# ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION Air Permits Program

# PRELIMINARY BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION for Golden Valley Electric Association Zehnder Facility

Prepared by: Aaron Simpson Supervisor: James R. Plosay Preliminary Date: March 22, 2018

http://adecteams.dec.alaska.gov/sites/AQ/crossprogramprojects/SIPBACT/Shared Documents/DRAFT\_BACTdeterminations/Zehnder Facility/DRAFT Preliminary BACT Determination for Zehnder.docx

# **Table of Contents**

| 1. | INTRODUCTION                                                                                                                                                                                                       | 1              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2. | BACT EVALUATION                                                                                                                                                                                                    | 1              |
| 3. | BACT DETERMINATION FOR NOX                                                                                                                                                                                         | 3              |
|    | <ul> <li>3.1 NOx BACT for Fuel Oil-Fired Simple Cycle Gas Turbines</li> <li>3.2 NOx BACT for Large Diesel-Fired Engines</li> <li>3.3 NOx BACT for Diesel-Fired Boilers</li> </ul>                                  | 7              |
| 4. | BACT DETERMINATION FOR PM-2.5                                                                                                                                                                                      | 13             |
|    | <ul> <li>4.1 PM-2.5 BACT for Fuel Oil-Fired Simple Cycle Gas Turbines</li> <li>4.2 PM-2.5 BACT for Large Diesel Fired Engines</li> <li>4.3 PM-2.5 BACT for Diesel Fired Boilers</li> </ul>                         | 15             |
| 5. | BACT DETERMINATION FOR SO <sub>2</sub>                                                                                                                                                                             | 20             |
|    | <ul> <li>5.1 SO<sub>2</sub> BACT for Fuel Oil-Fired Simple Cycle Gas Turbines</li> <li>5.2 SO<sub>2</sub> BACT for Large Diesel-Fired Engines</li> <li>5.3 SO<sub>2</sub> BACT for Diesel Fired Boilers</li> </ul> | 20<br>23<br>26 |
| 6. | BACT DETERMINATION SUMMARY                                                                                                                                                                                         | 28             |

## Abbreviations/Acronyms

|                        | Abbreviations/Acronyms                                                                                            |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
| AAC                    | Alaska Administrative Code                                                                                        |
| AAAQS                  | Alaska Ambient Air Quality Standards                                                                              |
|                        | Alaska Department of Environmental Conservation                                                                   |
|                        | Best Available Control Technology                                                                                 |
|                        | Circulating Fluidized Bed                                                                                         |
|                        | Code of Federal Regulations                                                                                       |
|                        | Mechanical Separators                                                                                             |
| DFP                    | Diesel Particulate Filter                                                                                         |
|                        | Dry Low NOx                                                                                                       |
|                        | Diesel Oxidation Catalyst                                                                                         |
|                        | Environmental Protection Agency                                                                                   |
|                        | Electrostatic Precipitator                                                                                        |
|                        | Emission Unit                                                                                                     |
|                        | Fuel Injection Timing Retard                                                                                      |
|                        | Good Combustion Practices                                                                                         |
|                        | Hazardous Air Pollutant                                                                                           |
|                        | Ignition Timing Retard                                                                                            |
|                        | Low Excess Air                                                                                                    |
|                        | Low NOx Burners                                                                                                   |
|                        |                                                                                                                   |
|                        | Monitoring, Recording, and Reporting                                                                              |
|                        | National Emission Standards for Hazardous Air Pollutants                                                          |
|                        | Non-Selective Catalytic Reduction                                                                                 |
|                        | New Source Performance Standards                                                                                  |
|                        | Owner Requested Limit                                                                                             |
|                        | Prevention of Significant Deterioration                                                                           |
|                        | Potential to Emit                                                                                                 |
|                        | Reciprocating Internal Combustion Engine, Internal Combustion Engine                                              |
|                        | Selective Catalytic Reduction                                                                                     |
| SIP                    | Alaska State Implementation Plan                                                                                  |
|                        | Selective Non-Catalytic Reduction                                                                                 |
|                        | Ultra Low Sulfur Diesel                                                                                           |
| s and Measures         |                                                                                                                   |
|                        | gallons per hour                                                                                                  |
|                        | grams per kilowatt hour                                                                                           |
|                        | grams per horsepower hour                                                                                         |
|                        | hours per day                                                                                                     |
|                        | hours per year                                                                                                    |
| hp                     |                                                                                                                   |
|                        | pounds per hour                                                                                                   |
|                        | pounds per million British thermal units                                                                          |
| lb/1000 gal            | pounds per 1,000 gallons                                                                                          |
| kW                     | kilowatts                                                                                                         |
| MMBtu/hr               | million British thermal units per hour                                                                            |
| MMscf/hr               | million standard cubic feet per hour                                                                              |
|                        | parts per million by volume                                                                                       |
| tpy                    |                                                                                                                   |
| utants                 | 1 5                                                                                                               |
|                        | Carbon Monoxide                                                                                                   |
|                        | Hazardous Air Pollutant                                                                                           |
| НАР                    |                                                                                                                   |
|                        | Oxides of Nitrogen                                                                                                |
| NOx                    | Oxides of Nitrogen<br>Sulfur Dioxide                                                                              |
| NOx<br>SO <sub>2</sub> | Oxides of Nitrogen<br>Sulfur Dioxide<br>Particulate Matter with an aerodynamic diameter not exceeding 2.5 microns |

## 1. INTRODUCTION

The Zehnder Facility (Zehnder) is an electric generating facility that combusts distillate fuel in combustion turbines to provide power to the Golden Valley Electric Association (GVEA) grid. The power plant contains two fuel oil-fired simple cycle gas combustion turbines and two diesel-fired generators (electro-motive diesels) used for emergency power and to serve as black start engines for the GVEA generation system. The primary fuel is stored in two 50,000 gallon aboveground storage tanks. Turbine startup fuel and electro-motive diesels primary fuel is stored in a 12,000 gallon above ground storage tank.

In a letter dated April 24, 2015, the Alaska Department of Environmental Conservation (Department) requested the stationary sources expected to be major stationary sources in the particulate matter with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers (PM-2.5) serious nonattainment area perform a voluntary Best Available Control Technology (BACT) review in support of the state agency's required SIP submittal once the nonattainment area is re-classified as a Serious PM-2.5 nonattainment area. The designation of the area as "Serious" with regard to nonattainment of the 2006 24-hour PM-2.5 ambient air quality standards was published in Federal Register Vol. 82, No. 89, May 10, 2017, pages 21703-21706, with an effective date of June 9, 2017.<sup>1</sup>

This report addresses the significant emissions units (EUs) listed in the Zehnder facitily's operatingpermit AQ0109TVP03. This report provides the Department's preliminary review of the BACT analysis for PM-2.5 and BACT analyses provided for oxides of nitrogen (NOx) and sulfur dioxide (SO<sub>2</sub>) emissions, which are precursor pollutants that can form PM-2.5 in the atmosphere post combustion.

The following sections review GVEA's BACT analysis for the Zehnder Facility for technical accuracy and adherence to accepted engineering cost estimation practices.

## 2. BACT EVALUATION

A BACT analysis is an evaluation of all available control options for equipment emitting the triggered pollutants and a process for selecting the best option based on feasibility, economics, energy, and other impacts. 40 CFR 52.21(b)(12) defines BACT as a site-specific determination on a case-by-case basis. The Department's goal is to identify BACT for the permanent emission units (EUs) at the GVEA Zehnder facility that emit NOx, PM-2.5, and SO<sub>2</sub>, establish emission limits which represent BACT, and assess the level of monitoring, recordkeeping, and reporting (MR&R) necessary to ensure GVEA applies BACT for the EUs. The Department based the BACT review on the five-step top-down approach set forth in Federal Register Volume 61, Number 142, July 23, 1996 (Environmental Protection Agency). Table A presents the EUs subject to BACT review.

<sup>&</sup>lt;sup>1</sup> Federal Register, Vol. 82, No. 89, Wednesday May 10, 2017 (<u>https://dec.alaska.gov/air/anpms/comm/docs/2017-09391-CFR.pdf</u>)

| EU ID | Description of EU                                    | Rating/Size               | Installation or<br>Construction<br>Date |
|-------|------------------------------------------------------|---------------------------|-----------------------------------------|
| 1     | Fuel Oil-Fired Regenerative Simple Cycle Gas Turbine | 268 MMBtu/hr<br>(18.4 MW) | 1971                                    |
| 2     | Fuel Oil-Fired Regenerative Simple Cycle Gas Turbine | 268 MMBtu/hr<br>(18.4 MW) | 1972                                    |
| 3     | Diesel-Fired Emergency Generator Engine              | 28 MMBtu/hr<br>(2.75 MW)  | 1970                                    |
| 4     | Diesel-Fired Emergency Generator Engine              | 28 MMBtu/hr<br>(2.75 MW)  | 1970                                    |
| 10    | Diesel-Fired Boiler                                  | 1.7 MMBtu/hr              | 2012                                    |
| 11    | Diesel-Fired Boiler                                  | 1.7 MMBtu/hr              | 2012                                    |

## Table A: Emission Units Subject to BACT Review

## **Five-Step BACT Determinations**

The following sections explain the steps used to determine BACT for NOx, PM-2.5, and  $SO_2$  for the applicable equipment.

## Step 1 Identify All Potentially Available Control Technologies

The Department identifies all available control options for the EU and the pollutant under consideration. This includes technologies used throughout the world or emission reductions through the application of available control techniques, changes in process design, and/or operational limitations. To assist in identifying available controls, the Department reviews available controls listed on the Reasonably Available Control Technology (RACT), BACT, and Lowest Achievable Emission Rate (LAER) Clearinghouse (RBLC). The RBLC is an EPA database where permitting agencies nationwide post imposed BACT for PSD sources. It is usually the first stop for BACT research. In addition to the RBLC search, the Department used several search engines to look for emerging and tried technologies used to control NOx, PM-2.5, and SO<sub>2</sub> emissions from equipment similar to those listed in Table A.

## Step 2 Eliminate Technically Infeasible Control Technologies:

The Department evaluates the technical feasibility of each control technology based on source specific factors in relation to each EU subject to BACT. Based on sound documentation and demonstration, the Department eliminates control technologies deemed technically infeasible due to physical, chemical, and engineering difficulties.

## Step 3 Rank the Remaining Control Technologies by Control Effectiveness

The Department ranks the remaining control technologies in order of control effectiveness with the most effective at the top.

