2017 Groundwater Monitoring Well Report

Everts Air Fuel Inc. Block 3 Lot 11 FAI Fairbanks, Alaska

November 2018

ADEC File #: 100.26.141

Prepared for:

Everts Air Fuel Inc.

Prepared by:

Alaska Resources and Environmental Services, LLC.

A_RE_S

3520 International Street Fairbanks, AK 99701

Prepared by:

Dustin Stahl

Project Manager / Environmental

Specialist

INTRODUCTION

This report was prepared on behalf of Mr. Robert Everts, who has contracted with Alaska Resources & Environmental Services (ARES) to perform the groundwater investigation associated with the petroleum release at the subject property.

The objective of our work was to obtain groundwater sample data near the site of a former petroleum release in order to determine if groundwater contamination exists on the property and/or is migrating off-site. A groundwater sampling event was conducted on August 29, 2017 in general accordance with 18 AAC 78 Underground Storage Tanks-Article 2 – amended November 2017.

SITE BACKGROUND

Site Description

The subject property is located at Fairbanks International Airport (FAI) on State of Alaska leased property. The legal description of the site is Block 3 Lot 11, FIA (ADEC file # 100.26.141). The subject property is located at Gate 5 near the end of an access road that intersects Old Airport Way (Figure 1 & 2). The subject site is located in the U.S. Geological Survey (USGS) Fairbanks D-2 quadrangle.

History

FAI (State of Alaska) is the owner of the subject property. Everts Air Fuel has leased the property from FAI since 1983. Three sets of USTs formerly existed on the subject property, however, all of the UST's have been removed. Former UST Area A, B, and C locations and monitoring well locations are included in Appendix A, Figure 3. Site history is as follows:

UST Area A – Block 3, Lot 11 FAI. Southeast of the aircraft support building one 15,000-gallon Jet B Fuel UST (Tank #3), one 15,000-gallon #2 diesel UST (Tank #2), and one 20,000-gallon #1 diesel UST (Tank #1) were permanently closed by removal in October 1994. Approximately 300 cubic yards of contaminated material were removed and stockpiled off-site on Everts Air property. The UST closure and site assessment are detailed in a January 1995 AGRA report titled *Summary Report for Tank Closure*, Issue No. 1.

UST Area B – Block 3, Lot 11 FIA. North of aircraft support building one 1500-gallon gasoline UST (Tank #9) and one 500-gallon gasoline UST (Tank #8) were permanently closed by removal in October 1993. Approximately 50 cubic yards of contaminated material were removed and temporarily stockpiled onsite. Contaminated materials were later removed from the property and stockpiled off-site for remediation by landfarming. AGRA performed the closure and site assessment. The UST closure and site assessment are detailed in the October 1993 AGRA report titled *Summary Report of Tank Removal Proceedings Everts Air Fuel*.

UST Area C – Block 3, Lot 11 FIA. East of the aircraft support building, one 10,000-gallon diesel UST (Tank # 4), and two 15,000-gallon gasoline USTs (Tanks # 5, 6). According to the UST database the three (3) USTs that were located in Area C, were installed in 1983 and removed in August 2008. The UST closure and site assessment are detailed in the December 2008 ARES report titled *Phase II ESA/ Release Investigation, Everts Air Fuel Inc. Property.* The ADEC facility ID for the site is 425.

In June 2008, in order to assess potential impacts to groundwater at the site, ARES installed two additional permanent monitoring wells, MW-1R and MW-5 at the subject property located at Block 3 Lot 11 FAI. Monitoring well MW-5 was located up-gradient from the former UST site to determine if contaminates were migrating on-site. Monitoring well MW-1R was a replacement well for the previous monitoring well MW-1 which could not be located by Rockwell Engineering in 2006 nor by ARES in 2008. The new monitoring well MW-1R was installed in UST area A. Upon investigation by ARES staff, monitoring well MW-3 was discovered to still be a viable well, in discrepancy with a previous report by Rockwell Engineering. The monitoring well detailed in the approved Work Plan submitted in May 2008 to replace monitoring well MW-3 was not required and not installed. All other work was conducted as detailed in the approved Work Plan submitted in May 2008. Monitoring well locations are shown in Figure 3 included in Appendix A.

Topography

The United States Geological Survey (USGS) Fairbanks Quadrangle (D-2) provides topographic map coverage of the site. Fairbanks is located in the northern part of the Tanana Basin, which is a relatively flat floodplain of the Tanana River. The subject property is situated approximately 1.96 miles north of the Tanana River and 0.3 miles south of the Chena River.

Regional Hydrology

The Chena and Tanana rivers are the dominant influence on ground-water flow in the subject area. Two discharge peaks characterize the Chena River: spring snowmelt runoff and late summer precipitation. The stage of Chena River typically rises and falls in response to stage changes of the Tanana River. The depth to groundwater varies in response to these controlling factors. Based on interpretation of USGS data and historical data, regional groundwater flow direction is generally to the northwest. However, the direction of flow can vary from west to northwest depending upon the stage of the Chena River and Tanana River. Depth to groundwater in the area is generally 10-12 feet bgs, though seasonal fluctuation can range between 8-14 feet bgs. Surface waters nearby include a small lake/pond approximately 0.25 miles to the southwest of the property and the FAI airplane float pond 0.25 miles to the east.

Site Hydrology

Groundwater elevation measurements taken during the August 29, 2017 sampling event indicated the water table was approximately 10.7-12.5 feet bgs.

GROUNDWATER SAMPLING

Scope of Work

To achieve the stated objectives, ARES performed the following tasks:

- Collected groundwater elevations and water quality parameter measurements to include temperature, pH, conductivity, ORP, and dissolved oxygen;
- Collection of groundwater samples and duplicate sample. Samples were analyzed for diesel range organics (DRO) by method AK 102 and benzene, toluene, ethylbenzene and xylenes (BTEX) constituents by method EPA 8260C and gasoline range organics (GRO) by method AK 101; and
- Data review and report preparation.

Sampling Method

The monitoring wells were purged and sampled in accordance with the ADEC *Monitoring Well Guidance September 2013* and <u>ADEC Field Sampling Guidance August 2017</u>. A peristaltic pump, with new polyethylene tubing and new nitrile gloves were used during the sampling event to purge the well and to monitor groundwater parameters using low flow sampling methods. The flow rate was monitored at 0.3 L/minute. Prior to purging and prior to sampling, the groundwater elevation was measured to 0.010 feet using a Heron Sm. Oil Oil/Water Interface Meter. Water parameters were recorded every three minutes to include temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential (ORP) using a YSI Multi Parameter Water Meter Model 566 SN: 11H101295.

The following water quality parameters are considered stable when three successive readings, collected 3-5 minutes apart, are within:

- $\pm 3\%$ for temperature (minimum of ± 0.2 °C);
- ± 0.1 for pH;
- $\pm 3\%$ for conductivity;
- ± 10 mv for redox potential; and
- $\pm 10\%$ for dissolved oxygen (DO).

Once the groundwater parameters stabilized, samples were collected in order of decreasing volatility using a peristaltic pump, and polyethylene tubing. The tubing was carefully lowered in to the well to avoid loss of volatiles and water collected from the bladder pump was placed directly into lab supplied sample bottles. Volatile samples were collected to avoid any bubbles in

the tubing or headspace in the bottle. All bottles were labeled and placed in a pre-chilled cooler (at approximately 4°C) and submitted to ADEC approved laboratory following chain of custody (COC) procedures.

Purge water was collected and placed in individually labeled 5-gallon buckets with lids and stored off site until receipt of analytical results. Purge water was discarded upon receipt of analytical results indicating that all analytes were either non-detect, or present at concentrations below ADEC cleanup levels.

Groundwater samples were collected from MW-1R through MW-5 on August 29, 2017. A blind duplicate sample was collected from monitoring well MW-3 for quality assurance/quality control purposes.

Analytical Results

There was no petroleum odor or sheen detected from monitoring wells or purge water during sampling activities from MW-1R through MW-5. Purge water was almost clear in appearance. No other odors were detected. Groundwater was approximately 10.7-12.5 feet below ground surface at the time of sampling.

All five monitoring wells were sampled and analyzed for GRO by method AK 101, BTEX by method EPA 8260C, and DRO by method AK 102. A summary of current sample results as well as historical results are shown in Table 1. The complete laboratory results are included in Appendix C.

Table 1: Historical Summary of Groundwater Results

Sample		Date	EPA Method 8260C or 8021B				Alaska Method AK 101	Alaska Method AK 102
Location	Sample ID	Sampled	Benzene in μg/L	Toluene in μg/L	Ethyl- benzene in µg/L	Total xylenes in µg/L	GRO in µg/L	DRO in μg/L
	MW1-608	6/23/08	ND	ND	ND	ND	ND	ND
	MW1-1009	10/14/09	ND	ND	ND	ND	ND	677
	MW1-911	9/13/11	ND	ND	ND	ND	ND	514
	MW1-1012	10/18/12	ND	ND	ND	ND	ND	501
	MW1-0813	8/01/13	ND	ND	ND	ND	ND	499
	MW1-0914	9/19/14	ND [0.090]	ND [0.10]	ND [0.070]	ND [0.32]	ND [14]	960
MW-1R	MW1-0915	9/28/15	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	344 J
	DUP1-0915 (BFD to MW1-0915)	9/28/15	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	480 J
	MW1-1016	10/07/16	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	434 J
	MW1-817	8/29/17	ND [0.093]	ND [0.31]	ND [0.20]	ND [0.44]	ND [120]	130 J
	MW2-608	6/23/08	ND	ND	ND	ND	ND	2150
	MW2-1009	10/14/09	ND	ND	ND	ND	ND	1450
	MW2-911	9/13/11	ND	ND	ND	ND	ND	4370
	MW2-1012	10/18/12	ND	ND	ND	ND	ND	1500
_	MW2-0813	8/01/13	ND	ND	ND	ND	ND	1270
MW-2	MW2-0914	9/19/14	ND [0.090]	ND [0.10]	ND [0.070]	ND [0.32]	ND [14]	1800
MW2	MW2-0915	9/28/15	0.170 J	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	1680
	MW2-1016	10/07/16	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	1570
	MW2-817	8/29/17	ND [0.093]	ND [0.31]	ND [0.20]	ND [0.44]	ND [120]	460
AD	EC Cleanup Lev		4.6	1100	15	190	2200	1500

¹ Title 18 of the Alaska Administrative Code, Chapter 75. Section 345. July 2017.

