

Prepared for:

2017 Monitoring Report

Eureka Lodge Mile 128 Glenn Highway, Alaska

FINAL May 2018

FINAL 2017 MONITORING REPORT EUREKA LODGE MILE 128 GLENN HIGHWAY, ALASKA

ADEC File No. 210.38.006

Prepared for:

Crowley Fuels LLC 201 Arctic Slope Avenue

Anchorage, Alaska 99518

May 2018

ERM Project # 0424283

Wray

Prepared By:

Kassi Murray, EI Staff Engineer

Vitman P.E.

Reviewed By:

Stephen Witzmann, PE Project Manager

> ERM Alaska, Inc. 825 West 8th Avenue Anchorage, Alaska 99501 T: (907) 258-4880 F: (907) 258-4033

TABLE OF CONTENTS

AC	ACRONYMS AND ABBREVIATIONSv				
1.	INT	RODUCTION1			
2.	. SITE BACKGROUND				
	2.1.	Brief Site History			
	2.2.	Site Location and Description4			
	2.3.	Site Operations and History4			
	2.4.	Site Investigations and Remediation5			
		2.4.1. June 2010 Removal5			
		2.4.2. September 2010 Removal			
		2.4.3. June 2011 Field Activities			
		2.4.4. September 2012 Field Activities			
		2.4.5. 2013 Field Activities			
	2.5.	Geology and Hydrology7			
	2.6.	Contaminants of Concern and Regulatory Framework7			
	2.7.	Project Objectives and Scope of Work			
3.	FIEL	D ACTIVITIES11			
	3.1.	Groundwater Sample Collection11			
		3.1.1. Changes to Sampling Protocol for MW-1 and MW-311			
		3.1.2. Sample Collection			
	3.2.	Surface Water Sample Collection14			
	3.3.	Drinking Water Sample Collection			
	3.4.	Groundwater Flow Assessment			
	3.5.	Forensic Sample Collection			
	3.6.	Investigation-Derived Waste Management			
4.	RES	ULTS AND DISCUSSION			
	4.1.	Groundwater Sampling Analytical Results			
	4.2.	Surface Water Sampling Analytical Results19			
	4.3.	Drinking Water Sampling Analytical Results19			
	4.4.	Quality Assurance Summary Report			
5.	EST	MATE OF FUEL CONTAMINATION REMOVED21			
6.	REV	IEW OF 2010 CHROMATOGRAPHS23			
7.	FOR	ENSIC SAMPLE ANALYSIS AND INTERPRETATION25			
8.	CON	ICLUSIONS			
	8.1.	Groundwater			
	8.2.	Surface Water			
	8.3.	Drinking Water			
	8.4.	Residual Contamination			

9.	RECOMMENDATIONS2	29
10.	REFERENCES	51

TABLES

In-Text Tables:

- A: Applicable Water Cleanup Levels and Standards for Contaminants of Concern
- B: Relative Groundwater Elevations
- C: Summary of the Forensic Analysis of Soil Samples

Attached Tables:

- 1: Sample Collection Summary
- 2: Water-Quality Parameters
- 3: Groundwater Laboratory Analytical Results
- 4: Surface Water Laboratory Analytical Results
- 5: Drinking Water Laboratory Analytical Results

FIGURES

- 1: Site Location Map
- 2: Site Map
- 3: Sample Collection Locations and Results Summary

APPENDICES

- A: Sample Data Sheets
- B: Field Notes
- C: Photographic Log
- D: Laboratory Analytical Results
- E: ADEC Checklist and Quality Assurance Report
- F: Estimation of Fuel Contamination Removed
- G: Historical Chromatographs
- H: Torkelson Forensic Soil Sample Results
- I: Responses to ADEC Comments

ACRONYMS AND ABBREVIATIONS

AAC Alaska Administrative Code
ADEC
amsl above mean sea level
AST above mean sea level
bgs below ground surface
btoc below top of casing
BTEX benzene, toluene, ethylbenzene, and xylenes
Crowley Crowley Fuels LLC
DO dissolved oxygen
DRO diesel-range organics
ERM ERM Alaska, Inc.
ft feet
GRO gasoline-range organics
GWUDISW groundwater under the direct influence of surface water
mg/kg milligrams per kilogram
mg/L milligrams per liter
MLFA Michael L. Foster & Associates, Inc.
ml/min milliliters per minute
mV millivolts
ORP oxidation-reduction potential
PID Permanent Identifier
PAH polycyclic aromatic hydrocarbon
QA/QC quality assurance/quality control
RRO residual-range organics
TAH total aromatic hydrocarbons
TAqH total aqueous hydrocarbons
°C degree Celsius
μg/L micrograms per liter
r o/ o r

1. INTRODUCTION

This 2017 monitoring report presents the results of water and forensic sampling activities conducted by ERM Alaska, Inc. (ERM) in October 2017 at the Eureka Lodge aboveground storage tank (AST) site located at mile 128 of the Glenn Highway in Alaska. The Alaska Department of Environmental Conservation (ADEC) file number for the Eureka Lodge site is 210.38.006.

Monitoring activities were conducted in accordance with 2012 Groundwater and Surface Water Monitoring Work Plan dated June 4, 2012 (OASIS 2012), and the 2017 Addendum to the 2012 Groundwater and Surface Water Monitoring Work Plan dated September 8, 2017 (ERM 2017) as approved by the ADEC. This report was prepared in accordance with Title 18 of the Alaska Administrative Code (AAC), Chapter 75 (18 AAC 75), Oil and Other Hazardous Substances Pollution Control Regulations, as amended through November 7, 2017 (ADEC 2017a), 18 AAC 70 Alaska Water Quality Standards (AWQS) amended as of February 5, 2017 (ADEC 2017b), 18 AAC 80 Drinking Water Regulations amended as of November 7, 2017 (ADEC 2017c), and ADEC Field Sampling Guidance revised August 2017 (ADEC 2017d).

The primary objective of the monitoring activities was to evaluate the nature and extent of petroleum hydrocarbon impact to groundwater, surface water, and drinking water resulting from a spill of supreme unleaded gasoline during supply-truck-to-tank filling operations in 2010. The secondary objective was to evaluate petroleum contamination that is still present within the subsurface soil at the site, which included a review of laboratory chromatographs and analysis and interpretation of forensic soil samples collected to assess the age and makeup of the residual contamination in soil. Collection and analysis of groundwater, surface water, and drinking water samples was performed to address a request received from ADEC and to further document potential petroleum hydrocarbon impact at the Eureka Lodge site. Review of laboratory chromatographs and analysis of forensic soil samples was conducted to better understand what additional actions, if any, are required to address the 2010 release.

This document provides additional review of historical data and presents newly collected data. This document is organized as follows; site background information (Section 2), field activities (Section 3), analytical results and discussion (Section 4), estimate of fuel contamination removed (Section 5), review of 2010 chromatographs (Section 6), forensic sample analysis and interpretation (Section 7), conclusions (Section 8), recommendations (Section 9); and finally, references (Section 10).

2. SITE BACKGROUND

2.1. Brief Site History

As reported in the 2010 *Spill Response Report* (MFLA 2010a), Crowley Fuels LLC (Crowley) personnel overfilled an AST at the Eureka Lodge on June 11th, 2010. Based on the Spill Summary Report (Spill Number 10239916202), Crowley personnel initially estimated that 20 gallons of supreme unleaded gasoline were released to the soil beneath the tank. This estimate was based on the flow rate of the pump and estimated reaction time for the truck driver. The 2010 *Spill Response Report* estimated the release volume as ten gallons. The exact amount of fuel released is unknown. Remedial action was conducted on June 15th and 16th, 2010. Nine bulk storage bags containing approximately 13 tons of contaminated material were excavated, shipped offsite, and subjected to thermal remediation.

On September 28th and 29th, 2010, a Crowley contractor returned to the site and conducted additional soil excavation activities (MLFA 2010b). The east tank and an adjacent shed were moved temporarily to gain access to contaminated soil. Approximately 86 tons of additional contaminated soil was removed and thermally remediated offsite (MLFA 2010b).

Data presented in the 2010 *Spill Response Report* suggests that remedial excavation in 2010 proceeded through the contaminated surface soil layer and encountered a deeper layer of soil contamination associated with an earlier and unrelated release.

The Eureka Lodge has been selling fuel since at least 1948 (Anchorage Museum of History & Art. Library & Archives). The 2010 *Spill Response Report* discusses two earlier releases and a third spill was identified in ADEC records:

- A spill response effort in May 2002 to a heating oil release located several hundred feet to the east of the 2010 spill location described excavating soil 3.5 feet below ground surface within 40 feet of the nearby lake without encountering groundwater (MLFA 2010a). The release occurred on approximately April 29th, 2002, included 450 gallons of home heating oil (or diesel fuel), and was recorded as case file 02239912002. The location of the 2002 spill is unknown and variously reported as "some distance east of gasoline tank" and "several hundred feet east." The following data is listed in the ADEC Spill Prevention and Response Spill Database:
 - a. Responsible party for the 2002 spill: unknown
 - b. Response: "Field Visit/s"
 - c. Cause: Corrosion (Mechanical/Structural)
 - d. Status: Case Closed, No Further Action on September 5th, 2002.
- 2) In 2008, three gallons of diesel were released (closed spill No 08239905002).

3) A report prepared in 2009 described a limited release investigation following a small (3.5-gallon) heating oil spill at the east storage tank, at the same location as the 2010 spill. Contaminated soil was subsequently removed and the excavation backfilled. A sample collected 12 inches below the middle of the west skid (of the east tank) contained diesel range organics (DRO 3,320 milligrams per kilogram [mg/kg]) and gasoline range organics (GRO 55.6 mg/kg) (MLFA 2010a).

ADEC has identified a number of concerns and data gaps associated with the Eureka Lodge site:

- Petroleum contamination remains in the ground above 18 AAC 75 Table B2 Maximum Allowable Concentrations.
- If excavated, benzene-contaminated soil could be a characteristic hazardous waste.
- Soil contamination is not well defined to the south and to the west due to the west tank and asphalt road.
- Groundwater flow direction is not well understood due to lack of recharge and/or frozen monitoring wells.
- A new drinking water well at the site requires evaluation.

On 5 July 2017, ADEC requested samples be collected from monitoring wells, surface water, and the new drinking water well to help determine potential contaminant distribution and concentrations. Additional assessment of the groundwater flow direction was also requested. Lastly, ADEC requested that field work be completed in late summer, such as the end of August, to avoid frozen ground conditions.

2.2. Site Location and Description

Eureka Lodge is located at mile 128 of the Glenn Highway, 30 miles west of Glennallen, Alaska (Figure 1). The lodge owns two ASTs that are located at approximately 61°56'17.39" north latitude and -147°10'20.73" west longitude on the north side of the Glenn Highway, east of the Eureka Lodge (Figure 2). The site is located within Bureau of Land Management Public Land Survey Section 1, Township 21 North, Range 12 East, Seward Meridian.

2.3. Site Operations and History

The building and fuel ASTs are owned and operated by the Eureka Lodge. The west AST, known as west tank, is an 8,000-gallon capacity tank utilized for regular unleaded gasoline. The east AST, known as east tank, is a 6,000-gallon duel compartment tank. The 2,000-gallon northern compartment is used for supreme unleaded gasoline and the 4,000-gallon southern compartment is used for diesel fuel. Both ASTs are skid mounted. The ASTs are filled on an as-needed basis by Crowley.

2.4. Site Investigations and Remediation

2.4.1. June 2010 Removal

On June 11th, 2010 at approximately 17:45, during normal filling operations, Crowley overfilled the east tank at the Eureka Lodge. A total of ten gallons of supreme unleaded gasoline was reported as spilled. Crowley contacted Michael L. Foster & Associates, Inc. (MLFA) to complete the initial removal of impacted soil.

On June 15th and 16th, 2010, MLFA and Crowley hand-excavated and removed impacted soil adjacent to and below the east tank to depths ranging from 11 to 18 inches below ground surface (bgs). The depth of the excavation was limited by harder soils located at approximately 18 inches bgs. A total of nine super-sacks containing 13 tons of contaminated soil were shipped to Alaska Soil Recycling in Anchorage, Alaska for thermal remediation.

As detailed in the 2010 *Spill Response Report,* the contractor felt that the excavation proceeded through the newly-contaminated soil and encountered a deeper layer of soil contamination associated with an earlier and unrelated release (MLFA 2010a).

2.4.2. September 2010 Removal

Based on concentrations of GRO remaining in the soil after the initial excavation and the close proximity of the release to an intake well house located at the lake just north of the site, ADEC required additional excavation work to be performed (MLFA 2010b). On September 28th and 29th, 2010, MLFA returned to the site under contract with Crowley and excavated additional soil.

The east tank and an adjacent shed were moved temporarily to gain access to contaminated soil. MLFA excavated approximately 86 tons of contaminated soil. The excavation material consisted primarily of dry, brownish/grey silt and silty gravel fill material from the ground surface to six feet bgs. Dark grey, moist silt was encountered below 6 feet bgs. Groundwater was not encountered during excavation activities. The total excavation depth was approximately four feet bgs on the northern side of the tank area and seven feet bgs for the rest of the excavation. The excavation averaged 12 feet wide by 23 feet long. The approximate extent of excavation is shown on Figure 3. Concerns that further excavation could affect the stability of the adjacent west tank limited the extent of the excavation to the west. Excavation sidewall and floor confirmation samples collected prior to back filling contained up to 21.2 mg/kg benzene, 604 mg/kg GRO, 19.2 mg/kg ethylbenzene, 84.7 mg/kg xylenes, and 10,900 mg/kg DRO.

Prior to backfilling the excavation, polyethylene sheeting was placed along the excavation sidewalls to demarcate residual contaminated soil from clean backfill material. The excavation was backfilled with clean material on September 30th, 2010.

The contractor concluded: "Based on removal of contaminated soil beneath and around the tank to 7 feet deep, site observations, field screening results, and laboratory analyses, MLFA believes that the recent gasoline release has been significantly remediated, and that additional remedial action is not required (MLFA 2010b)." ADEC assigned spill number 10239916202 to the site and transferred site administration from the ADEC Spill Prevention and Response Program (SPAR) to the ADEC Contaminated Sites Program.

2.4.3. June 2011 Field Activities

In 2011, ERM (formerly OASIS Environmental, Inc.) conducted field activities to further characterize potential contaminant impacts to soil, groundwater, and surface water (OASIS 2011). A total of eight borings were advanced to a depth of 20 feet bgs and sampled. Frozen soils were encountered as shallow as 4 feet bgs. Three of the borings were completed as monitoring wells to allow for collection of groundwater samples. Soil from two borings, both located on the south side of the site, contained fuel concentrations above 18 AAC 75 cleanup levels. Analytical results for soil samples from the other six soil borings were below cleanup levels. Soil boring SB-02 contained 4,000 mg/kg DRO and 0.049 mg/kg benzene. Soil boring SB-03 contained 18E mg/kg benzene. The qualifier E indicates that the reported concentration is greater than the upper calibration limit; the actual concentration is known to be greater than the upper calibration range.

Soil boring logs indicated that groundwater was only encountered in two of the eight boreholes. Three monitoring wells were installed. Monitoring well MW-1 was installed in soil boring SB-02. Monitoring well MW-2 was installed to the east of the 2010 release site, and monitoring well MW-3 was installed to the north, upgradient from the release site.

During June 2011 monitoring activities, monitoring wells MW-1 and MW-3 were dry and could not be sampled. Analytical results from the groundwater sample collected from MW-2 and the surface water samples collected from the nearby unnamed lake showed that target analyte concentrations were below ADEC cleanup levels. The report concluded *"it remains unknown if there is groundwater flow across the site."* A sheen test conducted on shoreline sediments did not produce sheen.

2.4.4. September 2012 Field Activities

In 2012, groundwater was present in all three wells. However, monitoring wells MW-1 and MW-2, located south and east of the ASTs respectively, appeared to be frozen at depths of 8.04 feet bgs and 6.86 feet bgs; respectively (OASIS 2012b). ERM conducted groundwater and surface water sampling at monitoring wells MW- 1, MW-2, MW-3; surface water intake location SW-01; and lake surface water location SW-02. Analytical results from groundwater were below 18 AAC 75 Table C cleanup levels. Analytical results for surface water were below their respective Alaska Water Quality Standards (AWQS). A sheen test was also conducted on shoreline sediments and did not produce sheen.

2.4.5. 2013 Field Activities

In 2013, ERM conducted groundwater monitoring at monitoring wells MW-1, MW-2, and MW-3 (ERM 2013). Analytical results for groundwater samples were all below 18 AAC 75 Table C groundwater cleanup levels. It was concluded that groundwater at the site did not appear to be a productive aquifer because of the lack of measurable recharge in the monitoring wells during the sampling event. The results were consistent with the 2011 and 2012 water quality results, showing no contaminant concentrations above 18 AAC 75 Table C groundwater cleanup levels. It was concluded that no further groundwater monitoring appeared necessary at the site as a result of the release.

2.5. Geology and Hydrology

The Eureka Lodge is situated at approximately 3,290 feet above mean sea level (amsl) and is surrounded by mountains (Figure 1). Located north of the lodge and ASTs is an unnamed lake with mountains beyond the lake rising to over 4,400 feet amsl. South of the site is the Glenn Highway and a steep drop off towards Eureka Creek. Based on the topographic map for the area, the groundwater is expected to flow south. An assessment of groundwater flow is further discussed in Section 3.4.

Soil at the site consists primarily of silt with gravel and organic material from 0 to 8 feet bgs; and silt with 5 to 10 percent gravel from 8 feet bgs to 20 feet bgs. Frozen soil was documented in many of the boreholes when they were installed in 2011. During soil boring work in 2011, groundwater was encountered in two of the eight boreholes at approximately 17 feet bgs. The other boreholes were dry.

2.6. Contaminants of Concern and Regulatory Framework

Groundwater analytical results were compared to 18 AAC 75.345 Table C groundwater cleanup levels. Surface water analytical results were compared to 18 AAC 70.020 AWQS. Drinking water analytical results were compared to 18 AAC 80 Drinking Water Standards. All applicable cleanup levels can be found in the corresponding analytical results tables. Table A below presents the cleanup levels for the contaminants of concern at this project site.

