal
				Good Combustion Practices
FWA 8	Backup Diesel-Fired Boiler 1	19 MMBtu/hr	15 ppmv S in fuel	
FWA 9	Backup Diesel-Fired Boiler 2	19 MMBtu/hr	15 ppmv S in fuel	Limited Operation (600 hours/year combined)
FWA 10	Backup Diesel-Fired Boiler 3	19 MMBtu/hr	15 ppmv S in fuel	Combust ULSD
N/A	Diesel-Fired Boilers	Varies	15 ppmv S in fuel	Limited Operation (500 hours/year each, for non-emergency operation) Good Combustion Practices Combust ULSD
DU 8	Generator Engine	2,937 hp	15 ppmv S in fuel	Limited Operation
DU 10	Generator Engine	762 hp	15 ppmv S in fuel	(500 hours/year each, for non-emergency operation)
DU 11	Generator Engine	762 hp	15 ppmv S in fuel	Good Combustion Practices
DU 13	Generator Engine	587 hp	15 ppmv S in fuel	
DU 15	Generator Engine	1,059 hp	15 ppmy S in fuel	Combust ULSD
FWA 11	Caterpillar 3512	1,206 hp	15 ppmv S in fuel	Limit Operation (600 hours/year combined)
FWA 12	Caterpillar 3512	1,206 hp	15 ppmv S in fuel	Combust ULSD
FWA 13	Caterpillar 3512	1,206 hp	15 ppmv S in fuel	Good Combustion Practices
DU 9	Generator Engine	353 hp	15 ppmv S in fuel	
DU 12	Generator Engine	82 hp	15 ppmv S in fuel	Limited Operation
DU 14	Generator Engine	320 hp	15 ppmv S in fuel	(500 hours/year each, for non-emergency operation)
DU 16	Generator Engine	212 hp	15 ppmv S in fuel	Good Combustion Practices
DU 17	Generator Engine	176 hp	15 ppmv S in fuel	
DU 18	Generator Engine	212 hp	15 ppmv S in fuel	Combust ULSD
DU 19	Generator Engine	71 hp	15 ppmv S in fuel	

EU ID	Description	Capacity	Proposed BACT Limit	Proposed BACT Control
DU 20	Generator Engine	35 hp	15 ppmv S in fuel	
DU 21	Generator Engine	95 hp	15 ppmv S in fuel	
DU 22	Generator Engine	35 hp	15 ppmv S in fuel	
DU 23	Generator Engine	155 hp	15 ppmv S in fuel	
DU 24	Generator Engine	50 hp	15 ppmv S in fuel	
DU 25	Generator Engine	18 hp	15 ppmv S in fuel	
DU 26	Generator Engine	68 hp	15 ppmv S in fuel	
DU 27	Generator Engine	274 hp	15 ppmv S in fuel	
DU 28	Generator Engine	274 hp	15 ppmv S in fuel	
DU 30	Lift Pump Engine	75 hp	15 ppmv S in fuel	
DU 32	Lift Pump Engine	75 hp	15 ppmv S in fuel	
DU 33	Lift Pump Engine	75 hp	15 ppmv S in fuel	
DU 34	Well Pump Engine	220 hp	15 ppmv S in fuel	
DU 35	Well Pump Engine	55 hp	15 ppmv S in fuel	Limited Operation
DU 36	Well Pump Engine	220 hp	15 ppmv S in fuel	(500 hours/year each, for non-emergency operation)
DU 29a	Lift Pump Engine	74 hp	15 ppmv S in fuel	Good Combustion Practices
DU 31a	Lift Pump Engine	74 hp	15 ppmv S in fuel	
FWA 26	QSB7-G3 NR3	295 hp	15 ppmv S in fuel	Combust ULSD
FWA 27	4024HF285B	67 hp	15 ppmv S in fuel	
FWA 28	CAT C9 GENSET	398 hp	15 ppmv S in fuel	
FWA 29	TM30UCM	47 hp	15 ppmv S in fuel	
FWA 30	JW64-UF30	275 hp	15 ppmv S in fuel	
FWA 31	DDFP-04AT	235 hp	15 ppmv S in fuel	
FWA 32	DDFP-04AT	235 hp	15 ppmv S in fuel	
FWA 33	DDFP-04AT	235 hp	15 ppmv S in fuel	
FWA 34	DDFP-04AT	235 hp	15 ppmv S in fuel	
FWA 35	N-855-F	240 hp	15 ppmv S in fuel	
FWA 36	N-855-F	240 hp	15 ppmv S in fuel	
FWA 37	JU4H-UF40	94 hp	15 ppmv S in fuel	
FWA 38	PDFP-06YT	120 hp	15 ppmv S in fuel	
FWA 39	PDFP-06YT	120 hp	15 ppmv S in fuel	