Results above ADEC Regulatory Limit in **Bold**. BFD=Blind Field Duplicate Sample

J - Sample detected above MDL but below MRL. Reported concentration is considered an estimate.

ND = Not detected above the MDL [Method Detection Limit reported in brackets].

Table 1: Historical Summary of Groundwater Results-Continued

Sample		D-4-	EPA Method 8260C or 8021B			Alaska Method AK 101	Alaska Method AK 102	
Location	Sample ID	Date Sampled	Benzene in μg/L	Toluene in μg/L	Ethyl- benzene in µg/L	Total xylenes in µg/L	GRO in µg/L	DRO in µg/L
	MW3-608	6/23/08	3.91	ND	ND	ND	252	20100
	MW3-1009	10/14/09	ND	ND	ND	ND	ND	1240
	MW3-911	9/13/11	1.24	ND	ND	ND	ND	7290
	MW3-1012	10/18/12	2.24	ND	ND	ND	89.2	4330
	DUP1-1012 (BFD to MW3-1012)	10/18/12	1.76	ND	ND	ND	69.5	3680
	MW3-0813	08/01/13	3.77	ND	ND	ND	ND	5690
	DUP1-0813	08/01/13	3.39	ND	ND	ND	ND	5450
	MW3-0914	09/19/14	0.29 J	ND [0.10]	ND [0.070]	ND [0.32]	ND [14]	3900
MW-3	DUP1-0914 (BFD to MW3-0914)	09/19/14	0.27 J	ND [0.10]	ND [0.070]	ND [0.32]	ND [14]	3600
	MW3-0915	09/28/15	0.89	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	2000
	MW3-1016	10/07/16	0.580	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	3800
	DUP1-1016 (BFD to MW3-1016)	10/07/16	0.640	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	2070
	MW3-817	8/29/17	0.19 J	ND [0.31]	ND [0.20]	ND [0.44]	ND [120]	370
	DUP-817 (BFD to MW3-817)	8/29/17	0.26 J	ND [0.31]	ND [0.20]	ND [0.44]	ND [120]	440
	MW4-608	6/23/08	ND	ND	ND	ND	ND	426
	DUP2 (BFD to MW4-608)	6/23/08	ND	ND	ND	ND	ND	473
	MW4-1009	10/14/09	ND	ND	ND	ND	ND	541
	DUP-1009 (BFD to MW4-1009)	10/14/09	ND	ND	ND	ND	ND	524
	MW4-911	9/13/11	ND	ND	ND	ND	ND	594
	DUP1-911 (BFD to MW4-911)	9/13/11	ND	ND	ND	ND	ND	571
MW-4	MW4-1012	10/18/12	ND	ND	ND	ND	ND	ND
	MW4-0813	08/01/13	ND	ND	ND	ND	ND	486
	MW4-0914	09/19/14	ND [0.090]	ND [0.10]	ND [0.070]	ND [0.32]	ND [14]	470
	MW4-0915	09/28/15	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	542 J
	MW4-1016	10/07/16	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	34.6 J	730
	MW4-817	08/29/17	ND [0.093]	ND [0.31]	ND [0.20]	ND [0.44]	ND [120]	270
	ADEC Cleanup Level 1		4.6	1100	15	190	2200	1500

¹ Title 18 of the Alaska Administrative Code, Chapter 75. Section 345. July 2017.

ND = Not detected above the MDL [Method Detection Limit reported in brackets] Results above ADEC Regulatory Limit in **Bold**. BFD=Blind Field Duplicate Sample.

J - Sample detected above MDL but below MRL. Reported concentration is considered an estimate.

Table 1: Historical Summary of Groundwater Results-Continued

Sample		Date	EPA	A Method 82	260C or 802	1B	Alaska Method AK 101	Alaska Method AK 102
Location	Sample ID	Sampled	Benzene in µg/L	Toluene in μg/L	Ethyl- benzene in µg/L	Total xylenes in µg/L	GRO in µg/L	DRO in μg/L
	MW5-608	6/23/08	ND	ND	ND	ND	ND	849
	MW5-1009	10/14/09	ND	ND	ND	ND	ND	679
	MW5-911	9/13/11	ND	ND	ND	ND	ND	978
	MW5-1012	10/18/12	ND	ND	ND	ND	ND	ND
	MW5-0813	08/01/13	ND	ND	ND	ND	ND	434
MW-5	MW5-0914	09/19/14	ND [0.090]	ND [0.10]	ND [0.070]	ND [0.32]	ND [14]	380
	MW5-0915	09/28/15	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	450 J
	MW5-1016	10/07/16	ND [0.15]	ND [0.31]	ND [0.31]	ND [0.93]	ND [31]	325 J
	MW5-817	8/29/17	ND [0.093]	ND [0.31]	ND [0.20]	ND [0.44]	ND [120]	140 J
ADEC Cleanup Level ¹		4.6	1100	15	190	2200	1500	

¹ Title 18 of the Alaska Administrative Code, Chapter 75. Section 345. July 2017.

QUALITY ASSURANCE AND QUALITY CONTROL

Blind Duplicate Samples

Field quality control (QC) procedures for this project included the collection and analysis of one blind field duplicate groundwater sample. The blind field duplicate sample was analyzed for the same compounds as the original sample. Sample ID DUP-817 is the blind field duplicate of sample ID MW3-817. The QC samples were analyzed to assess the quality of sample collection and handling, as well as the accuracy and precision of the laboratory's analytical procedures.

RPD calculations provide a comparison of two theoretically identical samples that are submitted blind to the laboratory in order to provide an un-biased measure of precision. Due to the nature of the RPD calculation, sample data for both samples must be reported in order for the RPD calculation to provide meaningful data. The RPDs are shown in Table 2 below for all analytes with calculable RPDs.

Table 2: Relative Percent Difference Calculations in Water

Sample ID / Duplicate ID	Analyte	Sample Concentration (µg/L)	Duplicate Concentration (µg/L)	RPD (Limit < 30%)
MW3-817 / DUP-817	Benzene	0.19	0.26	31.1
MW 3-81 / DUP-81 /	DRO	370	440	17.3

Given two sample concentrations (X and Y) the formula to determine RPD is the absolute value of the following:

[(X-Y)/((X+Y))/2)]*100 = RPD

Results above ADEC recommended range in Bold

J - Sample detected above MDL but below MRL. Reported concentration is considered an estimate.

ND = Not detected above the MDL [Method Detection Limit reported in brackets]

Results above ADEC Regulatory Limit in **Bold**.

The ADEC recommended RPD limit for water analysis is < 30%. The only analytes with RPDs that were calculable were benzene and DRO, due to non-detect values for both the original sample and the duplicate sample. The blind field duplicate RPD calculations fell within the ADEC recommended range for DRO, but not for benzene. Data quality is affected; however, data remains usable. Groundwater RPD results for benzene should be viewed qualitatively rather than quantitatively.

Trip Blank Samples

Field quality control (QC) procedures for this project included the analysis of one water trip blank sample which accompanied the samples in the field. The trip blank sample was analyzed to assess the quality of sample collection and handling.

In ideal conditions, the analysis of a trip blank sample should not indicate the presence of any of the tested analytes in a quantity above the limit of quantitation (LOQ). A result above the LOQ can indicate that cross-contamination occurred between samples during sample transport or analysis, or indicate laboratory contamination.

The trip blank sample for this project was analyzed for BTEX compounds by method EPA 8260C and GRO by AK 101. No compounds were detected above the LOQ in the water trip blank sample. There is no indication that cross-contamination between samples occurred.

Data Quality Data Review

The ADEC Environmental Laboratory Data Quality Assurance Requirements (ADEC 2009) and United States Environmental Protection Agency (EPA) National Functional Guidelines for Organic Review (EPA 2017) were followed in this site investigation. The data was reviewed to determine the data quality and to evaluate potential impact on the usability of the data. The review was performed using Level II reports that were provided by TestAmerica, Inc. laboratory of Spokane, WA. The analytical laboratory reports, chain-of-custody records, and ADEC Lab Quality Checklist is included in Appendix C.

The following quality control parameters were reviewed:

- Holding times
- Sample handling and receiving
- Surrogate percent recovery
- Field duplicate sample comparability
- Laboratory control sample (LCS)/Laboratory control sample duplicate (LCSD) percent recoveries and RPD
- Method blanks
- Trip blanks
- Method Sensitivity reporting limits and limit of quantitation (LOQ)

The quality control parameters were found to be within accepted limits with the following exceptions:

• Sample results for some samples/analytes were detected above the DL, but below the LOQ. Affected data was flagged with the "J" data qualifier in the analytical report, and should be viewed as an approximate value.

• The ground water field duplicate RPD calculation for benzene was above ADEC limits. Data quality is impacted. Groundwater results for benzene should be viewed qualitatively rather than quantitatively.

The sample data is considered usable. The ADEC lab quality checklist is included in Appendix C.

Conclusions and Recommendations

Analytic results confirm that groundwater collected from all monitoring wells was below ADEC cleanup levels for all tested analytes. Analytical results confirm that concentrations of DRO have decreased in MW-1, MW-2, MW-3, MW-4 and MW-5 since the previous sampling event. The most significant decreases in DRO concentrations occurred in MW-2 and MW-3. MW-2 and MW-3 historically were above ADEC cleanup levels for DRO but are now below ADEC cleanup levels for DRO as well as all other tested analytes. Additional sampling data is required to determine if these results are an abnormality or if the plume has stabilized and will continue to remain below cleanup levels.

ARES recommends the following:

- Schedule an annual sampling event of wells MW-1R, MW-2, MW-3, MW-4 and MW-5 during period of high seasonal groundwater conditions in August-September 2018 for DRO, GRO and BTEX analysis.
- Conduct a closed loop groundwater elevation survey and calculated the localized groundwater flow direction and gradient.

