

ALASKA
CALIFORNIA
COLORADO
FLORIDA
MISSOURI
OREGON
WASHINGTON
WISCONSIN

March 29, 2018

Crowley Fuels LLC 201 Arctic Slope Avenue Anchorage, Alaska 99518

Attn: Mr. Prathap Kodial

RE: NOVEMBER 2017 GROUNDWATER MONITORING, 459 WEST BLUFF DRIVE, ANCHORAGE, ALASKA; ADEC FILE NO. 2100.38.321

This report presents the results of Shannon & Wilson's November 2017 groundwater monitoring activities conducted at the Crowley Fuels LLC (Crowley) facility at 459 West Bluff Drive, Anchorage, Alaska. The 2017 groundwater monitoring activities were conducted by Shannon & Wilson, Inc. on November 21, 2017. Authorization to proceed with the project was provided by Todd Bullock in the form of purchase order number 2903114 on October 26, 2017.

SITE AND PROJECT DESCRIPTION

Site Description

The Crowley facility is a fuel distribution terminal located in the Port of Anchorage, as shown on Figure 1. Elevation varies at the site by approximately 20 feet, generally sloping downward towards the northern portion of the site. The site contains 27 bulk fuel above-ground storage tanks (ASTs), pipelines, a rail loading rack, and office/warehouse/shop buildings. A pipeline linked to the Port of Anchorage valve yard, located 2,000 feet to the north, transfers petroleum products between the tank farm and oceangoing tankers/barges. This pipeline is the primary method of fuel delivery to and from the site. A lined detention pond and runoff basin are located in the northeastern portion of the site. A site plan is included as Figure 2.

Background

A site investigation conducted in 1987 identified impacted soil and groundwater at the site. Twenty-one monitoring wells (MW-1 through MW-21) were installed in 1989 at the site. The monitoring wells were sampled once in 1989, and annually from 1996 through 2009. The results indicate concentrations of gasoline range organics (GRO), diesel range organics (DRO), benzene, and ethylbenzene exceed Alaska Department of Environmental Conservation (ADEC) groundwater cleanup levels.

5430 FAIRBANKS STREET, SUITE 3 ANCHORAGE, ALASKA 99518-1263 907-561-2120 FAX: 907-561-4483 TDD 1-800-833-6388 Crowley Fuels LLC Attn: Mr. Prathap Kodial March 29, 2018 Page 2 of 6

In a letter dated October 2, 2017, the ADEC approved a groundwater monitoring program comprising biennial sample collection from Monitoring Wells MW-6B, MW13A, MW-14, and MW-19R. The remaining wells were decommissioned during the liner installation activities in 2011.

Purpose and Objectives

The purpose of this project is to monitor trends in dissolved phase hydrocarbon concentration gradients and distribution across the site. The project objective consisted of sampling four groundwater monitoring wells: Wells MW-6B, MW-13A, and MW-19R (Well MW-14 was frozen and therefore could not be sampled). These wells have historically contained concentrations of GRO, DRO, residual range organics (RRO), benzene and/or ethylbenzene above the ADEC cleanup levels.

FIELD ACTIVITIES

The groundwater monitoring field effort consisted of depth to water measurements and sample collection at three monitoring wells. Copies of the field notes are included as Attachment 1.

Groundwater Sampling

Groundwater samples were collected from Wells MW-6B, MW-13A, MW-19R on November 21, 2017. Depth to water measurements were taken with an electronic water level indicator prior to purging and sampling activities. The wells were purged and sampled using a low-flow groundwater sampling method with a submersible pump and disposable tubing. The wells were sampled when water quality parameters taken three minutes apart stabilized (three successive readings were within 10 percent for turbidity if greater than 10 NTUs; 0.1 standard unit for pH; and 3 percent for conductivity and temperature). Depth to water level and final water quality parameters measurements are summarized in Table 1.

For quality control purposes, one field duplicate sample, designated Sample MW-103A, was collected from Well MW-13A. The groundwater samples were transferred into laboratory-supplied containers in order from most volatile to least volatile and placed into chilled coolers for delivery to the project laboratory. Purge and decontamination water from the monitoring wells was contained in one labeled 55-gallon drum.

Crowley Fuels LLC Attn: Mr. Prathap Kodial March 29, 2018 Page 3 of 6

Groundwater Flow Direction

The November 2017 depth to water measurements and client-provided well survey data were used to interpret the groundwater flow direction. Groundwater elevations ranged from 31.62 feet above mean sea level (MSL) in Well MW-13A to 50.98 feet above MSL in Well MW-6B. The groundwater data indicate an overall flow direction to the west at a gradient of 2 percent. The groundwater elevations are within historical range, and the overall flow direction is consistent with historical data.

Groundwater flow direction at the site is likely affected by multiple factors, including tidal influence, precipitation, and topography. Tidal effects appear to be the governing factor within 150 to 200 feet of Cook Inlet. These apparent tidal influences in the western portions of the property are likely contributing to fluctuations in flow direction and gradient in that area.

LABORATORY ANALYSES

Four groundwater samples, including one field duplicate, were submitted to SGS for analytical testing. The groundwater samples were analyzed for GRO by Alaska Method (AK) 101, DRO by AK 102, RRO by AK 103, and aromatic hydrocarbons (BTEX) by environmental protection agency 8021B (EPA 8021B). The duplicate sample set MW-13A/MW-103A were also analyzed for volatile organic compounds (VOCs) by EPA 8260C and polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D selective ion method (SIM). One trip blank sample accompanied the analytical sample containers from and to the laboratory during the sampling event, and were tested for GRO by AK 101 and VOCs by EPA Method 8260C. The laboratory reports are provided in Attachment 2.

INVESTIGATION DERIVED WASTE

Investigation-derived waste (IDW) from this project consisted of one 55-gallon drum of purgewater. NRC Alaska, Inc. (NRC) picked up the drum on December 20, 2017. A waste manifest by NRC is included in Attachment 3.

DISCUSSION OF ANALYTICAL RESULTS

The reported contaminant concentrations in the groundwater were compared to the cleanup levels listed in Table C, 18 AAC 75.345 (November 2017). The analytical sample results and cleanup levels are listed in Table 2. Graphs of select constituents exceeding ADEC cleanup

Crowley Fuels LLC Attn: Mr. Prathap Kodial March 29, 2018 Page 4 of 6

levels are included as Figure 3. A summary of historical groundwater data for the three monitoring wells is included in Table 3.

The following parameters exceed the ADEC cleanup levels in one or more wells sampled in November 2017:

- GRO concentrations in Well MW-19R;
- DRO and benzene concentrations in Wells MW-6B, MW-13A, and MW-19R;
- RRO concentrations in Wells MW-6B and MW-13A;
- Naphthalene and 1,2,4-trimethylbenzene concentrations in Well MW-13A. Note that the naphthalene value analyzed by EPA Method 8260C is approximately 7 to 25 times the naphthalene value analyzed by EPA Method 8270D SIM.

Concentrations of GRO, DRO, and/or benzene appear to be decreasing in downgradient Wells MW-13A and MW-19R, as shown in Table 3 and Figure 3. Concentrations of DRO (29.1 milligrams per liter [mg/L]) and RRO (2.07 mg/L) measured in Well MW-6B in November 2017 are the highest measured concentrations since 20004.

QUALITY ASSURANCE SUMMARY

SGS follows on-going quality assurance/quality control (QA/QC) procedures to evaluate conformance to applicable ADEC data quality objectives (DQO). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spikes/matrix spike duplicates (MS/MSD), and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to measure precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a report specific note identifying the problem in the Case Narrative section of their Laboratory Analysis Reports (See Attachment 2).

External quality controls included one water trip blank (WTB) and a duplicate sample set. The laboratory-prepared water trip blank sample accompanied the project sample bottles from the laboratory to the site during sampling activities and back again to SGS. The water trip blank sample did not contain detectable concentrations of target analytes. These results suggest that the project water samples were not cross-contaminated during sampling, transporting, or analysis of the samples.

Crowley Fuels LLC Attn: Mr. Prathap Kodial March 29, 2018 Page 5 of 6

Shannon & Wilson's analytical data evaluation included a review of laboratory results for field duplicate Samples MW-13A and MW-103A to document the precision of the sampling and analytical process. The primary and duplicate sample results were compared using the calculated RPD values, as shown in Table 4. The RPD was not within the DQO of 30 percent for ethylbenzene, 1-methylnaphthalene, acenaphthene, fluorene, and naphthalene. The affected analytes are flagged "E" and are considered estimates due to the RPD failures.

Shannon & Wilson reviewed the SGS data deliverables and completed the ADEC's Laboratory Data Review Checklists (LDRC), which are included in Attachment 2. Quality control discrepancies and the impact to data quality/usability are described in further detail in the LDRC. In our opinion, no non-conformances that would adversely impact data usability were noted.

SUMMARY

The November 2017 groundwater monitoring event included analytical groundwater sampling of three wells. The November 2017 sample results and historical data continue to suggest that the plume is stable or shrinking based on recent trends of most contaminants of concern in downgradient Wells MW-13A and MW-19R. The spike in DRO and RRO concentrations in upgradient Monitoring Well MW-6B suggest there may be off-site source contributions to the impacted groundwater plume.

CLOSURE/LIMITATIONS

This report was prepared for the exclusive use of our clients and their representatives in the study of this site. The findings we have presented within this report are based on the limited sampling and analyses that we conducted. They should not be construed as a definite conclusion regarding the site's groundwater conditions. Therefore, the sampling and analyses performed can provide you with only our professional judgment as to the environmental characteristics of this site, and in no way guarantees that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the time of our site assessment. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Crowley Fuels, LLC Attn: Mr. Prathap Kodial March 29, 2018 Page 6 of 6

Shannon & Wilson has prepared the documents in Attachment 4, "Important Information About Your Geotechnical/Environmental Report", to assist you and others in understanding the use and limitations of our reports. You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study, except with your permission or as required by law.

We appreciate the opportunity to be of service. Please call the undersigned at (907) 561-2120 with questions or comments concerning this report.

Sincerely,

SHANNON & WILSON, INC.

Prepared by:

Jake Kesler

Environmental Scientist

Reviewed by:

Matthew Hemry, P.E.

Vice President

Encl: Tables 1 through 4, Figures 1 through 3, and Attachments 1 through 4

TABLE 1
GROUNDWATER SAMPLING LOG

		Monitoring \	Well Number	
	MW-6B	MW-13A	MW-14	MW-19R
Water Level Measurement Data				
Date Water Level Measured	11/21/2017	11/21/2017	11/21/2017	11/21/2017
Time Water Level Measured	11:35	15:45	-	14:20
MP Elevation, Feet (MSL)*	76.40	38.01	-	40.19
Depth to Water Below MP, Feet	25.42	6.39	-	6.19
Groundwater Elevation, Feet	50.98	31.62	-	34.00
Purging/Sampling Data				
Date Sampled	11/21/2017	11/21/2017	-	11/21/2017
Time Sampled	12:57	16:23	-	15:11
Depth to Water Below MP, Feet	25.42	6.39	-	6.19
Total Depth of Well Below MP, Feet	31.12	10.65	-	14.39
Water Column in Well, Feet	5.70	4.26	-	8.20
Gallons per Foot	0.65	0.65	0.65	0.16
Gallons in Well	3.71	2.77	-	1.31
Total Gallons Pumped	3.9	3.0	-	2.2
Purging/Sampling Method	Submersible Pump	Submersible Pump	-	Submersible Pump
Diameter of Well Casing	4-inch	4-inch	4-inch	2-inch
Water Quality Data				
Temperature, °C	3.6	2.9	-	3.1
Specific Conductance, μS/cm	871	589	-	272
pH, Standard Units	7.10	7.56	-	7.45
Turbidity, NTU	5.05	32.40		48.82
Remarks	Hydrocarbon odor	Hydrocarbon odor Duplicate sample "MW-103A"	Well frozen - Could not sample	Hydrocarbon odor

Notes:

Water quality parameters were measured with Hanna Sticks and Hach Turbidimeter water quality instruments.

* = Previous reports provided by the client indicate that MP elevations were surveyed in 2007 by Karabelnikoff Surveying.

MSL = Mean sea level

MP = Measuring point

 μ S/cm = Microsiemens per centimeter

NTU = Nephelometric Turbidity Units

mV = Millivolt

°C = Degrees Celsius

= Not applicable or not measured

TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

			Sample ID Number^ and Water Elevation in Feet above Mean Sea Level							
			or Sample Date (See Table 1, Figure 2, and Attachment 2)							
				Monitor	ing Wells		Trip Blank			
		Cleanup	MW-6B	MW-6B MW-13A MW-103A~ MW-19R						
Parameter Tested	Method*	Level**	50.98	31.62	31.62	34.00	11/21/2017			
Gasoline Range Organics (GRO) - mg/L	AK101	2.2	0.697 J+	2.00	2.15	3.43	< 0.0500			
Diesel Range Organics (DRO) - mg/L	AK102	1.5	29.1	4.96	5.50	1.59	-			
Residual Range Organics (RRO) - mg/L	AK103	1.1	2.07	0.930	1.22	0.338 J	-			
Volatile Organic Compounds (VOCs)										
Benzene - mg/L	EPA 8021B/8260C	0.0046	0.0192	0.0613	0.0669	0.0290	< 0.000200			
Toluene - mg/L	EPA 8021B/8260C	1.1	0.000520 J	0.00655	0.00752	0.00453	< 0.000500			
Ethylbenzene - mg/L	EPA 8021B/8260C	0.015	0.0689	0.133 E	0.19 E	0.0142	< 0.000500			
Xylenes - mg/L	EPA 8021B/8260C	0.19	0.0591	0.370	0.38	0.0403	< 0.00150			
1,2,4-Trimethylbenzene - mg/L	EPA 8260C	0.015	-	0.0952	0.1	-	< 0.000500			
1,3,5-Trimethylbenzene - mg/L	EPA 8260C	0.12	-	0.0265	0.0265	-	< 0.000500			
4-Isopropyltoluene - mg/L	EPA 8260C	-	-	0.00204	0.00207	-	< 0.000500			
Isopropylbenzene (Cumene) - mg/L	EPA 8260C	0.45	-	0.00328	0.00406	-	< 0.000500			
Naphthalene - mg/L	EPA 8260C	0.0017	-	0.0728	0.0776	-	< 0.000500			
n-Propylbenzene - mg/L	EPA 8260C	9.1	-	0.00426	0.00498	-	< 0.000500			
sec-Butylbenzene - mg/L	EPA 8260C	2	-	0.000620 J	0.000640 J	-	< 0.000500			
tert-Butylbenzene - mg/L	EPA 8260C	0.69	-	0.000590 J	0.000580 J	-	< 0.000500			
Other VOCs - mg/L	EPA 8260C	Various	-	ND	ND	-	ND			
Polynuclear Aromatic Hydrocarbons (PA	Ms)									
1-Methylnaphthalene - mg/L	EPA 8270D SIM	0.011	-	0.000974 E	0.00373 E	-	-			
2-Methylnaphthalene - mg/L	EPA 8270D SIM	0.036	-	< 0.0000250	0.000812	-	-			
Acenaphthene - mg/L	EPA 8270D SIM	0.53	-	0.000272 E	0.000409 E	-	-			
Fluorene - mg/L	EPA 8270D SIM	0.29	-	0.000227 E	0.000509 E	-	-			
Naphthalene - mg/L	EPA 8270D SIM	0.0017	-	0.00290 E	0.0115 E	-	-			
Other PAH Analytes -mg/L	EPA 8270D SIM	Various	-	ND	ND	-	-			

Notes:

- * = See Attachment 2 for compounds tested, methods, and laboratory reporting limits
- ** = Groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (November 2017) for the "under 40 inches (precipitation) zone"
- ^ = Sample ID number preceded by "20069-" on the chain of custody form

mg/L = Milligrams per Liter

< 0.0500 = Analyte not detected; laboratory limit of detection of 0.0500 mg/L

0.0591 = Analyte detected

= Analyte detected above ADEC cleanup level

- = Not applicable or sample not tested for this analyte

= Duplicate of preceeding sample

J = Estimated concentration less than the limit of quantitation. See the SGS laboratory report for details.

J+ = Analyte result is potentially biased high due to surrogate failure.

E = Result is an estimate due to a primary/duplicate sample relative percent difference (RPD) failure.

