SITE ASSESSMENT REPORT DON BENNETT SHOOTING RANGE FAIRBANKS INTERNATIONAL AIRPORT AKSAS PROJECT NUMBER 61112

April 2003

MAY 1 7 2005

CONTAMINALED SITES FAIRBANKS

At Shannon & Wilson, our mission is to be a progressive, wellmanaged professional consulting firm in the fields of engineering and applied earth sciences. Our goal is to perform our services with the highest degree of professionalism with due consideration to the best interests of the public, our clients, and our employees.

> Submitted To: Alaska Department of Transportation and Public Facilities Fairbanks International Airport 6450 Airport Way Fairbanks, Alaska 99709

> > By: Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, Alaska 99709-5326 (907) 479-0600 FAX (907) 479-5691

> > > 31-1-11162-001

SITE ASSESSMENT REPORT DON BENNETT SHOOTING RANGE FAIRBANKS INTERNATIONAL AIRPORT

AKSAS Project Number 61112

Prepared For:

Alaska Department of Transportation and Public Facilities Fairbanks International Airport 6450 Airport Way Fairbanks, Alaska 99709

Developed By:

SHANNON & WILSON, INC. 2355 Hill Road Fairbanks, Alaska 99709-5326

Julie Keener Engineer

 $\overline{}$

Reviewed by: David D. McDowell Vice President

Shannon & Wilson Project Number: 31-1-11162-001

SITE ASSESSMENT REPORT DON BENNETT SHOOTING RANGE FAIRBANKS INTERNATIONAL AIRPORT

AKSAS Project Number 61112

TABLE OF CONTENTS

Page

1.0 INTRODUCTION1
1.1 Objective and Scope
1.2 Site and Vicinity Description
1.2.1 Configuration
1.2.2 Site History and Use
1.3 Chemicals of Potential Concern and Transport Mechanisms
1.4 Regulatory Requirements and Cleanup Levels
1.4.1 State of Alaska Cleanup Levels
1.4.2 Federal Regulations
2.0 FIELD ACTIVITIES
2.1 Investigation Approach
2.2 Surface Soil Characterization
2.3 Drilling and Subsurface Sampling
2.4 XRF Field Screening
2.5 Soil Sample Collection and Analysis
2.6 TCLP Leachability Testing
2.7 Grain Size Analysis
2.8 Groundwater Sample Collection and Analysis
3.0 RESULTS AND DISCUSSION
3.1 Site Conditions10
3.2 Field Screening Results
3.3 Soil Sample Analytical Results11
3.4 TCLP Results
3.5 Grain Size Distribution Analysis12
3.6 Groundwater Sample Analytical Results
3.7 Quality Control
4.0 SOIL VOLUME CALCULATIONS
4.1 Bullet Penetration Assessment and Depth of Lead-Affected Soils
4.2 Volume of Soil Exceeding Cleanup Levels
5.0 REMEDIAL ALTERNATIVES
5.1 Remedial Action Technologies15
5.1.1 Limited Action
5.1.2 Lead Reclamation and Soil Reuse in Firing Range
5.1.3 Landfilling16
5.1.4 Soil Washing/Particle Separation16
Site Accessment Depart

TABLE OF CONTENTS (cont.)

	5.1.5	Chemical Extraction	17
	5.1.6	Solidification/Stabilization	
		Asphalt Encapsulation	
5	5.2 Ren	nedial Action Alternatives and Estimated Costs	19
	5.2.1	Alternative 1: Limited Action	
	5.2.2	Alternative 2: Lead Reclamation and Range Soil Reuse for Firing Range	
		Alternative 3: Landfilling as Hazardous Waste, Contaminated Soil	
		Alternative 4: Soil Washing/Particle Separation	
	5.2.5	Alternative 5: Acid Extraction	22
		Alternative 6: Stabilization/Solidification	
		Alternative 7: Asphalt Encapsulation	
6.0		ATIONS	
		RENCES	

LIST OF TABLES

Table 1	Summary of Soil Sample Analytical and Field Screening Results
---------	---

- Table 2
 Lead Field Screening Results for Soil Boring Samples
- Table 3
 Summary of Soil Sample TCLP and Total Lead Results
- Table 4
 Summary of Groundwater Sample Analytical Results
- Table 5Soil Volume Calculations for 1,000 mg/kg Cleanup Level
- Table 6Soil Volume Calculations for 400 mg/kg Cleanup Level
- Table 7Estimated Cost Calculations

LIST OF FIGURES

- Figure 1 Site Sketch
- Figure 2 Sampling Grid and Lead Field Screening Results
- Figure 3 Backstop Cross Section

APPENDICES

- Appendix A Description of Soil Boring Samples
- Appendix B SUNEX Analytical Report
- Appendix C SGS Analytical Reports
- Appendix D Grain Size Distribution Results

1.0 INTRODUCTION

The Don Bennett Shooting Range, a small arms firing range at the Fairbanks International Airport (FIA), has been used over a period of about 30 years by airport security, state and local police, and sportsmen's clubs. The FIA wishes to close the range due to its location near the end of a small aircraft runway. It is in the location of improvements for approach lighting. Shannon & Wilson performed this site assessment for the FIA under contract RFP and Agreement # 368-3-3-026 dated February 21, 2003.

1.1 Objective and Scope

The objectives of the site assessment were to evaluate the distribution of lead in the shooting range soils and groundwater, and present planning-level corrective action costs for various cleanup methods.

Our scope of services consisted of the following tasks:

- Assess shot/fragment/casing penetration distance in backstop, side berms, and range floor
- Collect and analyze soil samples for lead concentrations and potential leachability and distinguish lead shot contamination from natural background lead levels in soil
- Identify locations and calculate volumes of soil that exceed Alaska Department of Environmental Conservation (ADEC) cleanup levels, potentially requiring treatment
- Collect groundwater samples to assess potential impact from lead shot on groundwater quality
- Provide a report describing results of site assessment activities, and present a range of potential remediation/corrective action alternatives and an estimate of probable costs

1.2 Site and Vicinity Description

The shooting range is located at the southwest end of the small aircraft runway (East Ramp). The range is within the fenced area of the airport. As shown in Figure 1, features in the vicinity of the range include a fire training pit, old slough meanders, a spur of the Alaska Railroad, and the Airport Perimeter Road. Further to the south are the Corps of Engineers Chena Flood Control Project levee and the Tanana River. FIA lease lots are to the north and east of the site. The closest residential properties are located about one mile from the range.

1.2.1 Configuration

The small-arms firing range used for pistol practice consists of firing lines where shooters are positioned, a target line, and an impact (or backstop) berm behind the target line. The shooting range is approximately 200 feet wide by 340 feet long. The backstop berms and side berms are about 15 feet high and 50 feet wide. A small "clubhouse" is located at the northwest end of the berms. Timbers with electric "headbolt heaters" are located about 15 feet from the backstop. A cable suspended between two poles at the south corner of the range holds a frame for a moving target.

1.2.2 Site History and Use

The shooting range has been used since at least the late 1960s. In 1983 the Alaska Peace Officers Association (APOA) obtained State funding to improve the range for law enforcement use. This is thought to be when the side berms were added. In 1986 the APOA signed an agreement with the Tanana Valley Sportsman's Association for civilian access to the range. In 1992 the berms were built up to their current height.

1.3 Chemicals of Potential Concern and Transport Mechanisms

While our scope of work was limited to the evaluation of lead, other possible soil contaminants found at small arms firing ranges may include "lead, antimony, copper, zinc, arsenic, and polycyclic aromatic hydrocarbons (PAHs) from bullets, fragments, and bullet jackets. These chemicals may leach from bullets, fragments, and bullet jackets, and contaminate soils and possibly surface and groundwater. Lead accounts for more than 85% of the weight of the projectile and constitutes the greatest environmental concern. This heavy accumulation of lead in a relatively small soil volume coupled with the fine lead present results in range soils high in total lead, which can fail standard leachability tests such as the RCRA Toxicity Characteristic Leaching Procedure (TCLP)" (ITRC, 2003).

At shooting ranges, lead can be introduced into the environment in one or more of the following ways. Lead oxidizes when exposed to air and dissolves when exposed to acidic water or soil. Lead bullets and particles and dissolved lead can be moved by water runoff. Dissolved lead can migrate through soils to groundwater.

1.4 Regulatory Requirements and Cleanup Levels

Following is a discussion of the most applicable environmental regulations that can apply to shooting ranges.

1.4.1 State of Alaska Cleanup Levels

The Environmental Protection Agency (EPA) and ADEC require cleanup levels for lead in soil to be determined on a site-specific basis, based on land use. Under 18 AAC 75, the ADEC soil cleanup level for residential land use is 400 milligrams per kilogram (mg/kg) and 1,000 mg/kg for industrial or commercial land use. We anticipate the 1,000 mg/kg cleanup level would apply to soils at this shooting range. The ADEC groundwater cleanup level for lead is equivalent to the EPA drinking water standard of 15 micrograms per liter (μ g/L).

t

1.4.2 Federal Regulations

The EPA does not consider lead shot to be hazardous waste at the time it is discharged from a firearm, since it is used for its intended purpose. "Shooting lead shot (or bullets) is not regulated.... However, spent lead shot (or bullets), left in the environment, is subject to the broader definition of solid waste... The Resource Conservation and Recovery Act (RCRA) potentially applies to many phases of range operation because lead bullets/shot, if abandoned, may be a solid and/or a hazardous waste and may present an actual or potential imminent and substantial endangerment" (*Best Management Practices for Lead at Outdoor Shooting Ranges*, EPA-902-B-01-001, January 2001).

The following sections presenting regulatory issues concerning shootings ranges are from the Interstate Technology and Regulatory Council (ITRC) *Characterization and remediation of soils at closed small arms firing ranges*.

Classification of Spent Ammunition

Since spent ammunition is "a product made of recyclable metal, it falls within the definition of scrap metal. In accordance with 40 CFR 261.6(a)(3)(ii), scrap metal is a solid waste but is exempt from the regulatory requirements of RCRA Subpart C. Additionally, ... processed scrap metal is exempted from RCRA regulation (i.e., is not a RCRA solid waste) when it is being recycled (40 CFR 261.4(a)(13). Therefore, as long as the selected remediation technology (e.g., soil washing) meets the definition of processed scrap metal, the technology is exempt from regulation under RCRA."

Lead Recycling

"During remediation activities, recovery of bullets and bullet fragments from firing range sands or soils via physical treatment constitutes 'reclamation' per 40 CFR 261.1(c)(4). Metal concentrates reclaimed from firing range berms via size classification and density concentration

contain more than 50% lead on a dry weight basis. The other metals included in the concentrate are predominantly copper and antimony. The concentrate reclaimed from the firing range material is 'scrap metal' per 40 CFR 261.1(c)(6).

...Scrap metal is not regulated as solid waste or as hazardous waste when recycled.... Therefore, the scrap metal reclaimed from the firing range sand, or soil, does not need to be regulated or manifested as a hazardous waste during generation or transport to a smelter for recycling."

Range Soil Reuse as a Backstop on Range Property

"At some ranges, it may be possible and desirable to reuse the soil from the backstop of a range that is being closed to construct a new berm or rebuild an existing berm located in another area of the same property or facility. It is USEPA's position that ranges that reclaim and recycle lead bullets or lead shot may place the soil that is generated during the reclamation process back onto an active range on the same property or facility or a property adjacent to and under the same ownership as the property where the soils originated, without testing the soil for hazardous waste characteristics.

Consistent with this approach, range soil that has been processed to reclaim lead for recycling is considered a construction material if it is used to construct or rebuild a backstop on the same site. Defining the 'site' in such a manner to allow the soil to be reused to construct another shooting range component on the same range property or on an adjacent range property, under the same ownership and control as the property where the material originated, is an option that deserves consideration. Range soil includes soil from a former backstop or from other parts of the range. As a construction material, range soil after reclamation is not considered as either a solid or hazardous waste.

It is important to note that lead reclamation and recycling is required for the soil to be considered a construction material. If lead reclamation is not conducted prior to moving the backstop, then pursuant to RCRA, the movement of the backstop may be considered illegal disposal of hazardous waste."

Disposal of Range Soil

"The soil that is removed from a closed range for treatment or disposal may be considered to contain hazardous waste and classified as 'characteristically hazardous' if it exhibits the characteristics of toxicity.

Site Assessment Report FIA Shooting Range Fairbanks, Alaska

April 2003 Page 4 31-1-11162-001

However, the soil can be considered to no longer contain a hazardous waste through removal of the live rounds and particulate lead, with residual stabilization, if required, to meet the regulatory TCLP level of 5 mg/l. Once the soil is viewed as not containing lead, the soil may be able to be disposed at a Subtitle D (nonhazardous) facility. Any applicable land disposal restrictions should be consulted. It should be noted that individual states may not utilize the contained-in policy (and, thus, these soils would be regulated under RCRA) or may have additional, more stringent disposal requirements."

2.0 FIELD ACTIVITIES

2.1 Investigation Approach

The objective of the initial screening was to determine areas of highest concentration of lead in surface soils, select locations for subsurface sampling to estimate penetration distance, and select locations for soil verification sampling for laboratory analysis. Field screening of lead in soils was conducted using an X-ray fluorescence (XRF) instrument following EPA Method 6200. Soil was field screened for lead using a NITON 703A XRF by SUNEX, Inc.

The study area designated by the FIA project manager was the half of the range floor near the backstop, and the adjacent sidewalls and backstop. A sampling grid was marked on the base and up the berms. The first row was located partway up the backstop. An alphanumeric numbering system was used to identify the soil screening locations, soil borings, and groundwater probes, and shown in Figure 2.

Surface soil characterization was done by XRF field screening. Subsurface soil samples were collected from soil borings, and these samples were field screened. Samples at 20 percent of field screening locations were submitted for laboratory analysis. Temporary wells were installed in the area of concern to determine if groundwater has been impacted by range activities.

2.2 Surface Soil Characterization

Soil sampling was performed February 27 and 28, 2003. Because of the required schedule, field screening and sampling were conducted prior to snowmelt and thawing of surface soils. Snow from the half of the shooting range adjacent to the backstop was cleared by the Department of Transportation & Public Facilities (DOT/PF) personnel with a grader. Shannon & Wilson field personnel used a broom to remove snow from the berms at the field screening locations. A 20-by 20-foot sampling grid was laid out on the area of concern using a cloth tape and spray paint.

Due to the cover of packed snow and ice, even after plowing, it was not possible to estimate the concentration of bullets on the ground surface. Surface soil XRF field screening was conducted in grid areas of presumed high bullet concentration at about 400 square feet, and grid areas of less than 1,600 square feet for low bullet concentration areas. A total of 75 surface soil, field screening locations inside the range were tested using the procedures described in Section 2.4.

2.3 Drilling and Subsurface Sampling

At 20 percent of these locations we collected subsurface soil samples from 6, 12, and 24 inches below the ground surface (bgs). Each of these samples, including the surface sample, was field screened with the XRF. Based on the XRF field screening results, two verification soil samples from each horizon were collected for laboratory analysis, plus quality control samples. One soil sample outside the shooting range was collected to evaluate the background lead concentration. Where the XRF detected lead above the 400 mg/kg action level at the 24-inch-deep sample, additional samples were collected at intervals until the XRF did not detect lead above the action level.

Since the ground was frozen, we collected subsurface soil samples using our SIMCO 2400 drill rig equipped with a 4-inch-diameter, solid-stem auger drill. This drill was mounted in a pickup truck and capable of drilling borings in the shooting range floor and midway up the berms. Vertical borings were advanced in the range floor 3 to 4 feet bgs. Angled borings were located in the berms at 10 to 15 feet. The angle of penetration was measured using an inclinometer.

We used the solid-stem auger and collected samples off the auger flights. Samples were placed inside plastic bags for field screening and reserved for possible gradation and/or analytical testing. "Dry" decontamination of the auger was performed by brushing the soil off the flights. Soil borings were backfilled with the cuttings.

2.4 XRF Field Screening

Mr. Jim Johnson of SUNEX, INC, performed XRF field screening. The field screening procedure to measure lead concentrations in soil is outlined below:

- 1. XRF analysis was done with a NITON 703A XRF. The instrument was operated in accordance with the manufacturer's recommendation and good field practices. The *in situ* screen method is based on EPA Method 6200 and the manufacturer's recommendations. The method detection limit for this instrument is 65 ppm lead, based on replicate analyses of the silica blank. A silica blank and certified standard were analyzed before field tests were made.
- 2. Field readings were taken by *in situ* measurements and on field-prepared samples recovered from depth. For each surface sample the soil was cleared of debris and flattened to provide a uniform surface for the XRF sample window. XRF was conducted on subsurface samples inside resealable baggies, and avoided obvious bullets and fragments.

2.5 Soil Sample Collection and Analysis

Based on the field screening results, verification soil samples were submitted for laboratory analysis. We collected 20 percent of the field-screened samples for penetration distance assessment. This included three surface samples and two samples from each depth profile. Soil samples were collected in general accordance with our ADEC-approved Quality Assurance Project Plan. Soil samples for analytical testing were transferred from the plastic bag used for field screening into laboratory-supplied sample containers. Soil samples were submitted to SGS Laboratories (SGS; formerly CT&E Environmental Services) for analysis of inorganic lead by EPA Method 6020 (ICP Metals). Two of the soil samples with the highest lead concentration were analyzed for lead following the toxicity characteristic leaching procedure (TCLP) extraction by EPA Method 1311. Soil samples included one background sample and two field duplicate samples for quality control.

2.6 TCLP Leachability Testing

A surface sample was collected at Boring 1G, located near the center of the backstop to represent a "worst-case" lead level. This soil was split into two separate samples, identified as *1162-022803-1GSA* and *1162-022803-1GSB*. Sample *1162-022803-1GSA* was representative of the surface soils and materials visible on the backstop, including spent bullets, lead fragments, and spent casings. Sample *1162-022803-1GSA* was analyzed for total lead and TCLP lead. No attempt was made to segregate visible lead fragments from the soils submitted for analysis. Soils consisted of medium brown, silty sand fill with visible spent bullets, lead fragments, and spent casings. Sample *1162-022803-1GSB*, from which the bullets and visible lead fragments had been removed, was submitted for both TCLP lead and total lead testing.

2.7 Grain Size Analysis

Grain-size distribution analysis (ASTM Method C 136) were performed on sample 1162-022803-1GSB. Soils that passed through a #4 sieve (0.187-inch opening) were retained for analysis of total and TCLP lead. These soils consisted of medium brown, silty sand fill with no visible lead fragments or particles.

Additionally, grain size analysis was performed on samples collected from 1 to 1.5 feet in Boring 1G, from 0.5 to 1 foot in Boring 3E, and from 0 to 0.5 feet from Boring 3G.

2.8 Groundwater Sample Collection and Analysis

On March 3, 2003, we installed three temporary well points for the collection of groundwater samples to evaluate lead groundwater concentrations. Well points WP-1 through WP-3 were located inside the shooting range as shown in Figure 1. The well points were constructed of 1.25-inch inside diameter (ID) steel with a 2-foot screened interval and a 0.006-inch slot size. The well points were driven with our drill rig to a depth of 8 feet bgs (just under the water table).

The depth to groundwater was measured using a decontaminated electronic water level meter, and ranged from 6.09 to 6.36 feet bgs. The well points were purged prior to sampling until the water temperature stabilized and the water ran clear (about 2 gallons from each). Purge water was discharged to the ground surface. Water samples were collected from the well point with a peristaltic pump. Samples were collected into laboratory-supplied acidified sample containers. Samples for dissolved lead were field-filtered; samples for total lead were not filtered. A new 0.45 μ m in-line filter was used for each sample. A new well point was used for each sample location. Following sampling, the well points were removed from the ground and the holes backfilled.

A background water sample was also collected at a location selected by FIA for comparison. Monitoring well MW-1 is located about 750 feet north of the backstop and is one of three monitoring wells installed for groundwater monitoring at the fire training pit. The monitoring well was purged (3 gallons) and sampled with the peristaltic pump using the procedures described above.

The water samples were submitted to SGS for laboratory analysis following EPA Method 6020 for total and dissolved lead. A duplicate water sample was collected from WP-2. Well point and monitoring well locations are shown in Figure 1.

3.0 **RESULTS AND DISCUSSION**

3.1 Site Conditions

About 1 to 2 feet of snow covered the berms. The berms were sparsely vegetated with alder, rose bushes, and other brush. Soils encountered in the berms and floor were silty sand. No significant organic matter was encountered. Seasonal frost was about 5.5 feet deep. Groundwater was not encountered in the soil borings. The depth to groundwater was measured at about 6 feet bgs in the well points. Soil boring samples are described in Appendix A. Spent bullets and casings were visible in highest concentration in the backstop and the area closest to the backstop. The two snow piles resulting from plowing the range floor were both about 40 feet in diameter and 10 to 15 high. The piles likely contain bullets and bullet fragments that had collected this winter. The lead concentrations in or under these piles were not evaluated.

Interpretation of planimetric drawings suggests that in 1992 about 10 feet of fill material were placed on the berms. We attempted to locate the original berm surface with soil borings. Samples were collected as deep as 15 feet into the berm. Visible bullet fragments were only observed as deep as 1 foot. Soil characteristics did not change significantly with depth, and field screening results were not elevated. Refer to Figure 3 for a generalized cross section of the backstop showing original berm locations inferred from planimetric mapping, as well as boring penetration depths.

The planimetric drawings suggest about 8 feet was added to the face of the backstop near the south end and about 20 feet near the north end. The cross section (Figure 3) suggests Boring 1C and 1G penetrated the original backstop; however, based on observations of soil conditions and field screening and analytical results, the old backstop surface was not encountered. Alternately, the old backstop was not contaminated with lead and had the same characteristics (soil type) as the material placed over it. Field screening should be done during the excavation to determine the presence of lead, and allowances should be made for potential additional contaminated soil.

3.2 Field Screening Results

The XRF lead field-screening results ranged from less than the detection limit (about 50 ppm) at the northwest end of the shooting range to as high as 17,300 ppm at the surface of the backstop. Lead field-screening results for the surface soil samples are depicted in Figure 2. Field screening results for the subsurface samples are shown in Table 2. The SUNEX report is included in Appendix B.

3.3 Soil Sample Analytical Results

The analytical results for total lead in the soil samples ranged from not above the laboratory's Practical Quantitation Limit (PQL) to as high as 53,400 mg/kg. The highest concentrations were reported at the surface soils from the backstop and on the range floor in front of the backstop. Soil sample results are summarized in Table 1. The SGS Analytical reports are included in Appendix C.

Field screening results were compared to analytical results for the same sample to determine the correlation. In general, field screening results greater than 500 ppm indicated lead results above about 1,000 mg/kg, between 150 and 500 ppm suggested lead results of between 400 and 1,000 mg/kg, and less than 150 ppm suggested lead results less than 400 mg/kg.

Following the evaluation of results, we requested the analysis of two additional samples from boring E8, from 6 feet and 10 feet bgs, since the sample at 8 feet was 1,320 mg/kg, not correlating with the field screening result. Also, reanalysis of sample *1162-022703-1E8* was performed, since the original result (1,320 mg/kg) appeared anomalous compared to its field screening result and the analytical result of the 4-foot sample. The second result for this sample is more congruous with field screening results. While the original result has not been rejected, the second result was used to estimate depth of contamination.

The background soil sample *1162-022803-BKG* was collected at a depth of 2.5 feet bgs along the roadside approximately 700 feet northwest of the backstop (Figure 1). The soils were undisturbed, silty, sandy gravel and contained no visible lead bullets or fragments. The analytical result for this sample was 22.5 mg/kg. The geometric mean of lead concentrations in Alaska soils is 12 mg/kg with a geometric deviation of 1.74 mg/kg. The observed range of lead concentrations is less than 4 to 310 mg/kg (USGS). The lead concentration in background soil sample *1162-022803-BKG* was greater than the geometric mean and within the observed range.

3.4 TCLP Results

The TCLP lead level in sample *1162-022803-1GSA*, which contained lead particles and bullets, was less than the PQL. For comparison, the total lead concentration in *1162-022803-1GSA* was 53,400 mg/kg. The TCLP lead concentration in sample *1162-022803-1GSB*, from which the obvious large lead particles were removed, was 606 mg/L. This concentration exceeds the TCLP regulatory level of 5.0 mg/L. This suggests that more lead could be leached from the fine soil particles than the coarser fractions. TCLP results and total lead concentrations for the sample splits are summarized in Table 3.

Site Assessment Report FIA Shooting Range Fairbanks, Alaska

April 2003 Page 11 31-1-11162-001

3.5 Grain Size Distribution Analysis

A grain-size distribution test was run on 1162-022803-1GSB, the surface sample collected from the backstop at 1G. The individual size fractions were examined, and it was determined that bullets and bullet fragments were retained on the 1/2-inch to #4 sieve (with a 0.187-inch opening). Metal particles (bullets and bullet fragments) represented 54 percent of the total weight of this sample. Gradation tests of the sample from 1 to 1.5 feet in Boring 1G indicated that metal particles were in the same size range as the corresponding surface sample, but represented only 14 percent of the total sample weight. Grain-size results from the samples collected at 0 to 0.5 foot in Boring 3G, and at 0.5 to 1 foot in 3E, indicate the samples were silty sand with no visible bullet fragments. Both borings are on the shooting range floor near the backstop. Grain-size distribution results are included in Appendix D.

3.6 Groundwater Sample Analytical Results

Total lead was reported in the samples from well points WP-1, WP-2, and WP-3 at 15.3 μ g/L, 7.18 μ g/L, and 1.96 μ g/L, respectively. The duplicate sample from WP-2 contained 7.11 μ g/L total lead. Dissolved lead was not reported above its PQL in any of the water samples.

The background water sample from MW-1 contained $3.22 \ \mu g/L$ total lead. The lead concentration in the sample from WP-3 was less than this level. Groundwater at WP-3 has not been affected by lead. Analytical results indicate the groundwater at WP-1 and, to a lesser degree, WP-2 have been affected by lead contamination in the backstop. The extent of groundwater contamination appears limited. Lead levels in the underlying groundwater should be verified through additional sampling. If elevated lead levels are confirmed, regular groundwater monitoring will likely be warranted following removal or treatment of lead-affected soil to evaluate its change over time.

Groundwater analytical results are summarized in Table 4.

3.7 Quality Control

Field quality control (QC) procedures for this project included the analysis of three duplicate sample pairs. The QC samples were analyzed in order to assess the precision of the laboratory's analytical procedures and the potential for cross-contamination during storage and handling.

The duplicate samples were analyzed to evaluate error associated with sampling and laboratory variability. Field duplicate precision can be expressed as a relative percent difference (RPD)

between duplicates if both samples contain analytes above their PQL. Duplicate soil samples 1162-022703-1ESA and 1162-022703-1ESB were collected from the ground surface at soil boring 1E; their RPD was 44 percent. Samples 1162-022803-1G2A and 1162-022803-1G2B were collected from a depth of 2 feet bgs in soil boring 2G; their RPD was 105 percent. Samples 1162-030303-WP2 and 1162-030303-WP4 were collected from temporary well point WP-2. The RPD for total lead between these samples was 1 percent.

Laboratory QC included procedures outlined in SGS's ADEC-approved standard operating procedures documentation. As presented in the laboratory report's QC data package summary sheets (Appendix C), the majority of the laboratory QC parameters fell within SGS's acceptable limits.

According to the laboratory, the few deviations from the QC goals did not affect the data. Temperatures of the sample coolers were acceptable, and all samples were analyzed within holding time. Lead PQLs were not above the cleanup levels. The data are considered acceptable for the purposes of this study.

4.0 SOIL VOLUME CALCULATIONS

4.1 Bullet Penetration Assessment and Depth of Lead-Affected Soils

Visible bullets and bullet fragments appear to have only penetrated the backstop about 1 foot. Using the field screening and laboratory results, the depth of soils affected by lead above the two cleanup levels was approximated. From the Row 1 results, the backstop soils contain lead above the 1,000 mg/kg cleanup level to a depth of about 2.5 feet. At Row 2, lead above 1,000 mg/kg cleanup level is estimated to be 1.5 feet deep. The upper 6 inches of soil in Rows 3 through 8 were estimated to exceed the cleanup level.

The depth of soil exceeding the more stringent, residential cleanup level was estimated at about 4 feet in the backstop. Depths of contamination are similar to those for the 1,000 mg/kg cleanup level, except that a greater area exceed the 400 mg/kg cleanup level, and Row 10 was also affected.

4.2 Volume of Soil Exceeding Cleanup Levels

The in-place volume of contaminated soil was calculated by multiplying the estimated depth of contamination by a representative area in each row. All soil volumes are presented as "in-place," and the unit weight of the silty sandy soil was assumed to be approximately 1.5 tons per cubic yard. The volume of soil exceeding 1,000 mg/kg was estimated at about 670 cubic yards or 1,000 tons. The volume of soil exceeding 400 mg/kg lead was estimated at about 1,050 cubic yards or 1,575 tons. Supporting calculations are presented in Tables 5 and 6.

Our calculations were based on a limited number of soil borings. Generalizations for penetration depth were made across the width of the backstop, as well as along a row of the sampling grid. Actual penetration/contamination depths are likely shallower.

5.0 **REMEDIAL ALTERNATIVES**

5.1 Remedial Action Technologies

Various treatment technologies for lead-contaminated soil are described in the following sections.

5.1.1 Limited Action

As opposed to "No Action," the Limited Action alternative would combine groundwater monitoring with institutional controls such as fencing to control access to the shooting range. This alternative would prevent additional lead to be released to the soil through shooting, as well as human exposure to lead-containing soil. Limited action would not prevent the lead from leaching into groundwater or dispersal of lead as airborne particles.

5.1.2 Lead Reclamation and Soil Reuse in Firing Range

This alternative utilizes the regulatory interpretation that reclaimed and recycled spent bullets are not subject to RCRA. The reuse of processed range soil for construction material for a new backstop on the site is also not subject to RCRA. This presumes that construction of a new range on the site is feasible and desired. Methods of lead removal include dry screening and soil washing. The following points are presented in *Best Management Practices For Lead At Outdoor Shooting Ranges* (EPA 2001).