Limitations

This report presents the analytical results from a limited number of groundwater samples, and should not be construed as a comprehensive study of groundwater quality at the site. The samples were intended to evaluate the presence or absence of contaminants at the locations selected. Detectable levels of petroleum hydrocarbons may be present at other locations. It was also not the intent of our sampling and testing to detect the presence of groundwater affected by contaminants other than those for which laboratory analysis were preformed. No conclusions can be drawn on the presence or absence of other contaminants. This is not a geotechnical study.

The data presented in this report should be considered representative of the time of our site observations and sample collection. Changes in site conditions can occur with time because of natural forces or human activity. ARES reserves the right to modify or alter conclusions and recommendations should additional data become available.

This report was prepared for the exclusive use of Mr. Robert Everts, and his representatives. If it is made available to others, it should be for information on factual data only and not as a warranty of subsurface conditions.

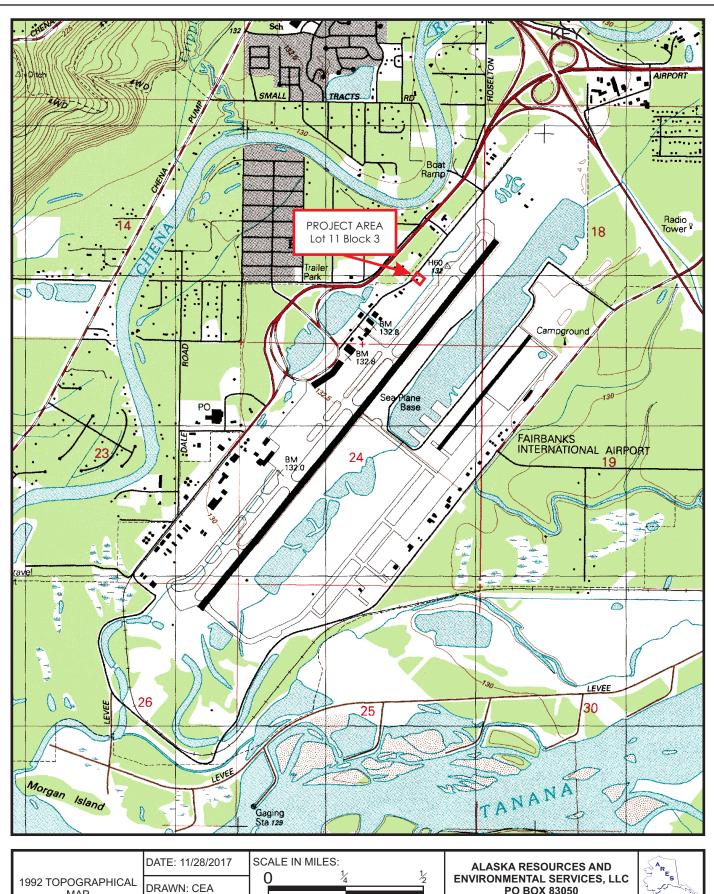
Qualifications & Signature of Environmental Professional

Dustin Stahl is an ADEC 'Qualified Environmental Professional' and has extensive field experience as an environmental project manager and has worked on all aspects of environmental assessments, investigations, and clean-up efforts.

Dustin Stahl Project Manager

Sincerely,

Dustin Stahl


Alaska Resources and Environmental Services, LLC

Enclosure: Appendix A – Figures

Appendix B – Graphical Summary of DRO results over time Appendix C – Analytical Results and ADEC Laboratory Checklist Appendix D – Groundwater Sampling Field Data Sheet Appendix

Appendix A:

Figures

1992 TOPOGRAPHICAL MAP FAIRBANKS, AK QUAD D-2

PO BOX 83050 FAIRBANKS, AK 99708

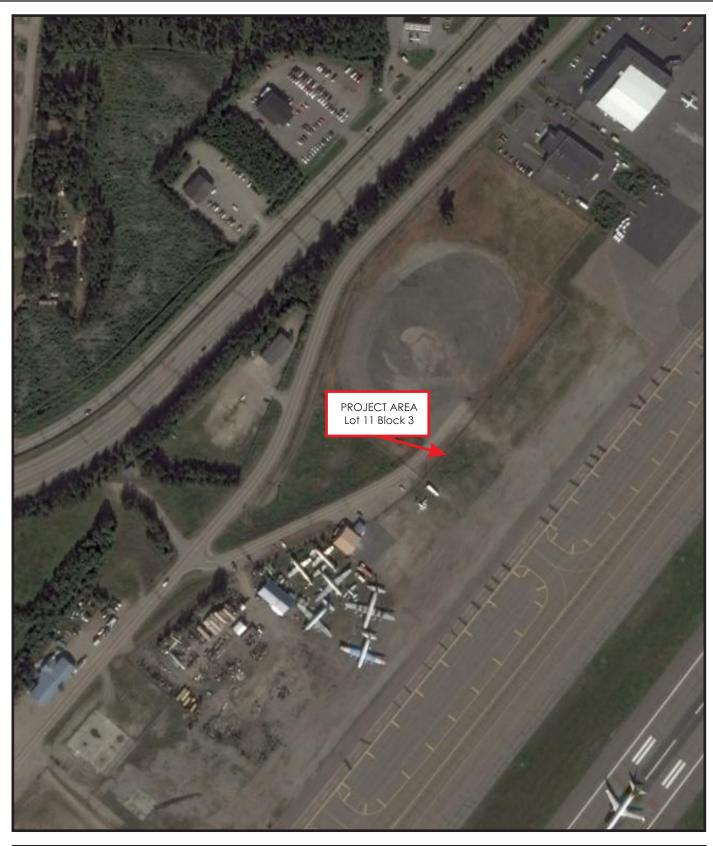

PH. (907) 374-3226 FAX (907) 374-3219

FIGURE 1

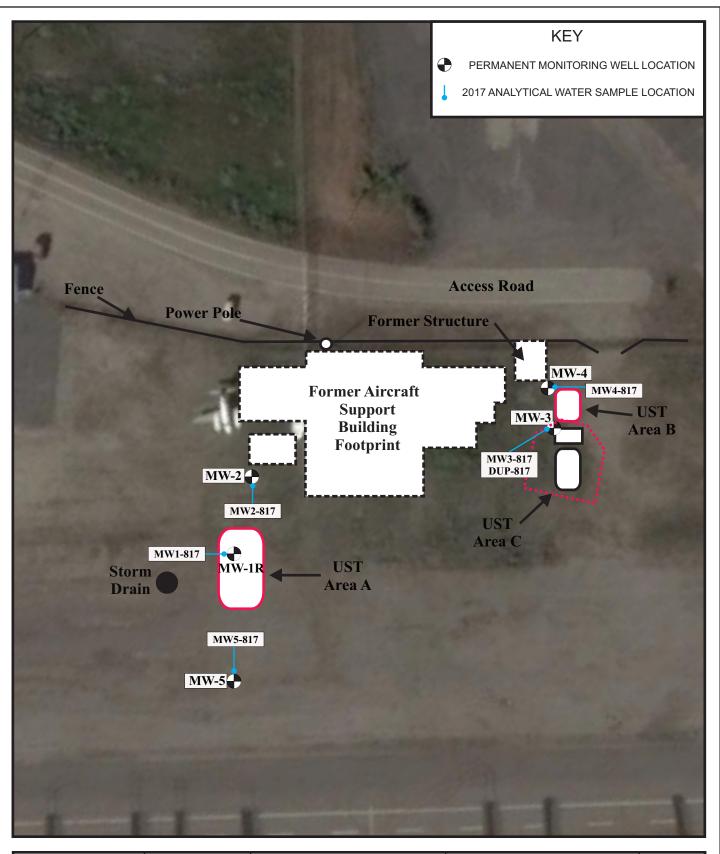
PROJECT:

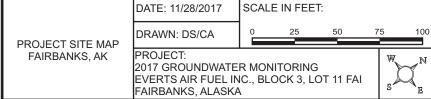
2017 GROUNDWATER MONITORING EVERTS AIR FUEL INC., BLOCK 3, LOT 11 FAI FAIRBANKS, ALASKA

2016 AERIAL MAP FAIRBANKS, AK

DATE: 11/28/2017 SCALE IN FEET: 200 400 0 DRAWN: CEA

PROJECT:


PROJECT: 2017 GROUNDWATER MONITORING EVERTS AIR FUEL INC., BLOCK 3, LOT 11 FAI FAIRBANKS, ALASKA


ALASKA RESOURCES AND ENVIRONMENTAL SERVICES, LLC PO BOX 83050 FAIRBANKS, AK 99708

PH. (907) 374-3226 FAX (907) 374-3219

FIGURE 2

ALASKA RESOURCES AND ENVIRONMENTAL SERVICES, LLC PO BOX 83050 FAIRBANKS, AK 99708

> PH. (907) 374-3226 FAX (907) 374-3219

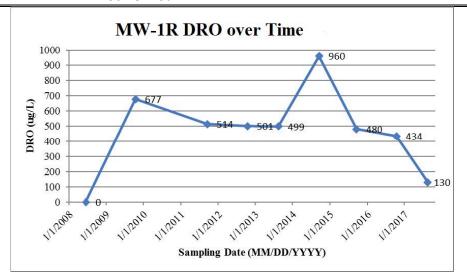
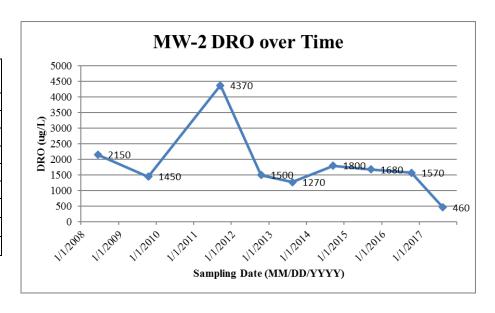
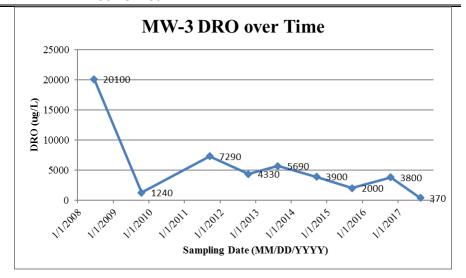
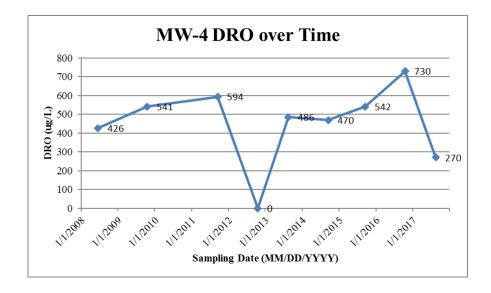


