

Transmittal

Date:	Decem	ber 5, 2018			Refe	erence No.	: 082	676 / Chevron	306449
То:	Alaska 555 Co	Weimer Department of ordova Street rage, Alaska 95		ental Conserv	ation (ADI	EC)			
Subject:	ADEC	File ID 2100.26	5.116						
No. of Copies	Descript	ion/Title						Drawing No./ Document Ref.	Issue
1	Fourth (Quarter 2018 G	roundwate	r Monitoring F	Report			Report 8	
Issued for		Your information	mmonto	⊠ As reque			nstructi		Quotation
2		Your approval/co		☐ Returne	-			mission	
Sent by:	□ Ove	ernight courier	⊔ Same	day courier		Mail en	ciosea		
Remarks: Should yo (720) 974		ny questions o	r require ad	dditional infor	mation, pl	ease con	tact Sic	bhan Pritchard	at
Copy to:		Eric Hetrick (e Spenard and Ellen M. Lekis	Northern Li				7	-1 -	
Completed	d by:	Siobhan Pritc [Please Print]	hard		Signed:		D1	15	
Filing: C	Correspond								

Fourth Quarter 2018 Groundwater Monitoring

Report

Former Unocal Service Station #4854 2730 Spenard Road Anchorage, Alaska ADEC File ID: 2100.26.116

ADEC File ID: 2100.26.110

Hazard ID: 23370

Chevron Environmental Management Company

Fourth Quarter 2018 Groundwater Monitoring Report

Former Unocal Service Station #4854 2730 Spenard Road Anchorage, Alaska

ADEC File ID: 2100.26.116

Hazard ID: 23370

Jeffley Cloud Chemist

Oliver Yan Senior Staff Geologist Siobhan Pritchard, P.G. Senior Project Geologist

Table of Contents

Introd	uction	. 1
1.1	Site Description and Background	. 1
1.2	Hydrogeology	. 1
1.3	Conceptual Site Model	. 1
1.4	Constituents of Potential Concern - Cleanup Levels	. 1
Grour	ndwater Monitoring and Sampling	. 2
2.1	Low-Flow Purging and Sampling	. 2
2.2	Data Quality	. 3
2.3	Purged Groundwater Disposal	. 3
Resul	ts and Findings	. 3
3.1	Groundwater Analytical Methods	. 3
3.2	Groundwater Sampling Results	. 3
Concl	usions and Recommendations	. 4
	1.1 1.2 1.3 1.4 Grour 2.1 2.2 2.3 Resul 3.1 3.2	1.2 Hydrogeology

Figure Index

Figure 1 Vicinity Map

Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map

Table Index

Table 1 Current Groundwater Analytical ResultsTable 2 Historical Groundwater Analytical Results

Appendix Index

Appendix A	Site Photographs
Appendix B	Human Health Conceptual Site Model Scoping and Graphics Forms
Appendix C	Monitoring Data Package
Appendix D	Laboratory Analytical Report
Appendix E	Petroleum Hydrocarbon Concentration Graphs
Appendix F	ADEC Laboratory Data Review Checklist and Memorandum

Acronyms and Abbreviations

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

BTEX benzene, toluene, ethylbenzene, xylenes

COPCs constituents of potential concern

CSM conceptual site model

DRO diesel range organics

ft btoc feet below top of casing

GRO gasoline range organics

mg/L milligrams per liter

LNAPL light non-aqueous phase liquids

No number

P.G. Professional Geologist

RRO residual range organics

UST underground storage tank

VOC volatile organic compounds

1. Introduction

GHD is submitting this Fourth Quarter 2018 Groundwater Monitoring Report to the Alaska Department of Environmental Conservation (ADEC) on behalf of Chevron Environmental Management Company (Chevron) for the former Unocal service station 4854. Groundwater monitoring and sampling was performed by GHD in accordance with the ADEC's August 2017 Field Sampling Guidance and GHD's March 15, 2017 Former Log Crib Assessment Workplan. Reporting was performed by GHD in accordance with ADEC's March 7, 2017 Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites. The project objective is to monitor current groundwater conditions and evaluate dissolved petroleum hydrocarbon concentrations.

1.1 Site Description and Background

The site is a former Unocal service station located at 2730 Spenard Road in Anchorage, Alaska (Figure 1). The property's legal description is T13N R4W SEC 24 SE4SE4SE4SW4SE4 PTN 150 X 135. The latitude and longitude are 61.195508° north and 149.905965° west. The site is currently owned by Spenard & Northern Lights LLC, O'Neill Properties Inc. In 1990, six underground storage tanks (UST), product piping, and two log cribs were removed from the property and new USTs and piping were installed. A vapor extraction system was also installed in 1990 and has since been decommissioned.

The site is currently an active parking lot for two retail businesses. Site photographs are presented in Appendix A.

1.2 Hydrogeology

The site is located in south central Alaska, southeast of the northern Knik Arm of Cook Inlet. Historical groundwater depths have ranged between 16.21 and 18.41 feet below top of casing (ft btoc) since September 2017. Static groundwater depths ranged from 16.21 (MW-4) to 16.91 ft btoc (MW-2) on October 22, 2018. Groundwater flow was to the southeast with a gradient of 0.01 (Figure 2).

1.3 Conceptual Site Model

GHD completed a conceptual site model (CSM) for this site. Human health CSM scoping and graphics forms are included in Appendix B.

1.4 Constituents of Potential Concern - Cleanup Levels

Site constituents of potential concern (COPCs) are:

Table 1.1 Constituents of Potential Concern

	ADEC Cleanup Levels					
COPCs	Groundwater (mg/L)	Soil (mg/kg)				
DRO	1.5	250				
RRO	1.1	11,000				
GRO	2.2	300				
Benzene	0.0046	0.022				

mg/L - milligrams per liter
mg/kg - milligrams per kilogram
RRO - residual range organics
DRO - diesel range organics
GRO - gasoline range organics

ADEC Table C Groundwater Cleanup Levels (Title 18 Alaska Administrative Code (AAC) 75.345) and ADEC Method Two Soil Cleanup Levels, Tables B1 and B2, under 40-inch zone, migration to groundwater (Title 18 AAC 75.341) are the default site cleanup levels for groundwater and soil.

2. Groundwater Monitoring and Sampling

On October 22, 2018, GHD gauged and sampled groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. GHD's monitoring data package is presented in Appendix C.

2.1 Low-Flow Purging and Sampling

Prior to monitoring, each monitoring well was opened and the cap removed to allow groundwater levels to stabilize and equilibrate. Depth to groundwater and total well depth were measured and recorded with a water level meter capable of 0.01 foot accuracy. A QED Sample Pro bladder pump, or equivalent, with a self-contained compressor and control unit was used to purge groundwater from the well. Clean, disposable Teflon lined tubing and bladders were used to purge the well and collect samples to minimize the risk of volatile contaminant absorption by the sampling equipment. Drawdown of the water table was continuously monitored during purging with a water level meter and the flow rate of the pump adjusted so drawdown was limited to less than 0.1 meter, or 0.3 feet. The intake of the pump was set as close as possible to the soil/groundwater interface and caution was exercised to ensure the water table was within the screened interval of the well. Water quality parameters were continuously monitored during purging using a multi-parameter water quality meter equipped with a flow through cell and a turbidity meter. Water quality parameters were recorded every 3 to 5 minutes until a minimum of three (minimum of four if using temperature as an indicator) of the parameters listed below stabilized. A grab-groundwater sample was collected upon stabilization. Water quality parameters were considered stable when three successive readings were within the following ADEC limits:

- ± 3% for temperature (minimum of ± 0.2° C)
- pH: ± 0.1

conductivity: ± 3 percent

oxidation/reduction potential: ± 10 millivolts

dissolved oxygen: ± 10 percent

turbidity: ± 10 percent

2.2 Data Quality

All field instruments were calibrated prior to mobilization according to the manufacturer's specifications and calibration was verified and documented onsite on a daily basis. Calibration forms are included in Appendix C. All field staff are trained in routine maintenance and operation of instrumentation. All reusable sampling equipment was decontaminated between sample points using a stiff brush and a solution of water and laboratory grade detergent. Equipment was rinsed twice in clean water and once with distilled or deionized water.

Samples analyzed for volatile organic compounds (VOCs) were collected before samples for non-volatile compounds. Groundwater samples, including one duplicate per ten samples collected, were decanted into clean containers supplied by the analytical laboratory, placed on ice in an insulated cooler, and chilled to a temperature of approximately 4°C (+/- 2°). The coolers were sealed for transport and shipped to Eurofins Lancaster analytical laboratory under chain-of-custody. Laboratory data was qualified by a GHD chemist.

2.3 Purged Groundwater Disposal

Approximately 5.45 gallons of groundwater not used for sampling was filtered through granular activated carbon and purged to the ground surface in the permeable planter areas or near the center of the site to ensure no offsite runoff.

3. Results and Findings

3.1 **Groundwater Analytical Methods**

Collected groundwater samples were analyzed for one or more of the following:

- Residual range organics (RRO) by Alaska Series Method AK103
- Diesel range organics (DRO) by Alaska Series Method AK102
- Gasoline range organics (GRO) by Alaska Series Method AK101
- Benzene, toluene, ethylbenzene, xylenes (BTEX) by Method SW-846 8260B

3.2 Groundwater Sampling Results

No GRO or benzene were detected above ADEC Table C Groundwater Cleanup Levels in any sample collected. Monitoring well MW-2 contained the highest concentration of DRO at 2.9 milligrams per liter (mg/L) (MW-2 duplicate sample at 3.2 mg/L) and RRO at 2.1 mg/L (MW-2 duplicate sample at 2.3 mg/L). Current groundwater analytical data are presented in Table 1 and on Figure 2. Historical groundwater analytical data are presented in Table 2. The laboratory analytical

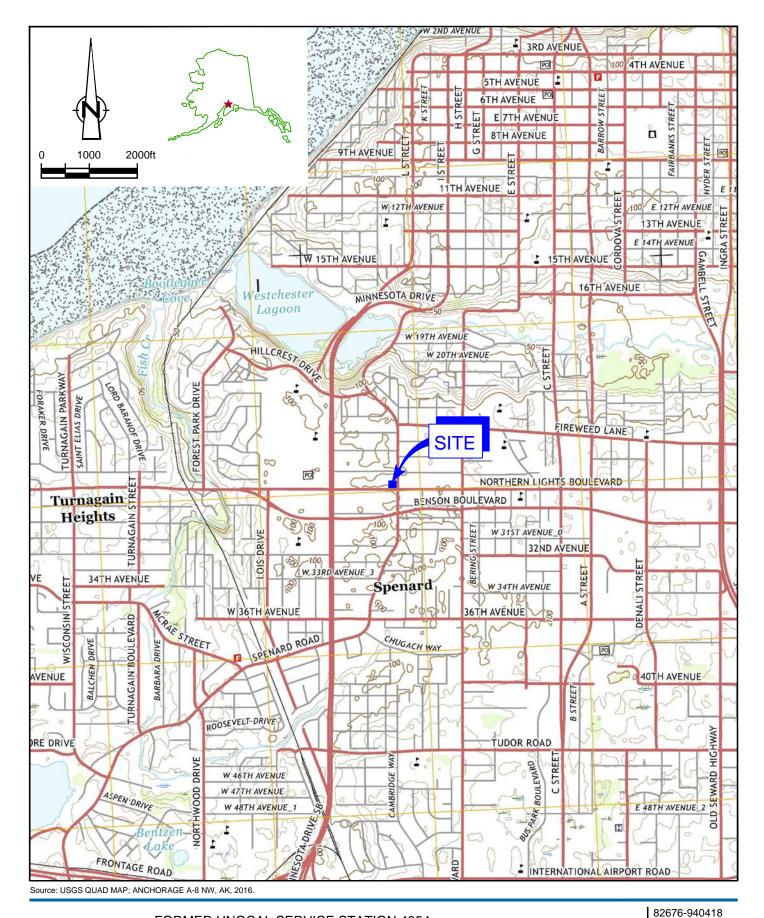
report is included in Appendix D. Petroleum hydrocarbon concentration graphs are included in Appendix E.

Based on the quality assurance/quality control review, the data submitted were judged to be acceptable for use with the qualifications noted. The ADEC Laboratory Data Review Checklist and memorandum are presented in Appendix F.

4. Conclusions and Recommendations

Higher RRO and DRO concentrations reported in wells MW-1 and MW-2 are likely due to the shallower depth the water measured. No COPCs were detected above cleanup levels in wells MW-1, MW-3 or MW-4. GHD recommends sampling reduction to semiannual in 2019 as COPC concentrations are stable and seasonal fluctuations in groundwater have been established.

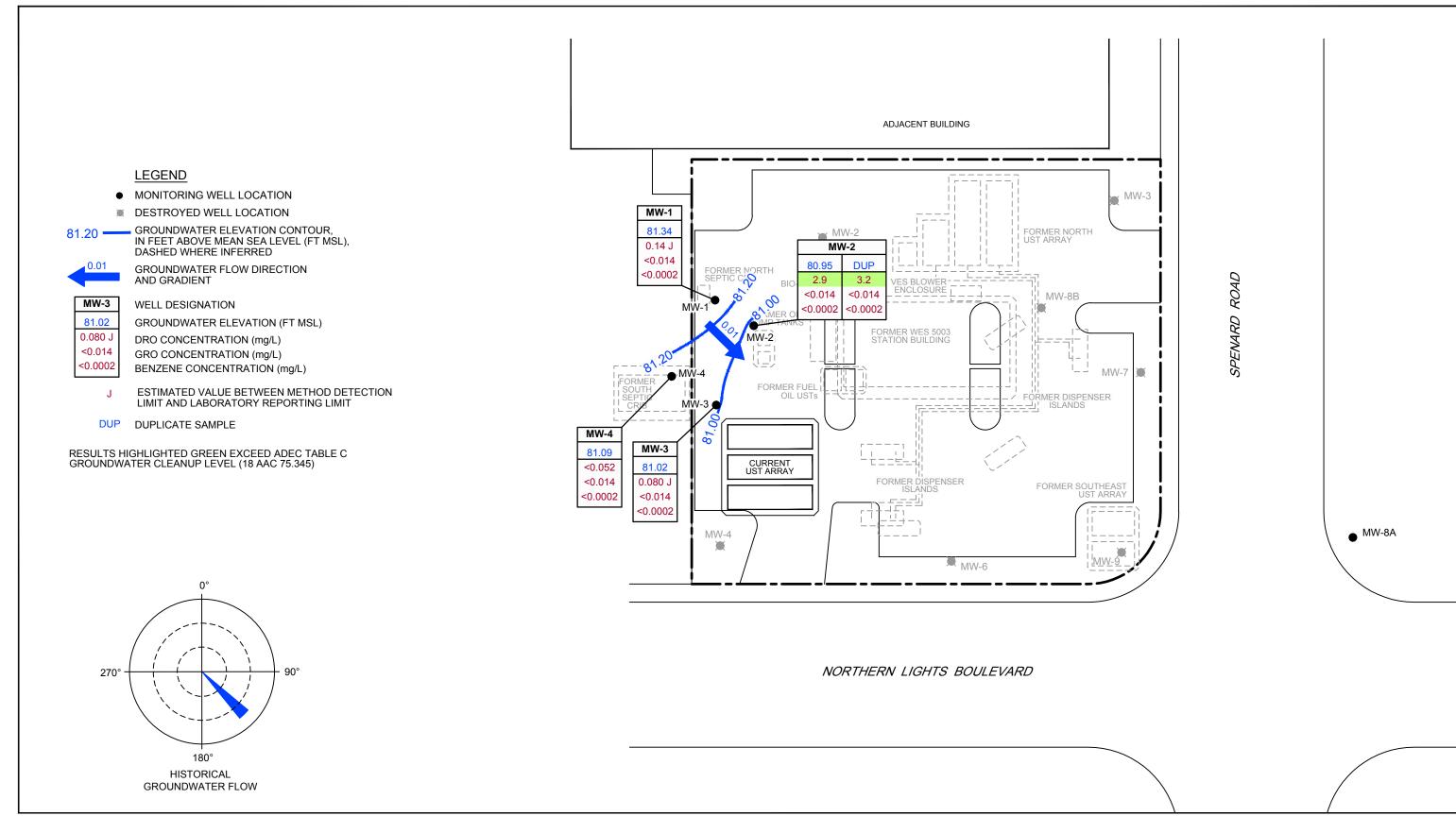
about GHD

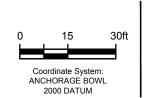

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Oliver Yan Oliver.Yan@ghd.com 907-420-0700

Siobhan Pritchard Siobhan.Pritchard@ghd.com 720-974-0935

www.ghd.com


Figures



Nov 28, 2018

VICINITY MAP FIGURE 1

Source: LOUNSBURY & ASSOCIATES, INC., SURVEY DATED NOVEMBER 3 AND 20, 2017.

