EUREKA LODGE SITE CHARACTERIZATION REPORT

MILE 128 GLENN HIGHWAY, ALASKA

ADEC File Number 210.28.006

November 28, 2011

Prepared for:

Crowley Maritime Corporation

1102 SW Massachusetts Street Seattle, Washington 98134

Prepared by:

825 W. 8th Ave. Anchorage, AK 99501

Prepared by:

Ashley m. Hanser

Ashley M. Hansen Environmental Scientist

Reviewed by:

Daniel J. Frank Project Manager

TABLE OF CONTENTS

AC	RON	YMS AND ABBREVIATIONS	iii
EX	ECUT	TIVE SUMMARY	v
1.	INTR	ODUCTION	1
		BACKGROUND	3 3 3 4
3.		ASSESSMENT ACTIVITIES Soil Borings 3.1.1. Field Screening 3.1.2. Soil Sampling	7 7
	3.2. 3.3.	Groundwater Sampling Surface Water Sampling	8 9
4.	4.1.	OBSERVATIONS AND ANALYTICAL RESULTS Field Observations 4.1.1. Soil Lithology Observations 4.1.2. Groundwater Table Observations 4.1.3. Water Quality Observations Laboratory Analytical Results 4.2.1. Analytical Methods 4.2.2. Soil Analytical Results	.11 .11 .11 .12 .12
5.		4.2.3. Groundwater Sampling Analytical Results 4.2.4. Surface Water Sampling Results CEPTUAL SITE MODEL Conceptual Site Model 5.1.1. Source 5.1.2. Impacted Media 5.1.3. Transport Mechanisms 5.1.4. Exposure Media	. 13 . 15 . 15 . 15 . 16
6.		5.1.5. Human Health Exposure Routes and Receptors CLUSIONS AND RECOMMENDATIONS	

	6.2.	Recommendations	19
7.	REF	ERENCES	21
TA	BLES	5	
	1:	Sample Collection Summary	
	2:	Monitoring Well Construction	
	3:	Groundwater and Surface Water Elevation Data	
	4:	Field-Collected Groundwater Quality Parameters	
	5:	Soil Boring Analytical Results Summary	
	6:	Groundwater Analytical Results Summary	
	7:	Surface water Analytical Results Summary	
FIC	SURE	es es	
	1:	Site Location Map	

APPENDICES

2:

3:

4:

A: Field Notes

Site Plan

- B: Photographic Log
- C: Borehole Installation Logs

Soil Analytical Results Summary

D: ESC Analytical Results; ADEC Data Review Checklists

Groundwater/Surface Water Analytical Results Summary

- E: Quality Assurance Report
- F: ADEC Conceptual Site Model Human Health Scoping Form and Graphic

ACRONYMS AND ABBREVIATIONS

AAC	. Alaska Administrative Code
ADEC	. Alaska Department of Environmental Conservation
AK101	. Alaska Method AK 101
AK102	. Alaska Method AK 102
AK103	. Alaska Method AK 103
AST	. Above-ground storage tank
bgs	. Below ground surface
BTEX	. Benzene, toluene, ethylbenzene, and total xylenes
°C	. Degrees Celsius
CPD	. Crowley Petroleum Distribution, Inc.
CSM	. Conceptual site model
CoC	. Chain-of-custody
CS	. Contaminated Sites
DO	. Dissolved oxygen
DRO	. Diesel-range organics
DTW	. Depth-to-water
EPA	. United States Environmental Protection Agency
ESC	. ESC Lab Sciences, Inc.
GRO	. Gasoline-range organics
mg/kg	. Milligrams per kilogram
mg/L	. Milligrams per liter
MLFA	. Michael L. Foster & Associates
OASIS	. OASIS Environmental, Inc.
ORP	. Oxidation-reduction potential
PAH	. Polynuclear aromatic hydrocarbon
PID	. Photo-ionization detector
QA/QC	. Quality assurance/quality control
QAR	. Quality Assurance Report
RRO	. Residual-range organics
SCLs	. Soil Cleanup Levels (ADEC Method Two)
SIM	. Selective ion monitoring
SPAR	. Spill Prevention and Response Program
SW	. Solid Waste
TAH	. Total aromatic hydrocarbons
TAqH	. Total aqueous hydrocarbons

EXECUTIVE SUMMARY

OASIS Environmental, Inc. conducted site characterization activities at the Eureka Lodge above-ground storage (AST) tank site located near Glennallen, Alaska in June 2011. The objective of characterization activities was to evaluate the nature and extent of petroleum hydrocarbon impact to soil, groundwater, and surface water at the site related an overfill-spill by Crowley Petroleum Distribution (CPD) of unleaded gasoline at one of two ASTs located east of the Eureka Lodge. The spill occurred on June 11, 2010. In response to the spill, Michael L. Foster & Associates, Inc. (MLFA) conducted two separate soil removals: one in June 2010; and, one in September 2010. On June 15 and 16, 2010, MLFA and CPD hand-excavated and removed impacted soil from adjacent to and below the East Tank to a depth ranging from 11 to 18 inches below ground surface (bgs). On September 28 and 29, 2010, MLFA returned to the site and conducted

additional soil excavation below the east tank and an adjacent shed, which were both moved to gain access to impacted soil. MLFA excavated approximately 57 cubic yards

(86 tons) of contaminated soil. The September excavation averaged 12 feet wide by 23 feet long and varied in depth from four feet bgs on the northern side to seven feet bgs throughout the remainder of the excavation. Analytical results from excavation sidewall and floor confirmation samples collected prior to back fill indicated that petroleum hydrocarbon impacts remained. Groundwater was not observed in the excavation at the time the removal was conducted.

Based on the evidence of remaining impact to soil, OASIS conducted site characterization sampling that included an attempt to delineate horizontally and vertically the impact to soil; evaluate any impact to groundwater; and, evaluate the adjacent surface water that is also used as the area's drinking water source. OASIS installed eight soil borings, each to 20 feet bgs and sampled at depths where impact was evident,

surface water that is also used as the area's drinking water source. OASIS installed eight soil borings, each to 20 feet bgs and sampled at depths where impact was evident, or, if not evident, at the bottom of the boring. Except at two soil borings, OASIS did not observe impact to subsurface soils north and east of the ASTs. Two soil borings installed to the south indicated impact with benzene and DRO between 9 and 13 feet bgs. Soil borings were extended until either groundwater was reached or no evidence of impact was found. All borings were advanced to 20 feet. Delineation in this direct was not completed at the request of the landowner who did not want borings placed through a newly asphalted area.

At three soil-boring locations, OASIS installed permanent monitoring wells to evaluate groundwater. Of the three wells installed, groundwater was evident in only one, MW-2, located on the east side of the site. During drilling of MW-1 at the impacted south side of the site, groundwater was evident; however after completion of the well, water did not flow into the casing. The northern well, located between the surface water and the ASTs also was dry. Analytical results for MW-2, located in a clean soil area, indicated no impact to groundwater.

11/28/2011

Analytical results for two surface water samples collected at the northern unnamed lake indicated no impact to surface water. A sheen test conducted on the shoreline did not produce sheen.

Based on the findings presented herein, impact to subsurface soil remains at the southern side of the site.

1. INTRODUCTION

This site characterization report presents the results of subsurface soil, groundwater, and surface water sampling activities conducted by OASIS Environmental, Inc. (OASIS) in May 2011 at the Eureka Lodge above-ground storage tank (AST) site located near Glennallen, Alaska,

Site assessment activities were conducted in accordance with the letter work plan *Site Characterization Work Plan; Eureka Lodge; Mile 128 Glenn Highway* dated March 3, 2011, as approved by the Alaska Department of Environmental Conservation (ADEC; OASIS 2011). The ADEC file number for the site is 210.28.006. This report was prepared in accordance with Title 18 of the Alaska Administrative Code, Chapter 75 (18 AAC 75), Article 3, entitled *Oil and Hazardous Substance Pollution Control Regulations, Discharge Reporting, Cleanup, and Disposal of Oil and Other Hazardous Substances*, revised as of October 9, 2008 (ADEC 2008) and *Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites* (ADEC 2009).

The primary objective of the site assessment activities were to evaluate the nature and extent of petroleum hydrocarbon impact to subsurface soil, groundwater, and surface water resulting from a spill of supreme unleaded fuel during supply truck to tank filling operations.

The ADEC-qualified persons conducting the sample collection activities for OASIS were Ms. Ashley Hansen and Mr. Blake Delaney. Ms. Melissa Pike evaluated analytical data. Ms. Hansen and Mr. Daniel Frank conducted data interpretation and reporting.

This document outlines the technical and analytical approaches employed during fieldwork and characterizes actual contaminants detected. This document includes site background information (Section 2); investigation activities (Section 3); site observations and analytical results (Section 4); a conceptual site model (Section 5); conclusions (Section 6); and references (Section 7).

2. SITE BACKGROUND

2.1. Site Location and Description

Eureka Lodge is located at mile 128 of the Glenn Highway, approximately a 2.5-hour drive from Anchorage, Alaska and 30 miles west of Glennallen, Alaska (Figure 1). The above ground storage tanks are located at approximately 61°56'17.39" north latitude and -147°10'20.73" west longitude, on the north side of the Glenn Highway, east of the Lodge (Figure 2). The site is located within Bureau of Land Management Public Land Survey Section 1, Township 21 North, Range 12 East, Seward Meridian.

2.2. Site Operations and History

The lodge and fuel tanks are owned and operated by the Eureka Lodge (Mr. and Mrs. Jim and Daria Fimpel). The fuel tanks are filled as needed by Crowley Petroleum Distribution (CPD). There are two fuel ASTs at the site: a west tank, with an 8,000-gallon capacity utilized for regular unleaded gasoline, and a 6,000-gallon duel compartment east tank comprised of a 2,000-gallon northern compartment used for supreme unleaded and a 4,000-gallon southern compartment used for diesel fuel. Both tanks are skid mounted.

2.3. Previous Site Investigations

2.3.1. June 2010 Removal

On June 11, 2010, during normal filling operations, CPD overfilled one of two ASTs located at the Eureka Lodge. A total of ten gallons of supreme unleaded were reported as spilled. CDP contacted Michael L. Foster & Associates, Inc. (MLFA) and an initial removal of impacted soil was conducted on June 15 and 16, 2010.

On June 15 and 16, 2010, MLFA and CPD hand-excavated and removed impacted soil from adjacent to and below the East Tank to a depth ranging from 11 to 18 inches below ground surface (bgs). Depth of excavation was limited by harder soils located beyond 18 inches bgs. Field observations and analytical results indicated that not all fuel-impacted soil was removed and that impact from a previous release event was encountered.

After conducting the June 2010 removal, MLFA collected soil samples from the excavation floor near the release center and at the north and south excavation extents. Analytical results from the excavation floor indicate gasoline-range organics (GRO), diesel-range organics (DRO), and benzene, toluene, ethyl-benzene, and total xylenes (BTEX) remain present above the associated ADEC Method Two cleanup concentrations. A total of nine super-sacks containing 13 tons of soil were shipped to Alaska Soil Recycling in Anchorage, Alaska for thermal remediation. The excavation was not backfilled; instead it was kept open but covered in anticipation of the need for further excavation and removal work.

2.3.2. September Removal

On September 28 and 29, 2010, MLFA returned to the site under contract to Crowley and conducted additional soil excavation and remedial activities. The east tank and an adjacent shed were moved temporarily to gain access to contaminated soil. MLFA excavated approximately 57 cubic yards (86 tons) of contaminated soil. The excavation material consisted primarily of fill material comprised of dry, brownish/grey silt and silty gravel from the surface to six feet bgs. Dark, grey moist silt was encountered below 6 feet bgs. Groundwater was not encountered during excavation activities. The excavation ranged from four feet bgs on the northern side to seven feet bgs throughout the remainder of the excavation. The excavation averaged 12 feet wide by 23 feet long. The excavation continued on the west wall until further excavation may have affected the stability of the adjacent AST. Excavation sidewall and floor confirmation samples collected prior to back fill contained up to 21.2 milligrams per kilogram (mg/kg) benzene, 604 mg/kg GRO, 19.2 mg/kg ethylbenzene, 84.7 mg/kg xylenes, and 10,900 mg/kg DRO.

The excavation was backfilled with clean material on September 30, 2010. Polyethylene sheeting was placed along the excavation walls prior to backfilling to delineate the clean backfill extents. ADEC assigned spill number 10239916202 to the site and transferred site administration from Spill Prevention and Response Program (SPAR) to the Contaminated Sites (CS) program within ADEC.

2.4. Geology and Hydrogeology

Soil at the site consists primarily of dense, brown silt with fines and approximately 15% fine gravel. Groundwater is not used for drinking water at the site. A past attempt to install a groundwater drinking water well indicated no productive aquifer to 150 feet bgs. OASIS did encounter shallow unconfined groundwater as evident by water accumulation in one of the three groundwater monitoring wells at the site.

2.5. Site Assessment Objectives

The scope of the project is to characterize the nature and extent of petroleum hydrocarbon impact to soil, groundwater, and surface water at the Eureka Lodge AST Tank Site (Figure 2). OASIS's approach will comply with ADEC criteria for implementing this objective. The following tasks will be performed to meet this objective:

- Evaluate the potential vertical and horizontal impacts to the soil and groundwater by using direct push technology (Geoprobe®) to screen soils from the surface to groundwater using continuous MacroCore® samplers;
- Install a maximum of 20 soil borings to delineate the potential impact to the subsurface soil;
- Field screen the length of each 5-foot MacroCore® sample "in situ" using a photo-ionization detector (PID);

Oasis Environmental 4 11/28/2011

- Collect soil samples for off-site laboratory analysis from the depth with the highest PID result or, if no significant response is indicated by the PID, from the groundwater interface;
- Install and sample three permanent groundwater-monitoring wells;
- Collect two surface water samples at the south shore of the unnamed lake; alternatively, one surface water sample may be substituted for a sample from the "well" that is located within the lake itself.
- Conduct an elevation survey to determine the relative elevation of groundwater in each well, the surface water elevation of the unnamed lake to the north will also be recorded;
- Prepare a report detailing the results of field screening, and off-site analytical data as compared to relevant ADEC soil, groundwater, and surface water criteria.

2.6. Regulatory Standards

Analytical results are compared to relevant State of Alaska cleanup criteria. The State of Alaska, through ADEC, has established cleanup criteria for petroleum-contaminated sites. Cleanup standards are defined in 18 AAC 75, Article 3, entitled *Oil and Hazardous Substance Pollution Control Regulations, Discharge Reporting, Cleanup, and Disposal of Oil and Other Hazardous Substances* (ADEC 2008). For this report, soil sample results are compared to ADEC Method Two soil cleanup levels found in Tables B1 and B2 of 18 AAC 75.341. OASIS utilized the most conservative cleanup values (for sites in areas receiving less than 40 inches of rain) when evaluating each contaminant of concern. Groundwater analysis results are evaluated against the cleanup levels listed in 18 AAC 75.345, Table C. The applicable ADEC soil and groundwater cleanup levels are provided with the sample results on sample summary tables.

Oasis Environmental 5 11/28/2011

3. SITE ASSESSMENT ACTIVITIES

This section describes field activities conducted in support of the Eureka Lodge site assessment objectives. Deviations from the work plan include the following:

- Only eight of the maximum 20 soil borings were installed due to a request made by the lodge owners not penetrate the newly asphalt finished parking lot south of the tanks.
- Due to over site by the field team, PAH samples were not collected from the three soil borings closest to the east tank, as stated in the work plan. Analysis of groundwater and surface water did not indicate the presence of PAHs in those media.
- Only one (MW-2) of the three permanent groundwater monitoring wells were sampled due to the absence of water in the wells located north and south of the ASTs.

A summary of sample collection and analyses by date, time, location, and matrix is provided in Table 1. Figure 3 presents the 2011 soil bore locations and analytical results. Figure 4 depicts the three permanent monitoring well locations, the sample analytical results from MW-2, and the surface water sample locations and associated analytical results.

Monitoring well construction and land survey details are provided in Table 2 for each of the three permanent wells installed as part of this field effort. Relative groundwater and surface water elevations, based on an arbitrarily elevation datum, are presented in Table 3. Field gathered water quality parameters are presented in Table 4. Table 5 presents the soil analytical results, Table 6 presents the groundwater analytical results, and Table 7 presents the surface water analytical results.

Field notes and field-generated forms are included as Appendix A. A Photographic Log is included as Appendix B. Draft soil boring logs are included as Appendix C.

3.1. Soil Borings

A total of eight soil borings were drilled using Geoprobe® direct-push technology. The soil borings were sampled using continuous MacroCore® samplers in 5-foot increments. Soil borings were drilled to a depth of 20 feet bgs. Prior to collecting samples for off-site analysis, the length of each 5-foot MacroCore® sample was screened *in-situ* using a PID. At each boring location, one soil sample was collected: one from where groundwater interfaced with soil or from where any hydrocarbon odor or high PID readings were found. Soil samples were alternatively collected from the bottom of each boring where clean soils were evident to confirm the absence of impact vertically.

3.1.1. Field Screening

Soil borings were field screened *in-situ* using a PID. The PID was calibrated to 100 parts per million (ppm) isobutylene at the beginning of each day. *In-situ* field screening was conducted by placing the PID probe within ½ inch from the soil contained within the soil

bore core liner. A dedicated stainless-steel spoon was used to open soils within the MacroCore® during field screening *In-situ*. *In-situ* PID results were noted on the draft soil boring log form for each boring (Appendix C). At locations where samples were collected for off-site analysis, the associated PID result is reported along with laboratory analytical results in the soil data summary table.

3.1.2. Soil Sampling

A total of ten project soil samples were collected for laboratory analysis. Field personnel used dedicated personal protective equipment and single-use, disposable sampling scoops to prevent cross-contamination between samples. Soil samples were submitted for analysis GRO, DRO, residual-range organic (RRO), and BTEX.

The field team collected soils intended for volatile analyses (BTEX and GRO) first, without homogenization. Personnel collected a minimum of 25 grams of soil and placed it into pre-tared jars with a Teflon[®]-lined septum fused to the lid. Samplers then added the contents of one vial containing 25 milliliters of methanol to the jar, completely submerging the soil sample in order to preserve it. The remaining sample fraction was then homogenized, taking care to remove rocks larger than approximately ¼ inch and any vegetative material.

Soil samples collected for DRO and RRO analysis were homogenized and placed into laboratory-supplied, unpreserved sample jars. Sample jars were labeled with field sample identification numbers, the date and times of collection, and analyses requested.

Duplicate samples were collected at a frequency of 10% per method for quality assurance/quality control (QA/QC) purposes. Laboratory prepared trip blanks accompanied all BTEX and GRO samples from the laboratory, to the field, and back to the laboratory.

Field personnel placed all soil samples into a cooler with gel ice, maintaining the required temperature range of 4 degrees Celsius ($^{\circ}$ C) \pm 2 $^{\circ}$ C. Chain-of-custody (CoC) procedures were followed. Table 1 summarizes the soil samples collected, locations, and requested analyses.

3.2. Groundwater Sampling

OASIS collected groundwater samples from only one (MW-2) of the three the permanent monitoring wells installed as no groundwater was found in the remaining wells. Wells where allowed 72 hours to charge prior to demobilization of the field team.

Prior to sampling, each well was gauged for depth-to-groundwater (DTW). No freephase hydrocarbons were encountered at any of the well locations. General construction details and relative DTW are presented in Table 2. Table 3 presents groundwater elevation calculations for the permanent monitoring wells.

After recording the DTW measurements, wells were purged using low-flow techniques that minimize purge volume and well draw down. The field team monitored and recorded on low-flow groundwater data sheets (Appendix A) successive readings for pH, temperature, specific conductivity, and dissolved oxygen (DO). Prior to sampling, a final

Oasis Environmental 8 11/28/2011

set of groundwater quality parameters were recorded, additionally including values for oxidation-reduction potential (ORP). The field team monitored pH (within \pm 0.1), temperature (within 0.2°C), conductivity (within 3%), and DO (within \pm 10%) to monitor for well water stability. Final readings for each field-gathered water quality parameter, including field observations of groundwater color and odor, are presented in Table 4.

After purging, samples were collected for laboratory analysis. All groundwater samples were submitted for analysis GRO, DRO, RRO, BTEX, and poly aromatic hydrocarbons (PAHs).

Water samples were collected directly into laboratory provided and, as appropriate, prepreserved sample containers. Sample containers were labeled with field sample identification numbers, the date and times of collection, and analyses requested.

Duplicate samples were collected at a frequency of 10% per method for QA/QC purposes. Laboratory prepared trip blanks accompanied all BTEX and GRO samples from the laboratory, to the field, and back to the laboratory.

Field personnel placed all groundwater samples into a cooler with gel ice, maintaining the required temperature range of 4°C ± 2°C. CoC procedures were followed. Table 1 summarizes the groundwater samples collected, locations, and requested analyses.

Laboratory analytical results are discussed in Section 4.

3.3. Surface Water Sampling

The field team collected on surface water sample from the south shore of the unmanned lake located approximately 40 feet north of the ASTs and one sample from the water collected from the well intake prior to the water entering the water treatment system. Prior to sampling the south shoreline of the unnamed lake was evaluated for sheen, with no sheen noted by the field team. Samples were analyzed for GRO, DRO, RRO, BTEX, and PAHs. The concentration of total aromatic hydrocarbons (TAH) and total aqueous hydrocarbons (TAGH) was calculated and is presented in Table 7.

Field personnel placed all surface water samples into a cooler with gel ice, maintaining the required temperature range of 4° C \pm 2° C. CoC procedures were followed. Table 1 summarizes the surface water samples collected, locations, and requested analyses.

Laboratory analytical results are discussed in Section 4.

3.3.1. Monitoring Well Survey

The measuring point elevations and top-of-casing elevations of the permanent monitoring wells and the elevation of the unnamed lake were surveyed by OASIS personnel using a Trimble Laser Level LL500 and station rod with a laser receiver HR550. An arbitrary datum set at 100 feet was assigned for conducting the vertical elevation survey. Swing ties were used to locate the horizontal positions of monitoring wells and soil borings.

Oasis Environmental 9 11/28/2011

4. SITE OBSERVATIONS AND ANALYTICAL RESULTS

This section presents a discussion of field observations and the analytical results of soil, groundwater, and surface water sampling. A summary of samples collected and analyses performed is presented in Table 1. Groundwater well construction details are presented in Table 2. Survey data is presented in Table 3. Field-gathered water quality data are summarized in Table 4. Soil analytical results along with the regulatory standards used to evaluate the analytical data are presented in Table 5 and on Figure 3. Groundwater analytical results along with the regulatory standards used to evaluate the analytical data are presented in Table 6 and on Figure 4. Surface water analytical results along with the regulatory standards used to evaluate the analytical data are presented in Table 7 and on Figure 4.

Laboratory analytical results and ADEC checklists (ADEC 2010a) for each sample delivery group are provided in Appendix D. The completed Quality Assurance Report (QAR) is included as Appendix E.

4.1. Field Observations

4.1.1. Soil Lithology Observations

Soil borings were drilled in June 2011. Soil logs from each boring characterized soil at the site as generally consisting of dense, brown silt with fines, and 0-15% fine gravel. Draft soil boring logs for the June 2011 drilling are provided in Appendix C.

4.1.2. Groundwater Table Observations

Groundwater was present in MW-2, located east of the ASTs, at approximately 13.5 feet bgs. MW-1 and MW-3, located south and north of the ASTs, respectively, were dry. Although there was no soil/water interface indicated on the boring logs for SB-02/MW-1 and SB-07/MW-3, prior to well installation, groundwater was measured in the open boring at 15.32 feet bgs in MW-1 with a total depth measured at 18.84 feet bgs and 18.00 feet bgs in MW-3 with a total depth measured at 18.64 feet bgs. The groundwater elevation of MW-2 (based on an arbitrary datum set at 100) is lower than the surface water elevation of the unnamed lake to the north. It remains unknown if there is groundwater flow across the site. Two of the three wells installed were dry. No separate-phase hydrocarbons were observed at MW-2 during well installation, development, purging, or sampling.

4.1.3. Water Quality Observations

Groundwater at MW-2 and the surface water location was clear with no odor indicated.

Utilizing a YSI® water quality meter with flow-through cell, OASIS recorded pH, temperature, conductivity, DO, and ORP. The pH in MW-2 indicated a favorable range for both aerobic and anaerobic attenuation, with the final pH reading 7.09. Conductivity was consistent during purging. The final DO value was 1.39 milligram/liter (mg/L),

Oasis Environmental 11 11/28/2011

indicating marginally aerobic conditions. ORP at MW-2 was below 250 millivolts, the final reading being 13.22, indicating a reducing environment.

4.2. Laboratory Analytical Results

4.2.1. Analytical Methods

Soil sample analytical results are summarized in Table 5 and on Figure 3. Groundwater analytical results are summarized in Table 6 and on Figure 4. Surface water analytical results are summarized in Table 7 and on Figure 4. All samples were submitted to the project laboratory, ESC Lab Sciences (ESC) in Mount Juliet, Tennessee, in accordance with standard CoC procedures outlined in the work plan. Duplicate samples were collected at a frequency of 10% per method and matrix for QA/QC purposes. All samples were preserved and stored at a temperature of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ prior to shipment to ESC for laboratory analysis.

Soil samples were submitted for analysis for the following target analytes using the methods specified:

- GRO/BTEX (Alaska Method AK 101 [AK101]/U.S. Environmental Protection Agency [EPA] Solid Waste (SW) Method SW8021B); and,
- DRO/RRO (Alaska Method AK 102 [AK102]/Alaska Method AK 103 [AK103]).

Groundwater and surface water samples were analyzed for the following site assessment target analytes using the methods specified:

- GRO/BTEX (AK101/EPA SW8260B); and,
- DRO/RRO (AK102/103).
- PAHs (EPA SW8270C with select ion monitoring [SIM]).

4.2.2. Soil Analytical Results

OASIS installed a total of eight soil borings to the north, east, and south of the ASTs. Soil borings could not be installed to the west of the ASTs due to infrastructure and miscellaneous debris. Additionally, stepping out to the south of the ASTs (after an odor was indicated) was not possible based on a request made by the lodge owner not to penetrate the recently applied asphalt.

All soil analytical result were reported at concentrations below associated ADEC Method Two soil cleanup levels (SCLs) with the exception of two samples. In the sample collected from 9.0-9.5 feet bgs at SB-02, DRO and benzene were detected at 4,000 and 0.049 mg/kg, above the ADEC Method Two SCL of 250 and 0.025 mg/kg, respectively. The sample collected from SB-03 from 12.5-13.5 feet bgs contained benzene that was detected above ADEC Method Two SCL of 0.025 mg/kg at 18 mg/kg in the primary sample and 16 mg/kg in the duplicate sample. The laboratory qualified this data with an E, indicating that the stated results are greater than the upper calibration limit; the actual value is known to be greater than the upper calibration range. Both SB-02 and SB-03 are located south of the ASTs.

4.2.3. Groundwater Sampling Analytical Results

Groundwater was only present at one of the three permanent groundwater well installed at the site.

Groundwater analytical results are presented in Table 6 and summarized on Figure 4.

The samples were analyzed for GRO, DRO, RRO, BTEX, and PAHs. All analytical results were reported as non-detect for GRO, RRO, BTEX, and PAHs. DRO was detected at 0.14 milligrams per liter (mg/L) in the primary sample and 0.15 mg/L in the duplicate sample, both below the ADEC groundwater cleanup level of 1.5 mg/L for DRO.

4.2.4. Surface Water Sampling Results

OASIS collected one sample from the unnamed lake located approximately 40 north of the ASTs and one sample from the spigot located in the water treatment building, before the water is processed through the treatment system. The water at the spigot is drawn from the lake from an insulated house as depicted on Figure 4. The samples were analyzed for GRO, DRO, RRO, BTEX, and PAHs. GRO, RRO, BTEX, and PAH results were reported as not detected above the method detection limits. DRO was detected in both samples at 0.051 mg/L from the spigot and 0.054 mg/L from the unnamed lake; both of which are below the method detection limit for DRO of 0.20 mg/L.

Analytical results are summarized in Table 7 and on Figure 4.

Oasis Environmental 13 11/28/2011

14

5. CONCEPTUAL SITE MODEL

5.1. Conceptual Site Model

An updated ADEC conceptual site model (CSM) has been developed for the site based on known impacts, available site assessment results, and current soil, groundwater, and surface water analytical data presented in this report. The completed ADEC CSM scoping form and graphic are included in Appendix F. The CSM was developed in accordance with ADEC *Policy Guidance on Developing Conceptual Site Models* (ADEC 2010). The site is considered a commercial facility located at a gas station associated with the Eureka Lodge near Glennallen, Alaska.

5.1.1. Source

The spill of 10-gallons of supreme unleaded gasoline is the source of impact to surface and subsurface soil and possibly groundwater at the site. The spill occurred in June 2010, when a 6,000-gallon duel-compartment AST (East Tank) comprised of a 2,000-gallon northern compartment used for supreme unleaded and a 4,000-gallon southern compartment used for diesel fuel was overfilled. Previous releases include a release of heating oil (3.5 gallons) in 2009 at the East Tank. Soil removal was conducted at the East Tank in 2009 and twice in 2010. Clean backfill material was placed in the excavation after the 2009 removal and the second 2010 removal.

5.1.2. Impacted Media

The analytical evidence presented in the *Spill Response Remedial Action Report* (MLFA 2010) indicates that surface and subsurface soil was impacted by petroleum hydrocarbons directly below the tank. Approximately 86-tons of contaminated soil have been excavated from the site. Based on analytical results from excavation confirmation samples, soil with petroleum hydrocarbons concentrations exceeding ADEC Method Two SCLs criteria where left in place.

Based on the soil analytical results from this sampling event, DRO and benzene were detected above ADEC method two SCLs in two borings at 9.0 feet bgs and 12.5 feet bgs. Both borings are located on the south side of the tanks. The field team was unable to install additional boring further south of the tank due to the lodge owners request not to penetrate the newly applied asphalt parking lot which extends 115 feet to the south and boarders a ditch adjacent to the Glenn Highway.

Only one groundwater monitoring well (MW-2, located east of the tanks) of the three permanent monitoring wells installed was sampled due to the absence of water in MW-1 and MW-3. DRO was detected in MW-2 at 0.14 mg/L, below the ADEC Table C groundwater cleanup level of 1.5 mg/L; all other analytes were reported as non-detect.

Soil contamination at the site does not include a compound that is considered a dermal exposure risk (ADEC Policy Guidance on Developing Conceptual Site Models; Appendix B). However, PAH analysis has not been conducted in soil; therefore the potential for a dermal exposure is possible until PAH analysis is conducted. Benzene was detected in

Oasis Environmental 15 11/28/2011

soil at the site, which is considered a volatile of potential concern by ADEC (ADEC Policy Guidance on Developing Conceptual Site Models; Appendix D).

5.1.3. Transport Mechanisms

The impacted media is contaminated subsurface soil, secondarily; leaching from impacted soil may impact groundwater. Air may also be affected, as benzene was detected in the soil from 9-13 feet bgs. All transport mechanisms are identified in the CSM graphic included in Appendix G.

5.1.4. Exposure Media

Potential exposure media at the site include soil, groundwater, and air.

5.1.5. Human Health Exposure Routes and Receptors

The identified routes of exposure include ingestion, inhalation, and dermal contact.

Possible receptors include current and future residence, current and future commercial or industrial workers, and current and future construction workers.

The human health exposure routes via soil media are complete for current and future residence, current and future commercial and current and future industrial workers, and current and future construction workers at the site that would be engaged in or exposed to excavation activities in areas where petroleum hydrocarbons, benzene, and PAH impacts are present. The exposure routes include incidental ingestion and dermal absorption

The exposure route by ingestion via groundwater media is considered complete, however insignificant for current and future residence, current and future commercial and current and future industrial workers, and current and future construction workers. Although groundwater at the site is not used for drinking water it is reserved by the State of Alaska as a future drinking water source. Currently, the drinking water supplied to the lodge and adjacent residence is pumped and treated from the surface water body approximately 40 feet north of the site. An analytical sample was collected from the unnamed lake and from the spigot in the water treatment building before the water was processed through the treatment system. All analytes were non-detect or both the ADEC Table C groundwater cleanup levels as well as 18 AAC 70 surface water quality criteria. Surface water at the site is estimated to be upgradient of the impacted soil area as the surface water elevation is higher than the elevation of groundwater found in one well located on the south side of the tanks. Several soil borings located between the spill area and the lake indicated no impact to soil and no presence of groundwater.

The human health exposure route by absorption via groundwater media is also considered complete however insignificant for current and future residence, current and future commercial and current and future industrial workers, and current and future construction workers. Groundwater is not readily available at the site. Two of the three monitoring wells installed to 20 feet bgs at the site were dry. Analytical results from the

Oasis Environmental 16 11/28/2011

well that was sampled, located east of the tanks, indicate no impact to groundwater at this location.

The human health exposure route via air media is complete for current and future residence, current and future commercial and current and future industrial workers, and current and future construction workers at the site that would be engaged in or be exposed to excavation activities in areas where petroleum hydrocarbons and benzene impacts are present. The exposure route for site visitors, trespassers, or recreational users is also complete, however insignificant, due to limited exposure time. The exposure route includes inhalation of outdoor air only. Exposure by the inhalation of indoor air is considered a complete exposure route for current and future residents present in buildings located within 30 feet of the impacted soil area.

Receptors and completed pathways are presented in the ADEC CSM checklist and graphic CSM provided in Appendix F.

6. CONCLUSIONS AND RECOMMENDATIONS

Site assessment activities were conducted by OASIS at the Eureka Lodge AST site located near Glennallen, Alaska in June 2011. A total of eight soil borings were advanced and three co-located permanent monitoring well were installed, with groundwater sampled at one well where water was present. Additionally, surface water was characterized by collecting two surface water samples. One surface water sample was collected from the unnamed lake located approximately 40 feet north of the site and one surface water sample was collected from the spigot located inside of the water treatment building, before the water is processed through the treatment system.

6.1. Conclusions

Soil

Subsurface soil is impacted below the ASTs, deeper than 7.5 feet bgs, which was the limit of the 2010 excavation. Soil boring results indicate DRO and benzene impact to soil located at 9 to 13 feet bgs along the southern side of the ASTs (soil borings SB-2 and SB-3). Horizontally, limited impact (benzene) remains on the northern side as evident from analytical results reported by MLFA for one excavation sidewall sample collected at 2 feet bgs and extends to the south under the ASTs. Delineation to the south was not conducted because of new asphalt that the lodge owner requested not be drill through. The paved area extends 115 feet to the south and boarders a ditch along the Glenn Highway. Impact to soil east and north is not evident in soil samples collected from boring in these directions.

Groundwater

Three permanent monitoring wells were installed with only one sampled due to the absence of water in the remaining two wells. The sampled well, MW-2, is located on the east side of the tanks. All groundwater analytical results for MW-2 were either non-detect or below ADEC Table C groundwater cleanup levels. The shallow groundwater at the site does not appear to be a productive aquifer. Impact to groundwater is not evident at MW-2. Due to the lack of water in the other two wells, no determination regarding groundwater flow direction can be made.

Surface Water

Analytical results for two surface water samples collected to the north of the site indicate no impact to the surface water. Also, a sheen test conducted on the south shore of the unnamed lake was negative for sheen. The lake does not appear to be impacted.

6.2. Recommendations

OASIS recommends no further site characterization or delineation of hydrocarbon impacts to soil at the site.

Oasis Environmental 19 11/28/2011

11/28/2011

7. REFERENCES

- Alaska Department of Environmental Conservation (ADEC) 2008. Alaska Administrative Code, *Title 18, Environmental Conservation Chapter 75, Oil and Other Hazardous Substances Pollution Control.* October 9.
- ——. 2009. Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites. September 23.
- ——. 2010. Policy Guidance on Developing Conceptual Site Models. October.
- Michael L. Foster & Associates. 2010. Spill Response Remedial Action Report. 2010.
- OASIS Environmental, Inc. (OASIS). 2011. Site Characterization Work Plan, Eureka Lodge; Mile 128 Glenn Highway, Alaska. March 2011.

Oasis Environmental 21 11/28/2011

TABLES

TABLE 1 SAMPLE COLLECTION SUMMARY

2011 Eureka Lodge Site Characterization Crowley Maritime Corporation Mile 128 Glenn Highway, Alaska

	Sample No. (11-EUR-)		ıte	MS/MSD	Sample Date	Sample Time	Laboratory Analysis						
Location		Depth in Feet	Duplicate				GRO (AK 101)	BTEX (EPA8260B)	DRO (AK 102)	RRO (AK 103)	PAH (EPA 8270-SIM)		
Soil Samples													
SB-01	SB-01-01-SO	17.0 - 17.5			6/6/2011	1130	√ (2)	√ (2)	✓	✓			
SB-02/MW-1	SB-02-01-SO	9.0 - 9.5			6/6/2011	1235	√ (2)	√ (2)	✓	✓			
	SB-03-01-SO	19.5 - 20.0			6/6/2011	1440	√ (2)	√ (2)	✓	✓			
SB-03	SB-03-02-SO	12.5 -13.0			6/6/2011	1450	√ (2)	√ (2)	✓	✓			
	SB-20-01-SO	12.5 -13.0	✓		6/6/2011	2000	√ (2)	√ (2)	✓	✓			
SB-04	SB-04-01-SO	19.5 - 20.0		✓	6/6/2011	1550	√ (2)	√ (2)	✓	✓			
SB-05	SB-05-01-SO	19.5 - 20.0			6/6/2011	1640	√ (2)	√ (2)	✓	✓			
SB-06	SB-06-01-SO	19.5 - 20.0			6/6/2011	1710	√ (2)	√ (2)	✓	✓			
SB-07	SB-07-01-SO	19.5 - 20.0			6/6/2011	1750	√ (2)	√ (2)	✓	✓			
SB-08	SB-08-01-SO	17.0 - 17.5			6/7/2011	935	√ (2)	√ (2)	✓	✓			
Groundwater	Samples												
MW-2	MW-2-01-GW				6/9/2011	1121	√ (1)	√ (1)	✓	✓	✓		
MW-2	MW-2-02-GW		✓		6/9/2011	1245	√ (1)	√ (1)	✓	✓	✓		
Surface Wate	r Samples	-		•	•								
Well House	WH01-01-SW				6/7/2011	1020	√ (1)	√ (1)	✓	✓	✓		
Lake	LK01-01-SW			✓	6/7/2011	1100	√ (1)	√ (1)	✓	✓	✓		
QA Samples													
	Trip Blank (520543)				NA	NA	✓	✓					
	Trip Blank (520391)				6/7/2011	0950	✓	✓					

Notes: (1) = assisted with Trip Blank 520543 (2) = assisted with Trip Blank 520391

Key:

AK = Alaska

BTEX = Benzene, toluene, ethylbenzene, total xylenes

DRO = Diesel-range organics

EPA = United States Environmental Protection Agency

GRO = Gasoline-range organics

MS/MSD = Matrix spike/duplicate matrix spike

NA = not assigned

PAH = Polycyclic aromatic hydrocarbons

QA = quality assurance trip blanks for volatile fraction

RRO = Residual range organics

SIM = Selective ion monitoring

oasis ENVIRONMENTAL

Page 1 of 1 12/1/2011

TABLE 2 MONITORING WELL CONSTRUCTION AND SURVEY DETAILS

2011 Eureka Lodge Site Characterization Crowley Maritime Corporation Mile 128 Glenn Highway, Alaska

		Well Construction Details ¹							Land Surve		
Well ID	Installation Date	Casing Diameter (inches)	Depth to Top of Screen (bgs)	Depth to Bottom of Screen (bgs)	Screen Length	Total Depth (bgs)	Top of Screen (BTOC)	Bottom of Screen (BTOC)	Measuring Point Elevation	Ground Surface Elevation	June 2011 DTW (BTOC)
MW-1	6/7/2011	2	10.00	20.00	10.00	20.00	85.25	75.25	94.37	95.25	
MW-2	6/7/2011	2	10.00	20.00	10.00	20.00	84.71	74.71	94.06	94.71	80.33
MW-3	6/7/2011	2	10.00	20.00	10.00	20.00	84.62	74.62	94.11	94.62	

Notes:

Key:

-- = None measured (dry/no recharge)

bgs = Below ground surface

BTOC = Below top of casing, a.k.a. below measuring point

DTW = Depth to water

MW = Monitoring well

¹All measurements are in units of feet unless otherwise indicated.

² Arbitrary Datum - 100 ft above mean sea level; on June 8, 2011.

TABLE 3 GROUNDWATER SURFACE WATER ELEVATION DATA

2011 Eureka Lodge Site Characterization Crowley Maritime Corporation Mile 128 Glenn Highway, Alaska

Well ID	MP Elevation (feet)	Gauge Date	Depth to Product (feet BTOC)		Product Water Thickness (feet MSL)		Higher or Lower Than Lake Elevation?
Permanent	Wells						
		6/7/2011		Dry	/		
MW-1	94.37	6/8/2011					
		6/9/2011		Dry	/		
	94.06	6/7/2011		18.28		75.78	lower
MW-2		6/8/2011	-	18.42		75.64	lower
		6/9/2011		13.11		80.95	lower
	94.11	6/7/2011		Dry	/		
MW-3		6/8/2011		Dry	/		
		6/9/2011		Dry	/	_	

Lake Elevation - June 8, 2011:	93.61
--------------------------------	-------

Key:

-- = Not applicable

BTOC = Below top of casing, a.k.a. below measuring point

MP = Measuring point (a.k.a. PVC Elevation/top of casing)

MSL = Mean seal level

TABLE 4 FIELD-COLLECTED GROUNDWATER QUALITY PARAMETERS

2011 Eureka Lodge Site Characterization Crowley Maritime Corporation Mile 128 Glenn Highway, Alaska

Location	Purge/Sample Date	Color	Odor	рН	Temperature (°C)	Conductivity (mS/cm)	DO (mg/L)	ORP (mV)		
Groundwater										
MW-1	DRY									
MW-2	6/9/2011	Clear	None noted	7.09	2.40	0.474	1.39	13.2		
MW-3	MW-3									
Surface Water	Surface Water									
Lake Surface	6/7/2011	Clear	None noted	5.49	10.4	0.032	9.06	139		

Key:

°C = Degrees Celsius

DO = Dissolved oxygen

mS/cm = Millisiemens per centimeter

mg/L = Milligrams per liter

mV = Millivolts

ORP = Oxidation-reduction potential

Oasis ENVIRONMENTAL Page 1 of 1 12/1/2011

TABLE 5 SOIL SAMPLE ANALYTICAL RESULTS SUMMARY

2011 Eureka Lodge Site Characterization **Crowley Maritime Corporation** Mile 128 Glenn Highway, Alaska

Location:		SB-01	SB-02/MW-1		SB-03		SB-04	SB-05	SB-06	SB-07/MW-3	SB-08/MW-2	TRIP BLANK
Sample ID (11-EUR-):	1 100 0011		SB-02-01-SO	SB-03-01-SO	SB-03-02-SO	SB-20-01-SO (Dup of SB-03-02)	SB-04-01-SO	SB-05-01-SO	SB-06-01-SO	SB-07-01-SO	SB-08-01-SO	TRIP BLANK
Depth (ft bgs):	Cleanup	17.0 - 17.5	9.0 - 9.5	19.5 - 20.0	12.5 -13.0	12.5 -13.0	19.5 - 20.0	19.5 - 20.0	19.5 - 20.0	19.5 - 20.0	17.0 - 17.5	
Sample Date:	Levels (mg/kg)	6/6/2011	6/6/2011	6/6/2011	6/6/2011	6/6/2011	6/6/2011	6/6/2011	6/6/2011	6/6/2011	6/7/2011	6/6/2011
PID Reading (ppm):	(mg/kg)	0.0	11.7	0.0	12.9	12.9	0.0	0.0	0.0	0.0	0.0	
ADEC Fuels (AK 101, AK	102, AK103; m	g/kg)										
Gasoline Range Organics	300 ⁽¹⁾	ND (4.0)	88.0	ND (5.5)	44.0	39.0	ND (5.6)	ND (6.2)	ND (4.8)	ND (5.8)	ND (4.4)	ND (0.10)
Diesel Range Organics	250 ⁽¹⁾	1.2	4,000	4.5 J	3.1 J	3.1 J	5.3 J	3.5 J	1.8 J	3.3 J	ND (22)	
Residual Range Organics	10,000 ⁽²⁾	ND (110)	130	4.9 J	ND (130)	ND (130)	4.8 J	5 J	ND (110)	4.3 J	ND (110)	
BTEX (EPA 8260B; mg/k	g)											
Benzene	0.025 ⁽³⁾	ND (0.040)	0.049	ND (0.055)	<u>18 E</u>	<u>16 E</u>	ND (0.056)	ND (0.062)	ND (0.048)	ND (0.058)	ND (0.044)	ND (0.0010)
Toluene	6.5 ⁽³⁾	ND (0.20)	0.14 J	ND (0.28)	0.19 J	0.21 J	ND (0.28)	ND (0.31)	ND (0.24)	ND (0.29)	ND (0.22)	ND (0.0050)
Ethylbenzene	6.9 ⁽³⁾	ND (0.040)	0.02 J	ND (0.055)	1.1	1.2	ND (0.056)	ND (0.062)	ND (0.048)	ND (0.058)	ND (0.044)	ND (0.0010)
Total Xylenes	63 ⁽³⁾	ND (0.12)	0.15	ND (0.17)	3.8	4.0	ND (0.17)	ND (0.19)	ND (0.14)	ND (0.17)	ND (0.13)	ND (0.0030)
Total Solids (%)		92.4	86.4	79.4	77.3	77	78.6	79.7	91.4	79.6	89.5	

Results above ADEC cleanup values are underlined & bolded.