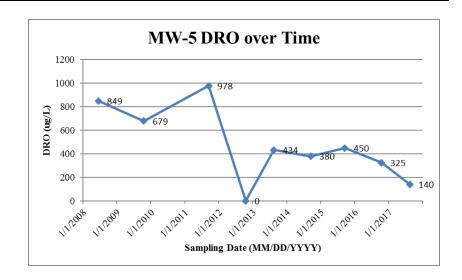
FIGURE 3


Appendix B:

Graphical Summary of DRO results over time


Date	DRO
Date	(ug/L)
6/23/2008	ND
10/14/2009	677
9/13/2011	514
10/18/2012	501
8/1/2013	499
9/19/2014	960
9/28/2015	480
10/7/2016	434
8/29/2017	130


Date	DRO
Date	(ug/L)
6/23/2008	2150
10/14/2009	1450
9/13/2011	4370
10/18/2012	1500
8/1/2013	1270
9/19/2014	1800
9/28/15	1680
10/7/2016	1570
8/29/2017	460


	_
Date	DRO
Date	(ug/L)
6/23/2008	20100
10/14/2009	1240
9/13/2011	7290
10/18/2012	4330
8/1/2013	5690
9/19/2014	3900
9/28/15	2000
10/7/2016	3800
8/29/2017	370

Date	DRO
Date	(ug/L)
6/23/2008	426
10/14/2009	541
9/13/2011	594
10/18/2012	ND
8/1/2013	486
9/19/2014	470
9/28/15	542
10/7/2016	730
8/29/2017	270

Date	DRO
Date	(ug/L)
6/23/2008	849
10/14/2009	679
9/13/2011	978
10/18/2012	ND
8/1/2013	434
9/19/2014	380
9/28/15	450
10/7/2016	325
8/29/2017	140

Appendix C:

Analytical Results &

ADEC Lab Quality Checklist

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-6965-1

Client Project/Site: Everts Air Fuel 0817

For:

Alaska Resources & Environment PO BOX 83050 Fairbanks, Alaska 99708

Attn: Lyle Gresehover

M. Elains Walker

Authorized for release by: 9/11/2017 12:51:54 PM

Elaine Walker, Project Manager II (253)248-4972

elaine.walker@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	11
Chronicle	
Certification Summary	17
Method Summary	18
Chain of Custody	19
Receint Checklists	

10

Case Narrative

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Job ID: 590-6965-1

Laboratory: TestAmerica Spokane

Narrative

Job Narrative 590-6965-1

Receipt

Seven samples were received on 9/1/2017 10:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.0° C and 3.7° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) AK102 & 103: Detected hydrocarbons for the following samples appears to be due to heavily weathered diesel and/or biogenic interference. MW1-817 (590-6965-1), MW2-817 (590-6965-2), MW3-817 (590-6965-3), MW4-817 (590-6965-4), MW5-817 (590-6965-5) and DUP-817 (590-6965-6)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

6

U

Ö

9

4 4

Sample Summary

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-6965-1	MW1-817	Water	08/29/17 12:35	09/01/17 10:45
590-6965-2	MW2-817	Water	08/29/17 11:55	09/01/17 10:45
590-6965-3	MW3-817	Water	08/29/17 10:00	09/01/17 10:45
590-6965-4	MW4-817	Water	08/29/17 11:05	09/01/17 10:45
590-6965-5	MW5-817	Water	08/29/17 13:35	09/01/17 10:45
590-6965-6	DUP-817	Water	08/29/17 09:30	09/01/17 10:45
590-6965-7	Trip Blank	Water	08/29/17 09:00	09/01/17 10:45

3

4

5

6

Ω

9

10

11

Definitions/Glossary

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.				
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery				
CFL	Contains Free Liquid				
CNF	Contains No Free Liquid				
DER	Duplicate Error Ratio (normalized absolute difference)				
Dil Fac	Dilution Factor				
DL	Detection Limit (DoD/DOE)				

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

Page 5 of 22

TestAmerica Job ID: 590-6965-1

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

Client Sample ID: MW1-817 Lab Sample ID: 590-6965-1

Date Collected: 08/29/17 12:35 **Matrix: Water**

Date Received: 09/01/17 10:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			09/01/17 15:31	1
Ethylbenzene	ND		1.0	0.20	ug/L			09/01/17 15:31	1
m,p-Xylene	ND		2.0	0.28	ug/L			09/01/17 15:31	1
o-Xylene	ND		1.0	0.16	ug/L			09/01/17 15:31	1
Toluene	ND		1.0	0.31	ug/L			09/01/17 15:31	1
Xylenes, Total	ND		3.0	0.44	ug/L			09/01/17 15:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 125					09/01/17 15:31	1
4-Bromofluorobenzene (Surr)	103		69 - 120					09/01/17 15:31	1
Dibromofluoromethane (Surr)	112		80 - 120					09/01/17 15:31	1
Toluene-d8 (Surr)	101		80 - 120					09/01/17 15:31	1

Method: AK101 - Alaska - Gas	soline Range	e Organic	s (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		150	120	ug/L			09/01/17 15:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		68.7 - 141					09/01/17 15:31	1
a,a,a-Trifluorotoluene								09/01/17 15:31	1

Method: AK102 & 103 - Alas	ska - Diesel R	ange Orga	nics & Resid	lual Ran	ge Orga	nics (C	SC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.13	J	0.25	0.081	mg/L		09/01/17 13:23	09/01/17 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				09/01/17 13:23	09/01/17 17:11	1
n-Triacontane-d62	88		50 ₋ 150				09/01/17 13:23	09/01/17 17:11	1

Lab Sample ID: 590-6965-2 Client Sample ID: MW2-817 Date Collected: 08/29/17 11:55 **Matrix: Water** Date Received: 09/01/17 10:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			09/01/17 16:36	1
Ethylbenzene	ND		1.0	0.20	ug/L			09/01/17 16:36	1
m,p-Xylene	ND		2.0	0.28	ug/L			09/01/17 16:36	1
o-Xylene	ND		1.0	0.16	ug/L			09/01/17 16:36	1
Toluene	ND		1.0	0.31	ug/L			09/01/17 16:36	1
Xylenes, Total	ND		3.0	0.44	ug/L			09/01/17 16:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 125					09/01/17 16:36	1
4-Bromofluorobenzene (Surr)	104		69 - 120					09/01/17 16:36	1
Dibromofluoromethane (Surr)	110		80 - 120					09/01/17 16:36	1
Toluene-d8 (Surr)	99		80 - 120					09/01/17 16:36	1

TestAmerica Spokane

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

Client Sample ID: MW2-817

Date Collected: 08/29/17 11:55 Date Received: 09/01/17 10:45 Lab Sample ID: 590-6965-2

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		150	120	ug/L			09/01/17 16:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		68.7 - 141					09/01/17 16:36	
a.a.a-Trifluorotoluene								09/01/17 16:36	1

a,a,a-Trifluorotoluene								09/01/17 16:36	1
Method: AK102 & 103 - Alask Analyte		ange Orga Qualifier	nics & Resid RL		ge Orga Unit	nics (C	GC) Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.46		0.25	0.081		=		09/01/17 17:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				09/01/17 13:23	09/01/17 17:29	1
n-Triacontane-d62	90		50 - 150				09/01/17 13:23	09/01/17 17:29	1

Client Sample ID: MW3-817

Date Collected: 08/29/17 10:00

Matrix: Water

Date Received: 09/01/17 10:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.19	J	0.40	0.093	ug/L			09/01/17 17:42	1
Ethylbenzene	ND		1.0	0.20	ug/L			09/01/17 17:42	1
m,p-Xylene	ND		2.0	0.28	ug/L			09/01/17 17:42	1
o-Xylene	ND		1.0	0.16	ug/L			09/01/17 17:42	1
Toluene	ND		1.0	0.31	ug/L			09/01/17 17:42	1
Xylenes, Total	ND		3.0	0.44	ug/L			09/01/17 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 125			•		09/01/17 17:42	1
4-Bromofluorobenzene (Surr)	106		69 - 120					09/01/17 17:42	1
Dibromofluoromethane (Surr)	110		80 - 120					09/01/17 17:42	1
Toluene-d8 (Surr)	105		80 - 120					09/01/17 17:42	1

Method: AK101 - Alaska - Gas	oline Rang	e Organic	s (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		150	120	ug/L			09/01/17 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		68.7 - 141					09/01/17 17:42	1
a.a.a-Trifluorotoluene								09/01/17 17:42	1

Method: AK102 & 103 - Alas Analyte		ange Orga Qualifier	nics & Resid RL		ge Orga Unit	nics (C	GC) Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.37		0.26	0.082	mg/L		09/01/17 13:23	09/01/17 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				09/01/17 13:23	09/01/17 18:04	1
n-Triacontane-d62	87		50 - 150				09/01/17 13:23	09/01/17 18:04	1

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

Client Sample ID: MW4-817

Date Collected: 08/29/17 11:05 Date Received: 09/01/17 10:45

Gasoline Range Organics [C6 - C10]

Lab Sample ID: 590-6965-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			09/01/17 18:04	1
Ethylbenzene	ND		1.0	0.20	ug/L			09/01/17 18:04	1
m,p-Xylene	ND		2.0	0.28	ug/L			09/01/17 18:04	1
o-Xylene	ND		1.0	0.16	ug/L			09/01/17 18:04	1
Toluene	ND		1.0	0.31	ug/L			09/01/17 18:04	1
Xylenes, Total	ND		3.0	0.44	ug/L			09/01/17 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 125					09/01/17 18:04	1
4-Bromofluorobenzene (Surr)	106		69 - 120					09/01/17 18:04	1
Dibromofluoromethane (Surr)	114		80 - 120					09/01/17 18:04	1
Toluene-d8 (Surr)	102		80 - 120					09/01/17 18:04	1

