

May 3, 2002

Service Request No: K2202038

Mark Musial Golder Associates, Inc. 1750 Abbott Road, Suite 200 Anchorage, AK 99507

Re: Sitka Dredge/023-5524

Dear Mark:

Enclosed are the results of the sample(s) submitted to our laboratory on April 2, 2002. For your reference, these analyses have been assigned our service request number K2202038.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3372.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jim Smith

Project Chemist

JS/afs

31 / North 43th Avenue a BO Bay 470 a Valas Washington

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. J
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference. i
- X See case narrative.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. В
- The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample. Ε
- M The duplicate injection precision was not met.
- The Matrix Spike sample recovery is not within control limits. See case narrative. Ν
- S The reported value was determined by the Method of Standard Additions (MSA).
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike W absorbance.
- The MRL/MDL has been elevated due to a matrix interference. i
- X See case narrative.
- The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- A tentatively identified compound, a suspected aldol-condensation product. A
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data. C D
- The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. J
- The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed. Ν
- The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two P analytical results (25% for CLP Pesticides).
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- í The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard. F
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of L a greater amount of lighter molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of H a greater amount of heavier molecular weight constituents than the calibration standard.
- 0 The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon Y range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

Golder Associates, Inc.

Project:

Sample Matrix:

Sitka Dredge

Sediment

Service Request No.:

K2202038

Date Received:

4/2/02

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six samples were received for analysis at Columbia Analytical Services on 4/2/02. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Inorganic Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals Sediment

Relative Percent Difference (RPD) Exceptions:

The Relative Percent Differences (RPD) for the replicate analysis of Antimony and Cadmium in sample ITZ 1 (K2202038-001) were outside the normal CAS control limits. The variability in the results is attributed to the heterogeneous character these analytes of the sample. Mixing techniques within the scope of the EPA methodology were used, but were not sufficient for complete homogenization of this sample.

Matrix Spike (MS) Exceptions:

The low Matrix Spike (MS) recovery of Antimony is a result of a method defect in the EPA 3050B-digestion procedure that can be magnified by certain matrix components. The associated QA/QC (i.e. LCS) indicate the analysis was in control. No further corrective action was taken.

The low Matrix Spike (MS) recovery of Cadmium for sample ITZ 1 is a result of the heterogeneous character this analyte in the sample (see high RPD note above). The associated Laboratory Control Sample (LCS) was acceptable indicating the analysis was in control. No further corrective action was taken.

The Matrix Spike (MS) recovery criteria for Copper, Lead and Zinc for sample ITZ 1 are not applicable. The analyte concentrations in the sample were significantly higher than the added spike concentrations, preventing accurate evaluation of the spike recoveries.

No other anomalies associated with the analysis of these samples were observed.

Total Metals Tissue

No anomalies associated with the analysis of these samples were observed.

Approved by	W	=	B		Date	5/2/01
				-		

Organochlorine Pesticides by EPA Method 8081A

Method Reporting Limit (MRL) Exceptions:

The Method Reporting Limits have been elevated for 4,4'-DDE and 4,4'-DDT in samples ITZ 1 and ITZ2. The chromatogram indicated non-target components that prevented accurate quantification at the reporting limit. The results have been flagged to indicate the matrix interference. All efforts were made through various clean-up methods to reduce the matrix interference however the screening level of 6.9ppb for total DDT could not be met due to this interference.

No other anomalies associated with the analysis of these samples were observed.

PCB Aroclors by EPA Method 8082

No anomalies associated with the analysis of these samples were observed.

Organotin Compounds

Sample Notes and Discussion:

The initial porewater extraction did not yield enough water for porewater analysis. Per Golder the analysis for Organotin would be performed on the soil and reported on a total basis.

Results for the Organotins will be reported at a later date.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID 1479: 2-Butanone (MEK), Tetrachloroethene (PCE) and sec-Butylbenzene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Surrogate Exceptions:

The upper control criterion was exceeded for the following surrogate(s) in samples ITZ 1, ITZ 2, ITZ 3 and MB KWG0202342-4: Toluene-d8. No target analytes were detected above the Method Reporting Limit in the samples. The error associated with an elevated recovery equates to a high bias. The quality of the sample data has not been significantly affected. No further corrective action was feasible.

The upper control criterion was exceeded for the following surrogate in ITZ 3MS KWG0202342-4, ITZ 3DMS KWG0202342-5, LCS KWG0202342-3: Toluene-d8. The associated matrix spike recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier has been flagged accordingly. No further corrective action was feasible.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL 1435: Benzoic Acid, Pentachlorophenol, N-Nitrosodi-n-propylamine, and Hexachlorocyclopentadiene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Matrix Spike (MS) Exceptions:

The Matrix Spike recovery of Phenol for sample ITZ 1DMS was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The matrix spike outlier does not indicate a significant data quality problem. No further corrective action was feasible.

	_	• • •		
Approved by		9	Date_ك	lar

The matrix spike recovery of Pentachlorophenol for sample ITZ 1MS/DMS was outside the lower control criteria because of suspected matrix interference. The sample was re-analyzed, and produced similar results. No recovery was detected in the spiked samples. The results indicate a potential low bias for this compound in this matrix. The results of the original analysis are reported.

The control criteria for the Matrix Spike recovery of Pyrene for sample ITZ 1MS/DMS is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Laboratory Control Sample (LCS) Exceptions:

The spike recovery of Benzoic Acid in the Duplicate Laboratory Control Sample (DLCS) KWG0202327-6 was outside the lower control criterion. The analyte in question was not detected in the associated field samples. The error associated with reduced recovery equates to a potential low bias. The recovery for this analyte was within control criterion in the LCS KWG0202327-6 with acceptable RPDs. The data has been flagged to indicate the low recovery.

Method Reporting Limit (MRL) Exceptions:

Sample(s) ITZ 1, ITZ 2, ITZ 3 required dilutions due the presence non-target analytes interfering with compounds of interest. The reporting limits have been elevated accordingly.

No other anomalies associated with the analysis of these samples were observed.

CHAIN OF CUSTODY

SR#: 12101018 OF | COC#

PAGE_

1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222 • FAX (360) 636-1068

Printed Name Firm	Sign	25 DONAMOR JE	Deliverable Report	(includes all raw data) 5	required	required	I. Routine Report: Method BIII To:	REPORT REQUIREMENTS P.O. #				ITZ3 4/1/03/11:35	ITZ2 4/1/02/11:35	TZ 4/1/02 11:03	=0	ella B	4-6001	7	Wark I	023-352	PROJECT NAME STATE OF DESCRIPTION OF THE PROJECT NAME OF THE PROJE
ame Firm	RECEIVED BY	Requested Report Date	Provide FAX Results	5 Day	24 hr48 hr. SPECIAL IV		Abb + 2/1 Sulf-200 Dissolved Metals: Al	INVOICE INFORMATION Circle which				5 3 50, 10	2 Ged 10	10	AB I.D. MATRIX \ \rightarrow \phi \openion	MBER mivola 25 (atile c	02/0	ONT,	AINER S by G	S Car	
	102 1020 Signature Date/Time	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		# # # # # # # # # # # # # # # # # # #	SPECIAL INSTRUCTIONS/COMMENTS:	ATE HYDROCARBON PROCEDURE: AK	als: All As Sh Ba Be B Ca Cd Co Cr Cu Fe pals: All As Sh Ba Be B Ca Cd Co Cr Cu Fe	are to be analyzed.							GO A COO PER PROPERTY PAR GO	Fuel F Fuel F WW-HC & Gre 13.1 C B's Sticide Sticide B's B's Sticide B's B's Sticide B's B's B's B's B's B's B's B's B's B's	Dies Dies Ingen In	Print (Creen RPH Songe Solicide S	D21 [] below) FIQ) 1664 1664 1751M 1	BTE SGT HEM	
Printed Name Firm	me Signature Date/Time			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		WI NORHTWEST OTHER: (CIRCLE	Pho Mo Mn Mo Nik Ag Na Se Sr Ti Sn V					X	・		NA NA	1; Cor Vo3; E 13-N, Co X 902	id Cl.	SO4 SS, Total	Phthiolived Chrom PO4: TOS (ci) P, TKN 1650	F, NO	

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Total Solids

Prep Method:

Analysis Method:

NONE

Test Notes:

