Golder Associates Inc.

1750 Abbott Road, Suite 200 Anchorage, AK USA 99507-3443 Telephone (907) 344-6001 Fax (907) 344-6011

June 3, 2002

023-5524

Alaska Department of Transportation & Public Facilities 6860 Glacier Highway Juneau, AK 99801

Attention: Mr. Jim Heumann

RE: RESULTS OF INTERTIDAL SEDIMENT SAMPLING AND ANALYSES PROPOSED SITKA FERRY TERMINAL EXPANSION, ALASKA

Dear Jim:

This letter presents the results of reconnaissance sampling and analysis of marine sediments from the intertidal zone of the Allen Marine Shipyard in Starrigavan Bay, Sitka, Alaska. Accompanying this letter are a CAD drawing (Figure 1) and photos illustrating the location from which the samples were obtained. Michael Kyte, Senior Marine Biologist with Golder Associates Inc., (Golder) took the photos during sampling.

1. INTRODUCTION

The Alaska Department of Transportation and Public Facilities (ADOT&PF) requested Golder to conduct a reconnaissance study on contamination levels in intertidal sediments at the Allen Marine Shipyard. The purpose of the study was to gather preliminary data at a location proposed for dredging and construction of a new Alaska Ferry terminal in Starrigavan Bay.

Golder Associates conducted the reconnaissance sampling of sediments at the same time soil sampling was conducted at the Allen Marine Shipyard. In addition, clam tissue samples were collected from the beach of an adjacent property at the request of ADOT&PF for the Alaska Department of Fish and Game. The results of these other studies are presented separately, as they were discrete tasks.

2. METHODS

Surficial sediments were collected by hand during a low tide. Three locations were sampled: two within the boundaries of the shipyard's marine railway ("ITZ 1" and "ITZ 2") and another ("ITZ 3") on a berm seaward of the shipyard (Figure 1 and photos).

A handheld laser range finder was used to determine distances of the sample locations from known survey control points. Table 1 presents both the locations and measurements.

TABLE 1
Intertidal Sediment Sample Distances from Known Points

Description	Distance from DOLPHIN (ft)	Distance from CAP (ft)	Approximate Tide Level (ft relative to MLLW)
ITZ 1	348	215	-0.9 to -0.0
ITZ 2	342	166	-0.9 to -0.0
ITZ 3	86	247	-1.2

At all locations sediments were sampled to a depth of approximately 4 to 6 inches using stainless steel spoons that had been suitably cleaned. Clean stainless steel bowls and spoons were used to homogenize the sediments and place portions in sample containers supplied by Columbia Analytical Services of Kelso, Washington. Puget Sound Estuary Program analysis methods and protocols were used.

The list of analytes was compiled from the U.S. Army Corps of Engineers (Corps) Puget Sound Dredge Disposal Analysis (PSDDA) Program User Manual¹ and the Washington State Department of Ecology (WDE) Sediment Management Standards (SMS)². Screening levels established by the Corps PSDDA Program and WDE SMS were used to interpret the results. The sediment quality standards listed in the PSDDA Program User Manual are also used in the Lower Columbia Dredged Material Evaluation Framework (LCDMEF).³

3. RESULTS AND DISCUSSION

Physical characteristics of the three sediments samples are presented in Table 2. Coarse sediments dominated by sands and gravel, especially in sample ITZ 3, characterized all three samples. Samples ITZ 1 and ITZ 2 also contained high concentrations of sand blasting grit. Notably, all three samples had approximately equal amounts of fine sediments, silt and clay. An important difference among the samples was that ITZ 1 and ITZ 2 had

¹ U.S. Army Corps of Engineers, Seattle District, U.S. Environmental Protection Agency, Region 10; Washington Department of Natural Resources; Washington Department of Ecology. 2000. Dredged Material Evaluation and Disposal Procedures. A Users Manual for the Puget Sound Dredged Disposal Analysis Program. http://www.nws.usace.army.mil/publicmenu/Attachments/UMPDF.pdf

² Washington Department of Ecology. 1995. Washington Administrative Code. Chapter 173-204, Sediment Management Standards. http://www.ecy.wa.gov/biblio/wac173204.html.

³ U.S. Army Corps of Engineers and the U.S. Environmental Protection Agency. 1998. Dredged Material Evaluation Framework. Lower Columbia River Management Area. http://www.nwp.usace.army.mil/ec/h/hr/Final/

relatively normal concentrations of total organic carbon (TOC), while ITZ 3 was unusually high⁴.

TABLE 2
Physical Characteristics of Intertidal Sediment Samples

	ITZ 1	ITZ 2	ITZ 3
Grain Size (percent)			
Gravel	6.45	31.1	44 .7
Sand			
(0.064 to 2 mm)	93.7	64.1	57.1
Silt and clay	3.5	3	3.7
Total Volatile Solids			
(percent)	1.09	2.87	0.74
Total Organic Carbon			
(percent)	0.33	0.68	5.65

The physical differences among the samples were also reflected in the chemical test results (Table 3). Both samples from Allen Marine Shipyard marine railway (ITZ 1 and ITZ 2) contained high concentrations of metals, tributyl tin (TBT), and petroleum aromatic hydrocarbons (PAHs). In addition, these samples contained relatively high levels of polychlorinated biphenyls (PCBs). The metal concentrations were expected to be high because of the presence of used sand blasting grit indicating the deposition of antifouling paint debris containing copper, arsenic, lead, and TBT.

When the test results were compared to Washington SMS and Corps PSDDA sediment standards, several chemicals exceeded screening levels (Table 3). A summary of results from the sample with the highest exceedances is listed below in Table 3. A complete listing of laboratory test results is presented in Attachment 1 (Table A-1), along with pertinent pages from the laboratory test report.

⁴ Washington Department of Ecology. 1995. WAC Chapter 173-204-412, Table 1.

TABLE 3
Summary of Sediment Chemical Exceedances

Chemical	Sample with the Highest Concentration	Concentration (ppm)	Screening	Levels (ppm)*
			SMS (ppm dry weight)	PSDDA (ppm dry weight)
Arsenic	ITZ 1	1,060	57	57
Copper	ITZ 1	2,940	390	390
Lead	ITZ 2	1,910	450	4 50
Zinc	ITZ 1	7,590	410	410
TBT	ITZ 2	13		0.00015
		(ppm OC/ ppm dry weight)**	(ppm OC)	(ppm dry weight)
Total LPAH	ITZ 2	565.7/3.8	370	5.2
Total HPAH	ITZ 2	4,114/27.9	960	12
Total PCBs	ITZ 2	75.0/0.51	12	0.13

Notes:

The concentrations of the metals including TBT exceeded not only the screening levels, but also, in some cases, the PSDDA "bioaccumulation trigger" and "maximum" levels. Exceeding the bioaccumulation trigger levels requires the dredging proponent to conduct specialized biological testing to determine the bioaccumulation potential and effects of the sediment proposed as dredge material.

As seen in both Table 3 and the attachments, the samples from the Allen Marine Shipyard were highly contaminated with metals in addition to low molecular weight (LPAHs) and high molecular weight (HPAHs) PAHs. For the most part, it appeared that the highest concentrations of metals were on the south side of the railway (ITZ 1) while the organic contamination was highest on the north side (ITZ 2). This may have been due to

^{*} All concentrations have been converted to parts per million (ppm) (mg/kg) for this summary. Table 3 presents results in both ppm and parts per billion (ug/kg) according to the appropriate screening level and laboratory results.

^{**} SMS screening levels for organic chemicals are ppm organic carbon – normalized (ppm OC) and PSDDA screening levels are ppm dry weight. Thus, for organic chemicals, both the dry weight and normalized concentrations are listed.

procedures in the shipyard. The contamination was restricted to metals, PAHs, and PCBs with only a few other chemicals appearing in concentrations near detection limits.

Although nearby, the sample from the berm on the seaward side of the shipyard basin (ITZ 3) did not contain any exceedances of screening levels. Indeed, many of the chemicals found in the first two samples were not detected at this location.

4. ISSUES ASSOCIATED WITH PROPOSED DREDGING

If ADOT&PF proposed dredging the intertidal and subtidal portions of Allen Marine Shipyard to allow construction of a new ferry terminal, the Corps of Engineers would assess the suitability of the sediments in the proposed dredging prism for removal and disposal in open water. The Corps would use either the tiered decision process of the PSDDA program or the LCDMEF.

The LCDMEF specifies that materials consisting of at least 80 percent sand and/or gravel with less than 5 percent total volatile solids could be excluded from further testing. Thus, according to Tier 1 physical characteristics the intertidal and subtidal sediments could be suitable for dredging and disposal without further testing. However, the proximity of the proposed dredging site to the Allen Marine Shipyard, and the results of the reconnaissance sampling reported in this letter would move the site ranking to Tier II or higher of either PSDDA or LCDMEF.

We expect that the proposed dredge materials would be ranked as "high" because of the several exceedances of PSDDA sediment quality standards. This ranking would require extensive sampling and chemical and bioassay testing to define the risk that would be presented by these sediments if they were dredged. It is likely that the sediments would fail bioassay tests because of the known toxicity⁵ of arsenic, lead, copper, and TBT to marine organisms, especially shellfish larvae, which are used for bioassays. The Corps would then likely require that all dredged materials be confined in an upland disposal facility.

Obtaining a permit for dredging would likely require a cleanup or remediation plan for the contaminated sediments. In addition, a mitigation plan would be required for the loss of eelgrass in the proposed dredge area⁶. Thus, the proposed site for the new ferry terminal is problematic because of natural (eelgrass) and anthropogenic environmental factors.

⁵ Bryan, G.W. and J. Langston. 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution 76:89-131.

⁶ Golder Associates, May 15, 2002, Letter titled "A Preliminary Eelgrass Survey at the Sitka Alaska Ferry Terminal".

5. CLOSURE

Thank you for this opportunity to assist ADOT&PF in the selection of a site for a new ferry terminal. We hope the results presented in this letter are helpful. Please feel free to contact Michael Kyte by phone (425) 883-0777 or email (<u>mkyte@golder.com</u>) with any questions or comments on this reconnaissance sediment investigation.

Sincerely,

Mark R. Musial, P.E.

Associate and Project Manager

Michael A. Kyte

Senior Marine Biologist

Attachments: Figure 1 -Sitka Alternate 3A-Revised

Photo Log (Photographs 1-3)

Attachment 1 - Laboratory Testing Results

Table A-1 -Summary of Laboratory Testing, Chemical Characteristics of

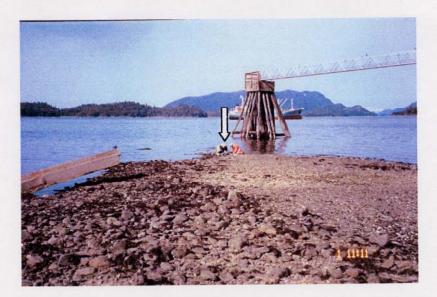

Intertidal Sediment Samples for Starrigavin Bay, Alaska

Summary Pages from Laboratory Test Report

 $\label{eq:c:condition} C:\02-2q\jobs\023-5524\label{eq:c:condition} It_Final.doc$

235524w001100Z0235524001002F04.dwg|5-7-2.7:Z7bc-fi:-

Golder Associates



Photograph 1. Sampling at the location of ITZ 1. Note the proximity of the Allen Marine Shipyard railway.