FORMER UNOCAL SERVICE STATION 4854 2730 SPENARD ROAD ANCHORAGE, ALASKA

GROUNDWATER ELEVATION AND HYDROCARBON CONCENTRATION MAP - OCTOBER 22, 2018

82676-940418 Dec 5, 2018

FIGURE 2

Tables

Table 1

Current Groundwater Analytical Results Former Unocal Service Station #4854 2730 Spenard Road Anchorage, Alaska

					HYDROCARBONS			PRIMARY VOCS				
Location ID	Date Sampled	TOC	DTW	GWE	DRO	GRO	RRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	
	Units	ft msl	ft btoc	ft msl	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
ADEC	Groundwater Clea	nup Levels	S		1.5	2.2	1.1	0.0046	1.1	0.015	0.19	
MW-1	10/22/2018	98.09	16.75	81.34	0.14 J	<0.014	0.22 J	<0.0002	<0.0002	<0.0002	<0.0005	
MW-2	10/22/2018	97.86	16.91	80.95	2.9 / 3.2	<0.014 / <0.014	2.1 / 2.3	<0.0002 / <0.0002	<0.0002 / <0.0002	<0.0002 /<0.0002	<0.0005 /<0.0005	
MW-3	10/22/2018	97.53	16.51	81.02	0.080 J	<0.014	<0.083	<0.0002	<0.0002	<0.0002	<0.0005	
MW-4	10/22/2018	97.30	16.21	81.09	<0.052	<0.014	<0.084	<0.0002	<0.0002	<0.0002	<0.0005	
QA-T	10/22/2018					<0.014		<0.0002	<0.0002	<0.0002	<0.0005	

Notes and Abbreviations

TOC = top of casing

DTW = depth to water

GWE = groundwater elevation

TPH = total petroleum hydrocarbons

DRO = diesel range organics by Alaska Series Method AK102

GRO = gasoline range organics by Alaska Series Method AK101

RRO = residual range organics by Alaska Series Method AK103

Benzene, toluene, ethylbenzene, and total xylenes by Environmental Protection Agency (EPA) Method 8021B or 8260B or SW-E46 8021B

Total Xylenes = Sum of m-, o-, and p-xylenes

VOC = volatile organic compounds by EPA Method 524.2

ADEC = Alaska Department of Environmental Conservation

^a = Levels established in ADEC Table C Groundwater Cleanup Levels (18 AAC 75.345)

BOLD = Indicates concentration above the ADEC Table C Groundwater Cleanup Level

ft msl = feet above mean sea level

ft btoc = feet below top of casing

mg/L = milligrams per liter

J = Estimated value

-- = Not measured / not analyzed

<x = Constituent not detected above x milligrams per liter

x / y = Sample results / blind duplicate results

Table 2

Historical Groundwater Analytical Results
Former Unocal Service Station #4854
2730 Spenard Road
Anchorage, Alaska

					Product			HYDROCARBONS			PRIMAR	Y VOCS	
Location ID	Date Sampled	TOC	DTW	DTP	Thickness	GWE	DRO	GRO	RRO	Benzene	Toluene	Ethylbenzene	Xylene (total)
	Units	ft msl	ft btoc	ft btoc	ft	ft msl	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
ADEC	Groundwater C	leanup Le	vels				1.5	2.2	1.1	0.0046	1.1	0.015	0.19
MW-1	9/7/2017	98.09	18.41			79.68	0.11 J / 0.11 J	<0.010 / <0.010	0.084 J / 0.090 J	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005
MW-1	11/09/2017	98.09	18.15			79.94	<0.051 / <0.051	<0.010 / <0.010	<0.077 / <0.077 J	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005
MW-1	3/26/2018 ²	98.09	18.22	18.21		4							
MW-1	6/18/2018	98.09	17.91			80.18	< 0.054	<0.010	<0.080	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-1	8/9/2018	98.09	17.60			80.49	0.084 J	< 0.014	<0.085	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-1	10/22/2018	98.09	16.75			81.34	0.14 J	<0.014	0.22 J	<0.0002	<0.0002	<0.0002	<0.0005
MW-2	9/7/2017 ¹	97.86	18.29			79.57							
MW-2	11/9/2017 ¹	97.86	17.95			79.91							
MW-2	3/26/2018 ³	97.86											
MW-2	6/18/2018	97.86	17.73			80.13	1.4 / 1.7	<0.010 / <0.010	1.0 / 0.85	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005
MW-2	8/9/2018	97.86	17.40			80.46	1.6 / 1.7	<0.014 / <0.014	0.97 J / 1.0 J	<0.0002 / <0.0002	<0.0002 / <0.0002	<0.0002 / <0.0002	<0.0005 / <0.0005
MW-2	10/22/2018	97.86	16.91			80.95	2.9 / 3.2	<0.014 / <0.014	2.1 / 2.3	<0.0002 / <0.0002	<0.0002 / <0.0002	<0.0002 / <0.0002	<0.0005 / <0.0005
MW-3	9/7/2017	97.53	18.02			79.51	0.058 J	<0.010	<0.078 J	<0.0005	<0.0005	<0.0005	<0.0005
MW-3	11/09/2017	97.53	17.66			79.87	0.067 J	<0.010	0.12 J	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-3	3/26/2018	97.53	17.79			79.74	<0.056 / <0.051	<0.010 / <0.010	<0.083 / <0.076	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005	<0.0005 / <0.0005
MW-3	6/18/2018	97.53	17.48			80.05	< 0.051	< 0.010	< 0.077	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-3	8/9/2018	97.53	17.17			80.36	0.098 J	< 0.014	<0.085	< 0.0002	< 0.0002	< 0.0002	< 0.0005
MW-3	10/22/2018	97.53	16.51			81.02	0.080 J	<0.014	<0.083	<0.0002	<0.0002	<0.0002	<0.0005
MW-4	9/7/2017	97.30	17.72			79.58	<0.052	<0.010	<0.077	<0.0005	<0.0005	<0.0005	<0.0005
MW-4	11/09/2017	97.30	17.39			79.91	< 0.053	<0.010	< 0.079	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-4	06/26/2018	97.30											
MW-4	3/26/2018 ³	97.30											
MW-4	6/18/2018	97.30	17.16			80.14	< 0.050	<0.010	< 0.076	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-4	8/9/2018	97.30	16.85			80.45	0.082 J	< 0.014	<0.082	< 0.0002	< 0.0002	< 0.0002	< 0.0005
MW-4	10/22/2018	97.30	16.21			81.09	<0.052	<0.014	<0.084	<0.0002	<0.0002	<0.0002	<0.0005
QA-T	09/07/2017							<0.010		<0.0005	<0.0005	<0.0005	<0.0005
QA-T	11/09/2017							<0.010		< 0.0005	< 0.0005	< 0.0005	< 0.0005
QA-T	03/26/2018							<0.010		< 0.0005	< 0.0005	< 0.0005	< 0.0005
QA-T	6/18/2018							<0.010		< 0.0005	< 0.0005	< 0.0005	< 0.0005
QA-T	8/9/2018							< 0.014		< 0.0002	< 0.0002	< 0.0002	< 0.0005
QA-T	10/22/2018							<0.014		<0.0002	<0.0002	<0.0002	<0.0005

Table 2

Historical Groundwater Analytical Results Former Unocal Service Station #4854 2730 Spenard Road Anchorage, Alaska

Notes and Abbreviations

TOC = top of casing

DTW = depth to water

GWE = groundwater elevation

TPH = total petroleum hydrocarbons

DRO = diesel range organics by Alaska Series Method AK102

GRO = gasoline range organics by Alaska Series Method AK101

RRO = residual range organics by Alaska Series Method AK103

Benzene, toluene, ethylbenzene, and total xylenes by Environmental Protection Agency (EPA) Method 8021B or 8260B or SW-E46 8021B

Total Xylenes = Sum of m-, o-, and p-xylenes

VOC = volatile organic compounds by EPA Method 524.2

ADEC = Alaska Department of Environmental Conservation

^a = Levels established in ADEC Table C Groundwater Cleanup Levels (18 AAC 75.345)

BOLD = Indicates concentration above the ADEC Table C Groundwater Cleanup Level

ft msl = feet above mean sea level

ft btoc = feet below top of casing

mg/L = milligrams per liter

J = Estimated value

-- = Not measured / not analyzed

<x = Constituent not detected above x milligrams per liter</p>

x / y = Sample results / blind duplicate results

** Groundwater Elevation Corrected due to LNAPL = (TOC - DTW)+((DTW-LNAPLT) x 0.80)

1 Monitor only

Not sampled, product in well

3 Unable to sample

4 GWE could not be calculated because LNAPL thickness could not be determined.

Appendix A Site Photographs

PHOTO 1 - VIEW OF SITE FACING NORTHEAST.

PHOTO 2 - VIEW OF SITE FACING NORTHWEST.

82676-95 Apr 4, 2018

SITE PHOTOGRAPHS

APPENDIX A

PHOTO 3 - VIEW OF SITE FACING NORTHWEST.

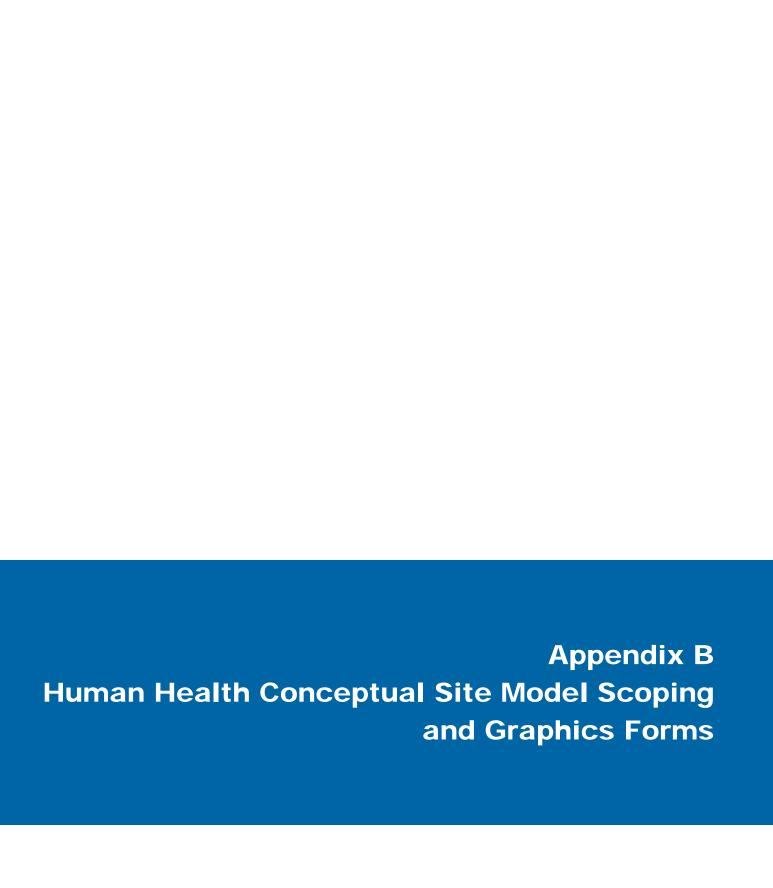
PHOTO 4 - VIEW OF SITE FACING SOUTHEAST.

82676-95 Apr 4, 2018

SITE PHOTOGRAPHS

APPENDIX A

PHOTO 5 - VIEW OF SITE FACING SOUTHWEST.


PHOTO 6 - MW-4 - FACING NORTH.

82676-95 Apr 4, 2018

SITE PHOTOGRAPHS

APPENDIX A

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	
File Number:	
Completed by:	
about which exposure pathways should be further summary text about the CSM and a graphic depic characterization work plan and updated as needed	•
General Instructions: Follow the italicized instr	ructions in each section below.
1. General Information: Sources (check potential sources at the site)	
USTs	☐ Vehicles
☐ ASTs	☐ Landfills
☐ Dispensers/fuel loading racks	☐ Transformers
☐ Drums	Other:
Release Mechanisms (check potential release me	echanisms at the site)
☐ Spills	☐ Direct discharge
Leaks	☐ Burning
	☐ Other:
Impacted Media (check potentially-impacted me	,
☐ Surface soil (0-2 feet bgs*)	☐ Groundwater
☐ Subsurface soil (>2 feet bgs)	☐ Surface water
☐ Air	☐ Biota
☐ Sediment	Other:
Receptors (check receptors that could be affected	d by contamination at the site)
Residents (adult or child)	☐ Site visitor
☐ Commercial or industrial worker	☐ Trespasser
Construction worker	Recreational user
☐ Subsistence harvester (i.e. gathers wild foods)	☐ Farmer
☐ Subsistence consumer (i.e. eats wild foods)	Other:

^{*} bgs - below ground surface

2.	Exposure Pathways: (The answers to the following questions will identify con exposure pathways at the site. Check each box where the answer to the question	
a)	Direct Contact - 1. Incidental Soil Ingestion	
	Are contaminants present or potentially present in surface soil between 0 and 15 feet below (Contamination at deeper depths may require evaluation on a site-specific basis.)	the ground surface?
	If the box is checked, label this pathway complete:	
	Comments:	
	2. Dermal Absorption of Contaminants from Soil	
	Are contaminants present or potentially present in surface soil between 0 and 15 feet below (Contamination at deeper depths may require evaluation on a site specific basis.)	the ground surface?
	Can the soil contaminants permeate the skin (see Appendix B in the guidance document)?	
	If both boxes are checked, label this pathway complete:	
	Comments:	
b)	Ingestion - 1. Ingestion of Groundwater	
	Have contaminants been detected or are they expected to be detected in the groundwater, or are contaminants expected to migrate to groundwater in the future?	
	Could the potentially affected groundwater be used as a current or future drinking water source? Please note, only leave the box unchecked if DEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.	
	If both boxes are checked, label this pathway complete:	
	Comments:	

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future? Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities). *If both boxes are checked, label this pathway complete:* Comments: 3. Ingestion of Wild and Farmed Foods Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild or farmed foods? Do the site contaminants have the potential to bioaccumulate (see Appendix C in the guidance document)? Are site contaminants located where they would have the potential to be taken up into biota? (i.e. soil within the root zone for plants or burrowing depth for animals, in groundwater that could be connected to surface water, etc.) If all of the boxes are checked, label this pathway complete: Comments: c) Inhalation-1. Inhalation of Outdoor Air Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.) Are the contaminants in soil volatile (see Appendix D in the guidance document)? *If both boxes are checked, label this pathway complete:* Comments:

2. Ingestion of Surface Water

2. Inhalation of Indoor Air	
Are occupied buildings on the site or reasonably expected to be occupied or planthe site in an area that could be affected by contaminant vapors? (within 30 ho or vertical feet of petroleum contaminated soil or groundwater; within 100 fee non-petroleum contaminated soil or groundwater; or subject to "preferential path which promote easy airflow like utility conduits or rock fractures)	rizontal t of
Are volatile compounds present in soil or groundwater (see Appendix D in the document)?	guidance
If both boxes are checked, label this pathway complete:	
Comments:	

3.	Additional Exposure Pathways:	(Although there are no	definitive questions provided in this see	ction,
	these exposure pathways should also be	considered at each site.	. Use the guidelines provided below to	
	determine if further evaluation of each p	oathway is warranted.)		

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- O Climate permits recreational use of waters for swimming.
- o Climate permits exposure to groundwater during activities, such as construction.
- o Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Che Comm	ck the box if further evaluation of this pathway is needed:	
Comm	ento.	
Inhalat	ion of Volatile Compounds in Tap Water	
Inha o	lation of volatile compounds in tap water may be a complete pathway if: The contaminated water is used for indoor household purposes such as showering, lateral washing.	laundering, and dish
0	The contaminants of concern are volatile (common volatile contaminants are listed guidance document.)	in Appendix D in th
_	oundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway becaus during normal household activities is incorporated into the groundwater exposure equat	
Che	ck the box if further evaluation of this pathway is needed:	
Comm	ents:	-

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- O Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation. *Check the box if further evaluation of this pathway is needed:* Comments: **Direct Contact with Sediment** This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if: Climate permits recreational activities around sediment. 0 The community has identified subsistence or recreational activities that would result in exposure to the 0 sediment, such as clam digging. Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment. Check the box if further evaluation of this pathway is needed: Comments:

ı.)	 		