Method: AK101 - Alaska - Gas Analyte	_	e Organic Qualifier	s (GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		150	120	ug/L			09/01/17 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		68.7 - 141					09/01/17 18:04	1
a.a.a-Trifluorotoluene								09/01/17 18:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.27		0.25	0.081	mg/L		09/01/17 13:23	09/01/17 18:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				09/01/17 13:23	09/01/17 18:22	1
n-Triacontane-d62	88		50 - 150				09/01/17 13:23	09/01/17 18:22	1

Client Sample ID: MW5-817

Date Collected: 08/29/17 13:35

Date Received: 09/01/17 10:45

Lab Sample ID: 590-6965-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			09/01/17 18:47	1
Ethylbenzene	ND		1.0	0.20	ug/L			09/01/17 18:47	1
m,p-Xylene	ND		2.0	0.28	ug/L			09/01/17 18:47	1
o-Xylene	ND		1.0	0.16	ug/L			09/01/17 18:47	1
Toluene	ND		1.0	0.31	ug/L			09/01/17 18:47	1
Xylenes, Total	ND		3.0	0.44	ug/L			09/01/17 18:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		70 - 125			•		09/01/17 18:47	1
4-Bromofluorobenzene (Surr)	109		69 - 120					09/01/17 18:47	1
Dibromofluoromethane (Surr)	108		80 - 120					09/01/17 18:47	1
Toluene-d8 (Surr)	103		80 - 120					09/01/17 18:47	1

TestAmerica Spokane

09/01/17 18:47

150

120 ug/L

ND

TestAmerica Job ID: 590-6965-1

09/01/17 13:23 09/01/17 18:39

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

%Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 109 68.7 - 141 09/01/17 18:47 a,a,a-Trifluorotoluene 09/01/17 18:47

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

88

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.14	J	0.25	0.081	mg/L		09/01/17 13:23	09/01/17 18:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenvl	94		50 - 150				09/01/17 13:23	09/01/17 18:39	1

Client Sample ID: DUP-817 Lab Sample ID: 590-6965-6 Date Collected: 08/29/17 09:30 **Matrix: Water**

50 - 150

Date Received: 09/01/17 10:45

n-Triacontane-d62

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.40 Benzene 0.26 J 0.093 ug/L 09/01/17 19:09 Ethylbenzene ND 1.0 0.20 ug/L 09/01/17 19:09 ND 2.0 09/01/17 19:09 m,p-Xylene 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L 09/01/17 19:09 Toluene ND 1.0 0.31 ug/L 09/01/17 19:09 Xylenes, Total ND 3.0 0.44 ug/L 09/01/17 19:09

Surrogate	%Recovery Qualifier	Limits	P	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	70 - 125			09/01/17 19:09	1
4-Bromofluorobenzene (Surr)	106	69 - 120			09/01/17 19:09	1
Dibromofluoromethane (Surr)	110	80 - 120			09/01/17 19:09	1
Toluene-d8 (Surr)	106	80 - 120			09/01/17 19:09	1

Method: AK101 - Alaska - Gasoline Range Organics (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics [C6 - C10] $\overline{\mathsf{ND}}$ 150 120 ug/L 09/01/17 19:09 %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 106 68.7 - 141 09/01/17 19:09

09/01/17 19:09 a,a,a-Trifluorotoluene Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.26 09/01/17 13:23 09/01/17 18:57 **Diesel Range Organics (DRO)** 0.44 0.082 mg/L (C10-C25)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150	09/01/17 13:23	09/01/17 18:57	1
n-Triacontane-d62	95		50 - 150	09/01/17 13:23	09/01/17 18:57	1

Client Sample ID: Trip Blank Lab Sample ID: 590-6965-7 Date Collected: 08/29/17 09:00 **Matrix: Water**

Date Received: 09/01/17 10:45

Method: 8260C - Volatile O	rganic Compounds by GC	/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.40	0.093	ug/L			09/01/17 19:31	1
Ethylbenzene	ND	1.0	0.20	ug/L			09/01/17 19:31	1
m,p-Xylene	ND	2.0	0.28	ug/L			09/01/17 19:31	1

TestAmerica Spokane

Page 9 of 22 9/11/2017

Client Sample Results

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Lab Sample ID: 590-6965-7

Matrix: Water

Client Sample	ID:	Trip	Blank
Date Collected: 0	2/20	147 00	2.00

Date Received: 09/01/17 10:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		1.0	0.16	ug/L			09/01/17 19:31	1
Toluene	ND		1.0	0.31	ug/L			09/01/17 19:31	1
Xylenes, Total	ND		3.0	0.44	ug/L			09/01/17 19:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		70 - 125					09/01/17 19:31	1
4-Bromofluorobenzene (Surr)	104		69 - 120					09/01/17 19:31	1
Dibromofluoromethane (Surr)	111		80 - 120					09/01/17 19:31	1
Toluene-d8 (Surr)	103		80 - 120					09/01/17 19:31	1
Method: AK101 - Alaska - Gas	soline Range	e Organic	s (GC/MS)						
Analyte	Result	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		150	120	ug/L			09/01/17 19:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		68.7 - 141					09/01/17 19:31	1

2

3

6

7

9

10

11

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-13640/6

Matrix: Water

Analysis Batch: 13640

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			09/01/17 14:47	1
Ethylbenzene	ND		1.0	0.20	ug/L			09/01/17 14:47	1
m,p-Xylene	ND		2.0	0.28	ug/L			09/01/17 14:47	1
o-Xylene	ND		1.0	0.16	ug/L			09/01/17 14:47	1
Toluene	ND		1.0	0.31	ug/L			09/01/17 14:47	1
Xylenes, Total	ND		3.0	0.44	ug/L			09/01/17 14:47	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 70 - 125 09/01/17 14:47 113 4-Bromofluorobenzene (Surr) 106 69 - 120 09/01/17 14:47 Dibromofluoromethane (Surr) 80 - 120 09/01/17 14:47 111 1 Toluene-d8 (Surr) 105 80 - 120 09/01/17 14:47

Lab Sample ID: LCS 590-13640/1004

Matrix: Water

Analysis Batch: 13640

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 maryolo Batom 10040	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	10.0	9.95		ug/L		99	80 - 120
Ethylbenzene	10.0	8.99		ug/L		90	80 - 120
m,p-Xylene	10.0	8.31		ug/L		83	80 - 120
o-Xylene	10.0	8.19		ug/L		82	80 - 120
Toluene	10.0	9.41		ug/L		94	80 - 123

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 125
4-Bromofluorobenzene (Surr)	94		69 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	96		80 - 120

Lab Sample ID: LCSD 590-13640/7

Matrix: Water

Analysis Batch: 13640

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec.		RPD
Analyte Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene 10.0	10.5		ug/L		105	80 - 120	6	25
Ethylbenzene 10.0	9.60		ug/L		96	80 - 120	7	25
m,p-Xylene 10.0	8.98		ug/L		90	80 - 120	8	25
o-Xylene 10.0	8.49		ug/L		85	80 - 120	4	25
Toluene 10.0	9.88		ug/L		99	80 - 123	5	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		70 - 125
4-Bromofluorobenzene (Surr)	101		69 - 120
Dibromofluoromethane (Surr)	100		80 - 120
Toluene-d8 (Surr)	97		80 - 120

TestAmerica Spokane

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-6965-1 MS Client Sample ID: MW1-817 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 13640

•	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		10.0	10.7		ug/L		107	50 - 150
Ethylbenzene	ND		10.0	9.45		ug/L		95	50 - 150
m,p-Xylene	ND		10.0	8.29		ug/L		83	50 - 150
o-Xylene	ND		10.0	7.85		ug/L		79	50 - 150
Toluene	ND		10.0	10.1		ug/L		101	50 - 150
	MS	MS							

1110	1810	
%Recovery	Qualifier	Limits
102		70 - 125
96		69 - 120
101		80 - 120
95		80 - 120
	%Recovery 102 96 101	96 101

Lab Sample ID: 590-6965-1 MSD Client Sample ID: MW1-817 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 13640

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		10.0	10.5		ug/L		105	50 - 150	2	35
Ethylbenzene	ND		10.0	9.64		ug/L		96	50 - 150	2	35
m,p-Xylene	ND		10.0	8.19		ug/L		82	50 - 150	1	35
o-Xylene	ND		10.0	7.72		ug/L		77	50 - 150	2	35
Toluene	ND		10.0	9.72		ug/L		97	50 - 150	4	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		70 - 125
4-Bromofluorobenzene (Surr)	98		69 - 120
Dibromofluoromethane (Surr)	96		80 - 120
Toluene-d8 (Surr)	92		80 - 120

Method: AK101 - Alaska - Gasoline Range Organics (GC/MS)

Lab Sample ID: MB 590-13645/6 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analyzed	Dil Fac
09/01/17 14:47	1
Analyzed	Dil Fac
09/01/17 14:47	1
09/01/17 14:47	1
	09/01/17 14:47 Analyzed 09/01/17 14:47

TestAmerica Spokane

Client: Alaska Resources & Environment

TestAmerica Job ID: 590-6965-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW2-817

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Project/Site: Everts Air Fuel 0817

Method: AK101 - Alaska - Gasoline Range Organics (GC/MS) (Continued)

Lab Sample ID: LCS 590-13645/1005

Matrix: Water

Analysis Batch: 13645

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 1000 1010 ug/L 100 60 - 120 Gasoline Range Organics [C6 -

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 68.7 - 141 104

Lab Sample ID: LCSD 590-13645/1016

Analysis Batch: 13645

Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

LCSD LCSD %Rec. **RPD** Spike Added Limits RPD Analyte Result Qualifier Unit D %Rec Limit Gasoline Range Organics [C6 -1000 1070 ug/L 107 60 - 120 20 C10]

LCSD LCSD

%Recovery Qualifier Surrogate I imits 105 4-Bromofluorobenzene (Surr) 68.7 - 141

Lab Sample ID: 590-6965-2 MS

Matrix: Water

Analysis Batch: 13645

Sample Sample Spike MS MS %Rec. **Analyte** Result Qualifier Added Result Qualifier Limits Unit %Rec ND 1000 1200 120 55.6 - 126 Gasoline Range Organics [C6 ug/L

C10]