Photograph 2. The location of ITZ 2 on the north side of the Allen Marine Shipyard railway.

Note: Photographs illustrate conditions and locations for sampling of intertidal sediments at the Allen Marine Shipyard, April 1, 2002.

Photograph 3. Location of sample ITZ 3 on the berm seaward of the Allen Marine Shipyard basin and adjacent to the Alaska Ferry Terminal.

Note: Photographs illustrate conditions and locations for sampling of intertidal sediments at the Allen Marine Shipyard, April 1, 2002.

Laboratory Testing Results

ATTACHMENT 1

TABLE A-1
Summary of Laboratory Testing
Chemical Characteristics of Intertidal Sediment Samples from Starrigavan Bay, Alaska

Allen Marine Intertidal Sediment Samples

	Maximum Level	3		200	700	14	=	1,300	1,200	8	370	80	3,800		<u>-</u>	;	7.1	/kg dry ted	000'6	2,400	1,300	2,000	3,600	1,000	3,000	006'1	000'6	30,000	6,000	5,100	1,000	006'6
PSDDA	Bioaccum. Ma Trigger										370 4		.,		0.15	:		tions are ug. other indica	ni 2				=					ō		=		_ _
PS	Screening Bio Level T										140	6.1			0.15			PSSDA concentrations are ug/kg dry weight unless other indicated	5,200	2,100	260	200	540	1,500	960	670		1,700	2,600	1,300	1,400	3,200
	Washington Sediment Quality So Standards 2	25.00		ᆯ	22	5.1	260	390	450	0.41	ㄹ	6.1	410		ᄅ	:	()	carbon (ppm PS carbon)										160				230
m	mg/kg organic carbon (ppm	(100		:	:	:	:	:	:	:	:	:	:		:	:			0.12	QN	Q	Q	Q	0.12	Q	Q	3.67	0.92	69.0	0.30	0.48	0.73
211	dry weight			0.18	5.1	0.05	66.5	13.7	4.26	0.01	29	0.03	58.2		1.1	0.0565			9.9	QN	Q	QN Q	Q	9.9	Q	Q	207.2	52	36	17	27	41
2	mg/kg organic carbon (ppm carbon)			:	:	:	:	:	;	:	:	:	:		:	:			565.7	8.4	26.5	27.9	30.9	352.9	119.1	QN	4114.7	823.5	661.8	426.5	529.4	750.0
ITZ 2	dry weight	ally maigin		114	963	3.08	83.1	2100	1910	0.07	32.9	1.29	4860		13000	0.0068			3847	57	180	190	210	2400	810	Q	27980	2600	4500	2900	3600	5100
1	mg/kg organic carbon (ppm carbon)			:	:	:	:	:	:	:	:	:	:		:	:			510.3	36.4	13.3	30.3	36.4	333.3	90.9	Q	2336.4	484.8	393.9	233.3	281.8	406.1
211	weight			58.9	1060	8.14	75.8	2940	833	0.02	27	1.69	7590		11000	0.0033			1684	120	4	100	120	1100	200	ND	7710	1600	1300	770	930	1340
	CAS Number ¹ dry			7440.36-0	7440-38-2	7440-43-9	7440-47-3	7440.50.8	7439-92-1	7439-97-6	7440-02-0	7440.22.4	7440-66-6		56573-85-4				5	91.20.3	208-96-8	83-32-9	86-73-7	85.01.8	120.12.7	91-57-6	<u>-</u>	206-44-0	129.00.0	56-55-3	218.01.9	205-99-2, 207-08-9
	CHEMICAL	1001110	METALS (mg/kg)	Antimony	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Silver	Zinc	ORGANOMETALLIC COMPOUNDS (ug/L)	Tributyltin ⁵ (interstitial water)	Total Organic Carbon (decimal percent)		ORGANICS (ug/kg)	Total LPAH	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	2-Methylnaphthalene	Total HPAH	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzofluoranthenes (b+k)

TABLE A-1
Summary of Laboratory Testing
Chemical Characteristics of Intertidal Sediment Samples from Starrigavan Bay, Alaska

Allen Marine Intertidal Sediment Samples

	E																															
	Maximum Level	3.600	4 400	5 5	3,200	7	120	110	64	230	=	=	=	Ξ	Ξ	2			77	3,600	210	069	į	9/10	760	1,700	14,000	270	130	1,600	210	20
PSDDA	Bloaccum. Trigger	3.600		: 72	: Z	1.241	120 4	37	Ξ	168	1,400 3		10,200	. =	13,870	TE .	ug/kg dry weight	876	Ξ	Ξ	Ξ	504		=	=	ㅁ	10,220	212	130 4	1,168	102	27
	Screening Level	1.600	600	230	670	170	110	32	31	22	1.400	1,200	5,100	970	8,300	6,200	_	450	63	670	59	400	{	2	650	540	1,400	59	28	160	57	10
	Washington Sediment Quality Standards ²	66	1 7 2	. 2	31	=	3.1	2.3	0.81	0.38	53	61	220	4.9	47	58	ug/kg dry weight	420	63	670	59	360		<u>ر</u>	650	156	æ	3.9	116	급	=	72
E Z11	mg/kg organic carbon (ppm carbon)	0.25	0.16	QN	0.15	QN	QN	Q.	ð	ND	QN	QN	QN	QN	QN	Q.		QN	QN	N	QN	2		2	Q	Q	QN	QN	QN	S	Q	Q
12	dry weight	14	00	Q	8.4	Q	QN	Q	QN N	Q.	QN	QN	Q	QN	QN	QN.		QN	Q	Q	Q	Q		2 :	Q	QN	Q	Q	QN	QN	£	ND
172.2	mg/kg organic carbon (ppm carbon)	382.4	250.0	70.6	220.6	Q	QN	ON	QN	8	Q	QN	Q	12.1	ð	9		10.7	9	14.7	Q.	27.9	2	2 :	QN	16.2	Q	9	2	Q	QN	QN
211	dry weight	2600	1700	480	1500	QN	QN	QN	QN	Q.	ND	ND ND	ON	82	Q	QN		73	Q.	100	Q	190	4	Z :	ON.	110	Q	Q	Q	Q	QN	Q
ITZ 1	mg/kg organic carbon (ppm carbon)	218.2	145.5	42.4	130.3	Q	₽	Q.	QN	Q	ON.	ջ	QN	QN	Q	Q		Q.	Q	Q	ΔN	Q	4	2 :	2	29.7	Q	Ñ	QN	Q.	S	ND
Ħ	CAS Number ¹ dry weight	720	480	140	430	Q.	QN	Q	Q	N O	S	Q	QN	Q.	ND	ND		Q	ND	Q	2	9	4	2 9	2	88	Q	QN	ND	오	Q	QN
	CAS Number ¹	50.32.8	193-39-5	53.70.3	191-24-2	541.73.1	106.46-7	95-50-1	120-82-1	118.74-1	131-11-3	84-66-2	84-74-2	85.68-7	117-81-7	117-84-0		108-95-2	95.48-7	106.44.5	105-67-9	87-86-5	0.19.00.0	9.10.01	02-82-0	132.64-9	67.72.1	87-68-3	86-30-6	79-01-6	127.18.4	100.41.4
	CHEMICAL	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene Chlorinated Hudrocerbone	1,3-Dichlorobenzene	1,4 Dichlorobenzene	1,2-Dichlorobenzene	1,2,4 Trichlorobenzene	Hexachlorobenzene (HCB) Phthalates	Dimethyl phthalate	Diethyl phthalate	Di-n-butyl phthalate	Butyl benzyl phthalate	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Phenols (ug/kg dry weight)	Phenol	2-Methylphenoł	4-Methylphenol	2,4-Dimethylphenol	Pentachlorophenol	Depart alcohol		Delizora acid	Dibenzofuran	Hexachloroethane	Hexachlorobutadlene	N-Nitrosodiphenylamine Volatile Organics	Trichloroethene	Tetrachloroethene	Ethylbenzene

Chemical Characteristics of Intertidal Sediment Samples from Starrigavan Bay, Alaska Summary of Laboratory Testing TABLE A-1

Allen Marine Intertidal Sediment Samples

		_	172 1	211	172.2	1	1723			PSDDA	
CHEMICAL	CAS . Number ¹ dry	dry weight	mg/kg organic carbon (ppm welght carbon) dry weight	dry weight	mg/kg organic carbon (ppm carbon)	dry weight	mg/kg organic carbon (ppm carbon)	Washington Sediment Quality Standards ²	Screening Level	Bioaccum, Trigger	Maximum Level
Total Xylene (sum of o., m., p.)	95-47-6										
	106-42-3	Q.	QN	QN	Q	QN	S	Ξ	40	ī	160
Pesticides											
	72.54.8										
Total DDT(sum of 4,4'-DDD, 4,4'-DDE	72-55-9										
and 4,4'-DDT)	50-29-3	Q	QN	QN	ND	QN	QN	Ξ	7	20	69
Aldrin	309-00-2	2	Q	Q.	QN.	Q	QN	=	10	37	; =
alpha-Chlordane	12789-03-6	Q	QN	QN	QN	QN	QN	72	10	37	Ξ
Dieldrin		QN	2	9	Q	2	QN	æ	10	37	=
Heptachlor	76-44-8	S	Q	Q	QN QN	QV	QN	=	10	37	=
gamma-BHC (Lindane)	58-89-9	Q	S	Q	Q	QN	Ñ	ᆮ			
Total PCBs [ug/kg dry weight (ppm											
carbon)	ᆫ	961	57.6	510	75.0	₽	Q	126	130	æ	3,100

nl' = not listed in the Indicated document

ND" = not detected
(1) Note: Washington SQS Guidelines for non-ionic chemicals are carbon-normalized
(2) Chemical Abstract Service Registry Number.
(3) BT adjusted to new SL for antimony, silver and dimethylphthalate.
(4) BT adjusted to new ML for nickel, berizo(a)pyrene, 1,4-dichlorobenzene and N-nitrosodiphenylamine.
(5) See Testing, Reporting, and Evaluation of Tributyltin Data in PSDDA and SMS Programs at http://www.nws.usace.army.mil/dmmo/8th_arm/tbt_96.htm
(6) This value is normalized to total organic carbon, and is expressed in mg/kg TOC.

