

Prepared for:

Matson

2017 Long-Term Monitoring Report

Port of Anchorage Terminal Facility

January 2018

2017 Long-Term Monitoring Report Port of Anchorage Terminal Facility

January 2018

ERM Project # 0420038

Inn

Prepared By:

Kate Johnson Project Manager

5 Be

Reviewed By:

Thomas J. Beckman Partner in Charge

> ERM Alaska, Inc. 825 West 8th Avenue Anchorage, Alaska 99501

> > T: (907) 258-4880 F: (907) 258-4033

The business of sustainability

TABLE OF CONTENTS

Ac	onyms and Abbreviationsv
1.	Introduction11.1.Background11.2.Purpose and Scope21.3.Project Organization31.4.Regulatory Framework3
2.	Field Activities
3.	Results and Discussion93.1. Groundwater Elevation and Flow Direction93.2. Water Quality Results93.3. Bioventing System Monitoring103.4. Mann-Kendall Trend Analysis11
4.	Quality Assurance Review134.1.Precision and Accuracy134.2.Representativeness134.3.Completeness134.4.Comparability144.5.Data Summary14
5.	Conceptual Site Model15
6.	Conclusions and Recommendations17
7.	References19
<u>TA</u>	BLES1:Groundwater Cleanup Levels (in report text)2:Wells sampled 9/27/17 (in report text)3:Groundwater Elevation Measurements4:Groundwater Analytical Results for Petroleum Hydrocarbons5:Groundwater Analytical Results for PAHs6:Cumulative Groundwater Analytical Results7:Bioventing System Measurements
<u>FI(</u>	SURES 1: Site Location Map 2: Site Plan 3: Piezometric Surface Map (09/27/2017)

4: Analytical Results

- 5: HC-1 Concentrations and Groundwater Elevation
- 6: HC-3 Concentrations and Groundwater Elevation
- 7: HC-6 Concentrations and Groundwater Elevation
- 8: MW-8 Concentrations and Groundwater Elevation
- 9: MW-9 Concentrations and Groundwater Elevation

APPENDICES

- A: Field Notes and Groundwater Sample Data Sheets
- B: Laboratory Analytical Reports
- C: Quality Assurance Report, ADEC Laboratory Checklist
- D: Conceptual Site Model
- E: Mann-Kendall Analysis

AAC Ala	aska Administrative Code
	aska Department of Environmental Conservation
	aska Water Quality Standards
	nzene, toluene, ethylbenzene, and total xylenes
COC Ch	
	nstituents of interest
	nceptual site model
DODis	*
	esel-range organics
	5. Environmental Protection Agency
ERM ER	
	oundwater cleanup level
	soline-range organics
	titutional Controls
	poratory control sample
	poratory control sample duplicate
-	th non-aqueous phase liquid
	nit of Quantitation
mg/L Mi	
mLMi	
	thod Reporting Limit
MS Ma	-
	trix Spike Duplicate
ND No	n detect
ORPOx	ygen-reduction potential
PAH Pol	ycyclic aromatic hydrocarbons
QAQu	ality assurance
QCQu	ality control
RL Rej	porting Limit
RPDRel	ative percent difference
	tal volatile hydrocarbons
	derground storage tank
	latile organic compounds
	0 1

1. INTRODUCTION

ERM Alaska, Inc. (ERM), under contract to Matson, has been tasked with performing long-term monitoring at Matson's Port of Anchorage Terminal Facility. This report constitutes the third of three biennial reports as outlined by the work plan for long-term monitoring at the site (ERM 2013). The objective of this report is to present the results of the 2017 groundwater sampling event, and summarize the groundwater trends for the 2013-2017 bi-annual monitoring events. Figures 1 and 2 depict the site location.

1.1. Background

According to Hart Crower, Inc.'s (Hart Crowser's) Groundwater Monitoring Plan, dated October 2004 (Hart Crowser 2004), three underground storage tanks (USTs) located on the south side of the Maintenance Shop were upgraded in 1997 to meet current regulatory standards. During the upgrades, a 10,000-gallon UST was damaged, and an estimated 5,600 gallons of fuel were released. Response activities reportedly recovered all of the fuel and removed 50 cubic yards of impacted soil. Some impacted soil may remain in conjunction with two of the three tanks that were left in place. As part of the remedial solution, a passive bioventing system consisting of six underground, horizontal, slotted PVC lines were installed. The objective of the bioventing system is to promote in situ remediation through the passive removal of volatile hydrocarbons and the addition of oxygen, which supports aerobic degradation of hydrocarbons in the vadose (unsaturated) zone.

Hart Crowser conducted a release investigation in 2000 to assess the impact of documented releases from USTs located on the southern side of the Maintenance Shop. Four monitoring wells (HC-1, HC-2B, HC-3, and HC-4) were installed. Review of analytical results from the monitoring wells indicated that groundwater concentrations of benzene, gasoline-range organics (GRO), and diesel-range organics (DRO) exceeded the ADEC groundwater cleanup levels (GCLs). All wells contained petroleum hydrocarbon concentrations above GCLs with the exception of HC-4, located at the western side of the former fuel canopy.

In 2002, Hart Crowser installed two new monitoring wells (HC-5 and HC-6) along the Cherry Hill Storm Drain line to determine whether the storm sewer line was acting as a preferential pathway for contaminant migration from the USTs. All existing wells were sampled, with wells HC-1, HC-2B, HC-3, and HC-4 having similar results as in 2000. No compounds were detected above GCLs in HC-5 and HC-6. Hart Crowser conducted two more rounds of groundwater monitoring in November 2004 and March 2005.

In September 2005, OASIS Environmental, Inc. (OASIS) oversaw the removal of the three USTs and associated piping and dispensers. Based on a plan discussed with the ADEC, OASIS left visible petroleum contamination in place during the removal and placed contaminated soil back into the excavation above the water table (OASIS 2005). As part

of the removal, two monitoring wells (MW-8 and MW-9) were installed at the downgradient edges of the UST excavation.

ERM (formerly OASIS) has completed six monitoring events since the removal of the three USTs in September 2005. Monitoring was performed on a semiannual basis from 2005 to 2008 and then reduced to an annual basis from 2009 to 2011, per the approval of the ADEC project manager. A complete summary of monitoring activities completed from 2005 to 2011 is provided in the document 2011 Long Term Monitoring Report, Port of Anchorage Terminal Facility (OASIS 2011).

Review of groundwater monitoring results for the years 2005 through 2011 indicate that the contaminant plume continues to attenuate and is not migrating offsite. Groundwater hydrocarbon concentrations continued to exceed GCLs, especially in wells located in the vicinity of the former UST excavation. The monitoring data, which is available as far back as October 2000, show that groundwater contaminant concentrations continue to exhibit statistically significant decreasing trends. Stable or not increasing hydrocarbon concentrations at perimeter wells suggests that the plume is not migrating and that attenuation is occurring at the edges of the plume.

An analysis of the 2011 natural attenuation parameter results suggests that the site conditions are transitionally aerobic and reducing. Comparison of Fe (III), nitrate and sulfate concentrations in the background well to the plume wells provides no strong indications of a dominant attenuation process; however, decreasing concentrations in the source area indicate that attenuation is occurring.

In 2011, monitoring of the bioventing system continued to show that conditions support the aerobic biodegradation of volatile hydrocarbon in the vicinity of the passive bioventing system lines. Carbon dioxide was detected in the vadose zone at concentrations above 0.3 percent, which indicates that microbial activity is occurring. Because oxygen levels were not entirely depleted, there appears to be sufficient oxygen for additional microbial activity.

1.2. Purpose and Scope

The scope of work for long-term monitoring during 2017 is based on recommendations made in the 2015 Long Term Monitoring Report (ERM 2015). The purpose of the 2017 biennial long-term monitoring event is to:

- Evaluate groundwater flow direction;
- Assess the current state and distribution of hydrocarbon constituents in groundwater monitoring wells;
- Monitor the bioventing system to determine if *in-situ* remediation is occurring;
- Refine the Terminal's conceptual site model based on input of additional data gathered from the execution of the LTM Plan (ERM2013); and

• Demonstrate over time that the combination of bioventing and monitored natural attenuation is reducing petroleum constituent concentrations to applicable Method 2 and Table C (18 Alaska Administrative Code [AAC] 75) cleanup levels for soil and groundwater, respectively (ADEC 2017a).

1.3. Project Organization

The property owner and sub-contractors for this project are listed below:

- Owner/Operator: Matson, 1717 Tidewater Road, Anchorage, Alaska, 99501.
- Third-Party Environmental Assessor: ERM, 825 W. 8th Avenue, Anchorage, Alaska, 99501.
- ADEC Certified Laboratory: TestAmerica, 5755 8th Street E, Tacoma, Washington, 98424.

1.4. Regulatory Framework

This report has been developed in accordance with regulatory policy and standard practices as outlined in:

- 18 AAC 75, Oil and Other Hazardous Substances Pollution Control (ADEC 2017a);
- Underground Storage Tanks Procedure Manual (ADEC 2014);
- Policy Guidance on Developing Conceptual Site Models (ADEC 2017b); and
- Draft Field Sampling Guidance (ADEC 2017c).

The constituents of interest associated with this project include benzene, toluene, ethylbenzene, and total xylenes (BTEX), gasoline range organics (GRO), diesel range organics (DRO), and polycyclic aromatic hydrocarbons (PAHs). Analytical results for groundwater samples are evaluated using ADEC's groundwater cleanup levels (GCL) as presented in Table C of 18 AAC 75.345. Table 1 presents the applicable GCLs.

Analyte	GCL ¹ [mg/L]
Benzene	0.0046
Toluene	1.1
Ethylbenzene	0.015
Xylenes	0.19
GRO	2.2
DRO	1.5
Naphthalene	0.0017
1-Methylnaphthalene	0.011
2-Methylnaphthalene	0.036
Benzo(a)pyrene	0.000034
Dibenzo(a,h)anthracene	0.000034
1CCL a mar 19 A ACTE 24E (Octob	

TABLE 1. GROUNDWATER CLEANUP LEVELS

¹GCLs per 18AAC75.345 (October 2017)

2. FIELD ACTIVITIES

During September of 2017, ERM performed the following activities at the terminal facility:

- Measured groundwater elevations using an oil-water interface probe;
- Evaluated water quality parameters;
- Collected groundwater samples using low-flow sampling techniques;
- Submitted groundwater samples to a commercial laboratory for analysis; and
- Monitored the bioventing system.

The work was performed in accordance with the 2013 work plan (ERM 2013), unless otherwise noted. Field notes and data sheets are included in Appendix A. All samples were collected by ERM personnel who meet the definition of qualified persons per 18 AAC 75.333(c).

2.1. Monitoring Well Repair and Survey

ERM personnel conducted the biennial groundwater monitoring effort 27 September 2017. ERM used a Trimble Spectra precision laser level LL200 to survey the height of each well casing relative to a benchmark (assumed elevation 100ft) located on the SE corner of the concrete pad housing a horizontal cylindrical aboveground fuel tank. The benchmark was previously established by professional surveyors, Bell and Associates. As part of the monitoring well survey, ERM recorded the total well depth of each well prior to sampling. The groundwater measurements were used with the results of the 2017 monitoring well survey to calculate relative groundwater elevation. No well repairs were necessary.

2.2. Groundwater Sampling

ERM sampled the wells using low-flow sampling techniques. This process included purging groundwater at less than 1 liter per minute using a peristaltic pump, passing groundwater through a flow-through cell, monitoring for water quality parameters using a YSI 556 water quality meter, and collecting samples after water quality parameter stabilization.

The wells that were sampled wells include: HC-1, HC-3, HC-6, MW-8, and MW-9. Previous sampling event results indicate that hydrocarbon concentrations in the remaining monitoring wells HC-2B, HC-4, HC-5 and MW-11 were either below GCLs or method detection limits in the final years they were sampled. Samples from the final year of monitoring from well HC-2B showed results below GCLs while samples from HC-4, HC-5, and MW-11 showed constituent concentrations below method detection limits, which were below the applicable GCLs. Although sampling at MW-9 was discontinued in 2013 due to statistically significant decreasing hydrocarbon trends, MW- 9 is in the direct vicinity of two other wells (MW-8 and HC-1) which have historically exhibited higher concentrations of the COIs. As a result, MW-9 was included in 2017 groundwater sampling.

MW-10 was not sampled in 2015 or 2017 because the well had been paved over. The location of the well was verified with a metal detector in 2015. Analytical results at MW-10 had not exceeded GCLs since 2006, with the exception of one exceedance of benzene with a concentration of 0.00503 mg/L in October of 2013 (GCL is 0.0046 mg/L). A summary of wells that were sampled is provided in Table 2, below.

Well	GRO/BTEX	DRO	PAHs
HC-1	Х	Х	-
HC-2B	-	-	-
HC-3	Х	Х	-
HC-4	-	-	-
HC-5	-	-	-
HC-6	Х	Х	-
MW-8	Х	Х	Х
MW-9	Х	Х	-
MW-10	-	-	-
MW-11	-	-	-

 TABLE 2. WELLS SAMPLED 09/27/17

The groundwater monitoring event sampling took place in accordance with sampling procedures outlined in ADEC's *Underground Storage Tanks Procedure Manual* (ADEC 2014). Monitoring wells were purged until at least three casing volumes of water were removed from the well, or until a minimum of three (four, if using temperature as an indicator) of the parameters listed on the Low-Flow Groundwater Sampling Worksheets (Appendix A) had stabilized. Water quality parameters (dissolved oxygen [DO], oxidation-reduction potential [ORP], pH, temperature, and conductivity) were measured using a YSI-556 water quality meter and flow through cell per ADEC field sampling guidance (2017c). Recording these parameters is important in determining the stability of a monitoring well prior to sampling. A depth-to-groundwater measurement and a total-well-depth measurement were recorded using an oil-water interface probe.

Water samples collected for laboratory analysis were immediately placed in a cooler along with frozen gel ice. Samples were delivered directly to TestAmerica in Anchorage, an ADEC-approved laboratory, and analyzed at TestAmerica Seattle for BTEX, GRO and DRO, and selected samples for PAHs.

2.3. Bioventing System Monitoring

The bioventing system is composed of six slotted PVC lines, which are buried horizontally in the footprints of the former USTs and filling stations. The lines daylight at the maintenance facility wall and extend up the exterior of the building to the outlet through fans on the roof. During the 2017 monitoring event, ERM personnel inspected the system and monitored total volatile hydrocarbons, oxygen, and carbon dioxide levels. A sampling pump was connected to the sample port on each of the six lines via single-use polyethylene tubing. Approximately 0.25 cubic feet per minute (cfm) of soil gas was extracted from each line for approximately four minutes to allow thorough evacuation of any static vapors in the line. After sufficient evacuation, an RKI Eagle multi-gas meter (with LEL calibrated to oxygen, carbon dioxide, and hexane standards) was connected to the pump effluent to monitor the soil gas oxygen, carbon dioxide, and total volatile hydrocarbon (TVH) content.

Five of six of the roof-top passive bioventing system fans were observed spinning during the 2017 monitoring event. Lines one through six are installed in a row beginning on the southeast corner of the maintenance facility roof and run south to north. The inline fan on line four was not spinning at the time of the monitoring event. Wind speed at the time of the event was moderate, and site personnel were notified of the need for maintenance on line four.

3. RESULTS AND DISCUSSION

This section presents the findings from work performed as part of the long-term monitoring plan. Appendix B contains the analytical data reports.

3.1. Groundwater Elevation and Flow Direction

ERM recorded the total well depth and depth-to-water measurements prior to sampling. No light non-aqueous phase liquid (LNAPL) was observed or detected using the interface probe in any of the site wells. The groundwater elevation data is presented in Table 3 and Figure 3. The inferred groundwater flow direction is to the south at a gradient of 0.08 ft/ft, which is consistent with previous monitoring events.

3.2. Water Quality Results

Water quality parameter results are consistent with the results of recent monitoring events. Where applicable, water quality parameters were also compared to Alaska Water Quality Standards (AWQS) defined in 18 AAC 70.020 (ADEC 2017d).Temperature readings ranged from 9.78 to 12.20 degrees Celsius (49.60 to 54.00 degrees Fahrenheit). The DO readings from most wells ranged between 0.12 mg/L and 0.81 mg/L, falling below AWQS of \geq 5 mg/L. In recent years wells have generally reported DO concentrations at or below 1.0 mg/L, which indicates that anaerobic biodegration is plays a role in the natural attenuation process at this site. Conductivity ranged from 1,604 to 4,190 microsiemens per centimeter. The groundwater pH levels were slightly acidic, ranging from 6.38 to 6.92 (outside the AWQS range of 6.5-8.5) but still considered normal. ORP results ranged from -113.4 to -37.2 millivolts. Conductivity and ORP are not regulated under the AWQS.

Table 4 summarizes the 2017 analytical sample results for the BTEX, GRO and DRO Figure 4 displays the 2017 groundwater sampling results by location. In summary, the results indicate that:

- Benzene concentrations exceeded the GCL in three wells: 0.7 mg/L at HC-1, 0.7 mg/L at MW-8 (1.5 mg/L at the MW-8 duplicate), and 0.73 mg/L at MW-9;
- Toluene concentrations did not exceed the GCL in any sampled wells;
- Ethylbenzene exceeded the GCL in three wells: 0.094 mg/L at HC-1, 1.3 mg/L at MW-8 (1.7 mg/L at the MW-8 duplicate), and 0.019 mg/L at MW-9;
- Total xylenes exceeded the GCL in one well: 8.42 mg/L at MW-8 (12 mg/L at the MW-8 duplicate);
- GRO concentrations exceeded the GCL in one well: 35 mg/L at MW-8 (36 mg/L at the MW-8 duplicate);
- DRO concentrations exceeded the GCL in three wells: 5.1 mg/L at HC-1, 13 mg/L at MW-8 (13 mg/L at the MW-8 duplicate), and 7.0 mg/L at MW-9;

Table 5 shows the analytical results for PAH concentrations in MW-8. In summary, PAH concentrations did not exceed ADEC cleanup levels in MW-8 or the MW-8 duplicate sample. Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene, were detected in excess of the screening level (one-tenth of the applicable cleanup level) at MW-8.

In general, sample concentrations are consistent with data from previous years. However, GCL concentrations were lowered by the ADEC between 2015 and 2017, and the revised GCLs were used for comparison to data collected in 2017, and to historical data presented in this report. Table 6 presents historical groundwater sample analytical results from 2000 to 2017 for BTEX, GRO, and DRO, with associated ADEC cleanup levels. Concentrations of benzene, GRO, and DRO at each well over time, as well as relative groundwater elevation trends, are illustrated on Figures 5 through 9. Appendix E tables show the trends for DRO, GRO, and BTEX over time, which are summarized below:

- DRO remained stable at HC-3 and HC-6, and decreased at HC-1, MW-8, and MW-9;
- GRO showed the same pattern as DRO at all wells except HC-6, where all results were non-detect and a trend was not calculated;
- Benzene showed decreasing trends at all wells except HC-6, where the concentration remained stable;
- Toluene showed decreasing trends at HC-1, MW-8, and MW-9, while trends were not calculated for HC-3 and HC-6 due to non-detect results at those locations;
- Ethylbenzene results showed decreasing trends at HC-1 and MW-9, with a stable trend at MW-8, and non-detect results at HC-3 and HC-6; and
- Finally, xylene trends were decreasing at HC-1 and MW-9 and stable at all other wells.

In general, wells located in the vicinity of the former USTs (HC-1, MW-8, and MW-9) contained constituent concentrations above GCLs. Constituent concentrations were reported below GCLs in the down-gradient and up-gradient wells.

DRO results for every sample collected from MW-8 since the well was installed in 2005 have exceeded the diesel solubility limit of 3.9 mg/L (American Petroleum Institute 2000). This observation suggests that groundwater in the source area is in contact with LNAPL; however, LNAPL has never been observed in this well and no product or sheen was observed during the UST removal.

3.3. Bioventing System Monitoring

Table 7 presents the cumulative monitoring results of the bioventing system including the results from the September 27, 2017 monitoring event. The level of carbon dioxide, which is produced as a by-product of the aerobic biodegradation of hydrocarbons, was

well above the atmospheric background of 0.038%, which suggests that respiration from microbial activity is occurring in the vadose zone. The carbon dioxide concentration was above average in 2017, indicating that respiration from microbial activity is occurring at a potentially higher rate than past years. Oxygen levels ranged from 11.0 to 15.1 percent indicating that microbial activity may be depleting some oxygen supply. Oxygen levels remain sufficient for aerobic biodegradation. Oxygen levels were slightly lower than historic average oxygen levels since 2006 in all of the lines, suggesting more aerobic biodegradation is taking place. Although TVH were not detected 2017, fluctuating results over the past 6 years indicate that contaminant vapors may remain in the vadose zone soil.

3.4. Mann-Kendall Trend Analysis

ERM performed a trend analysis using historical monitoring results to evaluate the stability of groundwater constituents at the site. ERM compared the analytical data using the nonparametric Mann-Kendall test (Gilbert 1987) to analyze whether or not concentrations of benzene, toluene, ethylbenzene, xylene, GRO, and DRO exhibit an increasing or decreasing trend over time in a given well. The test was run with the statistical program, R (R Core Team 2016). Appendix E presents individual Mann Kendall calculation tables and graphs.

The Mann-Kendall test is a widely used and accepted non-parametric method to determine if the general trend in concentration over time is increasing, decreasing, or stable (USEPA 2009; Gilbert 1987). The Mann-Kendall is not dependent on the magnitude of the data, assumptions of distribution, the presence of non-detects, or irregularly spaced monitoring periods. As such, the Mann-Kendall test is ideal for testing trends when many locations and analytes need to be tested (Helsel and Hirsch 2002).

The Mann-Kendall test is based on the idea that the lack of trend should correspond to a time series plot fluctuating randomly about a constant mean with no visually apparent upward or downward pattern. If a decreasing trend exists, for example, the sample taken first from any randomly selected pair of measurements should, on average, have a higher concentration than the measurement taken at the later point. The Mann-Kendall statistic is computed by examining all possible pairs of measurements in the dataset and scoring each pair. The scores are summed to create the Mann-Kendall statistic (S) (USEPA 2009).

For this evaluation, an error ($\alpha = 0.05$) is considered ideal when determining if a significant trend exists for a sample size of eight or more events. The Mann-Kendall determines if a trend exists and provides the correlation coefficient (tau) and the level of significance (p).

The results of the Mann-Kendall test will be interpreted as follows:

• An increasing trend is defined where tau is positive and $p \le 0.05$;

- A decreasing trend is defined where tau is negative and $p \le 0.05$; and
- A stable trend is defined where tau is positive or negative and p > 0.05

A non-parametric regression, Theil Sen Line, was appropriately paired with the nonparametric Mann-Kendall Test. The Theil Sen estimates the magnitude of the slope and the y-intercept (USEPA 2009). The Mann-Kendall test and the Theil Sen Line give the equivalent to a standard linear regression. Since the tau value is analogous to Pearson's coefficient (R), tau² gives the equivalent to R². The R² value indicates the fit of the data, or distance of data points from the regression line.

Appendix E shows the results of the regression analyses and the Mann-Kendall tests for benzene, toluene, ethylbenzene, xylene, GRO, and DRO concentrations. The table lists the trend as NA, for not applicable, for sample locations with all non-detect values.

Of the location-analyte combinations evaluated, all of the combinations showed either decreasing or stable trends. Scatterplots and the results of the Mann Kendall analysis are located in Appendix E.

4. QUALITY ASSURANCE REPORT

An ADEC Laboratory Data Review Checklist was completed to evaluate the quality of laboratory reports of analytical data for the samples collected during the 2017 monitoring activities. The ADEC Laboratory Data Review Checklist (ADEC 2017e) is provided in Appendix C. Per ADEC's *Technical Memorandum on Environmental Laboratory Data and Quality Assurance Requirements,* the quality assurance summary (below) describes quality assurance parameters and the impact that any discrepancies have on the quality and usability of the data collected in 2017.

Groundwater samples were analyzed for the following COIs:

- DRO by AK102
- GRO by AK101
- BTEX by EPA 8260C
- PAHs by 8270 SIM

4.1. Precision and Accuracy

Precision criteria monitor analytical reproducibility. Accuracy criteria monitor agreement of measured results with "true values" established by spiking applicable samples with a known quantity of analyte or surrogate. Precision and accuracy were evaluated by comparing LCS/LCSDs and field duplicate pairs for this project, with exceptions noted in above sections. Field duplicate samples were collected in accordance with sampling plan specifications. Field duplicate relative percent differences (RPDs) met applicable control limits, with any exceptions noted in the Quality Assurance Report. Recoveries and RPDs for all LCS/LSCD samples were within required limits, any exceptions noted in the Quality Assurance Report.

4.2. Representativeness

Data representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or environmental condition. The number and selection of samples were specified in the proposal and verified in the field to accurately account for site variations and sample matrices. The data quality objective (DQO) for representativeness was met.

4.3. Completeness

Data completeness is defined as the percentage of usable data (usable data divided by the total possible data). The overall project completeness goal is 90%:

% completeness = <u>number of valid (i.e., non-R flagged) results</u>

number of possible results

All requested analyses were performed in accordance with the work plan (ERM 2013) and proposal specifications (ERM 2017). No sample results were rejected, noting that sample results for sample 17-HLA-MW8MSD-1011 should not be used due to the laboratory reporting results for submitted MS/MSD sample. All primary samples that were submitted were analyzed; therefore, completeness for this project is 100%.

4.4. Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Data produced for this project followed applicable field sampling techniques and specific analytical methodology. The DQO for comparability was met.

4.5. Data Summary

In general, the overall quality of the data was acceptable. The USEPA National Functional Guidelines (USEPA 2008) were used to evaluate the acceptability of the data. The data quality was individually determined as acceptable or estimated. Acceptable data are associated with QC data that meet all QC criteria or with QC samples that did not meet QC criteria but data quality objectives were not affected. Estimated results, flagged with J, are considered inaccurate due to a bias created by matrix interference or QC acceptance criteria which were not met. No reported results were rejected. The data are suitable for their intended use.

5. CONCEPTUAL SITE MODEL

The data from the 2017 monitoring event was evaluated in order to update the conceptual site model (CSM) for the site. The CSM was completed in accordance with the ADEC Policy Guidance on Developing Conceptual Site Models, updated in January 2017 No new receptors or exposure pathways were identified in 2017. The revised Conceptual Site Model is provided in Appendix D. The CSM scoping form in Appendix D outlines the current and future receptors for the property. Access to the site is restricted to Matson personnel and approved visitors. The current and future receptors of all completed pathways at the site consist of commercial or industrial workers, site visitors or trespassers, and construction workers.

The source area includes the petroleum contaminated soil and groundwater in the vicinity of the three USTs that historically supplied fuel to the fueling canopy. The complete exposure pathways are:

- Incidental soil ingestion,
- Dermal absorption of contaminants from soil,
- Dermal absorption of contaminants from groundwater,
- Ingestion of groundwater, and
- Inhalation of indoor and outdoor air.

The site is paved with asphalt, which prevents current contact with the subsurface soil, groundwater and soil gas. The incidental ingestion, dermal absorption and inhalation of outdoor air pathways could potentially affect future receptors in the case that the asphalt were removed.

Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene, constituents found in diesel fuel are included in the chemicals noted for potential dermal absorption exposure (Appendix B of the Policy Guidance on Developing Conceptual Site Models, ADEC 2010). These three chemicals were detected in excess of the screening level (one-tenth of the applicable cleanup level) at MW-8. Therefore, the dermal exposure pathway is considered complete at the site.

The nearest surface water body, the Cook Inlet, is not recognized as a current or potential future drinking water source, so the ingestion of surface water pathway is considered incomplete. The ingestion of wild foods pathway does not exist because the site is industrial and secured, which prevents the harvest and ingestion of wild foods.

16

6. CONCLUSIONS AND RECOMMENDATIONS

Although groundwater hydrocarbon concentrations continue to exceed GCLs, especially in wells located in the vicinity of the former UST excavation, evaluation of the results of the 2013-2017 groundwater monitoring events do not indicate offsite migration of the contaminant plume is occurring. Across the site (including both upgradient and downgradient wells), DRO concentrations were higher in 2015 than they had been in recent years, but have since lowered in 2017. Benzene concentrations remained consistent with recent years.

According to the Mann-Kendall statistical analysis, used to evaluate the natural attenuation process for the COIs all constituents show either decreasing or stable trends in all site monitoring wells where constituents were monitored.

Monitoring of the bioventing system continues to show that in the vicinity of the passive bioventing system lines, conditions support the aerobic biodegradation of volatile hydrocarbons. The carbon dioxide concentrations remain above background levels and oxygen concentrations remain sufficient to support aerobic biodegradation in the vadose zone soils. The depleted dissolved oxygen levels in groundwater, within the area of impact, suggests anaerobic biodegradation processes are also active at the site.

Based on the results of bioventing system and biennial groundwater monitoring from 2013 through 2017, as well as multiple decreasing statistical trends in the wells of interest, ERM recommends ADEC consider conditional closure of the site with Institutional Controls (ICs), reduction in the scope of the groundwater monitoring program, and conclusion of the bioventing system monitoring.

7. REFERENCES

- Alaska Department of Environmental Conservation (ADEC). 2014. Underground Storage Tanks Procedure Manual. March 2014.
- ADEC. 2015. Oil and Other Hazardous Substances Pollution Control. June 17, 2015
- ADEC. 2017a. Title 18 Alaska Administrative Code, Chapter 75: Oil and Other Hazardous Substances Pollution Control. October 1 2017.
- ADEC. 2017b. Policy Guidance on Developing Conceptual Site Models. January 2017.
- ADEC. 2017c. Field Sampling Guidance. August 2017.
- ADEC. 2017d. Title 18 Alaska Administrative Code, Chapter 70: Water Quality Standards. February 5 2017.
- ADEC. 2017e. Laboratory Data Review Checklist. July 2017.
- American Petroleum Institute (API). 2000. Non-Aqueous Phase Liquid (LNAPL) Mobility Limits in Soil. Soil & Groundwater Research Bulletin. June.
- Environmental Resources Management Inc. (ERM). 2013. *Biennial Groundwater Monitoring and Biovent System Monitoring Work Plan.* Prepared for Horizon. October 10, 2013.
- ERM. 2014. 2013 Long Term Monitoring Report. February 2014.
- ERM. 2015. 2015 Long Term Monitoring Report. December 2015.
- Gilbert, Richard O. 1987. *Statistical Methods for Environmental Pollution Monitoring*. Van Nostrand Reinhold.
- Hart Crowser. 2004. *Groundwater Monitoring Plan*. Prepared for Horizon Lines of Alaska, LLC. October 2004.
- Helsel and Hirsch. 2002. *Statistical Methods in Water Resources.* Chapter A3. U.S. Department of the Interior, U.S. Geological Survey.
- OASIS Environmental Inc. (OASIS). 2005. *Tank Removal and Site Assessment Report*. Prepared for Horizon. November 17, 2005.
- OASIS. 2011. Long-term Monitoring Report Port of Anchorage Terminal Facility. Prepared for Horizon. January 5, 2013.
- R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org/.
- United States Environmental Protection Agency (EPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Unified Guidance. EPA/530/R/09/007. Office of Resource Conservation and Recovery. Washington, D.C.

TABLES

TABLE 3: GROUNDWATER ELEVATION MEASUREMENTS 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON

Monitoring Well	Relative TOC ^{1,2} Elevation (Feet)	Depth to Groundwater (Feet)	Relative Groundwater Elevation (Feet)
HC-1	96.13	6.70	89.43
HC-3	98.45	7.08	91.37
HC-6	96.39	9.63	86.76
MW-8	96.79	6.43	90.36
MW-9	95.96	5.59	90.37

PORT OF ANCHORAGE TERMINAL FACILITY

Notes:

1. Relative TOC established by ERM on 9/27/2017.

2. TOC = top of casing $\frac{1}{2}$

3. MW-10 has been paved over and is not included in the 2017 study results.

TABLE 4: GROUNDWATER ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

	Petroleum Hydrocarbon Concentration [mg/L]					
Monitoring	8260 C				AK 101	AK 102
Well	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO
ADEC Groundwater Cleanup Level ²	0.0047	1.1	0.015	0.19	2.2	1.5
HC-1	0.7	ND (0.002)	0.094	0.094	1.5	5.1
HC-3	0.002	ND (0.002)	ND (0.003)	ND (0.003)	ND (1.0)	0.99
HC-6	ND (0.0002)	ND (0.002)	ND (0.003)	ND (0.003)	ND (1.0)	1.2
MW-8	0.7 J-D	0.071	1.3 J, J-D	8.42 J-D	35 J-S	13
HC-Z (Duplicate of MW-8)	1.5 J-D	0.068	1.7 J-D	12 J-D	36 J-S	13
MW-9	0.73 J-H	.0047	0.019	0.0482	1.6 J-S	7.0

Notes:

1. Value in parantheses is the laboratory reporting limit.

2. Groundwater cleanup Levels from 18 AAC 75.345, Table C (2017)

3. MW-10 has been paved over and is not included in the 2017 study results. Key:

ADEC = Alaska Department of Environmental Conservation

Bold = Concentrations above ADEC Groundwater Cleanup Levels (18 AAC 75)

DRO = Diesel range organics

GRO = Gasoline range organics

mg/L = milligrams per liter

ND = Not detected above the reporting limit shown in parentheses

J-P = Estimated due to preservation not meeting quality control criteria

UJ-P = Not detected result is estimated due to preservation not meeting quality control criteria

J-D = Result is estimated due to duplicate comparison not meeting quality control criteria

J-S = Result is estimated due to surrogate percent recovery not meeting quality control criteria

J = Result is estimated; value between the method detection limit and the reporting limit

J-H = Estimated due to holding time exceedance

TABLE 5: GROUNDWATER ANALYTICAL RESULTS FOR PAHs 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

	PAH Concent	tration ² (mg/L)	ADEC Cleanup	1/10th
Analyte	MW-8	MW-Z (Duplicate of MW-8)	Level ¹ (mg/L)	Screening Level
Acenaphthene	0.00015	0.00015	0.53	0.053
Acenaphthylene	ND (0.0002)	ND (0.0002)	0.26	0.026
Benzo[a]anthracene	ND (0.00002)	ND (0.0002)	0.0012	0.00012
Benzo[a]pyrene	ND (0.00002)	ND (0.00002)	0.000034	0.0000034
Benzo[b]fluoranthene	ND (0.00002)	ND (0.00002)	0.00034	0.000034
Benzo[g,h,i]perylene	ND (0.0002)	ND (0.0002)	0.00026	0.000026
Benzo[k]fluoranthene	ND (0.00002)	ND (0.00002)	0.0008	0.00008
Chrysene	ND (0.00002)	ND (0.00002)	0.002	0.0002
Dibenz(a,h)anthracene	ND (0.0002)	ND (0.0002)	0.000034	0.0000034
Fluoranthene	ND (0.00002)	ND (0.0002)	0.26	0.026
Fluorene	0.00032	0.00034	0.29	0.029
Indeno[1,2,3-cd]pyrene	ND (0.00002)	ND (0.00002)	0.00019	0.000019
Phenanthrene	0.00072	0.00088	0.17	0.017
Pyrene	ND (0.00002)	ND (0.0002)	0.12	0.012
Anthracene	0.000033	0.000037	0.043	0.0043
1-Methylnaphthalene	0.024	0.0031	0.011	0.0011
2-Methylnaphthalene	0.032 J-D	0.0049 J-D	0.036	0.0036
Naphthalene	0.12	0.14	0.0017	0.00017

Notes:

1. Groundwater cleanup levels from 18 AAC 75.345, Table C (2017)

2. Samples were analyzed by method 8270D SIM

3. Value in parantheses is the method reporting limit (MRL) Key:

ADEC = Alaska Department of Environmental Conservation

Bold = Concentrations above ADEC Groundwater Cleanup Levels (18 AAC 75)

mg/L = milligrams per liter

ND = Not detected above the reporting limit shown in parentheses

PAH = Polyaromatic hydrocarbon

J-D = Reported value is considered estimated due to the primary and duplicate

sample results not meeting quality control criteria.

TABLE 6: CUMULATIVE GROUNDWATER ANALYTICAL RESULTS 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON

PORT OF ANCHORAGE TERMINAL FACILITY

Monitoring	Date of	Hydrocarbon Concentrations (mg/L)									
Well	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO				
ADEC GW Cleanup Level	2013/2017 ³	0.005/.0047	1.0/1.1	0.7/0.015	10/0.19	2.2/2.2	1.5/1.5				
G-1-96	Nov-02	ND (0.0005)	ND (0.002)	ND (0.002)	ND (0.004)	ND (0.09)	ND (0.556)				
	Oct-2000	8.06	0.567	0.678	3.865	27.7	6.27				
	Nov-2002	7.55 J	0.021 J	0.916 J	4.081 J	24.8 J	6.78				
	Nov-2004	6.42	0.023	0.816	3.03	21.6	10.7				
	Mar-2005	3.76	0.009	0.507	1.76	14.3	7.64				
HC-1	Nov-2005	2.34	0.00581	0.307	1.08	11.1	6.53				
	Apr-2006	1.94	0.00597 J	0.305	1.04	8.25	4.94				
	Nov-2006	2.21	ND (0.025)	0.269	0.604	9.35	6.85				
	Apr-2007	1.7	ND (0.005)	0.228	0.527	6.62	4.88				
ПС-I	Oct-2007	1.25	ND (0.005)	0.157	0.232	4.39	6.05				
	Apr-2008	0.653	ND (0.005)	0.0758	0.165	1.73	1.31				
	Jun-2009	0.734	0.00275 J	0.19	0.282	2.73 J	3.86				
	Oct-2010	1.05	0.0037	0.600	4.76	1.93	2.70				
	Aug-2011	0.875	0.000827	0.146	0.228	3.650	2.51				
	Oct-2013	0.737	ND (0.005)	0.0893	0.159	2.26	2.95				
	Sept-2015	1.10	0.0011	0.140	0.310	3.80	7.50				
	Sept-2017	0.7	ND (0.002)	0.094	0.094	1.5	5.1				
	Oct-00	0.0012	ND (0.002)	0.005	0.069	0.310	3.61				
	Nov-02	0.0006	ND (0.002)	0.004	0.049	0.310	1.55				
	Nov-04	0.0016	ND (0.0005)	0.0049	0.079	0.280	2.5				
	Mar-05	0.0005	ND (0.0005)	0.0021	0.014	0.110	1.55				
	Nov-05	0.000904	ND (0.0005)	0.00399	0.0499	0.232	1.36				
HC-2B	Apr-06	ND (0.0005)	ND (0.0005)	0.00201	0.0233	0.138	1.11				
	Nov-06	ND (0.0005)	ND (0.0005)	0.000871	0.0169	0.159	1.29				
	Apr-07	ND (0.0005)	ND (0.0005)	0.0011	0.013	0.111	0.863				
	Oct-2007	NS	NS	NS	NS	NS	1.57				
	Apr-2008	NS	NS	NS	NS	NS	1.06				
	Jun-2009	NS	NS	NS	NS	NS	1.14				
	Oct-00	0.0244	ND (0.002)	ND (0.002)	0.003	0.21	2.18				
	Nov-02	0.0107	ND (0.002)	ND (0.002)	ND (0.0004)	ND (0.09)	0.82				
	Nov-04	0.004	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	0.726				
	Mar-05	0.0068	ND (0.0005)	ND (0.0005)	ND (0.0015)	0.06	ND (0.394)				
	Nov-05	0.00566	ND (0.0005)	ND (0.0005)	ND (0.0015)	0.0665	0.68				
	Apr-06	0.00315	ND (0.0005)	ND (0.0005)	ND (0.0015)	0.0568	1.25				
	Nov-2006	0.00855	ND (0.0005)	ND (0.0005)	ND (0.0015)	4	1.09				
	Apr-2007	0.00322	ND (0.0005)	ND (0.0005)	ND (0.0015)	0.0654	0.640				
HC-3	Oct-2007	0.00262	ND (0.0005)	ND (0.0005)	ND (0.0015)	0.0577	1.14				
	Apr-2008	0.00432	ND (0.0005)	ND (0.0005)	ND (0.0015)	0.205	1.14				
	-	0.00432			0.00677	0.203	2.20				
	Jun-2009		ND (0.001)	ND (0.001)							
	Oct-2010	0.00301	ND (0.001)	ND (0.001)	ND (0.003)	ND (0.050)	0.603				
	Aug-2011	0.00604	ND (0.0005)	ND (0.0005)	ND (0.0015)	0.0552	0.931				
	Oct-2013	0.002	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	0.848				
	Sept-2015	0.0031	ND (0.001)	ND (0.001)	ND (0.003)	ND (0.1)	2.5				
	Sept-2017	0.002	ND (0.002)	ND (0.003)	ND (0.003)	ND (1.0)	0.99				

TABLE 6: CUMULATIVE GROUNDWATER ANALYTICAL RESULTS 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON

PORT OF ANCHORAGE TERMINAL FACILITY

Monitoring	Date of	Hydrocarbon Concentrations (mg/L)									
Well	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO				
ADEC GW Cleanup Level	2013/2017 ³	0.005/.0047	1.0/1.1	0.7/0.015	10/0.19	2.2/2.2	1.5/1.5				
HC-4	Aug-2011	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.050)	ND (0.385)				
	Nov-02	ND (0.0005)	ND (0.0002)	ND (0.0002)	ND (0.0004)	ND (0.09)	0.668				
	Nov-04	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	ND (0.431)				
HC-5	Mar-05	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	2.67				
	Nov-05	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	ND (0.391)				
	Apr-06	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	ND (0.391)				
	Nov-02	ND (0.0005)	ND (0.0002)	ND (0.0002)	ND (0.0004)	ND (0.09)	ND (0.581)				
	Nov-04	0.004	ND (0.0005)	ND (0.0005)	0.002	ND (0.05)	0.949				
	Mar-05	0.0144	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	1.74				
	Nov-05	0.000502	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	0.468				
	Apr-06	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	ND (0.417)				
	Nov-06	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	1.78				
	Apr-07	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	0.870				
HC-6	Oct-07	NS	NS	NS	NS	NS	2.86				
	Apr-08	NS	NS	NS	NS	NS	0.715				
	Jun-09	NS	NS	NS	NS	NS	0.842				
	Oct-10	NS	NS	NS	NS	NS	0.586				
	Aug-2011	NS	NS	NS	NS	NS	1.40				
	Oct-2013	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	1.54				
	Sept-2015	ND (0.0002)	ND (0.001)	ND (0.001)	ND (0.003)	ND (0.1)	2.8				
	Sept-2017	ND (0.0002)	ND (0.002)	ND (0.003)	ND (0.003)	ND (1.0)	1.2				
	Nov-2005	5.55	9.45	1.54	13.7	91.5	33.8				
	Apr-2006	6.66	15.6	2.2	17.8	107	47.6				
	Nov-2006	NS	NS	NS	NS	NS	NS				
	Apr-2007	5.87	12.6	2.29	19	114	29.7				
	Oct-2007	4.9	9.85	1.5	17.9	106	32.1				
	Apr-2008	2.68	12.5	2.44	20.3	82.8	25.1				
MW-8	Jun-2009	2.41	4.35	2.06	15.3	101	25.4 J-B				
IVI VV-0	Oct-2010	1.82	2	2.2	18.1	98.1	17.7				
	Aug-2011	1.8	0.3	1.8	14.1	59.0	16.6				
	Aug-2011 ¹	1.8	0.3	1.8	13.7	59.6	20.4				
	Oct-2013	1.38	0.13	1.51	11	24.1	17.7				
	Oct-2013 ¹	1.43	0.138	1.63	12	27.4	15.2				
	Sept-2015 ¹	1.9	ND (0.2)	1.6	12	48	23				
	Sept-2017 ¹	0.7 J-D	0.071	1.3 J, J-D	8.42 J-D	35 J-S	13				
	Nov-05	5.20	1.02	1.63	10.1	56.2	33.3				
	Apr-06	7.94	0.742	2.47	12.9	66	35.6				
	Nov-06	7.40	0.369	2.2	9.90	61.1	21.9				
	Apr-07	7.42	ND (0.25)	1.99	9.54	56.3	24.2				
MW-9	Oct-07	8.16	0.114	1.36	6.20	45.6	21.0				
	Apr-08	5.69	0.062	0.713	3.19	18.0	11.0				
	Jun-09 Oct-10	1.90	0.0137 0.017	0.0638	0.318 4.46	3.77	9.00 J-B				
	Aug-2011	1.92 0.104	0.0017	0.00607	4.46 0.0283	3.95 0.447	6.53 2.08				
	Sept-2011	0.104 0.73 J-H	.0047	0.00807	0.0285	0.447 1.6 J-S	7.0				

TABLE 6: CUMULATIVE GROUNDWATER ANALYTICAL RESULTS 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Monitoring	Date of	Hydrocarbon Concentrations (mg/L)									
Well	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO				
ADEC GW Cleanup Level	2013/2017 ³	0.005/.0047	1.0/1.1	0.7/0.015	10/0.19	2.2/2.2	1.5/1.5				
	Nov-06	0.00427	0.0017	0.0054	0.0322	0.133	0.761				
	Apr-07	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	2.03				
MW-10	Oct-07	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	ND (0.394)				
	Apr-08	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	ND (0.427)				
	Oct-2013	0.00503	0.00115	0.00857	0.0707	0.137	NS				
	Nov-06	0.00629	0.00136	0.00433	0.027	0.126	1.00				
	Apr-07	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	1.06				
MW-11	Oct-07	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0015)	ND (0.05)	0.779				
10100-11	Apr-08	NS	NS	NS	NS	NS	NS				
Notos	Jun-09	NS	NS	NS	NS	NS	ND (0.397) J- B				

Notes:

1. Duplicate Sample

2. Value in parantheses is the laboratory reporting limit.

3. The ADEC lowered GCL in 2017.

Key:

ADEC = Alaska Department of Environmental Conservation

Bold = Concentrations above ADEC Groundwater Cleanup Levels (18 AAC 75)

DRO = Diesel range organics

GRO = Gasoline range organics

mg/L = milligrams per liter

ND = Not detected above the reporting limit shown in parentheses

J-P = Estimated due to preservation not meeting quality control criteria

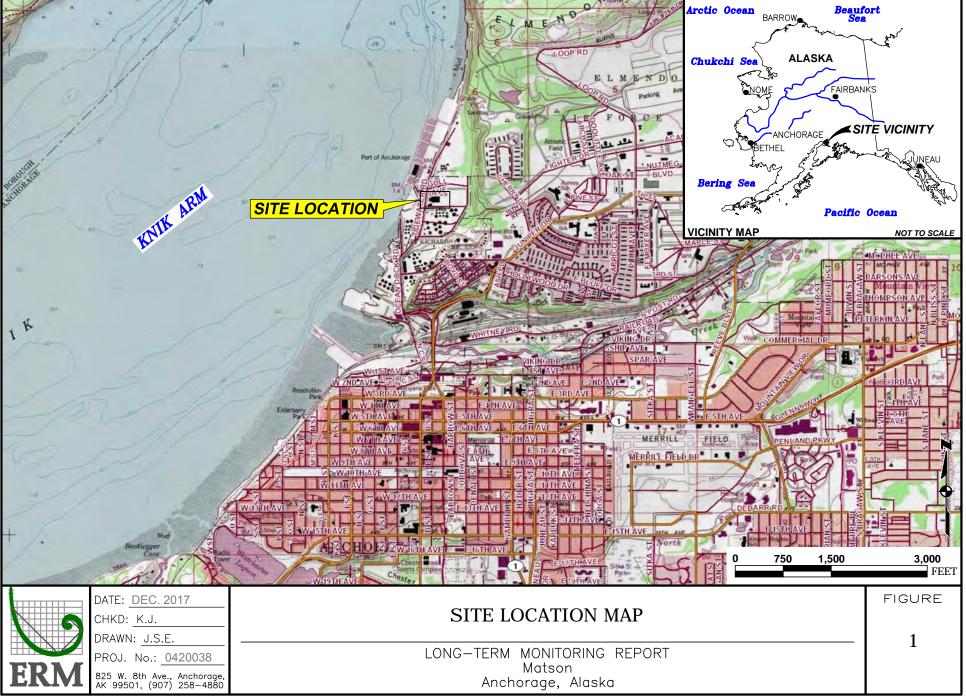
UJ-P = Not detected result is estimated due to preservation not meeting quality control criteria

J-D = Result is estimated due to duplicate comparison not meeting quality control criteria

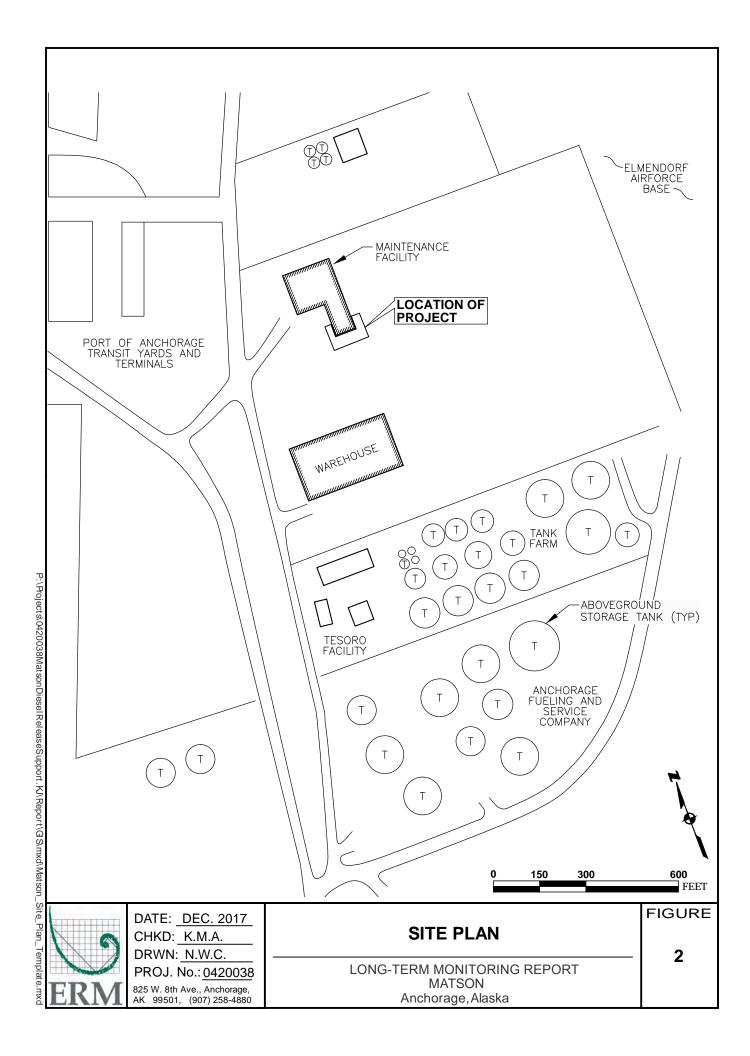
J-S = Result is estimated due to surrogate percent recovery not meeting quality control criteria

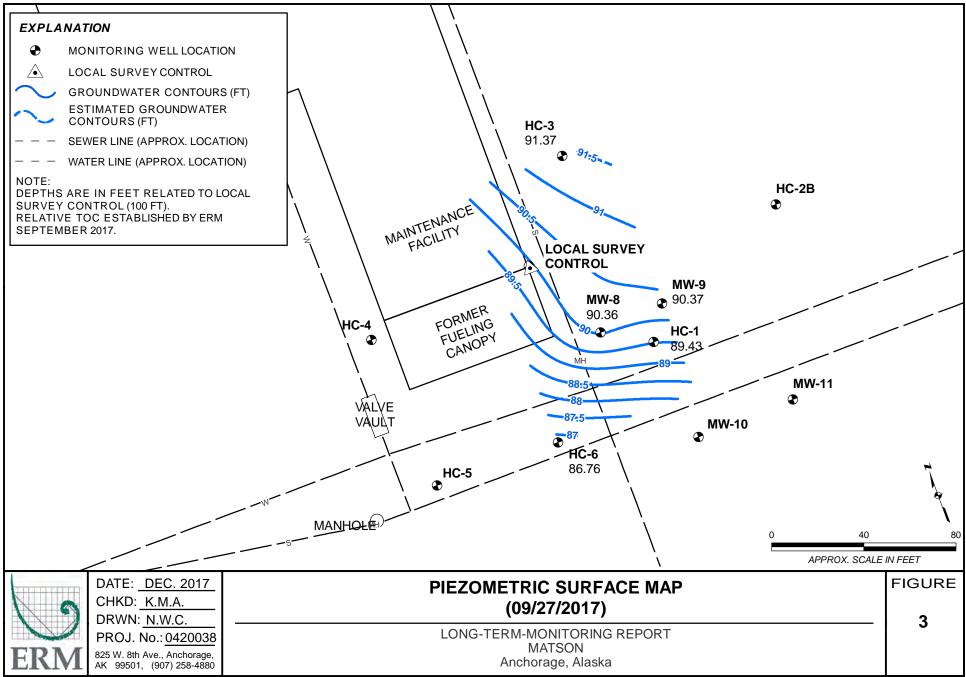
J = Result is estimated; value between the method detection limit and the reporting limit

J-H = Estimated due to holding time exceedance

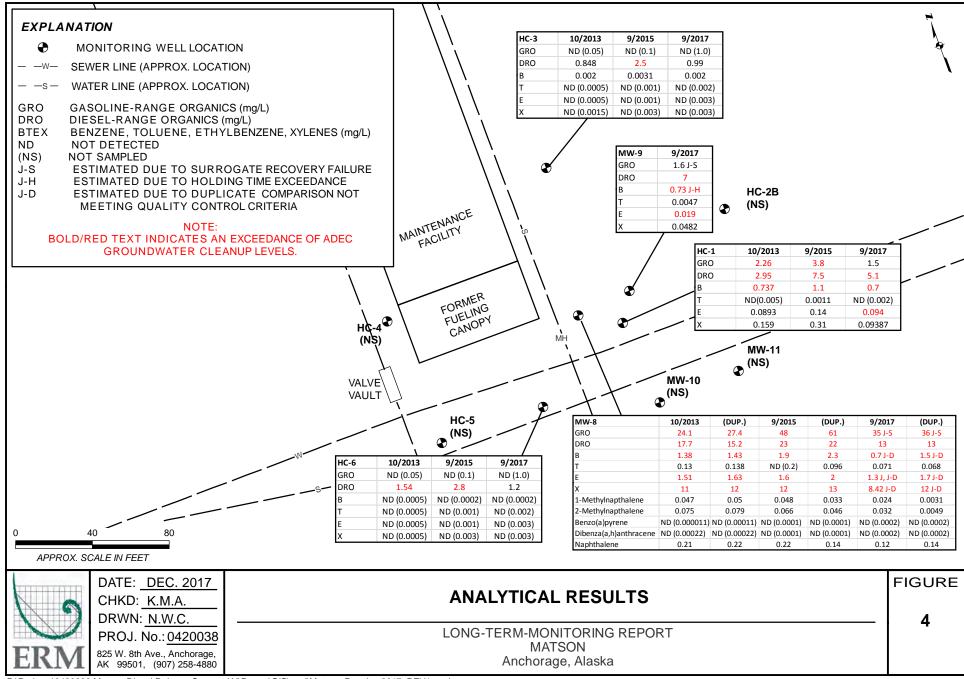

TABLE 7: BIOVENTING SYSTEM MEASUREMENTS 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Line	Nov-06	Apr-07	Oct-07	Aug-09	Oct-10	Aug-11	Oct-13	Sep-15	Sep-17	Average
					Oxygen [%]	8			F	
1	20.1	17.6	16	19.1	19	20.3	20.6	16.6	15.1	18.3
2	18.3	15.1	12.8	15.3	15.2	17.3	19.4	16.5	10.6	15.6
3	16.4	16.4	14.5	17.4	16.6	18.7	20.9	18.5	13.5	17.0
4	20.9	20.9	13.6	16.6	16.5	18.1	20.9	17.6	11	17.3
5	20.9	14.5	12.5	15.3	16.2	16.2	19.5	16.6	12.3	16.0
6	13.5	18.1	17.9	16.5	18.2	17.8	20.1	18.5	14.3	17.2
				Carb	on Dioxide	[%]				
1	0.3	1.8	3.4	1.3	1.3	1.5	1.2	2.2	2.5	1.7
2	2	3	5.5	4	4.1	3.7	1.7	2.46	5	3.5
3	3.2	2.2	4.3	2.4	3.2	2.5	0.4	1.02	3.92	2.6
4	0.3	0	4.6	2.9	3.6	3	1.24	0.74	5	2.4
5	0.9	3	5.7	4	3.8	4.7	1.6	2.6	4.78	3.5
6	4.5	1.6	1.9	3.4	2.1	3.3	1.4	1.86	2.82	2.5
			- -	Fotal Volati	le Hydrocar	bons [ppm]				
1	10	160	160	0	0	55	25	5	0	46.1
2	25	780	110	0	0	20	0	0	0	116.9
3	0	420	120	0	0	35	15	0	0	73.8
4	15	0	110	0	0	25	0	0	0	18.8
5	20	320	90	0	0	0	0	25	0	56.9
6	50	110	100	0	0	15	0	0	0	34.4

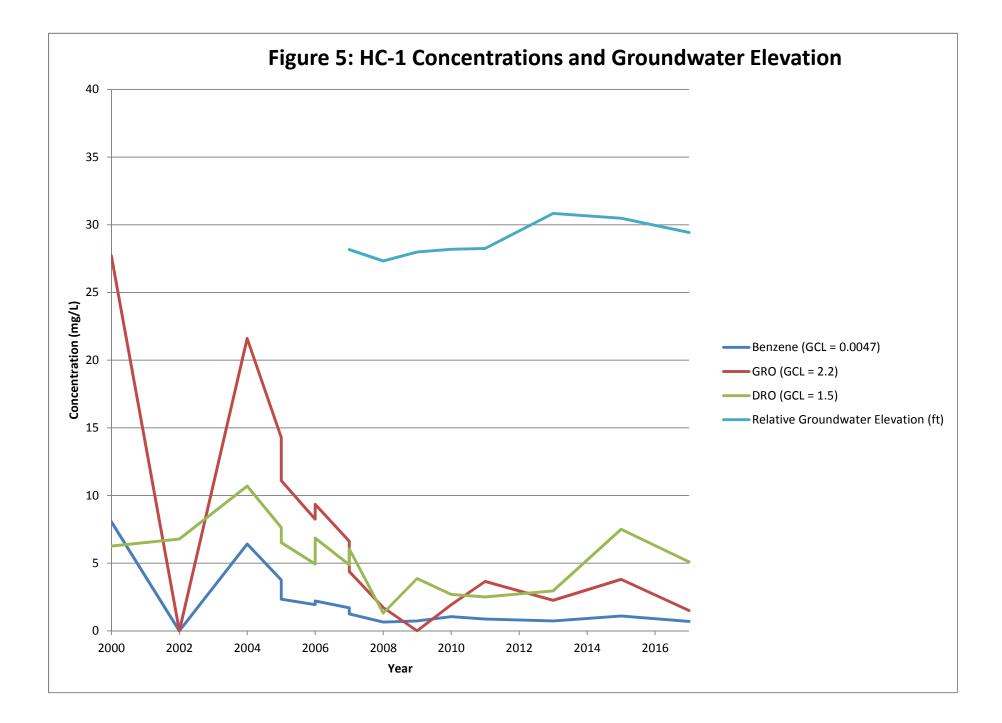

Key: ppm = parts per million NA = Not Available

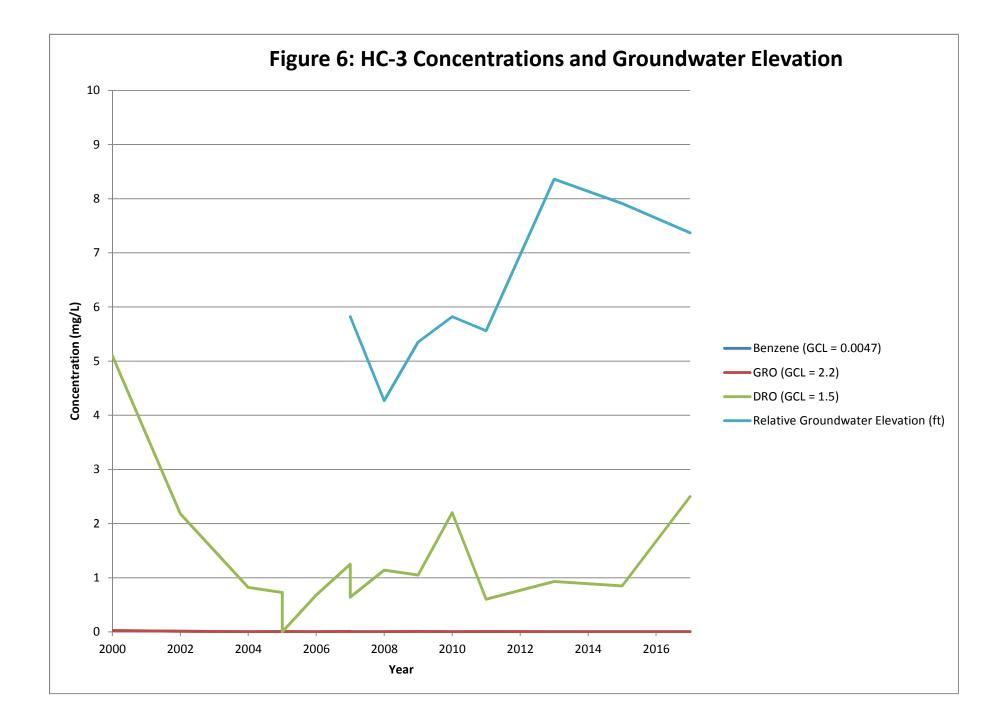

FIGURES

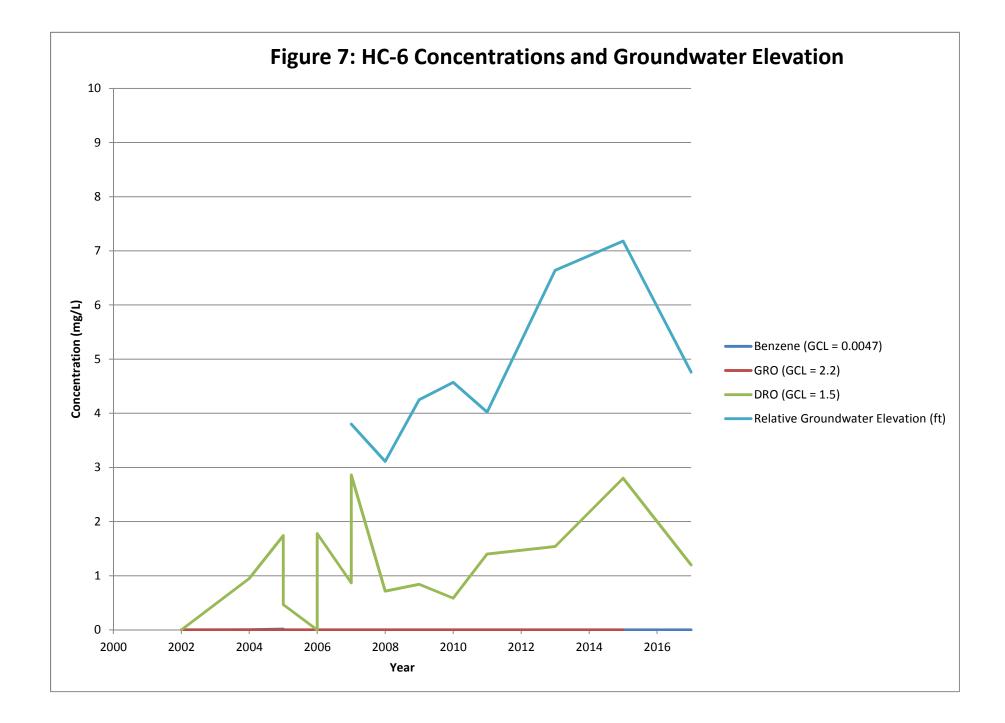
C:\temp\AcPublish_2868\02208800-04.dwg Dec 15, 2015.

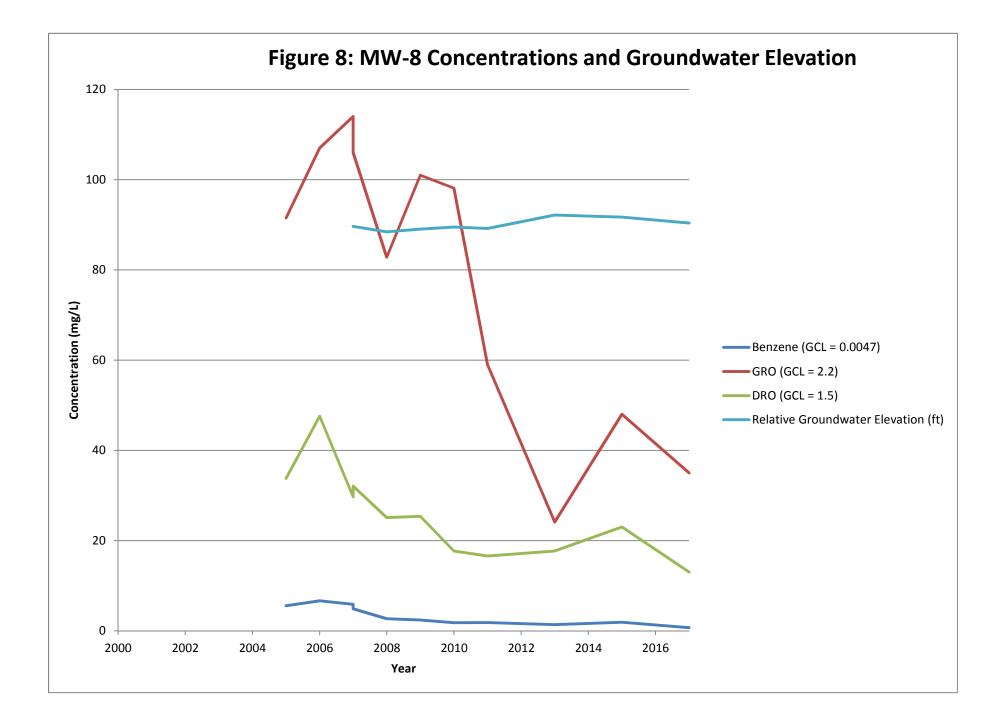


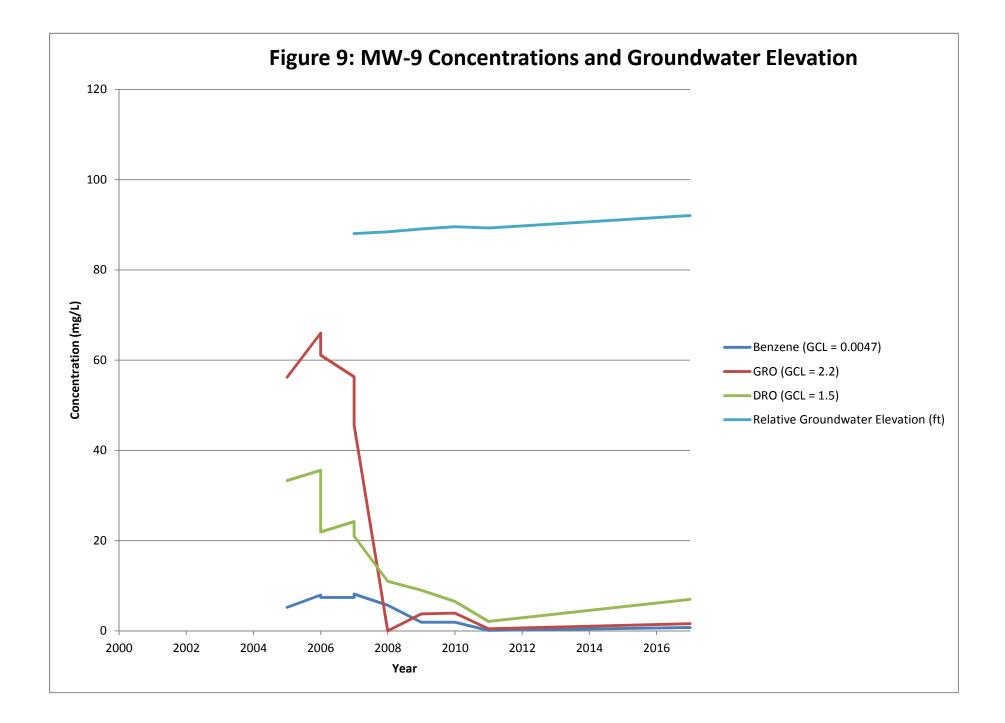
SOURCE: TOPO IMAGE FROM NATIONAL GEOGRAPHIC SOFTWARE 2006.

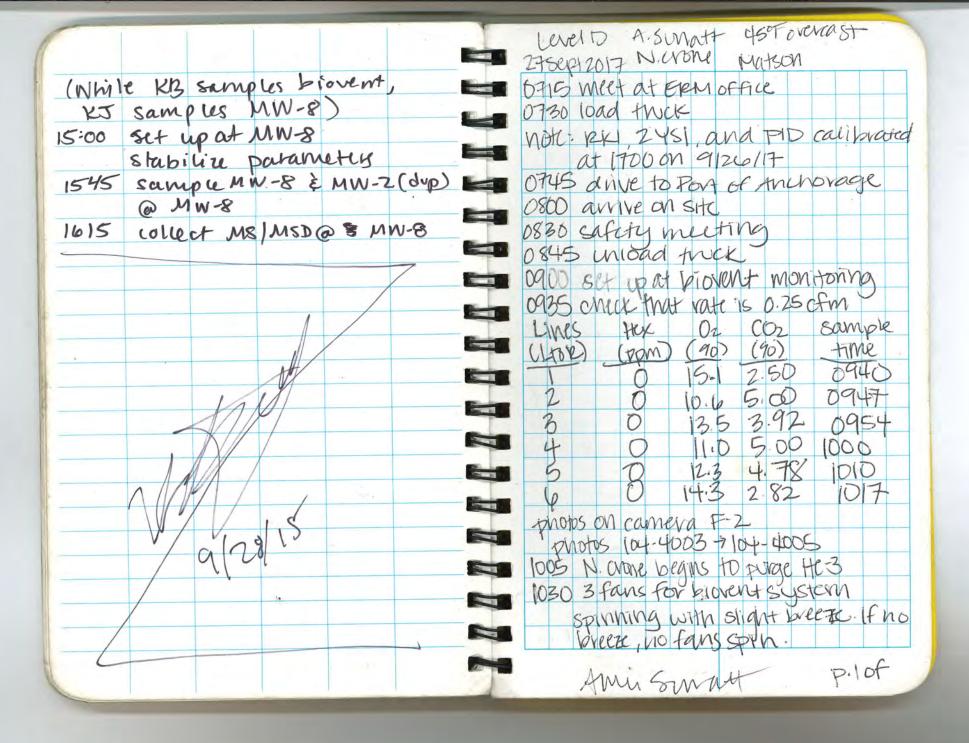





P:\Projects\0420038 Matson Diesel Release Support.KJ\Report\GIS\mxd\Matson_GW_2017.mxd




P:\Projects\0420038 Matson Diesel Release Support.KJ\Report\GIS\mxd\Matson_Results_2017_REV1.mxd



APPENDIX A

Field Notes and Groundwater Data Sheets

0146958 Martin # 0220880 2013Proz # Horizon Lines GW Monitoring Anchorage AV 371-001 OASIS 1 4 5/8" x 7" - 64 Pages

h contraint in the second	
Leveld History 450Forecast	Levelb A. sumate 450Fovercast
Leveld Alisment 450Forerast 27 sept 2017 N. Crone Matson	27 Suptimbry 2017 N. Come Marson
1032 4 fansspinning	1315 A. Smalt samples HL-6
1035 NOMESAMHAC LA-Z	17.0
notes on biovent monitoring-need:	Bm-+ MC. 9/27/10
- Wober stopper w/hole drilled in it	
-about i diameter stopper	STA BS (+) HT FS (-) Elev (Ft) BM-1 1,77 101.46 100.00
- air pump	BM-1) 1/1 101.46 100.00
- extension cord	MW9 4.04 4.04
	HC-1 3.87
	MW-8 3.21
- REI instrument	HC-6 3.61
- wrench flow rate adjuster	416-3
- put poly tubing through opening	1515 FILOUT COC, LAUDU DOTTIES
at biovent, through stopper,	1530 clean up
attach to pump, chuck flow	ileis done for day
water of ining inith Fiblor bag	
attach to kki, tum plastic handle	
on biovent system papandi war	
- wait for stabilization	i the
1118 A. SUNAT begins purging MW-9	A MARINE I
1110 N. Grone begins purpling 1-1C-1	MMM SMALL
1145 N Crone samples HC-1	and all the
IT IS NOVIN DOVIDUS IIC)	
1150 A. SUMATT Samples MW-9	
1245 N CNONE begins purging MW-8	
1250 A. SUWATT begins purging the-6	
1500 10. crivite Swithles love & rade this wise	
Ann Swatt P.2073	p.30f 3

"Outdoor writing products for outdoor writing people."

RECYCLED / RECYCLABLE

This cover is made of 100% post-consumer recycled material.

"Rite in the Rain" - A unique All-Weather Writing paper created to shed water and enhance the written image. It is widely used throughout the world for recording critical field data in all kinds of weather.

Available in a variety of standard and custom printed case-bound field books, toose leaf, spiral and stapled notebooks, multi-copy sets and copier paper.

For best results, use a pencil or an all-weather pen.

a product of

J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA (253) 922-5000 · FAX (253) 922-5300 www.RiteintheRain.com

		Low-Fle	ow Groundw	ater Samplin	g with Mir	nimal Dr	awdow	n Work	sheet		
			and the second se				Well ID:	41-1	1.1.1.1.1		
Project # :	047	0038					Date:		27/13	}-	
Project Name:	Mat	Son		-		St	art Time:		Contraction in the local division in the loc		
Site:						E	ind Time:				
Field Team:	N	Crone	A SI	rratt							
Sample ID:		A.HUI	1008	Time:	1145	(primary)	dup	split	ms/msd		
Sample ID:	1 ne	a tier	10.000	Time:		primary	dup	split	ms/msd		
	-		CONTRACTOR OF				1.181				
Weather Condit	tions:	part	thy cloud	4 530F	Smpt	wine	(Nh	/		_	_
Depth to Top of	Product (ft BTOC):	n	6 product		Depth to	Water (ft	BTOC):		6.70	
Depth to Oil/Wa	ater Interf	ace* (ft BTC	DC):	6.70		Total Dep	th (ft BTC	DC):		12.94	
Note: Same as d	lepth to wa	ater				Final Dept	th (ft BTO	C):		7.79	
Criteria for S			rs								
	Juante I	aramete			Stability Crit	toria	Notes				
Parameter		1	Working Range		± 0.5 °C	lena	Notes	_			-
Temperature			>0.00 °C		the second second second		-	-			_
pH			0-14		±0.1						-
Conductivity			0-99999 µS/cm	<u> </u>	± 5%				_		
ORP			± 1999 mV								
Dissolved Oxyge	en	-	0-19.99 mg/L		± 10%						
Furbidity			0-800 NTU								
Sensory Obs	servatio	ns									
Instrument	Ohserv	ations									-
	Observa	ations		E an anna an a		r	10000			-	
Flow Rate	Observa	Temp	Spec. Cond.	Conductivity			ORP		1.1.1	Water Level	
Flow Rate (ml/min)	Time	Temp °C	(mS/cm ^c)	(µS/cm)	DO (mg/L)	pH	(mV)	Color	Odor	(ft BTOC)	
Flow Rate (ml/min)	Time	тетр °С /1.29	(ms/cm ^c) 3.754	(µs/cm) 2769	5.35	637	(mV) -76,9	clear	none	(ft btoc)	
Flow Rate (ml/min)	Time 1110 1115	Temp °C 11.27 11.28	(ms/cm ^c) 3.754 3.722	(µs/cm) 2769 2747	5.35	6.37	(mV) -769 -89.7	clear	none	(ft BTOC) 6.82 7.14	
Flow Rate (ml/min) 5 <u>140</u> ノムロ	Time 1110 1115 1120	Temp °C 11.27 11.28 11.28 11.40	(ms/cm ^c) 3.754 3.722 3.700	(µs/cm) 2769 2747 2739	5.35 0.34 0.30	6.37	(mV) -76,9 -89,7 -96,1	clear clear	none none	(ft BTOC) 6.82 7.14 7.26	
Flow Rate (ml/min) 5 <u>140</u> ノムロ	Time 1110 1115 1120	Temp °C 11.29 11.28 11.28 11.40	(ms/cm ^c) 3.75U 3.72Z 3.700 3.676	(µS/cm) 2769 2747 2747 2739	5.35 0.34 0.30 0.58	6.37 6.48 6.48 6.48	(mV) -76.9 -89.7 -96.1 -92.9	clear clear clear clear	none	(ft BTOC) 6.82 7.14	
5 Flow Rate (ml/min) 5 140 140	Time 1110 1115	Temp °C 11.29 11.28 11.28 11.40	(ms/cm ^c) 3.754 3.722 3.700	(µs/cm) 2769 2747 2739	5.35 0.34 0.30 0.58 0.48	6.37 6.48 6.48 6.48	(mV) -76.9 -89.7 -96.1 -92.9	clear clear	none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61	
5 Flow Rate (ml/min) 5 140 140 140	Time 1110 1115 1120 1125	Temp °C 11.27 11.28 11.28 11.40 11.65 11.67 11.70	(ms/cm ^c) 3.754 3.722 3.676 3.676 3.647 3.647 3.647	(µS/cm) 2769 2747 2739 2739 275 2715 2700	5.35 0.34 0.30	6.37 6.48 6.48 6.48	(mV) -769 -89.7 -96.1 -92.9 -104.4	clear clear clear clear	none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.41	
5 Flow Rate (ml/min) 5 140 140 140 140 140 140 140	Time 1110 1115 1120 1125 1125 1135	Temp °C 11.27 11.28 11.28 11.40 11.65 11.67 11.70	(ms/cm ^c) 3.754 3.722 3.676 3.676 3.647 3.647 3.647	(µS/cm) 2769 2747 2739 2739 275 2715 2700	5.35 0.34 0.30 0.58 0.48 0.43	6.37 6.48 6.48 6.46 6.49 6.51	(mV) - 769 -89.7 -96.1 -92.9 -104.4 -110.4	clear clear clear clear clear clear	none none none none	(ft BTOC) 6.82 7.14 7.26 7.50	
5 7 Flow Rate (ml/min) 5 140 140 140 140 140	Time 1110 1115 1120 1125 /136	Temp °C 11.27 11.28 11.28 11.40 11.65 11.67 11.70	(ms/cm ^c) 3.75U 3.722 3.700 3.676 3.676 3.647 3.647 3.619 3.594	(µS/cm) 2749 2747 2747 2747 2749 2745 2745 2740 2667	5.35 0.34 0.30 0.59 0.40 0.43 0.39	6.37 6.48 6.48 6.46 6.49 6.51 6.49	(mV) -76,9 -96,1 -96,1 -92,9 -104,4 -110,4 -110,4 -100,4	clear clear clear clear clear clear	none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.41	
Flow Rate (ml/min) 140 140 140 140 140 140	Time 1110 1115 1120 1125 1125 1135	Temp °C 11.27 11.28 11.28 11.40 11.65 11.67 11.70	(ms/cm ^c) 3.75U 3.722 3.700 3.676 3.676 3.647 3.647 3.619 3.594	(µS/cm) 2769 2747 2739 2739 275 2715 2700	5.35 0.34 0.30 0.59 0.40 0.43 0.39	6.37 6.48 6.48 6.46 6.49 6.51	(mV) -76,9 -96,1 -96,1 -92,9 -104,4 -110,4 -110,4 -100,4	clear clear clear clear clear clear	none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.41	
Flow Rate (ml/min) 140 140 140 140 140 140	Time 1110 1115 1120 1125 1125 1135	Temp °C 11.27 11.28 11.28 11.40 11.65 11.67 11.70	(ms/cm ^c) 3.75U 3.722 3.700 3.676 3.676 3.647 3.647 3.619 3.594	(µS/cm) 2749 2747 2747 2747 2749 2745 2745 2740 2667	5.35 0.34 0.30 0.58 0.40 0.43 0.38 5 fab	6.37 6.48 6.48 6.46 6.46 6.51 6.51 6.51 6.51	(mV) -76.9 -96.1 -96.1 -92.9 -104.4 -110.4 -100.4	clear clear clear clear clear clear	none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.41	
Flow Rate (ml/min) 140 140 140 140 140 140	Time 1110 1115 1120 1125 1125 1135	Temp °C 11.27 11.28 11.28 11.40 11.65 11.67 11.70	(ms/cm ^c) 3.75U 3.722 3.700 3.676 3.676 3.647 3.647 3.619 3.594	(µS/cm) 2749 2747 2747 2747 2749 2745 2745 2740 2667	5.35 0.34 0.30 0.59 0.40 0.43 0.39	6.37 6.48 6.48 6.46 6.46 6.51 6.51 6.51 6.51	(mV) -76,9 -96,1 -96,1 -92,9 -104,4 -110,4 -110,4 -100,4	clear clear clear clear clear clear	none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.41	
5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Time 1110 1115 1120 1125 1125 1135	Temp °C 11.27 11.28 11.28 11.40 11.65 11.67 11.70	(ms/cm ^c) 3.75U 3.722 3.700 3.676 3.676 3.647 3.647 3.619 3.594	(µS/cm) 2749 2747 2747 2747 2749 2745 2745 2740 2667	5.35 0.34 0.30 0.58 0.40 0.43 0.38 5 fab	6.37 6.48 6.48 6.46 6.46 6.51 6.51 6.51 6.51	(mV) -76.9 -96.1 -96.1 -92.9 -104.4 -110.4 -100.4	clear clear clear clear clear clear	none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.41 7.75	
5 Flow Rate (ml/min) 5 140 140 140 140 140	Time 11/0 1115 1120 1125 1125 1135 1140	Temp °C 11.27 11.28 11.40 11.65 11.67 11.70 11.70	(ms/cm ^c) 3.754 3.722 3.676 3.676 3.647 3.647 3.647 3.647 3.647	(µS/cm) 2749 2747 2747 2747 2749 2745 2745 2740 2667	5.35 0.34 0.30 0.58 0.48 0.43 0.38 5 tab	6.37 6.48 6.48 6.48 6.49 6.51 6.49 6.49 6.49	(mV) -76.9 -96.1 -96.1 -92.9 -104.4 -110.4 -100.4 -100.4	clear clear clear clear clear clear clear clear	none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.57 7.41 7.75 7.79	
Flow Rate (ml/min) 140 <	Time 11/0 1115 1120 1125 1125 1135 1140 wn shoute	Temp °C 11.27 11.28 11.40 11.65 11.67 11.90 11.70 11.70	(ms/cm ^c) 3.754 3.722 3.676 3.676 3.677 3.676 3.677 3.677 9.676 3.574 Parav	(µS/cm) 27769 2747 2739 2738) 2775 2700 2667 2667	5.35 0.34 0.30 0.58 0.48 0.43 0.30 5 fab	6.37 6.48 6.48 6.48 6.49 6.51 6.49 0:1; z.e. hall be ac	(mV) -76.9 -96.1 -96.1 -92.9 -104.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear dmeasure	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Time 11/0 1115 1120 1125 1135 1140 wn shoute roximately	Temp °C 11.27 11.28 11.40 11.65 11.67 11.70 11.70 11.70 11.70	(ms/cm ^c) 3, 754 3, 727 3, 700 3, 676 3, 676 4, 777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 77777 4, 77777 4, 7777777777	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 sampling. Minim	5.35 0.34 0.30 0.58 0.48 0.43 0.30 5 fab	6.37 6.48 6.48 6.48 6.49 6.51 6.49 0:1; z.e. hall be ac	(mV) -76.9 -96.1 -96.1 -92.9 -104.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear dmeasure	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
Flow Rate (ml/min) 140	Time <i>J1/0</i> 1115 <i>J120</i> <i>J125</i> <i>/135</i> <i>/135</i> <i>/140</i> wn shoule roximately ficult to ac	Temp °C 11.27 11.28 11.40 11.65 11.67 11.70 11.70 11.70 11.70	(ms/cm ^c) 3, 754 3, 727 3, 700 3, 676 3, 676 4, 777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 7777 4, 77777 4, 77777 4, 7777777777	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 sampling. Minim	5.35 0.34 0.30 0.58 0.48 0.43 0.30 5 fab	6.37 6.48 6.48 6.48 6.49 6.51 6.49 0:1; z.e. hall be ac	(mV) -76.9 -96.1 -96.1 -92.9 -104.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear dmeasure	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
Flow Rate (ml/min) 5 140 140 140 140 140 140 140 140 140 140	Time <i>J1/0</i> 1115 <i>J120</i> <i>J125</i> <i>//36</i> <i>//35</i> <i>//35</i> <i>//36</i> <i>//35</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>/</i>	Temp °C 11.29 11.28 11.40 11.40 11.69 11.90 11.65 11.6	(ms/cm ^c) 3, 754 3, 727 3, 700 3, 676 3, 676 3, 647 3, 647 3, 647 9, 647 9, 647 9, 647 1, 647 3, 647 1, 647 1, 647 1, 647 1, 647 1, 647 1, 700 3, 647 1, 700 1, 70	$(\mu S/cm)$ 2769 2747 2739 2775 2760 2667 2667 2667 a a a a a a a a	5.35 0.34 0.30 0.58 0.48 0.43 0.30 5 fab	6.37 6.48 6.48 6.48 6.49 6.51 6.49 0:1; z.e. hall be ac	(mV) -76.9 -96.1 -96.1 -92.9 -104.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear dmeasure	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
Flow Rate (ml/min) 5 140 140 140 140 140 140 140 140 140 140	Time <i>J1/0</i> 1115 <i>J120</i> <i>J125</i> <i>//36</i> <i>//35</i> <i>//35</i> <i>//36</i> <i>//35</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>//40</i> <i>/</i>	Temp °C 11.29 11.28 11.40 11.69 11.69 11.90 11.90 11.97 11.97 11.97 11.97 11.97 11.97 11.90 11.77 11.90 11.77 11.90 11.75 11.90 11.75 11.69 11.70 11.75 11.69 11.70 11.70 11.75 11.69 11.70 11.70 11.70 11.75 11.7	(mS/cm ^c) 3.754 3.727 3.727 3.676 3.676 3.676 3.676 3.676 3.676 3.674 Parav Parav Parav Bottle Type	(µS/cm) 2769 2747 2739 2739 2775 276 2667 2667 sampling. Minim continually measured	5.35 0.34 0.30 0.58 0.40 0.43 0.38 5 fa.b Melsa al drawdown suring water le	6.37 6.48 6.48 6.49 6.51 6.49 1.2e shall be action the	(mV) -76.9 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear clear clear dmeasur ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
(ml/min) 5 140 140 140 140 140 140 140 140	Time <i>J1/0</i> 1115 <i>J120</i> <i>J125</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>/</i>	Temp °C 11.29 11.28 11.40 11.40 11.69 11.69 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 11.69 11.90	(ms/cm ^c) 3,754 3,722 3,700 3,676 3,676 3,677 3,676 3,677 3,676 3,676 3,677 3,676 4 6 6 7,676 3,676 4 6 7,676 4 6 7,676 4 7,677 4 7,777 4 7,777 4 7,777 4 7,7777 7,7777 7,7777 7,7777 7,7777 7,77777 7,777777	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 continually mean (preservative) (HCI)	5.35 0.34 0.30 0.58 0.40 0.43 0.38 5 fa.b Melsa al drawdown suring water le	6.37 6.48 6.48 6.49 6.51 6.49 1.2e shall be action the	(mV) -76.9 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear clear clear dmeasur ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
A Flow Rate (ml/min) J 40 J 40 J 40 J 40 J 40 J 40 J 40 J 40	Time 11/0 1115 1120 1125 1125 1135 1140 wn shoule roximately ficult to ac # of Col	Temp °C 11.27 11.28 11.48 11.48 11.69 11.69 11.90 11.90 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.69	(ms/cm ^c) 3.754 3.722 3.700 3.676 3.676 3.677 3.676 3.677 9.676 3.676 3.677 9.676 3.677 9.676 3.676 3.676 3.676 3.677 9.676 3.676 3.677 9.676 3.676 3.676 9.767 9.777 9.7777 9.7777 9.777 9.7777 9.777 9.777 9.777 9.777 9	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 continually mean (preservative) (HCI) CHCI)	5.35 0.34 0.30 0.58 0.40 0.43 0.38 5 fa.b Melsa al drawdown suring water le	6.37 6.48 6.48 6.49 6.51 6.49 1.2e shall be action the	(mV) -76.9 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear clear clear dmeasur ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
S Flow Rate (ml/min) 5 140 140 140 140 140 140 140 140 140 140	Time <i>J1/0</i> 1115 <i>J120</i> <i>J125</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>I135</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//36</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>//46</i> <i>/</i>	Temp °C 11.27 11.28 11.48 11.48 11.69 11.69 11.90 11.90 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.69	(ms/cm ^c) 3.754 3.722 3.700 3.676 3.676 3.677 3.676 3.677 9.676 3.676 3.677 9.676 3.677 9.676 3.676 3.676 3.676 3.677 9.676 3.676 3.677 9.676 3.676 3.676 9.767 9.777 9.7777 9.7777 9.777 9.7777 9.777 9.777 9.777 9.777 9	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 continually mean (preservative) (HCI)	5.35 0.34 0.30 0.58 0.40 0.43 0.38 5 fab	6.37 6.48 6.48 6.49 6.51 6.49 1.2e shall be action the	(mV) -76.9 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear clear clear dmeasur ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
S Flow Rate (ml/min) 5 140 140 140 140 140 140 140 140 140 140	Time 11/0 1115 1120 1125 1125 1135 1140 wn shoule roximately ficult to ac # of Col	Temp °C 11.27 11.28 11.48 11.48 11.69 11.69 11.90 11.90 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.69	(ms/cm ^c) 3.754 3.722 3.700 3.676 3.676 3.677 3.676 3.677 9.676 3.676 3.677 9.676 3.677 9.676 3.676 3.676 3.676 3.677 9.676 3.676 3.677 9.676 3.676 3.676 9.767 9.777 9.7777 9.7777 9.777 9.7777 9.777 9.777 9.777 9.777 9	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 continually mean (preservative) (HCI) CHCI)	5.35 0.34 0.30 0.59 0.43 0.39 $54ab$ $Melso$ al drawdown suring water lo $Comments:$ $Well v$ $3y wel$	6.37 6.48 6.48 6.49 6.51 6.49 0.11 ze shall be ac evels in the	(mV) -769 -96.1 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear q/2 ad measur ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.79 2.79	
S Flow Rate (ml/min) 5 140 140 140 140 140 140 140 140 140 140	Time 11/0 1115 1120 1125 1125 1135 1140 wn shoule roximately ficult to ac # of Col	Temp °C 11.27 11.28 11.48 11.48 11.69 11.69 11.90 11.90 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.69	(ms/cm ^c) 3.754 3.722 3.700 3.676 3.676 3.677 3.676 3.677 9.676 3.676 3.677 9.676 3.677 9.676 3.676 3.676 3.676 3.677 9.676 3.676 3.677 9.676 3.676 3.676 9.767 9.777 9.7777 9.7777 9.777 9.7777 9.777 9.777 9.777 9.777 9	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 continually mean (preservative) (HCI) CHCI)	5.35 0.34 0.30 0.59 0.43 0.39 $54ab$ $Melso$ al drawdown suring water lo $Comments:$ $Well v$ $3y wel$	6.37 6.48 6.48 6.49 6.51 6.49 1.2e shall be action the	(mV) -769 -96.1 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear clear clear dmeasure ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.41 7.75 7.79	
A Flow Rate (ml/min) J 40 J 40 J 40 J 40 J 40 J 40 J 40 J 40	Time 11/0 1115 1120 1125 1125 1135 1140 wn shoule roximately ficult to ac # of Col	Temp °C 11.27 11.28 11.48 11.48 11.69 11.69 11.90 11.90 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.69	(ms/cm ^c) 3.754 3.722 3.700 3.676 3.676 3.677 3.676 3.677 9.676 3.676 3.677 9.676 3.677 9.676 3.676 3.676 3.676 3.677 9.676 3.676 3.677 9.676 3.676 3.676 9.767 9.777 9.7777 9.7777 9.777 9.7777 9.777 9.777 9.777 9.777 9	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 2667 cfcc5 chc1) chc1) chc1) chc1)	5.35 0.34 0.30 0.59 0.43 0.39 $54ab$ $Melso$ al drawdown suring water lo $Comments:$ $Well v$ $3y wel$	6.37 6.48 6.48 6.49 6.51 6.49 0.11 ze shall be ac evels in the	(mV) -769 -96.1 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear q/2 ad measur ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.79 2.79 2.79	
A Flow Rate (ml/min) J 40 J 40 J 40 J 40 J 40 J 40 J 40 J 40	Time 11/0 1115 1120 1125 1125 1135 1140 wn shoule roximately ficult to ac # of Col	Temp °C 11.27 11.28 11.48 11.48 11.69 11.69 11.90 11.90 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.70 11.69	(ms/cm ^c) 3.754 3.722 3.700 3.676 3.676 3.677 3.676 3.677 9.676 3.676 3.677 9.676 3.677 9.676 3.676 3.676 3.676 3.677 9.676 3.676 3.677 9.676 3.676 3.676 9.767 9.777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.7777 9.77777 9.7777 9.7777 9.7777 9.7777	(µS/cm) 2769 2747 2739 2739 2775 2700 2667 2667 continually mean (preservative) (HCI) CHCI)	5.35 0.34 0.30 0.59 0.43 0.39 $54ab$ $Melso$ al drawdown suring water lo $Comments:$ $Well v$ $3y wel$	6.37 6.48 6.48 6.49 6.51 6.49 0.11 ze shall be ac evels in the	(mV) -769 -96.1 -96.1 -92.9 -104.4 -110.4 -110.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4 -100.4	clear clear clear clear clear clear clear q/2 ad measur ote that sit	none none none none none none none	(ft BTOC) 6.82 7.14 7.26 7.50 7.61 7.75 7.79 2.79	

		Low-Flo	ow Groundw	ater Samplin	g with Min	imal Dr	awdow	n Work	sheet		
	-						Well ID:	HC-2			
Project # :	047	6038					Date:	9	24/1	7	
Project Name:	Mat			· · · · · · · · · · · · · · · · · · ·		St	art Time:	09	65	X	
Site:	Pipy	00.				E	nd Time:	104			
Field Team:	N/	Grone	A. Sur	ratt					1		
Sample ID:	17 11	A- HC	3-1009	Time:	1035	primary	dup	split	ms/msd		
Sample ID:	17-11	AF FIC.	5 100 1	Time:	1002	primary	dup	split	ms/msd		
Sample iD.											
Weather Conditi	ons:	_ Clou	dy 50°	F Now.	nd						
Depth to Top of	Product (ft BTOC):		- No pr	oduct	Depth to	And the second second second			7.08	
Depth to Oil/Wa	ter Interf	ace* (ft BTC	oc): 🦷 🖓	2.68		Total Dep				13.27	
* Note: Same as de	epth to wa	iter				Final Dept	th (ft BTO	C):		7.44	
Criteria for S	table P	aramete	ers		- 1.1 1.1 F					1.1.1.1.1.1	
Parameter			Working Range		Stability Crit	eria	Notes				
Temperature					± 0.5 °C						
pH			0-14		± 0.1						
Conductivity			0-99999 µS/cm		± 5%						
ORP			± 1999 mV								
Dissolved Oxyge	1		0-19.99 mg/L		± 10%						
			0-19.99 mg/L		= 1070				-		_
Turbidity			0-000 1010								
Sensory Obs	ervatio			n, Grey, Milky W							
Instrument (Observ	ations		1		_					
Flow Rate (ml/min)	Time	Temp °C	Spec. Cond. (mS/cm ^c)	Conductivity (μS/cm)	DO (mg/L)	рН	ORP (mV)	Color	Odor	Water Level (ft BTOC)	Dra dov
	1005	9.15	6.082	4234	7.41	5.83	-35,9	clear	none	17.70	
0.2 150	1010	9:16	6,055	4275	6.64	6,21	-62.5	clear	none	731	
	1015	9.48	6.075	42.75	0.89	6.30	-64.5	clear	none	7.38	
0.6 50		9.66	6.043	4293	0.87	6.33	-60.4	clear	none	7.42	-
28	1020			the second s	0.81	6.38	-74.2			17.44	
1,0		9.78	5.404		0.01		179.0	clear	none	17.99	
1.2 -	1030		Para	meters	Stap	lized	1-	-			>
							-		-		
1.4										L	
1.6					1.1.1.1	-	-		-		
1.6					Melan	ASC	me				
1.6					Melm	ASCA	me				
1.4 1.6 1.8 7.0 2.7					Melm	100	me				
1.6 1.8 7.0 2.7											
1,6 1,8 7,0 2,2 2.4 Notes: Drawdov	vn should	be less that	an 0.3 feet while	sampling. Minim	al drawdown	shall be ac	hieved an	d measur	ed by pun	nping at	
1, 6 1, 8 7, 0 2, 2 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4	oximately	0.1 to 0.5	liter/minute) and	sampling. Minim continually meas	al drawdown	shall be ac	hieved an	d measur ote that si	ed by pun te's hyrog	nping at eology	
1,6 1,8 7,0 7,7 7,4 7,4 7,4 7,4 7,4 7,4 7,7 7,4 7,7 7,7	oximately icult to a	/ 0.1 to 0.5 chieve this :	liter/minute) and	sampling. Minim continually meas	al drawdown	shall be ac	hieved an	d measur ote that si	ed by pun te's hyrog	nping at eology	
1, 6 1, 8 7, 0 2, 2 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4	oximately icult to a	0.1 to 0.5	liter/minute) and specification.	continually meas	al drawdown	shall be ac	hieved an	d measur ote that si	ed by pun te's hyrog	nping at eology	
1,6 1,8 7,0 2,2 2,4 Notes: Drawdov	oximately icult to a # of Co	70.1 to 0.5 chieve this s Bottles llected	liter/minute) and specification. Bottle Type	continually meas (preservative)	al drawdown suring water l	shall be ac evels in the	hieved an e well. No	ote that si	te's hyrog	eology	
1,6 1,8 7,0 2,7 2,7 2,4 Notes: Drawdov a low rate (appro may make it diff Analyses	oximately icult to a # of	70.1 to 0.5 chieve this s Bottles llected	liter/minute) and specification.	continually meas (preservative)	al drawdown suring water l	shall be ac evels in the	hieved an e well. No	ote that si	te's hyrog	eology	
1,6 1,8 7,0 2,7 2,4 Notes: Drawdov a low rate (appro may make it diff Analyses	oximately icult to a # of Co	y 0.1 to 0.5 chieve this s f Bottles llected	liter/minute) and specification. Bottle Type	(preservative)	Comments:	shall be ac evels in the	hieved an e well. No	ote that si	te's hyrog	eology	
1.6 1.8 2.0 z.2 Notes: Drawdov a low rate (appro may make it diff Analyses	icult to a # of Co	y 0.1 to 0.5 chieve this s f Bottles llected	liter/minute) and specification. Bottle Type	(preservative)	Comments:	shall be ac evels in the 6.71	hieved an e well. No We e =], 00	ater co	olumh :	eology = 6,19'	
1,6 1,8 7,0 2,7 2,7 2,4 Notes: Drawdov a low rate (appro may make it diff Analyses	icult to a # of Co	v 0.1 to 0.5 chieve this s f Bottles llected	liter/minute) and specification. Bottle Type	(preservative)	Comments:	shall be ac evels in the 6.71	hieved an e well. No We e =], 00	ater co	olumh :	eology = 6,19'	
1.6 1.8 2.0 z.2 Notes: Drawdov a low rate (appro may make it diff Analyses	icult to a # of Co	v 0.1 to 0.5 chieve this s f Bottles llected	liter/minute) and specification. Bottle Type	(preservative)	Comments:	shall be ac evels in the 6.71	hieved an e well. No We e =], 00	ater co	olumh :	eology = 6,19'	
1.6 1.8 2.0 z.2 Notes: Drawdov a low rate (appro may make it diff Analyses	oximately icult to a # of Co	y 0.1 to 0.5 chieve this s f Bottles llected	liter/minute) and specification. Bottle Type Home VC Home VC 250 mL	(preservative)	Comments:	shall be ac evels in the 6.71	hieved an e well. No e =], 00 3,003 - 104-	ater a ol gal gal 4006	olumh =	= 6,19, = 6,79,	
1,6 1,8 2,0 z,2 Notes: Drawdov a low rate (appro may make it diff Analyses	icult to an # of Co 3 3 3 3 3 3 3 4 3 4 3 4 5 4 5 4 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7	V 0.1 to 0.5 chieve this s Bottles llected	liter/minute) and specification. Bottle Type 40 ML VC 40 ML VC	(preservative)	Comments:	shall be ac evels in the 6.71	hieved an e well. No We e =], 00	ater ca ol gal gal 4006	olumh :	eology = 6,19' 2 F-Z 17	

Project # : Project Name: Site: Field Team: Sample ID: Sample ID: Weather Cond Depth to Top o Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter	17-HU tions:	oc 38 Son of An Walt/ A-Hace	inovage p. coore	ater Samplin			Well ID: Date:	416-1	e		
Project Name: Site: Field Team: Sample ID: Sample ID: Weather Cond Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter	17-HU tions:	d th watt/ a-Hice	p. cnone	Timor			Date:				
Project Name: Site: Field Team: Sample ID: Sample ID: Weather Cond Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter	17-HU tions:	d th watt/ a-Hice	p. cnone	Timot					111		
Field Team: Sample ID: Sample ID: Weather Cond Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter	tions:	Matt/ A-Hice	p. cnone	Time		St	art Time:	123			
Sample ID: Sample ID: Weather Cond Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter	tions:	Matt/ A-Hice	p. cnone	Timo		I	nd Time:				
Sample ID: Weather Cond Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter	tions:		- 1010	Timot		0	2	10.12.01	12 1 60		
Weather Cond Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter	tions:			Time.	1315	(primary	dup	split	ms/msd		
Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter		450F		Time:		primary	dup	split	ms/msd		
Depth to Top o Depth to Oil/W * Note: Same as Criteria for Parameter		4507	1 - 20								
Depth to Oil/W * Note: Same as Criteria for Parameter	f Product (f		overcast	Smph w	inas						
Depth to Oil/W * Note: Same as Criteria for Parameter		t BTOC):	N	STA	_	Depth to	Water (ft	BTOC):		9.63	
* Note: Same as Criteria for Parameter	ater Interfa	and the second		1A-	2	and the second s	th (ft BTO			12:12	
Criteria for Parameter		and the second sec		p-3			th (ft BTO			aut	
Parameter						tiner e sp					
	Stable P	aramete			Ctability Calt	orla	Notes				
	_		Working Range >0.00 °C	No. of the second se	Stability Crit ± 0.5 °C	eria	Notes			_	
Temperature			0.00 C		±0.5 C						
pH			the set of		± 0.1 ± 5%			_			
Conductivity			0-99999 µS/cm		± 5%						
ORP Discolution			± 1999 mV 0-19.99 mg/L		± 10%	÷		_			
Dissolved Oxyg Turbidity	en		0-19.99 mg/L		10%		10 C				
the second s	comunition		0-800 1410								
Sensory Ob	servatio										
Color:	100 million (* 1967)			n, Grey, Milky W		Sec. 1.	2000				
Odor:	/			i, Very Strong, H		Chemical	7, Unknov	wn			
Turbidity:	F	None, Low	v, Medium, High	n, Very Turbid, H	leavy Silts						
	(/									
Instrument	Observa	tions					-				
Flow Rate	1	Temp	Spec. Cond.	Conductivity	17.4.7	1111	ORP	1.1		Water Level	Draw-
(ml/min)	Time	°C	(mS/cm ^c)	(µS/cm)	DO (mg/L)	рН	(mV)	Color	Odor	(ft BTOC)	down
150	1252	10.107	2.008	1608	2.41	10.80	-51.7	ovance	fuel	9.67	
150	1257	10.47	2.310	1675	0.33	6.50	-109.9	clear	1001	9.67	
			2.482			6.80	-78.8	il	- 11	a.107	
	1307	10.42	2.585	1792	0.24	6.86	-82.1	11	11	9.6E	
V	1312	10.50	2.635	1906	0.37	6.80	-83.8	47	11	9.67	1
	TOIL	10.50	2.020	1100	0.01	0.00	02.0			. [
	-			11MS				-	_		
	17			Sapilit	d	-					
	1		fur.	Storeline	100	att					
	-	_			BIM	17/17					
	-				1 91	FILL	-				
-	1	-							-		
Notes: Drawdo	wn should	be less tha	n 0.3 feet while s	sampling. Minima	al drawdown s	shall be ac	hieved an	d measure	d by pur	nping at	
IL CALLED AND THE REAL OF STREET				continually meas							
may make it di				continuant, meas	anng mater is		- 17-111 11-5		e e trift e B		
ind indice is an	and the second se	Bottles	Pedilication		1						
Analyses		ected	Bottle Type	(preservative)	Comments:						
CIND	2		HOMLVOA	CHED	conceptions of the part of the part of	UNINA.	100-1	aaaa	1		
RITER	1		JONLVA	CHED	FLOW	VOLUVV	100-1		-		
DRO	1	2	250m av	nour (HTI)	HOW	Vat -	0.20	Jaips	min		
			P	× 4 6	C C C						
	_				pholo H	-INL-	ilma	naim	alon I	5-7	
					1 (1.0 10 1	104-	4001	Carr	ever	1	
	Ale	i.C.	10 + 14				3 . A .	01.0	117		
	CA IA	AAA	VIV ATT						11		
Signed:	200	UNID U	Watt -				Date:	9/27	<u>//</u> +		

		Low-Fl	ow Groundw	ater Samplin	g with Mir	nimal Di	awdow	n Worl	sheet		
Project # :		and					Well ID:	-			
Project # : Project Name:	-042	0038		-		S	Date: tart Time:		7/17	- 20 - C	
Site:	_pia	1501		-			End Time:	- 10 10			
Field Team:	- 0/	Cron	e A.	Surraft		~	ind mine.		FU		
to the second	in A-LAL		1-HLA-MWSPIS		1300	primary	dup	split	(ms/msd)	
Sample ID:	17-H	A- HCZ	INT MUSPS	Time:	1305	primary	dup	split	ms/msd		
					1305	- primary	dup	spire	1113/11130		
Weather Condit	tions:	Most	y cloudy	53°F							_
Depth to Top of	Product (ft BTOC):	/	lo product	7/	Depth to	Water (ft	BTOC):		6.43	A
Depth to Oil/Wa	ater Interf	ace* (ft BT	DC):	6.43		Total Dep	oth (ft BTC	DC):		10.01	
* Note: Same as d	lepth to wa	ater	(A)		D	Final Dep	th (ft BTC):		6.44	
Criteria for S	Stable P	aramete	ers		1.1.17					,	
Parameter			Working Range		Stability Crit	teria	Notes				
Temperature			>0.00 °C		± 0.5 °C				_		
pH			0-14		± 0.1						_
Conductivity	-		0-99999 µS/cm		± 5%						
ORP			± 1999 mV				-				
Dissolved Oxyge	n		0-19.99 mg/L		± 10%				_		
Turbidity			0-800 NTU				1				_
Sensory Obs	ervatio	nc	It for the c								
Color:	scivatio		har Tab Brow	n, Grey, Milky W	hito Othor		1000				
Odor:				h, Very Strong, H		Chamica	2 Unkno				
Turbidity:	<	Constant of the second s		h, Very Strong, F		Chemica	r, unkno	WII			
rurbiaity:		None, Lov	v, dviedium, Prig	n, very furbia, r	reavy sitts						
Instrument	Oheen	ations									
instrument	Ubserva			1	1	-	1		1		
Flow Rate		Temp	Spec. Cond.	Conductivity	1		ORP			Water Level	Draw-
(ml/min)	Time	°C	(mS/cm ^c)	(µS/cm)	DO (mg/L)	pH	(mV)	Color	Odor	(ft BTOC)	down
150	1245		3,084	2286	0.3/	6.86	-104.9	1	none	6.44	uowii
150	1250	11.61	3.012	2241	0.17	6.90	-107.0	tan	none	1 1 1 1	
150	1255	11.62	2.960	2202	0.17	6.92	-113.4	Tan	none	6.44	
150	100	11160	2.960	Parame			-112.1	Clear	none	6197	
	-			Parame	ers st	abili	rea				
							-				
	-			-	Mal	1. 1	NO	roue			
	-				nel	20/1	2	10 m	-		
		11			V	2.7/1	1	-			
		-									
	<			4.50							-
Notes: Drawdov	wn should	be less tha	n 0.3 feet while	sampling. Minim	al drawdown	shall be ac	hieved an	d measur	ed by pum	ping at	
and the second in the second second second				continually meas						A CALLER AND A CALL OF A C	
may make it diff											
		Bottles			1						
Analyses	Col	lected	Bottle Type	(preservative)	Comments:						
DEO	4	1		amour CHC		volume	05	2 00	1	2-115	hick
GIRD	17	1	HOMLIC		Well 3x wel	11 lun		T you	1	RP,MS	MSD
BITEN	12		HOMEN		sx we	Voivn	re l'	+4 og	1		
PAH	8	1	Lanto								
			1000		Dioto	04-40	10 F:	2.			
					P 10-	2020.00	<u> </u>	~ >			
	11	1	1, 1	2 - 1	N			Or/-	17/19	7	
Signed:	10	In	W. C	rou			Date:	_1/4	54/17	Ø	
Signad / rautauro	· · · ·	1500	10 mitt				Data	912	7/17	-	
Signed/reviewer	: AN	MS	Wait				Date:	110	1111		

1		Low-Flo	ow Groundw	ater Sampling	g with Min	imal Dr	awdow	n Work	sheet		
					and the second second	1.1.1	Well ID:	MW-	9		
Project # :	AUZ	.0038					Date:				
Project Name:	Gat	Son				St	art Time:	PILIS			
Site:		Ancho	Varie.			E	nd Time:	1212	-		
Field Team:	A.S.	Matt-1	N. Wone			-					
Sample ID:			91-1014	Time:	1150	(primary	dup	split	ms/msd		
Sample ID:		A IN		Time:		primary	dup	split	ms/msd		
Weather Condit	ions:	45°F	overcast	Emph u	inds						_
Depth to Top of	Product (f	ft BTOC):	N	IA		Depth to	Water (ft	BTOC): WAK	W1:1-25	5.59	
Depth to Oil/Wa	ter Interfa	ace* (ft BTC	c): N	IA		Total Dep	th (ft BTC	C): Wall	report	10.87	
* Note: Same as d	epth to wa	ter	S			Final Dep	th (ft BTO	C):		585	
Criteria for S			rs		and a construction of		a da ser				
Parameter			Working Range		Stability Crit	eria	Notes				
Temperature			>0.00 °C		± 0,5 °C						
pH			0-14		±0.1						
Conductivity			0-99999 µS/cm		± 5%						
ORP	_		± 1999 mV				1				
Dissolved Oxyge	n		0-19.99 mg/L		± 10%						
Turbidity			0-800 NTU	-							
Sensory Obs	onuatio										
the second se	ervatio			C	Lite Others		_		-		
Color:	/			n, Grey, Milky W			5 16.6.	10			
Odor:	(n, Very Strong, H		Chemical	r, Unkno	wn			
Turbidity:	1	None, Low	, Medium, High	n, Very Turbid, H	leavy Silts						
Instrument	Ohserva	tions			_		-	_	_		
motionene							12				×
Flow Rate	1.1	Temp	Spec. Cond.	Conductivity	177. H T.		ORP	1.3.77	1.2.1	Water Level	Draw-
(ml/min)	Time	°C	(mS/cm ^c)	(µS/cm)	DO (mg/L)	pH	(mV)	Color	Odor	(ft BTOC)	down
anit 12 150	1125	12.24	1.8110	1373	0.71	6.26	-31.2	CICITON	none	5.90	1. Sec. 1.
ditta	1130	12.21	2.017	1925	0.46	10.32	-20.8		11	5.86	
	1125	12.13	2.177	1642	0.44	6.37	-41.2	clear	11	5.83	
	1140	12.18	2.150	11022	0.41	10.38		11	11	5.85	
1 V	145	12.20	2-122	1004	0.39	6.39	-37.3	4	11	5.85	
· ·	1112	10.00	1100	1004	0.01	0 21	015			/	
				TIM							
			all	stabilize	21						
			Pro	Starphice	10.000	att					· · · · · · · · · · ·
					Asin	9/27					
		-			1	1/21					
	-										
Notes: Drawdou	vn should	he less tha	n 0.3 feet while	sampling. Minima	l drawdown	shall be ac	hieved an	d measure	ed by pum	ping at	
				continually meas							
may make it diff				continually meas	uning water it	are of the term		vie that on	e e trifie Be		
may make it uni		Bottles	pecification		1						
Analyses		lected	Bottle Type	(preservative)	Comments:						
(JILO	2	lected	46 MLWA	(HCI)		Autono	0= m	2 -1	211641	5	
	3		40 MLVDA	the second second	BION VI	UCIONIE	5 0.0	st ge	cho.	,	
BTEX DEO	2		260MLaw		TION VI	uc = 1	1.290	1/51	nin		
VIEV.	-		and to bar	morenel)			U				
	-				photo#	- 104-6	FOOL	camer	a F-2		
					1.000				-		
1.75.9		1 / -	11				(1) () ()	0122	112		
Signed:	AN	MSI	n V.C		2		Date:	9127			
Second Second		Mala	11 1				10.0	010	3/1F	7	
Signed/reviewer	: /	1 UN	nri	none			Date:	1.1			_

- Page Intentionally Left Blank -

APPENDIX B

Laboratory Analytical Reports

- Page Intentionally Left Blank -

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-71716-1

Client Project/Site: Alaska Horizon Revision: 1

For:

ERM Alaska, Inc. 825 W 8th Ave, Suite 200 Anchorage, Alaska 99501-4427

Attn: Stephen Witzmann

Authorized for release by: 10/19/2017 2:51:42 PM

Kayse Zalmai, Project Manager I (253)922-2310 kayse.zalmai@testamericainc.com

Review your project results through Total Access

LINKS

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	17
Chronicle	25
Certification Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

TestAmerica Job ID: 580-71716-1

Job ID: 580-71716-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-71716-1

Receipt

The samples were received on 9/29/2017 12:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.3° C and 3.0° C.

Receipt Exceptions

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): 17-HLA-HC3-1009 (580-71716-2). The container labels list 17-HLA-MW8-1011 while the COC lists 17-HLA-MW8-1012.

The reference method requires samples to be preserved to a pH of 2 or below. The following samples was received with insufficient preservation at a pH of 7: 17-HLA-HC3-1009 (580-71716-2). The samples was preserved to the appropriate pH in the laboratory using HCI lot# 55320.

GC/MS VOA

Method(s) 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 580-258051 recovered outside control limits for the following analytes: Acetone, Carbon tetrachloride and Methyl tert-butyl ether. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 580-258051 recovered above the upper control limit for Carbon tetrachloride and Acetone. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: 17-HLA-HC1-1008 (580-71716-1), 17-HLA-HC3-1009 (580-71716-2), 17-HLA-HC6-1010 (580-71716-3), 17-HLA-MW8-1012 (580-71716-4), 17-HLA-HCZ-1013 (580-71716-5), 17-HLA-MW8MSD-1011 (580-71716-6), 17-HLA-TB-1000 (580-71716-7), 17-HLA-MW9-1014 (580-71716-8) and (CCVIS 580-258051/3).

Method(s) 8260C: The minimum response factor (RF) criteria for the continuing calibration verification (CCV) analyzed in batch 580-258051 was outside criteria for the following analyte(s): Chloroethane. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered estimated.

Method(s) 8260C: The following samples was diluted to bring the concentration of target analytes within the calibration range: 17-HLA-HC1-1008 (580-71716-1), 17-HLA-MW8-1012 (580-71716-4), 17-HLA-HCZ-1013 (580-71716-5) and 17-HLA-MW8MSD-1011 (580-71716-6). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to client request. Original run was logged in for everything except benzene. This sample was the only one that required a dilution. : 17-HLA-MW9-1014 (580-71716-8).

Method(s) AK101: The surrogate recovery for the blank associated with analytical batch 580-258157 was outside the upper control limits.

Method(s) AK101: The following samples was analyzed at reduced volume due to high concentrations of target analytes: 17-HLA-MW8-1012 (580-71716-4), 17-HLA-HCZ-1013 (580-71716-5) and 17-HLA-MW8MSD-1011 (580-71716-6). The calculation was done using an initial volume adjustment rather than a dilution factor. The reporting limits have been elevated by the appropriate factor.

Method(s) AK101: Surrogate recovery for the following samples was outside the upper control limit: (MB 580-258157/6) and (580-71780-C-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method(s) AK101: Surrogate recovery for the following samples was outside control limits: 17-HLA-MW8-1012 (580-71716-4), 17-HLA-HCZ-1013 (580-71716-5), 17-HLA-MW8MSD-1011 (580-71716-6), 17-HLA-MW9-1014 (580-71716-8), (580-71780-E-1 MS) and (580-71780-D-1 MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Job ID: 580-71716-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Method(s) 8270D SIM: The method blank for preparation batch 580-258025 and analytical batch 580-258069 contained Benzo(a)anthracene, Fluoranthene and Phenanthrene above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples was not warranted.

Method(s) 8270D SIM: The following samples was diluted to bring the concentration of target analytes within the calibration range: 17-HLA-MW8-1012 (580-71716-4), 17-HLA-HCZ-1013 (580-71716-5) and 17-HLA-MW8MSD-1011 (580-71716-6). Elevated reporting limits (RLs) are provided.

Method(s) 8270D SIM: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following samples: 17-HLA-MW8-1012 (580-71716-4), 17-HLA-HCZ-1013 (580-71716-5) and 17-HLA-MW8MSD-1011 (580-71716-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) AK102 & 103: The method blank for preparation batch 580-258457 and analytical batch 580-258559 contained DRO (nC10-<nC25) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: A deviation from the Standard Operating Procedure (SOP) occurred. Details are as follows: samples received preserved in HCl. Did not add acid in separatory funnel as directed by SOP.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

Qualifiers

GC/MS VOA

A	Δ
Qualifier Description	
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Sample was prepped or analyzed beyond the specified holding time	5
ni VOA	
Qualifier Description	
Compound was found in the blank and sample.	7
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
	8
Qualifier Description	
Surrogate is outside control limits	9
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
OA	
Qualifier Description	
Compound was found in the blank and sample.	11
	Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Sample was prepped or analyzed beyond the specified holding time ni VOA Qualifier Description Compound was found in the blank and sample. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Qualifier Description Surrogate is outside control limits Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. OA Qualifier Description Surrogate is outside control limits Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. OA Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

J

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: ERM Alaska, Inc. Project/Site: Alaska Horizon

o-Xylene

10/04/17 17:51

5
8
9

1

Client Sample ID: 17-HLA					L	ab Sampl	e ID: 580-71	1716-1 : Water	
Date Collected: 09/27/17 11:45 Date Received: 09/29/17 12:30							Watrix	. water	
Method: 8260C - Volatile Orga Analyte	anic Compounds by GC/ Result Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Ethylbenzene	94	3.0	0.21	ug/L		•	10/04/17 17:51	1	

0.15 ug/L

Toluene	ND	2.0	0.24 ug/L		10/04/17 17:51	1	
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac	_
1,2-Dichloroethane-d4 (Surr)	100	80 - 126			10/04/17 17:51	1	
4-Bromofluorobenzene (Surr)	100	75 - 125			10/04/17 17:51	1	
Dibromofluoromethane (Surr)	105	77 - 120			10/04/17 17:51	1	
Toluene-d8 (Surr)	101	80 - 122			10/04/17 17:51	1	
Trifluorotoluene (Surr)	107	80 - 120			10/04/17 17:51	1	

2.0

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

0.87 J

Analyte	Result	Qualifier	RL	MDL	Unit	0	כ	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	93		30	7.2	ug/L				10/05/17 20:29	10
Benzene	700		20	4.2	ug/L				10/05/17 20:29	10

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	92		80 - 126			10/05/17 20:29	10	
4-Bromofluorobenzene (Surr)	103		75 - 125			10/05/17 20:29	10	
Dibromofluoromethane (Surr)	104		77 - 120			10/05/17 20:29	10	
Toluene-d8 (Surr)	90		80 - 122			10/05/17 20:29	10	
Trifluorotoluene (Surr)	116		80 - 120			10/05/17 20:29	10	

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	1.5		1.0	0.33	mg/L			10/04/17 02:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	95		75 - 120			-		10/04/17 02:08	1
4-Bromofluorobenzene (Surr)	92		68 - 119					10/04/17 02:08	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>5.1</th><th>В</th><th>0.10</th><th>0.022</th><th>mg/L</th><th></th><th>10/10/17 09:08</th><th>10/11/17 17:43</th><th>1</th></nc25)<>	5.1	В	0.10	0.022	mg/L		10/10/17 09:08	10/11/17 17:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Date Collected: 09/27/17 10:35

Date Received: 09/29/17 12:30

Client Sample ID: 17-HLA-HC3-1009

Lab Sample ID: 580-71716-2 Matrix: Water

Method: 8260C - Volatile Org		Our lift of		MD	11	-	Due ve e ve d'	Amahamad	DUE
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		3.0	0.21	ug/L			10/04/17 18:17	1
m-Xylene & p-Xylene	ND		3.0		ug/L			10/04/17 18:17	1
o-Xylene	ND		2.0	0.15	ug/L			10/04/17 18:17	1
Toluene	ND		2.0	0.24	ug/L			10/04/17 18:17	1
Benzene	2.0		2.0	0.42	ug/L			10/04/17 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 126					10/04/17 18:17	1
4-Bromofluorobenzene (Surr)	106		75 - 125					10/04/17 18:17	1
Dibromofluoromethane (Surr)	109		77 - 120					10/04/17 18:17	1
Toluene-d8 (Surr)	98		80 - 122					10/04/17 18:17	1
Trifluorotoluene (Surr)	105	Organico	80 - 120					10/04/17 18:17	1
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO)	asoline Range	e Organics Qualifier		MDL 0.33	Unit mg/L	D	Prepared	10/04/17 18:17 Analyzed 10/04/17 02:40	1 Dil Fac
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10	Asoline Range Result	Qualifier	6 (GC) <u>RL</u> 1.0			D		Analyzed 10/04/17 02:40	1
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Asoline Range Result ND %Recovery	Qualifier	6 (GC) <u>RL</u> <u>1.0</u> <u>Limits</u>			D	Prepared Prepared	Analyzed 10/04/17 02:40 Analyzed	
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	Asoline Range Result ND %Recovery 99	Qualifier	G (GC) <u>RL</u> 1.0 <u>Limits</u> 75 - 120			<u>D</u>		Analyzed 10/04/17 02:40 Analyzed 10/04/17 02:40	1
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Asoline Range Result ND %Recovery	Qualifier	6 (GC) <u>RL</u> <u>1.0</u> <u>Limits</u>			D		Analyzed 10/04/17 02:40 Analyzed	1
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	Asoline Range Result ND %Recovery 99 83	Qualifier Qualifier	G (GC) <u>RL</u> 1.0 <u>Limits</u> 75 - 120 68 - 119	0.33	mg/L		Prepared	Analyzed 10/04/17 02:40 Analyzed 10/04/17 02:40	1 Dil Fac
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	Asoline Range Result ND %Recovery 99 83 ka - Diesel Ra	Qualifier Qualifier	G (GC) <u>RL</u> 1.0 <u>Limits</u> 75 - 120 68 - 119	0.33	mg/L		Prepared	Analyzed 10/04/17 02:40 Analyzed 10/04/17 02:40	1 Dil Fac
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alas	Asoline Range Result ND %Recovery 99 83 ka - Diesel Ra	Qualifier Qualifier ange Orga Qualifier	s (GC) <u>RL</u> <u>1.0</u> <u>Limits</u> <u>75 - 120</u> 68 - 119 nics & Resid	0.33 ual Ran	mg/L ge Organ Unit	nics (C	Prepared	Analyzed 10/04/17 02:40 Analyzed 10/04/17 02:40 10/04/17 02:40	1 Dil Fac 1 1
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alast Analyte	Asoline Range Result ND %Recovery 99 83 ka - Diesel Ra Result	Qualifier Qualifier ange Orga Qualifier B	s (GC) <u>RL</u> 1.0 <u>Limits</u> 75 - 120 68 - 119 nics & Resid RL	0.33 ual Ran MDL	mg/L ge Organ Unit	nics (C	Prepared	Analyzed 10/04/17 02:40 Analyzed 10/04/17 02:40 10/04/17 02:40 Analyzed	1 Dil Fac 1 1

Date Received: 09/29/17 12:30

Lab Sample ID: 580-71716-3 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		3.0	0.21	ug/L			10/04/17 18:44	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/04/17 18:44	1
o-Xylene	ND		2.0	0.15	ug/L			10/04/17 18:44	1
Toluene	ND		2.0	0.24	ug/L			10/04/17 18:44	1
Benzene	ND		2.0	0.42	ug/L			10/04/17 18:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 126					10/04/17 18:44	1
4-Bromofluorobenzene (Surr)	102		75 - 125					10/04/17 18:44	1
Dibromofluoromethane (Surr)	105		77 - 120					10/04/17 18:44	1
Toluene-d8 (Surr)	101		80 - 122					10/04/17 18:44	1
Trifluorotoluene (Surr) Method: AK101 - Alaska - Ga		-				-	_ .	10/04/17 18:44	1
Method: AK101 - Alaska - Ga Analyte	asoline Range Result	e Organics Qualifier	s (GC) RL		Unit	D	Prepared	Analyzed	1 Dil Fac
Method: AK101 - Alaska - Ga	asoline Range	-	s (GC)		Unit mg/L	D	Prepared		7 Dil Fac
Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10	asoline Range Result	Qualifier	s (GC) RL			<u>D</u>	Prepared	Analyzed	1
Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	asoline Range Result	Qualifier	6 (GC) <u> RL</u> 1.0			<u>D</u>		Analyzed 10/04/17 03:44	1
Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO)	asoline Range Result ND %Recovery	Qualifier	G (GC) <u> RL</u> 1.0 Limits			<u>D</u>		Analyzed 10/04/17 03:44 Analyzed	1 Dil Fac 1 Dil Fac 1 1
Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	Asoline Range Result ND %Recovery 105 89	Qualifier Qualifier	Contract Contract Security	0.33	mg/L		Prepared	Analyzed 10/04/17 03:44 Analyzed 10/04/17 03:44	1
Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	asoline Range Result ND <u>%Recovery</u> 105 89 ka - Diesel Ra	Qualifier Qualifier	Contract Contract Security	0.33	mg/L		Prepared	Analyzed 10/04/17 03:44 Analyzed 10/04/17 03:44	Dil Fac
Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alas Analyte	asoline Range Result ND <u>%Recovery</u> 105 89 ka - Diesel Ra	Qualifier Qualifier ange Orga Qualifier	s (GC) <u>RL</u> 1.0 <u>Limits</u> 75 - 120 68 - 119 nics & Resid	0.33 ual Ran	mg/L ge Organ Unit	 nics (G	Prepared	Analyzed 10/04/17 03:44 Analyzed 10/04/17 03:44 10/04/17 03:44	Dil Fac
Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alas	asoline Range Result ND %Recovery 105 89 ka - Diesel Ra Result	Qualifier Qualifier ange Orga Qualifier B	(GC) <u>RL</u> <u>1.0</u> <u>Limits</u> <u>75 - 120</u> <u>68 - 119</u> nics & Resid <u>RL</u>	0.33 ual Ran MDL	mg/L ge Organ Unit	 nics (G	Prepared GC) Prepared	Analyzed 10/04/17 03:44 Analyzed 10/04/17 03:44 10/04/17 03:44 Analyzed	1

RL

2.0

Limits

80 - 126

75 - 125

77 - 120

80 - 122

80 - 120

MDL Unit

0.24 ug/L

D

Prepared

Prepared

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte

Toluene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

Client Sample ID: 17-HLA-MW8-1012 Date Collected: 09/27/17 13:00 Date Received: 09/29/17 12:30

Analyzed

10/04/17 19:09

Analyzed

10/04/17 19:09

10/04/17 19:09

10/04/17 19:09

10/04/17 19:09

10/04/17 19:09

Lab Sample ID: 580-71716-4 Matrix: Water

Water 4 Dil Fac 5

Dil Fac

1

1

1

1

1

8
9

Ме	thod:	8260C	- Volatile	Organic	Com	pound	ds by	GC/MS - DL	-
					_				

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

71

%Recovery Qualifier

97

105

105

100

108

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	1300	J	3000	210	ug/L			10/06/17 21:36	1000
m-Xylene & p-Xylene	7700		3000	720	ug/L			10/06/17 21:36	1000
o-Xylene	720	J	2000	150	ug/L			10/06/17 21:36	1000
Benzene	700		200	42	ug/L			10/05/17 20:54	100

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		80 - 126		10/05/17 20:54	100
1,2-Dichloroethane-d4 (Surr)	93		80 - 126		10/06/17 21:36	1000
4-Bromofluorobenzene (Surr)	102		75 - 125		10/05/17 20:54	100
4-Bromofluorobenzene (Surr)	102		75 - 125		10/06/17 21:36	1000
Dibromofluoromethane (Surr)	105		77 - 120		10/05/17 20:54	100
Dibromofluoromethane (Surr)	107		77 - 120		10/06/17 21:36	1000
Toluene-d8 (Surr)	90		80 - 122		10/05/17 20:54	100
Toluene-d8 (Surr)	90		80 - 122		10/06/17 21:36	1000
Trifluorotoluene (Surr)	118		80 - 120		10/05/17 20:54	100
Trifluorotoluene (Surr)	118		80 - 120		10/06/17 21:36	1000

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	24		0.020	0.0061	ug/L		10/04/17 09:31	10/04/17 23:30	1
2-Methylnaphthalene	32		0.030	0.0091	ug/L		10/04/17 09:31	10/04/17 23:30	1
Anthracene	0.033		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 23:30	1
Benzo[a]anthracene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 23:30	1
Benzo[a]pyrene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 23:30	1
Benzo[b]fluoranthene	ND		0.020	0.0081	ug/L		10/04/17 09:31	10/04/17 23:30	1
Benzo[g,h,i]perylene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 23:30	1
Benzo[k]fluoranthene	ND		0.030	0.0091	ug/L		10/04/17 09:31	10/04/17 23:30	1
Chrysene	ND		0.020	0.0061	ug/L		10/04/17 09:31	10/04/17 23:30	1
Dibenz(a,h)anthracene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 23:30	1
Fluoranthene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 23:30	1
Indeno[1,2,3-cd]pyrene	ND		0.020	0.0071	ug/L		10/04/17 09:31	10/04/17 23:30	1
Phenanthrene	0.72	В	0.020	0.0041	ug/L		10/04/17 09:31	10/04/17 23:30	1
Pyrene	ND		0.020	0.0041	ug/L		10/04/17 09:31	10/04/17 23:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	64		53 - 112				10/04/17 09:31	10/04/17 23:30	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) - DL									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.15	J	0.20	0.020	ug/L		10/04/17 09:31	10/05/17 14:46	10

Client Sample Results

Client: ERM Alaska, Inc. Project/Site: Alaska Horizon

Client Sample ID: 17-HLA-MW8-1012 Date Collected: 09/27/17 13:00 Date Received: 09/29/17 12:30

TestAmerica Job ID: 580-71716-1

Lab Sample ID: 580-71716-4 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND		0.20	0.020	ug/L		10/04/17 09:31	10/05/17 14:46	10
Fluorene	0.32		0.20	0.030	ug/L		10/04/17 09:31	10/05/17 14:46	10
Naphthalene	120		0.41	0.13	ug/L		10/04/17 09:31	10/05/17 14:46	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	69		53 - 112				10/04/17 09:31	10/05/17 14:46	10
Gasoline Range Organics (GRO)	35		10	5.5	mg/L			10/05/17 15:39	10
-C6-C10									
	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
-C6-C10 Surrogate Trifluorotoluene (Surr)	%Recovery		Limits				Prepared	Analyzed 10/05/17 15:39	
Surrogate							Prepared	-	Dil Fac
Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	127 119	X	75 - 120 68 - 119	ual Ran	ge Orga	nics ((10/05/17 15:39	Dil Fac
Surrogate Trifluorotoluene (Surr)	127 119 a - Diesel Ra	X	75 - 120 68 - 119		ge Orgai Unit	nics ((D		10/05/17 15:39	Dil Fac

Surrogate%RecoveryQualifierLimitsPreparedAnalyzedDil Faco-Terphenyl9050 - 15010/10/17 09:0810/11/17 19:111

RL

2.0

Limits

80 - 126

75 - 125

77 - 120

80 - 122

80 - 120

RL

300

3000

200

200

MDL Unit

0.24 ug/L

MDL Unit

720 ug/L

15 ug/L

42 ug/L

21 ug/L D

D

Prepared

Prepared

Prepared

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte

Toluene

Surrogate

Analyte

o-Xylene

Benzene

Trifluorotoluene (Surr)

Ethylbenzene

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

m-Xylene & p-Xylene

Client Sample ID: 17-HLA-HCZ-1013 Date Collected: 09/27/17 13:05 Date Received: 09/29/17 12:30

Method: 8260C - Volatile Organic Compounds by GC/MS

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Result Qualifier

68

%Recovery Qualifier

100

105

103

96

110

1700

1000

1500

11000

Result Qualifier

Lab Sample ID: 580-71716-5 Matrix: Water

Analyzed

10/04/17 19:35

Analyzed

10/04/17 19:35

10/04/17 19:35

10/04/17 19:35

10/04/17 19:35

10/04/17 19:35

Analyzed

10/05/17 21:19

10/06/17 22:02

10/05/17 21:19

10/05/17 21:19

10/06/17 22:02

5

Dil Fac

Dil Fac

1

1

1

1

1

Dil Fac

100

100

1000

1000	
100	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		80 - 126		10/05/17 21:19	100
1,2-Dichloroethane-d4 (Surr)	92		80 - 126		10/06/17 22:02	1000
4-Bromofluorobenzene (Surr)	104		75 - 125		10/05/17 21:19	100
4-Bromofluorobenzene (Surr)	102		75 - 125		10/06/17 22:02	1000
Dibromofluoromethane (Surr)	106		77 - 120		10/05/17 21:19	100
Dibromofluoromethane (Surr)	104		77 - 120		10/06/17 22:02	1000
Toluene-d8 (Surr)	89		80 - 122		10/05/17 21:19	100
Toluene-d8 (Surr)	90		80 - 122		10/06/17 22:02	1000
Trifluorotoluene (Surr)	118		80 - 120		10/05/17 21:19	100

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

118

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	31		0.020	0.0061	ug/L		10/04/17 09:31	10/04/17 23:52	1
Anthracene	0.037		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 23:52	1
Benzo[a]anthracene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 23:52	1
Benzo[a]pyrene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 23:52	1
Benzo[b]fluoranthene	ND		0.020	0.0081	ug/L		10/04/17 09:31	10/04/17 23:52	1
Benzo[g,h,i]perylene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 23:52	1
Benzo[k]fluoranthene	ND		0.030	0.0091	ug/L		10/04/17 09:31	10/04/17 23:52	1
Chrysene	ND		0.020	0.0061	ug/L		10/04/17 09:31	10/04/17 23:52	1
Dibenz(a,h)anthracene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 23:52	1
Fluoranthene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 23:52	1
Indeno[1,2,3-cd]pyrene	ND		0.020	0.0071	ug/L		10/04/17 09:31	10/04/17 23:52	1
Phenanthrene	0.88	В	0.020	0.0040	ug/L		10/04/17 09:31	10/04/17 23:52	1
Pyrene	ND		0.020	0.0040	ug/L		10/04/17 09:31	10/04/17 23:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	70		53 - 112				10/04/17 09:31	10/04/17 23:52	1

80 - 120

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) - DL

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	49		0.30	0.091	ug/L		10/04/17 09:31	10/05/17 15:08	10
Acenaphthene	0.15	J	0.20	0.020	ug/L		10/04/17 09:31	10/05/17 15:08	10

Client Sample Results

Client: ERM Alaska, Inc. Project/Site: Alaska Horizon

Client Sample ID: 17-HLA-HCZ-1013 Date Collected: 09/27/17 13:05 Date Received: 09/29/17 12:30

TestAmerica Job ID: 580-71716-1

Lab Sample ID: 580-71716-5 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND		0.20	0.020	ug/L		10/04/17 09:31	10/05/17 15:08	10
Fluorene	0.34		0.20	0.030	ug/L		10/04/17 09:31	10/05/17 15:08	10
Naphthalene	140		0.40	0.13	ug/L		10/04/17 09:31	10/05/17 15:08	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	73		53 - 112				10/04/17 09:31	10/05/17 15:08	10
Method: AK101 - Alaska - Gas Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	
Analyte Gasoline Range Organics (GRO)		-	· · ·		Unit mg/L	<u> </u>	Prepared	Analyzed 10/05/17 16:09	Dil Fac 10
Analyte Gasoline Range Organics (GRO) -C6-C10	Result 36	Qualifier	RL 10			<u> </u>		10/05/17 16:09	
Analyte Gasoline Range Organics (GRO)	Result 36 %Recovery	Qualifier Qualifier	RL 10			<u>D</u>	Prepared	10/05/17 16:09 Analyzed	10 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10	Result 36	Qualifier Qualifier	RL 10			D		10/05/17 16:09	10 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Result 36 %Recovery	Qualifier Qualifier X	RL 10			<u> </u>		10/05/17 16:09 Analyzed	10 Dil Fac 10
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	Result 36 %Recovery 126 121 121	Qualifier Qualifier X X	RL 10 Limits 75 - 120 68 - 119	3.3	mg/L		Prepared	10/05/17 16:09 Analyzed 10/05/17 16:09	10
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	Result 36 %Recovery 126 121 a - Diesel Ra	Qualifier Qualifier X X	RL 10 Limits 75 - 120 68 - 119	3.3 ual Ran	mg/L		Prepared	10/05/17 16:09 Analyzed 10/05/17 16:09	10 Dil Fac 10

	13 B	0.10	0.022 mg/L	10/10/11 00:00	10/11/17 10:00	
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
o-Terphenyl	85	50 - 150		10/10/17 09:08	10/11/17 19:33	1

RL

2.0

Limits

80 - 126

75 - 125

77 - 120

80 - 122

80 - 120

MDL Unit

0.24 ug/L

D

Prepared

Prepared

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte

Toluene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

Client Sample ID: 17-HLA-MW8MSD-1011 Date Collected: 09/27/17 13:00 Date Received: 09/29/17 12:30

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

68

%Recovery Qualifier

100

107

105

96

111

Lab Sample ID: 580-71716-6 Matrix: Water

Analyzed

10/04/17 20:02

Analyzed

10/04/17 20:02

10/04/17 20:02

10/04/17 20:02

10/04/17 20:02

10/04/17 20:02

5

Dil Fac

Dil Fac

1

1

1

1

1

1

8
9

Method: 8260C - Volatile Organic Compounds by GC/MS - DL Analyte **Result Qualifier** RL

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	1800	300	21	ug/L			10/05/17 21:44	100
m-Xylene & p-Xylene	10000	3000	720	ug/L			10/06/17 22:27	1000
o-Xylene	890	200	15	ug/L			10/05/17 21:44	100
Benzene	1700	200	42	ug/L			10/05/17 21:44	100

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		80 - 126		10/05/17 21:44	100
1,2-Dichloroethane-d4 (Surr)	94		80 - 126		10/06/17 22:27	1000
4-Bromofluorobenzene (Surr)	104		75 - 125		10/05/17 21:44	100
4-Bromofluorobenzene (Surr)	100		75 - 125		10/06/17 22:27	1000
Dibromofluoromethane (Surr)	105		77 - 120		10/05/17 21:44	100
Dibromofluoromethane (Surr)	105		77 - 120		10/06/17 22:27	1000
Toluene-d8 (Surr)	89		80 - 122		10/05/17 21:44	100
Toluene-d8 (Surr)	91		80 - 122		10/06/17 22:27	1000
Trifluorotoluene (Surr)	117		80 - 120		10/05/17 21:44	100
Trifluorotoluene (Surr)	119		80 - 120		10/06/17 22:27	1000

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	м́dl	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	28		0.021	0.0062	ug/L		10/04/17 09:31	10/05/17 00:14	1
2-Methylnaphthalene	38		0.031	0.0092	ug/L		10/04/17 09:31	10/05/17 00:14	1
Anthracene	0.030		0.021	0.0031	ug/L		10/04/17 09:31	10/05/17 00:14	1
Benzo[a]anthracene	ND		0.021	0.0021	ug/L		10/04/17 09:31	10/05/17 00:14	1
Benzo[a]pyrene	ND		0.021	0.0031	ug/L		10/04/17 09:31	10/05/17 00:14	1
Benzo[b]fluoranthene	ND		0.021	0.0082	ug/L		10/04/17 09:31	10/05/17 00:14	1
Benzo[g,h,i]perylene	ND		0.021	0.0031	ug/L		10/04/17 09:31	10/05/17 00:14	1
Benzo[k]fluoranthene	ND		0.031	0.0092	ug/L		10/04/17 09:31	10/05/17 00:14	1
Chrysene	ND		0.021	0.0062	ug/L		10/04/17 09:31	10/05/17 00:14	1
Dibenz(a,h)anthracene	ND		0.021	0.0021	ug/L		10/04/17 09:31	10/05/17 00:14	1
Fluoranthene	ND		0.021	0.0021	ug/L		10/04/17 09:31	10/05/17 00:14	1
Indeno[1,2,3-cd]pyrene	ND		0.021	0.0072	ug/L		10/04/17 09:31	10/05/17 00:14	1
Phenanthrene	0.84	В	0.021	0.0041	ug/L		10/04/17 09:31	10/05/17 00:14	1
Pyrene	ND		0.021	0.0041	ug/L		10/04/17 09:31	10/05/17 00:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	69		53 - 112				10/04/17 09:31	10/05/17 00:14	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) - DL										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Acenaphthene	0.24		0.21	0.021	ug/L		10/04/17 09:31	10/05/17 15:30	10

Surrogate

o-Terphenyl

Client Sample ID: 17-HLA-MW8MSD-1011 Date Collected: 09/27/17 13:00 Date Received: 09/29/17 12:30

Lab Sample ID: 580-71716-6 Matrix: Water

Prepared

10/10/17 09:08 10/11/17 19:55

Analyzed

Dil Fac

1

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	0.088	J	0.21	0.021	ug/L		10/04/17 09:31	10/05/17 15:30	10
Fluorene	0.53		0.21	0.031	ug/L		10/04/17 09:31	10/05/17 15:30	10
Naphthalene	150		0.41	0.13	ug/L		10/04/17 09:31	10/05/17 15:30	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	77		53 - 112				10/04/17 09:31	10/05/17 15:30	10
Gasoline Range Organics (GRO) -C6-C10	31	0	10	5.5	mg/L		Duran award	10/05/17 16:40	10
Surrogate	%Recovery	-	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	121	X	75 - 120					10/05/17 16:40	10
4-Bromofluorobenzene (Surr)	118		68 - 119					10/05/17 16:40	10
	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgai	nics (C	GC)		
Method: AK102 & 103 - Alask					11	D	Dranarad	A second second	DULE
Method: AK102 & 103 - Alask Analyte	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	Dil Fac

Limits

50 - 150

%Recovery Qualifier

78

RL

3.0

3.0

2.0

2.0

2.0

Limits

80 - 126

75 - 125

77 - 120

80 - 122

80 - 120

MDL Unit

0.21 ug/L

0.72 ug/L

0.15 ug/L

0.24 ug/L

0.42 ug/L

Client Sample ID: 17-HLA-TB-1000 Date Collected: 09/27/17 10:30

Date Received: 09/29/17 12:30

Analyte

o-Xylene

Toluene

Benzene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

TestAmerica Job ID: 580-71716-1

Prepared

Prepared

D

Lab Sample ID: 580-71716-7 Matrix: Water

Dil Fac Analyzed 10/04/17 17:25 1 10/04/17 17:25 1 10/04/17 17:25 1 10/04/17 17:25 1 10/04/17 17:25 1 Analyzed Dil Fac 10/04/17 17:25 1 10/04/17 17:25 1 10/04/17 17:25 1 10/04/17 17:25 1 10/04/17 17:25 1

5

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

100

104

106

97

108

%Recovery Qualifier

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Gasoline Range Organics (GRO) -C6-C10	ND		1.0	0.33	mg/L			10/03/17 22:57	1	
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
	Trifluorotoluene (Surr)	108		75 - 120			-		10/03/17 22:57	1	
	4-Bromofluorobenzene (Surr)	88		68 - 119					10/03/17 22:57	1	

RL

2.0

Limits

80 - 126

75 - 125

77 - 120

80 - 122

80 - 120

Limits

80 - 126

75 - 125

77 - 120

80 - 122

80 - 120

RL

50

MDL Unit

0.24 ug/L

MDL Unit

11 ug/L

D

D

Prepared

Prepared

Prepared

Prepared

Date Collected: 09/27/17 11:50

Date Received: 09/29/17 12:30

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte

Toluene

Surrogate

Analyte

Benzene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

Client Sample ID: 17-HLA-MW9-1014

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

4.7

%Recovery Qualifier

101

108

106

99

108

Result Qualifier

Qualifier

730 H

94

105

98

99

107

%Recovery

Lab Sample ID: 580-71716-8 Matrix: Water

Analyzed

10/04/17 20:28

Analyzed

10/04/17 20:28

10/04/17 20:28

10/04/17 20:28

10/04/17 20:28

10/04/17 20:28

5

8
9

	Dil Fac	
8	25	
	Dil Fac	
8	25	

25

Dil Fac

Dil Fac

1

1

1

1

1

Analyzed	Dil Fac
10/18/17 17:58	25
Analyzed	Dil Fac
 10/18/17 17:58	25
10/18/17 17:58	25
10/18/17 17:58	25
10/18/17 17:58	25

10/18/17 17:58

Method: 8260C	Volatile Organic	Compounds by	GC/MS - RA

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<u>19</u>	3.0	0.21 ug/L			10/05/17 18:22	1
m-Xylene & p-Xylene	47	3.0	0.72 ug/L			10/05/17 18:22	1
o-Xylene	1.2 J	2.0	0.15 ug/L			10/05/17 18:22	1

Surrogate	%Recovery G	Qualifier Limits	Prepared A	nalyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	80 - 126	10/03	5/17 18:22	1
4-Bromofluorobenzene (Surr)	102	75 - 125	10/0	5/17 18:22	1
Dibromofluoromethane (Surr)	102	77 - 120	10/05	5/17 18:22	1
Toluene-d8 (Surr)	89	80 - 122	10/0	5/17 18:22	1
Trifluorotoluene (Surr)	116	80 - 120	10/05	5/17 18:22	1

Method: AK101 - Alaska - Gasc	oline Range	Organics (GC)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	1.6		1.0	0.33 mg/L			10/05/17 17:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyz	ed Dil Fac	С
Trifluorotoluene (Surr)	127	X	75 - 120	10/05/17	7:10 1	Ī
4-Bromofluorobenzene (Surr)	106		68 - 119	10/05/17	7:10 1	1

	- Diesel Ra	ange Orgai	nics & Resid	lual Ran	ge Orga	nics (C	SC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>7.0</th><th>В</th><th>0.10</th><th>0.023</th><th>mg/L</th><th></th><th>10/10/17 09:08</th><th>10/11/17 20:18</th><th>1</th></nc25)<>	7.0	В	0.10	0.023	mg/L		10/10/17 09:08	10/11/17 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		50 - 150				10/10/17 09:08	10/11/17 20:18	1

5 6

Client Sample ID: Method Blank Prep Type: Total/NA

Lab Sample ID: MB 580-258051/5 Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

								ттер турс. т	
Analysis Batch: 258051									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		3.0	0.21	ug/L			10/04/17 12:37	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/04/17 12:37	1
o-Xylene	ND		2.0	0.15	ug/L			10/04/17 12:37	1
Toluene	ND		2.0	0.24	ug/L			10/04/17 12:37	1
Benzene	ND		2.0	0.42	ug/L			10/04/17 12:37	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepa	red	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	101		80 - 126			10/04/17 12:37	1	
4-Bromofluorobenzene (Surr)	103		75 - 125			10/04/17 12:37	1	
Dibromofluoromethane (Surr)	106		77 - 120			10/04/17 12:37	1	
Toluene-d8 (Surr)	101		80 - 122			10/04/17 12:37	1	
Trifluorotoluene (Surr)	106		80 - 120			10/04/17 12:37	1	

Lab Sample ID: LCS 580-258051/6 Matrix: Water Analysis Batch: 258051

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	10.0	10.3		ug/L		103	75 - 120	
m-Xylene & p-Xylene	10.0	10.4		ug/L		104	75 - 120	
o-Xylene	10.0	10.5		ug/L		105	74 - 120	
Toluene	10.0	10.4		ug/L		104	75 ₋ 120	
Benzene	10.0	10.4		ug/L		104	75 ₋ 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		80 - 126
4-Bromofluorobenzene (Surr)	105		75 - 125
Dibromofluoromethane (Surr)	112		77 - 120
Toluene-d8 (Surr)	98		80 - 122
Trifluorotoluene (Surr)	107		80 - 120

Lab Sample ID: LCSD 580-258051/7 Matrix: Water Analysis Batch: 258051

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	10.0	9.94		ug/L		99	75 - 120	4	14
m-Xylene & p-Xylene	10.0	9.92		ug/L		99	75 - 120	5	14
o-Xylene	10.0	9.80		ug/L		98	74 - 120	7	16
Toluene	10.0	10.4		ug/L		104	75 - 120	0	13
Benzene	10.0	10.1		ug/L		101	75 - 120	2	14

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		80 - 126
4-Bromofluorobenzene (Surr)	99		75 - 125
Dibromofluoromethane (Surr)	106		77 - 120
Toluene-d8 (Surr)	99		80 - 122

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Limits

80 - 120

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

%Recovery Qualifier

108

Analysis Batch: 258051

Analysis Batch: 258077

Matrix: Water

Trifluorotoluene (Surr)

Matrix: Water

Surrogate

Lab Sample ID: LCSD 580-258051/7

Lab Sample ID: MB 580-257968/1-A

Client Sample ID: Lab Control Sample Dup

2 3 4 5 6 7

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		300	21	ug/L			10/05/17 13:03	100
m-Xylene & p-Xylene	ND		300	72	ug/L			10/05/17 13:03	100
o-Xylene	ND		200	15	ug/L			10/05/17 13:03	100
Toluene	ND		200	24	ug/L			10/05/17 13:03	100
Benzene	ND		200	42	ug/L			10/05/17 13:03	100
	MB	MB							

	IVID	IVID					
Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		80 - 126			10/05/17 13:03	100
4-Bromofluorobenzene (Surr)	104		75 - 125			10/05/17 13:03	100
Dibromofluoromethane (Surr)	104		77 - 120			10/05/17 13:03	100
Toluene-d8 (Surr)	89		80 - 122			10/05/17 13:03	100
Trifluorotoluene (Surr)	118		80 - 120			10/05/17 13:03	100

Lab Sample ID: LCS 580-257968/2-A Matrix: Water Analysis Batch: 258077

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	1000	932		ug/L		93	75 - 120	
m-Xylene & p-Xylene	1000	945		ug/L		94	75 - 120	
o-Xylene	1000	930		ug/L		93	74 - 120	
Toluene	1000	950		ug/L		95	75 - 120	
Benzene	1000	1080		ug/L		108	75 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		80 - 126
4-Bromofluorobenzene (Surr)	101		75 - 125
Dibromofluoromethane (Surr)	106		77 - 120
Toluene-d8 (Surr)	88		80 - 122
Trifluorotoluene (Surr)	117		80 - 120

Lab Sample ID: LCSD 580-257968/3-A Matrix: Water Analysis Batch: 258077

Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Ethylbenzene 1000 934 ug/L 93 75 - 120 0 14 m-Xylene & p-Xylene 1000 927 ug/L 93 75 - 120 14 2 o-Xylene 1000 928 ug/L 93 74 - 120 0 16 Toluene 1000 939 75 - 120 ug/L 94 1 13

TestAmerica Seattle

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

QC Sample Results

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 58 Matrix: Water Analysis Batch: 258077	0-257968/3-A	L .			C	Client Sa	ample	ID: Lat	Control Prep Ty		
· · · · · · · · · · · · · · · · · · ·			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			1000	1050		ug/L		105	75 - 120	2	14
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	91		80 - 126								
4-Bromofluorobenzene (Surr)	103		75 - 125								
Dibromofluoromethane (Surr)	104		77 - 120								
Toluene-d8 (Surr)	88		80 - 122								
Trifluorotoluene (Surr)	119		80 - 120								

Lab Sample ID: MB 580-258333/5 **Matrix: Water** Analysis Batch: 258333

MB MB Analyte **Result Qualifier** RL MDL Unit Prepared Dil Fac D Analyzed Ethylbenzene ND 3.0 0.21 ug/L 10/06/17 19:05 1 ND m-Xylene & p-Xylene 3.0 0.72 ug/L 10/06/17 19:05 1 o-Xylene ND 2.0 0.15 ug/L 10/06/17 19:05 1 Toluene ND 2.0 0.24 ug/L 10/06/17 19:05 1 Benzene 0.42 ug/L ND 2.0 10/06/17 19:05 1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		80 - 126		10/06/17 19:05	1
4-Bromofluorobenzene (Surr)	100		75 - 125		10/06/17 19:05	1
Dibromofluoromethane (Surr)	105		77 - 120		10/06/17 19:05	1
Toluene-d8 (Surr)	91		80 - 122		10/06/17 19:05	1
Trifluorotoluene (Surr)	118		80 - 120		10/06/17 19:05	1

Lab Sample ID: LCS 580-258333/6 **Matrix: Water**

Analysis Batch: 258333

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	10.0	9.59		ug/L		96	75 - 120	
m-Xylene & p-Xylene	10.0	9.51		ug/L		95	75 - 120	
o-Xylene	10.0	9.57		ug/L		96	74 - 120	
Benzene	10.0	11.3		ug/L		113	75 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		80 - 126
4-Bromofluorobenzene (Surr)	100		75 - 125
Dibromofluoromethane (Surr)	107		77 - 120
Toluene-d8 (Surr)	88		80 - 122
Trifluorotoluene (Surr)	117		80 - 120

5 6

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580 Matrix: Water	-258333/7							C	lient S	amp	le IC): Lat	Control S Prep Typ		
Analysis Batch: 258333				Spike		LCSD							%Rec.		RPD
Analysia				Added		Result			11		D %	%Rec	Simits	RPD	Limit
Analyte					r		Quaim		Unit		<u> </u>				
Ethylbenzene				10.0		9.38			ug/L			94	75 - 120	2	14
m-Xylene & p-Xylene				10.0		9.36			ug/L			94	75 - 120	2	14
o-Xylene				10.0		9.29			ug/L			93	74 - 120	3	16
Benzene				10.0		10.8			ug/L			108	75 - 120	4	14
	LCSD	LCS	SD												
Surrogate	%Recovery	Qua	alifier	Limits											
1,2-Dichloroethane-d4 (Surr)	91			80 - 126											
4-Bromofluorobenzene (Surr)	101			75 - 125											
Dibromofluoromethane (Surr)	105			77 - 120											
Toluene-d8 (Surr)	88			80 - 122											
Trifluorotoluene (Surr)	116			80 - 120											
Lab Sample ID: MB 580-2	59177/5									С	lien	t Sam	nple ID: Me	thod	Blank
Matrix: Water												. oun	Prep Typ		
Analysis Batch: 259177															
		ΜВ	мв												
Analyte	Re	sult	Qualifier		RL	Ν	IDL U	nit		D	Prep	pared	Analyze	əd	Dil Fac
Benzene		ND			2.0	(0.42 ug	g/L			-		10/18/17 1	1:39	1
		ΜВ	MB												
Surrogate	%Reco		Qualifier	Lim	its						Prep	bared	Analyz	ed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		109		- 80	126								10/18/17 1	1:39	1

I	Junigale	/mecovery	Quanner	Linnts		rrepared	Analyzeu	Dirrac
	1,2-Dichloroethane-d4 (Surr)	109		80 - 126	-		10/18/17 11:39	1
	4-Bromofluorobenzene (Surr)	100		75 - 125			10/18/17 11:39	1
	Dibromofluoromethane (Surr)	101		77 - 120			10/18/17 11:39	1
	Toluene-d8 (Surr)	102		80 - 122			10/18/17 11:39	1
	Trifluorotoluene (Surr)	99		80 - 120			10/18/17 11:39	1

Lab Sample ID: LCS 580-259177/6 Matrix: Water Analysis Batch: 259177

Analyte Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec. Benzene 10.0 10.2 ug/L 102 75 - 120

	203	203	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		80 - 126
4-Bromofluorobenzene (Surr)	98		75 - 125
Dibromofluoromethane (Surr)	101		77 - 120
Toluene-d8 (Surr)	101		80 - 122
Trifluorotoluene (Surr)	100		80 - 120

Lab Sample ID: LCSD 580-259177/7 Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 259177									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	9.92		ug/L		99	75 - 120	3	14

TestAmerica Seattle

10/19/2017 (Rev. 1)

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-259177/7 Matrix: Water

Analysis Batch: 259177

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		80 - 126
4-Bromofluorobenzene (Surr)	103		75 - 125
Dibromofluoromethane (Surr)	98		77 - 120
Toluene-d8 (Surr)	99		80 - 122
Trifluorotoluene (Surr)	102		80 - 120

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-2580 Matrix: Water Analysis Batch: 258069)25/1-A MB	МВ					i i	le ID: Methoc Prep Type: To Prep Batch: 3	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.020	0.0060	ug/L		10/04/17 09:31	10/04/17 15:44	1
2-Methylnaphthalene	ND		0.030	0.0090	ug/L		10/04/17 09:31	10/04/17 15:44	1
Acenaphthene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 15:44	1
Acenaphthylene	ND		0.020	0.0020			10/04/17 09:31	10/04/17 15:44	1
Anthracene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 15:44	1
Benzo[a]anthracene	0.00233	J	0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 15:44	1
Benzo[a]pyrene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 15:44	1
Benzo[b]fluoranthene	ND		0.020	0.0080	ug/L		10/04/17 09:31	10/04/17 15:44	1
Benzo[g,h,i]perylene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 15:44	1
Benzo[k]fluoranthene	ND		0.030	0.0090	ug/L		10/04/17 09:31	10/04/17 15:44	1
Chrysene	ND		0.020	0.0060	ug/L		10/04/17 09:31	10/04/17 15:44	1
Dibenz(a,h)anthracene	ND		0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 15:44	1
Fluoranthene	0.00255	J	0.020	0.0020	ug/L		10/04/17 09:31	10/04/17 15:44	1
Fluorene	ND		0.020	0.0030	ug/L		10/04/17 09:31	10/04/17 15:44	1
Indeno[1,2,3-cd]pyrene	ND		0.020	0.0070	ug/L		10/04/17 09:31	10/04/17 15:44	1
Naphthalene	ND		0.040	0.013	ug/L		10/04/17 09:31	10/04/17 15:44	1
Phenanthrene	0.00621	J	0.020	0.0040	ug/L		10/04/17 09:31	10/04/17 15:44	1
Pyrene	ND		0.020	0.0040	ug/L		10/04/17 09:31	10/04/17 15:44	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	89		53 - 112				10/04/17 09:31	10/04/17 15:44	1

Lab Sample ID: LCS 580-258025/2-A Matrix: Water Analysis Batch: 258069

Analysis Batch: 258069	Spike	LCS	LCS				Prep Batch: 258025 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	4.00	2.77		ug/L		69	57 - 120
2-Methylnaphthalene	4.00	2.67		ug/L		67	61 - 120
Acenaphthene	4.00	2.86		ug/L		71	62 - 120
Acenaphthylene	4.00	3.06		ug/L		76	63 - 120
Anthracene	4.00	3.36		ug/L		84	69 - 120
Benzo[a]anthracene	4.00	3.10		ug/L		78	71 - 120
Benzo[a]pyrene	4.00	3.41		ug/L		85	76 - 120

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

QC Sample Results

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

5 6

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-258025/2-A Matrix: Water				Client Sample ID: Lab Col						
Analysis Batch: 258069	Spike	LCS	LCS				Prep Type: Total/NA Prep Batch: 258025 %Rec.			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Benzo[b]fluoranthene	4.00	3.15		ug/L		79	66 - 120			
Benzo[g,h,i]perylene	4.00	3.13		ug/L		78	61 - 120			
Benzo[k]fluoranthene	4.00	3.33		ug/L		83	68 - 120			
Chrysene	4.00	3.24		ug/L		81	64 - 120			
Dibenz(a,h)anthracene	4.00	3.30		ug/L		83	60 - 125			
Fluoranthene	4.00	3.72		ug/L		93	70 - 120			
Fluorene	4.00	3.03		ug/L		76	68 - 120			
Indeno[1,2,3-cd]pyrene	4.00	3.20		ug/L		80	63 - 120			
Naphthalene	4.00	2.77		ug/L		69	62 - 120			
Phenanthrene	4.00	3.08		ug/L		77	65 - 120			
Pyrene	4.00	3.66		ug/L		91	69 - 120			
LCS LCS				-						

	203	203	
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	83		53 - 112

Lab Sample ID: LCSD 580-258025/3-A Matrix: Water Analysis Batch: 258069

Analysis Batch: 25806	9								RPD 0 1 0 2 0 2 0 2 0 2 0 5	
····· , ·······························	-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene		4.00	2.80		ug/L		70	57 - 120	1	17
2-Methylnaphthalene		4.00	2.72		ug/L		68	61 - 120	2	16
Acenaphthene		4.00	2.91		ug/L		73	62 - 120	2	13
Acenaphthylene		4.00	3.11		ug/L		78	63 - 120	2	13
Anthracene		4.00	3.53		ug/L		88	69 - 120	5	17
Benzo[a]anthracene		4.00	3.27		ug/L		82	71 - 120	5	16
Benzo[a]pyrene		4.00	3.48		ug/L		87	76 - 120	2	17
Benzo[b]fluoranthene		4.00	3.19		ug/L		80	66 - 120	1	20
Benzo[g,h,i]perylene		4.00	3.19		ug/L		80	61 - 120	2	16
Benzo[k]fluoranthene		4.00	3.48		ug/L		87	68 - 120	4	20
Chrysene		4.00	3.27		ug/L		82	64 - 120	1	16
Dibenz(a,h)anthracene		4.00	3.42		ug/L		86	60 - 125	3	15
Fluoranthene		4.00	3.83		ug/L		96	70 - 120	3	20
Fluorene		4.00	3.13		ug/L		78	68 - 120	3	12
Indeno[1,2,3-cd]pyrene		4.00	3.28		ug/L		82	63 - 120	2	15
Naphthalene		4.00	2.79		ug/L		70	62 - 120	1	15
Phenanthrene		4.00	3.21		ug/L		80	65 - 120	4	15
Pyrene		4.00	3.78		ug/L		94	69 - 120	3	17
	LCSD LCSD									
Surrogate	%Recovery Qualifier	l imits								

Surroyate	/onecovery	Quaimer	LIIIIIIS
Terphenyl-d14	81		53 - 112

Matrix: Water

Lab Sample ID: MB 580-257914/5

Client Sample ID: Method Blank

Prep Type: Total/NA

5

6

							7
			Р	repared	Analyzed	Dil Fac	
				-	10/03/17 21:53	1	ŏ
					10/03/17 21:53	1	9
		Client	Sai	nple ID	: Lab Control S Prep Type: To		10
LCS	LCS				%Rec.		11
sult	Qualifier	Unit	D	%Rec	Limits		
.996	J	mg/L		100	77 - 123		
			Clie	ent Sam	iple ID: Method Prep Type: To		

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Analysia Databy 057044										
Analysis Batch: 257914		ИВ МВ								
Analyte		ult Qualifier	RL	N	IDL Unit		DF	Prepared	Analyzed	Dil Fac
			KL 1.0		0.33 mg/L			repareu	- 10/03/17 21:53	
Gasoline Range Organics (GRO) -C6-C10	I		1.0	(J.55 mg/∟				10/03/17 21.55	'
Surrogate		MB MB ery Qualifier	Limits				,	Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)		03	75 - 120						10/03/17 21:53	1
4-Bromofluorobenzene (Surr)		88	68 - 119						10/03/17 21:53	1
Lab Sample ID: LCS 580-2 Matrix: Water	57914/6					Clie	nt Sa	imple ID	: Lab Control Prep Type: T	
Analysis Batch: 257914			Spike	LCS		11	-	0/ D	%Rec.	
Analyte			Added		Qualifier	Unit	D		Limits	
Gasoline Range Organics (GRO) -C6-C10			1.00	0.996	J	mg/L		100	77 - 123	
	LCS I	.CS								
Surrogate	%Recovery (Qualifier	Limits							
Trifluorotoluene (Surr)	98		75 - 120							
	94		68 - 119							
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 580-25 Matrix: Water			00-119				Cli	ent Sam	ple ID: Metho Prep Type: T	
Lab Sample ID: MB 580-25	8157/6	1B MB					Cli	ent Sam		
Lab Sample ID: MB 580-25 Matrix: Water	8157/6 M Res	ult Qualifier	RL		IDL Unit			<mark>ent Sam</mark> Prepared	Prep Type: T Analyzed	otal/NA
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157	8157/6 M Res				//DL Unit D.33 mg/L				Prep Type: T	otal/NA Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO)	8157/6 Res	ult Qualifier	RL						Prep Type: T Analyzed	otal/NA Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10	8157/6 	ult Qualifier					<u>D</u>		Prep Type: T Analyzed	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	8157/6 Res //	ult Qualifier					<u>D</u>	Prepared	Prep Type: T 	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	8157/6 Res M %Recove	ult Qualifier					<u>D</u>	Prepared	Prep Type: T <u>Analyzed</u> 10/05/17 13:36 <u>Analyzed</u> 10/05/17 13:36	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	8157/6 Res M %Recove	ult Qualifier ND MB MB MB ery Qualifier 26 X	RL 1.0				<u>D</u>	Prepared	Analyzed Analyzed Analyzed	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	8157/6 Res M %Recove	ult Qualifier ND MB MB MB ery Qualifier 26 X	RL 1.0				<u>D</u> 	Prepared Prepared	Prep Type: T <u>Analyzed</u> 10/05/17 13:36 <u>Analyzed</u> 10/05/17 13:36	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	8157/6 Res M %Recove	ult Qualifier ND MB MB MB ery Qualifier 26 X	RL 1.0				<u>D</u> 	Prepared Prepared	Analyzed 10/05/17 13:36 Analyzed 10/05/17 13:36 10/05/17 13:36	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 580-2	8157/6 Res M %Recove	ult Qualifier ND MB MB MB ery Qualifier 26 X	RL 1.0				<u>D</u> 	Prepared Prepared	Prep Type: T <u>Analyzed</u> 10/05/17 13:36 <u>Analyzed</u> 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 580-2 Matrix: Water	8157/6 Res M %Recove	ult Qualifier ND MB MB MB ery Qualifier 26 X	RL 1.0 <u>Limits</u> 75 - 120 68 - 119 Spike		0.33 mg/L		<u>D</u> 	Prepared Prepared	Prep Type: T Analyzed 10/05/17 13:36 Analyzed 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 Charles Control Prep Type: T %Rec.	Dil Fac Dil Fac Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 580-2 Matrix: Water	8157/6 Res M %Recove	ult Qualifier ND MB MB MB ery Qualifier 26 X	RL 1.0 1.0 1.0 1.0 68 - 119 68 - 119 68 - 119	LCS Result	LCS Qualifier	Clie	<u>D</u> 	Prepared Prepared	Prep Type: T Analyzed 10/05/17 13:36 Analyzed 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 Charles Control Prep Type: T %Rec. Limits	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 580-2 Matrix: Water Analysis Batch: 258157	8157/6 Res M %Recove	ult Qualifier ND MB MB MB ery Qualifier 26 X	RL 1.0 <u>Limits</u> 75 - 120 68 - 119 Spike	LCS	LCS Qualifier	Clie	D/ _/	Prepared Prepared	Prep Type: T Analyzed 10/05/17 13:36 Analyzed 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 Charles Control Prep Type: T %Rec.	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 580-2 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO)	8157/6 Res %Recove 58157/7	ult Qualifier	RL 1.0 1.0 1.0 1.0 68 - 119 68 - 119 68 - 119	LCS Result	LCS Qualifier	Clie	D/ _/	Prepared Prepared Imple ID	Prep Type: T Analyzed 10/05/17 13:36 Analyzed 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 Charles Control Prep Type: T %Rec. Limits	Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 580-2 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10	8157/6 	ult Qualifier	Limits 75 - 120 68 - 119 Spike Added 1.00	LCS Result	LCS Qualifier	Clie	D/ _/	Prepared Prepared Imple ID	Prep Type: T Analyzed 10/05/17 13:36 Analyzed 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 Charles Control Prep Type: T %Rec. Limits	Dil Fac Dil Fac Dil Fac
Lab Sample ID: MB 580-25 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 580-2 Matrix: Water Analysis Batch: 258157 Analyte Gasoline Range Organics (GRO)	8157/6 Res %Recove 58157/7	ult Qualifier	RL 1.0 1.0 1.0 1.0 68 - 119 68 - 119 68 - 119	LCS Result	LCS Qualifier	Clie	D/ _/	Prepared Prepared Imple ID	Prep Type: T Analyzed 10/05/17 13:36 Analyzed 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 10/05/17 13:36 Charles Control Prep Type: T %Rec. Limits	Dil Fac Dil Fac Dil Fac 1 Sample

5 6 7

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: LCSD 580	-258157/8						C	lient S	amj	ole			ter Prep Type: Tota	
Matrix: Water												Prep i y	pe: To	
Analysis Batch: 258157				Cuilco		LCSD						%Rec.		RPD
Analyto				Spike Added			Qualifier	Unit		п	%Rec	Limits	RPD	Limi
Analyte				1.00		0.962				D	<u>96</u>	77 - 123	2	20
Gasoline Range Organics (GRO) -C6-C10				1.00		0.902	J	mg/L			90	11 - 123	2	20
	LCSD	LCS	SD											
Surrogate	%Recovery	Qua	alifier	Limits										
Trifluorotoluene (Surr)	107			75 - 120										
4-Bromofluorobenzene (Surr)	106			68 - 119										
Method: AK102 & 103		Die	sel Rai	nge Org	ani	cs &	Residu	al Ra				. ,		
Lab Sample ID: MB 580-25 Matrix: Water	845//1-A									JIIe	ent Samp			
												Prep Ty Prep Ba		
Analysis Batch: 258559		MR	мв									Ргер Ба	atch: 2	3043
Analyte	Pa		Qualifier		RL		IDL Unit		D	D	repared	Analyz	zod	Dil Fa
DRO (nC10- <nc25)< td=""><td></td><td>)523</td><td></td><td></td><td>.10</td><td></td><td>022 mg/L</td><td></td><td></td><td></td><td>0/17 09:08</td><td></td><td></td><td>Dirra</td></nc25)<>)523			.10		022 mg/L				0/17 09:08			Dirra
	0.0	5525	5	0	.10	0.	022 mg/L			10/1	0/17 09.00	10/11/17	15.00	
		MВ	MB											
Surrogate	%Reco	very	Qualifier	Limits	5					PI	repared	Analyz	zed	Dil Fac
o-Terphenyl		86		50 - 15	50					10/1	0/17 09:08	10/11/17	15:08	1
Lab Sample ID: LCS 580-2	58457/2-A							Cli	ent	Sar	nple ID:	Lab Cor	ntrol S	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 258559												Prep Ba	atch: 2	58457
				Spike		LCS	LCS					%Rec.		
Analyte				Added	I	Result	Qualifier	Unit		D	%Rec	Limits		
DRO (nC10- <nc25)< td=""><td></td><td></td><td></td><td>2.00</td><td></td><td>1.60</td><td></td><td>mg/L</td><td></td><td>_</td><td>80</td><td>75 - 125</td><td></td><td></td></nc25)<>				2.00		1.60		mg/L		_	80	75 - 125		
	LCS	100	:											
Surrogate	%Recovery			Limits										
		Qua	IIIIei											
o-Terphenyl	94			50 - 150										
o-Terphenyl	94						C	lient S	amı	ole	ID: Lab	Control	Samp	e Dup
o-Terphenyl Lab Sample ID: LCSD 580	94						c	lient S	amı	ole	ID: Lab			
o-Terphenyl Lab Sample ID: LCSD 580 Matrix: Water	94						C	lient S	amı	ole		Prep Ty	pe: To	tal/NA
o-Terphenyl Lab Sample ID: LCSD 580	94					LCSD		lient S	amı	ole			pe: To	tal/NA 58457
o-Terphenyl Lab Sample ID: LCSD 580 Matrix: Water	94			50 - 150				Client S	amı			Prep Ty Prep Ba	pe: To	tal/NA 58457 RPD
o-Terphenyl Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 258559	94			50 - 150 Spike			LCSD		amı			Prep Ty Prep Ba %Rec.	pe: To atch: 2	tal/NA 58457 RPC Limi
o-Terphenyl Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 258559 Analyte	94 -258457/3-A			50 - 150 Spike Added		Result	LCSD	Unit	amı		%Rec	Prep Ty Prep Ba %Rec. Limits	pe: To atch: 2 	tal/NA 58457 RPC Limi
o-Terphenyl Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 258559 Analyte	94	LCS	 	50 - 150 Spike Added		Result	LCSD	Unit	amı		%Rec	Prep Ty Prep Ba %Rec. Limits	pe: To atch: 2 	tal/NA 58457 RPC Limi

Dilution

Run

DL

Factor

10

1

1

1

Batch

Prepared

Number or Analyzed Analyst

258077 10/05/17 20:29 W1T

258051 10/04/17 17:51 W1T

257914 10/04/17 02:08 RSB

258457 10/10/17 09:08 NDB

258559 10/11/17 17:43 TL1

Date Collected: 09/27/17 11:45

Date Received: 09/29/17 12:30

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client Sample ID: 17-HLA-HC1-1008

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Client Sample ID: 17-HLA-HC3-1009

Prep

Batch

Method

8260C

8260C

AK101

3510C

AK102 & 103

Lab Sample ID: 580-71716-1

Lab

TAL SEA

TAL SEA

TAL SEA

TAL SEA

TAL SEA

2 3 4 5 6 7 8 8

Lab Sample ID: 580-71716-2 Matrix: Water

Matrix: Water

9 10

Date Collected: 09/27/17 10:35 Date Received: 09/29/17 12:30

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	258051	10/04/17 18:17	W1T	TAL SEA
Total/NA	Analysis	AK101		1	257914	10/04/17 02:40	RSB	TAL SEA
Total/NA	Prep	3510C			258457	10/10/17 09:08	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	258559	10/11/17 18:05	TL1	TAL SEA

Client Sample ID: 17-HLA-HC6-1010 Date Collected: 09/27/17 13:15 Date Received: 09/29/17 12:30

Lab Sample ID: 580-71716-3

Lab Sample ID: 580-71716-4

Matrix: Water

Matrix: Water

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260C	Run	Dilution Factor	Batch Number 258051	Prepared or Analyzed 10/04/17 18:44	Analyst W1T	Lab TAL SEA
Total/NA	Analysis	AK101		1	257914	10/04/17 03:44	RSB	TAL SEA
Total/NA Total/NA	Prep Analysis	3510C AK102 & 103		1	258457 258559	10/10/17 09:08 10/11/17 18:27	NDB TL1	TAL SEA TAL SEA

Client Sample ID: 17-HLA-MW8-1012 Date Collected: 09/27/17 13:00 Date Received: 09/29/17 12:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	DL	100	258077	10/05/17 20:54	W1T	TAL SEA
Total/NA	Analysis	8260C	DL	1000	258333	10/06/17 21:36	CJ	TAL SEA
Total/NA	Analysis	8260C		1	258051	10/04/17 19:09	W1T	TAL SEA
Total/NA	Prep	3510C			258025	10/04/17 09:31	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	258069	10/04/17 23:30	TL1	TAL SEA
Total/NA	Prep	3510C	DL		258025	10/04/17 09:31	NDB	TAL SEA
Total/NA	Analysis	8270D SIM	DL	10	258195	10/05/17 14:46	CJ	TAL SEA
Total/NA	Analysis	AK101		10	258157	10/05/17 15:39	JCV	TAL SEA
Total/NA	Prep	3510C			258457	10/10/17 09:08	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	258559	10/11/17 19:11	TL1	TAL SEA

Client Sample ID: 17-HLA-HCZ-1013 Date Collected: 09/27/17 13:05

Date Received: 09/29/17 12:30

Lab Sample ID: 580-71716-6

Lab Sample ID: 580-71716-7

Lab Sample ID: 580-71716-8

Lab Sample ID: 580-71716-5 Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	DL	100	258077	10/05/17 21:19	W1T	TAL SEA
Total/NA	Analysis	8260C	DL	1000	258333	10/06/17 22:02	CJ	TAL SEA
Total/NA	Analysis	8260C		1	258051	10/04/17 19:35	W1T	TAL SEA
Total/NA	Prep	3510C			258025	10/04/17 09:31	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	258069	10/04/17 23:52	TL1	TAL SEA
Total/NA	Prep	3510C	DL		258025	10/04/17 09:31	NDB	TAL SEA
Total/NA	Analysis	8270D SIM	DL	10	258195	10/05/17 15:08	CJ	TAL SEA
Total/NA	Analysis	AK101		10	258157	10/05/17 16:09	JCV	TAL SEA
Total/NA	Prep	3510C			258457	10/10/17 09:08	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	258559	10/11/17 19:33	TL1	TAL SEA

Client Sample ID: 17-HLA-MW8MSD-1011 Date Collected: 09/27/17 13:00 Date Received: 09/29/17 12:30

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	DL	100	258077	10/05/17 21:44	W1T	TAL SEA
Total/NA	Analysis	8260C	DL	1000	258333	10/06/17 22:27	CJ	TAL SEA
Total/NA	Analysis	8260C		1	258051	10/04/17 20:02	W1T	TAL SEA
Total/NA	Prep	3510C			258025	10/04/17 09:31	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	258069	10/05/17 00:14	TL1	TAL SEA
Total/NA	Prep	3510C	DL		258025	10/04/17 09:31	NDB	TAL SEA
Total/NA	Analysis	8270D SIM	DL	10	258195	10/05/17 15:30	CJ	TAL SEA
Total/NA	Analysis	AK101		10	258157	10/05/17 16:40	JCV	TAL SEA
Total/NA	Prep	3510C			258457	10/10/17 09:08	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	258559	10/11/17 19:55	TL1	TAL SEA

Client Sample ID: 17-HLA-TB-1000 Date Collected: 09/27/17 10:30 Date Received: 09/29/17 12:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	258051	10/04/17 17:25	W1T	TAL SEA
Total/NA	Analysis	AK101		1	257914	10/03/17 22:57	RSB	TAL SEA

Client Sample ID: 17-HLA-MW9-1014 Date Collected: 09/27/17 11:50 Date Received: 09/29/17 12:30

Batch Batch Dilution Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C RA 1 258077 10/05/17 18:22 W1T TAL SEA Total/NA Analysis 8260C DL 25 259177 10/18/17 17:58 P1P TAL SEA

Client Sample ID: 17-HLA-MW9-1014

Date Collected: 09/27/17 11:50

Lab Sample ID: 580-71716-8 Matrix: Water

Batch	Batch		Dilution	Batch	Prepared		
Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Analysis	8260C		1	258051	10/04/17 20:28	W1T	TAL SEA
Analysis	AK101		1	258157	10/05/17 17:10	JCV	TAL SEA
Prep	3510C			258457	10/10/17 09:08	NDB	TAL SEA
Analysis	AK102 & 103		1	258559	10/11/17 20:18	TL1	TAL SEA
	Type Analysis Analysis Prep	TypeMethodAnalysis8260CAnalysisAK101Prep3510C	TypeMethodRunAnalysis8260CAnalysisAK101Prep3510C	TypeMethodRunFactorAnalysis8260C1AnalysisAK1011Prep3510C	TypeMethodRunFactorNumberAnalysis8260C1258051AnalysisAK1011258157Prep3510C258457	Type Method Run Factor Number or Analyzed Analysis 8260C 1 258051 10/04/17 20:28 Analysis AK101 1 258157 10/05/17 17:10 Prep 3510C 258457 10/10/17 09:08	Type Method Run Factor Number or Analyzed Analyst Analysis 8260C 1 258051 10/04/17 20:28 W1T Analysis AK101 1 258157 10/05/17 17:10 JCV Prep 3510C 258457 10/10/17 09:08 NDB

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: ERM Alaska, Inc. Project/Site: Alaska Horizon TestAmerica Job ID: 580-71716-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-18
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-17
US Fish & Wildlife	Federal		LE058448-0	10-31-18
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-18

Sample Summary

Client: ERM Alaska, Inc. Project/Site: Alaska Horizon TestAmerica Job ID: 580-71716-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-71716-1	17-HLA-HC1-1008	Water	09/27/17 11:45 0	9/29/17 12:30
580-71716-2	17-HLA-HC3-1009	Water	09/27/17 10:35 0	9/29/17 12:30
580-71716-3	17-HLA-HC6-1010	Water	09/27/17 13:15 0	9/29/17 12:30
580-71716-4	17-HLA-MW8-1012	Water	09/27/17 13:00 0	9/29/17 12:30
580-71716-5	17-HLA-HCZ-1013	Water	09/27/17 13:05 0	9/29/17 12:30
580-71716-6	17-HLA-MW8MSD-1011	Water	09/27/17 13:00 0	9/29/17 12:30
580-71716-7	17-HLA-TB-1000	Water	09/27/17 10:30 0	9/29/17 12:30
580-71716-8	17-HLA-MW9-1014	Water	09/27/17 11:50 0	9/29/17 12:30

- Page Intentionally Left Blank -

															Loc: 580	
TestAr		_	11-7			_ ~		_ رحم	^r	2	~		1		71716	
	•		B <u>/1/2</u> ooler 1	Coole	r ~良仏	Cor <u>2;C</u>	<u>/Unc]</u> .ah	L i	TB <u>/7/</u> Cooler	Cooler Dsc (2) acks Pa	Co Rhan	or <u>03_</u> Ui @Lab	nc <u>4D</u>			
ToctAr	norior	V W	et/Pac		9 Dau Packin	g Rul	abla	\	Vet/P	acke Pa	cking_	Bubble				
123174				and the second designed of the second designed designed and the second designed desi		F	•						2	509	-924-9200 FAX 92	
							2000 W	V Internati	onal Air	port Rd Ste A	10, Anc	horage, AK	99502-1119		-906-9200 FAX 90 -563-9200 FAX 56	6-9210 3-9210
THE LEADER IN EN	VIRONMENTAL TESTIN	١G		~			TOPOL		NAN							
13-13-00 /04-4			<u></u>	C			CUSTO		POR	L			Work (Order #		
LIENT: HONZON/Ma	itson						ERM			0					AROUND REQUES n Business Days *	T į
EPORT TO: EPOM ATE DDRESS: QAGE W. 81	nave.					Ċ	825 U	V ST	n AV	e aactor	Ì				& Inorganic Analyses	
DDRESS: 815 W. 87 AWCHOVAGE HONE: 907 2584880 1	AK 99501				ļ			<u> </u>	71-	9950	l 		10 [7 5		1 <1
HONE: 907 2584880 1	FAX:				P.O. NU	IMBER: (24200	VATIVE							n Hydrocarbon Analyses	a
ROJECT NAME: HON 750	201	Itcl	HCI	HCI		1			1				- 5	5 4 TD.		
ROJECT NUMBER: 04200			······		E	I	REQUESTEL	ANALYS	ES			1		OTHER	Specify:	
AMPLED BY: AS AND I		5	102	QG	D SIN										ess than standard may incur	
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	4HIO	41402	SZUDE	8270								(W, S, O	1	LOCATION/ COMMENTS	WO ID
17-14 A-IVI-1000	22(201-2012/1146	.7	2	3		1										
•	275ept-2017/1145	-	2	3					-							-
	275ept 2017/1035															
7-HLA-HC101012 :	275cpt 2017/1315	3	2	3												
7-112-MW8-1012	#SUP12017/1300	3	2	3	2											
	275ept-2017/1205	3	2	3	2											
(al 275072017/1300	6	4	6	4			1) anne anne taite	rementati di	r Hanna ann ann an Ann					
	- ,			3				-					and a surface should be free	-	mpiblank	
	27 Sept 2017/ 1030		2	3		+									INIP DOWIN	•
17-11_A-MW9-1014 2	275Cpt2017/1190	3		<u></u>		ļ		59	30-71716	6 Chain of C	ustody					
																_
											<u>.</u>					
ELEASED BY: ANN ST	Matt					9128				Cut			F	\sim	7 51 m	128/17
LEASED BY:	VATT FIRM: EV	eM			TIME: DATE:	9128			NAME: VED BY:	Kaitiy	$\sqrt{2t}$	rang	FIRM	El		128/17
INT NAME: KOUTIN	TSTRING FIRME E	Rm	۱		TIMÊ:		лч 0			Andrew C	Pild	í	FIRM	<u>a 74</u>	AK TIME	0:20
DDITIONAL REMARKS:	TA-AK 9/	zs/17	164	50				Pen	nis B	alzora	Jeus?	1PZ	TestA	iner		0.5
	·								-112	412017		1230			5.5 TAL-1	OF 000 (0714)

Client: ERM Alaska, Inc.

Login Number: 71716 List Number: 1 Creator: Hobbs, Kenneth F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Sample ID's do not read exactly as they do on the COC
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	Preserved in lab with HCI lot# 55320
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	False	Headspace larger than 1/4".
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Seattle

APPENDIX C

Quality Assurance Report, ADEC Laboratory Checklist

1. QUALITY ASSURANCE REPORT

Laboratory quality assurance/quality control (QA/QC) data associated with the analysis of project samples has been reviewed to evaluate the usability of the analytical data generated during the September 2017 water sampling for the Port of Anchorage Terminal Facility site.

Samples were collected, reported and shipped in general accordance with an ADECapproved work plan (ERM, 2013). Sample analysis was performed by an Alaska Department of Environmental Conservation (ADEC) certified laboratory for applicable analytical methods.

Samples were analyzed for the following constituents:

- Gasoline range organics (GRO), Alaska (AK) Method 101;
- Diesel range organics (DRO), AK Method 102;
- Volatile organic compounds (benzene; toluene; ethylbenzene; m&p-xylene, and o-xylene), USEPA Method 8260C.
- Poly-cyclic aromatic hydrocarbons (PAH) compounds, USEPA 8270D-SIM, MW-8 samples only.

A completeness check and electronic data review was performed by the Environmental Resources Management (ERM) Project Chemist. The ADEC laboratory data checklists were also completed for this project. ERM qualifiers were added to provide further detail to the report tables in order to provide the reader/reviewer with easy access to additional details on why the result was estimated, rejected or considered not detected.

All results are considered usable for project objectives. There were a total of 103 primary and field duplicate results reported. No reported results were rejected. Some results are considered estimated due to quality control criteria not being met. The completeness for this project is 100%.

The details of this review and qualification of the data are summarized in the following sections.

1.1. Sample Handling and Chain of Custody

All sample coolers were shipped with custody seals intact. Chain of custody (CoC) forms, laboratory sample receipt forms, and case narratives were reviewed to evaluate the integrity of the samples and the quality of the associated data. All sample containers in the sample coolers were received at the laboratory intact and within the specified temperature range of 4 degrees Celsius (°C) +/- 2°C.

One sample (17-HLA-HC3-1009) was received with insufficient preservation (pH=7). This was most likely due to overfilling of the sample vial in the field to ensure zero

12/27/2017

headspace. This sample was preserved to the appropriate pH in the laboratory within holding time compliance and before testing. No data flags were necessary.

One of six VOA vials (sample 17-HLA-HC1-1008) was received at the lab with headspace greater than ¼". When this occurs, the laboratory will use other VOA vials collected from the same location with headspace <¼" to analyze GRO and BTEX. The laboratory specified one vial was received with headspace and was not used for analyses. Laboratories have been reporting leaks in VOA vials after airplane travel as a result of firm lid septa. The Matson VOA vials left the work site with either no headspace, or headspace <¼". Many laboratories are looking into replacing these containers to minimize this issue.

One container label did not exactly match the information listed on the COC for the following samples: 17-HLA-HC3-1009 and 17-HLA-MW8-1012. One of the three VOA vials collected for sample 17-HLA-HC3-1009 did not include the hand written sample identification. Due to the packaging as a group, the laboratory successfully labeled the unlabeled sample vial. Additionally, one VOA vial in a set of three for sample 17-HLA-MW8-1012 was labeled 17-HLA-MW8-1011, by mistake. Again, due to the packaging as a group, the laboratory successfully relabeled the vial as "1012".

Samples were delivered to TestAmerica, Inc. located in Anchorage, Alaska. Samples were then subcontracted to TestAmerica, Inc. located in Tacoma, Washington. Results were reported in one job ID, 580-71716-1.

1.2. Holding Time Compliance

All samples were extracted, digested and analyzed within the holding time criteria for the applicable analytical methods and in accordance with work plan specifications, with the following exception.

The first draft of the laboratory report did not list all volatiles of interest. The second draft of the report revealed that benzene analysis was missed by TestAmerica for the sample 17-HLA-MW9-1014 during the sample analysis. ERM requested this analyte reported after receiving the report. As a result, benzene was analyzed out of holding time. Results were flagged J-H and may be biased low.

1.3. Field QA/QC

Field QA/QC protocols are designed to monitor for possible contamination during collection and transport of samples collected in the field. Collection and analysis of field duplicates facilitates an evaluation of precision that takes into account potential variables associated with sampling procedures, site heterogeneity and laboratory analyses. Trip blanks are used to monitor sample containers and possible cross-contamination of samples. Equipment blanks are used to assess potential cross-contamination by sampling equipment. Storage blanks are used to assess potential

cross-contamination during storage prior to shipment to the laboratory for analysis. During this sample event a field duplicate and a trip blank were submitted for analysis.

1.3.1. Trip Blanks

A trip blank was prepared by the laboratory, shipped to the site with the empty sample bottles/containers, stored with sample containers during the field event, and transported with the collected samples back to the laboratory for analysis. A trip blank was placed in the cooler with associated matrix specific volatile organics samples (GRO/BTEX). One trip blank was submitted for analysis. Target analytes were not detected in the trip blank.

1.3.2. Field Duplicates

There were seven primary samples submitted and one field duplicate – primary 17-HLA-MW8-1012 with duplicate 17-HLA-HCZ-1013. The primary sample and duplicate relative percent differences (RPDs) met ADEC applicable control limits of <30% between water samples, with the following exceptions noted below.

The RPD between the primary and duplicate sample exceeded the limits in Benzene (72%); Ethylbenzene (90%); o-Xylene (133%); m&p Xylene (175%); Anthracene (199%); and 1-Methylnaphthalene (161%). Results were qualified as estimated (J-D).

1.4. Laboratory QA/QC

1.4.1. Laboratory Blanks

Laboratory method blanks were analyzed concurrent with an analytical batch of 20 or fewer primary samples for each of the analytical methods performed on project samples. Target analytes were not detected (U) in the laboratory blanks, with exceptions noted below.

Benzo[a]anthracene, fluoranthene, and phenanthrene were present in the method blank (above method detection limits, but below reporting limits). This method blank was associated with samples: 17-HLA-MW8-1012, 17-HLA-HCZ-1013, and 17-HLA-MW8MSD-1011. The analytes were detected at concentrations higher than five times the method blank concentration and therefore were not flagged.

The GRO sample (17-HLA-MW9-1014, 17-HLA-MW8MSD-1011, and 17-HLA-HCZ-1013) method blank surrogate trifluorotoluene was outside of control limits (126%). GRO results for these samples were flagged J-S.

DRO was present in the method blank (above method detection limits, but below reporting limits). This method blank was associated with all samples. DRO was detected at concentrations higher than five times the method blank concentration and therefore did not warrant flags.

1.4.2. Laboratory Control Samples

The laboratory monitors internal precision and accuracy for each analytical batch with a set of laboratory control samples (LCS/LCSD). A known quantity of target analytes are added to blank laboratory control samples before extraction and analysis and recoveries are calculated. Acceptable recovery criteria vary with each analytical method and matrix. LCS/LCSD samples met laboratory and project QC goals for target analytes.

1.4.3. Matrix Spikes

Extra volumes of primary field samples were collected and submitted to the laboratory for matrix spike/matrix spike duplicate (MS/MSD) analyses. Matrix spikes have a known quantity of target analytes are added (spiked) to field samples. Spike recoveries are calculated and are used to evaluate both site conditions and laboratory quality control.

Due to field inaccuracy, the MS/MSD was recorded on the COC form and was listed as a sample, instead of designating additional sample volume submitted for MS/MSD analysis at MW8. Therefore, the laboratory reported sample results for 17-HLA-MW8MSD-1011 as a primary client sample, and not just as additional volume submitted for MS/MSD analysis. Therefore, the laboratory reported results for client sample 17-HLA-MW8MSD-1011 within the 'client sample results' section of the laboratory report should not be used. ADEC sampling guidance does not require an MS/MSD

1.4.4. Surrogates

System Monitoring Compounds (Surrogates) are specified for organic chromatographic analytical procedures. Surrogates are compounds similar to target analytes and are added to each sample prior to collection or extraction. Subsequent surrogate recovery indicates overall method performance. Surrogate recoveries were within prescribed control limits for all primary samples, method blanks, LCS/LCSD, MS/MSD, and other QA/QC samples, with the following exceptions.

The method blank surrogate trifluorotoluene was outside of control limits (126%) for samples 17-HLA-MW9-1014, 17-HLA-MW8MSD-1011, and 17-HLA-HCZ-1013. GRO results for these samples have been flagged J-S.

The GRO sample (17-HLA-MW9-1014) surrogate trifluorotoluene was outside of control limits (127%). The GRO sample (17-HLA-MW8-1012) surrogate trifluorotoluene was outside of control limits (127%). The GRO sample (17-HLA-HCZ-1013) surrogate trifluorotoluene was outside of control limits (126%). The GRO sample (17-HLA-HCZ-1013) surrogate 4-Bromofluorobenzene was outside of control limits (121%). The GRO sample (17-HLA-MW8MSD-1011) surrogate trifluorotoluene was outside of control limits (121%). Detected GRO values for these samples were flagged J-S.

1.4.5. Reporting Limits (Sensitivity)

Reporting Limits (RL) provided adequate sensitivity needed to meet project objectives.

In accordance with reporting conventions, reported positive results below the sample specific reporting limit (RL; adjusted for sample volume and dilution factors) should be considered estimated and have been flagged J on the data tables.

1.5. Precision and Accuracy

Precision criteria monitor analytical reproducibility. Precision and accuracy were evaluated by comparing LCS/LCSDs and field duplicate pairs for this project. Field duplicate samples were collected in accordance with work plan specifications. Field duplicate RPDs met applicable control limits. Recoveries and RPDs for all LCS/LSCD samples were within required limits.

1.5.1. Completeness

Data completeness is defined as the percentage of usable data (usable data divided by the total possible data). The overall project completeness goal is 90%:

% completeness = <u>number of valid (i.e., non-R flagged) results</u>

number of possible results

All requested analyses were performed in accordance with Work Plan specifications. No sample results were rejected, noting that sample results for sample 17-HLA-MW8MSD-1011 should not be used due to the laboratory reporting results for submitted MS/MSD sample. All primary samples that were submitted were analyzed; therefore, completeness for this project is 100%.

1.5.2. Representativeness

Data representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or environmental condition. The number and selection of samples were specified in the work plan and verified in the field to accurately account for site variations and sample matrices. The data quality objective (DQO) for representativeness was met.

1.5.3. Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Data produced for this project followed applicable field sampling techniques and specific analytical methodology. The DQO for comparability was met.

1.6. Data Summary

In general, the overall quality of the data was acceptable. The USEPA National Functional Guidelines (USEPA 2008) were used to evaluate the acceptability of the data. The data quality was individually determined as acceptable or estimated. Acceptable data are associated with QC data that meet all QC criteria or with QC samples that did not meet QC criteria but data quality objectives were not affected. Estimated results, flagged with J, are considered inaccurate due to a bias created by matrix interference or QC acceptance criteria which were not met. No reported results were rejected. The data are suitable for their intended use.

2. REFERENCES

- ADEC. 2009. Technical Memorandum: Environmental Laboratory Data and Quality Assurance Requirements. March 2009.
- ADEC. 2017. Laboratory Data Review Checklist. July 2017.
- ADEC. 2012. Technical Memorandum: Guidelines for Data Reporting, Data Reduction, and Treatment of Non-detect Values. June.
- ADEC. 2017. *Field Sampling Guidance*. Alaska Department of Environmental Conservation. August 2017.
- USEPA. 2008. Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 540-R-08-01). June 2008.

Laboratory Data Review Checklist

Completed By:

Annie Surratt

Title:

ERM Staff Scientist

Date:

October 20, 2017

CS Report Name:

2017 Long – Term Monitoring Report, Port of Anchorage Terminal Facility, Horizon Lines of Alaska, LLC.

Report Date:

December 2017

Consultant Firm:

ERM Alaska, Inc.

Laboratory Name:

TestAmerica, Inc.

Laboratory Report Number:

580-71716-1

ADEC File Number:

2100.26.238

Hazard Identification Number:

23666

580-71716-1	
-------------	--

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	O Yes	🖸 No	Comments:
b.		-	nsferred to another "network" laboratory or sub-contracted to an as the laboratory performing the analyses ADEC CS approved?
	• Yes	🖸 No	Comments:
	amples we America Se		From TestAmerica Anchorage to TestAmerica Seattle and analyzed by
Chain of	f Custody	(CoC)	
a. Co		ation complete	ed, signed, and dated (including released/received by)? Comments:
	• Yes	No	Comments:
	• Yes	-	Comments:
b. Co	Yesorrect AnaYes	□ No	Comments: d? Comments:
b. Co	 Yes orrect Ana Yes ory Sample 	□ No alyses requested □ No e Receipt Docu	Comments: d? Comments:

	~				1.1.0.0		

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

🖸 Yes	🖸 No	Comments:	
One sample (17	-HLA-HC3	-1009) was received with insufficie	nt preservation (pH=7). This was most
likely due to ov	erfilling the	e sample vial in the field to ensure z	ero headspace. The sample was
preserved to the	appropriat	e pH in the laboratory within holding	g time compliance and before testing.
No data flags w	ere necessa	ry.	

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes No Comments: The samples arrived in good condition and were unbroken. One VOA vial (sample 17-HLA-HC1-1008) was received at the lab with headspace greater than ¹/₄". The laboratory confirmed they did not

use this vial in analyses.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes No Comments: Container labels did not exactly match the information listed in the COC for the following samples: 17-HLA-HC3-1009 and 17-HLA-MW8-1012. The laboratory successfully sorted the samples despite the label discrepancy and the correct tests were performed.

e. Data quality or usability affected?

Comments:

Data quality or usability was not affected.

4. Case Narrative

a. Present and understandable?

🖸 Yes 🛛 No

Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

• Yes	🖸 No	Comments:
-------	------	-----------

c. Were all corrective actions documented?

🖸 Yes 🛛 No

Comments:

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Data quality and usability were not affected.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes No Comments:

The first draft of the report did not include all VOCs. The second draft of the report revealed that benzene analysis was missed for the sample 17-HLA-MW9-1014 until ERM requested this analyte reported. As a result, benzene was analyzed out of holding time. Results were flagged J-H.

b. All applicable holding times met?

Yes No Comments:

Benzene was analyzed outside of holding time in sample 17-HLA-MW9-1014 and flagged J-H.

c. All soils reported on a dry weight basis?

🖸 Yes	No 🖸 No	Comments:
NA. There we	ere no soils in this	data package.
d. Are the re the projec	· ·	than the Cleanup Level or the minimum required detection level for
• Yes	No 🖸 No	Comments:
	ity or usability aff	ected?
e. Data qual	ity of usability all	
e. Data qual		Comments:

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

• Yes	🖸 No	Comments:
ii. All 1	nethod blank results less t	han limit of quantitation (LOQ)?
O Yes	No	Comments:
iii. If ab	ove LOQ, what samples a	are affected?
		Comments:
NTA A 11 .1	111 1 1/ 1 1	

NA. All method blank results were below LOQ.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No Comments:

NA. All method blank results were below LOQ.

v. Data quality or usability affected?

Comments:

Data quality and usability is somewhat affected with respect to the reported method blank results. Benzo[a]anthracene, fluoranthene, and phenanthrene were present in the method blank (above the MDL, but below the RL). This method blank was associated with samples: 17-HLA-MW8-1012, 17-HLA-HCZ-1013, and 17-HLA-MW8MSD-1011. The analytes were detected at concentrations higher than 5 times the method blank concentration and therefore do not warrant flags.

The GRO sample (17-HLA-MW9-1014, 17-HLA-MW8MSD-1011, and 17-HLA-HCZ-1013) method blank surrogate trifluorotoluene was outside of control limits (126%). GRO results for these samples were flagged J-S.

DRO was present in the method blank (above the MDL, but below the RL). This method blank was associated with all samples. DRO was detected at concentrations higher than 5 times the method blank concentration and therefore did not warrant flags.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

🖸 Yes 🗖 No	Comments:	

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No Co	mments:
-----------	---------

NA. No metals/inorganics analyses requested.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

🖸 Yes 🛛 No	Comments:
------------	-----------

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

🖸 Yes	🖸 No	Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

NA. LCS/LCSD %R and RPD are within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No Comments:

NA. LCS/LCSD %R and RPD are within acceptable limits.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability was not affected. The LCS/LCSD was used to assess accuracy.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

🖸 Yes 🛛 No

Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes No Comments:

The method blank surrogate trifluorotoluene was outside of control limits (126%). Lab sample ID MB 580-258157/6. The GRO sample (17-HLA-MW9-1014) surrogate trifluorotoluene was outside of control limits (127%). The GRO sample (17-HLA-MW8-1012) surrogate trifluorotoluene was outside of control limits (127%). The GRO sample (17-HLA-HCZ-1013) surrogate trifluorotoluene was outside of control limits (126%). The GRO sample (17-HLA-HCZ-1013) surrogate trifluorotoluene was outside of control limits (126%). The GRO sample (17-HLA-HCZ-1013) surrogate trifluorotoluene was outside of control limits (126%). The GRO sample (17-HLA-HCZ-1013) surrogate 4-Bromofluorobenzene was outside of control limits (121%). The GRO sample (17-HLA-MW8MSD-1011) surrogate trifluorotoluene was outside of control limits (121%). Detected GRO values for these samples were flagged J-S.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes □No Comments:

iv. Data quality or usability affected?

Comments:

Data quality and usability was somewhat affected. As mentioned above, GRO results with associated high surrogate percent recoveries were flagged J-S.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

• Yes	No	Comments:						
		the trip blank and VOA samples clearly indicated on the laining why must be entered below)						
• Yes	🖸 No	Comments:						
iii. All	iii. All results less than LOQ?							
O Yes	🖸 No	Comments:						
iv. If at	bove LOQ, what samples	are affected?						
		Comments:						
NA. All results	were below LOQ.							
v. Data	a quality or usability affec	ted?						
		Comments:						
Data quality an	d usability were not affec	ted.						
e. Field Dupli	cate							
i. One	field duplicate submitted	per matrix, analysis and 10 project samples?						
O Yes	🖸 No	Comments:						
Primary 17-HL	A-MW8-1012 and FD 17	-HLA-HCZ-1013.						
ii. Sub	mitted blind to lab?							
• Yes	🖸 No	Comments:						

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:

 $\frac{(R_1 - R_2)}{((R_1 + R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes No

Comments:

Benzene (72%), ethylbenzene (90%), o-xylene (133%), m & p-xylene (175%), anthracene (199%), 1-methylnapthalene (161%). These samples were flagged J-D. Only those with detected values were calculated.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data quality and usability is somewhat affected, with some results qualified as estimated (J-D).

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

Yes No Not Applicable

i. All results less than LOQ?

Yes No

Comments:

NA. Decontamination or equipment blanks were not required.

ii. If above LOQ, what samples are affected?

Comments:

NA. Decontamination or equipment blanks were not required.

iii. Data quality or usability affected?

Comments:

NA. Decontamination or equipment blanks were not required.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

🖸 Yes 🛛 No

Comments:

Lab specific qualifiers are defined within the qualifier section of the laboratory report.

APPENDIX D

Conceptual Site Model

Appendix D - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	CSX Lines, LLC - formerly Sealand Freight Services Inc.
File Number:	2100.26.238
Completed by:	Kate Acker

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (*check potential sources at the site*)

⊠ USTs	☐ Vehicles					
☐ ASTs						
Dispensers/fuel loading racks	Transformers					
Drums	Conter:					
Release Mechanisms (check potential release mechanisms at the site)						
⊠ Spills	Direct discharge					
🗵 Leaks	Burning					
	Other:					
Impacted Media (check potentially-impacted media at the site)						
\Box Surface soil (0-2 feet bgs*)	⊠ Groundwater					

		0 /
⊠ Subsurface	soil (>2 fe	eet bgs)

$\Box A$	\ir
----------	-----

☐ Sediment

	water
🗌 Biota	
Other:	

Receptors (*check receptors that could be affected by contamination at the site*)

- $\overline{\times}$ Commercial or industrial worker
- $\overline{\times}$ Construction worker
- Subsistence harvester (i.e. gathers wild foods)
- Subsistence consumer (i.e. eats wild foods)
- ☐ Farmer □ Other:

 \boxtimes Site visitor

 \boxtimes Trespasser

□ Recreational user

* bgs - below ground surface

- **2. Exposure Pathways:** (*The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".*)
- a) Direct Contact -

b)

1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

Г

Comments: Contamination is present between 0-15 feet below ground surface. However, the are is under a paved parking lot and road-way. For incidental soil ingestion to occur the to be removed or disturbed. 2. Dermal Absorption of Contaminants from Soil Are contaminants present or potentially present in surface soil between 0 (Contamination at deeper depths may require evaluation on a site specific	asphalt would have and 15 feet below the ground su basis.)	×
 is under a paved parking lot and road-way. For incidental soil ingestion to occur the to be removed or disturbed. 2. Dermal Absorption of Contaminants from Soil Are contaminants present or potentially present in surface soil between 0 	asphalt would have and 15 feet below the ground su basis.)	×
Are contaminants present or potentially present in surface soil between 0	basis.)	×
	basis.)	×
	nce document)?	7
Can the soil contaminants permeate the skin (see Appendix B in the guida		
If both boxes are checked, label this pathway complete:	nplete	
Comments:		
Several constituents of diesel fuel are recognized as a potential risk for dermal exposed 1-Methylnaphthalene, and 2-Methylnaphthaleneand are present in groundwater at 18 AAC 75, Table C criteria, but above the screening level of 1/10th. Acenaphthene, F Phenanthrene exist below the ADEC screening level. The soil concentrations for thes	the site, below the luorene, and	
Ingestion - 1. Ingestion of Groundwater		
Have contaminants been detected or are they expected to be detected in the or are contaminants expected to migrate to groundwater in the future?	ne groundwater,	$\overline{\langle}$
Could the potentially affected groundwater be used as a current or future source? Please note, only leave the box unchecked if DEC has determined water is not a currently or reasonably expected future source of drinking to 18 AAC 75.350.	the ground-	₹
If both boxes are checked, label this pathway complete:	nplete	
Comments:		

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:	Incomplete
Comments:	
The nearest surface water body, Cook Inlet, could not be used as a current source, due to salinity.	or future drinking water
3. Ingestion of Wild and Farmed Foods	
Is the site in an area that is used or reasonably could be used for harvesting of wild or farmed foods?	hunting, fishing, or
Do the site contaminants have the potential to bioaccumulate (se document)?	e Appendix C in the guidant
Are site contaminants located where they would have the potenti biota? (i.e. soil within the root zone for plants or burrowing dep groundwater that could be connected to surface water, etc.)	-
If all of the boxes are checked, label this pathway complete:	Incomplete
Comments:	
Phenanthrene was detected above the ADEC 1/10 screening level and bel C groundwater cleanup levels. Benzo[a]pyrene, Benzo[b]fluoranthene, and not detected, however the method detection limits were below the 1/10th	d Benzo[k]fluoranthene were
Inhalation- 1. Inhalation of Outdoor Air	
Are contaminants present or potentially present in surface soil be ground surface? (Contamination at deeper depths may require e	
Are the contaminants in soil volatile (see Appendix D in the gu	uidance document)?
If both boxes are checked, label this pathway complete:	Complete

Comments:

c)

The area of contamination is paved and located adjacent to a building which is used as an auto shop, warehouse and for vehicle fueling.

 \square

 \square

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

The adjacent building is used as an auto shop, warehouse and for vehicle fueling.

 $\overline{\times}$

 $\overline{\times}$

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:

Comments:

Exposure to groundwater could occur during construction activities. Contaminant concentrations in groundwater exceed the ADEC groundwater cleanup levels in 18 AAC 75, Table C.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

The contaminants of concern are volatile but are not used for household purposes.

 \square

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Nonvolatile compounds are not found in the top 2 centimeters of soil. The area is currently paved.

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

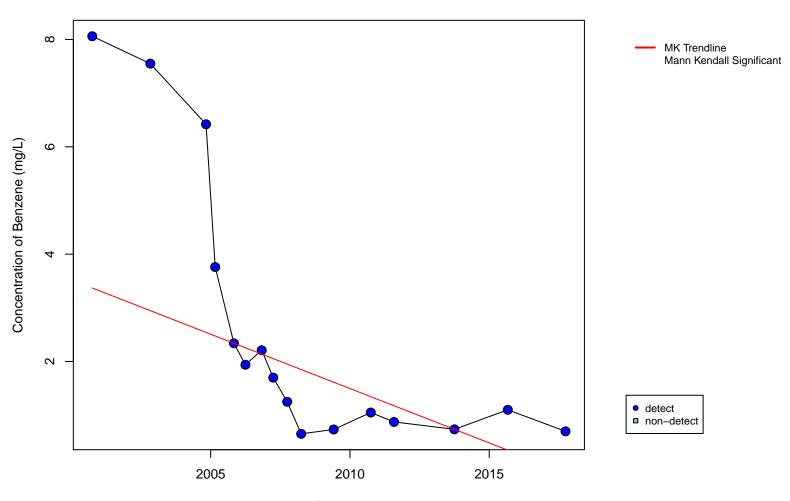
Comments:

Sediment is not present at the site.

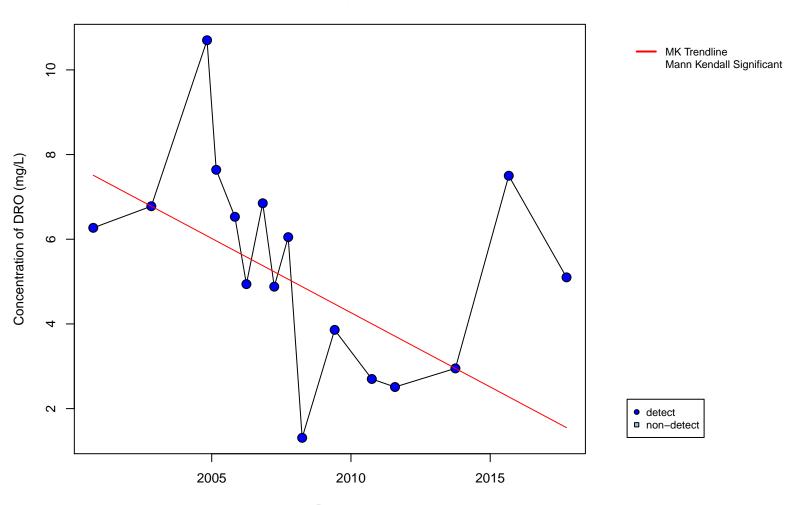
4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

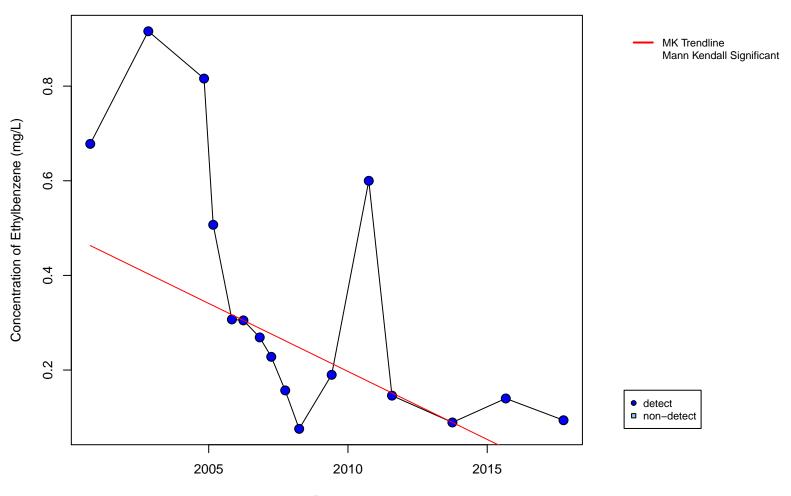
Site: CSX Lines, LLC - Formerly Sealand Freight Services, Inc. Completed By: Kate Acker

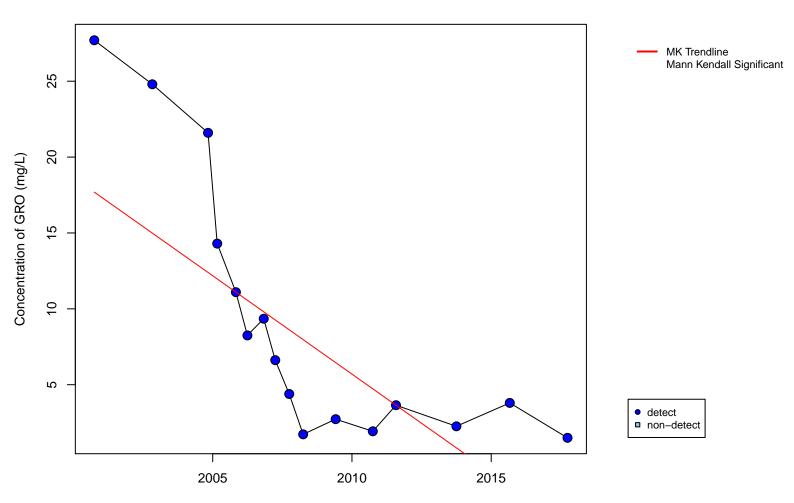

Instructions: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

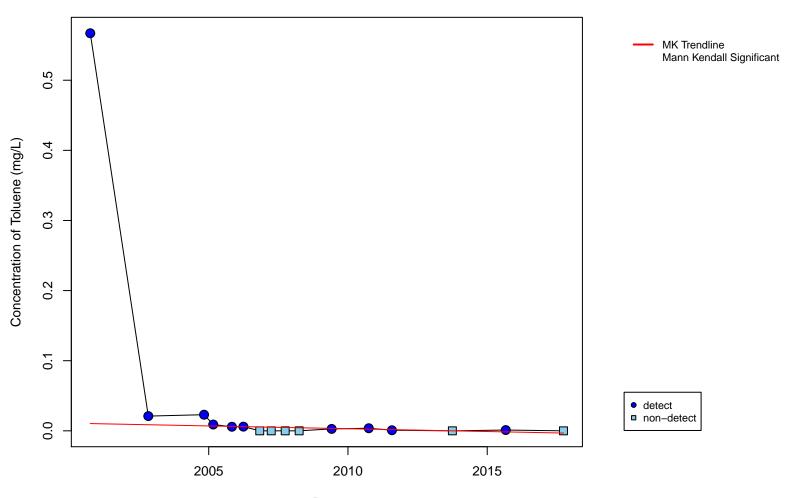
Date Completed: 12/22/2017								(5)			
(1)	(2)	(3)		(4)	expo "F" f	tify the osure pa or futur re recep	athway e recep	: Enter otors, "	r "C" fo 'C/F" fo	or currei or both (nt rece currer	eptors nt and
Check the media could be directly by the release.		Check all exposure media identified in (Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.		urre						ors: /
Media	Transport Mechanisms	Exposure M	edia	Exposure Pathway/Route	/	tren)	kers respo	Il USer	^{vorke} l			
Surface Soil (0-2 ft bgs)	Direct release to surface soil check soil Migration to subsurface check soil Migration to groundwater check groundwater Volatilization check air				Residents	Commercial or industricial or	Site visitors, t	Construction we	Farmers or subsister	Subsistence conc.	Other	
	Runoff or erosion check surface water	N		ntal Soil Ingestion				•				
	Uptake by plants or animals <u>check biota</u> Other (list):	soil	/	al Absorption of Contaminants from Soil				F				
	Direct release to subsurface soil check soil	,	Inhala	tion of Fugitive Dust								
Subsurface Soil	✓ Migration to groundwater Check groundwater ✓ Volatilization Check air	 	✓ Ingest	ion of Groundwater				F				
(2-15 ft bgs)	Uptake by plants or animals check biota	groundwater	🗸 Derma	al Absorption of Contaminants in Groundwater				F				
	Other (list):		🗌 Inhala	tion of Volatile Compounds in Tap Water								
	Direct release to groundwater check groundwater			tion of Outdoor Air			-	-				
Ground- water	Flow to surface water body check surface water	air		tion of Outdoor Air tion of Indoor Air		F	F C/F	F			_	
	Flow to sediment <u>check sediment</u> Uptake by plants or animals <u>check biota</u>		/	tion of Fugitive Dust		C/F	U/F	0/1			_	
	Uptake by plants or animals <u>check biota</u> Other (list):											
	Direct release to surface water check surface water		Ingest	ion of Surface Water								
Surface	Volatilization <u>check air</u>	Surface water	Derma	al Absorption of Contaminants in Surface Water								
Water	Sedimentation <u>check sediment</u> Uptake by plants or animals <u>check biota</u>		🗌 Inhala	tion of Volatile Compounds in Tap Water								
	Uptake by plants or animals <u>check biota</u> Other (list):					11						
	Direct release to addiment	sediment	Direct	Contact with Sediment								
Sediment	Direct release to sediment check sediment Resuspension, runoff, or erosion check surface water		,									
	Uptake by plants or animals check biota	biota	Ingest	ion of Wild or Farmed Foods								

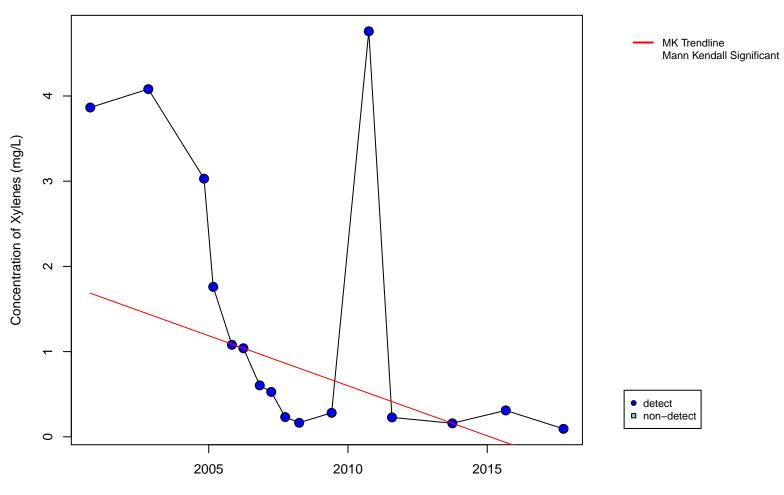

Revised, 10/01/2010

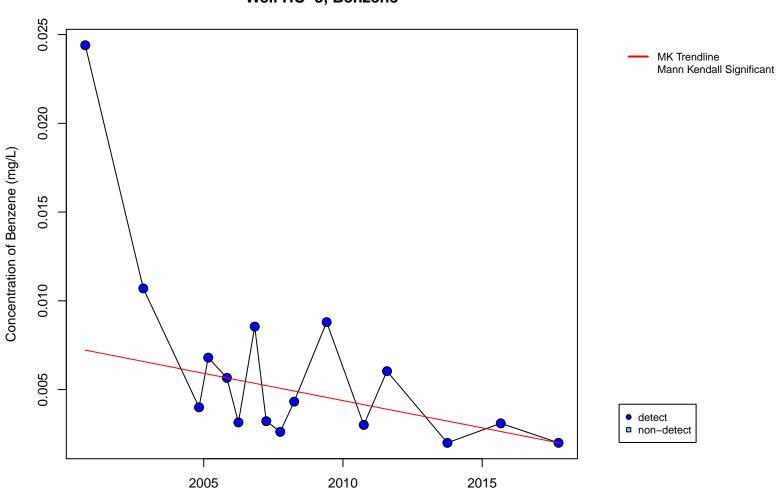
APPENDIX E

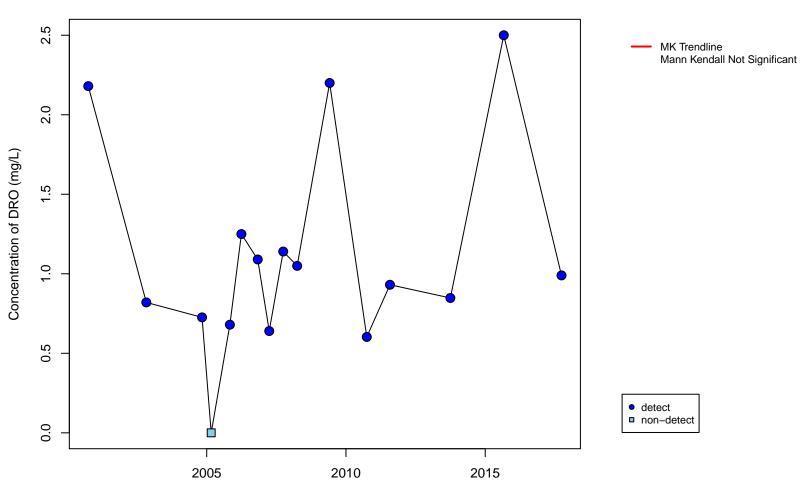

Mann Kendall Analysis

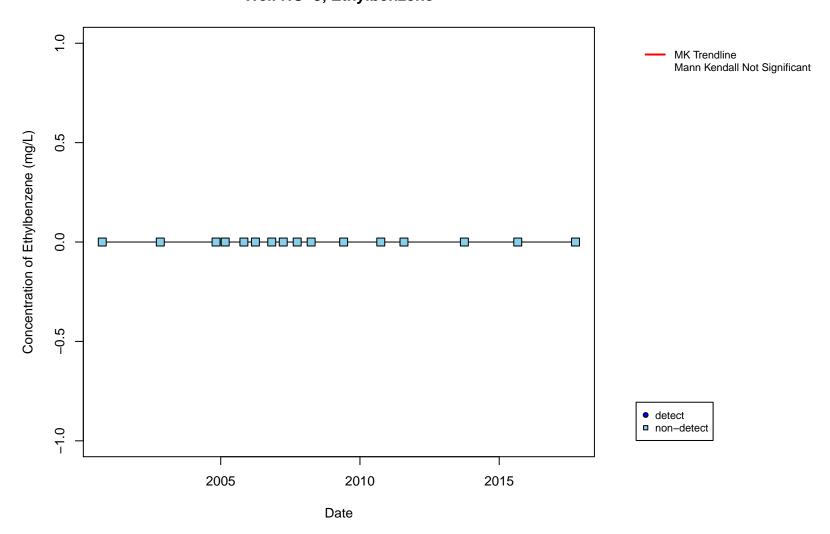

Well HC-1, Benzene

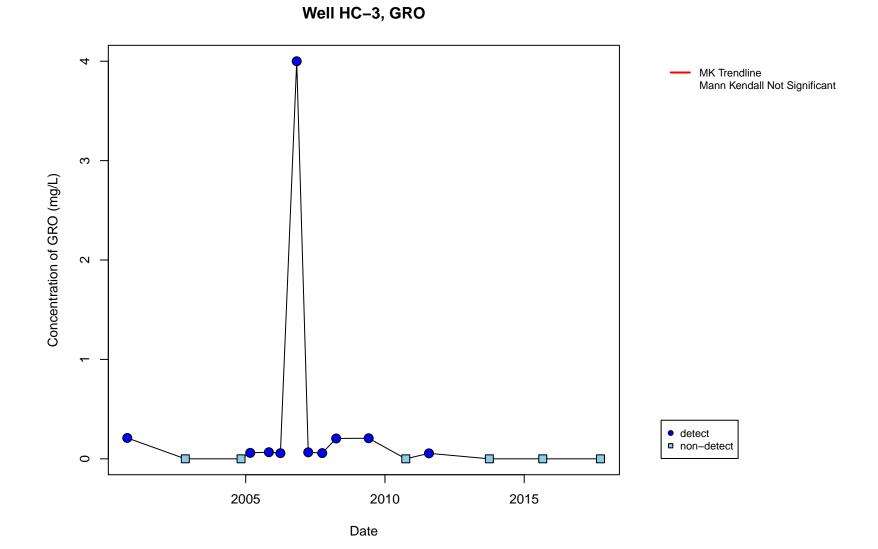

Well HC-1, DRO

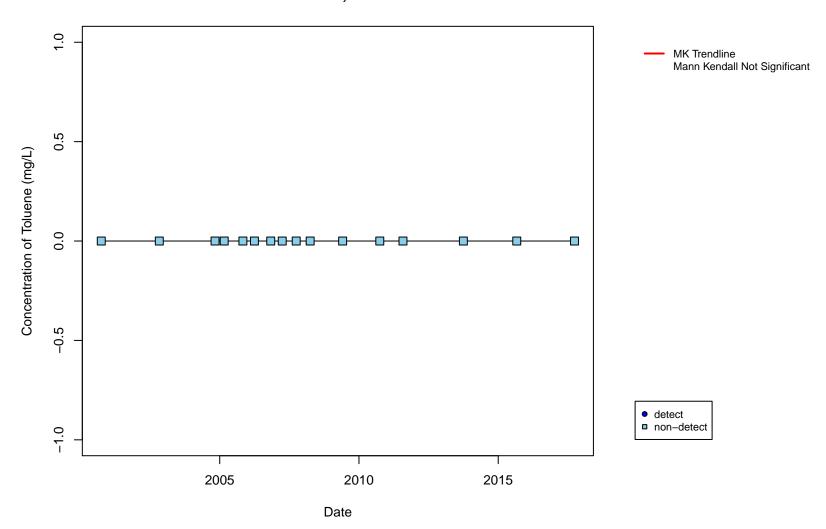

Well HC-1, Ethylbenzene


Well HC-1, GRO

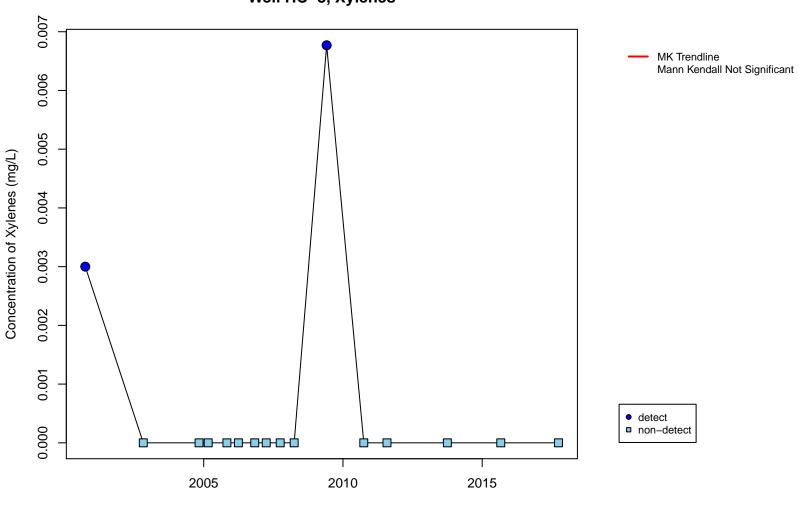

Well HC-1, Toluene


Well HC-1, Xylenes

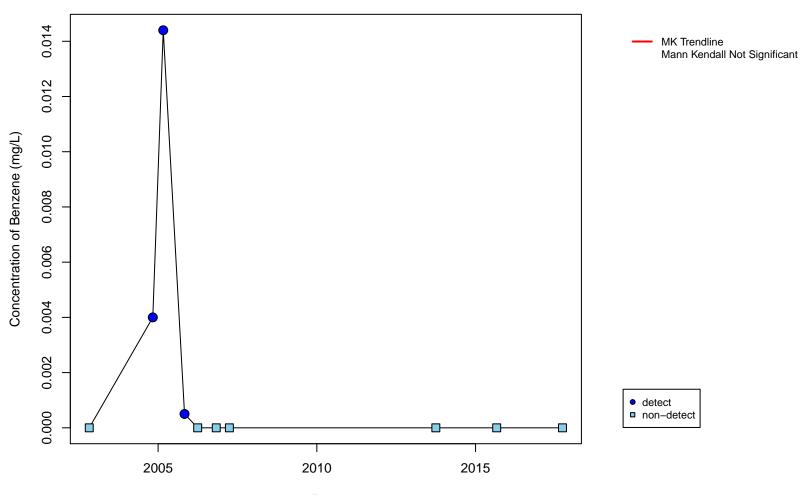

Well HC-3, Benzene

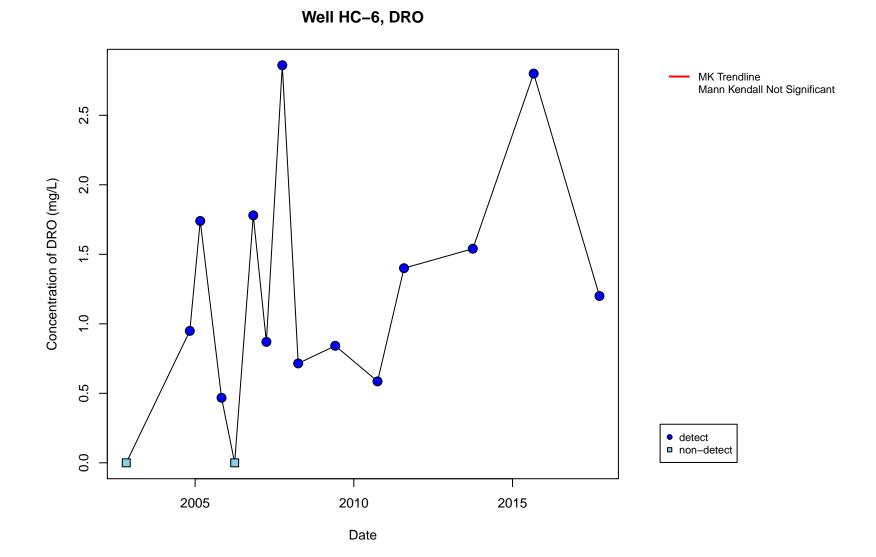


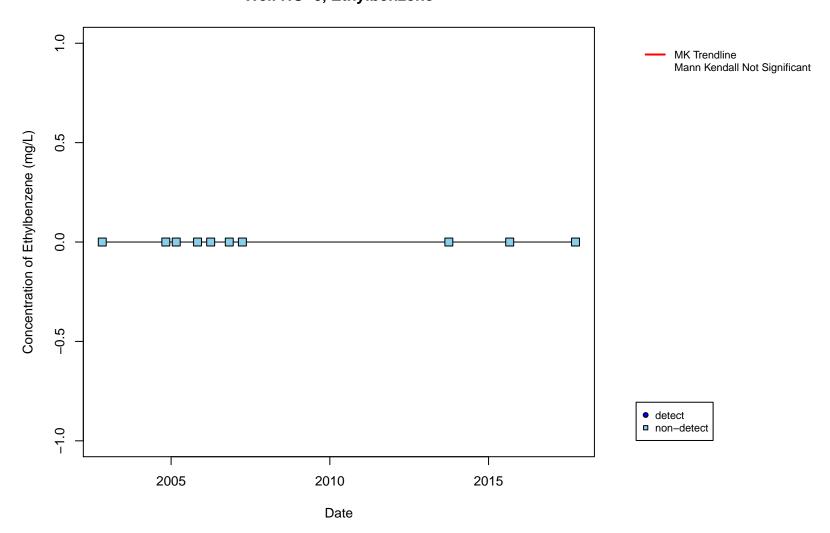
Well HC-3, DRO



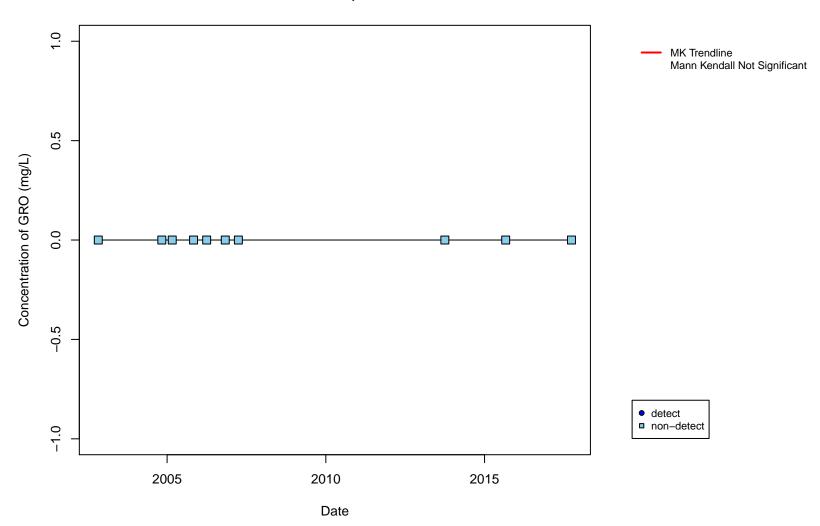
Well HC-3, Ethylbenzene



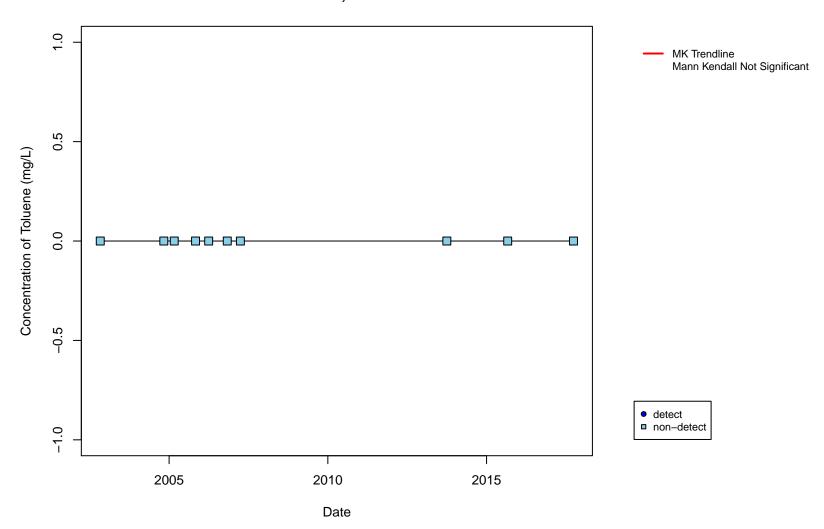

Well HC-3, Toluene

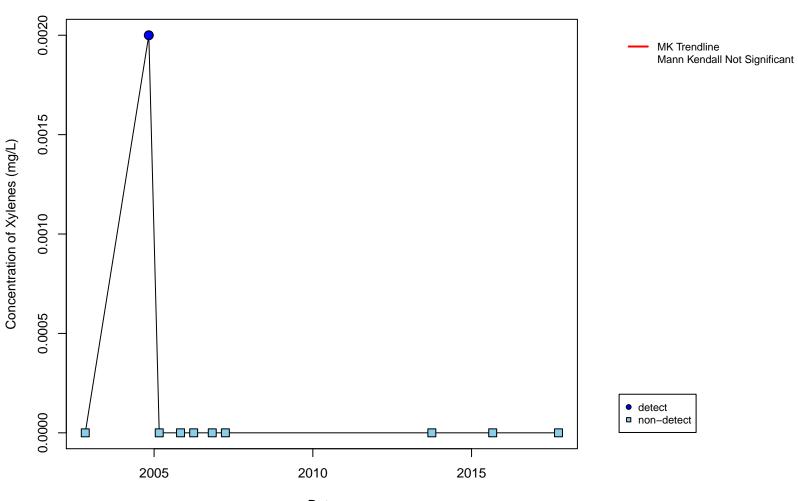


Well HC-3, Xylenes

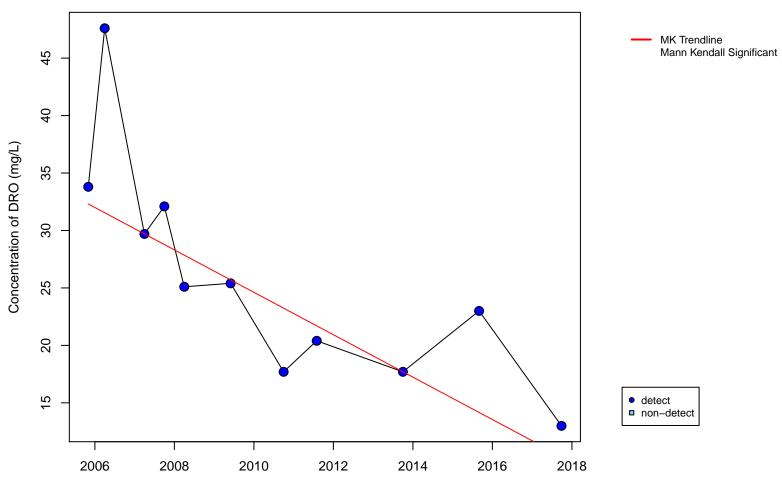


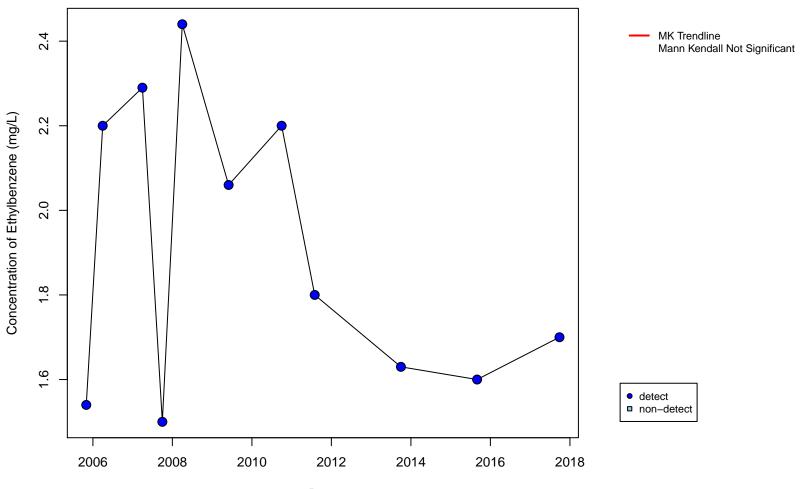
Well HC-6, Benzene

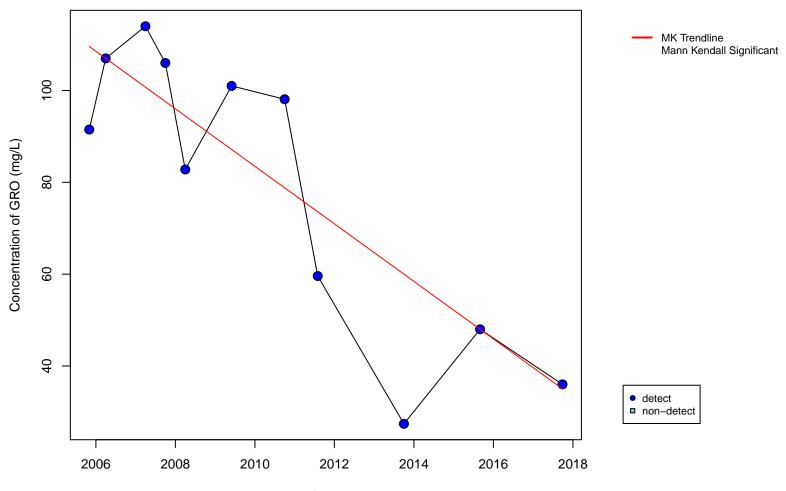


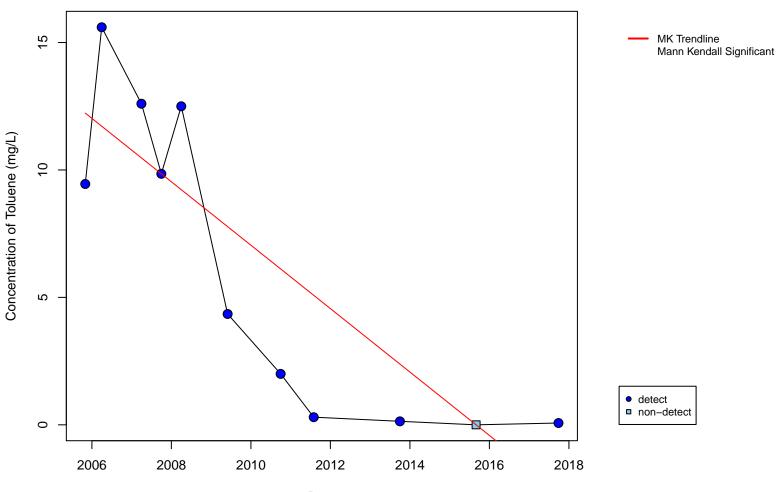

Well HC-6, Ethylbenzene

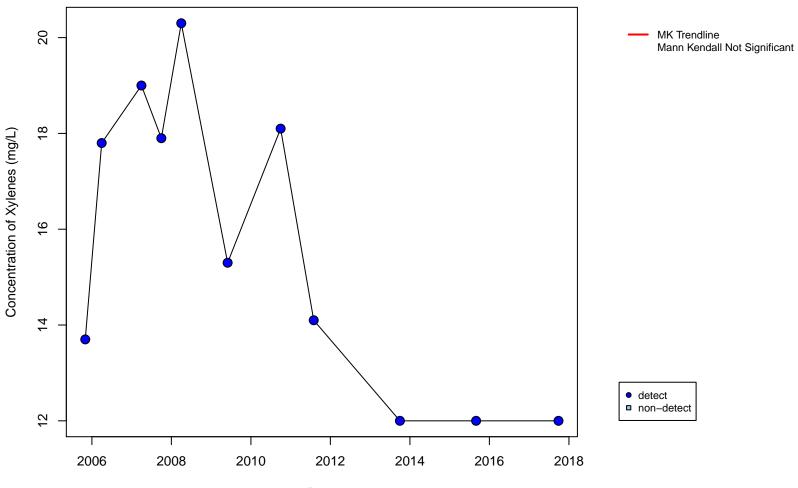

Well HC-6, GRO

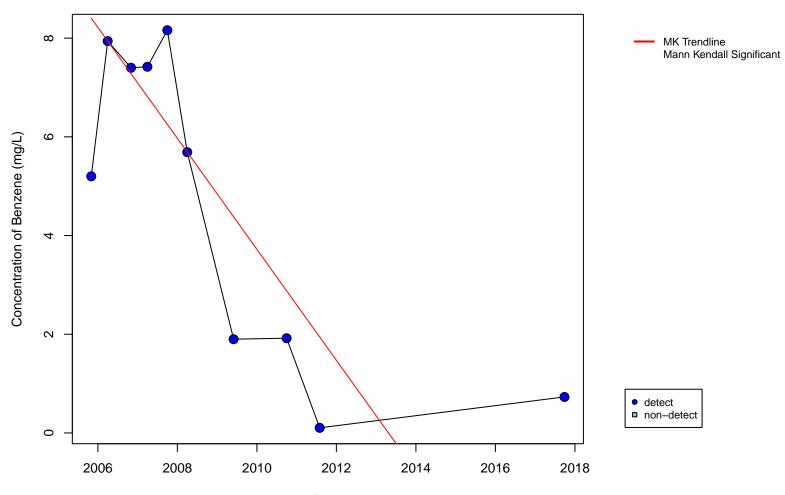

Well HC-6, Toluene

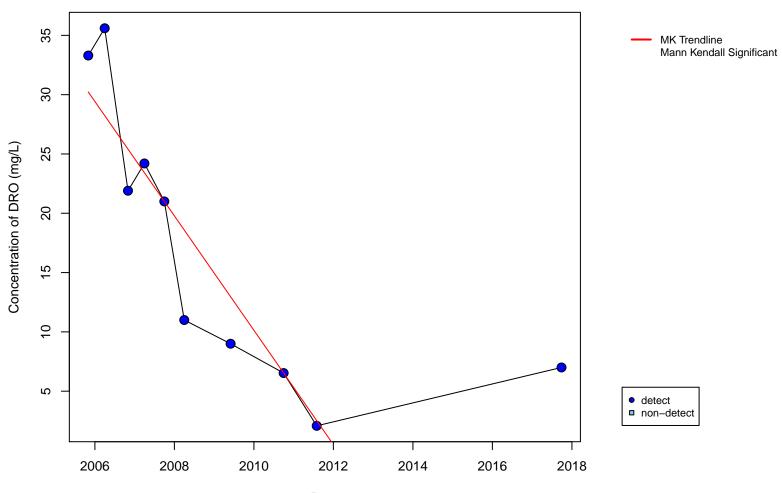

Well HC-6, Xylenes

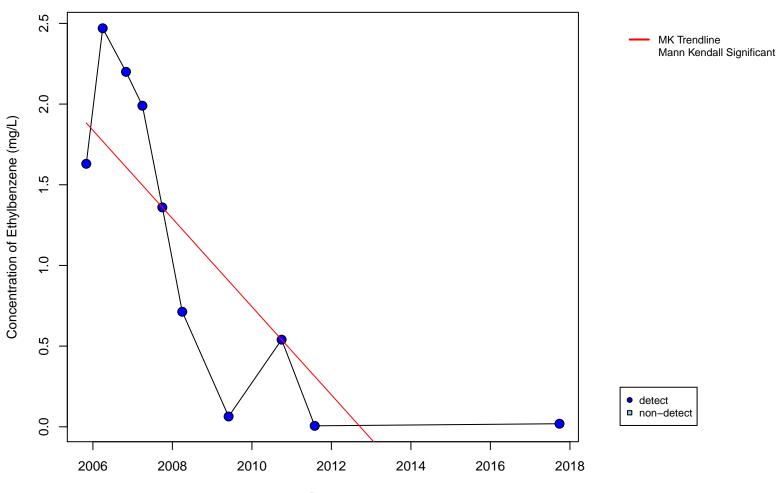

Well MW-8, Benzene

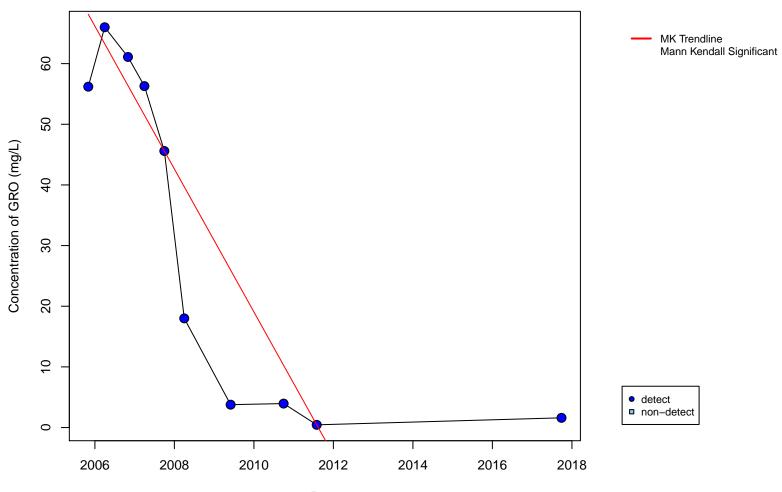

Well MW-8, DRO

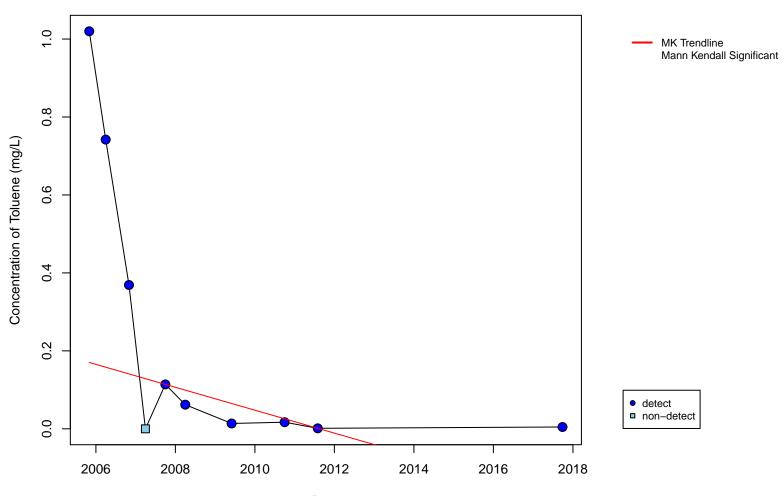

Well MW-8, Ethylbenzene

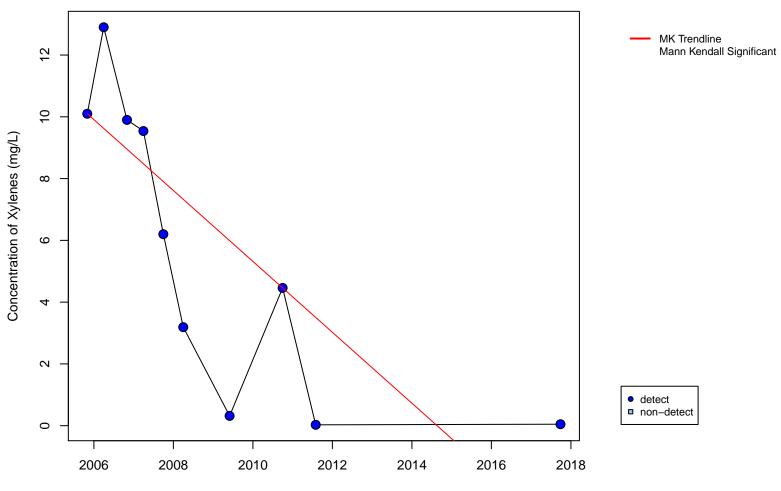

Well MW-8, GRO


Well MW-8, Toluene


Well MW-8, Xylenes


Well MW-9, Benzene


Well MW-9, DRO


Well MW-9, Ethylbenzene

Well MW-9, GRO

Well MW-9, Toluene

Well MW-9, Xylenes

TABLES ACRONYM KEY 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Notes:

A minimum of five (8) independent sampling events are required for the Mann Kendall test to be valid The Confidence Level for all analyses is 95%

The Theil Sen line determines that magnitude of the slope where a trend exists in the data

Acronym	Definition
Ν	Sample size
р	The probablility of obtaining a result equal to or "more extreme" than what was actually observed
tau	A non-parametric measure of correlation between two variables
TS	Theil Sen
R^2	A statistical measure of how close the data are to the fitted (TS) line
S	Mann Kendall statistic
VarS	Variance of the Mann Kendall statistic

TABLE E1: MANN KENDALL TRENDS 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Location	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
HC-1	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing
HC-3	Decreasing	NA	NA	Stable	Stable	Stable
HC-6	Stable	NA	NA	Stable	Stable	NA
MW-8	Decreasing	Decreasing	Stable	Stable	Decreasing	Decreasing
MW-9	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing

Note:

NA = All non-detect values, unable to perform test

TABLE E2: BENZENE MANN KENDALL TREND SUMMARY 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Location	Ν	tau	р	S	VarS	Trend	TS Intercept	TS slope	R ²
HC-1	16	-0.767	4.18E-05	-92	493	Decreasing	18.6	-0.00124	0.59
HC-3	16	-0.494	0.00895	-59	492	Decreasing	0.0163	-8.82E-07	0.24
HC-6	10	-0.487	0.0949	-16	80.7	Stable	0	0	0.24
MW-8	11	-0.782	0.00108	-43	165	Decreasing	16.7	-0.000991	0.61
MW-9	10	-0.511	0.0491	-23	125	Decreasing	41.3	-0.00252	0.26

TABLE E3: TOLUENE MANN KENDALL TREND SUMMARY 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Location	Ν	tau	р	S	VarS	Trend	TS Intercept	TS slope	\mathbb{R}^2
HC-1	16	-0.561	0.00404	-63	465	Decreasing	0.0278	-1.74E-06	0.31
HC-3	16	NA	NA	NA	NA	NA	NA	NA	NA
HC-6	10	NA	NA	NA	NA	NA	NA	NA	NA
MW-8	11	-0.782	0.00108	-43	165	Decreasing	75.9	-0.00497	0.61
MW-9	10	-0.644	0.0123	-29	125	Decreasing	1.65	-0.000113	0.41

Note:

NA = All non-detect values, unable to perform test

TABLE E4: ETHYLBENZENE MANN KENDALL TREND SUMMARY 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Location	Ν	tau	р	S	VarS	Trend	TS Intercept	TS slope	\mathbb{R}^2
HC-1	16	-0.7	0.000186	-84	493	Decreasing	2.36	-0.000151	0.49
HC-3	16	NA	NA	NA	NA	NA	NA	NA	NA
HC-6	10	NA	NA	NA	NA	NA	NA	NA	NA
MW-8	11	-0.183	0.482	-10	164	Stable	4.18	-0.000154	0.03
MW-9	10	-0.778	0.00236	-35	125	Decreasing	19.2	-0.00127	0.61

Note:

NA = All non-detect values, unable to perform test

TABLE E5: TOTAL XYLENE MANN KENDALL TREND SUMMARY 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Location	Ν	tau	р	S	VarS	Trend	TS Intercept	TS slope	\mathbb{R}^2
HC-1	16	-0.667	0.000375	-80	493	Decreasing	13	-0.000919	0.44
HC-3	16	-0.153	0.527	-9	160	Stable	0	0	0.02
HC-6	10	-0.348	0.296	-7	33	Stable	0	0	0.12
MW-8	11	-0.411	0.0983	-22	161	Stable	41.2	-0.0018	0.17
MW-9	10	-0.822	0.00128	-37	125	Decreasing	88.9	-0.00585	0.68

TABLE E6: DRO MANN KENDALL TREND SUMMARY 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Location	Ν	tau	р	S	VarS	Trend	TS Intercept	TS slope	R ²
HC-1	16	-0.383	0.0428	-46	493	Decreasing	22.6	-0.00131	0.15
HC-3	16	0.1	0.62	12	493	Stable	0.489	2.87E-05	0.01
HC-6	15	0.268	0.181	28	407	Stable	-2.22	0.00021	0.07
MW-8	11	-0.734	0.00232	-40	164	Decreasing	109	-0.00588	0.54
MW-9	10	-0.822	0.00128	-37	125	Decreasing	235	-0.0156	0.68

TABLE E7: GRO MANN KENDALL TREND SUMMARY 2017 LONG-TERM GROUNDWATER MONITORING REPORT MATSON PORT OF ANCHORAGE TERMINAL FACILITY

Location	Ν	tau	р	S	VarS	Trend	TS Intercept	TS slope	R ²
HC-1	16	-0.783	2.83E-05	-94	493	Decreasing	110	-0.00745	0.61
HC-3	16	-0.258	0.194	-29	465	Stable	0.153	-6.44E-06	0.07
HC-6	10	NA	NA	NA	NA	NA	NA	NA	NA
MW-8	11	-0.636	0.00812	-35	165	Decreasing	322	-0.0164	0.40
MW-9	10	-0.778	0.00236	-35	125	Decreasing	522	-0.0343	0.61

Note:

NA = All non-detect values, unable to perform test