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 106 68.7 - 141

Lab Sample ID: 590-6965-2 MSD

Matrix: Water

Analysis Batch: 13645

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit $\overline{\mathsf{ND}}$ 1000 1140 ug/L 55.6 - 126 Gasoline Range Organics [C6 -

C10]

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 105 68.7 - 141

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: MB 590-13642/1-A

Matrix: Water

Analysis Batch: 13646

MR MR

Result Qualifier RL **MDL** Unit Prepared **Analyte** Analyzed Dil Fac 0.25 $\overline{\mathsf{ND}}$ 0.080 mg/L 09/01/17 13:23 09/01/17 14:49 Diesel Range Organics (DRO)

(C10-C25)

TestAmerica Spokane

Prep Type: Total/NA

Prep Batch: 13642

Page 13 of 22

Client Sample ID: MW2-817

QC Sample Results

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150	09/01/17 13:23	09/01/17 14:49	1
n-Triacontane-d62	98		50 - 150	09/01/17 13:23	09/01/17 14:49	1

-		30	00 - 700				00/0	1717 10.2	.0 00/01/11 14	. 10
Lab Sample ID: LCS 590-1 Matrix: Water Analysis Batch: 13646	3642/2-A					Clien	t Saı	mple ID	: Lab Contro Prep Type Prep Bat	•
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO) (C10-C25)			1.60	1.33		mg/L		83	75 - 125	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
o-Terphenyl	94		50 - 150							
n-Triacontane-d62	95		50 ₋ 150							

Lab Sample ID: LCSD 590-13642/3-A				Client Co	mnla	ID: Lak	Control	Comple	o Dun
Matrix: Water				Jilelit Sa	impie	ID. Lai	Control : Prep Tyl		
Analysis Batch: 13646							Prep E	Batch:	13642
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	1.60	1.33		mg/L		83	75 - 125	0	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	94		50 - 150
n-Triacontane-d62	97		50 - 150

TestAmerica Job ID: 590-6965-1

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

Client Sample ID: MW1-817

Lab Sample ID: 590-6965-1

Matrix: Water

Date Collected: 08/29/17 12:35 Date Received: 09/01/17 10:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	13640	09/01/17 15:31	MRS	TAL SPK
Total/NA	Analysis	AK101		1	43 mL	43 mL	13645	09/01/17 15:31	MRS	TAL SPK
Total/NA	Prep	3510C			246.8 mL	2 mL	13642	09/01/17 13:23	NMI	TAL SPK
Total/NA	Analysis	AK102 & 103		1			13646	09/01/17 17:11	NMI	TAL SPK

Client Sample ID: MW2-817 Lab Sample ID: 590-6965-2

Date Collected: 08/29/17 11:55 Date Received: 09/01/17 10:45

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	13640	09/01/17 16:36	MRS	TAL SPK
Total/NA	Analysis	AK101		1	43 mL	43 mL	13645	09/01/17 16:36	MRS	TAL SPK
Total/NA Total/NA	Prep Analysis	3510C AK102 & 103		1	246.5 mL	2 mL	13642 13646	09/01/17 13:23 09/01/17 17:29	NMI NMI	TAL SPK TAL SPK

Client Sample ID: MW3-817 Lab Sample ID: 590-6965-3

Matrix: Water

Date Collected: 08/29/17 10:00 Date Received: 09/01/17 10:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	13640	09/01/17 17:42	MRS	TAL SPK
Total/NA	Analysis	AK101		1	43 mL	43 mL	13645	09/01/17 17:42	MRS	TAL SPK
Total/NA	Prep	3510C			244.3 mL	2 mL	13642	09/01/17 13:23	NMI	TAL SPK
Total/NA	Analysis	AK102 & 103		1			13646	09/01/17 18:04	NMI	TAL SPK

Lab Sample ID: 590-6965-4 Client Sample ID: MW4-817

Date Collected: 08/29/17 11:05

Matrix: Water

Date Received: 09/01/17 10:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	13640	09/01/17 18:04	MRS	TAL SPK
Total/NA	Analysis	AK101		1	43 mL	43 mL	13645	09/01/17 18:04	MRS	TAL SPK
Total/NA Total/NA	Prep Analysis	3510C AK102 & 103		1	246.3 mL	2 mL	13642 13646	09/01/17 13:23 09/01/17 18:22		TAL SPK TAL SPK

Client Sample ID: MW5-817 Lab Sample ID: 590-6965-5 **Matrix: Water**

Date Collected: 08/29/17 13:35 Date Received: 09/01/17 10:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	13640	09/01/17 18:47	MRS	TAL SPK
Total/NA	Analysis	AK101		1	43 mL	43 mL	13645	09/01/17 18:47	MRS	TAL SPK

TestAmerica Spokane

Page 15 of 22

Lab Chronicle

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Factor Amount Amount Number or Analyzed Run Analyst Lab Total/NA Prep 3510C 246.8 mL 2 mL 13642 09/01/17 13:23 NMI TAL SPK Total/NA Analysis AK102 & 103 13646 09/01/17 18:39 NMI TAL SPK 1

Client Sample ID: DUP-817 Lab Sample ID: 590-6965-6

Date Collected: 08/29/17 09:30 Matrix: Water Date Received: 09/01/17 10:45

Batch Batch Dil Initial Final Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor Amount Amount** Number Analyst Lab Total/NA Analysis 8260C 43 mL 43 mL 13640 09/01/17 19:09 MRS TAL SPK Total/NA Analysis AK101 43 mL 43 mL 13645 09/01/17 19:09 MRS TAL SPK 243.5 mL Total/NA Prep 3510C 2 mL 13642 09/01/17 13:23 NMI TAL SPK AK102 & 103 13646 09/01/17 18:57 NMI Total/NA Analysis 1 TAL SPK

Client Sample ID: Trip Blank

Date Collected: 08/29/17 09:00

Lab Sample ID: 590-6965-7

Matrix: Water

Date Received: 09/01/17 10:45

Dil Batch Batch Initial Final Batch Prepared **Prep Type** Method Type Run **Factor Amount Amount** Number or Analyzed Analyst Lab Total/NA 8260C 43 mL 13640 09/01/17 19:31 **MRS** TAL SPK Analysis 43 mL Total/NA Analysis AK101 43 mL 43 mL 13645 09/01/17 19:31 MRS TAL SPK 1

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

2

2

6

R

9

10

11

Accreditation/Certification Summary

Client: Alaska Resources & Environment

Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Laboratory: TestAmerica Spokane

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-17
Washington	State Program	10	C569	01-06-18

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-18
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-17
US Fish & Wildlife	Federal		LE058448-0	10-31-18
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-18

5

6

8

9

10

11

Method Summary

Client: Alaska Resources & Environment Project/Site: Everts Air Fuel 0817

TestAmerica Job ID: 590-6965-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
AK101	Alaska - Gasoline Range Organics (GC/MS)	ADEC	TAL SPK
AK102 & 103	Alaska - Diesel Range Organics & Residual Range Organics (GC)	ADEC	TAL SPK

Protocol References:

ADEC = Alaska Department of Environmental Conservation
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

6

ŏ

40

1 0

11

10

rese and Environmental Services		SERVICES
Took marine	Chain of Custody Report	590-6965 Chain of Custody
T J D.		ARES P.O. 83050 Fairbanks, Alaska 99708 Phone 997,374,3226 Fax 997,374,2319

Client Alaska Resource	Client Alaska Resources and Environmental Services	ices				Invoice To:	ory Name	TestAmerica	Turi	20	Turnaround Request
Report To: Address:	Lyle Gresehover ARES P.O. Box 83050					ARES P.O. Box 83050 Fairbanks, Alaska 99708	Address 57755 1 Tacoma 1(253)	57755 8th Street Tacoma, WA 98424 1(253) 922-2310		In Organic &	In Business Days Organic & Inorganic Analyses
Email:	ם	w: (007)3	74_3710		Ţ					10 7 5	10 7 5 4 3
Pnone:	(907) 374-3226 F	rax: (907)374-3219	14-3219		1	P.O. Number:				Patroloum	Petroleum Hydrocarbon Analyses
Project Number:	Everts Air Fuel 0817		HCI	5	HCI	Preservative				5	5 4 3 2
Sampled By:	Dustin Stahl	_			1100	Requested Analyses	See	Si	č	Specify Other	ecify Other
								re.	P 5	quested (res	requested (results + QC)
Sample Identification	Sampling Date/ Time	ne	AK 101 GRO	BTEX 8260C	AK 102 DRO		1-104	M _(W)		Matrix # of (W,S,O)	trix # of Location / S,O) Cont Comments
MW1-817	08/29/2017	1235	X	X	X			W	>	8	-
MW2-817	08/29/2017	1155	X	X	X				8	8	
MW3-817	08/29/2017	1000	X	X	X			W	>	8	
MW4-817	08/29/2017	1105	X	X	X			1	X	8	
MW5-817	08/29/2017	1335	X	X	X			1	8	00	8
DUP-817	08/29/2017	0930	X	X	X			1	8	8	000
, Trip Blank	08/29/2017	0900	X	X					8	6	
Released By: Print Name: Dustin Stahl	in Stahl & Am	A. Tim	Firm: ARES		Date: 0 Time:	Date: 08/29/2017 Received By: Time: Print Name:	Print Name: Francisco Luna	N. Firm: TASEX	۷.	F.Y	
Released By: To	Blankinship	Firm	Firm: TA-Sea		Date: 8	Date: 8/31/17 Received By Time: 1300 Print Name:	Special X	12 Firm: 74 C	(1)	bool kss	55
Additional Remarks										Ten	Temp:
COC REV 02:2008				-						-	

TestAmerica Seattle Sample Receiving Triage and Labeling Guide

Priority Level/#: Login #:	_ Date	/Time Re		0/31/1		
Company Name & Sampling Site: #RES-Even+ Air Fhel						
PM/PMA to Complete This Section at Cooler Greet:			Initia	Is m	eu	/
TALS Project #: 58011446	Yes	No				Yes
TALS Project #: DoD: Special Instructions:				Sites & Ev	vents:	
d to Spokane Sample Archive Required	Yes 🗆	No	If YE	Freeze S: 🗆	Re	frigerate
Time Zone: • Guam • Hawaii • Alaska • PDT/PST • MDT/MST • CDT/CST • El	DT/EST •	OTHER		St	tate: 7	45
Document any problems or discrepancies and the actions to Sample Control to Complete This Section:	ken to	resolve	them	in an N	CM	
	Yes	No				
Is an NCM required for coolers outside required limits? Were the samples sampled on the same day as receipt?		0	(NIOT	E IE NOT	ONJOE	
If yes to question 1 and no to question 2 above take a confirmation temper	0	D	(NOI	E IF NOT	ONTOL	•
If yes to question 1 and no to question 2 above take a confirmation tempe	0		ТОИ	E IF NO	ONTO	
If yes to question 1 and no to question 2 above take a confirmation temper Comments:	0		ТОИ	E IF NO		
If yes to question 1 and no to question 2 above take a confirmation temper. Comments:	0		ТОИ	E IF NO		
If yes to question 1 and no to question 2 above take a confirmation temper Comments: Initials	0		ТОИ	E IF NO		
If yes to question 1 and no to question 2 above take a confirmation temper Comments: Initials Triage Checks: N/A Yes No	0		ТОИ	E IF NO		
Comments: Initials Triage Checks: N/A Yes No 1. Are there Short Holds or Rush? 1. Are there VOA analysis on the COC?	rature					
Comments: Initials Triage Checks: N/A Yes No 1	er? Note	e date and	d time į	placed in s	freezer	in logbo
Comments: Initials Triage Checks: N/A Yes No 1. Are there Short Holds or Rush? 2. Are there VOA analysis on the COC? 3. Are there Stir bar VOAs which need to be placed in the freez	er? Note	e date and	d time į	placed in s	freezer	in logbo
Comments: Initials Triage Checks: N/A Yes No 1. Are there Short Holds or Rush? 2. Are there VOA analysis on the COC? 3. Are there Stir bar VOAs which need to be placed in the freez	er? Note	e date and	d time į	placed in s	freezer	in logbo
Comments: Initials Triage Checks: N/A Yes No 1. Are there Short Holds or Rush? 2. Are there VOA analysis on the COC? 3. Are there Stir bar VOAs which need to be placed in the freez	er? Note	e date and	d time į	placed in s	freezer	in logbo
Comments: Initials Triage Checks: N/A Yes No 1. Are there Short Holds or Rush? 2. Are there VOA analysis on the COC? 3. Are there Stir bar VOAs which need to be placed in the freez	er? Note	e date and	d time į	placed in s	freezer	in logbo

TA-WI-SC-010-R06

P.O. BOX 68900 SEATTLE, WA 98168 800-225-2752 ALASKACARGO.COM

SHIPPER

Alaska Resource and Environmental S 284 Topside Dr

Fairbanks, AK 99712

CONSIGNEE

Test America Laboratories Inc 11720 North Creek Pkwy N Suite 400

Bothell, WA 98011

AWB Number	Pieces	Weight	Origin / Dest	Nature of Goods	Arriving Flight Details	Customs
027-32630673	1	38.0 Lt	FAI-SEA	WATER SAMPLES	AS 124 30-Aug-2017	
Storage Locations:	COOLER		1			
LOCAL CHARGE	S:			Bonde	d Warehouse	
				Total Local Charg	ges: USD	0.00
				VAT 1.34%:	USD	0.00
				Grand Total:	USD	0.00

PO Number

RECEIPT STATEMENT	RE	C	E	IP	T	S	T	A	T	E	M	E	N	T
-------------------	----	---	---	----	---	---	---	---	---	---	---	---	---	---

The undersigned	acknowledge the	receipt of	above	mentioned	consignment	complete	and i	in goo
condition.								

-	element.	24	
Da	IB.	31	

31-Aug-2017

10:59 Time:

Driver: FRANCISCO

Registration:

Signature:

Client: Alaska Resources & Environment

Job Number: 590-6965-1

Login Number: 6965 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

oreator. Matz, oriena s		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

TestAmerica Spokane

Laboratory Data Review Checklist

Completed By:
Caleb Aronson
Title:
Environmental Professional/Geologist
Date:
November 2017
CS Report Name:
Everts Air Fuel 2017 Groundwater Monitoring Report
Consultant Firm:
Alaska Resources and Environmental Services, LLC
Laboratory Name:
TestAmerica Laboratories, Inc.
Laboratory Report Number:
590-6965-1
ADEC File Number:
100.26.141
Hazard Identification Number:
24438

1. <u>La</u>	<u>boratory</u>										
		a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? CYes No Comments:									
	Samples were received by T.A. Seattle, and analyzed by T.A. Spokane.										
	laborator	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes No Comments:									
	The sam	ples were sub-contrac	ted to the TestAmerica Spokane laboratory.								
2. <u>Ch</u>	ain of Cu	stody (CoC)									
	a. CoC ii	•	, signed, and dated (including released/received by)? Comments:								
	b. Correc	ct Analyses requested	? Comments:								
3. <u>La</u>	boratory S	Sample Receipt Docur	mentation_								
	a. Sampl	le/cooler temperature	documented and within range at receipt (0° to 6° C)?								
	☑ Yes	□ No	Comments:								
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX Volatile Chlorinated Solvents, etc.)?										
	Yes Yes	□ No	Comments:								
	c Sampl	le condition document	red – broken, leaking (Methanol), zero headspace (VOC vials)?								
	Yes		Comments:								
	No adve	rse conditions were no	oted.								
	conta	•	cies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or missing								
	Yes	© No	Comments:								
	No discr	repancies were noted.									

	E 7 3 7	
TYes	☑ No	Comments:
N/A; See	e above.	
e Narrati	ive_	
a. Preser	nt and understa	andable?
⊙ Yes	□ No	Comments:
b. Discre	epancies, error	rs, or QC failures identified by the lab?
TYes	=	Comments:
c. Were	all corrective	actions documented?
Yes Yes	No No	Comments:
d. What	is the effect or	n data quality/usability according to the case narrative?
		data quanty/asaomity according to the case narrative.
○ Yes	□ No	Comments:
	□ No	
	No narrative doe	Comments:
The case	No narrative doesults	Comments:
The case	No e narrative doe sults ct analyses per	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC?
The case	No e narrative doe sults ct analyses per	Comments: s not discuss the impact on data quality/usability
The case nples Res a. Correc Yes	No e narrative doe sults ct analyses per	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments:
The case nples Res a. Correc Yes	No e narrative doe sults ct analyses per No oplicable holdi	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments: ng times met?
The case nples Res a. Correct Yes b. All ap	No e narrative doe sults ct analyses per No oplicable holdi	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments:
The case nples Res a. Correct Yes b. All ap	No e narrative doe sults ct analyses per No oplicable holdi	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments: ng times met?
The case nples Res a. Correc Yes b. All ap Yes c. All so	No e narrative doe sults ct analyses per No oplicable holdi	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments: ng times met?
The case nples Res a. Correc Yes b. All ap	No e narrative doe sults ct analyses per No oplicable holdi	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments: ng times met? Comments:
The case nples Res a. Correc Yes b. All ap Yes c. All so	No e narrative doe sults ct analyses per No oplicable holdi	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments: ng times met? Comments: a dry weight basis? Comments:
The case pples Res a. Correc Yes b. All ap Yes c. All so Yes NA; The	e narrative doe sults ct analyses per No oplicable holdi No oplicable reported or No e sample matri	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments: ng times met? Comments: a dry weight basis? Comments: x was water.
The case pples Res a. Correc Yes b. All ap Yes c. All so Yes NA; The	E No e narrative doe sults ct analyses per E No oplicable holdi E No oplicable matri e reported LO cct?	Comments: s not discuss the impact on data quality/usability formed/reported as requested on COC? Comments: ng times met? Comments: a dry weight basis? Comments:

e. Data d	quality or u	sability affected?				
T Yes	☑ No	Comments:				
No error	rs in sample	e results were detected.				
Samples	<u> </u>					
a. Metho	od Blank					
i. One m	nethod blan	k reported per matrix, analysis and 20 samples?				
C Yes	□ No	Comments:				
ii	. All metho	od blank results less than limit of quantitation (LOQ)?				
Yes	■ No	Comments:				
		Comments.				
	ii If above	LOQ, what samples are affected				
1	n. n above	Comments:				
NA· No	samples are					
		ffected sample(s) have data flags? If so, are the data flags clearly defined?				
Yes Yes	□ No	Comments:				
No samp	oles are affe	ected.				
V	. Data qual	lity or usability affected?				
		Comments:				
The data	quality and	d usability is not affected; no errors in method blank were detected.				
b. Laboratory Control Sample/Duplicate (LCS/LCSD)						
j		 One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD d per AK methods, LCS required per SW846) 				
C Yes	□ No	Comments:				
i	ii. Metals/Ir 20 sam	norganics – one LCS and one sample duplicate reported per matrix, analysis and ples?				