TABLE A: APPLICABLE WATER CLEANUP LEVELS AND STANDARDS FOR CONTAMINANTS OF CONCERN

Contaminant of Potential Concern	ADEC Groundwater Cleanup Level (µg/L) 18 AAC 75.345	Alaska Water Quality Standards (µg/L) 18 AAC 70.020	Drinking Water Maximum Contaminant Levels (μg/L) 18 AAC 80
GRO	2,200		
DRO	1,500		
Benzene	4.6	5	5
Toluene	1,100	1,000	1,000
Ethylbenzene	15	700	700
Total xylenes	190	10,000	10,000
Total aromatic hydrocarbons (TAH)		10	
Total aqueous hydrocarbons (TAqH)		15	

2.7. Project Objectives and Scope of Work

Water quality monitoring and subsurface forensic soil analyses were performed during October 2017. Two objectives were identified for the 2017 field effort. One was to perform water quality monitoring at the site to further document the potential petroleum hydrocarbon impact at the Eureka Lodge site. The other was to better understand what actions, if any, are required to address the 2010 release.

Prescribed assessment activities were described in the 2012 *Groundwater and Surface Water Monitoring Work Plan* (OASIS 2012) as well as the 2017 *Addendum to the 2012 Work Plan* (ERM 2017). Completed activities are summarized below.

- Mobilized ERM personnel to the site.
- Completed subsurface clearance activities, included marking out all utilities and identifying safe places to collect soil samples.
- Advanced four test pits to identify soil that was still contaminated to collect samples for forensic analysis.
- Located monitoring wells.
- Measured depth-to-water (DTW) and total depth of wells MW-3 and MW-1.

- Groundwater from monitoring well MW-3 was analyzed for the full list of volatile organic compounds (VOCs), diesel range organics (DRO), GRO, and polycyclic aromatic hydrocarbons (PAH).
- Groundwater from monitoring well MW-1 was analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), DRO, GRO, and PAHs.
- Performed surface water monitoring at locations SW-01 and SW-02. Both samples were analyzed for GRO, DRO, BTEX and PAHs. Total aromatic hydrocarbons (TAH) and total aqueous hydrocarbons (TAqH) concentrations were calculated for comparison against AWQS (ADEC 2017b).
- Collected a drinking water sample at location DW-01 for PAH and full list VOC analysis.
- Collected elevation data at monitoring wells and the surface water body using a laser auto-leveler to gain accurate water elevation data for the site.
- Delivered water samples to TestAmerica Anchorage for shipment to TestAmerica in Tacoma, WA.
- Shipped soil samples to Torkelson Geochemistry, Inc. in Tulsa, Oklahoma for forensic analysis and interpretation.
- Demobilized ERM personnel and equipment from the site.

3. FIELD ACTIVITIES

Field activities conducted in support of the Eureka Lodge site assessment objectives are described below. Deviations from the work plan include the following:

- Monitoring well MW-2 could not be located; therefore the well was not sampled. Significant effort was made to locate the well. The field team used the large scale, detailed figure from 2013, interviewed the site owner concerning the location, and used a metal detector. The lodge owner mentioned that the gravel area where MW-2 was located was refinished a couple of years ago. He has not been able to locate the monitoring well after the area was refinished.
- Monitoring wells MW-1 and MW-3 were sampled before parameters stabilized due to insufficient groundwater recharge. Details are presented in Section 3.1.

The summary of all analytical samples collected at the site can be found in Table 1. Water quality field parameters can be found in Table 2, while analytical results can be found in Tables 3 through 6.

Sample data sheets are provided as Appendix A and field notes are provided as Appendix B. A photographic log is included as Appendix C.

3.1. Groundwater Sample Collection

3.1.1. Changes to Sampling Protocol for MW-1 and MW-3

Limited available water impacted the groundwater sample collection protocol. Due to schedule constraints and concern with early freeze up of monitoring wells, the Work Plan Addendum was prepared on an expedited basis. Following mobilization, limited recharge at the monitoring wells became evident and the proposed approach was reviewed in light of previous monitoring events. This necessitated a modification of the technical approach to allow sample collection. This section serves to document sampling protocol and rational.

Geologically, MW-1 is situated in a strata not generally recognized as productive aquifer material. The well log indicates silt with fines and gravel (0 to 10 feet bgs), dense silt (10 to 15 feet bgs), and dense silt with fines (15 to 20 feet bgs) (OASIS 2011). At time of drilling the various boreholes, frozen soil (which could indicate static water level) was encountered beginning at depths ranging from approximately 4 feet bgs to 10 feet bgs. During drilling of MW-1 groundwater was evident; however, after completion of the well, water did not flow into the casing (OASIS 2011). MW-3 shows a similar stratigraphic profile to MW-1 with the well screen set in a dense silt horizon. In general the area consists of silts with gravel and organics from 0 to 8 feet; and silt with varying amount of gravel (5 to 10%) from 8 to total depth of the wells/borings (20 feet).

3.1.1.1. MW-1

Because of limited groundwater recharge, it was determined that it would not be possible to purge enough water to obtain stable parameters and still collect a sample. Details are discussed below.

MW-1 exhibits very low recharge. Initial measurements show drawdown of approximately one foot every five minutes at a pump rate of 240 milliliters per minute (mL/min). ADEC Field Sampling Guidance requires that the: "Flow rate must be between 50 and 500 mL/min" (ADEC 2017d). In order to accommodate for this drawdown, the submersible pump was set approximately one foot off the bottom of the well, at 18 feet below top of casing (btoc). Water volume was calculated to determine a water column adequate to fill the required sample jar volumes. It was determined; a two foot water column above the pump would be required to fill the sample bottles. In situ water quality parameters were measured in the hope that the well would stabilize before the drawdown dictated the necessity to sample.

At this point attempts to sample the well in 2011, 2012, and 2013 were reviewed. In 2011, the well was reported as dry. The 2012 Water Monitoring Report states: "MW-1 and MW-2, located south and east of the ASTs, appeared to be frozen at depths of 8.04 ft and 6.86 ft, respectively." "After recording the DTW measurements, wells were purged, however, limited recharge preventing purging with minimum drawdown in the three monitoring wells. No significant recharge occurred in the wells after 5 hours. After purging to the extent possible given the limited recharge, samples were collected for laboratory analysis" (ERM 2013). At MW-1, limited volume allowed for collection of samples for GRO, DRO, and BTEX analysis, but there was insufficient volume to collect a sample for PAH analysis. The 2013 Water Monitoring Report indicated the same approach was used: DTW measurements were collected, wells were purged, limited recharge prevented purging with minimum drawdown, field parameters were recorded, and samples were collected. Field parameters were not taken for MW-1 due to limited groundwater recharge in the monitoring well.

Based on review of in 2011, 2012, and 2013 groundwater monitoring activities and the rate of drawdown observed in 2017, it was determined that it would not be possible to obtain stable parameters and still collect a sample. Although the well parameters did not stabilize during the 2017 sampling event, it was necessary to collect a sample before the well lacked adequate water volume necessary to fill the sample bottles.

The applicability of the water quality parameters and analytical results are suspect, as a stagnant column of water was sampled. Based on the soil properties documented in the boring logs and witnessed during soil sample collection, and based upon the recharge rates experienced, water in the monitoring wells is considered stagnant. An aquifer is not present at this depth.

For comparison purposes, analytical results have been compared to 18 AAC 75 Table C groundwater cleanup levels. The sample may be representative of the stagnant water

filling the pores of the porous, but low permeability substrate. Because of limited water and insufficient soil porosity, human health exposure to this water as drinking water does not appear to be a valid exposure pathway. Results should only be considered indicative of the potential for localized contaminant migration.

During the 2017 sampling event, static water level was encountered at 6.87 feet below top of casing. As the well log indicates the presence of silt with relatively low percentages of fine gravel, it can be assumed this water level is not a function of aquifer flow, as no discernable aquifer is present. Instead, the water appears to be a function of localized precipitation and snow melt accumulating in the well. It can be assumed that the transmissivity of the general area is low, as silt is the predominate media. Therefore, groundwater and contaminate migration is likely minimal in the local area.

3.1.1.2. MW-3

MW-3 exhibits similar hydrogeological characteristics as MW-1. Recharge was approximately on the order of 0.02 feet recovery after 45 minutes. The pump was set at approximately 18.3 feet from btoc to account for low recharge so that a water sample could be collected.

3.1.2. Sample Collection

Groundwater samples were collected from monitoring wells MW-1 and MW-3. Monitoring well locations are shown on Figure 3. Prior to sample collection, each well was gauged for DTW and total depth. Free-phase hydrocarbons were not encountered at either well. After recording the DTW measurements, wells were purged; however, as described in Section 3.1.2, the wells had limited recharge. Therefore wells were only purged to a level that would allow sufficient water volume for sample collection. The field team collected water quality parameters for hydrogen potential (pH), temperature, conductivity in microsemens per centimeter (μ S/cm), oxidation reduction potential (ORP) in millivolts (mV), and dissolved oxygen (DO) in milligrams per liter (mg/L). A summary of water quality parameters collected is provided as Table 2 attached. Sample data sheets are included as Appendix A.

After purging to the extent possible given the limited recharge, samples were collected for laboratory analysis. Samples were submitted for off-site analyses to TestAmerica for the following:

- GRO by method AK101
- PAH by U.S. Environmental Protection Agency (USEPA) SW8270D SIM
- DRO by AK102
- MW-1 only; BTEX by USEPA SW8260C
- MW-3 only; VOCs by USEPA SW8260C and USEPA SW8260C SIM

Water samples were collected directly into laboratory provided and, as appropriate, prepreserved sample containers. Sample containers were labeled with field sample identification numbers, the date and times of collection, and analyses requested.

Note there are three VOCs listed in 18 AAC 75 which TestAmerica does not include in their method USEPA SW8260C list (1,1,2-trichloro-1,2,2-trifluoroethane [Freon-113], vinyl acetate, and 1,4-dioxane). The site history does not suggest that these compounds were ever used at the site; therefore, it was not necessary for those three analytes to be reported.

3.2. Surface Water Sample Collection

Surface water samples 17-ERK-SW-01 and 17-ERK-SW-02 (and duplicate sample 17-ERK-SWZ) were collected at the locations shown on Figure 3 and Photograph 12. These samples were collected using an extended pole with a beaker on the end. The beaker was dipped into the surface water to about 0.5 inches deep. The sample containers were filled up one by one starting with the volatile samples: GRO and BTEX. Surface water samples were analyzed for the following:

- GRO by AK101
- BTEX by USEPA 624 for use in calculating TAH and TAqH
- DRO by AK102
- PAH by USEPA 625 for use in calculating TAqH

Calculated values for TAH and TAqH were compared to AWQS.

This surface water body is no longer used as a drinking water source. The Eureka Lodge now uses their drinking water well described in Section 3.3 and shown in Photographs 10 and 11. Based on input from the owners of the lodge, no other community members drink from the surface water body.

3.3. Drinking Water Sample Collection

The lodge's current drinking water source is a well that was constructed in 2010. ADEC provided Crowley with a copy of the well drilling log. Although the borehole was advanced to 105 feet bgs, sufficient water was only encountered in a gravel lens from 20 feet bgs to 22 feet bgs (according to the well log). The well was constructed with a 6-inch diameter casing that has perforations between 20 feet bgs and 23 feet bgs and an open end. Per an internal ADEC email dated 21 April 2016 and provided via Crowley, ADEC considers this drinking water source to be ground water under the influence of surface water (GWUDISW). The same email chain was initiated with a message from a nearby resident to ADEC and referred to the drinking water system as a "*community well house*" and the source of their water.

A drinking water sample was collected from the new Eureka Lodge drinking water well to compare analytical results to 18 AAC 80 Drinking water regulations. Photograph 11 of

Appendix C, was taken inside of the drinking water well house. The picture shows the top of the drinking water well with a PVC pipe connecting into the drinking water well filtration system. Located on the PVC pipe before the filtration system is a red valve with a hose connection. The hose connection leads outside of the well house. In order to bypass the filtration system and the collection storage tanks, once the system was fully purged, the drinking water sample was collected directly from the hose connection on the outside of the well house. Volatile samples were collected first, followed by nonvolatile samples. The drinking water sample was submitted for off-site analyses for the following constituents:

- PAH by USEPA SW8270D SIM
- Drinking water regulated VOCs by USEPA 524.2

Although the analytical method for PAHs is not specifically a drinking water method, it provides results for the PAH compounds of interest, while the analogous drinking water method would not.

3.4. Groundwater Flow Assessment

To better determine groundwater flow direction, ERM conducted a topographic survey using a level mounted on a tripod and a stadia rod. The relative elevations of the water surface of the unnamed lake and top of casing of each of the monitoring wells were determined. Depth to groundwater was measured for monitoring wells MW-1 and MW-3. Table B below shows the relative elevation measurements.

	Height of MW-1 (ft)	Height of MW-3 (ft)	Height of SW-02 (ft)
Stadia rod measurement (from laser to location)	4.52	4.93	6.97
TOC to water level	6.87	7.37	NA
Laser to top of water	11.39	12.30	6.97
Relative elevation difference from elevation reference point shown on Figure 3 to water level (laser to base of tripod is 4.41 feet)	-6.98	-7.89	-2.56

Table B shows that surface water in the unnamed lake is higher than the groundwater elevation in monitoring wells MW-1 and MW-3. However, the available data suggests that the two monitoring wells may not be hydraulically connected with the lake. The

mountainous terrain and steep slopes suggest that the groundwater slope likely parallels the surface slope, running downhill toward Eureka Creek.

The geological stratum below the site (primarily silt that is likely frozen most of the year) is generally not recognized as productive aquifer material. Monitoring wells exhibited negligible recharge. Water accumulating in the monitoring wells appears to be stagnant water accumulating slowly over time from precipitation and snow melt and does not appear to be hydraulically connected with the unnamed lake. At the drinking water well, a gravel lens from 20 feet bgs to 22 feet bgs may be hydraulically connected with the unnamed lake, which is located approximately 140 feet up hill.

It was not possible to tie in to the nearest survey control point: Permanent Identifier (PID): TT1754; therefore, the reported elevations are relative to the elevation reference point. The location of the level mounted tripod was accurately determined using a global positioning system to allow accurate future assessment at the site.

3.5. Forensic Sample Collection

Given the reportedly limited volume of leaded gasoline released (10 gallons), the large volume of contaminated soil removed (99.28 tons), and results for excavation confirmation samples indicating far higher concentrations of DRO than GRO (10,900 mg/kg DRO verses 604 mg/kg GRO), forensic samples of residual contamination in soil were collected to better understand the nature of residual fuel contamination at the site. Forensic samples were subjected to hydrocarbon fingerprinting (capillary gas chromatography), which provides detailed information not available from routine methods approved by ADEC or the USEPA. This includes better understanding of the type of product released and improved understanding of the amount of weathering that has occurred as the result of evaporation, biodegradation, and dissolution in water. These three processes preferentially reduce fuel components that are more volatile, more readily biodegradable, or more easily dissolved. Assessing impacted soils can help understand the amount and type of weathering that has occurred. Comparison of fingerprints of remaining hydrocarbons to the fingerprints of possible sources can help determine if residual contamination is associated with the June 11th, 2010 release or if it is associated with an earlier, unrelated release.

Soil sample locations were selected based on the location and results of 2010 excavation confirmation samples (MLFA 2010b). Given limitations imposed by utility locations, sample locations were selected with the intent of capturing contamination remaining across the sidewalls and base of the 2010 excavation and with the intent of representing the most contaminated areas.

Three soils samples were collected and labeled TB-2, TB-3, and TB-4 at depths of 1.5 feet bgs, 3.7 feet bgs, and 2.15 feet bgs; respectively. The locations of the samples are shown on Figure 3. To assess impacted soil, sample locations and depths were determined based on two factors. First, the extent and distribution of residual contamination as documented in the 2010 *Spill Response Remedial Action Report* and the 2011 *Site*

Characterization Report was considered. Second, because the September 2010 removal action excavation was lined with polyethylene sheeting prior to backfill, the sheeting was used to distinguish impacted soil from backfill. Samples TB-2 and TB-3 were collected outside of the footprint of the September 2010 excavation; sample TB-4 was collected beneath the 2010 excavation. Samples were collected using a soil auger and clean sample spoon. Unpreserved 4 ounce jars were filled with soil and submitted to Torkelson Geochemistry, Inc., a firm that specializes in forensic evaluation. Samples were characterized using capillary gas chromatography and the laboratory provided written interpretation of the data.

3.6. Investigation-Derived Waste Management

There were two sources of waste for this project: investigation-derived wastes associated with field sampling, and purge water from groundwater sampling. Field sampling wastes generated included used nitrile gloves, paper towels, empty cardboard boxes, sample tubbing, and sampling spoons. All solid waste was placed in trash bags on site and disposed of at the Anchorage landfill. Purge water was treated on site using granular activated carbon. There was no sheen present on the treated water so it was discharged on site.

4. RESULTS AND DISCUSSION

This section presents discussion of the analytical results of groundwater, surface water, and drinking water sampling performed during the October 2017 field effort. A quality assurance summary is also provided.

4.1. Groundwater Sampling Analytical Results

All groundwater samples were analyzed for GRO, DRO, and PAHs. MW-3 was also sampled for a full list of VOCs; MW-1 was also analyzed for BTEX constituents. The analytical results were reported target analytes as non-detect with exception to DRO and dibenzo(a,h)anthracene, both detected at MW-1. DRO was the only constituent above the 18 AAC 75 Table C groundwater cleanup level of 1,500 micrograms per liters (μ g/L) with a result of 3,700 μ g/L. Groundwater analytical results are presented in Table 3 and are summarized on Figure 3.

4.2. Surface Water Sampling Analytical Results

Two surface water samples were collected from the unnamed lake located north of the ASTs. The samples were analyzed for GRO, DRO, BTEX, and PAHs. The only compound detected was DRO at concentrations of 220 μ g/L and 100 μ g/L from SW-01 and SW-02, respectively. AWQS does not regulate DRO and GRO in surface water. Surface Water analytical results are presented in Table 4 and are summarized on Figure 3. Although measured concentrations of all BTEX and PAH compounds were below the detection limit, concentrations for TAH and TAqH were calculated in accordance with ADEC guidance and were below AWQSs.