160.3M

Units: PERCENT

Basis: WET

Sample Name		7.7	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
TZ 1 TZ 2 TZ 3	3.		K2202038-001 K2202038-002 K2202038-003	04/01/2002 04/01/2002 04/01/2002	04/02/2002 04/02/2002 04/02/2002	04/10/2002 04/10/2002 04/10/2002	85.5 76.4 87.0	

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/02

Date Received: 04/02/02

Carbon, Total Organic

Prep Method:

NONE

Analysis Method: Test Notes:

PSEP

Units: PERCENT

Basis: Dry

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
ITZ 1 ITZ 2 ITZ 3 Method Blank	K2202038-001 K2202038-002 K2202038-003 K2202038-MB	0.05 0.05 0.05 0.05	0.03 0.03 0.03 0.03	1 1 1	NA NA NA	04/06/02 04/06/02 04/06/02	0.33 0.68 5.65	
		5.05	0.03	1	NA	04/06/02	0.03	7.7

Approved By: IA/020597p

02038WET.MR1 - Sample 04/17/02

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/02

Date Received: 04/02/02

Total Volatile Solids

Prep Method:

NONE

Analysis Method:

160.4M

Units: PERCENT

Test Notes:

Basis: As Received

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
ITZ 1 ITZ 2 ITZ 3 Method Blank	K2202038-001 K2202038-002 K2202038-003 K2202038-MB	0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1	1 1 1 1	NA NA NA NA	04/10/02 04/10/02 04/10/02 04/10/02	1.09 2.87 0.74 0.1	U

Modified.

Approved By: 1A/020597p

Analytical Report

Client:

Golder Associates Inc.

Project:

Sample Matrix: Sediment

Sitka Dredge/023-5524

Service Request: Date Collected:

K2202038

Date Received:

04/01/02 04/02/02

Date Analyzed:

04/05/02

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: ITZ 1

Lab Code:

K2202038-001

Sand Fraction: Dry Weight (Grams)

Sand Fraction: Weight Recovered (Grams)

82.8226

Sand Fraction: Percent Recovery

82.9310

100

Description Gravel	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Very Coarse Sand	<-1 Ø	5.3053	6.45
Coarse Sand	-1 to 0 Ø	12.6631	15.4
Medium Sand	0 to 1 Ø	33.9444	41.3
Fine Sand	1 to 2 Ø	16.6430	20.2
Very Fine Sand	2 to 3 Ø	8.0590	9.80
Silt	3 to 4 Ø	5.7245	6.96
Clay	4 to 8 Ø	2.0600	2.50
	> 8 Ø	0.8200	1.00
	Total	85.2193	104

Approved By:	F1	34	
		Date: _	4/16/02

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix: Sediment

Service Request:

K2202038

Date Collected:

04/01/02

Date Received:

04/02/02

Date Analyzed:

04/05/02

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Sand Fraction: Dry Weight (Grams)

Sand Fraction: Weight Recovered (Grams)

74.3881

Sand Fraction: Percent Recovery

74.5864

100

Description Gravel	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Very Coarse Sand	<-10	24.0930	31.1
Coarse Sand	-1 to 0 Ø	20.7979	26.9
Medium Sand	0 to 1 Ø	14.1032	18.2
Fine Sand	1 to 2 Ø	6.3471	8.19
Very Fine Sand	2 to 3 Ø	3.6395	4.70
Silt	3 to 4 Ø	4.7710	6.16
Clay	4 to 8 Ø	1.3650	1.76
	> 8 Ø	0.9400	1.21
	Total	76:0567	98.2

Approved By:	.21		
approved by,	t c c	Date:	4/16/02
	4	Date:	7116102

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix: Sediment

Service Request:

K2202038

Date Collected:

04/01/02

Date Received:

04/02/02

Date Analyzed:

04/05/02

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: ITZ 3

Lab Code:

K2202038-003

Sand Fraction: Dry Weight (Grams)

88.1308

Sand Fraction: Weight Recovered (Grams)

88.0881

Sand Fraction: Percent Recovery

100

Description Gravel	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
	<-1 Ø	38.6594	44.7
Very Coarse Sand Coarse Sand	-1 to 0 Ø	14.3449	16.6
Medium Sand	0 to 1 Ø	16.4083	19.0
Fine Sand	1 to 2 Ø	12.9562	15.0
ery Fine Sand	2 to 3 Ø	4.9481	5.73
silt	3 to 4 Ø	0.7073	0.82
Clay	4 to 8 Ø	1.9100	2.21
nay	> 8 Ø	1.3150	1.52
	Total	91.2492	106

Approved By:	37.	EL	 _ Date:	41161	02
					~

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Golder Associates Inc.

Project No.: 023-5524

Project Name: Sitka Dredge

Matrix:

SEDIMENT

Service Request: K2202038

Date Collected: 04/01/02

Date Received: 04/02/02

Units: MG/KG

Basis: Dry

Sample Name: ITZ 1

Lab Code: K2202038-001

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	С	Q
Antimony	200.8	0.11	0.11	10	4/17/02	4/18/02	F0. A		
Arsenic	200.8	29.0	5.8	250	4/17/02	4/18/02	58.9	_	*N
Cadmium	200.8	0.06	0.02	5	4/17/02	4/18/02	1060	!	<u> </u>
Chromium	200.8	0.2	0.0	5	4/17/02	4/18/02	8.14	<u> </u>	*N
Copper	200.8	5.8	2.3	250	4/17/02	4/18/02	75.8	<u> </u>	
Lead	200.8	2.90	1.74	250	4/17/02	4/18/02	2940		<u> </u>
Mercury	7471A	0.02	0.01	1	4/9/02		833		<u> </u>
Nickel	200.8	0.2	0.1			4/9/02	0.02		i .
Silver			-	5	4/17/02	4/18/02	27.0		
	200.8	0.04	0.02	10	4/17/02	4/18/02	1.69		i
Zinc	200.8	145	57.9	1250	4/17/02	4/18/02	7590		├—

% Solids: 85.5

Comments:

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Golder Associates Inc.

Service Request: K2202038

Project No.: 023-5524

Date Collected: 04/01/02

Project Name: Sitka Dredge

Date Received: 04/02/02

Units: MG/KG

Basis: Dry

Matrix:

SEDIMENT

Sample Name: ITZ 2

Lab Code: K2202038-002

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	C	
Antimony	200.8	0.10	0.10	10	4/17/02				ν.
Arsenic	200.8	27.3	5.5	250		4/18/02	114		*N
Cadmium	200.8	0.05	0.02		4/17/02	4/18/02	963		Γ
Chromium	200.8			5	4/17/02	4/18/02	3.08		*N
		0.2	0.0	5	4/17/02	4/18/02	83.1		i –
Copper	200.8	5.5	2.2	250	4/17/02	4/18/02	2100		_
Lead	200.8	2.73	1.64	250	4/17/02	4/18/02			
Mercury	7471A	0.01	0.01	1	4/9/02		1910		
Nickel	200.8	0.2	0.1	5		4/9/02	0.07		ĺ
Silver	200.8		200	-	4/17/02	4/18/02	32.9		
Zinc		0.04	0.02	10	4/17/02	4/18/02	1.29	12	
5711C	200.8	27.3	10.9	250	4/17/02	4/18/02	4860		

: Solids:

comments:

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Golder Associates Inc.