ND = Not detected

TABLE 3
SUMMARY OF HISTORICAL GROUNDWATER DATA

		Groundwater	Paramete	r Tested and (Cleanup Leve	l* in mg/L
Monitoring		Elevation (feet)	GRO	DRO	RRO	Benzene
Well	Sample Date	MSL	2.2	1.5	1.1	0.0046
MW-1	05/11/05	32.67	11.0	7.00		1.30
14144-1	05/11/05	32.58	16.0	5.40	_	1.50
	09/11/07	32.95	14.0	3.20	< 0.380	2.10
	08/21/08~	32.87	14.5	4.00	-	1.52
	10/07/08	33.14	-	-	_	-
	08/18/09~	32.79	1.99	1.31	< 0.385	0.656
	09/02/10	33.24	2.20	1.10	0.270	0.580
	10/07/11	32.58	3.67	1.13	0.283 J	0.707
	10/10/2012~	34.07	3.56	1.80	0.549	1.12
	10/22/13	33.40	2.31	0.876	0.252 J	0.663
	10/23/2014~	32.81	0.884	0.418 J	< 0.250	0.214
MW-6B	05/11/05	53.00	2.20	15.0	-	0.0900
	05/15/06	52.58	2.30	23.0	-	0.0540
	09/12/07	50.37	1.80	9.00	< 0.380	0.0600
	08/21/08	50.94	1.60	13.2	-	0.0472
	10/08/08	50.75	-	-	<3.54	0.0461
	08/19/09	50.30	1.52	13.0	1.45	0.0310
	09/01/10	50.62	1.10	23.0	<3.50	0.0310
	10/07/11	49.87	0.933	17.6	1.85	0.0175
	10/10/12	52.25	1.27 J+	7.58	0.836	0.0232
	10/22/13	53.00	2.05	7.64	0.683	0.0540
	10/23/14	50.78	1.18	6.16	0.596	0.0446
	11/21/17	50.98	0.697 J+	29.1	2.07	0.0192
MW-13A	05/11/05	31.53	14.0	11.0	-	0.430
	05/16/06	31.28	15.0	22.0	-	0.330
	09/12/07	32.73	13.0	7.90	< 0.410	0.400
	08/21/08	31.61	17.1	16.4	-	0.291
	10/09/08	32.32	- 0.52	-	<3.54	0.293
	08/18/09	32.31	9.73	10.3	1.35	0.232
	09/01/10~	32.46	8.70	18.0	<1.40	0.260 0.248
	10/7/2011~ 10/10/12	31.59 33.76	8.62 6.52	16.7 10.1	2.98 1.55	0.248 0.167
	10/10/12	33.76 32.77	7.15	11.3	1.48	0.107
	10/23/14	32.16	5.56			
	11/21/2017~	31.62	2.15	11.2 5.50	1.47 1.22	0.154 0.0669
MW-14	05/11/05	33.50	5.00	11.0	1,22	0.012
141 11 - 14	05/11/05	33.81	5.20	15.0	_	0.012
	08/21/08	32.93	4.38	13.4	_	0.018
	10/08/08	33.48	-	-	1.65	0.00304
	08/19/09	33.41	2.38	5.25	0.596	0.00713
	09/01/10	33.55	2.70	9.00	< 0.780	0.0040
	10/07/11	32.51	2.64	8.44	1.18	0.00371
	10/26/12	-	1.56 J+	2.90	0.195 J	0.00723
	10/22/13	-	3.06	3.98	0.332 J	0.00731
	10/23/14	-	0.641 J	1.03	< 0.250	0.00498 J
	11/21/17	Well Frozen - cou				

See Notes on Page 2

TABLE 3
SUMMARY OF HISTORICAL GROUNDWATER DATA

		Groundwater	Paramete	Parameter Tested and Cleanup Level* in mg/L						
Monitoring		Elevation (feet)	GRO	DRO	RRO	Benzene				
Well	Sample Date	MSL	2.2	1.5	1.1	0.0046				
MW-19R	09/12/07	34.49	3.50	6.90	6.50	0.020				
	08/21/08	34.24	5.16	4.19	-	0.00448				
	10/08/08	34.26	-	-	1.09	0.00373				
	08/18/09	35.09	4.01	1.92	< 0.385	0.00530				
	09/02/10	34.42	4.80	2.80	< 0.350	0.00300				
	10/07/11	33.89	6.05	3.92	1.07	0.00214				
	10/10/12	35.59	3.25 J+	2.57	0.717	0.00159				
	10/22/13~	35.10	5.04	3.01	0.348 J	0.00398				
	10/23/14	32.49	5.31	1.88	0.416 J	0.0186				
	11/21/17	34.00	3.43	1.59	0.338 J	0.0290				

Notes: Data prior to 2011 provided by ARCADIS

J+

1	1
*	= Groundwater cleanup levels are from Table C, 18 AAC 75.345 (November 2017)
mg/L	= Milligrams per liter
MSL	= Mean sea level
GRO	= Gasoline range organics
DRO	= Diesel range organics
RRO	= Residual range organics
< 0.380	= Analyte not detected at or above the laboratory reporting limit of 0.380 mg/L
<3.54	= Laboratory limit of detection is greater than the ADEC Table C cleanup level
1.99	= Analyte detected
3.50	= Reported concentration equals or exceeds cleanup level
-	= Not applicable or sample not tested for this analyte
~	= The higher concentrations between primary and duplicate samples are tabulated
J	= Analyte detected, but at a concentration less than the laboratory reporting limit

= Project result may be biased low due to surrogate failure

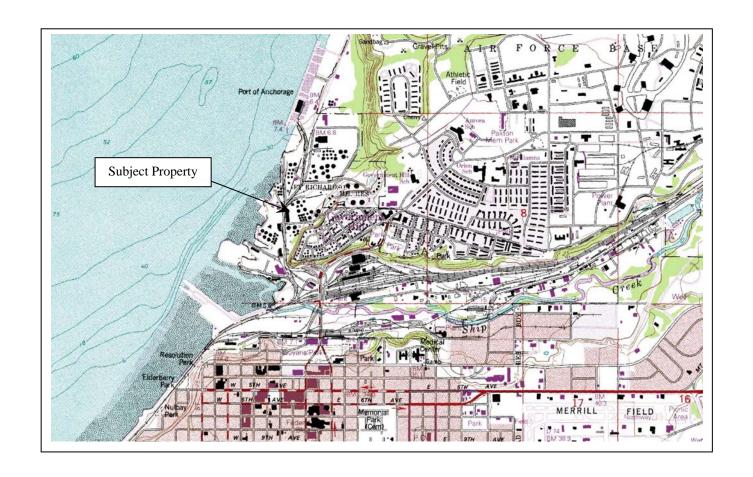
= Project result may be biased high due to surrogate failure (See LDRC, Attachment 2)

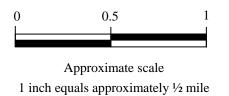
TABLE 4
QUALITY CONTROL DATA

	Primary Sample	Duplicate Sample	Precision	Precision
Parameter Tested	MW-13A	MW-103A	(RPD)	QC Limit
Gasoline Range Organics (GRO) - mg/L	2.00	2.15	7%	30%
Diesel Range Organics (DRO) - mg/L	4.96	5.50	10%	30%
Residual Range Organics (RRO) - mg/L	0.930	1.22	27%	30%
Volatile Organic Compounds (VOCs)				
Benzene - mg/L	0.0613	0.067	9%	30%
Toluene - mg/L	0.00655	0.00752	14%	30%
Ethylbenzene - mg/L	0.133	0.190	35%	30%
Xylenes - mg/L	0.370	0.380	3%	30%
1,2,4-Trimethylbenzene - mg/L	0.0952	0.1	5%	30%
1,3,5-Trimethylbenzene - mg/L	0.0265	0.0265	0%	30%
4-Isopropyltoluene - mg/L	0.00204	0.00207	1%	30%
Isopropylbenzene (Cumene) - mg/L	0.00328	0.00406	21%	30%
Naphthalene - mg/L	0.0728	0.0776	6%	30%
n-Propylbenzene - mg/L	0.00426	0.00498	16%	30%
sec-Butylbenzene - mg/L	0.00062	0.00064	3%	30%
tert-Butylbenzene - mg/L	0.00059	0.00058	2%	30%
Polynuclear Aromatic Hydrocarbons (PAH	s)			
1-Methylnaphthalene - mg/L	0.000974	0.00373	117%	30%
2-Methylnaphthalene - mg/L	< 0.0000250	0.000812	-	30%
Acenaphthene - mg/L	0.000272	0.000409	40%	30%
Fluorene - mg/L	0.000227	0.000509	77%	30%
Naphthalene - mg/L	0.00290	0.0115	119%	30%

Notes:

RPD = Relative percent difference


QC = Quality control


NA = RPD not calculated due to non-detectable results

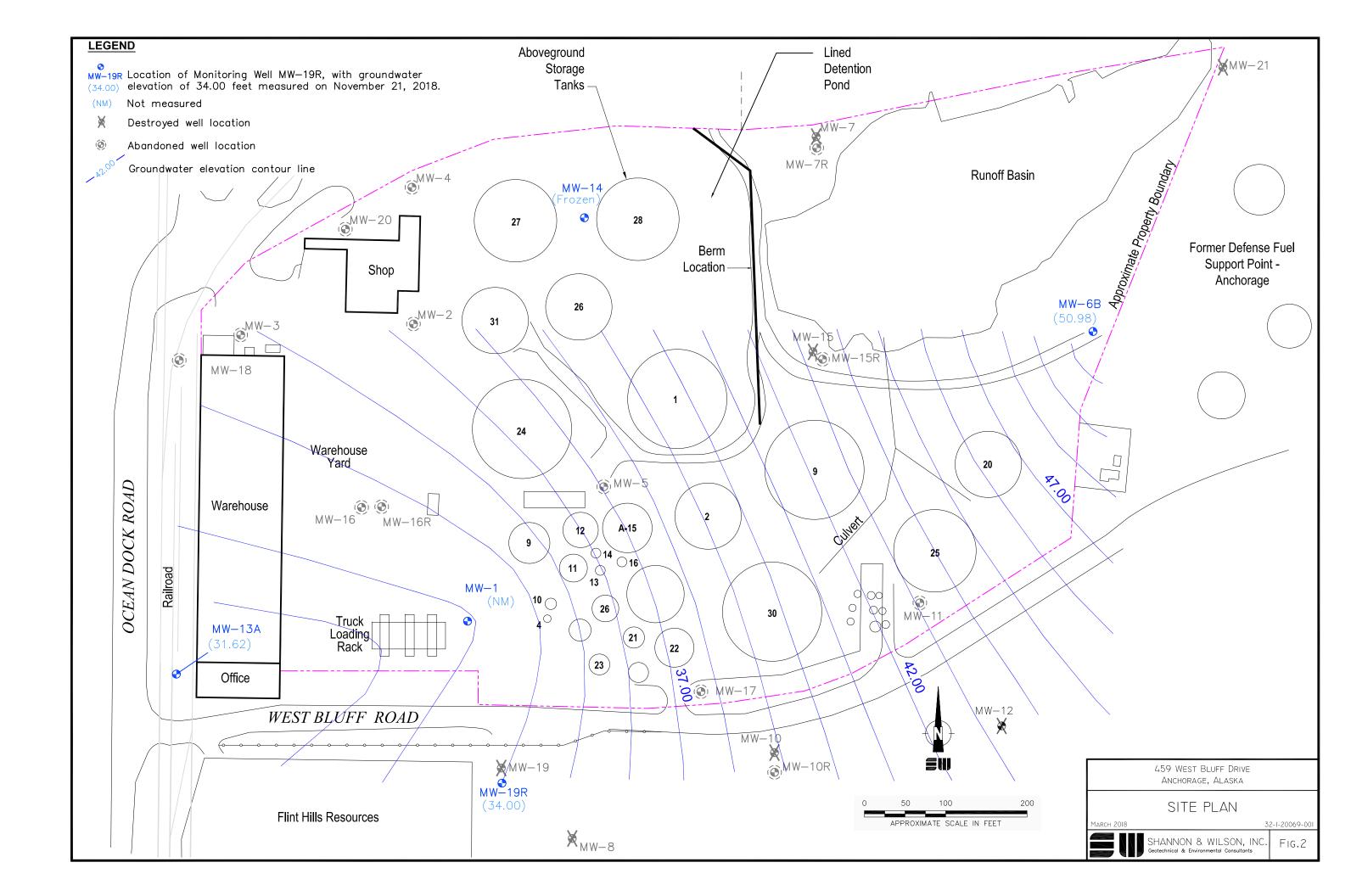
 $mg/L \quad = Milligrams \ per \ liter$

35% = RPD is greater than the precision QC limit

- = RPD could not be calculated due a non-detect value

Taken from Anchorage A-8 NE Quadrangle U.S. Geological Survey

459 West Bluff Drive Anchorage, Alaska


VICINITY MAP

March 2018

32-1-20069-001

Fig. 1

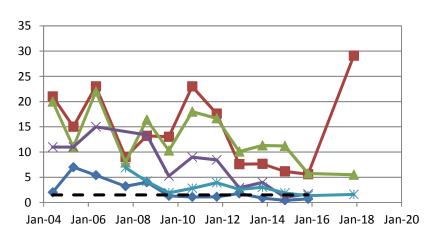
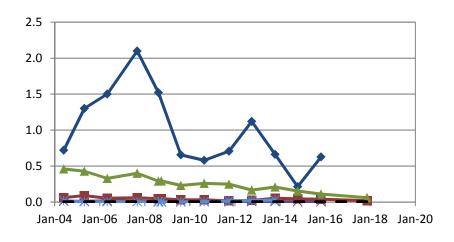


FIGURE 3 GRAPHS OF SELECT CONSITUENTS IN MILLIGRAMS PER LITER

GASOLINE RANGE ORGANICS (GRO)


DIESEL RANGE ORGANICS (DRO)

RESIDUAL RANGE ORGANICS (RRO)

BENZENE

ATTACHMENT 1 FIELD NOTES

FIELD ACTIVITIES DAILY LOG

Date 11/21/17
Sheet / of /
Project No. 32-1-2 0069
Project Name: Crowley Geroudantes Sampling.
Field activity subject: Grandwald Sampling
Description of daily activities and events:
0900-deport for 459 W. Bluft Dr.
0930 - arrive at security cheek in at Andreage for
0945 - 1,1841 Steen Dr wells MIN- 68 MIN-13A MW-19KMW14
10:45- Ivell. MW-14 Frozen Sold-No SAURIO.
well My-19R is this hours and ~ 5 in below ice
difficult to locate - revited metal detector to locateuall
With- Calibrate Sampline equipment before purally wells
11.30 - Degin Sanfling Pourana process on wells
1300 - atwe to the to vert metal olahodor
for Future reference I to live well
1700 - funch Sempline
- deport POA PRATOF Archionel + Coular Site
1730 - arrive at Shamon + Wilson
17:35 - unload gent fill out COC etc
18:00 - deport Shehren + ansm for home.
· ·
Visitors on site: Fodd Kasteler Coverby employee + escortiture cord
Changes from plans/specifications and other special orders and important decisions:
Rent metal detector to find flushment well mw-19 R
MW-14- to zer-no Semple callected.
Weather conditions: 10°F, overcast
Important telephone calls: Mall thony , warned Mall of foren well and
Personnel on site: The tradd Kasteles Coscart):
Signature: Date: 1/21/2017
Date: 11/2/49/7

	Shannon & Wilson, Inc.			and the control of th	
	Job No: 32-1-20089	Location: Crowley	Weat	her: 20°F Overces	. Jahrenness.
	Well No.: MULG B		,	- Anna Control of State	
	Date: 11/21/17	Time Started: 11:30) Tim	e Completed: 1373 e)	
	Develop Date:	Develop End Time:		hour break)	
		INITIAL GROUNDW	ATER LEVEL D	ATA	
			***************************************	rement: 1//2//7	:
	Measuring Point (MP): Top of PV	C Casing / Top of Steel Prot	ective Casing / Other:	cinent. 1//2///	A A COLOR
	Diameter of Casing:	A ACCOUNT		P ^{Chamatome} COLUMN COL	
	Total Depth of Well Below MP:		Product Thickness, if		
	Depth-to-Water (DTW) Below MI		Troduct Tillokiloss, if	notou.	
	Water Column in Well:	67	(Total Depth of Well)	Below MP - DTW Below MP)	
	Gallons per foot:	0.65	(Total Depth of Well)	below Mil Bi W Below Mil)	
	Gallons in Well:	3,705	(Water Column in We	ll x Gallons per foot)	
			(, , , , , , , , , , , , , , , , , , ,	in in dunions per rooty	
		<u>PURGIN</u>	G DATA		
	Date Purged: 11/21//7	Time Started: 12:	l 🖒 Time	Completed: <u>12:56</u>	
	Three Well Volumes:	(Gallons in W			
	Gallons Purged: 3.9		np (generally 2 ft from		
	Max. Drawdown (generally 0.3 ft)	: 0.18	Pump Rate: O. 5	5 4 min	
	Well Purged Dry:	Yes 🗆 No 🍾	(If yes, use Well Purge	ed Dry Log)	
Time:	_		emp: Sp. Cond.:	DO: pH: ORP:	Turb:
19:		BMP): (ft): (6.45 0.63 3	C) (uS/cm)	(mg/L) (S.U.) (mV)	(NTU) 6-2-8
17:1	6 00 - 0 E	5.75 <u>0.63</u> <u>1</u>	9 712	7.01	- a 10
19 11	9 02		7 864	700	972
7 1	2 2 2 2	5.46 0.04 3.	1 867	6,92	- (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2:2	5 0.2	1.76 0.0/ 3.	961	7.91	- 900
12:7	8 0.2		4 601	5 692	9 70
IVV			7 000	0176	_ (, 78
		<u>SAMPLI</u>	NG DATA		
	Odor: Strang HC		Color: Clear		
	Sample Designation: 200	269-MWBB	Time / Date: 12:5	7 11/21/17	
	QC Sample Designation:	***************************************	Time / Date:		
	QA Sample Designation:		Time / Date:		
	Evacuation Method: Submersible	Pump / Other:	ihale		
	Sampling Method: Submersible Pr				
	Sampling Method: Submersible Prowater Quality Instruments Used/M. Calibration Info (Time, Ranges, etc.)	lanufacturer/Model Number	Hanna #2, +	urbidinoter #2	
	Calibration Info (Time, Ranges, etc	c) Hauna # 2 + 4	bidinetes #	2 X See 35K 11/21/1	17 Cold not
	Remarks:		- L		
				150	
	Sampling Personnel: 536				
	WELL CA	SING VOLUMES (GAL/F			
	ANNUL	AR SPACE VOLUME (GA	L/FT): 4" casing and 2	2" well = 0.23	

Shannon & Wilson, Inc.

Continued from previous page

Job No:

Location: <u>evalley</u> Site: 459 W. Bluff Dr.

Well No .: Date:

Time: 12:3/ 12:34 12:38 12:4/ 12:44 012:47 12:50 812:53 12:57	Gallons:	Pump Rate (L/min):	DTW (ft BMP): 25.49	Drawdown (ft): 0.09 0.08	Temp: (°C) 3,6 3,8 3,7 3,9 3,8	Sp. Cond (uS/cm) 868 872 874 874 875 875 875 875	DO (mg/L)	pH: (S.U.) 6.92 6.99 6.98 6.99 7.11 7.09 7-10V	ORP: (mV)	Turb: (NTU) 7.08 7.02 6.89 6.75 6.72 5.72 5.05
ADEC 1ay 2010)	Interval (minutes) 3 to 5	Pump Rate (mL/min):	Drawdown (ft): <0.0328	Temp: (°C) ±3% or ±0.2	Sp. Cond.: (uS/cm) ±3%	DO (mg/L) ±10%	pH: (S.U.) ±0.1	ORP: (mV) ±10	(N′ ±10	urb: FU)
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or	r <5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

	DOW LIOW W	TARIJER DIVITA			
Shannon & Wilson, Inc.				48	· ·
Job No: 32-1-200	D69 Location: CTUN	jey	_ Weather: Time Complet	of over	20-5/
Well No.: MW-1	34	7		A ====	
Date: 11/21/17	Time Started: 15	: 45	_ Time Complet	ed: 1 7 00	*** ·
Develop Date:	Develop End Time: _	and committee and	(24 hour break	()	
	INITIAL GROUN	DWATER I	EVEL DATA		
				11-11-2	
Time of Depth Measurem	nent: 15.45 op of PVC Casing / Top of Stee	Date of Dep	oth Measurement:	1121/07	
Measuring Point (MP):	op of PVC Casing / Top of Stee	Protective Casin	g / Otner:	****	
Diameter of Casing:	w MP: 10.65	Well Screen	Interval:		
Total Depth of Well Belo	6 20	Product 1n1	ckness, if noted:		:
Depth-to-Water (DTW) B Water Column in Well:	selow MP:	(Total Dant	h of Well Below MP	DTW Relow	MD)
Gallons per foot:	0.65	(Total Depti	II Of Well Below Mir	- DI W BCIOW I	W11)
Gallons in Well:	2.77	(Water Coli	ımn in Well x Galloı	ns per foot)	
Ganons in Wen.		(Water Con	illili ili Weli x Ganoi	is per root)	
	PUR	GING DATA			
Date Purged: ///2//7				ed: 16:2	2
Three Well Volumes:	- 17	in Well x 3)	_ Time Complete		
Gallons Purged:			y 2 ft from bottom):	7.39	
Max. Drawdown (general	lly 0.3 ft): 0.12	Pump Rate	: 0.4 L/mih		
Well Purged Dry:	Yes D No 🗷	(If yes, use	Well Purged Dry Lo		
Time: Gallons: Pump Ra		` • •	. Cond.: DO:		ORP: Turb:
(L/min):		5 (°C) (i	uS/cm) (mg/L)		(mV) (NTU)
15:55 013 014	6.44 444	3.0	578 -	7.31	~ 28.0
5:58 1 0-4	gardenne	3-3	586	7.44	43.2
6:01			589	4.50	39.2
5:04	6.46 0.07		099 -	7.57	43,4
1:07	\$2000mm	,	589	#- 49	- 440
=10 \$	gingson	2.9	590	7,58	- 37,6
7	CAM	PLING DATA			
	<u>SAIVI</u>	42002E2 *	-		
Odor: Stan H	1000	Color: _ <i>(</i> [11 > - 17		
Sample Designation:	20069-MW-13A	Time / Date	17 1/401 11	2//4	
	20069 -MW-103A	Time / Date		-1//7	
QA Sample Designation:		Time / Date):		
Evacuation Method: Syb		whale			
Sampling Method: Subm	ersible Pump / Other: Milli	**************************************	mandaring to a		A
Water Quality Instrument	ts Used/Manufacturer/Model Nu	imber <u>Hann</u>	a 72, Auctor	timeter "	<u> </u>
Calibration Info (Time, R	anges, etc) <u>See JJK</u>	- 11/2/17	field vot	<u> </u>	·
Remarks: 534	Duplizate	Sample	103A		
		in the	11		
Sampling Personnel:	556				
. •	WELL CASING VOLUMES (G			= 0.65	
	ANNULAR SPACE VOLUMI	ತ (GAL/FT): 4" (casing and 2" well =	0.23	

Shannon & Wilson, Inc.

Continued from previous page

Job No: 32-1-20069 Location: Crowley Site: 459 W. Bluff Dr. Well No.:

Date: _///21//7

Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp: (°C)	Sp. Cond (uS/cm)	DO (mg/L)	рН: (S.U.)	ORP: (mV)	Turb: (NTU)
1 16:13	03	0.4	6.50	0.11	2.8	589	(mg/L)	7.5	7	32.48
16:16	-4-		eSTONE STANKE		2.9	592	Shape,	7,58		33,71
18:19	4	4	6.51	0.12	7.9	589	Ministration .	7.55		31.91
16:23	SAM		IIME							
16: 45	Dul-	SAMP	LE TI	ME_						4
. ———						-				
			State Section 1		reg.					
						*				
					<u> </u>	~.				
								-		-
		· *	<u> </u>			ž	***************************************			el e
		,								
									·	
	and the second s		1							***
1	-									
			y <u></u>					_		
	Interval	Pump Rate	Drawdown	Temp:	Sp. Cond.:	DO	pH:	ORP:	Tu	ırb:
	(minutes)	(mL/min):	(ft):	(°C)	(uS/cm)	(mg/L)	(S.U.)	(mV)	(N	TU)
ADEC 1ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±1	0%
EPA	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% oı	r <5 NTU
an. 2010)			e i	in the second of						

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

Shannon & Wilson, Inc.	DOW-I'DOW WA	A ICIN DANIE II.	III LUG			
Job No: 32-1-20089 Well No.: MW-1918	Location: Crawle	2 remenf	Weather: 2	oor are	rca.st	
p A		,		16	> ^	
Date: 11/21//3	Time Started:/\frac{1}{2}		Time Comple	eted: 15:	> 0	
Develop Date:	_ Develop End Time:	***********	(24 hour brea	k)		
	INITIAL GROUND					
Time of Depth Measurement:	14:20	Date of Depth	Measurement: <u>l</u>	1/2/17		
Measuring Point (MP): Top of P	VC Casing / Top of Steel F	rotective Casing /	Other:	1.		
Diameter of Casing:	2"	_ Well Screen In	nterval:			
Total Depth of Well Below MP:	14.39		ness, if noted:			
Depth-to-Water (DTW) Below M						
Water Column in Well:	8.20	Total Depth o	f Well Below MI	DTW Belov	w MP)	
Gallons per foot:	0.16				, =:==,	
Gallons in Well:	1.3/	(Water Column	n in Well x Gallo	ns per foot)		
				por 1000)		
95Å.	<u>PURG</u>	ING DATA				
Date Purged: _///2/// 7	Time Started: 14:	30	Time Complete	ed: 15:1	0	
Three Well Volumes. 3	(Gallons in		Time complete	5d. <u>/ 5</u>	No.	
Gallons Purged: 2.2		Pump (generally 2	ft from bottom):	719		
Max. Drawdown (generally 0.3 ft): _ O.U -	Pump Rate:	~()(3 6/an.)	-		
Well Purged Dry:	Yes □ No □	I timp Rute: (If we suse We	ell Purged Dry Lo	<u>(a)</u>		
•	~ Z		-			
	DTW Drawdown BMP): (ft):	Temp: Sp. Co (°C) (uS/o		рН: (S.U.)	ORP:	Turb:
44 . 44	6.20 0.01	2.7 5		(3.0.)	(mV)	(NTU)
14:43 0.2 0.3		2.4 52		274		>1000
14:46 0.2 0.3		30 5	<u> </u>	7.61	· ·	7000
14:49 0.2 0.3 6	.24 0.05	$\frac{7.0}{3.0}$ $\frac{3}{53}$	70	7.27		825
	0.07	2.9 53		7.4	<u> </u>	390.4
		217 23	2	7.79	April 1	201.8
1.55 0.2 0.3		2.8 33	<u> </u>	1.48	-2000	143.7
	SAMPL	ING DATA	į.			
Odor: Strang HC.		Color:	whlare	ž.		
Sample Designation: 2000	59-MW19R	Time / Date: /	5:11 11	12/12		_
QC Sample Designation:		Time / Date:				
QA Sample Designation:	The state of the s	Time / Date:				
Evacuation Method: Submersible	Pump / Other:	habe				
Sampling Method: Submersible P	ump/Other: MINI					
Water Quality Instruments Used/N	/Ianufacturer/Model Numb	er Hanna I	72 turbi	diunete	1 # 2	
Calibration Info (Time, Ranges, et	ic) See JJK "	121/17 5	Told water	ę.		
	grey Sludge is	well.	THU MAIL	<u>}</u>		_
Sampling Personnel:		.,		···		_
- 	ASING VOLUMES (GAL	/ET). 1" – 0.04	D" = 0.16 4" =	- 0 (5		
	ASING VOLUMES (GAL) LAR SPACE VOLUME (C			= 0.65) 23		
	()		-5 and 2 WOII - C	·		

20.6

Shannon & Wilson, Inc.

Continued from previous page

Job No: 32-1-20069 Location: Creater Site: 459 W. Blaff Dr.

Well No.: Mw-19K

Date: 11/21/17

Time: 14:58 15:01 15:04 15:07 15:10 15:10	Gallons: 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 SAM(Pump Rate (L/min): 0.3 0.3 0.3 0.3	DTW (ft BMP); 6.28	Drawdown (ft): 0.09 0.11	Temp: (°C) 3·C) 2·9 2·9 3·O 3·O 3·O	Sp. Cond (uS/cm) 549 274 275 273 273	DO (mg/L)	pH: (S.U.) 7.44 7.42 7.44 7.48	ORP: Turb: (mV) (NTU) - \(\(\frac{21.4}{5} \) - \(\frac{49.9}{5} \) - \(\frac{49.9}{5} \) - \(\frac{48.8}{5} \)
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp:	Sp. Cond.: (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTU)
ADEC 1ay 2010) EPA an. 2010)	3 to 5	100 to 150 50	<0.0328	±3% or ±0.2 ±3%	±3% ** 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	±10% ±10%	±0.1	±10 ±10	±10% ±10% or <5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

Shannon & Wilson, Inc.	
Job No: 32-1-20069 Location: (1001-2)	Weather: 10 to overcast
Well No.: MW-14	
Date: 11/17 Time Started: 10:415	Time Completed: 11. 15
Develop Date: Develop End Time:	(24 hour break)
INITIAL GROUNDWATER	LEVEL DATA
	Depth Measurement: 11/21/17
Measuring Point (MP): Top of PVC Casing / Top of Steel Protective Ca	
	reen Interval:
Total Depth of Well Below MP: Form Well Product	
Depth-to-Water (DTW) Below MP: 4,74	
	epth of Well Below MP - DTW Below MP)
Gallons per foot: 0:65	
Gallons in Well: (Water C	Column in Well x Gallons per foot)
TOC: 3.83	
Top of stole up: 3.95 PURGING DAT	$rac{\Gamma oldsymbol{A}}{2}$, which is the second constant of $rac{1}{2}$
Date Purged: Time Started:	Time Completed:
Three Well Volumes:(Gallons in Well x 3)	
	ally 2 ft from bottom):
h and	ate:
Well Purged Dry: Yes □ No ② (If yes, u	se Well Purged Dry Log)
e: Gallons: Pump Rate DTW Drawdown Temp: (L/min): (ft BMP): (ft): (°C) VELC FOOTEN NO SAMPLE C	Sp. Cond.: DO: pH: ORP: Turb: (uS/cm) (mg/L) (S.U.) (mV) (NTU)
SAMPLING DA	TA
Odor: Color:	
Sample Designation: Time / D	ate:
QC Sample Designation: Time / D	
QA Sample Designation: Time / D	
Evacuation Method: Submersible Pump / Other:	
Sampling Method: Submersible Pump / Other:	
Water Quality Instruments Used/Manufacturer/Model Number	SAMPLE COMECTED - Freth well
Calibration Info (Time, Ranges, etc) See 55k 11/21/13	7 frold notes.
Remarks: Well frozen - NO SAMPLE CO	alcected
	(apr (gg) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Sampling Personnel: 55K	All Paragraphy resources.
WELL CASING VOLUMES (GAL/FT): 1" =	The second secon
ANNIH AR SPACE VOLUME (CALIET). A	$\frac{12}{3}$ and $\frac{12}{3}$ well $= 0.22$

Shannon & Wilson, Inc.

Continued from previous page

Job No: 32-1-20069 Location: Creater Site: 459 W. Blaff Da

Date: 1/21/17

					a 5A	MPLE			
			201	1 - 1			Name		
		R) 1			William			
H					A STATE OF THE PARTY OF THE PAR				
			i de de la companya d						
	Interval	Pump Rate	 Drawdown	Temp:	Sp. Cond.:		pH:	ORP:	Turb:
	(minutes)	(mL/min):	(ft):	(°C)	(uS/cm)	(mg/L)	(S.U.)	(mV)	(NTU)
ADEC (ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10%
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <5 NT

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

ATTACHMENT 2

RESULTS OF ANALYTICAL TESTING BY SGS NORTH AMERICA INC. OF ANCHORAGE, ALASKA AND

ADEC LABORATORY DATA REVIEW CHECKLIST

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks Street Suite 3 Anchorage, AK 99518 (907)433-3226

Report Number: 1179898

Client Project: 32-1-20069 Crowley GW

Dear Jake Kesler,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson
Project Manager
Justin.Nelson@sgs.com

Date

Print Date: 12/06/2017 3:08:34PM

Case Narrative

SGS Client: **Shannon & Wilson, Inc.**SGS Project: **1179898**

Project Name/Site: **32-1-20069 Crowley GW**Project Contact: **Jake Kesler**

Refer to sample receipt form for information on sample condition.

20069-MW6B (1179898001) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (242%) does not meet QC criteria due to matrix interference.

LCSD for HBN 1772958 [VXX/3178 (1427990) LCSD

8260C - LCSD RPD for bromomethane (22.6) does not meet QC criteria. This analyte was not detected in associated samples.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 12/06/2017 3:08:35PM

Laboratory ID

SW8260C

Report of Manual Integrations Client Sample ID Analytical Batch Analyte Reason

 1179898003
 20069-13A
 VMS17480
 4-Isopropyltoluene
 SP

 1179898004
 20069-103A
 VMS17480
 4-Isopropyltoluene
 SP

Manual Integration Reason Code Descriptions

Code Description
O Original Chromatogram
M Modified Chromatogram
SS Skimmed surrogate
BLG Closed baseline gap
RP Reassign peak name
PIR Pattern integration required

IT Included tail SP Split peak

RSP Removed split peak
FPS Forced peak start/stop
BLC Baseline correction

PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 12/06/2017 3:08:36PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are **AK00971 DW Chemistry (Provisionally Certified as of 10/12/2017) & Microbiology (Provisionally Certified as of 9/21/2017) &** UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit
DF Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICVInitial Calibration VerificationJThe quantitation is an estimation.LCS(D)Laboratory Control Spike (Duplicate)LLQC/LLIQCLow Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 12/06/2017 3:08:39PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
20069-MW6B	1179898001	11/21/2017	11/22/2017	Water (Surface, Eff., Ground)
20069-MW19R	1179898002	11/21/2017	11/22/2017	Water (Surface, Eff., Ground)
20069-13A	1179898003	11/21/2017	11/22/2017	Water (Surface, Eff., Ground)
20069-103A	1179898004	11/21/2017	11/22/2017	Water (Surface, Eff., Ground)
WTB	1179898005	11/21/2017	11/22/2017	Water (Surface, Eff., Ground)

Method Description

8270D SIM LV (PAH) 8270 PAH SIM GC/MS Liq/Liq ext. LV

AK101 AK101/8021 Combo. SW8021B AK101/8021 Combo.

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water
AK101 Gasoline Range Organics (W)

SW8260C Volatile Organic Compounds (W) FULL

Print Date: 12/06/2017 3:08:40PM

Detectable Results Summary

Client Sample ID: 20069-MW6B			
Lab Sample ID: 1179898001	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	29.1	mg/L
	Residual Range Organics	2.07	mg/L
Volatile Fuels	Benzene	19.2	ug/L
	Ethylbenzene	68.9	ug/L
	Gasoline Range Organics	0.697	mg/L
	o-Xylene	3.91	ug/L
	P & M -Xylene	55.6	ug/L
	Toluene	0.520J	ug/L
Client Sample ID: 20069-MW19R			
Lab Sample ID: 1179898002	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1.59	mg/L
	Residual Range Organics	0.338J	mg/L
Volatile Fuels	Benzene	29.0	ug/L
	Ethylbenzene	14.2	ug/L
	Gasoline Range Organics	3.43	mg/L
	o-Xylene	2.55	ug/L
	P & M -Xylene	37.7	ug/L
	Toluene	4.53	ug/L
Client Sample ID: 20069-13A			
Lab Sample ID: 1179898003	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.974	ug/L
	Acenaphthene	0.272	ug/L
	Fluorene	0.227	ug/L
	Naphthalene	2.90	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	4.96	mg/L
	Residual Range Organics	0.930	mg/L
Volatile Fuels	Gasoline Range Organics	2.00	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	95.2	ug/L
	1,3,5-Trimethylbenzene	26.5	ug/L
	4-Isopropyltoluene	2.04	ug/L
	Benzene	61.3	ug/L
	Ethylbenzene	133	ug/L
	Isopropylbenzene (Cumene)	3.28	ug/L
	Naphthalene	72.8	ug/L
	n-Propylbenzene	4.26	ug/L
	o-Xylene	4.56	ug/L
	P & M -Xylene	366	ug/L
	sec-Butylbenzene	0.620J	ug/L
	tert-Butylbenzene	0.590J	ug/L
	Toluene	6.55	ug/L
	Xylenes (total)	370	ug/L

Print Date: 12/06/2017 3:08:41PM

SGS North America Inc. 200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: 20069-103A			
Lab Sample ID: 1179898004	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	3.73	ug/L
•	2-Methylnaphthalene	0.812	ug/L
	Acenaphthene	0.409	ug/L
	Fluorene	0.509	ug/L
	Naphthalene	11.5	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	5.50	mg/L
	Residual Range Organics	1.22	mg/L
Volatile Fuels	Gasoline Range Organics	2.15	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	100	ug/L
	1,3,5-Trimethylbenzene	26.5	ug/L
	4-Isopropyltoluene	2.07	ug/L
	Benzene	66.9	ug/L
	Ethylbenzene	190	ug/L
	Isopropylbenzene (Cumene)	4.06	ug/L
	Naphthalene	77.6	ug/L
	n-Propylbenzene	4.98	ug/L
	o-Xylene	4.83	ug/L
	P & M -Xylene	375	ug/L
	sec-Butylbenzene	0.640J	ug/L
	tert-Butylbenzene	0.580J	ug/L
	Toluene	7.52	ug/L
	Xylenes (total)	380	ug/L

Print Date: 12/06/2017 3:08:41PM

Results of 20069-MW6B

Client Sample ID: 20069-MW6B

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898001 Lab Project ID: 1179898 Collection Date: 11/21/17 12:57 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	29.1	0.600	0.180	mg/L	1		11/30/17 20:14
Surrogates							
5a Androstane (surr)	98.8	50-150		%	1		11/30/17 20:14

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 11/30/17 20:14 Container ID: 1179898001-D Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	2.07	0.500	0.150	mg/L	1		11/30/17 20:14
Surrogates							
n-Triacontane-d62 (surr)	97.9	50-150		%	1		11/30/17 20:14

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 11/30/17 20:14 Container ID: 1179898001-D Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:08:42PM

J flagging is activated

Results of 20069-MW6B

Client Sample ID: 20069-MW6B

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898001 Lab Project ID: 1179898

Collection Date: 11/21/17 12:57 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.697	0.100	0.0310	mg/L	1		11/23/17 16:53
Surrogates							
4-Bromofluorobenzene (surr)	242 *	50-150		%	1		11/23/17 16:53

Batch Information

Analytical Batch: VFC14005 Analytical Method: AK101

Analyst: NRB

Analytical Date/Time: 11/23/17 16:53 Container ID: 1179898001-A

Prep Batch: VXX31763 Prep Method: SW5030B Prep Date/Time: 11/22/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	19.2	0.500	0.150	ug/L	1		11/29/17 23:16
Ethylbenzene	68.9	1.00	0.310	ug/L	1		11/23/17 16:53
o-Xylene	3.91	1.00	0.310	ug/L	1		11/23/17 16:53
P & M -Xylene	55.6	2.00	0.620	ug/L	1		11/23/17 16:53
Toluene	0.520 J	1.00	0.310	ug/L	1		11/23/17 16:53
Surrogates							
1,4-Difluorobenzene (surr)	99	77-115		%	1		11/23/17 16:53

Batch Information

Analytical Batch: VFC14005 Analytical Method: SW8021B

Analyst: NRB

Analytical Date/Time: 11/23/17 16:53

Container ID: 1179898001-A

Analytical Batch: VFC14007 Analytical Method: SW8021B

Analyst: NRO

Analytical Date/Time: 11/29/17 23:16 Container ID: 1179898001-A

Prep Batch: VXX31763 Prep Method: SW5030B Prep Date/Time: 11/22/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX31778 Prep Method: SW5030B Prep Date/Time: 11/29/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM

J flagging is activated

Results of 20069-MW19R

Client Sample ID: 20069-MW19R

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898002 Lab Project ID: 1179898 Collection Date: 11/21/17 15:11 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Diesel Range Organics	1.59	0.588	0.176	mg/L	1		11/30/17 20:24
Surrogates							
5a Androstane (surr)	77.6	50-150		%	1		11/30/17 20:24

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 11/30/17 20:24 Container ID: 1179898002-D Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.338 J	0.490	0.147	mg/L	1		11/30/17 20:24
Surrogates							
n-Triacontane-d62 (surr)	88.5	50-150		%	1		11/30/17 20:24

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 11/30/17 20:24 Container ID: 1179898002-D Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Results of 20069-MW19R

Client Sample ID: 20069-MW19R

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898002 Lab Project ID: 1179898 Collection Date: 11/21/17 15:11 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Gasoline Range Organics	3.43	0.500	0.155	mg/L	5		11/30/17 01:07
Surrogates							
4-Bromofluorobenzene (surr)	138	50-150		%	5		11/30/17 01:07

Batch Information

Analytical Batch: VFC14007 Analytical Method: AK101

Analyst: NRO

Analytical Date/Time: 11/30/17 01:07 Container ID: 1179898002-A

Prep Batch: VXX31778
Prep Method: SW5030B
Prep Date/Time: 11/29/17 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	29.0	2.50	0.750	ug/L	5		11/30/17 01:07
Ethylbenzene	14.2	1.00	0.310	ug/L	1		11/23/17 17:11
o-Xylene	2.55	1.00	0.310	ug/L	1		11/23/17 17:11
P & M -Xylene	37.7	2.00	0.620	ug/L	1		11/23/17 17:11
Toluene	4.53	1.00	0.310	ug/L	1		11/23/17 17:11
Surrogates							
1,4-Difluorobenzene (surr)	102	77-115		%	1		11/23/17 17:11

Batch Information

Analytical Batch: VFC14007 Analytical Method: SW8021B

Analyst: NRO

Analytical Date/Time: 11/30/17 01:07 Container ID: 1179898002-A

Analytical Batch: VFC14005 Analytical Method: SW8021B

Analyst: NRB

Analytical Date/Time: 11/23/17 17:11 Container ID: 1179898002-A Prep Batch: VXX31778
Prep Method: SW5030B
Prep Date/Time: 11/29/17 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX31763 Prep Method: SW5030B Prep Date/Time: 11/22/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM

J flagging is activated

Client Sample ID: 20069-13A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898003 Lab Project ID: 1179898 Collection Date: 11/21/17 16:23 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.974	0.0500	0.0150	ug/L	1	12/01/17 22:32
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Acenaphthene	0.272	0.0500	0.0150	ug/L	1	12/01/17 22:32
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1	12/01/17 22:32
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1	12/01/17 22:32
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Fluorene	0.227	0.0500	0.0150	ug/L	1	12/01/17 22:32
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Naphthalene	2.90	0.100	0.0310	ug/L	1	12/01/17 22:32
Phenanthrene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1	12/01/17 22:32
Surrogates						
2-Methylnaphthalene-d10 (surr)	47.1	47-106		%	1	12/01/17 22:32
Fluoranthene-d10 (surr)	49.5	24-116		%	1	12/01/17 22:32

Batch Information

Analytical Batch: XMS10572

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 12/01/17 22:32

Container ID: 1179898003-I

Prep Batch: XXX38882 Prep Method: SW3520C

Prep Date/Time: 11/27/17 09:14 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: 20069-13A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898003 Lab Project ID: 1179898 Collection Date: 11/21/17 16:23 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	4.96	0.615	0.184	mg/L	1		11/30/17 20:34
Surrogates							
5a Androstane (surr)	84.6	50-150		%	1		11/30/17 20:34

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 11/30/17 20:34 Container ID: 1179898003-G

Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 244 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.930	0.512	0.154	mg/L	1		11/30/17 20:34
Surrogates							
n-Triacontane-d62 (surr)	84.7	50-150		%	1		11/30/17 20:34

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 11/30/17 20:34 Container ID: 1179898003-G Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 244 mL Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Client Sample ID: 20069-13A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898003 Lab Project ID: 1179898 Collection Date: 11/21/17 16:23 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	2.00	0.100	0.0310	mg/L	1	Limits	11/23/17 17:30
Surrogates 4-Bromofluorobenzene (surr)	109	50-150		%	1		11/23/17 17:30

Batch Information

Analytical Batch: VFC14005 Analytical Method: AK101

Analyst: NRB

Analytical Date/Time: 11/23/17 17:30 Container ID: 1179898003-A Prep Batch: VXX31763
Prep Method: SW5030B
Prep Date/Time: 11/22/17 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Client Sample ID: 20069-13A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898003 Lab Project ID: 1179898 Collection Date: 11/21/17 16:23 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 18:52
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 18:52
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/01/17 18:52
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,2,4-Trimethylbenzene	95.2	1.00	0.310	ug/L	1		12/01/17 18:52
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/01/17 18:52
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/01/17 18:52
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 18:52
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,3,5-Trimethylbenzene	26.5	1.00	0.310	ug/L	1		12/01/17 18:52
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/01/17 18:52
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/01/17 18:52
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/01/17 18:52
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/01/17 18:52
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
4-Isopropyltoluene	2.04	1.00	0.310	ug/L	1		12/01/17 18:52
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/01/17 18:52
Benzene	61.3	0.400	0.120	ug/L	1		12/01/17 18:52
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 18:52
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
Bromomethane	2.50 U	5.00	1.50	ug/L	1		12/01/17 18:52
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/01/17 18:52
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/01/17 18:52
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 18:52

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: 20069-13A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898003 Lab Project ID: 1179898 Collection Date: 11/21/17 16:23 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Chloromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	12/01/17 18:52
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	12/01/17 18:52
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Ethylbenzene	133	1.00	0.310	ug/L	1	12/01/17 18:52
Freon-113	5.00 U	10.0	3.10	ug/L	1	12/01/17 18:52
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Isopropylbenzene (Cumene)	3.28	1.00	0.310	ug/L	1	12/01/17 18:52
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	12/01/17 18:52
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	12/01/17 18:52
Naphthalene	72.8	1.00	0.310	ug/L	1	12/01/17 18:52
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
n-Propylbenzene	4.26	1.00	0.310	ug/L	1	12/01/17 18:52
o-Xylene	4.56	1.00	0.310	ug/L	1	12/01/17 18:52
P & M -Xylene	366	2.00	0.620	ug/L	1	12/01/17 18:52
sec-Butylbenzene	0.620 J	1.00	0.310	ug/L	1	12/01/17 18:52
Styrene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
tert-Butylbenzene	0.590 J	1.00	0.310	ug/L	1	12/01/17 18:52
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Toluene	6.55	1.00	0.310	ug/L	1	12/01/17 18:52
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 18:52
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	12/01/17 18:52
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	12/01/17 18:52
Xylenes (total)	370	3.00	1.00	ug/L	1	12/01/17 18:52
Surrogates						
1,2-Dichloroethane-D4 (surr)	96.2	81-118		%	1	12/01/17 18:52
4-Bromofluorobenzene (surr)	93.4	85-114		%	1	12/01/17 18:52
Toluene-d8 (surr)	99	89-112		%	1	12/01/17 18:52
				, .	•	12/01/11 19:02

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: 20069-13A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898003 Lab Project ID: 1179898 Collection Date: 11/21/17 16:23 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17480 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 12/01/17 18:52 Container ID: 1179898003-D Prep Batch: VXX31784
Prep Method: SW5030B
Prep Date/Time: 12/01/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Client Sample ID: 20069-103A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898004 Lab Project ID: 1179898 Collection Date: 11/21/17 16:48 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	3.73	0.0481	0.0144	ug/L	1		12/01/17 22:52
2-Methylnaphthalene	0.812	0.0481	0.0144	ug/L	1		12/01/17 22:52
Acenaphthene	0.409	0.0481	0.0144	ug/L	1		12/01/17 22:52
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		12/01/17 22:52
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		12/01/17 22:52
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Fluorene	0.509	0.0481	0.0144	ug/L	1		12/01/17 22:52
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Naphthalene	11.5	0.192	0.0596	ug/L	2		12/04/17 23:58
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		12/01/17 22:52
Surrogates							
2-Methylnaphthalene-d10 (surr)	67.5	47-106		%	1		12/01/17 22:52
Fluoranthene-d10 (surr)	56.8	24-116		%	1		12/01/17 22:52

Batch Information

Analytical Batch: XMS10572

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 12/01/17 22:52

Container ID: 1179898004-I

Analytical Batch: XMS10575

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 12/04/17 23:58

Container ID: 1179898004-I

Prep Batch: XXX38882 Prep Method: SW3520C Prep Date/Time: 11/27/17 09:14 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX38882 Prep Method: SW3520C Prep Date/Time: 11/27/17 09:14 Prep Initial Wt./Vol.: 260 mL

Prep Extract Vol: 1 mL

Client Sample ID: 20069-103A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898004 Lab Project ID: 1179898 Collection Date: 11/21/17 16:48 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	5.50	0.588	0.176	mg/L	1		11/30/17 20:43
Surrogates							
5a Androstane (surr)	85.6	50-150		%	1		11/30/17 20:43

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 11/30/17 20:43 Container ID: 1179898004-G Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.22	0.490	0.147	mg/L	1		11/30/17 20:43
Surrogates							
n-Triacontane-d62 (surr)	86.7	50-150		%	1		11/30/17 20:43

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 11/30/17 20:43 Container ID: 1179898004-G Prep Batch: XXX38895 Prep Method: SW3520C Prep Date/Time: 11/29/17 08:36 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: 20069-103A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898004 Lab Project ID: 1179898 Collection Date: 11/21/17 16:48 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 2.15	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 11/23/17 17:48
Surrogates							
4-Bromofluorobenzene (surr)	111	50-150		%	1		11/23/17 17:48

Batch Information

Analytical Batch: VFC14005 Analytical Method: AK101

Analyst: NRB

Analytical Date/Time: 11/23/17 17:48 Container ID: 1179898004-A Prep Batch: VXX31763
Prep Method: SW5030B
Prep Date/Time: 11/22/17 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Client Sample ID: 20069-103A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898004 Lab Project ID: 1179898 Collection Date: 11/21/17 16:48 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

	D "0 '	1.00/01	D.		5-	Allowable	5
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 19:0
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 19:0
I,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/01/17 19:0
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,2,4-Trimethylbenzene	100	1.00	0.310	ug/L	1		12/01/17 19:0
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/01/17 19:0
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/01/17 19:0
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 19:0
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,3,5-Trimethylbenzene	26.5	1.00	0.310	ug/L	1		12/01/17 19:0
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/01/17 19:0
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/01/17 19:0
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/01/17 19:0
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/01/17 19:0
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
1-Isopropyltoluene	2.07	1.00	0.310	ug/L	1		12/01/17 19:0
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/01/17 19:0
Benzene	66.9	0.400	0.120	ug/L	1		12/01/17 19:0
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 19:0
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
Bromomethane	2.50 U	5.00	1.50	ug/L	1		12/01/17 19:0
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/01/17 19:0
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/01/17 19:0
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 19:0

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: 20069-103A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898004 Lab Project ID: 1179898 Collection Date: 11/21/17 16:48 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-			Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Chloromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	12/01/17 19:08
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	12/01/17 19:08
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Ethylbenzene	190	1.00	0.310	ug/L	1	12/01/17 19:08
Freon-113	5.00 U	10.0	3.10	ug/L	1	12/01/17 19:08
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Isopropylbenzene (Cumene)	4.06	1.00	0.310	ug/L	1	12/01/17 19:08
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	12/01/17 19:08
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	12/01/17 19:08
Naphthalene	77.6	1.00	0.310	ug/L	1	12/01/17 19:08
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
n-Propylbenzene	4.98	1.00	0.310	ug/L	1	12/01/17 19:08
o-Xylene	4.83	1.00	0.310	ug/L	1	12/01/17 19:08
P & M -Xylene	375	20.0	6.20	ug/L	10	12/01/17 18:21
sec-Butylbenzene	0.640 J	1.00	0.310	ug/L	1	12/01/17 19:08
Styrene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
tert-Butylbenzene	0.580 J	1.00	0.310	ug/L	1	12/01/17 19:08
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Toluene	7.52	1.00	0.310	ug/L	1	12/01/17 19:08
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 19:08
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	12/01/17 19:08
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	12/01/17 19:08
Xylenes (total)	380	30.0	10.0	ug/L	10	12/01/17 18:21
Surrogates						
1,2-Dichloroethane-D4 (surr)	95.7	81-118		%	1	12/01/17 19:08
4-Bromofluorobenzene (surr)	96.1	85-114		%	1	12/01/17 19:08
Toluene-d8 (surr)	99.3	89-112		%	1	12/01/17 19:08
• •						

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: 20069-103A

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898004 Lab Project ID: 1179898 Collection Date: 11/21/17 16:48 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17480 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 12/01/17 18:21 Container ID: 1179898004-D

Analytical Batch: VMS17480 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 12/01/17 19:08 Container ID: 1179898004-D Prep Batch: VXX31784
Prep Method: SW5030B
Prep Date/Time: 12/01/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX31784
Prep Method: SW5030B
Prep Date/Time: 12/01/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Client Sample ID: WTB

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898005 Lab Project ID: 1179898

Collection Date: 11/21/17 12:50 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		11/23/17 02:41
Surrogates							
4-Bromofluorobenzene (surr)	83.4	50-150		%	1		11/23/17 02:41

Batch Information

Analytical Batch: VFC14003 Analytical Method: AK101 Analyst: NRB

Analytical Date/Time: 11/23/17 02:41 Container ID: 1179898005-A

Prep Batch: VXX31761 Prep Method: SW5030B Prep Date/Time: 11/22/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Client Sample ID: WTB

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898005 Lab Project ID: 1179898 Collection Date: 11/21/17 12:50 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	Littito	12/01/17 14:29
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 14:29
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/01/17 14:29
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/01/17 14:29
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/01/17 14:29
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 14:29
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/01/17 14:29
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/01/17 14:29
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/01/17 14:29
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/01/17 14:29
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/01/17 14:29
Benzene	0.200 U	0.400	0.120	ug/L	1		12/01/17 14:29
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/01/17 14:29
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
Bromomethane	2.50 U	5.00	1.50	ug/L	1		12/01/17 14:29
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/01/17 14:29
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/01/17 14:29
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/01/17 14:29

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: WTB

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898005 Lab Project ID: 1179898 Collection Date: 11/21/17 12:50 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Chloromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	12/01/17 14:29
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	12/01/17 14:29
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Freon-113	5.00 U	10.0	3.10	ug/L	1	12/01/17 14:29
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	12/01/17 14:29
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	12/01/17 14:29
Naphthalene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
o-Xylene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	12/01/17 14:29
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Styrene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Toluene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	12/01/17 14:29
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	12/01/17 14:29
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	12/01/17 14:29
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	12/01/17 14:29
urrogates						
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1	12/01/17 14:29
4-Bromofluorobenzene (surr)	100	85-114		%	1	12/01/17 14:29
Toluene-d8 (surr)	98.7	89-112		%	1	12/01/17 14:29

Print Date: 12/06/2017 3:08:42PM

Client Sample ID: WTB

Client Project ID: 32-1-20069 Crowley GW

Lab Sample ID: 1179898005 Lab Project ID: 1179898 Collection Date: 11/21/17 12:50 Received Date: 11/22/17 10:06 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17480 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 12/01/17 14:29 Container ID: 1179898005-A Prep Batch: VXX31784
Prep Method: SW5030B
Prep Date/Time: 12/01/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:42PM J flagging is activated

Blank ID: MB for HBN 1772768 [VXX/31761]

Blank Lab ID: 1427156

QC for Samples: 1179898005

Matrix: Water (Surface, Eff., Ground)

Results by AK101

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L

Surrogates

 1,4-Difluorobenzene (surr)
 102
 77-115
 %

 4-Bromofluorobenzene (surr)
 82.7
 50-150
 %

Batch Information

Analytical Batch: VFC14003 Prep Batch: VXX31761
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 11/22/2017 6:00:00AM

Analyst: NRB Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 11/22/2017 1:45:00PM Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:45PM

Blank Spike ID: LCS for HBN 1179898 [VXX31761]

Blank Spike Lab ID: 1427159 Date Analyzed: 11/22/2017 14:40 [VXX31761]

Spike Duplicate ID: LCSD for HBN 1179898

Spike Duplicate Lab ID: 1427160

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898005

Results by AK101

Blank Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Gasoline Range Organics 0.960 1.00 96 1.00 1.01 101 (60-120) 4.70 (< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 90.1 90 0.0500 97 97 (50-150) **7.30**

Batch Information

Analytical Batch: VFC14003
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: NRB

Prep Batch: VXX31761
Prep Method: SW5030B

Prep Date/Time: 11/22/2017 06:00

Spike Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL $\,$

Print Date: 12/06/2017 3:08:47PM

Blank ID: MB for HBN 1772786 [VXX/31763]

Blank Lab ID: 1427245

QC for Samples:

1179898001, 1179898002, 1179898003, 1179898004

Matrix: Water (Surface, Eff., Ground)