4.3. Drinking Water Sampling Analytical Results

One drinking water sample was collected from the new Eureka Lodge water well, DW-01. The sample was analyzed for VOCs and PAHs. Toluene was the only analyte detected at a concentration of 0.16J μ g/L for the primary sample and 0.17J μ g/L for the duplicate sample. Both results are significantly lower than the drinking water maximum contaminant level of 1,000 μ g/L, listed in USEPA regulations. Drinking Water analytical results are presented in Table 5 and are shown on Figure 3.

4.4. Quality Assurance Summary Report

All samples were submitted to the project laboratory, TestAmerica, located in Anchorage in accordance with standard chain-of-custody procedures outlined in the work plan. Duplicate samples were collected at a frequency of 10% per method and matrix for quality assurance/quality control (QA/QC) purposes. All samples were preserved and stored at a temperature of less than 6°C for laboratory analysis. A quality assurance review of the analytical results was performed by ERM in the form of a Quality Assurance Summary Report. The report discusses the data QA/QC procedures and presents the results of the QA/QC analysis. Applicable data qualifiers are provided in the tables along with the analytical results. The laboratory analytical reports from TestAmerica are provided as Appendix D. The ADEC analytical data checklist and the ERM Quality Assurance Report are provided as Appendix E.

The Quality Assurance Report indicates the analytical data are acceptable and defensible for project use. A total of 648 results were reported, with no results considered rejected. The data completeness for this project is 100%.

5. ESTIMATE OF FUEL CONTAMINATION REMOVED

Calculations presented in Appendix F estimate the volume of fuel present in the soil excavated from the site in 2010. For comparison, Crowley estimated 10 gallons of unleaded gasoline (~38 liters) were released (MLFA 2010a).

The volume estimate of fuel present in excavated soil was estimated based on the following data:

- The mass of contaminated soil removed on June 15th and 16th, 2010 as reported in the 2010 Spill Response Report (MLFA 2010a),
- GRO and DRO concentrations measured in the characterization sample (EL-5) (MLFA 2010a),
- The published density of fuel based on Safety Data Sheets for typical gasoline and diesel fuel products,
- The mass of contaminated soil removed on September 28th and 29th, 2010 as reported in the 2010 *Spill Response Remedial Action Report* (MLFA 2010b), and
- An average of the GRO and DRO concentrations measured in the characterization sample (EL-5) and concentrations measured in excavation confirmation samples (MLFA 2010a, 2010b).

The estimated volume of fuel present in excavated soil includes 92 liters of gasoline and 581 liters of diesel fuel or other middle range distillate. This volume far exceeds the volume of fuel reported as being released.

It has been assumed that the volume of fuel released, as reported by the operator, is accurate. The density liquid density used in calculating recovered fuel volumes is estimated based on data for Exxon Mobile unleaded automotive gasoline and diesel fuel and is assumed to be representative of fuel removed from the site.

The largest source of uncertainty in the estimate of the volume of fuel in the excavated soil comes from the values used for fuel concentrations. Fuel concentrations present in excavated soil are estimated based on the available analytical data. It was assumed that the analytical results for soil sample EL-5 are representative of the initial 13 tons of soil removed. It was assumed that an average of the analytical results for soil sample EL-5 and of the excavation confirmation samples (Eureka-East, Eureka-South, Eureka-West, Eureka-North, Eureka-BTM-North, and Eureka-BTM-South) is representative of the 86 tons of soil removed in September 2010. Excavated contaminated soil appears to have been impacted primarily by middle range distillates, as opposed to the unleaded gasoline released in 2010.

6. REVIEW OF 2010 CHROMATOGRAPHS

As documented in the *Spill Response Report*, soil sample EL-5 was collected from the contaminated material excavated on June 15th, 2010, and the sample was analyzed in support of waste characterization (MLFA 2010a). At the time of sample collection, this waste characterization sample was intended to be representative of the initial 13 tons of contaminated soil removed in response to the 2010 release. Analytical results for the sample indicate that it contained 1,250 mg/kg GRO, 7,670 mg/kg DRO, 20.7 mg/kg benzene, and elevated levels of other BTEX compounds.

Based on review of the sample's chromatograph by an ERM chemist, the soil that was excavated in 2010 did have gasoline range organics present; however, there was also middle range distillates present. These middle range distillates could be from diesel fuel or arctic grade fuel oil. The results of the chromatograph review confirm reports that there was other fuel spilled at the site in addition to the premium unleaded gasoline spilled by Crowley in 2010. Unfortunately, the chromatograph does not give any insight on the age or weathering of the fuel that was released.

The gas chromatographs are included as Appendix G; the chromatograph for soil sample EL-5 is on the final page of the appendix.

7. FORENSIC SAMPLE ANALYSIS AND INTERPRETATION

Three soil samples were collected at the site for forensic analysis. The hydrocarbon fingerprint analysis and evaluation is presented in Appendix H, while Table C below summarizes the findings.

Sample Description	Depth [feet bgs]	Finding	Uncorrected Age Estimate ¹ [years]
ТВ-2	1.5	Mixture of extremely weathered middle distillate, either diesel fuel or fuel oil, and a smaller amount of unidentifiable heavier hydrocarbon	16 +/-2
TB-3	3.7	Moderately weathered middle distillate, either diesel fuel or fuel oil	3 +/-2
TB-4	2.15	Mixture of severely weathered middle distillate, either diesel fuel or fuel oil and a much smaller amount of unidentifiable heavier hydrocarbon	12 +/- 2

Notes:

The technique used to estimate the date of hydrocarbon release in soil samples does not correct for climatic factors and estimates are based on studies conducted in temperate regions. Given the subarctic climate of Eureka Lodge, weathering processes occur much more slowly and the age listed represents an underestimation of the age of the release. Review of the available data suggests that these soils are likely frozen most of the year. While the soil is frozen, biodegradation of hydrocarbons, the primary agent of weathering, is essentially stopped. While the data are inconclusive as to the date(s) of release(s), they do suggest that biodegradation is negligible for deeper soils (like TB-3) and that soils at this depth are likely frozen for almost the entire year.

The primary conclusion of the forensic analysis is that the residual fuel in the soil samples were comprised primarily of middle distillates. Samples TB-2 and TB-4 also contained smaller amounts of heavier hydrocarbons. These results indicate that residual fuel contamination at the site is not due to the 2010 release of unleaded gasoline.

26

8. CONCLUSIONS

8.1. Groundwater

Monitoring well MW-2 could not be found during the field effort. Monitoring wells MW-1 and MW-3 had almost no recharge resulting in the inability to stabilize parameters before collecting the analytical samples. The only result above the 18 AAC 75 Table C groundwater cleanup levels was DRO at MW-1 with a concentration of 3,700 μ g/L.

8.2. Surface Water

Analytical results for two surface water samples collected from the unnamed lake north of the ASTs indicate no contaminant impact to the surface water. All analytical results for BTEX, PAHs, and GRO were below the detection limit. Low levels of DRO were detected. Measured DRO concentrations were below the 18 AAC 75 groundwater cleanup level and may be related to naturally occurring organic matter in the water column.

8.3. Drinking Water

Analytical results from the Eureka Lodge drinking water well indicated no significant impact from petroleum contamination. Possible sources of the contamination may include the 2010 spill, other spills known to have occurred at the site, other unidentified releases, or components of the drinking water system. Given the extremely low concentration of toluene detected (0.17J μ g/L) relative to the drinking water maximum contaminant level (1,000 μ g/L), the proposal for periodic monitoring appears to be more than adequate.

8.4. Residual Contamination

Based on the analytical results for the final excavation confirmation samples taken in 2010, which exceed current 18 AAC 75 Method Two cleanup levels, and the forensic analysis, residual fuel contamination remains in soil at the site. The primary contaminants of concern are DRO and benzene. The fuel present appears to be primarily a middle range distillate. The high benzene concentrations at much of the site are not associated with other petroleum hydrocarbons and the benzene may have been used and released as a solvent.

The known aerial extent of DRO contamination is very limited. DRO has been detected above the 18 AAC 75 Method Two cleanup level in three soil samples: Eureka-West (10,900 mg/kg), Eureka-South (558 mg/kg), and SB-02-01-SO (4,000 mg/kg) (MLFA 2010b, OASIS 2011). All three of these samples were collected within approximately 8 feet of each other on the south and west side of the east tank. Monitoring well MW-1 was installed in soil boring SB-02; DRO is impacting the water that accumulates in MW-1. The presence of the west tank, the office/storage building, and the paved parking lot

has prevented collection of additional samples to the south and west; the extent of DRO contamination has not been defined in these directions.

BTEX compounds, primarily benzene, are also present. The extent of benzene contamination is far larger than the known extent of DRO. Benzene was detected above the 18 AAC 75 Method Two soil cleanup level in all six of the 2010 excavation confirmation samples and in soil borings SB-02 and SB-03, which were advanced during the 2011 investigation (MLFA 2010b, OASIS 2011). Benzene has been detected at concentrations up to 21.2 mg/kg, far above the current 18 AAC 75 Method Two soil cleanup level 0.022 mg/kg. The highest measured concentrations of benzene occurred in samples Eureka-BTM-North (10.2 mg/kg), Eureka-BTM-South (21.2 mg/kg), and SB-03-02-SO (18E mg/kg); these samples contained concentrations of GRO and DRO below their respective soil cleanup levels (MLFA 2010b, OASIS 2011). These data suggest that a separate hazardous substance release occurred and that the benzene at the site is not associated with the 2010 unleaded gasoline release. Historically, chemicals containing benzene have been used as an industrial solvent; it is especially effective at degreasing metal parts.

All available data suggest that unleaded gasoline released at the site in 2010 was removed by excavation and that any residual fuel from that release has degraded over time.

9. RECOMMENDATIONS

Residual contamination is present in soil underneath the Eureka Lodge ASTs. Dense infrastructure in the area prevents additional excavation of contaminated soil at this time.

At least the top 20 feet of site soil is composed almost entirely of dense silt with some gravel (OASIS 2011). This material likely has a hydraulic conductivity ranging between 0.01 feet per day and 0.001 feet per day, with relative permeability ranging from semipervious to impervious (Bear 1972). The geological stratum situated below the site is generally not recognized as productive aquifer material. Water accumulating in the monitoring wells appears to be stagnant water accumulating slowly over time from precipitation and snow melt. As the water is not associated with an aquifer, continued groundwater monitoring is providing no useful data, and groundwater monitoring should be terminated. The remaining two monitoring wells should be decommissioned.

Based on the estimated volume of fuel removed in soil excavated after the 2010 spill (MLFA 2010a, 2010b), the results of forensic analysis, and review of a chromatograph from the soil removed in 2010, residual fuel contamination appears to be from an older middle range distillate fuel spill at the site.

A release of a hazardous substance including benzene (not associated with a fuel spill) also appears to have occurred. The concentration of benzene relative to toluene, ethylbenzene, xylenes, GRO, DRO, and RRO in sample SB-03-02-SO is much higher than would be expected for a fuel release (OASIS 2011). Benzene is volatile, dissolves readily in water, and (if oxygen is present and temperatures are above freezing) biodegrades readily in the environment.

Despite the low likelihood of contaminant migration, periodic monitoring of the surface water and drinking water for the well appears to be prudent. The number of surface water samples should be reduced from two to one, as the additional sample provides no significant value. To support calculation of TAH and TAqH values, surface water samples should be analyzed for BTEX and PAHs. Analysis of surface water samples for GRO and DRO should not be performed because AWQS values have not been established for these parameters.

A for sale sign was observed on the lodge. A notice of environmental contamination should be filed for the property to inform potential future buyers of the property that residual petroleum hydrocarbon contamination remains at the site.

10.REFERENCES

- Alaska Department of Environmental Conservation (ADEC) 2017a. 18 AAC 75, *Oil and Other Hazardous Substances Pollution Control*. As amended through November 7, 2017.
- ADEC. 2017b. ADEC 18 AAC 70, Alaska Water Quality Standards. 5 February.
- ADEC. 2017c. ADEC 18 AAC 80, Drinking Water. 7 November.
- ADEC. 2017d. ADEC Field Sampling Guidance. August.
- Bear, J. (1972). *Dynamics of Fluids in Porous Media*. Dover Publications. ISBN 0-486-65675-6.
- ERM. 2017. Addendum to the 2012 Groundwater and Surface Water Monitoring Work Plan, Eureka Lodge, Alaska. ADEC Filed Number 210.28.006, Hazard ID 25595. 8 September.
- ERM. 2013. 2013 Water Monitoring Report, Eureka Lodge, Alaska ADEC File Number 210.38.006, Hazard ID 25595. September.
- Michael L. Foster & Associates, Inc. (MLFA) 2010a. Spill Response Report. Eureka Lodge, Eureka, Alaska. Prepared for Crowley Petroleum Distribution. MLFA Job No. CPD-CPD-009-0001. 15 July.
- Michael L. Foster & Associates, Inc. (MLFA) 2010b. Spill Response Remedial Action Report. Eureka Lodge, Eureka, Alaska. Prepared for Crowley Petroleum Distribution. MLFA Job No. CPD-CPD-009-0002. 3 November.
- OASIS Environmental, an ERM Company. (OASIS). 2011. Eureka Lodge Site Characterization Report, Mile 128 Glenn Highway, Alaska. 28 November.
- OASIS. 2012a. 2012 *Groundwater and Surface Water Monitoring Work Plan*, Eureka Lodge, Alaska. 4 June.
- OASIS. 2012b. 2012 Water Monitoring Report, Eureka Lodge, Mile 128 Glenn Highway, Alaska. January.

TABLES

Tables Acronym Key Eureka Lodge Mile 128 Glenn Highway, Alaska

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

Value exceeds specified cleanup level

ADEC GWCL = 18	AAC 75 Table C. Groundwater Cleanup Level.
DW MCL = 40 CFF	R 141.61 MCLs for organic contaminants. Drinking Water Cleanup Levels.
	eater than or equal to Alaska Water Quality Standards (AWQS) (18 AAC 70.020(b))
Acronym	Definition
ADEC	Alaska Department of Environmental Conservation
AWQS	Alaska Water Quality Standards
BTEX	Benzene, Toluene, Ethylbenzene and Xylene Isomers (m&p- and o-)
°C	Degrees Celsius
CL	Cleanup Level
DRO	Diesel Range Organics
DTB	Depth to bottom
DTW	Depth to water
FD	Field Duplicate
ft	Feet
GRO	Gasoline Range Organics
GW	Groundwater
HC	Hydrocarbon
MDL	Method Detection Limit
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
mL	milliliter
μS/cm	Microsiemens per centimeter
µg/L	micrograms per liter
MS/MSD	matrix spike/matrix spike duplicate; triplicates required for MS/MSD analysis
mV	Millivolts
Ν	Normal / Primary
NA	Not Applicable
ND	Not Detected
PAH	Poly-cyclic Aromatic Hydrocarbon
pН	hydrogen potential
PHC	Petroleum Hydrocarbon
RL	Reporting Limit
SVOC	Semi-Volatile Organic Compound
TAH	Total Aromatic Hydrocarbons
TAqH	Total Aqueous Hydrocarbons
VOA	volatile organic analysis
VOC	Volatile Organic Compound

Qualifiers - Organic:

J	U	The analyte was positively identified; associated numerical value is the approximate concentration of
		the analyte in the sample.
UB		Result is reported as nondetect at the reporting limit due to blank contamination.
UJ-L		Not detected result is considered estimated due to LCS/LCSD not meeting quality control criteria.
UJ-C		Not detected result is considered estimated due to calibration not meeting the quality control
		standards.

Table 1: Sample Collection Summary Eureka Lodge Mile 128 Glenn Highway, Alaska

Location ID	Sample ID	Sample Date	Sample Type	Matrix	Analysis
MW-1	17-ERK-MW-1	10/5/17	Ν	Water	BTEX, GRO, DRO, PAH
MW-3	17-ERK-MW-3	10/5/17	Ν	Water	GRO, DRO, PAH, VOC (8260C and 8260C SIM)
101 0 0 -3	17-ERK-MWZ	10/5/17	FD	Water	GRO, DRO, PAH, VOC (8260C and 8260C SIM)
SW-1	17-ERK-SW-01	10/5/17	Ν	Water	GRO, DRO, BTEX,PAH
SW-2	17-ERK-SW-02	10/5/17	Ν	Water	GRO, DRO, BTEX,PAH
	17-ERK-SWZ	10/5/17	FD	Water	GRO, DRO, BTEX,PAH
DW-01	17-ERK-DW-01	10/5/17	Ν	Water	PAH, VOC
	17-ERK-DWZ	10/5/17	FD	Water	PAH, VOC
TB-2	TB-2	10/4/17	Ν	Soil	Torkelson Fingerprinting, GC Characterization
TB-3	TB-3	10/4/17	Ν	Soil	Torkelson Fingerprinting, GC Characterization
TB-4	TB-4	10/4/17	Ν	Soil	Torkelson Fingerprinting, GC Characterization

Table 2: Water Quality Parameters Eureka Lodge Mile 128 Glenn Highway, Alaska

Parameter		Color	Conduct- ivity	Dissolved Oxygen		Oxidation Reduction Potential		Sheen	Tempera- ture	Turbidity	Sample Depth	Total Depth	
AWQS-Lo	AWQS-Lowest - Fresh Water		NA	NA	>5mg/L	NA	NA	6.5 - 8.5	no HC Sheen	<15°C	NA		
Location ID	Sample Date	Matrix	NA	μS/cm	mg/L	NA	mV	pH Units	NA	°C	NA	Feet	Feet
MW-1	10/5/2017	Water	clear	804	1.77	None	-180	6.14	None	1.01	Low	18	19.1
MW-3	10/5/2017		cloudy tan	396	7.23	None	-84.7	5.03	None	2.93	Medium	18.3	19.32
SW-1	10/5/2017	Water	clear	21	9.76	None	-89.3	8.74	None	4.22	Clear	0.16	4 to 5
SW-2	10/5/2017			22	10.83	None	-129.8	9.09	None	4.02	Low	0.16	4 to 5
DW-01	10/5/2017	Water	clear	21	10.19	None	-73.8	7.96	None	5.38	Clear	Unknown	125

Table 3: Groundwater Laboratory Analytical Results Eureka Lodge Mile 128 Glenn Highway, Alaska

	Location ID	MW-1	MV	-
	Sample Date Sample Type	5-Oct-17 N	5-Oct-17 N	5-Oct-17 FD
Analyte	ADEC GW CL	1	IN .	
Method AK101, μg/L Gasoline Range Organics (C6-C10)	2,200	ND (1,000)	ND (1,000)	ND (1,000)
Method AK102, µg/L	2,200	110 (1,000)	110 (1,000)	11D (1,000)
Diesel Range Organics (C10-C25)	1,500	3,700	ND (110) UB	ND (100) UB
Method SW8260C, μg/L 1,1,1-Trichloroethane	8000		ND (3)	ND (3)
1,1-Dichloroethane	28		ND (3) ND (2)	ND (3)
1,1-Dichloropropene			ND (3)	ND (3)
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	7 0.0075		ND (5) ND (2)	ND (5) ND (2)
1,2,4-Trichlorobenzene	4		ND (2)	ND (2)
1,2,4-Trimethylbenzene	15		ND (3)	ND (3)
1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene			ND (10)	ND (10) ND (2)
1,2-Dichloropropane	300 4.4		ND (2) ND (1)	ND (2) ND (1)
1,3,5-Trimethylbenzene	120		ND (3)	ND (3)
1,3-Dichlorobenzene	300		ND (2)	ND (2)
1,3-Dichloropropane 2,2-Dichloropropane	4.7		ND (2) ND (3)	ND (2) ND (3)
2-Butanone	5600		ND (20)	ND (20)
2-Chlorotoluene			ND (3)	ND (3)
4-Chlorotoluene 4-Isopropyltoluene			ND (2) ND (3)	ND (2) ND (3)
4-Isopropyitoluene 4-Methyl-2-pentanone	6300		ND (3) ND (15)	ND (3) ND (15)
Acetone	14000		ND (50)	ND (50)
Benzene	4.6	ND (2)		
Bromobenzene Bromochloromethane	62 1.3		ND (2) ND (2)	ND (2) ND (2)
Carbon disulfide	810		ND (1)	ND (2)
Carbon tetrachloride	4.6		ND (3)	ND (3)
Chlorobenzene	78		ND (2)	ND (2)
Chloroethane Chloromethane	21000		ND (5) ND (20)	ND (5) ND (20)
Dichlorodifluoromethane	8.7		ND (5) UJ-C	ND (5) UJ-C
Ethylbenzene	15	ND (3)	ND (3)	ND (3)
Isopropylbenzene	450		ND (2)	ND (2)
Methyl tert-butyl ether Methylene Chloride	140 110		ND (2) ND (5)	ND (2) ND (5)
m-Xylene & p-Xylene		ND (3)	ND (3)	ND (3)
n-Butylbenzene	1000		ND (3)	ND (3)
N-Propylbenzene o-Xylene	660	 ND (2)	ND (3) ND (2)	ND (3) ND (2)
sec-Butylbenzene	2000		ND (2)	ND (2)
Styrene	1200		ND (5)	ND (5)
t-Butylbenzene	690		ND (3)	ND (3)
Toluene trans-1,2-Dichloroethene	1,100 360	ND (2)	ND (2) ND (3)	ND (2) ND (3)
Trichlorofluoromethane	5200		ND (3)	ND (3)
Total Xylenes	190	ND (5)	ND (5)	ND (5)
Method SW8260C SIM, μg/L 1,1,1,2-Tetrachloroethane	5.7		ND (0.5)	ND (0.5)
1,1,2,2-Tetrachloroethane	0.76		ND (0.5)	ND (0.5)
1,1,2-Trichloroethane	0.41		ND (0.5)	ND (0.5)
1,1-Dichloroethene	280		ND (0.5)	ND (0.5)
1,2-Dibromoethane 1,2-Dichloroethane	 1.7		ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
1,4-Dichlorobenzene	4.8		ND (0.5)	ND (0.5)
2-Hexanone	38		ND (0.5)	ND (0.5)
Benzene	4.6		ND (0.5)	ND (0.5)
Bromodichloromethane Bromoform	1.3 33		ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Bromomethane	7.5		ND (0.5)	ND (0.5)
Chloroform	2.2		ND (0.5)	ND (0.5)
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	36 4.7		ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Dibromochloromethane	8.7		ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Dibromomethane	8.3		ND (0.5)	ND (0.5)
Hexachlorobutadiene	1.4		ND (0.5)	ND (0.5)
Naphthalene Tetrachloroethene	1.7 41		ND (0.5) ND (0.5)	ND (0.5) ND (0.57) UI
trans-1,3-Dichloropropene	4.7		ND (0.5) ND (0.5)	ND (0.57) 01 ND (0.5)
Trichloroethene	2.8		ND (0.5)	ND (0.5)
Vinyl chloride	0.19		ND (0.5)	ND (0.5)
Method SW8270D-SIM, μg/L 1-Methylnaphthalene	11	ND (0.016)	ND (0.017)	ND (0.017)
2-Methylnaphthalene	36	ND (0.016) ND (0.024)	ND (0.017) ND (0.025)	ND (0.017) ND (0.026)
Acenaphthene	530	ND (0.016)	ND (0.017)	ND (0.017)
Acenaphthylene	260	ND (0.016)	ND (0.017)	ND (0.017)
Anthracene Benzo(a)anthracene	43 0.12	ND (0.016) ND (0.016)	ND (0.017) ND (0.017)	ND (0.017) ND (0.017)

Table 3: Groundwater Laboratory Analytical Results Eureka Lodge Mile 128 Glenn Highway, Alaska

	Location ID	MW-1	MW-3		
	Sample Date	5-Oct-17	5-Oct-17	5-Oct-17	
	Sample Type	Ν	Ν	FD	
Analyte	ADEC GW CL				
Benzo(a)pyrene	0.034	ND (0.016) UJ-L	ND (0.017) UJ-L	ND (0.017) UJ-L	
Benzo(b)fluoranthene	0.34	ND (0.016)	ND (0.017)	ND (0.017)	
Benzo(g,h,i)perylene	0.26	ND (0.016)	ND (0.017)	ND (0.017)	
Benzo(k)fluoranthene	0.8	ND (0.024)	ND (0.025)	ND (0.026)	
Chrysene	2	ND (0.016)	ND (0.017)	ND (0.017)	
Dibenzo(a,h)anthracene	0.034	0.0019 J	ND (0.017)	ND (0.017)	
Fluoranthene	260	ND (0.016)	ND (0.017)	ND (0.017)	
Fluorene	290	ND (0.016)	ND (0.017)	ND (0.017)	
Indeno(1,2,3-cd)pyrene	0.19	ND (0.016)	ND (0.017)	ND (0.017)	
Naphthalene	1.7	ND (0.032)	ND (0.033)	ND (0.034)	
Phenanthrene	170	ND (0.016)	ND (0.017)	ND (0.017)	
Pyrene	120	ND (0.016)	ND (0.017)	ND (0.017)	

Table 4: Surface Water Laboratory Analytical Results Eureka Lodge Mile 128 Glenn Highway, Alaska

	Location ID	SW-01	CIA	/-02
	Location ID	5-Oct-17	5-Oct-17	5-Oct-17
	Sample Date Sample Type			
A realization	AWQS	N	N	FD
Analyte	AwQ5			
Method AK101, µg/L				
Gasoline Range Organics (C6-0	C10)	ND (1000)	ND (1000)	ND (1000)
0 0 (
Method AK102, μg/L				
Diesel Range Organics (C10-C2	25)	220	100	99 J
	- ' · · · · ·			
Method E624, μg/L				
Benzene	5	ND (2)	ND (2)	ND (2)
Ethylbenzene	700	ND (3)	ND (3)	ND (3)
m-Xylene & p-Xylene		ND (3)	ND (3)	ND (3)
o-Xylene		ND (2)	ND (2)	ND (2)
Toluene	1,000	ND (2)	ND (2)	ND (2)
Total Xylenes	10,000	ND (5)	ND (5)	ND (5)
Method E625, μg/L				
1-Methylnaphthalene		ND (4)	ND (4)	ND (4)
2-Methylnaphthalene		ND (1.6)	ND (1.6)	ND (1.6)
Acenaphthene	1,200	ND (1.6)	ND (1.6)	ND (1.6)
Acenaphthylene		ND (4)	ND (4)	ND (4)
Anthracene	9,600	ND (0.16)	ND (0.16)	ND (0.16)
Benzo[a]anthracene		ND (12)	ND (12)	ND (12)
Benzo[a]pyrene ²	0.2	ND (4)	ND (4)	ND (4)
Benzo[g,h,i]perylene		ND (4)	ND (4)	ND (4)
Benzofluoranthene		ND (4)	ND (4)	ND (4)
Chrysene		ND (2.4)	ND (2.4)	ND (2.4)
Dibenz(a,h)anthracene		ND (2.4)	ND (2.4)	ND (2.4)
Fluoranthene	300	ND (12)	ND (12)	ND (12)
Fluorene	1,300	ND (8)	ND (8)	ND (8.1)
Indeno[1,2,3-cd]pyrene		ND (4)	ND (4)	ND (4)
Naphthalene		ND (1.6)	ND (1.6)	ND (1.6)
Phenanthrene		ND (4)	ND (4)	ND (4)
Pyrene	960	ND (8)	ND (8)	ND (8.1)
Calculated values, μg/L				
TAH ¹	10	3.5	3.5	3.5
TAqH ¹	15	6.9	6.9	6.9

¹ TAH and TAqH were calculated following ADEC guidance, using 2 times the MDL

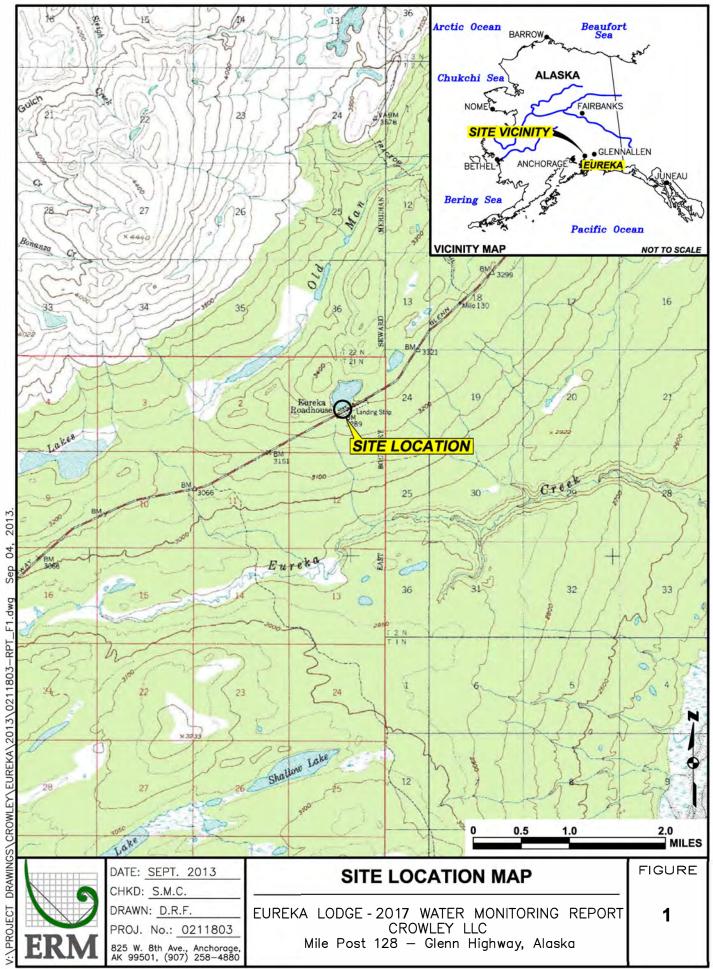
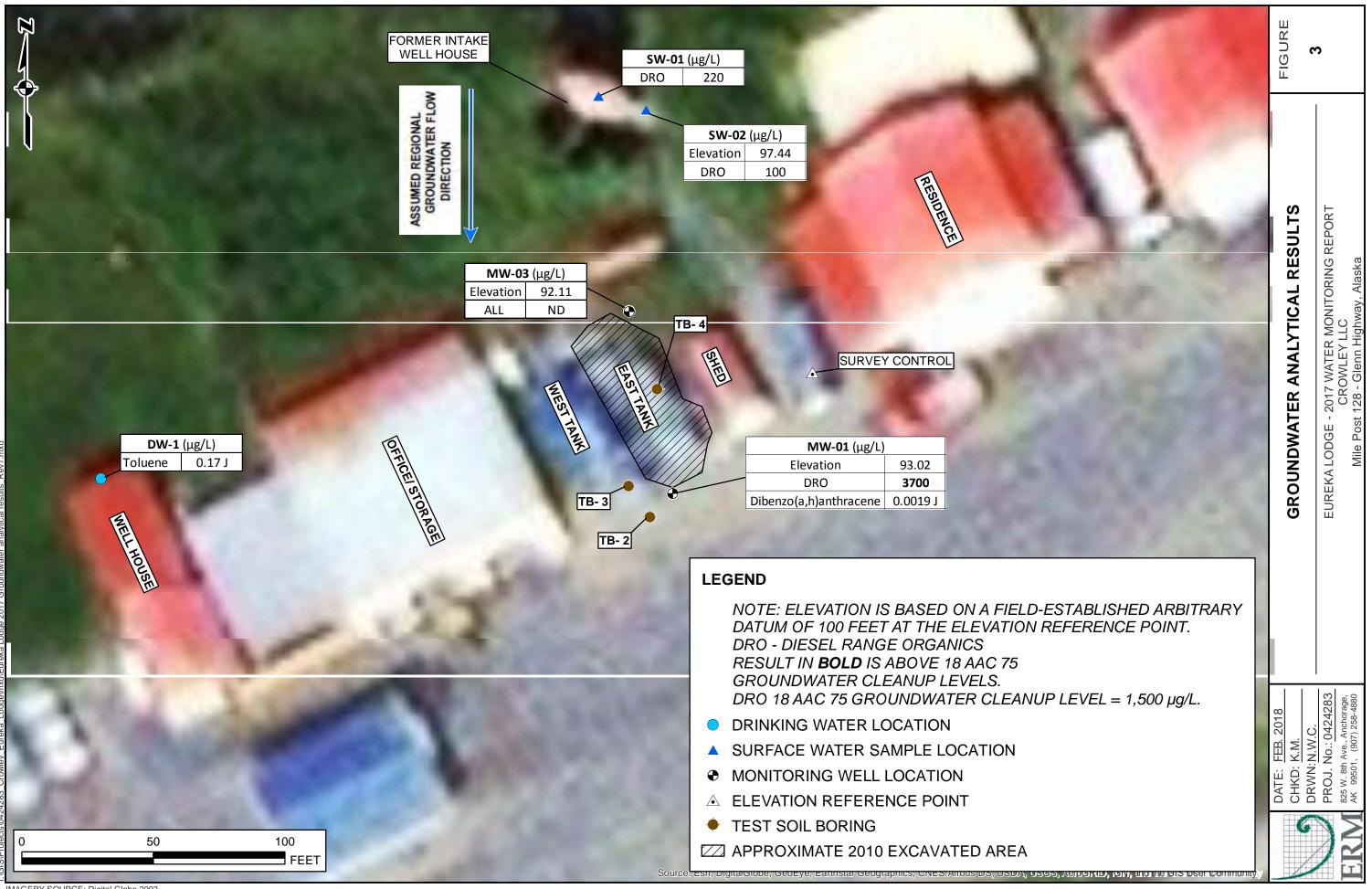

 2 The LOD for benzo(a)pyrene (0.16 ug/L, calculated using 2 times the MDL) is below the AWQS

Table 5: Drinking Water Laboratory Analytical Results Eureka Lodge Mile 128 Glenn Highway, Alaska

	Location ID	DV	V-01
	Sample Date	5-Oct-17	5-Oct-17
	Sample Type	N	FD
Analyte	DW MCL		
Method E524.2, µg/L			
	200		
1,1,1-Trichloroethane	200	ND (0.5)	ND (0.5)
1,1,2-Trichloroethane	5	ND (0.5)	ND (0.5)
1,1-Dichloroethene	7	ND (0.5)	ND (0.5)
1,2,4-Trichlorobenzene	70	ND (0.5)	ND (0.5)
1,2-Dichlorobenzene	75	ND (0.5)	ND (0.5)
1,2-Dichloroethane	5	ND (0.5)	ND (0.5)
1,2-Dichloropropane	5	ND (0.5)	ND (0.5)
1,4-Dichlorobenzene	600	ND (0.5)	ND (0.5)
Benzene	5	ND (0.5)	ND (0.5)
Carbon tetrachloride	5	ND (0.5)	ND (0.5)
Chlorobenzene	100	ND (0.5)	ND (0.5)
cis-1,2-Dichloroethene	70	ND (0.5)	ND (0.5)
Ethylbenzene	700	ND (0.5)	ND (0.5)
Methylene Chloride	5	ND (0.5)	ND (0.5)
Styrene	100	ND (0.5)	ND (0.5)
Tetrachloroethene	5	ND (0.5)	ND (0.5)
Toluene	1,000	0.16 J	0.17 J
trans-1,2-Dichloroethene	100	ND (0.5)	ND (0.5)
Trichloroethene	5	ND (0.5)	ND (0.5)
Vinyl chloride	2	ND (0.5)	ND (0.5)
Xylenes, Total	10,000	ND (0.5)	ND (0.5)
Method SW8270D-SIM, µg/L			
1-Methylnaphthalene		NID (0.017)	NID (0.017)
2-Methylnaphthalene		ND (0.017)	ND (0.017)
Acenaphthene		ND (0.025)	ND (0.025)
		ND (0.017)	ND (0.017)
Acenaphthylene		ND (0.017)	ND (0.017)
Anthracene		ND (0.017)	ND (0.017)
Benzo(a)anthracene		ND (0.017)	ND (0.017)
Benzo(a)pyrene	0.2	ND (0.017) UJ-L	ND (0.017) UJ-L
Benzo(b)fluoranthene		ND (0.017)	ND (0.017)
Benzo(g,h,i)perylene		ND (0.017)	ND (0.017)
Benzo(k)fluoranthene		ND (0.025)	ND (0.025)
Chrysene		ND (0.017)	ND (0.017)
Dibenzo(a,h)anthracene		ND (0.017)	ND (0.017)
Fluoranthene		ND (0.017)	ND (0.017)
Fluorene		ND (0.017)	ND (0.017)
Indeno(1,2,3-cd)pyrene		ND (0.017)	ND (0.017)
Naphthalene		ND (0.033)	ND (0.033)
Phenanthrene		ND (0.017)	ND (0.017)
Pyrene		ND (0.017)	ND (0.017)

Maximum contaminant levels (MCL) are from 40 CFR 141.61.

FIGURES



SOURCE: NATIONAL GEOGRAPHIC TOPO SOFTWARE PROGRAM 2007.

IMAGERY SOURCE: Digital Globe 2003.

	FIGURE	7
Transition	GROUNDWATER ANALYTICAL RESULTS	EUREKA LODGE - 2017 WATER MONITORING REPORT CROWLEY LLC Mile Post 128 - Glenn Highway, Alaska
	OV. 2017 .M.	DRWN: N.W.C. PROJ. No.: 0424283 825 W. 8th Ave., Anchorage, AK 99501, (907) 258-4880
ND	DATE: <u>N</u> CHKD: K	DRWN: <u>N</u> PROJ. N. 825 W. 8th A AK 99501,
ELEVATION REFERENCE POINT ORINKING WATER LOCATION		ERM

IMAGERY SOURCE: Digital Globe 2003.

APPENDIX A

Sample Data Sheets

		GROUND	WATER SA	MPLING I	FORM		CLIENT:	Crowley		
					Museen		SITE:	Eureka Lodge	-	
SAMPLER(S) N	NAME:		Jerem	y Stariwat/Kassi	Powers		DATE:	10/51	17	
SAMPLE ID ON COC: 17- ERK - MW-1							MONITORIN	GWELLID: M	W-1	
YSI #/SN:	177	11 613	F 1111			· · · · ·	SHEET 1	OF 1	1	
Second Second	Day	m Cloudy	400			1 in = 0.083 8-2 in	= 0.167 ft; 3 in = 0.2			
Weather:		No			DIAMETER OF	a second s		ay n, 4 m – 0.355 n		(FI
PRODUCT PR		18			RADIUS OF WI					(FT
	AMPLE METH			D., b.				IG POINT (D):	910	(F1
	P: Benefalle	G DEVICE: Oil/		Probe	(manifestion of the second sec			(d): 6.87	1.10	(F)
	P: Remetative	1000	ole Rump							
VELL INTEG	and so in the second	No		-			N (L): (D-d)=			(F)
REQUIRED RE			12.20		And and a state of the state of		N (V): (3.14xRxR	- 0	1	(CUBIC FI
PUMP INTAKI	no recha	18 feet	non well	inws and	WELL VOLUM	Min P	urge Volume ted in the field and used f	0.1	Max Purge Volume mes; rounded values are sho	(GAL
dunny p	Mericins	sanoing e	Newets.		informational purposes of			TURBIDITY		1
TIME	VOLUME (GAL)	WATEŘ LEVEL (ft BTOC)	TEMP (deg C)	Conductivity (µS/cm)	DO (mg/L)	, PH	ORP (mV)	(Visual: High, Med, Low, Clear)	APPEARANCE OF WATER (Visual)	ODOR
1442	Ø	6.87								
1444	Ø	6.81							1.1.1	
1446	0.1	7.18	2.30	817	10.16	4.57	-48.5	Med	cloudy	NO
1451	0,4	7.82	1.97	853	1.59	5.62	-151.8	Med	cloudy	No
		8.82				•	-166.4	11	11	11
1456	10		2.27	868	1.07	5.81)r	11	11
1501	1.0	9.68	1.70	860	0.31	6.16	-179.4	· · · · · · · · · · · · · · · · · · ·	11	
1506	1.3	10.99	1.34	349 .	0.34	6.28	-185.6	Low		11
15 11	1.6	11.47	1.37	850	0.42	6.55	- 193.1	Iau	clean	No
1516	1.9	12.12	1.26	844	0.53	6.42	- 192.6	84	4	11
1521	2.2	12.86	1.19	817	1.62	6.32	-185.9	- 11	U	11
1526	2.5	14.95	1.01	801	1.84	6.21	- 180.9		"	"
1531	2.8	15.5	1.01	804	1.77	6.14	-150.0	15	11	11
-	5	topped Pin	raing bei	invise of	nadaquet	sample u	lume			1.0
n 3-5 minute into • •		when three (3) cons lowing criteria: hits for pH iture tivity	secutive readings	• ±10 mV for Ol • ±10% for DO	y, and DO collect RP or ±10% if be > 0.50 mg/L. Thr	d tween -100 mV a ee DO readings -	nd +100 mV < 0,50 mg/L can l	be considered stab		
		0 11			ZATION or UNT	all a set of all			17.002264gal	sgal / 5m
	ME PURGED:	2. 0 (GAL)			(desired range is		aan): 69	Oml/min		- Jan
SAMPLE TIM	E: 1535 1 in number of b			QC SAMPLES	COLLECTED:	NA				
GRO (AKI		3	HONEVON	(HLL)						
DRO (AK		2		Muler (HC	6)					
PAH (5270	(MIZO	2		pres)						
BTEX (SZ	60C)	3	40me VOA			Other:	a ola	0	0)	
		Nok: New open	well monne	nent Wi	other herel	after s	ampies	= 18.08	1.1	
Turbidity (NTU	J):					1				
Sampler Signat	ure 1/	no Man	0,000 /		QC Check Sigr	ature /	mat		-	
Burne - Burne	IN	VVVVVV	VVV		17	$\sim l$	WW FA			

in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	(F (F (F (F (CUBIC F (CUBIC F (GA re shown for CE
AMPLE ID ON COC: SAMPLE ID ON COC: SAMPLE ID ON COC: SINCE SAMPLE ID ON COC: SINCE SINCE ID ON COC: SINCE ID ON TORING WELL ID: MUNTORING WELL ID: MUNTORIN	(F (F (F (F (CUBIC F (CUBIC F (GA re shown for CE
AMPLE ID ON COC: NONTTORING WELL ID: MUY 2 SHEET OF SHEET OF SHEET SHEET OF SHEET SHEET OF SHEET SHEET OF SHEET SHE SHE SHE SHE SHE SHE SHE SHE	(F (F (F (F (CUBIC F (CUBIC F (GA re shown for CE
SHET OF Weather: 1 in = 0.03 h; 2 in = 0.167 h; 3 in = 0.25 h; 4 in = 0.33 h PRODUCT PRESENT: DIAMETER OF WELL: RADUS OF WELL (N): RADUS OF WELL (R): TYPE OF PUMP: Perivalitic DIAMETER OF WELL: Weather: TOTAL DEPTH OF WELL BLOW MEASURING POINT (D): DEPTH TO GW BELOW MEASURING POINT (D): DEPTH TO GW BELOW MEASURING POINT (D): DEPTH TO GW BELOW MEASURING POINT (D): DEPTH TO GW BELOW MEASURING POINT (D): MELL INTEGRITY: REQUIRED REPAIRS: VOLUME (7 d&c)' VULIN (GAL) WATER TEMP Conductivity TIME VOLUME (Asc) Mar Preg Value: TIME VOLUME (Asc) Mar Preg Value: Met Conductivity (mg/L) pH ORP (GAL) VELL VOLUME: (7 d&c)/ Mar Preg Value: TIME VOLUME (Asc) Mar Preg Value: Met Conductivity (mg/L) pH ORP (Visual) OF VATE (GAL) VOLUME (Asc) Mar Preg Value: Met Conductivity (mg/L) pH ORP (Visual) TIME VOLUME (Asc) (Visual) OP VATE (GAL) (GAL) (GAL) (Mar Preg Value) (Mar Preg Value) <	(F (F (F (CUBIC F (GA re shown for CE
In 0.083 ft, 2 in 0.087 ft, 2 in 0.087 ft, 2 in 0.025 ft, 4 in 0.033 ft PRODUCT PRESENT: PUTGE AND SAMPLE METHOD: Low Flow WATER LEVEL MEASURING DEVICE: OILWAter Interface Probe TYPE OF PUMP: Peristalitie Well INTEGRITY: REQUIRED REPAIRS: PUMP INTAKE DEPTH: TIME VOLUME WATER LEVEL, (R, Sum 0.025 ft, 2 in 0.017 (d): DEPTH TO GW BELOW MEASURING POINT (D): DEPTH TO GW BELOW MATER (GALOW) (GAL) (GAL) TIME VOLUME VOLUME (GAL) DEPTH TO COM BELOW MATER LEVEL, (R) (GAL) OLO	(F (F (F (CUBIC F (GA re shown for CE
PRODUCT PRESENT: DIAMETER OF WELL: PURGE AND SAMPLE METHOD: Low Flow RADIUS OF WELL (R): WATER LEVEL MEASURING DEVICE: OR/Water Interface Probe TOTAL DEPTH OF WELL BELOW MEASURING POINT (D): TYPE OF PUMP: Peristallic DEFTH TO GW BELOW MEASURING POINT (D): WELL INTEGRITY: DEFTH TO GW BELOW MEASURING POINT (D): WELL INTEGRITY: DEFTH TO GW BELOW MEASURING POINT (D): WELL INTEGRITY: DEFTH TO GW BELOW MEASURING POINT (D): WELL OF WATER COLUMN (L): (D-d)= VOLUME (CABASE) WELL VOLUME: (7.48xV)= (GAL) 2: TIME YOLUME (GAL) REVEL (R) TIME YOLUME (R) (GAL) REVEL (R) (GAL) PII (GAL) REVEL (R) (GAL) PII (GAL) REVEL (R) (GAL) PII (GAL) PII <td>(F (F (F (CUBIC F (GA re shown for CE</td>	(F (F (F (CUBIC F (GA re shown for CE
ADJUSCOLUMENT RADULS OF WELL (R): RADULS OF WELL (R): TOTAL DEPTH OF WELL BELOW MEASURING POINT (D): TYPE OF PUMP: Peristaltic DEPTH TO GW BELOW MEASURING POINT (D): WELL INTEGRITY: DEPTH OF WELL BELOW MEASURING POINT (D): REQUIRED REPAIRS: VOLUME OF WATER COLUMN (L): (D-0)= WELL INTEGRITY: (GAL) WINTAKE DEPTH: WELL VOLUME: (7,800)= TIME YOLUME (GAL) (R BTOC) (R BTOC) (Geg C) (R) (GUL ADAR) (R) (GUL ADAR) (R) (GAL) (R)	(F (F (CUBIC F (GA re shown for CE
WATER LEVEL MEASURING DEVICE: Oil/Water Interface Probe TOTAL DEPTH OF WELL BELOW MEASURING POINT (D): TYPE OF PUMP; Peristaltic WELL INTEGRITY: REQUIRED REPAIRS: PUMP INTAKE DEPTH: WELL VOLUME: (7.88v/)- WITTER COLUMN (V): (1.14x8x8x1) WELL VOLUME: (7.88v/)- WITTER COLUMN (V): (1.14x8x8x1) WELL VOLUME: (7.88v/)- WITTER COLUMN (V): (1.14x8x8x1) WELL VOLUME: (7.88v/)- WELL VOLUME: (7.88v/)- WITTER COLUMN (V): (1.14x8x8x1) WELL VOLUME: (7.88v/)- WITTER COLUMN (V): (1.14x8x8x1) WELL VOLUME: (7.88v/)- WITTER COLUMN (V): (1.14x8x8x1) WELL VOLUME: (7.88v/)- (GAL) TIME VOLUME (GAL) (GAL) (1.87v) (fit BTOC) (deg C) (fit BTOC) (deg C) (fit BTOC) (fit BTOC) (fit BTOC) (deg C) (fit BTOC) (fit BTOC) (fit BTOC) (deg C) (fit BTOC) (deg C) (fit BTOC) (deg C) (fit BTOC) (deg C)	(F (CUBIC F (GA re shown for CE
TYPE OF PUMP: Peristaltic DEPTH TO GW BELOW MEASURING POINT (d): WELL INTEGRITY: ENGTH OF WATER COLUMN (L): (D-d)- WUMP INTAKE DEPTH: WELL VOLUME: (7.48x/). WELL VOLUME: (7.48x/) (GAL) 33- Market DEPTH: WELL VOLUME: (7.48x/). WELL VOLUME: (7.48x/) (GAL) 33- Market DEPTH: Market Depth: WELL VOLUME: (7.48x/) (GAL) 33- Market DEPTH: Market Depth: Market Depth: Depth: Market Depth: Depth: Market Depth: Depth: Market Depth: <td>(F (CUBIC F (GA re shown for CE</td>	(F (CUBIC F (GA re shown for CE
WELL INTEGRITY: LENGTH OF WATER COLUMN (L): (D-0)= REQUIRED REPAIRS: VOLUME OF WATER COLUMN (Y): (3.143RCRcL) PUMP INTAKE DEPTH: VOLUME OF WATER COLUMN (Y): (3.143RCRcL) WELL VOLUME: (7.46X)- (GAL) 32* TIME VOLUME (B COLUMN (Y): (7.45X)- (GAL) TEMP (deg C) (R) Status TEMP (deg C) (R) Status DO PH ORP (TURBIDITY (V): sail: High, OF WATER (V): sail: Hi	(CUBIC F (GA re shown for CE
NUME OF REPAIRS: VOLUME OF WATER COLUMN (V): (3.14stststst) WELL VOLUME: (7.48sty)_ (GAL) X3= Mis Providem: Marked Deptth: TIME VOLUME (7.4sty)_ (GAL) Mis Providem: Marked Depth TIME VOLUME (7.4sty)_ (GAL) X3= TIME VOLUME (7.4sty)_ (GAL) X3= Mis Providem: Marked Depth TIME VOLUME (GAL) VOLUME (7.4sty)_ (GAL) X3= Mis Providem: Mis Providem: Provide	(CUBIC F (GA re shown for CE
WELL VOLUME: (7.48xV)- (GAL) X3- Mar Parge Volume TIME VOLUME: (7.48xV)- (GAL) X3- TIME VOLUME: (7.48xV)-	(GA re shown for CE
Committee Datation Max Progression Max Progression TIME VOLUME LEVEL LEVEL (n BTOC) TEMP (deg C) Conductivity (µS/cm) DO (mg/L) pH ORP (mv) TURBIDITY (Visual: High, Med, Low, Clear) APPEARAN OF WATE (Visual) TIME VOLUME LEVEL (n BTOC) TEMP (deg C) Conductivity (µS/cm) DO (mg/L) pH ORP (mv) APPEARAN (Visual: High, Med, Low, Clear) APPEARAN (Visual) Image: Conductivity (n BTOC) Image: Conductivity (n BTOC) Image: Conductivity (µS/cm) Image: Conductivity (µS/cm) Image: Conductivity (µS/cm) Image: Conductivity (Visual) Image: Conductivity (In BTOC) Image: Conductivity (In BTOC) Image: Conductivity (µS/cm) Image: Conductivity (µS/cm) Image: Conductivity (Visual) Image: Conductivity (In BTOC) Image: Conductivity (Visual) Image: Conductivity (In BTOC) Image:	re shown for CE
TIME VOLUME WATER TEMP Conductivity DO TURBIDITY (Visual: High, OF WATE TIME VOLUME LEVEL (R BTOC) TEMP Conductivity DO pH ORP TURBIDITY APPEARAN OF WATE Image: Colspan="2">(GAL) Image: Colspan="2">Image: Conductivity DO pH ORP (Wisual) Med, Low, OF WATE (Visual) Image: Colspan="2">Image: Conductivity DO pH ORP (Wisual) OF WATE (Visual) OF WATE OF WATE (Visual) OF WATE OF WATE OF WATE OF WATE OF WA	CE
TIME VOLUME (GAL) WATER LEVEL ((BTOC) TEMP (deg C) Conductivity ((LS/cm) DO (mg/L) pH ORP (mV) (Visual: High, Med, Low, Clean) APPEARAN OF WATE (Visual) Image: Conductivity (CAL) Image: Conductivity (LS/cm) Image: Conductivit	AN AVERAGE AND
(1) STABILIZATION is achieved when three (3) consecutive readings of pH, conductivity, and DO collected in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
(1) STABILIZATION is achieved when three (3) consecutive readings of pH, conductivity, and DO collected in 3-5 minute intervals meet the following criteria: +±0 mV for ORP or ±10% if between -100 mV and +100 mV	
(1) STABILIZATION is achieved when three (3) consecutive readings of pH, conductivity, and DO collected in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
(1) STABILIZATION is achieved when three (3) consecutive readings of pH, conductivity, and DO collected in 3-5 minute intervals meet the following criteria: ++0.1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
(1) STABILIZATION is achieved when three (3) consecutive readings of pH, conductivity, and DO collected in 3-5 minute intervals meet the following criteria: ++0.1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
Image:	-
Image: Second	
Image: Second	
in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	-
in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	_
in 3-5 minute intervals meet the following criteria: ++0 1 standard units for pH +±10 mV for ORP or ±10% if between -100 mV and +100 mV	
 ±3% for temperature ±3% for conductivity ±3% for conductivity PURGE UNTIL PARAMETER STABILIZATION or UNTIL 3 WELL VOLUMES ARE REMOVED 	
TOTAL VOLUME PURGED: (GAL) FLOW RATE (desired range is 100 to 500 mL/min):	
SAMPLE TIME: QC SAMPLES COLLECTED;	
ANALYSIS (fill in number of bottles collected)	
GRO(AKIDI) 3 40Ne VOA (HL) DRO(AKIDI) 3 250ml ambre (HL)	
DRO(AK102) 2 250me amber (HC2) PAH (82700 SIM) 2 12 (unpres)	
BTEX (8260 C) 3 YONE VOIA (HLL) Other:	
COMMENTS: Turbidity (NTU):	
Sampler Signature	