Project No.: 023-5524

Project Name: Sitka Dredge

Matrix:

SEDIMENT

Service Request: K2202038

Date Collected:

04/01/02

Date Received: 04/02/02

Units:

MG/KG

Basis: Dry

Sample Name: ITZ 3

Lab Code: K2202038-003

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	С	0
Antimony	200.8	0.05	0.05	5	4/17/02	4/18/02	0.18	<u> </u>	145-
Arsenic	200.8	0.6	0.1	5	4/17/02	4/18/02	5.0	<u> </u>	*N
Cadmium	200.8	0.06	0.02	5	4/17/02	4/18/02	0.05	1	1
Chromium	200.8	0.2	0.0	5	4/17/02	4/18/02	66.5	B	I N
Copper	200.8	0.1	0.0	5	4/17/02	4/18/02	13.7	-	
Lead	200.8	0.06	0.03	5	4/17/02	4/18/02	4.26	<u> </u>	F T
Mercury	7471A	0.01	0.01	1	4/9/02	4/9/02	0.01	[
Nickel	200.8	0.2	0.1	5	4/17/02	4/18/02	29.0	, U	<u> </u>
Silver	200.8	0.02	0.01	5	4/17/02	4/18/02			1
Zinc	200.8	0.6	0.2	5	4/17/02	4/18/02	0.03		<u> </u>

& Solids:

Comments:

Analytical Results

Client: roject:

Golder Associates Inc. Sitka Dredge/023-5524

lample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Organochlorine Pesticides

ample Name:

ITZ I

ab Code:

K2202038-001

xtraction Method:

EPA 3540C

nalysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

nalyte Name 4'-DDD	Result			MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	N-4-
4'-DDE 4'-DDT	ND ND ND	Ūί		7.8 5.4 16	0.36 5.4 2.8	2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	Note
ldrin pha-Chlordane ieldrin	ND ND ND	U U	<i>9</i> 7	4.0 4.0 5.4	0.55 0.26 0.72	2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322 KWG0202322	
.mma-BHC (Lindane) ≥ptachlor	ND ND	_		4.0	0.57 0.32	2 2	04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	

rrogate Name	%Rec	Control Limits	Date Analyzed	Note	
trachloro-m-xylene	64	48-119	04/17/02	Acceptable	
:cachlorobiphenyl	98	48-136	04/17/02	Acceptable	

uments:

Analytical Results

lient: roject: Golder Associates Inc. Sitka Dredge/023-5524

ample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Organochlorine Pesticides

ample Name: ab Code:

ITZ 2

K2202038-002

xtraction Method: nalysis Method:

EPA 3540C

8081A

Units: ug/Kg

Basis: Dry

Level: Low

540				Dilinat	*			
nalyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction	
4'-DDD 4'-DDE 4'-DDT	ND U ND Ui	8.7 15	0.40 15	2 2	04/10/02 04/10/02	04/17/02 04/17/02	Lot KWG0202322 KWG0202322	Note
Idrin	ND Ui	4.5	18	2	04/10/02	04/17/02	KWG0202322 KWG0202322	THE R. L.
pha-Chlordane ieldrin	ND U	4.5 6.1	0.61 0.29 0.81	2 - 2 2	04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	
mma-BHC (Lindane) sptachlor	ND U ND U	4.5 4.5	0.64 0.36	2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322	

rrogate Name	%Rec	Control Limits	Date Analyzed	Note
trachloro-m-xylene	63	48-119	04/17/02	Acceptable Acceptable
cachlorobiphenyl	48	48-136	04/17/02	

unents:

Analytical Results

Client: 'roject:

Golder Associates Inc. Sitka Dredge/023-5524

ample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Organochlorine Pesticides

ample Name: ab Code:

ITZ 3

K2202038-003

xtraction Method: nalysis Method:

EPA 3540C

8081A

Units: ug/Kg

Basis: Dry

Level: Low

nalyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	No.4.
4'-DDD 4'-DDE 4'-DDT	ė	ND ND ND	U	7.6 5.3 16	0.35 0.57 0.39	2 2 2	04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	Note
ldrin pha-Chlordane ieldrin	8	ND ND ND	Ū	4.0 4.0 5.3	0.54 0.25 0.71	2 2 2 2	04/10/02 04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322 KWG0202322	<i>©</i>
ımma-BHC (Lindane) eptachlor		ND ND		4.0 4.0	0.56 0.32	2 2	04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	

irrogate Name	%Rec	Control Limits	Date Analyzed	Note	€
trachloro-m-xylene	73	48-119	04/17/02	Acceptable	20
cachlorobiphenyl	75	48-136	04/17/02	Acceptable	

nments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Polychlorinated Biphenyls (PCBs)

Sample Name:

ITZ I

Lab Code:

K2202038-001

Extraction Method: Analysis Method:

EPA 3540C

Units: ug/Kg Basis: Dry

Level: Low

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date	Extraction	
Aroclor 1016	ND U	12		2 20101		11111111111	Lot	Note
Aroclor 1221	ND U		2.8	Ţ	04/10/02	04/16/02	KWG0202317	
Aroclor 1232		24	2.8	1	04/10/02	04/16/02	KWG0202317	
	ND U	12	2,8	1	04/10/02	04/16/02	KWG0202317	1852
Aroclor 1242	ND U	12	2.8	1	04/10/02	04/16/02		
Aroclor 1248	ND U	12	2.8	1.22	04/10/02		KWG0202317	
troclor 1254	190	12	2.8	1		04/16/02	KWG0202317	
Aroclor 1260			2.0	1	04/10/02	04/16/02	KWG0202317	
	ND U	12	2.8	i I	04/10/02	04/16/02	KWG0202317	

urrogate Name	%Rec	Control Limits	Date Analyzed	Note	
ecachlorobiphenyl	82	57-136	04/16/02	Acceptable	

mments:

CC JIMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client: ?roject:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

04/10/02

04/16/02

Date Collected: 04/01/2002

Date Received: 04/02/2002

Polychlorinated Biphenyls (PCBs)

ample Name:

ITZ 2

ab Code:

K2202038-002

extraction Method: EPA 3540C malysis Method:

Units: ug/Kg Basis: Dry

Level: Low

KWG0202317

8082

malyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
roclor 1221	ND U ND U	14	3.2	15	04/10/02	04/16/02	KWG0202317	11010
roclor 1232	ND U	27 14	3.2	1	04/10/02	04/16/02	KWG0202317	emple of
roclor 1242	ND U		3.2	1	04/10/02	04/16/02	KWG0202317	
roclor 1248	ND U	14 14	3.2	M 1	04/10/02	04/16/02	KWG0202317	
roclor 1254	510	14	3.2 3.2	4 I	04/10/02	04/16/02	KWG0202317	
roclor 1260	ND U			1	04/10/02	04/16/02	KWG0202317	
	ND 0	14	3.2	1	04/10/02	04/16/02	KWG0202217	

irrogate Name	%Rec	Control Limits	Date Analyzed	Note
ecachlorobiphenyl	93	57-136	04/16/02	Acceptable

nments:

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Polychlorinated Biphenyls (PCBs)

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method:

EPA 3540C

Inalysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

unalyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction	
uroclor 1016	ND	IJ	12	2.8	1			Lot	Note
croclor 1221	ND	_	23		1	04/10/02	04/16/02	KWG0202317	
croclor 1232	ND	-	-	2.8	1	04/10/02	04/16/02	KWG0202317	
	- UNI	U	12	2.8	1	04/10/02	04/16/02	KWG0202317	
Goclor 1242	ND	U	12	2.8	1	04/10/02			
Joclor 1248	ND	U	12	2.8	1		04/16/02	KWG0202317	
Joclor 1254	ND		12		1	04/10/02	04/16/02	KWG0202317	
Joclor 1260				2.8	1	04/10/02	04/16/02	KWG0202317	
100101 1200	ND	U	12	2.8	1	04/10/02	04/16/02	KWG0202317	

urrogate Name	%Rec	Control Limits	Date Analyzed	Note	1
ecachlorobiphenyl	101	57-136	04/16/02	Acceptable	

ruments:

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002 Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name		Result	: Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenoi			U	700	65	10	04/10/02	04/12/02	KWG0202327	11000
1,3-Dichlorobenzene		ND		240	59	10	04/10/02	04/12/02	KWG0202327	
1,4-Dichlorobenzene	- 55	ND	U	240	55	10	04/10/02	04/12/02	KWG0202327	555.5
1,2-Dichlorobenzene		ND	U	240	57	10	04/10/02	04/12/02	KWG0202327	
Benzyl Alcohol		ND	Ŭ	240	65	10	04/10/02	04/12/02	KWG0202327	
2-Methylphenol		ND	U	240	56	10	04/10/02	04/12/02	KWG0202327	
Hexachloroethane		ND	U	240	54	10	04/10/02	04/12/02	KWG0202327	
4-Methylphenol†		ND	U	240	55	10	04/10/02	04/12/02	KWG0202327	
2,4-Dimethylphenol	2.2	ND	U	1200	360	10	04/10/02	04/12/02	KWG0202327	
Benzoic Acid		ND	U	4700	390	10	04/10/02	04/12/02	KWG0202327	*
1,2,4-Trichlorobenzene		ND	U	240	62	10	04/10/02	04/12/02	KWG0202327	•
Naphthalene		120	W	240	35	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobutadiene		ND	U	240	65	10	04/10/02	04/12/02	KWG0202327	
2-Methylnaphthalene		ND	U	240	70	10	04/10/02	04/12/02	KWG0202327	
Acenaphthylene		44	JD	240	38	10	04/10/02	04/12/02	KWG0202327	
Dimethyl Phthalate		ND	Ŭ	240	60	10	04/10/02	04/12/02	KWG0202327	
Acenaphthene		100	W	240	61	10	04/10/02	04/12/02	KWG0202327	
Dibenzofuran		98	JD	240	67	10	04/10/02	04/12/02	KWG0202327	
Fluorene		120	JD.	240	55	10	04/10/02	04/12/02	KWG0202327	- 6
Diethyl Phthalate		ND	U	240	71	10	04/10/02	04/12/02	KWG0202327	
N-Nitrosodiphenylamine		ND	U	240	57	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobenzene	_	ND	U	240	71	10	04/10/02	04/12/02	KWG0202327	
Pentachlorophenol	40	ND	·U	1200	53	10	04/10/02	04/12/02	KWG0202327	
Phenanthrene		1100	D	240	48	10	04/10/02	04/12/02	KWG0202327	
Anthracene		200	JD	240	54	10	04/10/02	04/12/02	KWG0202327	
Di-n-butyl Phthalate		ND	U	240	61	10	04/10/02	04/12/02	KWG0202327	
Fluoranthene		1600	D	240	56	10	04/10/02	04/12/02	KWG0202327	
?yrene		1300	D	240	60	10	04/10/02	04/12/02	KWG0202327	
3utyl Benzyl Phthalate		ND	U	240	32	10	04/10/02	04/12/02	KWG0202327	
3enz(a)anthracene		770	D	240	25	10	04/10/02	04/12/02	KWG0202327	
Chrysene		930	D	240	26	10	04/10/02	04/12/02	KWG0202327	
3is(2-ethylhexyl) Phthalate	0.5	ND	U	4700	2900	10	04/10/02	04/12/02	KWG0202327	
Di-n-octyl Phthalate		ND	U	240	38	10	04/10/02	04/12/02	KWG0202327	
										_

Comments:

rinted: 04/30/2002 09:17:23 J:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method: Analysis Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

8270C

Analyte Name		Result	Q Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzo(b)fluoranthene		1000	D	240	22	10	04/10/02	04/12/02	KWG0202327	
Benzo(k)fluoranthene	8,	340	D	240	38	10	04/10/02	04/12/02	KWG0202327	
Benzo(a)pyrene		720	D	240	23	10	04/10/02	04/12/02	KWG0202327	
Indeno(1,2,3-cd)pyrene		480	D	240	11	10	04/10/02	04/12/02	KWG0202327	
Dibenz(a,h)anthracene		140	JD	240	23	10	04/10/02	04/12/02	KWG0202327	
Benzo(g,h,i)perylene		430	D	240	24	10	04/10/02	04/12/02	KWG0202327	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	72	12-104	04/12/02	Acceptable	
Phenol-d6	87	38-116	04/12/02	Acceptable	
Nitrobenzene-d5	89	38-121	04/12/02	Acceptable	
2-Fluorobiphenyl	78	52-113	04/12/02	Acceptable	W.
2,4,6-Tribromophenol	62	34-141	04/12/02	Acceptable	
Ferphenyl-d14	82	47-152	04/12/02	Acceptable	

Inalyte Comments

I-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 04/30/2002 09:17:23 J:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038
Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method:
Analysis Method:

EPA 3541 8270C Units: ug/Kg Basis: Dry

Level: Low

				TO 0	.	_	121	
Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	73 JD	790	73	10	04/10/02	04/12/02	KWG0202327	
1,3-Dichlorobenzene	ND U	270	66	10	04/10/02	04/12/02	KWG0202327	
1,4-Dichlorobenzene	ND U	270	61	10	04/10/02	04/12/02	KWG0202327	
1,2-Dichlorobenzene	ND U	270	64	10	04/10/02	04/12/02	KWG0202327	
Benzyl Alcohol	ND U	270	72	10	04/10/02	04/12/02	KWG0202327	
2-Methylphenol	ND U	270	63	10	04/10/02	04/12/02	KWG0202327	
Hexachloroethane	ND U	270	61	10	04/10/02	04/12/02	KWG0202327	- 1
4-Methylphenol†	100 JD	270	61	10	04/10/02	04/12/02	KWG0202327	
2,4-Dimethylphenol	ND U	1400	400	10	04/10/02	04/12/02	KWG0202327	
Benzoic Acid	ND U	5300	430	10	04/10/02	04/12/02	KWG0202327	*
1,2,4-Trichlorobenzene	ND U	270	69	10	04/10/02	04/12/02	KWG0202327	
Naphthalene	57 JD	270	39	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobutadiene	ND U	270	72	10	04/10/02	04/12/02	KWG0202327	
2-Methylnaphthalene	ND U	270	79	10	04/10/02	04/12/02	KWG0202327	
Acenaphthylene	180 JD	270	43	10	04/10/02	04/12/02	KWG0202327	
Dimethyl Phthalate	ND U	270	68	10	04/10/02	04/12/02	KWG0202327	
Acenaphthene	190 JD	270	68	10	04/10/02	04/12/02	KWG0202327	
Dibenzofuran	110 JD	270	75	10	04/10/02	04/12/02	KWG0202327	
Fluorene	210 JD	270	62	10	04/10/02	04/12/02	KWG0202327	
Diethyl Phthalate	ND U	270	80	10	04/10/02	04/12/02	KWG0202327	
N-Nitrosodiphenylamine	ND U	270	64	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobenzene	ND U	270	79	10	04/10/02	04/12/02	KWG0202327	
Pentachlorophenol	190 JD	1400	60	10	04/10/02	04/12/02	KWG0202327	
Phenanthrene	2400 D	270	53	10	04/10/02	04/12/02	KWG0202327	
Anthracene	810 D	270	61	10	04/10/02	04/12/02	KWG0202327	_
Di-n-butyl Phthalate	ND U	270	68	10	04/10/02	04/12/02	KWG0202327	
Fluoranthene	5600 D	270	63	10	04/10/02	04/12/02	KWG0202327	
Pyrene	4500 D	270	68	10	04/10/02	04/12/02	KWG0202327	
Butyl Benzyl Phthalate	82 JD	270	36	10	04/10/02	04/12/02	KWG0202327	
Benz(a)anthracene	2900 D	270	28	10	04/10/02	04/12/02	KWG0202327	
Chrysene Bis(2-ethylhexyl) Phthalate	3600 D	270	29	10	04/10/02	04/12/02	KWG0202327	
Di-n-octyl Phthalate	ND U	5300	3300	10	04/10/02	04/12/02	KWG0202327	
Di-n-octyl Filulatate	ND U	270	43	10	04/10/02	04/12/02	KWG0202327	

Comments:

00845

Printed: 04/30/2002 09:17:31 U:\Stealth\Crystal.rpt\Form\Im.rpt

Merced

Form 1A - Organic

Page 1 of 2

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method: Analysis Method:

EPA 3541

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzo(b)fluoranthene	4000	D	270	24	10	04/10/02	04/12/02	KWG0202327	
Benzo(k)fluoranthene	1100	D	270	42	10	04/10/02	04/12/02	KWG0202327	
Benzo(a)pyrene	2600	D	270	25	10	04/10/02	04/12/02	KWG0202327	
Indeno(1,2,3-cd)pyrene	1700	D	270	13	10	04/10/02	04/12/02	KWG0202327	
Dibenz(a,h)anthracene	480	D	270	26	10	04/10/02	04/12/02	KWG0202327	
Benzo(g,h,i)perylene	1500	D	270	27	10	04/10/02	04/12/02	KWG0202327	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	87	12-104	04/12/02	Acceptable	
Phenol-d6	102	38-116	04/12/02	Acceptable	
Nitrobenzene-d5	114	38-121	04/12/02	Acceptable	
2-Fluorobiphenyl	88	52-113	04/12/02	Acceptable	
2,4,6-Tribromophenol	72	34-141	04/12/02	Acceptable	
Terphenyl-d14	107	47-152	04/12/02	Acceptable	, ·

Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 04/30/2002 09:17:31 U:\Stealth\Crystal.rpt\Formlrn.rpt

Merged

Form 1A - Organic

Page 2 of 2

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Dogult	0	MDI	MADY	Dilution		Date	Extraction	
Phenol	Result		MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
	ND		69	6.4	1	04/10/02	04/12/02	KWG0202327	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND		23	5.8	1	04/10/02	04/12/02	KWG0202327	
	ND		23	5.4	1	04/10/02	04/12/02	KWG0202327	
1,2-Dichlorobenzene	ND		23	5.6	1	04/10/02	04/12/02	KWG0202327	
Benzyl Alcohol	ND		23	6.4	1	04/10/02	04/12/02	KWG0202327	
2-Methylphenol	ND ND	U	23	5.5	1	04/10/02	04/12/02	KWG0202327	
Hexachloroethane	ND	U	23	5.3	1	04/10/02	04/12/02	KWG0202327	
4-Methylphenol†	ND	U	23	5.4	1	04/10/02	04/12/02	KWG0202327	
2,4-Dimethylphenol	ND	U	120	35	1	04/10/02	04/12/02	KWG0202327	
Benzoic Acid	ND	U	460	38	1	04/10/02	04/12/02	KWG0202327	*
1,2,4-Trichlorobenzene	ND	U	23	6.1	1	04/10/02	04/12/02	KWG0202327	
Naphthalene	ND	U	23	3.4	1	04/10/02	04/12/02	KWG0202327	
Hexachlorobutadiene	ND	Ū	23	6.4	1	04/10/02	04/12/02	KWG0202327	
2-Methylnaphthalene	ND	U	23	6.9	ī	04/10/02	04/12/02	KWG0202327	
Acenaphthylene	ND	U	23	3.7	ī	04/10/02	04/12/02	KWG0202327	
Dimethyl Phthalate	ND	U	23	5.9	1	04/10/02	04/12/02	KWG0202327	
Acenaphthene	ND		23	6.0	1	04/10/02	04/12/02	KWG0202327	
Dibenzofuran	ND		23	6.6	1	04/10/02	04/12/02	KWG0202327	
Fluorene	ND	U	23	5.4	1	04/10/02	04/12/02	KWG0202327	
Diethyl Phthalate	ND	U	23	7.0	î	04/10/02	04/12/02	KWG0202327	
N-Nitrosodiphenylamine	ND	U	23	5.6	1	04/10/02	04/12/02	KWG0202327	
Hexachlorobenzene	_ ND	U	23	7.0	1	04/10/02	04/12/02	KWG0202327	
Pentachlorophenol	ND	U	120	5.3	1	04/10/02	04/12/02	KWG0202327	
Phenanthrene	6.6	J	23	4.7	1	04/10/02	04/12/02	KWG0202327	
Anthracene	ND	U	23	5.4	1	04/10/02	04/12/02	KWG0202327	
Di-n-butyl Phthalate	ND	U	23	6.0	1	04/10/02	04/12/02	KWG0202327	
Fluoranthene	52		23	5.6	1	04/10/02	04/12/02	KWG0202327	
Pyrene	× 39		23	5.9	1	04/10/02	04/12/02	KWG0202327	
Butyl Benzyl Phthalate	ND	U	23	3.2	1	04/10/02	04/12/02	KWG0202327	
Benz(a)anthracene	17	J	· 23	2.5	³⁴ 1	04/10/02	04/12/02	KWG0202327	
Chrysene	27		23	2.5	1	04/10/02	04/12/02	KWG0202327	
Bis(2-ethylhexyl) Phthalate	ND	U	460	290	i	04/10/02	04/12/02	KWG0202327	
Di-n-octyl Phthalate	ND		23	3.8	î	04/10/02	04/12/02	KWG0202327	

Comments:

SunarCat Deference.

Printed: 04/30/2002 09:17:39 U:\Stealth\Crystal.rpt\Form\lm.rpt

Merged

Form 1A - Organic

1 of 2 Page

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method: Analysis Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzo(b)fluoranthene	30	23	2.2	1	04/10/02	04/12/02	KWG0202327	
Benzo(k)fluoranthene	11 J	23	3.7	1	04/10/02	04/12/02	KWG0202327	
Benzo(a)pyrene	14 Ј	23	2.2	1	04/10/02	04/12/02	KWG0202327	47.5
Indeno(1,2,3-cd)pyrene	8.8 J	23	1.1	1	04/10/02	04/12/02	KWG0202327	
Dibenz(a,h)anthracene	ND U	23	2.3	1	04/10/02	04/12/02	KWG0202327	
Benzo(g,h,i)perylene	8.4 J	23	2.4	1	04/10/02	04/12/02	KWG0202327	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	75	12-104	04/12/02	Acceptable	100
Phenol-d6	101	38-116	04/12/02	Acceptable	
Nitrobenzene-d5	101	38-121	04/12/02	Acceptable	
2-Fluorobiphenyl	93	52-113	04/12/02	Acceptable	
2,4,6-Tribromophenol	85	34-141	04/12/02	Acceptable	
Terphenyl-d14	107	47-152	04/12/02	Acceptable	

Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 04/30/2002 09:17:39 U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 2 of 2 SuperSet Reference: RR16441

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002 Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	5.9	0.79	1	04/08/02	04/08/02	KWG0202342	
Chloromethane	ND U	5.9	0.68	1	04/08/02	04/08/02	KWG0202342	
Vinyl Chloride	ND U	5.9	0.82	1	04/08/02	04/08/02	KWG0202342	
Bromomethane	ND U	5.9	1.1	ī	04/08/02	04/08/02	KWG0202342	
Chloroethane	ND U	5.9	0.67	1	04/08/02	04/08/02	KWG0202342	
Trichlorofluoromethane	ND U	5.9	0.79	1	04/08/02	04/08/02	KWG0202342	
Acetone	15 J	59	4.6	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethene	ND U	5.9	0.82	1	04/08/02	04/08/02	KWG0202342	
Carbon Disulfide	ND U	5.9	1.1	1	04/08/02	04/08/02	KWG0202342	
Methylene Chloride	3.2 J	12	0.54	1	04/08/02	04/08/02	KWG0202342	
rans-1,2-Dichloroethene	ND U	5.9	0.64	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethane	ND U	5.9	0.53	1	04/08/02	04/08/02	KWG0202342	
2-Butanone (MEK)	3.2 Ј	24	1.5	1	04/08/02	04/08/02	KWG0202342	200
2,2-Dichloropropane	ND U	5.9	0.70	1	04/08/02	04/08/02	KWG0202342	
cis-1,2-Dichloroethene	ND U	5.9	0.54	1	04/08/02	04/08/02	KWG0202342	
Chloroform	ND U	5.9	0.49	1	04/08/02	04/08/02	KWG0202342	
3romochloromethane	ND U	5.9	0.54	1	04/08/02	04/08/02	KWG0202342	
I,1,1-Trichloroethane (TCA)	ND U	5.9	0.53	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloropropene	ND U	5.9	0.66	1	04/08/02	04/08/02	KWG0202342	·
Carbon Tetrachloride	ND U	5.9	0.72	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloroethane (EDC)	ND U	5.9	0.48	1	04/08/02	04/08/02	KWG0202342	
3enzene	ND U	5.9	0.52	1	04/08/02	04/08/02	KWG0202342	
Trichloroethene (TCE)	ND U	5.9	0.57	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloropropane	ND U	5.9	0.47	1	04/08/02	04/08/02	KWG0202342	
3romodichloromethane	ND U	5.9	0.47	1	04/08/02	04/08/02	KWG0202342	
Dibromomethane	ND U	5.9	0.46	1	04/08/02	04/08/02	KWG0202342	
2-Hexanone	U QN	24	1.8	1 %	04/08/02	04/08/02	KWG0202342	
cis-1,3-Dichloropropene	ND U	5.9	0.42	1	04/08/02	04/08/02	KWG0202342	
Γoluene	ND U	5.9	0.50	1	04/08/02	04/08/02	KWG0202342	
rans-1,3-Dichloropropene	ND U	5.9	0.38	1	04/08/02	04/08/02	KWG0202342	
1,1,2-Trichloroethane	ND U	5.9	0.53	1	04/08/02	04/08/02	KWG0202342	¥.
i-Methyl-2-pentanone (MIBK)	ND U	24	1.5	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichloropropane	ND U	5.9	0.37	1	04/08/02	04/08/02	KWG0202342	