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: Chevron 306449 ADEC File ID: 2100.26.116		Instructions: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land								
Completed By: GHD Services, Inc Date Completed: 12/01/2017		use controls when describing pati	hways				(E)			
(1) (2) Check the media that could be directly affected by the release. (2) For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Check additional media under	media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human	exp "F" : futu	osure p for futul re rece	oathwa re rece ptors,	tors poi y: Ente ptors, ' or "I" fo	r "C" for "C/F" for r insignif ture	affected to current re both current ficant expo	eceptors, rent and oosure. ptors	
Surface Migration to subsurface check ground	(III)	Health CSM Scoping Form. Exposure Pathway/Route	Residents	Commercial or	Site visitors, trans	Construction	Farmers or subsistence	Subsistence consumers		
Runoff or erosion check surface to		ncidental Soil Ingestion	F	C/F	C/F	C/F			1	
Uptake by plants or animals check Other (list):	biota soil [Dermal Absorption of Contaminants from Soil							7	
	711	nhalation of Fugitive Dust							T	
Subsurface Soil (2-15 ft bgs) Direct release to subsurface soil check grounds Volatilization check grounds check gro	ck air	ngestion of Groundwater Dermal Absorption of Contaminants in Groundwater nhalation of Volatile Compounds in Tap Water	F	C/F	C/F	C/F				
Ground- water Direct release to groundwater check grounds Check grounds Check surface is Flow to surface water body Check surface is Check surface is Uptake by plants or animals Other (list):	ck air	nhalation of Outdoor Air nhalation of Indoor Air nhalation of Fugitive Dust	F	-	C/F					
Surface Water Direct release to surface water Check surface	surface water	ngestion of Surface Water Dermal Absorption of Contaminants in Surface Water Inhalation of Volatile Compounds in Tap Water								
Sediment	ment) water	Direct Contact with Sediment								
Uptake by plants or animals check	biota I	ngestion of Wild or Farmed Foods								
						Revi	sed, 10	0/01/20	010	

Appendix C Monitoring Data Package

DAILY FIELD REPORT

Project Name: CEMC 30644 8	GHD Project Manager: S. PRITCHARD	Field Rep: O.YAN/T. WEAVER				
Project Number: 621048	Date: 10/22/18	Site Address:				
Scope of Work: PERFORM GW HONTON	2730 SPENARO DO. ANCHORAGE, AK					
/ +		Weather: SUNNY - Law 50s.				
	+ WATER	LEVEL WETER (06784)				

Time	Activity/Comments	SWA
0831	DRIVE BY 47374 TO CHIETEN SYSTEM RUNNING	
0840	PICK UP SUPPLIES (A PTT; HEND TO SITE	Miles en la Line
0900	ALLANE ONSITE -> NOTIFY PM', PERFORM JAFFETY TAILGATE	7
0924	START GALGING WELLS: START JETTING UP ACOUND WELL HW-4;	
0942	START LF-PUPCE SAMPLING @ MW-4: COLLECT GW PARAMETER BEARDINGS	
1018	COLLEG MW-4-W-181027 GW SAMPLE; DECON EQUIPMENT; PURGE 0.90 GAL THROUGH GAC	
1022	SEI OF @ WELL HM-3	
1024	START LE PURGE JAMPLING OF WELL MW-3; COLLECT EW PARAMETER REDIOINGS.	_ = = =
1055	COLLECT SAMPLE MW-3-W-181022; DECON EQVIRATELY; PUZGE 0.80 GAL THROUGH GAC	
1102	SET UP ON WELL MW-1	
1107	START LE PURGE SAMPLING OF WELL MW-1; COLLECT GW PARAMETER READINGS.	
1138	COLLECT MW-1-W-181022 GW SAMPLE; PURGE 275GAL THROUGH GAC; DECON EQUIPMENT	
1144	BREAK FOR LUNCH	and the Paper
1200	SET UP ON WELL MW-2	To the second
1204	START LE PURCE SAMPLING : COLLECT GW PARAMETER DATA;	+
1236	COLLECT MW-Z-W-181022/DUP-1-W- 181022 GW JAMPLES; DECON EXPLIPMENT, PURGE 1.0 GAL THROUGH 6	0.0
1258	PACK SAMPLES; SITE CLEAN-UP ; PURGE 2.0 GAL OF DECON WATER THROUGH GAC.	
1305	HEAD TO PEOEX	
1315	HEAR TO TIT TO DROP OFF EQUIPMENT PROVING	
1335	BALL Q OFFICE; OFFICED EQUIPMENT	
	TOTAL PUNGED THROUGH GAC = 5.45 GAL	
)
***************************************		~
	a second and the seco	

C: Environmental	B: Equipment	A: Person or People	014/4 1/
	E: Visitors	D: Procedures/Processes/JSA-review/revise	SWA Key:
ACC Supercontras de aus de	Memorapa e	lateracerocal D	

\\ghdnet\ghd\US\Golden\Projects\Projects\CLIENT\Chevron\FIELD FORMS\Daily Field Report - Chevron.doc

Groundwater Monitoring Field Sheet

Project Name: 306449 (ADEC File ID: 2100.26.116)				3)		441-703-101-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
ıff:	O. Yan / T. Weaver Date: OCTOBER 22, 2018									
Time	DTW (ft - btoc)	DTB (ft-btoc)	DTP (ft-btoc)	Product Thickness (feet)	Amount of Product Removed (feet)	Casing Diameter (inches)	PID (ppm)	Comments		
936	16.75	24.71				2"				
933	16.91	24.60				2"		1		
929	16.51	24.59		-		2"				
924	16.21	24.61				2"				
				4						
					*			Sec.		
	·					1 7		8		
								m.		
							570 - n.			
			8 9							
			11.0			12				
		B								
								· \		
	1ff:	Time DTW (ft - btoc) 936 16.75 938 16.91 929 16.51	Time DTW DTB (ft-btoc) (ft-btoc) (936 16.75 24.7) 933 16.91 24.60 929 16.51 24.59	Time DTW DTB DTP (ft-btoc)	Time DTW DTB DTP Product Thickness (feet) 936 16.75 24.71 929 16.51 24.59 924 16.21 24.61	Time DTW (ft - btoc) DTB (ft-btoc) Thickness (feet) Product Removed (feet) Product Produ	Time DTW (ft - btoc) DTB (ft-btoc) Thickness (feet) Removed (feet) Diameter (inches) 2" 936 16.91 24.60 2" 929 16.51 24.59 2" 924 16.21 24.61 2"	Time DTW (ft - btoc) DTB (ft-btoc) Thickness (feet) Removed (feet) Diameter (inches) PID (ppm) PTO (inches) PTO (

Groundwater Sampling Form

roject No.	082676		PM Siobhan	Pritchard		Well ID	MW-1		Date lo	/22/18	Page _	of 4
ite ID / Location	306	449 / 27	30 Spenard Roa	d, Anchor	age, Alask		File ID: 2100					
creen			Casing			Well Material	X	PVC		Sampled by		. Weaver
etting (ft-btoc)	10-25		Diameter (in.)	2"				_SS). Yan
				\Aleter C	Column /				Sample ID	MW-1-	M-181	013
atic Water	16.75	Total Depth	(ft-btoc) 24.7)	Gallons	Column / in Well	7.96 1.274	_		Dup ID		•	
		rotal Bopai	(11 210 0)		-		94	Sample Time	1138	Star <u>t</u>		End
		//No-Purge	e Method	////////	11111111			Low	Flow Metho	d -		17 110
ampler Length (in)	36	thath of sall			Pump type	Bladder Other		E	Pump Intake Volumes Pi	(ft-btoc) urged	0.75 GAL
eights	// <u>//</u> //////	30 H	Position ////	Supende		Flow rate (ml/i	minute)	60 - 13	5	Purge Time		Start 1107
11111	week/		///////////////////////////////////////	Bottom se		Did well Dewa	ter? Yes	□No			E	nd 1137
Prion Baler	used to co	flect non vol					I Dissalued	T 50	Redox	Turbidity		
Time	Minutes	Rate	Depth to	Gallons		Cond.	Dissolved Oxygen	pH 0.1	(mV)	(NTU)	Add	litional notes
	Elapsed	(gpm) (mL/min)	Water (ft)	Purged	(°C)	(mS/cm) 3%	(mg/L) 10%	0.1	10	(((10)		
1112	চ	GO.	16.75	0.10	9.30	0,373	5.98	6.30	222.3	\$2.0)	-	EAR
1117	10	135	16.84	6.20	9.64	6.30g	5.47	6.21	221 · 4	48.33	1)	1)
1122	15	115	16.92	0.35	9.93	0.417	5.29	6.18	218.6	18.23	//	"
1127	20	112	16.88	02.0	10,06	0.426	5.30	6.19	217.4	12.52	1/	"
1132	25	115	16.88	0.60	10.14	0.479	5.14	6.20	216 16	6.19	//	"
W :												
,				2								
												- 199
		7 10									Davis	
onstituents Sa	mpled				Container				Number		Preser	vative
TEX by 8260 full Scan VOCs	hv 8260				40 mL vial			•••	3	_	HCI	
VOCs by 8260	by 0200				,							
RO by AK 101	•••••				40 mL vial				3	•••	HCI	
RO by AK 102		24			250 mL ar	nber		•••	1	***	HCI	
RO by AK 103		32			250 mL ar	nber			1.1	<u></u>	HCI	
ead by 6010												
AHs by 8270	<u> </u>			•••						•••		
lkalinity by 2320	0B .			****								
lethane by RSK											.,	
ulfate by EPA 3												
itrate/Nitrite by			i0040		40 mt 140	<u> </u>			-2			
DB by 8011			once in 2018		40 mL via		Coan HOC-	(-	TOTAL: 8)		
2-DCA by 8260			once in 2018		snould be	included in Full	ocan voc			/.		
Vell Casing V	olumes 1" = 0.04	1	5" = 0.09	2.5" = 0.2	6	3.5" = 0.50	6" = 1.47					
allorish oot	1.25" = 0.		' = 0.16	3" = 0.37		4" = 0.65						
ield Test Res	ults:	-						2.8				
	NA	Ferrous Iron	n 🦠	mg/L	Nitrate		mg/L	Other		-		
Vell Informati	9	2005-	5000	16				Well Locks	d at Arrival:	Yes	1	No
Well Loca			- STORE PAIRKI	NG LOT		/	_		t Departure:	Yes	1	No
Condition o		G009	eh Mount /	Stick Up				Louncu ai	. Doparture.			
Well Comp		Į Flu	sh Mount /	olick Op	- Control of the Cont							
Additional No	tes		1 2 2									
	1											
					e 25 3 5		******************************					

Groundwater Sampling Form

Project No.	082676		PMSiobhan	Pritchard	0	Well ID	MW-2		Date 10/2	22/18	Page _	2 of 4
Site ID / Location	306	6449 / 2	730 Spenard Roa	d Anchor	age Alask	a (ADEC	File ID: 2100	26 116)				
Screen		7-1-10 / 2	Casing	<u>u, 7 (1101101</u>	ago, ruaora	Well Material	X	PVC		Sampled by	, -	T. Weaver
Setting (ft-btoc)	10-25		Diameter (in.)	2"				ss				O. Yan
									Sample ID	MW-2-	W-181	022
Static Water				Water C		1.69 1.230						
Level (ft-btoc)	6.4)	Total Depth	(ft-btoc) 24.60	_ Gallons	in vveii	1.69 155		Sample	100	DUP-1-W -	10100	
								Time	1236	Start		End
		No-Purg	e Method		1111111111			Low	Flow Metho			17.50
Sampler Length (in	Y //////	36/1	Depth of Sand		/////////////////////////////////////	Pump type	Bladder Other		, P	ump Intake Volumes Pu	(ft-btoc)	1.0 GAL
Weights		Low-Flow	Sampling Position	Supende		Flow rate (ml/r		125-155	5	Purge Time		Start 1/204
//////	. anungro/			Bottom se		Did well Dewa				i digo timo		End 1234
yy whon balen	used to co	necrionvoi									_	-
Time	Minutes	Rate	Depth to	Gallons	Temp	Cond. (mS/cm)	Dissolved	pH 0.1	Redox (mV)	Turbidity (NTU)	Λdα	ditional notes
	Elapsed	(gpm) (mL/min)	Water (ft)	Purged	(°C)	3%	Oxygen (mg/L) 10%	0.1	10	(1410)	Aut	r c
(209	5	155	16.78	0.10	9.99	0.364	2.27	6.28	211.5	121.0	CLE	
	10	125	16.78	 	10.18		1.89	6,23	213.4	60.11	11	11
1214				0.25		0.369					11	"
	15	125	16.78	0.45	10.27	0.372	1.98	6.23	212.4	38.05		
1224	20	125	16.79	0.60	(0.3)	0.374	2.08	6.24	211.1	24.91	1/	"
1229	25	125	16.78	0,00	16.36	6.371	2.29	6.26	201.4	10.22	"	11
								*				
	-			1		-		-				
			<u> </u>				L	<u> Li</u>	<u> </u>	L		
Constituents San	npled				Container				Number		Preser	vative
BTEX by 8260												
Full Scan VOCs by	y 8260				40 mL vial				3 /	3~	HCI	
HVOCs by 8260									3/			
GRO by AK 101					40 mL vial						HCI	
DRO by AK 102 RRO by AK 103					250 mL aml 250 mL aml	*****************************			1 /	•	HCI HCI	
Lead by 6010					200 IIIL aiii	Jei		• 4 G R		1	1101	
PAHs by 8270				•	***************************************					•		
Alkalinity by 2320E	3											
Methane by RSK1								**				
Sulfate by EPA 30			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Nitrate/Nitrite by El	PA 300		once in 2018		40 mL vial				-9-	:		
									Torus	15		
1,2 DCA by 8260B			once in 2018		Snould be in	cluded in Full S	can voc		TOTAL 8	18/		
Well Casing Vol Gallons/Foot	umes 1" = 0.04	_1.	5" = 0.09	2.5" = 0.26	3.	5" = 0.50	6" = 1.47					
	1.25" = 0.0	06 2"	= 0.16	3" = 0.37	4'	= 0.65						
Field Test Resu	Its: NA			-4-	West - Inches							
		Ferrous Iron	1	mg/L	Nitrate		mg/L	Other				
Well Information	n -											
Well illioi illatio		ONSITE			- 1		. V	Vell Locked	d at Arrival:	Yes	1	No
Well Location	on:						Well	Locked at	Departure:	Yes	1	No
		6000					and the second second					
Well Location	Well:		sh Mount / S	tick Up				3				
Well Location of \ Well Comple	Well: tion:		sh Mount] / S	tick Up			-					
Well Location Condition of Well Comple	Well: tion:		sh Mount / S	tick Up								
Well Location Condition of Well Comple	Well: tion:		sh Mount / S	tick Up								
Well Location Condition of \	Well: tion:		sh Mount) / S	tick Up								

Groundwater Sampling Form

Project No.	082676		PM Siobhan	Pritchard		Well ID	MW-3		Date 10/	12/18	Page .	of]
S		1			2011		=: 0.400		20			
Site ID / Location	306		730 Spenard Roa	d, Anchoi	age, Alasi		File ID: 2100			Sampled by		T. Weaver
Screen	40.05		Casing	Oll		Well Material	X	_PVC SS		Sampled by		O. Yan
Setting (ft-btoc)	10-25		Diameter (in.)	2"				_00			-	
Static Water				Water (Column /				Sample ID	MM-3	-W-	181012
Static Water Level (ft-btoc)	16.51	Total Denth	(ft-btoc) 24.51	Gallons	s in Well	8.08 1.293			Dup ID			
Level (II-bloc)		Total Deptil	(11-0100)	_			-	Sample			(mode et	
	s 12 entrespensive							Time	1055	Start		End
		No-Purg	e Method		Junio d			Low	Flow Metho			. 17 12
Sampler Length (i	in)//////	36	Depth of Sall		/////////	Pump type	Bladder Other		Р	ump Intake Volumes Pi		0.80 080
		30 H	Sampling	Supende		Flow rate (ml/r		120		Purge Time		Start 102#
Weights//////	JUNOPA/			Bottom's						, argo riine		End 1054
W venon Baler	used to co				et O			, ,, .		T. 41.06		
Time	Minutes	Rate	Depth to	Gallons	Temp	Cond. (mS/cm)	Dissolved Oxygen	pH 0.1	Redox (mV)	Turbidity (NTU)	Δd	ditional notes
	Elapsed	(gpm) (mL/min)	Water (ft)	Purged	(°C)	3%	(mg/L) 10%	0.1	10	(1410)	Au	ultorial flotes
1629	5	120	16.51	0.05	9.49	0.408	4.94	6.09	235.7	78,00	a	10
	1				-				231.5	69.95	41	"
1034	lo -	120	16.51	0.15	1.74	0.412	4.65	6.19			4	
1039	- 15	120	16.51	0.30	9.97	0.424	4.71	6.32	225.7	25.41	200	"
1044	20	120	16.51	0.45	10.04	0.434	4.73	6.34	225.2	20.49	11	"
1049	25	120	16.51	0,60	10.03	0.435	4.76	6.35	225.3	13,52	11	2
,	-											
	-		*	 	<u> </u>	 		 	-			
								<u> </u>				
												4
Constituents Sai	mpled				Container				Number		Prese	rvative
BTEX by 8260 Full Scan VOCs b					40 mL vial				3 \		HCI	
HVOCs by 8260	y 6200			•	40 IIIL Viai			•••				
GRO by AK 101				•	40 mL vial			•••	3 \		HCI	
DRO by AK 102					250 mL an	nber			1		HCI	
RRO by AK 103					250 mL an	nber			1		HCI	
Lead by 6010								•••				
PAHs by 8270												
Alkalinity by 2320								•••	***************************************			
Methane by RSK Sulfate by EPA 30	******************		1 4	•								
Nitrate/Nitrite by E					***************************************				***************************************	•	************	
EDB by 8011			once in 2018-		40 mL vial							
1,2-DCA by 8260	B-		once in 2018		should be	included in Full S	Scan VOC	(TOTAL: 8)		
Well Casing Vo												
	1" = 0.04	_1.	5" = 0.09	2.5" = 0.20	3 :	3.5" = 0.50	6" = 1.47					
	1.25" = 0.0		= 0.16	3" = 0.37		4" = 0.65	e e					
Field Test Resu	ilte: AL											
Ticia Test Nest	AILO. N/A	Ferrous Iron	1	mg/L	Nitrate		mg/L	Other				
Well Information	n											
Well Locat	tion:	ONJITE			K		,	Well Locked	d at Arrival:	Yes		No
Condition of	Well.	6000					- 5	I Locked at		Yes	1	No
			sh Mount / S	Stick Up	<u> </u>			. Loonou at	_	-		
Well Comple	etion.	Flu	sir wount 17	olick Op					NAME OF TAXABLE PARTY.	-		
Additional Note	es											
						ACCOUNTS NAMED AND ADDRESS OF THE PARTY OF T						100 P.34
			•••••	-								
		,										