- "Removal contractors or reclaimers should apply standard best management practices, mentioned in this manual, to separate the lead from soil. The soil, if then placed back on the range, is exempt from RCRA. However, if the soil is to be removed off-site, then it would require testing to determine if it is a RCRA hazardous waste."
- "Lead, if recycled or reused, is considered a scrap metal and is, therefore, excluded from RCRA."
- "Collected lead shot and bullets are excluded from RCRA regulation, and need not have a manifest, nor does a range need to obtain a RCRA generator number (i.e., the range is not a hazardous waste "generator"), provided that the lead is recycled or reused. The reclaimer does not need to be a RCRA transporter. However, it is recommended that ranges retain records of shipments of lead to the receiving facilities in order to demonstrate that the lead was recycled....The range should be aware that it ultimately may be responsible for the lead sent for reclamation. Therefore, only reputable reclaimers should be utilized."

• "The above RCRA discussion applies to both operating and non-operating ranges. The application of (best management plans)...may not preclude the need for remediation as appropriate, and as required by individual states' regulations when a range is permanently closed and or abandoned or the land use changes and may result in potential exposure to soil containing lead."

This approach does not address soils that exceed the ADEC soil cleanup level for total lead. However it is possible that removal of the lead fragments from the backstop soils may reduce the total lead concentrations in the soil to below ADEC cleanup level, particularly if a "miningbased" sampling approach (see ITRC, 2003) is utilized to obtain more representative total lead analytical results.

5.1.3 Landfilling

The most basic approach for closing firing ranges is excavation and transport of the soil to an appropriate landfill for disposal. Testing to confirm whether the soil is RCRA hazardous using the TCLP method is necessary. If lead concentrations exceed the TCLP regulatory level (5.0 mg/L), the soil is then considered hazardous and must be managed as a hazardous waste. In addition, if soil contains live rounds it can be considered characteristically hazardous (based on reactivity). Remediation may generate both hazardous and nonhazardous wastes and require landfills for both types.

This technology has the advantage of relatively short-term implementation. However, without treatment, soil that exceeds the TCLP will always have the characteristics of a hazardous waste. Hazardous waste transport and disposal will require manifesting.

The treatment technologies described in the following sections have been implemented on other firing ranges. These technologies may reduce liability, since the soil will no longer have hazardous waste characteristics.

5.1.4 Soil Washing/Particle Separation

The soil washing process uses mineral processing methods to recover particulate lead as a refined "product." In the soil-washing technology, spent bullets and bullet fragments are physically separated through solids-separation technology and refined. The recovered lead has a commercial salvage value. If necessary, the remaining soil is treated with an appropriate secondary technology.

Under 40 CFR 261.1(c)(6), the recovered metal is considered "scrap metal" and classified as a "recyclable material," which is not regulated or manifested. Prior to treatment, live rounds should be segregated from the soil. The soil washing process is dust-free. The treated soil is suitable for reuse in a new shooting range on the site. Alternately, the treated soil can be reused for restoration following closure of the site. Public perception of soil washing has been positive. This alternative has the benefit of recycling the lead as a product. The time required for treatment is short, and long-term environmental monitoring is not required. The relative costs for this technology on a per-ton basis are primarily dependent on the volume of soil requiring treatment.

Other factors affecting costs are soil cleanup standards, soil characteristics, availability and costs of utilities, and requirements for sampling and treatability studies. Factors affecting cost and performance of soil washing/physical separation are presented in further detail in *Implementation Guidance Handbook: Physical Leaching To Process Small-Arms Range Soils* (Battelle, 1997).

5.1.5 Chemical Extraction

If soil washing alone does not reduce lead concentrations in the soil to acceptable levels, chemical extraction can be utilized. After particulate lead removal, a leachant is added to the water used in the physical separation process to promote the dissolution of residual metals into solution. Hydrochloric acid, which is most often used for chemical extraction of lead, lowers the pH of the fluid and solubilizes the metals from the soil. The metals precipitated out of solution are dewatered for subsequent recycling. The treated, leached soil is separated, rinsed, and dewatered for reuse.

Chemical extraction is a proven technology when combined with soil washing. Soil characteristics affecting cost include soil pH and amount of silt, organics, iron, and manganese. Refer to Battelle (1997) for a detailed presentation of factors affecting cost and performance of acid leaching. A treatability study is required to optimize the technology.

"Physical separation and acid leaching provide long-term effectiveness by recovering much of the lead and returning it to commercial use. Conventional alternatives, such as (solidification/-stabilization) treatment or disposal, rely on chemical and physical containment to immobilize the metals. Both of these containment methods have demonstrated effectiveness over periods of years or decades, but effectiveness beyond this time frame cannot be predicted" (Battelle, 1997).

5.1.6 Solidification/Stabilization

Through stabilization/solidification processes the hazardous characteristic of soils are changed prior to long-term management. These processes can also control the solubility of metals in soil to protect groundwater. Stabilization/solidification describes several processes.

Solidification generally refers to reducing waste permeability and surface area, therefore reducing leaching of the contaminant. Cement and cement-based mixtures are the most common solidification agents. Solidification can be performed *in situ* or *ex situ* to produce a block of waste that can be left on the site or landfilled.

In stabilization, the reagents added to the contaminated soil form less soluble compounds while controlling pH in a range of minimum solubility. Because less soluble compounds are formed, stabilized waste is often considered more protective of groundwater. Stabilization followed by landfilling is the most common treatment for lead-contaminated soils. Common stabilizing agents include phosphates, sulfates, hydroxides, and carbonates. Recent studies have shown phosphate amendment to be a preferred method of stabilizing lead-impacted wastes (FRTR, 2003).

Ex situ solidification/stabilization processes are among the most mature remediation technologies (FRTR, 2003). Environmental conditions may affect the long-term immobility of lead. Some processes may result in a significant volume increase.

5.1.7 Asphalt Encapsulation

"Asphalt-based emulsions have been used extensively in the commercial construction industry to stabilize soils for dust control, thereby minimizing their mechanical migration through wind or water erosion. These same emulsions have been modified (and the modifications patented) to encapsulate heavy metals, rendering them resistant to leaching to groundwater and creating a material that reduces infiltration and is resistant to wind and water erosive forces.

In July 2000, USEPA issued a determination that use of encapsulation technologies qualifies as recycling for RCRA characteristic wastes, in that permanent chemical bonding is achieved in a commercially useable end product. Treated soils exhibit increased soil strength and can be used as an asphalt base material. The technology is especially applicable for lead contamination. The emulsions can be mixed into the soil and/or applied topically.

The objective of the technology is to provide permanent encapsulation of contaminated soils, where the resultant treated soil exhibits reduced leachability of the contaminant, reduced permeability of the soil surface, and increased soil strength to withstand wind and water erosion. In most cases, the end product can be used as a nonhazardous construction material, road base, or structural fills. On military firing ranges, the soil can be topically treated or, in the absence of UXO, mixed and compacted. Resultant compacted treated soils typically exhibit high strength and low permeability characteristics.

The objective of site-specific demonstration testing would be to refine emulsion designs for specific application sites, evaluate and compare application methods, and implement rigorous postapplication monitoring to evaluate key performance data. Proposed testing would also evaluate the technology's efficacy on residual explosives in soil.

This patented technology includes improvements over other stabilization technologies. Most previous stabilization technologies do not exhibit 'permanent' treatment and are subject to loss of effectiveness under changing physical or chemical (pH) conditions. Additionally, most stabilization technologies do not work well on a range of inorganic and organic contaminants.

Once soil-specific emulsion design testing is completed, implementation of this technology in the field can be done with normal road construction equipment and crews" (ITRC, 2003).

5.2 Remedial Action Alternatives and Estimated Costs

A range of potential remediation action alternatives is presented in the following sections. For each alternative, a planning-level cost estimate is provided in Table 7. The following table summarizes the anticipated tasks and concerns associated with each described alternative.

Requirements	Alternative 1: Limited Action	Alternative 2: Lead Reclamation, Range Soil Reuse	Alternative 3: Hazardous Waste Landfilling	Alternative 4: Soil Washing/ Particle Separation	Alternative 5: Acid Extraction	Alternative 6: Solidification/ Stabilization (ex situ)	Alternative 7: Asphalt Encapsulation
Agency notification/ coordination	X		X	X	x	x	X
Fencing of shooting range	X			11			1
Treatability study		_		X	X	X	Х
Hazardous waste transport/disposal			X				
Contaminated soil transport/disposal			X				
Soil handling		X	Х	Х	X	x	X
Excavation monitoring		X	X	Х	x	Х	x
Verification sampling			Х	х	х	x	x
On site treatment		X		X	X	X	X
RCRA requirements			X	Х	X	X	x
Groundwater monitoring		x	х	х		х	X
Reporting	x	X	X	X	X	X	x
Site restrictions	X				[-
Soil contamination remaining	x	Х					

The following sources were used for cost information: the FRTR website, case studies presented in *Characterization and Remediation of Soils at Closed Small Arms Firing Ranges* (ITRC, 2003), and local vendors (BESCORP and Philip Services).

5.2.1 Alternative 1: Limited Action

Our estimate of probable costs for Limited Action at the site is approximately \$74,500. Estimated costs are for fencing and securing the site. This alternative includes installation of three monitoring wells and annual groundwater monitoring for lead for a period of 10 years. Components include routine groundwater monitoring of upgradient and downgradient monitoring wells, routine inspection of site conditions, agency coordination and project management, establishing deed restrictions as institutional controls, and plat recording with a description of materials left in place. A summary of our estimated costs is presented in Table 7

5.2.2 Alternative 2: Lead Reclamation and Range Soil Reuse for Firing Range

If construction of a new shooting range at the Fairbanks International Airport is feasible, reuse of the existing range soil should be considered. If the range soils are reused and the range

is closed, access to the area would presumably be limited, due to its location at the end of a runway. Paving of the area may also occur.

For this alternative, we have assumed that the soil from the berms would be reused on a new, active range on ADOT/PF controlled property. We also assumed that removal of spent bullets by dry screening the backstop soil would be sufficient to recover the lead from the soil at a concentration suitable for recycling. The spent bullets can be accepted by local scrap metal recyclers.

We have assumed that lead reclamation could be performed by a general contractor with appropriate lead awareness training, and utilizing health and safety procedures to avoid exposure to elevated levels of airborne lead.

The following additional assumptions were made:

- Only the backstop soils containing bullets would be processed. At a minimum, processing of the soil in the upper foot of the backstop by dry sieving could physically accomplish removal of spent bullets.
- The bullet-laden soil volume is estimated to be on the order of 100 cubic yards in place (15-foot backstop height by 200-foot width by 1-foot depth of bullet penetration), and as much as 150 cy excavated.
- Soil handling, processing, and transport to the new range area could be performed using a front-end loader, vibratory screen/classifier, and a dump truck, respectively.
- Verification sampling would not be required, though reporting is included.
- Transport distance of the screened soil is within the limits of the FIA property, or about one mile.
- Estimated costs for this alternative do not include construction of a new firing range.
- A local recycler would accept the sieved material.

The remaining range soil, including that portion of the backstop not containing bullets, would be transported for reuse to construct a new shooting range. This soil may exceed the ADEC soil cleanup level for lead. Total costs for lead reclamation from the backstop soil, and transport to a new range area on site were estimated at \$79,400.

5.2.3 Alternative 3: Landfilling as Hazardous Waste, Contaminated Soil

Landfilling of the contaminated soil would include excavation of the bullets, lead particles, and soil that exceed the TCLP limit. No physical or chemical treatment to remove lead from this soil would be performed prior to its transport to a permitted hazardous waste landfill for disposal. Transport to and disposal costs for hazardous waste landfill in Arlington, Oregon are included.

Soil that exceeds the ADEC soil cleanup level for lead would be excavated and transported for disposal at a permitted solid waste landfill. The FNSB Solid Waste landfill would not accept "polluted" soils for disposal; transport to a landfill in the Lower 48 is assumed. Costs for a total of 1,000 tons of soil (including both "hazardous waste" and "nonhazardous waste") are estimated at \$541,400.

5.2.4 Alternative 4: Soil Washing/Particle Separation

According to Brice Environmental Services Corporation (BESCORP), a range of estimated costs to implement their soil washing/particle separation treatment system at the site is \$100 to \$800 per ton, which would include cost components such as a treatability study as well as lead recycling. We have added additional costs for project management, agency coordination, monitoring well installation, and groundwater monitoring. For the estimated soil volume based on a 1,000 mg/kg cleanup level, the approximated costs range from \$148,000 to \$848,000.

5.2.5 Alternative 5: Acid Extraction

Since the requirements for acid extraction technology are highly site-specific, BESCORP would not provide a cost range without the additional information that a treatability study would provide. However, according to this vendor's literature and experience, acid extraction is not cost-competitive for the small volume of lead-containing soil at the site.

5.2.6 Alternative 6: Stabilization/Solidification

Costs for stabilization/solidification were estimated by BESCORP to be an additional \$15 to \$60 per ton for stabilization of the stated soil volume following their soil washing process. This cost includes treatability studies, lead recycling, and landfilling of the stabilized soil as a nonhazardous waste. We have added additional costs for project management, agency coordination, monitoring well installation, and groundwater monitoring. For a volume of 1,000 tons, the estimated costs range from \$163,000 to \$908,000.

5.2.7 Alternative 7: Asphalt Encapsulation

BESCORP estimated an additional \$25 to \$110 per ton for asphalt emulsion (encapsulation) of the stated soil volumes following their soil washing process (Alternative 4). This cost includes treatability studies, lead recycling, and stockpiling on site for future use as a paving product. For a volume of 1,000 tons, the estimated costs range from \$173,000 to \$958,000.

6.0 LIMITATIONS

Report Limitations

The conclusions we have presented in this report are based on the sampling and analysis that we performed. They should not be construed as a guarantee of the soil or groundwater quality at the site. Our sampling was intended to confirm the presence or absence of selected contaminants at the sampled locations. It is possible that our subsurface tests do not represent the highest levels of contamination. In addition, conclusions cannot be drawn on the presence or absence of contaminants for which laboratory analyses were not run. As a result, the analysis and sampling performed can only provide you with our judgment as to the environmental characteristics of the site, and in no way guarantees that an agency or its staff will reach the same conclusions.

Changes in site conditions can occur with time because of natural forces or human activity. The data presented in this report should be considered representative only of the time the data were collected. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Use of Documents

This report was prepared for the exclusive use of the Fairbanks International Airport and its agents for assessment in accordance with our scope of work. If it is made available to others, it should be for information on factual data only and not as a warranty of described conditions, such as those interpreted from the discussions of subsurface conditions included in this report.

All documents prepared by Shannon & Wilson are instruments of service with respect to the project for the sole use of the client. Only our client shall have the right to rely upon such documents.

Such documents are not intended or represented to be suitable for reuse by the client, or others, after the passage of time, on extensions of the project, or on any other project. Any such reuse without written verification or adaptation by Shannon & Wilson, as appropriate for the specific purpose intended, shall be at user's sole risk.

7.0 **REFERENCES**

Air Force Center for Environmental Excellence. 2000. Technical Protocol For Determining The Remedial Requirements For Soils At Small Arms Firing Ranges. Technology Transfer Division (AFCEE/ERT). Prepared by Parsons Engineering.

Battelle. 1997. Implementation Guidance Handbook: Physical Leaching To Process Small-Arms Range Soils. Prepared by Battelle Columbus, Ohio Operations for the Naval Facilities Engineering Service Center and the U.S. Army Environmental Center.

EPA. January 2001. Best Management Practices For Lead At Outdoor Shooting Ranges, EPA-902-B-01-001

EPA REACH IT website (<u>http://www.epareachit.org</u>)

Interstate Technology and Regulatory Council, January 2003, Characterization And Remediation Of Soils At Closed Small Arms Firing Ranges.

USGS Professional Paper 1458. 1988. *Element Concentrations In Soils And Other Surficial Materials Of Alaska*. United States Government Printing Office.

TABLE 1 Summary of Soil Sample Analytical and Field Screening Results FIA Shooting Range, Fairbanks, Alaska

		Notes	No visible lead or fragments	Visible shell casing, spent bullets	Visible shell casing, spent bullets	No visible lead or fragments	(Reanalysis of sample)	No visible lead or fragments	Visible shell casing, spent bullets	No visible lead or fragments	Visible spent bullets and fragments	Visible fragments	No visible lead or fragments	No visible lead or fragments	Visible shell casing, spent bullets	No visible lead or fragments	No visible lead or fragments	No visible lead or fragments												
Field	Screening	Result (ppm)	62	63	92	09>	17,300	17,300	1200	624	476	96>	128	128	85	6,900	546	546	204	87	96	112	7,760	1,270	183	<55	7,260	<58	<57	<54
	Total Lead	(mg/kg)	63.4	99.1	81.6	17.5	48,800	31,100	6,610	1,680	938	439	1,320	360	35	53,400	1,600	5,150	666	431	231	83.6	11,500	995	215	11.2	351	10.9	7.64	23
ocation		Depth (ft.)	9	8	10	15	0	0	-	2	4	9	ω	ω	10	0	2	2	3	4	9	9	0.5	-	e		0	ω	0.5	2.5
Sample Location		Boring	10	5	റ	5	1	щ	ш	Щ	٦ ۳	_ ط	Щ.	Ψ	Ц	9	16	1G	16	0	16	16	2F	2F	2	Ж	4J	9L	10F	background
		Sample Number	1162-022803-1C6	1162-022803-1C8	1162-022803-1C10	1162-030303-1C15	1162-022703-1ESA*	1162-022703-1ESB*	1162-022703-1E1	1162-022703-1E2	1162-022703-1E4	1162-022703-1E6	1162-022703-1E8	1162-022703-1E8	1162-022703-1E10	1162-022803-1GSA	1162-022803-1G2A*	1162-022803-1G2B*	1162-022803-1G3	1162-022803-1G4	1162-022803-166	1162-022803-1610	1162-022/03-2F0.5	1162-022/03-2F1	1162-022803-213	1162-022803-3K1	1162-022803-4JS	1162-022803-6L8	1162-022803-10F0.5	1162-022803-BKG

Field duplicate samples

Note: *

April 2003

TABLE 2 Lead Field Screening Results for Soil Boring Samples (ppm) FIA Shooting Range, Fairbanks, Alaska

F				-	_	-		-		_	-	-	-		_	-	-	
	105	2	376	<57	/FD	8	<55	<60	?	1				1	1	1		I
	61	;;;;	× 40 40	1	(e)	ș i	- 	<58	3 2	0	<55	<58	24	3	1	1		1
	4.1	200	007'/	<58	<57		40,	<54	-	J		•			1			1
	3K	100	204	1	<55	03/	200	<57	<57		<61	<58	<54	5	1	81		-
orina	3E T	7 040	0t0's	<53	<54	CEE	3	<57			ļ	1						-
Soil Boring	21	268	2023	1	<52	78	2	183	88		89	<57	<60		· · · · · · · · · · · · · · · · · · ·	1		
	2F	13 RND	2225	7,760	1,270	459		60	<54		1	1	1			1	-	-
	1G	6 900	20010	1	<67	546		204	87	ו י י	٩ ٩	~ 66	112			1		
	1E	17.300		10,600	1,200	624		144	476	000	022	128	85		1	1	1	
	10	7.510		1	6 4	<09>		705	<62	en en	20	93	76	<62		000	0 9 9	
Sample	Depth (ft.)	0		20	~	0		0	4	G		80	10	7	1	0.0	15	

Note:

No sample collected

31-1-11162-001

TABLE 3 Summary of Soil Sample TCLP and Total Lead Results FIA Shooting Range, Fairbanks, Alaska

	Loc	-ocation	TCLP Lead	Total Lead	
Sample Number	Boring	Depth (ft.)	(mg/L)	(mg/kg)	Notes
1102-UZ20U3-102A	פ	2	<0.500	53.400	No lead particle removal prior to applycie
1102-022003-1028	9	c	606	54,600	Lead particles removed prior to analysis

April 2003

31-1-11162-001

TABLE 4 Summary of Groundwater Sample Analytical Results FIA Shooting Range, Fairbanks, Alaska

			Total Lead	Dissolved
Sample Number	Location	groundwater (ft.)	(ng/L)	Lead (ug/L)
1162-030303-MW1	MW-1	6.14	3.22	<0.400
1162-030303-WP1	WP-1	6.09	15.3	<0.400
1162-030303-WP2*	WP-2	6.36	7.18	<0.400
1162-030303-WP3	WP-3	6.32	1.96	<0.400
1162-030303-WP4*	WP-2	6.36	7.11	<0.400

Notes:

Field duplicate samples

Sample reports have an A or B designation at the end of each sample number; A indicates a sample analyzed for total lead, B indicates a field-filtered sample analyzed for dissolved lead.

	Average Depth of	Representative Row Volume Row Volume	Row Volume	Row Volume
Row	Contamination (ft)	Area	(cť)	(cy)
1	2.5	15' x 200'	7,500	278
8	1.5	20' × 180'	5.400	200
ო	0.5	20' × 180'	1,800	67
4	0.5	30' x 160'	2.400	80
9	0.5	30' x 40'	600	20
ω	0.5	20' × 40'	400	15
		GRANI	GRAND TOTAL (cy)	670
		GRAND	GRAND TOTAL (tons)	1.006

TABLE 5 Soil Volume Calculations for 1,000 mg/kg Cleanup Level FIA Shooting Range, Fairbanks, Alaska

Soil Volume Calculations for 400 mg/kg Cleanup Level FIA Shooting Range, Fairbanks, Alaska **TABLE 6**

1,046	GRAND TOTAL (cy)	GRAN		
89	2,400	60' × 80'	0.5	01
52	1,400	40' x 70'	0.5	×o (
83	2,250	30' x 150'	0.5	9
111	3,000	30' x 200'	0.5	4
67	1,800	20' × 180'	0.5	ი -
200	5,400	20' x 180'	1.5	2
444	12,000	15' x 200'	4	. (
(cy)	(cf)	Area	Contamination (ft)	Row
Row Volume	Row Volume	Representative Row Volume Row Volume	Average Depth of	

31-1-11162-001

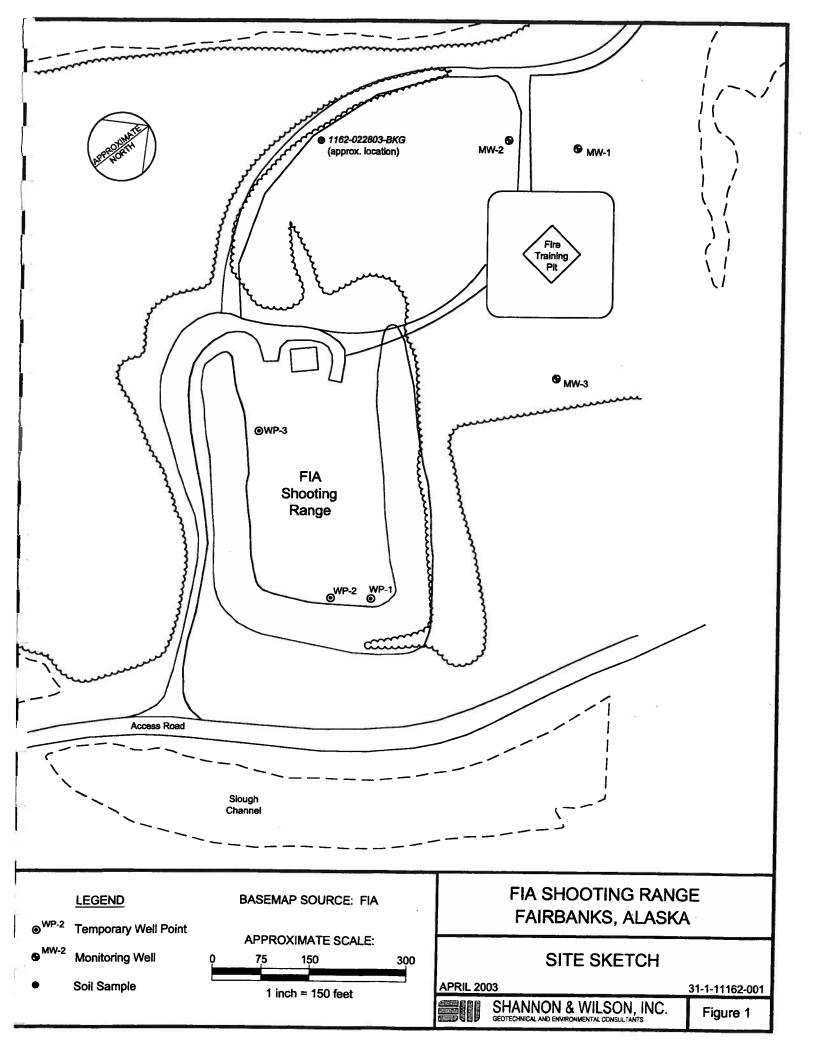
TABLE 7Estimated Costs CalculationsFIA Shooting Range, Fairbanks, Alaska

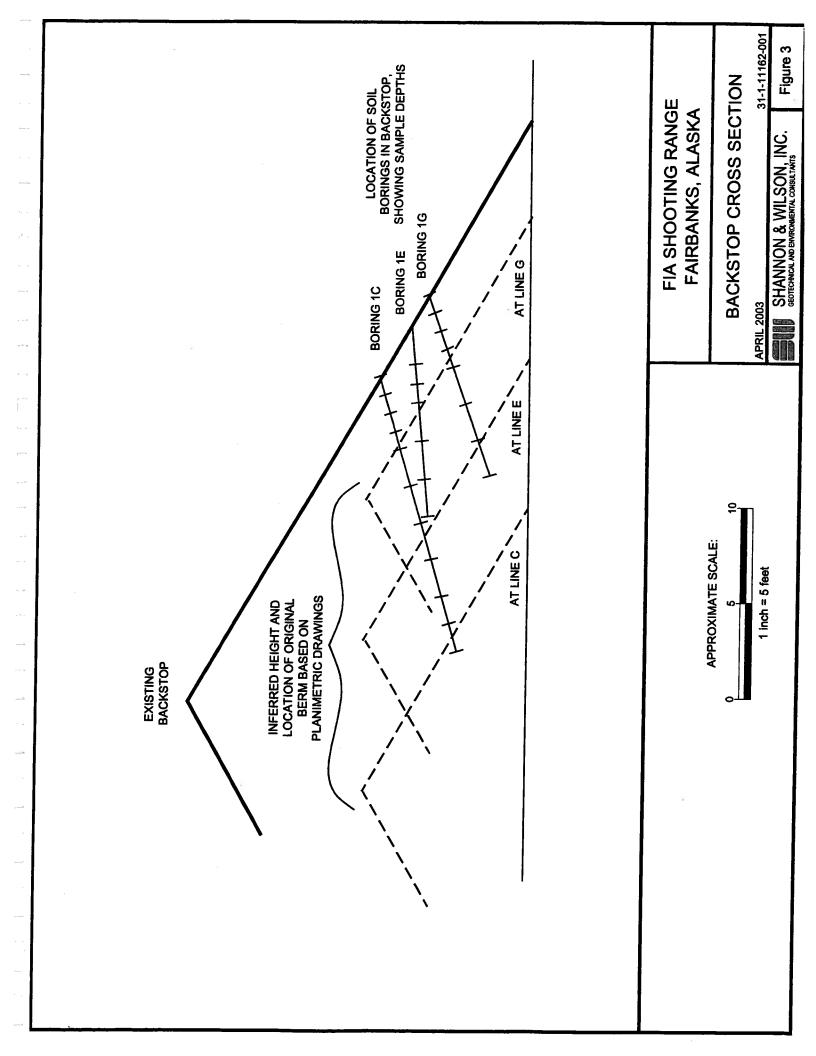
Alternative 1: Limited Action			
Task/Item	Unit Cost unit	Cost for 1,000 tons Comments	S
Agency coordination/Project management		\$15,000	
Fencing of shooting range		\$5,000	
Site inspections (10 years)	\$500 /yr	\$5,000	
Deed restriction/plat recording	•	\$1,500	
Monitoring well installation		\$8,000	
Annual groundwater monitoring and reporting (10 years)	\$4,000 /yr	\$40,000	æ
Project Total		\$74,500	