Comments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

	2.6			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND U	5.9	0.57	1	04/08/02	04/08/02	KWG0202342	•
Dibromochloromethane	ND U	5.9	0.49	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromoethane (EDB)	ND U	24	0.58	1	04/08/02	04/08/02	KWG0202342	
Chlorobenzene	ND U	5.9	0.66	1	04/08/02	04/08/02	KWG0202342	
1,1,1,2-Tetrachloroethane	ND U	5.9	0.57	1	04/08/02	04/08/02	KWG0202342	
Ethylbenzene	ND U	5.9	0.64	· 1	04/08/02	04/08/02	KWG0202342	
m,p-Xylenes	ND U	5.9	1.3	1	04/08/02	04/08/02	KWG0202342	
o-Xylene	ND U	5.9	0.72	1	04/08/02	04/08/02	KWG0202342	
Styrene	ND U	5.9	0.73	1	04/08/02	04/08/02	KWG0202342	
Bromoform	ND U	5.9	0.50	1	04/08/02	04/08/02	KWG0202342	
lsopropylbenzene	ND U	24	0.66	1	04/08/02	04/08/02	KWG0202342	
1,1,2,2-Tetrachloroethane	ND U	5.9	0.60	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichloropropane	ND U	5.9	0.59	1	04/08/02	04/08/02	KWG0202342	
Bromobenzene	ND U	5.9	0.70	1	04/08/02	04/08/02	KWG0202342	
n-Propylbenzene	ND U	24	0.58	1	04/08/02	04/08/02	KWG0202342	
2-Chlorotoluene	ND U	24	0.68	1	04/08/02	04/08/02	KWG0202342	
4-Chlorotoluene	ND U	24	0.71	1	04/08/02	04/08/02	KWG0202342	
1,3,5-Trimethylbenzene	ND U	24	0.67	1	04/08/02	04/08/02	KWG0202342	
:ert-Butylbenzene	ND U	24	0.62	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trimethylbenzene	ND U	24	0.66	1 🟥	04/08/02	04/08/02	KWG0202342	
sec-Butylbenzene	U DN	24	0.71	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichlorobenzene	ND U	5.9	0.78	1	04/08/02	04/08/02	KWG0202342	
1-Isopropyltoluene	ND U	. 24	0.75	1	04/08/02	04/08/02	KWG0202342	
1,4-Dichlorobenzene	ND U	5.9	0.87	1	04/08/02	04/08/02	KWG0202342	
1-Butylbenzene	ND U	24	0.87	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichlorobenzene	ND U	5.9	0.76	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromo-3-chloropropane	U DN	24	0.62	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trichlorobenzene	ND U	24	0.73	1	04/08/02	04/08/02	KWG0202342	200
1,2,3-Trichlorobenzene	ND U	24	0.92	1	04/08/02	04/08/02	KWG0202342	
Naphthalene	ND U	24	0.88	1	04/08/02	04/08/02	KWG0202342	
Hexachlorobutadiene	ND U	24	0.78	1	04/08/02	04/08/02	- KWG0202342	

Comments:

Consecst Deferences

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Units: ug/Kg Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	4 3
Dibromofluoromethane	109	75-132	04/08/02	Acceptable	
Toluene-d8	111	85-109	04/08/02	Outside Control Limits	
4-Bromofluorobenzene	116	49-131	04/08/02	Acceptable	3

Comments:

Printed: 04/18/2002 09:35:39 U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 3 of 3

SunerCar Reference.

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analuta Nama	75. 1. 6			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	6.6	0.89	1	04/08/02	04/08/02	KWG0202342	
Chloromethane	ND U	6.6	0.77	1	04/08/02	04/08/02	KWG0202342	
Vinyl Chloride	ND U	6.6	0.92	1	04/08/02	04/08/02	KWG0202342	
Bromomethane	ND U	6.6	1.2	1	04/08/02	04/08/02	KWG0202342	
Chloroethane	ND U	6.6	0.75	1	04/08/02	04/08/02	KWG0202342	
Trichlorofluoromethane	ND U	6.6	0.89	1	04/08/02	04/08/02	KWG0202342	
Acetone	ND U	66	5.1	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethene	ND U	6.6	0.92	1 10	04/08/02	04/08/02	KWG0202342	
Carbon Disulfide	ND U	6.6	1.2	1	04/08/02	04/08/02	KWG0202342	
Methylene Chloride	2.5 J	14	0.60	1	04/08/02	04/08/02	KWG0202342	
trans-1,2-Dichloroethene	ND U	6.6	0.71	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethane	ND U	6.6	0.59	1	04/08/02	04/08/02	KWG0202342	
2-Butanone (MEK)	ND U	27	1.7	1	04/08/02	04/08/02	KWG0202342	
2,2-Dichloropropane	ND U	6.6	0.78	1	04/08/02	04/08/02	KWG0202342	
cis-1,2-Dichloroethene	ND U	6.6	0.60	1	04/08/02	04/08/02	KWG0202342	
Chloroform	ND U	6.6	0.55	1	04/08/02	04/08/02	KWG0202342	
Bromochloromethane	ND U	6.6	0.60	1	04/08/02	04/08/02	KWG0202342	
1,1,1-Trichloroethane (TCA)	ND U	6.6	0.60	I	04/08/02	04/08/02	KWG0202342	
1,1-Dichloropropene	ND U	6.6	0.74	1	04/08/02	04/08/02	KWG0202342	
Carbon Tetrachloride	ND U	6.6	0.80	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloroethane (EDC)	ND U	6.6	0.54	1	04/08/02	04/08/02	KWG0202342	
Benzene	ND U	6.6	0.58	1	04/08/02	04/08/02	KWG0202342	
Trichloroethene (TCE)	ND U	6.6	0.64	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloropropane	ND U	6.6	0.52	1	04/08/02	04/08/02	KWG0202342	
Bromodichloromethane	ND U	6.6	0.53	1	04/08/02	04/08/02	KWG0202342	
Dibromomethane	ND U	6.6	0.52	1	04/08/02	04/08/02	KWG0202342	
2-Hexanone	ND U	27	2.0	1	04/08/02	04/08/02	KWG0202342	
cis-1,3-Dichloropropene	ND U	6.6	0.47	1	04/08/02	04/08/02	KWG0202342	12
Toluene	ND U	6.6	0.56	1	04/08/02	04/08/02	KWG0202342	
trans-1,3-Dichloropropene	ND U	6.6	0.43	1	04/08/02	04/08/02	KWG0202342	
1,1,2-Trichloroethane	ND U	6.6	0.59	1	04/08/02	04/08/02	KWG0202342	<u> </u>
4-Methyl-2-pentanone (MIBK)	ND U	27	1.7	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichloropropane	ND U	6.6	0.42	1	04/08/02	04/08/02	KWG0202342	

Comments:

Printed: 04/18/2002 09:35:47 U:\Stealth\Crvstal mt\Formi m mt

Form 1A - Organic

Page U1145

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND U	6.6	0.64	1	04/08/02	04/08/02	KWG0202342	
Dibromochloromethane	ND U	6.6	0.55	1	04/08/02	04/08/02	KWG0202342	202000
1,2-Dibromoethane (EDB)	ND U	27	0.65	1	04/08/02	04/08/02	KWG0202342	
Chlorobenzene	ND U	6.6	0.74	1	04/08/02	04/08/02	KWG0202342	
1,1,1,2-Tetrachloroethane	ND U	6.6	0.63	1	04/08/02	04/08/02	KWG0202342	
Ethylbenzene	ND U	6.6	0.72	1	04/08/02	04/08/02	KWG0202342	
m,p-Xylenes	ND U	6.6	1.4	1	04/08/02	04/08/02	KWG0202342	
o-Xylene	ND U	6.6	0.80	1	04/08/02	04/08/02	KWG0202342	
Styrene	ND U	6.6	0.82	1	04/08/02	04/08/02	KWG0202342	
Bromoform	ND U	6.6	0.56	1	04/08/02	04/08/02	KWG0202342	
Isopropylbenzene	ND U	27	0.74	1	04/08/02	04/08/02	KWG0202342	
1,1,2,2-Tetrachloroethane	ND U	6.6	0.68	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichloropropane	ND U	6.6	0.66	1	04/08/02	04/08/02	KWG0202342	
Bromobenzene	ND U	6.6	0.78	1	04/08/02	04/08/02	KWG0202342	
n-Propylbenzene	ND U	27	0.65	1	04/08/02	04/08/02	KWG0202342	
2-Chlorotoluene	ND U	27	0.76	1	04/08/02	04/08/02	KWG0202342	
4-Chlorotoluene	ND U	27	0.80	1	04/08/02	04/08/02	KWG0202342	
1,3,5-Trimethylbenzene	ND U	27	0.75	1	04/08/02	04/08/02	KWG0202342	
tert-Butylbenzene	ND U	27	0.69	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trimethylbenzene	ND U	27	0.74	1	04/08/02	04/08/02	KWG0202342	
sec-Butylbenzene	ND U	27	0.79	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichlorobenzene	ND U	6.6	0.88	1	04/08/02	04/08/02	KWG0202342	
4-Isopropyltoluene	ND, U	27	0.84	1	04/08/02	04/08/02	KWG0202342	
1,4-Dichlorobenzene	ND U	6.6	0.97	1	04/08/02	04/08/02	KWG0202342	
n-Butylbenzene	ND U	27	0.97	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichlorobenzene	ND U	6.6	0.85	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromo-3-chloropropane	ND U	27	0.69	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trichlorobenzene	ND U	27	0.81	1	04/08/02	04/08/02	KWG0202342	77
1,2,3-Trichlorobenzene	ND U	27	1.1	1	04/08/02	04/08/02	KWG0202342	
Naphthalene	ND U	27	0.98	1	04/08/02	04/08/02	KWG0202342	
Hexachlorobutadiene	ND U	27	0.87	1	04/08/02	04/08/02	KWG0202342	

Comments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Units: ug/Kg
Basis: Dry

Surrogate Name		%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	133	110	75-132	04/08/02	Acceptable
Toluene-d8		112	85-109	04/08/02	Outside Control Limits
4-Bromofluorobenzene		109	49-131	04/08/02	Acceptable

Comments:

01147

Printed: 04/18/2002 09:35:47 U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002 Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name: Lab Code:

ITZ 3

K2202038-003

Extraction Method:

Analysis Method:

EPA 5030A 8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	5.8	0.78	1	04/08/02	04/08/02	KWG0202342	
Chloromethane	ND U	5.8	0.67	1	04/08/02	04/08/02	KWG0202342	
Vinyl Chloride	ND U	5.8	0.81	1	04/08/02	04/08/02	KWG0202342	o Mary
Bromomethane	ND U	5.8	1.1	1	04/08/02	04/08/02	KWG0202342	
Chloroethane	ND U	5.8	0.66	1	04/08/02	04/08/02	KWG0202342	
Trichlorofluoromethane	ND U	5.8	0.78	1	04/08/02	04/08/02	KWG0202342	
Acetone	ND U	58	4.5	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethene	ND U	5.8	0.81	1	04/08/02	04/08/02	KWG0202342	
Carbon Disulfide	ND U	5.8	0.99	1	04/08/02	04/08/02	KWG0202342	
Methylene Chloride	0.80 Ј	12	0.53	1	04/08/02	04/08/02	KWG0202342	 -
rans-1,2-Dichloroethene	ND U	5.8	0.62	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethane	ND U	5.8	0.52	I	04/08/02	04/08/02	KWG0202342	
2-Butanone (MEK)	ND U	23	1.5	1	04/08/02	04/08/02	KWG0202342	
2,2-Dichloropropane	ND U	5.8	0.69	1	04/08/02	04/08/02	KWG0202342	
:is-1,2-Dichloroethene	ND U	5.8	0.53	1	04/08/02	04/08/02	KWG0202342	
Chloroform	ND U	5.8	0.49	1	04/08/02	04/08/02	KWG0202342	
3romochloromethane	ND U	5.8	0.53	1	04/08/02	04/08/02	KWG0202342	
I,1,1-Trichloroethane (TCA)	ND U	5.8	0.52	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloropropene	ND U	5.8	0.65	1	04/08/02	04/08/02	KWG0202342	
Carbon Tetrachloride	ND U	5.8	0.71	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloroethane (EDC)	ND U	5.8	0.47	1	04/08/02	04/08/02	KWG0202342	
3enzene	ND U	5.8	0.51	1	04/08/02	04/08/02	KWG0202342	
frichloroethene (TCE)	ND U	5.8	0.56	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloropropane	ND U	5.8	0.46	1	04/08/02	04/08/02	KWG0202342	
3romodichloromethane	ND U	5.8	0.46	1	04/08/02	04/08/02	KWG0202342	
Dibromomethane	ND U	5.8	0.46	1	04/08/02	04/08/02	KWG0202342	
?-Hexanone	ND U	23	1.8	1	04/08/02	04/08/02	KWG0202342	
:is-1,3-Dichloropropene	ND U	5.8	0.41	1	04/08/02	04/08/02	KWG0202342	100
l'oluene	ND U	5.8	0.49	1	04/08/02	04/08/02	KWG0202342	
rans-1,3-Dichloropropene	ND U	5.8	0.38	1	04/08/02	04/08/02	KWG0202342	
.,1,2-Trichloroethane	ND U	5.8	0.52	1	04/08/02	04/08/02	KWG0202342	
-Methyl-2-pentanone (MIBK)	ND U	23	1.5	1	04/08/02	04/08/02	KWG0202342	
,3-Dichloropropane	ND U	5.8	0.37	1 35	04/08/02	04/08/02	KWG0202342	

Comments:

'rinted: 04/18/2002 09:35:54 I;\Stealth\Crystal mr\Form\m mt

Form 1A - Organic

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND U	5.8	0.56	1 a	04/08/02	04/08/02	KWG0202342	11010
Dibromochloromethane	ND U	5.8	0.48	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromoethane (EDB)	ט מא	23	0.57	1	04/08/02	04/08/02	KWG0202342	
Chlorobenzene	ND U	5.8	0.65	1	04/08/02	04/08/02	KWG0202342	
1,1,1,2-Tetrachloroethane	ND U	5.8	0.56	1	04/08/02	04/08/02	KWG0202342	
Ethylbenzene	ND U	5.8	0.63	1	04/08/02	04/08/02	KWG0202342	
m,p-Xylenes	ND U	5.8	1.2	1	04/08/02	04/08/02	KWG0202342	
o-Xylene	ND U	5.8	0.70	1	04/08/02	04/08/02	KWG0202342	
Styrene	ND U	5.8	0.72	1	04/08/02	04/08/02	KWG0202342	
Bromoform	ND U	5.8	0.50	1	04/08/02	04/08/02	KWG0202342	
Isopropylbenzene	ND U	23	0.65	1	04/08/02	04/08/02	KWG0202342	
1,1,2,2-Tetrachloroethane	ND U	5.8	0.59	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichloropropane	ND U	5.8	0.58	i	04/08/02	04/08/02	KWG0202342	
Bromobenzene	ND U	5.8	0.69	1	04/08/02	04/08/02	KWG0202342	
n-Propylbenzene	ND U	23	0.57	1	04/08/02	04/08/02	KWG0202342	
2-Chlorotoluene	ND U	23	0.66	1	04/08/02	04/08/02	KWG0202342	
4-Chlorotoluene	ND U	23	0.70	1	04/08/02	04/08/02	KWG0202342	
1,3,5-Trimethylbenzene	ND U	23	0.66	1	04/08/02	04/08/02	KWG0202342	
tert-Butylbenzene	ND U	23	0.61	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trimethylbenzene	ND U	23	0.65	1	04/08/02	04/08/02	KWG0202342	
sec-Butylbenzene	ND U	23	0.69	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichlorobenzene	ND U	5.8	0.77	1	04/08/02	04/08/02	KWG0202342	
4-Isopropyltoluene	ND U	23	0.74	1	04/08/02	04/08/02	KWG0202342	
1,4-Dichlorobenzene	ND U	5.8	0.85	1	04/08/02	04/08/02	KWG0202342	
n-Butylbenzene	ND U	23	0.85	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichlorobenzene	ND U	5.8	0.75	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromo-3-chloropropane	ND U	23	0.61	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trichlorobenzene	ND U	23	0.71	1	04/08/02	04/08/02	KWG0202342	ā
1,2,3-Trichlorobenzene	ND U	23	0.90	1	04/08/02	04/08/02	KWG0202342	
Naphthalene	ND U	23	0.86	1	04/08/02	04/08/02	KWG0202342	
Hexachlorobutadiene	ND U	23	0.76	1	04/08/02	04/08/02	KWG0202342	