May 3, 2002

Service Request No: K2202038

Mark Musial Golder Associates, Inc. 1750 Abbott Road, Suite 200 Anchorage, AK 99507

Re: Sitka Dredge/023-5524

Dear Mark:

Enclosed are the results of the sample(s) submitted to our laboratory on April 2, 2002. For your reference, these analyses have been assigned our service request number K2202038.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3372.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jing Smith

Project Chemist

JS/afs

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the clution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H
 The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y
 The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

Golder Associates, Inc.

Project: Sample Matrix: Sitka Dredge Sediment Service Request No.:

K2202038

Date Received:

4/2/02

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six samples were received for analysis at Columbia Analytical Services on 4/2/02. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Inorganic Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals Sediment

Relative Percent Difference (RPD) Exceptions:

The Relative Percent Differences (RPD) for the replicate analysis of Antimony and Cadmium in sample ITZ 1 (K2202038-001) were outside the normal CAS control limits. The variability in the results is attributed to the heterogeneous character these analytes of the sample. Mixing techniques within the scope of the EPA methodology were used, but were not sufficient for complete homogenization of this sample.

Matrix Spike (MS) Exceptions:

The low Matrix Spike (MS) recovery of Antimony is a result of a method defect in the EPA 3050B-digestion procedure that can be magnified by certain matrix components. The associated QA/QC (i.e. LCS) indicate the analysis was in control. No further corrective action was taken.

The low Matrix Spike (MS) recovery of Cadmium for sample ITZ 1 is a result of the heterogeneous character this analyte in the sample (see high RPD note above). The associated Laboratory Control Sample (LCS) was acceptable indicating the analysis was in control. No further corrective action was taken.

The Matrix Spike (MS) recovery criteria for Copper, Lead and Zinc for sample ITZ 1 are not applicable. The analyte concentrations in the sample were significantly higher than the added spike concentrations, preventing accurate evaluation of the spike recoveries.

No other anomalies associated with the analysis of these samples were observed.

Total Metals Tissue

No anomalies associated with the analysis of these samples were observed.

Organochlorine Pesticides by EPA Method 8081A

Method Reporting Limit (MRL) Exceptions:

The Method Reporting Limits have been elevated for 4,4'-DDE and 4,4'-DDT in samples ITZ 1 and ITZ2. The chromatogram indicated non-target components that prevented accurate quantification at the reporting limit. The results have been flagged to indicate the matrix interference. All efforts were made through various clean-up methods to reduce the matrix interference however the screening level of 6.9ppb for total DDT could not be met due to this interference.

No other anomalies associated with the analysis of these samples were observed.

PCB Aroclors by EPA Method 8082

No anomalies associated with the analysis of these samples were observed.

Organotin Compounds

Sample Notes and Discussion:

The initial porewater extraction did not yield enough water for porewater analysis. Per Golder the analysis for Organotin would be performed on the soil and reported on a total basis.

Results for the Organotins will be reported at a later date.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID 1479: 2-Butanone (MEK), Tetrachloroethene (PCE) and sec-Butylbenzene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Surrogate Exceptions:

The upper control criterion was exceeded for the following surrogate(s) in samples ITZ 1, ITZ 2, ITZ 3 and MB KWG0202342-4: Toluene-d8. No target analytes were detected above the Method Reporting Limit in the samples. The error associated with an elevated recovery equates to a high bias. The quality of the sample data has not been significantly affected. No further corrective action was feasible.

The upper control criterion was exceeded for the following surrogate in ITZ 3MS KWG0202342-4, ITZ 3DMS KWG0202342-5, LCS KWG0202342-3: Toluene-d8. The associated matrix spike recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier has been flagged accordingly. No further corrective action was feasible.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL1435: Benzoic Acid, Pentachlorophenol, N-Nitrosodi-n-propylamine, and Hexachlorocyclopentadiene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Matrix Spike (MS) Exceptions:

The Matrix Spike recovery of Phenol for sample ITZ 1DMS was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The matrix spike outlier does not indicate a significant data quality problem. No further corrective action was feasible.

Approved by	9	_Date	/a

The matrix spike recovery of Pentachlorophenol for sample ITZ 1MS/DMS was outside the lower control criteria because of suspected matrix interference. The sample was re-analyzed, and produced similar results. No recovery was detected in the spiked samples. The results indicate a potential low bias for this compound in this matrix. The results of the original analysis are reported.

The control criteria for the Matrix Spike recovery of Pyrene for sample ITZ 1MS/DMS is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Laboratory Control Sample (LCS) Exceptions:

The spike recovery of Benzoic Acid in the Duplicate Laboratory Control Sample (DLCS) KWG0202327-6 was outside the lower control criterion. The analyte in question was not detected in the associated field samples. The error associated with reduced recovery equates to a potential low bias. The recovery for this analyte was within control criterion in the LCS KWG0202327-6 with acceptable RPDs. The data has been flagged to indicate the low recovery.

Method Reporting Limit (MRL) Exceptions:

Sample(s) ITZ 1, ITZ 2, ITZ 3 required dilutions due the presence non-target analytes interfering with compounds of interest. The reporting limits have been elevated accordingly.

No other anomalies associated with the analysis of these samples were observed.

Approved by	d	Date	1/2/9	

CHAIN OF CUSTODY

SR#._**K2101098**_____coc#___

PAGE

1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222 • FAX (360) 636-1068

Flm	Printed Name	מ	me Film	Printed Name		引	Printed Name	Printed		Fim	Printed Name
Date/Time	Signature	Date/Time	Dat	Signature	Jime	'		Signatus	dol	Date Jimo	
DBY:	RECEIVED	BY:	RELINQUISHED		1/2/020	RECEIVED BY	Do	37	1400	1/1/22	Natus
-							Date	Requested Report Date	Rec	mote	er 6
			-				ळ	Provide FAX Results	Prov	repon .	V EDD (
							orking days)	Standard (10-15 working days)	Stan	Dana)	(Illicitodes en law date)
	~•					•			5 Day	Report	III. Data Validation Report
	•			COMMENTAL	SPECIAL INSTRUCTIONS/COMMENTS		48 = !	r. (24 hr.	-	required
(CINCLE ONE)	WEST CINEN.	CA WI MOUNT WEST	OCEDURE: AX	CANDON PR	TIESTA E HIDHOCARBON PROCEDO		REMENTS	TURNAROUND REQUIREMENTS	TURNAR	6, MSD as	II. Report Dup., MS, MSD as
	Ή 🗀	No Po Mg	<u> </u>	Ba Be B Ca	Ussowed Metals: Al As Sb	Dissolved	Lasbb J	201/40	MONONANA MONOTOR		required
11 Sn V Zn	N Ag Na Sa	Te Po Mg Mn		В	As Sb	Total	2 P	JOHON	BILLO: V	Method	I. Routine Report Method
i ;		2	>)	o an or are				P.O. #	AENTS	REPORT REQUIREMENTS
	-			in horact	high motate are to be an	Circle w	NOLLY	INVOICE INFORMATION	IOANÍ		
		,						•			
											:
				,							
	X						50, 10	3	11:35	4/1/02	ITZ3
	ナ						Sed 10	40	11:35	4/1/02	エイマコ
	7	,					S. 10	-	11:03	4/1/02	IT2
REMARKS	1/20/A	Me (Se Cy P	GG	Aroc Po	300	Se 6	MATTAIX / ≥	A8 I.D.	TIME	DATE	SAMPLE I.D.
_		anide	clors [sticide sticid	Sticide	Fuel	MBEF MIVOLE 125 D droc	Ma	8	C. XMS	e Ma	SAMPLER'S SIGNATURE
	• , ,	Total obelow	3310	7	Dons Die	tile C	11109-1-115	14E.(La)	fax qp7	1-6001	PHONE *(907)34L
	-	Por Dis Hex	\overline{g}	Conc	(*see Se/_)			2HH5-	99507	Ak	Anchorage
/ 0	_	Ph Solve	PCF	160	belo	AINE	talles	150 Alboted sufera	750 A	1	COMPANY/ADDRESS
//10	dicircle KN, 10/	thalai	Ď.	64 SC 64 H		PS		2	Musid	<u>}</u>	PROJECT MANAGER M.
\ \(\alpha\)	<u> </u>		9151	T CEME	AS TEX	_			7	352	PROJECT NUMBER 033
7	1. 1 / [5]			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ / <u>Q</u>				redga	5	PROJECT NAME STACE

Colonidia analii iical services, inc.

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Total Solids

Prep Method:

Analysis Method: Test Notes:

NONE

160.3M

Units: PERCENT

Basis: WET

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
ITZ 1	K2202038-001	04/01/2002	04/02/2002	04/10/2002	85.5	
ITZ 2	K2202038-002	04/01/2002	04/02/2002	04/10/2002	76.4	
ITZ 3	K2202038-003	04/01/2002	04/02/2002	04/10/2002	87.0	

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/02

Date Received: 04/02/02

Carbon, Total Organic

Prep Method:

Test Notes:

NONE

Analysis Method: PSEP

Units: PERCENT

Basis: Dry

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
ITZ 1 ITZ 2 ITZ 3 Method Blank	K2202038-001 K2202038-002 K2202038-003 K2202038-MB	0.05 0.05 0.05 0.05	0.03 0.03 0.03 0.03	1 I 1 I	NA NA NA NA	04/06/02 04/06/02 04/06/02 04/06/02	0.33 0.68 5.65 0.03	U

Approved By:

1A/020597p

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/02

Date Received: 04/02/02

Total Volatile Solids

Prep Method:

NONE Analysis Method: 160.4M

0.1

Units: PERCENT

U

Test Notes:

Basis: As Received

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
ITZ 1	K2202038-001	0.1	0.1	1	NA	04(10/00		
ITZ 2	K2202038-002	0.1	0.1	. 1	· NA	04/10/02 04/10/02	1.09	
ITZ 3	K2202038-003	0.1	0.1	1	NA	04/10/02	2.87 0.74	
Method Blank	K2202038-MB	0.1	0.1	1	NA	04/10/02	0.74	

NA

04/10/02

M

Modified.