Groundwater Sampling Form

Project No.	082676		PM Siobhan	Pritchard		Well ID	MW-4		Datel	0/22/18	Page _	4 of 4
Site ID / Location	306	6449 / 27	730 Spenard Roa	d, Anchor	age, Alask		File ID: 2100					
Screen Setting (ft-btoc)	10-25		Casing Diameter (in.)	2"		Well Material	<u>x</u>	_PVC _SS		Sampled by		Г. Weaver Э. Yan
									Sample ID	4W-4-1	W-181	02z
Static Water	16.21	Total Denth	(ft-btoc) <u>24.6</u>)	Gallons	Column /	84 /1.344	1		Dup ID	_	-	
Level (II-bloc) _	10.27	Total Deptil	(II-bloc) <u>27.47</u>	_		0.1		Sample	1018			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///83//8////	93878728////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7//////////////////////////////////////	a		THIC	Flow Metho	Star <u>t</u>		End
Sampler Length		26//5	Method Depth of Sampling			Pump type	Bladder 🛄	LOW	Flow Metho	ump Intake	(ft-btoc)	16.80
		Low-Flow	Sampling				Other	M	***	Volumes P	urged	0.90 GAL
Weights/////	///////	Low-Flow	Position	Supende		Flow rate (ml/r Did well Dewa		DNO 130		Purge Time): 	Start 942 End 1017
W venon Bale	used to co	llect non vola	atile samples	Yes L		Did well Dewa	teri res (NO	14	40		The state of the s
Time	Minutes Elapsed	Rate	Depth to Water	Gallons Purged	Temp (°C)	Cond. (mS/cm)	Dissolved Oxygen	pH 0.1	Redox (mV)	Turbidity (NTU)	Add	litional notes
		(mL/min)	(ft)	raigea	71	3%	(mg/L) 10%		10			
0947	5	130	16.21	0.10	10.21	0.503	9.28	4.59	2.34.0	96.65		FAR
0952	10	165	16.21	0.25	10.22	0.465	5.58	5.34	230.6	69.60	11	
0957	15	105	16.21	0.40	10.14	0.470	5.25	5.62	281.4	57.33	11	11
1002	20	105	16.21	0.55	10.03	0.476	5.28	5.82	231.3	42.70	11	"
1007	75	105	16.21	0.70	10.02	0.483	5.31	5.92	231. 2	33.09	11	"
100												10 DF
	a 1	100			****							
355											L	74
Constituents Sa	mpled				Container				Number		Prese	vative
BTEX by 8260	h 0200				40 mL vial				3		HCI	8a
Full Scan VOCs HVOCs by 8260	Dy 8260	- 5		•				- 13		•		
GRO by AK 101					40 mL vial				3	i	HCI	
DRO by AK 102				••	250 mL an	***********			1	-	HCI	
RRO by AK 103 Lead by 6010					250 mL an	nber			1		HCI	
PAHs by 8270				•						•		
Alkalinity by 2320)B					1.75						
Methane by RSK	********************											
Sulfate by EPA 3 Nitrate/Nitrite by	***************************************	<u> </u>										
EDB by 8011	EFA 300		ence in 2018		40 mL vial			•••	2	•		
1 ,2 DCA by 826 0)B		once in 2018		should be	included in Full (Scan VOC	-				
Well Casing Vo												
Gallons/Foot	1" = 0.04 1.25" = 0.0		5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47					
Field Test Res	ults:						- 1	0.11				
Well Information	On On	Ferrous Iron		mg/L	Nitrate		mg/L	Other				
Well Loca		OFFSITE						Well Locked	d at Arrival:	Yes)	No
Condition of		Gow)				- Wel	Locked at	Departure:	Yes)/	No
Well Comp		Flus	sh Mount / S	tick Up	-				- T		/	
Additional Not		ride	Table 1	op			-				1-8	
radicional NO			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							***************************************		
			- A					••••••				
						- V						***
	1000				······································							

Portable GAC Volume Tracking Log

			Volume Filtered	
Site ID	Project No.	Date	through GAC	Filter location description
			(gallons)	
92609	620911	6/11/18	6.35 GAL	PUREL ANDA
92609	620911	6/12/18	4.35 GAL	11
95414	062327	6/18/18	5.10 GAL	PURGED THINGULH PLANTON MAR MW3/MW-2.
95414	062327	6/19/18	6.30 GAL	PLANTER UPGLAPIENT OF MULO, PLANTER SING
351860	065008	6/19/18	5,50 GAL	PLANTER WESTERN SIDE OF JITE.
351860	065004	6/20/18	6.10 611	SOUTH WEST STOE OF SITE
211078	622233	7/12/18	4.20 GAL	covien of site
95414	062327	08/08/18	4.10 GAL	DETWEEN CHEVINA/ARCTIC BUAN PLANTER AND
95114	062327	08/08/18	3-40 GAL	1
306449	082676	08/09/18	4.40 GAL	PLANTER BUTWEEN SITE (UP ARADIENT).
211081	062324	08/20/18	0.9 646	PLANTER NE OF STATEON
211079	065003	08/20/18	5.15 GAL	FENCED AREA BEHEND MAKKET
211083	665004	08/21/18	12.1 614	GRASS SW OF ALSTATES
211079	065003	9/22/18	4.2 6AL	FENCED AREA BEHIND MAKKET
915-18	062325	8/28/18	6.1 GAL	PLANTER SOUTH OF WENDY'S
90430	065001	8/29/18	8.1 GAL	CENTER OF THE SITE (BETWEEN MW-7 /HW-5K
92555	062326	8/30/18	GJ GAL	PLANTEL ALONG 9TH AVENUE, FIX IT SITE
92555	062336	8/31/18	6.75 GAL	PLANTEZ CENTRAL AND CONTRAL OF SITE.
91252	622059	9/4/18	11 GAL	PLANTEN EXIT OF SITE (LPGRADIENT) BY
91356	622232	9/5/18	6.8 GAL	PLANTER AKEN BY THE CHEWAY STATION BY ITATION
306451	621048	9/6/18	3.5 GAL	BOULH OF MATION DOILDING
92609	620911	9/10/18	\$75 GAL	CENTER OF SITE;
92609	620911	9/11/18	5.45 GAL	CANTEL OF SITE;
96097	962378	9/13/18	6.5 GAL	CENTER OF SITE -> RANTOR IN BETWEEN
96097	062328	9/14/18	5.6 GAL	CONTOR OF SITE > PLANTER IN BETWEEN BILEYS
98557	060361	9/25/18	14.4 GAL	PLANTER ANEX BY STATION BURDIM
99014	062329	9/26/18	8.9 GAL	PLANTER 134 CHAMON STATTON SIGN
99014	062329	9/27/18	9.0 GAL	MANTEL BY THIMPS PARPENS, ALONG BUILDING
99014	062329	9/28/18	6.5 GAL	PLANTOR BY THRIFTY PROPERTY, ALONG BULLYUN
211074	612064	10/8/16	5.7-6AL	GRASS SOUTH OF OP-40
211074	612064	10/4/18	10.35 bH	GRASS SOUTH OF OR-40
306448	621049	10/10/18	4.8 GAL	CENTER OF SITE
95799	620914	10/16/18	6.65 GAL	VARIOUS > PLANTER AVERU ONUTIE.
96489	62094	10/17/18	7.3 616	ONSITE - PLANTER WENT TO STATION BULLDING
97324	612061	10/18/18	5.5 GAL	OUTITE BY SYSTEM BULLIOUS.
306449	087676	10/22/18	5.45 GAL	ONSTRE BY PURNISH NEAR BUILDING
	1			- a

INSTRUMENT RENTAL FUNCTION/CHECKLIST

The preferred source for instrument Rentals, Sales, Service, and Supplies!

Company Name:	GHD				
Rental Description:	I/F probe - 100	FT 5/8			

Sales Order #: 5/82626
Serial #: 08/4

Item Description	Qty	Checked Out?	Checked In?	Damaged / Missing?
Interface Probe	1	1,		
Cushioned carrying case	1			
Spare Battery (9V)	1 or 2			
Optional				
Operators manual				
Tape guide				

Instrument Function Test / Inspection (Correct all deficiencies)	/	Pre-rental Check-out	Post-rental Check-in ("No's" may be customer charge)		
Soft sided case clean (inside and out) and in good condition with proper length, size, and meter type properly marked:	//		Yes	No	
TTT property tag and s/n# in place on front of meter:	1/				
Meter front and rear spools are in good condition:	//		Yes	No	
Spool properly secured to frame and spool brake functional:	/		Yes	No	
Meter sits flat, frame not bent, and probe holder in place:	//		Yes	No	
Probe not bent, probe bottom in good condition, and tape connection at top of probe in good condition when flexed:	1/		Yes	No	
Meter battery cover, buttons, and knobs in place, tight, and in good condition:	/		Yes	No	
Red LED and buzzer works properly when "Start" button pressed (indicates good batteries). When applicable, Green LED stays flashing until "off is pressed":	1	Yes) Yes	No	
Probe buzzes properly when placed in water:	1/	Yes	Yes	No	
Meter provides different tone when passed from Oil to watertransition is clear & precise going both directions:	1/				
Spare batteries test good, white tape over contacts and placed in resealable bag in front pocket of meter bag:	1				

		7	=
Signature	(Check-out):	/	-
o.g.iata.o	(Chook out)		=

Signature (Check-in):

Declared Value: \$1,350

- * By renting with TTT customer agrees to the rental terms and conditions (copy available upon request).
- * Notify TTT within 24hrs of receipt if anything is damaged or missing.
- * Customer is responsible for all parts and equipment damaged or missing during rental.
- * All instruments have been inspected and calibrated (when applicable) prior to rental.

Phone: (907) 770-9041 Fax: (907) 770-9046 Email: info@tttenviro.com www.tttenviro.com

Company Name:

CALIBRATION/INSPECTION REPORT

The preferred source for instrument Rentals, Sales, Service, and Supplies!

Calibration Date: 10/19/2018
rt Date (check-out): 10/19/2018

S/O #: S182626

Report Date (check-out): _

Rental Description: HF Scientific Micro TPW Turbidimeter Serial #: HFTBWturb-11.201106168

		CALIBRA	ATION*	Transaction of the second	
Sensor	Zero Value	Cali	bration*	Alarm	Level
		Desired reading	Instrument reading	Low	High
NTU	na	1000 NTU	1000 NTU	N/A	N/A
NTU	na	10.0 NTU	10.0 NTU	N/A	N/A
NTU	na	0.02 NTU	0.02 NTU	N/A	N/A

^{*} Calibrated per manufacturer specifications

	CAL	IBRATION SOL	JTION INFOR	MATION		_
Components	Conc.	Lot#	Manuf.	Accuracy	Fill Date	Exp. Date
Formazin Solution	1000	70603	ProCal	+/- 1%	N/A	06/2019
Formazin Solution	10.0	70663	ProCal	+/- 1%	N/A	06/2019
Formazin Solution	0.02	70601	ProCal	+/- 0.02	N/A	06/2019

Calibrated by: Steve Ziegler Signature:

Item Description	Qty	Checked Out?	Checked In?	Damaged / Missing?
HF Scientific Micro TPW Turbidmeter	1	✓		
Manual	1	✓		
Sample vials	3	✓	Are and a second se	
In reclosable bag:				
Silicone Oil, Kim Wipes, 4 Spare AAA Batteries	11	V		

Instrument Function Test / Inspection (Correct all deficiencies)	Pre-rental Check-out	Post-rental Check-in (Tag any "damaged" or "No's" for Service to correct)
Inspect instrument for cracks & damage, LCD for proper display, and light chamber for water/dust/debris:		No Damage Damaged
Ensure spare batteries in kit are unused and contacts sealed with white tape:	Yes	Yes No
Dispose of any secondary calibration standard vial or sample vial that has excessive scratches, cracks, or staining:		Yes No
HF Scientific recommends TPW Turbidimeters are recalibrated at least once every three months. Calibrated since the last rental?:	Yes	
Rental checklist completed 🇨	Yes	Yes

Comments:

Signature (Check-out):

Signature (Check-in):

Phone: (907) 770-9041 Fax: (907) 770-9046

Email: info@tttenviro.com

www.tttenviro.com

INSTRUMENT RENTAL FUNCTION/CHECKLIST

The preferred source for instrument Rentals, Sales, Service, and Supplies!

Company Name:

Rental Description: YSI 556

S/O #: Serial #: 5/82626

Item Description	Checked Out?	Checked In?	Damaged / Missing?
556 Multi parameter meter with barometer	1/		
Wrist strap	1		
4 meter probe assembly w/ pH/ORP, cond./temp, & DO	//	1	
Pelican carrying case	//	4	
556 Quick-start Guide & CD in ziploc bag	//		
YSI 5511 Maintenance kit (including the following):	1//		
Probe installation/removal tool			
DO sensor set screw	1		
Allen wrench for DO sensor set screw	11		
DO sensor port plug	1//		
Conductivity probe cleaning brush	1,		
O-Rings for DO sensor	-7/		
2 - Replacement Flow cell O-ring	1/		
DO membrane kit (w/2 replacement caps & instructions)	1/1		
DO membrane solution (at least 1/4 full)	7		
Probe Sensor Guard	77		
Transport/Calibration cup			
Stainless Steel sampling cup			
Optional:			
Flow cell (including the following):		The second second	
2 each hose barbs: 3/16", 1/4", 3/8", 1/2"			
Optional - 2 each YSI body couplings			
Both upper and lower o-rings in place on flow cell			

Instrument Function Test / Inspection (Correct all deficiencies)	
Pelican case general condition, rubber seal, TTT label, & foam in place and in good condition:	Yes
TTT property tag in place on top of instrument:	Yes
Instrument display face plate in good condition (only minor scratches and smears); And backlight functions properly:	CYES
Date and Time set correctly (Esc/system setup/date & time):	Yes
Shutoff time set to 60 min. (Esc/system setup/shut off time):	CYes_
All data deleted (Esc/file/delete all files/delete):	CYes
Battery power bar (lower right hand corner) shows at least 30%:	Yes

Signature (Check-out):

Stgnature (Check-in):

Declared Value: \$3;700

- * By renting with TTT customer agrees to the rental terms and conditions (copy available upon request).
- Customer is responsible for all parts and equipment damaged or missing during rental.
- * All instruments have been inspected and calibrated (when applicable) prior to rental.
- * TTT suggests calibrating/bump testing instruments prior to each days use.

Company Name:

Rental Description:

CALIBRATION/INSPECTION REPORT

The preferred source for instrument Rentals, Sales, Service, and Supplies!

YSI 556

Calibration Date:	10/19/2018	
Report Date (check-out):	10/19/2018	
S/O #:	S182626	55
Serial #:	556-11.H100450	

CALIBRATION*										
Sensor	Zero Value	Calil	oration*							
		Desired reading	Instrument reading	other	Slope/Gain					
Spec. Conductivity/Cond.	na	1.413 @25 C	1.413 @ 19.60 C	1.413/1267	0.99					
рН	na	7.01 @20 C	7.02 @ 19.72 C	-20.6	V:1					
рН	na	4.00 @20 C	4.00 @ 19.82 C	148.4	169					
рН	na	10.06 @20 C	10.05 @ 19.90 C	-193.0	172					
ORP	na	240mV @25 C	240.0 @ 20.05 C	-18.8						
D.O.	na	100% @25 C	97.1 % 19.24 C	B.P.= 29.05	0.73					
5 700 5500			8.95 mg/L							

GHD

^{*} Calibrated per manufacturer specifications

CALIBRATION SOLUTION INFORMATION									
Components	Conc.	Lot#	Manuf.	Accuracy	Fill Date	Exp. Date			
Specific Conductivity	1.413	WZ2	OAKTON		na	01/20			
рН	7.00@25C	17E1S	YSI	+/- 0.01	na	05/19			
рН	4.01@25C	18C1R	YSI	+/- 0.01	na 🧳	03/20			
pH	10.01@25C	17F3T	YSI	+/- 0.02	na //	06/19			
ORP	240mV	2079	Hanna	+/- 20	na	10/22			

Calibrated by: Steve Ziegler

Signature

	INSTRUMENT INSPECTI	ON
ltem	Pre-rental Check-out	Post-rental Check-in ("Damaged" or "No" may indicate customer charge
Inspect all instrument components for cracks, damage, etc:		No Damage Damaged
Meter (battery cover screws) & cable?:		No Damage Damaged
Cable is plugged into handheld?:	Yes	Yes No
Instrument powers on/off properly?:	(Yes)	Yes No
Battery power bar (lower right hand corner) shows at least 30%?:	Yes	
Display/LCD contrast is correct and no black streaks in LCD screen exist?:	Yes	Yes No
All display readings are positive (excluding pHmV & ORP)?:	Yes	Yes No
Probe inspection?:		No Damage Damaged
Probe transport cup is attached & contains 1/4" tap water or pH 4 buffer?:	Yes	Yes No
Calibrated within the last 10 days?:	Yes	
Rental checklist completed?:	Yes	Yes

Comments:

Signature (Check-out):

Signature (Check-in):

Phone: (907) 770-9041 Fax (907) 770-9046 Email

Email: info@tttenviro.com

www.tttenviro.com

Appendix D Laboratory Analytical Report

ANALYSIS REPORT

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Report Date: November 09, 2018 11:38

Project: 306449

Account #: 10880 Group Number: 2001336 PO Number: 0015274506 Release Number: HETRICK State of Sample Origin: AK

Electronic Copy To Chevron Attn: GHD EDD
Electronic Copy To GHD Attn: Jeffrey Cloud
Electronic Copy To GHD Attn: Sarah Gillette
Electronic Copy To GHD Attn: Siobhan Pritchard
Electronic Copy To GHD Attn: GHD EDF

Respectfully Submitted,

land Moelln

Megan A. Moeller Senior Specialist

(717) 556-7261

To view our laboratory's current scopes of accreditation please go to http://www.eurofinsus.com/environment-testing/laboratories-environmental/resources/certifications/. Historical copies may be requested through your project manager.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
	<u>Date/Time</u>	
MW-1-W-181022 Grab Groundwater	10/22/2018 11:38	9864061
MW-2-W-181022 Grab Groundwater	10/22/2018 12:36	9864062
MW-3-W-181022 Grab Groundwater	10/22/2018 10:55	9864063
MW-4-W-181022 Grab Groundwater	10/22/2018 10:18	9864064
DUP-1-WD-181022 Grab Groundwater	10/22/2018	9864065
QA-1-T-181022 NA Water	10/22/2018	9864066

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 306449 ELLE Group #: 2001336

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

AK 102-SV 4/8/02, GC Petroleum Hydrocarbons

Sample #s: 9864061

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. The following action was taken: The sample was re-extracted within the method required holding time and the sample surrogate(s) is compliant. The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits in the second trial. All results are reported from the first trial.