Comments:

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ.3

Lab Code:

K2202038-003

Units: ug/Kg Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	态
Dibromofluoromethane Toluene-d8	112 115	75-132 85-109	04/08/02 04/08/02	Acceptable Outside Control Limits	-
4-Bromofluorobenzene	119	49-131	04/08/02	Acceptable	

Comments:

'rinted: 04/18/2002 09:35:54 J:\Stealth\Crystal.rpt\Formlm.rpt

Merced

Form 1A - Organic

May 10, 2002

Service Request No: K2202038

Mark Musial Golder Associates, Inc. 1750 Abbott Road, Suite 200 Anchorage, AK 99507

Re: Sitka Dredge/023-5524

Dear Mark:

Enclosed are the additional pages for the sample(s) submitted to our laboratory on April 2, 2002. For your reference, these analyses have been assigned our service request number K2202038.

Enclosed are additional report pages for the Butyltin analysis. The case narrative has been updated to reflect the additional results.

Please call if you have any questions. My extension is 3372.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jim Smith

Project Chemist

JS/jeb

Page 1 of 191

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

Golder Associates, Inc.

Project: Sample Matrix: Sitka Dredge

Sediment

Service Request No.:

K2202038

Date Received:

4/2/02

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six samples were received for analysis at Columbia Analytical Services on 4/2/02. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Inorganic Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals Sediment

Relative Percent Difference (RPD) Exceptions:

The Relative Percent Differences (RPD) for the replicate analysis of Antimony and Cadmium in sample ITZ 1 (K2202038-001) were outside the normal CAS control limits. The variability in the results is attributed to the heterogeneous character these analytes of the sample. Mixing techniques within the scope of the EPA methodology were used, but were not sufficient for complete homogenization of this sample.

Matrix Spike (MS) Exceptions:

The low Matrix Spike (MS) recovery of Antimony is a result of a method defect in the EPA 3050B-digestion procedure that can be magnified by certain matrix components. The associated QA/QC (i.e. LCS) indicate the analysis was in control. No further corrective action was taken.

The low Matrix Spike (MS) recovery of Cadmium for sample ITZ 1 is a result of the heterogeneous character this analyte in the sample (see high RPD note above). The associated Laboratory Control Sample (LCS) was acceptable indicating the analysis was in control. No further corrective action was taken.

The Matrix Spike (MS) recovery criteria for Copper, Lead and Zinc for sample ITZ 1 are not applicable. The analyte concentrations in the sample were significantly higher than the added spike concentrations, preventing accurate evaluation of the spike recoveries.

No other anomalies associated with the analysis of these samples were observed.

Total Metals Tissue

No anomalies associated with the analysis of these samples were observed.

	0	**	1 1
Approved by	7>	Date	5/10/2

Organochlorine Pesticides by EPA Method 8081A

Method Reporting Limit (MRL) Exceptions:

The Method Reporting Limits have been elevated for 4,4'-DDE and 4,4'-DDT in samples ITZ 1 and ITZ2. The chromatogram indicated non-target components that prevented accurate quantification at the reporting limit. The results have been flagged to indicate the matrix interference. All efforts were made through various clean-up methods to reduce the matrix interference however the screening level of 6.9ppb for total DDT could not be met due to this interference.

No other anomalies associated with the analysis of these samples were observed.

PCB Aroclors by EPA Method 8082

No anomalies associated with the analysis of these samples were observed.

Organotin Compounds

Sample Notes and Discussion:

The initial porewater extraction did not yield enough water for porewater analysis. Per Golder the analysis for Organotin would be performed on the soil and reported on a total basis.

Holding Time Exceptions:

The analysis of samples ITZ 1, ITZ 2, ITZ 3, ITZ 3MSand ITZ 3DMS was initially performed within the recommended holding time. Re-analysis was required due to a QA/QC failure relating to surrogates and the Matrix Spikes. The QA/QC results for the re-analysis were within control criteria. The sample results from the re-analysis differ significantly from the initial analysis, indicating a potential quality problem with the initial sample data. The re-extract data has been reported.

No other anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID 1479: 2-Butanone (MEK), Tetrachloroethene (PCE) and sec-Butylbenzene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Surrogate Exceptions:

The upper control criterion was exceeded for the following surrogate(s) in samples ITZ 1, ITZ 2, ITZ 3 and MB KWG0202342-4: Toluene-d8. No target analytes were detected above the Method Reporting Limit in the samples. The error associated with an elevated recovery equates to a high bias. The quality of the sample data has not been significantly affected. No further corrective action was feasible.

The upper control criterion was exceeded for the following surrogate in ITZ 3MS KWG0202342-4, ITZ 3DMS KWG0202342-5, LCS KWG0202342-3: Toluene-d8. The associated matrix spike recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier has been flagged accordingly. No further corrective action was feasible.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL1435: Benzoic Acid, Pentachlorophenol, N-Nitrosodi-n-propylamine, and Hexachlorocyclopentadiene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative

Approved by	<i>»</i>	Date	5/	10 for
-------------	----------	------	----	--------

evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Matrix Spike (MS) Exceptions:

The Matrix Spike recovery of Phenol for sample ITZ 1DMS was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The matrix spike outlier does not indicate a significant data quality problem. No further corrective action was feasible.

The matrix spike recovery of Pentachlorophenol for sample ITZ 1MS/DMS was outside the lower control criteria because of suspected matrix interference. The sample was re-analyzed, and produced similar results. No recovery was detected in the spiked samples. The results indicate a potential low bias for this compound in this matrix. The results of the original analysis are reported.

The control criteria for the Matrix Spike recovery of Pyrene for sample ITZ 1MS/DMS is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Laboratory Control Sample (LCS) Exceptions:

The spike recovery of Benzoic Acid in the Duplicate Laboratory Control Sample (DLCS) KWG0202327-6 was outside the lower control criterion. The analyte in question was not detected in the associated field samples. The error associated with reduced recovery equates to a potential low bias. The recovery for this analyte was within control criterion in the LCS KWG0202327-6 with acceptable RPDs. The data has been flagged to indicate the low recovery.

Method Reporting Limit (MRL) Exceptions:

Sample(s) ITZ 1, ITZ 2, ITZ 3 required dilutions due the presence non-target analytes interfering with compounds of interest. The reporting limits have been elevated accordingly.

No other anomalies associated with the analysis of these samples were observed.

Date 5/10/2

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Service Request:

K2202038

Cover Page - Organic Analysis Data Package Butyltins

Sample Name	Lab Code	Date Collected	Date Received
ITZ 1	K2202038-001	04/01/2002	04/02/2002
ITZ 2	K2202038-002	04/01/2002	04/02/2002
ITZ 3	K2202038-003	04/01/2002	04/02/2002
ITZ 3MS	KWG0203101-1	04/01/2002	04/02/2002
ITZ 3DMS	KWG0203101-2	04/01/2002	04/02/2002

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Name: M. Manthe Title: Scientist

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Butyltins

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Units: ug/Kg

Basis: Dry

Extraction Method:

METHOD

Level: Low

Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tri-n-butyltin	11000 D	350	120	300	05/02/02	05/08/02	KWG0203101	*

^{*} See Case Narrative

Comments:

00008

Merged

Analytical Results

Client:

Golder Associates Inc. Sitka Dredge/023-5524

Project: Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Butyltins

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method:

METHOD

Analysis Method:

Krone

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tri-n-butyltin	13000 D	390	130	300	05/02/02	05/08/02	KWG0203101	*

* See Case Narrative

Comments:

RR16696

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Butyltins

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method:

METHOD

Analysis Method:

Krone

Units: ug/Kg

Basis: Dry

Level: Low

A N / MT	m 1: 0	3 CD 7	1007	Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tri-n-butyltin	1.1 J	1.2	0.37	1	05/02/02	05/07/02	KWG0203101	*

* See Case Narrative

Comments: