DECLARATION OF PROJECT CLOSEOUT DECISION FOR YAKUTAT AIR BASE FORMERLY USED DEFENSE SITE CON/HTRW PROJECT F10AK0606-08 INVESTIGATION COMPLETE, NO CONTAMINATION YAKUTAT, ALASKA

STATEMENT OF BASIS

Authority for the Defense Environmental Restoration Program for Formerly Used Defense Sites (DERP-FUDS) for Containerized Hazardous, Toxic, and Radioactive Waste (CON/HTRW) projects is derived from the Defense Environmental Restoration Program, 10 United States Code (USC) 2701-2707. The decision to close out the CON/HTRW project (F10AK0606-08) named "Investigation Complete, No Contamination", is based on the results of site investigations and remedial activities completed by the U.S. Army Corps of Engineers – Alaska District (USACE) in 1984, 1999, 2001, 2005, 2006, 2010 and 2014.

SITE DESCRIPTION AND HISTORY

Yakutat, located at the mouth of Yakutat Bay, is approximately 225 miles northwest of Juneau and 380 miles southeast of Anchorage at 59° 33' N Latitude, 139° 44' W Longitude. The thirteen sites are scattered across the former Yakutat Air Base.

A hazardous, toxic, and radioactive waste (HTRW) project (F10AK0606-02) was authorized for the Yakutat Air Base in 1995 after completing a Findings and Determination of Eligibility (FDE). The results of the FDE indicated that the Yakutat Air Base met the eligibility requirements for inclusion in the DERP-FUDS. In 2015, a revised Inventory Project Report (INPR) was completed to modify the existing -02 HTRW project and delineate the project into multiple CON/HTRW projects (F10AK0606-04 through -19). Thirteen no further action projects were combined into a single project (F10AK0606-08) named "Investigation Complete, No Contamination".

The 13 Areas of Concern (AOCs) comprising the F10AK0606-08 CON/HTRW project have been recommended for site closeout by USACE, based upon the results of environmental investigations which have identified no DOD-related environmental hazards. The 13 AOCs with no DOD-related contaminants remaining above cleanup levels or background levels are:

- 1) A1 Air Corps Increase Group No. 2
- 2) Aka Lake
- 3) Kardy Lake
- 4) Summit Lake
- 5) B1 AWFC 20 kW Powerhouse, Unit 1 No. 1205
- 6) B2 AWFC 15 kW Powerhouse, Standby Unit No. 1211
- 7) B3 AWFC Tank and Associated Piping, Bath No. 1213
- 8) G1 Minor Naval Air Facility (Seaplane Base) Suspected piping & debris
- 9) G2 Minor NAF (Seaplane Base) Suspected Underground Storage Tank (UST) 1 & debris
- 10) G3 Minor NAF (Seaplane Base) Suspected USTs 2&3
- 11) N1 Aircraft Warning System (AWS) Station Powerhouse No. 904
- 12) N2 AWS Station (excluding N1)
- 13) O1 Air Corps Warehouse Group No. 2

DESCRIPTION OF THE DECISION

Based on the results of site visits, remedial investigations and site histories, no DOD-related contaminants of concern were found above cleanup levels or background concentrations at the 13 AOCs and USACE has determined that no further action is required at these sites. The decision of Project Closeout is protective of public health, welfare, and the environment.

DECLARATION

In accordance with the Defense Environmental Restoration Program for Formerly Used Defense Sites, the U.S. Army Engineer District, Alaska, has completed the investigation of the 13 subject AOCs at the Yakutat Air Base FUDS (Project F10AK0606-08), located in Yakutat, Alaska. This Declaration of Project Closeout supports the conclusion that the detected chemicals of concern do not pose unacceptable risk to human health or the environment. No further environmental actions are required by the Department of Defense at these project locations. This decision may be reviewed and modified in the future if any new information becomes available which indicates the presence of eligible CON/HTRW that may cause a risk to human health or the environment.

This Declaration of Project Closeout has been prepared and approved by the undersigned in accordance with the FUDS Program Policy, Engineer Regulation (ER) 200-3-1, May 10, 2004.

Date 27 JUL 18

MICHAEL S. BROØKS COL, EN Commanding

Project Closeout Report

Containerized Hazardous, Toxic, or Radioactive Waste Project # F10AK0606-08 *Investigation Complete, No Contamination* Yakutat Air Base Formerly Used Defense Site Yakutat, Alaska

July 2018

Prepared By: U.S. Army Corps of Engineers - Alaska District Environmental Engineering Branch P.O. Box 6898 JBER, Alaska 99506-0898

[Page Intentionally Blank]

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	Site Location and Brief Description	1
1.2	HISTORY OF Yakutat Air Base	3
1.3	Investigation History	4
2.	SUMMARY OF DECISION	15
3.	REFERENCES	17

FIGURES	19
1 – Location and Vicinity Maps	20
2 – Areas of Concern Locations	21
3 – AOC A1 Site Plan	22
4 – Aka, Kardy, and Summit Lakes	23
5 – AOCs B1, B2, B3	24
6 – AOCs G1, G2, G3	25
7 – AOC N1	
8 – AOC N2	27
9 – AOC O1	

Acronyms and Abbreviations

ADEC	Alaska Department of Environmental Conservation
AOC	Area of Concern
AWFC	Air Warning Filter Center
AWS	Aircraft Warning System
CAA	Civil Aeronautics Administration
COC	Chemical of Concern
CON/HTRW	Containerized Hazardous, Toxic, and Radioactive Waste
COPC	Chemical of Potential Concern
DOD	Department of Defense
DRO	Diesel Range Organics
ERDA	Environmental Restoration Defense Account
INPR	Inventory Project Report
FUDS	Formerly Used Defense Sites
K.D.	Knocked Down
mg/kg	Milligrams per kilogram
mg/L	Milligrams per liter
PCB	Polychlorinated Biphenyl
PCP	Pentachlorophenol
POL	Petroleum, Oil, and Lubricants
RI	Remedial Investigation
SQuiRT	Screening Quick Reference Table
TOC	Total Organic Carbon
UCL	Upper confidence level
USACE	United States Army Corps of Engineers
USFS	U.S. Forest Service
UST	Underground Storage Tank
WAA	War Assets Administration
WWII	World War II

[Page Intentionally Blank]

1. INTRODUCTION

The Defense Environmental Restoration Program for Formerly Used Defense Sites (DERP-FUDS) authorizes the cleanup of contamination resulting from past military activities at sites no longer owned by the Department of Defense (DOD) per 10 United States Code (USC) 2701-2707. A hazardous, toxic, and radioactive waste (HTRW) project (F10AK0606-02) was authorized for the Yakutat Air Base property (F10AK0606) in 1995 after completing a Findings and Determination of Eligibility (FDE). The results of the FDE indicated that the Yakutat Air Base met the eligibility requirements for inclusion in the DERP-FUDS. In 2015, a revised Inventory Project Report (INPR) was completed to modify the existing -02 HTRW project and delineate the project into multiple containerized hazardous, toxic, and radioactive waste (CON/HTRW) projects (F10AK0606-04 through -19). Thirteen no further action projects were combined into a single project (F10AK0606-08) named "Investigation Complete, No Contamination".

The 13 AOCs proposed for closeout are tracked by Alaska Department of Environmental Conservation (ADEC) with Hazard Identification numbers: 3718, 3720, 3721, and 26341. The ADEC's Contaminated Sites Program Database is available through the State of Alaska's Division of Spill Prevention and Response web page (www.dec.alaska.gov/spar).

The 13 Areas of Concern (AOCs) comprising the F10AK0606-08 CON/HTRW project have been recommended for site closeout by USACE, based upon the results of environmental investigations which have identified no DOD-related environmental hazards.

This Project Closeout Report is issued by the Alaska District, USACE pursuant to ER 200-3-1, paragraph 4-7.4.1.1.

1.1 SITE LOCATION AND BRIEF DESCRIPTION

Yakutat, Alaska is approximately 225 miles northwest of Juneau and 380 miles southeast of Anchorage, Alaska at 59° 33' N Latitude, 139° 44' W Longitude (Section 30, Township 27 South, Range 34 East, Copper River Meridian). Located at the mouth of Yakutat Bay, the community is bounded by the Wrangell-Saint Elias Mountains and Yakutat Bay to the north, the Tongass National Forest to the south and east, and the Gulf of Alaska to the west. The FUDS sites, scattered around the Yakutat Air Base, are not connected via road to other permanent Southeast Alaska communities, and are only accessible by air or water (see Figure 2).

1.1.1 Areas of Concern Locations

The approximate central locations, Section/Township/Range, Land Owner and ADEC Hazard ID of the AOCs are found in Table 1. All of the AOCs are in the Copper River Meridian.

Table 1

AOC Name	Latitude	Longitude	Section	Township	Range	Land Owner	ADEC Haz ID
A1 – Air Corps Increase Group No. 2	59.5095531° N	139.6939252° W	8	28 South	34 East	USFS	3718
Aka Lake	59.518477° N	139.791138° W	3	28 South	33 East	State of Alaska, Native Corporation & Native Allotment	26341
Kardy Lake	59.530084° N	139.821753° W	33	28 South	33 East	State of Alaska, Native Corporation & Native Allotment	26341
Summit Lake	59.510494° N	139.762611° W	11	28 South	33 East	USFS	26341
B1 – AWFC 20 kW Powerhouse, Unit 1 - No. 1205	59.5153003° N	139.7092178° W	6	28 South	34 East	USFS	3720
B2 – AWFC 15 kW Powerhouse, Standby Unit - No. 1211	59.5153742° N	139.7085423° W	6	28 South	34 East	USFS	3720
B3 – AWFC Tank and Associated Piping, Bath - No. 1213	59.5157665° N	139.7084419° W	25	28 South	34 East	USFS	3720
G1 – Minor NAF (Seaplane Base) Suspected piping & debris	59.5417678° N	139.7572902° W	25	27 South	33 East	City	26341
G2 – Minor NAF (Seaplane Base) Suspected UST1 & Debris	59.542119° N*	139.756528° W*	25	27 South	33 East	City	26341
G3 – Minor NAF (Seaplane Base) Suspected USTs 2 & 3	59.541773° N*	139.758832° W*	19	27 South	33 East	City	26341
N1 – Aircraft Warning System (AWS) Station Powerhouse - No. 904	59.5541030° N	139.7280216° W	19	27 South	34 East	Private	3721
N2 – AWS Station (excluding N1)	59.554246° N*	139.725058° W*	19	27 South	34 East	Private & City	26341
O1 – Air Corps Warehouse Group No. 2	59.508939961° N	139.6805839° W	8	28 South	34 East	USFS/State of Alaska DOT	3718

* Estimated Location

1.2 HISTORY OF YAKUTAT AIR BASE

U.S. military interest in Yakutat began by Executive Order in 1929 with the creation of the Yakutat Bay Naval Reservation. As early as 1936, the War Department was considering Yakutat as a site for a military airfield. Soon after World War II (WWII) began in Europe (September, 1939) the Civil Aeronautics Administration (CAA) embarked on a program of building and improving airfields in Alaska with both commercial and tactical values in mind. The first government use of the area was a CAA radio range commissioned in June 1940 on a site near Yakutat village. The War Department acquired 46,083 acres from the Department of the Interior (U.S. Forest Service), Department of the Navy, and the Department of Commerce (Lighthouse Reserves) for the establishment of an "Auxiliary Landing Field and Staging Area". In October 1940, Army Engineer troops arrived to begin construction of the Yakutat Landing Field (also known as the Yakutat Air Base). Constructed by military engineers and members of the Civilian Conservation Corps, the landing field was completed on June 15, 1943.

Construction of the naval facilities was authorized in August 1939. The Minor Naval Air Facilities seaplane base was established as a Naval Air Facility in September 1942, and redesignated as a "Naval Auxiliary Air Facility" in February 1943. Construction began with civilian contractors and was later completed with the help of Naval Seabees.

The Yakutat Air Base was intended as an advanced airfield supporting pursuit and bombardment aircraft against Japanese invasion forces. However, as western Aleutian bases expanded and the Japanese were stopped on Attu and Kiska, its military value diminished significantly and no aircraft were permanently assigned. Instead, the base served as a ferrying post and temporary station for aircraft squadrons and as a refueling stop between the 48 contiguous states and points in Alaska.

In December 1943, after the Japanese were expelled from the Aleutians, military activities were gradually reduced with personnel and equipment being transferred elsewhere. A similar reduction took place at the seaplane base, which was officially closed on July 22, 1944. The airfield was redesignated Yakutat Army Air Base in 1944, and in April of that year, it was placed on caretaker status until the end of war.

The Yakutat Air Base was declared surplus by the Army in December 1945 and ceased operations in 1946. On December 1, 1945, the CAA assumed responsibility for maintenance and operation, leading to the transfer of the air base and all associated facilities from the Army to CAA on April 4, 1947. Improvements, equipment, and materials, not transferred to CAA, were declared excess by the War Department to the War Assets Administration (WAA) for disposal in June 1948, pursuant to the Surplus Property Act of 1944.

Beginning in 1946, ownership of the air base property was relinquished and retransferred to the Department of the Interior, Bureau of Land Management (Tract B containing 42,437 acres - in two portions: July 1946 and March 1947), the Department of Commerce (Tract C, 147 acres – November 1948), and the Department of the Navy (Tract A, 3,500 acres

– March 1949). In 1953, the Yakutat Bay Naval Reservation was revoked, which withdrew 266 acres for the CAA (now known as the Federal Aviation Administration), and returned the remainder to the Tongass National Forest.

1.3 INVESTIGATION HISTORY

Site visits and remedial investigations have been conducted at the 13 AOCs as part of ongoing activities at the former Yakutat Air Base. A brief summary of the related investigations for each AOC is listed in Table 2. Results and details of these investigations can be found in the referenced documents. The specific site features are included in Figures 3 through 9 of Attachment 1.

 Table 2 – Previous Investigations, Debris Cleanup Action, and Reports

Documents Referenced	FRMD #	Report Title	Report Date	Subject AOCs addressed
USACE 1984 (aka ERDA)	F10AK060601_01.04_0500_p	Environmental Restoration Defense Account Debris Cleanup and Site Restoration Design, Yakutat, Alaska	Jul-84	A1, N1, N2
USACE 2003a	F10AK060602_03.10_0006_a	2000 Remedial Investigation Report – Final – Remedial Investigation/Feasibility Study, Yakutat Area, Alaska	Feb-03	Aka, Kardy, Summit Lakes, A1, G1, G2, G3, N1, O1
USACE 2003b	F10AK060602_03.10_0005_a	2001 Remedial Investigation Report – Final – Remedial Investigation/Feasibility Study Yakutat Area, Alaska	Mar-03	A1, B1, B2, B3, G1, G2, G3, N1, O1, Aka, Kardy, Summit Lakes
USACE 2006a	F10AK060602_03.10_0001_a	Final Focused Remedial Investigation, Former Yakutat Air Force Base, Yakutat, Alaska	Apr-06	B1, B2, B3, O1
USACE 2006b	F10AK060602_03.10_0002_a	2005 Final Focused Remedial Investigation, Former Yakutat Air Force Base, Yakutat, Alaska	Aug-06	Aka, Kardy, and Summit Lakes
USACE 2007a	F10AK060602_03.10_0004_a	Former Yakutat Air Force Base Remedial Investigation Report, Yakutat, Alaska, Final	Mar-07	B1, B2
USACE 2010	F10AK060602_04.09_0503_a	Final Feasibility Study Report, Former Yakutat Air Force Base, Yakutat, Alaska	Jul-10	A1, Aka, Kardy, Summit Lakes, B1, B2, B3, G1, G2, G3, N1, O1
USACE 2012	F10AK060602_03.10_0008_a	2010 Supplemental Remedial Investigation Former Yakutat Air Force Base, Yakutat, Alaska		N1
USACE 2016	F10AK060602_03.10_0012_a	2014 Final Supplemental Remedial Investigation, Former Yakutat Air Base, Formerly Used Defense Site	May-16	01

1.3.1 AOC A1 – Air Corps Increase Group No. 2

The Air Corps Increase Group No. 2 consisted of a mess hall (building 534) and approximately 13 Quonset huts for living quarters (buildings 536-548). The 1948 WAA Surplus Property Report describes the quarters as Quonset Huts and the mess hall as a "knocked down" (K.D.) prefabricated steel structure. The report also indicates that buildings 535 and 539 were not present during the property inventory.

AOC A1 consists of the overall former housing area and the structural debris disposal at each of the former building sites (see Figure 2). AOC A1 is located on the south side of Cannon Beach Road, approximately 1 mile west of Engineer's Road (Airport Road). USACE documents indicate that the buildings and military generated debris in the area were buried on site during the 1984 Environmental Restoration Defense Account (ERDA) cleanup. Demolish and bury in place was the disposal method chosen by the United States Forest Service (USFS) for the structural debris on USFS land. Building remains were buried in excavated pits and covered with soil. The as-built drawings showing the locations and disposal method for this site are found on sheet C7 of the ERDA report (USACE 1984). Consistent with the 1948 post-war inventory, the ERDA cleanup report identified 11 building ruins at the former A.C. Increase Group site. The ERDA cleanup effort addressed asbestos removal at other areas, but asbestos was not identified in this location.

During Remedial Investigation (RI) efforts by USACE in 1999 and 2000, two separate site walkovers were conducted in the general area of AOC A1. During one walkover, a large, earthen mound (approximately 25 feet by 35 feet) was observed on site and was initially suspected as being the disposal area for 11 military structures formerly in the area. The mound was covered with unstressed vegetation. In 2015, ADEC and USACE visited the site and found the mound.

During the second walkover, an area approximately 800 feet south of AOC A1 was visually evaluated. The location was a suspected drum storage area. No evidence of debris disposal or other environmental concern was found. Based on their findings, USACE recommended no further investigation at AOC A1 (USACE 2003a, USACE 2003b).

Analysis of historical aerial imagery show that the mound was created during WWII, apparently a result of the site preparation and ditching for drainage. Aerial photographs following the ERDA cleanup also document that the individual building remains were buried in place, consistent with the disposal method described in the ERDA report.

In summary, COCs were not identified at AOC A1, and based upon the RI findings, no further DOD action is required for AOC A1.

1.3.2 Aka, Kardy, and Summit Lakes

As part of the USACE RI effort in 2000-2001, USACE received verbal accounts from the community indicating that the DOD disposed of drums and equipment debris in Aka,

Kardy, and Summit Lakes. In response to these reports, Beach Road, along and pull-offs to the lakes, was inspected, but no drums or metal was seen. No evidence of DOD disposal was found. Most likely, the community members were recalling the Coast Guard dumping south of these lakes, which was not related to DOD. Two non-DOD dumps are known to be located between the south edge of Aka Lake and Coast Guard Road (also called Ophir Creek Road): one dump is situated on the north side of Coast Guard Road between Aka Lake and Summit Lake, and the other dump is located east of Beach Road 0.3 miles north of the junction of Beach and Coast Guard Roads. Two drums and other buried debris were also observed in this area. The two debris areas have been identified by long-time Yakutat residents as "Coast Guard dumps". Another community member reported that his uncle had been a contractor at the Coast Guard station and said they dumped equipment and trash into Summit Lake (also referred to as "Coast Guard Lake"). Based upon the site investigations and community information, the dumps have been determined to be related to Coast Guard activities at the former LORAN Station, which operated for 29 years (1950 through 1979), and are therefore not FUDS-eligible.

In 2005, thorough visual inspections and geophysical surveys were conducted by USACE at Summit, Aka, and Kardy Lakes. Extra care was taken to investigate areas along the lakes that may have been historically accessed by a vehicle for the purpose of dumping. No evidence of drums or debris was observed at Summit and Kardy Lakes. One partially-submerged barrel/drum of unknown origin was identified along the shoreline of Aka Lake. Sediment and surface water samples were collected around this drum. Lead and bis(2-ethylhexyl)phthalate in surface water were detected at concentrations exceeding applicable cleanup levels. A subsequent site visit was made in 2006 to inspect the Aka Lake drum. The label identified the drum as the property of Chevron, and therefore not related to DOD activities (USACE 2007).

Based on the RI efforts conducted in 2000 and 2005, which found no DOD-related drum dumps or contamination, no further DOD action is required for Summit, Aka, and Kardy Lakes.

1.3.3 AOC B – Air Warning Filter Center Overview

The Air Warning Filter Center (AWFC) was built and used during World War II to control the information regarding aircraft approaching the base.

The Air Warning Filter Center consisted of a Filter Center structure (1204), recreation hall (1206), pump house (1207), quarters (1208, 1209, 1210, 1214, 1215, and 1216), a warehouse with a standby generator (1211), mess hall (1212), bathhouse (1213) and a latrine (1218). According to the 1948 WAA Surplus Property Report, the quarters were Quonset Huts and the Filter Center and mess hall were "knocked down" (K.D.) prefabricated steel structures. The petroleum tank was not on the 1948 list and was likely removed before this time. The structures collapsed in place sometime after the transfer of the property following WWII. This AOC was not included in the 1984 ERDA cleanup.

AOC B consists of the overall area of the former structures listed above and a former petroleum tank (Figure 5). In 2001, a remedial investigation at AOC B, was divided into

three sub-AOCs: AOCs B1, B2, and B3, focusing on areas where contamination was likely to be found. According to the WWII plans, power was to be supplied by a 20-kilowatt generator (Powerhouse No. 1, AOC B1, aka building 1205), and a standby 14-kilowatt generator (Auxiliary Powerhouse No. 2, AOC B2, aka warehouse building 1211). Fuel was to be supplied by semi-underground 200 to 500-gallon fuel tanks (AOC B3) nearby (USACE 2003b). According to historical documents, not all of these facilities were constructed. The 1944 *History of Yakutat Landing Field* states that the technical facilities had not been completed by the Signal Corps at the AWFC camp, or at the AWS [AOC N] north of the village (USACE 1944).

For AOC B, three of 27 surface soil samples had detections of pentachlorophenol (PCP) (0.0064, 0.0223 and 0.0254 mg/Kg). PCP was a common preservative used for wood in contact with the ground. All of the PCP detections were in proximity of building structures and treated wood used in these structures is thought to be the source. These samples exceeded the ADEC Method 2 soil migration to groundwater cleanup level (18 AAC 75, 2017) of 0.0043 mg/kg. A 95% LCL total organic carbon (TOC) results value of 4001 mg/kg was calculated using the background data from the 2001 RI (see Attachment 1). This 95% LCL TOC value was used in the ADEC online Method Three Calculator to calculate an alternative migration to groundwater cleanup level 0.014 mg/kg for PCP (ADEC 2017b). There were only two exceedances compared to this alternative cleanup level. There were no exceedances of the Method 2 residential cleanup level of 1.1 mg/kg and no detections of PCP in the subsurface soil or in the groundwater.

The PCP soil data was compiled and a 95% UCL value of 0.00421 mg/kg was calculated using ProUCL version 5.1. This value is representative of the site-wide exposure, and less than the ADEC Method Two migration to groundwater cleanup level of 0.0043 mg/kg and the alternative migration to groundwater cleanup level of 0.014 mg/kg.

The primary future exposure pathways include direct contact or ingestion of contaminants in soil and groundwater, outdoor air inhalation, and indoor air inhalation (vapor intrusion). However, the groundwater pathway is considered insignificant based on all the available chemical data showing concentrations below 1/10th Table C groundwater cleanup levels (ADEC 2017). Insignificant pathways are not carried forward in the evaluation of risk. Likewise, the migration to groundwater contaminant transport mechanism is considered minimal and not evaluated further.

This indicates that the representative contaminant concentrations do not pose unacceptable risk for direct contact / ingestion or inhalation, since they are lower than the risk-based levels. Therefore, although the exposure pathways are complete, they are either insignificant (groundwater) or do not pose unacceptable risk to potential current or future receptors. No further DOD action is required for AOC B – Air Warning Filter Center.

1.3.3.1 Cumulative Risk

The overall cumulative risk for AOC B was calculated using the ADEC Online Calculator (ADEC 2017a). PCP and mercury were the only analytes detected. The maximum detected values from the source area were used as exposure point concentrations for

these constituents. The results show a cumulative hazard index two orders of magnitude below the ADEC risk benchmark, and the cumulative cancer risk meets the ADEC risk standard of 1×10^{-5} .

1.3.3.2 AOC B1 – AWFC 20kW Powerhouse, Unit 1 - No. 1205

AOC B1 contained power generation equipment (e.g., generators, transformers, etc.) to supply power for the AWFC. A rectangular concrete slab foundation approximately 14 feet by 20 feet and framed by a vertical curb was present in the area (USACE 2003b). The structure is also referred to as Powerhouse No. 1.

AOC B1 and B2 were first sampled as part of the 2001 USACE Yakutat Air Base Remedial Investigation. Four surface soil samples were collected in the areas of AOC B1 and B2; analytical results indicated diesel range organic (DRO) concentrations in the soil ranging from non-detect to 23 mg/kg (USACE 2007). The practical quantitation limit (PQL) for each DRO analysis was less than the 230 mg/kg ADEC cleanup level.

Surface and subsurface soil and groundwater sampling was conducted during the 2001 RI. Three locations around the perimeter of the powerhouse foundation were sampled to determine whether surface soil contamination exists. Borings AP-053, AP-054 and AP-055 were advanced at AOC B1. Monitoring Wells AP-053, AP-054 and AP-055 were installed in these borings and sampled (USACE 2003b). The surface and subsurface soil was sampled for GRO, DRO, RRO, Volatile Organic Compounds (VOCs), Semi-volatile Organic Compounds (SVOCs), PCBs, Pesticides, Herbicides, and Metals.

Arsenic concentrations up to 8.0 mg/kg in surface and subsurface soil samples exceeded the ADEC Method 2 soil cleanup level of 3.7 mg/kg (USACE 2003b). However, the detected concentrations of arsenic are below the established background concentration of 11.6 mg/kg (USACE 2009). No other metals in surface and subsurface soil exceeded ADEC Method 2 soil cleanup levels.

Groundwater sampling was also conducted by USACE during the 2001 RI field activities at Monitoring Wells AP-053, AP-054 and AP-055. Lead concentrations in groundwater samples collected from Wells AP-053, AP-054 and AP-055 [up to 0.0439 milligrams per liter (mg/L)] exceeded the ADEC groundwater cleanup level of 0.015 mg/L. USACE concluded that the elevated concentrations were likely due to suspended solids associated with turbidity in the sample resulting from purging and sampling using a bailer. Elevated lead concentrations were not detected in soil at AOC B1. No other metals in groundwater exceeded ADEC groundwater cleanup levels (USACE 2003b).

The 2001 RI sampling also addressed PCBs and petroleum contaminants at all of the soil sample locations. No evidence of PCB contamination was detected at AOC B1. Evidence of petroleum contamination was detected in trace amounts; however, those concentrations were below applicable ADEC cleanup levels (USACE 2003b).

In 2004, USACE conducted groundwater sampling at AOC B1 during Focused RI field activities. Well AP-055 was purged using low-flow techniques and sampled for lead. Lead

was detected at 0.0041 mg/L in the triplicate sample collected from the well which is less than the ADEC Table C groundwater cleanup level of 0.015 mg/L. The project and duplicate sample did not contain detectable concentrations of lead. The PQL for each analysis was 0.00015 mg/L (USACE 2006a).

Additional groundwater sampling was conducted by USACE during a RI in 2006. Two monitoring wells at AOC B1 (AP-053 and AP-054) were sampled and analyzed for lead by EPA Method SW6020. Lead was detected in the two samples at 0.00017 and 0.000236 mg/L, which are less than the ADEC Table C groundwater cleanup level of 0.015 mg/L (USACE 2007).

In summary, COCs found were not above cleanup levels at AOC B1, therefore, no further DOD action is required at AOC B1.

1.3.3.3 AOC B2 – AWFC 15kW Powerhouse, Standby Unit - No. 1211

AOC B2 supported the AWFC in the event that an additional or supplemental source of electrical power was necessary. The plan was for the auxiliary generator to be located at one end of a Quonset hut storage building. Two rectangular foundations with collapsed Quonset huts were present in this area, roughly aligned in a north-south orientation. The design was for the generator to be located in the southern end of the south building; however, a chimney cap, a faucet, and other piping possibly associated with the generator were found near the north foundation (USACE 2003b). The Standby Unit Powerhouse No. 1211 is also referred to as the Auxiliary Powerhouse No. 2 (see Figure 5).

