White Alice Communications System Site OT001
Beaver Creek RRS, Alaska

Final
September 2015

Pacific Air Forces
Regional Support Center

Beaver Creek RRS, Alaska

Site Closure Report

White Alice Communications System Site OT001
Beaver Creek RRS, Alaska

Final
September 2015

TABLE OF CONTENTS
SECTIONPAGE
ACRONYMS AND ABBREVIATIONS iii
EXECUTIVE SUMMARY ES-1
1.0 INTRODUCTION 1-1
1.1 REPORT OBJECTIVES 1-1
1.2 REPORT ORGANIZATION 1-3
2.0 SITE DESCRIPTION 2-1
2.1 SITE HISTORY 2-1
2.2 NATURE OF RELEASE 2-1
2.3 RESPONSE ACTION HISTORY 2-2
3.0 CONTAMINANTS AND CLEANUP LEVELS 3-1
4.0 CLEANUP COMPLETE DETERMINATION 4-1
5.0 REFERENCES 5-1
TABLES
Table 1-1 Alaska Administrative Code Requirements 1-1
Table 3-1 Analytical Result Exceedances in Surface and Subsurface Soil 3-1
Table 4-1 Exposure Pathway Evaluation. 4-2

APPENDICES

Appendix A Figures
Appendix B Chemical Data Tables
Appendix C Responses to Comments
(intentionally blank)

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
AFCEC	Air Force Civil Engineer Center
DRO	diesel-range organics
EPH	extractable, aromatic, and aliphatic petroleum hydrocarbons
GRO	gasoline-range organics
IRP	Installation Restoration Program
mg/kg	milligrams per kilogram
NFA	No Further Action
PCB	polychlorinated biphenyl
POL	petroleum, oil, and lubricants
RCRA	Resource Conservation and Recovery Act
RI	remedial investigation
RRO	residual-range organics
RRS	Radio Relay Station
SCR	Site Closure Report
SI	site investigation
SVOC	semivolatile organic compound
USAF	U.S. Air Force
UST	underground storage tank
VOC	volatile organic compound
WACS	White Alice Communications System

(intentionally blank)

EXECUTIVE SUMMARY

This Site Closure Report presents the information required to support a "Cleanup Complete" determination for Site OT001 Beaver Creek Radio Relay Station (RRS). Site OT001 is a Joint Base Elmendorf-Richardson-controlled, 2.5-acre White Alice Communications System site at the Beaver Creek RRS, Alaska. The building and tower are currently leased from the U.S. Air Force by AT\&T Inc. The site is used occasionally by AT\&T Inc. personnel to maintain the tower antennae, storage, power generation, and electronic systems.

Contamination in soil was discovered at the site in 1990 during the removal of a 20,000-gallon underground storage tank (UST). During that same year, approximately 450 cubic yards of extractable, aromatic, and aliphatic petroleum hydrocarbon (EPH)-contaminated soil associated with the tank were excavated following the tank removal and stored in a biopile at the site. In 1992, additional soil contamination was discovered in a drainage ditch southwest of the former UST, which resulted in the removal and transport of 57 cubic yards of contaminated soil to Fairbanks for incineration in 1993. In November 1994, a No Further Action (NFA) proposal was submitted by New Horizons Telecom, Inc. regarding the removed UST, remediated drainage ditch and former biopile. In December 1994, the Alaska Department of Environmental Conservation (ADEC) concurred with the NFA designation for the site.

The site was revisited in 2000 and additional surface soil sampling indicated concentrations of diesel-range organics (DRO) above the most stringent ADEC Method Two, under 40-inch zone, migration to groundwater cleanup level of 250 milligrams per kilogram ($\mathrm{mg} / \mathrm{kg}$). As a result, a remedial investigation was conducted in 2014 to determine and document the nature and extent of soil contamination at Site OT001. Soil samples were collected and analyzed for gasoline-range organics, DRO, residual-range organics (RRO), volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, and Resource Conservation and Recovery Act metals. DRO and RRO were the only analytes detected in concentrations above ADEC Method Two, under 40-inch zone, migration to groundwater cleanup levels in surface and subsurface samples, but no groundwater was encountered during drilling activities. In
addition to collecting soil samples for laboratory analysis, six formerly cleared areas along the easement right-of-way were inspected for use as prior debris burial sites.

Since no groundwater was observed during drilling or excavation activities onsite, it was determined that the most stringent ADEC migration to groundwater cleanup levels do not apply to Site OT001. Results from previous investigations were compared to ADEC Method Two, under 40-inch zone, ingestion cleanup levels. One sample result from the drainage ditch had an RRO concentration ($14,000 \mathrm{mg} / \mathrm{kg}$) above the ingestion cleanup level ($10,000 \mathrm{mg} / \mathrm{kg}$), but two samples, collected in the drainage ditch less than 10 feet away during 1993 sampling efforts, returned nondetect results for EPH. Due to the proximity of these nondetect results, and because they represent greater depths, the RRO surface soil exceedance is not considered indicative of a larger contaminated area. The surface soil ingestion pathway is, therefore, considered de minimis.

1.0 INTRODUCTION

This Site Closure Report (SCR) presents the information required to support a categorization of "Cleanup Complete" at Site OT001 Beaver Creek Radio Relay Station (RRS), Alaska. This report was prepared by Jacobs Engineering Group Inc. for the Air Force Civil Engineer Center (AFCEC) under AFCEC Contract Number FA8903-08-D-8773, Project Number BBYW20137795, Task Order Number 0158.

1.1 REPORT OBJECTIVES

This SCR was prepared in accordance with Alaska Department of Environmental Conservation (ADEC) final reporting requirements for site closure per Alaska Administrative Code (AAC) Title 18, Chapter 75, Section 380 (18 AAC 75.380) (ADEC 2014). Table 1-1 summarizes the required information and provides a cross-reference to the section in this SCR.

Table 1-1
Alaska Administrative Code Requirements

AAC Section	Requirement	Information	$\begin{gathered} \text { SCR } \\ \text { Cross-Reference } \end{gathered}$
18 AAC 75.380b(1)	Date and time of release	Release date unknown. Contamination found during UST removal in 1990 and in drainage ditch during 1992 IRP site visit	Section 2.2
18 AAC 75.380b(2)	Location of release including coordinates using, Degrees/Minutes/ Seconds, World Geodetic System 1984	Approximately 3 miles northwest of Northway Junction, Alaska: 4630 $03^{\prime} 32.994^{\prime \prime}$, $-141^{\circ} 49^{\prime}$ 41.117"	Section 2.0
18 AAC 75.380b(3)	Name and physical address of the site	Site OT001, Beaver Creek RRS, Alaska Mile 1267, Alaska Hwy	Table 1-1
18 AAC 75.380b(4)	Name, mailing address, and telephone number of the owner and of the operator of the site	USAF AFCEC/CZOP, 10471 $20^{\text {th }}$ Street, Suite 343, JBER, Alaska 99506	Table 1-1
18 AAC 75.380b(5)	Type and amount of each hazardous substance released	Type: EPH (DRO, RRO) Amount: unknown; approx. 507 cy excavated to date	Section 2.3

Table 1-1
Alaska Administrative Code Requirements (Continued)

AAC Section	Requirement	Information	SCR Cross-Reference
18 AAC 75.380b(6)	Description of environmental damage caused by the release, to the extent the damage can be identified	Contaminated soil was observed in the drainage ditch near the UST site	Section 2.3
18 AAC 75.380b(7)	Demonstration that the free product was recovered in compliance with 18 AAC $75.325(f)(1)(B)$	Free product not detected or observed	Not applicable; no product was discovered at Site OT001
18 AAC 75.380b(8)	Summary of each applicable soil and groundwater cleanup level approved under site cleanup rules, and a description of the factors used in determining each applicable cleanup level	Table B2, under 40 inch zone, ingestion soil cleanup levels [18 AAC 75.341(d)]	Section 3.0

Notes:

cy = cubic yards
For additional definitions, refer to the Acronyms and Abbreviations section.

1.2 REPORT ORGANIZATION

This SCR is organized as follows:

- Section 1.0 provides the introduction, project objectives, and report organization.
- Section 2.0 describes the site history and previous investigations conducted at the site.
- Section 3.0 details the site contaminants and applicable cleanup levels.
- Section 4.0 provides a summary and "Cleanup Complete" determination.
- Section 5.0 lists the references used to prepare this document.

In addition, the following appendices provide further information:

- Appendix A provides the figures.
- Appendix B presents the analytical results from the samples collected at the site in 2014 that support site closure.
- Appendix C provides responses to ADEC comments on the draft SCR.
(intentionally blank)

2.0 SITE DESCRIPTION

Site OT001 is a 2.5-acre White Alice Communications System (WACS) site at Beaver Creek RRS, Alaska ($63^{\circ} 03^{\prime} 32.994^{\prime \prime},-141^{\circ} 49^{\prime} 41.117^{\prime \prime}$) controlled by the 611th Air Force. Beaver Creek RRS is located within the U.S. Department of Defense Beaver Creek Research Site, approximately 3 miles northwest of Northway Junction, Alaska (Figure A-1). Site OT001 includes the area surrounding the radio relay building, tower, underground storage tank (UST), drainage ditch leading from the UST, and historic biopile and subsequent ADEC-approved landspreading area (Installation Restoration Program [IRP] Site LF002) (Figure A-2).

2.1 SITE HISTORY

The Beaver Creek RRS facility was constructed by the U.S. Air Force (USAF) in 1960 as part of the Ballistic Missile Early Warning System—a branch of the WACS that connected Clear Air Force Station to North American Aerospace Defense Command headquarters in Colorado. Alaska Communications Inc. began leasing the property from USAF in 1984. AT\&T Inc. bought out Alaska Communications Inc. and currently leases the property from USAF (USAF 2000). The site is occasionally used by AT\&T Inc. personnel to maintain the tower antennae, storage, power generation, and electronic systems.

Historically, WACS activities at the site included power generation, waste disposal, transportation, radar maintenance, communications maintenance, and other general facility maintenance. No documented demolition activities have occurred at this site, except the removal of an old, leaky UST and associated contaminated soil in the early 1990s. Fill material was used to backfill the excavation (USAF 1997; New Horizons 1993).

2.2 NATURE OF RELEASE

The exact date and time of the release at Site OT001 is unknown. Diesel-range organics (DRO)- and residual-range organics (RRO)-contaminated soil was assumed to be related to a former 20,000-gallon UST that was removed from the site in 1990 (USAF 1997). Locations
of soil contamination were the former UST site, a nearby drainage ditch, the former biopile area, and in front of the main door to the radio relay building.

2.3 RESPONSE ACTION HISTORY

1990-1994 Removal Actions

In 1990, Alaska Communications Inc., lessee of Beaver Creek RRS, removed a 20,000-gallon UST from the site along with approximately 450 cubic yards of extractable, aromatic, and aliphatic petroleum hydrocarbon (EPH)-contaminated soil associated with the tank. EPH concentrations ranged from 10.5 to 542 milligrams per kilogram ($\mathrm{mg} / \mathrm{kg}$) (New Horizons 1993). The contaminated soil was stored in a biopile, located immediately southeast of the microwave tower (Figure A-2 in Appendix A; USAF 1997).

In July 1992, an IRP site visit conducted by USAF indicated that the biopile remained onsite in deteriorated condition. During this same site visit, a petroleum, oil, and lubricants (POL) spill was discovered in a ditch extending from the former UST location toward the fence line at the property boundary and then offsite for an undetermined distance (USAF 1992).

In September 1992, New Horizons Telecom, Inc. conducted ADEC-approved landspreading of the biopile and collected soil samples from the drainage ditch to delineate the extent of POL contamination. It was determined that contamination was limited to the area near the fence and culvert. EPH contamination along the ditch ranged from nondetect to $221 \mathrm{mg} / \mathrm{kg}$, while the soil contamination at the south end of the culvert ranged from 487 to $22,220 \mathrm{mg} / \mathrm{kg}$ (New Horizons 1993).

In June 1993, 57 cubic yards of contaminated soil was removed from the drainage ditch where the 1992 samples were collected and transported to Fairbanks for incineration (USAF 2000, 1997; New Horizons 1993). Samples collected from the soil that remained in place following the 1993 excavation showed EPH concentrations ranging from $4.53 \mathrm{mg} / \mathrm{kg}$ to $1,420 \mathrm{mg} / \mathrm{kg}$ (New Horizons 1994).

In December 1994, ADEC concurred with the November 1994 No Further Action (NFA) proposal submitted by New Horizons Telecom, Inc. (ADEC 1994). This decision was based on information provided regarding the removed UST, remediated drainage ditch, and former biopile.

2000 Site Investigation

A Site Investigation (SI) was conducted in June 2000. During the SI, five surface soil samples were collected beneath the location of the former biopile and five surface soil samples were collected in front of the main door of the radio relay building. Soil samples were analyzed for gasoline-range organics (GRO), DRO, RRO, volatile organic compounds (VOC), semivolatile organic compounds (SVOC), polychlorinated biphenyls (PCB), and Resource Conservation and Recovery Act (RCRA) metals. Results were compared to the most stringent cleanup levels listed in 18 AAC 75, Method Two, under 40-inch zone (ADEC 2014).

One sample from the former biopile location and two samples near the main door contained DRO concentrations that exceeded the cleanup level (Table 3-1). Arsenic was the only metal detected above its respective cleanup level, but it was not listed as a contaminant of potential concern due to naturally occurring background levels. All other analytes were either less than detection levels or below the most stringent cleanup levels (USAF 2000).

In 2002, ADEC identified several deficiencies in the 1994 SI Report and the 1994 NFA decision and requested an additional investigation to assess the potential sources of contamination at the site, including the potential for fuel distribution pipelines, areas under floor drains, a septic tank outfall area, a waste storage area, and other disposal areas (ADEC 2002).

2014 Remedial Investigation

In 2014, a Remedial Investigation (RI) was conducted to determine and document the nature and extent of soil contamination at Site OT001. A total of 26 surface soil and 24 subsurface soil samples were collected using a hand-auger or direct push drill rig (Figure A-2). DRO and

RRO were detected in concentrations above ADEC Method Two, under 40-inch zone per 18 AAC 75.341(d), Table B2 most stringent cleanup levels (ADEC 2014) in surface and subsurface samples (see Table 3-1); the applicable cleanup levels for DRO and RRO were those for the ingestion cleanup levels because groundwater was not encountered during drilling activities due to site topography and bedrock. Concentrations of GRO, VOCs, SVOCs, PCBs, and pesticides were below cleanup levels in all samples. All DRO and RRO exceedances were located within the drainage ditch. The RRO surface soil exceedance is not indicative of a larger contaminated area and represents a very small volume since RRO was not detected in samples collected less than 10 feet way therefore the volume is de minimis. This is the same ditch where remedial action activities occurred in 1993. Concentrations of arsenic, barium, and/or chromium exceeded ADEC cleanup levels in all 26 samples, with maximum concentrations of $250 \mathrm{mg} / \mathrm{kg}, 1,150 \mathrm{mg} / \mathrm{kg}$, and $65.1 \mathrm{mg} / \mathrm{kg}$, respectively (USAF 2015). These concentrations are attributed to naturally occurring mineralization related to the igneous activity that created a nearby economic prospect for copper and molybdenum (Cox et al. 1995).

3.0 CONTAMINANTS AND CLEANUP LEVELS

Results from the 2014 RI and previous SIs indicate that soil contamination is either below cleanup levels (ADEC 2014) or de minimis. Contaminants of concern at Site OT001 were DRO and RRO in soil associated with the former UST, former drainage ditch, and former biopile area. For Site OT001, results are compared to ADEC Method Two, under 40-inch zone, ingestion cleanup levels, per 18 AAC 75.341(d), Table B2 (ADEC 2014) (Table 3-1). No groundwater was observed during drilling or excavation activities onsite due to site topography and bedrock; therefore, the most stringent migration to groundwater cleanup levels do not apply (USAF 2015).

Table 3-1
Analytical Result Exceedances in Surface and Subsurface Soil

Report	Location ID	Sample Depth (feet bgs)	Analyte	Result (mg/kg)	Migration to Groundwater Cleanup Level ${ }^{1}$ ($\mathrm{mg} / \mathrm{kg}$)	Ingestion Cleanup Level ${ }^{1}$ ($\mathrm{mg} / \mathrm{kg}$)	Inhalation Cleanup Level ${ }^{1}$ ($\mathrm{mg} / \mathrm{kg}$)
$\begin{aligned} & 2014 \mathrm{RI} \\ & \text { (USAF } \\ & 2015) \end{aligned}$	SB02	2-5	DRO	570	250	10,250	12,500
	SB14	0-2	DRO	980	250	10,250	12,500
	SB14	2-4.5	DRO	440	250	10,250	12,500
	SB32	0-2	DRO	1,100	250	10,250	12,500
	SB32	0-2	RRO	14,000	10,000	10,000	22,000
$\begin{aligned} & 2000 \text { SI } \\ & \text { (USAF } \\ & 2000) \end{aligned}$	50092008-02	surface	DRO	320	250	10,250	12,500
	50092008-09	surface	DRO	226	250	10,250	12,500
	500920080-10	surface	DRO	558	250	10,250	12,500

Notes:

For definitions, refer to the Acronyms and Abbreviations section.
${ }^{1}$ ADEC Method Two, under 40-inch zone per 18 AAC 75.34 1(d), Table B2

Analytical results for one surface soil sample in the drainage ditch from the 2014 RI exceeded the ADEC Method Two, under 40-inch zone, ingestion cleanup level for RRO (Table 3-1). Previous soil sampling from 3 to 4 feet below ground surface in the drainage ditch during the 1992 investigation by New Horizons, at sample locations less than 10 feet from the exceedance location, returned nondetect results for EPH (Figure A-2). Due to the proximity of
these nondetect results, and since they represent greater depths, the RRO surface soil exceedance is not indicative of a larger contaminated area and represents a very small volume of contaminated soil. Therefore, the surface soil ingestion pathway is considered de minimis and, per ADEC, the site has been designated as "Cleanup Complete."

4.0 CLEANUP COMPLETE DETERMINATION

Analytical results from the 2014 RI indicate that soil contamination levels are either below ADEC Method Two, under 40-inch zone, Ingestion cleanup levels or are considered de minimis based on results from previous sampling events (Table 4-1).

ADEC has determined that the site has been adequately characterized under 18 AAC 75.335 and has achieved the applicable requirements under the site cleanup rules for a "Cleanup Complete" designation. Environmental land use controls are not required.

Table 4-1
Exposure Pathway Evaluation

Pathway	Result	Explanation
Surface Soil Contact	De minimis exposure	Contamination is below soil cleanup levels for ingestion ${ }^{3}$ for DRO. RRO concentrations exceed cleanup levels ${ }^{3}$ in one sample in drainage. Previous sample results from a 1993 investigation were nondetect for EPH in two subsurface soil samples (3 to 4 feet below ground surface) less than 10 feet from the exceedance. Data suggest that the exceedance is contained in a very limited area and is considered de minimis.
Subsurface Soil Contact	De minimis exposure	Contamination is below soil cleanup levels for ingestion ${ }^{3}$.
Inhalation - Outdoor Air	De minimis exposure	Contamination is below cleanup levels for inhalation ${ }^{4}$.
Inhalation - Indoor Air (vapor intrusion)	Pathway Incomplete	Contamination is below soil cleanup levels for inhalation ${ }^{4}$.
Groundwater Ingestion	Pathway Incomplete	No groundwater has been observed during drilling or excavation activities. Refusal to bedrock was frequently encountered during the 2014 RI at approximately 4 feet.
Surface Water Ingestion	Pathway Incomplete	There is no surface water within 0.5 miles of the site. No known contamination exists at the most proximal surface water body, Beaver Creek, which is 0.55 miles from Site OTO01.
Wild Foods Ingestion	Pathway Incomplete	The site is fenced and is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future.
Exposure to Ecological Receptors	Pathway Incomplete	Contamination is within the vadose zone, but none of the contaminants have the potential for bioaccumulation. The migration to groundwater or surface water pathway is incomplete.

Notes:

For definitions, refer to the Acronyms and Abbreviations section.

1. De minimis exposure means the pathway is complete; however, receptors are unlikely to be affected by the minimal volume or concentration of remaining contamination.
2. 'Pathway incomplete' means contamination has no potential to contact receptors.
3. ADEC Method Two Soil Cleanup Levels, under 40-inch zone, ingestion [18 AAC 75.341(d)], Table B2
4. ADEC Method Two Soil Cleanup Levels, under 40-inch zone, inhalation [18 AAC 75.341(d)], Table B2

5.0 REFERENCES

ADEC (Alaska Department of Environmental Conservation). 2014 (April). Oil and Other Hazardous Substances Pollution Control. 18 AAC 75.

ADEC. 2002 (April). Review of Site Investigation, Beaver Creek RRS, Alaska (2000), and Evaluation of the Beaver Creek Site for No Further Action.

ADEC. 1994 (December). Request for No Further Action at Alascom Microwave Repeater Site Beaver Creek, Alaska. Letter.

Cox, L.J., M.A. Chaffee, D.P. Cox, and D.P. Klein. 1995. "Porphyry Cu Deposits." Chapter 11 in Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models, edited by E.A. du Bray. U.S. Geological Survey Open-File Report 95-0831. pubs.usgs.gov/of/1995/ofr-95-0831/.

New Horizons (New Horizons Telecom, Inc.). 1994 (November). No Further Action Request to ADEC. Prepared for Alascom, Inc.

New Horizons. 1993 (January). Interim Corrective Action Report. Beaver Creek Microwave Repeater Site. Underground Storage Tank Replacement Program. Prepared for Alascom, Inc.

USAF (U.S. Air Force). 2015 (May). Remedial Investigation Report. White Alice Communications Site OT001 Beaver Creek RRS, Alaska. Prepared by Jacobs Engineering Group Inc.

USAF. 2000 (June). Final Site Investigation Report. Beaver Creek RRS, Alaska.
USAF. 1997 (October). Management Action Plan. Beaver Creek RRS, Alaska.
USAF. 1992 (July). IRP Site Visits Trip Report.
(intentionally blank)

APPENDIX A

Figures

SITE LOCATION MILE 1267 4_{5}	$\begin{array}{ll}\text { 2014 RI Soil Boring } & \text { Culvert } \\ \text { Sample Below } \\ \text { Cleanup } & =\text { Ditch }\end{array}$	Analyte	ADEC Cleanup Level for Ing	gestion (mg/kg)	All Locations Are Approximate WGS 1984 UTM Zone 7N, Imagery: Aerometric 2004					
		DRO	10,250							
		RRO	10,000							
			SITE OT001 SAMPLE LOCATIONS, EXCEEDANCES AND SELECTED RESULTS							
			BEAVER CREEK RRS, MILEPOST 1267 ALASKA HIGHWAY, ALASKA							
					DATE:	PROJECTMANGEER:				
				JACOBS	01 SEP 2015	J. WEHRMANN	A-2			