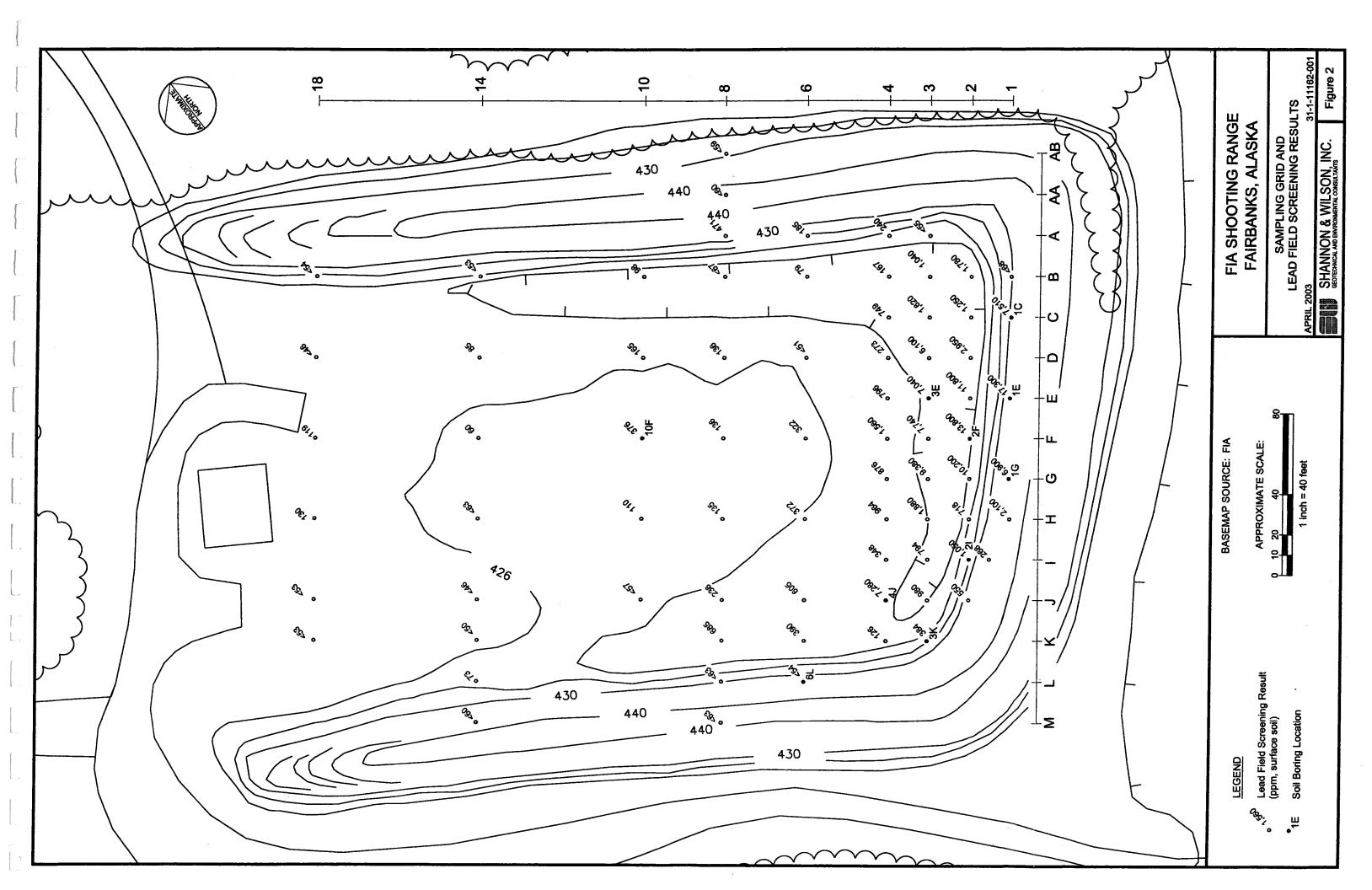
Alternative 2: Lead Reclamation and Range Soil Reuse fo	r Firing Range	
Task/Item	Unit Cost unit	Cost for 110 tons of backstop soil Comments
Agency coordination/Project management		\$15,000
Mob/setup/demob		\$3,000
Equipment rental (classifier)	\$1,000 /day	\$2,000
Loader and operator	\$1,200 /day	\$2,400
Dump truck and operator	\$500 /day	\$1,000
Excavation monitoring		\$1,000
Handling and transport of reclaimed lead to local recycler		\$2,000
Reporting		\$5,000
Monitoring well installation		\$8,000
Annual groundwater monitoring and reporting (10 years)	\$4,000 /yr	\$40,000
Project Total		\$79,400

Alternative 3: Landfilling (hazardous waste, non-hazardous waste)		
	Cost for 1,000	
Task/Item	Unit Cost unit	tons (total) Comments
(assume 10% of contaminated soil is hazardous waste)		
Agency coordination/Project management		\$15,000
Waste profile		\$200 Philip Services
Transport (900 tons non hazardous)	\$328 /ton	\$295,200 Philip Services
Transport (100 tons hazardous)(per 100 ton railcar)	\$18,000 /100 to	\$18,000 Philip Services
Treatment and Disposal (900 tons non hazardous waste)	\$28 /ton	\$28,000 Philip Services
Treatment and Disposal (100 tons hazardous waste)	\$100 /ton	\$100,000 Philip Services
Manifest and handling		\$1,000 Philip Services
Work Plan		\$5,000
Excavation		\$10,000
Field screening		\$10,000
Excavation monitoring		\$1,000
Verification sampling		\$5,000
Reporting		\$5,000
Monitoring well installation		\$8,000
Annual groundwater monitoring and reporting (10 years)	\$4,000 /yr	\$40,000
Project Total		\$541,400

TABLE 7 Estimated Costs Calculations FIA Shooting Range, Fairbanks, Alaska


.


ask/ltem	Unit Cost unit	Cost for 1,000 tons Comments
stimated total unit costs (includes agency coordination,		
project management, work plan, treatability study, lead		\$ 100,000 to
ecycling, field screening, reporting)	\$ 100 to 800 /ton	\$ 800,000 BESCORP
fonitoring well installation		\$8,000
Annual groundwater monitoring and reporting (10 years)	\$4,000 /yr	\$40,000
Project Total		\$ 148,000 to
		\$ 848,000


Alternative 5: Acid Extraction (No costs provided)

Alternative 6: Solidification/Stabilization	<u> </u>	
Task/Item	Unit Cost unit	Cost for 1,000 tons Comments
Estimated total unit costs (includes agency coordination,		
project management, work plan, treatability study, lead		\$ 115,000 to
recycling, field screening, reporting)	\$ 115 to 860 /ton	\$ 860,000 BESCORP
Monitoring well installation	×	\$8,000
Annual groundwater monitoring and reporting (10 years)	\$4,000 /yr	\$40,000
Project Total		\$ 163,000 to
		\$ 908,000

Alternative 7: Asphalt Encapsulation		
Task/Item	Unit Cost unit	Cost for 1,000 tons Comments
Estimated total unit costs (includes agency coordination,		
project management, work plan, treatability study, lead		\$ 125,000 to
recycling, field screening, reporting)	\$ 125 to 910 /ton	\$ 910,000 BESCORP
Monitoring well installation		\$8,000
Annual groundwater monitoring and reporting (10 years)	\$4,000 /yr	\$40,000
Project Total		\$ 173,000 to
		\$ 958,000

SHANNON & WILSON, INC.

APPENDIX A

Description of Soil Boring Samples

Description of Soil Boring Samples FIA Shooting Range, Fairbanks, Alaska

Sample					Soil	Boring				
Depth (ft.)	1C	1E	1G	2F	21	3E	3K	4J	6L	10F
0	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;	Med. brown silty SAND;
	frozen; visible bullets, casings,	frozen; visible bullets, casings,	frozen; visible bullets, casings,	frozen; visible bullets, casings,	frozen; no visible lead or	frozen; visible bullets, casings,	frozen; no visible lead and	frozen; visible lead and	frozen; organics; no visible	frozen; no visible lead or
÷	lead fragments	lead fragments	lead fragments	lead fragments	fragments	lead fragments	fragments, broken asphalt pieces were noted in vicinity	fragments	lead or fragments	fragments
0.5		Med. brown silty SAND;		Med. brown silty SAND, trace	iii	Med. brown silty SAND;		Med. brown silty SAND;		Med. brown silty SAND; dry;
-		frozen; visible bullets, casings,		gravel; frozen; visible bullets,		frozen; visible lead and		frozen; no visible lead or		no visible lead or fragments
	and the second	lead fragments	_	casings, lead fragments		fragments	-	fragments		
1	Med. brown silty SAND; dry;		Med. brown silty SAND; dry;		1	Med. brown silty SAND; dry;	Med. brown, gravelly silty, fine		Med. brown silty SAND; dry;	Med. brown silty SAND; dry;
	no visible lead or fragments	no visible lead or fragments	visible lead and fragments		gravel; dry; no visible lead or	no visible lead or fragments	to coarse SAND; dry; no visible	no visible lead or fragments	organics; no visible lead or	no visible lead or fragments
				fragments	fragments		lead and fragments		fragments	
2	Med. brown silty SAND; dry;		Med. brown silty SAND; dry;		Med. brown silty SAND, trace	Light gray SAND; dry; no	Med. brown, gravelly silty, fine		Med. brown silty SAND; dry;	Med. brown silty SAND; dry;
*	no visible lead or fragments	no visible lead or fragments	no visible lead or fragments	gravel; dry; no visible lead or	gravel; dry; no visible lead or	visible lead or fragments	to coarse SAND; dry; no visible	no visible lead or tragments	organics; no visible lead or	no visible lead or fragments
	Med. brown silty SAND; dry;	Light brown silty SAND, trace	Light brown silty gravelly	fragments Light brown SAND, trace silt;	fragments Med. brown silty SAND, trace	Gray SAND; dry; no visible	lead and fragments Dark brown silty SAND, trace	Med brown SAND: day no	fragments Med. brown silty SAND; dry;	Gray SAND; dry; no visible
1		gravel; dry; no visible lead or	SAND; dry; no visible lead or	dry; no visible lead or	gravel; dry; no visible lead or	lead or fragments	gravel; dry; no visible lead or	visible lead or fragments	organics; no visible lead or	lead or fragments
	no visible lead of magments	fragments	fragments	fragments	fragments	lead of magments	fragments	VISIBLE lead of magiments	fragments	lead of magmenta
4	Med. brown silty SAND, trace	Light brown silty SAND, trace	Light brown silty gravelly		Dark brown silty fine SAND;		Dark brown silty SAND, trace		Med. brown silty SAND; dry;	
		gravel; dry; no visible lead or	SAND; dry; no visible lead or	moist; no visible lead or	dry; no visible lead or		gravel; dry; no visible lead or		organics; no visible lead or	
	fragments		fragments	fragments	fragments	— —	fragments	-	fragments	-
5				Light brown silty SAND, trace					1	
				gravel; wet; no visible lead or						
				fragments	-	_	-			
6	Less dense med. brown silty	Light brown silty SAND, trace	Light brown silty gravelly		Dark brown silty fine SAND;		Light-med. Brown silty SAND;		Very dense, dark brown sandy	
			SAND; dry; no visible lead or		dry; no visible lead or		dry; no visible lead or		SILT, trace gravel; moist; no	1
	visible lead or fragments		fragments		fragments	_ 	fragments		visible lead or fragments	
1		Light brown silty SAND, trace	Less dense, light brown silty		Less dense, dark brown silty		Less dense, mottled med.		Very dense, dark brown sandy	
			gravelly SAND; dry; no visible		fine SAND; dry; no visible lead		brown coarse SAND and light		SILT, trace gravel; moist; no	
	fragments	fragments	lead or fragments	_	or fragments	-	brown fine SAND; dry; no	_	visible lead or fragments	_
10	Med. brown silty SAND, trace	Light brown silty SAND, trace	Less dense, light brown silty		Less dense, dark brown silty		visible lead or fragments Less dense, med. brown silty		Very dense, dark brown sandy	
			gravelly SAND; dry; no visible		fine SAND; moist; no visible		SAND; dry; organics and wood		SILT; dry; no visible lead or	
	fragments		lead or fragments		lead or fragments		fragments; no visible lead or		fragments	
				-		-	lead fragments	-		-
12	Med. brown silty fine SAND,		· · · · · · · · · · · · · · · · ·							
4	trace gravel; dry; no visible									
	lead or fragments		-	-	** 	_	-	_	-	
	Med. brown silty fine SAND,						1			
	trace gravel; dry; no visible						1			
	lead or fragments				_		-			
	Med. brown silty fine SAND,		-						1	
	trace gravel; dry; no visible	_		_	_			_		
	lead or fragments									

Note:

 \bar{x}

- No sample collected

APPENDIX B

SUNEX Analytical Report

SUNEX Inc.

FIA Shooting Range Site Assessment Lead in Soil by Field Portable XRF

for

Shannon & Wilson, Inc. 2055 Hill Road Fairbanks, AK 99709-5244

April 02, 2003

Niton® state of the art XRF technology 121 Trinidad Drive Fairbanks, AK 99709-2902 907-457-5478 phone 907-457-5479 fax email sunex@ptialaska.net

Table of Contents

1.0	Intro	duction	1
2.0	Desc	cription	1
	2.1 2.2	In-Situ Field Screening for Lead in Soil Ex-Situ Field Screening for Lead in Soil	
3.0	Metl	10d	1
	3.1 3.2	In-Situ Field Screening for Lead in Soil Ex-Situ Field Screening for Lead in Soil	
4.0	XRF	Data	2
	4.1	XRF Data Quality	3
5.0	Resu	Its and Discussion	3
	5.1 5.2	In-Situ Field Screening for Lead in Soil Ex-Situ Field Screening for Lead in Soil	3 3
6.0	Signa	iture	4

Appendices

Appendix A

Field Data

Soil Sample Data Form

Appendix B

Tables

Table 1, XRF Analytical DataTable 2, Soil Sample ResultsTable 3, Replicate Sample Results

Page

1.0 Introduction

SUNEX, Inc. was retained by Shannon & Wilson, Inc. to provide field X-Ray fluorescence (XRF) analytical services for the FIA Shooting Range Site Assessment Project at the Fairbanks International Airport shooting range, Alaska.

Reference is made to Shannon & Wilson, Inc. Project Number 31-1-11162, response to RFP #368-3-1-26, for a description of the project.

2.0 Description

SUNEX provided both in-situ and ex-situ XRF field screening for lead in soil for this project.

2.1 In-Situ Field Screening for Lead in Soil

In-situ XRF lead in soil analyses were done on February 27 & 28, 2003 by James H. Johnson, to assess surface lead values at this site.

2.2 Ex-Situ Field Screening for Lead in Soil

Ex-situ XRF lead in soil analyses were done on February 27 & 28, and April 02, 2003 to assess sub-surface lead values. Ex-situ samples were collected from auger drill flights by Andrea Carlson of Shannon & Wilson, Inc.

3.0 Method

Reference is made to the Project Understanding and Scope of Services for this project for general information about the field sampling methods and procedure used for the XRF lead in soil screen. XRF analyses were done with a NITON 703A field portable XRF Spectrum Analyzer, SNU882NR3842, in accordance with the manufacturer's instructions and EPA Method 6200. Both in-situ surface and ex-situ sub-surface samples were analyzed throughout the day on February 27 and 28, 2003. Three ex-situ samples from auger drill hole C-1 were analyzed on April 02, 2003. A silica blank and a NIST certified soil sample were analyzed at the beginning and end of the day, and at an interval of every one or two hours during the day to provide quality control checks.

3.1 In-Situ Field Screening for Lead in Soil

The FIA Shooting Range is a rectangular area about 200 feet wide by 340 feet long, surrounded on one end and both sides by a backstop berm about

15 feet high and 50 feet wide at its base. Prior to sampling, most of the snow had been removed from the floor of the range, but the backstops were covered by one to two feet of snow.

Surface sample sites for in-situ testing were prepared by Jim Johnson of SUNEX and Andrea Carlson, Environmental Specialist with Shannon & Wilson. A grid with lines approximately twenty feet apart was established with a chain and visual control. Grid sampling density was highest near the end of the range adjacent to the backstop, where the highest concentration of spent bullets was expected to be found. A total of 76 surface sample sites were tested.

For individual sample sites, an area of about one square foot was cleared with hand tools down to bare frozen soil. Snow, ice and vegetation were removed. Each site was visually inspected for the presence of spent bullets and casings, and analyzed for lead in-situ by XRF. Where spent bullets were noted, an effort was made to not take the XRF reading directly on a piece of visible lead.

Reference is made to the final assessment report by Shannon & Wilson for a drawing of the location of the surface sample sites.

3.2 Ex-Situ Field Screening for Lead in Soil

Ex-situ XRF analyses were made on 64 sub-surface samples from 10 auger drill holes (ADH) within the firing range and backstop, and on one sub-surface background sample from an auger drill hole outside the assessment area. In addition, four replicate tests were made on two ex-situ samples to assess analytical variability.

Samples for ex-situ testing were collected by Andrea Carlson into one quart or one gallon plastic bags. Enough sample was collected into each bag to assure sufficient depth of material, nominally ½", for XRF analysis. Since plastic film does not significantly attenuate the useful XRF energy, the ex-situ samples were tested directly in the plastic bags, in accordance with manufacturer's recommendations and established field practice.

Reference is made to the final assessment report by Shannon & Wilson for a drawing of the location of the auger drill sites.

4.0 XRF Data

A copy of the field data forms for soil sampling is attached in Appendix A, Field Data.

Analytical data for lead in soil screening is presented in Table 1, XRF Analytical Data, in Appendix B, Tables.

Sample results along with visual determinations of spent bullets and casings, are summarized in Table 2, Soil Sample Results, in Appendix B, Tables. The data is organized by surface in-situ and sub-surface ex-situ samples.

Table 3, Replicate Sample Results, in Appendix B, Tables, summarizes the results of replicate analyses of two bulk samples.

4.1 XRF Data Quality

All silica blank values were below the projected XRF detection limit of 65 ppm lead. The back ground ex-situ sample result was <57 ppm lead, below the detection limit of 65 ppm. Calibration check sample results ranged between 0.2 - 5.3 relative percent deviation (RPD), within the project goal of 20%.

The results of the replicate analyses are shown in Table 3, Ex-Situ Replicates, in Appendix B, Tables. The average value for the four samples from Sample Site G-3, Surface – 6", is 358 ppm lead and the standard deviation is 253 ppm. For Sample Site G-1, 1'- 1.5', the average is 534 with a standard deviation of 84 ppm. The results show significantly higher variability for surface samples, where the greatest amount of particulate lead is expected. The average value of the replicates at G-1, 1'- 1.5', 534 ppm lead, correlates well with 546 ppm lead, the value of auger drill hole (ADH) G-1, 2'.

5.0 Results

5.1 In-Situ Field Screening for Lead in Soil

The results of the visual examination and XRF analysis of surface soil samples are summarized in Table 2, Soil Sample Results, in Appendix B, Tables. The highest values are on or near the backstop at the East end of the range. Much of the surface of the range within the study area contains visible casings and spent bullets. Spent shotgun shell wads or broken clay birds were observed at six sample locations.

5.2 Ex-Situ Field Screening for Lead in Soil

The results of the XRF analysis of sub-surface soil samples are summarized in Table 2, Soil Sample Results, in Appendix B, Tables.

SUNEX, Inc. Thes 1 The James H. Johnson President

Appendix A, Field Data

Soil Sample Data Form	Date: 2003 FEG 26 /27 Sampler: James H. Johnson	PIII) Notes AVE 58 XLS = 57 PPIL SC 4.1. E215 PPIL SC 2003 PPIST 2.1 E215 PPIL SC 2003 PPIST 2.1 E215 PPIL SC 2013 PPIST 2.1 E215 PPIL SC 2013	TOP ID THE FINNESS AT THE SAMPLE AREA. HELMUN ABJURT I IT
ŭ	Project: FIA SICOTING RANLE Client: SHANNON SWILCON Sampler's Signature	XRF Sample No. Location Lead (ppm) 2 Silved & ANK < 339	MUI AI 40 International Alexandra

, **B** HELINY ABOAT

page 2 of	Date: 200 > 128.17 Sampler: James H. Johnson																		
Soil Sample Data Form		Notes	CASING & IEAD WARDIN	CATANGE SUEAD VISIOLE	CASINGS & LEAD WSIRLE	CASING & LEAN USE CASING	CASINGS E LEAD VISIOLE	EASING & CHUNGS USING	NO CASING OR ETC VISIBLE.	11-2 05	NO CASAVES /BTC VISIONE	CADINGS VIGIBUE	CASINES & BULLETS VISIBLE	CASINES VISIBLE	LAZINGS VISICUE	CULINO VISIOUS	Charles Weller	CASIMIS 1/5/ 000	
Soil		Lead (ppm)	188D	0320		618	1620	80	435 445	1080	56	163		106	15100	276	047	378	
Project: FIA SLOOTIUE PARKE	ITE THREAL	Location H 3	13	54	53	. 63	63	ea	CILICA BLANK	NUST MEDUM			DE	T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-	2	GU	HH	24	-
Project: FIA S	Client: ZhANNYY	XRF Sample No. 22	23	522	26	£	ar a	30	31	32.	24	35	ş	46	38	3	40	4	

page 3 of	Date: 2003 Fea 27 Sampler: James H. Johnson 377 Challer 377 Challer 1230	
SUNEX Inc. Soil Sample Data Form	Date: Date:	
	Client: Standar Lanue Sampler's Signature Client: Stample No. Location 44 44 46 44 46 44 46 44 46 44 46 44 46 44 46 44 46 46 46 46 46 46 46 46 46 46 46 46 46 4	ia;
	Client: Stampler's Signal	q

page 4 of	Date: 2003 45.6.2.7 Sampler: James H. Johnson		ally up & where Developer.			<u>ن</u>	市 に 又	~				
Soil Sample Data Form	Da	Lead (mm) Notes	Mikeler LEAD, Bungb.	Er sin.				\square		ALAO EX SITU ALGO EX SITU	454 EL MIN	
	Client: SMANDOLS WILDON	ocation	10	`~~	E(+1) 3/ E(+1) 41	SILICA BLANK	NIST MEDIUM E(H) 6'	E(+1) 3'	E(+1) 91		Е2 На 1-1-	10
Prniact: 0.0	Client: Standar	XRF Sample No.	62	دود	+) و و و	600	8	4 K i	44	£ ¥	F-02	8

¥	Soil Sample Data Form	Date: 203 FEB 27	Sampler: James H. Johnson	Notes	Pe us S mark	the spant in visions carines	NO USIBLE CORINES.	ND MSHOLE GASINGS.	CASINGS VISIBLE	BRAVEL, NO CASNICZVISIBLE		TV. = 1162 05	UD VISIBLE CASINGS	CASINES VISIBLE	NOVISICIES CASHICS	NO VISIONE CASINGS.	NO VISIBLE CASILLES.	13 LAP S BANK. NO CARINA OLE. SOMA GAY BACK.	73 UP 5 BMIK . NO CASINGS AT. SOME OLAT BROS.	NU CAINES VISIONE	CARNEZ VISIGNE	
*	SU Soil Sa			Lead (pom)	+			Care /	╈	╈			525	+	•		0 V	+	+-	╋	+-	
		Project: FIA SHOOTING RANGE	ture The F	Location	67	2 A	00	210	HOI	210	SUCA BLANK	NIST MED	Dit	Fit	±.	274		Ż	B (8	D15	F18	
		Project: FIA	Sampler's Signature	XRF Sample No	2 C	220	85	86	¢	15	5	2-	92	\$	44	96	¢	58	S	8	104	

÷

page 6 of	Date: 2003 KEB 27-128 Sampler: James H. Johnson	Tio tage egge
SUINEX Inc. Soil Sample Data Form		Lead (ppm) Notes 130 CASINGS VISIBLE <53
	Project: FIA SHOOTNY ZANE Client: SHANNON 5 WILSON	Location H 18 L 18 L 18 L 18 Sillica BLANK Sillica BLANK Sillica BLANK Sillica BLANK Sillica BLANK L 19 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1
	Project: FIA SHO Client: SHANNO Sampler's Signature	XRF Sample No. YRF Sample No. ZRF Sample No.

2

page 7 of	Date: 2003PEB28	Sampler: James H. Johnson				1050														145		
Soil Sample Data Form			F	Lead (ppm) Notes		EK SITIL		×62 =	<u> </u>	62 =	+	+	SUL EF SITU	804 "		96 *	<00 =		/10	267 11. 112 04	36 by Sitta	
z	Project: FIA - SHOOTING RANCE	ature The Hold	Location	SIUCA BANK	NISTMED						╧		612/	G131	614	0101		SHICA GANY	Nist Men	1	12 2'	
	Project: FIA	Sampler's Signature	XRF Sample No.	122	23	1	22		20	62	130	121	132	133	30,9	R		128	139	9	Ŧ	•

. .

I._

page & of	Date: DO2455200		oumpler: James H. Johnson																						
SUINEX Inc. Soil Sample Data Form	Date				Notes	er sin	z	E	= :				the state of the s		. =	5	5	-	EX SIL	2	Ξ	11	H		
	PANE	2		ſ	<u>اي</u>	1	000				8			C37	<\$5>	197	A 58			107	V		555	458	
9 17 17	Project: FIA - SHOGTING RAN	Client: SHAUNON S WLSON	mature	No. I Acation	+	1	T2 6'	17 8'	12 10'	SILCA BUNK	NIST MED	K3 1	K3 2'	K3 31	h	×3 6				10 21			991	2	
	Project: F	Client:	Sampler's Signature	XRF Sample No.	142	143	ار ل	Stri	971	Ч? Ч	871	Ş	18	5		281		955	Č	er.	5	071	101	-	

	page of of		a	Sampler: <u>James H. Johnson</u>					1355																	
	<i>SUNEX</i> Inc. Soil Sample Data Form				M.	Notes		T.V. =1162 OK/		2	=	1	EX SITU	2	2	=	Exsitu	EXSMU REALCATES	" PERICATE 2	" REPUCITES		EXSITU REPUGATE!	DE OULATE 2	RE ALLATE 3	Trans and the t	
	Soil	لل	с.;		1 ead (mm)		14	1(30	153	A SC	5 5 7 7 7 7 7 7			20	455	200	901	5-10	C IX	200		124		+ 499		
¢.		Project: FIA SHOSTING DANCE	Client: SAANNON 5 WLSON	the state of the	Location	10177	Sluch Blauk	CBW JSIN	E36"	1001	6321	FID 6"		F10 21	П 5 1 2 1 2	BASK GROWNIN	C2 GUELLE . 11	0-200			B VICINITY 1-151	-				
		Project: LA	Client: SAAN	Sampler's Signature	XRF Sample No.	162	67		ود	१ 9	891	Je 9	QE1	141	[42	5	761	St:	29	લ્	1 L	2	0X	X X	•	

	page D of	Date: 2003 FEB28 / APRILO2	Sampler: James H. Johnson				1525/1645	Zanar 2002												
	SUNEX Inc. Soil Sample Data Form	1.			Lead (ppm) Notes	20	1160 T.V. 1162 of		40	1080 7.4. 11-2	10 thi and 0871	オ	45(2 45(2	260	241	libo T.V. Ilez ou/				ē.
nine officielle	ĸ	Project: FLA-SHOOTIN 6 RANGE	Client: SUANNON & WLSON	ture Three to the	Location	Sluch Blank	RUIST MUED		A	NIST WED				ADH EL IS'	SUCA BLANK	NIST MED				
		Project: FIA-	Client: SUA	Sampler's Signature	XRF Sample No.	182	107	623	624	625	626	624	1221	630	(65)	632				

Appendix B, Tables

Site: Fairbanks International Airport - Shooting Range Date: February 26 - 28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

х	LNo Sample Site	Depth	Ss	ec Date/Time	Pb ppn	n "+/-"	NIST T. V. ppr	m RPD%
2	Silica blank		64	2/26/2003 10:0	2 ~ 20			
3	Silica blank		67	2/26/2003 10:0				
4	Silica blank		64	2/26/2003 10:07				
5	NIST 2711 Me	d	103			70	1100	
6	NIST 2711 Me	d	64	2/26/2003 10:17		79	1162 +/- 31	3.6
7	NIST 2711 Me	d	107			100	1162 +/- 31	1.9
9	Silica blank		65	2/27/2003 8:53	<43	76	1162 +/- 31	5.3
10	NIST 2711 Med	d	64	2/27/2003 8:56	1130	100	1160 . / 04	
11	B-2	Surface	61	2/27/2003 10:06		100 100	1162 +/- 31	2.8
12	C-2	Surface	62	2/27/2003 10:12		85		
13	D-2	Surface	64	2/27/2003 10:15		140		
14	E-2	Surface	61	2/27/2003 10:19		470		
15	F-2	Surface	63	2/27/2003 10:22		490		
16	G-2	Surface	61	2/27/2003 10:25		380		
17	H-2	Surface	62	2/27/2003 10:29	718	74		
18	I-2	Surface	64	2/27/2003 10:32	1050	87		
19	J-2	Surface	67	2/27/2003 10:36	488	61		
20	J-3	Surface	63	2/27/2003 10:39	980	68		
21	1-3	Surface	67	2/27/2003 10:42	794	76		
23	H-3	Surface	61	2/27/2003 10:47	1880	100		
24	G-3	Surface	63	2/27/2003 10:49	9376	320		
25	F-3	Surface	63	2/27/2003 10:53	7738	300		
26	E-3	Surface	61	2/27/2003 10:55	7040	270		
27	D-3	Surface	61	2/27/2003 10:58	6099	240		
28	C-3	Surface	61	2/27/2003 11:01	1620	100		
29	B-3	Surface	62	2/27/2003 11:04	1040	84		
30 21	A-3	Surface	62	2/27/2003 11:07	<55			
31	Silica blank		62	2/27/2003 11:11	<40			
32	NIST 2711 Med	~ ~	64	2/27/2003 11:13	1080	99	1162 +/- 31	7.1
33 34	A-4	Surface	62	2/27/2003 11:17	240	50		
35	B-4 C-4	Surface	62	2/27/2003 11:20	167	41		
36	D-4	Surface	61	2/27/2003 11:23	749	62		
37	E-4	Surface	62	2/27/2003 11:26	273	51		
38	F-4	Surface	62	2/27/2003 11:28	796	76		
39	G-4	Surface	62	2/27/2003 11:32	1560	100		
40	0-4 H-4	Surface Surface	62 62	2/27/2003 11:35	876	77		
41	I-4	Surface	63 64	2/27/2003 11:38	964	66		
42	J-4		64 62	2/27/2003 11:40	348	56		
43	5-4 K-4	Surface Surface		2/27/2003 11:44	7264	260		
44	K-6	Surface		2/27/2003 11:47		37		
45	J-6	Surface		2/27/2003 11:51		51		
46	H-6	Surface		2/27/2003 11:54		65		
			64 :	2/27/2003 11:57	372	47		

TABLE 1, XRF Analytical Data

Site: Fairbanks International Airport - Shooting Range Date: February 26 - 28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

XL	No Sample Site	Depth	Sse	c Date/Time	Pb ppm	"+/-"	NIST T. V. ppm	RPD %
47	F-6	Surface	64	2/27/2003 11:59	322	52		
48	D-6	Surface	67	2/27/2003 12:05	-			
49	B-6	Surface	64	2/27/2003 12:07	79	38		
50	A-6	Surface	60	2/27/2003 12:10	185	55		
51	A-8	Surface	62	2/27/2003 12:13	471	62		
52	B-8	Surface	67	2/27/2003 12:16	<57			
53	D-8	Surface	62	2/27/2003 12:18	136	40		
54	F-8	Surface	62	2/27/2003 12:20	136	49		
55	H-8	Surface	64	2/27/2003 12:23	135	40		
56	J-8	Surface	64	2/27/2003 12:25	236	41		
57	K-8	Surface	62	2/27/2003 12:28	685	68		
58	Silica blank		62	2/27/2003 12:31	<40			
59	NIST 2711 Med		64	2/27/2003 12:34	1170	100	1162 +/- 31	0.7
60	AA-8	Surface	62	2/27/2003 12:58	<60			
61	AB-8	Surface	64	2/27/2003 13:01	<59			
62	ADH E-1	Surface	63	2/27/2003 13:09	17293	710		
63	ADH E-1	6"	61	2/27/2003 13:52	10598	430		
64	ADH E-1	1'	67	2/27/2003 13:57	1200	95		
65	ADH E-1	2'	64	2/27/2003 14:00	624	74		
66	ADH E-1	3'	65	2/27/2003 14:03	144	51		
67	ADH E-1	4'	62	2/27/2003 14:05	476	68		
68	ADH E-1	5'	62	2/27/2003 14:08	284	5 9		
69	Silica blank		62	2/27/2003 14:13	<39			
70	NIST 2711 Med	_	62	2/27/2003 14:15	1140	100	1162 +/- 31	1.9
71	ADH E-1	6'	68	2/27/2003 14:45	<96			
72	ADH E-1	7' 	62	2/27/2003 14:49	207	54		
73	ADH E-1	8'	62	2/27/2003 14:51	128	48		
74	ADH E-1	9'	62	2/27/2003 14:54	140	48		
75	ADH E-1	10'	62	2/27/2003 14:56	85	46		
76	ADH F-2	1'	62	2/27/2003 15:15	1270	97		
77	ADH F-2	6" C'	67	2/27/2003 15:20	7757	280		
78 70	ADH F-2	2'	62	2/27/2003 15:31	459	63		
79 80	ADH F-2	3'	62	2/27/2003 15:33	60	39		
80	ADH F-2	4' 51	64	2/27/2003 15:36	<54			
81	ADH F-2	5' Surfees	62 00	2/27/2003 15:38	114	44		
82	L-8	Surface	62	2/27/2003 15:47	<63			
83	M-8	Surface	68 68	2/27/2003 15:49	<63			
84 95	B-10	Surface	62	2/27/2003 15:53	98	40		
85 86	D-10	Surface		2/27/2003 15:57	165	51		
86 97	F-10	Surface		2/27/2003 15:59	376	58		
87 89	H-10	Surface		2/27/2003 16:02	110	44		
88 89	J-10 Silica block	Surface		2/27/2003 16:06	<57			
03	Silica blank		64	2/27/2003 16:10	<41			

TABLE 1, XRF Analytical Data

Site: Fairbanks International Airport - Shooting Range Date: February 26 - 28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

XLN	lo Sample Site	Depth	Ssec	: Date/Time	Pb ppm	"+/-"	NIST T. V. ppm	RPD %
90	NIST 2711 Med		69	2/27/2003 16:12	1170	100	1162 +/- 31	0.7
91	B-14	Surface	64	2/27/2003 16:16	<53			0.7
92	D-14	Surface	64	2/27/2003 16:20	85	37		
93	F-14	Surface	64	2/27/2003 16:22	60	34		
94	H-14	Surface	62	2/27/2003 16:25	<63			
95	J-14	Surface	74	2/27/2003 16:27	<46			
96	K-14	Surface	64	2/27/2003 16:31	<50			
97	L-14	Surface	64	2/27/2003 16:34	73	44		
98	M-14	Surface	69	2/27/2003 16:38	<60			
99	B-18	Surface	65	2/27/2003 16:41	<54			
100	D-18	Surface	62	2/27/2003 16:45	<46			
101	F-18	Surface	64	2/27/2003 16:47	119	42		
102	H-18	Surface	64	2/27/2003 16:50	130	43		
103	J-18	Surface	62	2/27/2003 16:53	<53			
104	K-18	Surface	64	2/27/2003 16:55	<50			
105	Silica blank		64	2/27/2003 17:08	<36			
106	NIST 2711 Med		6 6	2/27/2003 17:10	1120	100	1162 +/- 31	3.6
108	Silica blank		62	2/28/2003 9:15	<41			
109	NIST 2711 Med		62	2/28/2003 9:17	1180	100	1162 +/- 31	1.9
110	ADH J-4	6"	64	2/28/2003 9:21	<58			
111	ADH J-4	1'	64	2/28/2003 9:25	<57			
112	ADH J-4	2'	62	2/28/2003 9:28	<54			
113	ADH J-4	3'	64	2/28/2003 9:31	<54			
114	C-1	Surface	61	2/28/2003 9:35	7507	300		
115	B-1	Surface	62	2/28/2003 9:42	<68			
116	G-1	Surface	62	2/28/2003 9:46	6899	330		
117	H-1	Surface	62	2/28/2003 9:51	2099	130		
118	1-2	Surface	64	2/28/2003 9:56	268	59		
119	J-2	Surface	67	2/28/2003 10:03	550	70		
120	K-3	Surface	62	2/28/2003 10:11	384	68		
121	L-6	Surface	64	2/28/2003 10:18	<54			
122	Silica blank		64	2/28/2003 10:25	<42			
123	NIST 2711 Med		62	2/28/2003 10:27	1150	100	1162 +/- 31	1.0
124	ADH C-1	1' ar	64	2/28/2003 10:33	<64			
125	ADH C-1	2	64	2/28/2003 10:36	<60			
126	ADH C-1	3'	67	2/28/2003 10:40	<62			
127	ADH C-1	4'	64	2/28/2003 10:42	<62			
128	ADH C-1	6'	69	2/28/2003 10:46	62	40		
129	ADH C-1	8' 40'		2/28/2003 10:49	94 70	46		
130	ADH C-1	10'		2/28/2003 10:53	76	45		
131	ADH G-1	1'		2/28/2003 11:14	<67			
132	ADH G-1	2'		2/28/2003 11:18	546	73		
133	ADH G-1	3'	62	2/28/2003 11:21	204	54		

TABLE 1, XRF Analytical Data

Site: Fairbanks International Airport - Shooting Range Date: February 26 - 28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

XLN	lo Sample Site	Depth	Ssec	Date/Time	Pb ppm	"+/-"	NIST T. V. ppm	RPD %
134	ADH G-1	4'	62	2/28/2003 11:24	87	49		
135		6'	64	2/28/2003 11:27	96	48		
136		8'	64	2/28/2003 11:30	<66			
137		10'	85	2/28/2003 11:33	112	40		
138			64	2/28/2003 11:42	<39			
139	NIST 2711 Med		67	2/28/2003 11:44	1210	100	1162 +/- 31	4.1
140	ADH I-2	1'	71	2/28/2003 11:55	<52			
141	ADH I-2	2'	64	2/28/2003 12:03	78			
142	ADH I-2	3'	69	2/28/2003 12:06	183	49		
143	ADH I-2	4'	67	2/28/2003 12:10	69	43		
144	ADH I-2	6'	64	2/28/2003 12:13	89	4 6		
145	ADH I-2	8'	62	2/28/2003 12:16	<57			
146	ADH I-2	10'	62	2/28/2003 12:20	<60			
147	Silica blank		64	2/28/2003 12:28	<40			
148	NIST 2711 Med		64	2/28/2003 12:30	1110	100	1162 +/- 31	4.5
149	ADH K-3	1'	62	2/28/2003 13:06	<55			
150	ADH K-3	2'	64	2/28/2003 13:08	<60			
151	ADH K-3	3'	64	2/28/2003 13:11	<57			
152	ADH K-3	4'	64	2/28/2003 13:13	<57			
153	ADH K-3	6'	64	2/28/2003 13:16	<61			
154	ADH K-3	8'	64	2/28/2003 13:18	<58			
155	ADH K-3	10'	62	2/28/2003 13:20	<54			
156	ADH L-6	1'	64	2/28/2003 13:29	<60			
157	ADH L-6	2'	64	2/28/2003 13:32	<61			
158	ADH L-6	3'	64	2/28/2003 13:34	<58			
159	ADH L-6	4'	64	2/28/2003 13:36	<61			
160	ADH L-6	6'	64	2/28/2003 13:41	<55			
161	ADH L-6	8'	62	2/28/2003 13:45	<58			
162	ADH L-6	10'	64	2/28/2003 13:48	<55			
163	Silica blank		62	2/28/2003 13:52	<44			
164	NIST 2711 Med		62	2/28/2003 13:54	1130	100	1162 +/- 31	2.8
165	ADH E-3	6"	64	2/28/2003 14:34	<53			
166	ADH E-3	6"-1'	64	2/28/2003 14:36	<54			
167	ADH E-3	2'	67	2/28/2003 14:39	<55			
168	ADH E-3	3'	64	2/28/2003 14:41	<57			
169	ADH F-10	6"	67	2/28/2003 14:45	<57			
170	ADH F-10	1'	71	2/28/2003 14:52	<56			
171	ADH F-10	2'	62	2/28/2003 14:54	<55			
172	ADH F-10	3'	65	2/28/2003 14:57	<60			
173	Back Ground	2'	64	2/28/2003 15:01	<54			
174	G-3 Replicate 1	Surface-6"	64	2/28/2003 15:04	649	72		
175	G-3 Replicate 2	Surface-6"	78	2/28/2003 15:06	99	40		
176	G-3 Replicate 3	Surface-6"	62	2/28/2003 15:09	568	66		

Site: Fairbanks International Airport - Shooting Range Date: February 26 - 28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

XLN	o Sample Site	Depth	Ssec	Date/Time	Pb ppm	"+/-"	NIST T. V. ppm	RPD %
177	G-3 Replicate 4	Surface-6"	69	2/28/2003 15:11	114	42		
178	G-1 Replicate 1	1' - 1.5'	62	2/28/2003 15:14	437	66		
179	G-1 Replicate 2	1' - 1.5'	64	2/28/2003 15:16	503	70		
180	G-1 Replicate 3	1' - 1.5'	64	2/28/2003 15:18	527	69		
181	G-1 Replicate 4	1' - 1.5'	64	2/28/2003 15:22	667	75		
182	Silica blank		71	2/28/2003 15:25	<36	36		
183	NIST 2711 Med		64	2/28/2003 15:28	1160	100	1162 +/- 31	0.2
622	Silica blank		62	4/2/2003 15:30	<41			
623	Silica blank		62	4/2/2003 15:33	<37			
624	Silica blank		64	4/2/2003 15:35	<40			
625	NIST 2711 Med		62	4/2/2003 1537	1080	100	1162 +/- 31	7.1
626	NIST 2711 Med		64	4/2/2003 15:39	1280	110	1162 +/- 31	10.2
627	NIST 2711 Med		64	4/2/2003 15:42	1100	99	1162 +/- 31	5.3
628	ADH C-1	12'	64	4/2/2003 16:01	<62			
629	ADH C-1	13.5'	64	4/2/2003 16:04	<56			
630	ADH C-1	15'	66	4/2/2003 16:06	<60			
631	Silica blank		64	4/2/2003 16:09	<41			
632	NIST 2711 Med		64	4/2/2003 16:11	1160	100	1162 +/- 31	0.2
	Silica Blank Ave.				-40			
	NIST 2711 Ave				<40			

NIST 2711 Ave. Ave. Deviation

1144

ADH stands for auger drill hole.

3.4

Site: Fairbanks International Airport - Shooting Range Date: February 26 -28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

Sample Site	е Туре	Depth	Pb, ppm	Notes
B-2	In-situ	Surface	1779	Visible shell casings
C-2	In-situ	Surface	1250	Visible shell casings
D-2	In-situ	Surface	2949	Visible shell casings
E-2	In-situ	Surface	11795	Visible shell casings, spent bullets
F-2	In-situ	Surface	13798	Visible shell casings, spent bullets
G-2	In-situ	Surface	10195	Visible shell casings, spent bullets
H-2	In-situ	Surface	718	Visible shell casings, spent bullets
I-2	In-situ	Surface	1050	Visible shell casings, wads
J-2	In-situ	Surface	488	No visible shell casings, spent bullets
J-3	In-situ	Surface	980	Visible shell casings
I-3	In-situ	Surface	794	Visible shell casings
H-3	In-situ	Surface	1880	Visible shell casings, spent bullets
G-3	In-situ	Surface	9376	Visible shell casings, spent bullets
F-3	in-situ	Surface	7738	Visible shell casings, spent bullets
E-3	In-situ	Surface	7040	Visible shell casings, spent bullets
D-3	In-situ	Surface	6099	Visible shell casings, spent bullets
C-3	In-situ	Surface	1620	Visible shell casings, spent bullets
B-3	In-situ	Surface	1040	Visible shell casings, spent bullets
A-3	In-situ	Surface	<55	No visible shell casings, spent bullets
A-4	In-situ	Surface	240	No visible shell casings, spent bullets
B-4	In-situ	Surface	167	Visible shell casings
C-4	In-situ	Surface	74 9	Visible shell casings, spent bullets
D-4	In-situ	Surface	273	Visible shell casings
E-4	In-situ	Surface	796	Visible shell casings
F-4	In-situ	Surface	1560	Visible shell casings
G-4	In-situ	Surface	876	Visible shell casings
H-4	In-situ	Surface	964	Visible shell casings
1-4	In-situ	Surface	348	Visible shell casings
J-4	In-situ	Surface	7264	Visible shell casings, spent bullets
K-4	In-situ	Surface	126	No visible shell casings, spent bullets
K-6	In-situ	Surface	391	No visible shell casings, spent bullets
J-6	In-situ	Surface	605	Visible shell casings, spent bullets
H-6	In-situ	Surface	372	Visible shell casings
F-6	In-situ	Surface	322	Visible shell casings
D-6	In-situ	Surface	<51	No visible shell casings, spent bullets
B-6	In-situ	Surface	79	No visible shell casings, spent bullets
A-6	In-situ	Surface	185	No visible shell casings, spent bullets
A-8	In-situ	Surface	471	No visible shell casings, spent bullets
B-8	In-situ	Surface	<57	No visible shell casings, spent bullets
D-8	In-situ	Surface	136	No visible shell casings, spent bullets
F-8	In-situ	Surface	136	Visible shell casings
H-8	In-situ	Surface	135	No visible shell casings, spent bullets
J-8	In-situ	Surface	236	Visible shell casings

Site: Fairbanks International Airport - Shooting Range Date: February 26 - 28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

			4
ite Type	Depth	Pb, ppm	Notes
In-situ	Surface	685	No visible shell casings, spent bullets
In-situ	Surface	<60	No visible shell casings, spent bullets
In-situ	Surface	<59	No visible shell casings, spent bullets
In-situ	Surface	<63	No visible shell casings, spent bullets
In-situ	Surface	<63	No visible shell casings, spent bullets
In-situ	Surface	98	No visible shell casings, spent bullets
In-situ	Surface	165	No visible shell casings, spent bullets
In-situ	Surface	376	Visible shell casings
In-situ	Surface	110	No visible shell casings, spent bullets
In-situ	Surface	<57	No visible shell casings, spent bullets
In-situ	Surface	<53	No visible shell casings, spent bullets
In-situ	Surface	85	Visible shell casings
In-situ	Surface	60	Visible wads
In-situ	Surface	<63	No visible shell casings, spent bullets
In-situ	Surface	<46	No visible shell casings, spent bullets
In-situ	Surface	<50	No visible shell casings, spent bullets
In-situ	Surface	73	Spent clay birds visible, no shells or bullets
In-situ	Surface	<60	Spent clay birds visible, no shells or bullets
In-situ	Surface	<54	No visible shell casings, spent bullets
In-situ	Surface	<46	Visible shell casings
	Surface	119	Visible shell casings
In-situ	Surface	130	Visible shell casings
In-situ	Surface	<53	Visible shell casings
In-situ	Surface	<50	Visible shell casings
	Surface	7507	Visible spent bullets & wads
			No visible shell casings, spent bullets
			Visible shell casings, spent bullets
			Visible shell casings, spent bullets
			No visible shell casings, spent bullets
			No visible shell casings, spent bullets
			Visible spent bullets & wads
			No visible shell casings, spent bullets
			Visible shell casings, spent bullets
Ex-situ	9'	140	
	In-situ In-situ	In-situSurfaceIn-situSurfa	In-situSurface685In-situSurface<60

Site: Fairbanks International Airport - Shooting Range Date: February 26 -28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

Sample Site	Туре	Depth	Pb, ppm	Notes
ADH E-1	Ex-situ	10'	85	
ADH F-2	Ex-situ	1'	1270	
ADH F-2	Ex-situ	6"	7757	
ADH F-2	Ex-situ	2'	459	
ADH F-2	Ex-situ	3'	60	
ADH F-2	Ex-situ	4'	<54	
ADH F-2	Ex-situ	5'	114	
ADH J-4	Ex-situ	6"	<58	
ADH J-4	Ex-situ	1'	<57	
ADH J-4	Ex-situ	2'	<54	
ADH J-4	Ex-situ	3'	<54	
ADH C-1	Ex-situ	1'	<64	
ADH C-1	Ex-situ	2'	<60	
ADH C-1	Ex-situ	3'	<62	
ADH C-1	Ex-situ	·· 4'	<62	
ADH C-1	Ex-situ	6'	62	
ADH C-1	Ex-situ	8'	94	
ADH C-1	Ex-situ	10'	76	
ADH C-1	Ex-situ	12'	<62	
ADH C-1	Ex-situ	13.5'	<56	
ADH C-1	Ex-situ	15'	<60	
ADH G-1	Ex-situ	1'	<67	
ADH G-1	Ex-situ	2'	546	
ADH G-1	Ex-situ	3'	204	
ADH G-1	Ex-situ	4'	87	
ADH G-1	Ex-situ	6'	96	
ADH G-1	Ex-situ	8' 40'	<66	
ADH G-1	Ex-situ	10'	112	
ADH I-2	Ex-situ	1'	<52	
ADH I-2	Ex-situ	2' 3'	78	
ADH 1-2	Ex-situ	3' 4'	183 69	
ADH I-2 ADH I-2	Ex-situ Ex-situ	4 6'	89	
		8'	<57	
ADH I-2 ADH I-2	Ex-situ Ex-situ	8 10'	<57 <60	
ADH I-2 ADH K-3	Ex-situ Ex-situ	10	<00 <55	
ADH K-3	Ex-situ Ex-situ	2'	<50 <60	
ADH K-3 ADH K-3	Ex-situ	2 3'	<00 <57	
ADH K-3	Ex-situ	3 4'	<57	
ADH K-3 ADH K-3	Ex-situ Ex-situ	4 6'	<57 <61	
ADH K-3 ADH K-3	Ex-situ Ex-situ	8'	<58	
ADH K-3 ADH K-3	Ex-situ Ex-situ	8 10'	<58 <54	
	Ex-situ	10	<54 <60	
ADH L-6	CX-SILU	1	<00	

Site: Fairbanks International Airport - Shooting Range Date: February 26 -28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

Sample Site	Туре	Depth	Pb, ppm	Notes
ADH L-6	Ex-situ	2'	<61	
ADH L-6	Ex-situ	3'	<58	
ADH L-6	Ex-situ	4'	<61	•
ADH L-6	Ex-situ	6'	<55	
ADH L-6	Ex-situ	8'	<58	
ADH L-6	Ex-situ	10'	<55	
ADH E-3	Ex-situ	6"	<53	
ADH E-3	Ex-situ	6"-1'	<54	
ADH E-3	Ex-situ	2'	<55	
ADH E-3	Ex-situ	3'	<57	
ADH F-10	Ex-situ	6"	<57	
ADH F-10	Ex-situ	1'	<56	
ADH F-10	Ex-situ	2'	<55	
ADH F-10	Ex-situ	3'	<60	
Backgrnd	Ex-situ	2'	<54	

Site: Fairbanks International Airport - Shooting Range Date: February 26 - 28 & April 02, 2003 Data: Lead in Soil by Field Portable XRF Instrument: NITON 703A, SNU882NR3842

.

Sample Site	Depth	Pb, ppm
G-3 Replicate 1	Surface - 6"	649
G-3 Replicate 2	Surface - 6"	99
G-3 Replicate 3	Surface - 6"	568
G-3 Replicate 4	Surface - 6"	114
G-3 Average		358
Standard Dev.		253
G-1 Replicate 1	1' - 1.5'	437
G-1 Replicate 2	1' - 1.5'	503
G-1 Replicate 3	1' - 1.5'	527
G-1 Replicate 4	1' - 1.5'	667
G-1 Average		534
Standard Dev.		84
G-1 Average	1' - 1.5'	534
ADH G-1	2'	546
RPD %		2

SHANNON & WILSON, INC.

APPENDIX C

SGS Analytical Reports

3

1.1

SGS Environmental Services **Alaska Division** Level I Data Report

Project: Client: CT&E Work Order: Firing Range Fairbanks Airport Shannon & Wilson-Fairbanks 1030668

Contents:

Case Narrative Chain of Custody/Sample Rec Form Final Report Pages QC Summary Pages

Note:

Unless otherwise noted, all quality assurance/quality control criteria are in compliance with the proper regulatory authority and/or SGS's Quality Assurance Program Plan.

SGS Member of the SGS Group (Societe Generale de Surveillance)

Case Narrative

Client Workorder	SHANFBK 1030668	Shannon & Wilson-Fairbanks Firing Range Fairbanks Airport	Printed Date/Time	3/14/2003	10:18
Sample ID		Client Sample ID	·	8	
480001	MS				

EPA 200.8 ICP Metals - MS recovery for Na, Ca, Fe, Mg, K were outside of acceptance criteria. Sample concentration is 4X greater than the spike level.

480992 MS

EPA 200.8 ICP Metals - MS recovery for A1 was outside of acceptance criteria; post digestion spike was successful.

1030668001 PS 1162-030303-MW1A

EPA 200.8 ICP Metals - MS recovery for Al was outside of acceptance criteria; post digestion spike was successful.

1030668	PAGE OF					HEMARKS	E Filtered		Fred Fillered		Field Fullered		Fred Freed		1 Treld Filtera	Temperature C:	4.6°C	Chain of Custody Seal: (Circle) INTACT BROKEN ABSENT	Instructions:			Yellow - Returned with Report Plnk - Retained by Sampler 0-720
DY RECORD	ence:	PLE Presenting (MR) PNC		124	PA		X	×	X	X	X					Shipping Carrier: 1/	Shipping Ticket No: 1700	Data Deliverables: Level 1 Level II EDD Type:	Requested Turnaround Time and Special Instructions.	-Jandond	5	White - Retained by Lab (Project File) Yelk
CT&E Environmental Services Inc.	CT&E Reference:	5		GRAB GRAB	TIME MATRIX S	2:08 14.0 1 6		12:09	12:13	12:38	[2:43]	116		12:50	12:53 /	Received By:	Multh Debehon	Received By:	Repetred By:		Received For Laboratory BY:	x: (907) 561-5301 2071 474-0485
CH ental So	PHONE NO: UNT 279	ALES PWSIDH:	-the	BER:	DATE	0403K3 2		7)				-			Time T	ΨĮ	11me 1/30	+	~	Date Time) 562-2343 Fa
vironm Division			HAY DAVT	QUOTE# P.O. NUMBER:	CATION	-HWIA	BIMH-	VIAN-	WPIB	- WP2A	WP2B	Acgul .	'		- NP4B	Date /	5	34105	Date		Date 7.9.3	518 Tel: (907 Tel: /907) 4
CT&E Environmental Laboratory Division	CULENT: Sha WW BY CONTACT TO WILL DIMENT	JHIMI ROLACI	ie Keener		SAMPLE IDENTIFICATION	1162 - 030303-MWIA	1162-030303- MWIB	AIAN-202020-2911	202020-2911	11162-030363-WP2A	-202020-29/11	- 202020-29111	1162-0303-	Z	11112 1120203	Collected/Relinquished By: (1)		By: (2)	and the second and the		By: (4)	CO W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-530
Ą	CULENT: SONTACT: Y	PROJECT: #	REPORTS TO:	INVOICE TO:	LAB NO.	Ð	4	A H	Ý À	5	6 4	\neg	A			<u> </u>	Ň	Helinquished By: (2)	2 tech		Relinquished By: (4)	200 W. Potter D 3180 Perer Bos

F

		1030668
SGS		I ARAM WAN RANKE AND RANK AND AND AND AND
Yes No.	SAMPLE RECEIPT FORM	CT&E WO#:
	Are samples RUSH, priority, or within 72 hrs. of hold time?	1 / 7
NA	If yes have you done e-mail notification?	Due Date: 3/2/03
/	Are samples within 24 hrs. of hold time or due date?	Received Date/Time: 3303@
NA	If yes, have you spoken with Supervisor?	Received Temperature*:
NA	Archiving bottles – if required, are they properly marked?	Thermometer ID: Prove C
	Are there any problems? PM Notified?	Cooler ID Temp Blank Cooler T
$\overline{}$	Were samples preserved correctly and pH verified?	4.8°C 4.6°C
	If this is for PWS, provide PWSID	
	Will courier charges apply?	
	Method of payment?	
	Data package required? (Lever 1) 2 / 3)	*Temperature readings include thermometer correction factors
<u>گل</u>		Delivery method (circle one): Commerci
	Is this a DOD project? (USACE, Navy, AFCEE)	Clienty SGS-CT
	If ves, complete DOD block below	Additional Sample Remarks
Yes No		Extra Sample Volume?
	Is received temperature $4 \pm 2^{\circ}$ C?	Limited Sample Volume?
	Exceptions: Samples/Analyses Affected:	Field-filtered for dissolved?
	······································	Lab-filtered for dissolved?
	8	Ref Lab required?
	Rad Screen performed?	Yes No
· ·	Result:	Was client notified of problem
	Was there an airbill? Note #: Was cooler sealed with custody seals? Fax'd to COE?	Individual contacted:
	#/where:	Date/Time:
1 a	Were seal intact upon arrival?	Phone/Fax:
	Was there a COC with cooler?	Reason for contact:
	Was the COC filled out properly?	
	Did the COC indicate ACOE / AFCEE project? (if applicable)	
	Did the COC and samples correspond? Were all sample packed to prevent breakage?	
	Packing material:	1963
	Were all samples unbroken and clearly labeled?	
	Were all samples sealed in separate plastic bags?	10 E
<u> </u>	Were all bottles for volatiles free of headspace?	CT&E Contact:
	Were correct container / sample sizes submitted?	128 K
	Is sample condition good?	
s:	. 1200	
(XI in	Je. 6200	100 m 110
	· · · · · · · · · · · · · · · · · · ·	<i>N</i>
	0 (c)	
	(sign): Melody Debenham (print): Mel	rdy. Delagolas m

5 5 .**8**

· · ·		÷.	P	دم					<u> </u>				 			. 18
8		Other	Feld Filk	Field Filt	Fillend	Filord	Filwed									403
030668	<u>Š</u>				\square		4	\downarrow		\square			 		++1	
0 0	ervat	ZERNADE		┼╌┼╴		╶┼╌┼	╉╋	┼┼		$\left \right $		-+	 	╺┽┼╍	╞┼╌┨	
ö	Preservative	H 0 ¢	$\left \cdot \right $	┼┼	┼┼	┽┼		╶┼╶┼		\uparrow		+-	╶┼┼		┼╌┼──┨	Date
T-	1						_ _ >									4
	l	=		*	\square			┥┥		\square	_		 -		╁╌┼╌┨	- Ar
#0	-85	Ζοςυ			┼┼	┽┽			-		-		 ++		- 	Å.
CT&E WO#:	2	c Other a a									2					Completed by: 111 Lody Dependan Date: 3
ж. — ² ж.	. Type	U 0	,							\square						17
2	ainer	× د ـ م د U × د ـ م د U × ه ـ م د U		F+			→				-		_	·		1 1
®	Cont	Z es _ ch ^t		*) (*)		् स		_						╶┼╌┼╴	┝╌┼╌┨	d by
9 	25	ТОст	2 3				╧╧	*				<u>.</u>				plete
8. ⁰ 8.	ļ.,	U 0					-	_		\square	_					Com
	8	U ک		$\left \right $				┥┥		$\left \right $						
EIPT FORM (page 2)		Other							140							
FOR		7 0 ⁷	-				┛								┼╌┼╴┨	
L L	/olume	8 0 2								\square				<u> </u>		
ECE		+ 0 E J		8		. •										
Ц	Container 1	Г 9 0		T	TT											
SAMPLE REC	S	- <u>-</u>				2				Π	1		<i>•</i> .	-		·
SA S		C1-0 C -1		$\uparrow \uparrow$				<u>8</u> ·								
			12	┼┼╴	++	++			1	╋┹						а <u>т</u>
			┝╌┝╴	++	-		8	┼┤	-	\dagger						9
1 12 14							┦┥			┿┽			┝╾┼╌┨	╾┼╌┼╸	┼┼┥	
14			3	┼┼			┽┼			┼┼	+					
	-	0 U		┿┿	++	R	++									
8		Test Leacl	dissolved lead	diss. leak	diss lord	lead here	dist. Icad									Bottle Totals
		Mat rix	+	┼┽	++	┿┽										
S			A A	A		**	A A									1 1.2
SGS		II	n r	JE K	191		<u>7</u> 0	(L.)						2		5

CT&E WO#:

SAMPLE RECEIPT FORM FOR TRANSFERS From FAIRBANKS, AK OR HONOLULU, HAWAII To ANCHORAGE, AK

					· · · · · ·		otes:
	-			<u> </u>	· · · · ·	3	
			*	8			
	-		····	1989 -		a (d	
			ΩP.	2 1 2	·····		
3f	3		2	* ^{* *}	OBSO DINGS*	: <u>3-5-3</u> MP BLANK READ	eipt Date / Time: OLER AND TEM
		<u>Cooler</u>	<u>Temp Blank</u>	Cooler ID		Temp Blank /.O	Cooler ID
							<u> </u>
		<u>Cooler</u>	Temp Blank	<u>Cooler 1D</u>	DINGS*	MP BLANK READ <u>Temp Blank</u>	OLER AND TEM

SGS

CT&E Environmental Services Inc. CUSTODY SEAL Date/Tin Signature:

CT&E Environmental Signature: Melon

:smiT\stag α

08/1

Ø

COSTODY SEAL

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.sgsenvironmental.com

Julie Keener Shannon & Wilson-Fairbanks 2355 Hill Road Fairbanks, AK 99709

Work Order:	1030668		5 X
	Firing Range Fairbanks Airport		
Client:	Shannon & Wilson-Fairbanks		
Report Date:	March 12, 2003		
	S N	····	10 24.

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Control Manual that outlines this program is available at your request.

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth in our Quality Assurance Program Plan.

If you have any questions regarding this report or if we can be of any other assistance, please call your SGS Project Manager at (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- PQL Practical Quantitation Limit (reporting limit).
- U Indicates the analyte was analyzed for but not detected.
- F Indicates an estimated value that falls below PQL, but is greater than the MDL.
- J Indicates an estimated value that falls below PQL, but is greater than the MDL.
- B Indicates the analyte is found in the blank associated with the sample.
- * The analyte has exceeded allowable limits.
- GT Greater Than
- D Secondary Dilution
- LT Less Than
- ! Surrogate out of range

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix 1030668001 Shannon & Wilson-Fairbanks Firing Range Fairbanks Airport 1162-030303-MW1A Water (Surface, Eff., Ground)

All Dates/Times are Alaska	Standard Time
Printed Date/Time	03/12/2003 11:29
Collected Date/Time	03/03/2003 14:08
Received Date/Time	03/03/2003 16:45
Technical Director ,	Stephen C. Ede
Released By	C.Gde

Sample Remarks:

EPA 200.8 ICP Metals - MS recovery for Al was outside of acceptance criteria; post digestion spike was successful.

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	lnit
Metals by ICP/MS	•			20 K -				
Lead	3.22	0.400	ug/L	EPA 200.8		03/10/03	03/11/03	KGF

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix	Firing Rans 1162-0303	Wilson-Fairbanks ge Fairbanks Airport	1 1 12 1 2		All Dates/Tim Printed Date/ Collected Dat Received Date Technical Dir Released By	Time e/Time e/Time	03/12/200 03/03/200 03/03/200 Stephen (03 11:29 03 14:10 03 16:45	Young of the other
Sample Remarks:				8 21		0	3	a	= [
Parameter		Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Metals by ICP	/MS	9							· ۱
Lead		0.400 U	0.400	ug/L	EPA 200.8 Dissolved	l	03/03/03	03/11/03	KG

GS Ref.#	1030668003	All Dates/Times are Alaska Standard Time	
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time 03/12/2003 11:	29
Project Name/#	Firing Range Fairbanks Airport	Collected Date/Time 03/03/2003 12:0)9
Client Sample ID	1162-030303-WP1A	Received Date/Time 03/03/2003 16:4	45
viatrix	Water (Surface, Eff., Ground)	Technical Director Stephen C. Ede	
8 9 8		Released By Start C. Co	

arameter	е ц	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
fetals by ICP	/MS					. 10 s			
Lead	700	15.3	0.400	ug/L	EPA 200.8	5 S	03/10/03	03/11/03	KGF
•									

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix	1030668004 Shannon & Wilson-Fai Firing Range Fairbanks 1162-030303-WP1B Water (Surface, Eff., G	s Airport		All Dates/Time Printed Date/T Collected Date/ Received Date/ Technical Dire Released By	'ime /Time Time	Standard 03/12/200 03/03/200 03/03/200 Stephen C C - C)3 11:29)3 12:13)3 16:45	
Sample Remarks:				1	2	2 =		
Parameter	Results	e PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Metals by ICP	/MS							1
Lead	0.400 1	U 0.400	ug/L	EPA 200.8 Dissolved		03/03/03	03/11/03	KG

3GS Ref.#	1030668005		All Dates/Times are Alas	ka Standard Time
Client Name	Shannon & Wilson-Fairbanks		Printed Date/Time	03/12/2003 11:29
Project Name/#	Firing Range Fairbanks Airport		Collected Date/Time	03/03/2003 12:38
Client Sample ID	1162-030303-WP2A		Received Date/Time	03/03/2003 16:45
Matrix	Water (Surface, Eff., Ground)		Technical Director	Stephen C. Ede
		× 2	Released By Stepher	C. Ede

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Metals by ICP/MS	E.			5				
Lead	7.18	0.400	ug/L	EPA 200.8		03/10/03	03/11/03	KGF

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix	Firing Range 1162-03030	Wilson-Fairbanks e Fairbanks Airport	μ	a N	All Dates/Time Printed Date/T Collected Date Received Date Technical Dire Released By	fime /Time /Time	03/12/20 03/03/20	03 11:29 03 12:43 03 16:45	Transversiti (*
Sample Remarks:	3			17 246	¢		. ×		
Parameter	S)	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Metals by IC	P/MS			۳	8 1	8 0			
Lead		0.400 U	0.400	ug/L	EPA 200.8 Dissolved		03/03/03	03/11/03	KG

SGS Ref.#	1030668007	All Dates/Times are Alaska Standard Time					
lient Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/12/2003 11:29				
Project Name/#	Firing Range Fairbanks Airport	Collected Date/Time	03/03/2003 13:15				
Client Sample ID	1162-030303-WP3A	Received Date/Time	03/03/2003 16:45				
latrix	Water (Surface, Eff., Ground)	Technical Director	Stephen C. Ede				
- fi		Released By	- C. Re				

arameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Lead	1.96	0.400	ug/L	EPA 200.8		03/10/03	03/11/03	KGF

SGS Ref.#	1030668008				All	Dates/Time	es are Alaski	a Standard	rd Time		
Client Name	Shannon & Wilson-	Fairbanks			Prin	ted Date/I	ìme	03/12/200)3 11:29		
Project Name/#	Firing Range Fairba	nks Airport			Coll	ected Date	/Time	03/03/2003 13:18 03/03/2003 16:45 Stephen C. Ede			
Client Sample ID	1162-030303-WP3I				Rec	eived Date	Time				
Matrix	Water (Surface, Eff.	. Ground)			Tec	hnical Dire	ctor				
15 - 11 200						eased By 2	citut	- C. 4	ide		
Sample Remarks:		5 5			2 2 2	-			× _	ана 1991 2	
Parameter	Res	sults	PQL	Units	Method		Allowable Limits	Prep Date	Analysis Date	Init	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3 . 3			•		•					
Metals by ICP	/ms									1	
Land	0.4	00 11	0.400	ng/f	FPA 200 8	Dissolved		03/03/03	03/11/03	VC	

SGS Ref.#	1030668009	All Dates/Times are Alas	ska Standard Time
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/12/2003 11:29
Project Name/#	Firing Range Fairbanks Airport	Collected Date/Time	03/03/2003 12:50
Client Sample ID	1162-030303-WP4A	Received Date/Time	03/03/2003 16:45
Matrix	Water (Surface, Eff., Ground)	Technical Director	Stephen C. Ede
	•	Technical Director Released By	- C. Gle

Parameter	된	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Metals by	ICP/MS								të 2
Lead	14 - 121 - 2	7.11	0.400	ug/L	EPA 200.8		03/10/03	03/11/03	KGF

SGS Ref.#	1030668010		All Dates/Times are Ala	ska Standard Time
Client Name	Shannon & Wilson-Fairbanks		Printed Date/Time	03/12/2003 11:29
Project Name/#	Firing Range Fairbanks Airport		Collected Date/Time	03/03/2003 12:53
Client Sample ID	1162-030303-WP4B		Received Date/Time	03/03/2003 16:45
Matrix	Water (Surface, Eff., Ground)		Technical Director	Stephen C. Ede
	8 N		Released By Stept	i C.Ede
Sample Remarks:		ii e	21	

Parameter		Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
-15- 		1811 - 1811		(S) ()	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				
Metals by I	CP/MS								= [
Lead	92E	0.400 U	0.400	ug/L	EPA 200.8 Dissolved		03/03/03	03/11/03	KG

SGS Ref.#	480989 Method Blank	Printed Date/Time	03/14/2003 10:19
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	MXX 11292
Project Name/#	Firing Range Fairbanks Airport	Method	E200.2
Matrix	Water (Surface, Eff., Ground)	Date	03/10/2003

QC results affect the following production samples:

1030668001, 1030668003, 1030668005, 1030668007, 1030668009

Sample Remarks:

Parameter		Results	Reporting Limit	Units	a ta 19		Analysis Date	Init
Phosphorus		500 U	500	ug/L			03/11/03	KGF
Batch Method	MMS 2410 EPA 200.8				.e. (j •			
Instrument	Perkin Elmer Scie	CICP-MS P3						
Metals by IC	CP/MS							
Aluminum		20.0 U	20.0	ug/L			03/11/03	KGI
Antimony		1.00 U	1.00	ug/L			03/11 /03	KGI
Arsenic		2.00 U	2.00	ug/L			03/11/03	KGI
Barium		3.00 U	3.00	ug/L			03/11/03	KGI
Beryllium		0.400 U	0.400	ug/L			03/1 1/03	KGI
Cadmium		0.100 U	0.100	ug/L			03/11/ 03	KG
Calcium		500 U	500	ug/L			03/11/03	KG
Chromium		4.00 U	4.00	ug/L			03/11/03	KGI
Cobalt		4.00 U	4.00	ug/L		X	03/11/03	KG
Copper		1.00 U	1.00	ug/L	20 		03/1 1/03	KG
Iron		250 U	250	ug/L			03/11/03	KG
Lead		0.400 U	0.400	ug/L	3		03/11/ 03	KG
Magnesium		500 U	500	ug/L			03/11/03	KGI
Manganese		5.00 U	5.00	ug/L			03/11/03	KGI
Molybdenum	· •	10.0 U	10.0	ug/L			03/11/03	KGI
Nickel		5.00 U	5.00	່ ug/L			03/11/03	KG
Potassium		500 U	500	ug/L			03/11/0 3	KG
Selenium		2.00 U	2.00	ug/L			03/1 1/03	KG
		500 U	500	ug/L	2		03/11/03	KGI
Sodium		2.00 U	2.00	ug/L			03/11/03	KG
Zinc		1.00 U	1.00	ug/L			03/11/03	KGI
Silver		0.900 U	0.900	ug/L			03/11/03	KGI
Thallium	•	0.900 0	0.700	-0-		25		

MMS 2410

Method Instrument EPA 200.8 Perkin Elmer Sciex ICP-MS P3

SGS	

000 D-6#	480990 Lab Control Sample		Printed	Date/Time	03/14/2003 10:20	
SGS Ref.#	480770 Eab Conder Sumple		Prep	Batch	MXX 11292	
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks Firing Range Fairbanks Airport Water (Surface, Eff., Ground)			Method Date	E200.2 03/10/2003	
OC results affect the	following production samples:	9 29				

1030668001, 1030668003, 1030668005, 1030668007, 1030668009

Sample Remarks:

Parameter	1		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Phosphorus		LCS	942	94	(85-115)		*:	1000 ug/L	03/11/03	KGI
Batch Method Instrument	MMS 2410 EPA 200.8 Perkin Elmer Sci	ex ICP-I	MS P3					12 (4		
									2	
Metals by I	CP/MS			55						
Aluminum		LCS	940	94	(85-115)			1000 ug/L	03/11/03	KG
Antimony		LCS	892	89	(85-115)			1000 ug/L	03/11/03	KG
Arsenic		LCS	965	97	(85-115)		12	1000 ug/L	03/11/03	KG
Barium		LCS	921	92	(85-115)			1000 ug/L	03/11/03	KG
Beryllium		LCS	93 8	94	(85-115)			1000 ug/L	03/11/03	KG
Cadmium		LCS	912	91	(85-115)			1000 ug/L	03/11/03	KG
Calcium		LCS	9950	100	(85-115)			10000 ug/L	03/11/03	ĶG
Chromium		LCS	898	90	(85-115)			1000 ug/L	03/11/03	KG
Cobalt		LCS	927	93	(85-115)			1000 ug/L	03/11/03	KG
Copper	•	LCS	923	92	(85-115)			1000 ug/L	03/11/03	KG
ron		LCS	960	96	(85-115)			1000 ug/L	03/11/03	KG
_ead		LCS	942	94	(85-115)			1000 ug/L	03/11/03	KG
Aagnesium		LCS	9790	98	(85-115)			10000 ug/L	03/11/03	KG
Manganese		LCS	913	91	(85-115)			1000 ug/L	03/11/03	KG
Aolybdenum		LCS	925	93	(85-115)			1000 ug/L	03/11/03	KG
Nickel		LCS	914	91	(85-115)			1000 ug/L	03/11/03	KG
Potassium		LCS	9730	97	(85-115)			10000 ug/L	03/11/03	KG
Selenium		LCS	911	91	(85-115)			1000 ug/L	03/11/03	KG
Sodium		LCS	9670	97	(85-115)			10000 ug/L	03/11/03	KG
Zinc		LCS	921	92	(85-115)			1000 ug/L	03/11/03	KGI
Silver		LCS	192	96	(85-115)			200 ug/L	03/11/03	KGI
Thallium		LCS	962	96	(85-115)			1000 ug/L	03/11/03	KG
Batch	MMS 2410									

EPA 200.8 Perkin Elmer Sciex ICP-MS P3

Bench Spike Liquid

Printed Date/Time Prep Batch Method Date 03/14/2003 10:20

Original fatrix 1031186001 Water (Surface, Eff., Ground)

QC results affect the following production samples:

1030668002, 1030668004, 1030668006, 1030668008, 1030668010

Sample Remarks:

BNI

arameter	2			Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Potassium			BNI	7870	32600	99	(70-130)		92 11	25000 ug/L	03/11/03	KGF
^ luminum			BNI	100 U	4900	98	(70-130)			5000 ug/L	03/11/03	KGF
			BNI	10.0 U	4450	89	(70-130)			5000 ug/L	03/11/03	KGF
inc Thallium			BNI	0.900 U	4970	99	(70-130)			5000 ug/L	03/11/03	KGF
Thallium			BNI	7030	31100	96	(70-130)			25000 ug/L	03/11/03	KGF
Sodium			BNI	25.0 U	4650	93	(70-130)		(#)	5000 ug/L	03/11/03	KGF
lickel			BNI	2050	6800	95	(70-130)			5000 ug/L	03/11/03	KGF
Manganese			BN1	34500	56400	88	(70-130)			25000 ug/L	03/11/03	KGF
Magnesium				13.4	5350	107	(70-130)			5000 ug/L	03/11/03	KGF
rsenic			BNI	0.400 U	5000	100	(70-130)			5000 ug/L	03/11/03	KGF
Lead			BNI	0.400 U	5010	100	(70-130)			5000 ug/L	03/11/03	KGF
Cadmium					5080	a 101	(70-130)		÷	5000 ug/L	03/11/03	KGF
hromium				20.0 U		88	(70-130)			5000 ug/L	03/11/03	KGF
Copper			RNI	5.00 U	4380	00	(70-130)			5000 ug/L	05/11/05	
Batch	MMS	2409								18		

MethodEPA 200.8InstrumentPerkin Elmer Sciex 1CP-MS P3

SGS/CT&E Environmental Services Alaska Division Level I Data Report

Project: Client: CT&E Work Order: 31-1-11162-001 FIA Range Shannon & Wilson-Fairbanks 1030672

Contents:

Case Narrative Chain of Custody/Sample Rec Form Final Report Pages QC Summary Pages

Note:

Unless otherwise noted, all quality assurance/quality control criteria are in compliance with the proper regulatory authority and/or SGS's Quality Assurance Program Plan.

Client Workorder	SHANFBK 1030672	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range	Printed Date/Time 3/18/2003 15:31
Sample ID		Client Sample ID	······································
481143	MS		
			cceptance criteria; post digestion spike was successful. P Metals - RPD for Pb was outside of acceptance limits.
481144	MSD		
			cceptance criteria; post digestion spike was successful. P Metals - RPD for Pb was outside of acceptance limits.
481163	MS		
	SW6020 ICP Me	tals - MS/MSD recoveries for Pb, Ba were outside	of acceptance criteria; post digestion spike was successful.
481164	MSD		
	SW6020 ICP Me	tals - MS/MSD recoveries for Pb, Ba were outside of	of acceptance criteria; post digestion spike was successful.
1030672003	B PS	1162-022703-1E1	
			cceptance criteria; post digestion spike was successful. P Metals - RPD for Pb was outside of acceptance limits.
1030672024	PS	1162-022803-1G2B	

1030672024 PS 1162-022803-1G2B

SW6020 ICP Metals - MS/MSD recoveries for Pb, Ba were outside of acceptance criteria; post digestion spike was successful.

Jage 1/2	Page + of Laboratory Sc	20,00	Love of RemarksMatrix	Soil								Relinquished By: 3.	Time:	Name: Date:	h:	Received By: 3.	e Mine: D&&		CALAR CAL	
1030672	Analysis Parametera/Sample Container Description	$ \rangle$	e e e e e e e e e e e e e e e e e e e									. 2	Signa	16: Date: 3503 Printed Name.	Company:	d By: 2.	Time: Signature:	Date: Date:	Company	
tut 6328	in of Custoo	CR AT	a (00 (00) RE	x x x y	63 X X	XXX	X	63 X X	× ×	1		Inquished By: 1.	Time: 41.2.0	Printed Name: Date: 2 503 Printed Name: Annike de Asen Melodu	2		(Ja	Printed Name M. Clochy D. D. C. D. M.	Company: 1 C T C Company:	
QNO	l, Inc. Cha Vale 276 Cha	e C B	Time Sc	A 1:02 24740	1:05 427	A 1:10 227/08	12	2/27	A 2:35	10	11 11 12 12 12 12 12 12 12 12 12 12 12 1		COC Seals/Intact? YMM	Received Good Cond Cold 4,3 Delivery Method:	HTAND (attach shipping bill, if any)	1 1 1 1 1 1		2	mnon & Wilson w/ Laboratory report files	
5 	400 N. 34th Street, Suite 100 11500 Clive Blvd., Suite 276 Seattle, WA 88103 St. Louis, MO 63141 (2005) 632-6020 (314) 872-8170 2005 HII Road 5430 Fairbanks Street, Suite 3	(907) 479-0600 (907) 561-2120	Sample Identity	162-02203-1556 @	1162-022703-1E1 (3)	1162-022703-1E4 (S)	2 831-602200-2911		ZF1(8)	1 (1) C(1-C) C(1) - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	$(n) \leq \tau 7 \cos n n \eta$	Project Information	_	Contact: PNDFexCartSOv Rece Ongoing Project? Yes 0 No 0 Deliv	Ash	Requested Turn Around Time:	Special Instructions:	TENU TREI	Distribution: White - w/shipment - returned to Shannon & Witson w/ Laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Witson - Job File	19-91/UR

ų,

2464 2/3	Be to 3	200	SOIL SOIL									Relinquished By: 3.	Time:				Received By: 3.	Ë	Dele: 3-6-0.5	Lotro C	
1030672	IN RECORD	Seater 100 teros										Relinquished By; 2. Relin	430 Signat	Date: 3/5/03 Printed Name		Company:	ed By: 2. Rece	Time:Signatole:	Date:	Company	
NOTE # 6328	in of Custoc	Consist And Land		× × × ×	x x x 2	× × ×	XXX	XX	× × ×	XX		Inquished By: 1.	Signeture: Time: 42.20 Signature:	Printed Name:	Melod	SMUNDARW [KM COMPANY CT	Received By: 1. Receive	Signatures Time: 920 Signature:		\cup	
ð.	Dn, Inc. Cha I, Suite 276 Matt Suite 3 Street, Suite 3	Date Lab No. Time Sampled	10:45 2/28	3) A 10:55 728/03	2:40 330)A 11:00 2/28/0	A 11:05 178/0	A 11:10 H	A [1:15 2/240		20 A 12:50 7000	Sample Receipt	Total Number of Containers	Received Good Cond (Colf) (1 2	belivery Method	(attach shipping bill, if any)	ONS	PTANDANT	A EDU	White - w/shipment - returned to Shannon & Wilson w/ Laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File	
	Shannon & Wilson, Inc. 400 N. 34th Street, Suite 100 11500 Othe Bivd., Suite 276 400 N. 34th Street, Suite 100 11500 Othe Bivd., Suite 276 Seattle, WA 86103 St. Louis, MO 63141 2006 Hill Road 540 Faithanks, AK 540 Faithanks, Street, Suite 3 2005 Hill Road 640 Faithanks, AK 89707 Archorage, AK 96518 2007 3779-0600 861-220 640 Faithanks, Street, Suite 3 Archorage, AK 80518	dentity	1112-022803-1C6	1162-022803-100 1	1110-02020-145	162A (1161-02803-163 (16)	\Rightarrow	11/6/10/2809-16/6/18	11102-017802-1610 10	11196-022805-341 0	mation	2	A SAN		Sampler: Andrew of ASA (Hequested Turn Around Time: 247	TUN	Distribution: White - w/shipment - returned to Yellow - w/shipment - for consig Pink - Shannon & Wilson - Job F	

2/2 you	Page of Laboratory 563 Attn:: NET 264		Given Hursen givens: 2-6-03 milling
1030672	ra/Sample Container Dude preservative if used)	CTC CTC CTC CTC CTC CTC CTC CTC	Name: Date: Printe
2007E# 6328	in of Custoc	Relined by Land By Land Compared by Land By La	Printed Name: Company: 25/03 Printed Name: Melody DeDe Ming. A. Company: Company: Company:
(K)	R Wilson, Inc. Cha 11500 Olive Blvd., Sulta 276 51. Louis, MO 63141 51.13 972-8170 5430 Taribank Sireet, Sulte 3 Anchorage, AK 99518 (807) 561-2120	Lab No. Time Sampled 5 220 H 1:45 1/26 1/25 6 20 H 2:32 1/26 1/25 1/25 7 20 H 2:32 1/26 1/25	LVLL T & EDD While - withipment - returned to Shannon & Wilson w/ Laboratory report Yellow - withipment - for consignee files Pirk - Shannon & Wilson - Job File
	Shannon & Wilson, Inc. Aoo N. 34th Street, Suite 100 11500 Olive Bivd., Suite 276 Aoo N. 34th Street, Suite 100 11500 Olive Bivd., Suite 276 Seattle, WA 89103 St. Louis, MO 63141 (200) 652-8020 513, 872-8170 2005 Hill Road 5430 Fairbanks Street, Suite 3 Fairbanks, AV 89707 Archorage, AX 98518 (907) 479-0600 (907) 561-2120	Sample identity Lab No. III b2-022809-6L3 20 A III b2-022809-6L3 20 A III b2-022809-1628 23 A III b2-022809-165A 23 A III b2-02809-165A 23 A Registriation Sami	Distribution: White - Wethipment - return Velice - Wethipment - for co Pink - Shannon & Wilson - J

SGS Yes No 	SAMPLE RECEIPT FORM Are samples RUSH, priority, or within 72 hrs. of hold time? If yes have you done <i>e-mail notification</i> ? Are samples within 24 hrs. of hold time or due date? If yes, have you spoken with Supervisor? Archiving bottles – if required, are they properly marked? Are there any problems? PM Notified? Were samples preserved correctly and pH verified?	1030672 CT&E WO#: Due Date: 3/13/03 Received Date/Time: 3/5/03 Received Temperature*: Thermometer ID: Cooler ID 1 4.3°C
<u>NA</u>	If this is for PWS, provide PWSID	'Temperature readings include thermometer correction factors Delivery method (circle one): Commercial / Clienty SGS-CT&E Additional Sample RemarksLimited Sample Volume?Limited Sample Volume?Field pres'd for volatiles?Field-filtered for dissolved?Lab-filtered for dissolved?Ref Lab required?
	Rad Screen performed? Result: Was there an airbill? Note #: Was cooler sealed with custody seals? Fax'd to COE? #/where: Was cooler sealed with custody seals? Fax'd to COE? #/where: Were seal intact upon arrival? Was there a COC with cooler? Was the COC filled out properly? Did the COC and samples correspond? Were all sample packed to prevent breakage? Packing material: Were all samples unbroken and clearly labeled? Were all samples sealed in separate plastic bags? Were all bottles for volatiles free of headspace? Were correct container / sample sizes submitted? Is sample condition good?	Yes No

T SUMPRESTION U.					
* samples from a : use as representa		runges	prace	+7410	
Use us representa	TUK AS	sumple o	is possibl	E. A	
npleted by (sign): <u>Mlbody</u> Dl		-			-

1030672	Preservative H H II M N Other C N 2 c a a I 0 S 0 2 0 3 0 H S H 1 2 0 H S H		Date: 3-6-03
CT&E WO#:	Other c n c		
(3) T (4)	A C H N C C S G G D a u o c E g i i t t		Completed by:
SAMPLE RECEIPT FORM (page 2)	Container Volume L 5 2 1 6 4 8 4 Other 0 5 2 0 0 0 0 0 m m L L L L L L L		
A	Mai Test Q T I rix C B	2 Total lead 2 Total lead 7 Cure Lansing A	Bottle Totals
SGS	= Cont. M ID	272 X 272 X 27	7

From Portrax, of 22 of teersion, file document forms approved ForbraxISRFL.doc

CT&E WO#:

SAMPLE RECEIPT FORM FOR TRANSFERS From FAIRBANKS, AK OR HONOLULU, HAWAII To ANCHORAGE, AK

TO BE COMPLETED IN ANCHORAGE UPON ARRIVAL FROM FAIRBANKS OR HAWAII. NOTES BELOW ARE ACTIONS NEEDED UPON ARRIVAL IN ANCHORAGE. Notes: <u>please letter the joys and do the 2nd</u>	RECORDED
page.	
0	
	-8
Receipt Date / Time: 3_6-0-3 0850 COOLER AND TEMP BLANK READINGS*	
<u>Cooler ID</u> <u>Temp Blank</u> <u>Cooler</u> <u>Cooler ID</u> <u>Temp Blank</u> <u>Cooler</u>	
CUSTODY SEALS INTACT: YES / NO #/WHERE:	
COMPLETED BY (INITIAL):	h

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.sgsenvironmental.com

Andrea Carlson Shannon & Wilson-Fairbanks 2055 Hill Road Fairbanks, Fairbanks North Star AK 99707

Work Order:	1030672
	31-1-11162-001 FIA Range
Client:	Shannon & Wilson-Fairbanks
Report Date:	March 18, 2003

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Control Manual that outlines this program is available at your request.

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth in our Quality Assurance Program Plan.

If you have any questions regarding this report or if we can be of any other assistance, please call your SGS Project Manager at (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- PQL Practical Quantitation Limit (reporting limit).
- U Indicates the analyte was analyzed for but not detected.
- F Indicates an estimated value that falls below PQL, but is greater than the MDL.
- J Indicates an estimated value that falls below PQL, but is greater than the MDL.
- B Indicates the analyte is found in the blank associated with the sample.
- * The analyte has exceeded allowable limits.
- GT Greater Than
- D Secondary Dilution
- LT Less Than
- ! Surrogate out of range

SGS Ref.#	1030672001
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID	31-1-11162-001 FIA Range 1162-022703-1ESA
Matrix	Soil/Solid

All	Dates/	Times	are	Alaska	Standard	Time

Printed Date/Time Collected Date/Time Received Date/Time Technical Director 03/18/2003 15:32 02/27/2003 13:00 03/05/2003 9:20 Stephen C. Ede

eather stal Released By

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids	<u> </u>	ж						
Total Solids	84.5		%	SM20 2540G			03/12/03	MCM
Metals by ICP/MS								
Lead	48800	8.92	mg/Kg	SW846 6020		03/10/03	03/12/03	KG

SGS Ref.# Client Name	1030672002 Shannon & Wilson-Fairbanks	All Dates/Times are Alas Printed Date/Time	ka Standard Time 03/18/2003 15:32
Project Name/#	31-1-11162-001 FIA Range	Collected Date/Time	02/27/2003 13:03
Client Sample ID	1162-022703-1ESB	Received Date/Time	03/05/2003 9:20
Matrix	Soil/Solid	Technical Director	Ştephen C. Ede
		Released By	they Stale
Sample Remarks:			

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	81.4		%	SM20 2540G			03/12/03	МСМ
Metals by ICP/MS								
Lead	31100	8.01	mg/Kg	SW846 6020	i	03/10/03	03/12/03	KGF

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix 1030672003 Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range 1162-022703-1E1 Soil/Solid All Dates/Times are Alaska Standard Time Printed Date/Time 03/18/2003 15

Collected Date/Time Received Date/Time Technical Director 03/18/2003 15:32 02/27/2003 13:05 03/05/2003 9:20 Stephen C. Ede

Released By

Sample Remarks:

SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level. SW6020 ICP Metals - RPD for Pb was outside of acceptance limits.

Parameter		Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids									
Total Solids		94.1		%	SM20 2540G			03/12/03	МСМ
Metals by ICP/MS	8								
Lead		6610	9.55	mg/Kg	SW846 6020	1	03/10/03	03/12/03	KGF

Project Name/# Client Sample ID Matrix Sample Remarks:	31-1-11162-001 FIA Range 1162-022703-1E2 Soil/Solid	Collected Date/Time Received Date/Time Technical Director	03/16/2003 15:32 02/27/2003 13:10 03/05/2003 9:20 Stephen C. Ede
SGS Ref.#	1030672004	All Dates/Times are Alas	ka Standard Time
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/18/2003 15:32

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	93.4		%	SM20 2540G			03/12/03	МСМ
Metals by ICP/MS								
Lead	1680	6.41	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

1030672005
Shannon & Wilson-Fairbanks
31-1-11162-001 FIA Range 1162-022703-1E4
Soil/Solid

All Dates/Times are Alaska Standard Time

Printed Date/Time Collected Date/Time Received Date/Time Technical Director 03/18/2003 15:32 02/27/2003 13:15 03/05/2003 9:20 Stephen C. Ede

eather stal **Released By**

Parameter	Results	 PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	94.6		%	SM20 2540G			03/12/03	мсл
Metals by ICP/MS								
Lead	938	7.46	mg/Kg	SW846 6020	(03/10/03	03/12/03	KGF

SGS Ref.#	SGS Ref.# 1030672006			
Client Name	Shannon & Wilson-Fairbanks	Printec		
Project Name/#	31-1-11162-001 FIA Range	Collect		
Client Sample ID	1162-022703-1E8	Receive		
Matrix	Soil/Solid	Techni		
1				

All Dates/Times are Alaska Standard Time

Printed Date/Time Collected Date/Time Received Date/Time Technical Director 03/18/2003 15:32 02/27/2003 13:20 03/05/2003 9:20 Stephen C. Ede

when shall Released By

Parameter								
	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	95.7		%	SM20 2540G			03/12/03	MCM
fetals by ICP/MS								
Lead	1320	7.15	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#1030672007Client NameShannon & Wilson-FairbanksProject Name/#31-1-11162-001 FIA RangeClient Sample ID1162-022703-2F0.5MatrixSoil/Solid

All Dates/Times are Alaska Standard Time Printed Date/Time 03/25/2003 17:25 **Collected Date/Time** 02/27/2003 14:30 **Received Date/Time** 03/05/2003 9:20 Technical Director Stephen C. Ede her Stall Released By

Sample Remarks:

Corrected report; Sample I.D. corrected.

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	79.8		%	SM20 2540G	*		03/12/03	MCM
Metals by ICP/MS								
Lead	11500	7.79	mg/Kg	SW846 6020	C	03/10/03	03/12/03	KG

SGS Ref.#	1030672008	All Dates/Times are Alas	ska Standard Time	
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/18/2003 15:32	
Project Name/#	31-1-11162-001 FIA Range	Collected Date/Time	02/27/2003 14:35	
Client Sample ID	1162-022703-2F1	Received Date/Time	03/05/2003 9:20	
Matrix	Soil/Solid	Technical Director	Stephen C. Ede	
		Released By	hur stall	
Gaussila Damaalaa			w sound	

			 						-
Parameter		Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids									
Total Solids		78.2		%	SM20 2540G			03/12/03	МСМ
fetals by ICP/MS	20								
Lead	×	995	8.90	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

030672009
hannon & Wilson-Fairbanks
1-1-11162-001 FIA Range
162-022803-4JS
oil/Solid

All Dates/Times are Alaska Standard Time			
Printed Date/Time	03/18/2003 15:3	32	
Collected Date/Time	02/28/2003 9:10	0	
Received Date/Time	03/05/2003 9:20	0	
Technical Director	Stephen C. Ede		

Received Date/Time 03/05/2003 9:20 Technical Director Stephen C. Ede Released By

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	75.7		%	SM20 2540G			03/12/03	MCN
Metals by ICP/MS								
Lead	351	8.3	35 mg/Kg	SW846 6020		03/10/03	03/12/03	KGł

and a second sec	SGS Ref.# Client Name Project Name/# Client Sample ID Matrix	1030672010 Shannon & Wi 31-1-11162-00 1162-022803-2 Soil/Solid	1 FIA Ran				All Dates/T Printed Dat Collected D Received D Technical D Released By	ate/Time ate/Time birector	03/18/20	03 15:32 03 11:50 03 9:20	
	Sample Remarks:			2				0.000.			<u></u>
Ē	Parameter		Results		PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
l	Solids										
	Total Solids	1	90.3			%	SM20 2540G			03/12/03	МСМ
	Metals by ICP/	MS									

 Lead
 215
 6.48 mg/Kg
 SW846 6020
 03/10/03
 03/12/03
 KGF

SGS Ref.#	1030672011
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID	31-1-11162-001 FIA Range 1162-022803-1C6
Matrix	Soil/Solid

All Dates/Times are Alask	a Standard Time
Printed Date/Time	03/18/2003 15:32
Collected Date/Time	02/28/2003 10:45
Received Date/Time	03/05/2003 9:20
Technical Director	Stephen C. Ede
Released By	they stale

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	90.1		%	SM20 2540G			03/12/03	MAH
Metals by ICP/MS								
Lead	63.4	7.49	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.# 1030672012 **Client Name** Shannon & Wilson-Fairbanks Project Name/# 31-1-11162-001 FIA Range **Client Sample ID** 1162-022803-1C8 Matrix Soil/Solid

All Dates/Times are Alaska Standard Time

Printed Date/Time Collected Date/Time **Received Date/Time Technical Director**

03/18/2003 15:32 02/28/2003 10:50 03/05/2003 9:20 Stephen C. Ede

03/10/03 03/12/03

Alather Stall **Released By**

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	91.9		%	SM20 2540G			03/12/03	MAH
fetals by ICP/MS								
Lead	99.1	7.46	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672013
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID	31-1-11162-001 FIA Range 1162-022803-1C10
Matrix	Soil/Solid

All Dates/Times are Alask	a Standard Time	
Printed Date/Time	03/18/2003 15:32	
Collected Date/Time	02/28/2003 10:55	
Received Date/Time	03/05/2003 9:20	
Technical Director	Stephen C. Ede	
Released By	they SA	2l

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
		_				×.		
Solids								3
Total Solids	92.3		%	SM20 2540G			03/12/03	MAH
Metals by ICP/MS								
Lead	81.6	7.60	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

		6	Released By	eather Stal
Matrix	Soil/Solid		Technical Director	Stephen C. Ede
lient Sample ID	1162-030303-1C15		Received Date/Time	03/05/2003 9:20
Project Name/#	31-1-11162-001 FIA Range		Collected Date/Time	03/03/2003 14:50
Client Name	Shannon & Wilson-Fairbanks		Printed Date/Time	03/18/2003 15:32
SGS Ref.#	1030672014		All Dates/Times are Ala	ska Standard Time

				5				
Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	89.4		%	SM20 2540G			03/12/03	MAH
letals by ICP/MS					<u>8</u>			
Lead	17.5	0.384	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672015
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID Matrix	31-1-11162-001 FIA Range 1162-022803-1G2A Soil/Solid

All Dates/Times are Alask	a Standard Time
Printed Date/Time	03/18/2003 15:32
Collected Date/Time	02/28/2003 11:00
Received Date/Time	03/05/2003 9:20
Technical Director	🖌 Stephen C. Ede
Released By	ather SALa

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids				*				
Total Solids	91.3		%	SM20 2540G			03/12/03	MAH
Metals by ICP/MS								5
Lead	1600	7.63	mg/Kg	SW846 6020	(03/10/03	03/12/03	KGF

1030672016 SGS Ref.# Client Name Shannon & Wilson-Fairbanks Project Name/# 31-1-11162-001 FIA Range 1162-022803-1G3 **Client Sample ID** Matrix Soil/Solid

All Dates/Times are Alaska Standard Time

Printed Date/Time **Collected Date/Time Received Date/Time Technical Director**

03/18/2003 15:32 02/28/2003 11:05 03/05/2003 9:20 Stephen C. Ede

Released By

Alathy Male

Parameter	Results	F	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids									
Total Solids	94.6			%	SM20 2540G			03/12/03	MAH
fetals by ICP/MS									
Lead	666		6.78	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672017	All Dates/Times are Ala	ska Standard Time
Client Name Project Name/# Client Sample ID	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range 1162-022803-1G4	Printed Date/Time Collected Date/Time Received Date/Time	03/18/2003 15:32 02/28/2003 11:10 03/05/2003 9:20
Matrix	Soil/Solid	Technical Director Released By	Stephen C. Ede
Sample Remarks:			in aprovance

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	95.5		%	SM20 2540G			03/12/03	MAH
Metals by ICP/MS						0		
Lead	431	7.0	8 mg/Kg	SW846 6020	(03/10/03	03/12/03	KGF

SGS Ref.#	1030672018	All Dates/Times are Alas	a Standard Time
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/18/2003 15:32
Project Name/#	31-1-11162-001 FIA Range	Collected Date/Time	02/28/2003 11:15
Client Sample ID	1162-022803-1G6	Received Date/Time	03/05/2003 9:20
Matrix	Soil/Solid	Technical Director	Stephen C. Ede
		Released By	they shall

L	(10)							
Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	90.9		%	SM20 2540G	э		03/12/03	MAH
Metals by ICP/MS								
Lead	231	7.93	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672019	All Dates/Times are Alas	ka Standard 7
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/18/200
Project Name/#	31-1-11162-001 FIA Range	Collected Date/Time	02/28/200
Client Sample ID	1162-022803-1G10	Received Date/Time	03/05/200
Matrix	Soil/Solid	Technical Director	Stephen C.

Time

003 15:32 003 11:20 003 9:20 **C. Ede**

Released By

Alather Stal

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis	Init
						Date	Date	mit
Solids								
Total Solids	90.8		%	SM20 2540G			03/12/03	MAH
Metals by ICP/MS								
Lead	83.6	7.95	mg/Kg	SW846 6020	0	3/10/03	03/12/03	KGF

SGS Ref.#	1030672020	All Dates/Times are Alas	ka Standard Time
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/18/2003 15:32
Project Name/#	31-1-11162-001 FIA Range	Collected Date/Time	02/28/2003 12:50
Client Sample ID	1162-022803-3K1	Received Date/Time	03/05/2003 9:20
Matrix	Soil/Solid	Technical Director	Stephen C. Ede
		Released By	ather stale
Sample Remarks			

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								~
Total Solids	86.5		%	SM20 2540G			03/12/03	MAH
fetals by ICP/MS				*		K 2		
Lead	11.2	0.38	2 mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672021	All Dates/Times are Ala	ska Standard Time
Client Name Project Name/# Client Sample ID	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range	Printed Date/Time Collected Date/Time	03/18/2003 15:32 02/28/2003 13:45
Matrix	1162-022803-6L8 Soil/Solid	Received Date/Time Technical Director	03/05/2003 9:20 Stephen C. Ede
	a		ather Stal
Sample Remarks			

· · · · · · · · · · · · · · · · · · ·			_					
Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	85.5		%	SM20 2540G			03/12/03	MAH
Metals by ICP/MS								
Lead	10.9	0.206	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672022	All Dates/Times are Alas	ka Standard Time
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	03/18/2003 15:32
Project Name/#	31-1-11162-001 FIA Range	Collected Date/Time	02/28/2003 14:32
Client Sample ID	1162-022803-10F0.5	Received Date/Time	03/05/2003 9:20
Matrix	Soil/Solid	Technical Director	Stephen C. Ede
		Released By	the stall

ⁿ arameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids Total Solids	79.3		%	SM20 2540G			03/12/03	MAH
fetals by ICP/MS	7.64	0.221	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672023
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID Matrix	31-1-11162-001 FIA Range 1162-022803-BKG Soil/Solid

All Dates/Times are	Alaska	Standard Tin	ne
Printed Date/Time		03/18/2002	16

Collected Date/Time Received Date/Time Technical Director 03/18/2003 15:32 02/28/2003 14:40 03/05/2003 9:20 Stephen C. Ede

they Adale **Released By**

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								l
Total Solids	79.9		%	SM20 2540G			03/12/03	МАН
Metals by ICP/MS								
Lead	22.5	0.184	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

1030672024 All Dates/Times are Alaska Standard Time SGS Ref.# Shannon & Wilson-Fairbanks **Printed Date/Time Client Name** 03/18/2003 15:32 'roject Name/# **Collected Date/Time** 02/28/2003 11:03 31-1-11162-001 FIA Range L'lient Sample ID 1162-022803-1G2B 03/05/2003 9:20 **Received Date/Time** Matrix Soil/Solid **Technical Director** Stephen C. Ede Mall **Released By**

cample Remarks:

SW6020 ICP Metals - MS/MSD recoveries for Pb, Ba were outside of acceptance criteria; post digestion spike was successful.

arameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	91.7		%	SM20 2540G			03/12/03	MAH
fetals by ICP/MS								
Lead	5150	0.949	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	1030672025
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID	31-1-11162-001 FIA Range 1162-022803-1GSA
Matrix	Soil/Solid

All Dates/Times are Alask	a Standard Time
Printed Date/Time	03/18/2003 15:32
Collected Date/Time	02/28/2003 14:00
Received Date/Time	03/05/2003 9:20
Technical Director	Stephen C. Ede
Released By	they stall

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids		3						
Total Solids	82.3		%	SM20 2540G			03/12/03	MAH
Metals by ICP/MS								
Lead	53400	17.7	mg/Kg	SW846 6020	(03/10/03	03/12/03	KGF

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix

1030672026 Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range 1162-022803-1GSA Other Solids (Wet Weight)

All Dates/Times are Alaska Standard Time

Printed Date/Time Collected Date/Time Received Date/Time Technical Director 03/18/2003 15:32 02/28/2003 14:00 03/05/2003 9:20 Stephen C. Ede

her shall **Released By**

[°] arameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Characterization								
Aqueous Phase, Total	0.0		%	SW846-1311 TCLP			03/06/03	BJS
Oil Phase, Total	0.0		%	SW846-1311 TCLP			03/06/03	BJS
Solid Phase, Total	100		%	SW846-1311 TCLP			03/06/03	BJS
TCLP Metals								
Lead	0.500 U	0.500	mg/L	SW846-6010B TCLP	(<=5)	03/07/03	03/08/03	WAW

SGS Ref.#	 481468	Method Blank	Printed	Date/Time	03/18/2003 15:32	
Client Name	Shannon & W	/ilson-Fairbanks	Prep	Batch		
Project Name/#	31-1-11162-0	01 FIA Range		Method		
Matrix	Soil/Solid			Date		

1030672001, 1030672002, 1030672003, 1030672004, 1030672005, 1030672006, 1030672007, 1030672008, 1030672009, 1030672010

Parameter		Results	Reporting Limit	Units		Analysis Date	Init
Solids					2		
Total Solids Batch		100	10	%		03/12/03	MCM
Method Instrument	SPT 4833 SM20 2540G						

SGS Ref.#	481469	Duplicate	Printed	Date/Time	03/18/2003 15:32
Client Name	Shannon & W	/ilson-Fairbanks	Prep	Batch	
Project Name/#	31-1-11162-0	01 FIA Range		Method	
¹ Original	1030680001			Date	
Matrix	Soil/Solid				
1					

1030672001, 1030672002, 1030672003, 1030672004, 1030672005, 1030672006, 1030672007, 1030672008, 1030672009, 1030672010

'arameter		Original Result	QC Result	RPD	RPD Limits	Analysis Date Init
Solids						
Fotal Solids		99.8	99.7	0	(< 5)	03/12/03 MCM
Batch Method Instrument	SPT 4833 SM20 2540G					

SGS Ref.#	481508 Method Blank	Printed Date/Time 03/18/2003 15:32	
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	
Project Name/#	31-1-11162-001 FIA Range	Method	
Matrix	Soil/Solid	Date	

1030672011, 1030672012, 1030672013, 1030672014, 1030672015, 1030672016, 1030672017, 1030672018, 1030672019, 1030672020, 1030672021, 1030672022, 1030672023, 1030672024, 1030672025

Parameter		Results	Reporting Limit	Units	8	Analysis Date	Init
Solids							
Total Solids		100		%		03/12/03	MAH
Batch Method Instrument	SPT 4834 SM20 2540G						
	* * *				•		

SGS Ref.#	480581 Leaching Blank #1 fluid	Printed Date/Time	03/18/2003 15:32
[[~] lient Name	Shannon & Wilson-Fairbanks	Prep Batch	MXT 3533
roject Name/# Matrix	31-1-11162-001 FIA Range Water (Surface, Eff., Ground)	Method Date	SW3010A 03/07/2003
	······································		

1030672026

Sample Remarks:

					Analysis	
Results	Reporting Limit	Units			Date	Init
0.500 U	0.500	mg/L			03/08/03	WAW
	0.100	mg/L			03/08/03	WAW
•	0.0500	mg/L		·	03/08/03	WAW
0.200 U	0.200	mg/L			03/08/03	WAW
0.100 U	0.100	mg/L			03/08/03	WAW
0.500 U	0.500	mg/L			03/08/03	WAW
0.300 U	0.300	mg/L			03/08/03	WAW
1.00 U	1.00	mg/L			03/08/03	WAW
0.200 U	0.200	mg/L			03/08/03	WAW
0.300 U	0.300	mg/L			03/08/03	WAW
	0.500 U 0.0387F 0.0230F 0.200 U 0.100 U 0.500 U 0.300 U 1.00 U 0.200 U	0.500 U 0.500 0.0387F 0.100 0.0230F 0.0500 0.200 U 0.200 0.100 U 0.100 0.500 U 0.500 0.300 U 0.300 1.00 U 1.00 0.200 U 0.200	0.500 U 0.500 mg/L 0.0387F 0.100 mg/L 0.0230F 0.0500 mg/L 0.200 U 0.200 mg/L 0.100 U 0.100 mg/L 0.500 U 0.500 mg/L 0.100 U 0.100 mg/L 0.500 U 0.500 mg/L 0.300 U 0.300 mg/L 1.00 U 1.00 mg/L 0.200 U 0.200 mg/L	0.500 U 0.500 mg/L 0.0387F 0.100 mg/L 0.0230F 0.0500 mg/L 0.200 U 0.200 mg/L 0.100 U 0.100 mg/L 0.500 U 0.500 mg/L 0.100 U 0.100 mg/L 0.300 U 0.500 mg/L 1.00 U 1.00 mg/L 0.200 U 0.200 mg/L	0.500 U 0.500 mg/L 0.0387F 0.100 mg/L 0.0230F 0.0500 mg/L 0.200 U 0.200 mg/L 0.100 U 0.100 mg/L 0.500 U 0.500 mg/L 0.100 U 0.100 mg/L 0.300 U 0.500 mg/L 1.00 U 1.00 mg/L 0.200 U 0.200 mg/L	0.500 U 0.500 mg/L 03/08/03 0.0387F 0.100 mg/L 03/08/03 0.0230F 0.0500 mg/L 03/08/03 0.200 U 0.200 mg/L 03/08/03 0.100 U 0.100 mg/L 03/08/03 0.500 U 0.200 mg/L 03/08/03 0.100 U 0.100 mg/L 03/08/03 0.500 U 0.500 mg/L 03/08/03 0.500 U 0.500 mg/L 03/08/03 0.300 U 0.300 mg/L 03/08/03 1.00 U 1.00 mg/L 03/08/03 0.200 U 0.200 mg/L 03/08/03 0.200 U 0.200 mg/L 03/08/03

- Method SW846-6010B TCLP

Instrument TJA Enviro II ICP P2

SGS Ref.#	480710 Method Blank	Printed Date/Time	03/18/2003 15:32
Client Name Project Name/#	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range	Prep Batch Method Date	MXT 3533 SW3010A 03/07/2003
Matrix	Water (Surface, Eff., Ground)		

1030672026

Sample Remarks:

Parameter		Results	Reporting Limit	Units	Analysis Date	Init
TCLP Metal	.8					
Antimony		0.0250 U	0.0250	mg/L	03/08/03	WAW
Arsenic		0.0250 U	0.0250	mg/L	03/08/03	WAW
Barium		0.00399F	0.00500	mg/L	03/08/03	WAW
Beryllium		0.000910F	0.00100	mg/L	03/08/03	WAW
Cadmium		0.00250 U	0.00250	mg/L	03/08/03	WAW
Chromium		0.0100 U	0.0100	mg/L	03/08/03	WAW
Copper		0.00500 U	0.00500	mg/L	03/08/03	WAW
Lead		0.0250 U	0.0250	mg/L	03/08/03	WAW
Nickel		0.0150 U	0.0150	mg/L	03/08/03	WAW
Selenium		0.0500 U	0.0500	mg/L	03/08/03	WAW
Silver		0.0150 U	0.0150	mg/L	03/08/03	WAW
Vanadium		0.00500 U	0.00500	mg/L	03/08/03	WAW
Zinc		0.0150 U	0.0150	mg/L	03/08/03	WAW
Batch Method	MIP 4095 SW846-6010B TCLP					Verywania

Method Instrument

TJA Enviro II ICP P2

SGS Ref.#	480713 Lab Control Sample	Printed Date/Time	03/18/2003 15:32
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Water (Surface, Eff., Ground)	Prep Batch Method Date	MXT 3533 SW3010A 03/07/2003
QC results affect the	following production samples:		

1030672026

Sample Remarks:

LCS

arameter				QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
TCLP Metals	3										
Arsenic			LCS	1.89	95	(85-115)			2 mg/L	03/08/03	WAW
Barium			LCS	1.93	96	(85-115)			2 mg/L	03/08/03	WAW
Cadmium			LCS	1.99	100	(85-115)			2 mg/L	03/08/03	WAW
Chromium			LCS	2.00	100	(85-115)			2 mg/L	03/08/03	WAW
Copper			LCS	1.99	99	(85-115)			2 mg/L	03/08/03	WAW
Lead			LCS	2.10	105	(85-115)			2 mg/L	03/08/03	WAW
Vickel			LCS	2.03	101	(85-115)			2 mg/L	03/08/03	WAW
Selenium			LCS	1.98	99	(85-115)			2 mg/L	03/08/03	WAW
Silver			LCS	0.199	100	(85-115)			0.2 mg/L	03/08/03	WAW
Zinc			LCS	2.00	100	(85-115)			2 mg/L	03/08/03	WAW
Batch Method	MIP SW840	4095 6-6010B TC	CLP								

Instrument TJA Enviro

SW846-6010B TCLP TJA Enviro II ICP P2

SGS Ref.#	480752 Interference Std Waste	Printed Date/Time	03/18/2003 15:32
		Prep Batch	
Client Name	Shannon & Wilson-Fairbanks	Method	
Project Name/#	31-1-11162-001 FIA Range	Date	
Matrix	Water (Surface, Eff., Ground)		2
OC results affect the	following production samples:		

Parameter				QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Batch Method Instrument		4095 5 6010B iviro II ICP	P P2								
Metals Depa	rtment										
Aluminum			SIC1	248	99	(80-120)			250 mg/L	03/08/03	WAY
Calcium			SIC1	237	95	(80-120)			250 mg/L	03/08/03	WAV
Iron			SIC1	89.8	90	(80-120)			100 mg/L	03/08/03	WAY
Magnesium			SIC1	250	100	(80-120)			250 mg/L	03/08/03	WAV
Batch Method Instrument	MIP SW846 TJA En	4095 6010B viro II ICP	P2						<u> </u>		

S	GS				
.3GS Ref.#	480715	Matrix Spike	Printed Prep	Date/Time Batch Method Date	03/18/2003 15:32 MXT 3533 Waters Digest for Metals by I 03/07/2003
Original	1031226001			2-10	03/07/2003
Matrix	Other Solids	(Wet Weight)			

arameter			Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
TCLP Metals	3										
Selenium		MS	1.00 U	19.8	99	(50-125)			20 mg/L	03/08/03	WAW
		MSD		19.5	98		1	(< 20)	20 mg/L	03/08/03	WAW
Lead		MS	0.500 U	20.5	103	(50-125)			20 mg/L	03/08/03	WAW
		MSD		20.9	105		2	(< 20)	20 mg/L	03/08/03	WAW
Chromium		MS	0.200 U	19.3	96	(50-125)			20 mg/L	03/08/03	WAW
		MSD		19.8	99		2	(< 20)	20 mg/L	03/08/03	WAW
Cadmium		MS	0.0500 U	19.3	96	(50-125)			20 mg/L	03/08/03	WAW
		MSD		19.8	99		3	(< 20)	20 mg/L	03/08/03	WAW
Barium		MS	0.231	18.9	93	(50-125)			20 mg/L	03/08/03	WAW
		MSD		19.5	96		3	(< 20)	20 mg/L	03/08/03	WAW
Arsenic		MS	0.500 U	18.4	92	(50-125)			20 mg/L	03/08/03	WAW
-		MSD		18.8	94		2	(<20)	20 mg/L	03/08/03	WAW
Silver		MS	0.200 U	1.90	95	(50-125)			2 mg/L	03/08/03	WAW
		MSD		1.96	98		3	(<20)	2 mg/L	03/08/03	WAW
Batch Method Instrument	MIP 4095 SW846-6010E TJA Enviro II										

SGS Ref.#	481140 Method Blank	Printed Date/Time	03/18/2003 15:32
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	MXX 11295
Project Name/#	31-1-11162-001 FIA Range	Method	SW3050B
Matrix	Soil/Solid	Date	03/10/2003

1030672001, 1030672002, 1030672003, 1030672004, 1030672005, 1030672006, 1030672007, 1030672008, 1030672009, 1030672010, 1030672011, 1030672012, 1030672013, 1030672014, 1030672015, 1030672016, 1030672017, 1030672018, 1030672019, 1030672020

Sample Remarks:

Parameter	11 ju	Results	Reporting Limit	Units	Analysis Date Ini	it
Metals by	ICP/MS					
Aluminum		10.0 U	10.0	mg/Kg	03/12/03 Ke	GF
Antimony		0.300 U	0.300	mg/Kg	03/12/03 K	GF
Arsenic		1.00 U	1.00	mg/Kg	03/12/03 K	GF
Barium		0.500 U	0.500	mg/Kg	03/12/03 Ke	GF
Beryllium		0.100 U	0.100	mg/Kg	03/12/03 KG	GF
Cadmium		0.200 U	0.200	mg/Kg	03/12/03 KG	GF
Calcium		100 U	100	mg/Kg	03/12/03 KG	GF
Chromium		1.00 U	1.00	mg/Kg	03/12/03 KG	GF
Cobalt	Υ.	0.500 U	0.500	mg/Kg	03/12/03 KC	GF
Copper		2.00 U	2.00	mg/Kg	03/12/03 KC	GF
Iron		100 U	100	mg/Kg	03/12/03 KC	GF
Lead		0.200 U	0.200	mg/Kg	03/12/03 KC	GF
Potassium		100 U	100	mg/Kg	03/12/03 KC	GF
Selenium		1.00 U	1.00	mg/Kg	03/12/03 KC	GF
Silver		0.100 U	0.100	mg/Kg	03/12/03 KC	
Sodium		200 U	200	mg/Kg	03/12/03 KC	GF
Thallium		0.0200 U	0.0200	mg/Kg	03/12/03 KC	
Vanadium		2.00 U	2.00	mg/Kg	03/12/03 KC	ЭF
Zinc		1.00 U	1.00	mg/Kg	03/12/03 KG	
Magnesium		30.0 U	30.0	mg/Kg	03/12/03 KG	
Manganese		2.00 U	2.00	mg/Kg	03/12/03 KG	
Molybdenum		1.00 U	1.00	mg/Kg	03/12/03 KG	
Nickel		2.00 U	2.00	mg/Kg	03/12/03 KG	
Batch Method	MMS 2411 SW846 6020					-

Instrument Perkin Elmer Sciex ICP-MS P3

SGS Ref.#	481141 Lab Control Sample	Printed Date/Time	03/18/2003 15:32
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Soil/Solid	Prep Batch Method Date	MXX 11295 SW3050B 03/10/2003
			12

1030672001, 1030672002, 1030672003, 1030672004, 1030672005, 1030672006, 1030672007, 1030672008, 1030672009, 1030672010, 1030672011, 1030672012, 1030672013, 1030672014, 1030672015, 1030672016, 1030672017, 1030672018, 1030672019, 1030672020

Sample Remarks:

LCS

arameter				QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Metals by IC	P/MS										
Aluminum			LCS	43.2	86	(85-115)			50 mg/Kg	03/12/03	KGI
Antimony			LCS	44.5	89	(85-115)			50 mg/Kg	03/12/03	KGI
Arsenic			LCS	47.4	95	(85-115)			50 mg/Kg	03/12/03	KGI
Barium			LCS	47.6	95	(85-115)			50 mg/Kg	03/12/03	KGI
Beryllium			LCS	46.5	93	(85-115)			50 mg/Kg	03/12/03	KGF
Cadmium			LCS	45.8	92	(85-115)			50 mg/Kg	03/12/03	KGI
Calcium			LCS	464	93	(85-115)			500 mg/Kg	03/12/03	KGI
Chromium			LCS	46.4	93	(85-115)			50 mg/Kg	03/12/03	KGF
Cobalt			LCS	45.5	91	(85-115)			50 mg/Kg	03/12/03	KGI
ron			LCS	50.9F	102	(85-115)			50 mg/Kg	03/12/03	KGI
Copper			LCS	47.1	94	(85-115)			50 mg/Kg	03/12/03	KGI
Lead			LCS	45.9	92	(85-115)			50 mg/Kg	03/12/03	KGF
Potassium			LCS	498	100	(85-115)			500 mg/Kg	03/12/03	KGI
Selenium			LCS	44.6	89	(85-115)			50 mg/Kg	03/12/03	KGI
Silver			LCS	9.22	92	(85-115)			10 mg/Kg	03/12/03	KGI
Sodium			LCS	474	95	(85-115)			500 mg/Kg	03/12/03	KGł
Thallium			LCS	45.9	92	(85-115)			50 mg/Kg	03/12/03	KGF
/anadium			LCS	46.2	92	(85-115)			50 mg/Kg	03/12/03	KGF
Zinc			LCS	45.0	90	(85-115)			50 mg/Kg	03/12/03	KGI
Agnesium			LCS	472	94	(85-115)			500 mg/Kg	03/12/03	KGF
Manganese			LCS	46.4	93	(85-115)			50 mg/Kg	03/12/03	KGF
Aolybdenum			LCS	43.6	87	(85-115)			50 mg/Kg	03/12/03	KGF
Nickel			LCS	46.9	94	(85-115)			50 mg/Kg	03/12/03	KGF
Batch	MMS SW846	2411 6020							-		

Method SW846 6020 Instrument Perkin Elmer Sciex ICP-MS P3

SGS	

SGS Ref.#	481143	Matrix Spike	Printed	Date/Time	03/18/2003 15:32
	481144	Matrix Spike Duplicate	Prep	Batch	MXX 11295
				Method	Soils/Solids Digest for Metal
				Date	03/10/2003
Original	1030672003				
Matrix	Soil/Solid				

1030672001, 1030672002, 1030672003, 1030672004, 1030672005, 1030672006, 1030672007, 1030672008, 1030672009, 1030672010, 1030672011, 1030672012, 1030672013, 1030672014, 1030672015, 1030672016, 1030672017, 1030672018, 1030672019, 1030672020

Sample Remarks:

MS SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level. SW6020 ICP Metals - RPD for Pb was outside of acceptance limits.

MSD SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level. SW6020 ICP Metals - RPD for Pb was outside of acceptance limits

Parameter		Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Metals by	ICP/MS									
Lead		MS 6610 MSD	3400 2530	-6350* -8350*	(75-125)	29*	(< 20)	44.5 mg/Kg 44.3 mg/Kg		KG KG
Batch Method Instrument	MMS 2411 SW846 6020 Perkin Elmer	Sciex ICP-MS I	2				(,	ino ing/ing	03/12/03	KU.

GS Ref.#	481142	Bench	Spike DIGI	ESTED		Print	ed Date/Tim	ie 03/18	3/2003 15:32	
		3	- r			Prep	Batch Metho Date	MXX od Soils/	 11295 /Solids Digest f)/2003 	or Meta
Original	1030672003							05/10	/2003	
Matrix	Soil/Solid									
1030672010, 1030672019,										
1030672010,	1030672011, 103067 1030672020									
1030672010, 1030672019, Sample Remark	1030672011, 103067 1030672020									Init
1030672010, 1030672019, Sample Remark BND	1030672011, 103067 1030672020 cs:	72012, 103	QC	030672014	, 1030672015 	. 10306720	016, 103067	72017, 10306	572018, Analysis	Init
1030672010, 1030672019, Sample Remark BND	1030672011, 103067 1030672020 сs: СР/MS	72012, 103	QC	030672014	, 1030672015 	. 10306720	016, 103067	Spiked Amount	572018, Analysis	

SGS Ref.#	481160 Method Blank	Printed Date/Time	03/18/2003 15:32
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	MXX 11296
Project Name/#	31-1-11162-001 FIA Range	Method	SW3050B
Matrix	Soil/Solid	Date	03/10/2003

1030672021, 1030672022, 1030672023, 1030672024, 1030672025

Sample Remarks:

Parameter	Results	Reporting Limit	Units	 Analysis Date	Init
Metals by ICP/MS					
Aluminum	10.0 U	10.0	mg/Kg	03/12/03	KGF
Antimony	0.300 U	0.300	mg/Kg	03/12/03	KGF
Arsenic	1.00 U	1.00	mg/Kg	. 03/12/03	KGF
Barium	0.500 U	0.500	mg/Kg	03/12/03	KGF
Beryllium	0.100 U	0.100	mg/Kg	03/12/03	KGF
Cadmium	0.200 U	0.200	mg/Kg	03/12/03	KGF
Calcium	100 U	100	mg/Kg	03/12/03	KGF
Chromium	1.00 U	1.00	mg/Kg	03/12/03	KGF
Cobalt	0.500 U	0.500	mg/Kg	03/12/03	KGF
Copper	2.00 U	2.00	mg/Kg	03/12/03	KGF
Iron	100 U	100	mg/Kg	03/12/03	KGF
Lead	0.0729F	0.200	mg/Kg	03/12/03	KGF
Potassium	100 U	100	mg/Kg	03/12/03	KGF
Selenium	1.00 U	1.00	mg/Kg	03/12/03	KGF
Silver	0.100 U	0.100	mg/Kg	03/12/03	KGF
Sodium	200 U	200	mg/Kg	03/12/03	KGF
Thallium	0.0200 U	0.0200	mg/Kg	03/12/03	KGF
Vanadium	2.00 U	2.00	mg/Kg	03/12/03	KGF
Zinc	1.00 U	1.00	mg/Kg	03/12/03	KGF
Magnesium	30.0 U	30.0	mg/Kg	03/12/03	KGF
Manganese	2.00 U	2.00	mg/Kg	03/12/03	KGF
Molybdenum	1.00 U	1.00	mg/Kg	03/12/03	KGF
Vickel	2.00 U	2.00	mg/Kg	03/12/03	KGF
Batch MMS 2411	,				
111110 2711					

Method SW846 6020

Instrument Perkin Elmer Sciex ICP-MS P3

SGS

SGS Ref.#	481161 Lab Control Sample	Printed Date/Time	03/18/2003 15:32
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Soil/Solid	Prep Batch Method Date	MXX 11296 SW3050B 03/10/2003
QC results affect the	e following production samples:		

1030672021, 1030672022, 1030672023, 1030672024, 1030672025

Sample Remarks:

LCS

		23									
Parameter				QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Metals by ICP,	/MS										
Aluminum			LCS	44.1	88	(85-115)			50 mg/Kg	03/12/03	KGF
Antimony			LCS	44.2	88	(85-115)			50 mg/Kg		KGF
Arsenic			LCS	47.8	96	(85-115)			50 mg/Kg		KGF
Barium			LCS	47.0	94	(85-115)			50 mg/Kg		KGF
Beryllium			LCS	46.4	93	(85-115)			50 mg/Kg	03/12/03	KGF
Cadmium			LCS	45.4	91	(85-115)			50 mg/Kg	03/12/03	KGF
Calcium			LCS	476	95	(85-115)			500 mg/Kg	03/12/03	KGF
Chromium			LCS	45.5	91	(85-115)			50 mg/Kg	03/12/03	KGF
Cobalt			LCS	45.9	92	(85-115)			50 mg/Kg		KGF
ron			LCS	50.4F	101	(85-115)			50 mg/Kg	03/12/03	KGF
Copper			LCS	46.9	94	(85-115)			50 mg/Kg	03/12/03	KGF
Lead			LCS	47.9	96	(85-115)			50 mg/Kg	03/12/03	KGF
Potassium			LCS	474	95	(85-115)			500 mg/Kg	03/12/03	KGF
Selenium			LCS	42.8	86	(85-115)			50 mg/Kg	03/12/03	KGF
Silver	252		LCS	9.35	94	(85-115)			10 mg/Kg	03/12/03	KGF
Sodium			LCS	470	94	(85-115)			500 mg/Kg	03/12/03	KGF
Thallium			LCS	46.9	94	(85-115)			50 mg/Kg	03/12/03	KGF
/anadium			LCS	45.7	91	(85-115)			50 mg/Kg	03/12/03	KGF
Linc			LCS	46.2	92	(85-115)			50 mg/Kg	03/12/03	KGF
Aagnesium			LCS	476	95	(85-115)		15	500 mg/Kg	03/12/03	KGF
Manganese			LCS	46.6	93	(85-115)			50 mg/Kg	03/12/03	KGF
Aolybdenum			LCS	44.4	89	(85-115)			50 mg/Kg	03/12/03	KGF
lickel			LCS	46.5	93	(85-115)			50 mg/Kg	03/12/03	KGF
2	MS	2411									

MethodSW846 6020InstrumentPerkin Elmer Sciex ICP-MS P3

S	GS									
SGS Ref.#	481163 481164		x Spike x Spike Dup	licate		Prin Prej	ited Date/Tim D Batch Metho	MXX 1	1296	
Original Matrix	1030672024 Soil/Solid						Date	03/10/200	ds Digest f 93	or meta
	t the following product 1030672022, 10306	-		030672025	5			<u> </u>		
Sample Remar MS SW60	ks: 20 ICP Metals - MS/	MSD reco	veries for P	b, Ba were	outside of ac	ceptance o	riteria; post o	ligestion spike w	as success	ful.
MSD SW60	20 ICP Metals - MS/	MSD reco	veries for P	b, Ba were	outside of ac	ceptance o	riteria; post o	ligestion spike w	as successi	ful.
arameter	0	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
fetals by I	CP/MS									
ead	MS MSD	5150	1350 1250	-7550° -7820°	* (75-125) *	7	(< 20)	44.7 mg/Kg		KGF
Batch Method Instrument	MMS 2411 SW846 6020			-7620		/	(<20)	44.4 mg/Kg	03/12/03	KGF

Instrument Perkin Elmer Sciex ICP-MS P3

SGS Ref.#	481162	Bench	Spike DIG	ESTED	¢.	Printo Prep	ed Date/Time Batch Method Date	MXX Soils/S	2003 15:32 11296 olids Digest fo	or Meta
Original	1030672024						Date	03/10/2	2003	
Matrix	Soil/Solid									
1030672021, 10 Sample Remarks BND	030672022, 103067 :	72023, 103 Original	0672024, 1	030672025	MS/MSD					

Instrument SW846 6020 Perkin Elmer Sciex ICP-MS P3

SGS/CT&E Environmental Services Alaska Division Level I Data Report

Project: Client: CT&E Work Order:

31-1-11162-001 FIA Range Shannon & Wilson-Fairbanks 1030680

Contents:

Case Narrative Chain of Custody/Sample Rec Form Final Report Pages QC Summary Pages

Note:

Unless otherwise noted, all quality assurance/quality control criteria are in compliance with the proper regulatory authority and/or SGS's Quality Assurance Program Plan.

SGS Member of the SGS Group (Societe Generale de Surveillance)

ĺ

U

Case Narrative

Client Workorder	SHANFBK 1030680	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range	·	Printed Date/Time	3/24/2003	9:00	
Sample ID		Client Sample ID					
481163	MS SW6020 ICP Metal	s - MS/MSD recoveries for Pb, Ba	were outside of acceptance criteria	a; post digestion spik	te was succes	sful.	11

481164 MSD

SW6020 ICP Metals - MS/MSD recoveries for Pb, Ba were outside of acceptance criteria; post digestion spike was successful.

. 1

6.1

1030680	CCOrd Is Parameters/Sam (include pres	Service Contract of the service of t					1, Reinquished	Signalur Signa - 420 Signa	Carl Son Melody Donn 316403 Printed Name: Date:	company:	1. Received By: 2, Received By: 3.	Phinted Name: Date: 3-7-03 Printed Name:	company: company: SGS	
-	Stannon & Wilson, Inc. Chain of Cust 400 N. 34th Street, Suite 100 11500 Clive Bvd., Suite 276 Seatte, WA 89103 51. Louis, MO 63141 (206) 632-8020 (314) 872-8170 2005 Hill Road 5430 Fairbanks Street, Suite 3 Zotis Hill Road 5430 Fairbanks Street, Suite 3	dentity Lab No. \ Time Sampled Co.	X Sabel 00:C	3M 7513703			Relinquished	COC Seals/Intact? YN(0)	Nろ()// Received Good Cond Cold U, TVC Mined Name: as □ No □ Delivery Method: ,	atripping bill, If any)	und Time: SHU1424G	Proceed instructions: LEVELT & EDD Mathematical Name: De Minised Name: De De Manuel Name: De De De Manuel Name: De		.10.01/110

3

J

SGS		1030680
	SAMPLE RECEIPT FORM	CT&E WO#:
Yes No	II B	
	Are samples RUSH, priority, or within 72 hrs. of hold time?	a kaanaa kaana kaana kata a kaana kaana kaana kaana kaana
NA	If yes have you done e-mail notification?	Due Date: 320/03
$- \leq$	Are samples within 24 hrs. of hold time or due date?	Received Date/Time: 3603@30
N A	If yes, have you spoken with Supervisor?	Received Temperature*:
	Archiving bottles - if required, are they properly marked?	
	Are there any problems? PM Notified?	Thermometer ID: Probe C
$\equiv \Delta A$	Were samples preserved correctly and pH verified?	<u>Cooler ID</u> <u>Temp Blank</u> <u>Cooler Temp</u> <u>4.7 C</u> <u>4.8 C</u>
	If this is for PWS, provide PWSID	
	Will courier charges apply?	
	Method of payment?	
	Data package required? (Level: 1 2 / 3)	
		*Temperature readings include thermometer correction factors
$- \checkmark$	Is this a DOD project? (USACE, Navy, AFCEE)	Delivery method (circle one): Commercial / Client SGS-CT&E
	If yes, complete DOD block below	Additional Sample Remarks
Yes No		Extra Sample Volume?
	Is received temperature $4 \pm 2^{\circ}C$?	Limited Sample Volume?
	Exceptions: Samples/Analyses Affected:	Field pres'd for volatiles?
		Field-filtered for dissolved?
1		Lab-filtered for dissolved?
	a se	Ref Lab required?
	Rad Screen performed?	
	Result:	Yes No
	Was there an airbill? Note #:	Was client notified of problems?
	Was cooler sealed with custody seals? Fax'd to COE?	Individual contacted:
	#/where:	Date/Time:
;	Were seal intact upon arrival?	Phone/Fax:
	Was there a COC with cooler?	Reason for contact:
	Was the COC filled out properly?	
<u> </u>	Did the COC indicate ACOE / AFCEE project? (if applicable) Did the COC and samples correspond?	8 · · · · · · · · · · · · · · · · · · ·
	Were all sample packed to prevent breakage?	
	Packing material:	
	Were all samples unbroken and clearly labeled?	
	Were all samples sealed in separate plastic bags?	
	Were all bottles for volatiles free of headspace?	CT&E Contact:
	Were correct container / sample sizes submitted?	C. W. Contact.
<u> </u>	Is sample condition good?	
otes:		8 8
		s

Completed by (sign): nan (print): benha 2h Ш Login proof (check one): waives _____ required _____ performed by: that in FOISI08, 01-22-03 revision, file document forms approved FOISI08(SRF) doc

a.

1030680		N II II N N Other 0 C N 2 0 1 1 0 1 </th <th>~</th> <th></th> <th>Nulvely Deber han wate: 3/6/03</th>	~		Nulvely Deber han wate: 3/6/03
CT&E WO#:	Container T	G G H Z Other G C H Z Other G C S Other G C S Other a t C C S Other			Completed by: Muloula Duba
SAMPLE RECEIPT FORM (page 2)	Container Volume	5 2 1 6 4 8 4 Other 0 5 2 0 0 0 0 0 0 5 m m z z m m L L L L			
		Mai Test Q T 11.	2 true lead	X 	Bottle Totals
		: Cont. ID	4	×	r Firm Prodess, et 22 et ice

SGS

CT&E WO#:

SAMPLE RECEIPT FORM FOR TRANSFERS From FAIRBANKS, AK OR HONOLULU, HAWAII To ANCHORAGE, AK

otes:						
			2	· · · · · ·		
		8				
		2				
eipt Date / Time:	3-7-07	2900				
OLER AND TEM	P BLANK READ					
Cooler ID	<u>Temp Blank</u> 4. Z	Cooler 3.	Cooler ID	<u>Temp Blank</u>	<u>Cooler</u>	
	3	·				
			а <u>— — — — — — — — — — — — — — — — — — —</u>			
3						

ß

CT&E Environmental Ser ĹΙ Signature: in in f Date/Time: VICES INC. VICES INC. CT&E Environmental Services Inc. CUSTODY SEAL Signature: :smiT\stad och ? 50

TC	CLP SAMPLE CHA	ARACTERIZ	ZATION		
<u>م)</u> #HSN#:	980-1_ Date: <u>3</u> 1-	7/03	TCup 7	<i>b</i>	а ,
	: Container Vol (mL): % (xylene misc.)	820	5	· ·	
Middle	% (H20 misc.)	2 2 8	a.	2 2	•
Bottom/D) 0 _% (solids) Drown Ju	ne Dovo	ler w/ ve	inio	debie
HSN#:	Date:		* 1919 1		* * *
	Container Vol (mL):% (xylene misc.)		-	5	
Middle	% (H20 misc.)	а — ¹⁹ [—]			
Bottom	% (solids)	S.			2
HSN#:	Date:	z			e F
Sample Vol (mL): Top	Container Vol (mL): % (xylene misc.)		<u>е</u> 		- -
Middle	% (H20 misc.)	915 A. D.	· · · · · · · · · · · · · · · · · · ·		
Bottom	% (solids)	. ¹			
÷					6

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.sgsenvironmental.com

Andrea Carlson Shannon & Wilson-Fairbanks 2055 Hill Road Fairbanks, Fairbanks North Star AK 99707

Work Order:1030680
31-1-11162-001 FIA RangeClient:Shannon & Wilson-FairbanksReport Date:March 24, 2003

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Control Manual that outlines this program is available at your request.

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth in our Quality Assurance Program Plan.

If you have any questions regarding this report or if we can be of any other assistance, please call your SGS Project Manager at (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- PQL Practical Quantitation Limit (reporting limit).
- U Indicates the analyte was analyzed for but not detected.
- F Indicates an estimated value that falls below PQL, but is greater than the MDL.
- J Indicates an estimated value that falls below PQL, but is greater than the MDL.
- B Indicates the analyte is found in the blank associated with the sample.
- The analyte has exceeded allowable limits.
- GT Greater Than
- D Secondary Dilution
- LT Less Than
- ! Surrogate out of range

SGS Ref.#	1030680001
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID Matrix	31-1-11162-001 FIA Range 1162-022803-1G-SB Soil/Solid

All Dates/Times are Alask	a Standard Time
Printed Date/Time	03/24/2003 9
Collected Date/Time	02/28/2003 14
Received Date/Time	03/06/2003 15
Technical Director	Stepher C.Ede

)3 9:00)3 14:00 3 15:10 Stephen C. Ede

Thonde Hucke **Released By**

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids					ř.			
Total Solids	99.8		%	SM20 2540G			03/12/03	MCM
Metals by ICP/MS								
Lead	54600	14.8	mg/Kg	SW846 6020		03/10/03	03/12/03	KGF

SGS Ref.#	103
Client Name	Sha
Project Name/#	31-
Client Sample ID	116
Matrix	Oth

30680002 annon & Wilson-Fairbanks -1-11162-001 FIA Range 62-022803-1G-SB her Solids (Wet Weight)

All Dates/Times are Alaska Standard Time

Printed Date/Time Collected Date/Time Received Date/Time Technical Director 03/24/2003 9:00 02/28/2003 14:00 03/06/2003 15:10 Stephen-Ede

Released By honde trucke C

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
 Characterization								
Aqueous Phase, Total	0.0		%	SW846-1311 TCLP			03/07/03	BJS
Oil Phase, Total	0.0		%	SW846-1311 TCLP			03/07/03	BJS
Solid Phase, Total	100		%	SW846-1311 TCLP			03/07/03	BJS
ICLP Metals								
Lead	606	* 4	5.00 mg/L	SW846-6010B TCLP	(<=5)	03/20/03	03/21/03	MTG

SGS Ref.#	481468 Method Blank	Printed Date/Time	03/24/2003 9:00
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	05/24/2005 9:00
Project Name/#	31-1-11162-001 FIA Range	Method	
Matrix	Soil/Solid	Date	

1030680001

Parameter	9	Results	Reporting Limit	Units	Analysis Date Init
Solids					
Total Solids		100		%	03/12/03 MCM
Batch	SPT 4833				
Method Instrument	SM20 2540G				

1030680001

) Parameter	· · · · · · · · · · · · · · · · · · ·	Original Result	QC Result	RPD	RPD Limits	Analysis Date Init
Solids Total Solids			8			5
Batch Method Instrument	SPT 4833 SM20 2540G	99.8	99.7	0	(<5)	03/12/03 MC

SGS Ref.#	482002 Leaching Blank #1 fluid	Printed Date/Time	03/24/2003 9:00
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Water (Surface, Eff., Ground)	Prep Batch Method Date	MXT 3535 SW3010A 03/20/2003
	11		

1030680002

Sample Remarks:

Parameter		Results	Reporting Limit	Units	Analysis Date	Init
TCLP Metal	Ls				Datt	
Arsenic		0.500 U	0.500	mg/L	03/21/03	MTG
Barium		0.100 U	0.100	mg/L	03/21/03	MTG
Cadmium		0.0500 U	0.0500	mg/L	03/21/03	MTG
Chromium		0.200 U	0.200	mg/L	03/21/03	MTG
Copper		0.100 U	0.100	mg/L	03/21/03	MTG
Lead		0.500 U	0.500	mg/L	03/21/03	MTG
Nickel		0.300 U	0.300	mg/L	03/21/03	MTG
Selenium		1.00 U	1.00	mg/L	03/21/03	MTG
Silver		0.200 U	0.200	mg/L	03/21/03	MTG
Zinc		0.300 U	0.300	mg/L	03/21/03	MTG
Batch	MIP 4107			-	03/21/05	
Method	$\frac{1011}{100}$					

Method SW846-6010B TCLP Instrument

TJA Enviro II ICP P2

SGS

SGS Ref.#	482304 Leaching Blank #1 fluid	Printed Date/Time	03/24/2003 9:00
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	MXT 3535
Project Name/#	31-1-11162-001 FIA Range	Method	SW3010A
Matrix	Water (Surface, Eff., Ground)	Date	03/20/2003

QC results affect the following production samples:

1030680002

ample Remarks:

Parameter		Results	Reporting Limit	Units	Analysis Date	Init
						11111
TCLP Metals				2		
Arsenic						
				mg/L	03/21/03	MTG
Barium				mg/L	03/21/03	MTG
Cadmium				mg/L	03/21/03	MTG
Chromium				mg/L	03/21/03	MTG
Copper				mg/L	03/21/03	MTG
Lead				mg/L	03/21/03	MTG
Nickel	Yan			mg/L	03/21/03	MTG
elenium				mg/L	03/21/03	MTG
Silver				mg/L	03/21/03	MTG
Linc				mg/L	03/21/03	MTG
Batch	MIP 4107			-	05/21/05	14110
	SW846-6010B TCLP					

Instrument TJA Enviro II ICP P2

A BIVIO II .

SGS Ref.#	482387 Method Blank	Printed Date/Time	03/24/2003 9:00
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Water (Surface, Eff., Ground)	Prep Batch Method Date	MXT 3535 SW3010A 03/20/2003
OC manulas affected in a			

1030680002

Sample Remarks:

Parameter	Results	Reporting	Units	Analysis Date	Init
TCLP Metals					
Antimony	0.0250	U 0.0250	mg/L	03/21/03	MTO
Arsenic	0.0250		mg/L	03/21/03	MTG MTG
Barium	0.00500	U 0.00500	mg/L	03/21/03	MTG
Beryllium	0.00100	U 0.00100	mg/L	03/21/03	MTG
Cadmium	0.00250	U 0.00250	mg/L	03/21/03	MTG
Chromium	0.0100 1	U 0.0100	mg/L	03/21/03	MTG
Copper	0.00500	U 0.00500	mg/L	03/21/03	MTG
Lead	0.0250 0	U 0.0250	mg/L	03/21/03	MTG
Nickel	0.0150 (J 0.0150	mg/L	03/21/03	MTG
Selenium Silver	0.0500 t		mg/L	03/21/03	MTG
Vanadium	0.0150 t		mg/L	03/21/03	MTG
Zinc	0.00500		mg/L	03/21/03	MTG
	0.0150 L	J 0.0150	mg/L	03/21/03	MTG
Batch	MIP 4107				

Method SW846-6010B TCLP Instrument

TJA Enviro II ICP P2

SGS Ref.#	482390 Lab Control Sample	Printed Date/Time	03/24/2003 9:00
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Water (Surface, Eff., Ground)	Prep Batch Method Date	MXT 3535 SW3010A 03/20/2003
OC results affect the	following production complex		

Sample Remarks:

LCS

Parameter				QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
TCLP Metals	3										9
Arsenic			LCS	3.67	92	(85-115)			4 mg/L	03/21/03	MTG
Barium			LCS	3.92	98	(85-115)			4 mg/L	03/21/03	MTG
Cadmium			LCS	3.87	97	(85-115)			4 mg/L	03/21/03	MTG
Chromium			LCS	3.94	99	(85-115)			4 mg/L	03/21/03	MTG
Copper			LCS	3.99	100	(85-115)			4 mg/L	03/21/03	MTG
Lead			LCS	4.02	101	(85-115)			4 mg/L	03/21/03	MTG
Nickel			LCS	3.84	96	(85-115)			-		MTG
Selenium			LCS	3.94	98	(85-115)			4 mg/L	03/21/03	
Silver			LCS	0.420	105	(85-115)			4 mg/L	03/21/03	MTG
Zinc			LCS	3.82	95	· ·			0.4 mg/L	03/21/03	MTG
Batch Method	MIP SW846	4107 -6010B T		5.02	<i>,</i> ,	(85-115)			4 mg/L	03/21/03	MTG

MethodSW846-6010B TCLPInstrumentTJA Enviro II ICP P2

SGS Ref.#	482524 Interference Std Waste	Printed Date/Time	03/24/2003 9:00
Client Name Project Name/# Matrix	, Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Water (Surface, Eff., Ground)	Prep Batch Method Date	
QC results affect the	e following production samples:		

Parameter	5		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked	Analysis	Init
Batch Method Instrument	MIP 4107 SW846 6010B TJA Enviro II ICP	P2	24					Amount	<u> </u>	
							٠			500
Metals Depa	rtment									
Aluminum	:	SIC1	244	97	(.80-120)			250 mg/L	03/21/03	MTG
Calcium	:	SIC1	231	92	(80-120)			250 mg/L	03/21/03	MTG
Iron	\$	SIC1	90.0	90	(80-120)			100 mg/L	03/21/03	MTG
Magnesium	5	SIC1	247	99	(80-120)			250 mg/L	03/21/03	MTG
Batch Method Instrument	MIP 4107 SW846 6010B TJA Enviro II ICP F	2			·			mg E	05/21/05	

SGS Ref.#	481160 Method Blank	Printed Date/Time	03/24/2003 9:00
Client Name Project Name/#	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range	Prep Batch Method	MXX 11296 SW3050B
Matrix	Soil/Solid	Date	03/10/2003

1030680001

ample Remarks:

Parameter	Results	Reporting Limit	Units	Analys Date	
Metals by ICP/MS					
Aluminum	10.0 U	10.0	mg/Kg	03/12/0	2 800
Antimony	0.300 U	0.300	mg/Kg	03/12/0	
Arsenic	1.00 U	1.00	mg/Kg	03/12/0	
Barium	0.500 U	0.500	mg/Kg		
Beryllium	0.100 U	0.100	mg/Kg	03/12/0	
Cadmium	0.200 U	0.200	mg/Kg	03/12/0	
Calcium	100 U	100	mg/Kg	03/12/0	
Thromium	1.00 U	1.00	mg/Kg	03/12/0	
Cobalt	0.500 U	0.500	-	03/12/0	
Copper	2.00 U	2.00	mg/Kg	03/12/0	
on	2.00 U 100 U	2.00 100	mg/Kg	03/12/0	
ead			mg/Kg	03/12/0	3 KGF
otassium	0.0729F	0.200	mg/Kg	03/12/03	3 KGF
elenium	100 U	100	mg/Kg	03/12/03	3 KGF
lver	1.00 U	1.00	mg/Kg	03/12/03	3 KGF
	0.100 U	0.100	mg/Kg	03/12/03	3 KGF
odium	200 U	200	mg/Kg	03/12/03	KGF
hallium	0.0200 U	0.0200	mg/Kg	03/12/03	KGF
anadium	2.00 U	2.00	mg/Kg	03/12/03	KGF
nc	1.00 U	1.00	mg/Kg	03/12/03	
agnesium	30.0 U	30.0	mg/Kg	03/12/03	
anganese	2.00 U	2.00	mg/Kg	03/12/03	
olybdenum	1.00 U	1.00	mg/Kg	03/12/03	
ckel	2.00 U	2.00	mg/Kg	03/12/03	
Batch MMS 2411				03/12/05	KUL

Method SW846 6020

Instrument Perkin Elmer Sciex ICP-MS P3

SGS Ref.#	481161 Lab Control Sample	Printed Date/Time	03/24/2003 9:00
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Range Soil/Solid	Prep Batch Method Date	MXX 11296 SW3050B 03/10/2003
QC results affect the	e following production samples:		

Sample Remarks:

LCS

Parameter			·	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Metals by ICI	?/MS										
Aluminum			LCS	44.1	88	(85-115)			50 m = 177	02/10/02	KO
Antimony			LCS	44.2	88	(85-115)			50 mg/Kg		KG
Arsenic			LCS	47.8	96	(85-115)			50 mg/Kg		KG
Barium			LCS		94	(85-115)			50 mg/Kg		KG
Beryllium			LCS		93	(85-115)			50 mg/Kg		KGI
Cadmium			LCS		91	(85-115)			50 mg/Kg		KG
Calcium			LCS	476	95	(85-115)			50 mg/Kg		KG
Thromium			LCS	45.5	91	(85-115)			500 mg/Kg		KGI
Cobalt			LCS	45.9	92	(85-115)			50 mg/Kg		KGI
opper			LCS	46.9	94	(85-115)			50 mg/Kg		KG
on			LCS	50.4F	101	(85-115)			50 mg/Kg		KGI
ead			LCS	47.9	96	(85-115)			50 mg/Kg		KGF
otassium			LCS	474	95	(85-115)			50 mg/Kg		KGI
lenium			LCS	42.8	86	(85-115)			500 mg/Kg		KGI
lver			LCS	9.35	94	(85-115)			50 mg/Kg		KGF
odium			LCS	470	94	(85-115)			10 mg/Kg		KGF
allium			LCS	46.9	94	(85-115)			500 mg/Kg		KGF
inadium			LCS	45.7	91	(85-115)			50 mg/Kg		KGF
nc			LCS	46.2	92	(85-115)			50 mg/Kg (KGF
agnesium			LCS	476	95	(85-115)			50 mg/Kg (KGF
anganese			LCS	46.6	93	(85-115)			500 mg/Kg (KGF
olybdenum			LCS	44.4	89	(85-115)			50 mg/Kg (_	KGF
ckel			LCS	46.5	93				50 mg/Kg (KGF
	MS V846	2411 6020	200	10.5		(85-115)			50 mg/Kg ()	3/12/03	KGF

Instrument Perkin Elmer Sciex ICP-MS P3

S	GS									
SGS Ref.# Original Matrix	481162 1030672024	Bench	Spike DIG	ESTED		Prin Prej	nted Date/Time P Batch Method Date	MXX	2003 9:00 11296 Solids Digest f 2003	or Metals
	Soil/Solid the following product	ion samples:								
Sample Remark BND	S:									,
Parameter		Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Metals by I(CP/MS									
34-41 - 3	BND MMS 2411 SW846 6020 Perkin Elmer Sciex	5150	6980 3	104	(75-125)			2180 mg/;	Kg 03/12/03	KGF

Perkin Elmer Sciex ICP-MS P3

S	GS	8								
SGS Ref.#	481163	Matrix	Spike			Prin	ted Date/Tim	e 03/24/200	3 9:00	
	481164	Matrix	Spike Dup	licate		Prep	Batch	MXX 1		
							Metho		ds Digest fo	or Metals
Original	1030672024	4					Date	03/10/200	3	
Matrix	Soil/Solid									
	ks: 020 ICP Metals - M 020 ICP Metals - M									
arameter		Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
fetals by 1	ICP/MS	•2								
ead	MS	S 5150	1350	-7550	* (75-125)			44.7 mg/Kg	03/12/03	KGF
_	MS	3D	1250	-7820*	*	7	(<20)	44.4 mg/Kg		KGF
Batch Method	MMS 2411 SW846 6020							00		,

Instrument Perkin Elmer Sciex ICP-MS P3

SGS/CT&E Environmental Services Alaska Division Level I Data Report

Project: Client: CT&E Work Order:

31-1-11162-001 FIA Shooting Rn Shannon & Wilson-Fairbanks 1031359

Contents:

Case Narrative Chain of Custody/Sample Rec Form Final Report Pages QC Summary Pages

Note:

Unless otherwise noted, all quality assurance/quality control criteria are in compliance with the proper regulatory authority and/or SGS's Quality Assurance Program Plan.

SGS Member of the SGS Group (Societe Generale de Surveillance)

Sample ID

Case Narrative

Client Workorder	SHANFBK 1031359	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Shooting Rn	Printed Date/Time	4/1/2003	15:49	
---------------------	--------------------	--	-------------------	----------	-------	--

1031359001 PS 1162-022703-1E6

Client Sample ID

SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level.

1031359002 PS 1162-022703-1E8

SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level.

1031359003 PS 1162-022703-1E10

SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level.

0	Page of Laboratory SS-S Attn: ALC Ody	2015 From Soils From BLADTING PANGE	Relinquished By: 3 Signature: Time: Printed Name: Date: Company:	Received By: 2. Signature. Time: 092.5 Main: Main: 092.5 Main: 1-25.5 Company: Sc. Sc. T. L.
1031359	iy Record Analysis Parametera/Sample Container Description (include preservative if used)		Reinguland By. 2. Reingloche Man. India Debenham Pelacu Debenham	Americal Name:
11七年 (0328	Chain of Custody Record	Reference in the second	Relinquished By 1. Signature: Time: 11:20 Signature: Finadorum: Date: 32:3105 Finite Milled Name: Date: 32:3105 Finite Milled Name: Date: 32:3105 Finite Company: Company:	Received By: I Heck Signature MULANDANA Priload Name: 11:30 Signature: Priload Name: 2127(13 Printed Name: MPC Jory Company: Company: Company:
RUC		Time Sample FTM F1:1 F1:20 F1:20 F1:25 F1:25 F1:25	Sample Receipt Total Number of Containers COC Seals/Intact? Y/N/NA NA Received Good Cond/Cold 5.77 Delivery Method: MMU ethech ethpping bill, if eny)	- 3-DAY (W
	Shannon & Wilson, Inc. 400 N. 34th Street, Sulle 100 11500 clive Bivd., Sulle 276 400 N. 34th Street, Sulle 100 11500 clive Bivd., Sulle 276 2005 Hill Road 51.1041, MO 63141 2005 Hill Road 5430 fairbanks Street, Sulle 3 2005 Hill Road 5430 fairbanks Street, Sulle 3	Sample Identity Lab No. 1162-072703-166 0 A 1162-072703-168 2 A 1162-072703-1610 3 A	Project Information Sampi Project Number:31-11162-001 Total Number of Project Name:FIK-fN0N.VEPANGE Coc Seals/Intac Contact:JWLIE FEENEEL Received Good Ongoing Project? Ves 0 No 0 Delivery Method Sampler: ANDVEALCAFLSAN (attach aritpping bi	Instructions: Level 1 & CDAY Constructions: Level 1 & CDAY Constructions: Level 1 & CDD Instructions: Level 1 & CDD Instructions: Level 1 & CDD Instructions: Level 1 & CDD Instribution: While - withigment - returned to Shannon & Wilson w/ Laboratory report Yallow - withigment - for consignee files Phys. Shannon & Wilson - Job File 1991/UR

F-19-91/

<u>'</u>3

SGS Yes No Yes No Yes Ala Ala	SAMPLE RECEIPT FORM Are samples RUSH priority, or within 72 hrs. of hold time? If yes have you done <i>e-mail notification</i> ? Are samples within 24 hrs. of hold time or due date? If yes, have you spoken with Supervisor? Archiving bottles – if required, are they properly marked? Are there any problems? PM Notified? Were samples preserved correctly and pH verified?	1031359 CI&E WO#: Due Date: 41,103 Received Date/Time: 3,27103@130 Received Temperature*: Thermometer ID: Probe C Cooler ID Temp Blank 5,72
Yes No	If this is for PWS, provide PWSID	"Temperature readings include thermometer correction factors Delivery method (circle one): Commercial / Client?) SGS-CT&E Additional Sample Remarks
	Rad Screen performed? Kesult: Was there an airbill? Note #: Was cooler sealed with custody seals? Fax'd to COE? #/where: Were seal intact upon arrival? Was there a COC with cooler? Was the COC filled out properly? Did the COC indicate ACOE / AFCEE project? (if applicable) Did the COC and samples correspond? Were all sample packed to prevent breakage? Packing material: Were all samples unbroken and clearly labeled? Were all bottles for volatiles free of headspace? Were correct container / sample sizes submitted? Is sample condition good?	Yes No

Completed by (sign): Malada Dehasha	A man Maluel D la l
Login proof (check one): waived required	performed by:
n FORMERS, ut 22 0) recision the document forms approved FORMORS SRF) doc	performed by 4

.

RSRF1.Acc
approved Funders
, tile document for
india rad for 22 fee
Form Poolars,

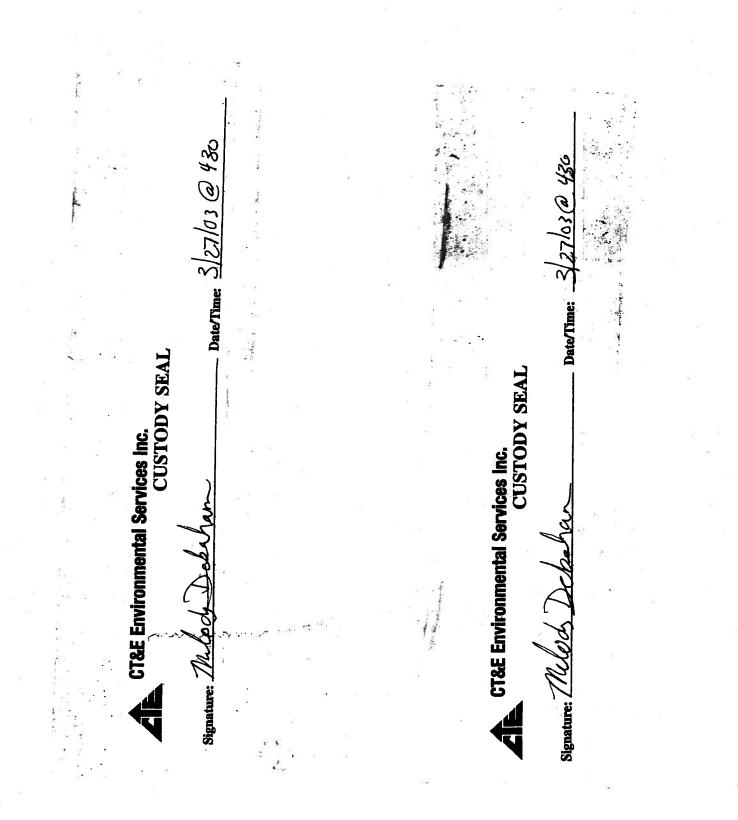
Other Completed by: MUlady Deberhan Date: 3/27/03. Preservative H NI N N 2 c a a a 5 c 2 0 11 S 11 2 1 3 3 = Z C m = U _ Zoso × Other Container Type N C C S a u c c b l p e e e a ΗŪLШ ပပ ٩ N X Other 4 0 ^N 3 3 Container Volume × 0 % + ° E – - 1 0 C - こう ヨー . LI O CI J v. o o e l ____ Г В 00 **Bottle Totals** Test lead 2 Mai rix Cont. ID J -3 11 5

SGS

SAMPLE RECEIPT FORM (page 2)

031359

CT&E WO1


CT&E WO#:

6

SAMPLE RECEIPT FORM FOR TRANSFERS From FAIRBANKS, AK OR HONOLULU, HAWAII To ANCHORAGE, AK

tes:		×	1. 	8 ¹²	
		<u>.</u>			
12					
8	9. U.	5	ia R	-	36 - ¹⁷
int Data (Timur 7.0	8-03 0928	2 B	20	21	
LER AND TEMP BLA	NK READINGS*				
LER AND TEMP BLA	NK READINGS* mp Blank <u>Cooler</u> 2.2 <u>5.5</u>	Cooler ID	Temp Blank	Cooler	
DLER AND TEMP BLA	mp Blank Cooler	<u>Cooler ID</u>	<u>Temp Blank</u>	<u>Cooler</u>	

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.sgsenvironmental.com

Andrea Carlson Shannon & Wilson-Fairbanks 2055 Hill Road Fairbanks, Fairbanks North Star AK 99707

Work Order:	1031359 31-1-11162-001 FIA Shooting Rn
Client: Report Date:	Shannon & Wilson-Fairbanks April 01, 2003
F	riphi 01, 2005

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Control Manual that outlines this program is available at your request.

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth in our Quality Assurance Program Plan.

If you have any questions regarding this report or if we can be of any other assistance, please call your SGS Project Manager at (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- PQL Practical Quantitation Limit (reporting limit).
- U Indicates the analyte was analyzed for but not detected.
- F Indicates an estimated value that falls below PQL, but is greater than the MDL.
- J Indicates an estimated value that falls below PQL, but is greater than the MDL.
- B Indicates the analyte is found in the blank associated with the sample.
- * The analyte has exceeded allowable limits.
- GT Greater Than
- D Secondary Dilution
- LT Less Than
- ! Surrogate out of range

SGS Ref.#	1031359001
Client Name	Shannon & Wilson-Fairbanks
Project Name/# Client Sample ID Matrix	31-1-11162-001 FIA Shooting Rn 1162-022703-1E6 Soil/Solid

All Dates/Times are Al	aska Standard Time
Printed Date/Time	04/01/2003 15
Collected Date/Time	03/27/2003 1:
Received Date/Time	03/27/2003 11
Technical Director	Stephen C. Ede
,	L

15:49 1:17 11:30 de

Released By Staten C. Ede

Sample Remarks:

SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level.

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								
Total Solids	95. 9		%	SM20 2540G			03/28/03	MCM
Metals by ICP/MS								
Lead	439	1.04	mg/Kg	SW846 6020	C	3/28/03	04/01/03	KGF

SGS Ref.#	1031359002	All Dates/Times are Alaska Standard Time		
Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	04/01/2003 15:49	
Project Name/#	31-1-11162-001 FIA Shooting Rn	Collected Date/Time	03/27/2003 1:20	
Client Sample ID	1162-022703-1E8	Received Date/Time	03/27/2003 11:30	
Matrix	Soil/Solid Technical Director	Stephen C. Ede		
41		Released By	ten C. Ede	

Sample Remarks:

SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level.

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Solids								5
Total Solids	96.3		%	SM20 2540G			03/28/03	MCM
Metals by ICP/MS								
Lead	360	0.206	mg/Kg	SW846 6020	C)3/28/03	04/01/03	KGF

			Released By	n C. Ede		
r ,	Matrix	Soil/Solid	Technical Director	Stephen C. Ede		
	Client Sample ID	1162-022703-1E10	Received Date/Time	03/27/2003 11:30		
	Project Name/#	31-1-11162-001 FIA Shooting Rn	Collected Date/Time	03/27/2003 1:25		
- 1	Client Name	Shannon & Wilson-Fairbanks	Printed Date/Time	04/01/2003 15:49		
	SGS Ref.#	1031359003	All Dates/Times are Alaska Standard			

Sample Remarks:

SW6020 ICP Metals - MS/MSD recoveries for Pb were outside of acceptance criteria; post digestion spike was successful. Sample concentration is 4X greater than the spike level.

arameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date	Init
Polids								
Total Solids	94.9		%	SM20 2540G			03/28/03	MCM
fetals by ICP/MS								
Lead	35.2	0.210	mg/Kg	SW846 6020	C	3/28/03	04/01/03	KGF

SGS Ref.#	483683 Method Blank	Printed Date/Time	04/01/2003 15:49
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	
Project Name/#	31-1-11162-001 FIA Shooting Rn	Method	
Matrix	Soil/Solid	Date	
OC results affect the fo	lowing production complex.		······

QC results affect the following production samples: 1031359001, 1031359002, 1031359003

Parameter		Results	Reporting Limit	Units	Analysis Date Init
Solids					1
Total Solids		100		%	03/28/03 MCM
Batch	SPT 4846				
Method Instrument	SM20 2540G				5

SGS Ref.# Client Name Project Name/# Original Matrix	483684 Duplicate Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Shooting Rn 1031359001 Soil/Solid	Printed Date/Time Prep Batch Method Date	04/01/2003 15:49
--	--	---	------------------

1031359001, 1031359002, 1031359003

Parameter		Original Result	QC Result	RPD	RPD Limits	Analysis Date	Init
Solids			2				
Total Solids Batch Method Instrument	SPT 4846 SM20 2540G	95.9	95.8	0	(< 5)	03/28/03	МСМ

SGS Ref.#	483576 Method Blank	Printed Date/Time	04/01/2003 15:49
Client Name	Shannon & Wilson-Fairbanks	Prep Batch	MXX 11373
Project Name/#	31-1-11162-001 FIA Shooting Rn	Method	SW3050B
Matrix	Soil/Solid	Date	03/28/2003

1031359001, 1031359002, 1031359003

Sample Remarks:

Parameter	Results	Reporting Limit	Units	Analysis Date	Init
Metals by ICP/MS				2 D	·
Aluminum	10.0 U	10.0	mg/Kg	04/01/03	KGF
Antimony	0.300 U	0.300	mg/Kg	04/01/03	KGF
Arsenic	1.00 U	1.00	mg/Kg	04/01/03	KGF
Barium	0.500 U	0.500	mg/Kg	04/01/03	KGF
Beryllium	0.100 U	0.100	mg/Kg	04/01/03	KGF
Cadmium	0.200 U	0.200	mg/Kg	04/01/03	KGF
Calcium	100 U	100	mg/Kg	04/01/03	KGF
Chromium	1.00 U	1.00	mg/Kg	04/01/03	KGF
Cobalt	0.500 U	0.500	mg/Kg	04/01/03	KGF
Iron	100 U	100	mg/Kg	04/01/03	KGF
Copper	2.00 U	2.00	mg/Kg	04/01/03	KGF
Lead	0.200 U	0.200	mg/Kg	04/01/03	KGF
Potassium	100 U	100	mg/Kg	04/01/03	KGF
Selenium	1.00 U	1.00	mg/Kg	04/01/03	KGF
Silver	0.100 U	0.100	mg/Kg	04/01/03	KGF
Sodium	200 U	200	mg/Kg	04/01/03	KGF
Thallium	0.0200 U	0.0200	mg/Kg	04/01/03	KGF
/anadium	2.00 U	2.00	mg/Kg	04/01/03	KGF
Zinc	1.00 U	1.00	mg/Kg	04/01/03	KGF
Magnesium	30.0 U	30.0	mg/Kg	04/01/03	KGF
Manganese	2.00 U	2.00	mg/Kg	04/01/03	KGF
Aolybdenum	1.00 U	1.00	mg/Kg	04/01/03	KGF
lickel	2.00 U	2.00	mg/Kg	04/01/03	KGF
Batch MMS 2438					

 MMS
 2438

 Method
 SW846
 6020

Instrument Perkin Elmer Sciex ICP-MS P3

SGS Ref.#	483577 Lab Control Sample	Printed Date/Time	04/01/2003 15:49
Client Name Project Name/# Matrix	Shannon & Wilson-Fairbanks 31-1-11162-001 FIA Shooting Rn Soil/Solid	Prep Batch Method Date	MXX 11373 SW3050B 03/28/2003
QC results affect the	e following production samples:		

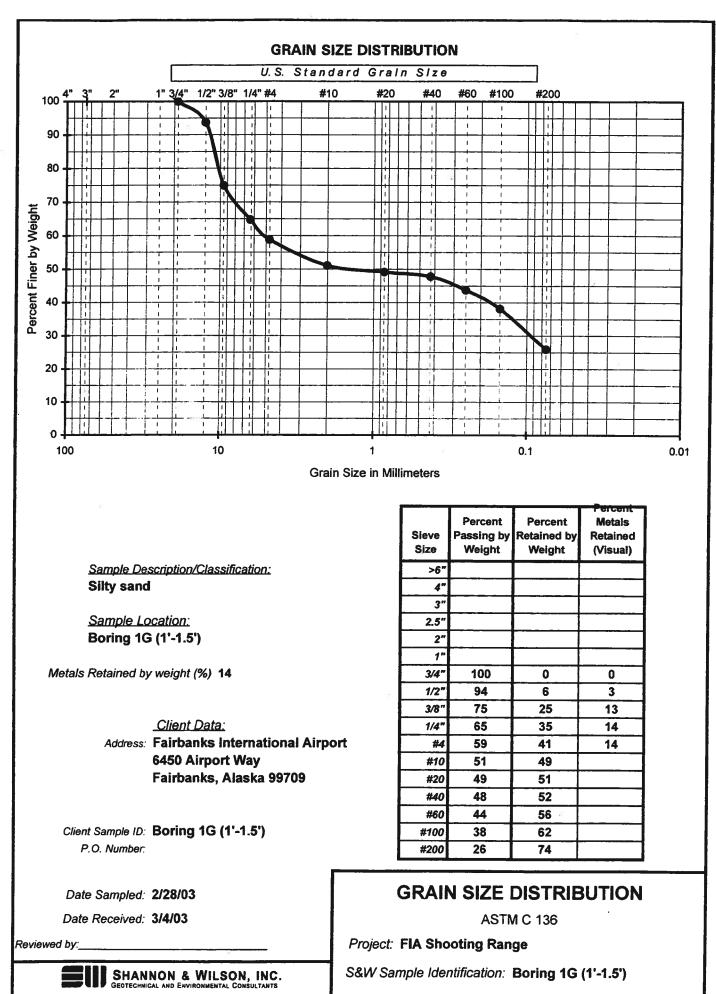
1031359001, 1031359002, 1031359003

Sample Remarks:

LCS	

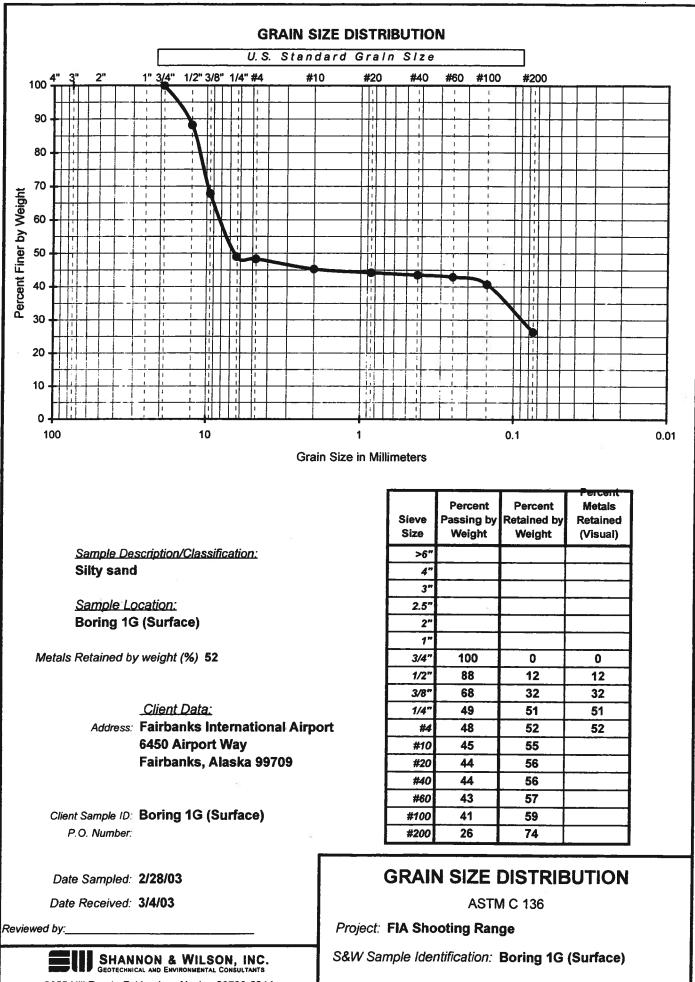
 Parameter				QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Metals by 1	ICP/MS										
Aluminum			LCS	42.3	85	* (85-115)			50 mg/Kg	04/01/03	KGF
Antimony			LCS	46.2	92	(85-115)			50 mg/Kg		KGF
rsenic			LCS	49.1	98	(85-115)			50 mg/Kg		KGF
Barium			LCS	48.4	97	(85-115)			50 mg/Kg		KGF
leryllium			LCS	47.2	94	(85-115)			50 mg/Kg		KGF
admium			LCS	46.9	94	(85-115)			50 mg/Kg		KGF
alcium			LCS	502	100	(85-115)			500 mg/Kg		KGF
hromium			LCS	47.8	96	(85-115)			50 mg/Kg		KGF
obalt			LCS	46.1	92	(85-115)			50 mg/Kg		KGF
opper			LCS	48.4	97	(85-115)			50 mg/Kg		KGF
on			LCS	100 U		* (85-115)			50 mg/Kg		KGF
ead			LCS	46.4	93	(85-115)			50 mg/Kg 50 mg/Kg		KGF
otassium			LCS	527	105	(85-115)			500 mg/Kg		KGF
elenium			LCS	46.4	93	(85-115)					KGF
lver			LCS	9.44	94	(85-115)			50 mg/Kg		KGF
odium			LCS	523	105	(85-115)			10 mg/Kg		KGF
nallium			LCS	49.0	98	(85-115)			500 mg/Kg		KGF
anadium			LCS	48.0	96	(85-115)			50 mg/Kg		
nc			LCS	46.0	92	(85-115)			50 mg/Kg		KGF
agnesium			LCS	524	105	(85-115)			50 mg/Kg		KGF
anganese			LCS	48.7	98	(85-115)			500 mg/Kg		KGF
olybdenum			LCS	46.0	92	(85-115)			50 mg/Kg		KGF
ickel			LCS	48.3	97	(85-115)			50 mg/Kg		KGF
Batch Method	MMS	2438	200	10.5	21	(0,11,0)			50 mg/Kg (04/01/03	KGF

Method Instrument SW846 6020 Perkin Elmer Sciex ICP-MS P3

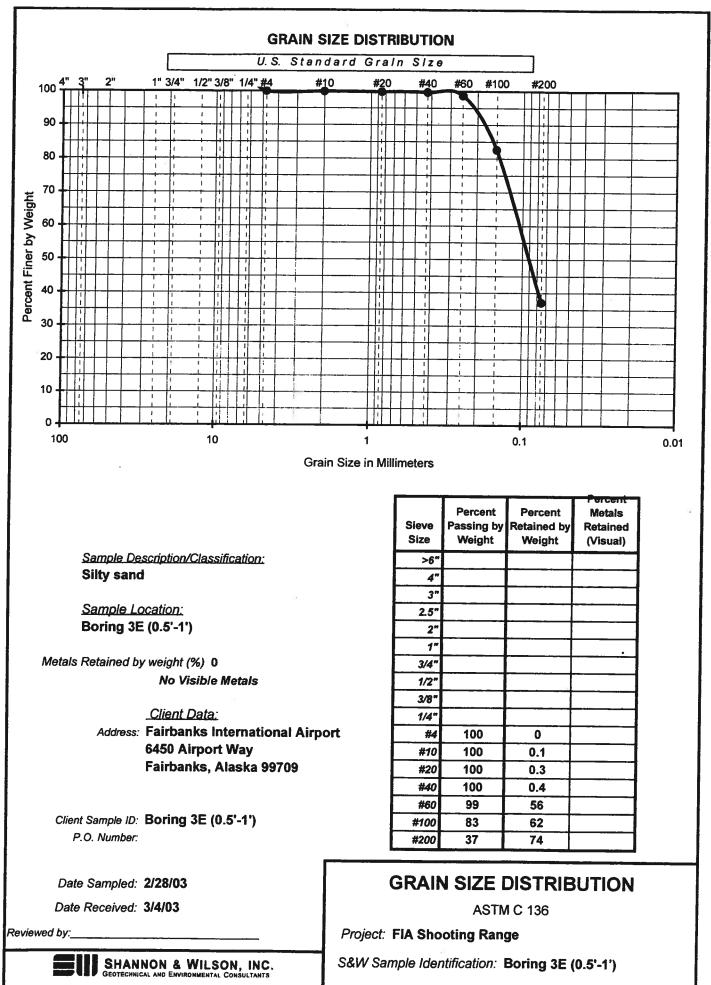

SGS Ref.#	GS 4835	78	Matrix	Smilto			Đ. i				
3 G3 Re 1.#	4835			Spike Dup	licate		Prej	Method	MXX 11 Soils/Solid	373 Is Digest f	or Meta
Original Matrix	1031: Soil/S	359001 Solid						Date	03/28/200	3	
QC results affe 1031359001	ect the following		-								
Sample Rema MS	arks:									,	ŝ
MSD											
Parameter		20	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	Init
Metals by	ICP/MS										
Lead		MS MSD	439	599 559	358 ⁻ 277 -	* (75-125) *	7	(<20)	49.9 mg/Kg		
Batch Method Instrument	MMS 24 SW846 60 Perkin Elm	38 20	ICP-MS P	-	211		,	(~20)	49.8 mg/Kg	04/01/03	KGF

SGS Ref.#	483580	Bench	Spike DIG	ESTED	×	Printe Prep	ed Date/Time Batch Method Date	04/01/200 MXX 11 Soils/Solic 03/28/200	1373 ds Digest fo	or Metals
Original	1031359001						Date	03/28/200	5	
Matrix	Soil/Solid									
	t the following product: 1031359002, 10313		_							
Sample Remar BND										

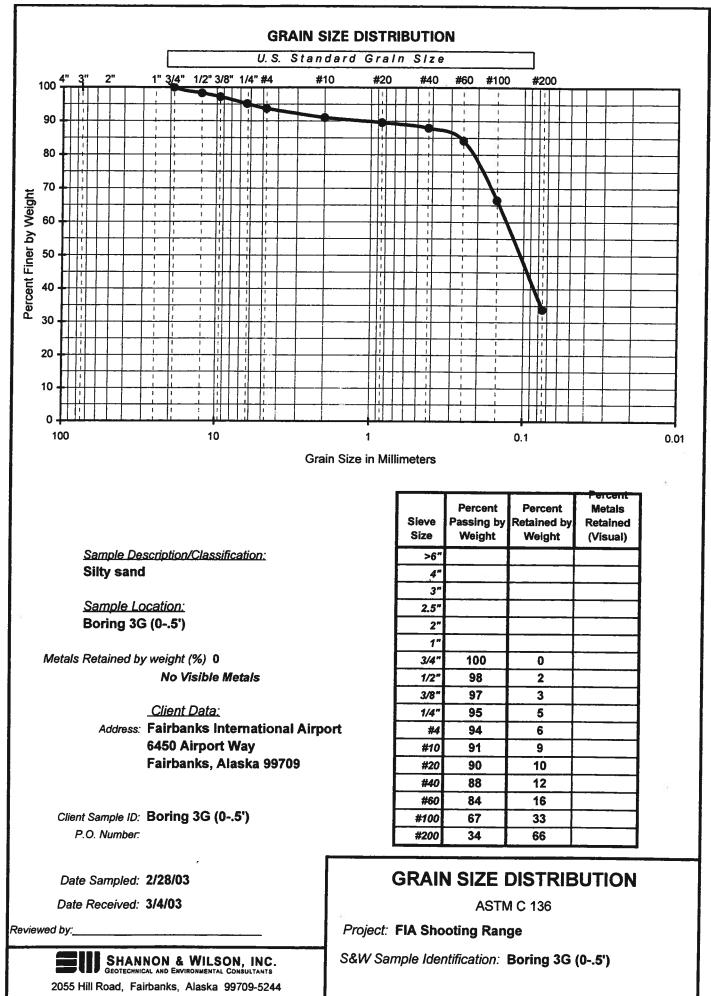
Instrument SW846 6020 Perkin Elmer Sciex ICP-MS P3


APPENDIX D

Grain Size Distribution Results


2055 Hill Road, Fairbanks, Alaska 99709-5244 Phone: (907) 479-0600 Fax: (907) 479-5691

April 2003


2055 Hill Road, Fairbanks, Alaska 99709-5244 Phone: (907) 479-0600 Fax: (907) 479-5691

April 2003

2055 Hill Road, Fairbanks, Alaska 99709-5244 Phone: (907) 479-0600 Fax: (907) 479-5691

April 2003

Phone: (907) 479-0600 Fax: (907) 479-5691

April 2003