Yes	□ No	Comments:						
NA; An	NA; Analysis and sampling for metals/inorganics was not requested or required.							
⊆ Yes	limits? An 60%-120% laboratory	- All percent recoveries (%R) reported and within method or laboratory and project specified DQOs, if applicable. (AK Petroleum methods: AK101%, AK102 75%-125%, AK103 60%-120%; all other analyses see the QC pages) Comments:						
	laboratory LCS/LCS all other a	All relative percent differences (RPD) reported and less than method or limits? And project specified DQOs, if applicable. RPD reported from D, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; nalyses see the laboratory QC pages)						
☑ Yes	☑ No	Comments:						
Comme		PD is outside of acceptable limits, what samples are affected?						
LCS/LC	SD and MS/M	ASD samples RPD are below limits; no samples affected.						
	vi. Do the affe	ected sample(s) have data flags? If so, are the data flags clearly defined?						
• Yes	□ No	Comments:						
NA; See	e above.							
Comme	•	ity or usability affected? (Use comment box to explain.)						
NA; See	e above.							
c. Surro	gates – Organi	ics Only						
	i. Are surrogat samples?	te recoveries reported for organic analyses – field, QC and laboratory						
• Yes	□ No	Comments:						
	•	All percent recoveries (%R) reported and within method or laboratory and project specified DQOs, if applicable. (AK Petroleum methods 50-150						

	%R; all otl	ner analyses see the laboratory report pages)
Yes	□ No	Comments:
i		ple results with failed surrogate recoverieshave data flags? If so, are the data ly defined?
Yes	No No	Comments:
No samp	les are affecte	d.
i Commen		y or usability affected?
NA; See	above.	
d. Trip b	lank – Volatil	e analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water
		nk reported per matrix, analysis and for each cooler containing volatile If not, enter explanation below.)
Yes	□ No	Comments:
i		used to transport the trip blank and VOA samples clearly indicated on the not, a comment explaining why must be entered below)
☐ Yes	© No	Comments:
The sam	ples were tran	sported in a single cooler.
i	ii. All results	less than LOQ?
• Yes	□ No	Comments:
i	v. If above LO	Q, what samples are affected?
Yes	No No	Comments:
No samp	oles are affecte	ed; no results were above the LOQ.
	•	y or usability affected?
Commen		
		sability is not affected; see above.
	Duplicate . One field du	plicate submitted per matrix, analysis and 10 project samples?
☑ Yes	□ No	Comments:
Sample I	OUP-817 is th	e blind field duplicate of MW3-817.

i	i. Submitted blind to lab?
© Yes	No Comments:
i	ii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)
	RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)}$ x 100
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
☐ Yes	☑ No Comments:
The calc	ulated RPD for Benzene was 31.1%, above the limit for water of 30%.
Commer	v. Data quality or usability affected? (Use the comment box to explain why or why not.)
The data	quality for benzene should be viewed qualitatively rather than quantitatively.
	tamination or Equipment Blank (If not applicable, a comment stating why must be ed below).
C Yes	No Not Applicable Comments:
No deco	ntamination or equipment blank was required.
i	. All results less than LOQ?
© Yes	No Comments:
i Commei	. If above LOQ, what samples are affected?
NA; see	above.
i Commei	i. Data quality or usability affected?
Data qua	lity and usability is not affected; see above.

7. <u>Ot</u>	her Data I	Flags/Qualifiers (ACC	DE, AFCEE, Lab Specific, etc.)					
	a. Defined and appropriate?							
	C Yes	□ No	Comments:					

2017 Groundwater Monitoring Well Report Evert's Air Fuel Inc. Property **Block 3 Lot 11 FIA**

Appendix D:Groundwater Sampling Field Data Sheet

Ground Water Monitoring Well Data Sheet Site Name: EVERTS AIR Well/Sample ID: Mwi MW1-817 Location: Initial Depth to Water (DTW): 10.94 Client: Total Well Depth (TD): 19.13 Sampler: 0X Well Diameter: 1.5" Date: 8, 29 Purge Method: PERI Flow Rate: 0.3L/n W Sample Method: Low From Temp DTW Cumulative Time ph SC DO ORP Observations (°C) (feet) Volume PREFUREE 1 gallon 1212 -39.9 653 0.750 2.01 7.05 6.57 1.53 1215 0.786 6.82 -37.1 0.9 1218 6.62 -37.5 0,803 1.56 1.8 6.70 0.821 1,94 -37.0 6-64 6.67 2.7 0.844 2.33 -35.8 6.66 3.6 0.843 2.41 1227 6.65 -35.5 4.5 6.67 2.43 0.851 1230 6,67 -33.9 5,4 STABLE Did Well Dewater? Start Purge Time: NO DTW prior to sample: Odor: CLEAR Stop Purge Time: Start Sample Time: 1235 Color: NONE Total Purge Volume: Total Sample Volume: Water Quality Meter Model: Serial ID: Water Level Indicator Model: Serial ID:

Notes:			
		 T	

		G	round Wa	ter Monito	ring Well	Data Sheet	j		
Site Name: EVEC 15 AIR				Well/Sample ID: MWZ / MWZ-817					
Location: 010 GATE 5				Initial Depth to Water (DTW): 12.69					
Client: EVENTS AIR				Total Well	Depth (TD)):	20189		
Sampler:	928			Well Diam	eter: 2 11			The state of the s	
	129/201			Purge Met	hod: PER	.î	PROFEST TO AND THE TOWN THE TO		
Sample M	ethod: Lou	u Flow		Flow Rate:	03 L	ina			
Time	ph	SC	DO	Temp (°C)	ORP	DTW (feet)	Cumulative Volume	Observations	
1130	6.51	1.009	3,20	6.30	59,0	-5		PREPUBLE 0,7	צ
1133	6.50	1.001	1.96	6.34	49.4		0.9		
1136	6.52	0,987	1,59	6.35	42,0		1.8		
1139	6.55	0.973	1.23	6.34	33.7		2:7		
1142	6.56	0.963	1.02	6.30	27,4		3.6		
1145	6.58	0.949	6714	6.37	15.8		4.5		
1148	6.58	0,947	0,71	6.38	13.3		5.4	п	
1151	6.59	0.942	0,67	6.38	9.2		6-3	STABLE	
								P	
Did Well Dewater? № Start Purge			Time: [[25	DTW prior to sample:				
Odor: No	OME		Stop Purge			Start Sampl		55	
Color: CENT Total Purge				Volume:		Total Samp			
Water Qual	ity Meter	Model:			Serial ID:	Line and the second			
Water Leve	l Indicator	Model:			Serial ID:				

Notes:	

		G	round Wa	ter Monito	ring Well	Data Sheet			
Site Name: EVERTS AIR				T	Well/ Sample ID: Mw3 . Mw3-817 D.P-				
Location: OLD GATE 5				Initial Dep	oth to Water	(DTW):	8000 14.61	1	
Client:	EVERTS			Total Wel	l Depth (TD)	17.02			
7	D. STAHL			Well Dian	neter: 3"				
	29/2017			Purge Met	hod: PERI				
Sample M	lethod: レロン	Fice	-	Flow Rate	: 0.3 L/n	1			
Time	ph	SC	DO	Temp (°C)	ORP	DTW (feet)	Cumulative Volume	Observations	
0941	6.22	1,015	1.75	7,15	132.2		_	PRE PURCE	
0944	6.24	1.020	1.30	7.01	128.1		0.92		
0947	626	1.025	1.06	6.98	126-4		1.8		
0950	6.28	1.032	0.87	7,01	123.8	y.	2.7		
0953	6.29	1.036	0,79	7.01	122.8	7	3.6		
0954	6.30	1.038	0.72	6,98	122.0		4.5	T or	
0959	6.31	1.038	0.80	7,11	120. 2		5.4	STABLE	
the was a supplementary		00 01 M							
W-1000									
			1						
							0.0		
									
Did Well Dewater? NO Start Purge			Time: 09	35	DTW prior to sample:				
Odor:	ENONE		Stop Purge	Time:		Start Samp	le Time: 10 C	0930	
Color: W	EM		Total Purge	e Volume:		Total Samp	ole Volume:	DUP T	
Water Qua	lity Meter	Model: V	SI 554	MP5	Serial ID:	1141012	95		
Water Lev	el Indicator	Model: 504	MST 101		Serial ID:				

Ground Water Monitoring Well Data Sheet Site Name: NERTS Well/ Sample ID: MW14 MW4-817 Location: Initial Depth to Water (DTW): Client: Total Well Depth (TD): Sampler: 1. STAPLC Well Diameter: 71 Purge Method: Pers Date: & Flow Rate: O-3 L/min Sample Method: Low FLOW Temp DTW Cumulative Observations Time SC ORP ph DO (°C) (feet) Volume PAC PURGE O Scalling 6.51 116.4 0.649 1.90 1039 6.13 6.60 1042 1.10 0.650 0.9 6.12 113.5 1.0 0.94 6.13 6.658 6.44 114.5 1045 0.665 27 1048 6-14 0.87 6.46 112.6 3.6 0.869 0.80 6.17 110.4 6.53 1051 1054 108.5 4.5 0.677 0.73 6.45 6.19 6-20 0,682 0,66 6.49 1057 107.1 0.692 6.21 1100 0.61 6.51 106.0 0,695 6.60 6.43 STABLEC 104.9 1103 6-22 7.2 Start Purge Time: /030 Did Well Dewater? DTW prior to sample: Odor: NOWE Stop Purge Time: Start Sample Time: 1103 1105 CLUAR Color: Total Purge Volume: Total Sample Volume: Water Quality Meter Model: Serial ID: Water Level Indicator Model: Serial ID:

Revised	12/1	6/20	1:

Notes:

Ground Water Monitoring Well Data Sheet

Site Name: EVERTS AIR	Well/ Sam	Well/Sample ID: Mw5 / Mw5-817						
Location:		Initial Depth to Water (DTW):						
Client:	Total Well	Total Well Depth (TD): 10,40						
Sampler:	Well Diam	Well Diameter: 1,5 (
Date: 8/29/17	Purge Meth	Purge Method: PERI						
Sample Method: Low Frow	Flow Rate:	Flow Rate: 0.32 /m						
Time ph SC	DO Temp (°C)	ORP	DTW (feet)	Cumulative Volume	Observations			
1302 7.04 0.031	8.82 8.32	-35,1		e seement	PRE PURGE O.			
1305 6.91 0.035	8.62 7,52	-21.0		0.9				
1306 6.49 0.425	6.87 7.04	-13,4		1.8				
1311 6.58 0.521	5.06 6.95	- 31.z		2.7				
1314 6.66 0.613	3.45 6.87	-68.2		3,6				
1317 6-69 0.645	2.38 7.07	-75.6		4.5				
1320 6.71 0.651	1.96 7.11	-80.2		5.4				
1323 6.74 0.667	1.25 7.27	-87.0		6.3				
1321 6.75 0.681	0.93 7.25	-90.3		7.2				
1329 6:74 0,690	0,90 7.24	-92.1		8.1				
1332 6.76 0.193	0.91 7.30	-93.2		9.0	STABLE			
Did Well Dewater?	Start Purge Time: j 2	Time: 1259		DTW prior to sample:				
Odor: No NE Stop Purge Time:		Start Sample Time: 1335			335			
Color: CLEMP_ Total Purge Volume:			Total Sample Volume:					
Water Quality Meter Model: Serial ID:								
Water Level Indicator Model: Serial ID:								

Notes:					
(Water Tradelium Constitution of the Constituti	***************************************	***************************************
		,			· · · · · · · · · · · · · · · · · · ·