APPENDIX B

Chemical Data Tables

2014 Beaver Creek RRS Remedial Investigation

			$\begin{gathered} \hline \hline \text { Location ID } \\ \text { Sample ID } \\ \text { Lab Sample ID } \\ \text { SDG } \\ \text { Collection Date } \\ \text { Matrix } \\ \text { Laboratory } \\ \text { QA/QC } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \hline \text { SB01 } \\ \text { 14BVR-SB01-SS01 } \\ \text { 14E187-01 } \\ \text { 14E187 } \\ 5 / 20 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{array}$				$\begin{gathered} \hline \hline \text { SB02 } \\ \text { 14BVR-SB02-SS01 } \\ \text { 14E187-03 } \\ \text { 14E187 } \\ 5 / 20 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$													
Melod	Anave	Units	ADEC Cleanup lever																		
		${ }_{\text {Precent }}^{\substack{\text { Pmak }}}$		${ }^{21.4}$	21.4	16.6	16.6	${ }^{20.1}$	20.1	17.3	17.3		17.2	17.2	7.4	7.4	10.9	10.9	${ }^{8.2}$	${ }^{8.2}$	11.3
		$\underbrace{\text { a }}_{\substack{\text { makg } \\ \text { mokg } \\ \text { moke }}}$	$\underset{\substack{300 \\ 250}}{ }$	N0 0 [0.7]		N0[0.62]		N0[0.67]				$0.860 .51]^{3}$		No [0.34]		No(0.59]		No [0.53]		No 0 0.56]	
	${ }_{\substack{\text { ORO } \\ \text { RRO }}}^{\text {Renc }}$	$\underbrace{\text { max }}_{\substack{\text { makg } \\ \text { mong }}}$	ce2000 1000						(12.6.3		$570[6]$		$140[6]$		18 [5.4]		$18[5.6]$ $83[5.6] \mathrm{JD}$				
${ }^{60209}$	${ }^{\text {a }}$	${ }_{\substack{\text { mink } \\ \text { mokg }}}$	${ }_{1100}$			-	(eatiolib]	-	${ }_{\text {a }}$				coll		(ex	-			(i.tibioliol	-	(tal
		${ }_{\text {makh }}^{\text {moka }}$	${ }^{5}$		0.1740.127J		(0.2990.1817		(2.2870.122J		(0.2570.190J		${ }^{0.05050 .5887 J}$				(0.4610.12]		${ }^{\text {ajema }}$		
${ }_{60209}$	lead	mgkg	400	-	${ }^{14.5 .50 .127]}$		${ }^{36,50.1018]}$		${ }_{6}^{6,28[0.122]}$		${ }_{3226001019}$		${ }_{4}^{4.8830 .586]}$		$4.640 .1006]$		${ }_{1}^{13.12 .10 .12]}$		9.7410		${ }^{1268080.12]}$
${ }_{\substack{6020 \\ 6020}}^{\text {6020 }}$	Soter	${ }_{\text {makg }}^{\text {maxa }}$	${ }^{3.4}$						(0.3190.122J				${ }^{0.24380 .1717 J J} 0$		(0.2770.0.06 J		0.1690.112J		(0.2940.107J		
7771 A	Mectur	mgkg	${ }_{1}^{14}$		no 10.0254$]$		nol0.024]		No 10.025$]$		No 10.0242$]$		$0.0013770 .02427]$		NoD 1.02026$]$		0.014010.022 J		No 10.0218$]$		no 10.02235
${ }_{800818}^{200818}$		${ }_{\text {mghkg }}^{\text {mokg }}$	${ }^{513}$						No NO		${ }^{\text {No }}$		Nol		ND[0.0.00033]		Nolo. 0				
${ }^{\text {8081B }}$	Adarin		0.07		nol 1.000511		no 10.00098$]$		No 10.0005		No [0.00048]		Nol0.00								
			0.0664 .23		Nol.0.0051)				No. ${ }^{\text {No.0.000 }}$ No		(No.0.0048								No. $0.00044{ }^{\text {No }}$		
${ }^{\text {g081B }}$	Bearabic	mgkg	0.022		not 1.000511		No 10.00098$]^{\text {a }}$		not [0.0009		No [0.00048]		Nol 1000048]		nol 10000033$]$		nol 1.000045		Nol 10.00044		Nol 10.00045]
	${ }^{\text {delabeb }}$	$\underbrace{\text { mokg }}_{\text {mgkg }}$	0.0076								(No.0.0048		Nop								
(80018	Endosilan 1	$\underbrace{}_{\substack{\text { makg } \\ \text { moka }}}$	-			-	ND(10.0048] ${ }^{\text {ND }}$		No 10.0005$]$		No.0.0048]		No. $10.00483^{\text {No }}$				No (10.0045)		No. $10.0044{ }^{\text {No }}$		
${ }_{80818}^{800818}$	Endosuluan Sultae	mokg			NDOP0.00551]		NDOP000048]		No 10.00059		ND 0.000048]		ND 0.000048 (ND $0.0000033^{\text {a }}$		ND 10.000459		ND 0.000044		ND 1000
${ }^{8018}$	Endan	mgkg	0.29		No 10.000511	-	No 10.00028		No 10.00095		No (1.00048)		No (1000048)		${ }^{\text {No } 10.0000333]}$		Nolo				
(80318																					
${ }^{80818}$	Cammabic (Lindane)	mgkg	0.0095	-	No (10.00051]	-	$0.00093[0.00048 \mathrm{~s}]$		$0.002120 .0005]$		No (1.00048)		No (1.00048)		No (1.000233)		not 1.00045		No (1.00044)		10,0
${ }_{\text {coser }}^{80818}$	Hepmachlor	${ }_{\text {magks }}^{\text {moks }}$	${ }_{0}^{2.28}$		NDO.0.00551]		ND 1.0 .000489		No 10.000055		No.										
${ }^{80818}$	Heplachlor Fpoxide		0.014		No(10.00511		No (1000048)		NoD 1.00005		No (0.00048)		No (10.0048)		Nol(1000033)		no (1.00045)		nol 1.00044		10.00
${ }^{80818}$	Toxaponene	${ }_{\text {mgokg }}$	${ }_{3.9}^{28}$	-	Nop 0.00131	-	Nol 0.0041	-	Nol 0.013		ND 10.102^{2}		ND 10.0042		NDO.0.011]		No. 0.011		ND 10.0111		${ }^{\text {Notoiou }}$
${ }^{8032} 8$	PCB-1012 (ATrocor 1010)				No[0.023]		N0[002]								No [0.018]		No 10.0199				NDIO.
${ }_{\substack{80824 \\ 8082}}$		${ }_{\text {magk }}^{\text {mokg }}$	1	-	Nolio.02]	-	${ }^{\text {Nol }}$ N0.0.02]	-	Nol0.02]		${ }^{\text {Not }}$ N0.0.02]		${ }_{\text {Nol }}$ N0.0.02]		${ }^{\text {No }}$ N0.0.0.018		Nolo.0.99		Nolo.018)		Nolo.099
${ }^{80824}$	PCB.1242 (Atocolo 1242)		1		no [0.02]		N010.02]						N010.02]				No 10.0099		No [0.018]		
${ }_{\substack{8082 \\ 8082}}$	(e)	${ }_{\text {mghks }}^{\text {mokg }}$	1		Nol		${ }^{\text {Nol } 0.0 .02] ~}$		Nolo		${ }_{\text {Nol }}$		${ }^{\text {Nol }}$ N0.0.02]		Not 0.0018$)$		Nol 10.0099		Nol		Nol
${ }^{8023} 8$	PCB-1230 (A)AOOOOP 1280)	mgks	1	-	ND 0.023$]$		no [0.02]		not 0.021$]$		No [0.02]		No [0.02]		No [0.018]		No 10.019		No [0.018]		No 10.019
		${ }_{\text {magk }}^{\text {moks }}$	0.82	-		-															
${ }^{826008}$	1.1.2.-Terachloroenhane	mgkg	0.017																		
${ }^{82808}$	隹	mgkg	750	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
${ }_{\substack{8272088 \\ 88208}}^{\text {820 }}$	1,-D.i-chorovenenane	$\underbrace{\text { moks }}_{\text {magk }}$	${ }^{0.018}$	-	-	-	-		-												
(82808		mgkg	0.03	-																	
	1,2,3-1.iolioloosenenene	${ }_{\text {magk }}^{\text {mokg }}$	-																		
	1, $1,2.3$ Trichloroforopane	${ }_{\text {makg }}$	${ }^{\text {0.00053 }}$	-		-															
			${ }^{23}$																		
		${ }_{\substack{\text { magkg } \\ \text { mokg }}}$	0.00016				-														
${ }_{\substack{828008 \\ 88208}}^{\text {8, }}$		$\underbrace{}_{\substack{\text { mgkk } \\ \text { mokg }}}$	${ }_{0}^{5.016}$	-	-	-	-		-		-		-		-	-	-		-		
	1.2.0ichlororopone	mgkg	${ }^{0.018}$																		
${ }^{828008}$	1,3.Dichloromenzene	${ }_{\text {mgkg }}$	${ }_{28}^{28}$	-	-		-		-												
${ }_{\substack{82008 \\ 88088}}$			0.64																		
${ }_{\text {82008 }}^{82808}$	2.-2.ichlolopopopane	mgkg																			
${ }_{\text {cki }}^{\text {82008 }}$	${ }^{2}$ 2-hromorocoluene	${ }_{\text {mgakg }}^{\text {mokg }}$	$\stackrel{59}{-}$																		
		$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	-																		
	4.1.aporoytuoune	$\underbrace{\text { den }}_{\substack{\text { makk } \\ \text { mokg }}}$																			
	Aceer	$\underbrace{}_{\substack{\text { mgkk } \\ \text { mokg }}}$	${ }^{88}$															N00039E			
${ }_{\text {cter }}^{820008}$	${ }^{\text {Son }}$	${ }_{\substack{\text { makk } \\ \text { mokg }}}$		No[00.0]		N0[0.002]		Nol0.067 E		N010.088 E		N $010.051 / \mathrm{S}, \mathrm{E}$		ND[0.034]		Nol0.099E		ND[0.033]		ND0.0.50]	
	Bremediounenane	$\underbrace{\text { mag }}_{\substack{\text { makg } \\ \text { makg }}}$	0.044																		
		$\underbrace{\text { max }}_{\substack{\text { mgke } \\ \text { mokg }}}$	(0.36																		
82008	Camon tuatue	${ }_{\substack{\text { magk } \\ \text { mokg }}}$	${ }_{0}^{1.023}$																		
	chloroenzene	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	0.63 ${ }_{23}$																		
${ }_{\substack{82008 \\ 88208}}^{888}$	chiorotem		0.46 0.21	-																	
		mgk	- ${ }_{\text {O }}^{0.24}$																		
	Pibomocheoremetane	${ }_{\text {makg }}$	0.032																		
	Dichloratituomemane	$\underbrace{\text { den }}_{\substack{\text { makk } \\ \text { mokg }}}$	${ }_{6}^{140}$	N010.07		No [0.062]		No [0.067]		No[0.088]		No [0.0511 3 S-		No [0.034		No [0.059]		No [0.053]		No 0.056$]$	
	Nenysene choride	$\underbrace{\substack{\text { makg }}}_{\text {monk }}$	0.016									Notosins									

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

\begin{tabular}{|c|}
\hline \& \& \& \[
\begin{gathered}
\hline \text { Location ID } \\
\text { Sample ID } \\
\text { Lab Sample ID } \\
\text { SDG } \\
\text { Collection Date } \\
\text { Matrix } \\
\text { Laboratory } \\
\text { QA/QC } \\
\hline
\end{gathered}
\] \& \& \& \& \& \& \& \& \& \& \& \(\mid\) \& \& \& \& \& \& \& \\
\hline Mentod \& －Anaye \& Unis \& ADECC Cleanup Level \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline （82088 \& N－Lutherenene \& \(\underbrace{\text { chem }}_{\substack{\text { mgkg } \\ \text { m9kg }}}\) \& \({ }_{15}^{15}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline （82088 \& \& \& \begin{tabular}{l}
15 \\
\hline 12 \\
12
\end{tabular} \& No［10．07］ \& \& No［0．062］ \& \& No［0．067］ \& \& No［0．068］ \& \& \& \& No［0．034 \& \& No 10.059 \& \& No［0．053］ \& \& No［0．056］ \& \\
\hline （82008 \& \& \({ }_{\substack{\text { mghkg } \\ \text { makg }}}^{\text {mag }}\) \& \({ }_{0}^{129}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 82808 \& Terachlooenenene（PCE） \& mghk \& 0.024 \& \& \& \& \& \& \& 隹 \& \& \& \& \& \& N0099 \& \& \& \& \& \\
\hline （82008 \& \& \& \({ }_{0}^{6.57}\) \& No10．0］ \& \& ND［0．062］ \& \& N0 00.067 \& \& 0.00470 .0681 J \& \& N0［0．051］\({ }^{\text {a }}\)－ \& \& No［0．034］ \& \& N0 0.059 \& \& N0［0．053］ \& \& N010．056］ \& \\
\hline 边 \begin{tabular}{c}
82088 \\
88208 \\
\hline
\end{tabular} \& Trass．1．3．i．chloropopenen \& \(\underbrace{\text { and }}_{\substack{\text { mgkg } \\ \text { m9kg }}}\) \& \({ }_{0}^{0.0023}\) \& \& \& \& － \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& Trentoontuoromethane \& \(\underbrace{\text { mokg }}_{\text {mgkg }}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline － 82808 \& xxlene．Somers M P \& \({ }_{\text {makg }}^{\text {makg }}\) \& \({ }^{63}\) \& No［0．35］ \& \& No［0．31］ \& \& N0 0 O．33］ \& \& No［0．34］ \& \& \& \& No［0．17］ \& \& N［［0．3］ \& \& N0 10.27 \& \& No 10 \& \\
\hline \({ }^{827200}\) \& 1，1，－i．ichlocooberzene \& m9 \({ }^{\text {makg }}\) \& \({ }_{5} 5\) \& \& \({ }^{\text {NN0 } 0.202] ~}\) \& \& \({ }^{\text {N0，} 0.2]}\) \& \& \({ }^{\text {No } 0.0 .23]}\) \& \& \({ }^{\text {N0 } 00.2] ~}\) \& \& \({ }^{\text {Nop } 0.2 .2] ~}\) \& \& Nol0．18］ \& \& Nol0．19］ \& \& Nol0．18］ \& \& Nol0．19］ \\
\hline \({ }^{822700}\) \& 1. \& \& \({ }_{0}^{28}\) \& \& \(\xrightarrow{\text { Nol } 10.211}\) \& \& Notion \& \& \({ }^{\text {NNOLO．21］}}\) \& \& \& \& \& \& \({ }^{\text {Nol }}\) \& \& \({ }^{\text {Nop }}\)（0．19］ \& \& \({ }_{\text {Nol }}\) \& \& \({ }^{\text {Noloin }}\) N0．19］ \\
\hline \({ }_{\substack{82700 \\ 88700}}\) \& \({ }^{\text {a }}\) \& \({ }_{\substack{\text { makg } \\ \text { m9kg }}}\) \& 6.2
67 \& － \& \({ }^{\text {Nol }}\) N0．21］ \& － \& \& － \& \({ }_{\text {No }}\) \& － \& Nop 0.22 \& － \& \(\xrightarrow{\text { Nob } 0.2 .2]}\) \& \& \(\xrightarrow{\text { Nol } 0.1018]}\) \& \& \& \& \({ }^{\text {Nol } 0.018]}\) No 0.18\(]\) \& \& \({ }_{\text {Nol }}^{\text {Nol0．19］}}\) \\
\hline \& 24．4．7ichlorophenol \& \({ }_{\text {mgkg }}^{\text {mokg }}\) \& \({ }_{13}^{1.4}\) \& \& Nola \& \& \({ }^{\text {Nob } 0.2]}\) \& \& \({ }^{\text {Nolo．2］}}\) \& \& Nop 0.27 \& \& \& \& N010．18］ \& \& N010．99 \& \& N00．18］ \& \& \\
\hline 882700 \& 2．4．mimenyphenol \& m9kg \& \({ }_{8.8}\) \& － \& N0［0．21］ \& － \& N010．2］ \& － \& N010．21］ \& － \& No 0.27 \& － \& No［0．2］ \& － \& N00．18］ \& \& Nol0．19］ \& \& No［0．18］ \& \& Nol 0.19 \\
\hline \({ }_{\substack{82700 \\ 88700}}\) \& \& \({ }_{\text {makg }}^{\text {mokg }}\) \& \({ }_{0}^{0.094}\) \& － \& \& \& \& \& \({ }_{\text {Nol }}^{\text {No } 0.221]}\) \& \& \& \& \& \& \({ }_{\text {Nol }}^{\text {Nol } 0.108]}\) \& \& \({ }^{\text {Nol }}\) N0．109］ \& \& \& \& \\
\hline \& 26．－Vinitrooluene \& mokg \& 0.0094 \& \& Nol（0．21］ \& \& \& \& No（10．21］ \& \& No（102］ \& \& Nolozele \& \& No（0．183］ \& \& Nol0．19］E \& \& \& \& Nol0．199E \\
\hline \({ }^{82700}\) \& \({ }^{\text {2 }}\) 2．Chorononenol \& \({ }_{\text {makg }}\) \& \({ }_{1}^{1.5}\) \& － \& \({ }^{\text {N0，} 0.27]}\) \& － \& \(\left.{ }^{\text {N0，}} \mathrm{ND} 0.2 .2\right]\) \& － \& \({ }^{\text {NNo }}\) N0．2．21］ \& \& \& \& \({ }^{\text {N0，}} \mathrm{ND} 0.2 .27\) \& \& \({ }_{\text {N0，}}^{\text {N0．0．18］}}\) \& \& \({ }^{\text {Nol }}\) N0．19］ \& \& \({ }^{\text {Nol }}\) \& \& \({ }^{\text {Nol }}\) \\
\hline \& 2－Meethruaphhalane \& \& \({ }_{6} 6\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
82700 \\
8820 \\
\hline
\end{tabular} \& \& \& \& － \& \({ }_{\text {NNO }}\) \& － \& \({ }^{\text {Nob }}\) N0．2．2］ \& \& \({ }^{\text {Nol }}\) \& \& \({ }^{\text {Niol }}\) N0．2］ \& \& \({ }^{\text {Niol }}\) N0．2］ \& \& \({ }^{\text {NNOLO．18］}}\) \& \& \(\xrightarrow{\text { NN0．0．19］}}\) \& \& \({ }^{\text {Noploin }}\) \& \& \({ }^{\text {NNo［0．19］}}\) \\
\hline \& 33．：İillorobe \& \& 0.19 \& \& \& \& \& \& Nop（0．21］E \& \& \& \& \& \& \& \& \& \& No（0．18］E \& \& Nol 0.199 E \\
\hline 820700
8820 \& \& \& \& \& \(\xrightarrow{\text { Nol } 0.202]}\) \& － \& \({ }^{\text {Nop } 0.0 .2] ~}\) \& \& \({ }^{\text {Nol }}\) N0．2．2］ \& \& N0 NO 0.2\(]\) \& － \& \({ }^{\text {Niol } 0.2]}\) \& \& \({ }^{\text {Nop } 0.10 .18]}\) \& \& \({ }^{\text {Noplo．}}\) N0］ \& \& \({ }^{\text {Noploin］}}\) \& \& \({ }^{\text {Noplo．19］}}\) \\
\hline \({ }_{8}^{82700}\) \& 4．Chloramaline \& kg \& 0.057 \& \& No（0．22］E \& \& No（102］ \& \& No（0．22］E \& \& \& \& \& \& \& \& \& \& No 0.1 .81\(]\) \& \& Noplo \\
\hline \({ }^{82700}\) \& \({ }^{\text {and }}\)－ 4 Nitrananiline \& \({ }_{\text {mghkg }}^{\text {mak }}\) \& \& \& \({ }^{\text {Nol }}\) N0．2．2］ \& \& \({ }^{\text {Niol } 0.2 .2] ~}\) \& \& \({ }_{\text {No }}\) N0．20．2］ \& \& \({ }^{\text {N0，}}\) N0．0．2］ \& \& Nolo．2］ \& \& \({ }^{\text {Noploib }}\) \& \& No［0．19］ \& \& \({ }^{\text {Noploin }}\) \& \& \({ }^{\text {Noplo．19］}}\) \\
\hline \({ }_{\substack{82700 \\ 88700}}\) \& 4，Nitrophenol \& 析 \& 180 \& \& Nolo．23］ \& \& \({ }^{\text {Nol } 0.23]}\) \& \& \(\xrightarrow{\text { Nolo．23］}}\) \& \& No 10.2\(]\) \& \& No 0.23 \& \& \({ }^{\text {Nol0．18］}}\) \& \& N010．19 \& \& N010．18］ \& \& Nol \\
\hline \({ }_{82770}\) \& Acenaphtymene \& mghk \& 180 \& \& No［0．21］ \& － \& N0［0．2］ \& \& No［0．2］ \& \& \({ }^{\text {N }}\) N0 0.2 .2\(]\) \& \& \({ }^{\text {N0，} 0.2 .2] ~}\) \& \& \({ }^{\text {Nol } 0.18]}\) \& \& No［0．19］ \& \& \({ }_{\text {Nof } 0.18]}\) \& \& Nol0．19］ \\
\hline \begin{tabular}{l}
82700 \\
88700 \\
\hline
\end{tabular} \& Antraene \& kg \& \({ }_{3.6}^{3000}\) \& \& \& \& \& \& \& \& \& \& \(\xrightarrow{\text { Nob } 0.23]}\) \& \& \& \& Nol0．99 \& \& Nolo．18］ \& \& \\
\hline \({ }_{82700}\) \& Benzo（A）PVene \& m9kg \& \({ }_{0.49}\) \& \& No［0．21］ \& \& N010．2］ \& \& N010．21］ \& \& N0 0.23 \& \& N0 0.2 .2\(]\) \& \& N0［0．18］ \& \& No（0．19］ \& \& No［0．18］ \& \& No［0．19］ \\
\hline \begin{tabular}{|c}
82700 \\
88700 \\
\hline 8
\end{tabular} \& \& \({ }_{\substack{\text { mgkg } \\ \text { m9kg }}}\) \& \({ }_{1}^{4900} 1\) \& \& \& \& \(\xrightarrow{\text { Nol } 0.23}\) N0． 0.2\(]\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \({ }^{\text {Noplo．19］}}\) No（0．19］ \\
\hline \({ }^{82700}\) \& BerookFluwarathene \& mgkg \& 49 \& \& N0［0．23］ \& \& N00．2］ \& \& N0［0．23］ \& \& No［0．2］ \& \& No［0．2］ \& \& No［0．18］ \& \& Nol0．19］ \& \& No［0．18］ \& \& No［0．19］ \\
\hline \({ }^{32700} 8\) \& \& \({ }_{\substack{\text { mgkg } \\ \text { mokg }}}\) \& \({ }_{13}^{40}\) \& \& \& \& \(\xrightarrow[{\substack{\text { Nolo．} \\ \text { No } 0.2]}}]{ }\) \& \& \(\xrightarrow{\text { Nolo．}}\) \& \& \& \& \& \& \(\xrightarrow{\text { Nol0．72］}}\) Nolis］ \& \& \(\xrightarrow{\text { Nolo．}}\) \& \& \(\xrightarrow{\text { Nolor．}}\) \& \& \\
\hline \begin{tabular}{l}
82700 \\
88700 \\
\hline 8. \\
\hline
\end{tabular} \& carazole \& \& \({ }_{\substack{6.5 \\ 360}}\) \& \& \& \& \(\xrightarrow{\text { Nol } 0.23]}\) \& \& \& \& \(\xrightarrow{\text { No } 0.02]}\) \& \& \(\xrightarrow{\text { Nob } 0.2 .2] ~}\) \& \& \(\xrightarrow{\text { Nolo．12］}}\) \& \& N0．0．99］ \& \& Nolo．18］ \& \& Noil \\
\hline \({ }^{82700}{ }^{82700}\) \& \& \({ }_{\substack{\text { makg } \\ \text { mokg }}}^{\text {mata }}\) \& 3090 \& \& \({ }^{\text {NNol0．21］}}\) \& \& \& \& \({ }_{\text {Nol }}\) \& \& \& \& \(\xrightarrow{\text { Nob } 0.0 .2]}\) \& \& \& \& \& \& \& \& \({ }^{\text {Noloing }}\) N0．19 \\
\hline \({ }^{82700}\) \& Dibenzoturan \& mgkg \& 11 \& \& No［0．21］ \& \& ND［0．2］ \& \& No［0．23］ \& \& No［0．2］ \& \& No［0．2］ \& \& No［0．18］ \& \& No［0．19］ \& \& No［0．18］ \& \& Nop0．19］ \\
\hline \({ }^{82700}\) \& fluorene \& \({ }_{\substack{\text { makg } \\ \text { mokg }}}\) \& \({ }^{1400}\) \& \& \({ }_{\text {Nol }}^{\text {Nolo．2］}}\) \& \& \({ }_{\text {Nop }}\) N0．0．2］ \& \& \({ }_{\text {Nol }}\) N0．2021］ \& \& \({ }^{\text {NNo }}\) N0． 0.2\(]\) \& \& \({ }_{\text {N }}\) \& \& \({ }_{\text {Nol }}\) N0．0．18］ \& \& \& \& \({ }_{\text {Nol }}\) N0．0．18］ \& \& \({ }^{\text {Nol0．0．90 }}\) \\
\hline （82700 \& \& \(\underbrace{}_{\substack{\text { mgkg } \\ \text { m9kg }}}\) \& 0.047
0.12 \& \& \& － \& Notiole \& － \& \& \& Notioze \& \& \& \& \& \& \& \& \& \& \\
\hline 27200 \& Hexachlorocecclipenanaidene \& m9 \({ }^{\text {ghe }}\) \& \({ }^{1.3}\) \& \& N010．21］ \& \& ND0．0．2］ \& \& \({ }^{\text {NN0 0，} 0231}\) \& \& N0 10.2\(]\) \& \& N0 10.2\(]\) \& \& NN00．18］ \& \& No 0 0． 190 \& \& No 01.12 \& \& NoI \\
\hline （182700 \& \& \(\underbrace{\text { mage }}_{\substack{\text { makg } \\ \text { mokg }}}\) \& \& \& Nolo． \& \& \& \& \({ }^{\text {Nolo．}}\) \& \& Noiol \& \& Noiple \& \& \& \& \({ }^{\text {Noloig }}\) \& \& \({ }^{\text {Noloig }}\) \& \& \({ }^{\text {Noloiol }}\) N00．19］ \\
\hline \({ }^{82700} 8\) \& （sophorne \& \({ }_{\text {mghks }}^{\text {mokg }}\) \& \({ }_{20}^{3.1}\) \& \& \(\xrightarrow{\text { Nolo．2］}}\) N0．02］ \& \& \({ }_{\text {Nop }}^{\text {Nol } 0.02]}\) \& \& \({ }_{\text {Nol }}\) \& \& \({ }^{\text {Nob }}\) N0．0．2］ \& \& \({ }_{\text {Nob }}^{\text {Nolo．} 0.2]}\) \& \& \({ }^{\text {NNo［0．18］}}\) Noi．1］ \& \& \({ }^{\text {Nol }}\) N0．0．19］ \& \& \& \& \\
\hline ¢ \begin{tabular}{l}
82700 \\
88700 \\
\hline
\end{tabular} \& Nito \& \& \({ }_{\text {0．0．009 }}^{0.0}\) \& \& \& \& Noloz］E \& \& \& \& \(\cdots\) \& \& \& \& \& \& \& \& \& \& \\
\hline （82700 \& \& \(\underbrace{}_{\substack{\text { mgkg } \\ \text { mgkg }}}\) \& 0.0011

15 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& － \& \& \&

\hline | 82700 |
| :---: |
| 88700 |
| 8 | \& Pentachloropenal \& ${ }_{\substack{\text { mgkg } \\ \text { mgkg }}}$ \& （0．047 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& $\xrightarrow{\text { Nopol．91E }}$ No

\hline ${ }_{\text {82700 }}^{82700}$ \& Phenol \& ${ }_{\text {mgkg }}^{\text {m9kg }}$ \& ${ }^{68}$ \& \& $\xrightarrow{\text { Nolo．21］}}$ N0．21］ \& \& $\xrightarrow{\text { No } 10.2} \mathrm{O}$ \& \& \& \& $\xrightarrow{\text { Nop } 0.2 .2]}$ N0．0． \& \& \& \& \& \& \& \& \& \& $\xrightarrow{\text { Nolo．0］}}$ Nol．19］

\hline
\end{tabular}

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

			$\begin{gathered} \hline \hline \text { Location ID } \\ \text { Sample ID } \\ \text { Lab Sample ID } \\ \text { SDG } \\ \text { Collection Date } \\ \text { Matrix } \\ \text { Laboratory } \\ \text { QA/QC } \\ \hline \end{gathered}$		$\begin{gathered} \hline \hline \text { SB05 } \\ \text { 14BVR-SB05-SS01 } \\ \text { 14E190-12 } \\ 14 \mathrm{E} 190 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$													$\begin{gathered} \hline \hline \text { SB09 } \\ \text { 14BVR-SB09-SU02 } \\ \text { 14E184-14 } \\ 14 E 184 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$			
Method	Anaye	Units	ADEC Cleanup Level																		
(02016		$\underbrace{\substack{\text { mokg }}}_{\text {PrRCENT }}$		${ }^{11.3}$	19.8	${ }^{19.8}$	5.3	${ }_{58.1}^{512.3]}$	${ }_{\text {cher }}^{18.5}$	${ }_{\substack{10.1 \\ 57.513 .5)}}$	${ }_{\text {cher }}^{25.8}$	${ }^{10.3}$	25.4	25.4	8.6	${ }^{8.6}$	13.4	13.4	${ }^{9.4}$	${ }_{9}^{9.4}$	15.7
	(ote	$\underbrace{}_{\substack{\text { magh } \\ \text { mokg } \\ \text { mokg }}}$	${ }^{300}$	No [0.76]	N0[6]	No [0.53]	N0[53]	$\underline{-2.1]}$	N0 15.6$]$	No [6.7]		No [0.82]	20167	No [0.52]	N0[55]	No [0.53]		No [0.51]	N0155	10.0.5]	
AK102203	RRO	mgkg	10000		${ }_{\text {250, }}^{250.62]}$		${ }^{\text {N0, }}$ [5,3]						${ }^{2316.77}$		N0[5]5]		${ }^{10000.59]}$		N0. 5.59		N0[5.9]
${ }^{60202 A}$	Asem		${ }_{100}$				${ }_{\text {che }}^{\text {8.7.70.105 }}$						${ }^{12380.13} \mathbf{2 0 . 1 3]}$		-		(ex				$\left.{ }^{1477} \times 0.117\right]$
	${ }_{\text {cosem }}^{\substack{\text { cadioum } \\ \text { chomium }}}$	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}^{\text {mag }}$	${ }^{5}$	-					-				cole	-	cele						(incele
${ }^{60202}$	Lead	mgkg	${ }^{400}$	-	${ }_{\text {cosem }}^{6.4880 .125]}$		${ }^{45.770 .005]}$						${ }^{9.2960 .10]}$		${ }^{8380.099}$		${ }^{21.50 .10 .08]}$		${ }^{6.1880 .111]}$		${ }_{5}^{548[80.117]}$
coin	Sele	${ }_{\text {mghag }}^{\substack{\text { magk }}}$	${ }^{11.2}$	=			${ }^{0.02970 .095]}$						$\left.{ }^{0} 0.2110 .13\right]^{3} 5$				${ }^{0.21110 .0 .089] ~}$		$0^{0.176010 .111) J}$		0.072120.177)
	${ }_{\text {Mercur }}^{\substack{\text { Ma-Padd }}}$		${ }_{7.2}^{1.4}$	-		-			-					-	$\frac{0}{0.0051510 .02929]}$ N0[0.0004]				No. 0.0223$]$		
${ }_{\substack{80818 \\ 80818}}^{\text {gic }}$	4.4.Ode	${ }_{\text {mgkg }}^{\text {mak }}$	${ }^{5.1}$		No Di.ooos		No. 10000423						No. ${ }^{\text {NoOOS54 }}$		No. 1.00044		No.(0.0092]		No. 1.00043		No. 1000047$]$
${ }_{80818}$	Aldain	mgkg		-	No 10.00095		N0 10.000027						no (1000054		ND 0.000044$]$		No [0.00092]		No [0.00044]		N0 0.000047$]$
(8018		${ }^{\text {mokg }}$	${ }^{0.0064}$		NDP0.0009]										No (10.0044]		Nop(0.0092]		Nol (1.00044]		No (10.004])
	Eear	${ }_{\text {mokg }}^{\text {mokg }}$	0.022	-	No Di.00093	-	${ }^{\text {No }}$ N0.000023						ND ${ }^{\text {No.00054] }}$		No. 1.00043$]$		No ${ }^{\text {No.00092] }}$		No. 1.00043$]$		No [0.0004]
${ }^{80818}$	deale	${ }_{\text {makg }}^{\substack{\text { makg } \\ \text { mokg }}}$	0.0076	-	NDO.0.0005		${ }^{\text {No }}$ N0.0.0.00022]								${ }^{\text {N }}$ N0.0.0.00044 ${ }^{\text {a }}$		No (0.0.00923]		${ }^{\text {No }}$ N0.0.000044]		No.0.0004] ${ }^{\text {No }}$
${ }_{\substack{80818 \\ 80818}}$		mgkg	-												ND(10.0044]				Nobo.00		No.
(3018	Endosulun Sulale	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	0.29	=			No. 1.000023$]$								No (10.004]		No (10.0092]		No. 1.00044$]$		
	Endin	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mgks }}}$	0.29	=											Nop (0.0044)		Nop(0.0092] ${ }^{\text {No } 0.0092]}$		No (10.0044]		
(8018	Endin Ketone	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}$	0.095	-	ND ${ }^{\text {NDOOOOOS }}$			-	-				Nolo.0053]	-	No (10.004]		Nol(0.0092]		No. 10.0044$]$		No. 0.00047$]$
${ }^{80818}$	Gamma.Chlordane	mgkg			No 10.00005								Nol 10.00054				No[10.00092]		Nol 1.000044$]$		Nol0.00047]
	Hepatachor	mokg	(e.	-	Noplo.oos	-	Nop(0.00023]	-					Nop (0.00554]	-	Nol.0.0044]		Nop(0.0029]		Nol.0.0044]		Nop (0.0073)
	Methoxector	mgkg											ND 0.00054								ND [0.0047]
${ }_{\substack{\text { Sobib } \\ \text { gosa }}}$	Toxaphene	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}^{\text {mag }}$	3.9 1	-	No (10.0.12]	-	Nol0.011]	-	-	-			No (0.0.3]	-	No (0.011]		No 10.023$)$		No (0.011]		${ }^{\text {No }}$ N0.0.12]
		${ }_{\substack{\text { makg } \\ \text { mokg }}}$	1	$=$	Nolio.02]	-	$\xrightarrow{\text { Nol } 10.0 .29]}$	-	-	-			No 10.023$]$	-	No 10.018$]$		No 10.0099		Nolo.0.18]		No 10.023
${ }^{8082 A}$	PCB-1242 (Anocolo 1242)																				
(802A			1	-	No 10.023$]$		No [0.0.8]						No 10.022$]$		No $10.018{ }^{\text {N }}$		No 10.0099		No 10.0018$)$		No[10.02]
¢082A		$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	1	-	No [0.021]	-	No [0.018]	-	-				No 0.0 .02$]$		No [0.018)		No (0.009)		No 0 0.018]		No 10.027
	1,1,1.-Tichloroeotane	m9kg	0.82	-	-	-	-		-					-	-	No [0.0.53]	-	No 10.051$]$	-	Not 10.058$]$	
${ }^{82608}$		mgkg	0.017	-	-	-		-			-		-	-	-	ND [0.0033] E	-	No(0.051)	-	No (0.058) E	
(82008	Tritureethen	mgkg	${ }^{750}$	-	-	-			-		-		-		-	Nolo.11]	-	${ }^{\text {ND }[0.1] ~}$	-	N[0.12]	-
(82008			0.018 0.0. 0.03	-	-					-			-		-		-				
${ }^{82608}$		m9kg														No (0.0.53]		Nool0.051]		ND (10.058]	
(82008	${ }^{1,2,3,7 \text { Thelorobenerzene }} 1$		0.00053													${ }_{\text {No }}^{\text {Nol } 0.101]}$		No $\begin{aligned} & \text { No. } 0.1] \\ & \text { No }\end{aligned}$		$\xrightarrow{\text { No [0. } 0.12]}$ No	
	12.4.7Tichloroberene	$\underbrace{\substack{\text { makg }}}_{\text {mgkg }}$	${ }^{0.85}$	-	-											${ }_{\text {Nol }}$		${ }_{\text {Nob }}$		${ }^{\text {No } 10.121}$	
(82008		$\underbrace{\text { mata }}_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }^{0.00016}$																	Noli.12]	
		mokg			-										-	Nolioss]	-	No [0.051]	-		
	-	${ }_{\substack{\text { mgks } \\ \text { mgkg }}}^{\text {che }}$	${ }_{\substack{0.0018}}^{0.016}$																		
82808 $\substack{\text { 82008 }}$		$\underbrace{\text { chem }}_{\substack{\text { mgkg } \\ \text { mgkg }}}$	${ }_{28}^{23}$																-	${ }^{\text {Nop } 0.0 .27]}$	
82608 88208	1.3.i.i.lulopropane	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}$	0.64													No [10.033]				NN0.0.98]	
		$\underbrace{}_{\substack{\text { mgkg } \\ \text { mgkg }}}$	59													${ }^{\text {NN0 [0.11] }}$ N0.0.27					
	${ }^{\text {2-2,holorooluenene }}$	${ }_{\text {monkg }}^{\substack{\text { magh }}}$														NNO[0.27)		${ }^{\text {No }}$ N0.0.0.51]		${ }^{\text {No }}$ N0.0.0.95]	
82608 882008 8 8	${ }^{\text {a }}$		-	-	-	-		-	-					-	-		-		-		
${ }^{828088}$		${ }_{\text {monkg }}^{\substack{\text { mokng } \\ \text { mok }}}$	${ }^{8.1}$																	Nolo	
(82008	${ }^{\text {Aceione }}$	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }_{0}^{88}$	Nol(0.076)		No[0.053$]$ E						ND[0.08]		No[0.052$]$ E			-		-	$\xrightarrow{\text { Nolio.29] }}$	
(82008		筞makg														Noilo.os3]		Noilo.ill		Noilo.isg	
	Bremonioremene	${ }_{\text {makg }}^{\text {magk }}$	0.044															No (10.0.51] E		No 10.058$]^{\text {N }}$	
82008 88 88208	Biomomethane		O.16	-	-	-		-	-		-			-	-	${ }^{\text {N0, }}$ N0.11]	-	Noiolil	-	${ }^{\text {Nol } 0.127]}$	
${ }_{\substack{82008 \\ 88208}}^{\text {820 }}$	Camon Disulde		${ }_{0}^{12.023}$														-	${ }^{\text {No }}$ N0.0.051]		Nol 10.058$]^{\text {a }}$	
82808 88 88208	Chloronerzene	makg	0.23 2													Nolio.03]		Nol0.051]		No 10	
	cter choroetane	${ }_{\text {mghkg }}^{\text {magk }}$	0.46													No 10.0053$]$	-	No [0.051]	-	NN0.0.05]	
¢		$\underbrace{\text { chem }}_{\substack{\text { mgkg } \\ \text { mgkg }}}$	0.21 0.24													No[0.13] ${ }_{\text {No }}^{\text {N0.053] }}$		$\xrightarrow{\text { Nol } 0.10}$ N0.0.51]		$\xrightarrow{\text { Nol } 0.12]}$ N0.0.58]	
82008	Cisi.3.i.ichloroporoene	mokg	0.033 0.032															No (0.05] E		Nolo	
(18088		mokg	${ }_{140}^{1.1}$													$\xrightarrow{\text { No [0.0.33] }}$ No 0.11$]$	-	$\xrightarrow{\text { No [0.0.51] }}$ No 0 [1]	-	$\xrightarrow{\text { No [0.0.5]] }}$ No 0 (0.2]	
(¢ 6.9 0.016	No [0.076]		ND [0.053]						No [0.082]		No[0.052]				${ }_{\text {No }}^{\text {Nol } 0.0 .051] ~}$			
${ }_{822008} 8$	Naponhalene	mgkg	${ }^{20}$													${ }^{\text {No. } 0.101]}$				No [0.12]	

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

				SB05 14BVR-SB05-SS01 14E187-12 14 E 187 $5 / 21 / 2014$ SO EMAX Primary				SB06 14BVR-B06SU-01 14E188-01 14E188 $5 / 22 / 2014$ SO EMAX Primary	SB06 14BVR-B06SU-02 $14 E 188-02$ $14 E 188$ $5 / 22 / 2014$ SO EMAX Primary	SB07 14BVR-B07SU-01 14E188-03 14E188 $5 / 2212014$ SO EMAX Primary		Sill									
Method	Anaye	Unis	ADEC Claanu Level																		
(8208	N-Mutyberene		15 15																	NDN0.0.5] ND 0.0 .58$]$	
	o-xyene	${ }_{\text {mgkg }}^{\text {mokg }}$	${ }_{12}^{63}$	No [0.076]		No [0.053]						ND[0.082]		No [0.052]				${ }^{\text {No } 10.0 .051]}$			
	Sele		0.96													$\xrightarrow{\text { NoD } 0.0 .053]}$		${ }^{\text {NN0.0.0.051 }}$			
(82008		${ }_{\text {mgakg }}^{\text {mot }}$	0.024													No (10.0.53]		No (lo.051]		No 10.0 .588$)$ E	
(e)82088 882088		${ }_{\text {mgh }}^{\substack{\text { mg } \\ \text { mokg }}}$	${ }^{6.5} 8$	ND [0.076]		ND [0.053]						N0 [0.082]		No [0.052]		${ }^{\text {No [0.0.033] }}$ N0 0.053$]$		${ }^{\text {No }}$ [0.0.0.5] ${ }^{\text {No }}$			
			${ }_{\substack{0.053 \\ 0.02}}^{0.0}$																		
${ }^{82008}$	Trichloofluormentane	mgkes	${ }^{86}$													No [0.11]				No [0.12]	
(82008 88208				No[0.38]		No 0 [0.27						N0[0.41]		No[0.26]							
82800 887000 8		mokes	${ }_{\substack{0.85 \\ 5.1}}^{\text {c, }}$										N0.02]				No.0.9]		N0.0.18] ${ }_{\text {No }}$		$\xrightarrow[{\substack{\text { Nol } 0.2] \\ \text { No [0.2] }}}]{ }$
${ }^{\text {crent }}$	${ }_{\text {a }}^{\text {a }}$		cis		${ }^{\text {NNOLO. }}$ N0.21]		Nololie						NN0.023		N N0.18]	-	NN0.19]		NN0.18]		Nolo.2]
${ }_{\substack{82700 \\ 88200}}$		${ }_{\text {makg }}^{\substack{\text { makg } \\ \text { mokg }}}$	\% ${ }_{6.24}$	-	${ }^{\text {NNO }}$ N0.20.2]		${ }^{\text {Nol }}$ N0.18]									-	${ }^{\text {Noplotig }}$	-	${ }^{\text {Nol }}$		
(82700			67 1.4				Nol0.18]						Noplo.2]								
82700	2.4.ichloloponenol	mgkg	${ }_{1.3}^{1.3}$		No 10.23$]$		No [0.1.8]						No[0.22]		No[0.18]	-	No[0.19]	-	N0[0.18]		N0 0 0.2]
	2.4.i.imethyhaneol	${ }_{\text {mgkg }}^{\text {mokg }}$	${ }_{\text {8. }}^{\text {0.84 }}$		${ }_{\text {Nol }}^{\text {No.23] }}$ N0.21]	-	$\xrightarrow{\text { No [0.1.8] }}$ No 0.18$]$						$\xrightarrow{\text { Nol } 0.22]}$ No [02]			-	$\xrightarrow{\text { No [0.19] }}$ Nol.9]	-	$\xrightarrow{\text { Nol } 0.18]}$ No.18]	-	$\xrightarrow{\text { Nol } 0.2]}$ N0 0.2$]$
	2.4.Dinitrooluene		0.0093		Nol 0.21$]$ E		No [0, 1818 E						No (10.21]		No [0, 1818 E				No [0.18]		
${ }^{82700}$	${ }^{2}$ 2-chnoronounhentalene				N010.21]								Noll		$\xrightarrow{\text { Noplois) }}$ N0.10]	-	Nolo		Noilo		Nolo NO
${ }^{82700}$	${ }^{2}$ 2.Chlorofeneol	mgkg	${ }_{61}^{1.5}$	-	$\xrightarrow{\text { Nolio.2] }}$	-	Nolotig	-					No [1.23]			-		-			$\xrightarrow{\text { Nop } 0.22]}$ N0. 0.2$]$
${ }^{82770}$	2.Nittoaniline	,					No[0.18]						No 10.22$]$		No 0 0.18]						
82700 $\substack{82700}$	2-NTropheno	${ }_{\text {kg }}$	019	-	$\xrightarrow[{\substack{\text { Nol } 0.2 .21] \\ \text { No } 0.211]}}]{ }$	-		-								-	Nolo.19]		Nolotic		
${ }^{82700}$	3-Nitraniline	m9 ${ }^{\text {mag }}$		-	NN[0.23]	-	NN0.0.8]	-					No [0.23]		NN0.0.8]	-	No[0.19]		NN0.0.18]		${ }^{\text {ND }}$ [0.2] 0^{2}
${ }^{822700}$			0.057		No NO 0.2121 E										No (0.18)				No [0.18)		ND [0.2]E
82700 88700	${ }^{\text {4 Meltyphenol }}$	mokg	1.5		N010.21]	-	${ }^{\text {N0, } 1.188}$	-					Nolio.2]		${ }^{\text {N0, } 10.18]}$	-	Nol0.19]		${ }^{\text {Nol } 0.18]}$		Nolo.2]
${ }_{8} 82700$	4 4Nitronteneol				${ }^{\text {Nol }}$ N0.21]										No 0.18						
${ }_{8} 82700$	Acenanhtene	mokg	180 180 1		Nolo.21]	-	Nol0.18]	-					Noli.22]		No[0.18]		No 0.190		No [0.18]		N N0.0.2]
82700 88200	${ }^{\text {A Aechaphay }}$ Antreene		${ }_{3000}^{1300}$		${ }^{\text {Nol }}$ N0.21]										${ }^{\text {No }}$ N0.10.18]						
${ }^{82700}$	Benzo(A)Antrace	mokg	${ }^{3.6}$		No[0.23]		N0.0.18]						No [0,22]		ND[0.18]		Nol0.19]		No [0.18]		ND[0.2]
(intiol		(mgheg		-	Noplo.21]		Nolotiol						Nolio.		Noli.		Noloiot		Nololig]		Noiol
82700 88700 80		${ }_{\text {mghag }}^{\text {mosg }}$	${ }^{1200}{ }_{49}$		N N0[0.21]		Nololis]						Nolioze				${ }_{\text {Nolo. }}$				
82700 88700		${ }_{\text {mgkg }}^{\substack{\text { mokg }}}$	${ }_{4}^{410}$				${ }^{\text {Nob } 0.707]}$ No 0.18$]$						Noli.99]		${ }_{\text {N010.73] }}^{\text {ND } 018}$						$\xrightarrow{\text { Nol0.79] }}$ N0.02]
82770	Catazole	mgkg	6.5		Nol0.21]		No[0.18]						No [0.22]		No[0.18]		N00.19]		Nol0.18]		N00.2]
82700 88700		${ }_{\text {mghkg }}^{\text {mokg }}$	${ }_{0}^{360} 0$		$\xrightarrow{\text { Nol }}$ N0.23]	-	${ }^{\text {Nol }{ }^{\text {No.0.8] }} \text { N0.8] }}$	-													Nop 0.2$]$
${ }^{82700}$	Oiberoturan	mghk	11		NN0.0.21]		Nolo.18]						Nol0.23]		Nol0.18]		N010.19		Nol0.18]		No 0.02$]$
32700 8820	${ }^{\text {flumarene }}$	¢	${ }_{200}^{1200}$		${ }^{\text {N0, } 0.22]}$		${ }^{\text {Nol } 0.188}$						${ }^{\text {Nol } 0.22]}$		${ }^{\text {No } 00.108]}$		Nol 0.19				N010.2]
82700 88200	${ }^{\text {Hexachloroberene }}$ Hexacrovouxaidene		${ }_{0}^{0.047}$														Nopereme				
${ }_{\substack{\text { 82700 } \\ 88200}}$	Hexachlorocectopenaldiene	makg	${ }^{1.3}$		${ }^{\text {Nopo } 0202]}$		${ }^{\text {Nolo } 0.18]}$						${ }^{\text {Nol } 10.23]}$		N010.18]	-	N0.0.19]		N010.18]		N010.2]
827700 88700	${ }^{\text {Hexachloenane }}$ Indeno(123:Cof)	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}^{\text {ate }}$	0.21 4.9	-	${ }_{\text {No }}^{\text {Nolo.21] }}$		${ }^{\text {No }}$ No [0.18]									-	${ }^{\text {Nop }}$ No.0.99]				$\xrightarrow{\text { Nob } 0.2 .2]}$
82700 88200	(sonhorone	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }_{20}^{3.1}$		${ }^{\text {Nob } 0.202]}$ N0.21]	-	$\xrightarrow{\text { Nol } 10.18]}$ No.18]						${ }_{\substack{\text { No [0.22] } \\ \text { No. } 0.2]}}$		${ }_{\text {No }}^{\text {Nol0.18] }}$ N0.18]						
${ }_{\substack{\text { 82700 } \\ 88700}}$		${ }_{\text {makg }}^{\text {makg }}$	-		No [0.2]E		No 0 O.18]			-			No (1022]		No 0 O.18] E		No 0.1 .19$]$		Nob [0.18)E	-	No10
${ }^{82700}$	N-N.trosoo-i.N.P.-Proplamine	${ }_{\text {mgh }}^{\text {mokg }}$	${ }_{0}^{0.000011}$																		Noloze
82700 88700	N-Nitusodidhenamamine	${ }_{\text {mgkg }}^{\substack{\text { mokg }}}$	${ }^{15} 0$		Noloter		${ }_{\text {Nolo }}^{\text {No.18] }}$						$\xrightarrow{\text { Nol } 0.202]}$				$\xrightarrow{\text { Nol0.19] }}$ No. 0.19 E				
82700 88200	Premenatrene	makg	${ }^{3000}$										Nolo.2]								Nol ${ }_{\text {Noz }}$
${ }^{82700}$		mghe	${ }_{1000}^{60}$		$\xrightarrow{\text { Nol } 0.231}$								$\xrightarrow{\text { NN0.022] }}$		$\xrightarrow{\text { NN0.0.18] }}$ N00.18]		$\xrightarrow{\text { Niolo.9] }}$		$\xrightarrow{\text { Niplo.18] }}$ N0.18]		

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

			$\begin{gathered} \hline \hline \text { Location ID } \\ \text { Sample ID } \\ \text { Lab Sample ID } \\ \text { SDG } \\ \text { Collection Date } \\ \text { Matrix } \\ \text { Laboratory } \\ \text { QA/QC } \\ \hline \end{gathered}$																		
Method	Anave	Units	ADEC Cleanu Lever ${ }^{\text {a }}$																		
(0216	\% Mosture Toual	$\underbrace{}_{\substack{\text { PRRCENT } \\ \text { mgky }}}$		${ }^{15,7}$	${ }^{7.6}$	$\stackrel{7.6}{ }$	${ }^{17.5}$	${ }^{17,5}$	16.8	16.8	14	${ }^{14}$	${ }^{13.7}$	${ }^{13,7}$	${ }^{11.3}$	${ }^{11.3}$	${ }^{3.2}$	${ }^{3.2}$	6		1.8
AKK01	${ }_{\text {cro }}^{\text {cro }}$	${ }_{\text {maks }}^{\text {magk }}$	$\underset{\substack{300 \\ 250}}{ }$	N0[0.49]		No [0.64]		No [0.59]		No [0.59]		No [0.99]		No [0.57]		No [0.34]		9		1.90 .5	
AAK0220	RRO	${ }_{\substack{\text { mgh } \\ \text { mokg }}}$	${ }^{25000}$		${ }_{\text {Nom }}$		${ }_{\text {Nol }}^{\text {Nol } 6.1 .1]}$														${ }_{\substack{40 \\ \mathrm{No}[5.51]}}^{40.1]}$
${ }_{\substack{\text { 6020A } \\ \text { 6020 }}}$	${ }_{\text {Alsenic }}^{\text {Asaium }}$	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	-				(19.40.1.2]				${ }_{\substack{21.60 .0 .16] \\ 3800.110]}}^{\substack{\text { a }}}$				${ }^{32[0.111]}$ 340		(inc.				(1.900.01]
6020A		$\underbrace{}_{\substack{\text { mghkg } \\ \text { mokg }}}$							(3940.12]		(380]								(115000.105]		
${ }_{\substack{6020 \\ 6 \\ 6020}}$	Chomium	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	25 400 40						${ }_{\text {20,90. }}^{\text {20, }} 1$		${ }_{\text {20, }}^{20.20 .10]}$				${ }_{\text {212, }}^{21.80 .111]}$ 60.0.11]				${ }_{\text {a }}^{48.70 .10 .05]}$		
${ }_{6}^{60200}$	Seaenium	${ }_{\substack{\text { mghk } \\ \text { mokg }}}$	${ }_{3.4}^{480}$		$0^{0.2140 .10097}$ J		0.9090 .127 J		0.2080 .127 J		${ }^{0.1850 .10]}$ 0.16]		${ }^{0.13[0.144]}$		${ }^{0.302[02.111] ~} \mathrm{~J}$		${ }^{\text {0.155 }}$		${ }^{0.265[0.1055] ~}$		为
	Siler	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	11.2 1.4						0.1977.0.27JJ				(0.4990.14]J		${ }^{0.35850 .0111)} 0$		(0.330.103	,	${ }^{0.2840 .1095 \mathrm{~J}} \mathbf{}$		(0.1570.010]J
${ }_{80818}$	4.-3odd	${ }_{\text {mgka }}^{\text {moke }}$	${ }_{7}^{12}$	-	N0.0.0023]		No (0.000493)	-	(in)		Nol		No.		No.		Nol 10.00041$]$	-	ND[[0.00033]		N $\mathrm{N}[1.000041]$
${ }_{\substack{80018 \\ 80818}}$		$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	${ }_{7}^{5.3}$		Nol.0.00233 ${ }_{\text {No }}$								No(0.00049 ${ }^{\text {No }}$		No. 0.00045		Nol(0.0043]				Nol(0.0004]
${ }_{\text {cken }}^{80818}$	Addin	mgks	0.07		No ${ }^{\text {No.000433 }}$	-	No (1000048)		No (1.00048]		not (1.00047		No (1.00046)		ND 10.00045		not (1.00041]	-	nol 1.000033$]$		Noi.0.0004]
	${ }^{\text {belabichc }}$	$\underbrace{}_{\substack{\text { mghks } \\ \text { mokg }}}$									Nol.								Novo.0.0033		Nol(0.0004]
		$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	0.022						ND.0.00483]		Notiliouat]						No.		No.		
${ }^{80818}$	Diedarin	mgkg	0.0076		No (0.000 ${ }^{\text {a }}$		No[10.00098]		No [0.000048]		No[10.00047]		No (10.00046)		No 10.00045		No[10.00041]		No[10.00033]		${ }^{\text {ND }}$ N 0.0 .000041$]$
${ }_{\substack{80818 \\ 80818}}$	Endosulan I	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	-						Nop(0.0048)		Nol(0.0047]		Nolotoones)		Noplo.0045)		Nol(0.0041]				No[0.0004]
${ }_{\text {coser }}^{\text {80818 }}$	Enasoulta Sultaie	${ }_{\substack{\text { maks } \\ \text { maks }}}$	0.29		No. $0.000333^{\text {Nomen }}$	=	No $1.0 .00483^{\text {a }}$		No.0.00783]		No (10.0047]		No 10.00049$]^{\text {a }}$		No (10.00935		No (10.0041]				No.
${ }^{200818}$	Endidin Alchlyde	mgks			No(0.00033 ${ }^{\text {a }}$		Nolotoonese		No (1.000293]		No (1000047]		No (1.00024]		NDO.000945		No (1.000431]		No (1.000933)		Nol.0004]
			0.0095		Nol.ooonsi						Nol.										Nol.
${ }_{\substack{80818 \\ 80818}}$	Camnacho	$\underbrace{\text { mokg }}_{\text {makk }}$	${ }_{0}^{2.28}$	-	No.	-		-		-	Nol		(No.0.0046)				No.	-	${ }_{\text {Nol }}$	-	$\xrightarrow{\text { Nolo.00041] }}$ N0.00041]
${ }_{\substack{80818 \\ \text { gosib }}}^{29}$	Heplachor Epoxide	$\underbrace{}_{\substack{\text { makg } \\ \text { mokg }}}$	0.014 ${ }^{23}$ 1		Nolotooras)						Noloto		ND(0.0046]		Nolotoons		$\xrightarrow{\text { Nop } 0.000431]}$				
${ }_{\substack{80818 \\ 80824}}$	Toxaphene	$\underbrace{\text { chem }}_{\substack{\text { maks } \\ \text { mokg }}}$	${ }_{3}^{3.9}$		No 10.011$]$		$\xrightarrow{\text { No } 10.0027]}$		Nol0.012]		No [0.0.12]		Notio. ${ }_{\text {Noiz }}$		Notio. ${ }_{\text {Noill }}$		$\xrightarrow{\text { Nol } 0.0011}$	-	No 10.011$]$		$\xrightarrow{\text { Nolo.0.01 }}$
		$\underbrace{\text { chen }}_{\substack{\text { maks } \\ \text { mokg }}}$	1						$\xrightarrow{\text { Nolio. }}$		(Notio.09				NN0.099]				Nolio.en]		
${ }^{80022}$	PCB-1242 (Atocolor 1224)	mgkg	1		No (0.0.18)		NN00.02]		Nol0.02]		No 10.0099		No 10.0099		No 10.0099		No. 0.0077	-	No 10.0081		No 10017
${ }_{\text {8032A }} 8$		mghk	1		Noloutiol		${ }_{\text {No }}$ N0.0.02]		${ }_{\text {No }}$		Noilo.099		Nol		No 10.0099		${ }^{\text {No }}$ N0.0.0.17		${ }^{\text {No }}$ N0.0.0.018)		${ }^{\text {No }}$ N0.0.0.17
${ }_{\substack{\text { gr82a } \\ \text { 82808 }}}$		$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$		№ [0.099]	No [0.018]	no (0.064]	N010.02]		No[0.02]	no 0.0 .059	No [0.0.19]			No [0.057]		no (0.034	No [0.017]		No [0.0.18]		No [0.017]
(82008	1.1.1.7.i.thloroethane	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	0.82 0.017	Noloto	-					$\xrightarrow{\text { Nol } 10.059]}$ N0 (0.059]											
		(mghy	${ }_{0}^{0.018}$	No (10.099]		Nolo.os)	-	Nolo.ef]		Nop(0.09]		Notosple			-						
${ }_{\text {cke }}^{82008}$	1.1.icioloroenenene	${ }_{\text {mgkg }}$	0.03	Nol 10.0999 E		No (1.004)		Nol 1.0 .009 E		Nol (1.0999]		No (1.0.999]		No(10.057)		No (1.0.34)E					
	li.l.ichiolopopoene	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	-	${ }^{\text {NNo [0.099] }}$ N0.0.09]	-	$\xrightarrow{\text { Nol } 0.0 .04]}$ N0.0.3]	-	${ }_{\substack{\text { Nol } \\ \text { No.0.06] } \\ \text { No. }}}$				${ }_{\text {No [10.09] }}^{\text {No } 0.12]}$									
${ }^{828088}$	3.TTicicloropropane	mgke	0.0005	No 10.098$]$ E		No 0.12313 E		No (0.212]		$\xrightarrow{\text { No } 0 \text { O.23] }}$		No (0.21]		No (0.11]		Noto.08]					
${ }_{\substack{82008 \\ 882008}}^{\text {820 }}$			${ }^{0.85}$	${ }^{\text {NNo } 10.0098]}$		${ }_{\text {No }}^{\text {Nol } 0.1 .13]}$		${ }^{\text {Nop }}$ N0.12]		${ }^{\text {Nop } 0.12]}$ No.12]		${ }^{\text {NNo [0.12] }}$ N0.12]		${ }^{\text {Nol }}$ N0.11]							
(2808		$\underbrace{}_{\substack{\text { makg } \\ \text { mokg }}}$	0.00016		-	$\underset{\substack{\text { Nol } 0.1 .3] \\ \text { No (0.04] }}}{ }$	-			$\xrightarrow{\text { Noplo.12] }}$ N00.059]		$\xrightarrow{\text { N }}$ N0.0.12]				$\xrightarrow{\text { No [0.0.68] }}$ N0 (0.034]	-	-			
${ }_{82008}$	12.-Dichloromenerene	mgkg	5.1	No (10.049				N0 0 O.06]		No (0.099]											
	-	$\underbrace{}_{\substack{\text { mgaks } \\ \text { moks }}}$	${ }_{\text {coid }}^{0.016}$									Nol				Nome					
(18008	1.3.5.7inethyeneren	$\underbrace{}_{\substack{\text { mgks } \\ \text { moka }}}$	${ }_{28}^{23}$	NN0.0.09] ${ }^{\text {ND } 0.049]}$		Nolo. ${ }^{\text {No }}$				Nol0.2]		Nol0.2]		${ }^{\text {No } 0.0 .131}$							
${ }_{822008}$	1.3.ichiolopopopane	mgks		ND 10.099		No [0.064]		No[0.006]		ND 0 0.0.59]		No (0.0.59)		No [0.057]		No [0.034]					
			0.64	Nolo.099]		Notiole		$\xrightarrow{\text { Nol } 10.06]}$ No. 0.12$]$		$\underset{\text { No } 10.059]}{\text { No [0.2] }}$		$\xrightarrow{\text { No [0.0.09] }}$ No (0.2]									
${ }_{8}^{828008}$		mgkg	59	Nol0.25]										N010.28]							
	${ }^{2}$ 2.chlorotoluene	$\underbrace{\substack{\text { a }}}_{\substack{\text { mgks } \\ \text { mokg }}}$	-			$\xrightarrow{\text { No [0.0.64] }}$ ND 0.32$]$								$\xrightarrow{\text { No } 010.05]}$ No [0.2]							
	4.chlorotuene	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	-	No (10.099)		NoNo.0.04] NDO 0.0 .64$)$				Nolo.0.9]		No (0.059]									
${ }^{828008}$	${ }^{4}$ 4.embly 2 -2enenanone	${ }_{\substack{\text { mghkg } \\ \text { mokg }}}$	${ }_{8} 8$	No. 0.2 20]		${ }^{\text {No }}$ N0.30.3]		${ }^{\text {N }}$ N 0.0 .3$]$				N0. 0.3]		${ }^{\text {Nop }}$ N0.23]		No 0.1 .77					
${ }_{\substack{828088 \\ 8808}}^{\text {828 }}$	${ }_{\text {A }}$ Aceione	$\underbrace{}_{\substack{\text { mghks } \\ \text { moks }}}$	${ }^{88} 0.05$	${ }_{\text {N }}$ N(10.0.093]	-	${ }^{\text {N }}$ ND[0.0.3) 0.08 E E	-		-	N $\mathrm{NDO}(0.0959 \mathrm{E}$ E	-							ND[0.04] E		NDL0.095	
		${ }_{\substack{\text { mgkg } \\ \text { moks }}}$		No10.099)		N ${ }_{\text {N0, } 10.064]}$		${ }^{\text {NDO }}$ N0.06]		Nol0.0.99]		No 10.059		No 10.05		Notio					
82008	Biomodichloromethane	mgkg	0.044	Nol (0.099]		Nol 10.06971 E		Nol 10.009 I		N010.0999		Nol 1.0 .599 E		No[[0.057]		ND [10.34]					
${ }_{\substack{82808 \\ 88608}}^{\substack{\text { 8, }}}$	$\substack{\text { Bronotorm } \\ \text { Bromomena }}$	$\underbrace{\text { cke }}_{\substack{\text { mgks } \\ \text { moks }}}$	O. ${ }^{0.34}$	Nol0.098]		${ }_{\text {Nol } 0.13]}$		${ }^{\text {N } 20.102]}$		Noplo.2]		Nol0.12]		No[0.11]		No 10.0681					
	canoon isulutic	mghk	${ }_{12}$	No (10.099)		No (0.0.04]		N000.09]		No 10.059$]$		No 10.059$]$		No [0.057]		Noi(0.034]					
(18068		$\underbrace{\text { mag }}_{\substack{\text { mgakg } \\ \text { moks }}}$		Nolo.099E	-	Nolo.	-					Noiole	-		-	Nol(0.034]			-		
(12008	Chloeethane	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	${ }_{0.46}^{23}$	No (10.08]		${ }_{\text {No }}^{\text {No [0. } 0.0 .35]}$		${ }^{\text {No }}$ N0.1.2]						${ }_{\text {No }}^{\text {No [0.11] }}$ No 0.057$]$							
	chioiomenane	${ }_{\text {mgks }}^{\text {makg }}$	0.21	No 10.0098				No[0.12]		No[0.12]		No[0.12]		No[0.11]							
${ }_{\text {cki }}^{82008}$	cis.1.3.D.ichlolopopopoene	mgkg	0.038	Nol 10.099 E		No 10.0441 E		ND 10.0001 E		No [10.059]		No (lo.059]E		No [0.057)		No (10.34)					
${ }^{828008}$		$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	${ }_{\text {0, }}^{0.12}$	Nol (0.099E		Nol 0.004 E E		Nolo.0]E				Nolo.0.99]		Noiomble		Nol (0.34]					
(82008	lichloratiuromethane	$\underbrace{\text { den }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{6.9}^{140}$	${ }^{\text {NNo [0.098] }}$ N0.0.99]				$\underset{\substack{\text { Nol } 0.12] \\ \text { No } 0.006]}}{ }$				$\xrightarrow{\text { Nol } 0.127]}$ No.059]		No[[0.11]		No [0.068]		ND [0.04]		No [0.05]	
(82088	Nethyene chloride	mghe	${ }_{0}^{0.016}$					$\xrightarrow{\text { No [0.2.2]E }}$ No		${ }^{0.05989 .0 .12] J}$		$\xrightarrow{\text { No [0.23] }}$ No.		${ }^{0.04440 .0171]}$							

2014 Beaver Creek RRS Remedial Investigation

			$\begin{gathered} \hline \hline \text { Location ID } \\ \text { Sample ID } \\ \text { Lab Sample ID } \\ \text { SDG } \\ \text { Collection Date } \\ \text { Matrix } \\ \text { Laboratory } \\ \text { QA/QC } \\ \hline \end{gathered}$		\|lole											SB13 14BVR-SB13-SU02 14E186-08 $14 E 186$ $5 / 22 / 2014$ SO EMAX Primary					
$\underbrace{\text { and }}_{\substack{\text { Meltod } \\ 88208}}$	N.Buyberene Anaye	Units	${ }_{\text {ADEC Clearup Level }}{ }^{15}$																		
(8208	N-Murlyenene	$\underbrace{\substack{\text { makg }}}_{\text {mgkg }}$	15 15	No [0.099]		Nol 10.064$]$		$\xrightarrow{\text { Nol } 10.06]}$ No.0.0]		No [0.059]		No [0.059]		${ }_{\text {No }}^{\text {No [0.05] }}$ No. 0.507$]$		No [0.0.34]					
- ${ }_{\text {82008 }}^{82080}$	O-x)	${ }_{\substack{\text { makg } \\ \text { moky }}}^{\text {mak }}$	63 12	(Nol0.099)		(Noub				Nolioss)		Noilo.is9		Nolios		(No.0.034		No [0.044]		No[0.05]	
(ize		$\underbrace{\text { mak }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{0}^{1.96}$	No. 10.0999		No.		${ }^{\text {Noplo.ob }}$		Noio.0991		No. 10.0591		No. 10.0577		No. $10.034{ }^{\text {Nosem }}$	-				
	Terser	${ }_{\text {makg }}^{\text {mogkg }}$	${ }_{0}^{1.024}$	Nolo.0.099						Nolo.0.099]		Nollo.099]		${ }_{\text {No }}$ N0.0.057)							
	Touene	mgkg	¢ 6.5 0.	NN0.099]		NN0.0.04]		${ }^{\text {NNOPOOG }}$		NN0.0.959		No		No		Noiliosil		No[0.04]		No [0.05]	
82008		$\underbrace{\text { ata }}_{\substack{\text { mokg } \\ \text { mokg }}}$	${ }^{0.037}$	Nolo.099]		Nollo.0efl		Notio.00]		Nolotiosie		Notio.osp		Nollo.03)		No					
(82008	Trememen	$\underbrace{\substack{\text { makg } \\ \text { mokg }}}_{\text {makg }}$	${ }_{80} 0.02$			Nollo.09] ${ }^{\text {No } 0.103]}$	-		-			Nol 10.099 El		Nolo.0.71]		NDO.0.0.69]					
								No [0.12] N0 0.31										N0-20.		-0.25	
(82000		m9kg	${ }^{0.51}$		N0[1.18]		Nolo.2]		Noloz]		N010.19]		N0[10]9		Nol0.19]		N0[1.17]		N0[1.18]		Nol0.7]
${ }_{\substack{82770 \\ 82700}}$		$\underbrace{\text { mata }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }^{58}$	-	${ }^{\text {Nol }}$	-		-	$\xrightarrow{\text { Nio } 0.0 .2]}$ N0.0]	-		-	Nolole	-	Nolo	-		-	Nolole		${ }^{\text {Nop }}$ N0.0.17]
82770 82700		makg	0.64 6.2	=		=	$\xrightarrow{\text { Nob } 0.22]}$ N0. 0.2$]$		$\xrightarrow{\text { Nob } 0.202}$		$\xrightarrow{\text { Nol0.19] }}$ Nolo.19		$\xrightarrow{\text { Nol0.19] }}$ Nolote		$\xrightarrow{\text { Nol0.19] }}$ Nolote		$\xrightarrow{\text { Nol0.17] }}$ Noli.17]				${ }^{\text {Nob } 0.017}$ N0.17]
882700	24.5.7.ichloroophenol		${ }^{67}$	-	Nol0.18]	-	No [0.2]				Nol0.19]		Nop0.19]		Nol0.19]				Nop0.18]		
827700 88700	${ }^{2}$	${ }_{\text {mokg }}^{\text {momg }}$	${ }_{1.3}^{1.4}$		${ }_{\text {No }}$ N0.0.18]				${ }^{\text {Nop } 0.0 .2]}$								${ }_{\text {Nol }}$ N0.1.17]				${ }^{\text {No }}$ N0.0.17]
827700	2.4.imentyphenol		${ }^{8.85}$	-	Nol0.18]	-	ND0.02]				Nop0.19]		Nop0.19]		Nol0.19]						
${ }_{8}^{282700}$		${ }_{\text {mgh }}^{\text {mokg }}$	${ }^{0.0093}$		${ }^{\text {Nol } 0.1819 \mathrm{E}}$	-	No [102]		No [0.2] ${ }^{\text {a }}$		No (0.19)		No (0.19)		No 0.109 E E		ND [0.17]		${ }^{\text {No }}$ N0.108]E		$\xrightarrow{\text { Nol } 0.1077]}$
882700	26.-Dinitootuene	mg	0.0094	-	No 0.1 .18$]$ E	-	No (102]	-	ND(0.2]	-	Nol0.19]E		NoD0.199E		Noplo.19]	-	NoD 0.17] ${ }^{\text {a }}$	-		-	NoD0.17]
${ }_{82700} 82$	2-Chlorophenenal	${ }_{\text {makg }}$	${ }_{1.5}^{120}$	-	Nol0.18]	-		-	$\left.{ }^{\text {Nob }} \mathrm{NO} 0.027\right)$		${ }_{\text {No }}$ Nol0.19]		${ }_{\text {No }}$ Nol0.19]		${ }_{\text {No }}$ N0.0.19]	-	No 0.1 .17	-	${ }_{\text {Nol }}$		${ }_{\text {Nol }}$
${ }_{\substack{82770 \\ 82700}}$	2-Netrymanhthaer	${ }_{\text {makg }}^{\text {makg }}$ mokd	6.1		${ }^{\text {Nol0.0] }}$	-	$\xrightarrow{\text { No } 010.2]}$		$\xrightarrow{\text { Nob } 0.23]}$		${ }^{\text {Nolo.0.19 }}$		${ }_{\text {Nolo }}$				${ }^{\text {Nol } 0.17}$ N0.17		${ }_{\text {Nolo }}$		Noplo.17 ${ }^{\text {No }}$
882700	2.Nitiophenol	mgkg			No[0.18]		No 0.2 .2		No 0.22$]$		N0[0.19]		No[0.19]		N0[0.19]		N0[0.17]		${ }^{\text {N0 }} 00.18 \mathrm{P}$		No[0.17]
827700 88200		makg	0.19			-	Not0.2]E				Nolote		Nopolige		Nol0.91E		Notele	-	(in		
${ }^{82770}$	4.C.Chooro-3.-Mehylyhenol	makg			${ }^{\text {Noplois] }}$		Noiper		No.0.2]		Nolo.19]		Nolo.19]		${ }^{\text {Noploig }}$		${ }^{\text {Noloi. }}$ NT]		Nolo.19]		${ }_{\text {Noloin }}$
${ }^{8272700}$	${ }^{\text {4, mentyphenol }}$	mokg	1.5	-	Nol0.18]	-	N0[0.2]	-	N0[0.2]		Nol0.19]		NN00.19]		N010.19]	-	Nol0.17]	-	No 0 01.18]		No 0.1077
${ }_{827700}$	Acenanhine	makg	${ }^{180}$		Nol0.18]	-	ND[0.2]		N N0.0.2]		N0.0.99]		Noplot9]		N0.0.19]		${ }^{\text {Nol0.17] }}$	-	No[0.18]		${ }^{\text {N }}$ N0.0.17]
${ }^{82700}$	Antracene	$\underbrace{\text { mat }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }^{13000}$				${ }_{\text {Nob }}$														
${ }_{\substack{82770 \\ 82700}}$	Beroc(A)Antracen	makg	${ }^{3.6}$		${ }^{\text {N0, } 0.0 .18)}$		Nop 0.27		Noi 0.23		N010.99		Nol0.19]		N0.0.99]		No[0.17]	-	Nol0.18]		N0[0.17]
${ }^{827700}$	Berz(Bf) furarathene	mgkg	${ }^{4.90}$		NN0.18]		No 0.2 .2$]$		Nop 0.27		N00.19]		Nol0.19]		Nol0.19]		N NDO 0.17 T		NN0.183]		ND0.17]
${ }_{\substack{82770 \\ 82700}}$	(eater	${ }_{\substack{\text { makg } \\ \text { mokg }}}^{\text {mata }}$	1400 49	-	${ }^{\text {Nol }{ }^{\text {N0.1.18] }} \text { N0.18] }}$	-	${ }^{\text {Nob }}$ N0.0.2]		${ }_{\text {Nob }}$ N0.0.2]		${ }^{\text {Noplotig }}$ N0.19]		${ }^{\text {Noploig }}$ N0.19]					-	${ }^{\text {Nol }}$		
827700 82700		makg	${ }_{13}^{410}$		Noplo.73]				$\xrightarrow{\text { Nob } 0.02]}$ N0.0.		Noplo.78]		Nolo ${ }^{\text {No.77) }}$		$\xrightarrow{\text { Nol } 1.759}$ No. 0.10						
82700 88700	cater	${ }_{\text {makg }}^{\text {makg }}$	${ }_{3}^{650}$		$\xrightarrow{\text { ND[0.1.18] }}$		$\xrightarrow{\text { Nop } 0.2 .2] ~}$		$\xrightarrow{\text { Nop } 0.2]}$		N0.19]		Noloti9		N0.0.90]	-	${ }^{\text {Nop } 0.1077}$	-	${ }^{\text {N } N 0.0180}$	-	${ }^{\text {No } 0.0 .77}$
${ }_{\substack{82700 \\ 8820}}^{8.0}$		${ }_{\substack{\text { makg } \\ \text { mokg }}}^{\text {mata }}$	${ }_{\text {c }}^{3}$				${ }_{\text {Nob }}^{\text {Nolo. } 0.2]}$		${ }_{\text {Nop }}^{\text {No 00.2] }}$		${ }^{\text {Noplotig }}$ N0.19]				${ }^{\text {Noplo.19 }}$ No.19]		${ }^{\text {Nol }}$ N0.10.17				${ }^{\text {Nol }}$ N0.1717
82700 88200 8	Oiberouturan	mgkg	${ }^{11}$		N00.18]		Noio.2]		${ }^{\text {Nop }}$ [0.2]		N00.19]		Nol0.19]		Nop0.19]		No[0.17]		No[0.18]		N 00.107$]$
82700	cole	$\underbrace{\substack{\text { makg } \\ \text { mokg }}}_{\text {makg }}$	${ }^{12000} 2$		${ }^{\text {NN0 }}$ N0.1.18]		${ }^{\text {NNo }}$ N0.2]		${ }^{\text {NND } 0.20]}$		${ }_{\text {Noploin }}$		${ }_{\text {Nol }}$		${ }_{\text {Noplor }}$ N0.19]		${ }_{\text {Nol }}$ N0.017]		${ }^{\text {Nol }}$ N0.188]		${ }^{\text {Nololin }}$ Nolo.17
	Hexachlorberene	${ }_{\text {makg }}^{\text {max }}$ moky	${ }_{0}^{0.047}$				Nol0.2]E		Notioze							-		-	Noiotele	-	
	Hexachorovoraiene						$\xrightarrow{\text { No } 0.023}$		$\xrightarrow{\text { Nop } 0.202}$		$\xrightarrow{\text { NNol0.19 }}$ N0.19]				$\xrightarrow{\text { Nol0.0.0] }}$ N0.10]						
(287700		moke	4.9 4.9		No 0 [1:18]		N00.0.2]		N010.2]		No[0.19]		No (0, 19		NN0.19]	-	NN0.17]	-	No (0, 189	-	NN(0.17)
${ }_{\substack{82700 \\ 88200}}^{8 .}$	(sophoone	${ }_{\substack{\text { mokg } \\ \text { mokg }}}$	${ }_{20}^{31}$				${ }^{\text {Nop } 0.0 .2] ~}$		$\left.{ }^{\text {Nop }} 10.02\right]$		${ }^{\text {Nol } 10.19]}$		${ }^{\text {Nol }}$ N0.19]		${ }^{\text {Nol } 0.109]}$		No 0.177	-	No 0 0.18]	-	No 0.107$]$
(82700	Nituoerenene		${ }_{0}^{0.000959}$																	-	
(82700		$\underbrace{\substack{\text { magh } \\ \text { mokd }}}_{\text {makg }}$	0.0011	-										-		-		-		-	
882700	析	mokg	(0.047		Nolotele		Noloz]		Noloze		Not0.19]		Nol0.19]		Noplotig				Noplis)		Nol0.27]
(82700			(1080				$\xrightarrow{\text { NDD } 0.2 .2) ~}$				Nol.19] No (0.19]				$\xrightarrow{\text { Nol0.19] }}$ N0.19]		$\xrightarrow{\text { Nol0.17 }}$ N0.17]				$\xrightarrow{\text { Nol0.17 }}$ N0.17]

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

			$\begin{gathered} \hline \hline \text { Location ID } \\ \text { Sample ID } \\ \text { Lab Sample ID } \\ \text { SDG } \\ \text { Collection Date } \\ \text { Matrix } \\ \text { Laboratory } \\ \text { QA/QC } \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline \hline \text { SB15 } \\ \text { 14BVR-SB15-SS02 } \\ \text { 14E184-04 } \\ 14 \mathrm{E} 184 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Duplicate } \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SB15 } \\ \text { 14BVR-SB15-SS02 } \\ \text { 14E189-04 } \\ 14 \mathrm{E} 189 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Duplicate } \end{array}$				SB16 14BVR-SB16-SS01 14E191-09 $14 E 191$ $5 / 22 / 2014$ SO EMAX Primary			SB16 14BVR-SB16-SU03 14E186-11 $14 E 186$ $5 / 22 / 2014$ SO EMAX Duplicate		$\begin{array}{\|c\|} \hline \hline \text { SB18 } \\ \text { 14BVR-SB18-SS01 } \\ \text { 14E186-16 } \\ \text { 14E186 } \\ 5 / 22 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{array}$	SB18 14BVR-SB18-SS01 14E191-16 $14 E 191$ $5 / 22 / 2014$ SO EMAX Primary				SB19 14BVR-SB19-SU02 14E189-02 14E189 $5 / 21 / 2014$ SO EMAX Primary
$\frac{\text { Method }}{\text { D2als }}$	Anave		ADEC Cleanup Level																		
(0216	\% Mosure	$\underbrace{\text { a }}_{\substack{\text { PRRCENT } \\ \text { maky }}}$		1.8	15.7	${ }^{15.7}$	15.1	15.1	${ }^{8}$		${ }^{3.5}$	${ }^{3.5}$			1.9	1.9	${ }^{6.8}$	${ }^{6.8}$	4.7	4.7	2.6
	(ote		$\underset{\substack{300 \\ 250}}{ }$	N0[0.6]		No [0.62]		N00.0.6		No [10.34		N0 10.34		No [0.31]		0.68 [0.33]	180054	No [0.51]		00.0.51]	
Ak102203	RRO	mghk	10000		No [599]		No [5,9]		Nois.4]		Noi [5] ${ }^{\text {a }}$		No[5.1]		No 55,1]				N0 5 [2]		No[5.1]
${ }^{60202 A}$			${ }_{1}^{3100}$								${ }_{\substack{35.8[0.104] \\ 4220.104]}}$				${ }_{\text {215 }}^{210.0102]}$		${ }_{\text {a }}^{199990.1007} 40$				${ }_{\substack{11.50 .0 .03] \\ 3590.003]}}$
${ }_{\text {cozad }}^{6020}$	caasium	mghk	$\begin{array}{r}5 \\ \hline\end{array}$		${ }^{0.12320 .127]}$,		${ }^{0.1380101919]}$				${ }^{0.22380 .104]} \mathbf{}$		${ }^{0.21990 .1029]}$		${ }^{0.19290 .1027)}$		${ }^{0.92550 .007]}$		0.1690.103] ${ }^{\text {and }}$		0.1670.103] J
${ }^{\text {cosen }}$	Lead	${ }_{\text {mghk }}^{\text {miks }}$	${ }_{400}^{25}$		${ }_{3}^{3.350 .12]}$		${ }_{3.5650 .119}$				${ }_{28}^{280.0044}$		${ }^{6.6770 .1027}$		${ }^{6.510 .1027}$		${ }_{12900.107}$		${ }_{24,4010.103]}$		${ }^{18.440 .10303}$
60204		mgkg	${ }^{3.4}$				0.118		0.1670 .10				0.155				1.0410		0.1240		0.1310
coren	siver	${ }_{\text {mgkg }}^{\text {maxk }}$	${ }^{112}$		(0.3440.23J		0.1250.0.193.				(0.2480.040 J		(0.26880.0.20] ${ }^{\text {a }}$				${ }^{0}$		(0.980.0.33]		(0.710.1033 ${ }^{\text {N0, }}$
		$\underbrace{}_{\substack{\text { mghkg } \\ \text { mokg }}}$	${ }_{7}^{14}$	-	No. 1.00237			-		-					No (1.00004]			-	No (1.0.00022)	-	No [0.00094]
	年.-5de	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	${ }_{7,1}^{51}$		ND[0.004] ${ }^{\text {N0 }}$		No. 1.00047$]$				No. 0.00041$]$								ND(10.0023)		
	Adarim	$\mathrm{mgkk}_{\substack{\text { mak }}}$	${ }^{0.074}$		No. 1.00047		No. 1000047		NDOLOOOO433	-	No.(0.0043]		No.		No. 0.000411		Nop 0.00033$]$		No (1.00023]		Nol.0004]
${ }^{800818}$	Deala BHC	mgkg		-	Nol 1.00047$]$		No (1.000047]	=	No 10.000033]		Nol (1.00004])		Nol (1.00004]		No (1.00004])		No (1.000033)	-	No 10.000023$]$		
${ }_{\substack{\text { biosib } \\ \text { 80818 }}}^{818}$		${ }_{\substack{\text { mghks } \\ \text { moks }}}$															${ }^{\text {N }}$ N0.0.000 ${ }^{\text {a }}$		${ }^{\text {NND }}$ N0.0.0002023]		
${ }_{\substack{\text { gosib } \\ \text { gosib }}}$	Deadim	$\underbrace{}_{\substack{\text { mgks } \\ \text { moka }}}$	0.0076				N0.0.00047						Novo.0004]		Nol.0004]				N010.00023		ND[0.0041]
80018	Endosilan in		-				Nol.0.0047]								Nol(0.0043]				Nol(10.0022]		No[0.0041]
	Endim	mgkg	0.29	-	No (1.00047]		No (1.00047)		No (1.000433)		Nol(0.000413)		N010.000041]		Nol.0000041]		Ni0.000033)		Nol 10.00023 2]		Nol0.0004]
${ }_{\substack{\text { a0318 } \\ \text { 80818 }}}$		$\underbrace{}_{\substack{\text { mgkg } \\ \text { moks }}}$		-									Nol(0.0004] ${ }_{\text {N }}$		Nol(0.0043)				No (10.00022]		
	Camma:HHC (Lindane)		0.0095		No (1.00047]		No (1.00047)		No 10.00063]		No (1.00041]		No (1.00043)		Nol0.00		No(10.0043)		No(1.00092]		no 10.0
${ }_{\substack{\text { biosib } \\ \text { 80818 }}}^{80}$	Cannach chorane	$\underbrace{}_{\substack{\text { mghks } \\ \text { moks }}}$	${ }_{0}^{2.28}$								Nol		Nol		Nol						
	Heparalor foxale	$\underbrace{}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }^{0.014}$	-				=					Nolotooni]		Nolotooni]						
${ }^{20818}$	Toxaphene	mgkg	3.9	-	Noplo.012]		No 10.012$]$	-	Nol0.0.11]		${ }^{\text {No [0.0.1] }}$		${ }^{\text {No }}$ [0.0.1]		${ }^{\text {NN0.0.01] }}$		No 0.0041$]$		${ }^{\text {No }}$ [0.0.3]		No 0 00, 01$]$
		$\underbrace{}_{\substack{\text { mghkg } \\ \text { moks }}}$			${ }_{\text {Not }}$		${ }_{\text {Not }}$		${ }^{\text {NNO }}$ N0.0.0.8]		Nol		Nol 10.0017		Nol 10.017		Nol		Nol		$\stackrel{\text { Nolo }}{ }$
	PCC-1232 (Afoolor 123						022				No 10.017		${ }^{\text {Nopl0.017 }}$		No 10.017						No 10.0017
(8032	(e)	$\underbrace{\text { mag }}_{\substack{\text { mgkg } \\ \text { mokg }}}$	1	-	Nolo		$\xrightarrow{\text { Nol0.02] }}$ Noi0.02]	-		-	${ }^{\text {Noplo.017 }}$ Noi.0.17		$\xrightarrow{\text { No } 0.0 .017}$ No. 0.17		Nol 10.017		No 10.018$]$				Nolo.017
cen	PCB.1254 Aforoco 1254)	$\underbrace{}_{\substack{\text { makk } \\ \text { moks }}}$	1	-	$\xrightarrow{\text { Noli.0.2] }}$		$\xrightarrow{\text { Nol } 0.0 .02]}$ N0.02]		Noplo.018]		Nolio.		$\xrightarrow{\text { Nolip.017 }}$		Nop.0.7]						
		${ }_{\substack{\text { mgakg } \\ \text { mikg }}}$								No [0].034		nol0.034		no[0.033]		No[0.033]		No [0.053]		No[0.053]	
	-	$\underbrace{}_{\substack{\text { mggkg } \\ \text { mokg }}}$	${ }_{\text {a }}^{0.822} 0$	-						No [0.034]	-			${ }_{\text {Nom }}^{\text {Nol } 10.0331]}$ N			-		-		
${ }^{82608}$	Trituroethane	mgkg	${ }^{750}$	-	-		-	-	-	No (10.067]	-	No [10.088]	-	No[0.061]	-	No [0.055]	-	N0[0.0]	-	No[0.17	
			0.018 a 0.03				-			Noineme	$=$		-		-	Noilios3]	-	No (0.051)	-	Noio.051]	
																		No 10.0		No 10.6	
		mgkg			-				-	No 10.0067	-			$\xrightarrow{\text { No } 10.0061]}$ N00.061]	-		-	Nol0.1]		Nolo.1]	
82808 88008 8		$\underbrace{}_{\substack{\text { mghkg } \\ \text { mokg }}}$	${ }_{0}^{0.00053}$	-					-			NDOLOOBEE		Nome		Noiole	-	Nolo	-		
(82008	12,4.7itenetyberzene	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }^{23}$							${ }_{\text {No }}^{\text {No [0.0.067] }}$		${ }_{\text {No }}^{\text {No [0.0.088] }}$		$\xrightarrow{\text { No } 0 \text { [0.0631] }}$ N0.0.01]		${ }^{\text {Nol }}$ N0.0.065]				$\xrightarrow{\text { Nol } 0.1}$ No 0.1$]$	
${ }^{822008}$	1,2.-2ibromeetane	mgkg	0.00016							No (10.341]		ND(10.34] E		ND (0.031]		No (10.033]		No (0.0.51]		No (10.0.51]	
		$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }_{0}^{5.16}$											${ }_{\text {No }}^{\text {No [0.033] }}$ N0.033]							
82808 $\substack{82088}$		$\underbrace{}_{\substack{\text { mak } \\ \text { mokg }}}$	${ }^{0.018}$											Nolo			-		-		
${ }_{82008}$		mgkg	${ }^{28}$							No [0.034]		No 10.0384		No [0.033]		No [0.033]		No [0.051]	-	No [0.0.51]	
${ }_{\substack{82808 \\ 88208}}^{8}$	-		0.64							Nolo											
82808 882008	2.2.ieithoroporopane	${ }_{\substack{\text { mghk } \\ \text { mikg }}}$	5							${ }^{\text {Noplo.067 }}$		No 10.0087		Nol0.0.3]		Nol0.065		${ }^{\text {Noploil }}$		${ }^{\text {Noploil] }}$	
${ }_{8} 82008$	${ }^{\text {2 Chhoroouvene }}$	$\mathrm{mgkg}^{\text {mag }}$	5							No [0.034]		ND [0.0.34]		ND [0.0.31]		ND [0.033]		No [0.0.51]		${ }^{\text {ND }}$ [0.0.51]	
		$\underbrace{\text { mag }}_{\substack{\text { mgkg } \\ \text { mokg }}}$	-							Nololin]		$\xrightarrow{\text { Nol }}$ N0.0.7]		$\xrightarrow{\text { Nop [0.15] }}$ No.0.31]				${ }_{\substack{\text { Nop } \\ \text { No. } 0.0 .59]}}$			
												Nolio.				$\xrightarrow{\text { Noplo.033] }}$		Noliliosi]		Noili.as)	
${ }^{82608}$	${ }^{\text {andecolbe-2Penatanone }}$,	${ }_{88}^{88}$							${ }^{\text {Nol }}$		${ }^{\text {No }}$ N0.1.17]				${ }^{0.190 .190] ~}{ }^{\text {0, }}$		N0[0.20]		No 0.20$]$	
		$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	0.025	No 10.00$]$ E		No[0.0.02] E		No [0.0.0]				Nol (0.39]				Noiole		$\xrightarrow{\text { Nop } 0.0 .091] E}$	-		
	Bromoch oionelane	$\underbrace{}_{\substack{\text { makk } \\ \text { mokg }}}$	0.044							No $10.034{ }^{\text {Nose }}$		No (0.034		No (0.0331		${ }^{\text {Nod } 0.0 .033}$		$\xrightarrow{\text { Nob } 0.051)}$			
	Biomolom	mgkg	0.34							Not 10.067$]$		Not $10.088{ }^{\text {a }}$		Nobl0.061]		No 10.0055		N00.1]	-	No 0.1 .1$]$	
	Bromometane	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	0.16 12									NN0.0.08]				${ }^{\text {No }} 10.00$		${ }^{\text {No }}$ N0.0.1]		$\xrightarrow{\text { No[0.1] }}$ ND(0.051]	
	Catbor Terachlorid	${ }_{\text {mghk }}^{\text {mag }}$	${ }_{0}^{0.023}$							Nol (1.034]		No (1.034]E		ND (10.031)E		No 10.0033 E		No (10.051]E	-	No (10.051)E	
	Chloroenzene	$\underbrace{}_{\substack{\text { mgakg } \\ \text { mokg }}}$	${ }_{23}^{0.03}$																-	Noiosil	
	chiol choromm	$\underbrace{\text { chem }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{0}^{0.46}$									NoNo.0.3] ND 0.068$)$		No [0.033]				$\xrightarrow{\text { No [0.0.51] }}$ Noil	-	$\xrightarrow{\text { No } 010.051]}$ N0.01]	
		mgks	${ }^{0.29}$							Nolio.034]		No (0.033)		Nolio.031]		Nolio.033]				Nolo.0.9]	
	pibiomochiormethene	${ }_{\substack{\text { makk } \\ \text { moks }}}$	${ }_{0}^{0.032}$		-					Nol0.039E		No 10.034 E		Nol 1.0 .031$]$	-	No[0.33]	-	No 10.051$]$ E	-	No (0.0.5] E	
		${ }_{\substack{\text { mghk } \\ \text { mikg }}}$	${ }_{140}^{140}$							No 10.0067		No (10.068]		No	-	No 10.0055	-	Nolo.il]		${ }^{\text {Nop }}$ [0.1.1]	
		$\underbrace{}_{\substack{\text { mgk } \\ \text { mokg }}}$	${ }_{\text {a }}^{0.909}$	N0[0.06]		N0[0.062		N0[0.06]		Nollo.03]						${ }_{\text {No }}^{\text {Nolo.03] }}$					

2014 Beaver Creek RRS Remedial Investigation

			$\begin{gathered} \text { Location ID } \\ \text { Sample ID } \\ \text { Lab Sample ID } \\ \text { SDG } \\ \text { Collection Date } \\ \text { Matrix } \\ \text { Laboratory } \\ \text { QA/QC } \\ \hline \end{gathered}$			$\begin{gathered} \hline \hline \text { SB15 } \\ \text { 14BVR-SB15-SS02 } \\ \text { 14E184-04 } \\ 14 E 184 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Duplicate } \end{gathered}$					SB16 14BVR-SB16-SS01 14E191-09 $14 E 191$ $5 / 22 / 2014$ SO EMAX Primary	SB16 14BVR-SB16-SU02 14E186-10 14E186 5/22/2014 SO EMAX Primary	SB16 14BVR-SB16-SU02 14E191-10 14 E 191 $5 / 22 / 2014$ SO EMAX Primary		SB16 14BVR-SB16-SU03 14E191-11 14E191 5/22/2014 SO EMAX Duplicate	$\begin{array}{\|c\|} \hline \hline \text { SB18 } \\ \text { 14BVR-SB18-SS01 } \\ \text { 14E186-16 } \\ 14 \mathrm{E} 186 \\ 5 / 22 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{array}$	SB18 14BVR-SB18-SS01 14E191-16 $14 E 191$ $5 / 22 / 2014$ SO EMAX Primary				
Meltod	A Anaye	Units	ADEC Cleanup Level $^{\text {a }}$																		
	N-Mulberene	$\underbrace{}_{\substack{\text { mgkg } \\ \text { m9kg }}}$	15 15							No [0.034]		No [0.034]		No [0.0.31] No 0.0031$]$				$\xrightarrow{\text { No [0.0.05] }}$ No 0.051$]$		$\xrightarrow{\text { No [0.0.53] }}$ ND 0.051$]$	
	O-XXenene	${ }_{\substack{\text { mgkag } \\ \text { mokj }}}$	63 12	No[0.06]		No [0.062]		No [0.06]		No $10.034{ }^{\text {No. }}$						${ }^{0.02950 .033 J J}$				No $\begin{aligned} & \text { No.0.0.51] } \\ & \text { NDO.0.51] }\end{aligned}$	
${ }^{828008}$	Syprene	mgkg	0.96							Noplo.034		No 10.034$]$		Nolio.033		N0.0.033]		Noplo.0.31]		${ }^{\text {Nop }}$ (10.031	
${ }_{\text {8 }}^{828008} 8$			${ }^{1.024}$																		
${ }^{828008}$	Toluene	${ }_{\text {maks }}^{\text {maks }}$	${ }^{6.5}$	N0[0.06]	-	No [0.062]	-	N0[0.06]	-	No 10.034$]$		No [0.034]		Nollo.03]		No 10.033$]$		${ }^{\text {Nop }}$ (10.0.51]		${ }^{\text {No }}$ N0.0.531]	
	(tandele	$\underbrace{\substack{\text { mokn }}}_{\text {mghkg }}$	-							No (10.039]		No (1.039]		$\xrightarrow{\text { Noblio. } 0.31]}$		Noilios3]				Notosile	
${ }^{82808}$		$\underbrace{\text { gin }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }^{0.02}$													Noiosieb		Noiosil		Noiole	
(82008		$\substack{\text { mgkg } \\ \text { mokg }}_{\text {mat }}$		No [0.3]		no[0.31]		No[0.3]		Nolo.0.7]		Nolo				${ }^{\text {Nob } 10.065] E}$		Nololile			
82700 88700		${ }_{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{0.1}^{0.85}$		$\xrightarrow{\mathrm{No}[10.2]}$ N0.0.2]		$\xrightarrow{\text { Nop } 0.2]}$ N0.0.2]		${ }_{\text {Nol }}$				Noli.17] ${ }_{\text {No }}$						${ }^{\text {Nop [0.18] }}$ N0.18]		Nololi]
82700 88700 8		${ }_{\substack{\text { makgs } \\ \text { molk }}}$	${ }^{28}$						${ }^{\text {N010.18] }}$ N01018		N0.0.17] ${ }^{\text {ND }}$		Noplo.17		Nop.17] ${ }^{\text {Nol }}$		$\xrightarrow{\text { Nol0.18] }}$	-	N0.0.18] ${ }^{\text {No }}$		No.0.17]
	${ }^{\text {a }}$				$\xrightarrow{\text { Nol }}$		$\xrightarrow{\text { Nop } 0.02]}$		Nololiel		Nolo.17		N0.17]		N0.17)		N0[0.18]		${ }^{\text {Nol } 0.108]}$		No [0.17]
82700 8820 8	2,		${ }_{1}^{14}$		${ }_{\text {Nol }}$ N0.0.2]		Noiol		${ }_{\text {Nol }}$	-	No		${ }^{\text {Nol } 0.17}$		${ }^{\text {NNOLO.17 }}$	-	${ }_{\text {Nololig }}$	-	${ }^{\text {Nol }}$		Nololil
			1.3 8.8						$\xrightarrow{\text { Nol }{ }^{\text {No.19] }} \text { No.18] }}$		NoNo. 0.17 No 0.17										
${ }_{8}^{82700}$		mgkg	0.54	-	N0.0.2]		N0.0.2]		Nol0.18]		Nol0.17]	-	Nol0.17]		${ }^{\text {No } 10.177]}$	-	Nol0.18]	-	No[0.19]		No 0.177
${ }^{82700} 8$		$\substack{\text { mghkg } \\ \text { mokg }}_{\substack{\text { mat }}}$,	-	Nol	-	No (102]	-	No	-	Nol		Nol		No		No	-	Nol		Noploile
82700	${ }^{2}$ 2.C.Chloronaphataene	$\underbrace{\text { mokg }}_{\text {mgkg }}$	${ }_{1}^{120}$	=	No[0.2]		$\xrightarrow{\text { Nop } 0.2]}$ N0.0.]		$\xrightarrow{\text { Nol0.18] }}$ Nolis]		${ }^{\text {No [0.17] }}$ No [0.7]		${ }^{\text {No [0.17] }}$ No [0.7]		${ }^{\text {No }}$ N0.10.7]		$\xrightarrow{\text { Nol0.18] }}$		$\xrightarrow{\text { Nol0.18] }}$		No [0.17]
82700	${ }^{\text {2-Methymaphthalene }}$	kg	6.1		ND[0.2]		No[0.2]		N0.0.18]		No[0.17]		Nol0.17]		Nol0.17]		ND00.18]	-	No[0.19]		No [0.77]
82700 88200					$\xrightarrow{\text { Nop } 0.22]}$		${ }^{\text {Nop } 0.202}$				ND0.0.17 No 0.17		${ }^{\text {Nop } 0.017}$		${ }^{\text {Nop } 0.017}$		${ }^{\text {Noloin }}$		${ }^{\text {Nol0.18] }}$		Nol0.17
82700 88700	3.3.3icilorotenzadine	${ }_{\text {maks }}^{\text {maks }}$	0.19	-	$\xrightarrow{\text { N } 102 \mathrm{P} \text {] }}$	-	$\xrightarrow{\text { Noloz] }}$	-	No[0.18]E	-			Nol0.17]		$\xrightarrow{\text { No } 0.10 .17]}$		Not 0.188$)$	-	No (0.18)	-	No(0.17)
${ }^{82700}$	-		-		${ }^{\text {Nob }}$ N0.2.2]	-	${ }^{\text {Nob } 0.0 .2] ~}$		${ }_{\text {No }}$ N0.0.18]	-	${ }^{\text {Nol }}$ N0.17]		${ }^{\text {Nol }}$ N0.10.1]		${ }^{\text {Nol }}$ N0.10.1]		${ }_{\text {No }}$ N0.0.18]	-	${ }^{\text {Nop }}$ N0.1.18]		${ }^{\text {No }}$ Nol.17]
82700 88700 8		${ }_{\substack{\text { mgkg } \\ \text { moky }}}$	${ }_{0}^{0.057}$		Nolo.2]E		Noploz]						Noplot						Notores		
${ }^{82700}$	4Nitcoantine	mgkg		-	No 00.2]	-	N00.0.2]		No [0.18]		No[0.17]		No [0.17]		No[0.17]		No[0.18]	-	No[0.18]		${ }^{\text {No }}$ N0.1.17]
82700 88700	${ }^{4}$ - .Nitaphenol	${ }_{\substack{\text { mgkgg } \\ \text { mokg }}}$	$\stackrel{\square}{180}$			-					Nol0.17] ${ }_{\text {No }}$						${ }^{\text {Nol0.18] }}$ Nolis]	-			NoNo.17] No 0.17$]$
82700	Acenaphtyyene	mgkg	${ }^{130}$		No 0.2 .2$]$		No 0.2 .2$]$		Nol0.18]		No 0 0.17]		No[0.17]		No 0 0.17]		Nol0.18]				no [0.77]
82700 88700 8 8	Antareene	$\underbrace{\text { gin }}_{\substack{\text { mgkg } \\ \text { mokg }}}$	3000								${ }^{\text {Nol } 0.17}$ N0.17]		${ }^{\text {NN }}$ N0.17] 0.17$]$		${ }^{\text {Nol }}$ N0.17]						No. ${ }_{\text {No.17 }}^{\text {No } 0.17}$
82700 88200 8									${ }_{\substack{\text { Nol } \\ \text { N0.10.18] }}}^{\text {N0, }}$						Nole			-			${ }_{\substack{\text { No } \\ \text { No. } 0.17 \\ \hline 0.17}}$
${ }^{82700}{ }^{82700}$		${ }_{\substack{\text { mgkg } \\ \text { mokg }}}$	1400 49		$\xrightarrow{\text { Nop } 0.2]}$ N0.0]				${ }_{\text {No }} \mathrm{ND[0.18]}$		${ }^{\text {No }}$ No.1.17]				$\xrightarrow{\text { Nol } 0.17}$ No 0.17		${ }_{\text {No }}^{\text {Nol0.18] }}$ N0.18]	-			(Nolo.17
${ }_{8} 82700$	Benroicacid	mgkg	${ }_{13}^{40}$		${ }^{\text {Nol } 0.799]}$		N010.79]		${ }^{\text {N0, } 0.72]}$		N0 10.69$]$		N010.63]		Nol0.68]		N010.72]		ND0.7]		No [0.68]
82700 88700	为		${ }_{6.5}^{13}$	-	${ }^{\text {Niol }}$ N0.2]				${ }_{\text {Nol }}^{\text {N0.0.18] }}$		${ }^{\text {Nol }}$ N0.17]		${ }^{\text {Nol }}$ N0.17]		${ }^{\text {Nol } 0.10 .17}$		${ }_{\text {Nol }}^{\substack{\text { N0.0.18] } \\ \text { N0.18] }}}$		${ }^{\text {Noplo.18] }}$		Nol
82700 88700		${ }_{\text {makg }}^{\text {moky }}$	(300		$\xrightarrow{\text { Nop } 0.23}$		$\xrightarrow{\text { Nop } 0.2 .2] ~}$		N0[0.19] ${ }_{\text {N0, }}$		${ }^{\text {Nol } 0.17}$		${ }^{\text {N010.17 }}$		${ }^{\text {N0, } 0.177}$		${ }^{\text {N010.18] }}$		${ }^{\text {N0, } 0.0818}$		Noin
882700	隹	mghks	${ }^{11}$		${ }^{\text {No } 0.0 .2] ~}$		N NDO 0.2 Z$]$		No 0.1 .80		No 01.17$]$		No[0.17]		No[0.17]		Nol0.18]	-	No[0.18]		No[0.17]
82700	Flucantene	${ }_{\substack{\text { mgkg } \\ \text { m9kg }}}$	${ }_{2200}^{1400}$		${ }_{\text {Nob }}^{\text {Nol } 0.2]}$		$\xrightarrow{\text { Nop } 0.2]}$ N0.0.		${ }^{\text {Nol } 0.018]}$ No 0.18$]$		${ }^{\text {NNo [0.17] }}$ No.17]		${ }^{\text {NNo [0.17] }}$ No.17]		Nolo ${ }^{\text {No. } 0.17]}$						Nola
82700	Hexachlorobenerene	mgkg	0.047		No [0.2] E		No 01021 E		No (0.189]		No (10.17)		No [0.17]		No [0.17]		Not 0.189$]$		No (0.18)E		No (1.17)
82700	Hexachlorouataiene	${ }_{\substack{\text { mgkg } \\ \text { makg }}}$	0.12 1.3	-					Nolo										Noplotis]		Nololine
82700 88700	Hexatioroenane	${ }_{\substack{\text { makgs } \\ \text { mokg }}}^{\text {mag }}$	${ }^{0.21}$	-			$\xrightarrow{\text { Nop } 0.2]}$ N0.02]											-		-	
${ }^{82700}$		mghks	${ }_{3}^{31}$		${ }^{\text {No } 0.0 .2] ~}$		${ }^{\text {No } 0.02] ~}$		${ }^{\text {NNDOP0.18] }}$		Nol 0.17		${ }^{\text {NN0.0.17 }}$		${ }^{\text {N00.0. } 0.17}$		${ }^{\text {Nolo } 0.18]}$		N0[0.19]		${ }^{\text {Nol0. } 017}$
${ }^{82700}$	Nomer	${ }_{\text {mghkg }}^{\text {mole }}$	${ }_{0}^{20} 0$	-	No 10.2]		No (102]		Nol 0.180$]$ E		No (10.7)		Nol 10.17 E		Nol 10.17 E		Nol 0.180 E	-	No (0.18)	-	Nol 10.17 E
82700 8820		${ }_{\text {mghkg }}^{\text {mole }}$	${ }_{0}^{0.000011}$		\cdots		No		No		No		Nol		No			-	No	-	No
82700	N-Nitrosotifhenyamine	${ }_{\substack{\text { makg } \\ \text { m9kg }}}$	${ }_{0}^{1.047}$		Notoze										${ }_{\text {Nol }}^{\text {Nol. } 0.17]}$		${ }_{\text {Nol }}^{\text {Nol. } 0.18]}$				
82700 88700	(ene	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}$	3000 68				$\xrightarrow{\text { Nop } 0.202}$ N0.0]				Nolotiol		No.		(Nol						

2014 Beaver Creek RRS Remedial Investigation

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC			SB20 14BVR-SB20-SU02 14E187-19 14 E 187 $5 / 21 / 2014$ SO EMAX Primary	SB20 14BVR-SB20-SU02 14E190-19 $14 E 190$ $5 / 21 / 2014$ SO EMAX Primary	SB23 14BVR-B23SU-01 14E188-07 $14 E 188$ $5 / 22 / 2014$ SO EMAX Primary	SB23 14BVR-B23SU-02 14E188-08 $14 E 188$ $5 / 22 / 2014$ SO EMAX Primary			SB25 14BVR-SB25-SU02 14E184-16 $14 E 184$ $5 / 22 / 2014$ SO EMAX Primary	SB25 14BVR-SB25-SU02 14E189-16 14E189 5/22/2014 SO EMAX Primary		\mid	SB26 14BVR-SB26-SU02 14E184-18 $14 E 184$ $5 / 22 / 2014$ SO EMAX Primary				$\begin{gathered} \hline \hline \text { SB27 } \\ \text { 14BVR-SB27-SS01 } \\ \text { 14E187-14 } \\ 14 E 187 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$	
Method	Anayse	Unis	ADEC Cleanup Level																		
(0216	\%) Mosure						4.5	${ }_{24.6 \text { [11.4] }}^{4.5}$	${ }_{33.21112]}^{11.2]}$	10.6	${ }^{13.5}$	13.5	10.4	10.4	12.6	12.6	17	${ }_{1}^{17}$	16.3	${ }^{11.3}$	${ }^{113}$
${ }_{\text {AKkOOI }}^{\text {AK102103 }}$	(oro	$\underset{\substack{\text { magk } \\ \text { mokg }}}{\text { madel }}$	${ }^{300}$	N0[0.5]		N0 [0.4]	N0[5.2]	No[5.7$]$	${ }^{14[5]}$	N0[0.62]	N0[5, ${ }^{\text {[}}$	No [0.56]		N0 [0.55]		N0[0.0.6]		No [0.06]	No [6]	10.0.5]	N00.6]
AKK102703	Rroo	$\underbrace{\text { ate }}_{\substack{\text { makg } \\ \text { mokgk }}}$	1000 109				$\underset{\substack{\text { N0, } 5.2 .2] \\ 17.40 .04]}}{ }$														
${ }^{60202}$	Sarium	${ }_{\text {mghg }}$	1100		${ }^{27200.102]}$		${ }_{508}^{5080.1044}$				${ }^{408080.566]}$						${ }^{257(0.115]}$		${ }^{\text {20, }}$		${ }^{3470.17}$
cose		${ }_{\substack{\text { moks } \\ \text { mokg }}}$	${ }^{5}$								${ }_{\text {chen }}$		(extiole				${ }^{\text {P22 }}$		${ }^{\text {a }}$		
${ }^{\text {60202 }}$	Lead	mgkg	400		11.120 .1027		${ }^{84010.104]}$														
${ }_{\text {cole }}^{60208}$	${ }^{\text {Selentemum }}$	$\underbrace{}_{\substack{\text { makg } \\ \text { mokg }}}$	3.4 112 11	-	${ }^{0}$		(0.2990.104]J ${ }^{0.7880 .104]}$				(0.240.113JJ		NN0.0.53]	-		-	${ }^{0}$	-		-	${ }^{0.19690 .111)} 0$
${ }^{772714}$	Meraly	mgkg	${ }_{12}^{14}$	-			0.0.83510.0.209]				0.028770 .023150		0.023880.023]3		(0.021 [0.0229]				Noliose9]		(0.18220.0235]
	${ }^{\text {a }}$ 4.-5de	${ }_{\text {mok }}^{\substack{\text { mokg } \\ \text { mokg }}}$	${ }_{5}^{121}$																		
	Aplababic		7.3 0.07	-													Nolotoons				
${ }_{80818}$	Bealabic	m9 ${ }_{\text {mag }}$	0.0064		Nol.000023)		No (1.000023)				No (0.00046		No.		No (0.000469		No (1.000989		Nol.ooosese		Socos
	Brc	${ }_{\text {moxhg }}^{\text {moxk }}$	${ }_{0.022}^{20}$		Novoloound		ND[0.0.0024]						No.		NDO.0.00046		Noto.00		N0.000		
80818		mgkg					No 10.00028				No 10.00096$]$						10.02		No 10.00		
${ }^{80818}$	Diodarim	mgkg	0.0076		No 10.00023$]$								Nol0.00045		${ }^{\text {No }}$ (0.000463 ${ }^{\text {a }}$		No 10.000988$]$		No 10.000988$]$		
S18	Endosulan I		-		No 1.0 .000223						${ }^{\text {No }}$ N0.0.00004ata ${ }^{\text {a }}$		${ }^{\text {N0 }}$				ND 10.00088]		ND 10.000		${ }_{\text {NVO.0.000 }}$
		${ }_{\text {mokg }}$			No 10.000023		No [0.00023]				No (0.00046]		ND 0.0 .00045				No (1.00048)		No 10.00		NDOOOO
${ }^{\text {coser }}$	Endinin Aldehyde	${ }_{\text {mghag }}$	0.29		No 1.0 .000247		ND0.0.000 2]				${ }^{\text {No }}$ N0.00006at $]$		${ }^{\text {No }}$ N0.000095				ND 1.0 .00048				${ }^{\text {No }}$ N0.0.000045 ${ }^{\text {a }}$
${ }^{80818}$	Enerin keion	${ }_{\text {mokg }}$			No 10.000023		No (10.002 ${ }^{\text {a }}$				O.000		Nop (0.0045)		Nop 0.00046$]^{\text {a }}$		Nopo.00048]		ND 0.0 .0048$]^{\text {a }}$		No 10.00
${ }_{\substack{80818}}^{80818}$	Cammat.chl (Lntane)		${ }^{0.0005}$										Ni0.0.0095				${ }^{\text {No } 0.0 .000939] ~}$		ND 1.0 .000989		
¢0818	Heparator	${ }_{\text {mgkg }}^{\text {molk }}$	O.28	-	ND(1.00023]		No (0.00023]				Noto.0046]				No 1.0 .0046$]^{\text {a }}$		No $1.0 .0048{ }^{\text {a }}$		No $10.00088{ }^{\text {N }}$		Nopoious
${ }^{80818}$	Nethoxychlor	mgk	${ }^{23}$		NoD10.0023]		No (1.0024]				Nolo.0046]		Noploost		Nolo 0 Oeat]		No D0, OOP4]		Nol 1.0048$]$		No.
	PCB-1012 (Arocolo 1010$)$	mokk	1	-	No 10.017		No 10.017				Nol 10.0099		Nol0.099		No 10.0091		${ }^{\text {NNOLO.02] }}$	-	${ }^{\text {NNO}} 10.027$		No 10.0091
${ }^{8082 A}$			1	-	${ }^{\text {No }}$ N0.0.0.7	-	Nol 10.017		-		Nol		No	-	Nol		$\xrightarrow{\text { Nol } 0.002]}$	-	${ }_{\text {Nol }}$		${ }^{\text {No }}$ No 00.0.099
8022	PCB.1242 (A)AOCOOT 1242)	mgkg	1		No[0.017]								No[0.019]								
${ }_{\substack{8082 \\ 808}}^{\text {8024 }}$		mokng															Notio.				Nolo.09]
${ }^{8082 A}$	PCB-1260 (AToodor 1280)	m9kg	1		No [0.017]		No (0.017				No (0.019		Nol0.019		No 10.009		N0[0.02]		Nol 0.02$]$		No [0.009]
	-		${ }_{0}^{0.82}$	Noiole						${ }^{\text {NN }}$ N0.0.062]		Nolo.05]		${ }^{\text {No } 0 \text { [0.0.05] }}$		Noliobi]		${ }_{\text {No }}$			
82008		mgkg	0.017	No(10.05]		No (10.04)E				No[10.02] E		No [0.056] E		ND[0.055] E		No[0.001]		No 10.066 E		No 0.0 .555 E	
82808 88608 8	Trituoreanane	mgkg	${ }_{\substack{750 \\ 0.018}}$		-					${ }_{\text {Nol } 0.12]}^{\text {NOOO2] }}$		$\xrightarrow{\text { Nololill }}$		${ }_{\text {N }}^{\text {N [0.11] }}$				No[0.13]		$\xrightarrow{\text { No [0.11] }}$	-
(82008	(e)		e.018 0.05 0.03							Noile		Noile								Noill	
${ }_{\substack{827088 \\ 88208}}$	-1.-1.ichloropopene	$\underbrace{\text { a }}_{\substack{\text { makg } \\ \text { mokg }}}$				${ }^{\text {Nol } 10.044]}$				${ }_{\text {No }}^{\text {No.0.02] }}$		$\xrightarrow{\text { Nol0.0.5s] }}$		${ }^{\text {Nop } 10.055]}$	-	${ }^{\text {Noplo.0.1] }}$		${ }^{\text {Noplo.06e }}$	-		
(0.00053	No (1.0999]		No (10.087]				Nol		No [0.11]		Nol 0.111$]$ E		Nolo.ile		No [0.1.3]		No [0.111]	
82808		$\underbrace{\text { a }}_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }_{2}^{0.85}$			${ }^{\text {No [0, } 0.087]}$				${ }^{\text {No [}}$ [0.12]		$\xrightarrow{\text { Noplo.1] }}$ No 0.11$]$		${ }^{\text {Nol0.11] }}$ No 0.11$]$						Nololil	
			0.00016		-	No (0.087)	-					$\underset{\substack{\text { Nol } 0.011] \\ N 0.0568] ~}}{ }$			-				-		
	1.2-2.icholoobeerzene	mgkg	5.1															No 10.0			
82808 88208 88																No (lo.0il]			-		
(82808	lex		${ }_{28}^{23}$	${ }^{\text {Nol } 10.009]}$		Nollo.08]						N010.13]		Noloin		${ }^{\text {Nol } 0.1021}$		Nol0.13]		Nololil	
${ }^{\text {chen }}$	1,3.-ichlolopopopone	${ }_{\text {mak }}$		N010.05]		No (10.044				No [10.062]		No [0.0.06]		No [0.055]		No [0.006]		No 10.0060		No (0.055]	
82808 88208		moth	0.64			${ }_{\text {No }}^{\text {No [0.0.4] }}$				$\xrightarrow{\text { No } 010.02]}$ No [0.12]		$\underset{\substack{\text { No } 0.005] \\ \text { No [0.1] }}}{ }$				$\xrightarrow{\text { No }}$ N0.0.0.1]		${ }_{\text {No }}^{\substack{\text { No [0.0.6] } \\ \text { No [0.3] }}}$		Nolio.5]	
	${ }^{2}$ 2.umanone	mokh	59	${ }^{\text {NN0, } 0.25]}$		${ }^{\text {NNO } 0.22]}$				No[0.3, ${ }^{\text {a }}$		Nol0.28]		Nol0.28]		No 10.3$]^{3}$		No[0.33]		No 10.285	
	${ }^{\text {2 }}$	${ }_{\substack{\text { mokng } \\ \text { mok }}}^{\text {mat }}$	-	${ }^{\text {Noplo. } 0.25]}$		Noilo.2]				Noili.3]		N0.0.2]		Noilo.2]		${ }^{\text {Nop }}$		No.		N0.0.2]	
82008 88208 8	4.4.thoroiouene	${ }_{\substack{\text { mok } \\ \text { mokg }}}^{\text {mag }}$			-	Notious	-					Nolo.05]		No		${ }_{\substack{\text { No [0.0.61] } \\ \text { NDO.0.0.1] }}}$			-		
	4. 4 ethy-P-Pentano	${ }_{\substack{\text { makg } \\ \text { mokg }}}^{\text {mat }}$	${ }_{88}^{8.1}$			Nolio.2]						${ }^{\text {Nol0.28] }}$		${ }^{\text {N0, } 0.288}$				N010.33]		N ${ }^{102028]}$	
	Aler		0.025							Noto.				Notiosble		Notooble		Notoing		Nolo.59]	
	Bromochloromenhene	${ }_{\text {makg }}$		N ${ }^{\text {N0,0.05 }}$		No 10.044$]$				No 10.063$)^{\text {a }}$		No (0.056]		No 10.055		Notio.061]		No $10.060^{\text {a }}$		No 10.055	
	Bromotom	${ }_{\text {makg }}^{\text {moke }}$	- ${ }^{0.34}$	Noli.099]		Nolio. ${ }^{\text {Nos7 }}$				${ }^{\text {Nol } 0.102]}$		${ }^{\text {Nolopil1 }}$		N01.11]		${ }^{\text {Noplo. }}$		Nolo.33]		No [0.11]	
O8	coil	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	${ }_{12}^{0.16}$	${ }_{\text {No }}^{\text {Nolo.0.095 }}$		${ }_{\text {No }}^{\text {Nol } 0.0087}$				No 0.0 .62$]$				ND N 0.0 .055$]$							
(22088	Cation Terathlorie	makg	0.023 0.63	\pmNo [0.0.0]E No [0.05]								$\xrightarrow{\text { Nop } 0.050] E]}$						Nolotoble		Nolotios	
	Chloeetane		${ }_{0.46}^{23}$			Nol0.037]				${ }_{\text {No [0. } 0.0 .72]}$		${ }_{\text {No [0.0.13] }}^{\text {No }}$		${ }^{\text {No } 00.00 .13)}$		${ }_{\text {No }}^{\text {No [0.12] }}$		${ }_{\text {No }}^{\text {No [0.1.3] }}$	-	${ }^{\text {No [0.0.05] }}$	
${ }^{828008}$	Chloromenhene	mgkg	${ }^{0.21}$	No 10.099$]$		No 10.087				N00.0.2]		Nopo. 013		${ }^{\text {Nolo. } 011}$		No[0.12]		no [0.1.3]		No [0.11]	
${ }_{\text {l }}$		${ }_{\substack{\text { mokng } \\ \text { mokn }}}^{\text {mat }}$	${ }_{\text {a }}^{0.024}$	No 10.050$]^{\text {E }}$		No (lo.044)				Nol		Nol		${ }_{\text {No }}$ N0.0.055 E	-						
		makg	${ }^{0.032}$			Nol 0.044 E E				Nolo.082]				Nolo.053E		Nolotioble				Nolo.053 E	
	Dichlorituramentane	${ }_{\substack{\text { makg } \\ \text { mokg }}}^{\text {mata }}$	$\stackrel{140}{6.9}$	${ }_{\text {Nol }}^{\text {No.0.09] }}$		(ND(0.087)				$\xrightarrow{\text { Nol } 0.1027}$ N0.02]		$\xrightarrow{\text { NND [0.0.3] }}$ N0.05]				$\xrightarrow{\text { NN0.0.1] }}$		Noi.0.3]			
${ }^{882008}$	Nentine chloride		${ }^{0.006}$																		

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

\begin{tabular}{|c|}
\hline \& \& \& \& \& Sicle \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Method \& A Anaye \& Units \& ADEC Cleanu Level \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 82008 \& \& \(\underbrace{\substack{\text { mokg }}}_{\text {mgkg }}\) \& \({ }_{15}^{15}\) \& \({ }_{\text {No }}^{\text {Nol0.0.05 }}\) \& \& \({ }_{\text {No [0.04] }}^{\text {No } 0.044]}\) \& \& \& \& \({ }^{\text {NNo [0.0.02] }}\) N0.082] \& \& No [0.056] \& \& \({ }^{\text {No [0.0.05] }}\) N0.0.55] \& \& \(\xrightarrow{\text { No [0.0.6] }}\) ND 0.0 .61\(]\) \& \& \({ }_{\text {No [0.06] }}^{\text {NDO.0.06] }}\) \& \& \({ }_{\text {No }}^{\text {Nop } 0.055]}\) \& \\
\hline \& O-Xyene \& makg \& \({ }_{1}^{63}\) \& \& \& No. 10.044\(]\) \& \& \& \& Nol10.02] \& \& No 10.059\(]\) \& \& No 10.055 \& \& \(\xrightarrow{\text { No } 10.0031]}\) NDO.0.0.1] \& \& No \(10.096{ }^{\text {Nom }}\) \& \& \& \\
\hline \begin{tabular}{|l|}
828088 \\
82008 \\
\hline 8 \\
\hline
\end{tabular} \& Ster \& \({ }_{\text {makg }}^{\text {mokg }}\) mokd \& \({ }_{0}^{1296}\) \& \({ }_{\text {No }}{ }_{\text {ND } 10.0095}\) \& - \& \({ }^{\text {Nol }}\) \& - \& \& \& \({ }^{\text {NNO }}\) N0.0.0.02] \& \& \({ }^{\text {NNo }}\) N0.0.066] \& \& \({ }^{\text {No }}\) N0.0.0.055 \& \& \& \& No \(10.06{ }^{\text {No }}\) \& \& Nol \& \\
\hline \& \& \({ }_{\text {makg }}^{\text {mokg }}\) makg \& \({ }_{0}^{12024}\) \& \(\xrightarrow{\text { Nol } 10.05]}\) N0.0.05E \& \& \& \& \& \& Nol|lo.08] \& \& Nol 10.059\(]\) \& \& Nol 10.0 \& \& Nollo.061] \& \& \& \& \& \\
\hline 82008 \& Toluene \& mgkg \& \({ }^{6.5}\) \& N010.05] \& \& no [0.044] \& \& \& \& No 10.002\(]\) \& \& N0 10.056\(]\) \& \& No (10.055 \& \& No [0.0061] \& \& No 10.066\(]\) \& \& No (10.055 \& \\
\hline \& \& \& \& Nolo.0.05] \& \& ND(10.044] \& \& \& \& \& \& Nol \& \& Nolo.os \& \& Nol \& \& N010.0060 E \& \& Nollois \& \\
\hline \({ }_{822008}\) \& Trichloroetenene (TCE) \& mgkg \& 0.02 \& No 10.095 \& - \& Nol 10.044 E \& \& \& \& Nol(1.0.62] \& \& Nolo.osble \& \& Nolo.oss E \& \& \& \& \& \& Nol \& \\
\hline \begin{tabular}{|l|}
828088 \\
8808 \\
\hline 8
\end{tabular} \& Trenioluluorom \& \({ }_{\substack{\text { makg } \\ \text { mokg }}}\) \& \& No \({ }^{\text {N0,0.0.099] }}\) \& - \& \& - \& \& \& No [0.12] \& - \& No [0.11] \& - \& No ND 0.11\()^{\text {N }}\) \& \& \({ }^{\text {No }}\) N0 [0.12] \& \& \& \& \& \\
\hline \({ }^{82008}\) \& Xxenen, Somers M \& P \& mgkg \& \({ }^{63}\) \& N010.25] \& \& N010.23] \& \& \& \& N0[0.31] \& \& No [0.28] \& \& No [0.28] \& \& N010.3] \& \& No [0.33] \& \& N0 [0.28] \& \\
\hline \({ }_{\substack{82700 \\ 82700}}\) \& \& \({ }_{\substack{\text { magkg } \\ \text { mgkg }}}^{\text {a }}\) \& \({ }_{\text {en }}^{0.15}\) \& \& Nol \({ }_{\text {No. } 0.17]}\) \& \& \& \& \& \& \& \& \& \& Nol \({ }_{\text {Nop.19] }}\) \& \& \& \& \& \& \\
\hline (82700 \& 退 \& \({ }_{\text {maga }}^{\text {makg }}\) mokd \& \({ }_{0}^{28} 0\) \& \& \& \& \(\xrightarrow{\text { Nol0.17] }}\) N0.17] \& \& \& \& \& \& \& \& \(\xrightarrow{\text { Noplo.19] }}\) No.19] \& \& \(\xrightarrow{\text { Nob } 0.202]}\) \& \& \& \& Noplo.9] \\
\hline \& \({ }^{1}\)-2-Metyluaphathene \& mgkg \& \& \& \({ }^{\text {N00.0.17] }}\) \& \& \({ }^{\text {Nol0. } 17}\) \& \& \& \& \& \& N0.0.19] \& \& Nol0.19] \& \& \({ }^{\text {Nop } 0.2 .2] ~}\) \& \& \({ }^{\text {Nop } 0.22]}\) \& \& Nop0.19] \\
\hline \({ }^{82700}\) \& \& \({ }_{\text {mghg }}^{\text {mokg }}\) \& \({ }_{1}^{14}\) \& - \& \({ }^{\text {Nol } 0.17}\) \& - \& \({ }_{\text {Nol }}\) \& \& \& \& \({ }_{\text {Nol }}\) N0.10.19] \& \& \({ }^{\text {Nol }{ }^{\text {No.190 }} 10}\) \& \& \({ }_{\text {Nol }}\) N0.0.19] \& - \& \& - \& \({ }^{\text {Nob }}\) N0.0.2] \& - \& \({ }^{\text {NNol0.19] }}\) N0.19] \\
\hline 82700 \& \({ }^{\text {2 }}\) 2.4.i.ichlorophenal \& makg \& \({ }_{88}^{1.3}\) \& - \& Nolo \& - \& Noplo.17 \& \& \& \& \({ }^{\text {Nol0.19] }}\) \& \& \({ }^{\text {Nol0.0.19 }}\) \& \& N0.0.19] \& \& \({ }^{\text {Nop } 0.202]}\) \& \& Nop 0.2\(]\) \& \& Nol0.19] \\
\hline \& 2.4.0intuphenenal \& mgkg \& 0.54 \& \& N0. 0.177 \& \& No[0.17] \& \& \& - \& No[0.19] \& \& N00.009] \& \& No[0.19] \& \& No 0.27 \& - \& \({ }^{\text {N0 }} 0.027\) \& \& \\
\hline (82700 \& \& makg \& \({ }_{\text {coiol }}^{\substack{0.0093}}\) \& - \& Notiole \& - \& \& \& \& \& Noto.9]E \& \& Nololek \& - \& Notole \& - \& NNOPD2] \& - \& \& - \& \\
\hline \& 2.Choronaphntaen \& Nol0.19] \\
\hline \({ }^{82700}\) \& \& \({ }_{\text {mghg }}^{\text {mokg }}\) \& \({ }_{6.1}^{1.5}\) \& - \& Nolorn \& - \& \({ }_{\text {Nol }}\) \& \& \& \& \({ }^{\text {No }}\) N0.0.99] \& \& Nolo.19 \& \& \& - \& Nop 0.2\(]\) \& - \& Nolo.2] \& - \& \\
\hline 82700 \& 2-Nitraniliee \& mgkg \& \& \& N0.0.17 \& \& \({ }^{\text {N }}\) N0.0.17] \& \& \& \& N0.0.19] \& \& \({ }^{\text {Niplor } 019}\) \& \& \({ }^{\text {Niploig }}\) \& \& \({ }^{\text {Nop } 0.02] ~}\) \& \& \({ }^{\text {Nio } 0.022]}\) \& \& Niploti9 \\
\hline \& 3,3-Dininlorobenzidine \& \& 0.19 \& \& No [0.17] \& \& No (0,17) \& \& \& \& ND (0, 19.1 E \& \& ND 0.109 E \& \& ND (0.19) E \& \& No [02] \& \& No (0.2)] \& \& Nolotiol \\
\hline \& 3-..Crioaniline \& makg \& \& \& \({ }^{\text {Nol0.17 }}\) N0.17] \& - \& \({ }^{\text {Nol } 0.17]}\) N0.17] \& \& \& \& \({ }^{\text {N010.099 }}\) \& \& \({ }^{\text {Nol0.90 }}\) \& \& \({ }^{\text {NOD } 0.019}\) \& - \& No NO 0.2 O 2\(]\) \& \& \({ }^{\text {Nol } 0.2]}\) \& \& \({ }^{\text {Nol } 10.199}\) \\
\hline \& \& \& 0.057 \& \& No [0.17] \& \& No [0.17] \& \& \& \& No (1.19) \& \& ND (0.191) \& \& ND (0.191) \& \& \& \& \& \& Noploid) \\
\hline 82700
88700 \& \({ }^{\text {a }}\) - Meltypheneol \& makg \& \({ }^{1.5}\) \& \(\underline{\square}\) \& \({ }^{\text {Nol0.17 }}\) Noili \& - \& \({ }^{\text {Nol }}\) N0.17] \& \& \& \& Nolo.19] \& \& \& \& \& \& \(\xrightarrow{\text { Nop } 0.0 .2]}\) \& \& \& \& No 0.190 \\
\hline \& 4 4.Nitopheneol \& \\
\hline \begin{tabular}{l}
82700 \\
88700 \\
\hline
\end{tabular} \& Aecenathene \& makg \& \& - \& Nolo.17 \& \& Noplo.17 \& \& \& \& \& \& \(\xrightarrow{\text { Nol0.19] }}\) No 0.109 \& \& \(\xrightarrow{\text { Nol0.19] }}\) No.19 \& \& \(\xrightarrow{\text { Nob } 0.202}\) \& \& \& \& Nol0.9] \\
\hline \({ }^{82700}\) \& Antracene \& mgkg \& 3000 \& - \& No [0.17] \& \& No [0.17] \& \& \& \& No[0.19] \& \& No (0.19) \& \& No[0.19] \& - \& No 0.2 .2\(]\) \& \& N010.2] \& \& No [0.19] \\
\hline (82700 \& Benter \& mokg \& \({ }_{0}^{0.49}\) \& - \& N N0.10.17 \& - \& \({ }^{\text {NN0.0.17 }}\) \& \& \& \& \({ }^{\text {Noloide }}\) \& \& Nolo.19] \& = \& Nolo.19] \& - \& Niol \({ }^{\text {Noz }}\) \& - \& \({ }^{\text {Nob } 0.2 .2] ~}\) \& \& Nolo.19] \\
\hline \& Sener \& \& \({ }_{1490}^{409}\) \& \& \& \& \({ }^{\text {No }}\) N0.0.17] \& \& \& \& \({ }_{\text {Nol }}^{\text {Nol. } 0.19]}\) \& \& \& \& Nolo.19] \& \& No[0.2] \& \& \& \& Nopo.19] \\
\hline \& \& \({ }_{\text {makg }}^{\substack{\text { makg } \\ \text { mokg }}}\) \& \({ }_{410}^{49}\) \& - \& \& - \& \& \& \& \& \(\xrightarrow{\text { Nol0.0.9] }}\) N0.7] \& \& \(\xrightarrow{\text { No [0.19] }}\) N0.74] \& \& \& - \& \& \& (N0[0.2] \& \& Nole \\
\hline (e2800 \& (ex \& \(\underbrace{\substack{\text { mokg } \\ \text { mokg }}}_{\text {makg }}\) \& \({ }_{6.5}^{13}\) \& \& \& \& \(\xrightarrow{\text { Nolo.17] }}\) No 0.17 \& \& \& \& \& \& \& \& \(\xrightarrow{\text { Nol0.19 }}\) N0.19] \& \& \& \& \& \& \(\xrightarrow{\text { Nolo.al }}\) N0.19] \\
\hline 82700 \& Chrsene \& mgkg \& 350 \& \& No 0.1 .17 \& \& N0.0.17] \& \& \& \& Nop0.19] \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }^{82700} 8\) \& (e) \& \& 0.49

11 \& \& ${ }_{\text {Nol }}$ N0.1.17] \& \& ${ }^{\text {Nolo }}$ N0.17] \& \& \& \& ${ }^{\text {Noplorio }}$ \& \& \& \& ${ }_{\text {Nol }}$ N0.0.19] \& \& ${ }_{\text {Nob }}^{\text {Nol } 0.2} \mathbf{N}$ \& - \& ${ }^{\text {Nop }}$ N0.0.2] \& \& ${ }^{\text {No }}$ N0.19] 0.19$]$

\hline \& \& ${ }_{\substack{\text { makg } \\ \text { mokg }}}^{\text {mot }}$ \& ${ }_{2120}^{1200}$ \& \& $\xrightarrow{\text { Nol } 0.17}$| No 0.17 |
| :--- | \& \& $\xrightarrow{\text { Nol } 0.17}$| No 0.17 |
| :--- | \& \& \& \& \& \& $\xrightarrow{\text { Nolo.0.9] }}$ N0.19] \& \& $\xrightarrow{\text { Nolo.0.9] }}$ N0.19] \& \& $\xrightarrow{\text { Nop } 0.27}$ N0.02] \& \& No [0.2] \& \& Noplo.9]

\hline ${ }^{82700}$ \& Hexeathoromenzene \& mgkg \& 0.047 \& \& ND(0.17] \& \& No [0.17] \& \& \& \& No 0.199 E \& \& ND 0.1919 E \& \& No [0.19]E \& \& N0[0.2]E \& \& ND(0.2) \& \& Nol 0.1919 E

\hline	82720
88700	\& Hexachlorouladene \& ${ }_{\text {makg }}^{\text {makg }}$ mokg \& ${ }^{0.12}$ \& \& \& \& \& \& \& \& \& \& \& \& No 0.190$]$ \& \& Noploz] \& - \& \& \&

\hline 82720 \& Hexathoreane \& makg \& 0.21 \& \& No [0.17] \& \& ${ }^{\text {N00.0.17] }}$ \& \& \& \& Nol0.19] \& \& N010.19] \& \& N010.19] \& \& ${ }^{\text {Nopo } 0.2]}$ \& - \& Nop 0.27 \& \& Nolo.19]

\hline 82700 \& (somotione \& \& ${ }_{3,}^{4 .}$ \& \& ${ }^{\text {N0, }}$ N0.17 \& \& ${ }^{\text {Nop }}$ \& \& \& \& ${ }^{\text {Noloig }}$ \& \& ${ }^{\text {NNO }}$ N0.0.19] \& \& ${ }^{\text {Nop } 0.09]}$ N0.19] \& \& \& \& ${ }_{\text {Nom }}$ \& \& ${ }^{\text {Noloiolig }}$

\hline | 82700 |
| :---: |
| 88700 | \& \& ${ }_{\text {makg }}^{\text {mokg }}$ \& ${ }_{0}^{20} 0$ \& - \& No (0.17) \& - \& No [0.17] \& \& \& \& ND(0.19]E \& \& Nol 0.190 E \& - \& No (0.19) \& - \& No (0.2)] \& - \& No (1.2]E \& - \& Nol 0.19 E

\hline (82700 \& \& ${ }_{\text {mgkg }}^{\substack{\text { mokg } \\ \text { mgkg }}}$ \& ${ }_{\substack{0 \\ 0.000053}}^{0.0011}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& - \& | No [0.2]E |
| :---: |
| ND (0.2] | \& - \&

\hline | 82700 |
| :--- |
| 88700 | \& N-Nitrosodipheyamine \& makg \& ${ }^{15}$ \& \& Nol0.17] \& \& Nol0.17] \& \& \& \& Nol0.09] \& \& Nol0.19] \& \& Nol0.09] \& \& Not 0.21 \& \& No [0.2] \& \& Nol0.19]

\hline (ex \& Phenatrene \& ${ }_{\text {makg }}^{\text {makg }}$ \& 3000 \& \& ${ }^{\text {N }}$ N0.1.17 \& \& N0.0.17 \& \& \& \& Noloter \& \& N00.19] \& \& NN0.19] \& \& N0 [0.2] \& \& ${ }^{\text {No }}$ N0.2] ${ }^{\text {a }}$ \& \& NN0.19]

\hline 82700
8870 \& 隹 \& ${ }_{\text {mghg }}^{\text {mok }}$ \& ${ }_{1000}$ \& \& $\underbrace{}_{\substack{\text { Nol0.17] } \\ \text { Nol } 0.17}}$ \& \& $\xrightarrow{\substack{\text { Nol0.17] } \\ \text { Nol } 0.17}}$ \& \& \& \& $\xrightarrow{\substack{\text { Nolotop } \\ \text { Nol } 0.19]}}$ \& \& \& \& \& \& $\xrightarrow{\substack{\text { Nol } 0.2 \\ \text { No [0.2] }}}$ \& \& $\xrightarrow{\text { Nolo. }}$ N0.0.2] \& \& $\xrightarrow{\substack{\text { Nol } 0.19 \\ \text { N0.0.1] }}}$

\hline
\end{tabular}

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

						Sill			SB29 14BVR-B29SU-02 14E188-06 $14 E 188$ 5/22/2014 SO EMAX Primary												
Method	Aname	Units	ADEC Cleanu Lever ${ }^{\text {a }}$																		
(0216	\%\%Mosture	$\underset{\substack{\text { Percent } \\ \text { mgkg }}}{\text { ate }}$				17.8	17.8	${ }_{68,21272.3]}^{18.7}$	9.05. ${ }_{\text {S }}$	14.9	14.9	${ }^{9.1}$	${ }^{9.1}$	8.5	8.5	${ }^{7.2}$	${ }^{7.2}$	16.3	16.3	14.9	14.9
${ }_{\text {AKK01 }}$ AK12103		$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	(300	ND [0.6]	N0[5.4]	N0 [0.69]	N0[6.1]	N0[6.2]	N0[5.2]	N0[0.99]	N0[59]	N0[0.52]	N0[5.5]	$0.44[0.61]^{3}$	$10[5.50$	N0[0.6]	N0[5.4]	No[0.09] Jo	950 [50]	0.350 .0 .591 , Jo	1100 [59]
AK102030	Rro	$\underbrace{\text { den }}_{\substack{\text { maks } \\ \text { mokg }}}$	10000 3				${ }_{8}^{40 \cdot 2[6.1 .12]}$				${ }_{4.86[0.911]}^{31}$		$\underset{\substack{\text { N0[5] [5] } \\ 150.104]}}{ }$								
${ }_{\substack{6020 \\ 602 A}}$	Earium	${ }_{\text {mgkg }}$	1100		${ }^{31770.006]}$		$478[0.122]$				${ }^{164[0] 111]}$				${ }^{107000.1098]}$		${ }^{122[0.1008]}$		${ }^{\text {and }}$		${ }^{100909.12]}$
		mgkg	${ }_{5}^{55}$	=			${ }_{\text {a }}^{0.7878[0.122]}$				${ }^{0.087330 .01111]}$ J				0.3920.10,				${ }^{0.182[0.144] J}$		
(6020	(eatemum	$\underbrace{\text { makg }}_{\substack{\text { mghk } \\ \text { moks }}}$	25 400 4								${ }^{\text {and }}$		(e.tili.104]						${ }_{\text {a }}^{24.80 .10 .14)}$		
(602A		mgks	${ }_{\substack{3.4 \\ 112}}^{\text {112 }}$								${ }^{0} 0.1090 .01111{ }^{0}$		Nol0.52]] 0				${ }^{0.2810 .0 .08] J} 0$				${ }^{0.177[0.12] J} 0$
${ }^{\text {7472A }}$	Merury	mgkg	1.4		ND [0.0215]	-	$0^{0.0322[10.023] 3 J}$				No [0.0235		$0.01988(0.027)$		$0.02110^{0.02919]}$		0.08890 .00216 J		no 10.02		0.031310 .0235 J
30318			${ }_{5.1}^{7,2}$								Nol(10.004] ${ }_{\text {N }}$	-									NoNo [0.0.024] ND 0.0024$]$
	${ }_{\text {Aldaia }}^{\text {Ald }}$	$\underbrace{}_{\substack{\text { maks } \\ \text { moks }}}$	$\begin{array}{r}7.3 \\ \\ \hline 07\end{array}$		No.		No.				No (1000047]		No (1.00044]		No (1.00044]		No (10000433)		${ }^{\text {No }}$ N0.0.022]		No 1.0 .0224
(100818			0.0064			-	Ni.0.00049]		-		Ni.0.00047]		Nol0.000044]		N0. 1.000044]		N0[10.000933]		No 10.0024		Nol 1.00224
18	${ }^{\text {den }}$		${ }^{0.022}$	-	N0.0.000033)	-	N0.0.000949]				${ }^{\text {N }}$ N0.0.000047]		N10.00004]		${ }^{\text {N }}$ N0.0.000044J]				No.		Not10.028
${ }^{20818}$	- BH ¢	mgkg	0076		No[10.00093]		Nol 1.00049 9				No (1.00047]		00044		Nol 1.000044		No (0.000 ${ }^{\text {a }}$		No 10.022]		No 10.0224$]$
¢	Dendosulan		0.007				ND ND				ND[0.0.0047]	-					${ }^{\text {No }}$		No.		No 10.022 No 10.0
(08018	Endosulan in	${ }_{\text {maks }}^{\text {magk }}$	-		No 10.0000333	-	No (1.00049				No 10.00047$]$		No 10.00043		No 1.0 .0044		Nop 0.000033$]$		No 10.0022]		No 10.0024
ciobie	Endirin	${ }_{\text {mgang }}$	0.29	-	No (1.000033)	-	Nol (10000999)	-	-		ND0.0.00047)	-	Nol.0.00044		Nol 1.000044	-	Nol.o.00033)		No 1.0 .0024		No 10.0024$]$
(80818		$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$					Nop(0.00499)						Nop (0.0044)		Nol(0.0044)						
${ }_{\text {coser }} 80818$	Camma.BHC (Lindane)	mgkg	0.0095	-	No (1.000933)	-	Nop 1.000499				No (1.00047)		No (1.00044]		no (1.00044]		No (1.000233)		no [0.022]		No 10.0
(easib		$\underbrace{}_{\substack{\text { mgh } \\ \text { mgh } \\ \text { mikg }}}$	(e.			-	N01.0000499				N0.0.000 ${ }^{\text {a }}$		N0		N0.0.0004A		Ni.0.00033]		No 1.0 .0024		$\xrightarrow{\text { No } 10.0024}$
(80018	Hentachor Foxide	${ }_{\substack{\text { magk } \\ \text { mokg }}}$	${ }^{0.014}$		No. 0.00033$]$	-	Nopo.0099]						No.0.0044]		No (0.00044)						
	Toxaphene	mgkg	3.9		No 10.011$]$		No 10.012$]$				No 10.012$]$		Nol0.011]		No[0.0.11]		Nol0.0.11]		Nolo.0.6]		NoD 10.059$]$
	PCB-1222 (A)OCocol 12221$)$	${ }_{\text {mgkg }}$	1		No 10.0097$]$	-	No 10.027	-			N010.02]		No 10.0081		N0.0.018]		${ }^{\text {No }}$ N0.0018]		Nol0.02]		${ }^{\text {NNO }} \mathbf{1 0 . 0 2 2]}$
(8032	(eckerene	$\underbrace{}_{\substack{\text { mgaks } \\ \text { moks }}}$	1	-		-	${ }^{\text {Nol }}$ N0.02]	-	-			-				-					
(8082		$\underbrace{}_{\substack{\text { mgakg } \\ \text { mokg }}}$	1		NN0.008]		$\xrightarrow{\text { Nol0.02] }}$ N0.02]				$\xrightarrow{\text { Nol0.0.02] }}$ N0.07				No (0.018]		No ${ }_{\text {No.0.18] }}^{\text {ND } 00188}$		${ }^{\text {Nol } 10.027}$		
(8032		$\underbrace{\text { ata }}_{\substack{\text { magks } \\ \text { moks }}}$	1		No 10.018$]$		No [0.02]				No [0.02]		No 10.018$]$		No [0.018]		No (0.018)	-	No 10.02$]$		No [10.02]
	-		$\stackrel{-9}{0.82}$	Notobl	-		-		-		-	-	-		$=$	Noiobl	-		-		
	-																				
(82008	1,1,2-T.iehloloenemane	$\underbrace{}_{\substack{\text { mgak } \\ \text { mokg }}}$	0.018	Nol 0.0061 E	-	Nolo.099]E	-		-		-	-		Nol(0.002]	-	Nol 0.0061 E					
	(1.1-Dichloroemane	$\underbrace{\text { ate }}_{\substack{\text { magk } \\ \text { moks }}}$	${ }_{0}^{25}$	$\xrightarrow{\text { Nol } 10.006]}$ Nolooble		Nolo.0.099]								Nollo.061]		Nolouel					
兂82088		$\underbrace{}_{\substack{\text { magks } \\ \text { mokg }}}$		${ }_{\text {Nol } 0.006]}^{\text {N } 0.102]}$	-		-								-		-				
	隹	male	0.0005	No 0.1 .21$]$ E	-	Nol 0.129 E								No 0.12121 E	-	${ }^{\text {No } 0.20 .21] ~}$,				
	(1,4,	$\underbrace{\text { chem }}_{\substack{\text { magk } \\ \text { maks }}}$	${ }^{0.85}$	${ }^{\text {Noplo. }}$ N0]		$\underset{\substack{\text { Nol.0.1] } \\ \text { N0 } 0.104]}}{ }$								Noloill		${ }^{\text {NNO }}$ N0.1.12]					
		$\underbrace{}_{\substack{\text { magks } \\ \text { mokg }}}$	${ }_{0}^{0.00016}$	$\xrightarrow{\text { Nol }}$	-	${ }^{\text {Nol }}$ N0.0.4)	-	-	-		-	-	-	$\xrightarrow{\text { Nol }}$ N0.1.2]	-	Nolotiol	-	-	-		
(82088		$\underbrace{}_{\substack{\text { magks } \\ \text { moks }}}$	${ }_{0}^{\text {. }} 0.16$			${ }_{\text {No }}^{\text {Nol } 10.069]}$															
	-	mgkg	0.018	NoD(0.09]		Not 10.099 E								Nol(0.091]		No 10.06$]^{\text {a }}$					
	(1,5.5-imembuberene	$\underbrace{}_{\substack{\text { mgh } \\ \text { mokg }}}$	${ }_{28}^{28}$	${ }^{\text {Nol }}$ N0.0.06]		${ }^{\text {ND }}$ N0.0.099								ND 0.0 .617		${ }^{\text {Nol } 0.006]}$					
(82008	1.	$\underbrace{}_{\substack{\text { mg } \\ \text { mokg }}}$	0.64	${ }_{\text {Nol }}^{\substack{\text { No.0.06 } \\ \text { No } 0.06]}}$		No [10.099]								No $\begin{aligned} & \text { No.0.061] } \\ & \text { NDO.0.0.1] }\end{aligned}$			-				
(82008	a	$\underbrace{\text { mata }}_{\substack{\text { magks } \\ \text { mokg }}}$	${ }_{59}$	NN0.102] No [0.3]										No.0.1]							
	${ }^{\text {a }}$	$\underbrace{\text { max }}_{\substack{\text { migk } \\ \text { moks }}}$	$\stackrel{59}{-}$	Noio.		Nolo.34]								No 0.0 .31$]$		Noi.3.					
	2-.texanone		-	$\xrightarrow{\text { Nolo.3] }}$ N0.0.06					-					${ }_{\substack{\text { Nol } 10.37] \\ \text { No.0.01] }}}$	-	$\xrightarrow{\text { Nop } 0.0 .3}$	-				
(82008		$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	${ }_{8} 1$	Nolio.0e]												$\xrightarrow{\text { Nolo.0.0] }} \mathrm{N}$					
	Aceore	mgkg	${ }_{88} 8$	No [0.3]		Nol0.34]								No[0.33]		No 00.3]					
	Sersen	$\underbrace{}_{\substack{\text { mghkg } \\ \text { mokg }}}$	0.025	No ${ }^{\text {No.0.0] }}$		Nol (0.099E				N010.099 E		N0[0.052]		Noplo.0.0]E	-			Nol0.069, 5 S E		Nol0.099]	
(82008	Bromochoromenane	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	0.094																		
			(e.340.36 0.16	$\xrightarrow{\text { NN0.0.12] }}$ N0.12]		Noioli4]										${ }^{\text {Nopoin }}$					
(20008	(iamolune	$\underbrace{}_{\substack{\text { mgh } \\ \text { miks } \\ \text { mikg }}}$	- 12			Nololity								Noli.0.1]							
	Cateon terachorde			Noile		Nolo.099E								Noplobl	-	Nolo	-				
	chiocelane	$\underbrace{}_{\substack{\text { mgks } \\ \text { mokg }}}$	${ }^{23} 0.46$	${ }_{\text {No }}^{\text {Nol } 0.102]}$		${ }^{\text {No }}$ N0.10.4] 0.099$)$										$\xrightarrow{\text { Nop [0.12] }}$ N0.0.0]					
	Cis-12:-i.ichoroeetrene	$\underbrace{\text { deg }}_{\substack{\text { mgks } \\ \text { mokg }}}$	0.21 0.24	$\xrightarrow{\text { Nol } 0.10]}$ N0.0.0]												Nipi.12]					
(82008	(is).1.-icicloropopene		-			Nol.oios)									-						
(82008		$\underbrace{\text { mag }}_{\substack{\text { magk } \\ \text { mokg }}}$	${ }_{1}^{140}$											$\xrightarrow{\text { Nollo.0.3] }}$	-						
(82008			140 .6 .9 0.016	$\xrightarrow{\text { Noi.0.20] }}$		Notiong				ND[0].069]		No [0.052]		${ }^{\text {Notiol }}$	-	${ }_{\text {Nol }}^{\text {Noi.06] }}$	-	No 0.0699 Js-		ND [0.059]	
														Noplotele		No					

Page 11 of 14

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

									SB29 14BVR-B29SU-02 14E188-06 $14 E 188$ $5 / 22 / 2014$ SO EMAX Primary						$\begin{array}{\|c\|} \hline \hline \text { SB31 } \\ \text { 14BVR-SB31-SS01 } \\ \text { 14E190-16 } \\ 14 \mathrm{E} 190 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{array}$						
Mentod	A Anayle	Unis	ADEC Claanu Level ${ }^{1}$																		
${ }_{\substack{82008 \\ 82808}}$	N-Mulberene	$\underbrace{}_{\substack{\text { mokg } \\ \text { mokg }}}$	${ }_{15}^{15}$			${ }^{\text {No [0.0.69] }}$ No.															
(82008	(oxteremer	comb	15 12 18	Noiole		(No.0.099				No [0.069]		No[0.052]		(No.0.031				Nol0.069 1 S		No[0.059]	
			1. 129 12			(No.0.09]	-														
${ }^{825008}$	Terambloemenene (PCE)	mokg	0.024	No [0.0.0]		Nol (0.099]								ND(1.0.001]		No 10.0001 E					
${ }^{828088} 8$			${ }^{6.5}{ }_{0}^{6.5}$							NDO0.069		No 0.052$]$						N000.069 Js-		No 0.059	
(28088		makg	${ }_{0}^{0.032}$		-		-	-	-	-	-	-	-								
82608 88808 8	Trinhorofluoremenene	makg				Not 0.14 E															
${ }^{825008}$	xxyene Isomers M P	mgkg	${ }^{63}$	N0 0 [0.3]		Nol 1.34				N0 [0.35]		No [0.26]		No [0.31]		N0 0 [0.3]		No [0.35] $\mathrm{s}^{\text {- }}$		No (0.29]	
(82700	$1{ }^{\text {a }}$	mokg	${ }_{5.1}$	-	Nolo.18]	-	${ }^{\text {NOLOPO2] }}$	-	-	-	Niol	-	Noloin	-	Nolo.18]	-	Noin	-	Nolol		ND0.0.2]
${ }^{82700}$	${ }^{\text {a }}$	$\underbrace{\substack{\text { mokg } \\ \text { mokg }}}_{\text {makg }}$	${ }_{0}^{28}$				$\xrightarrow{\text { Nop } 0.02]}$ N0.0.2]				$\xrightarrow{\text { Nob } 0.2 .2] ~}$		${ }^{\text {Nol }}$								${ }_{\text {N }}^{\text {Nop } 0.2 .2]}$
82700		makg	${ }_{6}^{6.2}$	-		-	Nop 0.2$]$				Nolo.2]		$\xrightarrow{\text { Nol } 0.18]}$ No [0.18]	-	Nol0.18] ${ }_{\text {No }}$	-	$\xrightarrow{\text { Nol0.18] }}$ N0.18]	-	Nob0.2]		Nop 0.20
82700 88700 8	${ }^{2}$	maga	${ }_{13}^{1.4}$			-					$\xrightarrow{\text { Nol } 0.23}$ No [0.2]	-				-		-	Noi0.2]		$\xrightarrow{\text { Nop } 0.2 .2}$
	2.4.imentyphenol	mokg	${ }_{8} 8.8$																		
82700 88700 88 8		$\underbrace{\text { and }}_{\substack{\text { mokg } \\ \text { mokg }}}$	- 0.04		Nolo.18]	-	No.0.2]				Noloz		Nol		Noloin]		Nololis]	-	Notiol	-	
82700	${ }^{2}$	makg	0.0094		Nol0.29]																
882700	2.Chlorophenel	mgkg	${ }^{1.5}$	-	No [0.1.8]	-	N00.0.2]				N0[0.2]		No [0.1.8]		No[0.18]		No[0.18]	-	Nol0.2]		N00.0.2]
${ }^{82700}$	2-Nitronainine	mokg			${ }^{\text {NNO } 0.0 .18]}$		${ }^{\text {No }}$ N0.0.2]				${ }_{\text {Nob }}$ N0.0.2]		${ }^{\text {Noloin }}$		${ }^{\text {Noploig] }}$		${ }^{\text {Nol }}$		${ }^{\text {Nob }}$ N0.2.2]		${ }^{\text {Nio } 0.0 .2] ~}$
	${ }^{\text {a }}$	makg	0.19																		
00		mgakg			${ }^{\text {Nol } 0.18]}$		${ }^{\text {NDD } 00.2] ~}$				${ }^{\text {Nob } 0.02] ~}$						Nolo.18]		N0.0.2]		${ }^{\text {No } 0.023}$
${ }_{8} 82700$	4.Chloronaline	mgkg	0.057		No [0,18)		No (0.2)]				No [0.2]E	-	No (0.18]		No		No (0.128]		No 10.27 E		N0 0 (0.2)
82700 88700	4.Mentyphenol	${ }_{\text {makg }}^{\substack{\text { makg } \\ \text { mokd }}}$	${ }^{1.5}$				$\xrightarrow{\text { Nob } 0.20]}$ N0.0.2]				$\xrightarrow{\text { Nob } 0.02]}$ N0.0.		${ }^{\text {Nol0.0.88 }}$				${ }^{\text {Noplopiel }}$	-		-	$\xrightarrow{\text { Nop } 0.202}$
${ }_{82700}$		mokg													Nop0.18]						
${ }^{82700}$	Acenaphene	${ }_{\text {mgokg }}^{\text {mokg }}$	${ }_{180}^{180}$								$\xrightarrow{\text { Nolo. }}$ N0.0.]		$\xrightarrow{\text { Nop } 0.18]}$ No. 0.18				${ }_{\substack{\text { Nol } \\ \text { No. } 0.188 \\ \hline}}$	-		-	$\xrightarrow{\text { Nob } 0.2 .2]}$
	Antracene	makg	3000		N010.18]		${ }^{\text {NDO } 0.22] ~}$				${ }^{\text {NDPO. } 23}$		N0.0.18]		N0.0.18]		${ }^{\text {N0.0.18] }}$		${ }^{\text {No } 0.2 .2] ~}$		${ }^{\text {No } 0.0 .2] ~}$
${ }^{82700}$	Benzol Pryene	mgokg	${ }_{0.49}$		${ }^{\text {Nol } 0.108]}$		${ }^{\text {N0 } 0.0 .2] ~}$				N0 0.2]		N0[0.18]		N0[0.18]		N0[0.18]		N N 0.027		
${ }_{\substack{87200 \\ 88700}}^{8}$	Serso	$\underbrace{\text { and }}_{\substack{\text { makg } \\ \text { mokg }}}$	$\underset{\substack{490 \\ 140 \\ \hline}}{ }$								$\xrightarrow{\text { No } 0.02]}$ N0.0.2]				Nololie]			-	$\xrightarrow{\text { Nop } 0.2]}$ N0.0.]		$\xrightarrow{\text { Nop } 0.2]}$ N0.0.2]
\%ob		$\underbrace{\text { mat }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{410}^{49}$			-					$\xrightarrow{\text { Nol } 0.2]}$ No [0.7]		$\xrightarrow{\text { No [0.18] }}$ No 0.73$]$		${ }^{\text {NNo [0.18] }}$ N0.73]		${ }^{\text {No [0.18] }}$ N0.72]				Nolo
- 82700	(ex	${ }_{\text {makg }}^{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{6.5}^{13}$		${ }^{\text {Noplo.18] }}$ Nolis]						$\xrightarrow{\text { Nol } 0.2]}$ No [0.2]				Noplo.18]		$\xrightarrow{\text { Noplo.19] }}$ N0.18]		$\xrightarrow{\text { Nop } 0.2 .2]}$		$\xrightarrow{\text { Nob } 0.2 .2] ~}$
100	chrsene	mgkg	360		N000.18]		No 0.2 .2				No [0.2]		Nol0.18]		No[0.18]		N0[0.18]		No [0.2]		N $\mathrm{N}[0,2]$
											${ }^{\text {Nob }}$ N0.2.2]		${ }^{\text {Nololib }}$				${ }_{\text {NNOLO. }}$				
82700 88700 8	$\underset{\substack{\text { fularane } \\ \text { Florene }}}{\text { chen }}$	$\underbrace{}_{\substack{\text { makg } \\ \text { mokg }}}$									${ }_{\text {Nob }}^{\text {Noi.2] }}$		${ }^{\text {Noli.0.18] }}$								
88700 88700	${ }^{\text {Hexachloroberene }}$ Hexacorounuaiene	makg	${ }_{0}^{0.047}$			-					Noloze	-					Nolole		Nolo.2k		Notiolk
82700 88700	Hexachloreyclopentad	makg	${ }_{0}^{1.21}$				$\xrightarrow{\text { Nob } 010.2]}$ N0.0.				$\xrightarrow{\text { Nob } 0.02]}$		${ }^{\text {Nolio. }}$		${ }^{\text {Noliolig }}$ N0.18]		${ }^{\text {Noplopiel }}$		$\xrightarrow{\text { Nop } 0.02]}$		$\xrightarrow{\text { Nop } 0.02]}$
${ }_{\text {c }}^{828700}$		makg	${ }_{4}^{49}$		ND0.18]		No $\mathrm{N}, 2.2]$				Noi. ${ }^{\text {N }}$		Nolo.18]		Nolo.18]		N0[0.18]		ND[0.2]		ND[0.2]
82700 88 80	Nopantuane	mokg	${ }_{20}^{20}$		${ }^{\text {Nop } 00.109]}$		${ }^{\text {N0, } 0.2 .2] ~}$				${ }^{\text {Noi } 0.2 .2] ~}$		No[0.18]		No[0.18]		N0[0.18]		${ }^{\text {N0, } 0.2 .2] ~}$		N0 0.2 .2$]$
82700 88700 8 8	Nutateneen	$\underbrace{}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{\text {a }}^{0.0009}$			-	Noloze				Noloze								Noloze		Noloze
827700 88700			0.0011 15			-					N	-	Noile	-				-		-	
827700 88700	Penachioropenol	mokg	0.0.077			-								-		-		$=$		-	Noloze
82700	Phenol	makg	ciob		($\begin{aligned} & \text { Nol0.18] } \\ & \text { No. } 0.18]\end{aligned}$		$cNop022) N002]$						$\xrightarrow{\text { Nol } 10.18]}$ No.18]		$\xrightarrow{\text { Nol0.18] }}$ N0.18]		$\xrightarrow{\text { Nol0.18] }}$ Noli.18]		Noior		$\xrightarrow{\substack{\text { Nol } 0.2 \\ \text { No } 0.2]}}$


```
M,
```



```
M,
M=Then
```