(1) ADEC Method Two Petroleum Hydrocarbon Soil Cleanup Levels (18 AAC 75.341); Table B2, Under 40 Inches, Migration to Groundwater Pathway

(2) ADEC Method Two Petroleum Hydrocarbon Soil Cleanup Levels; Table B2, Under 40 Inches, Ingestion Pathway

(3) ADEC Method Two Soil Cleanup Levels; Table B1; Under 40 Inches, Migration to Groundwater Pathway

Key:

-- = Not applicable

% = Percent

ADEC = Alaska Department of Environmental Conservation

AK = Alaska

bgs = Below ground surface

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

E = Greater than upper calibration limit, actual value is known to be greater than the upper calibration range

EPA = United States Environmental Protection Agency

ft = Feet

J = Estimated value

ND = Not detected at the associated reported detection limit

mg/kg = Milligrams per kilograms

ppm = Parts per million

TABLE 6 GROUNDWATER SAMPLE ANALYTICAL RESULTS SUMMARY

2011 Eureka Lodge Site Characterization Crowley Maritime Corporation Mile 128 Glenn Highway, Alaska

Location:	ADEC	M\	TRIP BLANK		
Sample ID (11-EUR-):	Groundwater Cleanup	MW2-01-GW	MW2-02-GW	TRIP BLANK	
Sample Date:	Levels ⁽¹⁾ (mg/L)	6/9/2011	6/9/2011	6/6/2011	
ADEC Fuels (AK 101, AK 102	, AK103; mg/L)				
Gasoline Range Organics	2.2	ND (0.10)	ND (0.10)	ND (0.10)	
Diesel Range Organics	1.5	0.14	0.15		
Residual Range Organics	1.1	ND (0.20)	ND (0.20)		
BTEX (EPA 8260B; mg/L)				•	
Benzene	0.005	ND (0.0010)	ND (0.0010)	ND (0.0010)	
Toluene	1.0	ND (0.0050)	ND (0.0050)	0.00044 J	
Ethylbenzene	0.7	ND (0.0010)	ND (0.0010)	ND (0.0010)	
Total Zylenes	10	ND (0.0030)	ND (0.0030)	ND (0.0030)	
PAHs (EPA 8270-SIM; mg/L)	ı	,	,	,	
Anthracene	11	ND (0.000050)	ND (0.000050)		
Acenaphthylene	2.2	ND (0.000050)	ND (0.000050)		
Acenaphthene	2.2	ND (0.000050)	ND (0.000050)		
Benzo(a)anthracene	0.0012	ND (0.000050)	ND (0.000050)		
Benzo(a)pyrene	0.0002	ND (0.000050) UJ-I	ND (0.000050) UJ-I		
Benzo(b)fluoranthene	0.0012	ND (0.000050) UJ-I	ND (0.000050) UJ-I		
Benzo(g,h,I)perylene	1.1	ND (0.000050) UJ-I	ND (0.000050) UJ-I		
Benzo(k)fluoranthene	0.012	ND (0.000050) UJ-I	ND (0.000050) UJ-I		
Chrysene	0.12	ND (0.000050)	ND (0.000050)		
Dibenzo(a,h) anthracene	0.00012	ND (0.000050) UJ-I	ND (0.000050) UJ-I		
Fluoranthene	1.5	ND (0.000050)	ND (0.000050)		
Fluorene	1.5	ND (0.000050)	ND (0.000050)		
Indeno(1,2,3-c,d) pyrene	0.0012	ND (0.000050) UJ-I	ND (0.000050) UJ-I		
Naphthalene	0.73	ND (0.00025)	ND (0.00025)		
Phenanthrene	11	ND (0.000050)	ND (0.000050)		
Pyrene	1.1	ND (0.000050)	ND (0.000050)		
1-Methylnaphthalene	0.15	ND (0.00025)	ND (0.00025)		
2-Methylnaphthalene	2.9	ND (0.00025)	ND (0.00025)		
2-Chloronaphthalene	2.9	ND (0.00025)	ND (0.00025)		

Notes:

Results above ADEC cleanup values are underlined and bolded.

⁽¹⁾ 18 AAC 75.345, Table C

Key:

-- = Not analyzed

ADEC = Alaska Department of Environmental Conservation

AK = Alaska

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

EPA = United States Environmental Protection Agency

J = Estimated value

ND = Not detected at the associated reported detection limit

mg/L = Milligrams per Liter

UJ-I - Estimated non-detect due to low internal standard recovery

PAH = Poly aromatic hydrocarbons

SIM = Selected-ion monitoring

Page 1 of 1 12/1/2011

TABLE 7 SURFACE WATER SAMPLE ANALYTICAL RESULTS SUMMARY

2011 Eureka Lodge Site Characterization **Crowley Maritime Corporation** Mile 128 Glenn Highway, Alaska

Levels (1) (mg/L)	Burface Water Intake	Lake Surface Water	TRIP BLANK
Sample Date: (mg/L) ADEC Fuels (AK 101, AK 102, AK103; mg/L) Gasoline Range Organics Diesel Range Organics 1.5 Residual Range Organics 1.1 BTEX (EPA 8260B; mg/L) Benzene 0.005 Toluene 1.0 Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(b)fluoranthene 0.0002 Benzo(b)fluoranthene 0.0012 Benzo(k)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 Phenanthrene 1.1 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	WH01-01-SW	LK01-01-SW	TRIP BLANK
Gasoline Range Organics 2.2 Diesel Range Organics 1.5 Residual Range Organics 1.1 BTEX (EPA 8260B; mg/L) Benzene 0.005 Toluene 1.0 Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0002 Benzo(b)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.00012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 Phenanthrene 1.1 Indeno(1,2,3-c,d) pyrene 0.15 Indeno(1,2,3-c,d) pyrene 0.15	6/9/2011	6/9/2011	6/6/2011
Diesel Range Organics 1.5 Residual Range Organics 1.1 BTEX (EPA 8260B; mg/L) Benzene 0.005 Toluene 1.0 Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0012 Benzo(b)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.00012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9			
Residual Range Organics 1.1 BTEX (EPA 8260B; mg/L) Benzene 0.005 Toluene 1.0 Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0012 Benzo(b)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.00012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	ND (0.10)	ND (0.10)	ND (0.10)
BTEX (EPA 8260B; mg/L) Benzene 0.005 Toluene 1.0 Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0012 Benzo(g,h,l)perylene 1.1 Benzo(k)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.0012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	0.054 J	0.051 J	
BTEX (EPA 8260B; mg/L) Benzene 0.005 Toluene 1.0 Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0012 Benzo(g,h,l)perylene 1.1 Benzo(k)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.0012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	ND (0.20)	ND (0.20)	
Benzene 0.005 Toluene 1.0 Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0002 Benzo(g,h,l)perylene 1.1 Benzo(k)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.00012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 1.1 Naphthalene 2-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	(3 2)	(* *)	
Ethylbenzene 0.7 Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 Acenaphthylene 2.2 Acenaphthene 2.2 Benzo(a)anthracene 0.0012 Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0012 Benzo(b)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.00012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 Pyrene 1.1 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	ND (0.0010)	ND (0.0010)	ND (0.0010)
Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 N Acenaphthylene 2.2 N Acenaphthene 2.2 N Benzo(a)anthracene 0.0012 N Benzo(a)pyrene 0.0002 N Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 2 2-Methylnaphthalene 2.9 2	ND (0.0050)	ND (0.0050)	0.00044 J
Total Zylenes 10 PAHs (EPA 8270-SIM; mg/L) Anthracene 11 N Acenaphthylene 2.2 N Acenaphthene 2.2 N Benzo(a)anthracene 0.0012 N Benzo(a)pyrene 0.0002 N Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 2 2-Methylnaphthalene 2.9 2	ND (0.0010)	ND (0.0010)	ND (0.0010)
PAHs (EPA 8270-SIM; mg/L) Anthracene 11 N Acenaphthylene 2.2 N Acenaphthene 2.2 N Benzo(a)anthracene 0.0012 N Benzo(a)pyrene 0.0002 N Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 2 2-Methylnaphthalene 2.9 0.29	ND (0.0030)	ND (0.0030)	ND (0.0030)
Anthracene 11 N Acenaphthylene 2.2 N Acenaphthene 2.2 N Benzo(a)anthracene 0.0012 N Benzo(a)pyrene 0.0002 N Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 2 2-Methylnaphthalene 2.9	(0.0000)	140 (0.0000)	145 (0.0000)
Acenaphthylene 2.2 N Acenaphthene 2.2 N Benzo(a)anthracene 0.0012 N Benzo(a)pyrene 0.0002 N Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 2 2-Methylnaphthalene 2.9 0.29	ND (0.000050)	ND (0.000050)	
Acenaphthene 2.2 N Benzo(a)anthracene 0.0012 N Benzo(a)pyrene 0.0002 N Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Aphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N Pyrene 1.1 N I-Methylnaphthalene 0.15 N L-Methylnaphthalene 0.29 N L-Methylnaphthalene 0.0012	ND (0.000050)	ND (0.000050)	
Benzo(a)anthracene 0.0012 N Benzo(a)pyrene 0.0002 N Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 N 2-Methylnaphthalene 2.9 N	ND (0.000050)	ND (0.000050)	
Benzo(a)pyrene 0.0002 Benzo(b)fluoranthene 0.0012 Benzo(g,h,l)perylene 1.1 Benzo(k)fluoranthene 0.012 Chrysene 0.12 Dibenzo(a,h) anthracene 0.00012 Fluoranthene 1.5 Fluorene 1.5 Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene 0.73 Phenanthrene 1.1 Pyrene 1.1 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	,	,	
Benzo(b)fluoranthene 0.0012 N Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 2 2-Methylnaphthalene 2.9 2.9	ND (0.000050)	ND (0.000050)	
Benzo(g,h,l)perylene 1.1 N Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 11 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 0.15 2-Methylnaphthalene 2.9 0.0012	ND (0.000050)	ND (0.000050)	
Benzo(k)fluoranthene 0.012 N Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 1.1 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 N 2-Methylnaphthalene 2.9 N	ND (0.000050)	ND (0.000050)	
Chrysene 0.12 N Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 11 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 N 2-Methylnaphthalene 2.9	ND (0.000050)	ND (0.000050)	
Dibenzo(a,h) anthracene 0.00012 N Fluoranthene 1.5 N Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 11 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 0.15 2-Methylnaphthalene 2.9 0.0012 0.00012	ND (0.000050)	ND (0.000050)	
Fluoranthene 1.5 N Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 11 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 N 2-Methylnaphthalene 2.9 N	ND (0.000050)	ND (0.000050)	
Fluorene 1.5 N Indeno(1,2,3-c,d) pyrene 0.0012 N Naphthalene 0.73 N Phenanthrene 11 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 0.15 2-Methylnaphthalene 2.9 0.15	ND (0.000050)	ND (0.000050)	-
Indeno(1,2,3-c,d) pyrene 0.0012 Naphthalene Naphthalene 0.73 Phenanthrene 11 Naphthalene Pyrene 1.1 Naphthalene 1-Methylnaphthalene 0.15 2.9	ND (0.000050)	ND (0.000050)	-
Naphthalene 0.73 Phenanthrene 11 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 0.15 2-Methylnaphthalene 2.9 0.15	ND (0.000050)	ND (0.000050)	
Phenanthrene 11 N Pyrene 1.1 N 1-Methylnaphthalene 0.15 0.15 2-Methylnaphthalene 2.9 0.15	ND (0.000050)	ND (0.000050)	
Pyrene 1.1 N 1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	ND (0.00025)	ND (0.00025)	
1-Methylnaphthalene 0.15 2-Methylnaphthalene 2.9	ND (0.000050)	ND (0.000050)	
2-Methylnaphthalene 2.9	ND (0.000050)	ND (0.000050)	
	ND (0.00025)	ND (0.00025)	
	ND (0.00025)	ND (0.00025)	
	ND (0.00025)	ND (0.00025)	
Surface Water Quality (mg/L)	•	· '	
TAH ⁽²⁾ (sum of BTEX) 0.010	ND (0.0050)	ND (0.0050)	
TAqH ⁽²⁾ (BTEX + PAH) 0.015	ND (0.0050)	ND (0.0050)	

Results above ADEC cleanup values are underlined and bolded. (1) 18 AAC 75.345, Table C

⁽²⁾ 18 AAC 70

Key:

-- = Not analyzed

ADEC = Alaska Department of Environmental Conservation

AK = Alaska

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

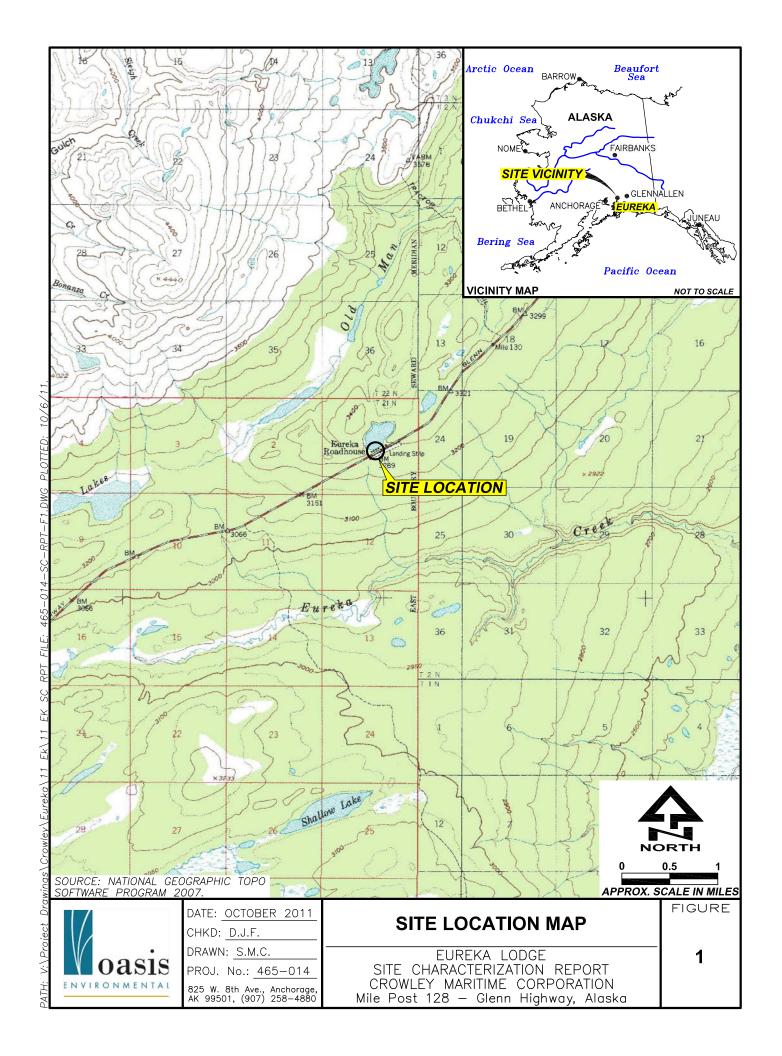
EPA = United States Environmental Protection Agency

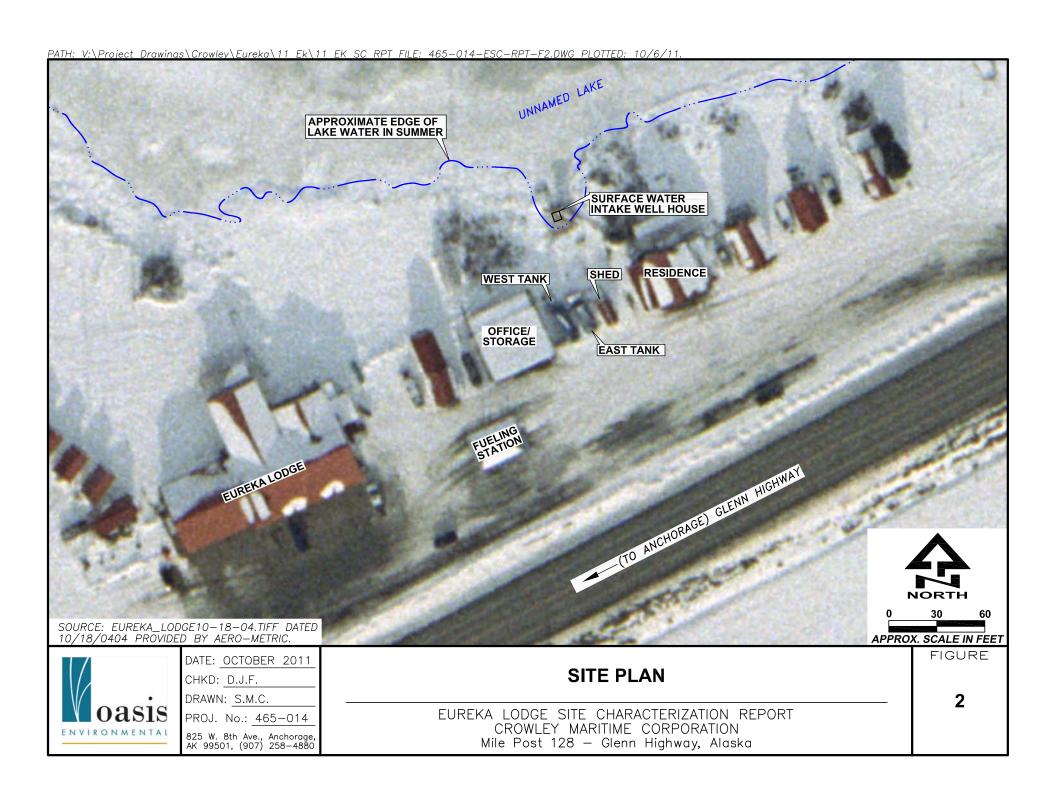
J = Estimated value

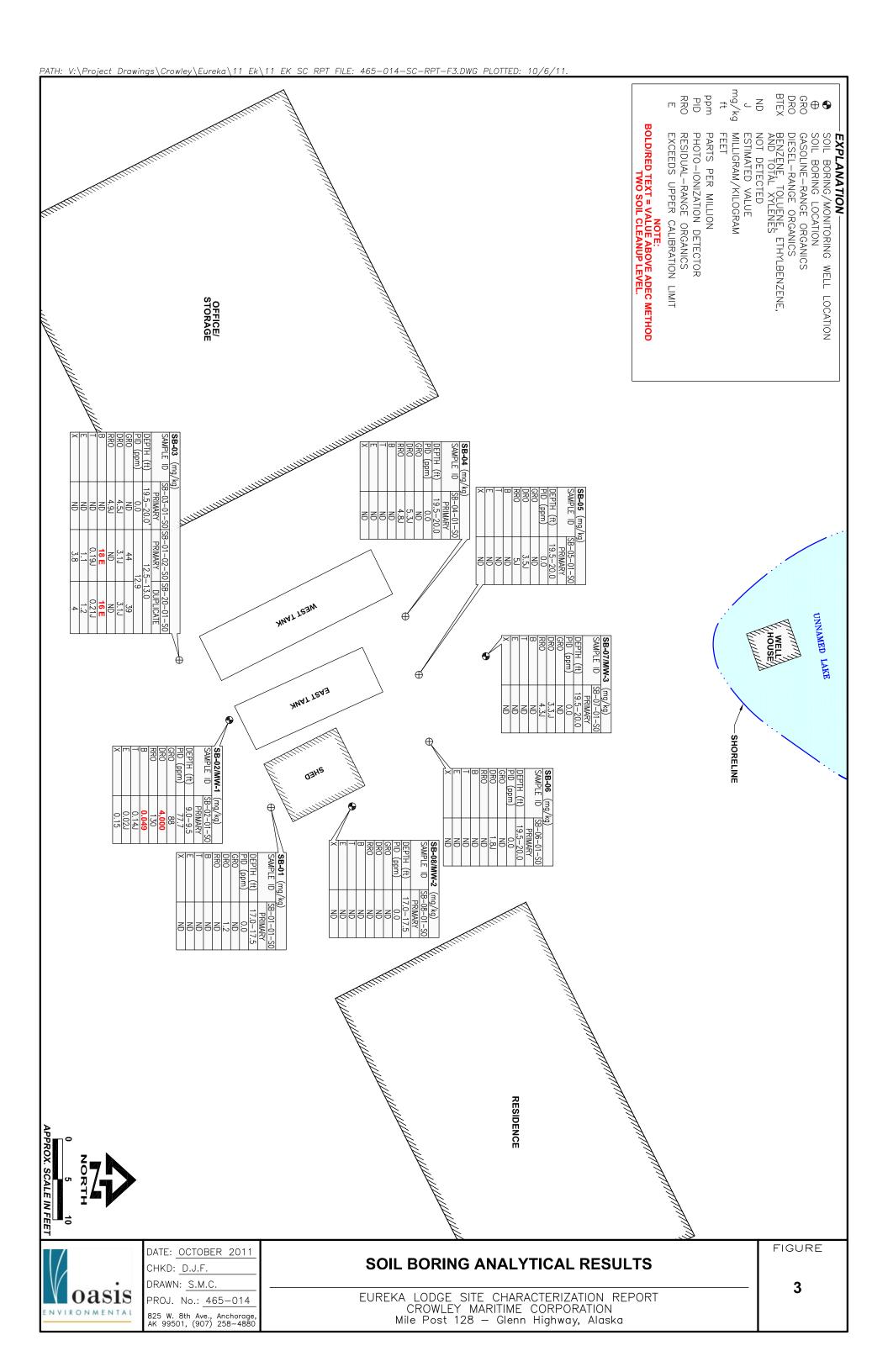
ND = Not detected at the associated reported detection limit

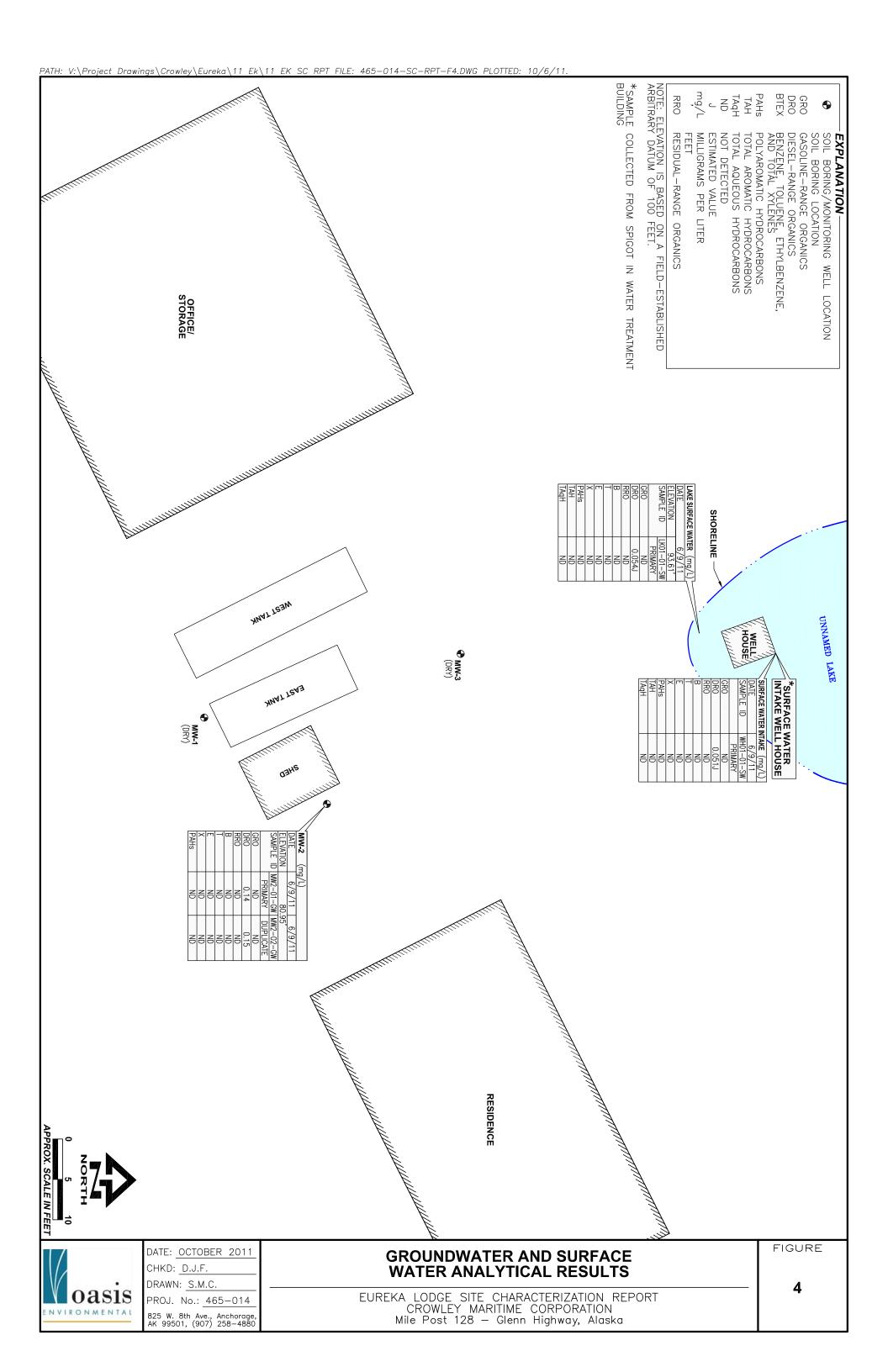
mg/L = Milligrams per Liter

PAH = Poly aromatic hydrocarbons


SIM = Selected-ion monitoring


TAH = Total aromatic hydrocarbons


TAqH =Total aqueous hydrocarbons


oasis ENVIRONMENTAL Page 1 of 1 12/1/2011

FIGURES

APPENDIX A

Field Notes and Field Generated Forms

Crowley Eurera Lodge

Rite in the Rain.
ALL-WEATHER

FIELD

Nº 353N

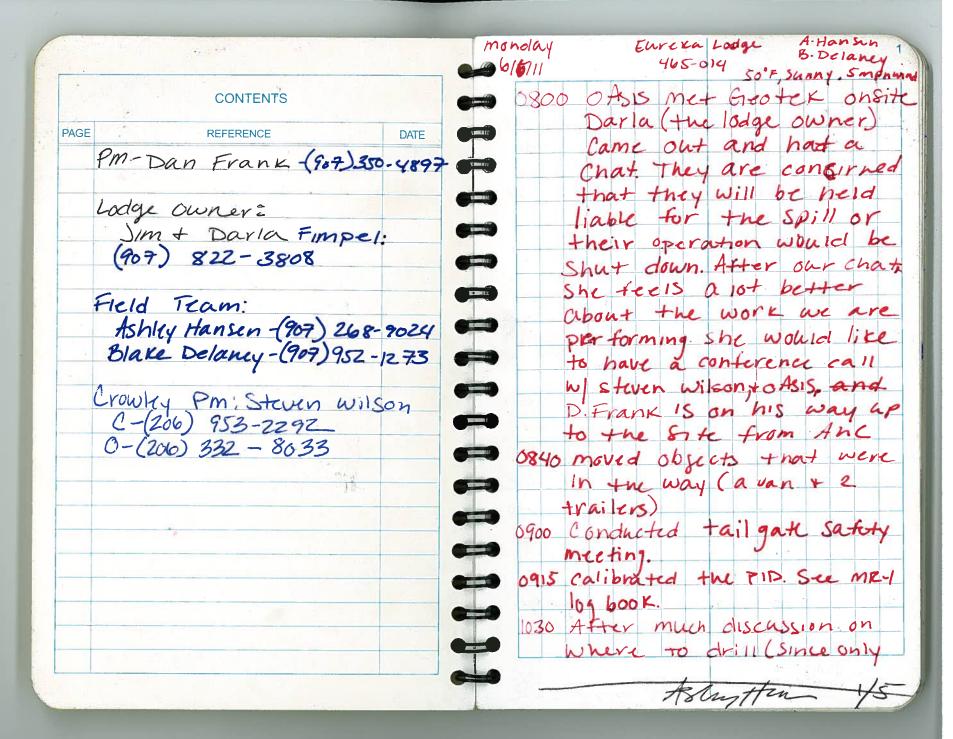
465-014

ALL-WEATHER WRITING PAPER

Name OASIS Environmental

Address 825 W 8th ALE

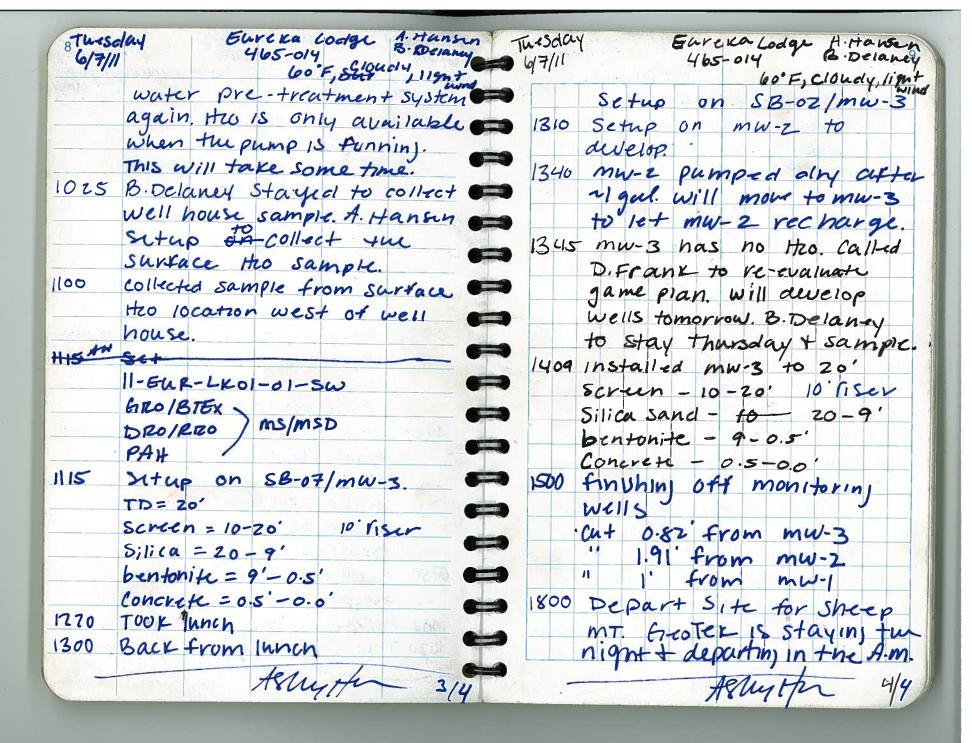
Anchorage AK 99501 Phone (907) 258-4880

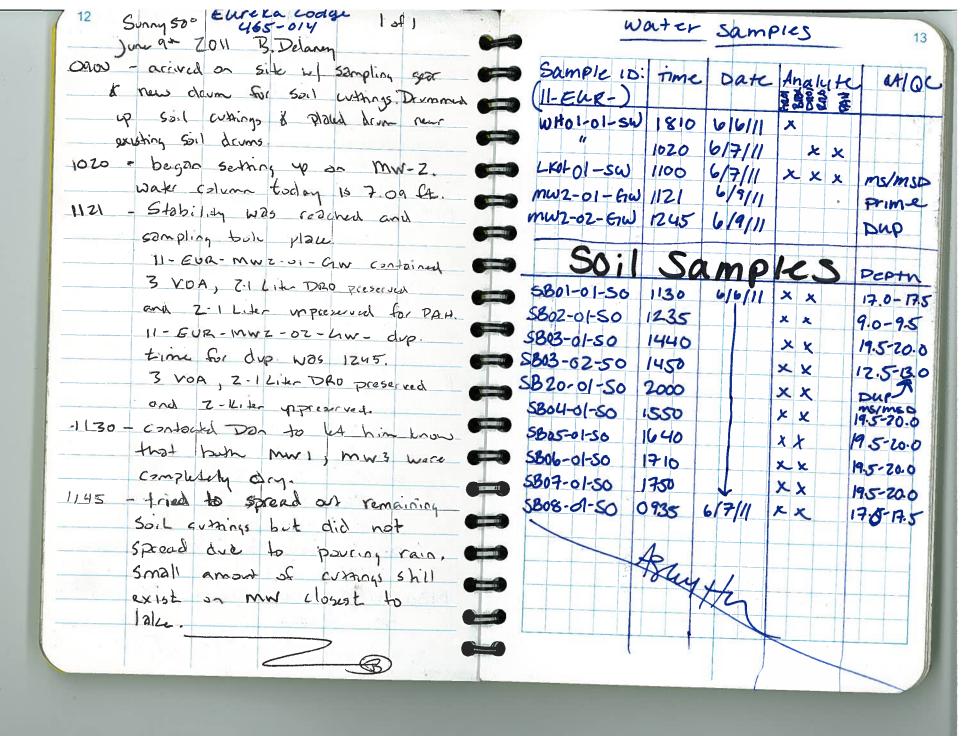

Project Crowley Eureka Cody

465-014

"Rite in the Rain" - a unique all-weather writing surface created to shed water and to enhance the written image. Makes it possible to write sharp, legible field data in any kind of weather.

a product of


J. L. DARLING CORPORATION TACOMA, WA 98424-1017 USA www.RiteintheRain.com


mondo	465-014 Bibelaney	monday Eureka Lodge A. Hanson 465-014 B. Oclano,
6/6/11	Talacara locates barre	40°F, Sunny, Smpnwind
	land commended the desired	1300 Break for Inneh.
7	to start drilling in and	
	immediatly adjacent to	south of the tanks, middle
J. Com.	the previously excavated	
		1144
1030		04 borini 195-20'
	Started Drilling SB-1 on	11-EUR-5803-01-50
		GLO 1BTEX
	east tank	DRO/RRO
1130	collected sample from tho	11- EUR- 5820-01-50 @ 7000
	Interface 17.0'-17.5' by s	Duplicate
	11-EUR-SB01-01-50	1445 Started drilling @ SB-04
	BIEX (GIRO	16cated on the north side of
	DRO/RRO	the west tank
135	Started drilling @ second	
	location SB.Z/mw-1, on the	north side of the east
	South Side of the east tank	
	middle of the tank.	1550 Collected Sample from SB-04
	44d 70 12-01111 8-10 21 400+	19.5-20.0
100-	a Maria Lagrana Company Lagrands	11-EUR-SB04-01-SO
1235		BIEX/GRO ms/msD
	PID reading 11.1 from 9.0-9.5'	DRO/RRO
	11-EUR-5802-01-80 GROIBIEN / 2/	Ashythen 31-
	DROTERO Adustitato	3/5

4 6/1	911 465-019 Belany	monday Eurera Lodge A Hans
11.0=	60 T, Shany 5 mpaul	60°FSunny Smer
1630	D. Frank departs Site	only enough Heo to fill
1640	Collect Sample @ SBOS	
	from bottom ox boring	tomorphical le
	17.3 - 20	anything clse we nied
	11-EUR-3808-01-50	10 do.
- C	BIEX/GRO	of Equipment
	OLO/RRO	and headed back to
1635	Startia Drilling @ SB06	Sheep mt for the de.
	on the souton 118 ou of the	1900 Arrived & Sneep mT.
	tanks, middle of the shed.	
1710	Started drilling SB-07	
ts.	North of previously excavated	
24	area	
elo.	collected. Sample from SBOb	
NII S	11-EUR-5806-01-50	
JE V	CTRO/BTEX	
	DRO/LRO	
750	Collected sample @ SB-07	
1	11-EUR-SB07-01-50	
Caracter Control	CAROLBIEX	
Die I	DRO ICRO	
810	collected sample from	
1	well pre treatment system	
W	11-EUR-WHOI-01-5W	
4	eno BEX 1AH Amosto 45	1 Company
	DRUIERO - Ashrythe 45	#8hype 5/5

66/7/11	ay Eure	5-014	gr A	Hansen	6/7	301W	1	Eure 46.	- 20			8.2	tanky clane
depend		60°F, C10	udy, li	gnt wind						60 F	, CI	oudy	l'gnt
0800	Arrived of	nsite. c	ondu	cted •			8B-0	<u> </u>				The late	· WIN
	tailgate	Safety	mee	tinj.	=		DTW:	17.0	7 1	0 0	dov		
0520	Setup on			lane			Tb=	17.77			14,-11		
	Conducting	Shee.	n tes	+ 04			SB-06					4	
	the east		The second second	The same and		K., -	DTW	= 15.13	. 1	0. 0	dor		
Las El	of the	well 1	rouse	No e	=		TD :	19.00	V				
	Sheen pre	sent.	La Tar				SB-	08	44				
960	•		m gralu E	4	-9		DTW	= 18-6	- 15	.00			
	TD=8.35			6			Tb=	18.62				5 14	
	DTW= 4.04						NO	odor					
	No odor				09	30	Scre	en 1	0-20	b' b	95	(SB-	08/mw-
	53-02					eteral)							695
	MW= 7.77	NO OC	01		No. Co.								o'rise
	TD = 9.45				_		conc						
	53-01				09:	35	collec						53-08
	DTW = 15.32						From	Ho	hter	face	-	17.0	0 -
	TD = 18.84				-3		7.5'	-					
	NO oder	1 A A					1-EUR	-SBO	3-01-5	0			
	SB-07					6	ico 16	TEX	5				
	DTW = 18.00		10-10-10-10-10-10-10-10-10-10-10-10-10-1			Ç	DROIR	RO					
	TD = 18.64				9 95	DR	cord	ed 1	hme	fo	-	the	
N.	No odov	(m, x)			-		rip				40,6		
	58-04				100		lecta			ne	m	casu	YEMLM
	DTW = 19.52		1		162	UTT	red	collec	ting	W	211 1	1445	ر
V.	TD = 19.71	1	1	, 6	-9				J				
100	No odor	7/5	rughe	1/4	and the second				A	ylu	1/1	~	2/4

10 6/8/	11 465-014 B. Dolancy	b/8/11 Eureka Coolge A. Hancen 8.Delaney
0806	Arrive on site. 6174 has departed for ANC.	Soil of the agent
	Conduct tailgate safety meeting.	Gaage mu-z + mu-1
0830	Sctup on mw-z.	Sumple If possible, Also
	Durged 2 6 gal of theo. Well had 417 galstin water Column	1000 mb surface pre >H mw-1 4,22' 5.00' 0,88
	TD= 18,42 DTW=13,72	111/2 11 1/6 (2) 11 22 11 21
0920	noved to mw-3. No water in well. will try again tomorrow	Sarface 1/10 = 6.41
0930	moved to mw-1	1030 Second try with any 1 location
	Called D. Frank to make a game plan, we will show up in the wells and surface the elevation to day. A. Hunsen will depart spite B. Delancy will head to Grennallen to obtain a 3rd 55-gal dram. B. Delancy will manage	mw-2 5.29 5.94 elt. mw-3 5.38 5.89 Surface tro 6.39 Benenmark-southern most Post on the residence over hang 5.42' 1430 A. Hansen Departed Site

		G	ROUNDWATER	R - DEVELOPMENT	CAMPIEDAS	FA OUIEE			
Project Number:	465-	514		_ Sample Locatio		_	1		
Project Name Client Sampler	Crowie	the loc	dge		Sample ID- ple Collected	6/8//1			- -
	# IIIAA (V		i ve a	aly	ime sampled	0940			_
				Well information	Parameter (E MANAGEMENT
Groundwater	:		Casing Diameter (in):			->>			
					<u> </u>	_a) Well Depth (ft) b) Water Depth (f			
Other			•			c) Water Column	•		
						d) Calc. Purge Vo	ol. (gal):		
Management									
	Mall Cosine Discost		Ca	alculating Purge Volum	ne				
	Well Casing Diameter	Multiply c) by: 0.16				Sand Pack Diameter	Multiply C) by:	811	
	4	0.65				10	0.71	-	
	66	1.47				12	1.28	1	
	Example 1- purging or	niv wall casino	. volume			sand pack has 29% por		7 7/-	
	You have 2-inch casing					ging well casing and s casing, 8-inch sand pad			
	One Purge Volume= 0.	16 X 6 = 0.96 ga	illons water		One Purge Volun	ne= (0.16 X 6)+(0.71 X	6) = 5.22 gallons v	r column vater	
	The second secon							814-34	
			Fi	ELD MEASUREMENT	3 10.00		A. S.	DEPOSIT OF THE PERSON	
Time	Volume (gallons)		Conductivity				Redox	Dissolved	
111116	(galloris)	pH	(mS)	Temperature (F)	Color	Turbidity	(ORP)	O ₂ (mg/L)	Other
,									
Purge Rate (low flo					Measured	Drawdown (ft):			
Fotal Volume Purg∉ Odor:	ea: _				Fre	ee Product (y/n):			
Purge Method (disp	osable bailer, tefl	on bailer, si	ubmersible our	mp. etc.)		Sheen (y/n):			
				тр,,					
Sample Method (dis	sposable bailer te	flon bailer	oubmovible -						
	processe baller, te	non baller,	submersible p	ump, etc.)	•				
Alail Lata a 14 d a 6									ı
veli integrity (condi	tion of casing, flus	sh mount se	ealing properly	, cement seal intact	t, etc.)				
Remarks (well recov	very, unusual con	ditions/obse	ervations):						
uplicate Sample ID:									
olit Sample ID:									
gned:						ate:			
gned/reviewer:									

¥0 •

		-							
		G	ROUNDWATER	- DEVELOPMENT /	SAMPLE DATA	A SHEET			
Project Number:	465-014			Sample Location	n (ie. MW1):	mw-	Z 11		
Project Name:		lodge		% •3	Cample ID:				-
THE PROPERTY OF THE PROPERTY O	Cramed	102	A lan		ole Collected:	6 7 11	1718	//	-0
Samplen	AHANN	ופוןיא	Dejani	"	me s ampled.	1315	0240		-
				Well Information			ALCOHOLD STATE		COLLEGE CONTRACT
			Casing	Z #			10	-	_ X
Groundwater:			Diameter (in):			a) Well Depth (ft)⊭		14 2	0.40
Other:						b) Water Depth (ft		7	2.21
						d) Calc. Purge Vo		75	
								74	
	ear Herring Charles Charles	Administrative Accessions	sananan e	Jacobskie - Down Web.		I NAME OF THE OWNER OW		TO ELECTRONIC PROPERTY CONTRACTOR	
	Well Casing Diameter	Multiply c) by:	OSSIGNATION OF	iculating Purge Volun		Sand Pack Diameter	Multiply C) by:		
	2	0.16]			8	0.71	100	
	4	0.65]			10	1		
	6	1.47	ļ			12	1.28		14
	Example 1- purging o	niv well casing	ı volume			and pack has 29% por ling well casing and s			
	You have 2-inch casing	-				casing, 8-inch sand par		column	
19	One Purge Volume= 0.	16 X 6 = 0.96 ga	allons water			ne= (0.16 X 6)+(0.71 X			
						- A			
	NAME OF STREET	Selected 200	Krown Congress	ELD MEASUREMENT	e freedom ex experience				
	Volume	A CONTRACTOR OF THE PARTY OF TH	Conductivity	<i>ئ</i> ر.	A GONG THE REAL PROPERTY.		Redox	Dissolved	Resolven Commission Co
Time	(gallons)	рН	(mS)	Temperature (F)	Color	Turbidity	(ORP)	O ₂ (mg/L)	Other
0905	3.00	5.86	0.501	1,07	Cloudy	Low	158,4	2.28	
0908	3.75	6,03	0-499	1102	cliadi	سان	:48.7	205	
0911	5,25	6.35	0.494	0.98	Cloudy	o one	134.0	1. 12.9	
0917	6.00	6,44	0.443	0.98	Claus	nung	128.0	1) 68	
						(g)			
								<u> </u>	
Purge Rate (low flo		0,5	LImin	-	-	Drawdown (ft):			
Total Volume Purg	ed:	<u> 6 : 0</u>	900		. Fre	ee Product (y/n):	<u> NO</u>		-
Odor: Purge Method (dis	nosable bailer te	- 100	ubmersible nu	mp_etc.)		Sheen (y/n):	WO		
	•		out in ordinate pu						
øl,	imp								
Sample Method (d	isposable bailer, t	eflon bailer	, submersible p	oump, etc.)					
Well Integrity (cond	dition of casing, flu	ush mount s	sealing properly	y, cement seal inta	ct, etc.)	11.0			
1000									
Demonto (vell see		- 4141 <i>(</i> - b -	Al	-					
Remarks (well reco	T 9al	nations/obs	servations):	rped dr	4(6/7/11)			
Duplicate Sample ID:	<i>J</i>	•	•						
Split Sample ID:					•				
Signed:						Date:			
Signed/reviewer:						Date:			

* measured before raiser was cut.

						p1			
		GI	ROUNDWATER	- DEVELOPMENT / S	SAMPLE DAT	A SHEET			
Project Number	465-0	IU		Sample Location	. (io. M/A/1):	MW-3			
Project Name:		acc	MUR	Sample Location	Sample ID:		ACC:	170	-32
Client:	The state of the s	4		Date Samp	le Collected		018/11	10 7300	- 1
Sampler:	AHans	In /B	Deian	Ly Tir	ne sampled .	- 1345	10930	to white	- 1
			EN STATE OF THE PARTY OF THE PARTY OF	/	NAME AND ADDRESS OF THE OWNER, WHEN THE OWNER,				A
				Well Information					
0		120	Casing Diameter (in):	7"		a) Mall Darth (%).		20.4	4
Groundwater:			Diameter (III).			_a) Well Depth (ft): b) Water Depth (ft		10.7	0
Other:						c) Water Column		7.1	
						d) Calc. Purge Vo		18	
44,000.00						11)			
			No. of the state of	201301171201171					
			Ca	Iculating Purge Volum	e it it is the same				
	Well Casing Diameter	Multiply c) by:	1			Sand Pack Diameter	Multiply C) by:	i	
37	4	0.16 0.65				10	0.71	l	
	6	1.47				12	1.28	1	
					Note: assuming	sand pack has 29% por		•	
	Example 1- purging o	nly well casing	volume		Example 2- pur	ging well casing and s	and pack volume		
	You have 2-inch casing	and 6-foot wat	er column.		You have 2-inch	casing, 8-inch sand pad	ck, and 6-foot wate	r column	
	One Purge Volume= 0.	16 X 6 = 0.96 ga	ellons water		One Purge Volu	me= (0.16 X 6)+(0.71 X	6) = 5.22 gallons w	rater	
					0.46				- 112-16
	Name and State of the State of			ELD MEASUREMENTS	SCORE BUSINESS		Hara Maria Periodica	AN HORSEN SAN SAN SAN	TROPING CARRIES
DESCRIPTION DESCRIPTION OF STREET	Volume		Conductivity		ACCUSE HUMONATIVE		Redox	Dissolved	
Time	(gallons)	pН	(mS)	Temperature (F)	Color	Turbidity	(ORP)	O ₂ (mg/L)	Other
	<u> </u>	<u> </u>	 						
à									
					,				
-									
						,			
						 		ļ	
								ļ	
Purge Rate (low fle	ow):	I	-	I	Measure	d Drawdown (ft):		i	
Total Volume Purg						ree Product (y/n):	r,		
Odor:					24	Sheen (y/n):			-
Purge Method (dis	sposable bailer, te	flon bailer,	submersible pu	mp, etc.)					
Commis Mathed (d	lianasahla hailan d	affan hailan				4 7/4			
Sample Method (d	ilsposable baller, i	etion baller	, submersible p	oump, etc.)					9
								Water Comments	
Well Integrity (con	dition of casing, fl	ush mount	sealing properl	y, cement seal intac	t, etc.)	11			
	-				A o			*	
Remarks (well rec	overv. unusual co	nditions/oh	servations):						-
		augi	d 8 6	17/11 or	6/8/11	181			
Duplicate Sample ID	: :								
Split Sample ID:	•	1			,			- CE	2
		550 (860)	10180 - 11					•	10
Sien a di					660000	Data			2
Signed:					-	Date:		-	
Signed/reviewer:						Date:	-		

F

Surface Water Sample Sheet Project No. 465-014

E							
-	Lodge Well nouse	Date 6/7/// Time 100 Sampler AH /BD QA/QC Sample					
Sial	ms[m	Associated QA/QC Sample Split Duplicate					
☐ Marine		Sample Depth \$ Z. \& '					
☐ Brackish	River (RV)	Total Depth					
	☐ Stream/Creek (SP)	Velocity (ft./sec.)					
☐ Seep/Spring (SE)							
☐ Emergent Vegetation		1 1047 5 11 5 11 5 11 5 11 5 11 5 11 5 11 5					
Temperature °C	.40	□ Color C Kar					
	.49	Odor No					
Conductivity (µS/om)	0.032	□ Sheen NO					
Dissolved O2 M9/L	9.06	Debris No Some vegetation					
Redox 139.6		☐ Turbidity <u> </u>					
12470112		-					

Location Diagram/Notes	
	, care
/ (
	4.6
\	
	ell house
was w	
qu'ins ~ w	
	2010
77	pins
74	
No.	
Sample boar	dwar
loon pour	A A A A A A A A A A A A A A A A A A A

	Low	/-Flow (Ground	dwater Samp	oling with N	/linimal	Drawd	lown V	Vorksh	eet	2	
				V4				MW-	Torrest Control	390 - 380	7	
Project # :	465-	- AIU			Date: 6/4/()							
Project Name: (Start Time: 1030						
Site:	Euce		odse			End Time: 145						
Field Team:												
Sample ID:	11 - 5	Janey N	^_17 -c	02-61W_T	ime: 1245	primary	dup	split	ms/msd			
•					ime: (12)	primary	dup	split	ms/msd			
Sample ID:	11	<u> </u>	V1V~ C		ime: 11 21	primary	dup	split	ms/msd		767	
Purgii				(e.g. peristaltic		nersible):	Der	-i	1110/11104			
Weather Condit	ions:	Sunn	7 5	10°	www							
Denth to Top of	Weather Conditions: 50° Depth to Top of Product (ft BTOC): 13.11 Depth to Oil/Water Interface* (ft BTOC): Total Depth (ft BTOC): Total Depth (ft BTOC):											
Denth to Oil/Wa	ter Inter	face* (ft B). ITOC):	77.11		Total De				13.11		
* Note: Same as d	lenth to	uster	100).			i Olai Do	pur (it = :	100).		Lu. U		
Criteria for S			fers									
Parameter				g Range	Stability (Stability Criteria Notes						
Temperature			>0.00 °C		± 2° C	Jiitoi ia	Notes					
рН				<u> </u>	± 0.1							
Conductivity			0-14 0-999 m	S/m	± 3%					1047		
ORP			± 1999 r		1 3 70			co marina				
	en .		0-19.99		10%							
Dissolved Oxygen Turbidity			0-800 N		1070							
Sensory Obs	- amzati		10-000 14	10		•					V 77	
			1 T.	5		•						
Color:				an, Brown, Grey			31!					
Odor:				um, High, Very			Chemica	al ?, Unkr	nown			
Turbidity:		-	w, Mean	um, High, Very	Turbia, Heavy	Silts						
Instrument C	bserv	ations	 				1 .		ı "	1 18/-4		
l		Tomp		Conductifu	Tuebidite	DO	ORP			Water	D	
Bound	Time	Temp °C		Conductity	Turbidity (NTUs)	ł		Color	040	(ft BTOC)	Draw-	
Round 1		— <u> </u>	6.26	.494		(mg/L)	(mV)	Color	Odor	-	down	
2		3,65	5.32	.479						1-3.11		
3				*************************************		1	160.2	clear		13.22	11	
4		2.36	5.66	474		+		clar	1	13.23	۳, ۵۱	
5	1054	1.93	5.79	.472		 	1223	Class		13.23	~ ⇔	
6		2.13	6.33	.471		+	118.5		Manager	13.24		
7	1103	2.18	659	.471		1, 51	111.5	Clear	_	13.24	0	
	11102	12.18	1657	1471	-	11. 21			***************************************	13.45	01	
1 2	1104			1001						. 2 - 2		
8	1106	2.27	6.75	.431		1.49	109.6	clear		13.23	1,02	
9	1101	2.27	6.75	.472		1.49	109.6 E.40	clear		13.23	+,32	
9 10	1112	2.27 2.33 2.41	6.75 6.86 6.99	.472		1.49	109.6 106.3 103.1	clear clear		13.23	-	
9 10 11	1112	2.27 2.33 2.41 2.46	6.75 6.86 6.99 7.01	.472	-	1.49	106.5	clear clear clear		13.23 13.23 13.22	+. 37	
9 10	1112	2.27 2.33 2.41 2.46 2.48	6.75 6.86 6.99 7.01 7.01	.472 .474 .474 .474		1.49	109.6 106.3 103.1 103.8 103.8	clear clear clear clear		13.23 13.23 13.22	-	
9 10 11 12	1107 1112 1115 1113 1121	2.27 2.33 2.41 2.46 2.48 2.40	6.75 6.86 6.99 7.01 7.09	.472 .474 .434 .434		1.49 1.47 1.46 1.47 1.40	109.6	clear clear clear clear clear		13.23 13.23 13.22 13.22	+. 31	
9 10 11 12 Notes: Drawdown s	1112 1113 1113 1121 hould be	2.27 2.33 2.41 2.46 2.48 2.40 less than 0.3	6.75 6.86 6.99 7.01 7.09 feet while s	.472 .474 .474 .474		1.49 1.47 1.45 1.47 1.40 1.39 chieved and r	109.6 106.3 103.1 103.8 99.9 19.5 measured t	clear clear clear clear clear clear		13.23 13.23 13.22 13.22 13.22 te (approximately	+. 31	
9 10 11 12 Notes: Drawdown s	ILDT ILIS ILIS ILIS hould be latinually m	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war	6.75 6.86 6.99 7.01 7.09 feet while s	.472 .474 .434 .434 .434 sampling. Minimal dr		1.49 1.47 1.45 1.47 1.40 1.39 chieved and r	109.6 106.3 103.1 103.8 99.9 19.5 measured t	clear clear clear clear clear clear		13.23 13.23 13.22 13.22 13.22 te (approximately	+. 31	
9 10 11 12 Notes: Drawdown s liter/minute) and con	N 12 N 15 N 21 hould be attinually m	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr		1.49 1.47 1.45 1.47 1.40 1.39 chieved and r	109.6 106.3 103.1 103.8 99.9 19.5 measured t	clear clear clear clear clear clear		13.23 13.23 13.22 13.22 13.22 te (approximately	+. 31	
9 10 11 12 Notes: Drawdown s liter/minute) and con	IN 12 IN 13 IN 13 IN 24 hould be intinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr	ite's hydrogeology	1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.3 99.9 19.5 measured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	
9 10 11 12 Notes: Drawdown s liter/minute) and con Analyses	INDT INTZ INTS INTZ hould be attinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr		1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.3 99.9 19.5 measured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	
9 10 11 12 Notes: Drawdown s liter/minute) and con Analyses L1R 0 RTGX D20 BRD	IND1 IN 12 IN 15 IN 13 IN 24 hould be litinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr	ite's hydrogeology	1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.3 99.9 19.5 measured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	
9 10 11 12 Notes: Drawdown s liter/minute) and con Analyses	INDT INTZ INTS INTZ hould be attinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr	ite's hydrogeology	1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.3 99.9 19.5 measured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	
9 10 11 12 Notes: Drawdown s liter/minute) and con Analyses L1R 0 RTGX D20 BRD	IND1 IN 12 IN 15 IN 13 IN 24 hould be litinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr	ite's hydrogeology	1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.3 99.9 19.5 measured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	
9 10 11 12 Notes: Drawdown s liter/minute) and con Analyses L1R 0 RTGX D20 BRD	IND1 IN 12 IN 15 IN 13 IN 24 hould be litinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr	ite's hydrogeology	1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.3 99.9 19.5 measured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	
9 10 11 12 Notes: Drawdown s liter/minute) and con Analyses LIRO RTGX D20 BRD PAR	IND1 IN 12 IN 15 IN 13 IN 24 hould be litinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr	ite's hydrogeology	1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.8 19.9 19.5 neasured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	
9 10 11 12 Notes: Drawdown s liter/minute) and con Analyses L1R 0 RTGX D20 BRD	IND1 IN 12 IN 15 IN 13 IN 24 hould be litinually m # of Col	2.27 2.33 2.41 2.46 2.46 2.40 less than 0.3 neasuring war Bottles	6.75 6.86 6.99 7.01 7.09 feet while ster levels in	.472 .474 .474 .474 sampling. Minimal dr	ite's hydrogeology	1.47 1.45 1.47 1.40 1.50 1.39 chieved and r	109.6 106.3 103.1 103.3 99.9 19.5 measured to a	clear Clear Clear Clear Clear Clear Dy pumping achieve this	specification	13.23 13.23 13.22 13.22 13.22 te (approximately	4. a)	

1 9

APPENDIX B

Photographic Log

PHOTOGRAPH 1: VIEW OF THE SOUTHERN PORTION OF THE SITE, LOOKING NORTH (JUNE 2011)

PHOTOGRAPH 2: VIEW OF THE SOUTHERN PORTION OF THE SITE AND THE ADJACENT GAS STATION, LOOKING NORTHWEST (JUNE 2011)

PHOTOGRAPH 3: CLOSER VIEW OF THE SOUTHERN PORTION OF THE ASTS, LOOKING NORTHWEST (JUNE 2011)

PHOTOGRAPH 4: CLOSER VIEW OF THE SOUTHERN PORTION OF THE ASTS, LOOKING NORTHEAST (JUNE 2011)

PHOTOGRAPH 5: VIEW OF THE SOUTHERN PORTION OF THE SITE, LOOKING EAST (JUNE 2011)

PHOTOGRAPH 6: VIEW OF THE SOUTHERN PORTION OF THE SITE, LOOKING EAST (JUNE 2011)

PHOTOGRAPH 7: VIEW OF THE EASTERN PORTION OF THE SITE, THE UNMANED LAKE, AND THE WELL HOUSE, LOOKING NORTHWEST (JUNE 2011)

PHOTOGRAPH 8: VIEW OF THE NORTHERN PORTION OF THE SITE, LOOKING WEST (JUNE 2011)

PHOTOGRAPH 9: VIEW OF THE NOTHERN PORTION OF THE SITE AND THE UNMANED LAKE, LOOKING NORTHWEST (JUNE 2011)

PHOTOGRAPH 10: VIEW OF THE NOTHERN PORTION OF THE SITE, LOOKING SOUTHWEST (JUNE 2011)

PHOTOGRAPH 11: VIEW OF THE NORTHERN PORTION OF THE SITE AND THE WELL HOUSE, LOOKING WEST (JUNE 2011)

PHOTOGRAPH 12: VIEW OF THE WELL HOUSE AND UNNAMED LAKE, LOOKING NORTH (JUNE 2011)

PHOTOGRAPH 13: INSIDE THE WELL HOUSE (JUNE 2011)

PHOTOGRAPH 14: VIEW OF THE FIELD TEAM IDENTIFING THE SOIL LITHOLOGY, LOOKING SOUTH (JUNE 2011)

APPENDIX C

Borehole/Monitoring Well Installation Logs

- Page Intentionally Left Blank -

BOREHOLE / WELL DESIGNATION: SB-01

PROJECT NAME: Eureka Lodge LOCATION: South of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 1030/1130
DATE COMPLETED: 6/6/11
TOTAL BOREHOLE DEPTH: 20 feet
DRILLING CONTRACTOR: GeoTek
DRILL RIG TYPE: GeoProbe
SAMPLING METHOD: Direct Push

Recovered / Driven (Feet)	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)	Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
	0.0			=		ASPERS.	Silt w/Fines and Gravel
	0.0			10		100000000000000000000000000000000000000	Brown, damp, silt w/fines and 15% fine gravel. No odor.
	0.0			1.0		KEKEKE	g.a.e 110 eac.1
	0.0						
F/0.05	0.0			2.0	NAL (ONA		
5/3.85	0.0			3.0	ML/GM	148148148	
	0.0			3.0			
	0.0			4.0		135135135	
	0.0			4.0			
	0.0						
	0.0			5.0			Silt w/Fines
	0.0						Brown, frozen, silt w/fines.
	0.0			6.0			
	0.0						
	0.0			7.0			
5/5	0.0				ML		
	0.0			8.0			
	0.0						
	0.0			9.0			
	0.0						
	0.0			10.0			Silt w/Fines
	0.0						Brown, damp, silt w/fines.
	0.0			11.0	ML		
	0.0					MOE MOE MOE	Silt w/Fines and some gravel
4/4.7	0.0			12.0			Brown, damp, silt w/fines and 15% fine
	0.0					138,138,138	gravel. No odor.
	0.0			13.0	ML/GM		
	0.0					North State	
	0.0			14.0		NOE NOE NOE	Silt w/Fines and Gravel
	0.0					148148148	Brown, damp, silt w/fines and 20% fine
	0.0			15.0			gravel. No odor. Wet at 17 feet.
	0.0]		135135135	
	0.0			16.0			
	0.0				ML/GM	KEKEKE KE	
6/4.2	0.0	11-EUR-SB01-01-SO; DRO = 1.2J		17.0			
	0.0	11-2017-0501-01-00, 5110 - 1.23					
	0.0			18.0			
	0.0						
	0.0			19.0		HOSPIGE HOS	
	0.0					HEHERE	
	0.0			20.0		Nonhanoe	

DATE: 9/23/11

DRAWN BY: A. Hansen CHECKED BY: D. Frank PROJECT NUMBER: 465-014

BOREHOLE / WELL DESIGNATION: SB-02/MW-1

PROJECT NAME: Eureka Lodge LOCATION: South of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 1135/1230
DATE COMPLETED: 6/6/11
TOTAL BOREHOLE DEPTH: 20 feet
DRILLING CONTRACTOR: GeoTek
DRILL RIG TYPE: GeoProbe
SAMPLING METHOD: Direct Push

% Recovered	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)	Well Detail	Depth (feet)	USGS Class	Lithologic Column	Lithologic Description
72	0.0 0.0 0.0 0.0 0.0 0.0			Concrete v	2.0	ML-GM		Silt w/Fines and Gravel Brown, damp, silt w/fines and 15% fine gravel, no HC odor.
	0.0 0.0 0.0 0.0				4.0	ML		Silt w/Fines and Gravel Brown, moist, silt w/fines and less than
100	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1	11-EUR-SB02-01-SO; GRO=88, DRO=4000, RRO=130, B=0.049, T=0.14J,E=0.02J, X=0.15		Bentonite Chips 2" Unslotted PVC	7.0 and a second	ML-GM	Mos	5% fine gravel, no HC odor. Silt w/Fines and Gravel Brown, damp, silt w/fines and 15% fine gravel, slight HC odor at 9.0 feet.
100	1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1-0.140,E-0.020, X-0.10		Silica Sand Salica Sand Slot Screen PVC	12.0	ML	405 NOS NOS	Silt Brown, dense, frozen silt, no HC odor.
100	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			10/20 Silica S	15.0	ML		Silt w/Fines Grey/brown, dense, silt w/fines, no HC odor.

DRAWN BY: A. Hansen

DATE: 10/7/11

CHECKED BY: D. Frank
PROJECT NUMBER: 465-014

BOREHOLE / WELL DESIGNATION: SB-03

PROJECT NAME: Eureka Lodge LOCATION: South of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 1400/1440
DATE COMPLETED: 6/6/11
TOTAL BOREHOLE DEPTH: 20 Feet
DRILLING CONTRACTOR: GeoTek
DRILL RIG TYPE: GeoProbe
SAMPLING METHOD: Direct Push

Recovered / Driven (Feet)	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)	Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
	0.0					Action Action	Silt w/Sand and Gravel Brown silt w/fine to coarse grained sand and 15% fine gravel, slight HC odor
	0.0			1.0		195195195	increasing with depth.
	0.0			2.0			
5/2	0.0			2.0			
0,2	0.0			3.0			
	0.0						
	0.0			4.0			
	0.0				SM-GM		
	0.0			5.0		35,35,55	
	0.0						
	0.0			6.0			
	0.0						
5/4.0	0.0			7.0		105105105	
5/4.8	0.0			8.0		HOP HOP HOP	
	0.0 1.4			0.0			
	4.0			9.0		100 100 10E	
	2.6						Silt Brown, frozen, dense silt, slight HC odor.
	3.5			10.0			Brown, nozon, dende diit, diignit ne ddor.
	3.8						
	1.3			11.0			
	8.4				ML		
	3.9			12.0			
5/5	9.5	11-EUR-SB03-02-SO (Prime); GRO=44, B=18E,					
	12.9	T= 0.19J, E=1.1, X=3.8, DRO=3.J		13.0			
	4.2			=			
	4.6			14.0	SM		Silty Sand
	3.5			450			Brown, fine grained silty sand, damp, slight HC odor.
	1.1 0.0			15.0			Silt
	0.0			16.0			Brown, frozen, dense silt, no HC odor.
	0.0			10.0	ML		
	0.0			17.0			
5/5	0.0						
	0.0			18.0			
	0.0						
	0.0			19.0			Silty Clay
	0.0	11-EUR-SB03-01-SO; DRO=4.5J, RRO=4.9J		20.0	OL		Grey, dense, silty clay, no HC odor.
	0.0			20.0			

DATE: 9/23/11

DRAWN BY: A. Hansen CHECKED BY: D. Frank PROJECT NUMBER: 465-014

BOREHOLE / WELL DESIGNATION: SB-04

PROJECT NAME: Eureka Lodge LOCATION: North of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 1445/1525 DATE COMPLETED: 6/6/11 TOTAL BOREHOLE DEPTH: 20 DRILLING CONTRACTOR: GeoTek DRILL RIG TYPE: GeoProbe SAMPLING METHOD: Direct Push

Recovered / Driven (Feet)	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)	Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
,	0.0			1.0	ML-GM	405 405 405 405 405 405 405 405 405 105 405 405	Silt w/Fines and Gravel Brown silt w/fines and 10% fine gravel and trace organics, damp, no HC odor.
	0.0			2.0	GP	No Solo Solo	Gravel Poorly-graded, coarse gravel, no HC odor.
5/5	0.0			3.0	ML-GM		Silt w/Fines and Gravel Brown silt w/fines and 10% fine gravel and
	0.0				SP		trace organics, damp, no HC odor. Sand
	0.0			4.0			Brown fine grained sand, less than 5% fine gravel, damp, no HC odor.
	0.0			5.0			Silt
	0.0			3.0			Brown, frozen, silt w/5% fine gravel. Gravel increasing with depth.
	0.0			6.0			
	0.0						
E/E	0.0			7.0	N A I		
5/5	0.0			8.0	ML		
	0.0						
	0.0			9.0			
	0.0			10.0			
	0.0			10.0			
	0.0			11.0			
	0.0						
	0.0			12.0	GP	2020000000	Gravel
5/4	0.0			13.0			Coarse gravel, no HC odor. Sand
	0.0			10.0	SP		Brown, damp, fine to medium grained sand w/some silt and less than 5% fine gravel,
	0.0			14.0			no HC odor.
	0.0			4.50			Silt Brown, damp, dense, silt. No HC odor.
	0.0			15.0			, ,
	0.0			16.0			
	0.0						
	0.0			17.0	ML		
5/5	0.0			18.0			
	0.0			10.0			
	0.0			19.0			
	0.0	11-EUR-SB04-01-SO; DRO=5.3J, RRO=4.8J	-				
	0.0		1	20.0		 	

DATE: 10/6/11

DRAWN BY: A. Hansen CHECKED BY: D. Frank PROJECT NUMBER: 465-014

BOREHOLE / WELL DESIGNATION: SB-05

PROJECT NAME: Eureka Lodge LOCATION: North of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 1530/1640
DATE COMPLETED: 6/6/11
TOTAL BOREHOLE DEPTH: 20
DRILLING CONTRACTOR: GeoTek
DRILL RIG TYPE: GeoProbe
SAMPLING METHOD: Direct Push

Recovered / Driven (Feet)	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)	Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
	0.0 0.0 0.0			1.0			Silt w/Fines and Gravel Brown, damp, silt w/fines and 10% fine gravel, no HC odor.
5/3	0.0			2.0			**CATA**CATA*
	0.0			3.0			
	0.0			4.0		135135133	Silt
	0.0			5.0	ML		Brown, frozen, dense silt w/10% fine gravel, no HC odor.
	0.0			5.0			
	0.0			6.0			Silt Brown, damp, dense silt w/10% fine gravel, no HC odor.
	0.0			7.0			
5/5	0.0			-			
	0.0			8.0			
	0.0			0.0			
	0.0			9.0			
	0.0			10.0			
	0.0						
	0.0			11.0			
	0.0						
	0.0			12.0	ML		
5/5	0.0			12.0			
	0.0			13.0			
	0.0			14.0			
	0.0] =			
	0.0			15.0			
	0.0			=			
	0.0			16.0			
	0.0			17.0			
5/4.2	0.0			17.0			
0,-1.2	0.0			18.0			
	0.0						
	0.0			19.0			
	0.0	11-EURSB05-01-SO; DRO=3.5J, RRO=5.0J	1				
	0.0		1	20.0			

DATE: 10/6/11

DRAWN BY: A. Hansen CHECKED BY: D. Frank PROJECT NUMBER: 465-014

BOREHOLE / WELL DESIGNATION: SB-06

PROJECT NAME: Eureka Lodge LOCATION: North of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 1635/1715
DATE COMPLETED: 6/6/11
TOTAL BOREHOLE DEPTH: 20 feet
DRILLING CONTRACTOR: GeoTek
DRILL RIG TYPE: GeoProbe
SAMPLING METHOD: Direct Push

Recovered / Driven (Feet)	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)	Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
	0.0			1.0	ML		Silt w/Fines and Gravel Dark brown, damp, silt w/fines and less than 5% fine gravel, no HC odor.
5/4	0.0 0.0 0.0			2.0	ML SM	ASMS MS	Silt w/Fines and Gravel Brown, damp, silt w/fines and less than 5% fine gravel, no HC odor.
0/4	0.0			3.0			Silty Sand Brown, damp, silty sand w/less than 5% fine gravel, no HC odor.
	0.0			4.0	ML		Silt w/Fines and Gravel Brown, damp, silt w/fines and 5% fine gravel, no HC odor.
	0.0 0.0			5.0		Achieckiek Politic	graver, no no odor.
	0.0 0.0			6.0	ML-GM		Gravelly Silt Brown, damp, silt w/20% fine gravel, no HC
5/5	0.0			7.0	ML	100 100 100 100 100 100 100 100 100 100 100	odor. Silt w/Fines and Gravel Brown, damp, silt w/fines and 10% fine
	0.0			8.0 - 9.0 -	SM		gravel, no HC odor. Sandy Silt w/Gravel Dark grey fine to medium grained sandy silt
	0.0 0.0 - 0.0			9.0	ML		w/5% fine gravel, no HC odor. Silt Brown, frozen, silt w/fines, no HC odor.
	0.0			11.0	IVIL		Damp at 10.5 feet.
	0.0			12.0			Silt w/Fines and Gravel Brown, damp silt w/fines and 25% fine gravel, no HC odor.
5/3	0.0 0.0			13.0			Moist at 17.5 feet.
	0.0 0.0			14.0			
	0.0			15.0			
	0.0			16.0	ML-GM		
5/3.5	0.0 0.0 0.0			17.0			
3/3.3	0.0			18.0			
	0.0	11-EUR-SB06-01-SO; DRO=1.8J		19.0			
	0.0	2017 0500 01 00, 5110-1.00		20.0		ROPHORNOR	

DATE: 10/6/11

DRAWN BY: A. Hansen CHECKED BY: D. Frank PROJECT NUMBER: 465-014

BOREHOLE / WELL DESIGNATION: SB-07/MW-3

PROJECT NAME: Eureka Lodge LOCATION: East of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 1710/1750
DATE COMPLETED: 6/7/11
TOTAL BOREHOLE DEPTH: 20 feet
DRILLING CONTRACTOR: GeoTek
DRILL RIG TYPE: GeoProbe
SAMPLING METHOD: Direct Push

% Recovered	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)		W	ell D	Detail		Depth (feet)	USGS Class	Lithologic Column	Lithologic Description
	0.0 0.0 0.0			Φ	Bossosbos			ng	1.0	ML		Silt w/Fines and Gravel Brown, damp, silt w/fines and 5% fine
	0.0			Concrete				ousi	2.0	ML-SM		gravel, trace organics, no HC odor.
100	0.0			Con				Protective Housing	1			Sandy Silt Brown, damp, fine to
	0.0							tecti	3.0	ML		medium grained sandy
	0.0							Pro			KEKEKE	silt, no HC odor. Silt w/Fines
	0.0			S					4.0		405 405 405	Brown, damp, silt
	0.0			Bentonite Chips					5 0		405405405	w/fines, no HC odor.
	0.0			ite (•		ပ္	5.0		100,100,100,100,100,100	Silt w/Fines and Gravel
	0.0			ntor				2" Unslotted PVC	6.0	ML	146,146,146,1	Brown, damp, dense, silt w/fines and 10%
	0.0			Be				ottec	0.0			fine gravel, no HC
	0.0							Jusk	7.0			odor.
100	0.0							2" ר				
	0.0								8.0		1351351351	0 "'
	0.0								3			Silt Brown, dense, silt, no
	0.0								9.0			HC odor.
	0.0											
	0.0							Ŧ	10.0			
	0.0								1			
	0.0								11.0			
	0.0											
400	0.0								12.0			
100	0.0								13.0	ML		
	0.0								13.0	IVIL		
	0.0				•			PVO	14.0			
	0.0			- pur				0-Slot Screen PVC	· · · · · · · · · · · · · · · · · · ·			
	0.0			Silica Sand				Scr	15.0			
	0.0			Silic				Slot	=			
	0.0			10/20				-	16.0			
	0.0			9				_2"				
	0.0								17.0			
100	0.0								=			
	0.0								18.0			
	0.0								40.0			
	0.0								19.0			
	0.0	11-EUR-SB07-01-SO; DRO=3.3J, RRO=4.3J						<u> </u>	20.0			
	0.0							_	20.0			

DATE: 10/7/11

DRAWN BY: A. Hansen CHECKED BY: D. Frank PROJECT NUMBER: 465-014

BOREHOLE / WELL DESIGNATION: SB-08/MW-2

PROJECT NAME: Eureka Lodge LOCATION: East of Tanks PROJECT MANAGER: Dan Frank LOGGED BY: A. Hansen PROJECT NUMBER: 465-014 DATUM ELEVATION: START TIME / END TIME: 0825/0950
DATE COMPLETED: 6/7/11
TOTAL BOREHOLE DEPTH: 20 feet
DRILLING CONTRACTOR: GeoTek
DRILL RIG TYPE: GeoProbe
SAMPLING METHOD: Direct Push

% Recovered	In Situ PID (ppm)	Analytical Sample Results (mg/kg)	GW Depth (feet)	Well Detail	Depth (feet)	USGS Class	Lithologic Column	Lithologic Description
	0.0					ML	Morros Morros	Silt w/Fines and Gravel
	0.0				1.0		14-14-14-1	Brown, damp, silt
	0.0					ML	135,135,135,	w/fines and 10% fine gravel, trace organics,
	0.0				2.0	ML		no HC odor.
90	0.0			Concrete To Concre		IVIL		Silt w/Fines and Gravel
	0.0			Concrete Tive House	3.0	ML-SM		Brown, damp, silt
	0.0			Co				w/fines and less than 5% fine gravel, no HC
	0.0			S	4.0			odor.
	0.0			Bentonite Chips		ML		Silt Brown, damp, silt, no
	1.4			ite	5.0			HC odor.
	0.0			Bentonite				Sandy Silt
	0.0			Bel	6.0		No Hollo	Brown, damp, fine to coarse grained sandy
	0.0			olsu	7.0			silt, 5% fine gravel, no
100	0.0			0 1	7.0		Kop Kop Kop	HC odor.
100				"	8.0	NAI	100 100 100	Grey/brown, dense,
	0.0				0.0	ML		frozen, silt, no HC odor.
	0.0				9.0			
	0.0				0.0		135,135,135	Slight HC odor at 5 feet.
	0.0			■ **	10.0		BEBEBE	Silty Sand
	0.0							Grey/brown, damp, fine to medium grained
	0.0				11.0			sand, 5-10% fine
	0.0							gravel, no HC odor.
	0.0				12.0	ML-GM		Silty Sand Grey/brown, damp,
90	0.0						Kekeke	fine to medium grained
	0.0				13.0		Not Not Not	sand, 20% fine gravel, no HC odor.
	0.0			9			Mobile Mobile	
	0.0			_ _	14.0			
	0.0			O Silica Sand				
	0.0			ca S	15.0		Not Not Not	Silty Sand
	0.0			Sill Sill Sill Sill Sill Sill Sill Sill			104110411041	Grey/brown, damp,
	0.0			10/20	16.0			fine to medium grained sand, 10-15% fine
	0.0			1 2			14-14-14-14	gravel, no HC odor.
	0.0	11-EUR-SB08-01-SO; All ND			17.0	ML-GM		Wet at 17 feet.
75	0.0]			
	0.0				18.0			
	0.0				100		Mark Mark	
	0.0				19.0		Not the tree	
	0.0				20.0			
	0.0				20.0			

DATE: 10/7/11 DRAWN BY: A. Hansen

CHECKED BY: D. Frank
PROJECT NUMBER: 465-014

APPENDIX D

ESC Analytical Results

ADEC Data Review Checklists

- Page Intentionally Left Blank -

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

For: OASIS Environmental - Anchorage, AK

Project: Euraka Lodge Crowley

June 17, 2011

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Semi-volatile Organic Compounds by Method 8270C-SIM

Laboratory Control Sample

Sample L520284-01 was analyzed in analytical batch WG540038. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540038 matrix spike/matrix spike duplicate analysis was performed on sample L520459-04. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540038 matrix spike/matrix spike duplicate analysis was performed on sample L520284-01. The matrix spike recoveries were within laboratory control limits for all target analytes. The relative percent difference exceeded laboratory limits for 2-Chloronaphthalene, 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene, Naphthalene, Phenanthrene, Benzo(b)fluoranthene, and Pyrene.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

AK102 / AK103

Laboratory Control Sample

Sample L520284-01 was analyzed in analytical batch WG540042. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540042, matrix spike/matrix spike duplicate analysis was performed on sample L520284-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Dan Frank
OASIS Environmental - Anchorage, AK
825 W. 8th Ave.
Anchorage, AK 99501

Report Summary

Friday June 17, 2011

Report Number: L520284
Samples Received: 06/10/11

Client Project:

Description: Eureka

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

T. Alan Harvill , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520284-01

June 17, 2011

Site ID :

Project # :

Date Received : June 10, 2011
Description : Euraka Lodge Crowley

Sample ID : 11-EUR-LK01-01-SW

Collected By : AH/BD Collection Date : 06/07/11 11:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
AK102 DRO C10-C25	48.	22.	800	ug/l	J	AK102/1	06/15/11	1
AK103 RRO C25-C36	U	66.	200	ug/l		AK102/1	06/15/11	1
Surrogate Recovery				_				
o-Terphenyl	83.0			% Rec.		AK102/1	06/15/11	1
Polynuclear Aromatic Hydrocarbons								
Anthracene	U	0.013	0.050	ug/l			06/15/11	1
Acenaphthene	U	0.0082	0.050	ug/l	J3		06/15/11	1
Acenaphthylene	U	0.011	0.050	ug/l	J3		06/15/11	1
Benzo(a)anthracene	U	0.012	0.050	ug/l	J3		06/15/11	1
Benzo(a)pyrene	U	0.016	0.050	ug/l	J3		06/15/11	1
Benzo(b)fluoranthene	U	0.019	0.050	ug/l	J3		06/15/11	1
Benzo(g,h,i)perylene	U	0.016	0.050	ug/l	J3		06/15/11	1
Benzo(k)fluoranthene	U	0.026	0.050	ug/l	J3		06/15/11	1
Chrysene	U	0.014	0.050	ug/l	J3		06/15/11	1
Dibenz(a,h)anthracene	U	0.0045	0.050	ug/l	Ј3		06/15/11	1
Fluoranthene	U	0.016	0.050	ug/l	J3		06/15/11	1
Fluorene	U	0.0090	0.050	ug/l	J3		06/15/11	1
Indeno(1,2,3-cd)pyrene	U	0.0074	0.050	ug/l	J3		06/15/11	1
Naphthalene	U	0.012	0.25	ug/l	J3		06/15/11	1
Phenanthrene	U	0.018	0.050	ug/l	J3		06/15/11	1
Pyrene	U	0.016	0.050	ug/l	J3		06/15/11	1
1-Methylnaphthalene	U	0.019	0.25	ug/l			06/15/11	1
2-Methylnaphthalene	U	0.016	0.25	ug/l	J3		06/15/11	1
2-Chloronaphthalene	U	0.016	0.25	ug/l	J3	8270C-S	06/15/11	1
Surrogate Recovery								
Nitrobenzene-d5	66.9			% Rec.			06/15/11	1
2-Fluorobiphenyl	69.5			% Rec.			06/15/11	1
p-Terphenyl-d14	74.5			% Rec.		8270C-S	06/15/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 12:04 Printed: 06/17/11 12:05

Page 2 of 9

Attachment A List of Analytes with QC Qualifiers

Sample	Work	Sample		Run	
Number	Group	Type	Analyte	ID	Qualifier
L520284-01	WG540042	SAMP	AK102 DRO C10-C25	R1723990	
	WG540038	SAMP	Acenaphthene	R1723652	J3
	WG540038	SAMP	Acenaphthylene	R1723652	J3
	WG540038	SAMP	Benzo(a)anthracene	R1723652	J3
	WG540038	SAMP	Benzo (a) pyrene	R1723652	J3
	WG540038	SAMP	Benzo(b) fluoranthene	R1723652	J3
	WG540038	SAMP	Benzo(q,h,i)perylene	R1723652	J3
	WG540038	SAMP	Benzo(k) fluoranthene	R1723652	J3
	WG540038	SAMP	Chrysene	R1723652	J3
	WG540038	SAMP	Dibenz (a, h) anthracene	R1723652	J3
	WG540038	SAMP	Fluoranthene	R1723652	J3
	WG540038	SAMP	Fluorene	R1723652	J3
	WG540038	SAMP	Indeno(1,2,3-cd)pyrene	R1723652	J3
	WG540038	SAMP	Naphthalene	R1723652	J3
	WG540038	SAMP	Phenanthrene	R1723652	J3
	WG540038	SAMP	Pyrene	R1723652	J3
	WG540038	SAMP	2-Methylnaphthalene	R1723652	J3
	WG540038	SAMP	2-Chloronaphthalene	R1723652	J3

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
J3	The associated batch QC was outside the established quality control range for precision.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods,it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 4 of 9

Summary of Remarks For Samples Printed 06/17/11 at 12:05:09

TSR Signing Reports: 358

Need cooler receipt form on ALL samples. All samples get QC2MODCN.

Sample: L520284-01 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/17/11 12:04 please ms/msd sample

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Euraka Lodge Crowley EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Method Blank

Analyte	CAS	PQL	Qualifiers
AK DRO C10-C25		< 0.80	
AK RRO C25-C36		< 0.20	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
AK DRO C10-C36	1.50	1.39	92.4	75 - 125	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
AK DRO C10-C36	1.50	1.38	92.2	75 - 125	_

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Euraka Lodge Crowley EPA ID: TN00003
Collection Date: 6/7/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec
Blank WG540042	0.0189	94.7
LCS WG540042	0.0193	96.3
LCSD WG540042	0.0191	95.7
MS WG540042	0.0190	94.9
MSD WG540042	0.0180	89.9
L520284-01	0.0166	83.0

o-terphenyl Limits - 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Euraka Lodge Crowley EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Laboratory Control Sample/Laboratory Control Sample Duplicate

	-	_	%	-	%	Control	_	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
AK DRO C10-C36	1.50	1.39	92.4	1.38	92.2	75-125		0.3	20	_

Matrix Spike/Matrix Spike Duplicate

L520284-01 % % Spike Control % Rec % Control **RPD** Value Sample MS Rec MSD Limits Qualifier RPD Limits Qual Analyte Rec AK DRO C10-C36 1.50 0.048 1.38 88.8 1.35 86.8 75-125 2.6 20

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Euraka Lodge Crowley EPA ID: TN00003
Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Method Blank

Analyte	CAS	PQL	Qualifiers
Naphthalene	91-20-3	< 0.000250	
2-Methylnaphthalene	91-57-6	< 0.000250	
1-Methylnaphthalene	90-12-0	< 0.000250	
2-Chloronaphthalene	91-58-7	< 0.000250	
Acenaphthylene	208-96-8	< 0.0000500	
Acenaphthene	83-32-9	< 0.0000500	
Fluorene	86-73-7	< 0.0000500	
Phenanthrene	85-01-8	< 0.0000500	
Anthracene	120-12-7	< 0.0000500	
Fluoranthene	206-44-0	< 0.0000500	
Pyrene	129-00-0	< 0.0000500	
Benzo(a)anthracene	56-55-3	< 0.0000500	
Chrysene	218-01-9	< 0.0000500	
Benzo(b)fluoranthene	205-99-2	< 0.0000500	
Benzo(k)fluoranthene	207-08-9	< 0.0000500	
Benzo(a)pyrene	50-32-8	< 0.0000500	
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.0000500	
Dibenz(a,h)anthracene	53-70-3	< 0.0000500	
Benzo(g,h,i)perylene	191-24-2	< 0.0000500	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Euraka Lodge Crowley EPA ID: TN00003
Collection Date: 6/7/2011 Analytic Batch: WG540038

Conceilon Date. 0///2011 Ai

Analysis Date: 6/15/2011 10:22:00 AM Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1-Methylnaphthalene	0.00100	0.000698	69.8	30 - 123	
2-Chloronaphthalene	0.00100	0.000730	73.0	34 - 120	
2-Methylnaphthalene	0.00100	0.000721	72.1	29 - 116	
Acenaphthene	0.00100	0.000822	82.2	40 - 113	
Acenaphthylene	0.00100	0.000823	82.3	36 - 115	
Anthracene	0.00100	0.000869	86.9	45 - 118	
Benzo(a)anthracene	0.00100	0.000768	76.8	36 - 129	
Benzo(a)pyrene	0.00100	0.000870	87.0	44 - 124	
Benzo(b)fluoranthene	0.00100	0.000921	92.1	43 - 126	
Benzo(g,h,i)perylene	0.00100	0.000950	95.0	39 - 128	
Benzo(k)fluoranthene	0.00100	0.000851	85.1	44 - 127	
Chrysene	0.00100	0.000901	90.1	36 - 137	
Dibenz(a,h)anthracene	0.00100	0.000925	92.5	39 - 129	
Fluoranthene	0.00100	0.000878	87.8	45 - 123	
Fluorene	0.00100	0.000878	87.8	41 - 118	
Indeno(1,2,3-cd)pyrene	0.00100	0.000936	93.6	39 - 129	
Naphthalene	0.00100	0.000680	68.0	26 - 111	
Phenanthrene	0.00100	0.000832	83.2	41 - 116	
Pyrene	0.00100	0.000854	85.4	32 - 136	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Semi-volatile Organic Compounds by Method 8270C-SIM Test:

Matrix: Project No: Water - mg/L TN00003 Project: Euraka Lodge Crowley EPA ID: Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 10:22:00 AM Analyst:

Instrument ID: Extraction Date: 6/11/2011 BNAMS9

Sample Numbers: L520284-01

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1-Methylnaphthalene	0.00100	0.000817	81.7	30 - 123	
2-Chloronaphthalene	0.00100	0.000832	83.2	34 - 120	
2-Methylnaphthalene	0.00100	0.000807	80.7	29 - 116	
Acenaphthene	0.00100	0.000861	86.1	40 - 113	
Acenaphthylene	0.00100	0.000840	84.0	36 - 115	
Anthracene	0.00100	0.000903	90.3	45 - 118	
Benzo(a)anthracene	0.00100	0.000793	79.3	36 - 129	
Benzo(a)pyrene	0.00100	0.000897	89.7	44 - 124	
Benzo(b)fluoranthene	0.00100	0.000965	96.5	43 - 126	
Benzo(g,h,i)perylene	0.00100	0.000980	98.0	39 - 128	
Benzo(k)fluoranthene	0.00100	0.000912	91.2	44 - 127	
Chrysene	0.00100	0.000963	96.3	36 - 137	
Dibenz(a,h)anthracene	0.00100	0.000949	94.9	39 - 129	
Fluoranthene	0.00100	0.000916	91.6	45 - 123	
Fluorene	0.00100	0.000938	93.8	41 - 118	
Indeno(1,2,3-cd)pyrene	0.00100	0.000976	97.6	39 - 129	
Naphthalene	0.00100	0.000800	80.0	26 - 111	
Phenanthrene	0.00100	0.000870	87.0	41 - 116	
Pyrene	0.00100	0.000856	85.6	32 - 136	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Euraka Lodge Crowley EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Surrogate Summary

Laboratory	poratory NBZ		21	FP	TI	RP	
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	
Blank WG540038	0.946	94.6	0.879	87.9	0.904	90.4	_
LCS WG540038	0.724	72.4	0.798	79.8	0.837	83.7	
LCSD WG540038	0.833	83.3	0.835	83.5	0.875	87.5	
L520284-01	0.669	66.9	0.695	69.5	0.745	74.5	
MS WG540038	0.644	64.4	0.730	73.0	0.708	70.8	
MSD WG540038	0.964	96.4	0.977	97.7	0.996	99.6	

NBZ - Nitrobenzene-d510-1392FP - 2-Fluorobiphenyl31-121TPH - Terphneyl-d1421-136

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Euraka Lodge Crowley EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 10:22:00 AM Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Matrix Spike/Matrix Spike Duplicate

L520284-01

			L		84-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
1-Methylnaphthalene	0.00100	0.00000	0.00063	63.1	0.00086	86.0	30-123		31	32	
2-Chloronaphthalene	0.00100	0.00000	0.00066	66.3	0.00094	94.1	34-120		35	30	J3
2-Methylnaphthalene	0.00100	0.00000	0.00064	64.8	0.00096	96.2	29-116		39	31	J3
Acenaphthene	0.00100	0.00000	0.00069	69.1	0.00092	92.9	40-113		29	25	J3
Acenaphthylene	0.00100	0.00000	0.00073	73.7	0.00100	100	36-115		30	25	J3
Anthracene	0.00100	0.00000	0.00074	74.8	0.00094	94.8	45-118		24	26	
Benzo(a)anthracene	0.00100	0.00000	0.00070	70.9	0.00094	94.3	36-129		28	26	J3
Benzo(a)pyrene	0.00100	0.00000	0.00074	74.5	0.00102	102	44-124		31	21	J3
Benzo(b)fluoranthene	0.00100	0.00000	0.00074	74.9	0.00111	111	43-126		38	38	J3
Benzo(g,h,i)perylene	0.00100	0.00000	0.00077	77.6	0.00112	112	39-128		36	20	J3
Benzo(k)fluoranthene	0.00100	0.00000	0.00067	67.9	0.00102	102	44-127		40	39	J3
Chrysene	0.00100	0.00000	0.00072	72.4	0.00094	94.0	36-137		26	22	J3
Dibenz(a,h)anthracene	0.00100	0.00000	0.00077	77.4	0.00108	108	39-129		33	20	J3
Fluoranthene	0.00100	0.00000	0.00080	80.1	0.00105	105	45-123		27	25	J3
Fluorene	0.00100	0.00000	0.00078	78.0	0.00109	109	41-118		33	26	J3
Indeno(1,2,3-cd)pyrene	0.00100	0.00000	0.00077	77.8	0.00110	110	39-129		34	20	J3
Naphthalene	0.00100	0.00000	0.00062	62.6	0.00091	91.2	26-111		37	32	J3
Phenanthrene	0.00100	0.00000	0.00073	73.8	0.00099	99.7	41-116		30	25	J3
Pyrene	0.00100	0.00000	0.00073	73.9	0.00101	101	32-136		31	22	J3

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Euraka Lodge Crowley EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 10:22:00 AM Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Matrix Spike/Matrix Spike Duplicate

L520459-04

			L		39-04						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
1-Methylnaphthalene	0.00100	0.00000	0.00082	82.5	0.00086	86.9	30-123		5.1	32	
2-Chloronaphthalene	0.00100	0.00000	0.00087	87.4	0.00091	91.1	34-120		4.2	30	
2-Methylnaphthalene	0.00100	0.00000	0.00091	91.6	0.00095	95.9	29-116		4.6	31	
Acenaphthene	0.00100	0.00000	0.00090	90.7	0.00092	92.6	40-113		2.0	25	
Acenaphthylene	0.00100	0.00000	0.00096	96.9	0.00095	95.3	36-115		1.7	25	
Anthracene	0.00100	0.00000	0.00090	90.6	0.00097	97.4	45-118		7.3	26	
Benzo(a)anthracene	0.00100	0.00000	0.00086	86.9	0.00088	88.9	36-129		2.3	26	
Benzo(a)pyrene	0.00100	0.00000	0.00072	72.6	0.00077	77.8	44-124		6.9	21	
Benzo(b)fluoranthene	0.00100	0.00000	0.00078	78.0	0.00084	84.6	43-126		8.2	38	
Benzo(g,h,i)perylene	0.00100	0.00000	0.00042	42.7	0.00048	48.5	39-128		13	20	
Benzo(k)fluoranthene	0.00100	0.00000	0.00070	70.4	0.00072	72.2	44-127		2.5	39	
Chrysene	0.00100	0.00000	0.00079	79.9	0.00080	80.6	36-137		0.9	22	
Dibenz(a,h)anthracene	0.00100	0.00000	0.00043	43.6	0.00048	48.0	39-129		9.5	20	
Fluoranthene	0.00100	0.00000	0.00099	99.1	0.00102	102	45-123		3.0	25	
Fluorene	0.00100	0.00000	0.00101	101	0.00106	106	41-118		4.4	26	
Indeno(1,2,3-cd)pyrene	0.00100	0.00000	0.00045	45.5	0.00050	50.5	39-129		11	20	
Naphthalene	0.00100	0.00000	0.00084	84.7	0.00089	89.3	26-111		5.3	32	
Phenanthrene	0.00100	0.00000	0.00098	98.3	0.00100	100	41-116		1.8	25	
Pyrene	0.00100	0.00000	0.00089	89.0	0.00092	92.1	32-136		3.4	22	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Euraka Lodge Crowley EPA ID: TN00003

Collection Date: 6/7/2011

Analytic Batch: WG540038

Analysis Date: 6/15/2011 10:22:00 AM Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Laboratory Control Sample/Laboratory Control Sample Duplicate

Laborator	y Control	Sumple		ratory			ic Dupiic		Control	
Analyta	Cnilco	LCS	% Rec	LCSD	% Rec	Control Limits	Qualifier	% RPD	Control Limits	Qualifier
Analyte	Spike	LCS	Rec	LCSD	Rec	Lillits	Qualifier	KFD	Lillius	Quanner
1-Methylnaphthalene	0.00100	0.00069	69.8	0.00081	81.7	30-123		16	32	
2-Chloronaphthalene	0.00100	0.00073	73.0	0.00083	83.2	34-120		13	30	
2-Methylnaphthalene	0.00100	0.00072	72.1	0.00080	80.7	29-116		11	31	
Acenaphthene	0.00100	0.00082	82.2	0.00086	86.1	40-113		4.6	25	
Acenaphthylene	0.00100	0.00082	82.3	0.00084	84.0	36-115		2.0	25	
Anthracene	0.00100	0.00086	86.9	0.00090	90.3	45-118		3.8	26	
Benzo(a)anthracene	0.00100	0.00076	76.8	0.00079	79.3	36-129		3.3	26	
Benzo(a)pyrene	0.00100	0.00087	87.0	0.00089	89.7	44-124		3.1	21	
Benzo(b)fluoranthene	0.00100	0.00092	92.1	0.00096	96.5	43-126		4.6	38	
Benzo(g,h,i)perylene	0.00100	0.00095	95.0	0.00098	98.0	39-128		3.1	20	
Benzo(k)fluoranthene	0.00100	0.00085	85.1	0.00091	91.2	44-127		6.8	39	
Chrysene	0.00100	0.00090	90.1	0.00096	96.3	36-137		6.6	22	
Dibenz(a,h)anthracene	0.00100	0.00092	92.5	0.00094	94.9	39-129		2.6	20	
Fluoranthene	0.00100	0.00087	87.8	0.00091	91.6	45-123		4.2	25	
Fluorene	0.00100	0.00087	87.8	0.00093	93.8	41-118		6.5	26	
Indeno(1,2,3-cd)pyrene	0.00100	0.00093	93.6	0.00097	97.6	39-129		4.2	20	
Naphthalene	0.00100	0.00068	68.0	0.00080	80.0	26-111		16	32	
Phenanthrene	0.00100	0.00083	83.2	0.00087	87.0	41-116		4.4	25	
Pyrene	0.00100	0.00085	85.4	0.00085	85.6	32-136		0.1	22	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520284

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Euraka Lodge Crowley EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Internal Standard Response and Retention Time Summary

FileID:0615_02.D		Date:6/15/20	011		Time:8:	42 AM
	IS1		IS2		IS3	
	Response	RT	Response	RT	Response	RT
12 Hour Std			409500	5.6	189849	6.63
Upper Limit			819000	6.1	379698	7.13
Lower Limit			204750	5.1	94924.5	6.13
Sample ID	Response	RT	Response	RT	Response	RT
Blank WG540038			355698	5.60	183246	6.63
L520284-01			421404	5.60	196076	6.63
LCS WG540038			422222	5.60	193923	6.63
LCSD WG540038			390962	5.60	183762	6.63
MS WG540038			441200	5.60	193375	6.63
MS WG540038			471869	5.60	215610	6.63
MSD WG540038			416527	5.60	190434	6.63
MSD WG540038			464503	5.60	218897	6.63

Quality Control Summary SDG: L520284 12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax l.D 62-0814289

Est. 1970

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

OASIS Environmental - Anchorage, AK

Project: Euraka Lodge Crowley EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520284-01

Internal Standard Response and Retention Time Summary

FileID:0615_02.D	Date:6/15/2011		Time:8:	42 AM		
	IS4		IS5		IS6	
	Response	RT	Response	RT	Response	RT
12 Hour Std	293104	7.5	230699	9.06	269654	10.25
Upper Limit	586208	8	461398	9.56	539308	10.75
Lower Limit	146552	7	115349.5	8.56	134827	9.75
Sample ID	Response	RT	Response	RT	Response	RT
Blank WG540038	288826	7.50	218576	9.07	246350	10.26
L520284-01	304792	7.50	233964	9.06	264503	10.26
LCS WG540038	299110	7.50	224817	9.06	271090	10.26
LCSD WG540038	282853	7.50	217019	9.06	262524	10.26
MS WG540038	308864	7.50	239893	9.06	277335	10.26
MS WG540038	342988	7.50	268205	9.06	311599	10.26
MSD WG540038	317952	7.50	231814	9.06	251367	10.26
MSD WG540038	346612	7.50	271212	9.06	309403	10.26

- 1	ompany Name/Address:		В	illing Informa	ation:			-	Analysis/	Container/Pr	eserv	B141		Chain of Custody Page of
: - i - :	OASIS Environmen	tal -						3	7			4		rage oi
	Anchorage, AK			Accounts 825 W. 8				2 2	7					
	825 W. 8th Ave.			020 11. 0				4	74					
	Anchorage.AK 99501			Anchorag	je,AK 99501	1		7	4				一大	
								11	<u> </u>				L-A-B S-C	-1-E-N-C-E-S
Re	port to: Dan Frank		Em D	nail to:	-@oasis	סמנונומים	con	12	77					banon Road t, TN 37122
Pro D€	oject Eure Ka College escription: Crowley			City/Sate Collected		25-10-11-5		W	1-1				•	00) 767-5859 (5) 758-5858
Ph	none: (907) 350-4897	Client Project	#:	ESC Ke	y:			10	7				Fax: (61	5) 758-5859
FA	X: (907) 258-4033							25	7					1
Co A	ollected by: (print) Hansin/BDelancy Wested by (signature)	Site/Facility ID)# :	P.O.#: ∠	165-014	/		Jy		1.5		L5	2028	4
Со	ected by (signature)	Rush? (La	b MUST Be	Notified)	Date Resu	ts Needed:		4 7 7 7	β			CoCo	de OASISA	AK (lab use only)
17	Muy Hans	Sa	ame Day	200%	101ay	STD	No.	55	7					
lími	mediately cked on Ice N YX		ext Day vo Day		Email?i		of	27	∞			T70	368 10	352877
	cked on ice N Y X	1	ree Day		FAX?I	NoYes	Cntrs	127	T			Shipp	ed Via.	and later
L	Sample ID	Comp/Grab	Matrix*	Depth	Date	Time		以不	2			Remark	s/Contaminant	Sample # (lab only)
- <u>II</u>	-EUR-LX01-01-SW	Grab	SW		6/7/11	1100	8	$ \mathbf{x} $	\mathbf{x}			msl	MSD	-01
									•			1.3/		
L	•													144
														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
													WAR. V.	
					-									196.7
.)	A STATE OF THE STA			<u> </u>										2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-														200
L_							<u> </u>	_						
,	*Matrix: SS - Soil/Solid GW - Ground Remarks:	dwater WW - V	VasteWater [)W - Drinkin	g Water OT -	Other <u></u> らん	1150	V+U	ce (Cr)		pF	· I	Ter	mp
_ 1	Remarks:						•	~~ (- リス·	5513/8	7212FI	ow	Oth	ner
Re	inguished by: (Signature)	Date:	Time:	Recei	ved by: (Signa	ture)			Sam	ples returned dEx □ Couri	via: ☐ LIPS		dition:	(lab use only)
Rel	inquished by (Signature)	Date:	Time:		ved by: (Signa	ture)				_	Bottles Rec		<i>y</i>	
				110001					Tem	25-	7	CoC	Seals Intact	_YNNA
	inquished by: (Signature)	Date:	Time:		ived for lab by	400			Date		Time:	10000 2	Checked:	NCF: of 20
1		* * .		1/4	<u>m W</u>	elen			41	10/11]]	5	19	

Cooler Receipt Form

Cooler Receipt Form		
Client: OAS1SAAK		
Cooler Received On: 6-10-1 and Opened On: 6-10-11 By: Kuj M	1 hoaller	
(Signature)	900 (s	Derny
Temperature of cooler when opened: 2.5^o Degrees Celsius/ Was sufficient ice used: Yes \square No \square	fficient ice us	ed: Yes □ No □
What kind of packing material was used? Bubblewrap Peanuts	Other	None
Were custody seals on outside of cooler and intact?	Yes	Νο
Were custody papers properly filled out (ink, signed, etc.)?		
Did you sign the custody papers in the appropriate place?		
Did all bottles arrive in good condition?		
Were all bottle labels complete? (#, date, signed, pres, etc)?	\ <u></u>	
Did all bottle labels and tags agree with custody papers?	,	
Were correct bottles used for the analyses requested?		
Was sufficient amount of sample sent in each bottle?		
Were correct preservatives used?		
If applicable, was an observable VOA headspace present?	AN -	
Non Conformance Generated: (See attached NCF if yes)		

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

For: OASIS Environmental - Anchorage, AK

Project: Eureka June 17, 2011

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Semi-volatile Organic Compounds by Method 8270C-SIM

Laboratory Control Sample

Samples L520288-01 and 02 were analyzed in analytical batch WG540038. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540038 matrix spike/matrix spike duplicate analysis was performed on sample L520284-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540038 matrix spike/matrix spike duplicate analysis was performed on sample L520459-04. The matrix spike recoveries were within laboratory control limits for all target analytes. The relative percent difference exceeded laboratory limits for 2-Chloronaphthalene, 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene, Naphthalene, Phenanthrene, Benzo(b)fluoranthene, and Pyrene.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

AK102 / AK103

Laboratory Control Sample

Samples L520288-01 and 02 were analyzed in analytical batch WG540042. The laboratory control sample associated with these samples was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540042, matrix spike/matrix spike duplicate analysis was performed on sample L520284-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Dan Frank
OASIS Environmental - Anchorage, AK
825 W. 8th Ave.
Anchorage, AK 99501

Report Summary

Friday June 17, 2011

Report Number: L520288
Samples Received: 06/10/11

Client Project:

Description: Eureka

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

T. Alan Harvill , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

June 17, 2011

ESC Sample # : L520288-01

10, 2011

Site ID : 11-EUR-WH01-01-SW Project # :

Collected By

Sample ID

Collection Date : 06/07/11 10:20

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
AK102 DRO C10-C25	54.	22.	800	ug/l	J	AK102/1	06/15/11	1
AK103 RRO C25-C36	U	66.	200	ug/l		AK102/1	06/15/11	1
Surrogate Recovery							00/1=/1	
o-Terphenyl	90.8			% Rec.		AK102/1	06/15/11	1
Polynuclear Aromatic Hydrocarbons								
Anthracene	U	0.013	0.050	ug/l		8270C-S	06/15/11	1
Acenaphthene	U	0.0082	0.050	ug/l			06/15/11	1
Acenaphthylene	U	0.011	0.050	ug/l			06/15/11	1
Benzo(a)anthracene	U	0.012	0.050	ug/l			06/15/11	1
Benzo(a)pyrene	U	0.016	0.050	ug/l			06/15/11	1
Benzo(b) fluoranthene	U	0.019	0.050	ug/l			06/15/11	1
Benzo(g,h,i)perylene	U	0.016	0.050	ug/l			06/15/11	1
Benzo(k)fluoranthene	U	0.026	0.050	ug/l			06/15/11	1
Chrysene	U	0.014	0.050	ug/l			06/15/11	1
Dibenz (a, h) anthracene	U	0.0045	0.050	ug/l			06/15/11	1
Fluoranthene	U	0.016	0.050	ug/l			06/15/11	1
Fluorene	U	0.0090	0.050	ug/l			06/15/11	1
Indeno(1,2,3-cd)pyrene	U	0.0074	0.050	ug/l			06/15/11	1
Naphthalene	U	0.012	0.25	ug/l			06/15/11	1
Phenanthrene	U	0.018	0.050	ug/l			06/15/11	1
Pyrene	U	0.016	0.050	ug/l			06/15/11	1
1-Methylnaphthalene	U	0.019	0.25	ug/l			06/15/11	1
2-Methylnaphthalene	U	0.016	0.25	ug/l			06/15/11	1
2-Chloronaphthalene	U	0.016	0.25	ug/l		8270C-S	06/15/11	1
Surrogate Recovery	71 7			0 D		00700 0	06/15/11	1
Nitrobenzene-d5	71.7			% Rec.			06/15/11	1
2-Fluorobiphenyl	81.3			% Rec.			06/15/11	1
p-Terphenyl-d14	81.6			% Rec.		82/UC-S	06/15/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 12:04 Printed: 06/17/11 12:05

Page 2 of 10

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520288-02

June 17, 2011

Date Received : June 10, 2011

Site ID : Sample ID 11-EUR-LK01-01-SW Project # :

Collected By

Collection Date : 06/07/11 11:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
AK102 DRO C10-C25	51.	22.	800	ug/l	J	AK102/1	06/15/11	1
AK103 RRO C25-C36	U	66.	200	ug/l		AK102/1	06/15/11	1
Surrogate Recovery				_				
o-Terphenyl	93.7			% Rec.		AK102/1	06/15/11	1
Polynuclear Aromatic Hydrocarbons								
Anthracene	U	0.013	0.050	ug/l		8270C-S	06/15/11	1
Acenaphthene	U	0.0082	0.050	ug/l		8270C-S	06/15/11	
Acenaphthylene	U	0.011	0.050	ug/l		8270C-S	06/15/11	1
Benzo(a)anthracene	U	0.012	0.050	ug/l		8270C-S	06/15/11	1
Benzo(a)pyrene	U	0.016	0.050	ug/l		8270C-S	06/15/11	1
Benzo(b) fluoranthene	U	0.019	0.050	ug/l		8270C-S	06/15/11	1
Benzo(g,h,i)perylene	U	0.016	0.050	ug/l		8270C-S	06/15/11	1
Benzo(k)fluoranthene	U	0.026	0.050	ug/l		8270C-S	06/15/11	1
Chrysene	U	0.014	0.050	ug/l		8270C-S	06/15/11	1
Dibenz(a,h)anthracene	U	0.0045	0.050	ug/l		8270C-S	06/15/11	1
Fluoranthene	U	0.016	0.050	ug/l		8270C-S	06/15/11	1
Fluorene	U	0.0090	0.050	ug/l		8270C-S	06/15/11	1
Indeno(1,2,3-cd)pyrene	U	0.0074	0.050	ug/l		8270C-S	06/15/11	1
Naphthalene	U	0.012	0.25	ug/l		8270C-S	06/15/11	1
Phenanthrene	U	0.018	0.050	ug/l		8270C-S	06/15/11	1
Pyrene	U	0.016	0.050	ug/l		8270C-S	06/15/11	1
1-Methylnaphthalene	U	0.019	0.25	ug/l		8270C-S	06/15/11	1
2-Methylnaphthalene	U	0.016	0.25	ug/l		8270C-S	06/15/11	1
2-Chloronaphthalene	U	0.016	0.25	ug/l		8270C-S	06/15/11	1
Surrogate Recovery				_				
Nitrobenzene-d5	61.3			% Rec.		8270C-S	06/15/11	1
2-Fluorobiphenyl	74.9			% Rec.		8270C-S	06/15/11	1
p-Terphenyl-d14	75.7			% Rec.		8270C-S	06/15/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 12:04 Printed: 06/17/11 12:05

Page 3 of 10

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L520288-01	WG540042	SAMP	AK102 DRO C10-C25	R1723990	J
L520288-02	WG540042	SAMP	AK102 DRO C10-C25	R1723990	J

Attachment B Explanation of QC Qualifier Codes

 $\mbox{(EPA)}$ - Estimated value below the lowest calibration point. Confidence correlates with concentration.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 5 of 10

Summary of Remarks For Samples Printed 06/17/11 at 12:05:17

TSR Signing Reports: 358

Need cooler receipt form on ALL samples. All samples get QC2MODCN.

Sample: L520288-01 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/17/11 12:04 Run AK102/103 from 40ml vials using the 3511 extraction. jw Sample: L520288-02 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/17/11 12:04 Run AK102/103 from 40ml vials using the 3511 extraction. jw

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Eureka EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520288-01, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
AK DRO C10-C25		< 0.80	_
AK RRO C25-C36		< 0.20	

Laboratory Control Sample (LCS)

Analyte	True Value Found		Recovery %	Control Limits	Qualifiers
AK DRO C10-C36	1.50	1.39	92.4	75 - 125	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
AK DRO C10-C36	1.50	1.38	92.2	75 - 125	_

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Eureka EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520288-01, -02

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec
Blank WG540042	0.0189	94.7
LCS WG540042	0.0193	96.3
LCSD WG540042	0.0191	95.7
MS WG540042	0.0190	94.9
MSD WG540042	0.0180	89.9
L520288-01	0.0182	90.8
L520288-02	0.0187	93.7

o-terphenyl Limits - 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Eureka EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520288-01, -02

Laboratory Control Sample/Laboratory Control Sample Duplicate

	•	-	%	•	%	Control	-	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
AK DRO C10-C36	1.50	1.39	92.4	1.38	92.2	75-125		0.3	20	

Matrix Spike/Matrix Spike Duplicate

L520284-01 % % Spike Control % Rec % Control **RPD** Value Sample MS Rec MSD Limits Qualifier RPD Limits Qual Analyte Rec AK DRO C10-C36 1.50 0.048 1.38 88.8 1.35 86.8 75-125 2.6 20

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka EPA ID: TN00003
Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520288-01, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
Naphthalene	91-20-3	< 0.000250	
2-Methylnaphthalene	91-57-6	< 0.000250	
1-Methylnaphthalene	90-12-0	< 0.000250	
2-Chloronaphthalene	91-58-7	< 0.000250	
Acenaphthylene	208-96-8	< 0.0000500	
Acenaphthene	83-32-9	< 0.0000500	
Fluorene	86-73-7	< 0.0000500	
Phenanthrene	85-01-8	< 0.0000500	
Anthracene	120-12-7	< 0.0000500	
Fluoranthene	206-44-0	< 0.0000500	
Pyrene	129-00-0	< 0.0000500	
Benzo(a)anthracene	56-55-3	< 0.0000500	
Chrysene	218-01-9	< 0.0000500	
Benzo(b)fluoranthene	205-99-2	< 0.0000500	
Benzo(k)fluoranthene	207-08-9	< 0.0000500	
Benzo(a)pyrene	50-32-8	< 0.0000500	
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.0000500	
Dibenz(a,h)anthracene	53-70-3	< 0.0000500	
Benzo(g,h,i)perylene	191-24-2	< 0.0000500	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Extraction Date: 6/11/2011

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka EPA ID: TN00003
Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 10:05:00 AM Analyst: 0

Instrument ID: BNAMS9

Sample Numbers: L520288-01, -02

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1-Methylnaphthalene	0.00100	0.000698	69.8	30 - 123	
2-Chloronaphthalene	0.00100	0.000730	73.0	34 - 120	
2-Methylnaphthalene	0.00100	0.000721	72.1	29 - 116	
Acenaphthene	0.00100	0.000822	82.2	40 - 113	
Acenaphthylene	0.00100	0.000823	82.3	36 - 115	
Anthracene	0.00100	0.000869	86.9	45 - 118	
Benzo(a)anthracene	0.00100	0.000768	76.8	36 - 129	
Benzo(a)pyrene	0.00100	0.000870	87.0	44 - 124	
Benzo(b)fluoranthene	0.00100	0.000921	92.1	43 - 126	
Benzo(g,h,i)perylene	0.00100	0.000950	95.0	39 - 128	
Benzo(k)fluoranthene	0.00100	0.000851	85.1	44 - 127	
Chrysene	0.00100	0.000901	90.1	36 - 137	
Dibenz(a,h)anthracene	0.00100	0.000925	92.5	39 - 129	
Fluoranthene	0.00100	0.000878	87.8	45 - 123	
Fluorene	0.00100	0.000878	87.8	41 - 118	
Indeno(1,2,3-cd)pyrene	0.00100	0.000936	93.6	39 - 129	
Naphthalene	0.00100	0.000680	68.0	26 - 111	
Phenanthrene	0.00100	0.000832	83.2	41 - 116	
Pyrene	0.00100	0.000854	85.4	32 - 136	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka EPA ID: TN00003
Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 10:05:00 AM Analyst: 0

Instrument ID: BNAMS9

Sample Numbers: L520288-01, -02

Extraction Date: 6/11/2011

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1-Methylnaphthalene	0.00100	0.000817	81.7	30 - 123	
2-Chloronaphthalene	0.00100	0.000832	83.2	34 - 120	
2-Methylnaphthalene	0.00100	0.000807	80.7	29 - 116	
Acenaphthene	0.00100	0.000861	86.1	40 - 113	
Acenaphthylene	0.00100	0.000840	84.0	36 - 115	
Anthracene	0.00100	0.000903	90.3	45 - 118	
Benzo(a)anthracene	0.00100	0.000793	79.3	36 - 129	
Benzo(a)pyrene	0.00100	0.000897	89.7	44 - 124	
Benzo(b)fluoranthene	0.00100	0.000965	96.5	43 - 126	
Benzo(g,h,i)perylene	0.00100	0.000980	98.0	39 - 128	
Benzo(k)fluoranthene	0.00100	0.000912	91.2	44 - 127	
Chrysene	0.00100	0.000963	96.3	36 - 137	
Dibenz(a,h)anthracene	0.00100	0.000949	94.9	39 - 129	
Fluoranthene	0.00100	0.000916	91.6	45 - 123	
Fluorene	0.00100	0.000938	93.8	41 - 118	
Indeno(1,2,3-cd)pyrene	0.00100	0.000976	97.6	39 - 129	
Naphthalene	0.00100	0.000800	80.0	26 - 111	
Phenanthrene	0.00100	0.000870	87.0	41 - 116	
Pyrene	0.00100	0.000856	85.6	32 - 136	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka EPA ID: TN00003
Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520288-01, -02

Surrogate Summary

Laboratory	NBZ		21	FP	TI	RP
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec
Blank WG540038	0.946	94.6	0.879	87.9	0.904	90.4
LCS WG540038	0.724	72.4	0.798	79.8	0.837	83.7
LCSD WG540038	0.833	83.3	0.835	83.5	0.875	87.5
L520288-02	0.612	61.2	0.748	74.8	0.757	75.7
L520288-01	0.716	71.6	0.813	81.3	0.816	81.6
MS WG540038	0.644	64.4	0.730	73.0	0.708	70.8
MSD WG540038	0.964	96.4	0.977	97.7	0.996	99.6

NBZ - Nitrobenzene-d5	10-139
2FP - 2-Fluorobiphenyl	31-121
TPH - Terphneyl-d14	21-136

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Extraction Date: 6/11/2011

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No:Matrix:Water - mg/LProject:EurekaEPA ID:TN00003Collection Date:6/7/2011Analytic Batch:WG540038

Analysis Date: 6/15/2011 10:05:00 AM Analyst: 0

Instrument ID: BNAMS9

Sample Numbers: L520288-01, -02

Matrix Spike/Matrix Spike Duplicate

L520284-01						
Spike %	%	Control	% Rec	%	Control	RPD
Analyte Value Sample MS Rec MSI	Rec	Limits	Qualifier	RPD	Limits	Qual
1-Methylnaphthalene 0.00100 0.00000 0.00063 63.1 0.000	36 86.0	30-123		31	32	
2-Chloronaphthalene 0.00100 0.00000 0.00066 66.3 0.000	94.1	34-120		35	30	J3
2-Methylnaphthalene 0.00100 0.00000 0.00064 64.8 0.000	96.2	29-116		39	31	J3
Acenaphthene 0.00100 0.00000 0.00069 69.1 0.000	92 92.9	40-113		29	25	J3
Acenaphthylene 0.00100 0.00000 0.00073 73.7 0.001	00 100	36-115		30	25	J3
Anthracene 0.00100 0.00000 0.00074 74.8 0.000	94.8	45-118		24	26	
Benzo(a)anthracene 0.00100 0.00000 0.00070 70.9 0.000	94.3	36-129		28	26	J3
Benzo(a)pyrene 0.00100 0.00000 0.00074 74.5 0.001	02 102	44-124		31	21	J3
Benzo(b)fluoranthene 0.00100 0.00000 0.00074 74.9 0.001	11 111	43-126		38	38	J3
Benzo(g,h,i)perylene 0.00100 0.00000 0.00077 77.6 0.001	12 112	39-128		36	20	J3
Benzo(k)fluoranthene 0.00100 0.00000 0.00067 67.9 0.001	02 102	44-127		40	39	J3
Chrysene 0.00100 0.00000 0.00072 72.4 0.000	94.0	36-137		26	22	J3
Dibenz(a,h)anthracene 0.00100 0.00000 0.00077 77.4 0.001	08 108	39-129		33	20	J3
Fluoranthene 0.00100 0.00000 0.00080 80.1 0.001)5 105	45-123		27	25	J3
Fluorene 0.00100 0.00000 0.00078 78.0 0.001	9 109	41-118		33	26	J3
Indeno(1,2,3-cd)pyrene 0.00100 0.00000 0.00077 77.8 0.001	10 110	39-129		34	20	J3
Naphthalene 0.00100 0.00000 0.00062 62.6 0.000	91.2	26-111		37	32	J3
Phenanthrene 0.00100 0.00000 0.00073 73.8 0.000	99.7	41-116		30	25	J3
Pyrene 0.00100 0.00000 0.00073 73.9 0.001	01 101	32-136		31	22	J3

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Extraction Date: 6/11/2011

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No:Matrix:Water - mg/LProject:EurekaEPA ID:TN00003Collection Date:6/7/2011Analytic Batch:WG540038

Analysis Date: 6/15/2011 10:05:00 AM Analyst: 0

Instrument ID: BNAMS9

Sample Numbers: L520288-01, -02

Matrix Spike/Matrix Spike Duplicate

L520459-04											
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
1-Methylnaphthalene	0.00100	0.00000	0.00082	82.5	0.00086	86.9	30-123		5.1	32	
2-Chloronaphthalene	0.00100	0.00000	0.00087	87.4	0.00091	91.1	34-120		4.2	30	
2-Methylnaphthalene	0.00100	0.00000	0.00091	91.6	0.00095	95.9	29-116		4.6	31	
Acenaphthene	0.00100	0.00000	0.00090	90.7	0.00092	92.6	40-113		2.0	25	
Acenaphthylene	0.00100	0.00000	0.00096	96.9	0.00095	95.3	36-115		1.7	25	
Anthracene	0.00100	0.00000	0.00090	90.6	0.00097	97.4	45-118		7.3	26	
Benzo(a)anthracene	0.00100	0.00000	0.00086	86.9	0.00088	88.9	36-129		2.3	26	
Benzo(a)pyrene	0.00100	0.00000	0.00072	72.6	0.00077	77.8	44-124		6.9	21	
Benzo(b)fluoranthene	0.00100	0.00000	0.00078	78.0	0.00084	84.6	43-126		8.2	38	
Benzo(g,h,i)perylene	0.00100	0.00000	0.00042	42.7	0.00048	48.5	39-128		13	20	
Benzo(k)fluoranthene	0.00100	0.00000	0.00070	70.4	0.00072	72.2	44-127		2.5	39	
Chrysene	0.00100	0.00000	0.00079	79.9	0.00080	80.6	36-137		0.9	22	
Dibenz(a,h)anthracene	0.00100	0.00000	0.00043	43.6	0.00048	48.0	39-129		9.5	20	
Fluoranthene	0.00100	0.00000	0.00099	99.1	0.00102	102	45-123		3.0	25	
Fluorene	0.00100	0.00000	0.00101	101	0.00106	106	41-118		4.4	26	
Indeno(1,2,3-cd)pyrene	0.00100	0.00000	0.00045	45.5	0.00050	50.5	39-129		11	20	
Naphthalene	0.00100	0.00000	0.00084	84.7	0.00089	89.3	26-111		5.3	32	
Phenanthrene	0.00100	0.00000	0.00098	98.3	0.00100	100	41-116		1.8	25	
Pyrene	0.00100	0.00000	0.00089	89.0	0.00092	92.1	32-136		3.4	22	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Extraction Date: 6/11/2011

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No:Matrix:Water - mg/LProject:EurekaEPA ID:TN00003Collection Date:6/7/2011Analytic Batch:WG540038

Analysis Date: 6/15/2011 10:05:00 AM Analyst: 0

Instrument ID: BNAMS9

Sample Numbers: L520288-01, -02

Laboratory Control Sample/Laboratory Control Sample Duplicate

Laboratory Control Sample, Laboratory Control Sample Dupilcate										
	·	•	%	·	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
1-Methylnaphthalene	0.00100	0.00069	69.8	0.00081	81.7	30-123		16	32	
2-Chloronaphthalene	0.00100	0.00073	73.0	0.00083	83.2	34-120		13	30	
2-Methylnaphthalene	0.00100	0.00072	72.1	0.00080	80.7	29-116		11	31	
Acenaphthene	0.00100	0.00082	82.2	0.00086	86.1	40-113		4.6	25	
Acenaphthylene	0.00100	0.00082	82.3	0.00084	84.0	36-115		2.0	25	
Anthracene	0.00100	0.00086	86.9	0.00090	90.3	45-118		3.8	26	
Benzo(a)anthracene	0.00100	0.00076	76.8	0.00079	79.3	36-129		3.3	26	
Benzo(a)pyrene	0.00100	0.00087	87.0	0.00089	89.7	44-124		3.1	21	
Benzo(b)fluoranthene	0.00100	0.00092	92.1	0.00096	96.5	43-126		4.6	38	
Benzo(g,h,i)perylene	0.00100	0.00095	95.0	0.00098	98.0	39-128		3.1	20	
Benzo(k)fluoranthene	0.00100	0.00085	85.1	0.00091	91.2	44-127		6.8	39	
Chrysene	0.00100	0.00090	90.1	0.00096	96.3	36-137		6.6	22	
Dibenz(a,h)anthracene	0.00100	0.00092	92.5	0.00094	94.9	39-129		2.6	20	
Fluoranthene	0.00100	0.00087	87.8	0.00091	91.6	45-123		4.2	25	
Fluorene	0.00100	0.00087	87.8	0.00093	93.8	41-118		6.5	26	
Indeno(1,2,3-cd)pyrene	0.00100	0.00093	93.6	0.00097	97.6	39-129		4.2	20	
Naphthalene	0.00100	0.00068	68.0	0.00080	80.0	26-111		16	32	
Phenanthrene	0.00100	0.00083	83.2	0.00087	87.0	41-116		4.4	25	
Pyrene	0.00100	0.00085	85.4	0.00085	85.6	32-136		0.1	22	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520288

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka EPA ID: TN00003

Collection Date: 6/7/2011

Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520288-01, -02

Internal Standard Response and Retention Time Summary

FileID:0615_02.D		Date:6/15/20	011		Time:8:42 AM		
	IS1		IS2		IS3		
	Response	RT	Response	RT	Response	RT	
12 Hour Std			409500	5.6	189849	6.63	
Upper Limit			819000	6.1	379698	7.13	
Lower Limit			204750	5.1	94924.5	6.13	
Sample ID	Response	RT	Response	RT	Response	RT	
Blank WG540038			355698	5.60	183246	6.63	
L520288-01			416303	5.60	186912	6.63	
L520288-02			403991	5.60	177825	6.63	
LCS WG540038			422222	5.60	193923	6.63	
LCSD WG540038			390962	5.60	183762	6.63	
MS WG540038			441200	5.60	193375	6.63	
MS WG540038			471869	5.60	215610	6.63	
MSD WG540038			416527	5.60	190434	6.63	
MSD WG540038			464503	5.60	218897	6.63	

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L520288 OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka EPA ID: TN00003 Collection Date: 6/7/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520288-01, -02

Internal Standard Response and Retention Time Summary

FileID:0615_02.D		Date:6/15/20	011		Time:8:42 AM			
	IS4		IS5		IS6			
	Response	RT	Response	RT	Response	RT		
12 Hour Std	293104	7.5	230699	9.06	269654	10.25		
Upper Limit	586208	8	461398	9.56	539308	10.75		
Lower Limit	146552	7	115349.5	8.56	134827	9.75		
Sample ID	Response	RT	Response	RT	Response	RT		
Blank WG540038	288826	7.50	218576	9.07	246350	10.26		
L520288-01	296896	7.50	224324	9.07	264728	10.25		
L520288-02	280125	7.50	223346	9.07	263816	10.26		
LCS WG540038	299110	7.50	224817	9.06	271090	10.26		
LCSD WG540038	282853	7.50	217019	9.06	262524	10.26		
MS WG540038	308864	7.50	239893	9.06	277335	10.26		
MS WG540038	342988	7.50	268205	9.06	311599	10.26		
MSD WG540038	317952	7.50	231814	9.06	251367	10.26		
MSD WG540038	346612	7.50	271212	9.06	309403	10.26		

							a								
Company Name/Address:	. •	Billir	ng Informa	tion:				An	alvsis/C	ontainer/P	reservat	ive		Chain (of Custody of
OASIS Environmen	ıtal -) j	Š						raye_	<u> </u>
Anchorage, AK			ccounts 25 W. 8th				1.5	2				-			
825 W. 8th Ave.							-	7 %						CCC	7
Anchorage, AK 99501		Ai	nchorage	e,AK 9950	1		1	AZ							
							F	7					· ·	C-I-E-N-C	
Report to: Dan Frank		Email	to:	@000			 	1 7					I	ebanon Road et, TN 37122	
Project Eure Ka Lodge Description: Crowley			City/Sate Collected	@ocesise	nu.ro.c	om	110/1	1-11+C				7	· ·	100) 767-5859 115) 758-5858	
Phone: (907) 350-4897	Client Project #:		ESC Key	:		***	0						Fax: (6	15) 758-585 9)
FAX: (907) 258-4033								2					G039		
Collected by (print), B. Delancy	Site/Facility ID#:		P.O.#:	165-014	<i>-</i>		4	Ì							
Collected by (signature):		MUST Be No	tified)		lts Needed:		۱,	3					CoCode OASIS	AAK (lab	use only)
ASWUTTIN		ie Day : Day		Email?I	No Ves	No.	3	82					Template/Prelogin	1.00	
Immediately Packed on Ice NY		Day		FAX?I		of	19						T70868/P	35287	子
	1	e Day	25%		10_100	Cntrs	20,0	##					Shipped Via:	<u> </u>	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time		Δ	72					Remarks/Contaminant	Sample	# (lab only)
11-EUR-WHOI-01-SW	Gras	SW	·	6/7/11	1020	4	X	X						1520	18821
11-EUR-LKO1-01-SW	11	SW		11	1100	4	メ	X					MS/MSDAH		or

															385
														+	-
										-					
										-					
*Matrix: CO Callington Co					<u> </u>	110	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1111	,						
*Matrix: SS - Soil/Solid GW - Groun Remarks:	dwater ww - Was	steWater DW	- Drinking	Water OT -	Other	<u> </u>	urx W	at	Er)			pH _	Ter	mp	:-
												Flow_	Oti	ner	
Relinguished by: (Signature)	nic)	Time: 1560	Receive	ed by: (Signat	ture)			(Sampl	es returned	via: UF	PS	Condition:	(lab use	only)
Relinquished by: (Signature)	Date:	Time:		ed by: (Signat	ture)				K* / .		Bottles R		d: CoC Seals Intact	W N	L TO
Relinquished by: (Signature)	Date:	Time:	Receive	ed for lab by:	(Signature)				Date:	//	G+T	<u>ıs</u>	pH Checked: 20	INCE	
, 			17	4	4				lalio	/]))	5	20 20 20	NSF:	110

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

For: OASIS Environmental - Anchorage, AK

Project: Eureka Lodge Crowley

June 22, 2011

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Total Solids by Method 2540G

Laboratory Control Sample

Samples L520391-01 and 02 were analyzed in analytical batch WG540506. The laboratory control sample associated with these samples was within the laboratory control limits.

Samples L520391-05, -04, -09, -10, -07, -08, -06, and -03 were analyzed in analytical batch WG540508. The laboratory control sample associated with these samples was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG540506 sample duplicate analysis was performed on sample L520391-02. The relative percent difference exceeded the method limits for Total Solids.

For analytical batch WG540508 sample duplicate analysis was performed on sample L520391-10. The relative percent differences were within the method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Method AK101

Laboratory Control Sample

Samples L520391-02, -07, -09, -05, -08, -03, -04, -06, -01, and -10 were analyzed in analytical batch WG539955. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Sample L520391-11 was analyzed in analytical batch WG539958. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG539955 matrix spike/matrix spike duplicate analysis was performed on sample L520391-06. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG539958 matrix spike/matrix spike duplicate analysis was performed on sample L520257-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Volatile Organic Compounds by Method 8260B

Laboratory Control Sample

Sample L520391-11 was analyzed in analytical batch WG539948. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

For: OASIS Environmental - Anchorage, AK

Project: Eureka Lodge Crowley

June 22, 2011

Samples L520391-06, -07, -09, -10, -01, -03, -05, -02, -08, and -04 were analyzed in analytical batch WG540138. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG539948 matrix spike/matrix spike duplicate analysis was performed on sample L520399-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540138 matrix spike/matrix spike duplicate analysis was performed on sample L520391-06. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

AK102 / AK103

Laboratory Control Sample

Samples L520391-06, -09, -01, -04, -08, -10, -02, -07, -03, and -05 were analyzed in analytical batch WG540437. The laboratory control sample associated with these samples was above method limits control.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540437, matrix spike/matrix spike duplicate analysis was performed on sample L520391-06. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

Report Summary

Tuesday June 21, 2011

Report Number: L520391 Samples Received: 06/10/11

Client Project:

Description: Eureka

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Jared Willis , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520391-01

June 21,2011

Site ID :

Project # :

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Sample ID : 11-EUR-SB01-SO

Collected By : AH/BD Collection Date : 06/06/11 11:30

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	92.			양		2540G	06/16/11	1
TPHGAK C6 to C10	U	1.1	4.0	mg/kg		AK101	06/11/11	37.5
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	96.7			% Rec.		AK101	06/11/11	37.5
Benzene	U	0.016	0.040	mg/kg		8260B	06/13/11	37.5
Toluene	U	0.012	0.20	mg/kg		8260B	06/13/11	
Ethylbenzene	U	0.012	0.040	mg/kg		8260B	06/13/11	
Total Xylenes	U	0.017	0.12	mg/kg		8260B	06/13/11	37.5
Surrogate Recovery								
Toluene-d8	106.			% Rec.		8260B	06/13/11	37.5
Dibromofluoromethane	104.			% Rec.		8260B	06/13/11	37.5
a,a,a-Trifluorotoluene	106.			% Rec.		8260B	06/13/11	37.5
4-Bromofluorobenzene	101.			% Rec.		8260B	06/13/11	37.5
AK102 DRO C10-C25	1.2	1.1	22.	mg/kg	J	AK102/10	06/20/11	1
AK103 RRO C25-C36	U	2.2	110	mg/kg		AK102/10	06/20/11	1
Surrogate Recovery				2 2				
o-Terphenyl	87.5			% Rec.		AK102/10	06/20/11	1

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 2 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

June 21,2011

ESC Sample # : L520391-02

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Site ID : Project # :

Sample ID : 11-EUR-SB02-01-SO

Collected By : AH/BD Collection Date : 06/06/11 12:35

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	86.			90	J3	2540G	06/16/11	1
TPHGAK C6 to C10	88.	1.2	4.7	mg/kg		AK101	06/11/11	40.5
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	97.5			% Rec.		AK101	06/11/11	40.5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	0.049 0.14 0.020 0.15	0.017 0.013 0.013 0.019	0.047 0.23 0.047 0.14	mg/kg mg/kg mg/kg mg/kg	J J	8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	40.5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	108. 103. 108. 142.			% Rec. % Rec. % Rec. % Rec.	J1	8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	40.5
AK102 DRO C10-C25 AK103 RRO C25-C36 Surrogate Recovery	4000 130	56. 2.2	1200 120	mg/kg mg/kg		. ,	06/20/11 06/20/11	
o-Terphenyl	0.00			% Rec.	J7	AK102/10	06/20/11	50

Results listed are dry weight basis.
U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD
RDL = Reported Detection Limit = LOQ = PQL = EQL

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 3 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

June 21,2011

Site ID :

Project # :

ESC Sample # : L520391-03

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Sample ID : 11-EUR-SB03-01-SO

Collected By : AH/BD Collection Date : 06/06/11 14:40

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	79.			90		2540G	06/16/11	1
TPHGAK C6 to C10 Surrogate Recovery-%	U	1.3	5.5	mg/kg		AK101	06/12/11	44
a,a,a-Trifluorotoluene(FID)	97.7			% Rec.		AK101	06/12/11	44
Benzene	U	0.019	0.055	mg/kg		8260B	06/13/11	
Toluene	U	0.015	0.28	mg/kg		8260B	06/13/11	
Ethylbenzene	U	0.014	0.055	mg/kg		8260B	06/13/11	
Total Xylenes	U	0.020	0.17	mg/kg		8260B	06/13/11	44
Surrogate Recovery								
Toluene-d8	105.			% Rec.		8260B	06/13/11	
Dibromofluoromethane	100.			% Rec.		8260B	06/13/11	
a,a,a-Trifluorotoluene	105.			% Rec.		8260B	06/13/11	
4-Bromofluorobenzene	103.			% Rec.		8260B	06/13/11	44
AK102 DRO C10-C25	4.5	1.1	25.	mg/kg	J	AK102/10	06/20/11	1
AK103 RRO C25-C36 Surrogate Recovery	4.9	2.2	120	mg/kg	J	AK102/10	06/20/11	1
o-Terphenyl	79.9			% Rec.		AK102/10	06/20/11	1

Results listed are dry weight basis.
U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD
RDL = Reported Detection Limit = LOQ = PQL = EQL Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 4 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520391-04

June 21,2011

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Site ID : Project # :

Sample ID : 11-EUR-SB03-02-SO

Collected By : AH/BD Collection Date : 06/06/11 14:50

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	77.			%		2540G	06/16/11	1
TPHGAK C6 to C10	44.	1.3	5.8	mg/kg		AK101	06/12/11	45
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	93.5			% Rec.		AK101	06/12/11	45
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	18. 0.19 1.1 3.8 106. 98.6 107. 101.	0.019 0.015 0.014 0.021	0.058 0.29 0.058 0.17	mg/kg mg/kg mg/kg mg/kg % Rec. % Rec. % Rec.	E J	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11	45 45 45 45 45 45
AK102 DRO C10-C25 AK103 RRO C25-C36 Surrogate Recovery o-Terphenyl	3.1 U 76.6	1.1 2.2	26. 130	mg/kg mg/kg % Rec.	J	AK102/10	06/20/11 06/20/11 06/20/11	1

Results listed are dry weight basis.
U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD
RDL = Reported Detection Limit = LOQ = PQL = EQL Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 5 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520391-05

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Site ID : Project # :

June 21,2011

Sample ID : 11-EUR-SB20-01-SO

Collected By : AH/BD Collection Date : 06/06/11 20:00

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	77.			%		2540G	06/16/11	1
TPHGAK C6 to C10	39.	1.3	5.8	mg/kg		AK101	06/12/11	44.5
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	95.7			% Rec.		AK101	06/12/11	44.5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	16. 0.21 1.2 4.0 104. 101. 104. 99.7	0.019 0.015 0.014 0.020	0.058 0.29 0.058 0.17	mg/kg mg/kg mg/kg mg/kg % Rec. % Rec. % Rec. % Rec.	E J	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11	44.5 44.5 44.5 44.5 44.5 44.5
AK102 DRO C10-C25 AK103 RRO C25-C36 Surrogate Recovery o-Terphenyl	3.1 U 75.1	1.1 2.2	26. 130	mg/kg mg/kg % Rec.	J	AK102/10	06/20/11 06/20/11 06/20/11	1

Results listed are dry weight basis.
U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD
RDL = Reported Detection Limit = LOQ = PQL = EQL Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 6 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

Sample ID

ESC Sample # : L520391-06

June 21,2011

Site ID :

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

: 11-EUR-SB04-01-SO Project # :

Collected By : AH/BD Collection Date : 06/06/11 15:50

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	79.			%		2540G	06/16/11	1
TPHGAK C6 to C10	U	1.3	5.6	mg/kg		AK101	06/11/11	44
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	96.4			% Rec.		AK101	06/11/11	44
Benzene	U	0.019	0.056	mg/kg		8260B	06/13/11	
Toluene	U	0.015	0.28	mg/kg		8260B 8260B	06/13/11	
Ethylbenzene Total Xylenes	U U	0.014	0.056 0.17	mg/kg mg/ka		8260B 8260B	06/13/11 06/13/11	
Surrogate Recovery	O	0.020	0.17	mg/kg		0200B	00/13/11	77
Toluene-d8	105.			% Rec.		8260B	06/13/11	44
Dibromofluoromethane	104.			% Rec.		8260B	06/13/11	44
a,a,a-Trifluorotoluene	105.			% Rec.		8260B	06/13/11	44
4-Bromofluorobenzene	103.			% Rec.		8260B	06/13/11	44
AK102 DRO C10-C25	5.3	1.1	25.	mg/kg	J	AK102/10	06/20/11	1
AK103 RRO C25-C36 Surrogate Recovery	4.8	2.2	130	mg/kg	J	AK102/10	06/20/11	1
o-Terphenyl	79.3			% Rec.		AK102/10	06/20/11	1

Results listed are dry weight basis.
U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD
RDL = Reported Detection Limit = LOQ = PQL = EQL Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 7 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520391-07

June 21,2011

Site ID :

Project # :

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Sample ID : 11-EUR-SB05-01-SO

Collected By : AH/BD Collection Date : 06/06/11 16:40

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	80.			%		2540G	06/16/11	1
TPHGAK C6 to C10	U	1.4	6.2	mg/kg		AK101	06/12/11	49.5
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	96.9			% Rec.		AK101	06/12/11	49.5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene	U U U U 105. 100. 104.	0.021 0.016 0.016 0.023	0.062 0.31 0.062 0.19	mg/kg mg/kg mg/kg mg/kg % Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11	49.5 49.5 49.5 49.5
4-Bromofluorobenzene AK102 DRO C10-C25	102. 3.5	1.1	25.	% Rec.	J	8260B AK102/10	06/13/11 06/20/11	49.5
AK103 RRO C25-C36 Surrogate Recovery o-Terphenyl	5.0 61.2	2.2	120	mg/kg % Rec.	J		06/20/11 06/20/11	

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 8 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520391-08

June 21,2011

Site ID :

Project # :

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Sample ID : 11-EUR-SB06-01-SO

Collected By : AH/BD Collection Date : 06/06/11 17:10

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	91.			양		2540G	06/16/11	1
TPHGAK C6 to C10	U	1.3	4.8	mg/kg		AK101	06/12/11	44
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	96.8			% Rec.		AK101	06/12/11	44
Benzene	U	0.019	0.048	mg/kg		8260B	06/13/11	
Toluene	U	0.015	0.24	mg/kg		8260B	06/13/11	
Ethylbenzene Total Xylenes	U U	0.014	0.048	mg/kg mg/kg		8260B 8260B	06/13/11 06/13/11	
Surrogate Recovery	0	0.020	0.14	mg/kg		0200B	00/13/11	77
Toluene-d8	106.			% Rec.		8260B	06/13/11	44
Dibromofluoromethane	97.5			% Rec.		8260B	06/13/11	44
a,a,a-Trifluorotoluene	105.			% Rec.		8260B	06/13/11	
4-Bromofluorobenzene	105.			% Rec.		8260B	06/13/11	44
AK102 DRO C10-C25	1.8	1.1	22.	mq/kq	J	AK102/10	06/20/11	1
AK103 RRO C25-C36	U	2.2	110	mg/kg		AK102/10	06/20/11	1
Surrogate Recovery				, ,				
o-Terphenyl	73.7			% Rec.		AK102/10	06/20/11	1

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 9 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Est. 1970

Tax I.D. 62-0814289

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

June 21,2011

Site ID :

Project # :

ESC Sample # : L520391-09

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Sample ID : 11-EUR-SB07-01-SO

Collected By : AH/BD Collection Date : 06/06/11 17:50

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	80.			%		2540G	06/16/11	1
TPHGAK C6 to C10	U	1.3	5.8	mg/kg		AK101	06/12/11	46
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	96.6			% Rec.		AK101	06/12/11	46
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	U U U U 104. 101. 105. 104.	0.020 0.015 0.014 0.021	0.058 0.29 0.058 0.17	mg/kg mg/kg mg/kg mg/kg % Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11	46 46 46 46 46 46
AK102 DRO C10-C25 AK103 RRO C25-C36 Surrogate Recovery o-Terphenyl	3.3 4.3 73.6	1.1 2.2	25. 120	mg/kg mg/kg % Rec.	J J	AK102/10	06/20/11 06/20/11 06/20/11	1

Results listed are dry weight basis.
U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD
RDL = Reported Detection Limit = LOQ = PQL = EQL Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 10 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520391-10

June 21, 2011

Site ID :

Project # :

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Sample ID : 11-EUR-SB08-01-SO

Collected By : AH/BD Collection Date : 06/06/11 09:35

Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	90.			%		2540G	06/16/11	1
TPHGAK C6 to C10	U	1.1	4.4	mg/kg		AK101	06/12/11	39.5
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	97.8			% Rec.		AK101	06/12/11	39.5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene	U U U U 105. 102. 105.	0.017 0.013 0.012 0.018	0.044 0.22 0.044 0.13	mg/kg mg/kg mg/kg mg/kg % Rec. % Rec.		8260B 8260B 8260B 8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11	39.5 39.5 39.5 39.5 39.5 39.5
4-Bromofluorobenzene AK102 DRO C10-C25 AK103 RRO C25-C36 Surrogate Recovery o-Terphenyl	97.0 U U 78.6	1.1 2.2	22. 110	<pre>% Rec. mg/kg mg/kg % Rec.</pre>		AK102/10	06/13/11 06/20/11 06/20/11 06/20/11	1

Results listed are dry weight basis.
U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD
RDL = Reported Detection Limit = LOQ = PQL = EQL Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 11 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Est. 1970

Tax I.D. 62-0814289

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520391-11

June 21, 2011

Site ID :

Project # :

Date Received : June 10, 2011
Description : Eureka Lodge Crowley

Sample ID TRIP BLANK

Collected By : AH/BD Collection Date : 06/06/11 09:50

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10	Ŭ	41.	100	ug/l		AK101	06/11/11	1
Surrogate Recovery-%								
a,a,a-Trifluorotoluene(FID)	94.0			% Rec.		AK101	06/11/11	1
Benzene	U	0.23	1.0	uq/l		8260B	06/11/11	1
Toluene	Ū	0.32	5.0	ug/l		8260B	06/11/11	
Ethylbenzene	Ū	0.22	1.0	ug/l		8260B	06/11/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	06/11/11	1
Surrogate Recovery				_				
Toluene-d8	101.			% Rec.		8260B	06/11/11	1
Dibromofluoromethane	102.			% Rec.		8260B	06/11/11	1
a,a,a-Trifluorotoluene	104.			% Rec.		8260B	06/11/11	1
4-Bromofluorobenzene	93.7			% Rec.		8260B	06/11/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/21/11 07:31 Printed: 06/21/11 07:31

Page 12 of 19

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
Number	GIOUP				
L520391-01	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
L520391-02	WG540506	SAMP	Total Solids	R1725620	J3
1320331 02	WG540407	SAMP	o-Terphenyl	R1730510	J7
	WG540437	SAMP	Toluene	R1730310 R1723829	J
	WG540138	SAMP	Ethylbenzene	R1723829	J
	WG540138	SAMP	4-Bromofluorobenzene	R1723829	J1
L520391-03	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
	WG540437	SAMP	AK103 RRO C25-C36	R1730510	J
L520391-04	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
	WG540138	SAMP	Benzene	R1723829	E
	WG540138	SAMP	Toluene	R1723829	J
L520391-05	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
	WG540138	SAMP	Benzene	R1723829	E
	WG540138	SAMP	Toluene	R1723829	_ J
L520391-06	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
	WG540437	SAMP	AK103 RRO C25-C36	R1730510	J
L520391-07	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
	WG540437	SAMP	AK103 RRO C25-C36	R1730510	J
L520391-08	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
L520391-09	WG540437	SAMP	AK102 DRO C10-C25	R1730510	J
1020001 00	WG540437	SAMP	AK102 DRO C10 C25 AK103 RRO C25-C36	R1730510	J
	WGJ4043/	SAMP	AN103 NNO C23-C30	K1/30310	U

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
E	GTL (EPA) - Greater than upper calibration limit: Actual value is known to be greater than the upper calibration range.
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits
Ј3	The associated batch QC was outside the established quality control range for precision. $\ \ \ \ \ \ \ \ \ \ \ \ \ $
J7	Surrogate recovery limits cannot be evaluated; surrogates were diluted out

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Summary of Remarks For Samples Printed 06/21/11 at 07:31:57

TSR Signing Reports: 358

Need cooler receipt form on ALL samples. All samples get QC2MODCN.

Sample: L520391-01 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-02 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-03 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-04 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-05 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-06 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Please ms/msd sample please Sample: L520391-07 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-08 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-09 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-10 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31 Sample: L520391-11 Account: OASISAAK Received: 06/10/11 11:15 Due Date: 06/17/11 00:00 RPT Date: 06/21/11 07:31

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Total Solids by Method 2540G

Project No: Matrix: Soil - mg/kg

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540506

Analysis Date: 6/16/2011 9:43:00 AM Analyst: 487

Instrument ID: LOGBAL1 Extraction Date: 6/14/2011

Sample Numbers: L520391-01, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
Total Solids		< 0.100	_

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Total Solids	50.0	50.0	100	85 - 155	_

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Total Solids by Method 2540G

Project No: Matrix: Soil - mg/kg

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540508

Analysis Date: 6/16/2011 9:36:00 AM Analyst: 487

Instrument ID: LOGBAL1 Extraction Date: 6/14/2011

Sample Numbers: L520391-05, -04, -09, -10, -07, -08, -06, -03

Method Blank

Analyte	CAS	PQL	Qualifiers
Total Solids		< 0.100	_

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Total Solids	50.0	50.0	100.0	85 - 155	_

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Total Solids by Method 2540G Test:

Project No: Matrix: Soil - mg/kg

TN00003 Project: Eureka Lodge Crowley EPA ID: Analytic Batch: WG540506 Collection Date: 6/6/2011

Analysis Date: 6/16/2011 9:43:00 AM Analyst: 487 LOGBAL1 Extraction Date: 6/14/2011

Instrument ID: Sample Numbers: L520391-01, -02

Sample Duplicate

L520391-02

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Total Solids	86.4	93.8	8.2	5	J3

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Total Solids by Method 2540G

Project No: Matrix: Soil - mg/kg

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540508

Analysis Date: 6/16/2011 9:36:00 AM Analyst: 487

Instrument ID: LOGBAL1 Extraction Date: 6/14/2011

Sample Numbers: L520391-05, -04, -09, -10, -07, -08, -06, -03

Sample Duplicate

L520391-10

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Total Solids	89.5	90.5	1.1	5	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix: Soil - mg/kg

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG539955

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC7

Sample Numbers: L520391-02, -07, -09, -05, -08, -03, -04, -06, -01, -10

Method Blank

Analyte	CAS	PQL	Qualifiers
TPHGAK C6 to C10		< 5.00	_

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPHGAK C6 to C10	5.50	5.42	98.5	60 - 120	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPHGAK C6 to C10	5.50	5.07	92.1	60 - 120	Quantiters

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG539958

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC4 Sample Numbers: L520391-11

Method Blank

Analyte	CAS	PQL	Qualifiers
TPHGAK C6 to C10		< 0.100	_

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPHGAK C6 to C10	5.50	5.71	104	60 - 120	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
TPHGAK C6 to C10	5.50	5.85	106	60 - 120	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG539955

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC7

Sample Numbers: L520391-02, -07, -09, -05, -08, -03, -04, -06, -01, -10

Surrogate Summary

Laboratory Sample ID	a,a,a-Trifluorot ppb	oluene - FID % Rec	a,a,a-Trifluorotoluene - PID ppb % Rec
LCS WG539955	211	106	
LCSD WG539955	207	103	
MS WG539955	207	104	
MSD WG539955	206	103	
Blank WG539955	194	97.2	
L520391-06	193	96.4	
L520391-01	193	96.7	
L520391-02	195	97.5	
L520391-03	195	97.7	
L520391-04	187	93.5	
L520391-05	191	95.7	
L520391-07	194	96.8	
L520391-08	193	96.7	
L520391-09	193	96.6	
L520391-10	196	97.8	

a,a,a-Trifluorotoluene (FID) 200 ppb Limits - 59 - 128 a,a,a-Trifluorotoluene (PID) 200 ppb Limits - 0 - 0

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG539958

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC4 Sample Numbers: L520391-11

Surrogate Summary

Laboratory Sample ID	a,a,a-Trifluoroto ppb	oluene - FID % Rec	a,a,a-Trifluorotoluene - PID ppb % Rec
LCS WG539958	191	95.6	
LCSD WG539958	192	96.2	
MS WG539958	189	94.5	
MSD WG539958	187	93.4	
Blank WG539958	188	94.2	
L520391-11	188	94.0	

a,a,a-Trifluorotoluene (FID) 200 ppb Limits - 62 - 128 a,a,a-Trifluorotoluene (PID) 200 ppb Limits - 0 - 0

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix: Soil - mg/kg

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG539955

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC7

Sample Numbers: L520391-02, -07, -09, -05, -08, -03, -04, -06, -01, -10

Laboratory Control Sample/Laboratory Control Sample Duplicate

	•	-	%	·	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
TPHGAK C6 to C10	5.50	5.42	98.5	5.07	92.1	60-120		6.7	20	

Matrix Spike/Matrix Spike Duplicate

	Spike		1	_32035 %	71-00	%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
TPHGAK C6 to C10	242	0.587	248	102	213	87.8	55-109		15	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Water - mg/L

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix:

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG539958

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC4 Sample Numbers: L520391-11

Laboratory Control Sample/Laboratory Control Sample Duplicate

	·	•	%	·	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
TPHGAK C6 to C10	5.50	5.71	104	5.85	106	60-120		2.4	20	

Matrix Spike/Matrix Spike Duplicate

	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
TPHGAK C6 to C10	5.50	0.0000	5.36	97.5	5.61	102	58-122		4.5	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Method AK101 Test:

Project No: Matrix: Soil - mg/kg Eureka Lodge Crowley EPA ID: TN00003 Project:

Collection Date: 6/6/2011 Analytic Batch: WG539955 Analyst: 171

Analysis Date: 6/11/2011 Instrument ID: VOCGC7

Sample Numbers: L520391-02, -07, -09, -05, -08, -03, -04, -06, -01, -10

]	Internal Standard	Response and Retent	tion Time Summa	ary		
FileID:0611_03.D		Date:6/11/2011		Time:4:52 PM		
				IS - PID		
	Response	RT	Response	RT		
12 Hour Std	8458860	4.67	5337	4.51		
Upper Limit	16917720	5.17	10674	5.01		
Lower Limit	4229430	4.17	2668.5	4.01		
Sample ID	Response	RT	Response	RT		
Blank WG539955	8267381	4.67				
L520391-01	7251869	4.67				
L520391-02	6007747	4.67				
L520391-06	7441815	4.67				
LCS WG539955	8007063	4.67				
LCSD WG539955	8697606	4.67				
MS WG539955	7189229	4.68				
MSD WG539955	8300820	4.67				

Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG539955

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC7

Sample Numbers: L520391-02, -07, -09, -05, -08, -03, -04, -06, -01, -10

Internal Standard Response and Retention Time Summary

	Internal Standard	Response and Retent	tion Time Sumi	nary
FileID:0611_21.D		Date:6/12/2011		Time:12:37 AM
		IS - FID		IS - PID
	Response	RT	Response	RT
12 Hour Std	8003668	4.67	4350	4.8
Upper Limit	16007336	5.17	8700	5.3
Lower Limit	4001834	4.17	2175	4.3
Sample ID	Response	RT	Response	RT
L520391-03	7606871	4.67		
L520391-04	7094352	4.67		
L520391-05	7578772	4.67		
L520391-07	7010008	4.67		
L520391-08	7179818	4.67		
L520391-09	7244958	4.67		
L520391-10	7050157	4.67		

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG539958

Analysis Date: 6/11/2011 Analyst: 171

Instrument ID: VOCGC4 Sample Numbers: L520391-11

Internal Standard Response and Retention Time Summary

	Internal Standard	Response and Retent	non Time Sumi	nary
FileID:0610_14.D		Date:6/10/2011		Time:11:14 PM
		IS - FID		IS - PID
	Response	RT	Response	RT
12 Hour Std	5931455	6.67	686	6.67
Upper Limit	11862910	7.17	1372	7.17
Lower Limit	2965727.5	6.17	343	6.17
Sample ID	Response	RT	Response	RT
Blank WG539958	5556642	6.67		
L520391-11	5599608	6.67		
LCS WG539958	6105321	6.67		
LCSD WG539958	6144537	6.67		
MS WG539958	6385918	6.66		
MSD WG539958	6290126	6.66		

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG539948

Analysis Date: 6/11/2011 Analyst: 74

Instrument ID: VOCMS6 Sample Numbers: L520391-11

Method Blank

Analyte	CAS	PQL	Qualifiers
Benzene	71-43-2	< 0.0010	
Toluene	108-88-3	< 0.0050	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0282	113	67 - 126	
Toluene	0.0250	0.0286	114	72 - 122	
Ethylbenzene	0.0250	0.0275	110	76 - 129	
m&p-Xylene	0.0500	0.0557	111	74 - 128	
o-Xylene	0.0250	0.0275	110	78 - 128	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0262	105	67 - 126	
Toluene	0.0250	0.0264	105	72 - 122	
Ethylbenzene	0.0250	0.0255	102	76 - 129	
m&p-Xylene	0.0500	0.0520	104	74 - 128	
o-Xylene	0.0250	0.0255	102	78 - 128	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG540138

Analysis Date: 6/13/2011 Analyst: 156

Instrument ID: VOCMS7

Sample Numbers: L520391-06, -07, -09, -10, -01, -03, -05, -02, -08, -04

Method Blank

Analyte	CAS	PQL	Qualifiers
Benzene	71-43-2	< 0.0010	
Toluene	108-88-3	< 0.0050	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0277	111	65 - 128	
Toluene	0.0250	0.0248	99.3	70 - 120	
Ethylbenzene	0.0250	0.0258	103	74 - 128	
m&p-Xylene	0.0500	0.0512	102	73 - 127	
o-Xylene	0.0250	0.0264	106	75 - 129	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0279	112	65 - 128	
Toluene	0.0250	0.0254	102	70 - 120	
Ethylbenzene	0.0250	0.0247	98.7	74 - 128	
m&p-Xylene	0.0500	0.0491	98.2	73 - 127	
o-Xylene	0.0250	0.0249	99.6	75 - 129	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG539948

Analysis Date: 6/11/2011 Analyst: 74

Instrument ID: VOCMS6 Sample Numbers: L520391-11

Surrogate Summary

Laboratory Dibromofluoromethane		Toluene-d8		4-Bromo	fluorobenzene	Alternate Surrogate a,a,a-Trifluorotoluene		
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
LCS WG539948	40.5	101	40.6	101	38.8	97.1	41.4	103
LCSD WG539948	41.2	103	40.8	102	39.8	99.6	41.5	104
MS WG539948	40.6	102	40.8	102	39.8	99.5	40.7	102
MSD WG539948	41.3	103	40.9	102	40.0	99.9	41.4	103
Blank WG539948	40.7	102	40.0	99.9	37.7	94.3	41.1	103
L520391-11	40.6	102	40.5	101	37.5	93.7	41.6	104
	Dibromof	luoromethane		40 ppb	79 - 125			
	Toluene -	d8		40 ppb	87 - 114			
	4-Bromof	luorobenzene		40 ppb	75 - 128			
			Alterna	ite Surrogate				
	a,a,a-Trif	luorotoluene		40 ppb	84 - 114			

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG540138

Analysis Date: 6/13/2011 Analyst: 156

Instrument ID: VOCMS7

Sample Numbers: L520391-06, -07, -09, -10, -01, -03, -05, -02, -08, -04

Surrogate Summary

Laboratory	Dibromo	fluoromethane	То	luene-d8	4-Bromot	luorobenzene		ate Surrogate ifluorotoluene
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
LCS WG540138	43.1	108	41.2	103	38.0	95.1	42.0	105
LCSD WG540138	42.2	106	42.6	106	37.6	94.0	41.5	104
MS WG540138	42.4	106	41.5	104	39.8	99.5	42.5	106
MSD WG540138	41.0	102	42.4	106	40.9	102	41.6	104
Blank WG540138	41.2	103	41.8	105	38.4	95.9	42.1	105
L520391-06	41.5	104	42.1	105	41.2	103	42.1	105
L520391-01	41.6	104	42.2	106	40.5	101	42.3	106
L520391-02	41.4	103	43.2	108	56.8	142 *	43.1	108
L520391-03	40.1	100	42.1	105	41.4	103	42.0	105
L520391-04	39.4	98.5	42.3	106	40.4	101	42.9	107
L520391-05	40.2	101	41.6	104	39.9	99.6	41.4	104
L520391-07	40.0	100.0	41.9	105	40.9	102	41.6	104
L520391-08	39.0	97.5	42.5	106	42.2	105	42.1	105
L520391-09	40.5	101	41.5	104	41.8	104	42.0	105
L520391-10	40.8	102	42.1	105	38.8	97.0	42.1	105
	Dibromof	luoromethane		40 ppb	63 - 139			
	Toluene -	d8		40 ppb	84 - 116			
	4-Bromof	luorobenzene		40 ppb	59 - 140			
			Alterna	ite Surrogate	•			
	a,a,a-Trif	luorotoluene		40 ppb	80 - 118			

Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Eureka Lodge Crowley EPA ID: TN00003

Collection Date: 6/6/2011 Analytic Batch: WG539948

Analysis Date: 6/11/2011 Analyst: 74

Instrument ID: VOCMS6 Sample Numbers: L520391-11

Laboratory Control Sample/Laboratory Control Sample Duplicate

	v	•	%	·	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Benzene	0.0250	0.0282	113	0.0262	105	67-126		7.4	20	
Toluene	0.0250	0.0286	114	0.0264	105	72-122		8.2	20	
Ethylbenzene	0.0250	0.0275	110	0.0255	102	76-129		7.5	20	
m&p-Xylene	0.0500	0.0557	111	0.0520	104	74-128		6.8	20	
o-Xylene	0.0250	0.0275	110	0.0255	102	78-128		7.8	20	

Matrix Spike/Matrix Spike Duplicate

			I	.5203	99-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Benzene	0.0250	0.0000	0.0247	98.8	0.0239	95.6	16-158		3.3	21	
Toluene	0.0250	0.0000	0.0250	99.9	0.0240	96.0	22-152		4.0	22	
Ethylbenzene	0.0250	0.0000	0.0244	97.8	0.0237	94.9	29-150		3.0	24	
m&p-Xylene	0.0500	0.0000	0.0494	98.9	0.0474	94.8	24-151		4.3	23	
o-Xylene	0.0250	0.0000	0.0250	99.9	0.0243	97.1	32-151		2.8	23	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG540138

Analysis Date: 6/13/2011 Analyst: 156

Instrument ID: VOCMS7

Sample Numbers: L520391-06, -07, -09, -10, -01, -03, -05, -02, -08, -04

Laboratory Control Sample/Laboratory Control Sample Duplicate

	v	•	%	•	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Benzene	0.0250	0.0277	111	0.0279	112	65-128		0.7	20	
Toluene	0.0250	0.0248	99.3	0.0254	102	70-120		2.3	20	
Ethylbenzene	0.0250	0.0258	103	0.0247	98.7	74-128		4.6	20	
m&p-Xylene	0.0500	0.0512	102	0.0491	98.2	73-127		4.3	20	
o-Xylene	0.0250	0.0264	106	0.0249	99.6	75-129		6.1	20	

Matrix Spike/Matrix Spike Duplicate

]	L52039	91-06						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Benzene	1.10	0.0083	1.15	104	1.16	105	16-143		1.1	31	
Toluene	1.10	0.0000	1.05	95.2	1.08	98.4	12-136		3.3	32	
Ethylbenzene	1.10	0.0000	1.15	104	1.17	107	12-137		2.0	36	
m&p-Xylene	2.20	0.0000	2.27	103	2.33	106	10-135		2.8	37	
o-Xylene	1.10	0.0000	1.16	105	1.14	104	14-140		1.5	35	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG539948

Analysis Date: 6/11/2011 Analyst: 74

Instrument ID: VOCMS6 Sample Numbers: L520391-11

Internal Standard Response and Retention Time Summary

FileID:0611_02.D			Date:6/11/2011 Time:12:01 PM							
	IS1		IS2		IS3		IS4			
FileID:0611_02. 12 Hour Std Upper Limit Lower Limit Sample ID Blank WG539948 L520391-11 LCS WG539948 LCSD WG539948 MS WG539948 MS WG539948	Response	RT	Response	RT	Response	RT	Response	RT		
12 Hour Std	398250	4.36	617183	4.69	78055	5.84	281561	8.21		
	796500	4.86	1234366	5.19	156110	6.34	563122	8.71		
* *	199125	3.86	308591.5	4.19	39027.5	5.34	140780.5	7.71		
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT		
Blank WG539948	373069	4.36	580204	4.69	71264	5.84	232553	8.21		
L520391-11	339822	4.36	521463	4.69	65040	5.84	213926	8.21		
LCS WG539948	371806	4.36	573187	4.69	73101	5.84	256950	8.21		
LCSD WG539948	378376	4.36	585325	4.69	73390	5.84	262383	8.21		
MS WG539948	409853	4.36	634542	4.69	80758	5.84	287048	8.21		
MSD WG539948	398317	4.36	617851	4.69	78521	5.84	280747	8.21		

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540138

Analysis Date: 6/13/2011 Analyst: 156

Instrument ID: VOCMS7

Sample Numbers: L520391-06, -07, -09, -10, -01, -03, -05, -02, -08, -04

Internal Standard Response and Retention Time Summary

FileID:0613_02.D			Date:6/13/20)11		Time	e:1:02 AM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 H Ct.1	107101	4.60	270000	<i>5</i> 1	27122	((5	127/27	10.04
12 Hour Std	187181	4.68	278898	5.1	36132 72264	6.65	137627	10.04
Upper Limit	374362	5.18	557796	5.6		7.15	275254	10.54
Lower Limit	93590.5	4.18	139449	4.6	18066	6.15	68813.5	9.54
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG540138	174039	4.68	263397	5.1	34148	6.65	125889	10.04
L520391-01	181879	4.67	269788	5.09	33536	6.65	130556	10.04
L520391-02	175734	4.67	266240	5.09	33324	6.65	140003	10.04
L520391-03	192843	4.68	287975	5.09	35626	6.64	141781	10.04
L520391-04	199594	4.68	297001	5.09	37715	6.64	143383	10.04
L520391-05	201772	4.67	299711	5.09	38474	6.64	144365	10.04
L520391-06	186026	4.68	280203	5.1	34651	6.65	131362	10.04
L520391-07	197264	4.67	297395	5.09	37960	6.65	147652	10.04
L520391-08	201130	4.68	295044	5.09	36455	6.64	143891	10.04
L520391-09	199785	4.68	297747	5.09	37099	6.64	143729	10.04
L520391-10	199210	4.68	292709	5.09	38248	6.64	143584	10.04
LCS WG540138	185668	4.67	276057	5.1	35677	6.65	129547	10.04
LCSD WG540138	190244	4.68	283450	5.1	39244	6.65	145228	10.04
MS WG540138	196033	4.67	287664	5.1	35347	6.65	137126	10.04
MSD WG540138	196092	4.67	291752	5.1	36546	6.65	146370	10.04

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003

Collection Date: 6/6/2011 Eureka Lodge Crowley EPA ID: 1N00003

Analytic Batch: WG540437

Analysis Date: 6/20/2011 Analyst: 280
Instrument ID: SVGC16 Extraction Date: 6/14/2011

Sample Numbers: L520391-06, -09, -01, -04, -08, -10, -02, -07, -03, -05

Method Blank

Analyte	CAS	PQL	Qualifiers
AK DRO C10-C25		<20.0	_
AK RRO C25-C36		<100	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
AK DRO C10-C36	60.0	58.3	97.2	75 - 125	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
AK DRO C10-C36	60.0	53.7	89.5	75 - 125	_

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG540437

Analysis Date: 6/20/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/14/2011 Sample Numbers: L520391-06, -09, -01, -04, -08, -10, -02, -07, -03, -05

Surrogate Summary

Laboratory	o-terphenylD		
Sample ID	ppm	% Rec	
Blank WG540437	0.742	92.8	
LCS WG540437	0.802	100	
LCSD WG540437	0.737	92.1	
L520391-01	0.700	87.5	
L520391-03	0.639	79.9	
L520391-04	0.613	76.6	
L520391-05	0.601	75.1	
L520391-06	0.634	79.3	
MS WG540437	0.731	91.4	
MSD WG540437	0.619	77.3	
L520391-07	0.489	61.2	
L520391-08	0.589	73.7	
L520391-09	0.589	73.6	
L520391-10	0.629	78.6	
L520391-02	D	D	

o-terphenyl Limits - 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520391

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Soil - mg/kg
Project: Eureka Lodge Crowley EPA ID: TN00003

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540437

Analysis Date: 6/20/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/14/2011

Sample Numbers: L520391-06, -09, -01, -04, -08, -10, -02, -07, -03, -05

Laboratory Control Sample/Laboratory Control Sample Duplicate

	·	•	%	·	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
AK DRO C10-C36	60.0	58.3	97.2	53.7	89.5	75-125		8.2	20	

Matrix Spike/Matrix Spike Duplicate

	Spike		T	.52059 %	1-00	%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
AK DRO C10-C36	60.0	0.00	59.5	99.2	50.3	83.8	75-125		17	20	

Company Name/Address:	_	Ві	Billing Information:			-	Ana	alvsis/	Container/Preserv		135	Chain of Custody Page of	
OASIS Environmen	tal -							7 7			F	135	Page of
Anchorage, AK			Accounts 825 W. 8t					٤		S.			
825 W. 8th Ave.			020 VV. 8ti	n Ave.			wthanol	4	_				CC
Anchorage.AK 99501			Anchorage	e,AK 9950	11		2	t"/7	Clear				
edeciminate to the control of							3	7	2			L-A-B S-C-	I-E-N-C-E-S
Report to:		Em	Email to: D. Frank @ousis envi				2	1 ~	12065 Lebai Mt. Juliet, T				
roject Eure Ka Lodge			City/Sate	unk (W)	DUSIS CY	TUITC	L		20			Phone: (80)) 767-5859
Description: Crowley			Collected				0978	77				Phone: (61:	5) 758-5858 5) 758-5859
Phone: (907) 350-4897 FAX: (907) 258-4033	Client Project	#:	ESC Key	:	•		8, 8	K-1032				rax. (ot.	0) 736-3639
	Site/Facility ID	·····	D 0 #					لدا					
Collected by (print) A. Hanson 1B. Delang			P.O.#:	165-0	14		107	\	10			200 000 000 000 000 000 000 000 000 000	
Collected by (signature):		ab MUST Be I	Notified)	Date Resu	lts Needed:	/No	¥	ଥ	(V)			CoCode OASISA	AK (lab use only)
Immediately		ext Day		Email?		y No.	A	7 X				Template/Prelogin	م مار ر
Packed on Ice N Y X		vo Day		FAX? _	NoYes	of	60	10				T70866 [P35] Shipped Via:	2870
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	GRO/BITA	DZC	5			Remarks/Contaminant	Sample # (lab only)
11-EUR-SB01-01-50	Grab	Soil		6/6/11	1130	3	X	X	X			L520391	-01
11-EUR-5B0Z-01-50	ri .	11		(i	1235	3	X		X			200011	~02
11-EUR-SB63-01-SG	/1	11		11	1440	3	X	X	X				-03
11-EUR-SBU3-02-SO	//	/ 1		11	1450	3	Α.	X	X	13 13			~04
11-EUR-SB20-01-SO	11	11		11	2000	3	X	X	Х				-05
11-EUR-SB04-01-50	/1	11		1ı	1550	3	х	X	X			MS/MSD	-06
11-EUR-SB05-01-50	11	11		11	1640	3	Χ	X	X			111711111	-07
1-ENR-SB06-0750	, (1(11	1710	3	Х	X					-08
11-EUR-SB07-01-SO	((11		11		-	<u>λ</u>		人				- oq
*Matrix: SS - Soil/Solid GW - Ground	water WW - V	VasteWater D	W - Drinking	Water OT -				/~			pН	Tom	
Remarks:			-3	· ·								Tem	
elipodished by, (Signature)	Data	T:	T						435	<u> 5 13/8/8/8</u> 8	Flow	Othe	er
WMHI	Date:	Time:	Receive	ed by: (Signa	iture)				Fed	oles returned via: □ (dEx □ Courier □	JPS	Condition:	(lab use only)
Relinquished by: (Signature)	Date.	Time:							Temp	o: Bottles	Receive		9 III
Relinquished by: (Signature)	Date:	Time:	ime: Possived for the L. (Or				2.6° 31 CoC Seals Intact Y N NA				YNNA		
	Date.	i ime:	ne: Received for lab by: (Signature) **The lab by: (Signature)					Date: Time: pH Checked: 47 pNCF: pt 49			NAF:		
		L	- Mrs		pen				16/10	<u>yrr 1 11.</u>	IJ		

Company Name/Address:			Billing Inform	ation:			-	Analys	is/Con	tainer/P	reservative	Chain of Custody Page <u>Z</u> of <u>Z</u>	
OASIS Environment Anchorage, AK	ital -		Accounts Payable 825 W. 8th Ave.			lau	Jack	477	¥7.8/			. 490 01	
825 W. 8th Ave. Anchorage.AK 99501			Anchorage,AK 99501			methano	402 Amb	91 600			LIA/B SIC	ESC	
Project Eure Ka Lesci gle Description: Crowley Phone: (200) 250 450		Ē	City/Sate	-@ousi	Senvir	0.00r			Mothanal			Mt. Julie	banon Road t, TN 37122 00) 767-5859
Phone: (907) 350-4897 FAX: (907) 258-4033	Client Project	#:	Collected ESC Key:			028/10	AK 102/103	407			1	(5) 758-5858 (5) 758-5859	
Collected by: (print) 4. Han San B. Dalaney Collected by (signature):	Site/Facility IE		P.O.#:	465-01			4/2101	4 7	040			25 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Immediately Packed on Ice N Y X	N	ame Day ext Day wo Day	200% 100% 50%	Date Resu 10 Cloy Email? FAX?	NoYes	No.	GROBIEX	2	<u>م</u> >			Template/Prelogin	AK (lab use only).
Sample ID	Comp/Grab	Matrix*	25% Depth	Date	Time	Cntrs	36	DRO	1 Crai			Shipped Via: Remarks/Contaminant	Sample # (lab only)
11-EUR-SB08-01-SO	Grab	Soil		6/7/11	0935	3		X X	-			L520391	-10
Trip Blank				6/7/11	0950	1			X			7	-()
											4		# # # # # # # # # # # # # # # # # # #
*Matrix: SS - Soil/Solid GW - Ground	ductor MARK N	Nast-10/-4	DW B · · ·										
Remarks:	uwater yyyy - y	vastevvater	DW - Drinkini	g Water OT -	Other						pH Flow	Ten Oth	•
A Survey of by (Siglature)	018	/// Time:	Receiv	ved by: (Signa	ture)			Sa D X	mples FedEx	returned Couri	via: 🗆 LIDS	Condition:	(lab use only)
Relinquished by: (Signature)	Date:	Time:	Receiv	ved by: (Signa	ture)			Te	mp:		Bottles Receive	d: CoC Seals Intact	YNNA -
Relinquished by: (Signature)	Date:	Time:	1	ived for lab by	**************************************			Di	ate:) [0/1/		Time: 1/1/5	pH Checked: 48	NGF:

Cooler Receipt Form		
Client: OASISAAK Cooler Received On: 610.11 and Opened On: 610.11 By: 1601 N Wall acce	1 1000/1	1100
(Signature)	Wollen.	Dun
Temperature of cooler when opened: $\overrightarrow{m{a.b.}}$ Degrees Celsius/ Was sufficient ice used: Yes \square No \square	ficient ice use	ed: Yes □ No □
What kind of packing material was used? Bubblewrap Peanuts	Other N	None
Were custody seals on outside of cooler and intact?	Yes	oN 🗆
Were custody papers properly filled out (ink, signed, etc.)?	<u> </u>	
Did you sign the custody papers in the appropriate place?		
Did all bottles arrive in good condition?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Were all bottle labels complete? (#, date, signed, pres, etc)?		
Did all bottle labels and tags agree with custody papers?		
Were correct bottles used for the analyses requested?	D	
Was sufficient amount of sample sent in each bottle?	3	
Were correct preservatives used?	∀	
If applicable, was an observable VOA headspace present?	□ MA	
Non Conformance Generated: (See attached NCF if yes)		

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

For: OASIS Environmental - Anchorage, AK

Project: Eureka Lodge Crowley

June 17, 2011

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Semi-volatile Organic Compounds by Method 8270C-SIM

Laboratory Control Sample

Samples L520482-01 and 02 were analyzed in analytical batch WG540038. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540038 matrix spike/matrix spike duplicate analysis was performed on sample L520284-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540038 matrix spike/matrix spike duplicate analysis was performed on sample L520459-04. The matrix spike recoveries were within laboratory control limits for all target analytes. The relative percent difference exceeded laboratory limits for 2-Chloronaphthalene, 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene, Naphthalene, Phenanthrene, Benzo(b)fluoranthene, and Pyrene.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

AK102 / AK103

Laboratory Control Sample

Samples L520482-01 and 02 were analyzed in analytical batch WG540042. The laboratory control sample associated with these samples was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540042, matrix spike/matrix spike duplicate analysis was performed on sample L520284-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Dan Frank
OASIS Environmental - Anchorage, AK
825 W. 8th Ave.
Anchorage, AK 99501

Report Summary

Friday June 17, 2011

Report Number: L520482 Samples Received: 06/11/11

Client Project:

Description: Eureka Lodge Crowley

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

T. Alan Harvill , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 17, 2011

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520482-01

Date Received : June 11, 2011
Description : Eureka Lodge Crowley

Site ID : Sample ID : 11-EUR-MW2-01-GW Project # :