Surface and subsurface soil and groundwater sampling was conducted by USACE during the 2001 RI field activities. Five locations near the two concrete foundations were sampled to determine whether surface contamination exists. Since both foundations were considered to be potential source areas, four borings were advanced at this AOC (AP-056, AP-057, AP-058, and AP-059). Monitoring Wells AP-056, AP-057, AP-058, and AP-059 were installed in these borings and sampled (USACE 2003b). The surface and subsurface soil was sampled for GRO, DRO, RRO, VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals.

In the 2001 RI, PCP was detected in one surface soil sample at a concentration of 0.0223 mg/kg at sample location B2SS0006. This concentration of PCP in the surface soil sample exceeded the ADEC alternative Method 3 soil cleanup level of 0.014 mg/kg. PCP was not detected in the subsurface soil samples.

Arsenic concentrations up to 7.3 mg/kg in surface and subsurface soil samples exceed the ADEC Method 2 soil cleanup level of 3.7 mg/kg. Arsenic concentrations in surface and subsurface soil samples, however, were below the established background concentration of 11.6 mg/kg (USACE 2009).

Chromium concentrations in surface soil were below the ADEC Method 2 soil cleanup level of 25 mg/kg. Chromium concentrations up to 31 mg/kg in subsurface soil exceeded the ADEC Method 2 soil cleanup level. Chromium concentrations in subsurface soil,

however, were below the established background concentration of 37 mg/kg. No other metals in surface or subsurface soil exceeded ADEC Method 2 soil cleanup levels (USACE 2003b).

Groundwater sampling was also conducted by USACE during the 2001 RI field activities. Lead (up to 0.0834 mg/L), arsenic (up to 0.0575 mg/L), and chromium (up to 0.136 mg/L) concentrations in groundwater samples collected from Wells AP-056, AP-057, AP-058 and AP- 059 exceeded ADEC groundwater cleanup levels of 0.015 mg/L, 0.01 mg/L, and 0.1 mg/L, respectively. USACE concluded that the elevated concentrations of these metals were likely due to suspended solids associated with turbidity in the sample resulting from purging and sampling using a bailer. No other analytes in groundwater exceeded ADEC groundwater cleanup levels (USACE 2003b).

The 2001 RI sampling also addressed PCBs and petroleum contaminants at all of the soil sample locations. No evidence of PCB contamination was detected at AOC B2. Evidence of petroleum contamination was detected in trace amounts; however, those concentrations were below applicable ADEC cleanup levels (USACE 2003b).

In 2004, USACE conducted groundwater sampling at AOC B2 during Focused RI field activities. Well AP-059 was appropriately purged and sampled for lead. Lead was not detected in the groundwater sample. Well AP-056 could not be purged and sampled due to a surge block obstruction and sand present in the well casing (USACE 2006a). Additional groundwater sampling was conducted by USACE during the 2006 RI. Two monitoring wells at AOC B2 (AP-057 and AP-058) were sampled and analyzed for lead by EPA Method SW6020. In addition, Well AP-058 was sampled and analyzed for arsenic and chromium by EPA Method SW6020. Concentrations of lead were detected in the two samples at 0.000059 and 0.000207 mg/L, which are less than the ADEC Table C groundwater cleanup level of 0.015 mg/L. Both arsenic and chromium were detected in Well AP-058 at concentrations of 0.00019 and 0.0008 mg/L, respectively, which are both less than the corresponding ADEC Table C groundwater cleanup level of 0.01 and 0.1 mg/L (USACE 2007).

In summary, COCs were not identified above cleanup levels or background at AOC B2, and therefore no further DOD action is required at AOC B2.

1.3.3.4 AOC B3 – AWFC Tank and Associated Piping

According to a WWII as-built, a concrete storage tank associated with a bathhouse was located at AOC B3 (see Figure 5). A 15-foot square foundation with vertical curbs was present on a mound approximately 5 feet high north of the Auxiliary Powerhouse No. 2 area (AOC B2). This foundation had several vertical curbs delineating possible internal wall supports and is in the location of the former bathhouse. A 4-foot square, concrete storage tank with an opening on top was present approximately 12 feet south of the foundation. A 4-inch pipe extends out to the south side of the tank and angles into the ground. The tank contained what appeared to be rainwater and was presumed to be a cistern associated with the bathhouse (USACE 2003b).

In 2001, USACE performed a geophysical survey and surface and subsurface soil and groundwater sampling. One surface location near the bathhouse foundation was sampled to determine whether surface soil contamination exists. Two borings (AP-060 and AP-061) were advanced at this AOC. Monitoring Wells AP-060 and AP-061 were installed in these borings and sampled. The geophysical survey was conducted at this site prior to sampling activities to delineate the extent of piping associated with the former storage tank. Results of the geophysical survey indicate that piping exists between the foundation and tank and continues to the south approximately 25 feet (USACE 2003b).

PCP was detected in two surface soil samples at AOC B3 (0.0254 & 0.0064 mg/kg). The concentration of PCP in the surface soil samples exceeded the ADEC Method 2 soil migration to groundwater cleanup level of 0.0043 mg/kg and for one sample slightly exceed the alternative cleanup level of 0.014 mg/kg. Neither sample exceeded the residential cleanup level. PCP was not detected in subsurface soil or groundwater. As stated above, the groundwater pathway is considered insignificant based on all the available chemical data showing concentrations below 1/10th Table C groundwater cleanup levels.

Arsenic concentrations in surface and subsurface soil exceeded the ADEC Method 2 soil cleanup level of 3.7 mg/kg but were below the established background concentration of 11.6 mg/kg. Chromium concentrations in subsurface soil exceeded the ADEC Method 2 soil cleanup level of 25 mg/kg. Chromium concentrations in surface soil were less than the ADEC Method 2 soil cleanup level. No other analytes in soil exceeded ADEC Method 2 soil cleanup levels. Chromium concentrations in subsurface soil are below the established background concentration of 37 mg/kg (USACE 2003b).

Lead concentrations in groundwater samples collected from Wells AP-060 and AP-061 exceeded the ADEC groundwater cleanup level of 0.015 mg/L. The maximum concentration detected was 0.039 mg/L. USACE concluded that elevated concentrations were likely due to suspended solids associated with turbidity in the sample resulting from purging and sampling using a bailer. Elevated concentrations were not detected in soils at this AOC. Because of the exceedances, lead in groundwater was not eliminated as a chemical of potential concern (COPC) at AOC B3. The RI report recommended follow-on groundwater sampling using a submersible pump or other low-flow sampling technique to better define dissolved lead concentrations (USACE 2003b). No other analytes in groundwater exceeded ADEC groundwater cleanup levels.

In 2004, one monitoring well at AOC B3 (AP-061) was resampled and analyzed for lead. Well AP-061 was appropriately purged and sampled for lead. Concentrations of lead were not detected in AP-061. Well AP-060 could not be sampled as the casing had been broken off and the end of the 2-inch pipe was not visible in the ground (USACE 2006a). Based on the sample result from Well AP-061, lead in groundwater at AOC B3 is no longer considered a COPC. In summary, COCs were not identified above cleanup levels or background at AOC B3, therefore, no further DOD action is required at AOC B3.

1.3.4 AOCs G1, G2 and G3 – Seaplane Base

The Minor Naval Air Facilities (MNAF), also referred to as the Seaplane Base and G Concern, was constructed to dock, house, and repair military floatplanes. G Concern is located a mile west of Yakutat on the north side of Point Carrew Road. According to a Naval Transfer of New Construction, dated June 24, 1943, a 75,000 gallon capacity aviation gasoline storage system and 3,030 linear feet of pipelines were originally planned for installation at the naval base. According to the same document, the project was cancelled. A telegram dated July 19, 1943 stated: "Installation of aviation gasoline system cancelled. All three 25,000 gallon tanks are complete with one on location. No other work accomplished on this installation." It is not known if the "on location" tank was actually installed because it does not appear on the 1944 inventory of transferred MNAF property. The three water and/or soil filled pits at the site are believed to be the excavations for the cancelled underground storage tanks (USTs). It is likely the military used tanker trucks to fuel the seaplanes and therefore the storage tanks were not necessary for operations.

AOC G1 is the "Former Pipeline Paths", G2 is the "Suspected UST1 and Debris", and G3 is the "Suspected UST2 and UST3" (see Figure 6). Three rectangle-shaped excavation pits filled with water and/or soil were present in the area. Pronounced visible spoil piles were seen on each end of the pits. Several ditches were also present. These ditches were about 2 feet deep and ran from the suspected UST pits downhill toward the dock area. The ditches are suspected to be the planned locations of the piping system which would have connected the USTs to the Seaplane Base.

Three 55-gallon drums and five gasoline cans, all heavily rusted and presumed to be remnants from World War II, were found near one of the partially backfilled pits during the 1999 site walkover (USACE 2003a, USACE 2003b).

Results of the 2000 geophysical surveys indicate that there was no buried metal associated with the excavated pits and trenches. No USTs or associated piping were found. Naval records show the installation of the piping was canceled. No soil samples contained analytes that exceeded ADEC Method 2 cleanup levels. Petroleum contamination was detected at concentrations well below ADEC cleanup levels. No contamination was identified associated with the surface debris area. No wells were installed for groundwater sampling because subsurface soil conditions encountered at this site prevented the soil borings from reaching the groundwater table by the drilling method used. Based on soil results, the presence of groundwater contamination is unlikely.

In summary, no COPCs were identified at AOCs G1, G2, and G3. No further DOD action is required at AOCs G1, G2, and G3.

1.3.5 AOC N – Aircraft Warning System (AWS) Station, Overview

N Concern was the location of the former Aircraft Warning System (AWS) Station, also known as the "Listening Post". The AWS monitored the position of all aircraft in the area

and relayed the information to the Air Warning Filter Center (AWFC) for evaluation and distribution. Historical as-builts of the site depict two barracks, a headquarters building, pumphouse, power house, and miscellaneous small structures in a heavily wooded area on a hill at the end of Monti Road, now called Ridge Road. It was noted on drawings dated March 1942 that 2 diesel fuel storage tanks, the detector building, and tower were to be furnished by the Signal Corps but to be erected by U.S. Engineers; the powerhouse equipment was also to be furnished by the Signal Corps. However, the 1944 *History of Yakutat Landing Field* states that the technical facilities were never installed by the Signal Corps at the AWS camp, or at the AWFC and therefore the diesel tanks and generator were never installed (USACE 1944). ADEC designated "Yakutat AFB Air Warning System Station" cleanup complete (ADEC Haz Id 3721) in 25 April 2012.

During the 2015 INPR revision AOC N was divided into two sub-AOCs: N1 and N2.

1.3.5.1 AOC N1 – AWS Powerhouse - No. 904

The AWS Powerhouse (Building 904), was intended to provide electrical power for the AWS Station. As stated above, the documentation show that neither the generator nor diesel fuel tanks were installed. The powerhouse remains and debris were removed in the 1984 cleanup (USACE 1984).

In 1999, USACE contractor's personnel visited the site and observed a concrete pad that was identified by a local resident as the former powerhouse foundation. Two large storage trailers nearly covered the concrete foundation. Two drums and several metal cans were also observed (USACE 2003a, USACE 2003b).

For the 2001 RI, three locations at the powerhouse foundation were sampled to determine whether surface soil contamination associated with former military use exists. DRO was detected at an estimated value of 636 mg/kg which exceeds the ADEC Method 2 soil cleanup level of 230 mg/kg. PCP was detected in the surface soil samples at a maximum concentration of 0.0637 mg/kg which exceeds the ADEC Method 2 soil cleanup level of 0.047 mg/kg. Arsenic concentrations in soil exceeded the ADEC Method 2 soil cleanup level of 3.7 mg/kg, however, the detected concentrations were below the established background concentration of 11.6 mg/kg. Cadmium was detected in one surface soil sample at a concentration of 6.98 mg/kg which exceeds the ADEC Method 2 soil cleanup level of 5.0 mg/kg. PCB contamination, possibly associated with the former powerhouse, was not detected at this AOC. No other target analytes in the surface soil samples exceeded ADEC Method 2 soil cleanup levels (USACE 2003b). In 2001, DRO, PCP, and cadmium concentrations in surface soil samples slightly exceeded ADEC Method 2 cleanup levels, but it was suspected that this contamination was limited.

In 2010, USACE conducted a more thorough investigation and DRO, PCP, and cadmium were not detected in surface or subsurface samples above ADEC Method 2 cleanup levels. ADEC has designated the site status of "cleanup complete" (ADEC Haz Id 3721) in 25 April 2012. No further DOD action is required at AOC N1.

1.3.5.2 AOC N2 – AWS Station - excluding AOC N1

AOC N2 refers to the other structures that comprised the former AWS. At the request of ADEC, USACE provided a document review of the AWS station and potential contamination identified by USACE in 1999. The structures planned for the AWS included two barracks (Buildings 902 and 903), one headquarters building (901), the previously discussed AOC N1 powerhouse (904), a detector building, transmission lines, and a pumphouse (905). The 1948 WAA Surplus Property Report stated that the "camp was evidently never completed". Historical records and photos indicate that buildings 901, 902, 903, 904, and 905 were constructed. The 1984 ERDA drawings document that buildings 901-904 were removed as part of the debris removal effort (USACE 1984).

The 1999 visit did not identify any visual contamination or potential sources associated with these structures and significant contamination is not typically associated with these types of WWII structures. No further DOD action is required at AOC N2.

1.3.6 AOC O – Air Corps Warehouse Area Group No. 2, Overview

AOC O was the site of the A.C. Warehouse Area Group No. 2 and was the smaller of the two groups of warehouses built along Utilities Road, now known as National Forest Road 9975. The site is located on United States Forest Service (USFS) property just south of N.F. Road 9975, between Cannon Beach Road and the Yakutat airport. The 1943 *Utilities Layout A.C. Expansion Area* shows that four buildings (555, 556, 557, and 558), described as 36 x 60 ft. Cowin huts, comprised the group. All four buildings were relocated to the Port of Whittier in 1948. Only the foundation for building 556 was identified during the remedial investigation. What was stored in the warehouses is unknown, but contamination from the warehouses was not suspected. The area where drums were found and identified as AOC O1 was investigated.