2014 Beaver Creek RRS Remedial Investigation

					SB32 14BVR-SB32-SU03 14E189-10 14E189 $5 / 21 / 2014$ SO EMAX Primary								W02-S01 14BVR-W02-S01 14E191-17 $14 E 191$ $5 / 22 / 2014$ SO EMAX Primary			
Method	Anaye	Units	ADEC Cleanup Level													
(i2216	\% Mastue			5.1	5.1	5.9	5.9	5.6	5.6	1.2	1.2					
9060 AkK01 AK1020	Total iganic Catoon	$\underbrace{\text { max }}_{\substack{\text { mgkg } \\ \text { mokg }}}$	300	No [0.5]		${ }^{0.38[0.317]}$		3.40.37]		No[0.2]		ND [0.31]		No [0.5]	N0[0.5]	No [0.5]
${ }_{\text {AKP102203 }}$	dro	${ }_{\text {makg }}^{\text {makg }}$	coick				${ }_{5}^{28[5] 3]}$		${ }^{110[5] 53]}$				${ }_{\text {No }}^{\text {N0, [5] }}$			
${ }^{\text {cosea }}$	$\xrightarrow{\text { arsenic }}$	${ }_{\substack{\text { makk } \\ \text { mikg }}}^{\text {mikg }}$			(1200		coicle		(titi.3]		No.					
¢	(eate						3840.104]		${ }^{\text {a }}$				${ }^{203370.5058]}$			
${ }^{6020} 4$	chromum	${ }_{\substack{\text { mgkkg } \\ \text { mokg }}}$	${ }^{25}$		- 19.3 [3:099]		${ }_{\text {22, }}^{22.40 .109]}$		${ }^{5700.1005]}$				${ }^{24.40 .5058]}$			
	${ }_{\text {Lead }}^{\text {Leajium }}$	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$														
6029 A	siver	mgkg	11.2		No [0.999]		$0.0231[0.1041$ J		$0.165[0.1055]$		${ }^{0.1688[0.0101]}$ J		No [0.538]			
	${ }_{\text {M }}^{\substack{\text { Merculuy } \\ \text { 4.-odd }}}$		${ }_{72}^{14}$		(0.0244[0.0211]		(0.0182[0.023]3]		Nop 0.0212$]$		No 0.0 .0202$]$		(0.0147(0.0215]			
${ }^{80818}$	4.4-0de	mokg	5.1		Nol0.00084		Nol0.000 ${ }^{\text {a }}$		No [0.000027]		No 10.00094		No[10.00093]			
	${ }_{\text {Alphashic }}^{\text {Aldin }}$	mgkg	${ }^{7.3}$		(Nop 10.00084$]$		ND[0.00073]		ND[0.00023]		No 10.00004		ND[0.00043]			
${ }^{\text {8081B }}$	${ }^{\text {Aeata }}$ BHC	${ }_{\text {mogkg }}$	${ }_{0}^{0.0064}$		ND (1.000884]				No 0.0000042$]$		No 10.00004		ND 0.0000033$]$			
	Pelarabc	mgkg	${ }^{2.3}$		No (1.00084]		No [10.00933]		ND [0.00023]		No [10.0004]		No [10.00933]			
${ }_{\substack{80818 \\ 80818}}^{\text {80, }}$		$\underbrace{\text { mokg }}_{\text {mgkg }}$	0.022													
${ }^{80818}$	Diedidin	mgkg	0.0076		No[10.00884]		ND [0.00063]		ND [0.00002]		ND 10.0004		No [0.000033]			
${ }_{\substack{80818 \\ 80818}}^{80}$	Endosulan	$\underbrace{}_{\substack{\text { mgkk } \\ \text { mokg }}}$			Nop						NVI(0.0094]					
${ }^{80818}$	Enosuluan Sultae	mgkg			No (1.00084]		No [10.00033]		No [0.000027]		No 10.0004		No [0.000033]			
${ }_{\substack{80818 \\ 80818}}^{80}$	Enarin	$\underbrace{\text { mokg }}_{\text {mgkg }}$	0.29				NDD.0.00233 ${ }^{\text {N }}$		Nob 10.00023$]$		ND(0.0009]		Nolotoon			
${ }^{80818}$	Endirin Keoone	mgkg			ND [0.00084]		No [0.00093]		ND 10.000027		ND 10.00004		no [10.00033]			
${ }^{80818}$	Camma:BHC (Lindane)	mgkg	0.0095		No (1.00084]		No 10.000933$]$		No 10.00022$]$		No 10.00		No [0.000033]			
${ }_{\substack{80818 \\ 80818}}^{\text {80, }}$	Camma.chlorane	$\underbrace{\text { mokg }}_{\text {mgkg }}$	${ }_{0}^{2.28}$													
${ }^{80818}$	Hepacachor Epoxide	mgkg	0.014		no [10.00884]		no [10.00033]		no [1000002]		ND 10.0004		no [10.00033]			
	Teotexethor	$\underbrace{\text { ata }}_{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{3.9}^{23}$		Not				Nol (0.002]		Nolo.004]		Nop 0.00033			
		$\underbrace{}_{\substack{\text { mokg } \\ \text { mokg }}}$	1		No 10.081		No $\begin{aligned} & \text { No.0.018] } \\ & \text { ND } 0.0018]\end{aligned}$		No [0.0.8]		No ${ }_{\text {N0.0.7] }}^{\text {NDO }}$		ND 10.018$]$			
${ }^{8082 A}$	PCB. 1232 (A10codor 1232)	mgkg	1		ND [0.018]		No [0.018]		No [0.018]		No 10.017		ND [0.018]	-		
	PCB.1242 (ATocor 1242)				No 0.0 .018$]$		Noplo.018]		No 0.0 .018$]$		Nol0.017					
${ }^{8082 A}$	PCB.-124 (Amocoro 1254)	mgkg	1		ND [0.018]		ND [0.018]		ND [0.018]		No [0.017]		ND [0.018]			
	${ }^{\text {PCB }}$ P1.120. (Afocolo 1280)		1		No [0.018]	N00.0.031	No [0.018]	Nol0.037]		N0 0.027	No [0.017]		ND [0.0.18]			
	- $1.1,1 .-$ Tichloroeethane	$\underbrace{}_{\substack{\text { makg } \\ \text { mgkg }}}$	0.82 0.07	-		$\xrightarrow{\text { No [10.031] }} \mathrm{NO}$	-		-		-					
	1,1,2.7.i.chloro-1,1,2.2-															
${ }_{82608}^{828}$	1,1,2-Tichloloroentane	mgka	0.018			No (lo.031]		No (10.037]	-	No (10.09]E		ND 10.0021]		No [0.05]	No [0.0.7]	Nolo.0.7]
(18068	1.-1.ichloroethane	$\underbrace{\text { mokg }}_{\text {mgkg }}$	${ }_{0}^{25}$					${ }_{\text {No }}^{\text {No [10.03] }}$ N0.037]		Nol0.02] No 0.02$]$		${ }_{\text {No }}^{\text {No [0.0.03] }}$ N0.031]			$\xrightarrow{\text { No } 10.005]}$ No (0.05]	
${ }_{82808}^{88}$	1,1-Dichlororopopene	mgkg				No [0.033]		No [0.037]		No 10.027		No 10.031$]$		No [0.0.5]	No [0.0.5]	No[0.0.0]
		$\underbrace{\text { ata }}_{\substack{\text { makg } \\ \text { mokg }}}$	0.00053					${ }^{\text {No }}$ N0.0.074]						$\stackrel{\text { No }}{\text { No } 0.1 .1] E}$	ND(0.1]	${ }_{\text {No }}^{\text {No } 0.0 .1]}$
${ }_{82008}$	1,2,4, itichlorobenenene							No [0.074]								
	1,2.4.imentyberzene	mgkg	${ }^{23}$			No [0.0.02]		No 10.077$]$		ND [0.04]		No [0.0.02]		No	ND 0.1 .1$]$	ND 0.0 .1$]$
${ }^{\text {82008 }}$	1,2-2ibromoentene	$\underbrace{}_{\substack{\text { mgakg } \\ \text { mokg }}}$	${ }^{\text {0.00016 }}$			N0[10.033$]$ E		No [0.037]		$\xrightarrow{\text { Nol }}$ N0.0.02]	-	Nol	-	${ }^{\text {Nob }}$ N0.0.1]	No [0.05]	Nolo.ill
${ }^{828088}$	12-2.iehloromenerzene	mgkg	5.1													
			${ }_{0}^{0.018}$			$\xrightarrow{\text { Nol } 10.031] E}$		Nollo.					-			$\xrightarrow{\text { No [0.0.5 E }}$ ND
¢82808 82088 8	1, 1.5 .5 -Timentybubrzene	${ }_{\text {makg }}^{\text {mokg }}$	${ }_{28}^{23}$											${ }^{\text {No } 0.0 .1] ~}$	${ }^{\text {No } 0.0 .1] ~}$	${ }^{\text {ND }}$ N0.10 0.05$]$
${ }^{82008}$																
${ }^{82608}$	1,4.-ichloromenezene	mgkg	0.64			No [0.033]		No [0.037]		No [0.02]		No [0.033]		Nol0.09]	No [0.09]	No [0.095
${ }^{828008} 8$,	$\underbrace{}_{\substack{\text { mgakg } \\ \text { mokg }}}$	59			${ }^{\text {Nop }}$		No.		${ }_{\text {No }}$	-	${ }^{\text {Nop }}$	-	${ }_{\text {No }}$ N0.20.15	${ }_{\text {Nol }}$ N0.25]	
${ }^{82808}$	2.Chlorotuluene	mgkg				ND [0.033]		NoD 10.037$]$		No [0.02]		ND(0.033]		No 10.05	No 10.05$]$	No 10.055
	2-Hxarone		-	-		${ }^{\text {No }}$ N0.0.031]		${ }^{\text {Nol }} 0$		$\xrightarrow{\text { Nol } 0.02]}$		${ }^{\text {No }}$ N0.031]		No 0.0 .05	No 0.0 .05	No NO
${ }_{82608}^{88}$	4 -1sporopyltouene	mgkg				${ }^{\text {No } 0.0 .031]}$		No [0.037]		vol0.02]		ND(0.033]		Nol 0.005	N0.0.05	Nol0.0.5]
	${ }^{\text {andenthl-2-Pentanone }}$	mgkg	${ }_{88}^{8.1}$			${ }^{\text {N0, } 0.15]}$		${ }^{\text {No }}$ N0.1.8]		$\xrightarrow{\text { Nol } 0.1]}$		No[0.10]		${ }^{\text {N0, } 10.25]}$	Nop0.235	No 0.2 .25$]$
${ }^{8282088}$	Berzene	mgkg	0.025	Nol0.05]		Nol(0.33]		No (10.37)		No 10.027	-	Notoinl	-			
	Bromoenene	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$				No [0.0.31]		No 10.037		No 10.027		No [0.033]		N010.05	No 10.055	
${ }^{826008}$	Briomodictiocomenethene	${ }_{\text {monkg }}^{\text {mokg }}$	0.044			Nol		No 0 0.0.37		${ }^{\text {Noplo.0. }}$			-	No [0.0.09]	Nol	No 10.097
${ }^{828088}$	Bromotorm	mgkg	0.34			No [0.0.62]		ND [0.074]		No [0.04]		ND[0.062]		ND [0.1]	N 0 [0.1]	No 00.11$]$
			0.16 12							NN0.0.04]		${ }_{\text {ND }}^{\text {No [0.0.02] }}$		${ }_{\text {No }}^{\text {No 00. } 0.05}$	${ }_{\text {No }}^{\text {No 00. } 0.05}$	$\xrightarrow{\text { Nob } 0.10}$ No 0.05
${ }_{8}^{82608}$	Carbon Terachloride	mgkg	0.023			No[[0.031]		No 10.037 E		no [0.02]		No [10.031]	-	No (10.05)	vol 10.05]	Nol 10.05 E
${ }^{882008}$	Chloroenzene	$\underbrace{\text { mokg }}_{\text {mgkg }}$	${ }^{0.03}$			No 0 N0.031]				NN0.0.02]				${ }_{\text {N N }}$	$\xrightarrow{\text { Nol } 10.05]}$ No 0.1$]$	$Nolo05]$
	Chiorom	$\underbrace{\text { che }}_{\substack{\text { makg } \\ \text { mokg }}}$	0.46 0.21 0.0			No 0 [0.031]		No [10.037]		${ }^{\text {Noplo.02 }}$		No [0.033]		${ }^{\text {Nol } 10.05]}$	Nol 0.005	ND 10.05$]$
${ }^{8} 826008$	(is)	$\underbrace{}_{\substack{\text { mgakg } \\ \text { mokg }}}$	O.24			No NDO 0.0 .031$]$		No 10.037		${ }^{\text {Nol }}$ N0.0.0]		${ }^{\text {No }}$ N0.0.031]		${ }^{\text {Nob } 0.0 .05]}$	${ }^{\text {No }}$ N0.0.0. 0.05$]$	${ }^{\text {Nob } 0.0 .05]}$
	Cis.1.3.ichioropopoene	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }_{0}^{0.0033}$	-		${ }_{\substack{\text { No [0.033] } \\ \text { ND } 0.031]}}$				Nol	-	${ }^{\text {No }}$ N0.0.0331]	-	Nolo.os)		Nol 10.09
${ }^{828008}$	Dibromomentane	mgkg	${ }_{1.1}^{1.1}$			No [0.0.31]		No ${ }^{10.037}$				No [0.031]		N010.05]	Nol0.0.5]	N010.05]
	Ethybenzene	$\underset{\substack{\text { mghkg } \\ \text { mokg }}}{ }$	${ }_{6.9}^{140}$	N0[0.05]		ND [0.031]		No 10.037		No [0.02]	-	ND [0.033]	-			${ }^{\text {Nob }}$
	Methyene choride							0.044[0.074]				No 10.0023 E		$\xrightarrow{\text { Nop lo.1] }}$	${ }^{0.0063} \mathbf{0 . 0 . 1] ~ J}$	Nolo.1.1]

2014 Beaver Creek RRS Remedial Investigation
Soil Analytical Results

			$\begin{gathered} \hline \hline \text { Location ID } \\ \text { Sample ID } \\ \text { Lab Sample ID } \\ \text { SDG } \\ \text { Collection Date } \\ \text { Matrix } \\ \text { Laboratory } \\ \text { QA/QC } \\ \hline \end{gathered}$			$\begin{gathered} \hline \hline \text { SB33 } \\ \text { 14BVR-SB33-SS01 } \\ \text { 14E186-14 } \\ \text { 14E186 } \\ 5 / 22 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$	$\begin{gathered} \hline \hline \text { SB33 } \\ \text { 14BVR-SB33-SS01 } \\ \text { 14E191-14 } \\ 14 E 191 \\ 5 / 22 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$	$\begin{gathered} \hline \hline \text { SB34 } \\ \text { 14BVR-SB34-SS01 } \\ 14 \mathrm{E} 186-12 \\ 14 \mathrm{E} 186 \\ 5 / 22 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$		$\begin{gathered} \hline \hline \text { SB34 } \\ \text { 14BVR-SB34-SU02 } \\ 14 \text { E186-13 } \\ 14 E 186 \\ 5 / 22 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Primary } \end{gathered}$			W02-S01 14BVR-W02-S01 14E191-17 14E191 $5 / 22 / 2014$ SO EMAX Primary		$\begin{gathered} \hline \text { TB02 } \\ \text { 14BVR-TB02-TB02 } \\ 14 \mathrm{E} 184-20 \\ 14 \mathrm{E} 184 \\ 5 / 21 / 2014 \\ \text { SO } \\ \text { EMAX } \\ \text { Trip Blank } \end{gathered}$	TB04 14BVR-TB04-TB04 14E186-18 14E186 $5 / 22 / 2014$ SO EMAX Trip Blank
Method	Analue	Units	ADEC Cleanup Level													
(82088	N-uutbenere	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	15 15			No [0.031]		NoN0.03] No 0.0 .37$]$							${ }_{\text {Noplo.05] }}^{\text {No } 0.055}$	${ }^{\text {N }}$ [10.05
82008 88208 8		$\underbrace{\text { dem }}_{\substack{\text { mgkg } \\ \text { mgkg }}}$	${ }_{63}^{15}$	No[0.0.5]						${ }^{\text {Notio.02 }}$ No. 0.02				${ }^{\text {No }}$ N0.0.095	${ }^{\text {Nol }}$ N0.0.05	
${ }_{8}^{82008}$	Sec. -uybluenzene	mgkg	${ }^{12}$			No [0.033]		No [0.037]		No 10.023	-	No [0.033]		No [0.05]	${ }^{\text {No } 10.005}$	${ }^{\text {No } 10.005 ~}$
	Sypene Tertumberzene	${ }_{\substack{\text { mgkg } \\ \text { m9kg }}}$	0.96 12			${ }^{\text {NNo [0.031] }}$ N0.0.31]		${ }_{\text {No }}^{\text {ND [0.037 }}$		${ }_{\text {N }}$ ND[0.0.02]		${ }_{\text {No }}^{\text {No [0.033] }}$ N0.031]		${ }^{\text {No }}$ N0.0.05]	${ }^{\text {No }}$ N0.0.05] ${ }^{\text {0.0. }}$	${ }_{\text {No }}$ N0.0.0.05
	Tetachloroenenene (PCE)	mgkg	0.024			ND 10.031$]$ E		Nol 1.037 O]				ND (0.031]E		No 10.05 E E		
		${ }_{\substack{\text { mgkg } \\ \text { mgkg }}}$	${ }_{0.37}^{6.5}$	No[10.05]				No [0.03]		${ }^{\text {Nol } 10.02]}$ No.0.0]		No [0.033]		$\xrightarrow{\text { Nol } 10.059}$	$\xrightarrow{\text { Nol0.0.05 }}$ Nolo.05	
82008	Trans-1,3.-icichlorporopene		0.033			No [0.031]		Nol 1.037 O E		no [0.02]		ND [0.033]		not 10.05 E	No 10.05 E E	No (10.05]
(208	Trichloroenene (TCE)	mgkg	0.022			Noto.033E		Notio.037		$\xrightarrow{\text { N0] } 0.0 .02]}$		Notio31]		Notio.0]E	$\xrightarrow{\text { No } 010.05] ~}$	Nolo.0
${ }^{82008}$	viny chloride	m9 ${ }^{\text {ghkg }}$	0.0085			No (10.022]		No (1.0.74)		No (10.04]		No (1.002]		Nol [0.1]	Nolo.1]	Nol [0.1]
	xilene. Somers M\&P		${ }_{0}^{63}$	N0[0.25]	N0 0.18$]$	No [0.15]	N0[0.18]	No [0.18]	N0[0.18]	No [0.1]	ND [0.17]	No [0.16]	No [0.18]	No 10.25$]$	No[0.25]	No (0.25]
	1.2.-Dichlorobenenene		${ }_{5.1}$		No[0.18]		No[0.18]		No[0.18$]$							
${ }_{82700}$	1.3.-ichlorobenezene	${ }_{\text {mgkg }}^{\text {mokg }}$	${ }^{28}$		N0.0.8]		Noplo.8]		Nopo.18]	-	Nol0.17]		N0[0.18]			
${ }_{8} 827000$	1-Mentrymaphtralene	mgkg	${ }_{6.2}$		No 0.1 .18		No [0.18]		ND(0.18]		ND 0.17		No 0.189			
82700	2,4.5Tichloroophenol		67		N00.18]		No[0.18]		No [0.18]		No[0.77]		no [0.18]			
827700 88200 8	${ }^{2,4.4 .7 \text { Trichloropenenal }}$	${ }_{\substack{\text { mgkgs } \\ \text { mokg }}}^{\text {den }}$	${ }_{1}^{1.3}$						$\xrightarrow{\text { Nol } 0.18]}$ No.18]	-		-	Nol0.18] ${ }_{\text {No }}$			
82700	2.4.imentyphenel													-		
827700 88700 8	2.4.Dinitiophenol	$\underbrace{}_{\substack{\text { mgkg } \\ \text { m9kg }}}$	0.54 0.0093													
${ }^{827700}$	2.-Dinitrooluene	mgkg	0.0094		No 0.1 .18$]$ E	-	No (0.18)E		No 0.188$]$ E		Nop 0.17$]$ E	-	No (0.18]E	-	-	-
${ }^{822700}$	${ }^{2}$ 2-C.Choroopophentronalene	$\underbrace{\text { ata }}_{\substack{\text { mgkg } \\ \text { m9kg }}}$	${ }_{1}^{120}$		${ }^{\text {Nol }}$ N0.10.18]		${ }^{\text {Nol }}$ N0.18]		${ }^{\text {Nol }}$ N0.10.18]		${ }^{\text {No }}$ N0.10.17]		$\xrightarrow{\substack{\text { No [0.18] } \\ \text { No. } 0.18]}}$			
${ }^{82700}$	2-Mentrynaphhalene	mgkg	${ }^{6.1}$		N0[0.18]		Noplo.18]		Nol0.18]		${ }^{\text {Nop } 0.177}$	-	${ }^{\text {N0, } 0.18]}$			
${ }^{8287700}$	${ }^{\text {a }}$	$\underbrace{\text { ata }}_{\substack{\text { mgkg } \\ \text { mgkg }}}$		-	${ }^{\text {Nol }}$ N0.18]		${ }^{\text {Nol }}$ N0.18]		${ }^{\text {No [0.0.18] }}$ N0.18]	-	${ }^{\text {Nol }}$ N0.17]	-	${ }^{\text {No }}$ N0.1.18]			
${ }^{827700}$	3,3-Pichloroobenzidine		0.19		No (0.18)E				No (0.18]E		No (0.17]		No (0.18)E			
${ }^{827200}$	4.chloro 3 -Meethyphenol	m9kg			${ }^{\text {No } 00.18]}$		${ }^{\text {No } 00.18]}$		No[0.18]		No 0.177		${ }^{\text {No }}$ [0.18]			
82700	4.Chloranaline		0.057		No 0.1 .18$]$ E	-	Nol 0.1818 E		No [1.18]E		No [0.17]	-	No (0.18]E			
${ }^{827700}$	4.Nituanaline	${ }_{\text {mghkg }}^{\text {mag }}$			No 0.180		No 0.1 .18$]$		${ }^{\text {Nol }{ }^{\text {No.0.18] }} \text { (0.18] }}$		${ }^{\text {Nol }}$ N0.10.17]		${ }^{\text {Nol }{ }^{\text {No.1.18] }} \text { N0.18] }}$			
827700 88700	${ }^{4 \times \text { Nitrophenal }}$				Niplote		${ }^{\text {Noplo.18] }}$		N0.0.18]		Nol0.17]	-	N0.0.18]			
${ }^{32700}$		${ }_{\text {mg }}^{\text {makg }}$	${ }^{180}$	-	No[0.18]	-	No [0.18]		No [0.18]		No [0.17]	-	No [0.18]			
(82700	Antracene	${ }_{\substack{\text { mgkg } \\ \text { m9kg }}}$	3000 3.6								${ }^{\text {Nol }}$ N0.17					
${ }^{82700}$	Benzo(A)Pryene	mgkg	0.49		No [0.18]		No [0.18]		No [0.18]		No[0.17]		No [0.18]			
(82700	Benzo(i) Furarathene	${ }_{\substack{\text { mgkg } \\ \text { mgkg }}}$	${ }_{1}^{4.900}$		Nololis]		$\xrightarrow{\text { No [0.18] }}$ No.18]		${ }_{\text {No [0.18] }}^{\text {No } 0.18]}$		Nol0.17]					
82700 88200 8	Berzolkfurarathene	${ }_{\text {mgkg }}^{\text {mokg }}$	${ }_{410}^{49}$		${ }^{\text {Noplo.18] }}$		${ }^{\text {No [0.18] }}$		No [0.18]				No [0.18]			
827700 88 8	Eenciectiol	${ }_{\text {mg }}^{\text {mgkg }}$	${ }_{13}$		No [0.18]		${ }^{\text {No }}$ N0.18]		${ }^{\text {No }}$ N0.18]				${ }^{\text {Noplo. }}$			
${ }_{82700}^{80}$		mgkg	¢, 6		N[0.18]		${ }^{\text {Nol } 0.18]}$		ND [0.18]		Nop.17]		N0.0.18			
${ }_{8}^{82700}$	Dibenzo(A,H)Antraceene	${ }_{\text {mg }}^{\text {makg }}$	${ }_{0.49}$		${ }_{\text {No }}$		${ }^{\text {No }}$ N0.18]		${ }^{\text {No } 0.10 .18]}$		No 0.17	-	${ }^{\text {No } 0.10 .18]}$			
	(ibiberoturan	$\underbrace{}_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }_{1400}^{11}$		Nolo						${ }^{\text {Noplo.17] }}$ No 0177		${ }^{\text {No [0.18] }}$ N0.18]			
	Fuvere	$\mathrm{mgkg}^{\text {mag }}$	220		${ }^{\text {No } 00.109]}$		${ }^{\text {N }}$ [00.10] ${ }^{\text {a }}$		No [0.18]		No 0.1 .17		No [0.1.18]			
82770 88700 8.	${ }^{\text {Hexachloroberene }}$ Hexacolounuaiene	$\underbrace{\text { dem }}_{\substack{\text { mgkg } \\ \text { mgkg }}}$	${ }_{0}^{0.047}$	-		-				-		-				
82700	Hexachloroveclopentad	mgkg	${ }^{1.3}$		N000.18]		No 0.1 .18$]$		No [0.18]		No[0.17]		Nol0.18]			
${ }_{\text {c }}^{882700}$	Hexachloreman		0.21 4.9	-	${ }^{\text {Nol }}$ N0.18] ${ }^{\text {No.18] }}$		${ }^{\text {Nob }}$ N0.10.18]		${ }^{\text {No }}$ N0.18] ${ }^{\text {No.18] }}$		No. 0.17$]$	-	${ }^{\text {Nol }}$ N0.1.18]	-		
${ }_{82700}^{880}$		mgkg	${ }^{31}$		No[0.18]		No[0.18]		No[0.18]		No [0.17]					
827700 88700	- Naphthaene		${ }_{0}^{20} 0$				${ }_{\text {Nol }}^{\text {Nol } 0.108]}$			-		-		-	-	
827700 88700	N-N.Nitosodimethamine	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}$	${ }^{\text {a }} 0$													
${ }_{\substack{\text { 82770 } \\ 88200}}$	N-NItrsodidipherlamine	mgkg	15		No[0.19]		No 0.018$]$		No 0.1 .18$]$	-	No $0.1 .17{ }^{\text {a }}$	-	Nolotis]			
82700 88200 8	${ }^{\text {Peneachiorone }}$	${ }_{\substack{\text { mgkg } \\ \text { mokg }}}^{\text {mat }}$	${ }^{\text {O}}$	-					Nolotic]	-	Nolo	-		-	-	
${ }_{\text {82700 }}^{88200}$	Prene	$\mathrm{mgkg}_{\substack{\text { m9kg }}}^{\text {mot }}$	68 1000		${ }^{\text {N }}$ N0.0.18] ${ }^{\text {No. }}$		$\xrightarrow{\text { N } \mathrm{N}[0.18]}$ N0.18]		Nololis]							

Min

APPENDIX C

Responses to ADEC Comments

		SITE: Beaver Creek Radio Relay Station, Alaska DOCUMENT (title/date): Site Closure Report, White Alice Communications Site OT001, Beaver Creek RRS, Alaska REVIEWER (name/date): Jessica Morris / ADEC / August 2015		
$\begin{gathered} \substack{\text { Item } \\ \text { No. }} \end{gathered}$	Page No., Section or Para.	COMMENTS	RESPONSE	

1	ES-1, $3^{\text {rd }}$ paragraph, last sentence	Indicate that sampling and analysis for PCBS, VOCs, VOCs, etc. was conducted. Disposal areas investigated..	Agree. Additional text will be added after the second sentence to read: "Soil samples were collected and analyzed for gasolinerange organics, DRO, residual range organics (RRO), volatile organic compounds, semi-volatile organic compounds, polychlorinated biphenyls, and Resource Conservation and Recovery Act metals." The following sentence will be revised to read: "DRO and RRO were the only analytes detected in concentrations above ADEC Method Two, Under 40 Inch Zone, migration to groundwater cleanup levels in surface and subsurface samples, but no groundwater was encountered during drilling activities." The paragraph will conclude with: "In addition to collecting soil samples for laboratory analysis, six formerly cleared areas along the easement right of way were inspected for use as prior debris burial sites."	A
2	ES-2, last sentence	Appendix C is not needed.	Agree. Per email received from ADEC on August 7, a separate cleanup complete determination letter will not be issued as this report contains the necessary information for closure determination. The last sentence of this paragraph, other references to Appendix C, and Appendix C will be removed.	A
3	Page 2-4, first sentence	Explain which cleanup levels are applicable, and that the volume is de minimus.	Agree. Cleanup levels will be identified as those for the ingestion pathway because groundwater water not identified at the site. Text will be added to explain that the RRO surface soil exceedance is not indicative of a larger contaminated area and represents a very small volume since RRO was not detected in samples collected less than 10 feet way therefore the volume is de minimus.	A
4	Section 3.0, last sentence of second paragraph	"No groundwater was observed during drilling or excavation activities onsite; therefore, the most stringent migration to groundwater cleanup levels do not apply (USAF 2015)." This is also unlikely based on topography and bedrock.	Agree. The sentence will be revised to read "No groundwater was observed during drilling or excavation activities onsite, due to site topography and bedrock; therefore, the most stringent migration to groundwater cleanup levels do not apply (USAF 2015)."	A