Results by AK101

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Ethylbenzene	0.000500U	0.00100	0.000310	mg/L
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L
o-Xylene	0.000500U	0.00100	0.000310	mg/L
P & M -Xylene	0.00100U	0.00200	0.000620	mg/L
Toluene	0.000500U	0.00100	0.000310	mg/L
Surrogates				
1,4-Difluorobenzene (surr)	101	77-115		%
4-Bromofluorobenzene (surr)	87.8	50-150		%

Batch Information

Analytical Batch: VFC14005 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: NRB

Analytical Date/Time: 11/23/2017 11:19:00AM

Prep Batch: VXX31763 Prep Method: SW5030B

Prep Date/Time: 11/22/2017 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:49PM

Blank Spike ID: LCS for HBN 1179898 [VXX31763]

Blank Spike Lab ID: 1427246 Date Analyzed: 11/23/2017 18:25 Spike Duplicate ID: LCSD for HBN 1179898

[VXX31763]

Spike Duplicate Lab ID: 1427247

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898001, 1179898002, 1179898003, 1179898004

Results by AK101

	E	Blank Spike	(mg/L)	S	pike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Ethylbenzene	0.100	0.0983	98	0.100	0.104	104	(75-125)	5.90	(< 20)
o-Xylene	0.100	0.103	103	0.100	0.113	113	(80-120)	8.60	(< 20)
P & M -Xylene	0.200	0.204	102	0.200	0.221	110	(75-130)	8.00	(< 20)
Toluene	0.100	0.0982	98	0.100	0.106	106	(75-120)	7.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	0.0500	105	105	0.0500	104	104	(77-115)	1.10	

Batch Information

Analytical Batch: VFC14005 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: NRB

Prep Batch: VXX31763
Prep Method: SW5030B

Prep Date/Time: 11/22/2017 06:00

Spike Init Wt./Vol.: 0.100 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 0.100 mg/L Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:51PM

Blank Spike ID: LCS for HBN 1179898 [VXX31763]

Blank Spike Lab ID: 1427248

Date Analyzed: 11/23/2017 18:44

Spike Duplicate ID: LCSD for HBN 1179898

[VXX31763]

Spike Duplicate Lab ID: 1427249

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898001, 1179898002, 1179898003, 1179898004

0.0500

97.4

97

Results by AK101

	l	Blank Spike	(mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.989	99	1.00	0.948	95	(60-120)	4.20	(< 20)
Surrogates									

0.0500 93.1

Batch Information

4-Bromofluorobenzene (surr)

Analytical Batch: VFC14005
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: NRB

Prep Batch: VXX31763
Prep Method: SW5030B

Prep Date/Time: 11/22/2017 06:00

93

Spike Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL $\,$

(50-150) 4.50

Print Date: 12/06/2017 3:08:51PM

Matrix Spike Summary

 Original Sample ID: 1179880001
 Analysis Date: 11/23/2017 18:07

 MS Sample ID: 1427250 MS
 Analysis Date: 11/23/2017 12:33

 MSD Sample ID: 1427251 MSD
 Analysis Date: 11/23/2017 12:51

 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898001, 1179898002, 1179898003, 1179898004

Results by AK101

		Matrix Spike (mg/L)			Spike Duplicate (mg/L)					
Parameter Gasoline Range Organics	<u>Sample</u> 0.100U	<u>Spike</u> 1.00	Result 0.971	Rec (%) 97	<u>Spike</u> 1.00	Result 1.05	Rec (%) 105	<u>CL</u> 60-120	RPD (%) 7.40	RPD CL (< 20)
Surrogates										
4-Bromofluorobenzene (surr)		0.0500	0.0461	92	0.0500	0.0493	99	50-150	6.70	

Batch Information

Analytical Batch: VFC14005 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID

Analyst: NRB

Analytical Date/Time: 11/23/2017 12:33:00PM

Prep Batch: VXX31763

Prep Method: Volatile Fuels Extraction (W) Prep Date/Time: 11/22/2017 6:00:00AM

Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 12/06/2017 3:08:52PM

Blank ID: MB for HBN 1772786 [VXX/31763]

Blank Lab ID: 1427245

QC for Samples:

1179898001, 1179898002, 1179898003, 1179898004

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				

1,4-Difluorobenzene (surr) 101 77-115 %

Batch Information

Analytical Batch: VFC14005 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: NRB

Analytical Date/Time: 11/23/2017 11:19:00AM

Prep Batch: VXX31763 Prep Method: SW5030B

Prep Date/Time: 11/22/2017 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:54PM

Blank Spike ID: LCS for HBN 1179898 [VXX31763]

Blank Spike Lab ID: 1427246

Date Analyzed: 11/23/2017 18:25

Spike Duplicate ID: LCSD for HBN 1179898

[VXX31763]

Spike Duplicate Lab ID: 1427247

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898001, 1179898002, 1179898003, 1179898004

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Ethylbenzene	100	98.3	98	100	104	104	(75-125)	5.90	(< 20)
o-Xylene	100	103	103	100	113	113	(80-120)	8.60	(< 20)
P & M -Xylene	200	204	102	200	221	110	(75-130)	8.00	(< 20)
Toluene	100	98.2	98	100	106	106	(75-120)	7.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	105	105	50	104	104	(77-115)	1.10	

Batch Information

Analytical Batch: VFC14005
Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: NRB

Prep Batch: VXX31763
Prep Method: SW5030B

Prep Date/Time: 11/22/2017 06:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:55PM

Blank ID: MB for HBN 1772893 [VXX/31778]

Blank Lab ID: 1427672

QC for Samples:

1179898001, 1179898002

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0310
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 85.8 50-150 %

Batch Information

Analytical Batch: VFC14007 Pro Analytical Method: AK101 Pro

Instrument: Agilent 7890A PID/FID

Analyst: NRO

Analytical Date/Time: 11/30/2017 4:30:00AM

Prep Batch: VXX31778
Prep Method: SW5030B

Prep Date/Time: 11/29/2017 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:56PM

Blank Spike ID: LCS for HBN 1179898 [VXX31778]

0.0500

92.1

92

Blank Spike Lab ID: 1427673 Date Analyzed: 11/30/2017 03:53 [VXX31778]

Spike Duplicate Lab ID: 1427674 Matrix: Water (Surface, Eff., Ground)

Spike Duplicate ID: LCSD for HBN 1179898

QC for Samples: 1179898001, 1179898002

Results by AK101

	[Blank Spike	(mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.984	98	1.00	0.975	98	(60-120)	0.97	(< 20)
Surrogates									

0.0500 90.3

Batch Information

4-Bromofluorobenzene (surr)

Analytical Batch: VFC14007
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: NRO

Prep Batch: VXX31778
Prep Method: SW5030B

Prep Date/Time: 11/29/2017 06:00

90

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

(50-150) 2.00

Print Date: 12/06/2017 3:08:58PM

Blank Spike ID: LCS for HBN 1179898 [VXX31778]

Blank Spike Lab ID: 1427684 Date Analyzed: 11/29/2017 11:31 Spike Duplicate ID: LCSD for HBN 1179898 [VXX31778]

Spike Duplicate Lab ID: 1427685

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898001, 1179898002

Results by AK101

	E	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.04	104	1.00	1.03	103	(60-120)	0.50	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	90.5	91	0.0500	93.7	94	(50-150)	3.50	

Batch Information

Analytical Batch: VFC14007
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: NRO

Prep Batch: VXX31778
Prep Method: SW5030B

Prep Date/Time: 11/29/2017 06:00

Spike Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL $\,$

Print Date: 12/06/2017 3:08:58PM

Blank ID: MB for HBN 1772893 [VXX/31778]

Blank Lab ID: 1427672

QC for Samples:

1179898001, 1179898002

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Benzene
 0.250U
 0.500
 0.150
 ug/L

Surrogates

1,4-Difluorobenzene (surr) 110 77-115 %

Batch Information

Analytical Batch: VFC14007 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: NRO

Analytical Date/Time: 11/30/2017 4:30:00AM

Prep Batch: VXX31778 Prep Method: SW5030B

Prep Date/Time: 11/29/2017 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:08:59PM

Blank ID: MB for HBN 1772958 [VXX/31784]

Blank Lab ID: 1427988

QC for Samples:

1179898003, 1179898004, 1179898005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 12/06/2017 3:09:04PM

Blank ID: MB for HBN 1772958 [VXX/31784]

Blank Lab ID: 1427988

QC for Samples:

1179898003, 1179898004, 1179898005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	106	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	98.9	89-112		%

Print Date: 12/06/2017 3:09:04PM

Blank ID: MB for HBN 1772958 [VXX/31784]

Blank Lab ID: 1427988

QC for Samples:

1179898003, 1179898004, 1179898005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS17480 Analytical Method: SW8260C Instrument: Agilent 7890-75MS

Analyst: FDR

Analytical Date/Time: 12/1/2017 11:45:00AM

Prep Batch: VXX31784 Prep Method: SW5030B

Prep Date/Time: 12/1/2017 12:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/06/2017 3:09:04PM

Blank Spike ID: LCS for HBN 1179898 [VXX31784]

Blank Spike Lab ID: 1427989 Date Analyzed: 12/01/2017 12:01 Spike Duplicate ID: LCSD for HBN 1179898

[VXX31784]

Spike Duplicate Lab ID: 1427990 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898003, 1179898004, 1179898005

Results by SW8260C

Blank Spike (ug/L) Spike Duplicate (ug/L)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	31.0	103	30	31.3	104	(78-124)	0.74	(< 20)
1,1,1-Trichloroethane	30	30.4	101	30	29.4	98	(74-131)	3.40	(< 20)
1,1,2,2-Tetrachloroethane	30	29.5	99	30	29.5	98	(71-121)	0.20	(< 20)
1,1,2-Trichloroethane	30	31.3	104	30	31.5	105	(80-119)	0.67	(< 20)
1,1-Dichloroethane	30	29.3	98	30	28.6	95	(77-125)	2.30	(< 20)
1,1-Dichloroethene	30	31.4	105	30	29.4	98	(71-131)	6.60	(< 20)
1,1-Dichloropropene	30	31.4	105	30	30.5	102	(79-125)	3.00	(< 20)
1,2,3-Trichlorobenzene	30	27.8	93	30	29.6	99	(69-129)	6.00	(< 20)
1,2,3-Trichloropropane	30	28.7	96	30	28.3	94	(73-122)	1.40	(< 20)
1,2,4-Trichlorobenzene	30	26.9	90	30	27.3	91	(69-130)	1.10	(< 20)
1,2,4-Trimethylbenzene	30	29.9	100	30	29.4	98	(79-124)	1.80	(< 20)
1,2-Dibromo-3-chloropropane	30	27.4	91	30	28.4	95	(62-128)	3.50	(< 20)
1,2-Dibromoethane	30	30.5	102	30	31.1	104	(77-121)	1.90	(< 20)
1,2-Dichlorobenzene	30	28.9	96	30	28.6	95	(80-119)	0.97	(< 20)
1,2-Dichloroethane	30	28.6	95	30	28.0	93	(73-128)	1.90	(< 20)
1,2-Dichloropropane	30	31.5	105	30	31.1	104	(78-122)	1.30	(< 20)
1,3,5-Trimethylbenzene	30	30.2	101	30	29.0	97	(75-124)	4.00	(< 20)
1,3-Dichlorobenzene	30	29.6	99	30	29.2	97	(80-119)	1.30	(< 20)
1,3-Dichloropropane	30	31.5	105	30	31.7	106	(80-119)	0.85	(< 20)
1,4-Dichlorobenzene	30	29.5	98	30	28.9	96	(79-118)	2.10	(< 20)
2,2-Dichloropropane	30	30.6	102	30	29.5	98	(60-139)	3.60	(< 20)
2-Butanone (MEK)	90	86.8	96	90	90.7	101	(56-143)	4.40	(< 20)
2-Chlorotoluene	30	29.8	99	30	29.0	97	(79-122)	2.60	(< 20)
2-Hexanone	90	92.1	102	90	95.9	107	(57-139)	4.10	(< 20)
4-Chlorotoluene	30	29.7	99	30	29.1	97	(78-122)	2.10	(< 20)
4-Isopropyltoluene	30	30.7	102	30	29.3	98	(77-127)	4.50	(< 20)
4-Methyl-2-pentanone (MIBK)	90	88.0	98	90	89.8	100	(67-130)	2.00	(< 20)
Benzene	30	30.8	103	30	29.9	100	(79-120)	3.10	(< 20)
Bromobenzene	30	29.4	98	30	29.2	97	(80-120)	0.72	(< 20)
Bromochloromethane	30	29.7	99	30	29.3	98	(78-123)	1.30	(< 20)
Bromodichloromethane	30	31.2	104	30	30.7	102	(79-125)	1.70	(< 20)
Bromoform	30	31.6	105	30	31.8	106	(66-130)	0.63	(< 20)
Bromomethane	30	38.5	128	30	30.7	102	(53-141)	22.60	* (< 20)
Carbon disulfide	45	45.8	102	45	43.5	97	(64-133)	5.20	(< 20)

Print Date: 12/06/2017 3:09:05PM

Blank Spike ID: LCS for HBN 1179898 [VXX31784]

Blank Spike Lab ID: 1427989 Date Analyzed: 12/01/2017 12:01 Spike Duplicate ID: LCSD for HBN 1179898

[VXX31784]

Spike Duplicate Lab ID: 1427990 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898003, 1179898004, 1179898005

Results by SW8260C

		Blank Spike (ug/L)			Spike Duplicate (ug/L)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	31.1	104	30	30.0	100	(72-136)	3.60	(< 20)
Chlorobenzene	30	30.1	100	30	29.8	99	(82-118)	1.20	(< 20)
Chloroethane	30	33.4	111	30	31.4	105	(60-138)	6.20	(< 20)
Chloroform	30	29.6	99	30	28.9	96	(79-124)	2.40	(< 20)
Chloromethane	30	30.0	100	30	28.3	94	(50-139)	5.90	(< 20)
cis-1,2-Dichloroethene	30	29.5	98	30	28.8	96	(78-123)	2.40	(< 20)
cis-1,3-Dichloropropene	30	31.8	106	30	31.2	104	(75-124)	1.90	(< 20)
Dibromochloromethane	30	31.9	106	30	31.9	106	(74-126)	0.25	(< 20)
Dibromomethane	30	30.2	101	30	29.8	99	(79-123)	1.20	(< 20)
Dichlorodifluoromethane	30	30.8	103	30	28.8	96	(32-152)	6.60	(< 20)
Ethylbenzene	30	30.8	103	30	30.5	102	(79-121)	0.98	(< 20)
Freon-113	45	49.1	109	45	46.7	104	(70-136)	5.10	(< 20)
Hexachlorobutadiene	30	30.2	101	30	29.6	99	(66-134)	2.00	(< 20)
Isopropylbenzene (Cumene)	30	31.3	104	30	30.6	102	(72-131)	2.30	(< 20)
Methylene chloride	30	29.3	98	30	28.8	96	(74-124)	1.60	(< 20)
Methyl-t-butyl ether	45	45.2	100	45	45.4	101	(71-124)	0.42	(< 20)
Naphthalene	30	27.4	91	30	29.8	99	(61-128)	8.40	(< 20)
n-Butylbenzene	30	30.8	103	30	29.8	100	(75-128)	3.00	(< 20)
n-Propylbenzene	30	30.3	101	30	29.6	99	(76-126)	2.60	(< 20)
o-Xylene	30	30.5	102	30	30.3	101	(78-122)	0.43	(< 20)
P & M -Xylene	60	62.5	104	60	61.3	102	(80-121)	2.00	(< 20)
sec-Butylbenzene	30	30.3	101	30	29.0	97	(77-126)	4.50	(< 20)
Styrene	30	31.3	104	30	31.3	104	(78-123)	0.13	(< 20)
tert-Butylbenzene	30	29.9	100	30	29.4	98	(78-124)	1.70	(< 20)
Tetrachloroethene	30	31.2	104	30	30.6	102	(74-129)	1.70	(< 20)
Toluene	30	29.1	97	30	28.8	96	(80-121)	1.00	(< 20)
trans-1,2-Dichloroethene	30	29.1	97	30	28.4	95	(75-124)	2.50	(< 20)
trans-1,3-Dichloropropene	30	32.3	108	30	32.5	108	(73-127)	0.80	(< 20)
Trichloroethene	30	31.2	104	30	30.2	101	(79-123)	3.10	(< 20)
Trichlorofluoromethane	30	32.9	110	30	31.1	104	(65-141)	5.80	(< 20)
Vinyl acetate	30	32.4	108	30	33.0	110	(54-146)	1.90	(< 20)
Vinyl chloride	30	31.6	105	30	29.5	98	(58-137)	6.70	(< 20)
Xylenes (total)	90	93.0	103	90	91.6	102	(79-121)	1.50	(< 20)

Print Date: 12/06/2017 3:09:05PM

Blank Spike ID: LCS for HBN 1179898 [VXX31784]

Blank Spike Lab ID: 1427989 Date Analyzed: 12/01/2017 12:01 Spike Duplicate ID: LCSD for HBN 1179898

[VXX31784]

Spike Duplicate Lab ID: 1427990 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898003, 1179898004, 1179898005

Results by SW8260C

		Blank Spik	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	98	98	30	96.6	97	(81-118)	1.50	
4-Bromofluorobenzene (surr)	30	99.4	99	30	97.7	98	(85-114)	1.70	
Toluene-d8 (surr)	30	101	101	30	102	102	(89-112)	0.73	

Batch Information

Analytical Batch: VMS17480 Analytical Method: SW8260C Instrument: Agilent 7890-75MS

Analyst: FDR

Prep Batch: VXX31784
Prep Method: SW5030B

Prep Date/Time: 12/01/2017 00:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 12/06/2017 3:09:05PM

Matrix Spike Summary

Original Sample ID: 1427991 MS Sample ID: 1427992 MS MSD Sample ID: 1427993 MSD

QC for Samples: 1179898003, 1179898004, 1179898005

Analysis Date: 12/01/2017 20:10 Analysis Date: 12/01/2017 21:44 Analysis Date: 12/01/2017 21:59

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

1,1,1,2-Tetrachloroethane	results by GTTG2GG		Matrix Spike (ug/L)			Spik	e Duplicate	e (ug/L)			
1,1,1-Trichloroethane 0.500U 30.0 30.9 103 30.0 29.7 99 74-131 3.90 (<20) 1,1,2-Tertachloroethane 0.250U 30.0 30.0 100 30.0 29.9 100 71-121 0.30 (<20) 1,1-Dichloroethane 0.500U 30.0 30.2 101 30.0 29.1 97 77-125 4.20 (<20) 1,1-Dichloroethane 0.500U 30.0 31.6 105 30.0 29.9 100 71-131 3.70 (<20) 1,1-Dichloroethene 0.500U 30.0 31.6 105 30.0 30.4 101 79-125 4.20 (<20) 1,2,3-Trichloropene 0.500U 30.0 29.4 98 30.0 28.9 96 73-122 1.90 (<20) 1,2,4-Trichlorobenzene 0.500U 30.0 29.2 98 30.0 28.9 96 73-122 1.90 (<20) 1,2-Dichrobenzene 0.500U 30.0	Parameter Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,2,2-Tetrachloroethane 0,250U 30.0 30 100 30.0 29.9 100 71-121 0,30 (<20) 1,1,2-Tichloroethane 0,200U 30.0 30.2 101 30.0 31.1 104 80-119 3.10 (<20) 1,1-Dichloroethene 0,500U 30.0 31 103 30.0 29.9 100 71-131 3.70 (<20) 1,1-Dichloropropene 0,500U 30.0 31.6 105 30.0 30.4 101 79-125 3.70 (<20) 1,2,3-Trichlorobenzene 0,500U 30.0 31.8 106 30.0 32.5 108 69-129 2.10 (<20) 1,2,4-Trichlorobenzene 0,500U 30.0 29.4 98 30.0 28.9 96 73-122 1.90 (<20) 1,2-Hrintelhylbenzene 0,500U 30.0 30.3 101 39-120 10 (<20) 1,2-Dichloroethane 0,000U 30.0 29.7 99 30.0<	1,1,1,2-Tetrachloroethane	0.250U	30.0	29	97	30.0	30.5	102	78-124	5.30	(< 20)
1,1,2-Trichloroethane 0.200U 30.0 30.2 101 30.0 31.1 104 80-119 3.10 (< 20) 1,1-Dichloroethane 0.500U 30.0 30.4 101 30.0 29.1 97 77-125 4.20 (< 20) 1,1-Dichloroethene 0.500U 30.0 31.6 105 30.0 30.4 101 79-125 3.70 (< 20) 1,2,3-Trichloropenzene 0.500U 30.0 31.8 106 30.0 32.5 108 69-129 2.10 (< 20) 1,2,3-Trichloropenzene 0.500U 30.0 29.4 98 30.0 28.9 96 73-122 1.90 (< 20) 1,2,4-Trichloropenzene 0.500U 30.0 30.3 101 30.0 29.6 99 69-130 1.20 (< 20) 1,2-Dibromo-3-chloropropane 5.00U 30.0 29.7 99 30.0 29.0 97 62-128 0.00 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 29.7 99 30.0 29.0	1,1,1-Trichloroethane	0.500U	30.0	30.9	103	30.0	29.7	99	74-131	3.90	(< 20)
1,1-Dichloroethane 0.500U 30.0 30.4 101 30.0 29.1 97 77-125 4.20 (<20) 1,1-Dichloroethene 0.500U 30.0 31 103 30.0 29.9 100 71-131 3.70 (<20) 1,2,3-Trichloropene 0.500U 30.0 31.6 105 30.0 32.5 108 69-129 2.10 (<20) 1,2,3-Trichloropenzene 0.500U 30.0 29.4 98 30.0 28.9 96 73-122 1.90 (<20) 1,2,4-Trinchlorobenzene 0.500U 30.0 29.2 98 30.0 29.6 99 68-130 1.20 (<20) 1,2-Dirbromoethane 0.500U 30.0 29.7 99 30.0 30.7 102 77-121 3.0 (<20) 1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 30.7 102 77-121 3.20 (<20) 1,2-Dichlorobenzene 0.500U 30.0	1,1,2,2-Tetrachloroethane	0.250U	30.0	30	100	30.0	29.9	100	71-121	0.30	(< 20)
1,1-Dichloroethene 0.500U 30.0 31 103 30.0 29.9 100 71-131 3.70 (< 20) 1,1-Dichloropropene 0.500U 30.0 31.6 105 30.0 30.4 101 79-125 3.70 (< 20) 1,2,3-Trichlorobenzene 0.500U 30.0 29.4 98 30.0 29.6 99 69-130 1.20 (< 20) 1,2,4-Trichlorobenzene 0.500U 30.0 29.2 98 30.0 29.6 99 69-130 1.20 (< 20) 1,2,4-Trichlorobenzene 0.500U 30.0 30.3 101 30.0 29.6 99 69-130 1.20 (< 20) 1,2-Dibromo-3-chloropropane 5.00U 30.0 29.9 97 30.0 29.0 97 62-128 0.00 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 29.5 98 80-119 0.17 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 29.1 97 30.0 28.0 93 73-122 3.50	1,1,2-Trichloroethane	0.200U	30.0	30.2	101	30.0	31.1	104	80-119	3.10	(< 20)
1,1-Dichloropropene 0.500U 30.0 31.6 105 30.0 30.4 101 79-125 3.70 (< 20) 1,2,3-Trichlorobenzene 0.500U 30.0 31.8 106 30.0 32.5 108 69-129 2.10 (< 20) 1,2,3-Trichlorobenzene 0.500U 30.0 29.4 98 30.0 28.9 96 73-122 1.90 (< 20) 1,2,4-Trichlorobenzene 0.500U 30.0 29.4 98 30.0 29.6 99 69-130 1.20 (< 20) 1,2,4-Trichlorobenzene 0.500U 30.0 29.7 99 30.0 29.0 97 62-128 0.00 (< 20) 1,2-Dibromoe-3-chloropropane 5.00U 30.0 29.7 99 30.0 30.7 102 77-121 3.20 (< 20) 1,2-Dichlorobenzene 0.50VU 30.0 29.5 98 30.0 29.5 98 80.11 73-122 3.70 (< 20) 1,2-Dichlorobenzene 0.50VU 30.0 32.3 108 30.0 31.2 104 78	1,1-Dichloroethane	0.500U	30.0	30.4	101	30.0	29.1	97	77-125	4.20	(< 20)
1,2,3-Trichlorobenzene 0.500U 30.0 31.8 106 30.0 32.5 108 69-129 2.10 (<20) 1,2,3-Trichloropropane 0.500U 30.0 29.4 98 30.0 28.9 96 73-122 1.90 (<20) 1,2,4-Trichlorobenzene 0.500U 30.0 30.3 101 30.0 29.6 99 69-130 1.20 (<20) 1,2,4-Trimethylbenzene 0.500U 30.0 30.3 101 30.0 29.0 97 62-128 0.00 (<20) 1,2-Dibromo-3-chloropropane 5.00U 30.0 29.7 99 30.0 30.7 102 77-121 3.20 (<20) 1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 29.5 98 80-119 0.17 (<20) 1,2-Dichloropropane 0.500U 30.0 32.3 108 30.0 31.2 104 78-122 3.50 (<20) 1,3-Dichlorobenzene 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 <th>1,1-Dichloroethene</th> <th>0.500U</th> <th>30.0</th> <th>31</th> <th>103</th> <th>30.0</th> <th>29.9</th> <th>100</th> <th>71-131</th> <th>3.70</th> <th>(< 20)</th>	1,1-Dichloroethene	0.500U	30.0	31	103	30.0	29.9	100	71-131	3.70	(< 20)
1,2,3-Trichloropropane 0.500U 30.0 29.4 98 30.0 28.9 96 73-122 1.90 (< 20) 1,2,4-Trichlorobenzene 0.500U 30.0 29.2 98 30.0 29.6 99 69-130 1.20 (< 20) 1,2,4-Trimethylbenzene 0.500U 30.0 30.3 101 30.0 29.0 97 30.0 29.0 97 62-128 0.00 (< 20) 1,2-Dibromo-3-chloropropane 5.00U 30.0 29.7 99 30.0 29.5 98 80-119 0.17 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 29.5 98 80-119 0.17 (< 20) 1,2-Dichlorobenzene 0.250U 30.0 29.1 97 30.0 28.0 93 73-128 3.70 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 32.7 102 30.0 31.2 104 78-122 3.50 (< 20) 1,3-Dichlorobenzene 0.500U 30.0 30.7 102 30.0 31.4	1,1-Dichloropropene	0.500U	30.0	31.6	105	30.0	30.4	101	79-125	3.70	(< 20)
1,2,4-Trichlorobenzene 0.500U 30.0 29.2 98 30.0 29.6 99 69-130 1.20 (<20) 1,2,4-Trimethylbenzene 0.500U 30.0 30.3 101 30.0 30.3 101 79-124 0.07 (<20) 1,2-Dibromo-3-chloropropane 5.00U 30.0 29.7 99 30.0 29.7 102 77-121 3.20 (<20) 1,2-Dibrhomo-sthane 0.500U 30.0 29.5 98 30.0 29.5 98 80-119 0.17 (<20) 1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 28.0 93 73-128 3.70 (<20) 1,2-Dichloroptopane 0.500U 30.0 32.3 108 30.0 31.2 104 78-122 3.50 (<20) 1,2-Dichloroptopane 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (<20) 1,3-Dichloroptopane 0.250U 30.0 30.6 102 30.0 31.4 105 80-119 2.40	1,2,3-Trichlorobenzene	0.500U	30.0	31.8	106	30.0	32.5	108	69-129	2.10	(< 20)
1,2,4-Trimethylbenzene 0.500U 30.0 30.3 101 30.0 30.3 101 79-124 0.07 (<20) 1,2-Dibromo-3-chloropropane 5.00U 30.0 29 97 30.0 29.0 97 62-128 0.00 (<20) 1,2-Dibromoethane 0.0375U 30.0 29.7 99 30.0 30.7 102 77-121 3.20 (<20) 1,2-Dichlorobenzene 0.500U 30.0 29.1 97 30.0 29.5 98 80-119 0.17 (<20) 1,2-Dichloroptopane 0.500U 30.0 32.3 108 30.0 31.2 104 78-122 3.50 (<20) 1,3-Dichloropropane 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (<20) 1,3-Dichloropropane 0.500U 30.0 29.9 100 30.0 31.4 105 80-119 2.40 (<20) 1,3-Dichloropropane 0.250U 30.0 <th>1,2,3-Trichloropropane</th> <th>0.500U</th> <th>30.0</th> <th>29.4</th> <th>98</th> <th>30.0</th> <th>28.9</th> <th>96</th> <th>73-122</th> <th>1.90</th> <th>(< 20)</th>	1,2,3-Trichloropropane	0.500U	30.0	29.4	98	30.0	28.9	96	73-122	1.90	(< 20)
1,2-Dibromo-3-chloropropane 5.00U 30.0 29 97 30.0 29.0 97 62-128 0.00 (< 20) 1,2-Dibromoethane 0.0375U 30.0 29.7 99 30.0 30.7 102 77-121 3.20 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 29.5 98 80-119 0.17 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 29.1 97 30.0 28.0 93 73-128 3.70 (< 20) 1,2-Dichloropropane 0.500U 30.0 30.7 102 30.0 31.2 104 78-122 3.50 (< 20) 1,3-Frimethylbenzene 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (< 20) 1,3-Dichlorobenzene 0.500U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (< 20) 1,4-Dichlorobenzene 0.250U 30.0	1,2,4-Trichlorobenzene	0.500U	30.0	29.2	98	30.0	29.6	99	69-130	1.20	(< 20)
1,2-Dibromoethane 0.0375U 30.0 29.7 99 30.0 30.7 102 77-121 3.20 (< 20) 1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 29.5 98 80-119 0.17 (< 20) 1,2-Dichloroethane 0.250U 30.0 29.1 97 30.0 28.0 93 73-128 3.70 (< 20) 1,2-Dichloropropane 0.500U 30.0 32.3 108 30.0 31.2 104 78-122 3.50 (< 20) 1,3-Frimethylbenzene 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (< 20) 1,3-Dichlorobenzene 0.500U 30.0 29.9 100 30.0 31.4 105 80-119 2.40 (< 20) 1,4-Dichlorobenzene 0.250U 30.0 29.8 100 30.0 29.7 99 79-118 0.54 (< 20) 2,2-Dichloropropane 0.500U 30.0	1,2,4-Trimethylbenzene	0.500U	30.0	30.3	101	30.0	30.3	101	79-124	0.07	(< 20)
1,2-Dichlorobenzene 0.500U 30.0 29.5 98 30.0 29.5 98 80-119 0.17 (<20 1,2-Dichloroethane 0.250U 30.0 29.1 97 30.0 28.0 93 73-128 3.70 (<20 1,2-Dichloropropane 0.500U 30.0 32.3 108 30.0 31.2 104 78-122 3.50 (<20 1,3-Dichlorobenzene 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (<20 1,3-Dichlorobenzene 0.500U 30.0 30.6 102 30.0 30.4 101 75-124 0.69 (<20) 1,3-Dichlorobenzene 0.500U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (<20) 1,4-Dichlorobenzene 0.250U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (<20) 2,2-Dichlorobenzene 0.50U 30.0 28.8 96 30.0 27.4 91 60-13	1,2-Dibromo-3-chloropropane	5.00U	30.0	29	97	30.0	29.0	97	62-128	0.00	(< 20)
1,2-Dichloroethane 0.250U 30.0 29.1 97 30.0 28.0 93 73-128 3.70 (<20) 1,2-Dichloropropane 0.500U 30.0 32.3 108 30.0 31.2 104 78-122 3.50 (<20) 1,3-Dichlorobenzene 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (<20) 1,3-Dichlorobenzene 0.500U 30.0 29.9 100 30.0 30.2 101 80-119 0.96 (<20) 1,3-Dichloropropane 0.250U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (<20) 1,4-Dichlorobenzene 0.250U 30.0 29.8 100 30.0 29.7 99 79-118 0.54 (<20) 2,2-Dichlorobenzene 0.50U 30.0 28.8 96 30.0 27.4 91 60-139 5.00 (<20) 2,-Bustanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (<20) <th>1,2-Dibromoethane</th> <th>0.0375U</th> <th>30.0</th> <th>29.7</th> <th>99</th> <th>30.0</th> <th>30.7</th> <th>102</th> <th>77-121</th> <th>3.20</th> <th>(< 20)</th>	1,2-Dibromoethane	0.0375U	30.0	29.7	99	30.0	30.7	102	77-121	3.20	(< 20)
1,2-Dichloropropane 0.500U 30.0 32.3 108 30.0 31.2 104 78-122 3.50 (< 20) 1,3,5-Trimethylbenzene 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (< 20) 1,3-Dichlorobenzene 0.500U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (< 20) 1,4-Dichlorobenzene 0.250U 30.0 29.8 100 30.0 29.7 99 79-118 0.54 (< 20) 2,2-Dichloropropane 0.500U 30.0 28.8 96 30.0 27.4 91 60-139 5.00 (< 20) 2-Butanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 2-Hexanone 5.00U 30.0 30 100 30.0 30.0 30.0 30.0 30.0 30.0	1,2-Dichlorobenzene	0.500U	30.0	29.5	98	30.0	29.5	98	80-119	0.17	(< 20)
1,3,5-Trimethylbenzene 0.500U 30.0 30.7 102 30.0 30.4 101 75-124 0.69 (< 20) 1,3-Dichlorobenzene 0.500U 30.0 29.9 100 30.0 30.2 101 80-119 0.96 (< 20) 1,3-Dichloropropane 0.250U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (< 20) 1,4-Dichlorobenzene 0.250U 30.0 29.8 100 30.0 29.7 99 79-118 0.54 (< 20) 2,2-Dichloropropane 0.500U 30.0 28.8 96 30.0 27.4 91 60-139 5.00 (< 20) 2-Butanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (< 20) 2-Chlorotoluene 0.500U 30.0 30.7 102 30.0 30.4 101 79-122 0.88 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20)	1,2-Dichloroethane	0.250U	30.0	29.1	97	30.0	28.0	93	73-128	3.70	(< 20)
1,3-Dichlorobenzene 0.500U 30.0 29.9 100 30.0 30.2 101 80-119 0.96 (< 20) 1,3-Dichloropropane 0.250U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (< 20) 1,4-Dichlorobenzene 0.250U 30.0 29.8 100 30.0 29.7 99 79-118 0.54 (< 20) 2,2-Dichloropropane 0.500U 30.0 28.8 96 30.0 27.4 91 60-139 5.00 (< 20) 2-Butanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (< 20) 2-Chlorotoluene 0.500U 30.0 30.7 102 30.0 30.4 101 79-122 0.88 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) <	1,2-Dichloropropane	0.500U	30.0	32.3	108	30.0	31.2	104	78-122	3.50	. ,
1,3-Dichloropropane 0.250U 30.0 30.6 102 30.0 31.4 105 80-119 2.40 (< 20) 1,4-Dichlorobenzene 0.250U 30.0 29.8 100 30.0 29.7 99 79-118 0.54 (< 20) 2,2-Dichloropropane 0.500U 30.0 28.8 96 30.0 27.4 91 60-139 5.00 (< 20) 2-Butanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (< 20) 2-Chlorotoluene 0.500U 30.0 30.7 102 30.0 30.4 101 79-122 0.88 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 4-Chlorotoluene 0.500U 30.0 30 100 30.0 29.9 100 78-122 0.60 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20)	1,3,5-Trimethylbenzene	0.500U	30.0	30.7	102	30.0	30.4	101	75-124	0.69	(< 20)
1,4-Dichlorobenzene 0.250U 30.0 29.8 100 30.0 29.7 99 79-118 0.54 (< 20) 2,2-Dichloropropane 0.500U 30.0 28.8 96 30.0 27.4 91 60-139 5.00 (< 20) 2-Butanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (< 20) 2-Chlorotoluene 0.500U 30.0 30.7 102 30.0 30.4 101 79-122 0.88 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 4-Chlorotoluene 0.500U 30.0 30 100 30.0 29.9 100 78-122 0.60 (< 20) 4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) <	1,3-Dichlorobenzene	0.500U	30.0	29.9	100	30.0	30.2	101	80-119	0.96	(< 20)
2,2-Dichloropropane 0.500U 30.0 28.8 96 30.0 27.4 91 60-139 5.00 (< 20) 2-Butanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (< 20) 2-Chlorotoluene 0.500U 30.0 30.7 102 30.0 30.4 101 79-122 0.88 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 4-Chlorotoluene 0.500U 30.0 30 100 30.0 29.9 100 78-122 0.60 (< 20) 4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) Bromobenzene 0.200U 30.0 30.1 100 30.5 102 79-120 2.60 (< 20)	1,3-Dichloropropane	0.250U	30.0	30.6	102	30.0	31.4	105	80-119	2.40	(< 20)
2-Butanone (MEK) 5.00U 90.0 90.2 100 90.0 83.9 93 56-143 7.20 (< 20) 2-Chlorotoluene 0.500U 30.0 30.7 102 30.0 30.4 101 79-122 0.88 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 4-Chlorotoluene 0.500U 30.0 30 100 30.0 29.9 100 78-122 0.60 (< 20) 4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) Benzene 0.200U 30.0 31.3 104 30.0 30.5 102 79-120 2.60 (< 20) Bromobenzene 0.500U 30.0 31.1 100 30.0 29.9 100 80-120 0.57 (< 20) Bromochloromethane 0.500U 30.0 31.1 103 30.0 30.5 102 79-120 2.60 (< 20) Bromochloromethane 0.500U 30.0 31.1 103 30.0 30.5 102 79-125 3.80 (< 20) Bromodichloromethane 0.250U 30.0 31.6 105 30.0 30.5 102 79-125 3.80 (< 20) Bromoform 0.500U 30.0 29.8 99 30.0 30.7 102 66-130 3.20 (< 20) Bromomethane 2.50U 30.0 20.3 68 30.0 19.1 64 53-141 5.80 (< 20) Bromomethane 5.00U 45.0 45.8 102 45.0 44.5 99 64-133 2.90 (< 20)	1,4-Dichlorobenzene	0.250U	30.0	29.8	100	30.0	29.7	99	79-118	0.54	(< 20)
2-Chlorotoluene 0.500U 30.0 30.7 102 30.0 30.4 101 79-122 0.88 (< 20) 2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 4-Chlorotoluene 0.500U 30.0 30 100 30.0 29.9 100 78-122 0.60 (< 20) 4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) Benzene 0.200U 30.0 31.3 104 30.0 30.5 102 79-120 2.60 (< 20) Bromobenzene 0.500U 30.0 30.1 100 30.0 29.9 100 80-120 0.57 (< 20) Bromochloromethane 0.500U 30.0 31 103 30.0 30.0 100 78-123 3.40 (< 20) Bromodichloromethane 0.250U 30.0 31.6 105 30.0 30.5 102 79-125 3.80 (< 20) Bromoform 0.500U 30.0 29.8 99 30.0 30.7 102 66-130 3.20 (< 20) Bromoform 0.500U 30.0 20.3 68 30.0 19.1 64 53-141 5.80 (< 20) Carbon disulfide 5.00U 45.0 45.8 102 45.0 44.5 99 64-133 2.90 (< 20)	2,2-Dichloropropane	0.500U	30.0	28.8	96	30.0	27.4		60-139	5.00	(< 20)
2-Hexanone 5.00U 90.0 94.6 105 90.0 93.4 104 57-139 1.20 (< 20) 4-Chlorotoluene 0.500U 30.0 30 100 30.0 29.9 100 78-122 0.60 (< 20) 4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) Benzene 0.200U 30.0 31.3 104 30.0 30.5 102 79-120 2.60 (< 20) Bromobenzene 0.500U 30.0 30.1 100 30.0 29.9 100 80-120 0.57 (< 20) Bromochloromethane 0.500U 30.0 31 103 30.0 30.0 100 78-123 3.40 (< 20) Bromodichloromethane 0.250U 30.0 31.6 105 30.0 30.5 102 79-125 3.80 (< 20) Bromoform 0.500U 30.0 29.8 99 30.0 30.7 102 66-130 3.20 (< 20) Bromomethane 2.50U 30.0 20.3 68 30.0 19.1 64 53-141 5.80 (< 20) Carbon disulfide 5.00U 45.0 45.8 102 45.0 44.5 99 64-133 2.90 (< 20)	2-Butanone (MEK)	5.00U	90.0	90.2	100	90.0	83.9	93	56-143	7.20	(< 20)
4-Chlorotoluene 0.500U 30.0 30 100 30.0 29.9 100 78-122 0.60 (< 20) 4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) Benzene 0.200U 30.0 31.3 104 30.0 30.5 102 79-120 2.60 (< 20) Bromobenzene 0.500U 30.0 30.1 100 30.0 29.9 100 80-120 0.57 (< 20) Bromochloromethane 0.500U 30.0 31 103 30.0 30.0 100 78-123 3.40 (< 20) Bromoform 0.500U 30.0 31.6 105 30.0 30.5 102 79-125 3.80 (< 20) Bromomethane 2.50U 30.0 29.8 99 30.0 30.7 102 66-130 3.20 (< 20) <t< th=""><th>2-Chlorotoluene</th><th>0.500U</th><th>30.0</th><th>30.7</th><th>102</th><th>30.0</th><th>30.4</th><th>101</th><th>79-122</th><th>0.88</th><th>(< 20)</th></t<>	2-Chlorotoluene	0.500U	30.0	30.7	102	30.0	30.4	101	79-122	0.88	(< 20)
4-Isopropyltoluene 0.500U 30.0 31 103 30.0 31.1 104 77-127 0.48 (< 20) 4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) Benzene 0.200U 30.0 31.3 104 30.0 30.5 102 79-120 2.60 (< 20) Bromobenzene 0.500U 30.0 30.1 100 30.0 29.9 100 80-120 0.57 (< 20) Bromochloromethane 0.500U 30.0 31 103 30.0 30.0 100 78-123 3.40 (< 20) Bromoform 0.250U 30.0 31.6 105 30.0 30.5 102 79-125 3.80 (< 20) Bromoform 0.500U 30.0 29.8 99 30.0 30.7 102 66-130 3.20 (< 20) Bromomethane 2.50U 30.0 20.3 68 30.0 19.1 64 53-141 5.80 (< 20)	2-Hexanone	5.00U	90.0	94.6		90.0		104	57-139	1.20	(< 20)
4-Methyl-2-pentanone (MIBK) 5.00U 90.0 94.1 105 90.0 89.2 99 67-130 5.30 (< 20) Benzene 0.200U 30.0 31.3 104 30.0 30.5 102 79-120 2.60 (< 20) Bromobenzene 0.500U 30.0 30.1 100 30.0 29.9 100 80-120 0.57 (< 20) Bromochloromethane 0.500U 30.0 31 103 30.0 30.0 100 78-123 3.40 (< 20) Bromoform 0.250U 30.0 31.6 105 30.0 30.5 102 79-125 3.80 (< 20) Bromoform 0.500U 30.0 29.8 99 30.0 30.7 102 66-130 3.20 (< 20) Bromomethane 2.50U 30.0 20.3 68 30.0 19.1 64 53-141 5.80 (< 20) Carbon disulfide 5.00U 45.0 45.8 102 45.0 44.5 99 64-133 2.90 (< 20)	4-Chlorotoluene	0.500U	30.0	30	100	30.0	29.9	100	78-122	0.60	(< 20)
Benzene 0.200U 30.0 31.3 104 30.0 30.5 102 79-120 2.60 (< 20)	4-Isopropyltoluene	0.500U	30.0	31	103	30.0	31.1	104	77-127	0.48	(< 20)
Bromobenzene 0.500U 30.0 30.1 100 30.0 29.9 100 80-120 0.57 (< 20)	4-Methyl-2-pentanone (MIBK)	5.00U	90.0	94.1	105	90.0		99	67-130	5.30	(< 20)
Bromochloromethane 0.500U 30.0 31 103 30.0 30.0 100 78-123 3.40 (< 20)	Benzene	0.200U	30.0	31.3	104	30.0	30.5	102	79-120		(< 20)
Bromodichloromethane 0.250U 30.0 31.6 105 30.0 30.5 102 79-125 3.80 (< 20)	Bromobenzene			30.1				100	80-120	0.57	(< 20)
Bromoform 0.500U 30.0 29.8 99 30.0 30.7 102 66-130 3.20 (< 20)	Bromochloromethane	0.500U	30.0	31	103	30.0	30.0	100	78-123	3.40	(< 20)
Bromomethane 2.50U 30.0 20.3 68 30.0 19.1 64 53-141 5.80 (< 20)	Bromodichloromethane	0.250U	30.0	31.6	105	30.0	30.5	102	79-125	3.80	(< 20)
Carbon disulfide 5.00U 45.0 45.8 102 45.0 44.5 99 64-133 2.90 (< 20)	Bromoform	0.500U	30.0	29.8	99	30.0	30.7	102	66-130	3.20	(< 20)
	Bromomethane	2.50U	30.0		68	30.0	19.1	64	53-141	5.80	,
	Carbon disulfide	5.00U	45.0			45.0		99	64-133	2.90	(< 20)
•	Carbon tetrachloride			30.4			29.3		72-136	3.80	(< 20)
	Chlorobenzene	0.250U	30.0	29.8	99	30.0		99	82-118	0.81	,
Chloroethane 0.500U 30.0 32.9 110 30.0 30.9 103 60-138 6.20 (< 20)	Chloroethane	0.500U	30.0	32.9	110	30.0	30.9	103	60-138	6.20	(< 20)

Print Date: 12/06/2017 3:09:06PM

Matrix Spike Summary

Original Sample ID: 1427991 MS Sample ID: 1427992 MS MSD Sample ID: 1427993 MSD

1179898003, 1179898004, 1179898005

Analysis Date: 12/01/2017 20:10 Analysis Date: 12/01/2017 21:44 Analysis Date: 12/01/2017 21:59 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

QC for Samples:

		Ма	trix Spike (ug/L)	Spik	e Duplicate			`	
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Chloroform	0.500U	30.0	30.7	102	30.0	29.3	98	79-124	4.80	(< 20)
Chloromethane	0.500U	30.0	28.4	95	30.0	26.0	87	50-139	9.10	(< 20)
cis-1,2-Dichloroethene	0.500U	30.0	31	103	30.0	29.8	99	78-123	4.20	(< 20)
cis-1,3-Dichloropropene	0.250U	30.0	31.6	105	30.0	30.4	101	75-124	3.90	(< 20)
Dibromochloromethane	0.250U	30.0	30.5	102	30.0	31.0	103	74-126	1.40	(< 20)
Dibromomethane	0.500U	30.0	31.3	104	30.0	30.1	100	79-123	3.90	(< 20)
Dichlorodifluoromethane	0.500U	30.0	28	93	30.0	27.4	91	32-152	2.20	(< 20)
Ethylbenzene	0.500U	30.0	31.2	104	30.0	30.8	103	79-121	1.30	(< 20)
Freon-113	5.00U	45.0	47.4	105	45.0	46.0	102	70-136	3.00	(< 20)
Hexachlorobutadiene	0.500U	30.0	31.3	104	30.0	32.0	107	66-134	2.00	(< 20)
Isopropylbenzene (Cumene)	0.500U	30.0	30.8	103	30.0	30.9	103	72-131	0.26	(< 20)
Methylene chloride	2.50U	30.0	30.4	101	30.0	29.1	97	74-124	4.40	(< 20)
Methyl-t-butyl ether	5.00U	45.0	46.5	103	45.0	44.9	100	71-124	3.60	(< 20)
Naphthalene	0.730J	30.0	32.1	105	30.0	32.6	106	61-128	1.70	(< 20)
n-Butylbenzene	0.500U	30.0	30.4	101	30.0	30.7	102	75-128	1.20	(< 20)
n-Propylbenzene	0.500U	30.0	30.5	102	30.0	30.4	101	76-126	0.20	(< 20)
o-Xylene	0.500U	30.0	30.2	101	30.0	30.6	102	78-122	1.10	(< 20)
P & M -Xylene	1.00U	60.0	61.8	103	60.0	61.4	102	80-121	0.67	(< 20)
sec-Butylbenzene	0.500U	30.0	30.8	103	30.0	31.2	104	77-126	1.20	(< 20)
Styrene	0.500U	30.0	31.3	104	30.0	31.1	104	78-123	0.58	(< 20)
tert-Butylbenzene	0.500U	30.0	30.5	102	30.0	30.7	102	78-124	0.72	(< 20)
Tetrachloroethene	0.500U	30.0	29.1	97	30.0	30.4	101	74-129	4.20	(< 20)
Toluene	0.500U	30.0	28.3	94	30.0	28.9	96	80-121	1.90	(< 20)
trans-1,2-Dichloroethene	0.500U	30.0	30.2	101	30.0	29.0	97	75-124	4.00	(< 20)
trans-1,3-Dichloropropene	0.500U	30.0	30.2	101	30.0	30.6	102	73-127	1.30	(< 20)
Trichloroethene	0.500U	30.0	31.5	105	30.0	30.1	100	79-123	4.60	(< 20)
Trichlorofluoromethane	0.500U	30.0	31.8	106	30.0	30.9	103	65-141	2.60	(< 20)
Vinyl acetate	5.00U	30.0	28.2	94	30.0	26.9	90	54-146	5.00	(< 20)
Vinyl chloride	0.0750U	30.0	29.7	99	30.0	28.6	95	58-137	3.70	(< 20)
Xylenes (total)	1.50U	90.0	92	102	90.0	91.9	102	79-121	0.09	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		30.0	29.8	99	30.0	28.9	96	81-118	3.20	
4-Bromofluorobenzene (surr)		30.0	29.4	98	30.0	29.8	99	85-114	1.10	
Toluene-d8 (surr)		30.0	29.4	98	30.0	30.4	101	89-112	3.40	

Print Date: 12/06/2017 3:09:06PM

Matrix Spike Summary

Original Sample ID: 1427991 MS Sample ID: 1427992 MS MSD Sample ID: 1427993 MSD

QC for Samples: 1179898003, 1179898004, 1179898005

Analysis Date:

Analysis Date: 12/01/2017 21:44 Analysis Date: 12/01/2017 21:59 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

Matrix Spike (%)

Spike Duplicate (%)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Batch Information

Analytical Batch: VMS17480 Analytical Method: SW8260C Instrument: Agilent 7890-75MS

Analyst: FDR

Analytical Date/Time: 12/1/2017 9:44:00PM

Prep Batch: VXX31784

Prep Method: Volatiles Extraction 8240/8260 FULL

Prep Date/Time: 12/1/2017 12:00:00AM

Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 12/06/2017 3:09:06PM

Method Blank

Blank ID: MB for HBN 1772729 [XXX/38882]

Blank Lab ID: 1427022

QC for Samples:

1179898003, 1179898004

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	70.2	47-106		%
Fluoranthene-d10 (surr)	69.9	24-116		%

Batch Information

Analytical Batch: XMS10572

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 12/1/2017 6:06:00PM

Prep Batch: XXX38882 Prep Method: SW3520C

Prep Date/Time: 11/27/2017 9:14:02AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:09:07PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1179898 [XXX38882]

Blank Spike Lab ID: 1427023 Date Analyzed: 12/01/2017 18:27

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898003, 1179898004

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	
<u>Parameter</u>	Spike	Result	Rec (%)	CL
1-Methylnaphthalene	2	1.60	80	(41-115)
2-Methylnaphthalene	2	1.50	75	(39-114)
Acenaphthene	2	1.54	77	(48-114)
Acenaphthylene	2	1.60	80	(35-121)
Anthracene	2	1.61	81	(53-119)
Benzo(a)Anthracene	2	1.63	82	(59-120)
Benzo[a]pyrene	2	1.51	76	(53-120)
Benzo[b]Fluoranthene	2	1.62	81	(53-126)
Benzo[g,h,i]perylene	2	1.51	75	(44-128)
Benzo[k]fluoranthene	2	1.63	82	(54-125)
Chrysene	2	1.69	84	(57-120)
Dibenzo[a,h]anthracene	2	1.48	74	(44-131)
Fluoranthene	2	1.65	82	(58-120)
Fluorene	2	1.62	81	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.54	77	(48-130)
Naphthalene	2	1.50	75	(43-114)
Phenanthrene	2	1.57	78	(53-115)
Pyrene	2	1.69	85	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2	72.5	73	(47-106)
Fluoranthene-d10 (surr)	2	72	72	(24-116)

Batch Information

Analytical Batch: XMS10572

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Prep Batch: XXX38882 Prep Method: SW3520C

Prep Date/Time: 11/27/2017 09:14

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 12/06/2017 3:09:09PM

Matrix Spike Summary

Original Sample ID: 1179890001 MS Sample ID: 1427024 MS MSD Sample ID: 1427025 MSD

QC for Samples: 1179898003, 1179898004

Analysis Date: 12/01/2017 18:47 Analysis Date: 12/01/2017 19:08 Analysis Date: 12/01/2017 19:28

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Ма	trix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0245U	1.96	1.54	79	1.96	1.50	77	41-115	3.00	(< 20)
2-Methylnaphthalene	0.0245U	1.96	1.42	72	1.96	1.42	72	39-114	0.27	(< 20)
Acenaphthene	0.0245U	1.96	1.48	76	1.96	1.46	75	48-114	1.30	(< 20)
Acenaphthylene	0.0245U	1.96	1.53	78	1.96	1.52	78	35-121	0.67	(< 20)
Anthracene	0.0245U	1.96	1.54	78	1.96	1.52	78	53-119	1.10	(< 20)
Benzo(a)Anthracene	0.0245U	1.96	1.58	81	1.96	1.49	76	59-120	5.80	(< 20)
Benzo[a]pyrene	0.00980U	1.96	1.43	73	1.96	1.35	69	53-120	6.20	(< 20)
Benzo[b]Fluoranthene	0.0245U	1.96	1.47	75	1.96	1.39	71	53-126	5.80	(< 20)
Benzo[g,h,i]perylene	0.0245U	1.96	1.33	68	1.96	1.27	65	44-128	5.10	(< 20)
Benzo[k]fluoranthene	0.0245U	1.96	1.5	77	1.96	1.45	74	54-125	3.80	(< 20)
Chrysene	0.0245U	1.96	1.61	82	1.96	1.54	79	57-120	4.30	(< 20)
Dibenzo[a,h]anthracene	0.00980U	1.96	1.31	67	1.96	1.22	62	44-131	7.20	(< 20)
Fluoranthene	0.0245U	1.96	1.59	81	1.96	1.53	78	58-120	3.50	(< 20)
Fluorene	0.0245U	1.96	1.55	79	1.96	1.52	78	50-118	1.90	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0245U	1.96	1.34	69	1.96	1.27	65	48-130	6.00	(< 20)
Naphthalene	0.0490U	1.96	1.45	74	1.96	1.45	74	43-114	0.12	(< 20)
Phenanthrene	0.0245U	1.96	1.52	78	1.96	1.47	75	53-115	3.30	(< 20)
Pyrene	0.0245U	1.96	1.65	84	1.96	1.57	80	53-121	4.50	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		1.96	1.36	69	1.96	1.36	69	47-106	0.16	
Fluoranthene-d10 (surr)		1.96	1.43	73	1.96	1.35	69	24-116	5.50	

Batch Information

Analytical Batch: XMS10572

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 12/1/2017 7:08:00PM

Prep Batch: XXX38882

Prep Method: 3520 Lig/Lig Ext for 8270 PAH SIM LV

Prep Date/Time: 11/27/2017 9:14:02AM

Prep Initial Wt./Vol.: 255.00mL Prep Extract Vol: 1.00mL

Print Date: 12/06/2017 3:09:10PM

Method Blank

Blank ID: MB for HBN 1772833 [XXX/38895]

Blank Lab ID: 1427440

QC for Samples:

1179898001, 1179898002, 1179898003, 1179898004

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 85.3 60-120 %

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK102

Instrument: Agilent 7890B F

Analyst: JMG

Analytical Date/Time: 11/30/2017 5:09:00PM

Prep Batch: XXX38895 Prep Method: SW3520C

Prep Date/Time: 11/29/2017 8:36:04AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:09:11PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1179898 [XXX38895]

Blank Spike Lab ID: 1427441

Date Analyzed: 11/30/2017 17:19

Spike Duplicate ID: LCSD for HBN 1179898

[XXX38895]

Spike Duplicate Lab ID: 1427442

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898001, 1179898002, 1179898003, 1179898004

Results by AK102

		Blank Spike	e (mg/L)		Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	17.3	87	20	19.6	98	(75-125)	12.50	(< 20)
Surrogates									
5a Androstane (surr)	0.4	89.1	89	0.4	102	102	(60-120)	13.10	

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38895 Prep Method: SW3520C

Prep Date/Time: 11/29/2017 08:36

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 12/06/2017 3:09:13PM

Method Blank

Blank ID: MB for HBN 1772833 [XXX/38895]

Blank Lab ID: 1427440

QC for Samples:

1179898001, 1179898002, 1179898003, 1179898004

Matrix: Water (Surface, Eff., Ground)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.250U0.5000.150mg/L

Surrogates

n-Triacontane-d62 (surr) 93.4 60-120 %

Batch Information

Analytical Batch: XFC14002 Prep Batch: XXX38895 Analytical Method: AK103 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 11/29/2017 8:36:04AM

Analyst: JMG Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 11/30/2017 5:09:00PM Prep Extract Vol: 1 mL

Print Date: 12/06/2017 3:09:14PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1179898 [XXX38895]

Blank Spike Lab ID: 1427441

Date Analyzed: 11/30/2017 17:19

Spike Duplicate ID: LCSD for HBN 1179898

[XXX38895]

Spike Duplicate Lab ID: 1427442

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1179898001, 1179898002, 1179898003, 1179898004

Results by AK103

	1	Blank Spike	e (mg/L)		Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	18.6	93	20	21.5	107	(60-120)	14.60	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	86.7	87	0.4	104	104	(60-120)	18.40	

Batch Information

Analytical Batch: XFC14002 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38895 Prep Method: SW3520C

Prep Date/Time: 11/29/2017 08:36

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 12/06/2017 3:09:17PM

1179898

SHANI	NON	5WILS	SON.	INC
O. D. L. 11		_ , , ,	 : •, •	

Geotechnical and Environmental Consultants

CHAIN-UF-CUSTODI NECORD

Laboratory_	SGS Page_	of
Attn:		

Seattle, WA 98103 (206) 632-8020

2355 Hill Road Fairbanks, AK 99709 (907) 479-0600

3990 Collins Way, Suite 100 Lake Oswego, OR 97035

400 N. 34th Street, Suite 100 2043 Westport Center Drive St. Louis, MO 63146-3564

(314) 699-9660 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120

1321 Bannock Street, Suite 200 Denver, CO 80204

2705 Saint Andrews Loop, Suite A Pasco, WA 99301-3378 (509) 946-6309

Analysis Parameters/Sample Container Description (include preservative if used)

	225-3800 Lab No.	Time	Dat Samp	e oled	\dis	/0./9.				***	A SE	AR	100 h	Remarks/Matrix
20069-MW6B	DA-E	12:57	11/2	1 17		χ	X	X					5	Grandwater
20069-MW19R	3A-E	15:11	11/21	17			X	X					5	Grand Water
20069-13A	3A-J	16:23	11/21	17		X	X	•	X	X	X		10	Grandwater
20069-1034	WA-J	16:48	11/21	17		X	X		X	X	X		10	Groundwater
WTB	(3) A-C	12:50	11/21	17	_				X	X			١	Water Trip Blank
			T.											

Project information	Sample Receipt	Relinqui	Sileu by
Project Number: 32-1-20069	Total Number of Containers	Signature:/	Time:
Project Name: Crowley GW	COC Seals/Intact? Y/N NA	Printed Name:	Data
Contact: フォト州 **	Received Good Cond./Cold 3.6	T-Valle:	Date: 1
Ongoing Project? Yes X No 🗆	Delivery Method: #D24 Hand Delivered	Company:	Pesie
Sampler: 354	(attach shipping bill, if any)	J S+W	
Instru	ctions	Receive	d By:
Requested Turnaround Time: 577	4NDARD	Signature:	Time: _
Requested Turnaround Time: Special Instructions:	+NDARD	Signature: Printed Name:	
Special Instructions:	d to Shannon & Wilson w/ laboratory report	Printed Name:	Time: _

Relinquished By: 1.	Relinquished By: 2.	Relinquished By: 3.
Signature/ Time: 10:11	Signature: Time:	Signature: Time:
Printed Name: Date: 11/12/17 Jake Kesle(Printed Name: Date:	Printed Name: Date:
Company! S+W	Company:	Company:
Received By: 1.	Received By: 2.	Received By: 3.
Received By: 1. Signature: Time:	Received By: 2. Signature: Time:	Signature: Time: 10:06

Pink - Shannon & Wilson - Job File

e-Sample Receipt Form

SGS Workorder #:

1179898

					1 (9 8	9	0
Review Criteria		(Yes, No, N/A		•	Noted be			
Chain of Custody / Temperature Requi			N/A Exemption p	permitted if	sampler har	id carries	/delive	ers.
Were Custody Seals intact? Note # &	location	N/A Hand Del	ivered					
COC accompanied sa	amples?	Yes						
N/A **Exemption permitted if	f chilled & d	collected <8 ho	urs ago, or for sa	amples whe	re chilling is	not requi	ired	
<u>—</u>		Yes Cooler ID	1	@	3.6	°C Therm	n. ID:	D24
		Cooler ID	:	@		°C Therm	n. ID:	
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)?	Cooler ID	:	@		°C Therm	n. ID:	
	·	Cooler ID	:	@		°C Therm	n. ID:	
	-	Cooler ID	:	@		°C Therm	n. ID:	
*If >6°C, were samples collected <8 hours	s ago?	N/A	1					
	g <u></u>							
If <0°C, were sample containers ice	e free?	N/A						
ii <0 0, were sumple containers for	c nee:	IW/A						
If complete received without a temperature blank the	"agalar							
If samples received <u>without</u> a temperature blank, the temperature" will be documented in lieu of the temperature be								
"COOLER TEMP" will be noted to the right. In cases where no								
temp blank nor cooler temp can be obtained, note "amb								
"0	chilled".							
Note: Identify containers received at non-compliant tempe	rature							
Use form FS-0029 if more space is n								
Holding Time / Documentation / Sample Condition Re		nto Noto: Dof	or to form F 002	"Comple Ci	ida" far ana	oifia bald	in a tim	
Were samples received within holding			ei to ioiiii F-063	Sample Gu	lide for spe	cilic nola	ing un	ies.
Were samples received within holding	g time:	163						
Do samples match COC** (i.e.,sample IDs,dates/times colle	s at a d\2	Vaa						
		res						
**Note: If times differ <1hr, record details & login pe		_						
Were analyses requested unambiguous? (i.e., method is speci		Yes						
analyses with >1 option for ar	naiysis)							
			V/A ***Exemptio	n permitted	for metals (e.g,200.8	3/6020	A).
Were proper containers (type/mass/volume/preservative***	*)used?			-				
Volatile / LL-Hg Reg								
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sai								
Were all water VOA vials free of headspace (i.e., bubbles ≤	_							
Were all soil VOAs field extracted with MeOH	´							
Note to Client: Any "No", answer above indicates no	on-complia	nce with standa	ard procedures a	nd may imp	act data qua	ality.		
Additiona	al notes ((if applicable	e):					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	Preservative	Container Condition
1179898001-A	HCL to pH < 2	ОК			
1179898001-B	HCL to pH < 2	ОК			
1179898001-C	HCL to pH < 2	ОК			
1179898001-D	HCL to pH < 2	ОК			
1179898001-E	HCL to pH < 2	ОК			
1179898002-A	HCL to pH < 2	ОК			
1179898002-B	HCL to pH < 2	ОК			
1179898002-C	HCL to pH < 2	ОК			
1179898002-D	HCL to pH < 2	ОК			
1179898002-E	HCL to pH < 2	ОК			
1179898003-A	HCL to pH < 2	ОК			
1179898003-B	HCL to pH < 2	ОК			
1179898003-C	HCL to pH < 2	ОК			
1179898003-D	HCL to pH < 2	ОК			
1179898003-E	HCL to pH < 2	ОК			
1179898003-F	HCL to pH < 2	ОК			
1179898003-G	HCL to pH < 2	ОК			
1179898003-H	HCL to pH < 2	ОК			
1179898003-I	No Preservative Required	ОК			
1179898003-J	No Preservative Required	ОК			
1179898004-A	HCL to pH < 2	ОК			
1179898004-B	HCL to pH < 2	ОК			
1179898004-C	HCL to pH < 2	ОК			
1179898004-D	HCL to pH < 2	ОК			
1179898004-E	HCL to pH < 2	ОК			
1179898004-F	HCL to pH < 2	ОК			
1179898004-G	HCL to pH < 2	ОК			
1179898004-H	HCL to pH < 2	ОК			
1179898004-I	No Preservative Required	ОК			
1179898004-J	No Preservative Required	ОК			
1179898005-A	HCL to pH < 2	OK			
1179898005-B	HCL to pH < 2	OK			
1179898005-C	HCL to pH < 2	ОК			

11/22/2017 58 of 59

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Container Id
 Preservative
 Container

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

11/22/2017 59 of 59

LABORATORY DATA REVIEW CHECKLIST

Completed by: Jake Kesler Title: Environmental Staff

Date: March 2018

CS Report Name: November 2017 Groundwater Monitoring, Crowley 459 West Bluff Drive,

Anchorage, Alaska

Laboratory Report Date: December 6, 2017

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America Inc. **Laboratory Report Number:** 1179898

ADEC File Number: 2100.38.321 **ADEC RecKey Number:** *NA*

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes / No / NA (please explain)

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved? **Yes / No (NA)** (please explain)

2. Chain of Custody (COC)

- **a.** COC information completed, signed, and dated (including released/received by)? **Yes** / **No** / **NA** (please explain)
- **b.** Correct analyses requested? Yes/No/NA (please explain)

3. <u>Laboratory Sample Receipt Documentation</u>

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? **Yes/No/NA** (please explain)

Comments: *The cooler temperature blank was recorded at 3.6°C*.

b. Sample preservation acceptable - acidified waters, Methanol-preserved VOC soil (GRO, BTEX, VOCs, etc.)? **Yes**/ **No** / **NA** (please explain)

Work Order Number: 1179898

c. Sample condition documented - broken, leaking (soil MeOH), zero headspace (VOC vials)? **Yes/ No / NA** (please explain) Comments:

- **d.** If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? Yes / No (NA) (please explain) Comments: No discrepancies documented.
- e. Data quality or usability affected? Please explain. Yes / No /(NA)(please explain) Comments:

4. Case Narrative

- a. Present and understandable? Yes/No/NA (please explain) Comments:
- **b.** Discrepancies, errors, or QC failures identified by the lab? Yes / No / NA (please explain)

Comments: *The case narrative noted the following:*

- Surrogate recovery, associated with Sample MW6B, for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.
- LCSD RPD for bromomethane does not meet QC criteria. This analyte was not detected in associated samples.
- c. Were corrective actions documented? Yes (No) NA (please explain) Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *The case narrative does not comment on data quality/usability.*

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Yes/No/NA (please explain)
 - Comments:
- **b.** All applicable holding times met? **Yes/No/NA** (please explain)
- c. All soils reported on a dry-weight basis? Yes / No /(NA)(please explain)
- **d.** Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? **Yes**/**No**/**NA** (please explain) Comments:

Work Order Number: 1179898

e. Data quality or usability affected? Yes / No (NA)(please explain)
Comments:

6. QC Samples

a. Method Blank

- i. One method blank reported per matrix, analysis, and 20 samples? Yes/ No / NA (please explain)
- ii. All method blank results less than LOQ? Yes/ No / NA (please explain) Comments:
- iii. If above LOQ, what samples are affected? NA Comments:
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
 Yes / No / NA (please explain)
 Comments:
- v. Data quality or usability affected? Explain. Yes / No /NA (please explain)

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/No/NA
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No (NA)(please explain)
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes/ No / NA (please explain) Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No NA (please explain) Comments: The LCSD RPD for bromomethane does not meet QC criteria.
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NA Comments: Bromomethane was not detected in the associated samples and therefore are not affected.

Work Order Number: <u>1</u>179898

vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined?Yes / No NA (please explain)Comments:

vii. Data quality or usability affected? Yes No NA (please explain)

Comments: See above.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, field, QC and laboratory samples? Yes / No / NA (please explain)
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No NA (please explain) Comments: Sample MW6B had a surrogate recovery for 4-bromofluorobenzene that does not meet QC criteria due to matrix interference.
- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes/No/NA (please explain)

 Comments: The GRO result for Sample MW6B may be biased high and is flagged "J+".
- iv. Data quality or usability affected? Please explain. No / NA (please explain) Comments: See above.
- **d.** Trip Blank Volatile analyses only (GRO, BTEX, VOCs, etc.) [soil and water]
 - i. One trip blank reported per matrix, analysis and cooler? Yes/No/NA (please explain)
 Comments:
 - ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment stating why must be entered below.) Yes No/NA (please explain)

Comments: *Only one cooler was used to transport/deliver the samples.*

- iii. All results less than LOQ? Yes/No/NA (please explain)
- iv. If above LOQ, what samples are affected? NA Comments:
- v. Data quality or usability affected? Please explain. Yes / No (NA)(please explain) Comments:

Work Order Number: 1179898

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes / No NA (please explain)

Comments:

- ii. Submitted blind to the lab? Yes/ No / NA (please explain) Comments:
- iii. Precision All relative percent differences (RPDs) less than specified DQOs? (Recommended: 30% for water, 50% for soil) **Yes** (No) NA (please explain) Comments: *Primary/duplicate sample set had RPD failures for ethylbenzene, 1-methylnaphthalene, acenaphthene, fluorene, and naphthalene.*
- iv. Data quality or usability affected? Explain.

 Comment: The affected analytes are flagged "E" on Table 2 and are considered estimates due to the RPD failures.
- **f. Decontamination or Equipment Blank** (if not applicable)

Yes / No (NA)(please explain)

Comments: The use of a decontamination or equipment blank was not included in our ADEC-approved work plan.

- i. All results less than LOQ? Yes / No / NA please explain)
 Comments:
- ii. If above LOQ, what samples are affected? **WA** Comments:
- iii. Data quality or usability affected? Please explain. WA

 Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

a. Defined and appropriate? **Yes/ No / NA** (please explain) Comments: *A key is provided on page 4 of the laboratory report.*

ATTACHMENT 3

WASTE MANIFEST

NON-HAZARDOUS WASTE MANIFE

Plea	use print or type (Form designed for use on elite (1)		DOUS WASTE	INIX-15991	中义是不			
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID		Manifest Document No. 120911A 2. Page 1 of				
	Generator's Name and Mailing Address VEST BLUFF ROAD ANCHORACE, AK 99501 Generator's Phone ()	CROWLEY FUELS LLC AN 459 WEST BLUFF ROAD ANCHORAGE, AK 99501						
	4. Generator's Phone () 5. Transporter 1 Company Name				A. State Transporter's ID (907) 258 1558			
	NRC ALASKA LLC	6. US EPA ID Number			B. Transporter 1	Phone (907) 258	1558	
	7. Transporter 2 Company Name 8. US EPA ID Number				C. State Transporter's ID			
					D. Transporter 2 Phone			
	9. Designated Facility Name and Site Address 10. US EPA ID Number				E. State Facility's ID			
	2020 VIKING DRIVE ANCHORAGE, AK 99501		AKR000004184		F. Facility's Phone (907) 258-1558			
	11. WASTE DESCRIPTION				ntainers	10		
Ę	[HM]			No.	Type	13. Total Quantity	14. Unit Wt./Vol.	
	a. Material Not Regulated by DC)T	500	110.	Туре	Quantity	VVI./VOI.	
				1	DIVI	60	P	
GEZE	b.				(Nove or	* ************************************	2000 P	
RATO	C.				÷			
R	d.					* hs		
	1) EA0301 OLY WATER			L)	13463			
	15. Special Handling Instructions and Additional Inform Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat 16. GENERATOR'S CERTIFICATION: I hereby certify in proper condition for transport. The materials descriptions of the department of transport.	certify that the ai and are in proper tion	condition for transport	ation acci	ording to the	i, described, applicable reg		
	Printed/Typed Name	100	Signature /		a a	. Mo	nth Day Year	
Ţ.	17. Transporter 1 Acknowledgement of Receipt of Mate	erials	100	-		1.6	Date	
A N	Printed/Typed Name	p-120/phillips spill rem	Signature	1	0	Mo	nth Day Year	
S P	ROY C Triscia	19 dR	by Com	- gl		2	2 20 17	
TRANSPORTER	Transporter 2 Acknowledgement of Receipt of Mate Printed/Typed Name	eriais	Signature			Mod	Date nth Day Year	
\dashv	19. Discrepancy Indication Space				1			
F A C								
	20. Facility Owner or Operator: Certification of receipt of	f the waste materials covered	by this manifest, except as noted i	n item 19.				
I	Drive dT		* x ,	,	1		Date	
Ţ	Printed/Typed Name		Signature			Mor	nth Day Year	

ATTACHMENT 4 IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 32-1-20069-001

Date: March 2018

To: Crowley Fuels, LLC

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 3/2018

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 3/2018