Batch #: 182980012A (Sample number(s): 9864061-9864065)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 9864061

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-1-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 11:38

ChevronTexaco

ELLE Sample #: WW 9864061 ELLE Group #: 2001336

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	mg/l	mg/l	mg/l	
10335	Acetone	67-64-1	N.D.	0.0008	0.020	1
10335	Benzene	71-43-2	N.D.	0.0002	0.001	1
10335	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
10335	Bromoform	75-25-2	N.D.	0.002	0.005	1
10335	Bromomethane	74-83-9	N.D.	0.0005	0.001	1
10335	2-Butanone	78-93-3	N.D.	0.001	0.010	1
10335	Carbon Disulfide	75-15-0	N.D.	0.0003	0.005	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
10335	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
10335	Chloroethane	75-00-3	N.D.	0.0003	0.001	1
10335	Chloroform	67-66-3	0.002	0.0002	0.001	1
10335	Chloromethane	74-87-3	N.D.	0.0003	0.001	1
10335	Cyclohexane	110-82-7	N.D.	0.002	0.005	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.001	0.005	1
10335	Dibromochloromethane	124-48-1	N.D.	0.0004	0.001	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.0003	0.001	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.0003	0.001	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.002	0.005	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
10335	Ethylbenzene	100-41-4	N.D.	0.0002	0.001	1
10335	Freon 113	76-13-1	N.D.	0.002	0.010	1
10335	2-Hexanone	591-78-6	N.D.	0.003	0.010	1
10335	Isopropylbenzene	98-82-8	N.D.	0.0003	0.005	1
10335	Methyl Acetate	79-20-9	N.D.	0.0006	0.005	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	0.0005	0.010	1
10335	Methylcyclohexane	108-87-2	N.D.	0.0002	0.005	1
10335	Methylene Chloride	75-09-2	N.D.	0.0002	0.001	1
10335	Styrene	100-42-5	N.D.	0.0002	0.005	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
10335	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
10335	Toluene	108-88-3	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

WW 9864061

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-1-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

ELLE Group #: 2001336 Matrix: Groundwater

ChevronTexaco

ELLE Sample #:

Matrix: Grou 306449

Project Name:

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 11:38

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	S Volatiles	SW-846 8260)B	mg/l	mg/l	mg/l	
10335	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0004	0.005	1
10335	1,1,1-Trichloroethane		71-55-6	N.D.	0.0002	0.001	1
10335	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1
10335	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1
10335	Trichlorofluoromethane		75-69-4	N.D.	0.0004	0.001	1
10335	Vinyl Chloride		75-01-4	N.D.	0.0004	0.001	1
10335	Xylene (Total)		1330-20-7	N.D.	0.0005	0.005	1
GC Vo	latiles	AK 101		mg/l	mg/l	mg/l	
01438	TPH-GRO AK water C6-C	10	n.a.	N.D.	0.014	0.10	1
GC Pet	troleum	AK 102-SV 4	/8/02	mg/l	mg/l	mg/l	
Hydrod	carbons						
13222	C10- <c25 dro<="" td=""><td></td><td>n.a.</td><td>0.14 J</td><td>0.053</td><td>0.26</td><td>1</td></c25>		n.a.	0.14 J	0.053	0.26	1
13222	C25-C36 RRO		n.a.	0.22 J	0.085	0.26	1
The r	ecovery for the sample surro	nate(s) is outside	the OC acceptan	ce			

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. The following action was taken: The sample was re-extracted within the method required holding time and the sample surrogate(s) is compliant.

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits in the second trial.

All results are reported from the first trial.

Sample Comments

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis Analyst** Dilution **Date and Time** Factor No. TCL 4.3 VOCs SW-846 8260B E183065AA Don V Viray 10335 11/03/2018 05:15 01163 GC/MS VOA Water Prep SW-846 5030B E183065AA 11/03/2018 05:15 Don V Viray TPH-GRO AK water C6-C10 01438 AK 101 1 18296C20A 10/24/2018 22:30 Linda C Pape 1 01146 GC VOA Water Prep SW-846 5030B 18296C20A 10/24/2018 22:30 Linda C Pape 1 1 AK 102-SV 4/8/02 AK 102/103-SV Nicholas R Rossi 13222 182980012A 10/31/2018 01:13 1 1 13225 Mini-Ext. AK AK 102-SV 4/8/02 182980012A 10/26/2018 09:00 David S Schrum 102/103SV,DRO/RRO

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-2-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 12:36

ChevronTexaco

ELLE Sample #: WW 9864062 ELLE Group #: 2001336

Matrix: Groundwater

Commonstration Comm	1
10335 Benzene	•
10335 Bromodichloromethane 75-27-4 N.D. 0.0002 0.001 10335 Bromoferm 75-25-2 N.D. 0.002 0.005 10335 Bromomethane 74-83-9 N.D. 0.0005 0.001 10335 Carbon Disulfide 78-15-0 N.D. 0.0003 0.005 10335 Carbon Disulfide 75-15-0 N.D. 0.0003 0.005 10335 Carbon Tetrachloride 56-23-5 N.D. 0.0002 0.001 10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chlorotenane 75-00-3 N.D. 0.0002 0.001 10335 Chlorotenane 76-66-3 0.002 0.0002 0.001 10335 Chlorotenane 74-87-3 N.D. 0.0002 0.001 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-dishane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dibromoethane 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 75-71-8 N.D. 0.0002 0.005 10335 1,1-Dichlorotehane 75-34-3 N.D. 0.0002 0.005 10335 1,2-Dichlorotehane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichlorotehane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichlorotehane 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichlorotehane 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichlorotehane 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichlorotehane 156-69-2 N.D. 0.0002 0.001 10335 1,2-Dichlorotehane 156-69-5 N.D. 0.0002	4
10335 Bromoform 75-25-2 N.D. 0.002 0.005 10335 Bromomethane 74-83-9 N.D. 0.0005 0.001 10335 2-Butanone 78-93-3 N.D. 0.0003 0.001 10335 2-Butanone 75-15-0 N.D. 0.0003 0.005 10335 Carbon Disulfide 56-23-5 N.D. 0.0002 0.001 10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chlorotemane 75-00-3 N.D. 0.0003 0.001 10335 Chlorotemane 77-00-3 N.D. 0.0003 0.001 10335 Chlorotemane 74-87-3 N.D. 0.0003 0.001 10335 Chlorotemane 74-87-3 N.D. 0.0003 0.001 10335 Chloromethane 74-87-3 N.D. 0.0002 0.005 10335 1,2-Dibromoc-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromocthane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromocthane 16-83-4 N.D. 0.0004 0.001 10335 1,2-Dibromocthane 16-83-4 N.D. 0.0002 0.005 10335 1,2-Dibromocthane 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,2-Dichlorotethane 75-34-3 N.D. 0.0002 0.005 10335 1,2-Dichlorotethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichlorotethane 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichlorotethane 166-60-5 N.D. 0.0002 0.001 10335 1,3-Dichlorotethane 156-60-5 N.D. 0.0002 0.001	1
10335 Bromomethane 74-83-9 N.D. 0.0005 0.001 10335 2-Butanone 78-93-3 N.D. 0.001 0.010 0.010 10335 Carbon Disulfide 75-15-0 N.D. 0.0003 0.005 10335 Carbon Tetrachloride 56-23-5 N.D. 0.0002 0.001 10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chlorotehane 75-00-3 N.D. 0.0002 0.001 10335 Chlorotehane 74-87-3 N.D. 0.0002 0.001 10335 Chloromethane 74-87-3 N.D. 0.0003 0.001 10335 Chloromethane 74-87-3 N.D. 0.0003 0.001 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-4-chloromethane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 166-93-4 N.D. 0.0003 0.001 10335 1,2-Dibromoethane 166-93-4 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 166-46-7 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 166-46-7 N.D. 0.0002 0.005 10335 1,1-Dichloroethane 75-71-8 N.D. 0.0002 0.005 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 166-65 N.D. 0.0002 0.001 10335 1,3-Dichloroptopane 78-87-5 N.D. 0.0002 0.001 10335 1,3-Dichloroptopane 1061-01-5 N.D. 0.0002 0.001 10335 1,3-Dichloroptopane 78-87-5 N.D. 0.0002 0.001 10335 1,3-Dichloroptopane 1061-01-5 N.D. 0.0002 0.001 10335 1,3-Dichloroptopane 1061-01-5 N.D. 0.0002 0.001 10335 1,3-Dichloroptopane 1061-01-5 N.D. 0.0002 0.001 10335 1,3-Dichloroptopane	1
10335 2-Butanone 78-93-3 N.D. 0.001 0.010 10335 Carbon Disulfide 75-15-0 N.D. 0.0003 0.005 10335 Carbon Tetrachloride 56-23-5 N.D. 0.0002 0.001 10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chlorofethane 75-00-3 N.D. 0.0003 0.001 10335 Chloromethane 74-87-3 N.D. 0.0002 0.001 10335 Chloromethane 74-87-3 N.D. 0.002 0.005 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-thane 124-48-1 N.D. 0.0004 0.001 10335 1,3-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005	1
10335 Carbon Disulfide 75-15-0 N.D. 0.0003 0.005 10335 Carbon Tetrachloride 56-23-5 N.D. 0.0002 0.001 10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chloroform 67-66-3 0.002 0.0002 0.001 10335 Chloromethane 74-87-3 N.D. 0.0003 0.001 10335 Cylohexane 110-82-7 N.D. 0.002 0.005 10335 Cylohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 54-17-3-1 N.D. 0.0002 0.005	1
10335 Carbon Tetrachloride 56-23-5 N.D. 0.0002 0.001 10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chlorotethane 75-00-3 N.D. 0.0003 0.001 10335 Chloromethane 74-87-3 N.D. 0.0003 0.001 10335 Chloromethane 14-87-3 N.D. 0.002 0.005 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 Dibromochloromethane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.0004 0.001 10335 1,2-Dibromochlane 106-93-4 N.D. 0.0004 0.001 10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005	1
10335 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 10335 Chloroethane 75-00-3 N.D. 0.0003 0.001 10335 Chloromethane 67-66-3 0.002 0.0002 0.001 10335 Chloromethane 74-87-3 N.D. 0.0002 0.005 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.0001 0.005 10335 1,2-Dibromoethane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibrhoroethane 106-93-4 N.D. 0.0002 0.005 10335 1,2-Dibrhoroethane 541-73-1 N.D. 0.0002 0.005 10335 1,3-Dichloroethane 75-71-8 N.D. 0.0002 0.005 10335 1,4-Dichloroethane 75-34-3 N.D. 0.0002 0.001 <td>1</td>	1
10335 Chloroethane 75-00-3 N.D. 0.0003 0.001 10335 Chloroform 67-66-3 0.002 0.0002 0.001 10335 Cyclohexane 74-87-3 N.D. 0.0003 0.001 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 Dibromochloromethane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,1-Dichloroethane 75-71-8 N.D. 0.0002 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001	1
10335 Chloroform 67-66-3 0.002 0.0002 0.001 10335 Chloromethane 74-87-3 N.D. 0.0003 0.001 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 1,2-Dibromo-thane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,1-Dichlorotifluoromethane 75-71-8 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.0002 <	1
10335 Chloromethane 74-87-3 N.D. 0.0003 0.001 10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 Dibromochloromethane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dibromoethane 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,1-Dichloroethane 75-71-8 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.001 10335 1,2-Dichloroethene 156-69-5 N.D. 0.0002 <t< td=""><td>1</td></t<>	1
10335 Cyclohexane 110-82-7 N.D. 0.002 0.005 10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 Dibromochloromethane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,4-Dichloroethane 75-71-8 N.D. 0.0002 0.005 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.005 10335 1,2-Dichloroethane 75-35-4 N.D. 0.002 0.001 10335 trans-1,2-Dichloroethane 156-59-2 N.D. 0.0002 <td>1</td>	1
10335 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.001 0.005 10335 Dibromochloromethane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,4-Dichlorothane 75-71-8 N.D. 0.0002 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.001 10335 1,1-Dichloroethane 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.	1
10335 Dibromochloromethane 124-48-1 N.D. 0.0004 0.001 10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 1,1-Dichlorodifluoromethane 75-71-8 N.D. 0.0003 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.0002 0.005 10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 1,2-Dichloropropane 78-87-5 N.D. <t< td=""><td>1</td></t<>	1
10335 1,2-Dibromoethane 106-93-4 N.D. 0.0003 0.001 10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 Dichlorodifluoromethane 75-71-8 N.D. 0.0003 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.005 10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 1061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D.	1
10335 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 Dichlorodifluoromethane 75-71-8 N.D. 0.0003 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.005 10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 100-61-01-5 N	1
10335 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 Dichlorodifluoromethane 75-71-8 N.D. 0.0003 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.0002 0.001 10335 1,1-Dichloroethane 75-35-4 N.D. 0.0002 0.001 10335 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 trans-1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D	1
10335 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 10335 Dichlorodifluoromethane 75-71-8 N.D. 0.0003 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.0002 0.001 10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D.	1
10335 Dichlorodifluoromethane 75-71-8 N.D. 0.0003 0.001 10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.005 10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroptopene 156-60-5 N.D. 0.0002 0.001 10335 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.000	1
10335 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.005 10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 1,2-Dichloroethane 107-06-2 N.D. 0.002 0.005 10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 Lsopropylbenzene 591-78-6 N.D. 0.003 0.010 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 10335 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 10335 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 Ethylbenzene 100-41-4 N.D. 0.0002 0.001 10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 Freon 113 76-13-1 N.D. 0.002 0.010 10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 2-Hexanone 591-78-6 N.D. 0.003 0.010 10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 Isopropylbenzene 98-82-8 N.D. 0.0003 0.005 10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
10335 Methyl Acetate 79-20-9 N.D. 0.0006 0.005	1
·	1
	1
10335 Methyl Tertiary Butyl Ether 1634-04-4 N.D. 0.0002 0.001	1
10335 4-Methyl-2-pentanone 108-10-1 N.D. 0.0005 0.010	1
10335 Methylcyclohexane 108-87-2 N.D. 0.0002 0.005	1
10335 Methylene Chloride 75-09-2 N.D. 0.0002 0.001	1
10335 Styrene 100-42-5 N.D. 0.0002 0.005	1
10335 1,1,2,2-Tetrachloroethane 79-34-5 N.D. 0.0002 0.001	1
10335 Tetrachloroethene 127-18-4 N.D. 0.0002 0.001	1
10335 Toluene 108-88-3 N.D. 0.0002 0.001	1

^{*=}This limit was used in the evaluation of the final result

WW 9864062

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-2-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

ELLE Group #: 2001336

ChevronTexaco

ELLE Sample #:

Matrix: Groundwater

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 12:36

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260)B	mg/l	mg/l	mg/l	
10335	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0004	0.005	1
10335	1,1,1-Trichloroethane		71-55-6	N.D.	0.0002	0.001	1
10335	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1
10335	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1
10335	Trichlorofluoromethane		75-69-4	N.D.	0.0004	0.001	1
10335	Vinyl Chloride		75-01-4	N.D.	0.0004	0.001	1
10335	Xylene (Total)		1330-20-7	N.D.	0.0005	0.005	1
GC Vo	latiles	AK 101		mg/l	mg/l	mg/l	
01438	TPH-GRO AK water C6-0	C10	n.a.	N.D.	0.014	0.10	1
	troleum carbons	AK 102-SV 4	/8/02	mg/l	mg/l	mg/l	
13222	C10- <c25 dro<="" td=""><td></td><td>n 0</td><td>2.9</td><td>0.051</td><td>0.26</td><td>1</td></c25>		n 0	2.9	0.051	0.26	1
			n.a.				1
13222	C25-C36 RRO		n.a.	2.1	0.083	0.26	1

Sample Comments

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	TCL 4.3 VOCs	SW-846 8260B	1	E183065AA	11/03/2018 05:35	Don V Viray	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	E183065AA	11/03/2018 05:35	Don V Viray	1
01438	TPH-GRO AK water C6-C10	AK 101	1	18296C20A	10/24/2018 22:57	Linda C Pape	1
01146	GC VOA Water Prep	SW-846 5030B	1	18296C20A	10/24/2018 22:57	Linda C Pape	1
13222	AK 102/103-SV	AK 102-SV 4/8/02	1	182980012A	10/31/2018 01:39	Heather E Williams	1
13225	Mini-Ext. AK 102/103SV,DRO/RRO	AK 102-SV 4/8/02	1	182980012A	10/26/2018 09:00	David S Schrum	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-3-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 10:55

ChevronTexaco

ELLE Sample #: WW 9864063 ELLE Group #: 2001336

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles St	W-846 8260B	mg/l	mg/l	mg/l	
10335	Acetone	67-64-1	N.D.	0.0008	0.020	1
10335	Benzene	71-43-2	N.D.	0.0002	0.001	1
10335	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
10335	Bromoform	75-25-2	N.D.	0.002	0.005	1
10335	Bromomethane	74-83-9	N.D.	0.0005	0.001	1
10335	2-Butanone	78-93-3	N.D.	0.001	0.010	1
10335	Carbon Disulfide	75-15-0	N.D.	0.0003	0.005	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
10335	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
10335	Chloroethane	75-00-3	N.D.	0.0003	0.001	1
10335	Chloroform	67-66-3	0.003	0.0002	0.001	1
10335	Chloromethane	74-87-3	N.D.	0.0003	0.001	1
10335	Cyclohexane	110-82-7	N.D.	0.002	0.005	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.001	0.005	1
10335	Dibromochloromethane	124-48-1	N.D.	0.0004	0.001	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.0003	0.001	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.0003	0.001	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.002	0.005	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
10335	Ethylbenzene	100-41-4	N.D.	0.0002	0.001	1
10335	Freon 113	76-13-1	N.D.	0.002	0.010	1
10335	2-Hexanone	591-78-6	N.D.	0.003	0.010	1
10335	Isopropylbenzene	98-82-8	N.D.	0.0003	0.005	1
10335	Methyl Acetate	79-20-9	N.D.	0.0006	0.005	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	0.0005	0.010	1
10335	Methylcyclohexane	108-87-2	N.D.	0.0002	0.005	1
10335	Methylene Chloride	75-09-2	N.D.	0.0002	0.001	1
10335	Styrene	100-42-5	N.D.	0.0002	0.005	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
10335	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
10335	Toluene	108-88-3	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

WW 9864063

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-3-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

ELLE Group #: 2001336

ChevronTexaco

ELLE Sample #:

Matrix: Groundwater

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 10:55

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260I	В	mg/l	mg/l	mg/l	
10335	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0004	0.005	1
10335	1,1,1-Trichloroethane		71-55-6	N.D.	0.0002	0.001	1
10335	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1
10335	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1
10335	Trichlorofluoromethane		75-69-4	N.D.	0.0004	0.001	1
10335	Vinyl Chloride		75-01-4	N.D.	0.0004	0.001	1
10335	Xylene (Total)		1330-20-7	N.D.	0.0005	0.005	1
GC Vo	latiles	AK 101		mg/l	mg/l	mg/l	
01438	TPH-GRO AK water C6-0	10	n.a.	N.D.	0.014	0.10	1
	troleum carbons	AK 102-SV 4/8	8/02	mg/l	mg/l	mg/l	
13222	C10- <c25 dro<="" td=""><td></td><td>n.a.</td><td>0.080 J</td><td>0.051</td><td>0.26</td><td>1</td></c25>		n.a.	0.080 J	0.051	0.26	1
13222	C25-C36 RRO		n.a.	N.D.	0.083	0.26	1

Sample Comments

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	TCL 4.3 VOCs	SW-846 8260B	1	E183065AA	11/03/2018 05:55	Don V Viray	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	E183065AA	11/03/2018 05:55	Don V Viray	1
01438	TPH-GRO AK water C6-C10	AK 101	1	18296C20A	10/24/2018 23:25	Linda C Pape	1
01146	GC VOA Water Prep	SW-846 5030B	1	18296C20A	10/24/2018 23:25	Linda C Pape	1
13222	AK 102/103-SV	AK 102-SV 4/8/02	1	182980012A	10/31/2018 02:06	Heather E Williams	1
13225	Mini-Ext. AK 102/103SV,DRO/RRO	AK 102-SV 4/8/02	1	182980012A	10/26/2018 09:00	David S Schrum	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-4-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 10:18

ChevronTexaco

ELLE Sample #: WW 9864064 ELLE Group #: 2001336

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	mg/l	mg/l	mg/l	
10335	Acetone	67-64-1	N.D.	0.0008	0.020	1
10335	Benzene	71-43-2	N.D.	0.0002	0.001	1
10335	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
10335	Bromoform	75-25-2	N.D.	0.002	0.005	1
10335	Bromomethane	74-83-9	N.D.	0.0005	0.001	1
10335	2-Butanone	78-93-3	N.D.	0.001	0.010	1
10335	Carbon Disulfide	75-15-0	N.D.	0.0003	0.005	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
10335	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
10335	Chloroethane	75-00-3	N.D.	0.0003	0.001	1
10335	Chloroform	67-66-3	0.004	0.0002	0.001	1
10335	Chloromethane	74-87-3	N.D.	0.0003	0.001	1
10335	Cyclohexane	110-82-7	N.D.	0.002	0.005	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.001	0.005	1
10335	Dibromochloromethane	124-48-1	N.D.	0.0004	0.001	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.0003	0.001	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.0003	0.001	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.002	0.005	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
10335	Ethylbenzene	100-41-4	N.D.	0.0002	0.001	1
10335	Freon 113	76-13-1	N.D.	0.002	0.010	1
10335	2-Hexanone	591-78-6	N.D.	0.003	0.010	1
10335	Isopropylbenzene	98-82-8	N.D.	0.0003	0.005	1
10335	Methyl Acetate	79-20-9	N.D.	0.0006	0.005	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	0.0005	0.010	1
10335	Methylcyclohexane	108-87-2	N.D.	0.0002	0.005	1
10335	Methylene Chloride	75-09-2	N.D.	0.0002	0.001	1
10335	Styrene	100-42-5	N.D.	0.0002	0.005	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
10335	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
10335	Toluene	108-88-3	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

WW 9864064

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW-4-W-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

ELLE Group #: 2001336

ChevronTexaco

ELLE Sample #:

Matrix: Groundwater

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018 10:18

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260	В	mg/l	mg/l	mg/l	
10335	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0004	0.005	1
10335	1,1,1-Trichloroethane		71-55-6	N.D.	0.0002	0.001	1
10335	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1
10335	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1
10335	Trichlorofluoromethane		75-69-4	N.D.	0.0004	0.001	1
10335	Vinyl Chloride		75-01-4	N.D.	0.0004	0.001	1
10335	Xylene (Total)		1330-20-7	N.D.	0.0005	0.005	1
GC Vo	atiles	AK 101		mg/l	mg/l	mg/l	
01438	TPH-GRO AK water C6-C	10	n.a.	N.D.	0.014	0.10	1
	roleum carbons	AK 102-SV 4	/8/02	mg/l	mg/l	mg/l	
13222	C10- <c25 dro<="" td=""><td></td><td>n.a.</td><td>N.D.</td><td>0.052</td><td>0.26</td><td>1</td></c25>		n.a.	N.D.	0.052	0.26	1
13222	C25-C36 RRO		n.a.	N.D.	0.084	0.26	1

Sample Comments

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	TCL 4.3 VOCs	SW-846 8260B	1	E183065AA	11/03/2018 06:16	Don V Viray	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	E183065AA	11/03/2018 06:16	Don V Viray	1
01438	TPH-GRO AK water C6-C10	AK 101	1	18296C20A	10/24/2018 23:52	Linda C Pape	1
01146	GC VOA Water Prep	SW-846 5030B	1	18296C20A	10/24/2018 23:52	Linda C Pape	1
13222	AK 102/103-SV	AK 102-SV 4/8/02	1	182980012A	10/31/2018 02:32	Heather E Williams	1
13225	Mini-Ext. AK 102/103SV,DRO/RRO	AK 102-SV 4/8/02	1	182980012A	10/26/2018 09:00	David S Schrum	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: DUP-1-WD-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018

ChevronTexaco

ELLE Sample #: WW 9864065 ELLE Group #: 2001336

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	6 8260B	mg/l	mg/l	mg/l	
10335	Acetone	67-64-1	N.D.	0.0008	0.020	1
10335	Benzene	71-43-2	N.D.	0.0002	0.001	1
10335	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
10335	Bromoform	75-25-2	N.D.	0.002	0.005	1
10335	Bromomethane	74-83-9	N.D.	0.0005	0.001	1
10335	2-Butanone	78-93-3	N.D.	0.001	0.010	1
10335	Carbon Disulfide	75-15-0	N.D.	0.0003	0.005	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
10335	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
10335	Chloroethane	75-00-3	N.D.	0.0003	0.001	1
10335	Chloroform	67-66-3	0.002	0.0002	0.001	1
10335	Chloromethane	74-87-3	N.D.	0.0003	0.001	1
10335	Cyclohexane	110-82-7	N.D.	0.002	0.005	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.001	0.005	1
10335	Dibromochloromethane	124-48-1	N.D.	0.0004	0.001	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.0003	0.001	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.0003	0.001	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.002	0.005	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
10335	Ethylbenzene	100-41-4	N.D.	0.0002	0.001	1
10335	Freon 113	76-13-1	N.D.	0.002	0.010	1
10335	2-Hexanone	591-78-6	N.D.	0.003	0.010	1
10335	Isopropylbenzene	98-82-8	N.D.	0.0003	0.005	1
10335	Methyl Acetate	79-20-9	N.D.	0.0006	0.005	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	0.0005	0.010	1
10335	Methylcyclohexane	108-87-2	N.D.	0.0002	0.005	1
10335	Methylene Chloride	75-09-2	N.D.	0.0002	0.001	1
10335	Styrene	100-42-5	N.D.	0.0002	0.005	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
10335	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
10335	Toluene	108-88-3	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

WW 9864065

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: DUP-1-WD-181022 Grab Groundwater

Facility# 306449

2730 Spenard Road - Anchorage, AK

ELLE Group #: 2001336 Matrix: Groundwater

ChevronTexaco ELLE Sample #:

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260)B	mg/l	mg/l	mg/l	
10335	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0004	0.005	1
10335	1,1,1-Trichloroethane		71-55-6	N.D.	0.0002	0.001	1
10335	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1
10335	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1
10335	Trichlorofluoromethane		75-69-4	N.D.	0.0004	0.001	1
10335	Vinyl Chloride		75-01-4	N.D.	0.0004	0.001	1
10335	Xylene (Total)		1330-20-7	N.D.	0.0005	0.005	1
GC Vo	latiles	AK 101		mg/l	mg/l	mg/l	
01438	TPH-GRO AK water C6-0	210	n.a.	N.D.	0.014	0.10	1
	roleum carbons	AK 102-SV 4	/8/02	mg/l	mg/l	mg/l	
13222	C10- <c25 dro<="" td=""><td></td><td>n.a.</td><td>3.2</td><td>0.053</td><td>0.27</td><td>1</td></c25>		n.a.	3.2	0.053	0.27	1
13222	C25-C36 RRO		n.a.	2.3	0.086	0.27	1

Sample Comments

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	TCL 4.3 VOCs	SW-846 8260B	1	E183065AA	11/03/2018 06:36	Don V Viray	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	E183065AA	11/03/2018 06:36	Don V Viray	1
01438	TPH-GRO AK water C6-C10	AK 101	1	18296C20A	10/25/2018 00:20	Linda C Pape	1
01146	GC VOA Water Prep	SW-846 5030B	1	18296C20A	10/25/2018 00:20	Linda C Pape	1
13222	AK 102/103-SV	AK 102-SV 4/8/02	1	182980012A	10/31/2018 02:59	Heather E Williams	1
13225	Mini-Ext. AK 102/103SV,DRO/RRO	AK 102-SV 4/8/02	1	182980012A	10/26/2018 09:00	David S Schrum	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: QA-1-T-181022 NA Water

Facility# 306449

2730 Spenard Road - Anchorage, AK

ELLE Group #: Matrix: Water

ChevronTexaco

ELLE Sample #:

WW 9864066 2001336

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW	-846 8260B	mg/l	mg/l	mg/l	
10335	Acetone	67-64-1	N.D.	0.0008	0.020	1
10335	Benzene	71-43-2	N.D.	0.0002	0.001	1
10335	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
10335	Bromoform	75-25-2	N.D.	0.002	0.005	1
10335	Bromomethane	74-83-9	N.D.	0.0005	0.001	1
10335	2-Butanone	78-93-3	N.D.	0.001	0.010	1
10335	Carbon Disulfide	75-15-0	N.D.	0.0003	0.005	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
10335	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
10335	Chloroethane	75-00-3	N.D.	0.0003	0.001	1
10335	Chloroform	67-66-3	N.D.	0.0002	0.001	1
10335	Chloromethane	74-87-3	N.D.	0.0003	0.001	1
10335	Cyclohexane	110-82-7	N.D.	0.002	0.005	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.001	0.005	1
10335	Dibromochloromethane	124-48-1	N.D.	0.0004	0.001	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.0003	0.001	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.0003	0.001	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.002	0.005	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
10335	Ethylbenzene	100-41-4	N.D.	0.0002	0.001	1
10335	Freon 113	76-13-1	N.D.	0.002	0.010	1
10335	2-Hexanone	591-78-6	N.D.	0.003	0.010	1
10335	Isopropylbenzene	98-82-8	N.D.	0.0003	0.005	1
10335	Methyl Acetate	79-20-9	N.D.	0.0006	0.005	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	0.0005	0.010	1
10335	Methylcyclohexane	108-87-2	N.D.	0.0002	0.005	1
10335	Methylene Chloride	75-09-2	N.D.	0.0002	0.001	1
10335	Styrene	100-42-5	N.D.	0.0002	0.005	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
10335	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
10335	Toluene	108-88-3	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

WW 9864066

2001336

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: QA-1-T-181022 NA Water

Facility# 306449

2730 Spenard Road - Anchorage, AK

ELLE Sample #: **ELLE Group #:**

ChevronTexaco

Matrix: Water

Project Name: 306449

Submittal Date/Time: 10/23/2018 10:30 Collection Date/Time: 10/22/2018

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260	В	mg/l	mg/l	mg/l	
10335	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0004	0.005	1
10335	1,1,1-Trichloroethane		71-55-6	N.D.	0.0002	0.001	1
10335	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1
10335	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1
10335	Trichlorofluoromethane		75-69-4	N.D.	0.0004	0.001	1
10335	Vinyl Chloride		75-01-4	N.D.	0.0004	0.001	1
10335	Xylene (Total)		1330-20-7	N.D.	0.0005	0.005	1
GC Vol	atiles	AK 101		mg/l	mg/l	mg/l	
01438	TPH-GRO AK water C6-0	210	n.a.	N.D.	0.014	0.10	1

Sample Comments

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
10335	TCL 4.3 VOCs	SW-846 8260B	1	E183065AA	11/03/2018 01:54	Don V Viray	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	E183065AA	11/03/2018 01:54	Don V Viray	1			
01438	TPH-GRO AK water C6-C10	AK 101	1	18296C20A	10/24/2018 17:55	Linda C Pape	1			
01146	GC VOA Water Prep	SW-846 5030B	1	18296C20A	10/24/2018 17:55	Linda C Pape	1			

^{*=}This limit was used in the evaluation of the final result

Quality Control Summary

Client Name: ChevronTexaco Group Number: 2001336

Reported: 11/09/2018 11:38

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ		
	mg/l	mg/l	mg/l		
Batch number: E183065AA	Sample number(Sample number(s): 9864061-986406			
Acetone	N.D.	0.0008	0.020		
Benzene	N.D.	0.0002	0.001		
Bromodichloromethane	N.D.	0.0002	0.001		
Bromoform	N.D.	0.002	0.005		
Bromomethane	N.D.	0.0005	0.001		
2-Butanone	N.D.	0.001	0.010		
Carbon Disulfide	N.D.	0.0003	0.005		
Carbon Tetrachloride	N.D.	0.0002	0.001		
Chlorobenzene	N.D.	0.0002	0.001		
Chloroethane	N.D.	0.0003	0.001		
Chloroform	N.D.	0.0002	0.001		
Chloromethane	N.D.	0.0003	0.001		
Cyclohexane	N.D.	0.002	0.005		
1,2-Dibromo-3-chloropropane	N.D.	0.001	0.005		
Dibromochloromethane	N.D.	0.0004	0.001		
1,2-Dibromoethane	N.D.	0.0003	0.001		
1,2-Dichlorobenzene	N.D.	0.0002	0.005		
1,3-Dichlorobenzene	N.D.	0.0002	0.005		
1,4-Dichlorobenzene	N.D.	0.0002	0.005		
Dichlorodifluoromethane	N.D.	0.0003	0.001		
1,1-Dichloroethane	N.D.	0.0002	0.001		
1,2-Dichloroethane	N.D.	0.002	0.005		
1,1-Dichloroethene	N.D.	0.0002	0.001		
cis-1,2-Dichloroethene	N.D.	0.0002	0.001		
trans-1,2-Dichloroethene	N.D.	0.0002	0.001		
1,2-Dichloropropane	N.D.	0.0002	0.001		
cis-1,3-Dichloropropene	N.D.	0.0002	0.001		
trans-1,3-Dichloropropene	N.D.	0.0002	0.001		
Ethylbenzene	N.D.	0.0002	0.001		
Freon 113	N.D.	0.002	0.010		
2-Hexanone	N.D.	0.003	0.010		
Isopropylbenzene	N.D.	0.0003	0.005		
Methyl Acetate	N.D.	0.0006	0.005		
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001		
4-Methyl-2-pentanone	N.D.	0.0005	0.010		
Methylcyclohexane	N.D.	0.0002	0.005		
Methylene Chloride	N.D.	0.0002	0.001		
Styrene	N.D.	0.0002	0.005		
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: ChevronTexaco Group Number: 2001336 Reported: 11/09/2018 11:38

Method Blank (continued)

Analysis Name	Result mg/l	MDL** mg/l	LOQ mg/l
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,2,4-Trichlorobenzene	N.D.	0.0004	0.005
1,1,1-Trichloroethane	N.D.	0.0002	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0004	0.001
Vinyl Chloride	N.D.	0.0004	0.001
Xylene (Total)	N.D.	0.0005	0.005
Batch number: 18296C20A		ber(s): 9864061-	
TPH-GRO AK water C6-C10	N.D.	0.014	0.10
Batch number: 182980012A	Sample num	ber(s): 9864061-	9864065
C10- <c25 dro<="" td=""><td>N.D.</td><td>0.050</td><td>0.25</td></c25>	N.D.	0.050	0.25
C25-C36 RRO	N.D.	0.081	0.25

LCS/LCSD

Analysis Name	LCS Spike Added	LCS Conc	LCSD Spike Added	LCSD Conc	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	mg/l	mg/l	mg/l	mg/l					
Batch number: E183065AA	Sample number(s): 9864061-9	864066						
Acetone	0.150	0.143	0.150	0.156	95	104	54-157	8	30
Benzene	0.0200	0.0214	0.0200	0.0215	107	107	80-120	0	30
Bromodichloromethane	0.0200	0.0221	0.0200	0.0221	111	111	71-120	0	30
Bromoform	0.0200	0.0209	0.0200	0.0214	104	107	51-120	3	30
Bromomethane	0.0200	0.0160	0.0200	0.0161	80	81	53-128	1	30
2-Butanone	0.150	0.150	0.150	0.149	100	99	59-135	1	30
Carbon Disulfide	0.0200	0.0184	0.0200	0.0185	92	93	65-128	1	30
Carbon Tetrachloride	0.0200	0.0221	0.0200	0.0230	111	115	64-134	4	30
Chlorobenzene	0.0200	0.0221	0.0200	0.0223	110	111	80-120	1	30
Chloroethane	0.0200	0.0176	0.0200	0.0176	88	88	55-123	0	30
Chloroform	0.0200	0.0223	0.0200	0.0226	111	113	80-120	1	30
Chloromethane	0.0200	0.0188	0.0200	0.0185	94	93	56-121	1	30
Cyclohexane	0.0200	0.0206	0.0200	0.0210	103	105	68-126	2	30
1,2-Dibromo-3-chloropropane	0.0200	0.0209	0.0200	0.0212	105	106	47-131	1	30
Dibromochloromethane	0.0200	0.0220	0.0200	0.0221	110	111	71-120	1	30
1,2-Dibromoethane	0.0200	0.0215	0.0200	0.0217	107	109	77-120	1	30
1,2-Dichlorobenzene	0.0200	0.0223	0.0200	0.0226	112	113	80-120	1	30
1,3-Dichlorobenzene	0.0200	0.0225	0.0200	0.0227	113	114	80-120	1	30
1,4-Dichlorobenzene	0.0200	0.0226	0.0200	0.0223	113	112	80-120	1	30
Dichlorodifluoromethane	0.0200	0.0158	0.0200	0.0160	79	80	41-127	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: ChevronTexaco Group Number: 2001336 Reported: 11/09/2018 11:38

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,1-Dichloroethane	0.0200	0.0216	0.0200	0.0219	108	110	80-120	2	30
1,2-Dichloroethane	0.0200	0.0220	0.0200	0.0229	110	114	73-124	4	30
1,1-Dichloroethene	0.0200	0.0207	0.0200	0.0209	103	104	80-131	1	30
cis-1,2-Dichloroethene	0.0200	0.0219	0.0200	0.0220	109	110	80-120	0	30
trans-1,2-Dichloroethene	0.0200	0.0213	0.0200	0.0212	107	106	80-120	0	30
1,2-Dichloropropane	0.0200	0.0218	0.0200	0.0220	109	110	80-120	1	30
cis-1,3-Dichloropropene	0.0200	0.0214	0.0200	0.0215	107	108	75-120	1	30
trans-1,3-Dichloropropene	0.0200	0.0204	0.0200	0.0206	102	103	67-120	1	30
Ethylbenzene	0.0200	0.0221	0.0200	0.0222	110	111	80-120	0	30
Freon 113	0.0200	0.0199	0.0200	0.0202	100	101	73-139	2	30
2-Hexanone	0.100	0.101	0.100	0.101	101	101	56-135	1	30
Isopropylbenzene	0.0200	0.0229	0.0200	0.0232	114	116	80-120	2	30
Methyl Acetate	0.0200	0.0192	0.0200	0.0194	96	97	54-136	1	30
Methyl Tertiary Butyl Ether	0.0200	0.0199	0.0200	0.0205	100	102	69-122	3	30
4-Methyl-2-pentanone	0.100	0.102	0.100	0.103	102	103	62-133	1	30
Methylcyclohexane	0.0200	0.0205	0.0200	0.0207	102	103	67-121	1	30
Methylene Chloride	0.0200	0.0206	0.0200	0.0213	103	107	80-120	4	30
Styrene	0.0200	0.0219	0.0200	0.0220	109	110	80-120	1	30
1,1,2,2-Tetrachloroethane	0.0200	0.0214	0.0200	0.0217	107	109	72-120	1	30
Tetrachloroethene	0.0200	0.0224	0.0200	0.0232	112	116	80-120	3	30
Toluene	0.0200	0.0218	0.0200	0.0222	109	111	80-120	2	30
1,2,4-Trichlorobenzene	0.0200	0.0228	0.0200	0.0227	114	113	63-120	1	30
1,1,1-Trichloroethane	0.0200	0.0218	0.0200	0.0220	109	110	67-126	1	30
1,1,2-Trichloroethane	0.0200	0.0224	0.0200	0.0228	112	114	80-120	2	30
Trichloroethene	0.0200	0.0217	0.0200	0.0220	109	110	80-120	1	30
Trichlorofluoromethane	0.0200	0.0184	0.0200	0.0185	92	92	55-135	1	30
Vinyl Chloride	0.0200	0.0185	0.0200	0.0187	93	94	56-120	1	30
Xylene (Total)	0.0600	0.0671	0.0600	0.0676	112	113	80-120	1	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 18296C20A	Sample number	(s): 9864061-9	9864066						
TPH-GRO AK water C6-C10	1.10	1.14			104		60-120		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 182980012A	Sample number	(s): 9864061-9	864065						
C10- <c25 dro<="" td=""><td>1.00</td><td>1.12</td><td>1.00</td><td>1.07</td><td>112</td><td>107</td><td>75-125</td><td>4</td><td>20</td></c25>	1.00	1.12	1.00	1.07	112	107	75-125	4	20
C25-C36 RRO	1.80	2.18	1.80	2.20	121	122	75-125	1	20

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: ChevronTexaco Group Number: 2001336

Reported: 11/09/2018 11:38

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TCL 4.3 VOCs Batch number: E183065AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
9864061	100	101	99	98
9864062	100	99	99	100
9864063	100	100	99	99
9864064	100	99	100	100
9864065	102	99	99	99
9864066	100	100	99	100
Blank	100	97	100	99
LCS	100	100	100	100
LCSD	100	101	100	100
Limits:	80-120	80-120	80-120	80-120

Analysis Name: TPH-GRO AK water C6-C10

Batch number: 18296C20A

	Trifluorotoluene-F	
9864061	87	
9864062	88	
9864063	88	
9864064	87	
9864065	87	
9864066	88	
Blank	88	
LCS	100	

Limits: 60-120

Analysis Name: AK 102/103-SV Batch number: 182980012A

Orthoterphenyl	n-Triacontane-d62
72	43*
55	64
92	59
84	74
62	69
50-150	50-150
Orthoterphenyl	n-Triacontane-d62
90	89
91	74
	72 55 92 84 62 50-150 Orthoterphenyl

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Quality Control Summary

Client Name: ChevronTexaco Group Number: 2001336

Reported: 11/09/2018 11:38

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: AK 102/103-SV Batch number: 182980012A

	Orthoterphenyl	n-Triacontane-d62
LCSD	88	79
Limits:	60-120	60-120

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

eurofins

Lancaster Laboratories

	(1)887)	For Eurofins Lancaste	r Laboratories use	e only	CC
Acct.#_	$\frac{1000}{1000}$	Group # <u>2015 3 C</u>	Sample #	4864061-	66
		Instructions on reverse side co	rrespond with circled no	umhers	

1) Client Inform					4)	Mr	atrix		T	5			Α	nalys	ses	Rec	uest	ed			1	
Facility# CHEVIZON 306449	WBS	08.07			T	T			1	۲	T	Т	T	T	П	T			Т		SCR #:	
Site Address 2730 SPEN AND ROAD, AND Chevron PM EVELC HETRICK		sultant			Sediment	- 11	Surface	1] Naphth					Method						Results in Dry We	needed detection
Consultant/Office 5610 SILVERAD O WAY, STI			E/AI	 K	Sedir	Gro	Sur		Containers	8260			8260	Sleanup	□	Method					limits possible for compounds	
Consultant Project Mgr. SIOBHAN PRITCHARD						ı	- 1		Conta	1 0		ates	5	a Gel C	Diss.						☐ 8021 MTBE Confi ☐ Confirm MTBE + I ☐ Confirm highest hi	Naphthalene
Consultant Phone # (720) 974-0963					-	Potable	NPDES	Air	ber of	8021		Oxygenates	8015	Silic Neto3	□ le	ЕРН		: 			Confirm highest high Confirm all hits by	8260
Sampler 0. YAN/ T. WEAVER			3	ğ		1			Total Number of	+ MTBE	8260 full scan		TPH-GROAKIO)	RO &	Lead Total Diss. Me						Run oxy's	
2) Sample Identification	Colle Date	ected Time	Grab	Comr	Soil	atc.	Water	lio	Total	BTEX +	8260 ft		TPH-G	TPH-DI	Lead	NPH [(6) Remar	ks
MW-1-W-18102Z	10/22/18	1138	Х			×			В		X		X	×	,				1	+-1		
MW-2-W-1810ZZ	10/22/18		×			×	× 1		8		X		\times						+	1	STORMEN OF THE	
MW-3-W- 181022	10/22/18	1653	×	,		×	()		8		X		K'	X	-			\neg	1		бовний. Рапсна	RECOVERDOWN
MW-4-W- 1810ZZ	10/22/18		X	—		×	<		8		X	 	坟'	X			一十		+-	+	ĺ	
DUP-1-W- 1810ZZ	10/22/18		X			X			8				1	X			$\overline{}$	-	+	+-		
94-1-W- 181022			-			enim.			4		×		兌	-			\Box	-	 	+-		
													1				\Box		+	+		
																	\Box		+			
		· ·										—								+		
								1									一十		+	\Box		
															1		$\overline{}$			\Box		
															\Box			1	+	\vdash		
																			1	\Box		
7) Turnaround Time Requested (TAT)	(please circle)		Reling	quished	d by	15	5			Date			Time			Receiv	ved by		-		Date	Time . (9
Standard 5 day	4 day	,	\		L	湖	bosom			10/	122/1	18	12	250		1						The state of the s
72 hour 48 hour	24 hour	1	Reling	quished	i by (and the same of th	and the same of th		Date			Time			Receiv	/ed by				Date	Time
Data Package (circle if required)	EDD (circle if re	equired)	Relir	nauish	ned b	y Com	omeri,	cal C	arrier:						\longrightarrow	Recei	ved by				Date 1	Time
	CVX-RTBU-FI_05	,	1									her_					M	W	NR		- 10 23 18	1030
Type VI (Raw Data)	Other:			Temperature Upon Receipt°C					Yes	No												

Client:

Chevron c/o GHD

Sample Administration Receipt Documentation Log

Doc Log ID: 230854

Group Number(s): 2001336

Delivery and Receipt Information

Delivery Method: Fed Ex Arrival Timestamp: 10/23/2018 10:30

Number of Packages: 1 Number of Projects: 1

Arrival Condition Summary

Shipping Container Sealed: Yes Sample IDs on COC match Containers: Yes

Custody Seal Present: Yes Sample Date/Times match COC: Yes

Custody Seal Intact: Yes VOA Vial Headspace ≥ 6mm: No

Samples Chilled: Yes Total Trip Blank Qty: 4

Paperwork Enclosed: Yes Trip Blank Type: HCI

Samples Intact: Yes Air Quality Samples Present: No

Missing Samples: No

Extra Samples: No

Discrepancy in Container Qty on COC: No

Unpacked by Nicole Reiff (25684) at 14:26 on 10/23/2018

Samples Chilled Details

Thermometer Types: DT = Digital (Temp. Bottle) IR = Infrared (Surface Temp) All Temperatures in °C.

Cooler #Thermometer IDCorrected TempTherm. TypeIce TypeIce Present?Ice ContainerElevated Temp?1DT1460.9DTWetYBaggedN

BMQL

ppb

basis

Dry weight

parts per billion

as-received basis.

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually taken	to be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

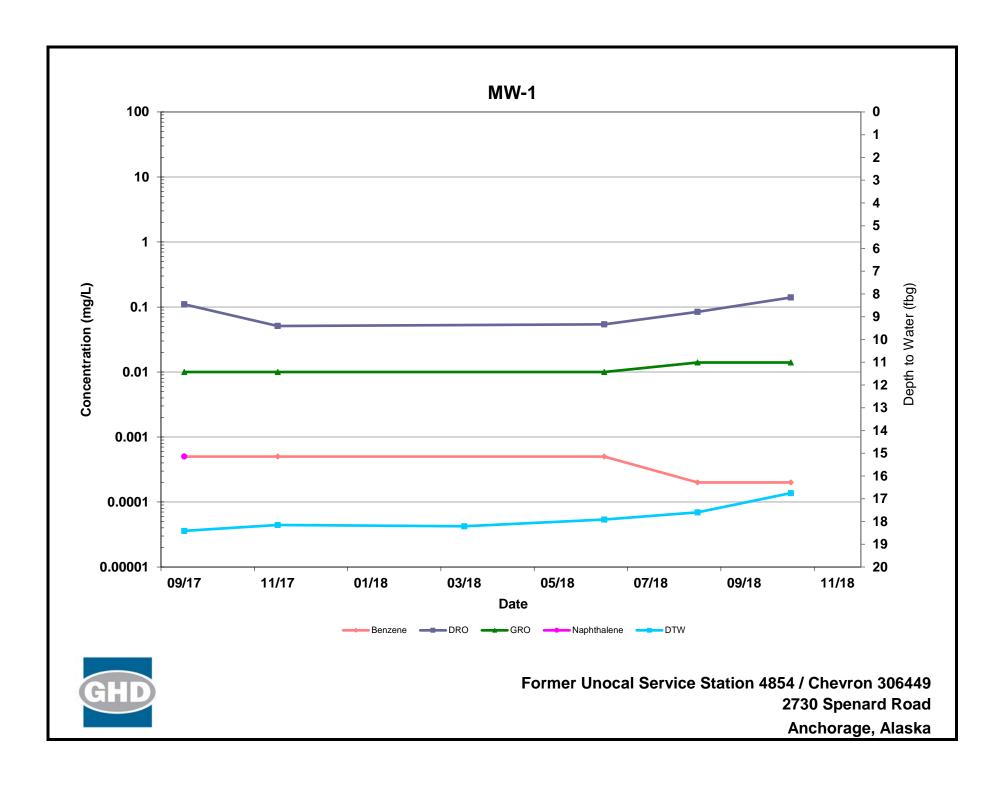
Measurement uncertainty values, as applicable, are available upon request.