## Step 4 Evaluate the Most Effective Controls and Document the Results as Necessary

The Department reviews the detailed information in the BACT analysis about the control efficiency, emission rate, emission reduction, cost, environmental, and energy impacts for each option to decide the final level of control. The analysis must present an objective evaluation of both the beneficial and adverse energy, environmental, and economic impacts. A proposal to use the most effective option does not need to provide the detailed information for the less effective options. If cost is not an issue, a cost analysis is not required. Cost effectiveness for a control

option is defined as the total net annualized cost of control divided by the tons of pollutant removed per year. Annualized cost includes annualized equipment purchase, erection, electrical, piping, insulation, painting, site preparation, buildings, supervision, transportation, operation, maintenance, replacement parts, overhead, raw materials, utilities, engineering, start-up costs, financing costs, and other contingencies related to the control option. Sections 3, 4, and 5 present the Department's Preliminary BACT Determinations for NOx, PM-2.5, and SO<sub>2</sub>.

## Step 5 Select BACT

The Department selects the most effective control option not eliminated in Step 4 as BACT for the pollutant and EU under review and lists the final BACT requirements determined for each EU in this step. A project may achieve emission reductions through the application of available technologies, changes in process design, and/or operational limitations. The Department reviewed GVEA's BACT analysis and made preliminary BACT determinations for NOx, PM-2.5, and SO<sub>2</sub> for the GVEA Zehnder Facility. These preliminary BACT determinations are based on the information submitted by GVEA in their analysis, information from vendors, suppliers, sub-contractors, RBLC, and an exhaustive internet search.

## **3. BACT DETERMINATION FOR NOX**

The NOx controls proposed in this section are not planned to be implemented. The optional preliminary precursor demonstration (as allowed under 40 C.F.R. 51.1006) for the precursor gas NOx for point sources illustrates that NOx controls are not needed. DEC is planning to submit with the Serious SIP a final precursor demonstration as justification not to require NOx controls. Please see the preliminary precursor demonstration for NOx posted at <a href="http://dec.alaska.gov/air/anpms/communities/fbks-pm2-5-serious-sip-development">http://dec.alaska.gov/air/anpms/communities/fbks-pm2-5-serious-sip-development</a>. The PM2.5 NAAQS Final SIP Requirements Rule states if the state determines through a precursor demonstration that controls for a precursor gas are not needed for attaining the standard, then the controls identified as BACT/BACM or Most Stringent Measure for the precursor gas are not required to be implemented.<sup>2</sup> Final approval of the precursor demonstration is at the time of the Serious SIP approval.

The GVEA Zehnder Facility has two existing 268 MMBtu/hr General Electric Frame 5 MS 5001-M simple cycle combustion gas turbines, two 28 MMBtu/hr General Motors Electro-Motive Diesel Generators, and two 1.7 MMBtu/hr Weil-Mclain diesel-fired boilers subject to BACT. The Department based its NOx assessment on BACT determinations found in the RBLC, internet research, and BACT analyses submitted to the Department by Golden Valley Electric Association (GVEA) for the North Pole Power Plant and Zehnder Facility, Aurora Energy, LLC (Aurora) for the Chena Power Plant, U.S. Army Corps of Engineers (US Army) for Fort Wainwright, and the University of Alaska Fairbanks (UAF) for the Combined Heat and Power Plant.

## 3.1 NOx BACT for the Fuel Oil-Fired Simple Cycle Gas Turbines

Possible NOx emission control technologies for the fuel oil-fired simple cycle turbines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years

<sup>&</sup>lt;sup>2</sup> <u>https://www.gpo.gov/fdsys/pkg/FR-2016-08-24/pdf/2016-18768.pdf</u>

under the process code 15.190, Liquid Fuel-Fired Simple Cycle Gas Turbines (> 25 MW). The search results for simple cycle gas turbines are summarized in Table 3-1.

| Control Technology            | Number of Determinations | Emission Limits (ppmv) |
|-------------------------------|--------------------------|------------------------|
| Selective Catalytic Reduction | 2                        | 7                      |
| Low NOx Burners               | 12                       | 5 – 15                 |
| Good Combustion Practices     | 3                        | 15                     |

Table 3-1. RBLC Summary of NOx Controls for Fuel Oil-Fired Simple Cycle Gas Turbines

## **RBLC Review**

A review of similar units in the RBLC indicates selective catalytic reduction, low NOx burners, and good combustion practices are the principle NOx control technologies installed on fuel oil-fired simple cycle gas turbines. The lowest NOx emission rate listed in the RLBC is 5 parts per million by volume (ppmv).

#### Step 1 - Identification of NOx Control Technology for the Simple Cycle Gas Turbines

From research, the Department identified the following technologies as available for control of NOx emissions from fuel oil-fired simple cycle gas turbines rated at 25 MW or more:

(a) Selective Catalytic Reduction (SCR)

SCR is a post-combustion gas treatment technique for reducing nitric oxide (NO) and nitrogen dioxide (NO<sub>2</sub>) in the turbine exhaust stream to molecular nitrogen (N<sub>2</sub>), water, and oxygen (O<sub>2</sub>). In the SCR process, aqueous or anhydrous ammonia (NH<sub>3</sub>) is injected into the flue gas upstream of a catalyst bed. The catalyst lowers the activation energy of the NOx decomposition reaction. NOx and NH<sub>3</sub> combine at the catalyst surface forming an ammonium salt intermediate, which subsequently decomposes to produce elemental N<sub>2</sub> and water. Depending on the overall NH<sub>3</sub>-to-NOx ratio, removal efficiencies are generally 80 to 90 percent. Challenges associated with using SCR on fuel oil-fired simple cycle gas turbines include a narrow window of acceptable inlet and exhaust temperatures (500°F to 800°F), emission of NH<sub>3</sub> into the atmosphere (NH<sub>3</sub> slip) caused by non-stoichiometric reduction reaction, and disposal of depleted catalysts. The Department considers SCR a technically feasible control technology for the fuel oil-fired simple cycle gas combustion turbines.

(b) Water Injection

Water/steam injection involves the introduction of water or steam into the combustion zone. The injected fluid provides a heat sink which absorbs some of the heat of reaction, causing a lower flame temperature. The lower flame temperature results in lower thermal NOx formation. Both steam and water injections are capable of obtaining the same level of control. The process requires approximately 0.8 to 1.0 pound of water or steam per pound of fuel burned. The main technical consideration is the required purity of the water or steam, which is required to protect the equipment from dissolved solids. Obtaining water or steam of sufficient purity requires the installation of rigorous water treatment and deionization systems. Water/steam injection is a proven technology for NOx emissions reduction from turbines. However, the arctic environment presents significant challenges to water/steam injection due to cost of water treatment, freezing potential due to extreme cold ambient temperatures, and increased maintenance problems due to

accelerated wear in the hot sections of the turbines. Moreover, the vendor of the turbines does not recommend using water/steam injection to control  $NO_x$  emissions from the turbines because of the extra maintenance problems. The Department considers water/steam injection a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

(c) Dry Low NOx (DLN)

Two-stage lean/lean combustors are essentially fuel-staged, premixed combustors in which each stage burns lean. The two-stage lean/lean combustor allows the turbine to operate with an extremely lean mixture while ensuring a stable flame. A small stoichiometric pilot flame ignites the premixed gas and provides flame stability. The NOx emissions associated with the high temperature pilot flame are insignificant. Low NOx emission levels are achieved by this combustor design through cooler flame temperatures associated with lean combustion and avoidance of localized "hot spots" by premixing the fuel and air. DLN is designed for natural gas-fired or dual-fuel fired units and is not effective in controlling NOx emissions from fuel oil-fired units. The Department does not consider DLN a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

(d) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

(e) Good Combustion Practices (GCPs)

GCPs typically include the following elements:

- 1. Sufficient residence time to complete combustion;
- 2. Providing and maintaining proper air/fuel ratio;
- 3. High temperatures and low oxygen levels in the primary combustion zone;
- 4. High enough overall excess oxygen levels to complete combustion and maximize thermal efficiency.

Combustion efficiency is dependent on the gas residence time, the combustion temperature, and the amount of mixing in the combustion zone. GCPs are accomplished primarily through combustion chamber design as it relates to residence time, combustion temperature, air-to-fuel mixing, and excess oxygen levels. The Department considers GCPs a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

**Step 2 - Elimination of Technically Infeasible NOx Control Technologies for Gas Turbines** As explained in Step 1 of Section 3.1, the Department does not consider dry low NOx as technically feasible technology to control  $NO_x$  emissions from the fuel oil-fired simple cycle gas turbines.

## Step 3 - Rank the Remaining NOx Control Technologies for the Simple Cycle Gas Turbines

The following control technologies have been identified and ranked for control of NOx emissions from the fuel oil-fired simple cycle gas turbines:

| (a + b) | Selective Catalytic Reduction and Water Injection | (95% Control            |
|---------|---------------------------------------------------|-------------------------|
| (a)     | Selective Catalytic Reduction                     | (90% Control)           |
| (b)     | Water Injection                                   | (70% Control)           |
| (g)     | Good Combuston Practices                          | (Less than 40% Control) |
| (d)     | Limited Operation                                 | (0% Control)            |
|         |                                                   |                         |

Control technologies already in practice at the stationary source or included in the design of the EU are considered 0% control for the purpose of the SIP BACT for existing stationary sources.

## **Step 4 - Evaluate the Most Effective Controls**

## **GVEA BACT Proposal**

GVEA provided an economic analysis of the control technologies available for the fuel oil-fired simple cycle turbines to demonstrate that the use of water injection with SCR, SCR, or water injection in conjunction with limited operation is not economically feasible on these units. A summary of the analyses for EUs 1 and 2 is shown in Table 3-2:

| Table 3-2. GVEA | Economic Analysis for | r Technica | ally Feasible | <b>NOx Controls</b> | per Turbine |
|-----------------|-----------------------|------------|---------------|---------------------|-------------|
|                 |                       |            |               |                     | <b>1</b>    |

| Control Alternative                                                              | Potential to<br>Emit<br>(tpy) | Emission<br>Reduction<br>(tpy) | Total Capital<br>Investment<br>(\$) | Total Annualized<br>Costs<br>(\$/year) | Cost<br>Effectiveness<br>(\$/ton) |
|----------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|
| SCR and Water Injection                                                          | 1,033                         | 929.7                          | \$18,729,680                        | \$4,915,081                            | \$5,287                           |
| SCR                                                                              | 1,033                         | 878.1                          | \$12,931,360                        | \$2,837,279                            | \$3,231                           |
| Water Injection                                                                  | 1,033                         | 754.1                          | \$3,710,000                         | \$1,673,057                            | \$2,219                           |
| Capital Recovery Factor = 0.1424 (7% interest rate for a 10 year equipment life) |                               |                                |                                     |                                        |                                   |

GVEA contends that the economic analysis indicates the level of NOx reduction does not justify the use of SCR, Water Injection, or SCR and Water Injection for the fuel oil-fired simple cycle gas turbines based on the excessive cost per ton of NOx removed per year.