1.3.6.1 AOC O1 – Suspected Drum Dump

AOC O1 is the location of a suspected drum dump at the former Air Corps Warehouse Group No. 2. The four structures that originally made up the Warehouse Group were moved from Yakutat to Whittier after the air base was declared surplus in 1945. The site was described as "three empty, rusted 55-gallon drums located adjacent to a small stream/drainage ditch."

Surface and subsurface soil, groundwater, surface water, and sediment samples were collected during a remedial investigation conducted in 2001. Samples were analyzed for GRO, DRO, RRO, VOCs, PAHs, PCBs, organochlorine pesticides, chlorinated herbicides, and metals. Arsenic was detected in surface and subsurface soils at concentrations ranging from 1.96 to 15 mg/kg, which is above the ADEC Method 2 soil cleanup level of 3.7 mg/kg; however, only two surface samples had concentrations exceeding the regional background level (11.6 mg/kg; USACE 2003b). No other analytes exceeded the ADEC Method 2 soil cleanup levels. Lead was detected in groundwater at concentrations up to 0.0452 milligrams per liter (mg/L), which is above the ADEC Table C groundwater cleanup level (0.015 mg/L). The elevated lead levels were likely caused by suspended solids associated with turbidity in the sample, resulting from purging and

sampling using a bailer (USACE 2003b). Subsequent groundwater samples collected from wells AP-100 and AP 099 in 2004 showed that lead was not detected in groundwater at either location (USACE 2006).

In 2001, two surface water samples collected from the stream/drainage ditch adjacent to the site had lead concentrations of 0.0127 mg/L and 0.0128 mg/L, which exceeded the National Oceanic and Atmospheric Administration (NOAA) Screening Quick reference Table (SQuiRT) Freshwater Chronic value of 0.0025 mg/L. One sample was collected less than 50 feet downstream (south) of the concrete foundation and the second sample was collected approximately 200 feet downstream (southwest) of the concrete foundation, at the confluence of a side stream that reportedly drains the AOC O1 drum dump area (USACE 2003b).

In 2014, USACE conducted a Supplemental RI: five surface water samples were collected in the AOC O1 vicinity and analyzed for total lead, dissolved lead, and hardness. Samples were collected upstream, at the site and downstream of the historic detections. The dissolved lead was not detected at a limit of quantitation (LOQ) of 0.00025 mg/L which is well below the hardness-dependent Alaska Water Quality Standard (WQS) value calculated at 0.00293 mg/L based on average hardness for the studied water body. Total lead was not detected at a LOQ of 0.00025 mg/L which is well below the total lead Table C groundwater cleanup level of 0.015 mg/L. The corresponding limit of detection was below the calculated Alaska WQS criterion and the NOAA SQuiRT values. The analytical results demonstrate that lead is not currently present at concentrations above the human health and ecological risk-based standards in the stream/drainage ditch adjacent to AOC O1. Further human health and ecological risk evaluation is not required.

No further DOD action is required for AOC O – Air Corps Warehouse Group No. 2.

2. SUMMARY OF DECISION

Based on the results of the removal action and remedial investigation efforts completed between 1984 and 2014, and the risk evaluation, USACE has determined that no further DOD action is required for Project # F10AK0606-08, Investigation Complete, No Contamination and project closeout is protective of public health, welfare, and the environment. This Project Closeout determination may be reevaluated in the event that additional information becomes available, or previously undiscovered and FUDS-eligible contamination is present.

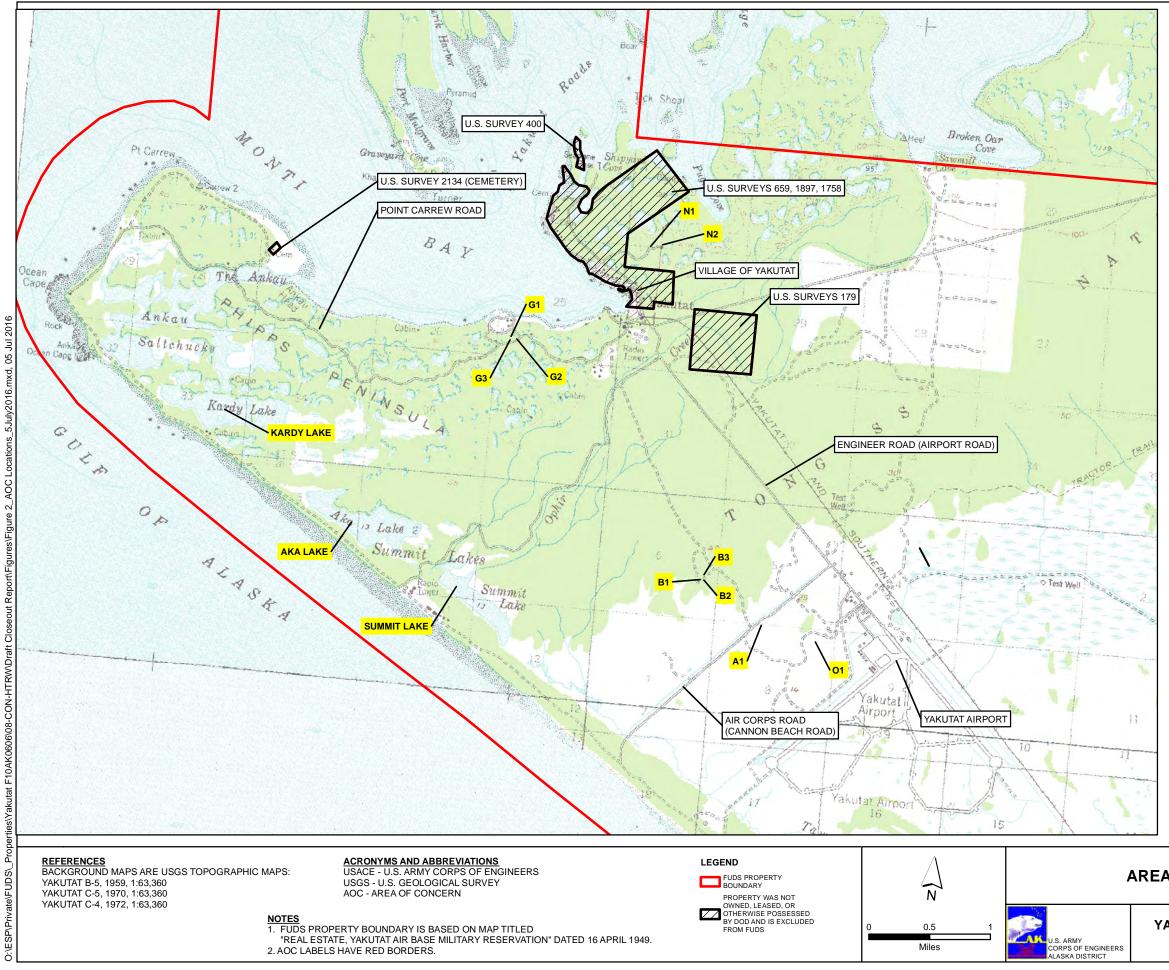

Project Closeout is the decision for the 13 AOCs listed below because there is no DODrelated contamination in the soil, groundwater, sediment and surface water exceeding the risk-based cleanup levels or established background concentrations:

- 1) A Air Corps Increase Group No. 2
- 2) Aka Lake
- 3) Kardy Lake
- 4) Summit Lake

- 5) B1 AWFC 20 kW Powerhouse, Unit 1 No. 1205
- 6) B2 AWFC 15 kW Powerhouse, Standby Unit No. 1211
- 7) B3 AWFC Tank and Associated Piping, Bath No. 1213
- 8) G1 Minor NAF (Seaplane Base) Suspected piping & debris
- 9) G2 Minor NAF (Seaplane Base) Suspected UST1 & debris
- 10) G3 Minor NAF (Seaplane Base) Suspected USTs 2&3
- 11) N1 AWS Station Powerhouse No. 904
- 12) N2 AWS Station (excluding N1)
- 13) O Air Corps Warehouse Group No. 2

3. REFERENCES

- 18 AAC 75. 2017. Alaska Administrative Code, Title 18, Chapter 75. Oil and Other Hazardous Substances Pollution Control. November.
- ADEC. 2017a. *Cumulative Risk Calculator*. Division of Spill Prevention and Response, Contaminated Sites Program. May.
- -----. 2017b. *Cleanup Levels Calculator*. Division of Spill Prevention and Response, Contaminated Sites Program. May.
- -----. 2017c. Policy Guidance on Developing Conceptual Site Models. Juneau, AK. January.
- BLM. 1980, Final Environmental Impact Statement, Proposed Outer Continental Shelf Oil and Gas Lease Sale, Eastern Gulf of Alaska, Sale No. 55, March.
- U.S. Army Corps of Engineers (USACE). 1944. *History of Yakutat Landing Field, Alaska, 26* October 1940 to 31 May 1944, Prepared by 2nd Lt. William C. Fries for Major, Air Corps, John S. McIntosh, Jr., Commanding Officer, Yakutat Landing Field, Alaska. F10AK0606--_01.06_0503_a.
- -----. 1948. Surplus Property Report WAA-1005, Yakutat Airfield, Alaska. 18 May. F10AK0606--_01.06_0502_a.
- -----. 1984. Environmental Restoration Defense Account Debris Cleanup and Site Restoration Design, Yakutat, Alaska. By Frank Moolin & Associates, Inc. for USACE. 27 July. F10AK060601_01.04_0500_p.
- -----. 2003a. 2000 Remedial Investigation Report Final, Remedial Investigation/Feasibility Study, Yakutat Area, Alaska. February. Prepared by ENSR International. F10AK060602_03.10_0006_a.
- -----. 2003b. 2001 Remedial Investigation Report Final, Remedial Investigation/Feasibility Study, Yakutat Area, Alaska. April. Prepared by ENSR International. F10AK060602_03.10_0005_a.
- -----. 2005. *Final Feasibility Study, Yakutat Area RI/FS.* January. Prepared by ENSR International. F10AK060602_04.09_0500_a.
- -----. 2006a. Final Report, Focused Remedial Investigation, Former Yakutat AFB, Yakutat, Alaska. April. Prepared by Shannon & Wilson, Inc. F10AK060602_03.10_0001_a.
- -----. 2006b. *Final Report, 2005 Focused Remedial Investigation, Former Yakutat Air Force Base, Yakutat, Alaska*. August. Prepared by Shannon & Wilson, Inc. F10AK060602_03.10_0002_a.
- -----. 2007a. Former Yakutat Air Force Base Remedial Investigation Report, Yakutat, Alaska, Final. March. Prepared by BC Contractors - Jacobs Joint Venture. F10AK060602_03.10_0004_a.



11 May ģ May201 \Fig1 CON-HTRW\Draft

YAKUTAT, ALASKA

- -----. 2007b. RAB Meeting Slides. Yakutat AFB Former Used Defense Sites (FUDS). Yakutat Air Base, Yakutat, Alaska. 21 February.
- -----. 2008. Final Military Munitions Response Program CERCLA Preliminary Assessment for the Yakutat Air Base, Yakutat, Alaska. 16 May. F10AK0606--_01.09_0505_a.
- -----. 2009. Arsenic and Chromium Background Concentrations Calculations Using ProUCL 4.0, Yakutat AFB, Yakutat, Alaska. January. F10AK060602_03.02_0500_a.
- -----.2010. Final Report, Feasibility Study, Former Yakutat Air Force Base, Yakutat, Alaska. July. Prepared by Shannon & Wilson, Inc. F10AK060602_04.09_0503_a.
- -----.2012. Final Report, 2010 Supplemental Remedial Investigation, Former Yakutat Air Force Base, Yakutat, Alaska. February. Prepared by Shannon & Wilson, Inc. F10AK060602_03.10_0008_a.
- -----. 2015a. Proposed Plan for No Department of Defense Action Indicated Yakutat Air Base FUDS, FUDS Project No. F10AK0606. February. F10AK060602_04.10_0500_a.
- -----. 2015b. Defense Environmental Restoration Program Formerly Used Defense Sites (DERP-FUDS) Revised Inventory Project Report for Property No. F10AK0606. Yakutat Air Base, Yakutat, AK. September. F10AK0606--_01.08_0502_a.
- -----. 2016. Final Supplemental Remedial Investigation, Former Yakutat Air Base, Formerly Used Defense Site (F10AK060602). May. Prepared by AECOM Technical Services, Inc. F10AK060602_03.10_0012_a.
- U.S. Geological Survey (USGS). 1909. Professional Paper 64, The Yakutat Bay Region, Alaska, Part I. Physiography and Glacial Geology. By Ralph S. Tarr. Washington, D.C.: U.S. Government Printing Office.
- -----. 1979. Professional Paper 1017, Reconnaissance Engineering Geology of the Yakutat Area, Alaska, With Emphasis on Evaluation of Earthquakes and Other Geologic Hazards. By Lynn A. Yehle. Washington, D.C.: U.S. Government Printing Office.
- ------. 1985. Open-File Report 85-13, Tectonics of the Yakutat Block, An Allochthonous Terrane in the northern Gulf of Alaska. Preliminary. By Terry R. Bruns. Menlo Park, California: U.S. Geological Survey. January.
- ------. 1998. Open-File Report 98-199, Hydrologic Investigation of the Ophir Creek Watershed Near Yakutat, Alaska. By Edward G. Neal. Prepared in cooperation with ADF&G, Anchorage, Alaska.