Approved By:

1A/020597p

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix: Sediment

Service Request:

K2202038

Date Collected:

04/01/02

Date Received:

04/02/02

Date Analyzed:

04/05/02

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: ITZ 1

Lab Code:

K2202038-001

Sand Fraction: Dry Weight (Grams)

82.8226

Sand Fraction: Weight Recovered (Grams)

82.9310

Sand Fraction: Percent Recovery

100

Description Gravel	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Very Coarse Sand	<-1 Ø	5.3053	6.45
Coarse Sand	-1 to 0 Ø	12.6631	15,4
Medium Sand	0 to 1 Ø	33.9444	41.3
Fine Sand	1 to 2 Ø	16.6430	20.2
	2 to 3 Ø	8.0590	9.80
Very Fine Sand	3 to 4 Ø	5.7245	6.96
Silt Clay	4 to 8 Ø	2.0600	
Clay	> 8 Ø	0.8200	2.50
· 	Total	85.2193	1.00
		65.2175	104

Approved By:	F/		
-FF		Data	111111100
 -		Date:	4/16/02

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix: Sediment

Service Request:

K2202038

Date Collected:

04/01/02

Date Received:

04/02/02

Date Analyzed:

04/05/02

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name; ITZ 2

Lab Code:

K2202038-002

Sand Fraction: Dry Weight (Grams)

74.3881

Sand Fraction: Weight Recovered (Grams)

74.5864

Sand Fraction: Percent Recovery

100

Description Gravel	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered		
	<-1 Ø	24.0930			
Very Coarse Sand	-1 to 0 Ø	20.7979	31.1		
Coarse Sand	0 to 1 Ø		26.9		
Medium Sand	1 to 2 Ø	14.1032	18.2		
Fine Sand		6.3471	8.19		
Very Fine Sand	2 to 3 Ø	3.6395	4.70		
Silt	3 to 4 Ø	4.7710	6.16		
Clay	4 to 8 Ø	1.3650	1.76		
Jiay	> 8 Ø	0.9400			
	Total	76:0567	1.21		
		70.0307	98.2		

	~ .	•	
Approved By:	E		7
		Date:	4/16/02

Analytical Report

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix: Sediment

Service Request:

K2202038

Date Collected:

04/01/02

Date Received:

04/02/02

Date Analyzed:

04/05/02

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: ITZ 3

Lab Code:

K2202038-003

Sand Fraction: Dry Weight (Grams)

Sand Fraction: Weight Recovered (Grams)

88.1308

Sand Fraction: Percent Recovery

88.0881

100

Description Gravel	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Very Coarse Sand	<-1 Ø	38.6594	44.7
Coarse Sand	-1 to 0 Ø	14.3449	16.6
Medium Sand	0 to 1 Ø	16.4083	19.0
Fine Sand	1 to 2 Ø	12.9562	15.0
	2 to 3 Ø .	4.9481	5.73
Very Fine Sand	3 to 4 Ø	0.7073	0.82
Silt	4 to 8 Ø	1.9100	
Clay	> 8 Ø	1.3150	2.21
	Total	91.2492	1.52

Approved By:	EL	Date;	4/16/02
		Date, _	

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Golder Associates Inc.

Project No.: 023-5524

Project Name: Sitka Dredge

Matrix:

SEDIMENT

Service Request: K2202038

Date Collected: 04/01/02

Date Received: 04/02/02

Units: MG/KG

Basis: Dry

Sample Name: ITZ 1

Lab Code: K2202038-001

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	С	Q
Antimony	200.8	0.11	0.11	10	4/17/02	4/18/02	58.9	-	1
Arsenic	200.8	29.0	5.8	250	4/17/02	4/18/02	1060	<u> </u>	*N
Cadmium	200.8	0.06	0.02	5	4/17/02	4/18/02	8.14	<u>!</u>	*N
Chromium	200.8	0.2	0.0	5	4/17/02	4/18/02	75.8	<u> </u>	1 7 1
Copper	200.8	5.8	2.3	250	4/17/02	4/18/02	2940	├	
Lead	200.8	2.90	1.74	250	4/17/02	4/18/02	833	 	
Mercury	7471A	0.02	0.01	1	4/9/02	4/9/02	0.02	<u> </u>	
Nickel	200.8	0.2	0.1	5	4/17/02	4/18/02	27.0		
Silver	200.8	0.04	0.02	10	4/17/02	4/18/02			
Zinc	200.8	145	57.9	1250	4/17/02	4/18/02	1.69 7590		

% Solids:

Comments:

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Golder Associates Inc.

Service Request: K2202038

Project No.: 023-5524

Date Collected: 04/01/02

Project Name: Sitka Dredge

Date Received: 04/02/02

Matrix:

SEDIMENT

Units: MG/KG

Basis:

Dry

Sample Name: ITZ 2

Lab Code: K2202038-002

Analyte	Analysis Method	MRL	WDL	Dil.	Date Extracted	Date Analyzed	Result	С	Ç
Antimony	200.8	0.10	0.10	10	4/17/02	4/18/02	114	-	*N
Arsenic	200.8	27.3	5.5	250	4/17/02	4/18/02	963	_	
Cadmium	200.8	0.05	0.02	5	4/17/02	4/18/02	3.08		*N
Chromium	200.8	0.2	0.0	5	4/17/02	4/18/02	83.1	<u> </u>	
Copper	200.8	5.5	2.2	250	4/17/02	4/18/02	2100	-	╁
Lead	200.8	2.73	1.64	250	4/17/02	4/18/02	1910	 	╁╴
Mercury	7471A	0.01	0.01	1	4/9/02	4/9/02	0.07		╁╌
Nickel	200.8	0.2	0.1	5	4/17/02	4/18/02	32.9		┼
Silver	200.8	0.04	0.02	10	4/17/02	4/18/02	1.29		╫
Zinc	200.8	27.3	10.9	250	4/17/02	4/18/02	4860	<u>'</u>	╁

4 % Solids;

(Comments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Organochlorine Pesticides

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Units: ug/Kg Basis: Dry

Level: Low

Extraction Method: EPA 3540C Analysis Method:

8081A

Analyte Name	Result		MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
I,4'-DDE I,4'-DDT Udrin	ND ND ND	Ui	7.8 5.4 16	0.36 5.4 2.8	2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322	,
lpha-Chlordane Dieldrin amma-BHC (Lindane)	ND ND ND ND ND	บ บ	4.0 4.0 5.4	0.55 0.26 0.72	2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322	······
Ieptachlor	ND I	_	4.0 4.0	0.57 0.32	2 2	04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	

urrogate Name	%Rec	Control Limits	Date Analyzed	Note	
etrachloro-m-xylene	6 4	48-119	04/17/02	Acceptable	· · · · · · · · · · · · · · · · · · ·
ecachlorobiphenyl	98	48-136	04/17/02	Acceptable	

mments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Organochlorine Pesticides

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method: EPA 3540C

Inalysis Method:

8081A

Units: ug/Kg

Basis: Dry

Level: Low

							·	
Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
,4'-DDE ,4'-DDT	ND U ND Ui ND Ui	8.7 15 18	0.40 15 18	2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322	Note
Ildrin Ipha-Chlordane Pieldrin	ND U ND U ND U	4.5 4.5 6.1	0.61 0.29 0.81	2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322	
amma-BHC (Lindane) leptachlor	ND U ND U	4.5 4.5	0.64 0.36	2 2	04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	

urrogate Name	%Rec	Control Limits	Date Analyzed	Note ·	
etrachloro-m-xylene ecachlorobiphenyl	63 48	48-119 48-136	04/17/02 04/17/02	Acceptable Acceptable	

mments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Organochlorine Pesticides

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method: EPA 3540C

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
I,4'-DDD I,4'-DDE I,4'-DDT	ND U ND U ND U	7.6 5.3 16	0.35 0.57 0.39	2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	14016
Udrin lpha-Chlordane lieldrin	ND U ND U ND U	4.0 4.0 5.3	0.54 0.25 0.71	2 2 2 2	04/10/02 04/10/02 04/10/02	04/17/02 04/17/02 04/17/02 04/17/02	KWG0202322 KWG0202322 KWG0202322 KWG0202322	·
amma-BHC (Lindane) Ieptachlor	ND U ND U	4.0 4.0	0.56 0.32	2 2	04/10/02 04/10/02	04/17/02 04/17/02	KWG0202322 KWG0202322	

urrogate Name	%Rec	Control Limits	Date Analyzed	Note	
etrachloro-m-xylene	73	48-119	04/17/02	Acceptable	
lecachlorobiphenyl	75	48-136	04/17/02	Acceptable	

mments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Polychlorinated Biphenyls (PCBs)

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method:

EPA 3540C

Analysis Method:

8082

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction	
Aroclor 1016	ND U	12	2.8	1	04/10/02	04/16/02	Lot	Note
Aroclor 1221 Aroclor 1232	ND U. ND U	24	2.8	Ī	04/10/02	04/16/02	KWG0202317 KWG0202317	e como e po
Aroclor 1242		12	2.8	l	04/10/02	04/16/02	KWG0202317	
Aroclor 1248	ND U ND U	12 12	2.8 2.8	1	04/10/02	04/16/02	KWG0202317	
Aroclor 1254	190	12	2.8	J .	04/10/02 04/10/02	04/16/02	KWG0202317	
Aroclor 1260	ND U	12	2.8	1	04/10/02	04/16/02	KWG0202317 KWG0202317	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	· ·
Decachlorobiphenyl	82	57-136	04/16/02	Acceptable	· · · · · · · · · · · · · · · · · · ·

omments:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Polychlorinated Biphenyls (PCBs)

Sample Name: Lab Code:

ITZ 2

K2202038-002

Extraction Method: EPA 3540C Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name Aroclor 1016	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1221 Aroclor 1232	ND U ND U ND U	14 27 14	3.2 3.2 3.2	1 1	04/10/02 04/10/02	04/16/02 04/16/02	KWG0202317 KWG0202317	77010
Aroclor 1242 Aroclor 1248 Aroclor 1254	ND U ND U	14 14	3.2 3.2	1 1	04/10/02 04/10/02 04/10/02	04/16/02 04/16/02 04/16/02	KWG0202317 KWG0202317 KWG0202317	
Aroclor 1260	510 ND U	14	3.2	1	04/10/02 04/10/02	04/16/02	KWG0202317 KWG0202317	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	93	57-136	04/16/02	Acceptable

mments:

inted: 04/19/2002 15:11:17. Stealth/Crystal.rod/Form?m mr

00618

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Polychlorinated Biphenyls (PCBs)

Sample Name:

ITZ 3

Lab Code:

. K2202038-003

Extraction Method: EPA 3540C

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction	X7 .
Aroclor 1016 Aroclor 1221	ND U	12	2.8	1	04/10/02	04/16/02	Lot KWG0202317	Note
Aroclor 1232	ND U ND U	23 12	2.8 2.8	1	04/10/02 04/10/02	04/16/02	KWG0202317	n= + u
Aroclor 1242 Aroclor 1248	ND U	12	2.8	1	04/10/02	04/16/02	KWG0202317 KWG0202317	
Aroclor 1254	U DN U DN	12 12	2.8 2.8	1	04/10/02 04/10/02	04/16/02	KWG0202317	
Aroclor 1260	ND U	12	2.8	1	04/10/02	04/16/02 04/16/02	KWG0202317 KWG0202317	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	;
Decachlorobiphenyl	101	57-136	04/16/02	Acceptable	

omments:

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	: Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	ND	U	700	65	10	04/10/02	04/12/02	KWG0202327	
1,3-Dichlorobenzene	ND	U	240	59	10	04/10/02	04/12/02	KWG0202327	
1,4-Dichlorobenzene	ND	U	240	55	10	04/10/02	04/12/02	KWG0202327	***
1,2-Dichlorobenzene	ND	U	240	57	10	04/10/02	04/12/02	KWG0202327	
Benzyl Alcohol	ND	U	240	65	10	04/10/02	04/12/02	KWG0202327	
2-Methylphenol	ND	U	240	56	10	04/10/02	04/12/02	KWG0202327	
Hexachloroethane	ND	U	240	54	10	04/10/02	04/12/02	KWG0202327	
4-Methylphenol†	ND	U	240	55	10	04/10/02	04/12/02	KWG0202327	
2,4-Dimethylphenol	ND	U	1200	360	10	04/10/02	04/12/02	KWG0202327	
Benzoic Acid	ND	Ŭ ,	4700	390	10	04/10/02	04/12/02	KWG0202327	*
1,2,4-Trichlorobenzene	ND	-	240	62	10	04/10/02	04/12/02	KWG0202327	
Naphthalene	120	JD	240	35	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobutadiene	ND	U	240	65	10	04/10/02	04/12/02	KWG0202327	
2-Methylnaphthalene	ND		240	70	10	04/10/02	04/12/02	KWG0202327	
Acenaphthylene	44	1D	240	38	10	04/10/02	04/12/02	KWG0202327	
Dimethyl Phthalate	ND		240	60	10	04/10/02	04/12/02	KWG0202327	
Acenaphthene	100		240	61	10	04/10/02	04/12/02	KWG0202327	
Dibenzofuran	98	JD_	240	67	10	04/10/02	04/12/02	KWG0202327	
Fluorene	120		240	55	10	04/10/02	04/12/02	KWG0202327	
Diethyl Phthalate	ND		240	71	10	04/10/02	04/12/02	KWG0202327	
N-Nitrosodiphenylamine	ND	U	240	57	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobenzene	ND	_	240	71	10	04/10/02	04/12/02	KWG0202327	
Pentachiorophenol	ND	U	1200	53	10	04/10/02	04/12/02	KWG0202327	
Phenanthrene	1100	D	240	48	10	04/10/02	04/12/02	KWG0202327	
Anthracene	200		240	54	10	04/10/02	04/12/02	KWG0202327	
Di-n-butyl Phthalate	ND		240	61	10	04/10/02	04/12/02	KWG0202327	
Fluoranthene	1600	D	240	56	10	04/10/02	04/12/02	KWG0202327	
Pyrene	1300		240	60	10	04/10/02	04/12/02	KWG0202327	
Butyl Benzyl Phthalate	ND	-	240	32	10	04/10/02	04/12/02	KWG0202327	
Benz(a)anthracene	770		240	25	10	04/10/02	04/12/02	KWG0202327	
Chrysene Bis(2-ethylhexyl) Phthalate	930		240	26	10	04/10/02	04/12/02	KWG0202327	
Di-n-octyl Phthalate		Ŭ	4700	2900	10	04/10/02	04/12/02	KWG0202327	
Di-ti-octyl Phinalate	ND	U	240	38	10	04/10/02	04/12/02	KWG0202327	

Comments:

Printed: 04/30/2002 09:17:23 U:\Stealth\Crystal.rpr\Formim.rpt

Merged

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method: Analysis Method:

EPA 3541 8270C

Units: ug/Kg Basis: Dry

Level: Low

		·										
Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note			
Benzo(b)fluoranthene	1000	D	240	22	10	04/10/02	04/12/02	KWG0202327				
Benzo(k)fluoranthene	340	D	240	38	10	04/10/02	04/12/02	KWG0202327	<i>-</i>			
Benzo(a)pyrene	720	D	240	23	10	04/10/02	04/12/02	KWG0202327				
Indeno(1,2,3-cd)pyrene	480	D	240	11	10	04/10/02	04/12/02	KWG0202327				
Dibenz(a,h)anthracene	140	${\mathbb T}$	240	23	10	04/10/02	04/12/02	KWG0202327				
Benzo(g,h,i)perylene	430	D	240	24	10	04/10/02	04/12/02	KWG0202327				

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	72	12-104	04/12/02	Acceptable	
Phenol-d6	87	38-116	04/12/02	Acceptable	
Nitrobenzene-d5	89	38-121	04/12/02	Acceptable	
2-Fluorobiphenyl	78	52-113	04/12/02	Acceptable	
2,4,6-Tribromophenol	62	34-141	04/12/02	Acceptable	
Terphenyl-d14	82	47-152	04/12/02	Acceptable	

Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 04/30/2002 09:17:23

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR16441

Analytical Results

Client:

Golder Associates Inc. Sitka Dredge/023-5524

Project: Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002 Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method: Analysis Method:

EPA 3541

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenol	73	ЛD	790	73	10	04/10/02	04/12/02	KWG0202327	
1,3-Dichlorobenzene	ND	Ü .	270	66	10	04/10/02	04/12/02	KWG0202327	
1,4-Dichlorobenzene	ND	U	270	61	10	04/10/02	04/12/02	KWG0202327	
1,2-Dichlorobenzene	ND	U	270	64	10	04/10/02	04/12/02	KWG0202327	
Benzyl Alcohol	ND	U	270	72	10	04/10/02	04/12/02	KWG0202327	
2-Methylphenol	ND	U	270	63	10	04/10/02	04/12/02	KWG0202327	
Hexachloroethane	ND		270	61	10	04/10/02	04/12/02	KWG0202327	
4-Methylphenol†	100	JD	270	61	10	04/10/02	04/12/02	KWG0202327	
2,4-Dimethylphenol	ND	U	. 1400	400	10	04/10/02	04/12/02	KWG0202327	
Benzoic Acid	ND		5300	430	10	04/10/02	04/12/02	KWG0202327	*
1,2,4-Trichlorobenzene	ND		270	69	10	04/10/02	04/12/02	KWG0202327	
Naphthalene	57	JD	270	39	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobutadiene	ND	U	270	72	10	04/10/02	04/12/02	KWG0202327	
2-Methylnaphthalene	ND		270	79	10	04/10/02	04/12/02	KWG0202327	
Acenaphthylene	180	JD	270	43	10	04/10/02	04/12/02	KWG0202327	
Dimethyl Phthalate	ND		270	68	10	04/10/02	04/12/02	KWG0202327	
Acenaphthene	190		270	68	10	04/10/02	04/12/02	KWG0202327	
Dibenzofuran	110	W	270	75	10	04/10/02	04/12/02	KWG0202327	
Fluorene	210		270	62	10	04/10/02	04/12/02	KWG0202327	
Diethyl Phthalate	ND		270	80	10	04/10/02	04/12/02	KWG0202327	
N-Nitrosodiphenylamine	ND	U	270	64	10	04/10/02	04/12/02	KWG0202327	
Hexachlorobenzene	ND		270	79	10	04/10/02	04/12/02	KWG0202327	······
Pentachlorophenol	190		1400	60	10	04/10/02	04/12/02	KWG0202327	
Phenanthrene	2400	D	270	53	10	04/10/02	04/12/02	KWG0202327	
Anthracene	810		270	61	10	04/10/02	04/12/02	KWG0202327	
Di-n-butyl Phthalate	ND		270	68	10	04/10/02	04/12/02	KWG0202327	
Fluoranthene	5600	D	270	63	10	04/10/02	04/12/02	KWG0202327	
Pyrene	4500		270	68	10	04/10/02	04/12/02	KWG0202327	
Butyl Benzyl Phthalate	82		270	36	10	04/10/02	04/12/02	KWG0202327	
Benz(a)anthracene	2900	D	270	28	10	04/10/02	04/12/02	KWG0202327	
Chrysene	3600		270	29	10	04/10/02	04/12/02	KWG0202327	
Bis(2-ethylhexyl) Phthalate	ND		5300	3300	10	04/10/02	04/12/02	KWG0202327	
Di-n-octyl Phthalate	ND	U	270	43	10	04/10/02	04/12/02	KWG0202327	

Comments:

Analytical Results

Client:

Golder Associates Inc. Sitka Dredge/023-5524

Project: Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzo(b)fluoranthene	4000 D	270	24	10	04/10/02	04/12/02	KWG0202327	
Benzo(k)fluoranthene	1100 D	270	42	10	04/10/02	04/12/02	KWG0202327	
Benzo(a)pyrene	2600 D	270	25	10	04/10/02	04/12/02	KWG0202327	
Indeno(1,2,3-cd)pyrene	1700 D	270	13	10	04/10/02	04/12/02	KWG0202327	
Dibenz(a,h)anthracene	480 D	270	26	10	04/10/02	04/12/02	KWG0202327	
Benzo(g,h,i)perylene	1500 D	270	27	10	04/10/02	04/12/02	KWG0202327	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	87	12-104	04/12/02	Acceptable	
Phenol-d6	102	38-116	04/12/02	Acceptable	
Nitrobenzene-d5	114	38-121	04/12/02	Acceptable	
2-Fluorobiphenyl	88	52-113	04/12/02	Acceptable	
2,4,6-Tribromophenol	72	34-141	04/12/02	Acceptable	
Terphenyl-d14	107	47-152	04/12/02	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

SuperSet Reference:

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Phenoi	ND U	69	6.4	1	04/10/02	04/12/02	KWG0202327	
1,3-Dichlorobenzene	ND U	23	5.8	1	04/10/02	04/12/02	KWG0202327	u-,
1,4-Dichlorobenzene	ND U	23	5.4	1	04/10/02	04/12/02	KWG0202327	
1,2-Dichlorobenzene	ND U	23	5.6	1	04/10/02	04/12/02	KWG0202327	
Benzyl Alcohol	ND U	23	6.4	1	04/10/02	04/12/02	KWG0202327	
2-Methylphenol	ND U	23	5.5	1	04/10/02	04/12/02	KWG0202327	
Hexachloroethane	ND U	23	5.3	1	04/10/02	04/12/02	KWG0202327	
4-Methylphenol†	ND U	23	5.4	1	04/10/02	04/12/02	KWG0202327	
2,4-Dimethylphenol	ND U	120	35	1	04/10/02	04/12/02	KWG0202327	
Benzoic Acid	ND U	460	38	1	04/10/02	04/12/02	KWG0202327	*
1,2,4-Trichlorobenzene	ND U	23	6.1	1	04/10/02	04/12/02	KWG0202327	
Naphthalene	ND U	23	3.4	1	04/10/02	04/12/02	KWG0202327	
Hexachlorobutadiene	ND U	23	6.4	1	04/10/02	04/12/02	KWG0202327	
2-Methylnaphthalene	ND U	23	6.9	1	04/10/02	04/12/02	KWG0202327	
Acenaphthylene	ND U	23	3.7	1	04/10/02	04/12/02	KWG0202327	
Dimethyl Phthalate	ND U	23	5.9	1	04/10/02	04/12/02	KWG0202327	
Acenaphthene	ND U	23	6.0	1	04/10/02	04/12/02	KWG0202327	
Dibenzofuran	ND U	23	6.6	1	04/10/02	04/12/02	KWG0202327	
Fluorene	ND U	23 .	5.4	1	04/10/02	04/12/02	KWG0202327	
Diethyl Phthalate	ND U	23	7.0	1	04/10/02	04/12/02	KWG0202327	
N-Nitrosodiphenylamine	ND U	23	5.6	ļ	04/10/02	04/12/02	KWG0202327	
Hexachlorobenzene _	. ND U	23	7.0	1	04/10/02	04/12/02	KWG0202327	
Pentachlorophenol	ND U	120	5.3	1	04/10/02	04/12/02	KWG0202327	
Phenanthrene	6.6 J	23	4.7	1	04/10/02	04/12/02	KWG0202327	
Anthracene	ND U	23	5.4	1	04/10/02	04/12/02	KWG0202327	_
Di-n-butyl Phthalate	ND U	23	6.0	1	04/10/02	04/12/02	KWG0202327	
Fluoranthene	52	23	5.6	1	04/10/02	04/12/02	KWG0202327	
Pyrene	39	23	5.9	1	04/10/02	04/12/02	KWG0202327	
Butyl Benzyl Phthalate	ND U	23	3.2	1	04/10/02	04/12/02	KWG0202327	
Benz(a)anthracene	17 J	23	2.5	· 1	04/10/02	04/12/02	KWG0202327	
Chrysene	27	23	2.5	1	04/10/02	04/12/02	KWG0202327	
Bis(2-ethylhexyl) Phthalate	ND U	460	290	1	04/10/02	04/12/02	KWG0202327	
Di-n-octyl Phthalate	ND U	23	3.8	1	04/10/02	04/12/02	KWG0202327	

Comments:

10847

RR16441

Merged

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038 Date Collected: 04/01/2002

Date Received: 04/02/2002

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

ITZ 3

Lab Code:

K2202038-003

EPA 3541

Extraction Method: Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzo(b)fluoranthene	30	23	2.2	1	04/10/02	04/12/02	KWG0202327	
Benzo(k)fluoranthene	11 J	23	3.7	1	04/10/02	04/12/02	KWG0202327	
Benzo(a)pyrene	14 J	23	2.2	1	04/10/02	04/12/02	KWG0202327	
Indeno(1,2,3-cd)pyrene	8.8 J	23	1.1	1	04/10/02	04/12/02	KWG0202327	
Dibenz(a,h)anthracene	ND U	23	2.3	1 .	04/10/02	04/12/02	KWG0202327	
Benzo(g,h,i)perylene	8.4 J	23	2.4	1	04/10/02	04/12/02	KWG0202327	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	75	12-104	04/12/02	Acceptable	
Phenol-d6	101	38-116	04/12/02	Acceptable	
Nitrobenzene-d5	101	38-121	04/12/02	Acceptable	
2-Fluorobiphenyl	93	52-113	04/12/02	Acceptable	
2,4,6-Tribromophenol	85	34-141	04/12/02	Acceptable	
Terphenyl-d14	107	47-152	04/12/02	Acceptable	

Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 04/30/2002 09:17:39 U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

2 of 2

SuperSet Reference: RR16441

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MOT	Dilution	Date	Date	Extraction	
Dichlorodifluoromethane			MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	5.9	0.79	1	04/08/02	04/08/02	KWG0202342	
Vinyl Chloride	ND U	5.9	0.68	1	04/08/02	04/08/02	KWG0202342	
	ND U	5.9	0.82	1	04/08/02	04/08/02	KWG0202342	
Bromomethane	ND U	5.9	1.1	1	04/08/02	04/08/02	KWG0202342	
Chloroethane	ND U	5.9	0.67	1	04/08/02	04/08/02	KWG0202342	
Trichlorofluoromethane	ND U	5.9	0.79	1	04/08/02	04/08/02	KWG0202342	
Acetone	15 J	59	4.6	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethene	ND U	5.9	0.82	1	04/08/02	04/08/02	KWG0202342	
Carbon Disulfide	ND U	5.9 *	1.1	1	04/08/02	04/08/02	KWG0202342	
Methylene Chloride	3.2 J	12	0.54	1	04/08/02	04/08/02	KWG0202342	
trans-1,2-Dichloroethene	ND U	5.9	0.64	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethane	ND U	5.9	0.53	1	04/08/02	04/08/02	KWG0202342	
2-Butanone (MEK)	3.2 J	24	1.5	1	04/08/02	04/08/02	KWG0202342	
2,2-Dichloropropane	ND U	5.9	0.70	1	04/08/02	04/08/02	KWG0202342	
cis-1,2-Dichloroethene	ND U	5.9	0.54	1	04/08/02	04/08/02	KWG0202342	
Chloroform	ND U	5.9	0.49	1	04/08/02	04/08/02	KWG0202342	
Bromochloromethane `	ND U	5.9	0.54	· 1	04/08/02	04/08/02	KWG0202342	
1,1,1-Trichloroethane (TCA)	ND U	5.9	0.53	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloropropene	ND U	5.9	0.66	1	04/08/02	04/08/02	KWG0202342	
Carbon Tetrachloride	ND U	5.9	0.72	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloroethane (EDC)	ND U	5.9	0.48	1	04/08/02	04/08/02	KWG0202342	
Benzene	ND U	5.9	0.52	1	04/08/02	04/08/02	KWG0202342	
Trichloroethene (TCE)	ND U	· 5.9	0.57	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloropropane	ND U	5.9	0.47	1	04/08/02	04/08/02	KWG0202342	
Bromodichloromethane	ND U	5.9	0.47	1	04/08/02	04/08/02	KWG0202342	
Dibromomethane	ND U	5.9	0.46	1	04/08/02	04/08/02	KWG0202342	
2-Hexanone	ND U	24	1.8	1 ·	04/08/02	04/08/02	KWG0202342	
cis-1,3-Dichloropropene	ND U	5.9	0.42	1	04/08/02	04/08/02	KWG0202342	
Toluene	ND U	5.9	0.50	1	04/08/02	04/08/02	KWG0202342	
trans-1,3-Dichloropropene	ND U	5.9	0.38	1	04/08/02	04/08/02	KWG0202342	
1,1,2-Trichloroethane	ND U	5.9	0.53	1	04/08/02	04/08/02	KWG0202342	
4-Methyl-2-pentanone (MIBK)	ND U	24	1.5	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichloropropane	ND U	5.9	0.37	1	04/08/02	04/08/02	KWG0202342	

Comments:

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND U	5.9	0.57	1	04/08/02	04/08/02	KWG0202342	11010
Dibromochloromethane	ND U	5.9	0.49	1	04/08/02	04/08/02	KWG0202342	·
1,2-Dibromoethane (EDB)	ND U	24	0.58	1	04/08/02	04/08/02	KWG0202342	
Chlorobenzene	ND U	5.9	0.66	1	04/08/02	04/08/02	KWG0202342	
1,1,1,2-Tetrachloroethane	ND U	5.9	0.57	1	04/08/02	04/08/02	KWG0202342	
Ethylbenzene	ND U	5.9	0.64	1	04/08/02	04/08/02	KWG0202342	
m,p-Xylenes	ND U	5.9	1.3	1	04/08/02	04/08/02	KWG0202342	
o-Xylene	ND U	5.9	0.72	1	04/08/02	04/08/02	KWG0202342	
Styrene	ND U	5.9	0.73	1	04/08/02	04/08/02	KWG0202342	
Bromoform	ND U	5.9	0.50	1	04/08/02	04/08/02	KWG0202342	
Isopropylbenzene	ND U	24	0.66	1	04/08/02	04/08/02	KWG0202342	
1,1,2,2-Tetrachloroethane	ND U	5.9	0.60	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichloropropane	ND U	5.9	0.59	1	04/08/02	04/08/02	KWG0202342	
Bromobenzene	ND U	5.9	0.70	1	04/08/02	04/08/02	KWG0202342	
n-Propylbenzene	ND U	24	0.58	1	04/08/02	04/08/02	KWG0202342	
2-Chlorotoluene	ND U	24	0.68	1	04/08/02	04/08/02	KWG0202342	
4-Chlorotoluene	ND U	24	0.71	1	04/08/02	04/08/02	KWG0202342	
1,3,5-Trimethylbenzene	ND U	24	0.67	1	04/08/02	04/08/02	KWG0202342	
tert-Butylbenzene	ND U	24	0.62	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trimethylbenzene	ND U	24	0.66	1 .	04/08/02	04/08/02	KWG0202342	
sec-Butylbenzene	ND U	24	0.71	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichlorobenzene	ND U	5.9	0.78	1	04/08/02	04/08/02	KWG0202342	
4-Isopropyltoluene	ND U	. 24	0.75	1	04/08/02	04/08/02	KWG0202342	
1,4-Dichlorobenzene	ND U	5.9	0.87	1	04/08/02	04/08/02	KWG0202342	
n-Butylbenzene	ND U	24	0.87	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichlorobenzene	ND U	5.9	0.76	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromo-3-chloropropane	ND U	24	0.62	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trichlorobenzene	ND U	24	0.73	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichlorobenzene	ND U	24	0.92	1	04/08/02	04/08/02	KWG0202342	
Naphthalene	ND U	24	0.88	1	04/08/02	04/08/02	KWG0202342	
Hexachlorobutadiene	ND U	24	0.78	1	04/08/02	04/08/02	KWG0202342	

Comments:

Printed: 04/18/2002 09:35:39 U:\Stealth\Crystai.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client:

Golder Associates Inc. Sitka Dredge/023-5524

Project: Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Units: ug/Kg Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	109	75-132	04/08/02	Acceptable	
Toluene-d8	111	85-109	04/08/02	Outside Control Limits	
4-Bromofluorobenzene	116	49-131	04/08/02	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	6.6	0.89	1	04/08/02	04/08/02	KWG0202342	
Chloromethane	ND U	6.6	0.77	1	04/08/02	04/08/02	KWG0202342	
Vinyl Chloride	ND U	6.6	0.92	1	04/08/02	04/08/02	KWG0202342	
Bromomethane	ND U	6.6	1.2	1	04/08/02	04/08/02	KWG0202342	
Chloroethane	ND U	6.6	0.75	1	04/08/02	04/08/02	KWG0202342	
Trichlorofluoromethane	ND U	6.6	0.89	1	04/08/02	04/08/02	KWG0202342	
Acetone	ND U	66	5.1	1	04/08/02	04/08/02	KWG0202342	-
1,1-Dichloroethene	ND U	6.6	0.92	1	04/08/02	04/08/02	KWG0202342	
Carbon Disulfide	ND U	6.6	1.2	1	04/08/02	04/08/02	KWG0202342	
Methylene Chloride	2.5 J	14	0.60	1	04/08/02	04/08/02	KWG0202342	
trans-1,2-Dichloroethene	ND U	6.6	0.71	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethane	ND U	6.6	0.59	1	04/08/02	04/08/02	KWG0202342	
2-Butanone (MEK)	ND U	27	1.7	1	04/08/02	04/08/02	KWG0202342	
2,2-Dichloropropane	ND U	6.6	0.78	1	04/08/02	04/08/02	KWG0202342	
cis-1,2-Dichloroethene	ND U	6.6	0.60	1	04/08/02	04/08/02	KWG0202342	
Chloroform	ND U	6.6	0.55	1	04/08/02	04/08/02	KWG0202342	
Bromochloromethane	ND U	6.6	0.60	1	04/08/02	04/08/02	KWG0202342	
1,1,1-Trichloroethane (TCA)	ND U	6.6	0.60	I	04/08/02	04/08/02	KWG0202342	
1,1-Dichloropropene	ND U	6.6	0.74	1	04/08/02	04/08/02	KWG0202342	
Carbon Tetrachloride	ND U	6.6	0.80	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloroethane (EDC)	ND U	6.6	0.54	1	04/08/02	04/08/02	KWG0202342	
Benzene	ND U	6.6	0.58	1	04/08/02	04/08/02	KWG0202342	
Trichloroethene (TCE)	ND U	6.6	0.64	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloropropane	ND U	6.6	0.52	1	04/08/02	04/08/02	KWG0202342	
Bromodichloromethane	ND U	6.6	0.53	1	04/08/02	04/08/02	KWG0202342	
Dibromomethane	ND U	6.6	0.52	1	04/08/02	04/08/02	KWG0202342	
2-Hexanone	ND U	27	2.0	1	04/08/02	04/08/02	KWG0202342	
cis-1,3-Dichloropropene	ND U	6.6	0.47	1	04/08/02	04/08/02	KWG0202342	
Toluene	ND U	6.6	0.56	1	04/08/02	04/08/02	KWG0202342	
trans-1,3-Dichloropropene	ND U	6.6	0.43	1	04/08/02	04/08/02	KW:G0202342	
1,1,2-Trichloroethane	ND U	6.6	0.59	1	04/08/02	04/08/02	KWG0202342	
4-Methyl-2-pentanone (MIBK)	ND U	27	1.7	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichloropropane	ND U	6.6	0.42	1	04/08/02	04/08/02	KWG0202342	

Comments:

Printed: 04/18/2002 09:35:47

U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page 01145

SuperSet Reference: RR16186

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND U	6.6	0.64	1	04/08/02	04/08/02	KWG0202342	
Dibromochloromethane	ND U	6.6	0.55	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromoethane (EDB)	ND U	27	0.65	1	04/08/02	04/08/02	KWG0202342	
Chlorobenzene	ND U	6.6	0.74	1	04/08/02	04/08/02	KWG0202342	
1,1,1,2-Tetrachloroethane	ND U	6.6	0.63	1	04/08/02	04/08/02	KWG0202342	
Ethylbenzene	ND U	6.6	0.72	1	04/08/02	04/08/02	KWG0202342	
m,p-Xylenes	ND U	6.6	1.4	1	04/08/02	04/08/02	KWG0202342	
o-Xylene	ND U	6.6	0.80	1	04/08/02	04/08/02	KWG0202342	
Styrene	ND U	6.6	0.82	1	04/08/02	04/08/02	KWG0202342	
Bromoform	ND U	6.6	0.56	1	04/08/02	04/08/02	KWG0202342	
Isopropylbenzene	ND U	27	0.74	1	04/08/02	04/08/02	KWG0202342	
1,1,2,2-Tetrachloroethane	ND U	6.6	0.68	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichloropropane	ND U	6.6	0.66	1	04/08/02	04/08/02	KWG0202342	
Bromobenzene	ND U	6.6	0.78	1	04/08/02	04/08/02	KWG0202342	
n-Propylbenzene	ND U	27	0.65	1	04/08/02	04/08/02	KWG0202342	
2-Chlorotoluene	ND U	27	0.76	1	04/08/02	04/08/02	KWG0202342	
4-Chlorotoluene	ND U	27	0.80	1	04/08/02	04/08/02	KWG0202342	
1,3,5-Trimethylbenzene	ND U	27	0.75	1	04/08/02	04/08/02	KWG0202342	
tert-Butylbenzene	ND U	27	0.69	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trimethylbenzene	ND U	27	0.74	1	04/08/02	04/08/02	KWG0202342	
sec-Butylbenzene	ND U	27	0.79	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichlorobenzene _	ND U	6.6	0.88	1	04/08/02	04/08/02	KWG0202342	
4-Isopropyltoluene	ND. U	27	0.84	1	04/08/02	04/08/02	KWG0202342	
1,4-Dichlorobenzene	ND U	6.6	0.97	1	04/08/02	04/08/02	KWG0202342	
n-Butylbenzene	ND U	27	0.97	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichlorobenzene	ND U	6.6	0.85	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromo-3-chloropropane	ND U	27	0.69	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trichlorobenzene	ND U	27	0.81	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichlorobenzene	ND U	27	1.1	1	04/08/02	04/08/02	KWG0202342	
Naphthalene	ND U	27	0.98	1	04/08/02	04/08/02	KWG0202342	
Hexachlorobutadiene	ND U	27	0.87	1	04/08/02	04/08/02	KWG0202342	

Comments:

Printed: 04/18/2002 09:35:47 U:\Stealth\Crystal.rpt\Formlim.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Units: ug/Kg

Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note:	
Dibromofluoromethane	110	75-132	04/08/02	Acceptable	
Toluene-d8	112	85-109	04/08/02	Outside Control Limits	
4-Bromofluorobenzene	109	49-131	04/08/02	Acceptable	

Comments:

Page

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002 Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	5.8	0.78	1	04/08/02	04/08/02	KWG0202342	
Chloromethane	ND U	5.8	0.67	1	04/08/02	04/08/02	KWG0202342	
Vinyl Chloride	ND U	5.8	0.81	1	04/08/02	04/08/02	KWG0202342	
Bromomethane	ND U	5.8	1.1	1	04/08/02	04/08/02	KWG0202342	
Chloroethane	ND U	5.8	0.66	1	04/08/02	04/08/02	KWG0202342	
Trichlorofluoromethane	ND U	5.8	0.78	1	04/08/02	04/08/02	KWG0202342	
Acetone	ND U	58	4.5	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethene	ND U	5.8	0.81	1	04/08/02	04/08/02	KWG0202342	
Carbon Disulfide	ND U	5.8	0.99	1	04/08/02	04/08/02	KWG0202342	
Methylene Chloride	0.80 J	12	0.53	1	04/08/02	04/08/02	KWG0202342	
trans-1,2-Dichloroethene	ND U	5.8	0.62	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloroethane	ND U	5.8	0.52	1	04/08/02	04/08/02	KWG0202342	
2-Butanone (MEK)	ND U	23	1.5	1	04/08/02	04/08/02	KWG0202342	
2,2-Dichloropropane	ND U	5.8	0.69	1	04/08/02	04/08/02	KWG0202342	
cis-1,2-Dichloroethene	ND U	5.8	0.53	1	04/08/02	04/08/02	KWG0202342	
Chloroform	ND U	5.8	0.49	1	04/08/02	04/08/02	KWG0202342	
Bromochloromethane	ND U	5.8	0.53	1	04/08/02	04/08/02	KWG0202342	
1,1,1-Trichloroethane (TCA)	ND U	5.8	0.52	1	04/08/02	04/08/02	KWG0202342	
1,1-Dichloropropene	ND U	5.8	0.65	1	04/08/02	04/08/02	KWG0202342	
Carbon Tetrachloride	ND U	5.8	0.71	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloroethane (EDC)	ND U	5.8	0.47	1 .	04/08/02	04/08/02	KWG0202342	
Веплепе	ND U	5.8	0.51	1	04/08/02	04/08/02	KWG0202342	
Trichloroethene (TCE)	ND U	5.8	0.56	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichloropropane	ND U	5.8	0.46	1	04/08/02	04/08/02	KWG0202342	
Bromodichloromethane	ND U	5.8	0.46	1	04/08/02	04/08/02	KWG0202342	
Dibromomethane	ND U	5.8	0.46	1	04/08/02	04/08/02	KWG0202342	
2-Hexanone	ND U	23	1.8	1	04/08/02	04/08/02	KWG0202342	
cis-1,3-Dichloropropene	ND U	5.8	0.41	1	04/08/02	04/08/02	KWG0202342	
Toluene	ND U	5.8	0.49	1	04/08/02	04/08/02	KWG0202342	
trans-1,3-Dichloropropene	ND U	5.8	0.38	1	04/08/02	04/08/02	KWG0202342	
1,1,2-Trichloroethane	ND U	5.8	0.52	1	04/08/02	04/08/02	KWG0202342	
4-Methyl-2-pentanone (MIBK)	ND U	23	1.5	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichloropropane	ND U	5.8	0.37	1 .	04/08/02	04/08/02	KWG0202342	

Comments:

Printed: 04/18/2002 09:35:54 U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

that 148 3

Analytical Results

Client: Project:

Golder Associates Inc. Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ 3

Lab Code:

K2202038-003

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND U	5.8	0.56	1	04/08/02	04/08/02	KWG0202342	
Dibromochloromethane	ND U	5.8	0.48	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromoethane (EDB)	ND U	23	0.57	1	04/08/02	04/08/02	KWG0202342	
Chlorobenzene	ND U	5.8	0.65	1	04/08/02	04/08/02	KWG0202342	
I,1,1,2-Tetrachloroethane	ND U	5.8	0.56	1	04/08/02	04/08/02	KWG0202342	
Ethylbenzene	ND U	5.8	0.63	1	04/08/02	04/08/02	KWG0202342	
m,p-Xylenes	ND U	5.8	1.2	1	04/08/02	04/08/02	KWG0202342	
o-Xylene	ND U	5.8	0.70	1	04/08/02	04/08/02	KWG0202342	
Styrene	ND U	5.8	0.72	1	04/08/02	04/08/02	KWG0202342	
Bromoform	ND U	5.8	0.50	Ī	04/08/02	04/08/02	KWG0202342	
Isopropylbenzene	ND U	23	0.65	1	04/08/02	04/08/02	KWG0202342	
1,1,2,2-Tetrachloroethane	ND U	5.8	0.59	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichloropropane	ND U	5.8	0.58	1	04/08/02	04/08/02	KWG0202342	
Bromobenzene	ND U	5.8	0.69	1	04/08/02	04/08/02	KWG0202342	
n-Propylbenzene	ND U	23	0.57	1	04/08/02	04/08/02	KWG0202342	
2-Chlorotoluene	ND U	23	0.66	1	04/08/02	04/08/02	KWG0202342	
4-Chlorotoluene	ND U	23	0.70	1	04/08/02	04/08/02	KWG0202342	
1,3,5-Trimethylbenzene	ND U	23	0.66	1	04/08/02	04/08/02	KWG0202342	
tert-Butylbenzene	ND U	23	0.61	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trimethylbenzene	ND U	23	0.65	1	04/08/02	04/08/02	KWG0202342	
sec-Butylbenzene	ND U	23	0.69	1	04/08/02	04/08/02	KWG0202342	
1,3-Dichlorobenzene	ND U	5.8	0.77	1	04/08/02	04/08/02	KWG0202342	
4-Isopropyltoluene	ND U	23	0.74	1	04/08/02	04/08/02	KWG0202342	
1,4-Dichlorobenzene	ND U	5.8	0.85	1	04/08/02	04/08/02	KWG0202342	
n-Butylbenzene	ND U	23	0.85	1	04/08/02	04/08/02	KWG0202342	
1,2-Dichlorobenzene	ND U	5.8	0.75	1	04/08/02	04/08/02	KWG0202342	
1,2-Dibromo-3-chloropropane	ND U	23	0.61	1	04/08/02	04/08/02	KWG0202342	
1,2,4-Trichlorobenzene	ND U	23	0.71	1	04/08/02	04/08/02	KWG0202342	
1,2,3-Trichlorobenzene	ND U	23	0.90	1	04/08/02	04/08/02	KWG0202342	
Naphthalene	ND U	23	0.86	1	04/08/02	04/08/02	KWG0202342	
Hexachlorobutadiene	ND U	23	0.76	1	04/08/02	04/08/02	KWG0202342	

Comments:

Printed: 04/18/2002 09:35:54 U:\Stealth\Crystai.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 2 of 3

DD14194

StinerSet References

Analytical Results

Client:

Golder Associates Inc. Sitka Dredge/023-5524

Project: Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Volatile Organic Compounds

Sample Name:

ITZ.3

Lab Code:

K2202038-003

Units: ug/Kg

Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane Toluene-d8	112 115	75-132	04/08/02	Acceptable	
4-Bromofluorobenzene	119	85-109 49-131	04/08/02 04/08/02	Outside Control Limits Acceptable	

Comments:

Printed: 04/18/2002 09:35:54

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page

May 10, 2002

Service Request No: K2202038

Mark Musial Golder Associates, Inc. 1750 Abbott Road, Suite 200 Anchorage, AK 99507

Re: Sitka Dredge/023-5524

Dear Mark:

Enclosed are the additional pages for the sample(s) submitted to our laboratory on April 2, 2002. For your reference, these analyses have been assigned our service request number K2202038.

Enclosed are additional report pages for the Butyltin analysis. The case narrative has been updated to reflect the additional results.

Please call if you have any questions. My extension is 3372.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jim Smith / Project Chemist

∕JS/jeb

Page 1 of 19

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the clution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

Golder Associates, Inc.

Project:

Sitka Dredge

Sample Matrix:

Sediment

Service Request No.: Date Received:

K2202038

4/2/02

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six samples were received for analysis at Columbia Analytical Services on 4/2/02. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Inorganic Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals Sediment

Relative Percent Difference (RPD) Exceptions:

The Relative Percent Differences (RPD) for the replicate analysis of Antimony and Cadmium in sample ITZ 1 (K2202038-001) were outside the normal CAS control limits. The variability in the results is attributed to the heterogeneous character these analytes of the sample. Mixing techniques within the scope of the EPA methodology were used, but were not sufficient for complete homogenization of this sample.

Matrix Spike (MS) Exceptions:

The low Matrix Spike (MS) recovery of Antimony is a result of a method defect in the EPA 3050B-digestion procedure that can be magnified by certain matrix components. The associated QA/QC (i.e. LCS) indicate the analysis was in control. No further corrective action was taken.

The low Matrix Spike (MS) recovery of Cadmium for sample ITZ 1 is a result of the heterogeneous character this analyte in the sample (see high RPD note above). The associated Laboratory Control Sample (LCS) was acceptable indicating the analysis was in control. No further corrective action was taken.

The Matrix Spike (MS) recovery criteria for Copper, Lead and Zinc for sample ITZ 1 are not applicable. The analyte concentrations in the sample were significantly higher than the added spike concentrations, preventing accurate evaluation of the spike recoveries.

No other anomalies associated with the analysis of these samples were observed.

Total Metals Tissue

No anomalies associated with the analysis of these samples were observed.

Approved by	h	Date	5/10/2	
				•

Organochlorine Pesticides by EPA Method 8081A

Method Reporting Limit (MRL) Exceptions:

The Method Reporting Limits have been elevated for 4,4'-DDE and 4,4'-DDT in samples ITZ 1 and ITZ2. The chromatogram indicated non-target components that prevented accurate quantification at the reporting limit. The results have been flagged to indicate the matrix interference. All efforts were made through various clean-up methods to reduce the matrix interference however the screening level of 6.9ppb for total DDT could not be met due to this interference.

No other anomalies associated with the analysis of these samples were observed.

PCB Aroclors by EPA Method 8082

No anomalies associated with the analysis of these samples were observed.

Organotin Compounds

Sample Notes and Discussion:

The initial porewater extraction did not yield enough water for porewater analysis. Per Golder the analysis for Organotin would be performed on the soil and reported on a total basis.

Holding Time Exceptions:

The analysis of samples ITZ 1, ITZ 2, ITZ 3, ITZ 3MSand ITZ 3DMS was initially performed within the recommended holding time. Re-analysis was required due to a QA/QC failure relating to surrogates and the Matrix Spikes. The QA/QC results for the re-analysis were within control criteria. The sample results from the re-analysis differ significantly from the initial analysis, indicating a potential quality problem with the initial sample data. The re-extract data has been reported.

No other anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID 1479: 2-Butanone (MEK), Tetrachloroethene (PCE) and sec-Butylbenzene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Surrogate Exceptions:

The upper control criterion was exceeded for the following surrogate(s) in samples ITZ 1, ITZ 2, ITZ 3 and MB KWG0202342-4: Toluene-d8. No target analytes were detected above the Method Reporting Limit in the samples. The error associated with an elevated recovery equates to a high bias. The quality of the sample data has not been significantly affected. No further corrective action was feasible.

The upper control criterion was exceeded for the following surrogate in ITZ 3MS KWG0202342-4, ITZ 3DMS KWG0202342-5, LCS KWG0202342-3: Toluene-d8. The associated matrix spike recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier has been flagged accordingly. No further corrective action was feasible.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL1435: Benzoic Acid, Pentachlorophenol, N-Nitrosodi-n-propylamine, and Hexachlorocyclopentadiene. In accordance with CAS standard operating procedures and as specified in the analytical method, an alternative

Approved by	۶	Date 5/10/00

evaluation was performed using the average relative standard deviation of all analytes in the calibration. The calibration meets the alternative evaluation criteria.

Matrix Spike (MS) Exceptions:

The Matrix Spike recovery of Phenol for sample ITZ 1DMS was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The matrix spike outlier does not indicate a significant data quality problem. No further corrective action was feasible.

The matrix spike recovery of Pentachlorophenol for sample ITZ 1MS/DMS was outside the lower control criteria because of suspected matrix interference. The sample was re-analyzed, and produced similar results. No recovery was detected in the spiked samples. The results indicate a potential low bias for this compound in this matrix. The results of the original analysis are reported.

The control criteria for the Matrix Spike recovery of Pyrene for sample ITZ 1MS/DMS is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Laboratory Control Sample (LCS) Exceptions:

The spike recovery of Benzoic Acid in the Duplicate Laboratory Control Sample (DLCS) KWG0202327-6 was outside the lower control criterion. The analyte in question was not detected in the associated field samples. The error associated with reduced recovery equates to a potential low bias. The recovery for this analyte was within control criterion in the LCS KWG0202327-6 with acceptable RPDs. The data has been flagged to indicate the low recovery.

Method Reporting Limit (MRL) Exceptions:

Sample(s) ITZ 1, ITZ 2, ITZ 3 required dilutions due the presence non-target analytes interfering with compounds of interest. The reporting limits have been elevated accordingly.

No other anomalies associated with the analysis of these samples were observed.

Date 5/10/2

Client: Project: Golder Associates Inc. Sitka Dredge/023-5524

Service Request:

K2202038

Cover Page - Organic Analysis Data Package **Butyltins**

Sample Name	Lab Code	Date Collected	Date Received
ITZ 1	K2202038-001	04/01/2002	04/02/2002
ITZ 2	K2202038-002	04/01/2002	04/02/2002
ITZ 3	K2202038-003	04/01/2002	04/02/2002
ITZ 3MS	KWG0203101-1	04/01/2002	04/02/2002
ITZ 3DMS	KWG0203101-2	04/01/2002	04/02/2002

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Name: M. Manthe Title: Scientist

RR16696

Analytical Results

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Butyltins

Sample Name:

ITZ 1

Lab Code:

K2202038-001

Extraction Method:

METHOD

Analysis Method:

Krone

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tri-n-butyltin	11000 D	350	120	300	05/02/02	05/08/02	KWG0203101	*

* See Case Narrative

Comments:

Analytical Results

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Butyltins

Sample Name:

ITZ 2

Lab Code:

K2202038-002

Extraction Method: METHOD

Analysis Method:

Krone

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tri-n-butyltin	13000 D	390	130	300	05/02/02	05/08/02	KWG0203101	*

* See Case Narrative

d Note	Date Analyzed	Control Limits	%Rec	Surrogate Name
2 Acceptable	05/07/02	31-111	44	Tri-n-propyltin

Comments:

0000

Analytical Results

Client:

Golder Associates Inc.

Project:

Sitka Dredge/023-5524

Sample Matrix:

Sediment

Service Request: K2202038

Date Collected: 04/01/2002

Date Received: 04/02/2002

Butyltins

Sample Name:

ITZ 3

Lab Code:

K2202038-003

METHOD

Units: ug/Kg Basis: Dry

Level: Low

Extraction Method: Analysis Method:

Krone

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tri-n-butyltin	1.1 J	1.2	0.37	1	05/02/02	05/07/02	KWG0203101	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	38	31-111	05/07/02	Acceptable	

Comments:

Printed: 05/10/2002 11:15:32 U:\Stealth\Crystal.rpt\Form!m.rpt

Morged

011010 Page 1 of