GVEA proposes the following as BACT for NOx emissions from the fuel oil-fired simple cycle gas turbines:

- (a) NOx emissions from the operation of the fuel oil-fired simple cycle gas turbines will be controlled with good combustion practices; and
- (b) NOx emissions from the fuel oil-fired simple cycle gas turbines will not exceed 0.88 lb/MMBtu over a 4-hour averaging period.

**Department Evaluation of BACT for NOx Emissions from the Simple Cycle Gas Turbines** The Department revised the cost analyses provided by GVEA for the installation of SCR and Water Injection using the unrestricted potential to emit from the fuel oil-fired simple cycle turbines, a baseline emission rate of 0.88 lb NOx/MMBtu, a NOx removal efficiency of 95% for SCR and Water Injection, and a 20 year equipment life. A summary of the analysis is shown below:

| Control Alternative                                                              | Potential to<br>Emit<br>(tpy) | Emission<br>Reduction<br>(tpy) | Total Capital<br>Investment<br>(\$) | Total<br>Annualized<br>Costs<br>(\$/year) | Cost<br>Effectiveness<br>(\$/ton) |
|----------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------------|-------------------------------------------|-----------------------------------|
| SCR and Water Injection                                                          | 1,033                         | 981.4                          | \$18,729,680                        | \$4,016,346                               | \$4,093                           |
| Capital Recovery Factor = 0.0944 (7% interest rate for a 20 year equipment life) |                               |                                |                                     |                                           |                                   |

## Table 3-3. Department Economic Analysis for Technically Feasible NOx Controls per Turbine

The Department's preliminary economic analysis indicates the level of NOx reduction justifies the installation of SCR and water injection for the fuel oil-fired simple cycle gas turbines located in the Serious PM-2.5 nonattainment area.

## **Step 5 - Preliminary Selection of NOx BACT for the Simple Cycle Gas Turbines**

The Department's preliminary finding is that the BACT for NOx emissions from the fuel oilfired simple cycle gas turbines is as follows:

- (a) NOx emissions from EUs 1 & 2 shall be controlled by operating and maintaining selective catalytic reduction and water injection at all times the units are in operation;
- (b) NOx emissions from EUs 1 & 2 shall not exceed 0.044 lb/MMBtu averaged over a 3-hour period; and
- (c) Initial compliance with the proposed NOx emission limit will be demonstrated by conducting a performance test to obtain an emission rate.

Table 3-4 lists the proposed NOx BACT determination for this facility along with those for other fuel oil-fired simple cycle turbines in the Serious PM-2.5 nonattainment area.

Table 3-4. Comparison of NOx BACT for Simple Cycle Gas Turbines at Nearby Power Plants

| Facility   | <b>Process Description</b>                      | Capacity       | Limitation     | Control Method                                   |
|------------|-------------------------------------------------|----------------|----------------|--------------------------------------------------|
| North Pole | Two Fuel Oil-Fired Simple<br>Cycle Gas Turbines | 1,344 MMBtu/hr | 0.044 lb/MMBtu | Selective Catalytic Reduction<br>Water Injection |
| Zehnder    | Two Fuel Oil-Fired Simple<br>Cycle Gas Turbines | 536 MMBtu/hr   | 0.044 lb/MMBtu | Selective Catalytic Reduction<br>Water Injection |

## 3.2 NOx BACT for the Large Diesel-Fired Engines

Possible NOx emission control technologies for large engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process codes 17.100 to 17.190, Large Internal Combustion Engines (>500 hp). The search results for large diesel-fired engines are summarized in Table 3-5.

Table 3-5. RBLC Summary of NOx Controls for Large Diesel-Fired Engines

| Control Technology            | Number of Determinations | Emission Limits (g/hp-hr) |
|-------------------------------|--------------------------|---------------------------|
| Selective Catalytic Reduction | 3                        | 0.5 - 0.7                 |
| Other Add-On Control          | 1                        | 1.0                       |
| Federal Emission Standards    | 13                       | 3.0 - 6.9                 |
| Good Combustion Practices     | 31                       | 3.0 - 13.5                |
| No Control Specified          | 60                       | 2.8 - 14.1                |

## **RBLC Review**

A review of similar units in the RBLC indicates selective catalytic reduction, good combustion practices, and compliance with federal emission standards are the principle NOx control technologies installed on large diesel-fired engines. The lowest NOx emission rate listed in the RBLC is 0.5 g/hp-hr.

## Step 1 - Identification of NOx Control Technology for the Large Diesel-Fired Engines

From research, the Department identified the following technologies as available for control of NOx emissions from diesel-fired engines rated at 500 hp or greater:

(a) Selective Catalytic Reduction

The theory of SCR was discussed in detail in the NOx BACT for the turbines and will not be repeated here. The Department considers SCR a technically feasible control technology for the large diesel-fired engines.

(b) Turbocharger and Aftercooler

Turbocharger technology involves the process of compressing intake air in a turbocharger upstream of the air/fuel injection. This process boosts the power output of the engine. The air compression increases the temperature of the intake air so an aftercooler is used to reduce the intake air temperature. Reducing the intake air temperature helps lower the peak flame temperature which reduces NOx formation in the combustion chamber. EU 3 and 4 are currently operating with a turbocharger and aftercooler. The Department considers turbocharger and aftercooler a technically feasible control technology for the large diesel-fired engines.

(c) Fuel Injection Timing Retard (FITR)

FITR reduces NOx emissions by the delay of the fuel injection in the engine from the time the compression chamber is at minimum volume to a time the compression chamber is expanding. Timing adjustments are relatively straightforward. The larger volume in the compression chamber produces a lower peak flame temperature. With the use of FITR the engine becomes less fuel efficient, particular matter emissions increase, and there is a limit with respect to the degree the timing may be retarded because an excessive timing delay can cause the engine to misfire. The timing retard is generally limited to no more than three degrees. Diesel engines may also produce more black smoke due to a decrease in exhaust temperature and incomplete combustion. FITR can achieve up to 50 percent NOx reduction. Due to the increase in particulate matter emissions resulting from FITR, this technology will not be carried forward.

(d) Ignition Timing Retard (ITR)

ITR lowers NOx emissions by moving the ignition event to later in the power stroke, after the piston has begun to move downward. Because the combustion chamber volume is not at a minimum, the peak flame temperature is not as high, which lowers combustion temperature and produces less thermal NOx. Use of ITR can cause an increase in fuel usage, an increase PM emissions, and engine misfiring. ITR can achieve between 20 to 30 percent NOx reduction. Due to the increase in particulate matter emissions resulting from ITR, this technology will not be carried forward.

## (e) Federal Emission Standards

RBLC NOx determinations for federal emission standards require the engines meet the requirements of 40 C.F.R. 60 NSPS Subpart IIII, 40 C.F.R 63 Subpart ZZZZ, non-road engines (NREs), or EPA tier certifications. NSPS Subpart IIII applies to stationary compression ignition internal combustion engines that are manufactured or reconstructed after July 11, 2005. The Department considers meeting the technology based New Source Performance Standards (NSPS) of Subpart IIII as a technically feasible control technology for the large diesel-fired engines.

(f) Limited Operation

Limiting the operation of emissions units reduces the potential to emit of those units. The Department considers limited operation a technically feasible control technology for the large diesel-fired engines.

(g) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. Proper management of the combustion process will result in a reduction of NOx emissions. The Department considers GCPs a technically feasible control technology for the large diesel-fired engine.

**Step 2 - Eliminate Technically Infeasible NOx Control Technologies for the Large Engines** As explained in Step 1 of Section 3.2, the Department does not consider fuel injection timing retard and ignition timing retard as technically feasible technologies to control NOx emissions from the large diesel-fired engines.

**Step 3 - Rank the Remaining NOx Control Technologies for the Large Diesel-Fired Engines** The following control technologies have been identified and ranked by efficiency for the control of NOx emissions from the large diesel-fired engines.

- (f) Limited Operation (94% Control)
- (a) Selective Catalytic Reduction (90% Control)
- (g) Good Combustion Practices (Less than 40% Control)
- (e) Federal Emission Standards (Baseline)
- (b) Turbocharger and Aftercooler (0% Control)

Control technologies already in practice at the stationary source or included in the design of the EU are considered 0% control for the purpose of the SIP BACT for existing stationary sources.

## **Step 4 - Evaluate the Most Effective Controls**

## **GVEA BACT Proposal**

GVEA proposes the following as BACT for NOx emissions from the large diesel-fired engines:

- (a) NOx emissions from the operation of the diesel-fired engines shall be controlled with turbocharger and aftercooler;
- (b) NOx emissions from the operation of the diesel-fired engines shall not exceed 0.024 lb/hp-hr over a 4-hour averaging period; and
- (c) Limited Operation.

#### Department Evaluation of BACT for NOx Emissions from the Large Diesel-Fired Engines

The Department reviewed GVEA's proposal and finds that NOx emissions from the large dieselfired engines can additionally be controlled by good combustion practices.

#### Step 5 - Preliminary Selection of NOx BACT for the Large Diesel-Fired Engines

The Department's preliminary finding is that the BACT for NOx emissions from the large dieselfired engines is as follows:

- (a) NOx emissions from the operation of the diesel-fired engines will be controlled with turbocharger and aftercooler;
- (b) Limit non-emergency operation of EUs 3 and 4 to no more than 500 hours per year each for maintenance checks and readiness testing;
- (c) NOx emissions from EU 7 shall not exceed 0.024 lb/hp-hr over a 3-hour averaging period; and
- (d) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation.