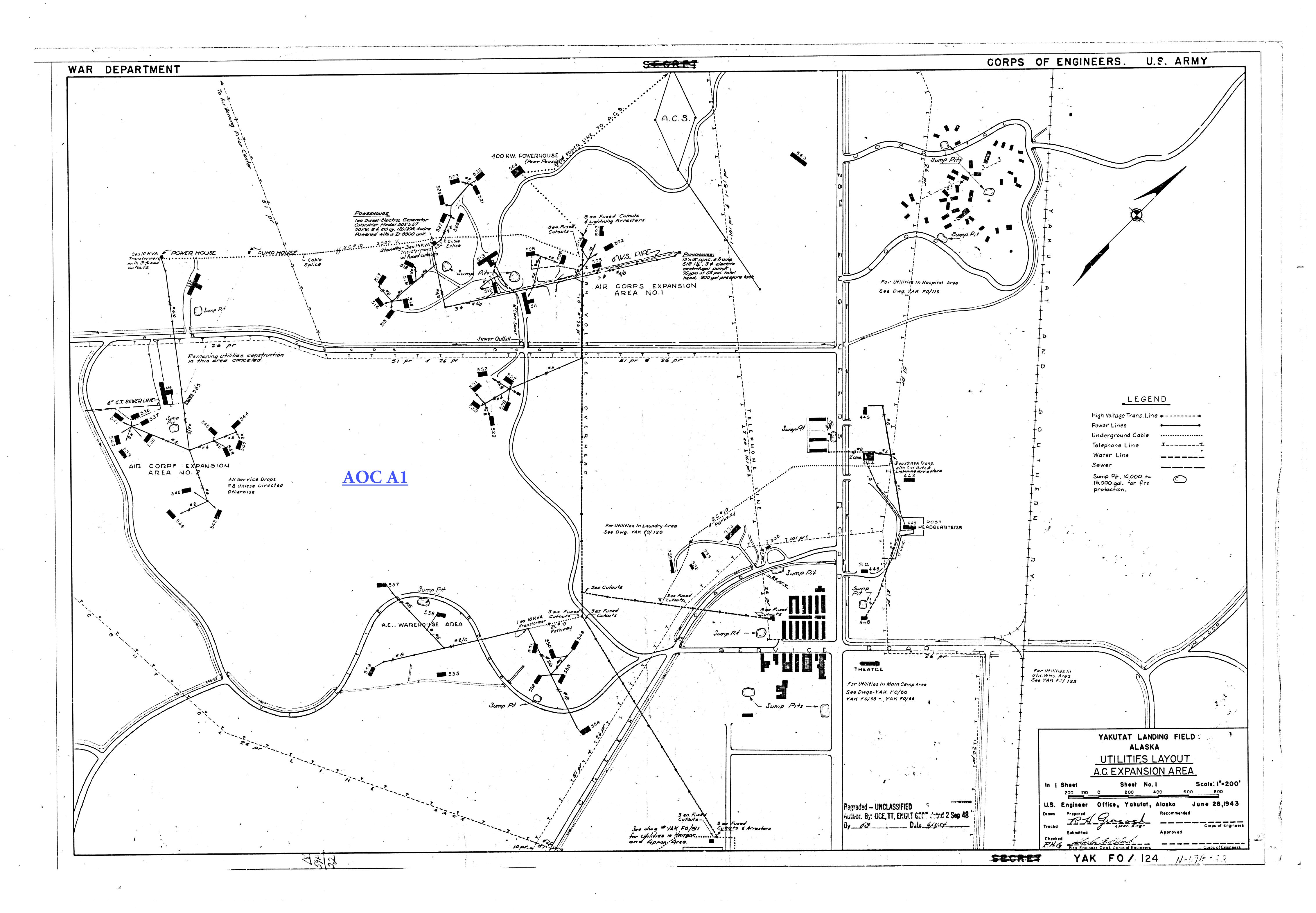
FIGURES

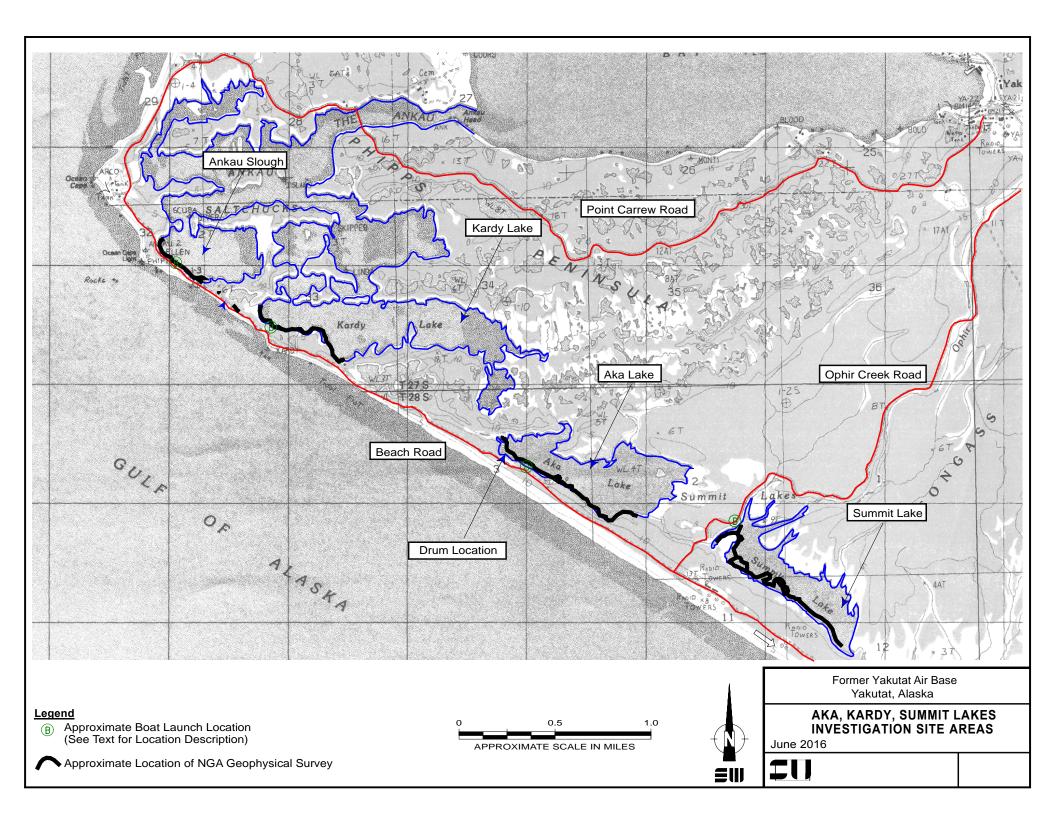
YAKUTAT AIR BASE NO FURTHER ACTION AOCS

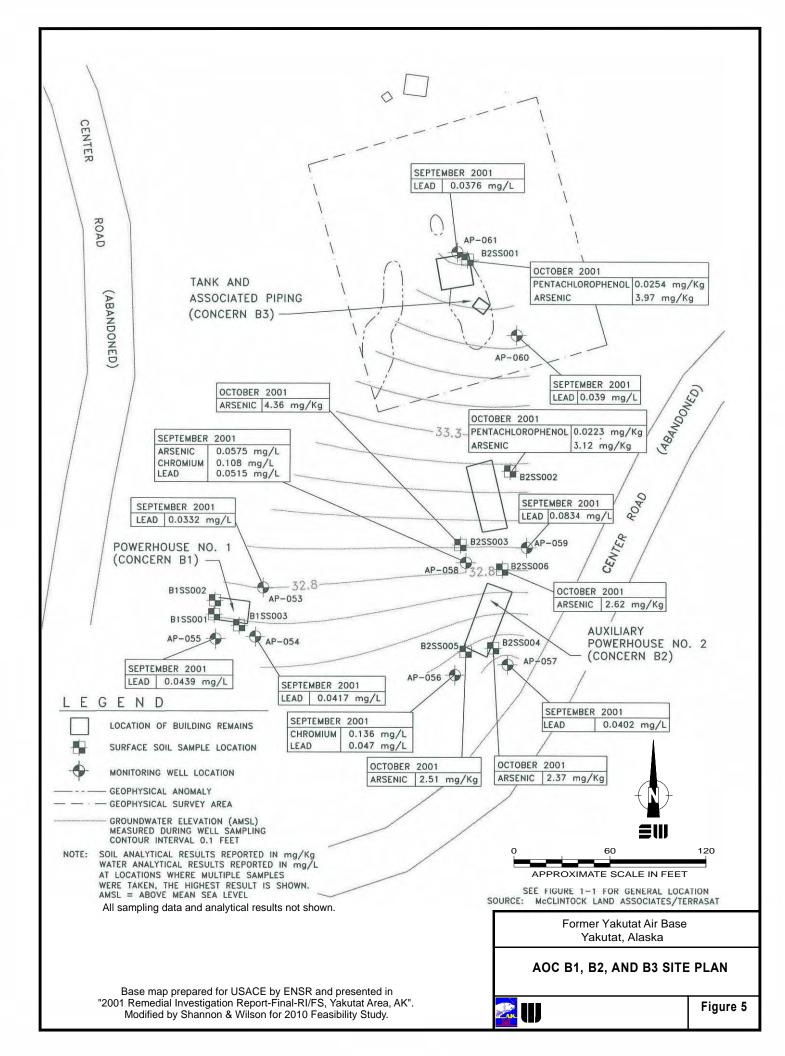
CON/HTRW Project 08:

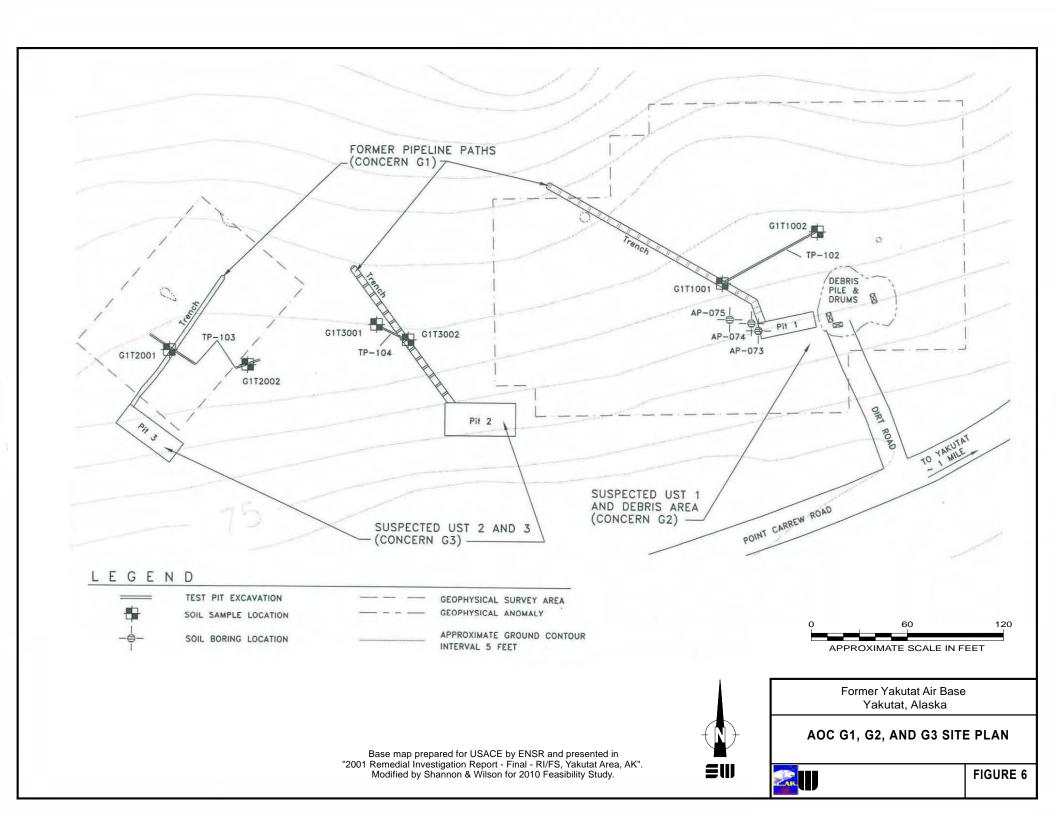
AOCS Proposed for No Further Action/NDAI

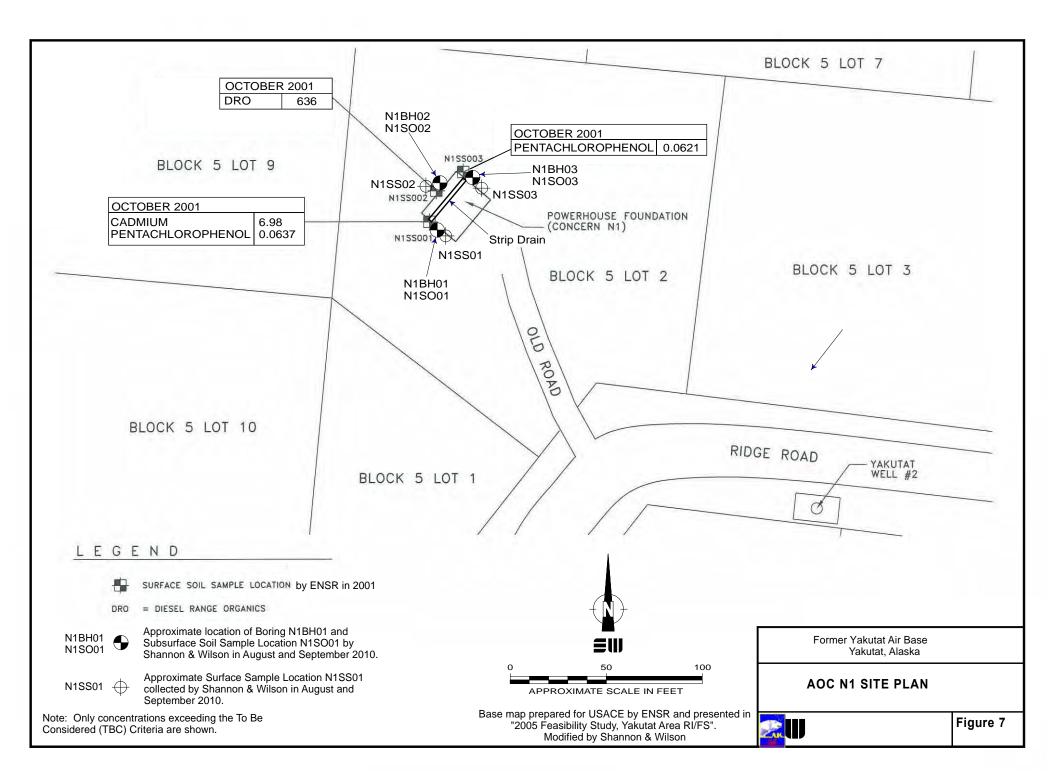
- A1 Air Corps Increase Group No. 2
- Aka Lake
- Kardy Lake Summit Lake
- B1 AWFC 20 kW Powerhouse, Unit 1 No. 1205
- B2 AWFC 15 kW Powerhouse, Standby Unit No. 1211 - B3 - AWFC Tank and Associated Piping, Bath - No. 1213
- G1 Minor NAF (Seaplane Base) Suspected piping and debris
- G2 Minor NAF (Seaplane Base) Suspected UST1 and debris
- G3 Minor NAF (Seaplane Base) Suspected USTs 2 and 3
- N1 AWS Station Powerhouse No. 904
- N2 Aircraft Warning System (AWS) Station (excluding N1)
- O1 Air Corps Warehouse Group No. 2