Collected By : Blake Delaney Collection Date : 06/09/11 11:21

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
AK102 DRO C10-C25	140	22.	800	ug/l	J	AK102/1	06/15/11	1
AK103 RRO C25-C36	U	66.	200	ug/l			06/15/11	1
Surrogate Recovery				- 5,		,	, ,	
o-Terphenyl	94.2			% Rec.		AK102/1	06/15/11	1
Polynuclear Aromatic Hydrocarbons								
Anthracene	U	0.013	0.050	ug/l		8270C-S	06/14/11	1
Acenaphthene	U	0.0082	0.050	ug/l		8270C-S	06/14/11	1
Acenaphthylene	U	0.011	0.050	ug/l		8270C-S	06/14/11	1
Benzo(a) anthracene	U	0.012	0.050	ug/l		8270C-S	06/14/11	1
Benzo(a)pyrene	U	0.016	0.050	ug/l		8270C-S	06/14/11	1
Benzo(b) fluoranthene	U	0.019	0.050	ug/l		8270C-S	06/14/11	1
Benzo(g,h,i)perylene	U	0.016	0.050	ug/l		8270C-S	06/14/11	1
Benzo(k) fluoranthene	U	0.026	0.050	ug/l		8270C-S	06/14/11	1
Chrysene	U	0.014	0.050	ug/l		8270C-S	06/14/11	1
Dibenz(a,h)anthracene	U	0.0045	0.050	ug/l		8270C-S	06/14/11	1
Fluoranthene	U	0.016	0.050	ug/l		8270C-S	06/14/11	1
Fluorene	U	0.0090	0.050	ug/l		8270C-S	06/14/11	1
Indeno(1,2,3-cd)pyrene	U	0.0074	0.050	ug/l		8270C-S	06/14/11	1
Naphthalene	U	0.012	0.25	ug/l		8270C-S	06/14/11	1
Phenanthrene	U	0.018	0.050	ug/l		8270C-S	06/14/11	1
Pyrene	U	0.016	0.050	ug/l		8270C-S	06/14/11	1
1-Methylnaphthalene	U	0.019	0.25	ug/l		8270C-S	06/14/11	1
2-Methylnaphthalene	U	0.016	0.25	ug/l		8270C-S	06/14/11	1
2-Chloronaphthalene	U	0.016	0.25	ug/l		8270C-S	06/14/11	1
Surrogate Recovery				-				
Nitrobenzene-d5	74.0			% Rec.		8270C-S	06/14/11	1
2-Fluorobiphenyl	85.8			% Rec.		8270C-S	06/14/11	1
p-Terphenyl-d14	105.			% Rec.		8270C-S	06/14/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 12:05 Printed: 06/17/11 12:05

Page 2 of 10

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

June 17, 2011

ESC Sample # : L520482-02

Date Received : June 11, 2011
Description : Eureka Lodge Crowley Description

Site ID : Sample ID 11-EUR-MW2-02-GW Project # :

Collected By : Blake Delaney Collection Date : 06/09/11 12:45

Parameter	Result	MDL	RDL	Units	Qualifier	Method I	Date	Dil.
AK102 DRO C10-C25	150	22.	800	uq/l	J	AK102/1 (06/15/11	1
AK103 RRO C25-C36	Ü	66.	200	ug/l		AK102/1 0		
Surrogate Recovery				- 57				
o-Terphenyl	89.7			% Rec.		AK102/1 (06/15/11	1
Polynuclear Aromatic Hydrocarbons								
Anthracene	U	0.013	0.050	ug/l		8270C-S 0	06/14/11	1
Acenaphthene	U	0.0082	0.050	ug/l		8270C-S 0	06/14/11	1
Acenaphthylene	U	0.011	0.050	ug/l		8270C-S 0	06/14/11	1
Benzo(a)anthracene	U	0.012	0.050	ug/l		8270C-S 0	06/14/11	1
Benzo(a)pyrene	U	0.016	0.050	ug/l		8270C-S 0	06/14/11	1
Benzo(b)fluoranthene	U	0.019	0.050	ug/l		8270C-S 0	06/14/11	1
Benzo(g,h,i)perylene	U	0.016	0.050	ug/l		8270C-S 0	06/14/11	1
Benzo(k)fluoranthene	U	0.026	0.050	ug/l		8270C-S 0	06/14/11	1
Chrysene	U	0.014	0.050	ug/l		8270C-S 0	06/14/11	1
Dibenz(a,h)anthracene	U	0.0045	0.050	ug/l		8270C-S 0	06/14/11	1
Fluoranthene	U	0.016	0.050	ug/l		8270C-S 0	06/14/11	1
Fluorene	U	0.0090	0.050	ug/l		8270C-S 0	06/14/11	1
Indeno(1,2,3-cd)pyrene	U	0.0074	0.050	ug/l		8270C-S 0	06/14/11	1
Naphthalene	U	0.012	0.25	ug/l		8270C-S 0	06/14/11	1
Phenanthrene	U	0.018	0.050	ug/l		8270C-S 0	06/14/11	1
Pyrene	U	0.016	0.050	ug/l		8270C-S 0	06/14/11	1
1-Methylnaphthalene	U	0.019	0.25	ug/l		8270C-S 0	06/14/11	1
2-Methylnaphthalene	U	0.016	0.25	ug/l		8270C-S 0	06/14/11	1
2-Chloronaphthalene	U	0.016	0.25	ug/l		8270C-S 0	06/14/11	1
Surrogate Recovery								
Nitrobenzene-d5	73.2			% Rec.		8270C-S 0	06/14/11	1
2-Fluorobiphenyl	86.1			% Rec.		8270C-S 0	06/14/11	1
p-Terphenyl-d14	105.			% Rec.		8270C-S 0	06/14/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 12:05 Printed: 06/17/11 12:05

Page 3 of 10

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L520482-01	WG540042	SAMP	AK102 DRO C10-C25	R1723990	J
L520482-02	WG540042	SAMP	AK102 DRO C10-C25	R1723990	J

Attachment B Explanation of QC Qualifier Codes

Qualifier Meaning ------

 $\mbox{(EPA)}$ - Estimated value below the lowest calibration point. Confidence correlates with concentration.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by

 Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 5 of 10

Summary of Remarks For Samples Printed 06/17/11 at 12:05:58

TSR Signing Reports: 358

Sample: L520482-01 Account: OASISAAK Received: 06/11/11 09:00 Due Date: 06/17/11 00:00 RPT Date: 06/17/11 12:05

Sample: L520482-02 Account: OASISAAK Received: 06/11/11 09:00 Due Date: 06/17/11 00:00 RPT Date: 06/17/11 12:05

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
AK DRO C10-C25		< 0.80	_
AK RRO C25-C36		< 0.20	

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
AK DRO C10-C36	1.50	1.39	92.4	75 - 125	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
AK DRO C10-C36	1.50	1.38	92.2	75 - 125	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec
Blank WG540042	0.0189	94.7
LCS WG540042	0.0193	96.3
LCSD WG540042	0.0191	95.7
MS WG540042	0.0190	94.9
MSD WG540042	0.0180	89.9
L520482-01	0.0188	94.2
L520482-02	0.0179	89.7

o-terphenyl Limits - 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540042

Analysis Date: 6/15/2011 Analyst: 280

Instrument ID: SVGC16 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

1.50

0.048

1.38

AK DRO C10-C36

Laboratory Control Sample/Laboratory Control Sample Duplicate

	-	_	%	-	%	Control	_	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
AK DRO C10-C36	1.50	1.39	92.4	1.38	92.2	75-125		0.3	20	_

Matrix Spike/Matrix Spike Duplicate

L520284-01 % Spike Control % Rec % Control **RPD** % Value Sample MS Rec MSD Limits Qualifier RPD Limits Qual Analyte Rec

1.35

86.8

75-125

2.6

20

88.8

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka Lodge Crowley EPA ID: TN00003

Collection Date: 6/9/2011

Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
Naphthalene	91-20-3	< 0.000250	_
2-Methylnaphthalene	91-57-6	< 0.000250	
1-Methylnaphthalene	90-12-0	< 0.000250	
2-Chloronaphthalene	91-58-7	< 0.000250	
Acenaphthylene	208-96-8	< 0.0000500	
Acenaphthene	83-32-9	< 0.0000500	
Fluorene	86-73-7	< 0.0000500	
Phenanthrene	85-01-8	< 0.0000500	
Anthracene	120-12-7	< 0.0000500	
Fluoranthene	206-44-0	< 0.0000500	
Pyrene	129-00-0	< 0.0000500	
Benzo(a)anthracene	56-55-3	< 0.0000500	
Chrysene	218-01-9	< 0.0000500	
Benzo(b)fluoranthene	205-99-2	< 0.0000500	
Benzo(k)fluoranthene	207-08-9	< 0.0000500	
Benzo(a)pyrene	50-32-8	< 0.0000500	
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.0000500	
Dibenz(a,h)anthracene	53-70-3	< 0.0000500	
Benzo(g,h,i)perylene	191-24-2	< 0.0000500	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1-Methylnaphthalene	0.00100	0.000698	69.8	30 - 123	
2-Chloronaphthalene	0.00100	0.000730	73.0	34 - 120	
2-Methylnaphthalene	0.00100	0.000721	72.1	29 - 116	
Acenaphthene	0.00100	0.000822	82.2	40 - 113	
Acenaphthylene	0.00100	0.000823	82.3	36 - 115	
Anthracene	0.00100	0.000869	86.9	45 - 118	
Benzo(a)anthracene	0.00100	0.000768	76.8	36 - 129	
Benzo(a)pyrene	0.00100	0.000870	87.0	44 - 124	
Benzo(b)fluoranthene	0.00100	0.000921	92.1	43 - 126	
Benzo(g,h,i)perylene	0.00100	0.000950	95.0	39 - 128	
Benzo(k)fluoranthene	0.00100	0.000851	85.1	44 - 127	
Chrysene	0.00100	0.000901	90.1	36 - 137	
Dibenz(a,h)anthracene	0.00100	0.000925	92.5	39 - 129	
Fluoranthene	0.00100	0.000878	87.8	45 - 123	
Fluorene	0.00100	0.000878	87.8	41 - 118	
Indeno(1,2,3-cd)pyrene	0.00100	0.000936	93.6	39 - 129	
Naphthalene	0.00100	0.000680	68.0	26 - 111	
Phenanthrene	0.00100	0.000832	83.2	41 - 116	
Pyrene	0.00100	0.000854	85.4	32 - 136	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka Lodge Crowley EPA ID: TN00003
Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1-Methylnaphthalene	0.00100	0.000817	81.7	30 - 123	
2-Chloronaphthalene	0.00100	0.000832	83.2	34 - 120	
2-Methylnaphthalene	0.00100	0.000807	80.7	29 - 116	
Acenaphthene	0.00100	0.000861	86.1	40 - 113	
Acenaphthylene	0.00100	0.000840	84.0	36 - 115	
Anthracene	0.00100	0.000903	90.3	45 - 118	
Benzo(a)anthracene	0.00100	0.000793	79.3	36 - 129	
Benzo(a)pyrene	0.00100	0.000897	89.7	44 - 124	
Benzo(b)fluoranthene	0.00100	0.000965	96.5	43 - 126	
Benzo(g,h,i)perylene	0.00100	0.000980	98.0	39 - 128	
Benzo(k)fluoranthene	0.00100	0.000912	91.2	44 - 127	
Chrysene	0.00100	0.000963	96.3	36 - 137	
Dibenz(a,h)anthracene	0.00100	0.000949	94.9	39 - 129	
Fluoranthene	0.00100	0.000916	91.6	45 - 123	
Fluorene	0.00100	0.000938	93.8	41 - 118	
Indeno(1,2,3-cd)pyrene	0.00100	0.000976	97.6	39 - 129	
Naphthalene	0.00100	0.000800	80.0	26 - 111	
Phenanthrene	0.00100	0.000870	87.0	41 - 116	
Pyrene	0.00100	0.000856	85.6	32 - 136	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Laboratory	N	IBZ	21	FP	TI	RP
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec
Blank WG540038	0.946	94.6	0.879	87.9	0.904	90.4
LCS WG540038	0.724	72.4	0.798	79.8	0.837	83.7
LCSD WG540038	0.833	83.3	0.835	83.5	0.875	87.5
MS WG540038	0.644	64.4	0.730	73.0	0.708	70.8
MSD WG540038	0.964	96.4	0.977	97.7	0.996	99.6
L520482-01	0.740	74.0	0.858	85.8	1.05	105
L520482-02	0.732	73.2	0.861	86.1	1.05	105

NBZ - Nitrobenzene-d5	10-139
2FP - 2-Fluorobiphenyl	31-121
TPH - Terphneyl-d14	21-136

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Matrix Spike/Matrix Spike Duplicate

L520284-01 % Cont

	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
1-Methylnaphthalene	0.00100	0.00000	0.00063	63.1	0.00086	86.0	30-123		31	32	
2-Chloronaphthalene	0.00100	0.00000	0.00066	66.3	0.00094	94.1	34-120		35	30	J3
2-Methylnaphthalene	0.00100	0.00000	0.00064	64.8	0.00096	96.2	29-116		39	31	J3
Acenaphthene	0.00100	0.00000	0.00069	69.1	0.00092	92.9	40-113		29	25	J3
Acenaphthylene	0.00100	0.00000	0.00073	73.7	0.00100	100	36-115		30	25	J3
Anthracene	0.00100	0.00000	0.00074	74.8	0.00094	94.8	45-118		24	26	
Benzo(a)anthracene	0.00100	0.00000	0.00070	70.9	0.00094	94.3	36-129		28	26	J3
Benzo(a)pyrene	0.00100	0.00000	0.00074	74.5	0.00102	102	44-124		31	21	J3
Benzo(b)fluoranthene	0.00100	0.00000	0.00074	74.9	0.00111	111	43-126		38	38	J3
Benzo(g,h,i)perylene	0.00100	0.00000	0.00077	77.6	0.00112	112	39-128		36	20	J3
Benzo(k)fluoranthene	0.00100	0.00000	0.00067	67.9	0.00102	102	44-127		40	39	J3
Chrysene	0.00100	0.00000	0.00072	72.4	0.00094	94.0	36-137		26	22	J3
Dibenz(a,h)anthracene	0.00100	0.00000	0.00077	77.4	0.00108	108	39-129		33	20	J3
Fluoranthene	0.00100	0.00000	0.00080	80.1	0.00105	105	45-123		27	25	J3
Fluorene	0.00100	0.00000	0.00078	78.0	0.00109	109	41-118		33	26	J3
Indeno(1,2,3-cd)pyrene	0.00100	0.00000	0.00077	77.8	0.00110	110	39-129		34	20	J3
Naphthalene	0.00100	0.00000	0.00062	62.6	0.00091	91.2	26-111		37	32	J3
Phenanthrene	0.00100	0.00000	0.00073	73.8	0.00099	99.7	41-116		30	25	J3
Pyrene	0.00100	0.00000	0.00073	73.9	0.00101	101	32-136		31	22	J3

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Matrix Spike/Matrix Spike Duplicate

L520459-04

	Spike	_	%		%	Control	% Rec	%	Control	RPD
Analyte	Value Sam	ple MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
1-Methylnaphthalene	0.00100 0.00	000 0.00082	82.5	0.00086	86.9	30-123		5.1	32	
2-Chloronaphthalene	0.00100 0.00	000 0.00087	87.4	0.00091	91.1	34-120		4.2	30	
2-Methylnaphthalene	0.00100 0.00	000 0.00091	91.6	0.00095	95.9	29-116		4.6	31	
Acenaphthene	0.00100 0.00	000 0.00090	90.7	0.00092	92.6	40-113		2.0	25	
Acenaphthylene	0.00100 0.00	000 0.00096	96.9	0.00095	95.3	36-115		1.7	25	
Anthracene	0.00100 0.00	000 0.00090	90.6	0.00097	97.4	45-118		7.3	26	
Benzo(a)anthracene	0.00100 0.00	000 0.00086	86.9	0.00088	88.9	36-129		2.3	26	
Benzo(a)pyrene	0.00100 0.00	000 0.00072	72.6	0.00077	77.8	44-124		6.9	21	
Benzo(b)fluoranthene	0.00100 0.00	000 0.00078	78.0	0.00084	84.6	43-126		8.2	38	
Benzo(g,h,i)perylene	0.00100 0.00	000 0.00042	42.7	0.00048	48.5	39-128		13	20	
Benzo(k)fluoranthene	0.00100 0.00	000 0.00070	70.4	0.00072	72.2	44-127		2.5	39	
Chrysene	0.00100 0.00	000 0.00079	79.9	0.00080	80.6	36-137		0.9	22	
Dibenz(a,h)anthracene	0.00100 0.00	000 0.00043	43.6	0.00048	48.0	39-129		9.5	20	
Fluoranthene	0.00100 0.00	000 0.00099	99.1	0.00102	102	45-123		3.0	25	
Fluorene	0.00100 0.00	000 0.00101	101	0.00106	106	41-118		4.4	26	
Indeno(1,2,3-cd)pyrene	0.00100 0.00	000 0.00045	45.5	0.00050	50.5	39-129		11	20	
Naphthalene	0.00100 0.00	000 0.00084	84.7	0.00089	89.3	26-111		5.3	32	
Phenanthrene	0.00100 0.00	000 0.00098	98.3	0.00100	100	41-116		1.8	25	
Pyrene	0.00100 0.00	000 0.00089	89.0	0.00092	92.1	32-136		3.4	22	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-volatile Organic Compounds by Method 8270C-SIM

Project No: Matrix: Water - mg/L
Project: Eureka Lodge Crowley EPA ID: TN00003

Collection Date: 6/9/2011

Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

Laboratory Control Sample/Laboratory Control Sample Duplicate

Eastratory		oumpre,	24 %	racory	%	Control	ie Dupiie	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
1-Methylnaphthalene	0.00100	0.00069	69.8	0.00081	81.7	30-123		16	32	
2-Chloronaphthalene	0.00100	0.00073	73.0	0.00083	83.2	34-120		13	30	
2-Methylnaphthalene	0.00100	0.00072	72.1	0.00080	80.7	29-116		11	31	
Acenaphthene	0.00100	0.00082	82.2	0.00086	86.1	40-113		4.6	25	
Acenaphthylene	0.00100	0.00082	82.3	0.00084	84.0	36-115		2.0	25	
Anthracene	0.00100	0.00086	86.9	0.00090	90.3	45-118		3.8	26	
Benzo(a)anthracene	0.00100	0.00076	76.8	0.00079	79.3	36-129		3.3	26	
Benzo(a)pyrene	0.00100	0.00087	87.0	0.00089	89.7	44-124		3.1	21	
Benzo(b)fluoranthene	0.00100	0.00092	92.1	0.00096	96.5	43-126		4.6	38	
Benzo(g,h,i)perylene	0.00100	0.00095	95.0	0.00098	98.0	39-128		3.1	20	
Benzo(k)fluoranthene	0.00100	0.00085	85.1	0.00091	91.2	44-127		6.8	39	
Chrysene	0.00100	0.00090	90.1	0.00096	96.3	36-137		6.6	22	
Dibenz(a,h)anthracene	0.00100	0.00092	92.5	0.00094	94.9	39-129		2.6	20	
Fluoranthene	0.00100	0.00087	87.8	0.00091	91.6	45-123		4.2	25	
Fluorene	0.00100	0.00087	87.8	0.00093	93.8	41-118		6.5	26	
Indeno(1,2,3-cd)pyrene	0.00100	0.00093	93.6	0.00097	97.6	39-129		4.2	20	
Naphthalene	0.00100	0.00068	68.0	0.00080	80.0	26-111		16	32	
Phenanthrene	0.00100	0.00083	83.2	0.00087	87.0	41-116		4.4	25	
Pyrene	0.00100	0.00085	85.4	0.00085	85.6	32-136		0.1	22	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

FileID:0615_02.D		Date:6/15/20	011		Time:8:	42 AM
	IS1 Response	RT	IS2 Response	RT	IS3 Response	RT
						_
12 Hour Std			409500	5.6	189849	6.63
Upper Limit			819000	6.1	379698	7.13
Lower Limit			204750	5.1	94924.5	6.13
Sample ID	Response	RT	Response	RT	Response	RT
Blank WG540038			355698	5.60	183246	6.63
LCS WG540038			422222	5.60	193923	6.63
LCSD WG540038			390962	5.60	183762	6.63
MS WG540038			441200	5.60	193375	6.63
MS WG540038			471869	5.60	215610	6.63
MSD WG540038			416527	5.60	190434	6.63
MSD WG540038			464503	5.60	218897	6.63

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

FileID:0615_02.D]	Date:6/15/20	11		Time:8:4	12 AM
	IS4		IS5		IS6	
	Response	RT	Response	RT	Response	RT
12 Hour Std	293104	7.5	230699	9.06	269654	10.25
Upper Limit	586208	8	461398	9.56	539308	10.75
Lower Limit	146552	7	115349.5	8.56	134827	9.75
Sample ID	Response	RT	Response	RT	Response	RT
Blank WG540038	288826	7.50	218576	9.07	246350	10.26
LCS WG540038	299110	7.50	224817	9.06	271090	10.26
LCSD WG540038	282853	7.50	217019	9.06	262524	10.26
MS WG540038	308864	7.50	239893	9.06	277335	10.26
MS WG540038	342988	7.50	268205	9.06	311599	10.26
MSD WG540038	317952	7.50	231814	9.06	251367	10.26
MSD WG540038	346612	7.50	271212	9.06	309403	10.26

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

FileID:0614_02.D		Date:6/1	4/2011		Time:1:	13 PM	
	IS1 Response	RT	IS2 Response	RT	IS3 Response	RT	
12 Hour Std Upper Limit Lower Limit			380550 761100 190275	5.6 6.1 5.1	179843 359686 89921.5	6.63 7.13 6.13	
Sample ID	Response	RT	Response	RT	Response	RT	
L520482-01 L520482-02			431962 390847	5.60 5.60	193430 169619	6.63 6.63	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520482

OASIS Environmental - Anchorage, AK

Test: Semi-Volatiles by Method 8270C-SIM

Project No: Matrix: Water - mg/L

Project: Eureka Lodge Crowley EPA ID: TN00003 Collection Date: 6/9/2011 Analytic Batch: WG540038

Analysis Date: 6/15/2011 Analyst: 0

Instrument ID: BNAMS9 Extraction Date: 6/11/2011

Sample Numbers: L520482-01, -02

FileID:0614_02.D		Date:6/14	/2011		Time:1:	13 PM		
	IS4		IS5		IS6			
	Response	RT	Response	RT	Response	RT		_
12 Hour Std	270854	7.5	208902	9.06	247802	10.25		
Upper Limit	541708	8	417804	9.56	495604	10.75		
Lower Limit	135427	7	104451	8.56	123901	9.75		
Sample ID	Response	RT	Response	RT	Response	RT		_
L520482-01	319749	7.50	246219	9.06	112487	10.26	*	
L520482-02	300108	7.50	213203	9.07	82651	10.26	*	

Company Name/Address:		Billi	ng Informat	tion:			-	Analvs	is/Con	tainer/Pre	servative	e	D190	•	of Custody
OASIS Environment	tal -						1								of Custody
Anchorage, AK		A	.ccounts I 25 W. 8th	Payable			2), qw							
825 W. 8th Ave.		0.	25 VV. Oti	I AVE.			ج	40					T ACE		
Anchorage.AK 99501		A	nchorage	e,AK 9950	1		C. Amb 20	k:							
Report to: Dan Frank		Emajl	I to:		Sis enviro			=				l	12065 L	ebanon Roa et, TN 37122	d
Project Eurelia lodge Description: Cruwley			City/Sate Collected	<u>16 60 00</u>	512 57V110	. <u>()</u> ~	-						•	800) 767-585 515) 758-585	
	Client Project #:		ESC Key	:			G	3		880				515) 758-58 9	3.47
FAX: (907) 258-4033							5)	5							
Collected by: (print) Thale Delaner	Site/Facility ID#:		P.O.#:	465-	214		7 C	၁			15				
Collected by (signature):	Rush? (Lab N	MUST Be No	otified)		lts Needed:		PK 1540	7					CoCode OASIS	AAK (la	b use only)
3LDd		e Day Day		10 day		No.	104	30					Template/Prelogin		- acc ciny,
Immediately	Two [Day Day ∋ Day	50%	Email?		of	1/8RD	FE					Shipped Via:		
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntr) Dac	2					emarks/Contaminant	Sample	e # (lab only)
11-EUR-MWZ-01-GW	Grab (CIW		6/2/11	1121	4	X	*					520482		-01
11-EUR-MWZ-02-GW	Grab 0	9W		6/9/11	1245	4	Х	<u>×</u>					100		-09
				·											
														133	
													· · · · · · · · · · · · · · · · · · ·		
and the state of t	1										-				
*Matrix: SS - Soil/Solid GW - Groundy	water MAN Mas	to\\/ator_D\s	/ Drinkins	Mata: 07											
Remarks:	vater VVV - VVas	stevvatei DVV	r - Drinking	vvater O1 -	Otner			7	1213	37200	pl سک جو			emp	
Relinquished by: (Signature)	Date:	Time:	Pagaina	ed by: (Signa	4			-		returned v				ther	
31 Oct	6/10/11	11 30	Receive	o by. (Signa	ture)			[24	FedEx	☐ Courie	r 🗆		Condition:	(lab us	se only)
Relinquished by: (Signeture)	Date:	Time:	Receive	ed by: (Signa	ture)			Те	^{imp:} 3,	e B	ottles Rec	ceived:	CoC Seals Intact	$\sqrt{_{_{ m Y}}}_{_{ m N}}$	NA
Relinquished by: (Signature)	Date:	Time:			: (Signature)					•	U		pH Checked:		

Cooler Receipt Form

Client: OASIS E NUITORN NEWLY Cooler Received On: Ob/III/II and Opened On: Ol/III/II By: Kevias Wallace Cooler Received On: Ob/III/II and Opened On: Ol/III/II By: Kevias Wallace Signature Signature Signature	Ccientice 1 Other Yes X	None O O O O O O O O O O O O O O O O O O O
Bubblewrap	Other	None
Were custody seals on outside of cooler and intact?	Yes	□ No
Were custody papers properly filled out (ink, signed, etc.)?	X	
Did you sign the custody papers in the appropriate place?	X.	
Did all bottles arrive in good condition?	Ж	
Were all bottle labels complete? (#, date, signed, pres, etc)?	人	
Did all bottle labels and tags agree with custody papers?	太	
Were correct bottles used for the analyses requested?	×,	
Was sufficient amount of sample sent in each bottle?	À	
Were correct preservatives used?	M	
If applicable, was an observable VOA headspace present?		
Non Conformance Generated: (See attached NCF if yes)		

Quality Control Summary SDG: L520543 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd Mt. Juliet, TN 37122

For: OASIS Environmental - Anchorage, AK

Project: Lodge Crowley

June 30, 2011

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Method 8021

Laboratory Control Sample

Samples L520543-01, -05, -03, -04, and -02 were analyzed in analytical batch WG540104. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540104 matrix spike/matrix spike duplicate analysis was performed on sample L520497-04. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540104 matrix spike/matrix spike duplicate analysis was performed on sample L520451-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Volatile Organic Compounds by Method 8260B

Laboratory Control Sample

Sample L520543-02 was analyzed in analytical batch WG540137. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Samples L520543-03 and 04 were analyzed in analytical batch WG540200. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Sample L520543-01 was analyzed in analytical batch WG540386. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample L520543-05 was analyzed in analytical batch WG540857. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG540137 matrix spike/matrix spike duplicate analysis was performed on sample L520527-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540200 matrix spike/matrix spike duplicate analysis was performed on sample L520099-07. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540386 matrix spike/matrix spike duplicate analysis was performed on sample L520728-02. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG540857 matrix spike/matrix spike duplicate analysis was performed on sample L520926-02. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary

SDG: L520543
For: OASIS Environmental - Anchorage, AK

Project: Lodge Crowley

June 30, 2011

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters **ESC** Representative **ESC Lab Sciences**

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

Report Summary

Monday June 20, 2011

Report Number: L520543 Samples Received: 06/11/11

Client Project:

Description: Eureka

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Jared Willis , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 14

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520543-01

June 20, 2011

Site ID :

Project # :

Date Received : June 11, 2011
Description : Lodge Crowley

Sample ID 11-EUR-WH01-01-SW

Collected By : B. Delaney
Collection Date : 06/06/11 18:10

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10 Surrogate Recovery-%	U	41.	100	ug/l		AK101	06/13/11	1
a,a,a-Trifluorotoluene(FID)	96.8			% Rec.		AK101	06/13/11	1
Benzene	U	0.23	1.0	ug/l		8260B	06/15/11	1
Toluene	U	0.32	5.0	ug/l		8260B	06/15/11	1
Ethylbenzene	U	0.22	1.0	ug/l		8260B	06/15/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	06/15/11	1
Surrogate Recovery				_				
Toluene-d8	99.7			% Rec.		8260B	06/15/11	1
Dibromofluoromethane	93.0			% Rec.		8260B	06/15/11	1
a,a,a-Trifluorotoluene	106.			% Rec.		8260B	06/15/11	1
4-Bromofluorobenzene	91.6			% Rec.		8260B	06/15/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 18:30 Revised: 06/20/11 18:36

Page 2 of 14

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 20, 2011

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520543-02

Date Received : June 11, 2011
Description : Lodge Crowley

Site ID :

Sample ID : 11-EUR-LK01-01-SW

Project # :

Collected By : B. Delaney Collection Date : 06/07/11 11:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10	U	41.	100	ug/l		AK101	06/13/11	1
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	97.6			% Rec.		AK101	06/13/11	1
Benzene	U	0.23	1.0	uq/l		8260B	06/13/11	1
Toluene	U	0.32	5.0	ug/l		8260B	06/13/11	1
Ethylbenzene	U	0.22	1.0	ug/l		8260B	06/13/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	06/13/11	1
Surrogate Recovery				_				
Toluene-d8	99.4			% Rec.		8260B	06/13/11	1
Dibromofluoromethane	97.5			% Rec.		8260B	06/13/11	1
a,a,a-Trifluorotoluene	102.			% Rec.		8260B	06/13/11	1
4-Bromofluorobenzene	92.2			% Rec.		8260B	06/13/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 18:30 Revised: 06/20/11 18:36

Page 3 of 14

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK

825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520543-03

June 20, 2011

Site ID :

Project # :

Date Received June 11, 2011

Lodge Crowley Description

11-EUR-MW2-02-GW Sample ID :

Collected By B. Delaney Collection Date : 06/09/11 12:45

MDL RDL Units Qualifier Method Date Dil. Parameter Result TPHGAK C6 to C10 U 100 AK101 06/13/11 41. ug/l 1 Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) 96.9 % Rec. AK101 06/13/11 U 0.23 1.0 ug/l 8260B 06/13/11 06/13/11 06/13/11 Toluene U 0.32 5.0 ug/l 8260B Ethylbenzene IJ 0.22 1.0 ug/l 8260B 1 Total Xylenes IJ 0.86 3.0 ug/l 8260B 06/13/11 1 Surrogate Recovery Toluene-d8 105. % Rec. 8260B 06/13/11 Dibromofluoromethane 110. % Rec. 8260B 06/13/11 1 a,a,a-Trifluorotoluene 103. % Rec. 8260B 06/13/11 4-Bromofluorobenzene 96.8 % Rec. 8260B 06/13/11

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 18:30 Revised: 06/20/11 18:36

Page 4 of 14

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

Sample ID

June 20, 2011

ESC Sample # : L520543-04

Date Received : June 11, 2011
Description : Lodge Crowley

Site ID : 11-EUR-MW2-01-GW Project # :

Collected By : B. Delaney
Collection Date : 06/09/11 11:21

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10 Surrogate Recovery-%	U	41.	100	ug/l		AK101	06/13/11	1
a,a,a-Trifluorotoluene(FID)	97.3			% Rec.		AK101	06/13/11	1
Benzene	U	0.23	1.0	uq/l		8260B	06/13/11	1
Toluene	U	0.32	5.0	ug/l		8260B	06/13/11	1
Ethylbenzene	U	0.22	1.0	ug/l		8260B	06/13/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	06/13/11	1
Surrogate Recovery				_				
Toluene-d8	104.			% Rec.		8260B	06/13/11	1
Dibromofluoromethane	113.			% Rec.		8260B	06/13/11	1
a,a,a-Trifluorotoluene	103.			% Rec.		8260B	06/13/11	1
4-Bromofluorobenzene	95.0			% Rec.		8260B	06/13/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 18:30 Revised: 06/20/11 18:36

Page 5 of 14

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 20, 2011

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L520543-05

Date Received : June 11, 2011 Description : Lodge Crowley

Site ID : Sample ID TRIP BLANK Project # :

Collected By : B. Delaney
Collection Date : 06/09/11 00:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10 Surrogate Recovery-%	U	41.	100	ug/l		AK101	06/13/11	1
a,a,a-Trifluorotoluene(FID)	97.2			% Rec.		AK101	06/13/11	1
Benzene Toluene Ethylbenzene Total Xylenes	U 0.44 U U	0.23 0.32 0.22 0.86	1.0 5.0 1.0 3.0	ug/l ug/l ug/l ug/l	J	8260B 8260B 8260B 8260B	06/16/11 06/16/11 06/16/11 06/16/11	1 1 1
Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	105. 100. 104. 111.			% Rec. % Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	06/16/11 06/16/11 06/16/11 06/16/11	1 1 1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/17/11 18:30 Revised: 06/20/11 18:36

Page 6 of 14

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L520543-05	WG540857	SAMP	Toluene	R1726529	J

Attachment B Explanation of QC Qualifier Codes

 $\mbox{(EPA)}$ - Estimated value below the lowest calibration point. Confidence correlates with concentration.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
 - Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Difference.
 - Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 8 of 14

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Method 8021

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540104

Analysis Date: 6/12/2011 Analyst: 171

Instrument ID: VOCGC10

Sample Numbers: L520543-01, -05, -03, -04, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
TPHGAK C6 to C10		<0.100	
Methyl tert-butyl ether	1634-04-4	< 0.0050	
Benzene	71-43-2	< 0.0005	
Toluene	108-88-3	< 0.0050	
Ethylbenzene	100-41-4	< 0.0005	
m&p-Xylene	1330-20-7	< 0.0015	
o-Xylene	1330-20-7	< 0.0015	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Oualifiers
·	0.0500	0.0476	05.2	(4 125	
Methyl tert-butyl ether	0.0500	0.0476	95.3	64 - 125	
Benzene	0.0500	0.0457	91.4	79 - 114	
Toluene	0.0500	0.0491	98.2	79 - 112	
Ethylbenzene	0.0500	0.0467	93.3	80 - 116	
m&p-Xylene	0.100	0.0910	91.0	85 - 120	
o-Xylene	0.0500	0.0467	93.3	82 - 116	
TPHGAK C6 to C10	5.50	5.74	104	60 - 120	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Methyl tert-butyl ether	0.0500	0.0494	98.7	64 - 125	
Benzene	0.0500	0.0458	91.7	79 - 114	
Toluene	0.0500	0.0493	98.6	79 - 112	
Ethylbenzene	0.0500	0.0465	92.9	80 - 116	
m&p-Xylene	0.100	0.0900	90.0	85 - 120	
o-Xylene	0.0500	0.0458	91.7	82 - 116	
TPHGAK C6 to C10	5.50	5.69	103	60 - 120	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Method 8021

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540104

Analysis Date: 6/12/2011 Analyst: 171

Instrument ID: VOCGC10

Sample Numbers: L520543-01, -05, -03, -04, -02

Surrogate Summary

Laboratory	a,a,a-Trifluorot	oluene - FID	a,a,a-Trifluorotoluene - PID		
Sample ID	ppb	% Rec	ppb	% Rec	
LCS WG540104	196	98.0	204	102	
LCSD WG540104	194	97.1	203	102	
LCS WG540104	205	102	226	113	
LCSD WG540104	204	102	226	113	
MS WG540104	195	97.5	204	102	
MSD WG540104	195	97.3	203	102	
MS WG540104	204	102	224	112	
MSD WG540104	206	103	221	111	
Blank WG540104	194	97.2	204	102	
L520543-01	194	96.8	202	101	
L520543-05	194	97.2	205	103	
L520543-02	195	97.6	205	102	
L520543-03	194	96.9	203	101	
L520543-04	195	97.3	203	102	

a,a,a-Trifluorotoluene (FID) 200 ppb Limits - 70 - 130 a,a,a-Trifluorotoluene (PID) 200 ppb Limits - 55 - 122

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Method 8021

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540104

Analysis Date: 6/12/2011 Analyst: 171

Instrument ID: VOCGC10

Sample Numbers: L520543-01, -05, -03, -04, -02

Laboratory Control Sample/Laboratory Control Sample Duplicate

		_	%	-	%	Control	- %	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits	Qualifier
Methyl tert-butyl ether	0.0500	0.0476	95.3	0.0494	98.7	64-125	3.5	20	
Benzene	0.0500	0.0457	91.4	0.0458	91.7	79-114	0.3	20	
Toluene	0.0500	0.0491	98.2	0.0493	98.6	79-112	0.5	20	
Ethylbenzene	0.0500	0.0467	93.3	0.0465	92.9	80-116	0.4	20	
m&p-Xylene	0.100	0.0910	91.0	0.0900	90.0	85-120	1.1	20	
o-Xylene	0.0500	0.0467	93.3	0.0458	91.7	82-116	1.8	20	
TPHGAK C6 to C10	5.50	5.74	104	5.69	103	60-120	0.9	20	

Matrix Spike/Matrix Spike Duplicate

	L520497-04										
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Methyl tert-butyl ether	0.0500	0.0198	0.0688	98.0	0.0685	97.4	37-147		0.4	20	
Benzene	0.0500	0.0198	0.0610	82.5	0.0630	86.3	35-147		3.1	20	
Toluene	0.0500	0.0023	0.0497	94.9	0.0516	98.7	35-148		3.8	20	
Ethylbenzene	0.0500	0.0038	0.0484	89.1	0.0497	91.7	39-141		2.6	20	
m&p-Xylene	0.100	0.0043	0.0915	87.2	0.0939	89.6	26-157		2.6	20	
o-Xylene	0.0500	0.0011	0.0451	88.0	0.0468	91.4	40-145		3.7	20	

Matrix Spike/Matrix Spike Duplicate

L520451-01

	Spike			33204. %	51 01	%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
TPHGAK C6 to C10	5.50	0.0000	5.70	104	5.84	106	58-122		2.5	20 13	of 32

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Method 8021

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540104

Analysis Date: 6/12/2011 Analyst: 171

Instrument ID: VOCGC10

Sample Numbers: L520543-01, -05, -03, -04, -02

Internal Standard Response and Retention Time Summary												
FileID:0612_03	.D	Date:6/12/2011	Tiı	Time:6:29 PM								
		IS - FID	IS - PID									
	Response	RT	Response	RT								
12 Hour Std	224610090	5.89	181842222	5.89								
Upper Limit	449220180	6.39	363684444	6.39								
Lower Limit	112305045	5.39	90921111	5.39								
	_		_									
Sample ID	Response	RT	Response	RT								
Blank WG540104	216431925	5.89	179283498	5.89								
L520543-01	218567639	5.89	180678663	5.89								
LCS WG540104	217104809	5.89	183136322	5.89								
LCS WG540104	229770040	5.89	185901274	5.89								
LCSD WG540104	219678571	5.89	184072996	5.89								
LCSD WG540104	234195427	5.89	190148829	5.89								
MS WG540104	218293392	5.89	183629499	5.89								
MS WG540104	233002789	5.89	187747663	5.89								
MSD WG540104	220664993	5.89	184934004	5.89								
MSD WG540104	227948422	5.89	182699006	5.89								

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Method 8021

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540104

Analysis Date: 6/12/2011 Analyst: 171

Instrument ID: VOCGC10

Sample Numbers: L520543-01, -05, -03, -04, -02

Thermal Standard Response and Retention Time Summary							
FileID:0612_26	.D	Date: 6/13/2011		Time:4:25 AM			
		IS - FID		IS - PID			
	Response	RT	Response	RT			
12 Hour Std	224879520	5.89	181663505	5.89			
Upper Limit	449759040	6.39	363327010	6.39			
Lower Limit	112439760	5.39	90831752.5	5.39			
Sample ID	Response	RT	Response	RT			
L520543-02	213186369	5.89	176767848	5.89			
L520543-03	217334111	5.89	180809134	5.89			
L520543-04	213141224	5.89	177837126	5.89			
L520543-05	218986241	5.89	181119022	5.89			

(615) 758-5858 (800) 767-5859

Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd Mt. Juliet, TN 37122

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Volatile Organic Compounds by Method 8260B Test:

Matrix: Project No: Water - mg/L TN00003 Project: Lodge Crowley EPA ID:

Collection Date: 6/6/2011 Analytic Batch: WG540137

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS4 Sample Numbers: L520543-02

Method Blank

Analyte	CAS	PQL	Qualifiers
Benzene	71-43-2	< 0.0010	_
Toluene	108-88-3	< 0.0050	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0239	95.6	67 - 126	
Toluene	0.0250	0.0227	90.7	72 - 122	
Ethylbenzene	0.0250	0.0271	108	76 - 129	
m&p-Xylene	0.0500	0.0533	107	74 - 128	
o-Xylene	0.0250	0.0278	111	78 - 128	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0236	94.5	67 - 126	
Toluene	0.0250	0.0232	92.6	72 - 122	
Ethylbenzene	0.0250	0.0278	111	76 - 129	
m&p-Xylene	0.0500	0.0548	110	74 - 128	
o-Xylene	0.0250	0.0282	113	78 - 128	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003

Collection Date: 6/6/2011 Analytic Batch: WG540200

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS26 Sample Numbers: L520543-03, -04

Method Blank

Analyte	CAS	PQL	Qualifiers
Benzene	71-43-2	< 0.0010	
Toluene	108-88-3	< 0.0050	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0259	104	67 - 126	
Toluene	0.0250	0.0240	95.9	72 - 122	
Ethylbenzene	0.0250	0.0248	99.3	76 - 129	
m&p-Xylene	0.0500	0.0504	101	74 - 128	
o-Xylene	0.0250	0.0249	99.7	78 - 128	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0267	107	67 - 126	
Toluene	0.0250	0.0246	98.6	72 - 122	
Ethylbenzene	0.0250	0.0259	104	76 - 129	
m&p-Xylene	0.0500	0.0525	105	74 - 128	
o-Xylene	0.0250	0.0259	104	78 - 128	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

74

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Volatile Organic Compounds by Method 8260B Test:

Matrix: Project No: Water - mg/L TN00003 Project: Lodge Crowley EPA ID:

Collection Date: 6/6/2011 Analytic Batch: WG540386 Analyst:

Analysis Date: 6/15/2011 Instrument ID: VOCMS20

Sample Numbers: L520543-01

Method Blank

Analyte	CAS	PQL	Qualifiers
Benzene	71-43-2	< 0.0010	_
Toluene	108-88-3	< 0.0050	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0228	91.1	67 - 126	
Toluene	0.0250	0.0232	92.8	72 - 122	
Ethylbenzene	0.0250	0.0263	105	76 - 129	
m&p-Xylene	0.0500	0.0541	108	74 - 128	
o-Xylene	0.0250	0.0259	104	78 - 128	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0234	93.8	67 - 126	
Toluene	0.0250	0.0199	79.5	72 - 122	
Ethylbenzene	0.0250	0.0282	113	76 - 129	
m&p-Xylene	0.0500	0.0571	114	74 - 128	
o-Xylene	0.0250	0.0284	113	78 - 128	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003

Collection Date: 6/6/2011

Analytic Batch: WG540857

Analysis Date: 6/16/2011 Analyst: 209

Instrument ID: VOCMS24 Sample Numbers: L520543-05

Method Blank

Analyte	CAS	PQL	Qualifiers
Benzene	71-43-2	< 0.0010	
Toluene	108-88-3	< 0.0050	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0256	102	67 - 126	
Toluene	0.0250	0.0257	103	72 - 122	
Ethylbenzene	0.0250	0.0240	95.9	76 - 129	
m&p-Xylene	0.0500	0.0488	97.6	74 - 128	
o-Xylene	0.0250	0.0246	98.4	78 - 128	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0250	0.0258	103	67 - 126	
Toluene	0.0250	0.0256	102	72 - 122	
Ethylbenzene	0.0250	0.0243	97.2	76 - 129	
m&p-Xylene	0.0500	0.0474	94.9	74 - 128	
o-Xylene	0.0250	0.0243	97.2	78 - 128	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003

Collection Date: 6/6/2011 Analytic Batch: WG540137

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS4 Sample Numbers: L520543-02

Laboratory	Dibromo	fluoromethane	То	luene-d8	4-Bromo	fluorobenzene		ite Surrogate ifluorotoluene
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
LCS WG540137	37.0	92.4	37.0	92.5	40.0	99.9	41.5	104
LCSD WG540137	36.5	91.3	39.1	97.7	41.8	105	42.7	107
MS WG540137	37.7	94.2	38.5	96.2	41.7	104	42.0	105
MSD WG540137	36.7	91.6	38.1	95.4	42.9	107	42.3	106
Blank WG540137	36.6	91.5	38.4	95.9	40.3	101	42.5	106
L520543-02	39.0	97.5	39.8	99.4	36.9	92.2	40.9	102
	Dibromof	luoromethane		40 ppb	79 - 125			
	Toluene -	d8		40 ppb	87 - 114			
	4-Bromof	luorobenzene		40 ppb	75 - 128			
			Alterna	ite Surrogate				
	a,a,a-Trif	luorotoluene		40 ppb	84 - 114			

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG540200

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS26 Sample Numbers: L520543-03, -04

					J				
Laboratory	Dibromo	Dibromofluoromethane		Toluene-d8		fluorobenzene	Alternate Surrogate a,a,a-Trifluorotoluene		
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec	
LCS WG540200	45.0	113	41.5	104	37.5	93.7	40.4	101	
LCSD WG540200	44.8	112	42.1	105	38.5	96.2	40.5	101	
MS WG540200	44.7	112	41.1	103	38.4	96.0	40.4	101	
MSD WG540200	44.5	111	41.3	103	37.8	94.6	40.4	101	
Blank WG540200	45.1	113	41.2	103	38.6	96.4	40.8	102	
L520543-03	44.0	110	41.8	105	38.7	96.8	41.1	103	
L520543-04	45.1	113	41.5	104	38.0	95.0	41.1	103	
	Dibromot	fluoromethane		40 ppb	79 - 125				
	Toluene -	· d8		40 ppb	87 - 114				
	4-Bromot	fluorobenzene		40 ppb	75 - 128				
			Alterna	ate Surrogate	•				
	a,a,a-Trif	luorotoluene		40 ppb	84 - 114				

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG540386

Analysis Date: 6/15/2011 Analyst: 74

Instrument ID: VOCMS20 Sample Numbers: L520543-01

Laboratory	Dibromo	Dibromofluoromethane		Toluene-d8		fluorobenzene	Alternate Surrogate a,a,a-Trifluorotoluene		
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec	
LCS WG540386	35.6	89.0	40.3	101	41.2	103	44.1	110	
LCSD WG540386	37.1	92.6	36.4	91.1	43.3	108	41.1	103	
MS WG540386	38.5	96.3	38.3	95.7	44.1	110	39.7	99.1	
MSD WG540386	36.0	90.1	39.7	99.3	39.9	99.8	41.8	105	
Blank WG540386	38.3	95.6	39.5	98.8	39.6	98.9	43.1	108	
L520543-01	37.2	93.0	39.9	99.7	36.6	91.6	42.6	106	
	Dibromof	luoromethane		40 ppb	79 - 125				
	Toluene -	d8		40 ppb	87 - 114				
	4-Bromof	luorobenzene		40 ppb	75 - 128				
			Alterna	te Surrogate					
	a,a,a-Trif	luorotoluene		40 ppb	84 - 114				

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003
Collection Date: 6/6/2011 Analytic Batch: WG540857

Analysis Date: 6/16/2011 Analyst: 209

Instrument ID: VOCMS24 Sample Numbers: L520543-05

Laboratory	Dibromo	fluoromethane	То	luene-d8	4-Bromo	fluorobenzene		ite Surrogate ifluorotoluene
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
LCS WG540857	42.7	107	42.1	105	40.7	102	41.2	103
LCSD WG540857	43.0	107	41.9	105	40.5	101	40.8	102
Blank WG540857	41.3	103	41.9	105	42.1	105	40.6	102
MS WG540857	42.4	106	41.9	105	40.2	100	41.0	103
MSD WG540857	42.2	105	41.8	105	40.7	102	41.1	103
L520543-05	40.1	100	42.2	105	44.3	111	41.6	104
	Dibromot	luoromethane		40 ppb	79 - 125			
	Toluene -	d8		40 ppb	87 - 114			
	4-Bromof	luorobenzene		40 ppb	75 - 128			
			Alterna	ite Surrogate				
	a,a,a-Trif	luorotoluene		40 ppb	84 - 114			

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540137

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS4 Sample Numbers: L520543-02

Laboratory Control Sample/Laboratory Control Sample Duplicate

	•	-	%	•	%	Control	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits	Qualifier
Benzene	0.0250	0.0239	95.6	0.0236	94.5	67-126	1.2	20	
Toluene	0.0250	0.0227	90.7	0.0232	92.6	72-122	2.1	20	
Ethylbenzene	0.0250	0.0271	108	0.0278	111	76-129	2.5	20	
m&p-Xylene	0.0500	0.0533	107	0.0548	110	74-128	2.9	20	
o-Xylene	0.0250	0.0278	111	0.0282	113	78-128	1.3	20	

Matrix Spike/Matrix Spike Duplicate

L520527-01 % Spike Control % Rec % Control **RPD** % MS MSD Limits Qualifier RPD Limits Analyte Value Sample Rec Rec Qual Benzene 0.0250 0.0000 0.0231 92.6 0.0247 98.7 16-158 6.4 21 7.7 22 Toluene 0.0250 0.0000 0.0223 89.3 0.0241 96.5 22-152 24 Ethylbenzene 0.0250 0.0000 0.0270 108 0.0304 122 29-150 12 0.0500 0.0000 0.0538 9.9 23 m&p-Xylene 108 0.0594 119 24-151 o-Xylene 0.0250 0.0000 0.0276 0.0301 120 32-151 8.5 23 111

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540200

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS26 Sample Numbers: L520543-03, -04

Laboratory Control Sample/Laboratory Control Sample Duplicate

	v	•	%	•	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Benzene	0.0250	0.0259	104	0.0267	107	67-126		2.8	20	
Toluene	0.0250	0.0240	95.9	0.0246	98.6	72-122		2.8	20	
Ethylbenzene	0.0250	0.0248	99.3	0.0259	104	76-129		4.2	20	
m&p-Xylene	0.0500	0.0504	101	0.0525	105	74-128		4.2	20	
o-Xylene	0.0250	0.0249	99.7	0.0259	104	78-128		3.9	20	

Matrix Spike/Matrix Spike Duplicate

L520099-07											
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Benzene	0.0250	0.0000	0.0247	98.7	0.0266	106	16-158		7.6	21	
Toluene	0.0250	0.0000	0.0223	89.1	0.0235	94.2	22-152		5.5	22	
Ethylbenzene	0.0250	0.0000	0.0241	96.3	0.0247	98.6	29-150		2.4	24	
m&p-Xylene	0.0500	0.0000	0.0481	96.2	0.0495	99.0	24-151		2.9	23	
o-Xylene	0.0250	0.0000	0.0237	94.7	0.0245	98.0	32-151		3.4	23	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

0.0250 0.0000 0.0268

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540386

Analysis Date: 6/15/2011 Analyst: 74

Instrument ID: VOCMS20 Sample Numbers: L520543-01

o-Xylene

Laboratory Control Sample/Laboratory Control Sample Duplicate

	•	-	%	•	%	Control	-	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Benzene	0.0250	0.0228	91.1	0.0234	93.8	67-126		2.9	20	
Toluene	0.0250	0.0232	92.8	0.0199	79.5	72-122		15	20	
Ethylbenzene	0.0250	0.0263	105	0.0282	113	76-129		6.8	20	
m&p-Xylene	0.0500	0.0541	108	0.0571	114	74-128		5.4	20	
o-Xylene	0.0250	0.0259	104	0.0284	113	78-128		9.0	20	

Matrix Spike/Matrix Spike Duplicate

L520728-02 % Spike Control % Rec % Control **RPD** % MS MSD Qualifier RPD Limits Analyte Value Sample Rec Rec Limits Qual 0.0250 0.0000 0.0222 Benzene 88.9 0.0220 88.0 16-158 1.0 21 22 Toluene 0.0250 0.0000 0.0204 0.0216 86.2 22-152 5.6 81.5 24 Ethylbenzene 0.0250 0.0000 0.0266 106 0.0242 96.7 29-150 9.6 0.0500 0.0000 0.0549 97.9 23 m&p-Xylene 110 0.0489 24-151 11

0.0245

97.8

32-151

9.3

23

107

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

0.0250 0.0000 0.0238

Project No: Matrix: Water - mg/L
Project: Lodge Crowley EPA ID: TN00003

Collection Date: 6/6/2011 Analytic Batch: WG540857

Analysis Date: 6/16/2011 Analyst: 209

Instrument ID: VOCMS24 Sample Numbers: L520543-05

o-Xylene

Laboratory Control Sample/Laboratory Control Sample Duplicate

	v	•	%	•	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Benzene	0.0250	0.0256	102	0.0258	103	67-126		1.0	20	
Toluene	0.0250	0.0257	103	0.0256	102	72-122		0.4	20	
Ethylbenzene	0.0250	0.0240	95.9	0.0243	97.2	76-129		1.4	20	
m&p-Xylene	0.0500	0.0488	97.6	0.0474	94.9	74-128		2.8	20	
o-Xylene	0.0250	0.0246	98.4	0.0243	97.2	78-128		1.2	20	

Matrix Spike/Matrix Spike Duplicate

L520926-02 % Spike Control % Rec % Control **RPD** % Value Sample MS MSD Limits Qualifier RPD Limits Qual Analyte Rec Rec Benzene 0.0250 0.0000 0.0250 100 0.0247 98.9 16-158 1.3 21 0.4 22 Toluene 0.0250 0.0000 0.0255 102 0.0256 102 22-152 24 Ethylbenzene 0.0250 0.0000 0.0234 93.7 0.0237 94.8 29-150 1.2 0.0500 0.0000 0.0468 93.5 94.7 1.3 23 m&p-Xylene 0.0474 24-151

0.0241

96.3

32-151

1.1

23

95.3

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540137

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS4 Sample Numbers: L520543-02

FileID:0613_02.D			Date:6/13/20)11		Time	:1:01 AM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	446960	6.03	757116	6.53	114022	8.16	343522	11.01
Upper Limit	893920	6.53	1514232	7.03	228044	8.66	687044	11.51
Lower Limit	223480	5.53	378558	6.03	57011	7.66	171761	10.51
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG540137	430547	6.03	732805	6.53	110780	8.16	327325	11.01
L520543-02	296192	6.03	519915	6.53	85473	8.16	226038	11.01
LCS WG540137	447675	6.03	773662	6.53	111476	8.17	321558	11.02
LCSD WG540137	447186	6.03	748069	6.53	112277	8.16	339255	11
MS WG540137	457598	6.04	781766	6.53	115489	8.16	346949	11.01
MSD WG540137	454885	6.04	776419	6.53	111908	8.16	345041	11.01

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540200

Analysis Date: 6/13/2011 Analyst: 74

Instrument ID: VOCMS26 Sample Numbers: L520543-03, -04

FileID:0613_26.D			Date:6/13/20)11		Time:1:	22 PM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	475870	5.69	884202	6.19	133433	7.88	410068	11.07
Upper Limit	951740	6.19	1768404	6.69	266866	8.38	820136	11.57
Lower Limit	237935	5.19	442101	5.69	66716.5	7.38	205034	10.57
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG540200	424965	5.69	799279	6.19	112535	7.88	341366	11.07
L520543-03	424965 378978	5.69 5.69	799279 705478	6.19 6.19	112535 98162	7.88 7.88	341366 307185	11.07 11.07
L520543-03	378978	5.69	705478	6.19	98162	7.88	307185	11.07
L520543-03 L520543-04	378978 369036	5.69 5.69	705478 693671	6.19 6.19	98162 97649	7.88 7.88	307185 304290	11.07 11.07
L520543-03 L520543-04 LCS WG540200	378978 369036 469755	5.69 5.69 5.69	705478 693671 869183	6.19 6.19 6.19	98162 97649 130426	7.88 7.88 7.88	307185 304290 393699	11.07 11.07 11.07

Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540386

Analysis Date: 6/15/2011 Analyst: 74

Instrument ID: VOCMS20 Sample Numbers: L520543-01

FileID:0615_02.D			Date:6/15/20)11		Time	:1:35 AM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	520381	6.49	782700	6.95	105173	8.48	369641	11.22
Upper Limit	1040762	6.99	1565400	7.45	210346	8.98	739282	11.72
Lower Limit	260190.5	5.99	391350	6.45	52586.5	7.98	184820.5	10.72
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG540386	472859	6.49	775192	6.95	100662	8.48	335108	11.22
L520543-01	483294	6.49	758187	6.95	99704	8.48	314469	11.22
LCS WG540386	516568	6.48	777939	6.95	105762	8.48	351893	11.22
LCSD WG540386	482468	6.48	754545	6.94	86392	8.48	319195	11.22
MS WG540386	472708	6.48	765366	6.94	88425	8.48	340814	11.22
MSD WG540386	497271	6.49	766884	6.95	104305	8.48	351941	11.22

Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd

Quality Control Summary SDG: L520543

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: Matrix: Water - mg/L

Project: Lodge Crowley EPA ID: TN00003 Collection Date: 6/6/2011 Analytic Batch: WG540857

Analysis Date: 6/16/2011 Analyst: 209

Instrument ID: VOCMS24 Sample Numbers: L520543-05

FileID:0616_02.D			Date: 6/16/20	11		Time	:9:43 AM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	340790	5.38	674388	5.87	132345	7.55	296821	10.78
Upper Limit	681580	5.88	1348776	6.37	264690	8.05	593642	11.28
Lower Limit	170395	4.88	337194	5.37	66172.5	7.05	148410.5	10.28
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG540857	323261	5.38	646495	5.87	118406	7.55	269236	10.78
L520543-05	391994	5.38	762981	5.87	136415	7.55	330468	10.78
LCS WG540857	351014	5.38	688073	5.87	133526	7.55	301954	10.78
LCSD WG540857	356893	5.38	700829	5.87	137749	7.55	308415	10.78
MS WG540857	320290	5.38	619459	5.87	123731	7.55	277044	10.78
MSD WG540857	339507	5.38	645354	5.87	127813	7.55	284414	10.78

Company Name/Address:			Billing Inform	mation:			-					
OASIS Environmen	ıtal -		Jaming Inion	nation,				Analysis/	Container	/Preservative	_	Chain of Custody Page of
Anchorage, AK			Account	s Payable			202					1 age 01
825 W. 8th Ave.			825 W.	8th Ave.			Jw	O			-	
Anchorage.AK 99501			Anchora	ge,AK 9950	01		16	76				- CC '
							1	12/3/47 10:1/47				
Report to:							7	33			L-A-B 5-	C-I-E-N-C-E-S ebanon Road
Report to: Dan Frank Project Flank Val 1 octor			Email to: DiFYUVI	KGOA	as env	VO Z0		72.0 Aki				et, TN 37122
Description: Crowley			City/Sate Collected				5	9			Phone: (8	100) 767-5859
Phone: (907) 350-4897	Client Projec	t #:	ESC K	ev;			7	780				i15) 758-5858 i15) 758-5859
FAX: (907) 258-4033							1	Mansl			E130	(5) X 252-744 4.3
Gollected by: (print) H. HUNSIN/BDEIUNIY	Site/Facility I	 D#:	P.O.#:	465-014			3	<u>کو</u>				~ ·
Collected by (signature):	Rush? (L	ab MUST B	e Notified)	Date Resu	/ ilts Needed:		₩ 2	e				
	s	Same Day	200%	LOARY	STP.	No.	0	YUA				AAK (lab use only)
Immediately Packed on Ice N Y X	\n^	lext Day wo Day	100%	Email?		of	76				Template/Prelogin	
		hree Day		FAX?	No_Yes	0-1	3	<u>y</u>			T 70 3 6 8 / I Shipped Via:	352877
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	of Cntrs	life	9				
11-EUR-WHOI-01-SAU	Grab	SW		1011.111	16.16	3	X				Remarks/Contaminant	Sample # (lab only)
11-EUR-LX01-01-5W	11	SW		6/6/11	1810	9 ZAH		-				L520543-01
11-EUR - MWZ - 02-GW	Geal	GW		6/7/11	1100		*		_ _		MS/MSID	00/00/00
11-EUR-MWZ-01-GW				6/9/11	1245	3	Х				·	00-05-0
Trip blank	Chan	COW		6/9/11	1121	3	X					oc - ole - c
SIGNE								×				05-08-1
4									++++			
*Matrix: SS - Soil/Solid GW - Ground	water ww - v	VasteWater	DW - Drinkins	N/ator OT	Other St	اا ري ل	vfuce	2				
Remarks:			DVV - DMIKIN	y water OT -	Other	<u> </u>	Wat			pН	Ten	np
elinquished by: (Signature)				_			47	34337	20031	Flow	Oth	er
(Signature)	Date:	Time:	Receiv	ed by: (Signat	ure)			Şample	es returned	via: □ upe	Condition:	
elinquished by: (Signature)	θ (υ ε ε ε ε ε ε ε ε ε	130 Time:		- 11				L A FedE	Ex □ Cour	rier 🗆	OK	(lab use only)
		Time.	Receiv	ed by: (Signat	ure)			30mp:		Bottles Receive	d: CoC Seals Intact L	
elinquished by: (Signature)	Date:	Time:	Recei	ed for lab by:	(Signature)			Date:	7 7	190		YNNA
· · · · · · · · · · · · · · · · · · ·				==	2			1 1	1,	Time: 090 d	pH Checked: 3	NCF: 2 of 32
					-			4/1/	111	4700		

ENVIRONMENTAL SCIENCE CORP. Cooler Receipt Form

Client:	t: OASTSAAK	750543	\sim
	Cooler Received On: $6/11/11$ and Opened On: $6/11/11$ By:	By: Thomas Chase	
		. 1	
	(Signature)		
-	Temperature of cooler when opened: $3\iota \mu_{\epsilon}^{\circ}$ Degrees Celsius		
	Were custody seals on outside of cooler and intact?	YES) NO	
	a. If yes, what kind and where: Pace / label on	1,6.	
	b. Were the signature and date correct?	YES NO	
33	Were custody seals on containers intact?	YES NO	N/A
4.	Were custody papers inside cooler?	YES) NO	
5.	Were custody papers properly filled out (ink, signed, etc.)	YES NO	
9.	Did you sign the custody papers in the appropriate place?	YES NO	
7.	What kind of packing material was used? Bubblewrap Peanuts	Other None	
8.	Was sufficient ice used (if appropriate)?	(YES) NO	
9.	Did all bottles arrive in good condition?	(YES) NO	
10.	Were all bottle labels complete? (#, date, signed, pres, etc)?	YES NO	
11.	Did all bottle labels and tags agree with custody papers?	(YES) NO	
12.	Were correct bottles used for the analyses requested?	YES> NO	
13.	If applicable, was an observable VOA headspace present?	YES (NO	6
4.	Was sufficient amount of sample sent in each bottle?	YES NO	
15.	Were correct preservatives used?	YES	
16.	Corrective action taken, if necessary:		
	a. Name of person contacted: See attached for resolution if needed	lution if needed	

b. Date:

Comp	leted by:	Melissa Pike	Melissa Pike							
Title:		Environmental	Scientist		Date:	Jun 29, 2011				
CS Re	eport Name:	Eureka Lodge			Report Date:					
Consu	ıltant Firm:	Oasis Environn	nental							
Labor	atory Name:	ESC Lab Scien	ces	Laboratory Report Number: L520288						
ADEC	File Number:	210.28.006		ADEC RecKey Numb	per: 25595					
1. <u>L</u>	<u>aboratory</u>									
	a. Did an	ADEC CS appro	ved laboratory r	eceive and perform all or	f the submitted	sample analyses?				
	• Yes	○ No	O NA (Plea	ase explain.)	Comments:					
		•		er "network" laboratory og the analyses ADEC CS		d to an alternate				
	○ Yes	○ No	NA (Pleas	se explain)	Comments:					
	Samples were n	ot transferred to	another networl	k laboratory or subcontra	cted.					
2. <u>Cl</u>	nain of Custody	(COC)								
	a. COC infor	mation complete	ed, signed, and d	ated (including released/	received by)?					
	• Yes	○ No	○NA (Pleas	se explain)	Comments:					
	b. Correct an	alyses requested	1?							
	• Yes	○ No	ONA (Ple	ase explain)	Comments:					
3. <u>La</u>	boratory Sampl	e Receipt Docur	<u>nentation</u>							
	a. Sample/co	oler temperature	documented an	and within range at receipt $(4^{\circ} \pm 2^{\circ} \text{ C})$?						
	• Yes	○ No	○NA (Ple	ease explain)	Comments:					

• Yes	○ No	○NA (Please explain)	Comments:
• Yes	ition docume		
• Yes	ition docume		
		nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
Samples arrived in	○ No	○ NA (Please explain)	Comments:
Dampies arrived III	good conditi	on.	
	•	•	r example, incorrect sample container insufficient or missing samples, etc.?
○ Yes	○ No	•NA (Please explain)	Comments:
There are no discrep	pancies.		
e. Data quality o	or usability at	fected? (Please explain)	
or = arm quarry		(Comments:
Data quality and us	sability is not	affected with respect to the sample	e receipt documentation.
Case Narrative			
a. Present and u	nderstandable	2 ?	
• Yes	○ No	○ NA (Please explain)	Comments:
b. Discrepancie	s, errors or Q	C failures identified by the lab?	
○ Yes	○ No	NA (Please explain)	Comments:
There are no discre	epancies, erro	rs or QC failures.	
c. Were all corr	aativa aations	dagumantad?	
C. Were all conf	No No	NA (Please explain)	Comments:
There are no correct	ctive actions.		
d What is the e	ffect on data	quality/usability according to the c	ase narrative?
a. What is the C			Comments:

• Yes	○ No	○ NA (Please explain)	Comments:
b. All applical	ole holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rep	oorted on a dry	weight basis?	
○ Yes	○ No	• NA (Please explain)	Comments:
here are no soil	samples.		
d. Are the repoproject?	orted PQLs les	ss than the Cleanup Level or the min	nimum required detection level for the
• Yes	○ No	○ NA (Please explain)	Comments:
e. Data quality	or usability a	ffected? (Please explain)	Comments:
		ffected? (Please explain) t affected with respect to the reporte	
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reporte	ed sample results.
Data quality and C Samples a. Method Blar	usability is no		ed sample results.
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is no	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:
Oata quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:

5. <u>Samples Results</u>

	○ Yes	○ No	ole(s) have data flags? If so, are the ole NA (Please explain)	Comments:
All ar	e below the	PQL.		
	v. Data qu	ality or usabi	lity affected? (Please explain)	Comments:
Data	quality and	l usability are	not affected with respect to the repo	orted method blank results.
b. 1	Laboratory	Control Samp	ple/Duplicate (LCS/LCSD)	
	_		CCSD reported per matrix, analysis a required per SW846)	and 20 samples? (LCS/LCSD required
	• Yes	○ No	○ NA (Please explain)	Comments:
	ii. Metals/samples?	Inorganics - (One LCS and one sample duplicate re	eported per matrix, analysis and 20
	○ Yes	○ No	• NA (Please explain)	Comments:
There	are no me	tal or inorgani	ic analyses.	
	project spe	ecified DQOs	ent recoveries (%R) reported and with if applicable. (AK Petroleum metholo-120%; all other analyses see the la	
	• Yes	○ No	ONA (Please explain)	Comments:
	limits? An	d project spec	cified DQOs, if applicable. RPD repo	ed and less than method or laboratory orted from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
	○ Yes	No	ONA (Please explain)	Comments:
The I	PAH MSD	RPD for seve	ral analytes exceeded the limits.	
	v. If %R o	or RPD is outs	ide of acceptable limits, what sampl	es are affected? Comments:
Samr	ole 11-EUR	-LK01-01-SV	V	

• Yes	○ No	○ NA (Please explain)	Comments:
vii. Data o	quality or usab	vility affected? (Please explain)	Comments:
Data quality an been qualified.	-	not affected. The LCS/LCSD and Matable for use.	IS are all within limits. No data has
	- Organics On		
i. Are surr	ogate recoveri	es reported for organic analyses - fie	ld, QC and laboratory samples?
• Yes	○ No	ONA (Please explain)	Comments:
project sp the labora	ecified DQOs tory report page	, if applicable. (AK Petroleum methoges)	nin method or laboratory limits? And ods 50-150 %R; all other analyses see
• Yes	○ No	○ NA (Please explain)	Comments:
iii. Do the clearly de	-	with failed surrogate recoveries haveNA (Please explain)	ve data flags? If so, are the data flags Comments:
There are no fail	ed surrogate r	ecoveries.	
iv. Data q	uality or usabi	lity affected? (Use the comment box	to explain.). Comments:
Data quality and	l usability is n	ot affected with respect to the reporte	ed surrogate results.
Soil i. One trip		ed per matrix, analysis and for each c	hlorinated Solvents, etc.): Water and ooler containing volatile samples?
○ Yes	○ No	NA (Please explain.)	Comments:
Trip blank was no	ot required; the	ere were no VOC analyses.	
		ransport the trip blank and VOA san plaining why must be entered below	± •
○ Yes	○ No	NA (Please explain.)	Comments:
Trip blank was n	ot required; th	ere were no VOC analyses.	

i	ii. All result	s less than PQ	L?	
	○ Yes	○ No	NA (Please explain.)	Comments:
Trip bla	ank was not	required; there	e were no VOC analyses.	
	iv. If above	PQL, what sar	mples are affected?	
				Comments:
Trip bl	ank was not	required; ther	e were no VOC analyses.	
V	. Data qual	ity or usability	affected? (Please explain.)	
				Comments:
NA. T	rip blank wa	s not required	; there were no VOC analyses.	
e. Fie	eld Duplicate	e		
i	. One field d	luplicate subm	itted per matrix, analysis and 10 projec	t samples?
	○ Yes	No	○ NA (Please explain)	Comments:
	ii. Submitte	d blind to lab?		
	○ Yes	○ No	NA (Please explain.)	Comments:
No fiel	d duplicates	were submitte	ed.	
		nended: 30% v	percent differences (RPD) less than spectater, 50% soil) $D (\%) = \text{Absolute Value of: } (R_{1-} R_2)_{X}$ $((R_{1+} R_2)/2)$	
	•	= Sample Cond = Field Duplica		
	○ Yes	○ No	• NA (Please explain)	Comments:
No fie	ld duplicates	s were submitt	ed.	
	iv. Data qua	lity or usabilit	y affected? (Use the comment box to ex	aplain why or why not.)
	○ Yes	○ No	NA (Please explain)	Comments:
Data q	uality and u	sability is not a	affected. No field duplicates were subm	itted in this report.

1. 1	Decontamina	mon or Equip	oment Blank (II applicable)	
	○ Yes	○ No	NA (Please explain)	Comments:
All sa	ampling equi	pment was di	sposable.	
	i. All result	s less than PC	QL?	
	○ Yes	○ No	• NA (Please explain)	Comments:
NA. A	All sampling	equipment w	as disposable.	
	ii. If above	PQL, what sa	amples are affected?	Comments:
NA. A	All sampling	equipment w	as disposable.	
	iii. Data qu	ality or usabi	lity affected? (Please explain.)	Comments:
NA. A	All sampling	equipment w	as disposable.	
		nalifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
	○ Yes	○ No	NA (Please explain)	Comments:
There	e are no other	r data flags oı	qualifiers.	

Reset Form

Comp	leted by:	Melissa Pike				
Title:		Environmental	Scientist		Date:	Jun 29, 2011
CS Re	eport Name:	Eureka Lodge			Report Date:	
Consu	ıltant Firm:	Oasis Environn	nental			
Labor	atory Name:	ESC Lab Scien	ces	Laboratory Report Nu	ımber: L520288	1
ADEC	File Number:	210.28.006		ADEC RecKey Numb	per: 25595	
1. <u>L</u>	<u>aboratory</u>					
	a. Did an	ADEC CS appro	ved laboratory r	eceive and perform all or	f the submitted	sample analyses?
	• Yes	○ No	O NA (Plea	ase explain.)	Comments:	
		•		er "network" laboratory og the analyses ADEC CS		d to an alternate
	○ Yes	○ No	NA (Pleas	se explain)	Comments:	
	Samples were n	ot transferred to	another networl	k laboratory or subcontra	cted.	
2. <u>Cl</u>	nain of Custody	(COC)				
	a. COC infor	mation complete	ed, signed, and d	ated (including released/	received by)?	
	• Yes	○ No	○NA (Pleas	se explain)	Comments:	
	b. Correct an	alyses requested	1?			
	• Yes	○ No	ONA (Ple	ase explain)	Comments:	
3. <u>La</u>	boratory Sampl	e Receipt Docur	<u>nentation</u>			
	a. Sample/co	oler temperature	documented an	d within range at receipt	$(4^{\circ} \pm 2^{\circ} \text{ C})$?	
	• Yes	○ No	○NA (Ple	ease explain)	Comments:	

• Yes	○ No	○NA (Please explain)	Comments:
• Yes	ition docume		
• Yes	ition docume		
		nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
Samples arrived in	○ No	○ NA (Please explain)	Comments:
Dampies arrived III	good conditi	on.	
	•	•	r example, incorrect sample container insufficient or missing samples, etc.?
○ Yes	○ No	•NA (Please explain)	Comments:
There are no discrep	pancies.		
e. Data quality o	or usability at	fected? (Please explain)	
or = arm quarry		(Comments:
Data quality and us	sability is not	affected with respect to the sample	e receipt documentation.
Case Narrative			
a. Present and u	nderstandable	2 ?	
• Yes	○ No	○ NA (Please explain)	Comments:
b. Discrepancie	s, errors or Q	C failures identified by the lab?	
○ Yes	○ No	NA (Please explain)	Comments:
There are no discre	epancies, erro	rs or QC failures.	
c. Were all corr	aativa aations	dagumantad?	
C. Were all conf	No No	NA (Please explain)	Comments:
There are no correct	ctive actions.		
d What is the e	ffect on data	quality/usability according to the c	ase narrative?
a. What is the C			Comments:

• Yes	○ No	○ NA (Please explain)	Comments:
b. All applical	ole holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rep	oorted on a dry	weight basis?	
○ Yes	○ No	• NA (Please explain)	Comments:
here are no soil	samples.		
d. Are the repoproject?	orted PQLs les	ss than the Cleanup Level or the min	nimum required detection level for the
• Yes	○ No	○ NA (Please explain)	Comments:
e. Data quality	or usability a	ffected? (Please explain)	Comments:
		ffected? (Please explain) t affected with respect to the reporte	
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reporte	ed sample results.
Data quality and C Samples a. Method Blar	usability is no		ed sample results.
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is no	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:
Oata quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:

5. <u>Samples Results</u>

○ Yes	○ No	NA (Please explain)	Comments:
All are below th	e PQL.		
v. Data q	uality or usabi	lity affected? (Please explain)	Comments:
Data quality an	d usability are	not affected with respect to the repo	orted method blank results.
b. Laboratory	Control Sam	ple/Duplicate (LCS/LCSD)	
_		LCSD reported per matrix, analysis required per SW846)	and 20 samples? (LCS/LCSD required
• Yes	○ No	○ NA (Please explain)	Comments:
ii. Metals samples?	/Inorganics - C	One LCS and one sample duplicate r	reported per matrix, analysis and 20
○ Yes	○ No	NA (Please explain)	Comments:
There are no me	etal or inorgan	ic analyses.	
project sp	ecified DQOs	ent recoveries (%R) reported and wi , if applicable. (AK Petroleum meth %-120%; all other analyses see the le	
• Yes	○ No	ONA (Please explain)	Comments:
limits? A	nd project spe	cified DQOs, if applicable. RPD rep	ed and less than method or laboratory orted from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
○ Yes	No	ONA (Please explain)	Comments:
The PAH MSD	RPD for seve	ral analytes exceeded the limits.	
v. If %R	or RPD is outs	ide of acceptable limits, what samp	les are affected? Comments:
Sample 11-EUF	R-WH01-01-S	W	

• Yes	○ No	○ NA (Please explain)	Comments:
vii. Data c	uality or usab	ility affected? (Please explain)	Comments:
Data quality and been qualified.	•	not affected. The LCS/LCSD and Matable for use.	IS are all within limits. No data has
c. Surrogates	- Organics On	ly	
i. Are surre	ogate recoveri	es reported for organic analyses - fie	ld, QC and laboratory samples?
• Yes	○ No	CNA (Please explain)	Comments:
project sp	•	if applicable. (AK Petroleum metho	in method or laboratory limits? And ods 50-150 %R; all other analyses see
• Yes	○ No	ONA (Please explain)	Comments:
iii. Do the clearly de	-	s with failed surrogate recoveries have NA (Please explain)	ve data flags? If so, are the data flags Comments:
There are no fail	ed surrogate re	ecoveries.	
iv. Data q	uality or usabi	lity affected? (Use the comment box	to explain.). Comments:
Data quality and	usability is n	ot affected with respect to the reporte	ed surrogate results.
Soil i. One trip		d per matrix, analysis and for each co	hlorinated Solvents, etc.): Water and ooler containing volatile samples?
○ Yes	○ No	• NA (Please explain.)	Comments:
No volatile analys	ses.		
		ransport the trip blank and VOA samplaining why must be entered below	±
○ Yes	○ No	• NA (Please explain.)	Comments:
No volatile analy	ses.		

iii.	All result	s less than PQI	L?	
	Yes	○ No	• NA (Please explain.)	Comments:
No volati	le analyse	s.		
iv	. If above	PQL, what san	nples are affected?	
				Comments:
No volat	ile analyse	es.		
v.	Data qual	ity or usability	affected? (Please explain.)	
	•			Comments:
Data qua	ality and u	sability is not a	ffected. No volatile analyses. Trip blan	k was not required.
e. Field	d Duplicate	e		
i. (One field o	luplicate submi	tted per matrix, analysis and 10 project	samples?
C	Yes	○ No	NA (Please explain)	Comments:
Field du	plicates w	ere not submitt	red.	
ii.	Submitte	d blind to lab?		
C	Yes	○ No	NA (Please explain.)	Comments:
Field du	plicates we	ere not submitte	ed.	
iii		nended: 30% w	percent differences (RPD) less than sperater, 50% soil) $O(\%) = \text{Absolute Value of: } \underbrace{(R_{1-} R_{2})}_{X}$ $((R_{1+} R_{2})/2)$	•
•		= Sample Conc = Field Duplica	entration te Concentration	
	Yes	○ No	NA (Please explain)	Comments:
Field du	plicates w	ere not submitt	ed.	
	. Data qua	lity or usability	affected? (Use the comment box to ex NA (Please explain)	plain why or why not.) Comments:

1. 1	Decontamina	mon or Equip	oment Blank (II applicable)	
	○ Yes	○ No	NA (Please explain)	Comments:
All sa	ampling equi	pment was di	sposable.	
	i. All result	s less than PC	QL?	
	○ Yes	○ No	• NA (Please explain)	Comments:
NA. A	All sampling	equipment w	as disposable.	
	ii. If above	PQL, what sa	amples are affected?	Comments:
NA. A	All sampling	equipment w	as disposable.	
	iii. Data qu	ality or usabi	lity affected? (Please explain.)	Comments:
NA. A	All sampling	equipment w	as disposable.	
		nalifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
	○ Yes	○ No	NA (Please explain)	Comments:
There	e are no other	r data flags oı	qualifiers.	

Reset Form

Completed by:	Melissa Pike					
Title:	Environmental Se	cientist		Date:		Jun 28, 2011
CS Report Name:	Eureka Lodge			Repor	rt Date:	
Consultant Firm:	Oasis Environme	ntal				
Laboratory Name:	ESC Lab Science	es	Laboratory Report Nu	mber:	L520391	
ADEC File Number:	210.28.006		ADEC RecKey Numb	per:	25595	
1. <u>Laboratory</u>	ADEC CS approve	ed laboratory i	receive and <u>perform</u> all of	f the cu	hmitted s	eamnle analyses?
• Yes	O No	•	ase explain.)		ments:	sample analyses:
	0 110		. ,	Com		
	-		er "network" laboratory o			I to an alternate
○ Yes	○ No	NA (Pleas	se explain)	Comn	nents:	
Samples were n	ot transferred to a	nother networ	k laboratory or subcontra	cted.		
2. Chain of Custody	(COC)					
a. COC infor	rmation completed	, signed, and o	dated (including released/	receive	ed by)?	
• Yes	○ No	ONA (Pleas	se explain)	Comr	ments:	
	nalyses requested?	G) (P1	1	C	4	
• Yes	O No	ONA (Ple	ase explain)	Comr	nents:	
3. <u>Laboratory Samples</u>	-				:-	
			ad within range at receipt			
• Yes	○ No	ONA (Ple	ease explain)	Comr	ments:	

• Yes	○ No	○NA (Please explain)	Comments:
• Yes	ition docume		
• Yes	ition docume		
		nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
Samples arrived in	○ No	○ NA (Please explain)	Comments:
Dampies arrived III	good conditi	on.	
	•	•	r example, incorrect sample container insufficient or missing samples, etc.?
○ Yes	○ No	•NA (Please explain)	Comments:
There are no discrep	pancies.		
e. Data quality o	or usability at	fected? (Please explain)	
or = arm quarry		(Comments:
Data quality and us	sability is not	affected with respect to the sample	e receipt documentation.
Case Narrative			
a. Present and u	nderstandable	2 ?	
• Yes	○ No	○ NA (Please explain)	Comments:
b. Discrepancie	s, errors or Q	C failures identified by the lab?	
○ Yes	○ No	NA (Please explain)	Comments:
There are no discre	epancies, erro	rs or QC failures.	
c. Were all corr	aativa aations	dagumantad?	
C. Were all conf	No No	NA (Please explain)	Comments:
There are no correct	ctive actions.		
d What is the e	ffect on data	quality/usability according to the c	ase narrative?
a. What is the C			Comments:

• Yes	○ No	ONA (Please explain)	Comments:
b. All applica	ble holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rep	ported on a dry	weight basis?	
• Yes	○ No	○NA (Please explain)	Comments:
d. Are the rep project?	orted PQLs les	ss than the Cleanup Level or the mini	imum required detection level for
• Yes	○ No	○NA (Please explain)	Comments:
D-41'4	1. 114	66-4-19 (D1	
		ffected? (Please explain) t affected with respect to the reported	Comments:
C Samples a. Method Blan	usability is not		d sample results.
C Samples a. Method Blan	usability is not	t affected with respect to the reported	d sample results.
eata quality and C Samples a. Method Blan i. One mo	usability is not nk ethod blank rep	t affected with respect to the reported	d sample results. mples?
eata quality and C Samples a. Method Blan i. One mo	usability is not nk ethod blank rep es	t affected with respect to the reported ported per matrix, analysis and 20 sar	d sample results. mples?

5. <u>Samples Results</u>

○ Yes	○ No	• NA (Please explain)	Comments:
All are below th	ne PQL.		
v. Data q	uality or usabi	lity affected? (Please explain)	Comments:
Data quality an	d usability are	not affected with respect to the repo	orted method blank results.
b. Laboratory	y Control Samj	ple/Duplicate (LCS/LCSD)	
_		LCSD reported per matrix, analysis required per SW846)	and 20 samples? (LCS/LCSD required
• Yes	○ No	○ NA (Please explain)	Comments:
ii. Metals samples?	•	One LCS and one sample duplicate 1	reported per matrix, analysis and 20
○ Yes	○ No	NA (Please explain)	Comments:
There are no me	etal or inorgan	ic analyses.	
project sp	pecified DQOs	ent recoveries (%R) reported and wi , if applicable. (AK Petroleum meth %-120%; all other analyses see the l	
• Yes	○ No	○ NA (Please explain)	Comments:
limits? A	nd project spec	cified DQOs, if applicable. RPD rep	red and less than method or laboratory ported from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
• Yes	○ No	○NA (Please explain)	Comments:
v. If %R	or RPD is outs	side of acceptable limits, what samp	les are affected? Comments:
No %R or RPD	s are outside th	ne acceptable limits.	

O Yes	O No	● NA (Please explain)	Comments:
No %R or RPD	s are outside ti	he acceptable limits.	
vii. Data o	quality or usab	ility affected? (Please explain)	Comments:
Data quality an	d usability are	not affected with respect to the repo	orted LCS/LCSD results.
	•	•	
c. Surrogates	- Organics On	ly	
i. Are surr	ogate recoveri	es reported for organic analyses - fie	eld, QC and laboratory samples?
• Yes	○ No	CNA (Please explain)	Comments:
project sp	• 1	, if applicable. (AK Petroleum metho	nin method or laboratory limits? And ods 50-150 %R; all other analyses see
○ Yes	No	○ NA (Please explain)	Comments:
50x dilution. Th	ne surrogate Die sample result		ed the laboratory to run the sample a terphenyl was below the QC limits. ve data flags? If so, are the data flags
• Yes	○ No	○ NA (Please explain)	Comments:
iv. Data q	uality or usabi	lity affected? (Use the comment box	t to explain.). Comments:
1 .	•	omewhat affected with respect to the alts have been flagged J, as estimated	1
d. Trip Blank <u>Soil</u>	- Volatile ana	lyses only (GRO, BTEX, Volatile C	hlorinated Solvents, etc.): Water and
i. One trip	blank reporte	d per matrix, analysis and for each c n below.)	cooler containing volatile samples?
• Yes	○ No	O NA (Please explain.)	Comments:
		ransport the trip blank and VOA san plaining why must be entered below	mples clearly indicated on the COC?
• Yes	○ No	○ NA (Please explain.)	Comments:

iii. All rest	ults less than F	PQL?	
• Yes	○ No	O NA (Please explain.)	Comments:
iv. If abov	e PQL, what	samples are affected?	
			Comments:
NA. All sample	results were be	elow the PQL.	
y Data du	ality or usabil	ity affected? (Please explain.)	
v. Data qu	anty of usaon	ity affected: (1 lease explain.)	Comments:
Data quality and	usability is no	ot affected with respect to the report	
1 7		1 1	1
F' 11 D 1'			
e. Field Duplic		omitted per matrix, analysis and 10	project samples?
i. One new	aupireute suc	omitted per matrix, analysis and 10	project samples.
• Yes	○ No	ONA (Please explain)	Comments:
Primary sample	11-EUR-SB0	3-02-SO and duplicate 11-EUR-SB2	20-01-SO.
ii. Submit	ted blind to la	b?	
• Yes	○ No	○ NA (Please explain.)	Comments:
		ve percent differences (RPD) less th water, 50% soil)	nan specified DQOs?
	I	RPD (%) = Absolute Value of: (R_{1-})	7 11 100
	Sample Co Field Dupl		
• Yes	○ No	ONA (Please explain)	Comments:
iv. Data q	uality or usabi	lity affected? (Use the comment box	x to explain why or why not.)
○ Yes	No	ONA (Please explain)	Comments:
 Data quality and	usability is no	ot affected with respect to the report	red field dunlicate results

Version 2.7 Page 6 of 7 01/10

1. 1	Decontamina	mon or Equip	oment Blank (II applicable)	
	○ Yes	○ No	NA (Please explain)	Comments:
All sa	ampling equi	pment was di	sposable.	
	i. All result	s less than PC	QL?	
	○ Yes	○ No	• NA (Please explain)	Comments:
NA. A	All sampling	equipment w	as disposable.	
	ii. If above	PQL, what sa	amples are affected?	Comments:
NA. A	All sampling	equipment w	as disposable.	
	iii. Data qu	ality or usabi	lity affected? (Please explain.)	Comments:
NA. A	All sampling	equipment w	as disposable.	
		nalifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
	○ Yes	○ No	NA (Please explain)	Comments:
There	e are no other	r data flags oı	qualifiers.	

Reset Form

Compl	eted by:	Robert Beckma				
Title:		Environmental	Scientist		Date:	Aug 16, 2011
CS Re	port Name:	Eureka Lodge			Report Date:	Jun 17, 2011
Consu	ltant Firm:	Oasis Environn	nental			
Labora	oratory Name: ESC Lab Sciences			Laboratory Report Nu	mber: L520482	
ADEC	EC File Number:			ADEC RecKey Numb	per:	
1. <u>La</u>	. <u>Laboratory</u>					
	a. Did an A	ADEC CS appro	ved laboratory r	receive and perform all of	f the submitted	sample analyses?
_	• Yes	○ No	O NA (Plea	ase explain.)	Comments:	
		•		er "network" laboratory o		d to an alternate
	○ Yes	○ No		Comments:		
5	Samples were n	ot transferred to	ransferred to another network laboratory or subcontracted.			
2. <u>Ch</u>	ain of Custody	(COC)				
	a. COC infor	mation complete	ed, signed, and d	lated (including released/	received by)?	
_	• Yes	○ No ○ NA (Please		se explain)	Comments:	
L						
	b. Correct an	alyses requested	!?			
	• Yes	○ No	ONA (Ple	ase explain)	Comments:	
3. <u>Lal</u>	boratory Sampl	e Receipt Docur	<u>mentation</u>			
	a. Sample/co	oler temperature	documented an	d within range at receipt	$(4^{\circ} \pm 2^{\circ} \text{ C})$?	
	• Yes	○ No	ONA (Ple	ease explain)	Comments:	
(Cooler received	at 3.1° C				

• Yes	○ No	○NA (Please explain)	Comments:
c. Sample con-	dition docume	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	○ No	○ NA (Please explain)	Comments:
Samples arrived i	n good conditi	on.	
	• •	•	r example, incorrect sample contain nsufficient or missing samples, etc.
○ Yes	○ No	NA (Please explain)	Comments:
There are no discr	epancies.		
e Data quality	or usability at	ffected? (Please explain)	
o. Bata quarry	or asacring as	riceted. (Trease emplain)	
			Comments:
Data quality and	usability is not	affected with respect to the sample	Comments: e receipt documentation.
Data quality and	usability is not	affected with respect to the sample	
Data quality and ase Narrative	usability is not	affected with respect to the sample	
1		• •	
ase Narrative		• •	
ase Narrative a. Present and	understandable	e?	e receipt documentation.
ase Narrative a. Present and • Yes	understandable	e?	e receipt documentation.
ase Narrative a. Present and • Yes	understandable	e? ○ NA (Please explain)	e receipt documentation.
ase Narrative a. Present and • Yes b. Discrepanci	understandable	e? ONA (Please explain) C failures identified by the lab?	c receipt documentation. Comments:
ase Narrative a. Present and • Yes b. Discrepanci • Yes	understandable No es, errors or Q No	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain)	c receipt documentation. Comments:
ase Narrative a. Present and • Yes b. Discrepanci	understandable No es, errors or Q No	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain)	c receipt documentation. Comments:
ase Narrative a. Present and • Yes b. Discrepanci • Yes c. Were all con	understandable No es, errors or Q No rective actions No	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain) s documented? NA (Please explain)	Comments: Comments:
ase Narrative a. Present and • Yes b. Discrepanci • Yes c. Were all con • Yes	understandable No es, errors or Q No rective actions No	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain) s documented? NA (Please explain)	Comments: Comments:

• Yes	○ No	○ NA (Please explain)	Comments:
b. All applical	ole holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rep	oorted on a dry	weight basis?	
○ Yes	○ No	• NA (Please explain)	Comments:
here are no soil	samples.		
d. Are the repoproject?	orted PQLs les	ss than the Cleanup Level or the min	nimum required detection level for the
• Yes	○ No	○ NA (Please explain)	Comments:
e. Data quality	or usability a	ffected? (Please explain)	Comments:
		ffected? (Please explain) t affected with respect to the reporte	
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reporte	ed sample results.
Data quality and C Samples a. Method Blar	usability is no		ed sample results.
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is no	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:
Oata quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:

5. <u>Samples Results</u>

○ Yes	○ No	• NA (Please explain)	Comments:
All are below th	e PQL.		
v. Data qı	uality or usabi	lity affected? (Please explain)	Comments:
Data quality an	d usability are	not affected with respect to the rep	orted method blank results.
_			
b. Laboratory	Control Sam	ple/Duplicate (LCS/LCSD)	
_		LCSD reported per matrix, analysis required per SW846)	and 20 samples? (LCS/LCSD required
• Yes	○ No	○NA (Please explain)	Comments:
ii. Metals samples?	/Inorganics - (One LCS and one sample duplicate	reported per matrix, analysis and 20
○ Yes	○ No	NA (Please explain)	Comments:
There are no me	etal or inorgan	ic analyses.	
project sp	ecified DQOs	ent recoveries (%R) reported and with the state of the st	
• Yes	○ No	○ NA (Please explain)	Comments:
limits? A	nd project spe	cified DQOs, if applicable. RPD rep	ted and less than method or laboratory ported from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
○ Yes	No	○ NA (Please explain)	Comments:
The RPDs in M	S/MSD was o	outside of ranges for several analytes	s in PAH analysis.
v. If %R	or RPD is outs	side of acceptable limits, what samp	les are affected? Comments:
MS/MSDwas n	ot requested o	or submitted by OASIS. No samples	are affected.

○ Yes	○ No	NA (Please explain)	Comments:
No affected san	nples to flag.		
vii. Data	quality or usab	ility affected? (Please explain)	Comments:
Data quality an	d usability are	not affected. Batches are accepted of	on LCS/LCSD within limits.
c Surrogates	- Organics On	157	
Č	· ·	es reported for organic analyses - fie	eld OC and laboratory samples?
• Yes	○ No	CNA (Please explain)	Comments:
ii A ooyuma	ov. All manage	et manayaning (0/D) nomented and with	hin method or laboratory limits? And
project sp	• 1	, if applicable. (AK Petroleum metho	ods 50-150 %R; all other analyses see
• Yes	○ No	○ NA (Please explain)	Comments:
iii. Do the clearly de	-	s with failed surrogate recoveries ha	eve data flags? If so, are the data flags Comments:
There are no fail	led surrogate re	ecoveries.	
iv. Data q	uality or usabi	lity affected? (Use the comment box	x to explain.). Comments:
Data quality and	l usability is n	ot affected with respect to the report	ed surrogate results.
Soil i. One trip		d per matrix, analysis and for each of	Chlorinated Solvents, etc.): Water and cooler containing volatile samples?
• Yes	○ No	• NA (Please explain.)	Comments:
lo volatile analy	ses requested.		
		ransport the trip blank and VOA sar plaining why must be entered below	mples clearly indicated on the COC?
• Yes	○ No	• NA (Please explain.)	Comments:
No volatile analy	ses requested.		

iii. All resu	ılts less than l	PQL?	
○ Yes	○ No	• NA (Please explain.)	Comments:
trip blank was 1	not submitted	with this SDG.	
iv. If abov	ve PQL, what	samples are affected?	
			Comments:
v. Data gu	ality or usabi	lity affected? (Please explain.)	
4		(Comments:
Data quality and	usability is n	ot affected.	
e. Field Duplica	ate		
-		bmitted per matrix, analysis and 10	project samples?
• Yes	○ No	○NA (Please explain)	Comments:
		2-01-GW and duplicate 11-EUR-M	IW2-02-GW.
	ted blind to la		
• Yes	○ No	O NA (Please explain.)	Comments:
		ve percent differences (RPD) less the water, 50% soil)	nan specified DQOs?
]	RPD (%) = Absolute Value of: $(R_{1+} R_{1+} R_{1+$	11 100
	Sample Co Field Dup	oncentration licate Concentration	
• Yes	○ No	○ NA (Please explain)	Comments:
	11.		
iv. Data qı O Yes	uality or usab • No	ility affected? (Use the comment bo	ex to explain why or why not.) Comments:
		ot affected with respect to the repor	

Version 2.7 Page 6 of 7 01/10

1. 1	Decontamina	mon or Equip	oment Blank (II applicable)	
	○ Yes	○ No	NA (Please explain)	Comments:
All sa	ampling equi	pment was di	sposable.	
	i. All result	s less than PC	QL?	
	○ Yes	○ No	• NA (Please explain)	Comments:
NA. A	All sampling	equipment w	as disposable.	
	ii. If above	PQL, what sa	amples are affected?	Comments:
NA. A	All sampling	equipment w	as disposable.	
	iii. Data qu	ality or usabi	lity affected? (Please explain.)	Comments:
NA. A	All sampling	equipment w	as disposable.	
		nalifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
	○ Yes	○ No	NA (Please explain)	Comments:
There	e are no other	r data flags oı	qualifiers.	

Reset Form

Comp	leted by:	Melissa Pike					
Title:		Environmental :	Scientist		Date:		Jun 28, 2011
CS Re	port Name:	Eureka Lodge			Report D	Date:	
Consu	ltant Firm:	Oasis Environm	ental				
Labora	atory Name:	ESC Lab Science	ces	Laboratory Report Nu	t Number: L520543		
ADEC	EC File Number: 210.28.006		ADEC RecKey Numb	per: 255	595		
1. <u>L</u>	1. <u>Laboratory</u>			receive and <u>perform</u> all of	f the subm	nitted s	amnle analyses?
	Yes	O No	•	ase explain.)	Comme		ample analyses:
				. ,			
		-		er "network" laboratory o			to an alternate
	○ Yes	○ No		Comments:			
	Samples were n	ot transferred to	another networ	k laboratory or subcontra	cted.		
2. <u>Cł</u>	nain of Custody	(COC)					
	a. COC infor	mation complete	d, signed, and o	dated (including released/	received b	by)?	
	• Yes	○ No ○ NA (Please explain)		se explain)	Comments:		
L							
		alyses requested			~		
г	• Yes	O No	ONA (Ple	ase explain)	Commen	nts:	
Į							
3. <u>La</u>		e Receipt Docum					
	a. Sample/co	oler temperature	documented an	nd within range at receipt			
	• Yes	○ No	ONA (Ple	ease explain)	Commen	nts:	

• Yes	○ No	○NA (Please explain)	Comments:
• Yes	ition documer		
• Yes	ition docume		
		nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
Samples arrived in	○ No	○ NA (Please explain)	Comments:
Dampies arrived III	good conditi	on.	
	•	•	r example, incorrect sample container insufficient or missing samples, etc.?
○ Yes	○ No	•NA (Please explain)	Comments:
There are no discrep	pancies.		
e. Data quality o	or usability at	fected? (Please explain)	
or = arm quarry		(Comments:
Data quality and us	sability is not	affected with respect to the sample	e receipt documentation.
Case Narrative			
a. Present and u	nderstandable	2 ?	
• Yes	○ No	○ NA (Please explain)	Comments:
b. Discrepancie	s, errors or Q	C failures identified by the lab?	
○ Yes	○ No	NA (Please explain)	Comments:
There are no discre	epancies, erro	rs or QC failures.	
c. Were all corr	aativa aations	dagumantad?	
C. Were all conf	No No	NA (Please explain)	Comments:
There are no correct	ctive actions.		
d What is the e	ffect on data	quality/usability according to the c	ase narrative?
a. What is the C			Comments:

• Yes	○ No	○ NA (Please explain)	Comments:
b. All applical	ole holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rep	oorted on a dry	weight basis?	
○ Yes	○ No	• NA (Please explain)	Comments:
here are no soil	samples.		
d. Are the report project?	orted PQLs les	ss than the Cleanup Level or the min	nimum required detection level for the
• Yes	○ No	○ NA (Please explain)	Comments:
e. Data quality	or usability a	ffected? (Please explain)	Comments:
		ffected? (Please explain) t affected with respect to the reporte	
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reporte	ed sample results.
Data quality and C Samples a. Method Blar	usability is no		ed sample results.
Data quality and C Samples a. Method Blar	usability is no	t affected with respect to the reported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is no	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:
Oata quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	t affected with respect to the reported ported per matrix, analysis and 20 sa	ed sample results.
Data quality and C Samples a. Method Blar i. One me	usability is not ak ethod blank rep s	orted per matrix, analysis and 20 sa ONA (Please explain)	ed sample results. amples? Comments:

5. <u>Samples Results</u>

○ Yes	○ No	• NA (Please explain)	Comments:
All are below th	ne PQL.		
v. Data q	uality or usabi	lity affected? (Please explain)	Comments:
Data quality an	d usability are	not affected with respect to the repo	orted method blank results.
b. Laboratory	y Control Samj	ple/Duplicate (LCS/LCSD)	
_		LCSD reported per matrix, analysis required per SW846)	and 20 samples? (LCS/LCSD required
• Yes	○ No	○ NA (Please explain)	Comments:
ii. Metals samples?	_	One LCS and one sample duplicate 1	reported per matrix, analysis and 20
○ Yes	○ No	NA (Please explain)	Comments:
There are no me	etal or inorgan	ic analyses.	
project sp	pecified DQOs	ent recoveries (%R) reported and wi , if applicable. (AK Petroleum meth %-120%; all other analyses see the l	
• Yes	○ No	○ NA (Please explain)	Comments:
limits? A	nd project spec	cified DQOs, if applicable. RPD rep	red and less than method or laboratory ported from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
• Yes	○ No	○NA (Please explain)	Comments:
v. If %R	or RPD is outs	side of acceptable limits, what samp	les are affected? Comments:
————— No %R or RPD	s are outside th	ne acceptable limits.	

	O Yes	No	oles(s) have data flags? If so, are the NA (Please explain)	Comments:
No %	R or RPDs	are outside the	he acceptable limits.	
,	vii. Data q	uality or usab	ility affected? (Please explain)	Comments:
Data	quality and	l usability are	not affected with respect to the repo	orted LCS/LCSD results.
	•	Organics On		
			es reported for organic analyses - fie	•
	• Yes	○ No	CNA (Please explain)	Comments:
	project spe the laborat	ecified DQOs, ory report page	, if applicable. (AK Petroleum methoges)	hin method or laboratory limits? And ods 50-150 %R; all other analyses see
	• Yes	○ No	○ NA (Please explain)	Comments:
	clearly def	-	NA (Please explain)	Comments:
	iv. Data qu	ıality or usabi	lity affected? (Use the comment box	x to explain.). Comments:
Data q	uality and	usability is no	ot affected with respect to the report	red surrogate results.
Soil	l i. One trip		d per matrix, analysis and for each c	Chlorinated Solvents, etc.): Water and cooler containing volatile samples?
(Yes	○ No	O NA (Please explain.)	Comments:
			ransport the trip blank and VOA sar plaining why must be entered below	mples clearly indicated on the COC?

iii. All resu	ılts less than P	PQL?	
○ Yes	No	○ NA (Please explain.)	Comments:
Toluene was pres	ent in TB at 0	.44 ug/L.	
iv. If abov	e PQL, what	samples are affected?	
			Comments:
Samples affected EWR-MW2-02-0		UR-WH01-01-SW, 11-EUR-LK01	-SW, 11-EUR-MW2-01-GW and 11-
v. Data qu	ality or usabil	ity affected? (Please explain.)	
			Comments:
Data quality and flagged.	usability is no	ot affected. Associated sample resu	llts were all ND. No data has been
e. Field Duplica	ate		
•		omitted per matrix, analysis and 10	project samples?
• Yes	○ No	○NA (Please explain)	Comments:
		2-01-GW and duplicate 11-EUR-N	
<u> </u>		<u> </u>	1 W 2-02-0 W .
ii. Submit	ted blind to la	b?	
• Yes	○ No	○ NA (Please explain.)	Comments:
		ve percent differences (RPD) less t 6 water, 50% soil)	han specified DQOs?
	F	RPD (%) = Absolute Value of: $(R_1 - (R_1 + R_2))$	7 R 100
	1 = Sample Co 2 = Field Dupl		
• Yes	○ No	○ NA (Please explain)	Comments:
iv. Data o	uality or usabi	lity affected? (Use the comment be	ox to explain why or why not.)
O Yes	No	ONA (Please explain)	Comments:
Data quality and	usability is no	ot affected with respect to the repor	rted field duplicate results.

1. 1	Decontamina	mon or Equip	oment Blank (II applicable)	
	○ Yes	○ No	NA (Please explain)	Comments:
All sa	ampling equi	pment was di	sposable.	
	i. All result	s less than PC	QL?	
	○ Yes	○ No	• NA (Please explain)	Comments:
NA. A	All sampling	equipment w	as disposable.	
	ii. If above	PQL, what sa	amples are affected?	Comments:
NA. A	All sampling	equipment w	as disposable.	
	iii. Data qu	ality or usabi	lity affected? (Please explain.)	Comments:
NA. A	All sampling	equipment w	as disposable.	
		nalifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
	○ Yes	○ No	NA (Please explain)	Comments:
There	e are no other	r data flags oı	qualifiers.	

Reset Form

APPENDIX E

Quality Assurance Report

- Page Intentionally Left Blank -

MEMORANDUM

DATE: November 29, 2011

FROM: Melissa Pike, Associate Environmental Scientist, OASIS, Anchorage,

Alaska

TO: Daniel Frank, Project Manager, OASIS, Anchorage, Alaska

SUBJ: Quality Assurance Review, Crowley, Eureka Lodge, Eureka, AK

REF: Project: 465-014

Laboratory Quality Assurance/Quality Control (QA/QC) data associated with the analysis of project samples has been reviewed to evaluate the integrity of the analytical data generated during June 2011 Initial Site Characterization at the Eureka Lodge located in Eureka, Alaska.

ADEC Environmental Laboratory Data and Quality Assurance Requirements guided the preparation of this report (ADEC 2010). Additionally, United States Environmental Protection Agency (USEPA) National Functional Guidelines for Organic Data Review (USEPA 2008) was followed for this report. The data were reviewed to determine the data quality and to evaluate potential impact on the usability of the data. The data quality objectives for the project were established to support the nature of the investigation. The review was performed using Level II reports that were provided by ESC Laboratory, Inc. Analytical data, chain-of-custody documents, and ADEC data review checklists supporting this review are also provided.

Samples were tested using the following methods for the associated analytes:

- Method AK101 Gasoline-range organic (GRO) analysis
- Method AK102 Diesel-range organic (DRO) analysis
- Method AK103 Residual-range Organic (RRO) analysis
- EPA 8621B Benzene, toluene, ethylbenzene, and xylenes (BTEX) analysis
- EPA 8270C Poly aromatic hydrocarbons (PAH) by selected-ion monitoring (SIM) analysis (water sampling only)

Sample Handling and Chain of Custody

Water and soil samples were delivered to ESC Lab Sciences in Mt. Juliet, Tennessee, in five sample delivery groups (SDGs): L520284, L520288, L520391 and L520543, and L520482. Samples were collected, reported, and shipped to in general accordance with the Alaska Department of Environmental Conservation (ADEC)-approved work plan (OASIS 2011).

All samples were extracted, digested, and/or analyzed within the holding time criteria for the applicable analytical methods and in accordance with the work plan specifications. The sample cooler was delivered with custody seals in place, unbroken and intact. All sample containers in the sample coolers were received at the laboratory intact, with proper documentation, and within the specified temperature range of $4^{\circ}C \pm 2^{\circ}C$.

825 W. 8th Ave., Anchorage, AK 99501 Phone: 907.258.4880 Fax: 907.258.4033

Field QA/QC

Field QA/QC protocols are designed to monitor for possible contamination during collection and transport of samples collected in the field. Collection and analysis of field duplicates also facilitates an evaluation of precision that takes into account potential variables associated with sampling procedures and laboratory analyses. For this project, trip blanks and field duplicates were submitted for analysis.

Trip Blanks

Trip blank were prepared by the laboratory, shipped to the site with the empty sample bottles/containers, stored with sample containers during the field event, and transported with the collected samples back to the laboratory for analysis. The trip blanks were placed the same cooler as the other project volatile organics samples (GRO/BTEX). Trip blanks were non-detect for all analytes, with the following exception.

In report number L520543, toluene was present in the trip blank a 0.00044 micrograms/liter (mg/L). The following samples were potentially impacted: 11-EUR-WH01-01-SW, 11-EUR-LK01-SW, 11-EUR-MW2-01-GW and 11-EWR-MW2-02-GW. Data quality and usability was not affected. Associated sample results were all non-detect. No data was qualified and all data is suitable for use.

Field Duplicates

Out of fourteen primary samples submitted, there were two duplicates collected and analyzed for this project – primary 11-EUR-SB03-02-SO with duplicate 11-EUR-SB20-01-SO; and primary 11-EUR-MW2-01-GW with duplicate 11-EUR-MW2-02-GW. The RPD between primary and duplicates met the ADEC recommended limit of <30% for water and <50% for soil. The frequency of field duplicate collection met the 10% frequency requirements specified in the work plan. Overall, there was adequate comparability of field duplicate results to meet project data quality objectives.

Laboratory QA/QC

Method Blanks

Method blanks were analyzed concurrent with a batch of 20 or fewer primary samples for each of the analytical procedures performed for this project. Method blanks were analyzed at the required frequency and target analytes were not detected in the blanks at concentrations above the analytical reporting limit or practical quantitation limit (PQL).

Laboratory Control Samples/ Matrix Spikes

Analysis of laboratory control samples (LCS) and LCS duplicates (LCSD) for target analytes met laboratory and project QC goals for target analytes. Precision and accuracy were evaluated by comparing field duplicates, MS/MSD, and LCS/LSCD pairs for this project. Recoveries and RPDs for all LCS/LSCD and MS/MSD samples were within required limits.

Internal Standard Recoveries

Internal standards are chemical substances that are added in a constant amount to samples, the blank and calibration standards and are used for instrumentation calibration. All internal standard recoveries met laboratory and project QC goals for target analytes in all SDGs, with the following exceptions.

In Method SW8270-SIM (report number L520482), the internal standard response was below the acceptable limits and the sixth internal standard recovered low. The sixth internal standard in samples 11-EUR-MW-2-01-GW and 11-EUR-MW2-02-GW recovered below acceptance criteria. OASIS requested further information, including chromatograms, from the ESC in order to justify the qualification of the associated sample results. Additional information provided by ESC showed that the following not-detected results for compounds Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene can be qualified as UJ-l because the standards were found above the level of detectability, within the 20-50% area count range.

Surrogates

When performing analysis for AK102/AK103, ESC used one surrogate, o-terphenyl. Surrogate o- elutes in the DRO-range. Therefore, RRO analysis did not have a corresponding surrogate eluting within the RRO-range. RRO is not a required analyte for diesel and gasoline contamination; therefore there was no significant impact to the data quality required for this site contamination. ESC will be including an RRO surrogate during future AK102/AK103 analyses.

Surrogate recoveries were within prescribed control limits for all primary samples, LCS/LCSD and MS/MSD, with the following exception. In report number L520391, the high DRO concentration in sample 11-EUR-SB02-01-SO caused the laboratory to run the sample at a 50x dilution. Therefore, the surrogate DRO and RRO percent recovery for o-terphenyl was below the QC limits. Due to the surrogate percent recovery results below QC limits, associated positive data results have been flagged J. Results were considered estimated due to certain QC criteria not being met. All data is usable.

Method Reporting Limits (Sensitivity)

Method Reporting Limits (MRLs) and PQLs met or were below established criteria specified for all analyses in the project work plan. The reporting limits were also below the ADEC established cleanup levels.

Analytical Methods

The following sections summarize whether quality control criteria were met for each analytical method. Sample results below the method detection limits are flagged "U" or non-detect, "ND." Results between the method detection limit and the method reporting limit have been flagged "J" as estimates due to the low level of quantization. Results that are estimated due to minor QA/QC deficiencies have been flagged "J" as estimated. Twelve PAH results with internal standard QA/QC deficiencies have been flagged "UJ-I" as non-detect—estimated.

Precision and Accuracy

Precision criteria monitor analytical reproducibility. Accuracy criteria monitor agreement of measured results with "true values" established by spiking applicable samples with a known quantity of analyte or surrogate. Precision and accuracy were evaluated by comparing LCS/LCSDs and MS/MSDs for this project. Recoveries and RPDs for all LCS/LSCD samples were within required limits. Data Quality Objectives of an overall 90% accuracy in QC samples were met.

Completeness

Data completeness is defined as the percentage of usable data (usable data divided by the total possible data). The overall project completeness goal is 90%:

% completeness = <u>number of valid (i.e., non-R flagged) results</u>

number of possible results

All requested analyses were performed in accordance with work plan specifications. No results were qualified as unusable (i.e., "R"). Completeness for this project is 100%.

Representativeness

Data representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or environmental condition. The number and selection of samples were specified in the Work Plan and verified in the field to account accurately for site variations and sample matrices. The DQO for representativeness was met.

Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Data produced for this project followed applicable field sampling techniques and specific analytical methodology. The DQO for comparability was met.

Data Summary

Based upon the information provided, the data are acceptable for use with the above stated data qualifications. All requested analyses were performed in accordance with work plan specifications. Completeness for this project is 100%.

In general, the overall quality of the data was acceptable. The USEPA National Functional Guidelines (USEPA 2008) were used to evaluate the acceptability of the data. Overall, data quality meets the data quality objectives established in the work plan for this project. The associated sample results are usable for the purpose of this investigation.

REFERENCES

- Alaska Department of Environmental Conservation (ADEC). 2010a. Laboratory Data Review Checklist.

 Version 2.7. ADEC Division of Spill Prevention and Response, Contaminated Sites Program form, downloaded from: http://dec.alaska.gov/spar/guidance.htm#methods. January.
- OASIS Environmental, Inc. (OASIS), 2011. Site Characterization Work Plan; Eureka Lodge; Mile 128 Glenn Highway. March 3.
- United States Environmental Protection Agency (USEPA). 2008. USEPA Contract Laboratory Program,
 National Functional Guidelines for Superfund Organic Methods Data Review. June.

12065 LEBANON RD. MT. JULIET, TN 37122 (800) 767-5859 WWW.ENVSCI.COM

November 11, 2011

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

Re: Discussion of the PAH 8270SIM analysis for samples L520482-01 and -02:

Samples 11-EUR-MW2-01-GW and 11-EUR-MW2-02 were collected on 06/09/11 and received at ESC Lab Sciences on 06/11/11. The samples were analyzed by method 8270sim. It was noted that the sixth internal standard had a response less than the acceptance limits for both of the samples. The compounds that were associated with this internal standard and reported as non-detected were invalidated due to this failure. The criteria from the National Functional Guidelines are illustrated in Table 38: Internal Standard actions for Semi-volatiles Analysis. The flagging action for area counts of <50% from the 12 hour standard shows an "R**" for non-detected compounds. The ** is further explained as a footnote on page 125.

"** For area counts in the range of 20-50%, non-detected compounds may be qualified as UJ based on further evaluations on the data. The evaluations may include but are not limited to review of the chromatograms, mass spectra and statistical studies of signal-to-noise ratios. Such data qualifications shall be performed on a project-by-project basis."

It can be demonstrated that the compounds remained above the level of detectibly and that using the 20-50% flagging criteria is appropriate in this case. When compared to the 12 hour standard, the internal standard for 11-EUR-MW2-01-GW recovered at 45.4% and 11-EUR-MW2-02 at 33.4%. This illustrates the worst-case scenario as the compounds are responding 3 times lower than an analysis where the recovery of the internal standard is 100%. If the compounds were responding 3 times low, then a 0.050 ppb result would yield a response equivalent to 0.017 ppb. All of the affected compounds have minimum detection limits that are lower than 0.017 on this instrument with the exception of benzo(b) flouranthene at 0.0191 ppb. These are shown on the attached mdl study. Therefore, the MDL's demonstrate the compounds would have been detected at the level reported with the exception of Benzo(b) flouranthene. Benzo(b) flouranthene would very likely be detected at the 0.017 ppb level given the overall response of this compound and signal to noise ratio, but a worst-case detectible amount would be at 0.060 ppb using the MDL for this compound. The Alaska Groundwater clean-up level from 18 AAC 75.345 Table C lists the cleanup level for Benzo(b)fluoranthene at 1.2 ppb. The impact of raising this reporting limit if necessary to 0.060 ppb is negligible since the elevated RDL remains lower than the 1.2 ppb clean-up level.

12065 LEBANON RD. MT. JULIET, TN 37122

(800) 767-5859

WWW.ENVSCI.COM

ESC will provide any additional information requested to confirm that the intent of the National Functional Guidelines have been met since all of the compounds are able to be detected and are at a level that is below the action levels provided in the Alaska Groundwater clean-up level from 18 AAC 75.345 Table C. Please feel free to contact us with any questions.

Sincerely,

William Mock VP Lab Operations ESC Lab Sciences 12065 Lebanon Road Mt. Juliet, TN 37122

Method Detection Limit Study Certification Statement

Date: 12/29/20	010	Pa	age 1 of 248
Matrix: Water			
Analyst: Brian Fo	ord	Analysis Method #:	8270C/D PAHSIM
Prep. Technician:	:	Prep. Method #: 35	510C
Analysis SOP & I	Revision #: 330345 R13		
Prep. SOP & Rev	rision #: 330702 R11		
 This Method 40, Part 13 The person samples us A copy of to personnel of the data and complete a All raw data reconstructions 	ssociated with the method and self-explanatory. It (including a copy of this and validate these analyse at the sed information is well-org	formed the analyses/prepove. Tratory specific SOPs and the additional detection limit study are certification form) necessity the study are study as the study as the study are study as the study are study as the study are study as the study as the study are study as the stu	eparation of these re available for all re true, accurate, ressary to at the facility, and
Department Manager:	Chris Johnson Print Name	ignature	Date
QA Representative:	Shari Prestanski Print Name	Signature	Date

Method: 8270C/D PAHSIM

Laboratory: Environmental Science Corp.

Analyst: Brian Ford Date: 10/12/2010

Method Detection Limit Study 0.02 ppb

Instrument: SVGCMS9
Matrix: Water

Prep Method: 3510C

Analyte	Avg	SD	N	T(s)	MDL	Units	Conc	% Rec	PQL	10X Value	10X Criteria P/F	PQL Criteria	PQL: MDL Ratio	PQL 3X Criteria P/F
Benzo(g,h,i)perylene	0.0172	0.005	7	3.143	0.0157	ug/L	0.02	86%	0.05	1.3	Р	Р	3.2	Р
Indeno(1,2,3-cd)pyrene	0.0157	0.00134	7	3.143	0.00421	ug/L	0.02	79%	0.05	4.8	Р	Р	11.9	Р

Method: 8270C/D PAHSIM

Laboratory: Environmental Science Corp.

Analyst: Brian Ford Date: 10/12/2010

Method Detection Limit Study 0.05 ppb

Instrument: SVGCMS9
Matrix: Water
Prep Method: 3510C

Analyte	Avg	SD	N	T(s)	MDL	Units	Conc	% Rec	PQL	10X Value	10X Criteria P/F	PQL Criteria	PQL: MDL Ratio	PQL 3X Criteria P/F
1-Methylnaphthalene	0.0315	0.00311	7	3.143	0.00977	ug/L	0.05	63%	0.25	5.1	Р	Р	25.6	Р
2-Chloronaphthalene	0.031	0.00378	7	3.143	0.0119	ug/L	0.05	62%	0.25	4.2	Р	Р	21.0	Р
2-Methylnaphthalene	0.0284	0.00285	7	3.143	0.00897	ug/L	0.05	57%	0.25	5.6	Р	Р	27.9	Р
Acenaphthene	0.0354	0.00262	7	3.143	0.00823	ug/L	0.05	71%	0.05	6.1	Р	Р	6.1	Р
Acenaphthylene	0.0323	0.00202	7	3.143	0.00636	ug/L	0.05	65%	0.05	7.9	Р	Р	7.9	Р
Anthracene	0.0422	0.00311	7	3.143	0.00979	ug/L	0.05	84%	0.05	5.1	Р	Р	5.1	Р
Benzo(a)anthracene	0.0489	0.00396	7	3.143	0.0124	ug/L	0.05	98%	0.05	4.0	Р	Р	4.0	Р
Benzo(a)pyrene	0.0309	0.00353	7	3.143	0.0111	ug/L	0.05	62%	0.05	4.5	Р	Р	4.5	Р
Benzo(b)fluoranthene	0.0344	0.00609	7	3.143	0.0191	ug/L	0.05	69%	0.05	2.6	Р	Р	2.6	Р
Benzo(k)fluoranthene	0.0429	0.00412	7	3.143	0.013	ug/L	0.05	86%	0.05	3.8	Р	Р	3.8	Р
Chrysene	0.0499	0.00459	7	3.143	0.0144	ug/L	0.05	100%	0.05	3.5	Р	Р	3.5	Р
Fluoranthene	0.0427	0.00523	7	3.143	0.0165	ug/L	0.05	85%	0.05	3.0	Р	Р	3.0	Р
Fluorene	0.0372	0.00226	7	3.143	0.0071	ug/L	0.05	74%	0.05	7.0	Р	Р	7.0	Р
Naphthalene	0.0328	0.00327	7	3.143	0.0103	ug/L	0.05	66%	0.25	4.9	Р	Р	24.3	Р
Phenanthrene	0.0474	0.00569	7	3.143	0.0179	ug/L	0.05	95%	0.05	2.8	Р	Р	2.8	Р
Pyrene	0.0415	0.00228	7	3.143	0.00717	ug/L	0.05	83%	0.05	7.0	Р	Р	7.0	Р

Method: 8270C/D PAHSIM

Laboratory: Environmental Science Corp.

Analyst: Brian Ford Date: 10/22/2010

Method Detection Limit Study 0.02 ppb

Instrument: SVGCMS9 Matrix: Water Prep Method: 3510C

Analyte	Avg	SD	N	T(s)	MDL	Units	Conc	% Rec	PQL	10X Value	10X Criteria P/F	PQL Criteria	PQL: MDL Ratio	PQL 3X Criteria P/F
Dibenz(a,h)anthracene	0.0178	0.00144	7	3.143	0.00454	ug/L	0.02	89%	0.05	4.4	Р	Р	11.0	Р

APPENDIX F

ADEC Conceptual Site Model Human Health Scoping Form and Graphic

- Page Intentionally Left Blank -

Print Form

Human Health Conceptual Site Model Scoping Form

Site Name:	Eureka Lodge, Mile 128 Glenn Highway	, Alaska					
File Number:	210.28.006						
Completed by:	OASIS Environmental, Inc.						
about which exposure summary text about about text about the characterization of the characterization	be used to reach agreement with the osure pathways should be further in out the CSM and a graphic depicting work plan and updated as needed in tions: Follow the italicized instructions:	vestigated du g exposure pa later reports.	ring site characterization. From the thways should be submitted with the submitted with t	is information			
1. General In Sources (check)	nformation: potential sources at the site)						
USTs		☐ Vehicle					
⊠ ASTs		☐ Landfill	}				
☐ Dispensers/fu	el loading racks	☐ Transfo	mers				
Drums	C	Other:					
Release Mechan	nisms (check potential release mech	nanisms at the	site)				
⊠ Spills		☐ Direct d	scharge				
☐ Leaks		☐ Burning					
		☐ Other:					
Impacted Media	a (check potentially-impacted media	a at the site)					
☐ Surface soil (, , ,	⊠ Ground	vater				
✓ Subsurface so	G ,	☐ Surface					
⊠ Air		☐ Biota					
☐ Sediment		☐ Other:					
Receptors (chec	k receptors that could be affected b	y contaminati	on at the site)				
□ Residents (ad	ult or child)	⊠ Site visi	or				
	or industrial worker	⊠ Trespas	er				
⊠ Construction	worker	⊠ Recreati	onal user				
☐ Subsistence h	arvester (i.e. gathers wild foods)	☐ Farmer					
Subsistence c	onsumer (i.e. eats wild foods)	☐ Other:	The pathway for site visitors, trespasser				

2.	Exposure Pathways: (The answers to the following q exposure pathways at the site. Check each box where		_				
a)	Direct Contact - 1. Incidental Soil Ingestion						
	Are contaminants present or potentially present in surface soil (Contamination at deeper depths may require evaluation on a s		the ground surface?				
	If the box is checked, label this pathway complete:	Complete					
	Comments:						
	Contaminated soil at the site has been excavated to 7.0 feet bgs and back	ckfilled with clean fill.					
	2. Dermal Absorption of Contaminants from Soil						
	Are contaminants present or potentially present in surface soil (Contamination at deeper depths may require evaluation on a s		the ground surface?				
	Can the soil contaminants permeate the skin (see Appendix B i	X					
	If both boxes are checked, label this pathway complete:	Complete					
	Comments:						
	Contaminated soil at the site has been excavated to 7.0 feet bgs and back	ckfilled with clean fill.					
b)	Ingestion - 1. Ingestion of Groundwater						
	Have contaminants been detected or are they expected to be de or are contaminants expected to migrate to groundwater in the	-	$\overline{\times}$				
	Could the potentially affected groundwater be used as a curren source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source of to 18 AAC 75.350.						
	If both boxes are checked, label this pathway complete:	Complete					
	Comments:						
	Groundwater at the site has not been fully investigated. It appears at the readily available at the site. Two of the three permanent wells installed	_					

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future? Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities). If both boxes are checked, label this pathway complete: Incomplete Comments: The surface water body located ~40 feet north of the site is used as the drinking water source for the lodge. Samples were collected from the unnamed lake and from a spigot in the water treatment building before the water was treated. All analytical results were non-detect or well below cleanup 3. Ingestion of Wild and Farmed Foods Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild or farmed foods? Do the site contaminants have the potential to bioaccumulate (see Appendix C in the guidance document)? Are site contaminants located where they would have the potential to be taken up into biota? (i.e. soil within the root zone for plants or burrowing depth for animals, in groundwater that could be connected to surface water, etc.) If all of the boxes are checked, label this pathway complete: Incomplete Comments: c) Inhalation-1. Inhalation of Outdoor Air Are contaminants present or potentially present in surface soil between 0 and 15 feet below the $\overline{\times}$ ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.) $\overline{\times}$ Are the contaminants in soil volatile (see Appendix D in the guidance document)? If both boxes are checked, label this pathway complete: Complete Comments: Contaminated soil at the site has been excavated to 7.0 feet bgs and backfilled with clean fill. Based on analytical results from this sampling event, benzene impacted soil at the site can be found from 9.0-13.0

2. Ingestion of Surface Water

feet bgs.

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminated soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

 $\overline{\times}$

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

 $\overline{\times}$

If both boxes are checked, label this pathway complete:

Complete

Comments:

Occupied buildings are within 30 feet of the site and benzene was detected about ADEC method two soil cleanup levels.

3. Additional Exposure Pathways: (Although there are no definitive questions provided these exposure pathways should also be considered at each site. Use the guidelines provided determine if further evaluation of each pathway is warranted.)	
Dermal Exposure to Contaminants in Groundwater and Surface Water	
 Dermal exposure to contaminants in groundwater and surface water may be a complete pathwo Climate permits recreational use of waters for swimming. Climate permits exposure to groundwater during activities, such as construction. Groundwater or surface water is used for household purposes, such as bathing or clear 	
Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be prote pathway.	ective of this
Check the box if further evaluation of this pathway is needed:	
Comments:	
The surface water at the site has not been impacted. Also, groundwater is not readily available at the site. Two of the three permanent monitoring wells installed were dry.	
Inhalation of Volatile Compounds in Tap Water	
 Inhalation of volatile compounds in tap water may be a complete pathway if: The contaminated water is used for indoor household purposes such as showering, law washing. The contaminants of concern are volatile (common volatile contaminants are listed in guidance document.) 	-
Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be prote pathway.	ective of this
Check the box if further evaluation of this pathway is needed:	
Comments:	

The tap water was sampled before being processed through the water treatment system, all analytes were either non-detect or well below ADEC Table C Groundwater Cleanup Levels.

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- O Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.
- O Chromium is present in soil that can be dispersed as dust particles of any size.

Generally, DEC direct contact soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because it is assumed most dust particles are incidentally ingested instead of inhaled to the lower lungs. The inhalation pathway only needs to be evaluated when very small dust particles are present (e.g., along a dirt roadway or where dusts are a nuisance). This is not true in the case of chromium. Site specific cleanup levels will need to be calculated in the event that inhalation of dust containing chromium is a complete pathway at a site.

Check the box if further evaluation of this pathway is needed:	
Comments:	
	-
Direct Contact with Sediment	
This pathway involves people's hands being exposed to sediment, such as during some recordinated activity. People then incidentally ingest sediment from normal hand-to-mouth addition, dermal absorption of contaminants may be of concern if the the contaminants are skin (see Appendix B in the guidance document). This type of exposure should be investig Climate permits recreational activities around sediment. The community has identified subsistence or recreational activities that would resure sediment, such as clam digging. Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to	h activities. In able to permeate the sated if: It in exposure to the
contact with sediment.	
Check the box if further evaluation of this pathway is needed:	
Comments:	-
Surface water at the site has not been impacted. Also, a sheen test was conducted on the south side of the unnamed lake located ~40 feet north of the site, no sheen was present.	

1.)	ents (Provide other com	 	

APPENDIX A

BIOACCUMULATIVE COMPOUNDS OF POTENTIAL CONCERN

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table B-1 of 18 AAC 75.341 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greather than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a $\log K_{ow}$ greater than 3.5 and inorganic compounds that are listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000).

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a \log Kow greater than 3.5 and inorganic compounds that are listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (Kow) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler, DEC recommends using a \log Kow greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS OF POTENTIAL CONCERN

A chemical is identified here as sufficiently volatile and toxic for further evaluation if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater, the molecular weight is less than 200 g/mole (EPA 2004a), and the vapor concentration of the pure component posed an incremental lifetime cancer risk greater than 10^{-6} or a non-cancer hazard quotient of 0.1, or other available scientific data indicates the chemical should be considered a volatile. Chemicals that are solid at typical soil temperatures and do not sublime are generally not considered volatile.

Acetone	Mercury (elemental)
Benzene	Methyl bromide (Bromomethane)
Bis(2-chloroethyl)ether	Methyl chloride (Chloromethane)
Bromodichloromethane	Methyl ethyl ketone (MEK)
Bromoform	Methyl isobutyl ketone (MIBK)
n-Butylbenzene	Methylene bromide
sec-Butylbenzene	Methylene chloride
tert-Buytlbenzene	1-Methylnaphthalene
Carbon disulfide	2-Methylnaphthalene
Carbon tetrachloride	Methyl tert-butyl ether (MTBE)
Chlorobenzene	Naphthalene
Chlorodibromomethane (Dibromochloromethane)	Nitrobenzene
Chloroethane	n-Nitrosodimethylamine
Chloroform	n-Propylbenzene
2-Chlorophenol	Styrene
1,2-Dichlorobenzene	1,1,2,2-Tetrachlorethane
1,3-Dichlorobenzene	Tetrachloroethylene (PCE)
1,4-Dichlorobenzene	Toluene

Dichlorodifluoromethane	1,2,4-Trichlorobenzene
1,1-Dichloroethane	1,1,1-Trichloroethane
1,2-Dichloroethane	1,1,2-Trichloroethane
1,1-Dichloroethylene	Trichloroethane
cis-1,2-Dichloroethylene	2,4,6-Trichlorophenol
trans-1,2-Dichloroethylene	1,2,3-Trichloropropane
1,2-Dichloropropane	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)
1,3-Dichloropropane	Trichlorofluoromethane (Freon-11)
Ethylbenzene	1,2,4-Trimethylbenzene
Ethylene dibromide (1,2-Dibromoethane)	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene
Ethylene dibromide (1,2-Dibromoethane)	1,3,5-Trimethylbenzene
Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene	1,3,5-Trimethylbenzene Vinyl acetate
Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene Hexachloro-1,3-butadiene	1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride (Chloroethene)
Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene Hexachloro-1,3-butadiene Hexachlorocyclopentadiene	1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride (Chloroethene) Xylenes (total)

Notes:

- 1. Bolded chemicals should be investigated as volatile compounds when petroleum is present. If fuel containing additives (e.g., 1,2-dichloroethane, ethylene dibromide, methyl *tert*-butyl ether) were spilled, these chemicals should also be investigated.
- 2. If a chemical is not on this list, and not in Tables B of 18 AAC 75.345, the chemical has not been evaluated for volatility. Contact the ADEC risk assessor to determine if the chemical is volatile.
- 3. At this time, ADEC does not require evaluation of petroleum ranges GRO, DRO, or RRO for the indoor air inhalation (vapor intrusion) pathway.

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

d directions below. Do not ons or engineering/land	hways.	(5)	Identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptors,	"F" for future receptors, "C/F" for both current and future receptors. or "!" for insignificant exposure.	Current & Future Receptors	SJOSS SJOSS	Morke Stespa Ste	inon is sinon sino	asideni asideni asideni asideni asideni asideni asideni	S C FE FE SO	C/F C/F I C/F	C/F C/F C/F							C/F C/F C/F	C/F C/F I C/F									Revised, 10/01/2010
<u>Instructions</u> : Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land	use controls when describing pathways.			(3) (4)	Check all exposure Check all pathways that could be complete. The pathways identified in this column must	agree with Sections 2 and 3 or the numari Health CSM Scoping Form.	Exposure Media Exposure Pathway/Route				✓ Incidental Soil Ingestion	soil	Inhalation of Fugitive Dust		√ Ingestion of Groundwater	groundwater	☐ Inhalation of Volatile Compounds in Tap Water		✓ Inhalation of Outdoor Air	air 🔻 🗸 Inhalation of Indoor Air	☐ Inhalation of Fugitive Dust		Ingestion of Surface Water	surface water \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Inhalation of Volatile Compounds in Tap Water	sediment Direct Contact with Sediment		biota Ingestion of Wild or Farmed Foods	
Site: Eureka Lodge, Mile 128 Glenn Highway, Alaska	Completed By: OASIS Environmental, Inc.	. (3		(1) (2)	dia that For each medium identified in (1), follow the type affected top arrow and check possible transport	by the release. (1) if the media acts as a secondary source.	t Mechanisms	Direct release to surface soil			check su	Uptake by plants or animals check biota Contract lines.	Outer (issy.	Direct release to subsurface soil	Subsurface \(\lambda \) Migration to groundwater \(\text{Soil} \) Volatilization \(\text{Soil} \)	(2-15 ft bgs) Uptake by plants or animals Check biota	Other (list):	Direct release to groundwater check groundwater	-br	water Flow to surface water body check surface water	or animals [Other (list):	Direct release to surface water check surface water		Water Sedimentation check sediment (Mater Introduced Sediment)		Seriment Seriment check segment check surface water	Uptake by plants or animals check blota	