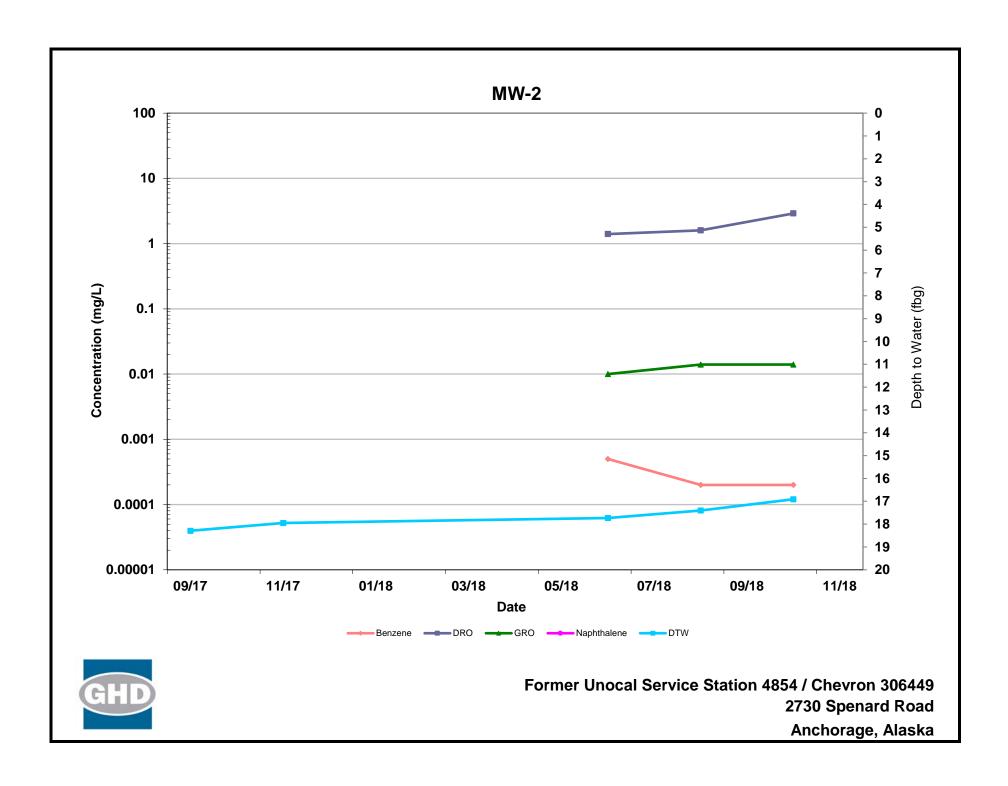
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

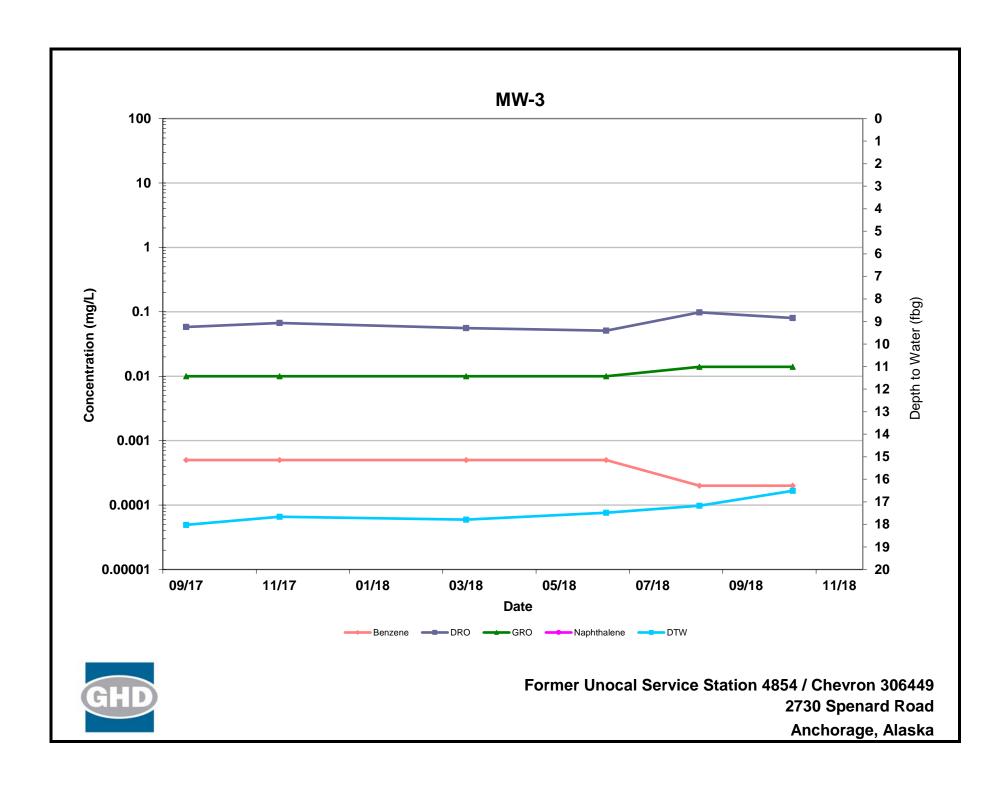
This report shall not be reproduced except in full, without the written approval of the laboratory.

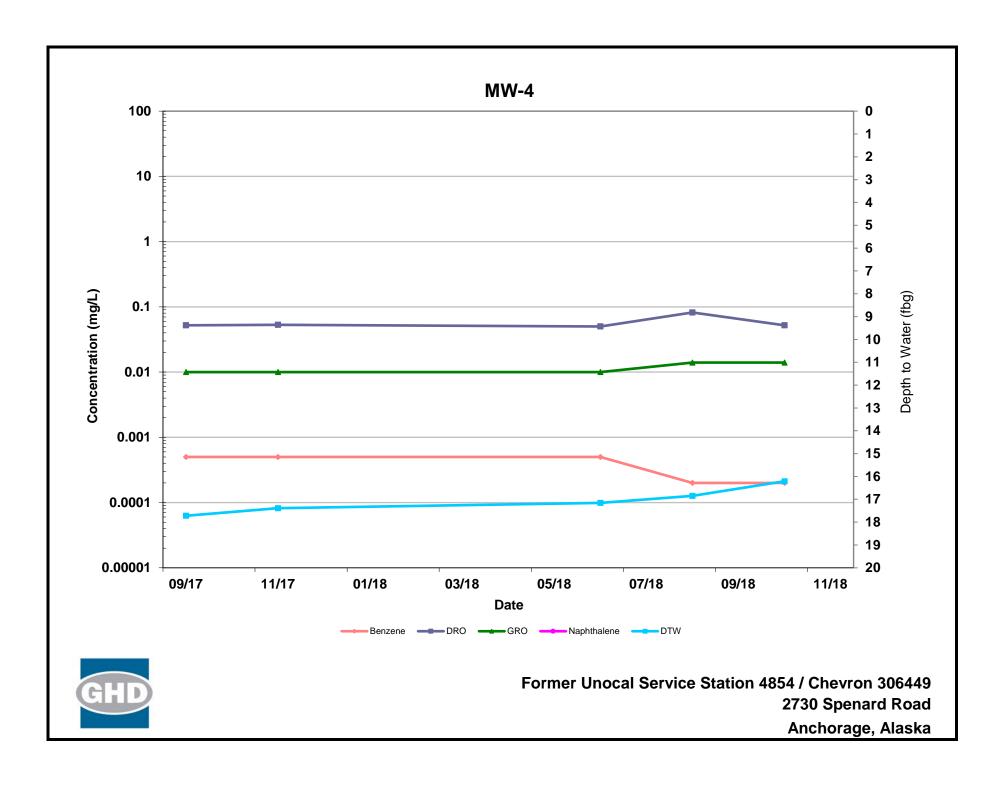
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.




Data Qualifiers


Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is ND
K2	Continuing Calibration Blank is above the QC limit and the sample result is ND
K3	Initial Calibration Verification is above the QC limit and the sample result is ND
K4	Continuing Calibration Verification is above the QC limit and the sample result is ND
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report


Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Appendix E Petroleum Hydrocarbon Concentration Graphs

Appendix F ADEC Laboratory Data Review Checklist and Memorandum

Laboratory Data Review Checklist

Completed by:
J Cloud
Title:
Project Chemist
Date:
November 25, 2018
CS Report Name:
Fourth Quarter 2018 Groundwater Monitoring Report
Report Date:
November 09, 2018
Consultant Firm:
GHD Services Inc.
Laboratory Name:
Eurofins Lancaster Laboratories Environmental
Laboratory Report Number:
2001336
ADEC File Number:
2100.26.116
Hazard Identification Number:
23370

1.	Labo	<u>ratory</u>		
	a.	Did an ADE	EC CS approv	ed laboratory receive and perform all of the submitted sample analyses?
		Yes	O No	Comments:
	b.		was the labora	Ferred to another "network" laboratory or sub-contracted to an alternate atory performing the analyses ADEC CS approved?
	_	O Yes	No	Comments:
	L	Samples not to	ransferred	
2.	Chair	n of Custody (COC)	
	a.	COC inform	nation comple	ted, signed, and dated (including released/received by)?
		Yes	O No	Comments:
	b.	. Correct anal	lyses requeste	d?
		Yes	O No	Comments:
3.	Labo	ratory Sample	Receipt Docu	<u>imentation</u>
	a.	Sample/coo	ler temperatu	re documented and within range at receipt (0° to 6° C)?
		Yes	O No	Comments:
	b.	ptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, ents, etc.)?		
		Yes	O No	Comments:
	c.	-		ented – broken, leaking (Methanol), zero headspace (VOC vials)?
	_	Yes	O No	Comments:
	d.		reservation, s	ancies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or missing
		O Yes	No	Comments:
		No discrepand	cies	

		Comments:
None		
se Narrative		
a. Present an	d understandabl	e?
• Yes	© No	Comments:
b. Discrepand	cies, errors or Q	C failures identified by the lab?
• Yes	© No	Comments:
c. Were all c	orrective actions	s documented?
Yes	O No	Comments:
None mples Results		Comments:
mples Results a. Correct an		ed/reported as requested on COC?
mples Results		
a. Correct an	No No	ed/reported as requested on COC? Comments: tes met?
a. Correct an	able holding tim	ed/reported as requested on COC? Comments:
a. Correct an Yes b. All applica	able holding tim	ed/reported as requested on COC? Comments: les met? Comments:
a. Correct an Yes b. All applica	able holding tim No eported on a dry	ed/reported as requested on COC? Comments: les met? Comments:
a. Correct an Yes b. All applica Yes c. All soils re	able holding tim No eported on a dry	ed/reported as requested on COC? Comments: nes met? Comments: weight basis?
b. All applica • Yes c. All soils re No soils	able holding time. No	ed/reported as requested on COC? Comments: nes met? Comments: weight basis?

c. Data quanty	or usability at	rrected?			
		Comments:			
None					
C Samples					
a. Method Blar	alz				
		reported per matrix, analysis and 20 samples?			
Yes	O No	Comments:			
ii. All n	nethod blank r	results less than limit of quantitation (LOQ)?			
Yes	O No	Comments:			
iii If aho	ove LOO wha	at samples are affected?			
m. n aoc	ove Log, whe	Comments:			
No affected sa	mples				
iv. Do th	ne affected sar	mple(s) have data flags? If so, are the data flags clearly defined?			
© Yes	No	Comments:			
No affected sa	mples				
v. Data quality or usability affected?					
v. Data	quality of usa	Comments:			
None					
b. Laboratory (Control Sampl	e/Duplicate (LCS/LCSD)			
Yes	O No	Comments:			
ii. Meta samp	_	one LCS and one sample duplicate reported per matrix, analysis and 2			
© Yes	No	Comments:			

	And	project specif	rcent recoveries (%R) reported and within method or laboratory limits fied DQOs, if applicable. (AK Petroleum methods: AK101 60%-120% 6, AK103 60%-120%; all other analyses see the laboratory QC pages)
	Yes	O No	Comments:
	labo LCS	ratory limits? /LCSD, MS/N	ative percent differences (RPD) reported and less than method or And project specified DQOs, if applicable. RPD reported from MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; the laboratory QC pages)
	• Yes	O No	Comments:
	v. If %	R or RPD is o	outside of acceptable limits, what samples are affected? Comments:
No a	ffected sa	ımples	
	vi. Do t	he affected sa	mple(s) have data flags? If so, are the data flags clearly defined? Comments:
No a	ffected sa	ımples	
	vii. Data	quality or us	ability affected? Comments:
None	e		
c. Su	i. Are	•	ly overies reported for organic analyses – field, QC and laboratory sample Comments:
	And	project specif	rcent recoveries (%R) reported and within method or laboratory limits fied DQOs, if applicable. (AK Petroleum methods 50-150 %R; all othe boratory report pages)
	O Yes	No	Comments:
Sam	ple MW-	1 had a low D	PRO/RRO surrogate recovery
		he sample res clearly defin	ults with failed surrogate recoveries have data flags? If so, are the data ed?
_	Yes	O No	Comments:

iv. Data quality or usability affected?

Comments:

The DRO and RRO results for sample MW-1 were qualified as estimated due to the implied low bias

d.	Trip blank – <u>Soil</u>	- Volatile an	alyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and
	i. One	trip blank re	eported per matrix, analysis and cooler?
	Yes	O No	Comments:
			d to transport the trip blank and VOA samples clearly indicated on the COC? ent explaining why must be entered below)
	Yes	O No	Comments:
	iii. All r	esults less th	han LOQ?
	Yes	O No	Comments:
	iv. If at	oove LOQ, v	what samples are affected? Comments:
1	No affected sa	ımples	
	v. Data	quality or ι	asability affected? Comments:
1	None		
e.	Field Duplic i. One • Yes	field duplic	ate submitted per matrix, analysis and 10 project samples? Comments:
	ii. Subr	nitted blind	to lab?
	Yes	O No	Comments:
_			

	(Recommended: 30% water, 50% soil)
	RPD (%) = Absolute value of: (R_1-R_2) x 100
	$((R_1+R_2)/2)$
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
	• Yes • No Comments:
	iv. Data quality or usability affected?
	Comments:
	None
	f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)
	© Yes © No © Not Applicable
	i. All results less than LOQ?
	O Yes O No Comments:
	Not collected
	ii. If above LOQ, what samples are affected?
	Comments:
	Not collected
	iii. Data quality or usability affected?
	Comments:
	Not collected
<u>Oth</u>	ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	• Yes • No Comments:

iii. Precision - All relative percent differences (RPD) less than specified DQOs?

Memorandum

November 29, 2018

To: ADEC Ref. No.: 082676

From: Tel: 206-914-3141

cc: Siobhan Pritchard

Subject: QA/QC Review

ChevronTexaco Site 306449

Job # 2001336 October 2018

1. Introduction

This document details a reduced validation of analytical results for groundwater samples collected in Anchorage, Alaska during October 2018. Samples were submitted to Eurofins Lancaster Laboratories Environmental (ELLE), located in Lancaster, Pennsylvania.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody form, finished report forms, method blank data, recovery data from surrogate spikes, laboratory control samples and field QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods and applicable guidance from the document entitled "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008 subsequently referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criteria and sample preservation requirements for the analyses are summarized in the methods. The sample chain of custody document and analytical report were used to determine sample holding times. All samples were prepared and analyzed within the required holding times.

All samples were properly preserved, delivered on ice and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

4. Surrogate Spike Recoveries

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample extraction and/or analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for volatile organic compound (VOC), gasoline range organics (GRO) and diesel range organics (DRO)/residual range organics (RRO) analysis were spiked with the appropriate number of surrogate compounds prior to sample extraction and/or analysis.

Surrogate recoveries were assessed against the control limits. All surrogate recoveries met the associated criteria with the exception of one low DRO/RRO surrogate recovery. The DRO and RRO results for sample MW-1 were qualified as estimated due to the implied low bias.

5. Laboratory Control Sample Analyses

Laboratory control samples (LCS)/laboratory control sample duplicates (LCSD) are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects. The relative percent difference (RPD) of the LCS/LCSD recoveries is used to evaluate analytical precision.

For this study, LCS or LCS/LCSD were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS and LCS/LCSD contained all analytes of interest. All LCS and LCS/LCSD recoveries and RPDs were within associated control limits, demonstrating acceptable analytical accuracy and precision (where applicable).

6. Field QA/QC Samples

The field QA/QC consisted of one trip blank sample and one field duplicate sample set.

Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, one trip blank was submitted to the laboratory for analysis. All results were non-detect for the analytes of interest.

Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, one field duplicate sample was collected and submitted "blind" to the laboratory. The RPDs associated with the duplicate sample must be less than 50 percent. If the reported concentration in both the investigative sample and its duplicate is less than five times the reporting limit (RL), the evaluation criterion is one times the RL value.

All field duplicate results were within acceptable agreement, demonstrating acceptable sampling and analytical precision.

7. Analyte Reporting

Non-detect data were reported down to the laboratory's method detections limit (MDL) for each analyte. Positive analyte detections less than the RL but greater than the MDL were reported as estimated (J).

8. Conclusion

Based on the assessment detailed in the foregoing, the summarized data are acceptable with the specific qualifications noted herein.