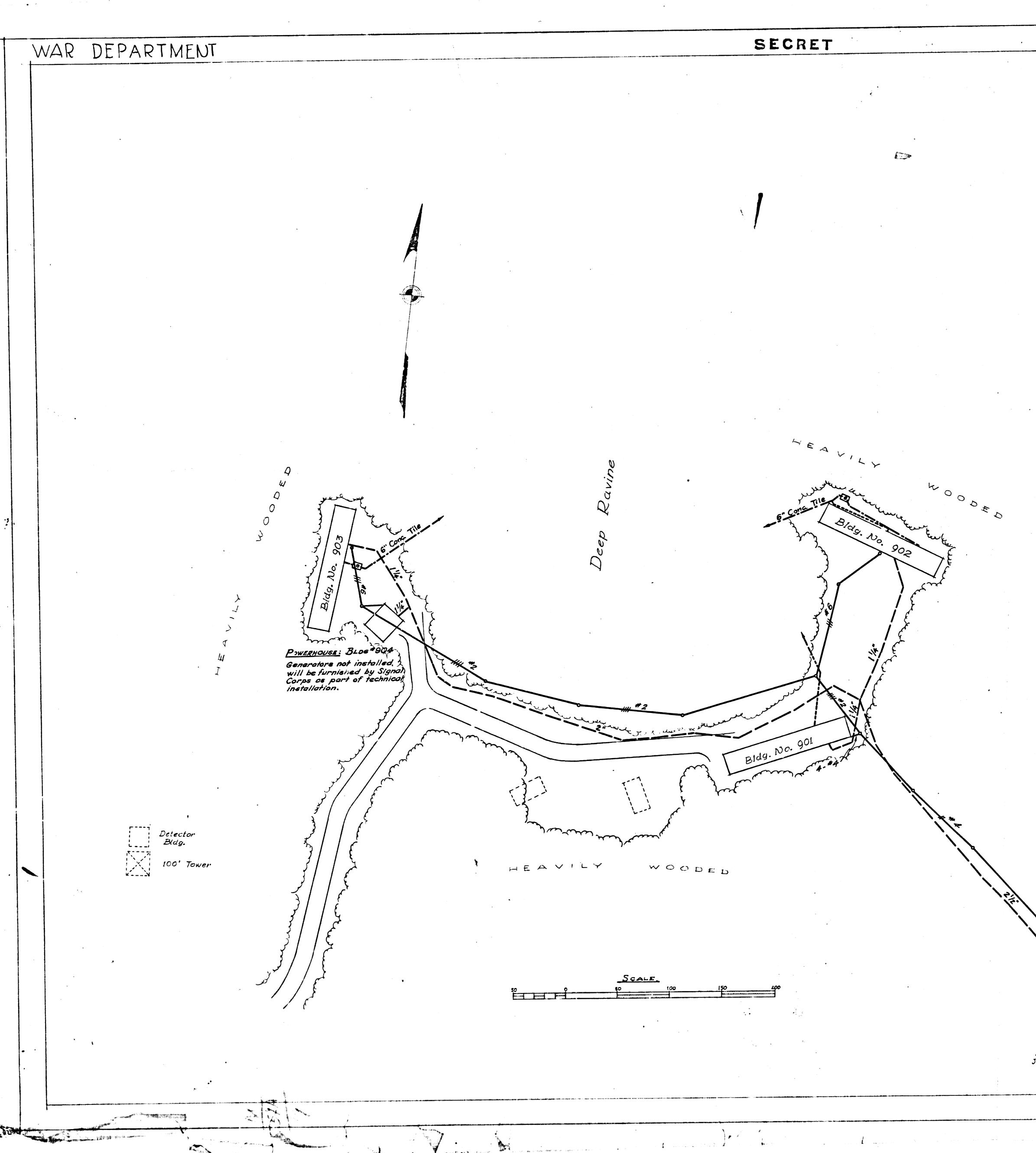

No Further Action AOC

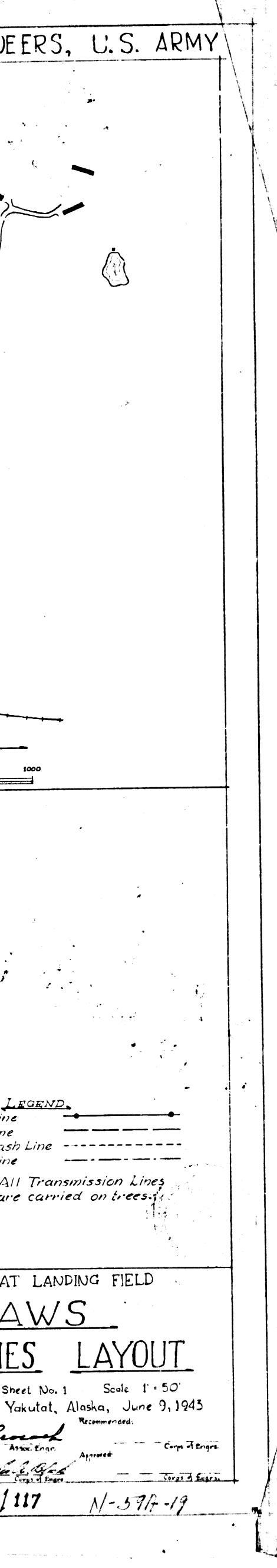

AREA OF CONCERN (AOC) LOCATIONS

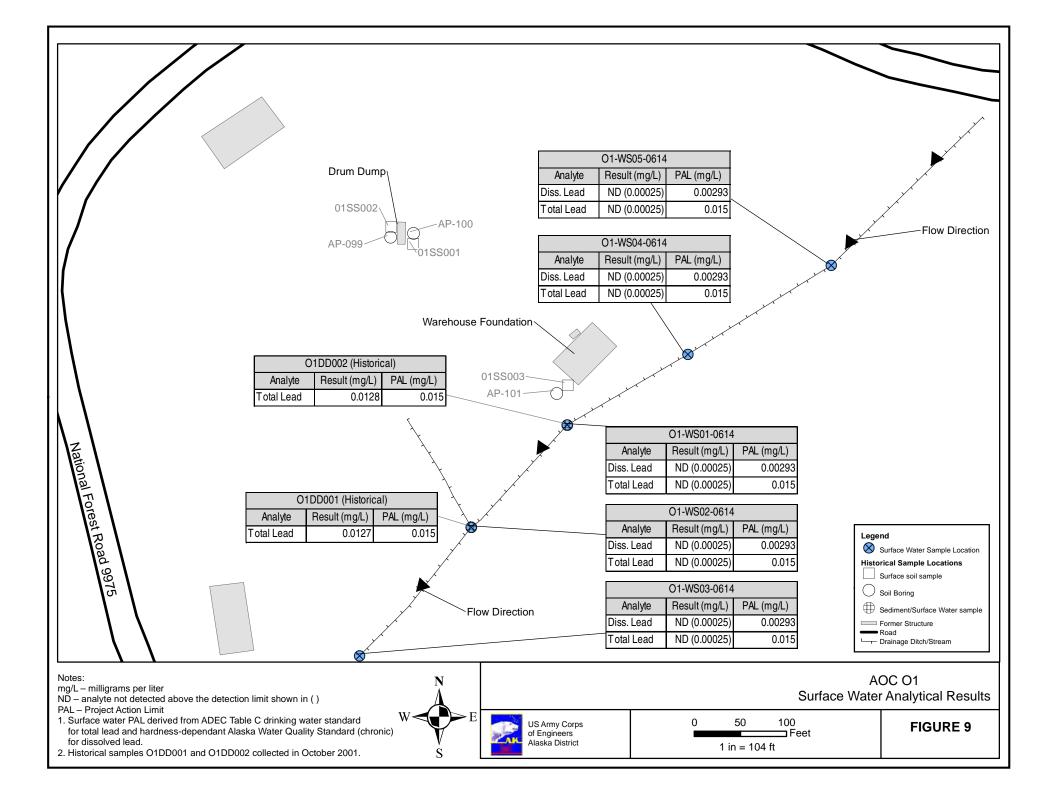

YAKUTAT AIR BASE - F10AK0606


YAKUTAT, ALASKA


FIGURE 2







		CORPS OF	ENGINEERS.
			a,
		▲	
		• Po	
	MONT	ROAD	
•			
			• •
	Barriew LAF		
		ITAT	
•	DEIVE	<u> </u>	•
•			\mathbf{x}
	MONTI		
	BAY		
			λ.))
,			
	500	<u>ICINITY MAP</u> Scale	<u>A. W. J.</u>
ा प्रमुख्य			
		• •	• • •
		•	and the second se
•			
		۰. ۲	•
	•		
•			
			LEGEND. Power Line -
			Water Line - Water Wash Line - Sewer Line -
			Note: All Trans are carrie
	•		
	ause: Bldg Ng 905	•	
BxB Co BxB Co S HP, Co	nouse: Bldg.No. 905 anc. & frame bldg. entritugal Pump \$\$, 30 gpm at 70*-90*	•	YAKUTAT LANI
W/Mate	t t		
3	Regraded - UNCLASSIFIED	cated 2 Sep 48	JTILITIES
LAKE	Date	10 1 She U.S. Engu Draba: P	eet Sheet No. 1 neer Office, Yakutat, J
	3 	AMA Traced: MMA_S.	M.H. Grand
	No. Revision B	y rapper Date	AK FO/117
	and the second se	जन्म १४-	212 J UJ ##1

, **4** .

ATTACHMENT 1 – ALTERNATIVE CLEANUP LEVEL CALCULATIONS

	А	В	С	D	E	F	G	Н		J	K	L		
1						DC B TOC L								
2				U	CL Statis	stics for Unc	ensored Ful	Data Sets						
3	Total Orga		1	1 1		1		1		1				
4	6900	mg/kg												
5	6900	mg/kg												
6	7300	mg/kg												
7	3600	mg/kg												
8	1800	mg/kg												
9	4400	mg/kg												
10	2700	mg/kg												
11	7400	mg/kg												
12	2100	mg/kg												
13	6900	mg/kg												
14	10000	mg/kg												
15			-	1										
16		User Selected Options Date/Time of Computation ProUCL 5.15/26/2017 11:36:45 AM												
17	Da	te/Time of Co												
18			From File	PCP Data for Ya	akutat B	Site 95 UCL	and Method	3.xls						
19			I Precision	OFF										
20		Confidence		95%										
21	Number	of Bootstrap (Operations	2000										
22														
23	T 1 1 0													
24	Total Orga	nic Carbon												
25						Canaral	Statistics							
26			Total	Number of Obse	nuctions	11	Statistics		Numbor	of Distinct Ob	convotions	9		
27			TOLAI	Number of Obse	livations	11				of Missing Obs		9		
28				Λ	<i>.</i> <i>I</i> inimum	1800			Number		Mean	0 5455		
29					laximum						Median			
30				IV	SD	2662				Std Erro	or of Mean	802.7		
31				Coefficient of \		0.488					Skewness	0.0105		
32					variation	0.400					OKCWIIC33	0.0100		
33						Normal (GOF Test							
34			S	hapiro Wilk Test	Statistic				Shapiro Wil	k GOF Test				
35				hapiro Wilk Critic				Data appe	•	5% Significan	ce l evel			
36				Lilliefors Test		0.252				GOF Test				
37			5	% Lilliefors Critic		0.251		Data No		5% Significance	e Level			
38 30							rmal at 5% S	Significance		<u> </u>				
39 40														
	Acourting Normal Distribution													
41 42			95% No	ormal UCL		-			UCLs (Adju	sted for Skewr	ness)			
42				95% Student	t's-t UCL	6909				d-CLT UCL (CI	-	6777		
43									-	d-t UCL (John	-			
44 45														
46						Gamma	GOF Test							
40				A-D Test	Statistic	0.609		Ander	son-Darling	Gamma GOF	Test			
48				5% A-D Critic	al Value	0.733	Detecte	d data appea	r Gamma Di	stributed at 5%	Significan	ce Level		
49				K-S Test	Statistic	0.287		Kolmog	orov-Smirno	v Gamma GO	F Test			
50				5% K-S Critic	al Value	0.257	D	ata Not Gam	ma Distribute	ed at 5% Signif	ficance Lev	/el		