Table 3-6 lists the proposed BACT determination for this facility along with those for other diesel-fired engines rated at more than 500 hp located in the Serious PM-2.5 nonattainment area.

| Facility        | <b>Process Description</b>      | Capacity  | Limitation           | Control Method                |
|-----------------|---------------------------------|-----------|----------------------|-------------------------------|
|                 |                                 |           |                      | Limited Operation             |
| Fort Wainwright | 8 Large Diesel-Fired<br>Engines | > 500 hp  | 4.77 – 10.88 g/hp-hr | Good Combustion Practices     |
|                 | Eliginos                        |           |                      | Federal Emission Standards    |
|                 |                                 |           |                      | Selective Catalytic Reduction |
| UAF             | Large Diesel-Fired Engine       | 13,266 hp | 0.0020 g/hp-hr       | Turbocharger and Aftercooler  |
| UAF             | Large Dieser-Filed Englie       |           |                      | Good Combustion Practices     |
|                 |                                 |           |                      | Limited Operation             |
|                 |                                 |           |                      | Turbocharger and Aftercooler  |
| GVEA North Pole | Large Diesel-Fired Engine       | 600 hp    | 10.88 g/hp-hr        | Good Combustion Practices     |
|                 |                                 |           |                      | Limited Operation             |
|                 |                                 |           |                      | Turbocharger and Aftercooler  |
| GVEA<br>Zahndar | 2 Large Diesel-Fired            | 11,000 hp | 3.69 g/hp-hr         | Good Combustion Practices     |
| Zehnder         | Engines                         | (each)    |                      | Limited Operation             |

Table 3-6. Comparision of NOx BACT for Large Diesel-Fired Engines at Nearby Power Plants

## **3.3** NOx BACT for the Diesel-Fired Boilers

Possible NOx emission control technologies for diesel-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 13.220, Commercial/Institutional Size Boilers (<100 MMBtu/hr). The search results for diesel-fired engines are summarized in Table 3-7.

| Control Technology        | Number of Determinations | Emission Limits (g/hp-hr) |
|---------------------------|--------------------------|---------------------------|
| Low-NOx Burner            | 8                        | 0.023 - 0.14              |
| Good Combustion Practices | 1                        | 0.01                      |
| No Control Specified      | 2                        | 0.070 - 0.12              |

#### Table 3-7. RBLC Summary of NOx Control for Diesel-Fired Boilers

#### **RBLC Review**

A review of similar units in the RBLC indicates low-NOx burners and good combustion practices are the principle NOx control technologies installed on diesel-fired boilers. The lowest NOx emission rate listed in the RBLC is 0.01 lb/MMBtu.

#### Step 1 - Identification of NOx Control Technology for the Diesel-Fired Boilers

From research, the Department identified the following technologies as available for control of NOx emissions from diesel fired boilers rated at less than 100 MMBtu/hr:

(a) Low NOx Burners

Using LNBs can reduce formation of NOx through careful control of the fuel-air mixture during combustion. Control techniques used in LNBs includes staged air, and staged fuel, as well as other methods that effectively lower the flame temperature. Experience suggests that significant reduction in NOx emissions can be realized using LNBs. The U.S. EPA reports that LNBs have achieved reduction up to 80%, but actual reduction depends on the type of fuel and varies considerably from one installation to another. Typical reductions range from 40% - 60% but under certain conditions, higher reductions are possible. Air staging or two-stage combustion, is generally described as the introduction of overfire air into the boiler or furnace. Overfire air is the injection of air above the main combustion zone. As indicated by EPA's AP-42, LNBs are applicable to tangential and wall-fired boilers of various sizes but are not applicable to other boiler types such as cyclone furnaces or stokers. The Department considers LNB a technically feasible control technology for the diesel-fired boilers.

(b) Flue Gas Recirculation (FGR)

Flue gas recirculation involves extracting a portion of the flue gas from the economizer section or air heater outlet and readmitting it to the furnace through the furnace hopper, the burner windbox, or both. This method reduces the concentration of oxygen in the combustion zone and may reduce NOx by as much as 40 to 50 percent in some boilers. Chapter 1.3-7 from AP-42 indicates that FGR can require extensive modifications to the burner and windbox and can result in possible flame instability at high FGR rates. The Department does not consider FGR a technically feasible control technology for the diesel-fired boilers.

(c) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. The Department considers GCPs a technically feasible control technology for the mid-sized diesel fired boilers.

**Step 2 - Eliminate Technically Infeasible NOx Control Technologies for the Diesel-Fired Boilers** 

As explained in Step 1 of Section 3.3, the Department does not consider flue gas recirculation as technically feasible technologies for the diesel-fired boilers.

## Step 3 - Rank the Remaining NOx Control Technologies for the Diesel-Fired Boilers

The following control technologies have been identified and ranked by efficiency for the control of NOx emissions from the diesel-fired boilers:

| (a) | Low NOx Burners           | (40% - 60% Control)     |
|-----|---------------------------|-------------------------|
| (c) | Good Combustion Practices | (Less than 40% Control) |

## **Step 4 - Evaluate the Most Effective Controls**

## **GVEA BACT Proposal**

GVEA provided an economic analysis for the installation of LNB per diesel-fired boiler. A summary of the analysis is shown below:

| Control<br>Alternative | Potential to Emit<br>(tpy)                                                       | Emission<br>Reduction<br>(tpy) | Total Capital<br>Investment<br>(\$) | Total Annualized<br>Costs (\$/year) | Cost<br>Effectiveness<br>(\$/ton) |  |
|------------------------|----------------------------------------------------------------------------------|--------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|--|
| LNB                    | 1.1                                                                              | 0.37                           | \$21,820                            | \$3,107                             | \$8,396                           |  |
| Capital Recove         | Capital Recovery Factor = 0.1424 (7% interest rate for a 10 year equipment life) |                                |                                     |                                     |                                   |  |

GVEA contends that the economic analysis indicates the level of NOx reduction does not justify installing LNBs on the diesel-fired boilers based on the excessive cost per ton of NOx removal per year.

GVEA proposes the following as BACT for NOx emissions from the diesel-fired boilers:

- (a) NOx emissions from the operation of the diesel fired boilers shall be controlled by good combustion practices; and
- (b) NOx emissions from EU 10 and 11 shall not exceed 20 lb/1000 gallons of diesel fuel over a 4-hour averaging period.

## **Department Evaluation of BACT for NOx Emissions from the Diesel-Fired Boilers**

The Department reviewed GVEA's proposal and finds that the two diesel-fired boilers have a combined potential to emit (PTE) of less than three tons per year (tpy) for NOx based on continuous operation of 8,760 hours per year. At three tpy, the cost effectiveness in terms of dollars per ton for add-on pollution control for these units is economically infeasible.

#### Step 5 - Selection of NOx BACT for the Diesel-Fired Boilers

The Department's preliminary finding is that BACT for NOx emissions from the diesel-fired boilers is as follows:

- (a) NOx emissions from the diesel-fired boilers shall not exceed 20 lb/1000 gallons of diesel fuel; and
- (b) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation.

Table 3-9 lists the proposed NOx BACT determination for the facility along with those for other diesel-fired boilers rated at less than 100 MMBtu/hr in the Serious PM-2.5 nonattainment area.

 Table 3-9. Comparison of NOx BACT for the Diesel-Fired Boilers at Nearby Power Plants

| Facility        | Process Description           | Capacity       | Limitation      | Control Method                                                                                       |
|-----------------|-------------------------------|----------------|-----------------|------------------------------------------------------------------------------------------------------|
| UAF             | 3 Small Diesel-Fired Boilers  | < 100 MMBtu/hr | 0.0027 lb/MMBtu | Limited Operation                                                                                    |
| Fort Wainwright | 27 Small Diesel-Fired Boilers | < 100 MMBtu/hr |                 | Limited Operation for<br>Non-Emergency Use<br>(500 hours per year each)<br>Good Combustion Practices |
| GVEA Zehnder    | 2 Small Diesel-Fired Boilers  | < 100 MMBtu/hr | 0.10 lb/MMBtu   | Low NOx Burners                                                                                      |

## 4. BACT DETERMINATION FOR PM-2.5

The Department based its PM-2.5 assessment on BACT determinations found in the RBLC, internet research, and BACT analyses submitted to the Department by GVEA for the North Pole Power Plant and Zehnder Facility, Aurora for the Chena Power Plant, US Army for Fort Wainwright, and UAF for the Combined Heat and Power Plant.

## 4.1 PM-2.5 BACT for the Fuel Oil-Fired Simple Cycle Gas Turbines (EUs 1 and 2)

Possible PM-2.5 emission control technologies for the fuel oil-fired simple cycle gas turbines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 15.190, Simple Cycle Gas Turbines (> 25 MW) The search results for simple cycle gas turbines are summarized in Table 4-1.

Table 4-1. RBLC Summary of PM-2.5 Control for Simple Cycle Gas Turbines

| Control Technology        | Number of Determinations | Emission Limits        |
|---------------------------|--------------------------|------------------------|
| Good Combustion Practices | 25                       | 0.0038-0.0076 lb/MMBtu |
| Clean Fuels               | 12                       | 5 – 14 lb/hr           |

## **RBLC Review**

A review of similar units in the RBLC indicates restrictions on fuel sulfur contents and good combustion practices are the principle PM control technologies installed on simple cycle gas turbines. The lowest PM-2.5 emission rate listed in the RBLC is 0.0038 lb/MMBtu.

# **Step 1 - Identification of PM-2.5 Control Technology for the Simple Cycle Gas Turbines** From research, the Department identified the following technologies as available for control of PM-2.5 emissions from fuel oil-fired simple cycle gas turbines:

## (a) Low Sulfur Fuel

Low sulfur fuel has been known to reduce particulate matter emissions. PM-2.5 emission rates for low sulfur fuel are not available and therefore a BACT emissions rate cannot be set for low sulfur fuel. The Department does not consider low sulfur fuel a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

(b) Low Ash Fuel

Residual fuels and crude oil are known to contain ash forming components, while refined fuels are low ash. Fuels containing ash can cause excessive wear to equipment and foul combustion components. EUs 1 and 2 are fired exclusively on distillate fuel which is a form of refined fuel, and potential PM-2.5 emissions are based on emission factors for distillate fuel. The Department considers low ash fuel a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

#### (c) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. Due to EUs 1 and 2 currently operating under limits, the Department considers limited operation as a feasible control technology for the fuel oil-fired simple cycle gas turbines.

(d) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. Proper management of the combustion process will result in a reduction of PM. The Department considers GCPs a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

**Step 2 - Eliminate Technically Infeasible PM-2.5 Controls for the Simple Cycle Gas Turbines** As explained in Step 1 of Section 4.1, the Department does not consider low sulfur fuel as technically feasible technology to control PM-2.5 emissions from the fuel oil-fired simple cycle gas turbines.

**Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Simple Cycle Gas Turbines** The following control technologies have been identified and ranked by efficiency for the control of PM-2.5 emissions from the fuel oil-fired simple cycle gas turbines:

- (d) Good Combustion Practices (Less than 40% Control)
- (b) Low Ash Fuel (0% Control)
- (c) Limited Operation (0% Control)

Control technologies already in practice at the stationary source or included in the design of the EU are considered 0% control for the purpose of the SIP BACT for existing stationary sources.

#### **Step 4 - Evaluate the Most Effective Controls**

#### **GVEA BACT Proposal**

GVEA proposes the following as BACT for PM-2.5 emissions from the fuel oil-fired simple cycle gas turbines:

- (a) PM-2.5 emissions from EUs 1 and 2 shall not exceed 0.12 lb/MMBtu over a 4-hour averaging period; and
- (b) Maintaining good combustion practices.

#### Step 5 - Preliminary Selection of PM-2.5 BACT for the Simple Cycle Gas Turbines

The Department's preliminary finding is that BACT for PM-2.5 emissions from the fuel oil-fired simple cycle gas turbines is as follows:

- (a) PM-2.5 emissions from EUs 1 and 2 shall be controlled by combusting only low ash fuel;
- (b) Maintain good combustion practices at all times of operation by following the manufacturer's operation and maintenance procedures;
- (c) PM-2.5 emissions from EUs 1 & 2 shall not exceed 0.012 lb/MMBtu over a 3-hour averaging period; and
- (d) Compliance with the PM-2.5 emission limit will be demonstrated by conducting an initial performance test to obtain an emission rate.

Table 4-2 lists the proposed PM-2.5 BACT determination for this facility along with those for other fuel oil-fired simple cycle gas turbines located in the Serious PM-2.5 nonattainment area.

Table 4-2. Comparison of PM-2.5 BACT for Simple Cycle Gas Turbines at Nearby Power Plants

| Facility   | <b>Process Description</b> | Capacity          | Limitation                  | Control Method            |
|------------|----------------------------|-------------------|-----------------------------|---------------------------|
| GVEA –     | Two Fuel Oil-Fired Simple  | 1,344 MMBtu/hr    | 0.012 lb/MMBtu <sup>3</sup> | Good Combustion Practices |
| North Pole | Cycle Gas Turbines         | 1,544 WIWIDtu/III | (3-hour averaging period)   | Good Combustion Flactices |
| GVEA –     | Two Fuel Oil-Fired Simple  | 536 MMBtu/hr      | 0.012 lb/MMBtu <sup>3</sup> | Good Combustion Practices |
| Zehnder    | Cycle Gas Turbines         | 550 WIWIBUU/III   | (3-hour averaging period)   | Good Combustion Practices |

## 4.2 PM-2.5 BACT for the Large Diesel Fired Engines

Possible PM-2.5 emission control technologies for large engine was obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process codes 17.110-17.190, Large Internal Combustion Engines (>500 hp). The search results for large diesel-fired engines are summarized in Table 4-3.

Table 4-3. RBLC Summary of PM-2.5 Control for Large Diesel-Fired Engines

| Control Technology         | Number of Determinations | Emission Limits (g/hp-hr) |
|----------------------------|--------------------------|---------------------------|
| Federal Emission Standards | 12                       | 0.03 - 0.02               |
| Good Combustion Practices  | 28                       | 0.03 - 0.24               |
| Limited Operation          | 11                       | 0.04 - 0.17               |
| Low Sulfur Fuel            | 14                       | 0.15 - 0.17               |
| No Control Specified       | 14                       | 0.02 - 0.15               |

#### **RBLC Review**

A review of similar units in the RBLC indicates that good combustion practices, compliance with the federal emission standards, low ash/sulfur diesel, and limited operation are the principle

<sup>&</sup>lt;sup>3</sup> Table 3.1-2a of US EPA's AP-42 Emission Factors. <u>https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s01.pdf</u>

PM-2.5 control technologies installed on large diesel-fired engines. The lowest PM-2.5 emission rate in the RBLC is 0.02 g/hp-hr.

**Step 1 - Identification of PM-2.5 Control Technology for the Large Diesel-Fired Engines** From research, the Department identified the following technologies as available for controls of PM-2.5 emissions from diesel fired engines rated at 500 hp or greater:

(a) Diesel Particulate Filter (DPF)

DPFs are a control technology that is designed to physically filter particulate matter from the exhaust stream. Several designs exist which require cleaning and replacement of the filter media after soot has become caked onto the filter media. Regenerative filter designs are also available that burn the soot on a regular basis to regenerate the filter media. DPF can reduce PM-2.5 emissions by 85%. The Department considers DPF a technically feasible control technology for the large diesel-fired engines.

(b) Diesel Oxidation Catalyst (DOC)

DOC can reportedly reduce PM-2.5 emissions by 30% and PM emissions by 50%. A DOC is a form of "bolt on" technology that uses a chemical process to reduce pollutants in the diesel exhaust into decreased concentrations. They replace mufflers on vehicles, and require no modifications. More specifically, this is a honeycomb type structure that has a large area coated with an active catalyst layer. As CO and other gaseous hydrocarbon particles travel along the catalyst, they are oxidized thus reducing pollution. The Department considers DOC a technically feasible control technology for the large diesel-fired engines.

(c) Positive Crankcase Ventilation

Positive crankcase ventilation is the process of re-introducing the combustion air into the cylinder chamber for a second chance at combustion after the air has seeped into and collected in the crankcase during the downward stroke of the piston cycle. This process allows any unburned fuel to be subject to a second combustion opportunity. Any combustion products act as a heat sink during the second pass through the piston, which will lower the temperature of combustion and reduce the thermal NOx formation. The Department considers positive crankcase ventilation a technically feasible control technology for the large diesel-fired engines.

(d) Low Sulfur Fuel

Low sulfur fuel has been known to reduce particulate matter emissions. The Department considers low sulfur fuel as a technically feasible control technology for the large diesel-fired engine.

(e) Low Ash Diesel

Residual fuels and crude oil are known to contain ash forming components, while refined fuels are low ash. Fuels containing ash can cause excessive wear to equipment and foul engine components. The Department considers low ash diesel a technically feasible control technology for the large diesel-fired engines.

## (f) Federal Emission Standards

RBLC NOx determinations for federal emission standards require the engines meet the requirements of 40 C.F.R. 60 NSPS Subpart IIII, 40 C.F.R 63 Subpart ZZZZ, non-road engines (NREs), or EPA tier certifications. NSPS Subpart IIII applies to stationary compression ignition internal combustion engines that are manufactured or reconstructed after July 11, 2005. The Department considers meeting the technology based New Source Performance Standards (NSPS) as a technically feasible control technology for the large diesel-fired engines.

(g) Limited Operation

Limiting the operation of emissions units reduces the potential to emit of those units. The Department considers limited operation as a feasible control technology for the large diesel-fired engines.

(h) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. Proper management of the combustion process will result in a reduction of PM-2.5 emissions. The Department considers GCPs a technically feasible control technology for the large diesel-fired engines.

**Step 2 - Eliminate Technically Infeasible PM-2.5 Control Technologies for the Large Engines** PM-2.5 emission rates for low sulfur fuel are not available and therefore a BACT emissions rate cannot be set for low sulfur fuel. Low sulfur fuel is not a technically feasible control technology.

**Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Large Diesel-Fired Engines** The following control technologies have been identified and ranked by efficiency for the control of PM-2.5 emissions from the large diesel-fired engines:

| (g) | Limited Operation                | (94% Control)           |
|-----|----------------------------------|-------------------------|
| (a) | Diesel Particulate Filters       | (85% Control)           |
| (h) | <b>Good Combustion Practices</b> | (Less than 40% Control) |
| (b) | Diesel Oxidation Catalyst        | (30% Control)           |
| (e) | Low Ash Diesel                   | (25% Control)           |
| (c) | Positive Crankcase Ventilation   | (10% Control)           |
| (f) | Federal Emission Standards       | (Baseline)              |

## **Step 4 - Evaluate the Most Effective Controls**

## **GVEA BACT Proposal**

GVEA proposes limited operation as BACT for PM-2.5 emissions from the large diesel-fired engines:

- (a) Limit non-emergency operation of EUs 3 and 4 to no more than 500 hours per year each for maintenance checks and readiness testing; and
- (b) PM-2.5 emissions from EUs 3 and 4 shall not exceed 0.1 lb/MMBtu<sup>4</sup> over a 4-hour averaging period.

<sup>&</sup>lt;sup>4</sup> Table 3.4-1 of US EPA's AP-42 Emission Factors. <u>https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s04.pdf</u>

Department Evaluation of BACT for PM-2.5 Emissions from the Large Diesel-Fired Engines

The Department reviewed GVEA's proposal finds that PM-2.5 emissions from the large dieselfired engines can also be controlled by good combustion practices.

## **Step 5 - Preliminary Selection of PM-2.5 BACT for the Large Diesel-Fired Engines**

The Department's preliminary finding is that the BACT for PM-2.5 emissions from the large diesel-fired engines is as follows:

- (a) Limit non-emergency operation of EUs 3 and 4 to no more than 500 hours per year each for maintenance checks and readiness testing; and
- (b) PM-2.5 emissions from EUs 3 and 4 shall not exceed 0.1 lb/MMBtu<sup>5</sup> over a 3-hour averaging period.

Table 4-4 lists the proposed PM-2.5 BACT determination for the facility along with those for other diesel-fired engines rated at more than 500 hp located in the Serious PM-2.5 nonattainment area.

 Table 4-4. Comparison of PM-2.5 BACT for Large Diesel Engines at Nearby Power Plants

|                 |                              | <u>a</u>     |                     |                                |
|-----------------|------------------------------|--------------|---------------------|--------------------------------|
| Facility        | Process Description          | Capacity     | Limitation          | Control Method                 |
| UAF             | Lorgo Dissol Fired Engine    | 12 266 hr    | 0.32 g/hp-hr        | Positive Crankcase Ventilation |
| UAF             | Large Diesel-Fired Engine    | 13,266 hp    | 0.32 g/np-ni        | Limited Operation              |
|                 |                              |              |                     | Limited Operation              |
| Fort Wainwright | 8 Large Diesel-Fired Engines | > 500 hp     | 0.15 – 10.9 g/hp-hr | Ultra-Low Sulfur Diesel        |
|                 |                              |              |                     | Federal Emission Standards     |
|                 |                              | <b>FOO</b> 1 |                     | Positive Crankcase Ventilation |
| GVEA North Pole | Large Diesel-Fired Engine    | 600 hp       | 0.031 g/hp-hr       | Good Combustion Practices      |
|                 |                              | 11,000 hp    |                     | Limited Operation              |
| GVEA Zehnder    | 2 Large Diesel-Fired Engines | (each)       | 0.12 g/hp-hr        | Good Combustion Practices      |

## 4.3 PM-2.5 BACT for the Diesel Fired Boilers

Possible PM-2.5 emission control technologies for small diesel-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 13.220, Commercial/Institutional Size Boilers (<100 MMBtu/hr). The search results for diesel-fired boilers are summarized in Table 4-5.

 Table 4-5. RBLC Summary of PM-2.5 Control for Diesel Fired Boilers

| Control Technology        | Number of Determinations | Emission Limits |
|---------------------------|--------------------------|-----------------|
|                           |                          | 0.25 lb/gal     |
| Good Combustion Practices | 3                        | 0.1 tpy         |
|                           |                          | 2.17 lb/hr      |

## **RBLC Review**

A review of similar units in the RBLC indicates that good combustion practices is the principle PM-2.5 control technology determined for small diesel-fired boilers. The lowest PM-2.5 emission rate listed in the RBLC is 0.1 tpy.

<sup>&</sup>lt;sup>5</sup> Table 3.4-1 of US EPA's AP-42 Emission Factors. <u>https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s04.pdf</u>

#### Step 1 - Identification of PM-2.5 Control Technology for the Diesel Fired Boilers

From research, the Department identified the following technologies as available for control of PM-2.5 emissions from diesel-fired boilers:

(a) Wet Scrubbers

Wet scrubbers use a scrubbing solution to remove PM/PM<sub>10</sub>/PM<sub>2.5</sub> from exhaust gas streams. The mechanism for particulate collection is impaction and interception by water droplets. Wet scrubbers are configured as counter-flow, cross-flow, or concurrent flow, but typically employ counter-flow where the scrubbing fluid is in the opposite direction as the gas flow. Wet scrubbers have control efficiencies of 50% - 99%.<sup>6</sup> One advantage of wet scrubbers is that they can be effective on condensable particulate matter. A disadvantage of wet scrubbers is that they consume water and produce water and sludge. For fine particulate control, a venturi scrubber can be used, but typical loadings for such a scrubber are 0.1-50 grains/scf. The Department considers the use of wet scrubbers a technically feasible control technology for the diesel-fired boilers.

(b) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. Proper management of the combustion process will result in a reduction of PM-2.5 emissions. The Department considers GCPs a technically feasible control technology for the diesel-fired boilers.

**Step 2 - Eliminate Technically Infeasible PM-2.5 Control Technologies for the Diesel Fired Boilers** All identified control devices are technically feasible for the diesel-fired boilers.

#### Step 3 - Rank the Remaining PM-2.5 Control Technologies for the Diesel Fired Boilers

The following control technologies have been identified and ranked by efficiency for the control of PM-2.5 emissions from the diesel-fired boilers:

- (a) Wet Scrubbers (50% 99% Control)
- (b) Good Combustion Practices (Less than 40% Control)

## **Step 4 - Evaluate the Most Effective Controls**

## **GVEA BACT Proposal**

GVEA proposes the following as BACT for PM-2.5 emissions from the diesel-fired boilers:

- (a) Good Combustion Practices; and
- (b) PM-2.5 emissions shall not exceed 2.13 lb/1,000 gallons<sup>7</sup> over a 4-hour averaging period.

## **Department Evaluation of BACT for PM-2.5 Emissions from Diesel-Fired Boilers**

The Department reviewed GVEA's proposal and finds that the two diesel-fired boilers have a combined PTE of less than two tpy for PM-2.5 based on continuous operation of 8,760 hours per

<sup>&</sup>lt;sup>6</sup> <u>https://www3.epa.gov/ttn/catc/dir1/fcondnse.pdf</u> <u>https://www3.epa.gov/ttn/catc/dir1/fiberbed.pdf</u> <u>https://www3.epa.gov/ttn/catc/dir1/fventuri.pdf</u>

<sup>&</sup>lt;sup>7</sup> Tables 1.3-2 & 1.3-7 of US EPA's AP-42 Emission Factors: <u>https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s03.pdf</u>

year. At two tpy, the cost effectiveness in terms of dollars per ton for add-on pollution control for these units is economically infeasible.

#### Step 5 - Preliminary Selection of PM-2.5 BACT for the Diesel-Fired Boilers

The Department's preliminary finding is that BACT for PM-2.5 emissions from the diesel-fired boilers is as follows:

- (a) PM-2.5 emissions from the diesel-fired boilers shall not exceed 2.13 lb/1000 gallons of diesel fuel over a 3-hour averaging period; and
- (b) Maintain good combustion practices by following the manufacturer's operating and maintenance procedures at all times of operation.

Table 4-6 lists the proposed PM-2.5 BACT determination for this facility along with those for other diesel-fired boilers rated at less than 100 MMBtu/hr in the Serious PM-2.5 nonattainment area.

Table 4-6. Comparison of PM-2.5 BACT for the Diesel-Fired Boilers at Nearby Power Plants

| Facility        | Process Description           | Capacity               | Limitation       | Control Method                   |
|-----------------|-------------------------------|------------------------|------------------|----------------------------------|
| UAF             | 3 Small Diesel-Fired Boilers  | < 100 MMBtu/hr         | 7.06 g/MMBtu     | Limited Operation                |
| Fort Wainwright | 26 Small Diesel-Fired Boilers | < 100 MMBtu/hr         | Varies           | <b>Good Combustion Practices</b> |
| Chena           | 2 Small Diesel-Fired Boilers  | < 100 MMBtu/hr         |                  |                                  |
| GVEA Zehnder    | 2 Small Diesel-Fired Boilers  | 1.7 MMBtu/hr<br>(each) | 2.13 lb/1000 gal | Good Combustion Practices        |

## 5. BACT DETERMINATION FOR SO<sub>2</sub>

The Department based its SO<sub>2</sub> assessment on BACT determinations found in the RBLC, internet research, and BACT analyses submitted to the Department by GVEA for the North Pole Power Plant and Zehnder Facility, Aurora for the Chena Power Plant, US Army for Fort Wainwright, and UAF for the Combined Heat and Power Plant.

## 5.1 SO<sub>2</sub> BACT for the Fuel Oil-Fired Simple Cycle Gas Turbines

Possible SO<sub>2</sub> emission control technologies for the large dual fuel fired boiler was obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 15.190, Liquid Fuel-Fired Simple Cycle Gas Turbines (> 25 MW). The search results for simple cycle gas turbines are summarized in Table 5-1.

Table 5-1. RBLC Summary of SO<sub>2</sub> Controls for Fuel Oil-Fired Simple Cycle Gas Turbines

| Control Technology        | Number of Determinations | Emission Limits         |
|---------------------------|--------------------------|-------------------------|
| Ultra-Low Sulfur Diesel   | 7                        | 0.0015 % S by wt.       |
| Low Sulfur Fuel           | 2                        | 0.0026 - 0.055 lb/MMBtu |
| Good Combustion Practices | 3                        | 0.6 lb/hr               |

## **RBLC Review**

A review of similar units in the RBLC indicates that limiting the sulfur content of fuel and good combustion practices are the principle SO<sub>2</sub> control technologies determined as BACT for fuel

oil-fired simple cycle gas turbines. The lowest  $SO_2$  emission rate listed in the RBLC is combustion of ULSD at 0.0015 % S by wt.

#### Step 1 - Identification of SO<sub>2</sub> Control Technology for the Simple Cycle Gas Turbines

From research, the Department identified the following technologies as available for control of SO<sub>2</sub> emissions from fuel oil-fired simple cycle gas turbines:

(a) Ultra Low Sulfur Diesel (ULSD)

ULSD has a fuel sulfur content of 0.0015 percent sulfur by weight or less. Using ULSD would reduce  $SO_2$  emissions because the fuel oil-fired simple cycle gas turbines are combusting standard diesel that has a sulfur content of up to 0.5 percent sulfur by weight. Switching to ULSD could reach a great than 99 percent decrease in  $SO_2$  emissions from the fuel oil-fired simple cycle gas turbines. The Department considers ULSD a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

(b) Low Sulfur Fuel

Low sulfur fuel has a fuel sulfur content of 0.05 percent sulfur by weight. Using low sulfur fuel would reduce  $SO_2$  emissions because the fuel oil-fired simple cycle gas turbines are combusting standard diesel that has a sulfur content of up to 0.5 percent sulfur by weight. Switching to low sulfur fuel could reach a 93 percent decrease in  $SO_2$  emissions from the fuel oil-fired simple cycle gas turbines during non-startup operation. The Department considers low sulfur diesel a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

(c) Good Combustion Practices (GCPs)

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. Proper management of the combustion process will result in a reduction of SO<sub>2</sub>. The Department considers GCPs a technically feasible control technology for the fuel oil-fired simple cycle gas turbines.

**Step 2 - Eliminate Technically Infeasible SO<sub>2</sub> Controls for the Simple Cycle Gas Turbines** All control technologies identified are technically feasible for the fuel oil-fired simple cycle gas turbines.

## Step 3 - Rank Remaining SO<sub>2</sub> Control Technologies for the Simple Cycle Gas Turbines

The following control technologies have been identified and ranked for control of SO<sub>2</sub> emissions from the fuel oil-fired simple cycle turbines:

| (a) Ultra Low Sulfur Diesel   | (99.7% Control)         |
|-------------------------------|-------------------------|
| (b) Low Sulfur Fuel           | (93% Control)           |
| (c) Good Combustion Practices | (Less than 40% Control) |

## **Step 4 - Evaluate the Most Effective Controls**

#### **GVEA BACT Proposal**

GVEA provided an economic analysis for switching the fuel combusted in the simple cycle gas turbines to ultra low sulfur diesel. A summary of the analysis is shown below:

| Control<br>Alternative                                                           | Potential to<br>Emit<br>(tpy) | Emission<br>Reduction<br>(tpy) | Total Capital<br>Investment<br>(\$) | Total Annualized<br>Costs<br>(\$/year) | Cost<br>Effectiveness<br>(\$/ton) |  |
|----------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|--|
| ULSD<br>(0.0015 % S wt.)                                                         | 580                           | 578                            | \$4,337,181                         | \$5,609,166                            | \$9,701                           |  |
| Low Sulfur Fuel<br>(0.05 % S wt.)                                                | 580                           | 522                            | ???                                 | ???                                    | ???                               |  |
| Capital Recovery Factor = 0.1424 (7% interest rate for a 10 year equipment life) |                               |                                |                                     |                                        |                                   |  |

GVEA contends that the economic analysis indicates the level of  $SO_2$  reduction does not justify the fuel switch to ULSD in the simple cycle turbines based on the excessive cost per ton of  $SO_2$ removed per year.

GVEA proposes the following as BACT for SO<sub>2</sub> emissions from the simple cycle gas turbines:

- (a) SO<sub>2</sub> emissions from the operation of the fuel oil-fired simple cycle gas turbines will be controlled with good combustion practices; and
- (b) Fuel burned in the fuel oil-fired simple cycle gas turbine will be limited to a sulfur content of 0.5 percent by weight.

**Department Evaluation of BACT for SO<sub>2</sub> Emissions from the Simple Cycle Gas Turbines** The Department revised the cost analysis provided for the fuel switch to ULSD in the simple cycle gas turbines using the unrestricted potential to emit for the units and a 20 year equipment life. Additionally, the Department reviewed the cost information provided by GVEA to appropriately evaluate the total capital investment of installing two new 1.5 million gallon ULSD storage tanks at GVEA's North Pole facility. A summary of this analysis is shown in Table 5-3:

| Table 5-3. Department Economic Analysis for Technically Feasible SO <sub>2</sub> Controls p | oer Turbine |
|---------------------------------------------------------------------------------------------|-------------|
|---------------------------------------------------------------------------------------------|-------------|

| Control<br>Alternative                                                          | Potential to Emit<br>(tpy) | Emission<br>Reduction<br>(tpy) | Total Capital<br>Investment<br>(\$) | Total Annualized<br>Costs<br>(\$/year) | Cost<br>Effectiveness<br>(\$/ton) |  |
|---------------------------------------------------------------------------------|----------------------------|--------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|--|
| ULSD                                                                            | 598.6                      | 597                            | \$4,337,181                         | \$5,401,048                            | \$9,050                           |  |
| Capital Recovery Factor = 0.0944 (7% interest rate for a 20 year equipmnt life) |                            |                                |                                     |                                        |                                   |  |

The Department's preliminary economic analysis indicates the level of SO<sub>2</sub> reduction justifies the use of ULSD as BACT for the fuel oil-fired simple cycle gas turbines located in the Serious PM-2.5 nonattainment area.

## Step 5 - Preliminary Selection of SO<sub>2</sub> BACT for the Simple Cycle Gas Turbines

The Department's preliminary finding is that BACT for SO<sub>2</sub> emissions from the fuel oil-fired simple cycle gas turbines is as follows:

(a) SO<sub>2</sub> emissions from EUs 1 and 2 shall be controlled by limiting the sulfur content of fuel combusted in the turbines to no more than 0.0015 percent by weight.

(b) Compliance with the proposed fuel sulfur content limit will be demonstrated with fuel shipment receipts and/or fuel test results for sulfur content.

Table 5-4 lists the proposed SO<sub>2</sub> BACT determination for this facility along with those for other fuel oil-fired simple cycle gas turbines located in the Serious PM-2.5 nonattainment area.

Table 5-4. Comparison of SO<sub>2</sub> BACT for Simple Cycle Gas Turbines at Nearby Power Plants

| Facility   | Process Description       | Capacity        | Limitation     | <b>Control Method</b>   |
|------------|---------------------------|-----------------|----------------|-------------------------|
| GVEA –     | Two Fuel Oil-Fired Simple | 1.344 MMBtu/hr  | 0.0015 % S wt. | Ultra Low Sulfur Diesel |
| North Pole | Cycle Gas Turbines        | 1,544 MIMDu/III | 0.0015 % S Wt. | Ultra Low Sulfur Diesei |
| GVEA –     | Two Fuel Oil-Fired Simple | 536 MMBtu/hr    | 0.0015 % S wt. | Ultra Low Sulfur Diesel |
| Zehnder    | Cycle Gas Turbines        |                 | 0.0013 % S wt. | Olua Low Sullui Diesel  |

## 5.2 SO<sub>2</sub> BACT for the Large Diesel-Fired Engines

Possible SO<sub>2</sub> emission control technologies for large engines were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process codes 17.100 to 17.190, Large Internal Combustion Engines (>500 hp). The search results for large diesel-fired engines are summarized in Table 5-5.

| Control Technology         | Number of Determinations | Emission Limits (g/hp-hr) |
|----------------------------|--------------------------|---------------------------|
| Low Sulfur Diesel          | 27                       | 0.005 - 0.02              |
| Federal Emission Standards | 6                        | 0.001 - 0.005             |
| Limited Operation          | 6                        | 0.005 - 0.006             |
| Good Combustion Practices  | 3                        | None Specified            |
| No Control Specified       | 11                       | 0.005 - 0.008             |

Table 5-5. RBLC Summary Results for SO<sub>2</sub> Control for Large Diesel-Fired Engines

## **RBLC Review**

A review of similar units in the RBLC indicates combustion of low sulfur fuel, limited operation, good combustion practices, and compliance with the federal emission standards are the principle SO<sub>2</sub> control technologies installed on large diesel-fired engines. The lowest SO<sub>2</sub> emission rate listed in the RBLC is 0.001 g/hp-hr.

## Step 1 - Identification of SO<sub>2</sub> Control Technology for the Large Diesel-Fired Engines

From research, the Department identified the following technologies as available for control of SO<sub>2</sub> emissions from diesel fired engines rated at 500 hp or greater:

(a) Ultra Low Sulfur Diesel

The theory of ULSD was discussed in detail in the SO<sub>2</sub> BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. The Department considers ULSD a technically feasible control technology for the large diesel-fired engines.

(b) Federal Emission Standards

The theory of federal emission standards was discussed in detail in the NOx BACT for the large diesel-fired engine and will not be repeated here. The Department considers

meeting the technology based NSPS of Subpart IIII as a technically feasible control technology for the large diesel-fired engines.

(c) Limited Operation

Limiting the operation of emission units reduces the potential to emit for those units. The Department considers limited operation a technically feasible control technology for the large diesel-fired engines.

(d) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbines and will not be repeated here. Proper management of the combustion process will result in a reduction of SO<sub>2</sub> emissions. The Department considers GCPs a technically feasible control technology for the large diesel-fired engines.

**Step 2 - Eliminate Technically Infeasible SO<sub>2</sub> Control Technologies for the Large Engines** All identified control technologies are technically feasible for the large diesel-fired engines.

**Step 3 - Rank the Remaining SO<sub>2</sub> Control Technologies for the Large Diesel-Fired Engines** The following control technologies have been identified and ranked by efficiency for the control of SO<sub>2</sub> emissions from the large diesel-fired engines.

(a) Ultra-Low Sulfur Diesel (99% Control)
(c) Limited Operation (94% Control)
(d) Good Combustion Practices (Less than 40% Control)
(b) Federal Emission Standards (Baseline)

## **Step 4 - Evaluate the Most Effective Controls**

#### **GVEA BACT Proposal**

GVEA provided an economic analysis of the control technologies available for the large dieselfired engine to demonstrate that the use of ULSD with limited operation is not economically feasible on these units. A summary of the analysis for EUs 3 and 4 is shown below:

Table 5-6. GVEA Economic Analysis for Technically Feasible SO<sub>2</sub> Controls per Engine

| Control<br>Alternative                                                             | Potential to Emit<br>(tpy) | Emission<br>Reduction<br>(tpy) | Total Capital<br>Investment<br>(\$) | Total Annualized<br>Costs<br>(\$/year) | Cost<br>Effectiveness<br>(\$/ton) |  |
|------------------------------------------------------------------------------------|----------------------------|--------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|--|
| ULSD                                                                               | 3.71                       | 3.70                           |                                     | \$28,732                               | \$7,768                           |  |
| Capital Recovery Factor = $0.1424$ (7% interest rate for a 10 year equipment life) |                            |                                |                                     |                                        |                                   |  |

GVEA contends that the economic analysis indicates the level of  $SO_2$  reduction does not justify the use of ULSD for the large diesel-fired engines based on the excessive cost per ton of  $SO_2$ 

removed per year.

GVEA proposes the following as BACT for SO<sub>2</sub> emissions from the diesel-fired engines:

- (a) SO<sub>2</sub> emissions from the operation of the diesel fired engines will be controlled with good combustion practices; and
- (b) Limit the sulfur content of fuel combusted in EUs 3 and 4 to no more than 0.5 percent sulfur by weight.

#### Department Evaluation of BACT for SO<sub>2</sub> Emissions from the Diesel-Fired Engines

The Department reviewed GVEA's proposal for EUs 3 and 4 and finds that ULSD is an economically feasible control technology for large diesel-fired engines located in the Serious PM-2.5 nonattainment area.. The Department does not agree with some of the assumptions provided in GVEA's cost analysis that cause an overestimation of the cost effectiveness. However, since this overestimation is still cost effective, the Department did not revise the cost analysis. The Department further finds that SO<sub>2</sub> emissions from the large diesel-fired engines can additionally be controlled by limiting the use of the units during non-emergency operation.

#### Step 5 - Preliminary Selection of SO<sub>2</sub> BACT for the Diesel Fired Engines

The Department's preliminary finding is that the BACT for SO<sub>2</sub> emissions from the diesel-fired engines is as follows:

- (a) SO<sub>2</sub> emissions from EUs 3 and 4 shall be controlled by combusting ULSD at all time the units are in operation;
- (b) Limit non-emergency operation of EUs 3 and 4 to no more than 500 hours per year each, for maintenance checks and readiness testing; and
- (c) Maintain good combustion practices by following the manufacturer's maintenance procedures at all times of operation.

Table 5-7 lists the proposed  $SO_2$  BACT determination for this facility along with those for other diesel-fired engines rated at more than 500 hp located in the Serious PM-2.5 nonattainment area.

| Facility        | Process Description          | Capacity  | Limitation         | Control Method            |
|-----------------|------------------------------|-----------|--------------------|---------------------------|
|                 |                              |           |                    | Limited Operation         |
| Fort Wainwright | 8 Large Diesel-Fired Engines | > 500 hp  | 15 ppmw S in fuel  | Good Combustion Practices |
|                 |                              |           |                    | Ultra-Low Sulfur Diesel   |
|                 |                              |           |                    | Limited Operation         |
| UAF             | Large Diesel-Fired Engine    | 13,266 hp | 15 ppmw S in fuel  | Good Combustion Practices |
|                 |                              |           |                    | Ultra-Low Sulfur Diesel   |
| CVEA N. d. D.L. |                              | (00.1     | 500                | Limited Operation         |
| GVEA North Pole | Large Diesel-Fired Engine    | 600 hp    | 500 ppmw S in fuel | Good Combustion Practices |
|                 |                              | 11.000.1  |                    | Good Combustion Practices |
| GVEA Zehnder    | 2 Large Diesel-Fired Engines | 11,000 hp | 15 ppmw S in fuel  | Ultra-Low Sulfur Diesel   |

#### Table 5-7. Comparison of SO<sub>2</sub> BACT for Large Diesel-Fired Engines at Nearby Power Plants

#### **5.3 SO<sub>2</sub> BACT for the Diesel Fired Boilers**

Possible SO<sub>2</sub> emission control technologies for small diesel-fired boilers were obtained from the RBLC. The RBLC was searched for all determinations in the last 10 years under the process code 13.220, Industrial Size Boilers (<100 MMBtu/hr). The search results for diesel-fired engines are summarized in Table 5-8.

| Control Technology        | Number of Determinations | Emission Limits (lb/MMBtu) |
|---------------------------|--------------------------|----------------------------|
| Low Sulfur Fuel           | 5                        | 0.0036 - 0.0094            |
| Good Combustion Practices | 4                        | 0.0005                     |
| No Control Specified      | 5                        | 0.0005                     |

#### **RBLC Review**

A review of similar units in the RBLC indicates that good combustion practices and combustion of low sulfur fuel are the principle  $SO_2$  control technologies installed on diesel-fired boilers. The lowest  $SO_2$  emission rate listed in the RBLC is 0.0005 lb/MMBtu.

#### Step 1 - Identification of SO<sub>2</sub> Control Technology for the Diesel Fired Boilers

From research, the Department identified the following technologies as available for SO<sub>2</sub> control for the diesel-fired boilers:

(a) Ultra Low Sulfur Diesel

ULSD has a fuel sulfur content of 0.0015 percent sulfur by weight or less. Using ULSD would reduce  $SO_2$  emissions because the mid-sized diesel boilers are combusting standard diesel that has a sulfur content of up to 0.5 percent sulfur by weight. Switching to ULSD could control 99 percent decrease in  $SO_2$  emissions from the diesel fired boilers. The Department considers ULSD a technically feasible control technology for the diesel-fired boilers.

(b) Good Combustion Practices

The theory of GCPs was discussed in detail in the NOx BACT for the fuel oil-fired simple cycle gas turbine and will not be repeated here. Proper management of the combustion process will result in a reduction of SO<sub>2</sub> emissions. The Department considers GCPs a technically feasible control technology for the diesel-fired boilers.

**Step 2 - Eliminate Technically Infeasible SO<sub>2</sub> Control Technologies for the Diesel-Fired Boilers** All identified control technologies are technically feasible for the diesel-fired boilers.

#### Step 3 - Rank the Remaining SO<sub>2</sub> Control Technologies for the Diesel-Fired Boilers

The following control technologies have been identified and ranked by efficiency for the control of SO<sub>2</sub> emissions from the diesel-fired boilers.

(a) Ultra Low Sulfur Diesel (99% Control)
(b) Good Combustion Practices (Less than 40% Control)

## **Step 4 - Evaluate the Most Effective Controls**

## **GVEA BACT Proposal**

GVEA proposes the following as BACT for SO<sub>2</sub> emissions from the diesel-fired boilers:

(a) Combust only ULSD.

#### Department Evaluation of BACT for SO<sub>2</sub> Emissions from Diesel-Fired Boilers

The Department reviewed GVEA's proposal and finds that SO<sub>2</sub> emissions from the diesel-fired boilers can additionally be controlled with good combustion practices.

#### Step 5 - Preliminary Selection of SO<sub>2</sub> BACT for the Diesel-Fired Boilers

The Department's preliminary finding is that BACT for SO<sub>2</sub> emissions from the diesel-fired boilers is as follows:

- (a) SO<sub>2</sub> emissions from EUs 10 and 11 shall be controlled by only combusting ULSD; and
- (b) Maintain good combustion practices by following the manufacturer's operating and maintenance procedures at all times of operation.

Table 5-9 lists the proposed  $SO_2$  BACT determination for this facility along with those for other diesel-fired boilers rated at less than 100 MMBtu/hr in the Serious PM-2.5 nonattainment area.

| Facility        | Process Description      | Capacity       | Limitation        | Control Method                   |
|-----------------|--------------------------|----------------|-------------------|----------------------------------|
|                 |                          |                |                   | Limited Operation                |
| Fort Wainwright | Diesel-Fired Boilers     | < 100 MMBtu/hr | 15 ppmw S in fuel | Good Combustion Practices        |
| C               |                          |                |                   | Ultra-Low Sulfur Diesel          |
|                 | Waste Fuel-Fired Boilers |                | 0.5 % S by weight | <b>Good Combustion Practices</b> |
|                 | 2 D' 1 F' 1 D 'I         |                |                   | Good Combustion Practices        |
| UAF             | 3 Diesel-Fired Boilers   | < 100 MMBtu/hr | 15 ppmw S in fuel | Ultra-Low Sulfur Diesel          |
| CVEA Zahadaa    | 2 Discal Final Dailan    |                | 15                | Good Combustion Practices        |
| GVEA Zehnder    | 2 Diesel-Fired Boilers   | < 100 MMBtu/hr | 15 ppmw S in fuel | Ultra-Low Sulfur Diesel          |

Table 5-9. Comparison of SO<sub>2</sub> BACT for the Diesel-Fired Boilers at Nearby Power Plants

## 6. BACT DETERMINATION SUMMARY

| EU ID | Description of EU                                        | Capacity     | Proposed BACT Limit | Proposed BACT Control                                                   |
|-------|----------------------------------------------------------|--------------|---------------------|-------------------------------------------------------------------------|
| 1     | Fuel Oil-Fired Regenerative Gas Simple Cycle Gas Turbine | 268 MMBtu/hr | 0.04 lb/MMBtu       | Selective Cayalytic Reduction                                           |
| 2     | Fuel Oil-Fired Regenerative Gas Simple Cycle Gas Turbine | 268 MMBtu/hr | 0.04 lb/MMBtu       | Water Injection                                                         |
| 3     | Diesel-Fired Emergency Generator Engine                  | 28 MMBtu/hr  | 0.024 lb/hp-hr      | Turbocharger & Aftercooler                                              |
|       |                                                          |              |                     | Good Combustion Practices                                               |
| 4     | Diesel-Fired Emergency Generator Engine                  | 28 MMBtu/hr  | 0.024 lb/hp-hr      | Limited Operation<br>(500 hours/year each, for non-emergency operation) |
| 10    | Diesel-Fired Boiler                                      | 1.7 MMBtu/hr | 20 lb/1000 gal      | Cool Combustien Departures                                              |
| 11    | Diesel-Fired Boiler                                      | 1.7 MMBtu/hr | 20 lb/1000 gal      | Good Combustion Practices                                               |

## Table 6-1. Proposed NOx BACT Limits

# Table 6-2. Proposed PM-2.5 BACT Limits

| EU ID | Description of EU                                        | Capacity     | Proposed BACT Limit | Proposed BACT Control                                                   |
|-------|----------------------------------------------------------|--------------|---------------------|-------------------------------------------------------------------------|
| 1     | Fuel Oil-Fired Regenerative Gas Simple Cycle Gas Turbine | 268 MMBtu/hr | 0.012 lb/MMBtu      | Low Ash Fuel                                                            |
| 2     | Fuel Oil-Fired Regenerative Gas Simple Cycle Gas Turbine | 268 MMBtu/hr | 0.012 lb/MMBtu      | Good Combustion Practices                                               |
| 3     | Diesel-Fired Emergency Generator Engine                  | 28 MMBtu/hr  | 0.1 lb/MMBtu        | Good Combustion Practices                                               |
| 4     | Diesel-Fired Emergency Generator Engine                  | 28 MMBtu/hr  | 0.1 lb/MMBtu        | Limited Operation<br>(500 hours/year each, for non-emergency operation) |
| 10    | Diesel-Fired Boiler                                      | 1.7 MMBtu/hr | 1.1 lb/1000 gal     | Good Combustion Practices                                               |
| 11    | Diesel-Fired Boiler                                      | 1.7 MMBtu/hr | 1.1 lb/1000 gal     | Good Combustion Practices                                               |

# Table 6-3. Proposed SO2 BACT Limits

| EU ID | Description of EU                                        | Capacity     | <b>Proposed BACT Limit</b> | Proposed BACT Control                                                   |
|-------|----------------------------------------------------------|--------------|----------------------------|-------------------------------------------------------------------------|
| 1     | Fuel Oil-Fired Regenerative Gas Simple Cycle Gas Turbine | 268 MMBtu/hr | 15 ppmv S in Fuel          | Ultra Low Sulfur Diesel                                                 |
| 2     | Fuel Oil-Fired Regenerative Gas Simple Cycle Gas Turbine | 268 MMBtu/hr | 15 ppmv S in Fuel          | Shira Low Sunta Dieser                                                  |
| 3     | Diesel-Fired Emergency Generator Engine                  | 28 MMBtu/hr  | 15 ppmv S in Fuel          | Ultra Low Sulfur Diesel                                                 |
|       |                                                          |              |                            | Good Combustion Practices                                               |
| 4     | Diesel-Fired Emergency Generator Engine                  | 28 MMBtu/hr  | 15 ppmv S in Fuel          | Limited Operation<br>(500 hours/year each, for non-emergency operation) |
| 10    | Diesel-Fired Boiler                                      | 1.7 MMBtu/hr | 20 lb/1000 gal             | Ultra Low Sulfur Diesel                                                 |
| 11    | Diesel-Fired Boiler                                      | 1.7 MMBtu/hr | 20 lb/1000 gal             | Good Combustion Practices                                               |