	A	В		С	Т	D	—	E		F	G	Т	Н				T	J	Т		K	L
51		<u>.</u>			De	tected	l data	folic	<mark>w Ap</mark>	pr. Gamma	Distribution	n at		nifica	nce	Leve	l I	-				
52																						
53										Gamma	Statistics											
54							k ł	hat (MLE)	3.853						k	star	(bias	corre	ecter	d MLE	2.86
55						Т	Theta ł	hat (MLE)	1416					Т	neta	star	(bias	corre	ected	d MLE) 1905
56							nu ł	hat (MLE)	84.76							nu	star (bias	s cor	rected	62.98
57				Μ	/LE	Mean ((bias c	corre	cted)	5455							ML	E Sd ((bias	s cor	rected	3224
58														Ap	prox	mate	e Chi	Squa	ire V	/alue	e (0.05	45.72
59				Adju	istec	Level	of Sig	gnific	ance	0.0278						A	djust	ed Ch	ni Sq	luare	Value	43.33
60											1											
61									As	suming Gan	nma Distrib	utio	on									
62	Ś	95% Appro	ximate	Gamma	a U(CL (use	e wher	n n>:	=50))	7513			95% A	٩dju	sted (Gamr	ma L	ICL (ι	ise v	wher	n<50) 7927
63										I												
64										Lognorma	I GOF Test	t										
65				5	Shar	oiro Wi	lk Tes	st Sta	atistic	0.887			Sha	apiro	o Wil	k Log	gnor	nal G	iOF '	Test	:	
66				5% S	Shap	iro Wil	lk Criti	ical \	√alue	0.85		[Data appe	ear L	ogno	rmal	at 5	% Sig	Inific	ance	e Leve	I
67						Lilliefo	rs Tes	st Sta	atistic	0.284			L	_illie	fors l	.ogn	orma	I GO	F Te	est		
68				Ę	5% I	illiefor	rs Criti	ical \	√alue	0.251			Data No	ot Lo	gnorr	nal a	t 5%	Signi	ificar	nce l	_evel	
69						Dat	a app	ear /	Apprc	ximate Log	normal at 5°	%	Significar	nce l	evel							
70																						
71										Lognorma	al Statistics											
72					Mir	imum	of Log	gged	Data	7.496								Mean	of lo	ogge	d Data	8.46
73					Мах	imum	of Log	.ogged Data 9.21									SD	of lo	ogge	d Data	0.58	
74																						
75									Ass	uming Logn	ormal Distri	ibut	tion									
76							95	5% H	-UCL	8570					!	90%	Che	byshe	ev (M	1VUE	E) UCI	8526
77				95%	o Che	ebyshe	∍v (MV	/UE)	UCL	9878					97	.5%	Che	byshe		1VUE	E) UCI	11755
78				99%	. Ch	ebyshe	∍v (MV	/UE)	UCL	15441												
79																						
80							N	lonpa	arame	etric Distribu	ition Free U	JCL	_ Statistic	s								
81					Da	ita app	bear t c	o foll	ow a	Discernible	Distribution	n at	t 5% Sign	nifica	nce	Leve						
82																						
83								N	ionpa	rametric Dis	tribution Fr	ee	UCLs									
84							95%	CLT	UCL	6775								95%	Jac	kkni	fe UCI	6909
85				95%	6 Sta	andard	Boots	strap	UCL	6731							9	95% E	Boots	strap	-t UCI	6911
86					95%	Hall's	Boots	strap	UCL	6783					ç	95%	Perc	entile	Boo	otstra	ip UCI	6782
87					95%	6 BCA	Boots	strap	UCL	6782												
88				90% Cl	heb	/shev(Mean,	, Sd)	UCL	7862					95	% Cł	neby	shev(Mea	n, So	d) UCI	8953
89			9	7.5% Cl	heb	/shev(Mean,	, Sd)	UCL	10467					99	% Cł	neby	shev(Mea	n, So	d) UCI	13441
90										1	1											
91										Suggested	UCL to Us	е										
92						95% 5	Studer	nt's-t	UCL	6909												
93										LCL	to Use											
94						95%	Stude	ent's-	t LCL	4001												
95										1	1											1
96			١	When a	data	set fo	llows	an a	pprox	timate (e.g.,	normal) dist	trib	ution pas	sing	one	of the	e GC	F tes	t			
97		When a	pplicat	ole, it is :	sug	jested	to use	eal	JCL b	ased upon a	distribution	ı (e	.g., gamn	na) p	assir	ng bo	oth G	OF te	ests i	in Pr	oUCL	
97																						
99		Note: Sug	gestion	ns regard	ding	the se	ectio	n of	a 95%	6 UCL are pi	ovided to he	elp	the user	to se	elect	the n	nost	appro	priat	te 95	5% UC	L.
					Rec	ommer	ndatio	ons a	re ba	sed upon da	ta size, data	a di	stribution	i, and	d ske	wnes	SS.					
100										•					_							

	А	В	С	D	E	F	G	Н		J	K	L			
101		These recor	mmendations	are based u	pon the resu	Its of the sim	nulation studi	es summariz	ed in Singh,	Maichle, and	d Lee (2006).				
102	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.														
103															

AOC B Site-specific Equation Inputs for Migration to Groundwater

Variable	Value
TR (target cancer risk) unitless	0.00001
THQ (target hazard quotient) unitless	1
LT (lifetime - resident) year	70
K (volatilization factor of Andelman) L/m ³	0.5
I _{sc} (apparent thickness of stratum corneum) cm	0.001
ED _{resw} (exposure duration - resident) year	26
ED _{reswc} (exposure duration - child) year	6
ED _{reswa} (exposure duration - adult) year	20
ED ₀₋₂ (mutagenic exposure duration first phase) year	2
ED ₂₋₆ (mutagenic exposure duration second phase) year	4
ED ₆₋₁₆ (mutagenic exposure duration third phase) year	10
ED ₁₆₋₂₆ (mutagenic exposure duration fourth phase) year	10
EF _{resw} (exposure frequency) day/year	350
EF _{reswc} (exposure frequency - child) day/year	350
EF _{reswa} (exposure frequency - adult) day/year	350
EF ₀₋₂ (mutagenic exposure frequency first phase) day/year	350
EF ₂₋₆ (mutagenic exposure frequency second phase) day/year	350
EF ₆₋₁₆ (mutagenic exposure frequency third phase) day/year	350
EF ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) day/year	350
ET _{resw-adj} (age-adjusted exposure time) hour/event	0.67077
ET _{resw-madj} (mutagenic age-adjusted exposure time) hour/event	0.67077
ET _{resw} (exposure time) hour/day	24
ET _{reswc} (dermal exposure time - child) hour/event	0.54
ET _{reswa} (dermal exposure time - adult) hour/event	0.71
ET _{reswc} (inhalation exposure time - child) hour/day	24
ET _{reswa} (inhalation exposure time - adult) hour/day	24
ET ₀₋₂ (mutagenic inhalation exposure time first phase) hour/day	24
ET ₂₋₆ (mutagenic inhalation exposure time second phase) hour/day	24
ET ₆₋₁₆ (mutagenic inhalation exposure time third phase) hour/day	24
ET ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hour/day	24
ET ₀₋₂ (mutagenic dermal exposure time first phase) hour/event	0.54
ET ₂₋₆ (mutagenic dermal exposure time second phase) hour/event	0.54
ET ₆₋₁₆ (mutagenic dermal exposure time third phase) hour/event	0.71
ET ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event	0.71
BW _{reswa} (body weight - adult) kg	80
BW _{reswc} (body weight - child) kg	15
BW ₀₋₂ (mutagenic body weight) kg	15

BW ₂₋₆ (mutagenic body weight) kg	15
BW ₆₋₁₆ (mutagenic body weight) kg	80
BW ₁₆₋₂₆ (mutagenic body weight) kg	80
IFW _{res-adj} (adjusted intake factor) L/kg	327.95
IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	1019.9
IRW _{reswc} (water intake rate - child) L/day	0.78
IRW _{reswa} (water intake rate - adult) L/day	2.5
IRW ₀₋₂ (mutagenic water intake rate) L/day	0.78
IRW ₂₋₆ (mutagenic water intake rate) L/day	0.78
IRW ₆₋₁₆ (mutagenic water intake rate) L/day	2.5
IRW ₁₆₋₂₆ (mutagenic water intake rate) L/day	2.5
EV _{reswa} (events - adult) per day	1
EV _{reswc} (events - child) per day	1
EV ₀₋₂ (mutagenic events) per day	1
EV ₂₋₆ (mutagenic events) per day	1
EV ₆₋₁₆ (mutagenic events) per day	1
EV ₁₆₋₂₆ (mutagenic events) per day	1
DFW _{res-adj} (age-adjusted dermal factor) cm ² -event/kg	2610650
DFWM _{res-adj} (mutagenic age-adjusted dermal factor) cm ² -event/kg	8191633
SA _{reswc} (skin surface area - child) cm ²	6365
SA _{reswa} (skin surface area - adult) cm ²	19652
SA ₀₋₂ (mutagenic skin surface area) cm ²	6365
SA ₂₋₆ (mutagenic skin surface area) cm ²	6365
SA ₆₋₁₆ (mutagenic skin surface area) cm ²	19652
SA ₁₆₋₂₆ (mutagenic skin surface area) cm ²	19652
DAF (dilution attenuation factor) unitless	13.2
DF (dilution factor) unitless	3.3
AF (attenuation factor) unitless	4
f _{oc} (fraction organic carbon in soil) unitless	0.004001
d _a (aquifer thickness) m - site-specific	
d (mixing zone depth) m - site-specific	5.5
L (source length parallel to ground water flow) m	32
i (hydraulic gradient) m/m	0.002
K (aquifer hydraulic conductivity) m/yr	876
I (Infiltration Rate) m/yr	0.13
p _s (soil particle density) kg/L	2.65
p _b (dry soil bulk density) kg/L	1.5
θ _w (water-filled soil porosity) L _{water} /L _{soil}	0.3
foc (fraction organic carbon in soil) g/g	0.004001

Output generated 04APR2018:15:34:10

AOC B Site-specific

Cleanup Levels Calculator for Migration to Groundwater ca=Cancer, nc=Noncancer, ca* (Where nc CL < 100 x ca CL), ca** (Where nc CL < 10 x ca CL), max=CL exceeds ceiling limit (see User's Guide), sat=CL exceeds csat, sol=CL exceeds Solubility I=IRIS; D=Drinking Water/Health Advisory Goals; P=PPRTV; A=ATSDR; C=Cal EPA; X=APPENDIX PPRTV SCREEN; H=HEAST; S=SURROGATE

															Dilution										
						Inhalation									Attenuation	Noncarcinogenic CL		Water	Water		Water	Cleanup	Cleanup	Cleanup	
				Ingestion		Unit		Chronic	Chronic	Chronic	Chronic				Factor	Child	Carcinogenic CL	Concentration	Concentration		Concentration	Level	Level	Level	Cleanup
			voc	SF	SFO	Risk	IUR	RfD	RfD	RfC	RfC	K _d	K _{oc}		(DAF)	HI=1	TR=1.0E-5	(Child CL × DAF)	(Cancer CL × DAF)		(MCL × DAF)	(MCL)	(Child HI=1)	(TR=1.0E-5)	Level
Chemical	CAS Number	Mutagen?	?	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m ³)	Ref	(cm3/g)	(cm3/g)	H,	(unitless)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	MCL	(ug/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Pentachlorophenol	87-86-5	No	No	4.00E-01	I	5.10E-06	С	5.00E-03	I	-		2.37E+00	5.92E+02	1.00E-06	13.2	2.27E+01	4.13E-01	2.99E+02	5.45E+00	1.00E+00	1.32E+01	3.4E-02	7.69E-01	1.40E-02	1.4E-02

Output generated 04APR2018:15:34:10

AOC B Site-specific Risk Models Resident Equation Inputs for Soil (>40" Precipitation Zone)

Variable	Value
ED _{ress} (exposure duration - resident) yr	26
ED _{ressc} (exposure duration - child) yr	6
ED _{ressa} (exposure duration - adult) yr	20
ET _{ress} (exposure time - resident) hr/day	24
ET _{ressc} (exposure time - child) hr/day	24
ET _{ressa} (exposure time - adult) hr/day	24
BW _{ressa} (body weight - adult) kg	80
BW _{ressc} (body weight - child) kg	15
SA _{ressa} (skin surface area - adult) cm ² /day	6032
SA _{ressc} (skin surface area - child) cm ² /day	2373
LT (lifetime - resident) yr	70
EF _{ress>40"} (exposure frequency - resident) day/yr	330
EF _{ressc>40"} (exposure frequency - child) day/yr	330
EF _{ressa>40"} (exposure frequency - adult) day/yr	330
IRS _{ressa} (soil intake rate - adult) mg/day	100
IRS _{ressc} (soil intake rate - child) mg/day	200
AF _{ressa} (skin adherence factor - adult) mg/cm ²	0.07
AF _{ressc} (skin adherence factor - child) mg/cm ²	0.2
$IFS_{res>40"-adj}$ (age-adjusted soil ingestion factor) mg/kg	34650
DFS _{res>40"-adj} (age-adjusted soil dermal factor) mg/kg	97482
factor) mg/kg	157300
factor) mg/kg	403788
AF ₀₋₂ (skin adherence factor) mg/cm ²	0.2
AF ₂₋₆ (skin adherence factor) mg/cm ²	0.2
AF ₆₋₁₆ (skin adherence factor) mg/cm ²	0.07
AF ₁₆₋₃₀ (skin adherence factor) mg/cm ²	0.07
BW ₀₋₂ (body weight) kg	15
BW ₂₋₆ (body weight) kg	15
BW ₆₋₁₆ (body weight) kg	80
BW ₁₆₋₃₀ (body weight) kg	80
ED ₀₋₂ (exposure duration) yr	2
ED ₂₋₆ (exposure duration) yr	4
ED ₆₋₁₆ (exposure duration) yr	10
ED ₁₆₋₃₀ (exposure duration) yr	10
EF _{0-2>40"} (exposure frequency) day/yr	330
EF _{2-6>40"} (exposure frequency) day/yr	330
EF _{6-16>40"} (exposure frequency) day/yr	330

	1
EF _{16-30>40"} (exposure frequency) day/yr	330
ET ₀₋₂ (exposure time) hr/day	24
ET ₂₋₆ (exposure time) hr/day	24
ET ₆₋₁₆ (exposure time) hr/day	24
ET ₁₆₋₃₀ (exposure time) hr/day	24
IRS ₀₋₂ (soil intake rate) mg/day	200
IRS ₂₋₆ (soil intake rate) mg/day	200
IRS ₆₋₁₆ (soil intake rate) mg/day	100
IRS ₁₆₋₃₀ (soil intake rate) mg/day	100
SA ₀₋₂ (skin surface area) cm ² /day	2373
SA ₂₋₆ (skin surface area) cm ² /day	2373
SA ₆₋₁₆ (skin surface area) cm²/day	6032
SA ₁₆₋₃₀ (skin surface area) cm ² /day	6032
A _s (acres)	0.5
Q/C _{wp} (g/m ² -s per kg/m ³)	81.7066
PEF (particulate emission factor) m ³ /kg	5710000000
A (PEF Dispersion Constant)	14.2253
B (PEF Dispersion Constant)	18.8366
C (PEF Dispersion Constant)	218.1845
V (fraction of vegetative cover) unitless	0.5
U _m (mean annual wind speed) m/s	4.07
Ut (equivalent threshold value)	11.32
$F(x)$ (function dependent on U_m/U_t) unitless	0.0616
A _s (acres)	0.5
Q/C _{wp} (g/m ² -s per kg/m ³)	81.7066
foc (fraction organic carbon in soil) g/g	0.004
p _b (dry soil bulk density) g/cm ³	1.5
p _s (soil particle density) g/cm ³	2.65
θ _w (water-filled soil porosity) L _{water} /L _{soil}	0.15
θ_a (air-filled soil porosity) L_{air}/L_{soil}	0.28396
n (total soil porosity) L _{pore} /L _{soil}	0.43396
T (exposure interval) s	819936000
A (VF Dispersion Constant)	14.2253
B (VF Dispersion Constant)	18.8366

Output generated 04APR2018:15:22:48

AOC B Site-specific Risk Models

Resident Cumulative Risk Calculator for Soil (>40" Precipitation Zone) ca=Cancer, nc=Noncancer, ca* (Where nc CL < 100 x ca CL), ca** (Where nc CL < 10 x ca CL), max=CL exceeds ceiling limit (see User's Guide), sat=CL exceeds csat, sol=CL exceeds Solubility I=IRIS; D=Drinking Water/Health Advisory Goals; P=PPRTV; A=ATSDR; C=Cal EPA; X=APPENDIX PPRTV SCREEN; H=HEAST; S=SURROGATE

			Volatilization Factor	Particulate Emission Factor			Ingestion	· ,	Inhalation (Particulates)	Dermal	Noncarcinogenic		Inhalation	Inhalation	_	
				Factor		Concentration	HI	HI	н	HI	HI	Ingestion	(Volatiles)	(Particulates)	Dermal	Carcinogenic
Chemical	Mutagen?	VOC?	(m³/kg)	(m³/kg)	RBA	(mg/kg)	Child	Child	Child	Child	Child	Risk	Risk	Risk	Risk	Risk
Pentachlorophenol	No	No	-	5710000000	1	0.0254	0.0000612	-	-	0.0000363	0.0000976	1.38E-08	-	7.62E-15	9.69E-09	2.35E-08
*Total Risk/HI			-	-	-	-	0.0000612	-	-	0.0000363	0.0000976	1.38E-08	-	7.62E-15	9.69E-09	2.35E-08

Output generated 04APR2018:15:22:48

	A AOC B 9	B 5% UCL 1	C for PCP	DUCLS	E statistics for	F Data Sets w	G /ith Non-Det	H	I	J	K	L
<u> </u>		D_Sample										
2	0.00085	-	01B1B1001SO AP-053									
3	0.00077		01B1B1002SO AP-053									
4	0.00081		01B1B2003SO AP-054									
5	0.00078		01B1B2004SO AP-054									
6	0.00088		01B1B3005SO AP-055									
7	0.00079		01B1B3006SO AP-055									
8	0.00078		01B2B1001SO AP-056									
9	0.00089		01B2B1002SO AP-056									
10	0.0008		01B2B2003SO AP-057									
11	0.00084		01B2B2004SO AP-057									
12	0.00085		01B2B3005SO AP-058									
13	0.00066		01B2B3006SO AP-058									
14	0.00086		01B2B4007SO AP-059									
15	0.00078		01B2B4008SO AP-059									
16	0.00093		01B3B1001SO AP-060									
17	0.00091		01B3B1002SO AP-060									
18	0.0007		01B3B2003SO AP-061									
19	0.00078		01B3B2004SO AP-061									
20	0.00068		01L1B2003SO AP-077									
21	0.00064		01L1B2004SO AP-077									
22	0.00089		01L1B3005SO AP-078									
23	0.00078		01L1B3006SO AP-078									
24	0.0008		0101B1001SO AP-099									
25	0.000602		01B1SS001SO B1SS001									
26	0.000762		01B1SS002SO B1SS002									
27	0.000805		01B1SS003SO B1SS003									
28	0.000832		01B1SS004SO B1SS001									
29	0.00032		01B1SS004SO B1SS001 01B2SS001SO B2SS001									
30	0.0223		01B2SS002SO B2SS002									
31	0.000933		01B2SS003SO B2SS002									
32	0.0064		01B2SS004SO B2SS004									
33	0.000614		01B2SS005SO B2SS005									
34	0.000694		01B2SS006SO B2SS006									
35	0.000004	•										
36												
37			User Selected Options									
38		Г	Date/Time of Computation	ProUCL 5.15	/26/2017 12	:25:33 PM						
39			From File	pcp results.x								
40			Full Precision	OFF	-							
41			Confidence Coefficient	95%								
42		Numbe	r of Bootstrap Operations	2000								
43												
44	Sample											
45												
46					Ger	eral Statisti	cs					
47			Total	Number of O		33			Number	of Distinct C	Observations	26
48			. 5101		r of Detects	3					Non-Detects	
49			Nı	umber of Disti		3			Numbe	r of Distinct I		23
50					num Detect	0.0064					Non-Detect	
51					num Detect	0.0254					Non-Detect	
52					nce Detects						Non-Detects	90.91%
53					ean Detects	0.018					SD Detects	
54				IVIE	אין הפוברוא	0.010						0.0102

	А	В	С	D E Median D		F 0.0223	G	Н		J	K CV Detects	L 0.565
55				Skewness D		-1.554					urtosis Detects	N/A
56				Mean of Logged Do		-1.554					ogged Detects	0.761
57				Mean of Logged Do	elects	-4.170				3D 01 L	ogged Delects	0.701
58				Warning: Da	to cot	has only 3 F	Detected Val					
59			This is no	ot enough to comp					imatos			
60				or enough to comp					indes.			
61												
62				Norm		Test on De	tects Only					
63			S	hapiro Wilk Test St		0.869	lects only		Shapiro W	ilk GOF Te	et	
64				napiro Wilk Critical		0.767	De	etected Data			Significance Lev	vel
65				Lilliefors Test St		0.329				GOF Test	•	
66			5	% Lilliefors Critical		0.425	De	etected Data			Significance Lev	vel
67				Detected Data a								-
68												
69			Kaplan-Meier (I	(M) Statistics usin	g Norr	nal Critical V	alues and o	ther Nonpar	ametric UC	Ls		
70				-	- Mean	0.00219		•			Error of Mean	0.00119
71 72				ĸ	MSD	0.0056				95% k	(M (BCA) UCL	N/A
72				95% KM (t) UCL	0.00421			95% KM (F		Bootstrap) UCL	N/A
73				95% KM (z	-	0.00415				95% KM B	ootstrap t UCL	N/A
74			9	0% KM Chebyshev	V UCL	0.00577				95% KM CI	hebyshev UCL	0.00739
76			97.	5% KM Chebyshev	V UCL	0.00965				99% KM CI	hebyshev UCL	0.0141
70												
78				Gamma GOF	Tests o	on Detected	Observation	s Only				
79				Not Eno	ugh Da	ata to Perfor	m GOF Tes	1				
80												
81				Gamma S	Statisti	cs on Detect	ted Data On	y				
82				k hat ((MLE)	3.276					corrected MLE)	N/A
83				Theta hat	(MLE)	0.00551			Theta	star (bias c	orrected MLE)	N/A
84				nu hat (· ,	19.65				nu star (l	bias corrected)	N/A
85				Mean (de	etects)	0.018						
86												
87				Gamma ROS		•	•					
88			GROS may not be				-				45.00	
89		GRO	OS may not be used when k							mall (e.g., <	(15-20)	
90			For such s	ituations, GROS m					na BTVS			
91			For common distributed data	This is especia			· ·		a sila sa a sa	KM antima		
92			For gamma distributed dete		imum	0.0064	mputea usin	g gamma dis	stribution on	Kivi estima	Mean	0.0107
93					imum	0.0004					Median	0.0107
94				IVIAX	SD	0.0254					CV	0.323
95				k hat (16.06			Ŀ	star (bias o	orrected MLE)	14.62
96				Theta hat							corrected MLE)	
97				nu hat (· ,	1060			incid	,	bias corrected)	964.8
98			Adjusted	Level of Significan	. ,	0.0419						
99			-	Square Value (964.		893.7		А	djusted Chi	Square Va	lue (964.82, β)	890.2
100			95% Gamma Approximate			0.0116			•	•	se when n<50)	N/A
101				- (,							
102				Estimates of Ga	mma	Parameters	using KM Es	stimates				
103 104				Mean		0.00219					SD (KM)	0.0056
104						3.1409E-5				SE	of Mean (KM)	0.00119
105					t (KM)	0.152					k star (KM)	0.159
106				nu hat		10.05					nu star (KM)	10.47
107				theta hat	t (KM)	0.0144				t	heta star (KM)	0.0138
100					-							

	А	В	С		D	E	F	G	Н		I J K	L
109					• •	rcentile (KM)	0.00249				90% gamma percentile (KM)	0.00653
110				95%	gamma pe	ercentile (KM)	0.0119				99% gamma percentile (KM)	0.0273
111												
112						Gamma Kapla	-	A) Statistics	;			
113					•	lue (10.47, α)	4.236				ted Chi Square Value (10.47, β)	4.033
114		95	i% Gamma Approxin	nate KM-	-UCL (use v	when n>=50)	0.0054		95% Gamm	າa Adjເ	usted KM-UCL (use when n<50)	0.00568
115												
116					•	nal GOF Test		l Observatio	ons Only			
117					•	Test Statistic	0.82			-	biro Wilk GOF Test	
118				5% Sh	•	Critical Value	0.767	De	tected Data a		Lognormal at 5% Significance L	evel
119						Test Statistic	0.355				liefors GOF Test	
120						Critical Value	0.425			appear	Lognormal at 5% Significance L	evel
121					Detected D	ata appear Lo	ognormal at	5% Signific	ance Level			
122												
123					-	al ROS Statis	-	nputed Nor	n-Detects			
124						Driginal Scale	0.00182				Mean in Log Scale	-8.382
125						Driginal Scale	0.0058				SD in Log Scale	1.548
126			95% t UCL (a		•		0.00353				95% Percentile Bootstrap UCL	0.00364
127						ootstrap UCL	0.00449				95% Bootstrap t UCL	0.00967
128					95% H-UC	L (Log ROS)	0.00181					
129												
130			Statis	stics usin	·	mates on Log	-	d Assuming	g Lognormal	Distrit		
131						lean (logged)	-7.121				KM Geo Mean	
132						I SD (logged)	0.95				95% Critical H Value (KM-Log)	2.381
133			KMS	Standard		lean (logged)	0.203				95% H-UCL (KM -Log)	0.00189
134						I SD (logged)	0.95				95% Critical H Value (KM-Log)	2.381
135			KMS	Standard	Error of M	lean (logged)	0.203					
136												
137						DL	_/2 Statistics	•				
138			DL/2 N	Normal						DL/2	2 Log-Transformed	
139						Driginal Scale	0.002				Mean in Log Scale	-7.51
140						Driginal Scale	0.00575				SD in Log Scale	1.093
141					•	es normality)	0.00369				95% H-Stat UCL	0.00163
142			DL/2 i	is not a r	ecomment	ded method, j	provided for	comparisor	is and histor	ical re	asons	
143								- 1101 01 1				
144					•	arametric Dis						
145				Dete	cted Data	appear Norm	al Distribute	d at 5% Sig	nificance Le			
146												
147					0.50		sted UCL to	Use				
148					95%	% KM (t) UCL	0.00421					
149						0.500 11.51						
150		Note:									ost appropriate 95% UCL.	
151						are based upo						
152											Maichle, and Lee (2006).	
153		Howeve	er, simulations result	s will not	cover all F	teal World dat	ta sets; for a	dditional ins	ight the user	may w	vant to consult a statistician.	
154												

U.S. AR	CORPS OF ENGINEER	DISTRICT	1. CONTROL#			2. Sus	2. Suspense 2018-07-31					
POA STAFF ACTION SUMMARY HQUSACE Staff Action Handbook, the proponent is the Executive Office							PM-18-071 3. Today			ay's Date	y's Date 2018-07-23	
4. Subject Project Closure Document Approval for Yakutat Air Base FUDS #F10AK0606-08												
5. Office Sym	6. Action Officer		e # 8. E-mail									
PM-ESP Christy Baez				christy.j.baez@usace.army.mil								
9. Divisio	n	10. Name		11 Cono	COOR ur/Nonconcur	DINATIC	ON	10	2. Comments			12 Data
		8			7			12	. Comments			13. Date
6	DC	Brooks		×,	2							JUL 27 2018
5	DDC	Bloedel		M	_				•			26Jul 18
4	DPM	Bowker		RUB	_							-7/26/18
	EA				_							
_	E&C				_							
14. Routin	ıg	X DC	X	DDC		X DM	P		EA		E&C	2
15. For:		Information		Read-Ah	ead	 Dec	ision		X Approval		🔀 Sig	
16. PURPOS	E/BO	TTOM LINE/DISCUSSION:										
1. PURPOSE: Routing FUDS Project Closure Document for Yakutat Air Base CON/HTRW Project F10AK0606-08 through POA for DC signature.												
2. BOTTOM LINE: This report documents the completion of remedial investigation activities at 13 No Further Action Sites: A1, B1, B2, B3, G1, G2, G3, N1, N2, O1, & Aka, Kardy, & Summit Lakes site and recommends closure of the -08 project.												
3. DISCUSSION: Based upon the results of the removal action & remedial investigations between 1984 & 2014, USACE has determined that no further action is required at the 13 No Further Action Sites (F10AK0606-08). The ADEC regulator supports the closure decision for these sites.												
4. RESOURCE IMPACT: Project closure meets the scheduled FY18 metric & documents FUDS Program progress.												
											·	
							1					
					1	-1	4	-tt				
17. Releaser: Stanley W. Wharry, Branch Chief, PM-ESP												
18. Recommendation: Approve and sign documents												
19. Acti	on:	Approved					See M	/e			Other	
POA FORM								RE OBSOLE				

COORDINATION (cont.)										
20. Division	21. Name	22. Concur/Nonconcur	23. Comments	24. Date						
3 OC	Ketchum			26211						
RM		_	·	0						
CT		_								
_ RE		_								
RD		_								
_ LM		_								
IR		_								
so		_								
SEC		_								
PAO		_								
SB		_								
EEO		_								
CPAC										
ACE-IT										
EM		_								
_ HR		_	· · · · · · · · · · · · · · · · · · ·							
PM-ESP (2)	Wharry	-								
	(0)	<u>ll</u> -								
FUDS (1)	Andraschko	B -								
Misc. Offices		-								
Misc. Offices		_								
Misc. Offices		-								
Misc. Offices		_								
Misc. Offices										
Misc. Offices		-								
Misc. Offices		_								

POA FORM 1, NOV 2015

PREVIOUS EDITIONS ARE OBSOLETE