		GROUND	WATER SA	MPLING	FORM		CLIENT:	Crowley		
					100		SITE:	Eureka Lodge	11	
SAMPLER(S) NAME: Jeremy Stariwat/Kassi Per						10	DATE:	10	15/17	
SAMPLE ID C	ON COC:	17-ERK	- MW-3				MONITORIA	G WELL ID:	MW-3	
YSI #/SN:		(-7					SHEET	OF 1		
Weather:	Cloudy					- 1 in = 0.083 ft; 2 in -		.25 ft; 4 in = 0.333 ft		
PRODUCT PH	and the second second	No			DIAMETER O	WELL: 2				(FT)
	SAMPLE METH	OD: Low Flow			RADIUS OF W	-	1.083			(FT)
	EL MEASURIN		Water Interface	Probe	· · · · · · · · · · · · · · · · · · ·	OF WELL BELO	OW MEASURI	NG POINT (D):	9.32	(FT
	MP: Peristallic			0	100 C 100 C 100 C 100	BELOW MEAS	the second second			(FT
WELL INTEO		5000	- point	4	a construction of the second	ATER COLUMN	17.00 A 12 19 19 19	11.95		(FT
REQUIRED R		No			C	WATER COLUM		RXL) 0.253		(CUBIC FT
PUMP INTAK	E DEPTH:	8.4	111-11-	0.412	WELL VOLUM	: /	2011	x3- 5.8		(GAL
Pum	Pentake (ropped to	1 Ft oft	bitten,		Min Pu umes above were calculate	rge Volume	1	Max Purge Volume nes; rounded values are shov	1.7
TIME	VOLUME (GAL)	WATER LEVEL (ft BTOC)	TEMP (deg C)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (mV)	TURBIDITY (Visual: High, Med, Low, Clear)	APPEARANCE OF WATER (Visual)	ODOR
1547		\$.00	342	1						
1351		9,50	2,93	396	7.23	5.03	-84.7	Med	Cloudy	No
1.2.01			-			had to	put pi	mo 1 Post	off boite	in
						of we		1 0 1	h tow fle	2 10/51
					-	01-000	n mou	ne of st	IOW TE	
	1									0.0
						2				
0										
						-				
										1
								- 0-1-		
	1								1.1.1	-
	· · · · · · · · · · · · · · · · · · ·									1000
						1				
in 3-5 minute in	TION is achieved v tervals meet the fol • ±0.1 standard ur • ±3% for tempera • ±3% for conduct	llowing criteria: nits for pH ature tivity		• ±10 mV for O • ±10% for DO	RP or ±10% if be > 0,50 mg/L. Thr	tween -100 mV a	0.50 mg/L can	be considered stabl	e.	
TOTAL VOLU	UME PURGED:	M (GAL)		FLOW RATE	(desired range is	; 100 to 500 mL/r	nin):	1/26/13	_	
SAMPLE TIM	1E: 14.15	jottles collected)	425	QC SAMPLES	COLLECTED:	Partial	Dup on	Duplic	ate	-
GROCA			(++1)	+3 =	6					
DRO (A		1		+2 =	1					
PAH (82	TODSIM)	z il cump	(1)	+2 =						
	00/826005	1 40v	E VOA (HEL)	+6=	12	Other:	2			
COMMENTS:	lote: need 14m	sourcet r	2.10	Norchan	ye Depth a	14 8,47 Wi thue is a	th 0.5gal	100 purger	J	
		well manner		White 5 minu	ity to see if	the is a	my rech	ange		
Turbidity (NT		A .	v10 ⁻	Afrism	15 Milli	0.02 ft a semples	of reche	ak was	15.02Ff	
Sampler Signa	ture Uni	Mmm	V		QC Check Sign			~	Charlos maiore Alles	
	/		17			7				

1		Sur	ace Water Sam	oling Workshee	t			
		in the last of the			ocation 5	W-2		
Project # : Project Name:	Eureka Lodg	424283		Sta	Date:			
	Latona so ap				nd Time:			
Field Team:	Jeremy Stariwat/Kassi Powers			35 primaly	dup spl	lit ms/msd		
Sample ID: Sample ID:		K-SW02 K-SW7		primary	dup spl			
Weather Condi					0			
Sensory Ob	servations	(circle all that apply)					
Color:	Clear, Ambe	er, Tan, Brown, Grey, Milky	White, Other:		She	en: No Petro	ogenic, Biogenic	
Odor:	None Low,	Medium, High, Very Stron	g, H2S, Fuel like, Cher	nical ?, Unknown	Deb	ris: Yes, No	x	
Turbidity	None, www.	Medium, High, Very Turbi	d, Heavy Silts					
	Marine	(ake/Pond		Seep	o/Spring		
	Brackish	F	liver		Eme	rgent Vegeta	ition	
	Fresh Wate	r s	tream/Creek		Subr	Submerged Vegetation		
Instrument	Observatio	ons		- N I. V.	0	1.09		
Temp		Spec. Cond. (mS/cm ^c)	Conductivity (µS,			pH	ORP (mV)	
	1.02	0.636	22	KA	610.83	5.74	-89.3 -129.8	
Sample De (Top of Lathe Surfa	e To Water	Total Depth (ft) (Top of Lathe to Bottom)	Flow Directio	n Velo	city (ft/sec)	Richis-In	កើរទំព័រ Turbidity (NTU)	
	inches	Cant see bottom	None		NA		clear	
Location Di	agram/Not	es	T			i i i		
<u> Ric: 4156</u>	ano 4157	(F-1)	05W.2 F	FIFE	Ň	1		
Analy	Analyses # of Bottles Coll		ed Bottle Type (preservative)			Comments:		
GROCAK	(101)	3+3 = 6	Yone VOIA (HCY)					
	DEO (4K102) 2+2 =4 100-BTEX (E624) 3+3 = 6		40ml von (HCC)					
PAH (E6	25)	3+3 = 6 2+2 = 4		ampur (mprc)				
		//						
Signed:	Jun	my Al			i	0/5/17		
Signed/review	er: Ph	~ MMM			Date:	1010		

Location Super Variance Project Name: Location Super Variance Inter Location Super Variance Field Team:: Location Super Variance Super Variance Location Super Variance Super Variance Super Variance Super Variance Super Variance Super Variance Super Variance Super Variance Super Variance Marine Colspan="2">Super Variance Super Variance Marine Super Variance Super Variance Marine Super Variance Super Variance Super Variance			Surfa	ace Water Sampling	Worksheet			
Project Name: Euroka Lodge Start Time:					Locatio	on SW-	1	
End Time: End Time: End Time: In the time of time time time time time time time time		E CAR						
Field Team: Jeremy Startwat/Kass Powers Sample ID: IT: ERIC-SUDI Sample ID: IT: ERIC-SUDI Sample ID: IT: ERIC-SUDI Sensory Observations (circle all that apply) Color: Image:	Project Name:	Eureka Lodg	e					
Sample D:	Field Team:	Jeremy Stari	wat/Kassi Powers		Ling this			
Weather Conditions: Devily (Lowly 45.0 Sensory Observations (circle all that apply) Sheen (R), Petrogenic, Biogenic Color: GB), Amber, Tan, Brown, Grey, Milky While, Other: Sheen (R), Petrogenic, Biogenic Odor: GB, Low, Medium, High, Very Strong, H25, Fuel like, Chemical ?, Unknown Debris: Yes, GD Marine Lake/Pont Seep/Spring Brackish River Emergent Vegetation Fresh Water Stream/Creek Submerged Vegetation Instrument Observations Toral Depth (R) Total Depth (R) PH ORP (m) Sample Depth (R) Total Depth (R) Flow Direction Velocity (H/Sec) Turbidity (NTU Surface) Bottom) Bottom) How Direction Velocity (R/Sec) Turbidity (NTU Surface) Bottom) NOW NA Clear M Location Diagram/Notes Total Depth (R) Velocity (H/Sec) Comments: (PLOKIG) 1 (dow upa H/Hch) 2 (dow upa H/Hch) N/A Clear M Philthare H of Bottles Collected Bottle Type (preservative) Comments: Comments: (PLOKIG) 1 (dow upa H/Hch) 2 (dow upa H/Hch) <td></td> <td></td> <td>17-ERK-SWOI</td> <td></td> <td></td> <td></td> <td></td>			17-ERK-SWOI					
Sensory Observations (circle all that apply) Color: Circle all that apply Marine Extended theory Strong, H25, Fuel like, Chemical ?, Unknown Instrument Observations Submerged Vegetation Instrument Observations Submerged Vegetation Temp (C) Spec. Cond. (mS/cm ¹) Conductivity (uS/cm) Do (mg/L) Sample Depth (ft) Total Depth (ft) Fold Depth (ft) Total Depth (ft) (Top of Lather to Water Bottom) NOAL NA Class of Color Bottom) NOAL NA <		tions: Dev H	Charle 460	Time:	_ primary dup	split ms/	msd	
Color: Color, Color, Color, Color, Milky White, Other: Sheen (B, Petrogenic, Biogenic Odar: Carlor, Low, Medium, High, Very Strong, H2S, Fuel like, Chemical ?, Unknown Debris: Yes, (D) Turbidity None, Color, Medium, High, Very Strong, H2S, Fuel like, Chemical ?, Unknown Debris: Yes, (D) Marine Cake/Pond Seep/Spring Brackish River Emergent Vegetation Instrument Observations Stream/Creek Submirged Vegetation Temple Opeth (ft) Total Depth (ft) Total Depth (ft) Total Depth (ft) (Top of Lathe to Water Bottom) Flow Direction Velocity (ft/sec) Turbidity (NTU Sample Depth (ft) Total Depth (ft) Flow Direction Velocity (ft/sec) Turbidity (NTU Subtract Key State Now NA Clear K Location Diagram/Notes Color (Ather Scule Scule Cole Bottle Type (preservative) Comments: Comments: (reg OA Kir to?) 3 (Owa UpA Kiffich) Your (Upa Kiffich) Scone, Gunker Suber Cole Comments: (reg OA Kir to?) 3 (Owa UpA Kiffich) Your (Upa Kiffich) Your (Upa Kiffich) Comments: (reg OA Kir to?) 3 (Owa Upa Kiffich)<	Weather contai	adats. payar	1 Cleaney 150					
Odor: Optimized provided in the stress of	Sensory Ob	servations	(circle all that apply)					
Turbidity None, Medium, High, Very Turbid, Heavy Silts Clear Marine Lake/Pondb Seep/Spring Brackish River Emergent Vegetation Fresh Water Stream/Creek Submerged Vegetation Instrument Observations Instrument Observations DO (mg/L) pH ORP (m Marine Sample Depth (ft) Total Depth (ft) Turbidity (MTU Surface) Bottom) Bottom) NOME NA Clear MA Location Diagram/Notes Cold Hather Surface Nome NA Clear M Multice UISS(F4) Status (ft) Status (ft) Nome NA Clear Multice UISS(F4) Cold Hather Surface Bottle Type (preservative) Comments: Comments: Crepo(Akt 107) 3 (cloaw (poh (ft(ck)) 2 (Solw a cusker (bet c1)) Comments: Comments: Plat (rel 23) 2 2 (Solw a cusker (bet c1)) Comments: Comments: Comments:	Color:	Clear, Ambe	r, Tan, Brown, Grey, Milky	White, Other:		Sheen Nø, I	Petrogenic, Biogenic	
Marine Brackish Eak/Pend/ River Seep/Spring Fresh Water Stream/Creek Submerged Vegetation Instrument Observations Spec. Cond. (ms/cm) Conductivity (us/cm) DO (mg/L) pH off Marine Spec. Cond. (ms/cm) Conductivity (us/cm) DO (mg/L) pH 0.89P (m) Sample Depth (ft) Total Depth (ft) Total Depth (ft) Total Depth (ft) Velocity (ft/sec) Turbidity (NTU Sample Depth (ft) Cop of Lathe to Flow Direction Velocity (ft/sec) Turbidity (NTU Surface) Bottom Now NA Clear Location Diagram/Notes Now NA Clear Mutre: 4055 (Fu) Velocity (ft/shc) Submerged Vegetation Now Marker proc Stead Marker Nucker Marker proc Stead Marker Nucker Marker Stead Marker Now Marker proc Stead Marker Now Marker proc Stead Marker Now Marker proc Stead Marker Notanow	Odor:	None, Low,	Medium, High, Very Strong	H2S, Fuel like, Chemical ?,	Unknown	Debris: Yes,	ND I	
Brackish River Emergent Vegetation Fresh Water Stream/Creek Submerged Vegetation Instrument Observations Temp (°C) Spec. Cond. (mS/cm ⁵) Conductivity (µS/cm) DO (mg/L) pH ORP (m 4.22 G. O.36 2.1 9.76 8.74 89,7 Sample Depth (ft) Total Depth (ft) Total Depth (ft) Flow Direction Velocity (ft/sec) Turbidity (NTU Surface) Bottom) Bottom) NOM NA CLear Location Diagram/Notes Image: Mode Surface Nom NA Clear Multure: 4155 (F4) M Analyses # of Bottles Collected Bottle Type (preservative) Comments: City Clark (107) 3 (40mu upa M/Hitch) 40mu upa (416 ch) 40mu upa (416 ch) D & Co (Tark (107) 2 (20mu upa M/Hitch) 40mu upa (416 ch) 40mu upa (416 ch) PAH (± 6.25) 2 2 Some Quake (416 ch) 2 PAH (± 6.25) 2 2 Some Quake (416 ch) 2	furbidity	None, Low,	Medium, High, Very Turbid	Heavy Silts Clear				
Brackish River Emergent Vegetation Fresh Water Stream/Creek Submerged Vegetation Instrument Observations Temp (°C) Spec. Cond. (mS/cm ⁵) Conductivity (µS/cm) DO (mg/L) pH ORP (m 4.22 G. O.36 2.1 9.76 8.74 89,7 Sample Depth (ft) Total Depth (ft) Total Depth (ft) Flow Direction Velocity (ft/sec) Turbidity (NTU Surface) Bottom) Bottom) NOM NA CLear Location Diagram/Notes Image of the second depth (ft) Stread depth (ft) Stread depth (ft) Comments: 1000000000000000000000000000000000000		-						
Brackish River Emergent Vegetation Fresh Water Stream/Creek Submerged Vegetation Instrument Observations Image: Cond. (mS/cm ⁵) Conductivity (µS/cm) DO (mg/L) pH ORP (m) Image: Image		Marino	(1)	ke/Pond		Seen/Spring		
Fresh Water Stream/Creek Submerged Vegetation Instrument Observations Instrument Observations DO (mg/L) pH ORP (m 4/22 Sample Depth (ft) Total Depth (ft) Total Depth (ft) Total Depth (ft) Flow Direction Velocity (ft/sec) Turbidity (NTU Surface) Bottom) Bottom) Now NA Cleart 2.1wChws			-				notation	
Instrument Observations Temp (*C) Spec. Cond. (m5/cm ⁵) Conductivity (μ 5/cm) D0 (mg/L) pH ORP (m 41.2.2 (j. 0.3) 2 9.74 8.74 - 89,7 Sample Depth (ft) Total Depth (ft) (Top of Lathe to Bottom) Velocity (ft/sec) Turbidity (NTU Surface) Bottom) NOW NA Clear Location Diagram/Notes MN Clear MN Inture 4/55 (F4) MN Analyses # of Bottles Collected Bottle Type (preservative) Comments: (?P_O(KN 10)) 3 (UOAM U/M+h) D & O (A, K 10 ²) 2 PAH (E 6 25) 2						- C. C. L. 1996	Readers	
Temp (*C) Spec. Cond. (mS/cm ⁶) Conductivity (µS/cm) D0 (mg/L) pH ORP (m 4.22 () ()	~			ream/Creek		Submerged	regetation	
4:22 $6:036$ 21 $9:76$ $8:74$ $-89,7$ Sample Depth (ft) (Top of Lathe To Water Surface) Total Depth (ft) (Top of Lathe to Bottom) Flow Direction Velocity (ft/sec) Turbidity (NTU Velocity (ft/sec) $2:NCLWS$ $-4:55ecd$ NOW NA Clear Location Diagram/Notes $-4:55ecd$ NOW NA Clear Analyses # of Bottles Collected Bottle Type (preservative) Comments: $(200K Kio2)$ 2 250ne amber (HCC) Comments: $(200K Kio2)$ 2 250ne amber (HCC) PAH (HCC) $PAH (E625)$ 2 250ne amber (Lamer 2) PAH (HCC) $PAH (E625)$ 2 250ne amber (Lamer 2) PAH (HCC)				Canduativity (uS (am)	DO (mg/l)		OPP (m)	
Sample Depth (ft) (Top of Lathe To Water Surface) Total Depth (ft) (Top of Lathe to Bottom) Flow Direction Velocity (ft/sec) Turbidity (NTU 2.1wLWS r (4w) scc DCHom NOW NA Clearr Location Diagram/Notes r (4w) scc DCHom NOW NA Clearr Inclure 4.55 (E4) r (4w) scc DCHom NOW NA Clearr Inclure 4.55 (E4) r (4w) scc DCHom Now NA Clearr Inclure 4.55 (E4) r (4w) scc DCHom Now NA Clearr Analyses # of Bottles Collected Bottle Type (preservative) Comments: Creater E424 2 250 mL Quinker (4t cL) Vola (4t cL) D Ro (Ak 102) 2 2 Some Quinker (4t cL) PAH (E6 25) 2 2 Some Quinker (unpres)				conductivity (µs/cm)				
(Top of Lathe To Water Surface) (Top of Lathe to Bottom) Flow Direction Velocity (ff/sec) Turbidity (NTU 2.iw.hu3 - (dut see bottom) Now NA Clear Location Diagram/Notes Now NA Clear Interve 4155 (F4) - (dut see bottom) Now NA Interve 4155 (F4) - (dut see bottom) Now NA Interve 4155 (F4) - (dut see bottom) Now NA Interve 4155 (F4) - (dut see bottom) Now NA Analyses # of Bottles Collected Bottle Type (preservative) Comments: Crear 250 me ounder (Hech) 20 me (under (Hech)) PAH (Hech 25) PAH (EC 25) 2 2 50 me ounder (Hech) PAH (EC 25) 2 2 50 me ounder (Hech)	and the second sec			21	9.76	8.74	- 87,3	
Surface) Bottom) 21WChus) c 4:55 lest Now Now </td <td>the second se</td> <td></td> <td></td> <td>Flow Direction</td> <td>Velocity (ft</td> <td>(sec)</td> <td>Turbidity (NTU)</td>	the second se			Flow Direction	Velocity (ft	(sec)	Turbidity (NTU)	
Zinchy r (an see bottom Now NA Clear Location Diagram/Notes Image: Constraint of the second of the sec				How Direction	velocity (it	, , , , , , , , , , , , , , , , , , , ,	running (irro)	
Location Diagram/Notes The set of Sub- Picture 4155 (F4) Analyses # of Bottles Collected Bottle Type (preservative) Creo(AK 101) D 20 (AK 102) D 20 (A				Alona	NIA	t	Clear	
Analyses # of Bottles Collected Bottle Type (preservative) M Analyses # of Bottles Collected Bottle Type (preservative) Comments: (120(1K 101)) 3 (40nu 100 W/HCL) 40 oud 100 (Hcc) Comments: 0 Ro (AK 102) 2 250 me quality (Hcc) Comments: 0 Ro (AK 102) 2 250 me quality (Hcc) Comments: 0 Ro (AK 102) 2 250 me quality (Hcc) 10 me 100 (Hcc) 0 Ro (AK 102) 2 2 250 me quality (Hcc) 0 Analyses 40 me 100 (United (Hcc)) 10 me 100 (United (Hcc))	-111	0.0-)	~ 4.3 kel	1000.0			CP-	
CIROLAKIOI) 3 (400me UDA WITTCH) 40 me UDA (HEL) DRO (AK 102) 2 250 me Quinker (HEL) VO C-BTEY E 624 3 40 me UDA (HEL) PAH (E625) 2 250 me amber (unpres) I I I I I I I I I I I I I I I I I I I								
DRO(AK 102) 2 VOC-BTEVE624 3 PAH (E625) 2	Picture 4	155 (F4)	Xa	1 Lix	J.N.	7 ^N		
VOC-BTEVE624 3 PAH (E625) 2 I I I I I I I I I I I I I I I I I I I			X 010 ;	Hallipipe Steel	servative)	7 ^N	omments:	
PAH (E625) 2 ZSOME amber (unpres)	Analy GROLAKIOI)	ses	# of Bottles Collecte	d Bottle Type (pre	()	7 ^N	omments:	
	Analy (IRO(AK 101) DRO(AK	ises	# of Bottles Collecte 3 (40mu UDA W/HC/r) 2	d Bottle Type (pre 40 Ne VON (He 250 ne ambur	(HC4)	7 ^N	omments:	
Signed: Jump Ale Date: 10/5/17	Analy GRO(AKIDI) DRO(AK VOC-BTEY 6	ses 102) 2624	# of Bottles Collecte 3 (40mu UDA W/HC/r) 2	ed Bottle Type (pre 40 me von (He 250 me amber 40 me von LHC	(+++++++++++++++++++++++++++++++++++++	7 ^N	omments:	
Signed: Date: 10/5/17	Analy GRO(AKIDI) DRO(AK VOC-BTEY 6	ses 102) 2624	# of Bottles Collecte 3 (40mu UDA W/HC/r) 2	ed Bottle Type (pre 40 me von (He 250 me amber 40 me von LHC	(+++++++++++++++++++++++++++++++++++++	TN cc	omments:	
Signed: Jump Ale Date: 10/5/17	Analy CIRO(AKIOI) DRO(AK VOC-BTEY 6	ses 102) 2624	# of Bottles Collecte 3 (40mu UDA W/HC/r) 2	ed Bottle Type (pre 40 me von (He 250 me amber 40 me von LHC	(+++++++++++++++++++++++++++++++++++++	7 ^N	omments:	
Signed:Date:Date:Date:	Analy CIRO(AKIDI) DRO(AK VOC-BTEY 6	ses 102) 2624	# of Bottles Collecte 3 (40mu UDA W/HC/r) 2	ed Bottle Type (pre 40 me von (He 250 me amber 40 me von LHC	(+++++++++++++++++++++++++++++++++++++	TN cc	omments:	
	Analy Ciro(Akidi) D Ro (Ak VOC-BTEY E PAH (E62	ses 102) 2624	# of Bottles Collecte 3 (40mu UDA W/HC/r) 2	ed Bottle Type (pre 40 me von (He 250 me amber 40 me von LHC	(htt C 4) (htt C 4) (unpres)	TNN cc	omments:	

		GPOUND	WATER SA	MPLING I	FORM		CLIENT:	Crowley				
					Mumuri		SITE:	Eureka Lodge				
SAMPLER(S) NAME: Jeremy Stariwat/Kassi					Rowers		DATE: 10	15/17		10,1-00		
SAMPLE ID OF	N COC: 17	ERK-BW	-01				MONITORIN	G WELL ID: DV	nnking w	utr u		
YSI #/SN:	1-7	-					SHEET	OF 1				
Weather: (loudy ~	•370F				1 in = 0.083 ft; 2 in		25 ft; 4 in = 0.333 ft				
PRODUCT PRI	ESENT:	No	14157.7		DIAMETER OF					(FT		
PURGE AND SA	AMPLE METH	OD: Low Flow	NIA	e 1. 4	RADIUS OF WELL (R): 3 in (FT)							
WATER LEVE	L MEASURING	DEVICE: On	VA Water Interface	Probe 10 9114	TOTAL DEPTH OF WELL BELOW MEASURING POINT (D): 1251+ (FT							
TYPE OF PUM	P: Peristaltic	well pu	mp		DEPTH TO GW	BELOW MEAS	URING POINT	(d): Z	SFt	(FT		
WELL INTEGI		<u>.</u> Α			LENGTH OF W	ATER COLUMN	N(L): (D-d)= 🏼 🎜		25ft	(FT		
REQUIRED RE	EPAIRS:	<u> </u>			VOLUME OF W	ATER COLUM	N (V): (3.14xRxF			(CUBIC FT		
PUMP INTAKE	E DEPTH:	VI			WELL VOLUM		3,5 (GAL)		Max Purge Volume	(GAL		
					Note: Groundwater volu informational purposes of	mes above were calculate			ncs; rounded values are show	m for		
TIME	VOLUME (GAL)	WATER LEVEL (ft BTOC)	TEMP (deg C)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (mV)	TURBIDITY (Visual: High, Med, Low, Clear)	APPEARANCE OF WATER (Visual)	ODOR		
0903	230	NA	5.59	21	77.9.78	7.20	-11.2	Clear	(lear	No		
0908	268	NA	5,57	23	9,90	7.48	-33,9	11	/1	11		
0913	306	NA	5.54	23	9.95	7.64	- 48.1	4	1e	11		
0914	344	NA	5.50	22	10.01	1.72	-56.3	11	11	1.		
0923	382	NIA	5.47	17	10.05	7.76	-61.4	//	11	18		
v - c.) . a 7 0	420		~ ~	21	10.09	7.85	-64.5	11	11	<i>י</i> י		
0166	458	NIA	5.45	21		7.97	-777	11	11	71		
0422		NIA	543		10.12	7.98	-74.2	11	* /	12		
0938	496		5.40	20	10.19	7.94	-73.8	21	1/	и		
0943	327	_/v //s	5,38	21		7.764				(2.3)		
	ىنىي ولى معاملة المالية معنوم والمناطقة مستعملة المعلمات 		~11.1	i			2.1/	\mapsto	1.1			
			Stubil	Eatro	n ach	RIVED. 3	105					
		the support of the su										
				6 . II]		
in 3-5 minute inte • •	to N is achieved vertices the fol ± 0.1 standard un $\pm 3\%$ for tempera $\pm 3\%$ for conduct	lowing criteria: its for pH ture ivity		• ±10 mV for O • ±10% for DO	y, and DO collector RP or ±10% if be > 0.50 mg/L. Thr ZATION or UNTI	tween -100 mV a ee DO readings <	0.50 mg/L can					
TOTAL VOLU	ME PURGED:	534 (GAL)		FLOW RATE	(desired range is	100 to 500 mL/	<u></u>	gal Smin	-			
SAMPLE TIMI				QC SAMPLES	COLLECTED:	Duplic	ate 1	7- ERK.DL	NZO 0990			
	l in number of b		1 1 1			1	i e F		· · · · · · · · · · · · · · · · · · ·			
VOC (E524.2) (2+2) 1 Lamber VOC (E524.2) (2+3) 40m VOA(HCL)												
NOC (ED	24.2) (3+3)	yorne V	4H(FIC-)		J						
						Other:	.1					
COMMENTS: * PUISE * Sample Turbidity (NTU	begen thurn D:	ar 0825 before , Phot	6714mila	2 & 415	in from		st at n	en house	~ .			
Sampler Signat					QC Check Sigr		1/2.5.7	Innn/				
	C Yum	2 V	A Prostrum a complement of the complement of	-			rv vv P	W V V				

APPENDIX B

Field Notes

er	Rite in the Rain All-WEATHER WRITING PAPER
	Name Erwekg Lodge
	Address <u>825</u> W.8th Ave Anchovage AK 99501 Phone <u>907-258-4880</u>
	Phone 907-258-4880
	Project <u>Guilles Lodge</u> 042428 Oct-2017
	Rite in the Rain — A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen, Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.
	RiteintheRain.com

	CONTENTS		-
PAGE	REFERENCE	DATE	0
	V- 31		
_			
			-
-			-
			9
			6
_			
_			-
-			-
-			-
			-
	-200		
			-
			-
_			-
_			-
			T

S.Stainway K.Murray		0	4.4				~ 40	F
01030	Je				ichoy	age		
		K Vp						2
0715		Kass						
0736	Lea	ve t	Eagle	P	iver	for	0	
	Euv	eka L	odge					
1000	Avni	e at	100	120	GNR	Com	riet	e
	Safe	ty to	i) qa	te			`	
1010	Meet	Wit	5 3	(no	wed	real	sie	
	SHe	CON	alt f	or	util	ity 1	bca	ter.
	Davia	Fimp	el's s	ion	Ryc	in.		
1	Private	Latili	tes	Wer	e n	harke	w a	1
	Whility				-		1	,
1	Worter	- live	w	DI	mar	ed 1	24 F	yan
-	There	isn	a quo	line	1- U	dye	15	/
1	neated	ay h	ective	g A	rel.			
1630 UH	THES		Ľ			N		
Ce	corrical		OL	revhec	win en	NE	Ftac	140
	ingoil		AST	is at	1039	andp	macke	house
Water	r line		bette	hind u	tildy p	ole to	how	~
	hues		w	ver g	Bund	meren	1 01 3	TC.
Walk	out all	utili	tus dia	gram.				
	out re				Jun.	Ide	tity	
All MAY	Ked J.m	s and	Potent	141 6	bri	thas.		
One du	3 bah	m 7.5	fut	hom	com	line.		-
Page 1						V	lite in t	the Rain

2 3 1140 Identifying Monitoring locations Picture 104-4145 and 4146 HW-2 and MW-3. Figure not to scale. Kassi Start digging at TB-1 Jevenny start digging at TB-3 and 1200 SSC meeting call in with PIK (Septleety), Paul Hansmann. Sees PLASTIC liver Picture 104-4147an H148 Approved our plan and they = 1400 Jevening gets to 3.7 ft deptin, Picture 449 gave a verbal Waiver for the since its contamination so sample is collected. 9 bachole location that NE of the East tank. P Sample Location Depty Tine Linch and discuss plan for 1230 1 TB-Z .5 Ret 1430 afternoon and safety consideration TB.3 9 3:7fet 1400 Start digging bachele locations. 1300 TB-4 2.15 Fut 1700 T3-1 No Sample P1405 Ferenny Start @ TB-4. Say liner 13-4 at ~ 1 foot deptus 1420 Moved TB-10NE because TB-\$ 163 Kely Sheel East Taux was meeting refusal fant 18-2 1930 Jeremy reached linear @ 1.5 feet Ø (TB-1(2) dug pashed to about 32 feet and TB-100 mut clay layer with no obvious Contamination. 1435 Jeverny moved TB. 4 in to wards tank ducing TB= test boring -Jerenny starts on TB-2 finds west and did not find any staining. Plance sheeting at 1 feat depth Contamination at 15 Reet depth Phys 2086 The Mun Page 308 Co This Nors Rite in the Rain

Ŧ	
1450	Kassi and Jevenny stop digging
	Decide to try to Find MWZ and WW.3
1519	Try to call PM (stephen Witzmann to
	let him Know we have at least
	one good soil sample and another
	that smelt hot after heating.
	NO appswer
1520	Continue looking for Mus Using
	hquies. Having no luck.
1548	
	It said take sample of
	TB-4 underneath liner.
-	Also said to use swing tres
	to Find MIN'S.
	Kassi + Jercmy informed Stephen
	010 Drinking Water Well House
	is no longer in place. Stophen
	confirmed the will be two sw
	locations at points marked on map
	and only one drinking water
	from current dynking water well.
1600	Jerenny + Kossi measur out MW-3
	with swing thes. End up finding
	Well off of swing they by 73-4Read.
0	Well off of 5 Wing they by 73-4 Rev. See phote 4150 Kin Munag
V	ase 400 this Mund

1630 Still searching for MW-Z. Shed 100Ks like it might have been moved. Is that's the case Mill card be underprath shed. 1640 Lodge owner Mr. Fimpel Cause by to see what we were doing we asked if he knew where MW-2 was located He didn't But he did confirm he noistenous the stud sine the excavation in ZCIII so the MW should not be under the spee. 1700 Ferency and Kessi semple TB-4 underheath linear at approximately 2.15 feet. Flo Filled in TB holes. 1715 Start GIPSing TB locations TB1(2) is called TB1-2 TB-2, TB-3, TB-4, MW-3, Course Box, MW-1 1730 Depart to talk to Dark about Aniking water well. Talked to Sim Fimpel (Darla's husband) about onnemy water sample on how to purge the Page 5086 Kun Hung Rete in the Rain

5

6 Well We will need with his Son tomorrow the to tak the super 1815 Nove soil gear into yoom, so Car has now spence for water sampes Done for day. \$30 Page 6056

K Murray J. Stariwat 400 Party Cloudy Oct. 5th, 2017 0700 Breakfast and tailgate safety nuting. 0745 Met with Pyan to ap arer process By colecting Inning Wer Sample hom before filter 1805 Calibrate 45I Kapi Jeremy Figure out well wimm 125 pet Gin Well > 183 gallous Plow vate Ugalon / comin Purge 30 min for I wen volume. 0825 Start purging well. 0859: Place YST probe in bucket with running well water. 0906 Call Steve W + Zmg. No answer 0945: Samples & Deplicate taken at Arinking water well 0954 Call PM (stephen Witzmann) Inform him that WWW. OZ went missing. Believe its covered with DI gravel that was put on site by Ryam Fimper. Informed him that during last sampling event MW-land MW - 3 purger dry and used Uroamplecipie. 1 1002 Proceed to 2 MW locations and Z Page 1085 Rite in the Rain million

		6
	Surface Water locations.	6
1008	Set up on SWI. Sample location at 1625	F
1020	set up on SW-2. Take sample at 1035. Take Duplicate SWZ at	6
1040	Stavi setting up on MW-3	6
1125	Start pumping well, Well draws down Fast. Drew Jown) Freet with	9
1135	half a gallon purged. Crew will	F
1218	Stand by For recharge Came back to MW-3 and the	5
12 77	dept to Water is 8.45. Well rechanged by 0.02 in 43 minutes.	u C
ILLL	Call stephen Witzmann, No answer. We will auto iouel while we whit.	-
1232	Height From ground surface to laser point. GPS + gutolvi is 4.41 feet.	-
	MW-1 black notch on PUC 15 4.52 feet.	1
	MW-3 Blaye notich on PUC is	-
	4.93 fect. No nonciale Surface whiter elevents on	-
-	Nor SW-2, 6,97 Ret	-
Page	2075 Minimum	-

Done with auto leveler. But away 1240 equipment. 1242 Set up decon station. One bucket Aconox, 2 DI Waterbuckets. 1249 Decon water ievel neter and take depth to water & depth to bottom at MW-01. 12.23 Column of water 1300 Fill out COC and Start Filling out labels. 13/2 Call Stephen to ask what the plan will be on for sampling no rechanging wells. Reviewee past sampling Data that indecated wells show low recharge and that samples were taken before phiging dry. ERM feam will pioceed as previous sample teams. 1347 Start at MW-3 Collect Water level 8 00 Feet Well recharged Oly Feet in about Z hours. 1351 Collect parameters and decided to collect sample because of Tow Vechavge. Un Nur Pite in the Rain Page 30FS

10 1900 Arrive in Anchorage. 1415 Take Sample with full set of vocs 1415 Ialle Sample with full Set of VOCS 1425 Take Duplicate Sample MWZ CIRO, DRO, PAH, VOC (SZGOC/SEGOCSIM) For both Samples. Final wetterdepth after both Samples Was 15.02 feet. 1440 Setup on decan station. Decon Submusible pump in 3 bucket System and a DI bothle virner. 1442 Take Water level at MW-1-6.57ket. 1531 Stopped puvging because of inadequet sample Volume. The Water level depth WAS 15.5 feet when Stapied to Sample. 1535 Collect MW-1 for GRO, DRO, PAH, STEX. Final water depth 18.08 feet. 1425 Take Duplicate Sample MWZ X. HVM. con pump Lt up for equipment blank N/2 equipment blank GRO DRO, PAH, VOC (8260 c/secolcsm) Demobilze gear and pack Car for drive back to Anchorage. Car for drive back to Anchorage. Dever Mumany gis dropped 1555 Set up for equipment blank Higher Take equipment blank GRO, DRO, PAH, VOC (8260 c/secolcsm) 1620 Demobilize gear and pack 1645 Depart Eureka Zooge. 30 Awive in Engle River. Munary guis dropped Day 4045 Jun Pin 1830 Vin Muy Page 5 of 5 Rete in the Rein.

- Page Intentionally Left Blank -

APPENDIX C

Photographic Log

- Page Intentionally Left Blank -

Photograph 1: Communication Lines marked by public utility locates. Picture was taken facing north.

Photograph 2: Communication Utility Box and Utility Corridor located directly north of the fuel tanks and south of the Unnamed Lake. Picture was taken facing west.

Photograph 3: Communication Lines from Utility Box leading under shed and west towards the site shop building.

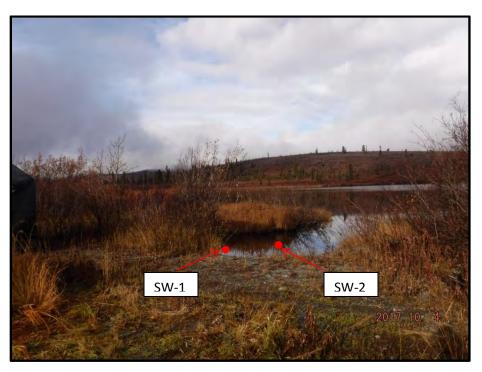
Photograph 4: Water Line drawn in yellow marking paint by site owner's son extends to the west, directly north of the fuel tanks.

Photograph 5: Fuel Tank Sump located southwest of the fuel tanks.

Photograph 6: Proposed test boring locations 1 and 2 (1 is furthest south) identified for collecting Torkelson soil samples.

Photograph 7: Proposed test boring location 3. Sample is between the West and East fuel tanks directly north of boring location 2.

Photograph 8: Location of test boring 3. Plastic sheet identifying the extent of contamination was encountered at approximately one foot below ground surface.


Photograph 9: Location of test boring 4, approximately 7 feet 5 inches away from communication line identified in orange.

Photograph 10: Eureka Lodge's current drinking water well sample location from outside of well house. Photograph 11 shows the green hose connected this spout to the drinking water well.

Photograph 11: Inside of well house, PVC pipe leads from drinking water well to filtration system and the drinking water storage tanks. Once the system was purged, the sample was collected prior to the filters.

Photograph 12: Surface Water sampling locations, SW-1 and SW-2, facing north. West of sample location SW-1 is location of former Well House.

Photograph 13: Groundwater sampling location, MW-3, facing South.

- Page Intentionally Left Blank -

APPENDIX D

Laboratory Analytical Results

- Page Intentionally Left Blank -

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-71900-1

Client Project/Site: Eureka, Alaska 2017 Revision: 1

For:

ERM Alaska, Inc. 825 W 8th Ave, Suite 200 Anchorage, Alaska 99501-4427

Attn: Stephen Witzmann

Authorized for release by: 12/13/2017 3:57:25 PM

Kayse Zalmai, Project Manager I (253)922-2310 kayse.zalmai@testamericainc.com

LINKS Review your project results through TOTOLACCESS Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	6
QC Sample Results	27
Chronicle	45
Certification Summary	48
Sample Summary	50
Chain of Custody	51
Receipt Checklists	57

1 2 3 4 5 6 7 8 9 10

Job ID: 580-71900-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-71900-1

Receipt

The samples were received on $10/7/2017 \ 10:10 \ AM$; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were -0.9° C , -0.5° C and -0.4° C .

GC/MS VOA

Method(s) 524.2: The method blank for analytical batch 498776 contained 1,2,4-trichlorobenzene above the method detection limit (MDL). None of the samples associated with this method blank contained the target compound; therefore, re-analysis of samples were not performed.

Method(s) 8260C: The following continuing calibration verification (CCV) standard associated with batch 580-258603 recovered outside acceptance criteria for %D for surrogate Trifluorotoluene (Surr) which have %D 20.8 (%D Limit +/- 20). Since all the other surrogates were within %D criteria; therefore, the data have been reported. (CCVIS 580-258603/3)

Method(s) 8260C: The following continuing calibration verification (CCV) standard associated with batch 580-258504 recovered outside acceptance criteria for %D for surrogate Trifluorotoluene. Since none of the target analytes are associated with this surrogate, the data have been reported. (CCVIS 580-258504/3)

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 580-258603 recovered above the upper control limit for multiple analytes (8 compounds). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: 17-ERK-MWZ (580-71900-8), 17-ERK-MW-3 (580-71900-9), 17-ERK-EB (580-71900-10) and (CCVIS 580-258603/3).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 580-258603 recovered outside acceptance criteria, low biased, for Dichlorodifluoromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 8260C: Trifluorotoluene surrogate recovery for the LCS associated with analytical batch 580-258504 was outside the upper control limits. TFT is not associated to any of the target analytes. All associated sample surrogate fell within acceptance criteria; therefore, the data have been reported.

Method(s) 8260C: The surrogate recovery for the blank associated with analytical batch 580-258603 was outside the upper control limits.

Method(s) 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 580-258603 recovered outside control limits for the following analytes: 1,2,3-Trichlorobenzene, Acetone, Carbon tetrachloride, Chlorobromomethane and Methyl tert-butyl ether. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260C SIM: The continuing calibration verification (CCV) associated with batch 580-259252 recovered above the upper control limit for hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: 17-ERK-TB (580-71900-6), 17-ERK-MWZ (580-71900-8), 17-ERK-MW-3 (580-71900-9), 17-ERK-EB (580-71900-10) and (CCVIS 580-259252/3).

Method(s) AK101: Surrogate TFT recovery for the following samples was outside the upper control limit: 17-ERK-SW-01 (580-71900-3), 17-ERK-SW-02 (580-71900-4), 17-ERK-SWZ (580-71900-5), 17-ERK-TB (580-71900-6), 17-ERK-MW-1 (580-71900-7), 17-ERK-MWZ (580-71900-8), 17-ERK-MW-3 (580-71900-9), 17-ERK-EB (580-71900-10) and (580-71843-A-11). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 625: The following continuing calibration verification (CCV) standard associated with batch 580-258841 recovered outside acceptance criteria for %D for surrogate Nitrobenzene-d5 (25.0%D, Limit 20). The %Rec is within the acceptance criteria for the surrogate

Job ID: 580-71900-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

in the associated samples; therefore, the data have been reported. The following samples are impacted: (CCVIS 580-258841/3)

Method(s) 8270D SIM: The method blank for preparation batch 580-258594 and analytical batch 580-259300 contained Phenanthrene, Anthracene and Pyrene above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 8270D SIM: The following analyte(s) recovered outside control limits for the LCS associated with preparation batch 580-258594 and analytical batch 580-259300: Benzo[a]pyrene. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method(s) 8270D SIM: The opening DFTPP tune has a Benzidine Tailing Factor at 2.3 (8270D limit is 2.0). However for SIM analysis, Benzidine is not representative of any of the target analytes, and all other instrument QC (other DFTPP parameters and CCVIS) met acceptance criteria, therefore in the data is reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) AK102 & 103: Continuing calibration verification (CCV) recovered above %D control limits for n-Triacontane-d62 surrogate. The CCV and all associated samples passed within %R control limits; therefore the data are qualified and reported. 17-ERK-SW-01 (580-71900-3), (CCV 580-258895/14), (CCV 580-258895/32), (LCS 580-258753/2-A), (LCSD 580-258753/3-A) and (MB 580-258753/1-A)

Method(s) AK102 & 103: The method blank for preparation batch 580-258982 and analytical batch 580-259043 contained DRO (nC10-<nC25) above the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

Method(s) AK102 & 103: The method blank for preparation batch preparation batch 580-258982 and analytical batch 580-259043 contained DRO (nC10-<nC25) above the reporting limit (RL). The samples associated with this method blank did not contain the target compound at or above the RL; therefore, re-extraction and re-analysis of samples were not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) CWA_Prep_CLLE: A deviation from the Standard Operating Procedure (SOP) occurred. Details are as follows: The samples were being extracted for 625 using the 3520 1 L method and the samples were received in LVI bottles. One of the LVI bottles was placed into the CLLE body and it was diluted up to 1 L using DI water.

Method(s) 3510C: A deviation from the Standard Operating Procedure (SOP) occurred. Details are as follows: Client provided 1 L amber unpreserved sample containers. Poured approximately 250 mL of each sample into separatory funnel for extraction.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Compound was found in the blank and sample.

1 2 3 5 7 8

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description	4
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	 5
*	LCS or LCSD is outside acceptance limits.	5
Х	Surrogate is outside control limits	
GC/MS Se	mi VOA	
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	

GC VOA

В

J

Qualifier	Qualifier Description
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: 17-ERK-DW-01 Date Collected: 10/05/17 09:45

Date Received: 10/03/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.15	ug/L			10/17/17 13:56	1
1,1,2-Trichloroethane	ND		0.50	0.16	ug/L			10/17/17 13:56	1
1,1-Dichloroethene	ND		0.50	0.15	ug/L			10/17/17 13:56	1
1,2,4-Trichlorobenzene	ND		0.50	0.12	ug/L			10/17/17 13:56	1
1,2-Dichlorobenzene	ND		0.50	0.16	ug/L			10/17/17 13:56	1
1,2-Dichloroethane	ND		0.50	0.086	ug/L			10/17/17 13:56	1
1,2-Dichloropropane	ND		0.50	0.096	ug/L			10/17/17 13:56	1
1,4-Dichlorobenzene	ND		0.50	0.13	ug/L			10/17/17 13:56	1
Benzene	ND		0.50	0.082	ug/L			10/17/17 13:56	1
Carbon tetrachloride	ND		0.50	0.11	ug/L			10/17/17 13:56	1
Chlorobenzene	ND		0.50	0.14	ug/L			10/17/17 13:56	1
cis-1,2-Dichloroethene	ND		0.50	0.090	ug/L			10/17/17 13:56	1
Ethylbenzene	ND		0.50	0.099	ug/L			10/17/17 13:56	1
Methylene Chloride	ND		0.50	0.20	ug/L			10/17/17 13:56	1
Styrene	ND		0.50	0.089	ug/L			10/17/17 13:56	1
Tetrachloroethene	ND		0.50	0.18	ug/L			10/17/17 13:56	1
Toluene	0.16	J	0.50	0.086	ug/L			10/17/17 13:56	1
trans-1,2-Dichloroethene	ND		0.50	0.090	ug/L			10/17/17 13:56	1
Trichloroethene	ND		0.50	0.13	ug/L			10/17/17 13:56	1
Vinyl chloride	ND		0.50	0.16	ug/L			10/17/17 13:56	1
Xylenes, Total	ND		0.50	0.086	ug/L			10/17/17 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene-d4 (Surr)			70 - 130			-		10/17/17 13:56	1
4-Bromofluorobenzene	96		70 - 130					10/17/17 13:56	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.017	0.0050	ug/L		10/11/17 13:53	10/19/17 21:27	1
2-Methylnaphthalene	ND		0.025	0.0075	ug/L		10/11/17 13:53	10/19/17 21:27	1
Acenaphthene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:27	1
Acenaphthylene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:27	1
Anthracene	ND		0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:27	1
Benzo[a]anthracene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:27	1
Benzo[a]pyrene	ND	*	0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:27	1
Benzo[b]fluoranthene	ND		0.017	0.0067	ug/L		10/11/17 13:53	10/19/17 21:27	1
Benzo[g,h,i]perylene	ND		0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:27	1
Benzo[k]fluoranthene	ND		0.025	0.0075	ug/L		10/11/17 13:53	10/19/17 21:27	1
Chrysene	ND		0.017	0.0050	ug/L		10/11/17 13:53	10/19/17 21:27	1
Dibenz(a,h)anthracene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:27	1
Fluoranthene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:27	1
Fluorene	ND		0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:27	1
Indeno[1,2,3-cd]pyrene	ND		0.017	0.0058	ug/L		10/11/17 13:53	10/19/17 21:27	1
Naphthalene	ND		0.033	0.011	ug/L		10/11/17 13:53	10/19/17 21:27	1
Phenanthrene	ND		0.017	0.0033	ug/L		10/11/17 13:53	10/19/17 21:27	1
Pyrene	ND		0.017	0.0033	ug/L		10/11/17 13:53	10/19/17 21:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	76		53 - 112				10/11/17 13:53	10/19/17 21:27	1

Lab Sample ID: 580-71900-1 Matrix: Water

5

Client Sample ID: 17-ERK-DWZ

Date Collected: 10/05/17 09:50 Date Received: 10/07/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.15	ug/L			10/17/17 14:19	1
1,1,2-Trichloroethane	ND		0.50	0.16	ug/L			10/17/17 14:19	1
1,1-Dichloroethene	ND		0.50	0.15	ug/L			10/17/17 14:19	1
1,2,4-Trichlorobenzene	ND		0.50	0.12	ug/L			10/17/17 14:19	1
1,2-Dichlorobenzene	ND		0.50	0.16	ug/L			10/17/17 14:19	1
1,2-Dichloroethane	ND		0.50	0.086	ug/L			10/17/17 14:19	1
1,2-Dichloropropane	ND		0.50	0.096	ug/L			10/17/17 14:19	1
1,4-Dichlorobenzene	ND		0.50	0.13	ug/L			10/17/17 14:19	1
Benzene	ND		0.50	0.082	ug/L			10/17/17 14:19	1
Carbon tetrachloride	ND		0.50	0.11	ug/L			10/17/17 14:19	1
Chlorobenzene	ND		0.50	0.14	ug/L			10/17/17 14:19	1
cis-1,2-Dichloroethene	ND		0.50	0.090	ug/L			10/17/17 14:19	1
Ethylbenzene	ND		0.50	0.099	ug/L			10/17/17 14:19	1
Methylene Chloride	ND		0.50	0.20	ug/L			10/17/17 14:19	1
Styrene	ND		0.50	0.089	ug/L			10/17/17 14:19	1
Tetrachloroethene	ND		0.50	0.18	ug/L			10/17/17 14:19	1
Toluene	0.17	J	0.50	0.086	ug/L			10/17/17 14:19	1
trans-1,2-Dichloroethene	ND		0.50	0.090	ug/L			10/17/17 14:19	1
Trichloroethene	ND		0.50	0.13	ug/L			10/17/17 14:19	1
Vinyl chloride	ND		0.50	0.16	ug/L			10/17/17 14:19	1
Xylenes, Total	ND		0.50	0.086	ug/L			10/17/17 14:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene-d4 (Surr)			70 - 130					10/17/17 14:19	1
4-Bromofluorobenzene	94		70_130					10/17/17 14:19	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND	0.017	0.0050	ug/L		10/11/17 13:53	10/19/17 21:52	1
2-Methylnaphthalene	ND	0.025	0.0074	ug/L		10/11/17 13:53	10/19/17 21:52	1
Acenaphthene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:52	1
Acenaphthylene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:52	1
Anthracene	ND	0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:52	1
Benzo[a]anthracene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:52	1
Benzo[a]pyrene	ND *	0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:52	1
Benzo[b]fluoranthene	ND	0.017	0.0066	ug/L		10/11/17 13:53	10/19/17 21:52	1
Benzo[g,h,i]perylene	ND	0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:52	1
Benzo[k]fluoranthene	ND	0.025	0.0074	ug/L		10/11/17 13:53	10/19/17 21:52	1
Chrysene	ND	0.017	0.0050	ug/L		10/11/17 13:53	10/19/17 21:52	1
Dibenz(a,h)anthracene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:52	1
Fluoranthene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 21:52	1
Fluorene	ND	0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 21:52	1
Indeno[1,2,3-cd]pyrene	ND	0.017	0.0058	ug/L		10/11/17 13:53	10/19/17 21:52	1
Naphthalene	ND	0.033	0.011	ug/L		10/11/17 13:53	10/19/17 21:52	1
Phenanthrene	ND	0.017	0.0033	ug/L		10/11/17 13:53	10/19/17 21:52	1
Pyrene	ND	0.017	0.0033	ug/L		10/11/17 13:53	10/19/17 21:52	1
Surrogate	%Recovery Qu	alifier Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	76	53 - 112				10/11/17 13:53	10/19/17 21:52	1

Lab Sample ID: 580-71900-2 Matrix: Water

Client Sample ID: 17-ERK-SW-01 Date Collected: 10/05/17 10:25 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-3 Matrix: Water

Method: 624 - Volatile Orga						_	<u> </u>		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.42	ug/L			10/10/17 16:54	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/10/17 16:54	1
Toluene	ND		2.0	0.24	ug/L			10/10/17 16:54	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/10/17 16:54	1
o-Xylene	ND		2.0	0.15	ug/L			10/10/17 16:54	1
ТАН	ND		3.0	0.42	ug/L			10/10/17 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	120		74 - 123					10/10/17 16:54	1
Toluene-d8 (Surr)	88		79 - 122					10/10/17 16:54	1
4-Bromofluorobenzene (Surr)	104		78_119					10/10/17 16:54	1
Dibromofluoromethane (Surr)	106		70 - 120					10/10/17 16:54	1
1,2-Dichloroethane-d4 (Surr)	95		70 - 120					10/10/17 16:54	1

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		4.0	0.12	ug/L		10/11/17 13:11	10/13/17 17:06	
2-Methylnaphthalene	ND		1.6	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Acenaphthene	ND		1.6	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Acenaphthylene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Anthracene	ND		0.16	0.040	ug/L		10/11/17 13:11	10/13/17 17:06	
Benzo[a]anthracene	ND		12	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Benzo[a]pyrene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	•
Benzo[g,h,i]perylene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Benzofluoranthene	ND		4.0	0.20	ug/L		10/11/17 13:11	10/13/17 17:06	
Chrysene	ND		2.4	0.040	ug/L		10/11/17 13:11	10/13/17 17:06	
Dibenz(a,h)anthracene	ND		2.4	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Fluoranthene	ND		12	0.040	ug/L		10/11/17 13:11	10/13/17 17:06	
Fluorene	ND		8.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Indeno[1,2,3-cd]pyrene	ND		4.0	0.20	ug/L		10/11/17 13:11	10/13/17 17:06	
Naphthalene	ND		1.6	0.40	ug/L		10/11/17 13:11	10/13/17 17:06	
Phenanthrene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:06	
Pyrene	ND		8.0	0.16	ug/L		10/11/17 13:11	10/13/17 17:06	
ТРАН	ND		12	0.20	ug/L		10/11/17 13:11	10/13/17 17:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	70		56 - 124				10/11/17 13:11	10/13/17 17:06	
Nitrobenzene-d5	96		59 - 123				10/11/17 13:11	10/13/17 17:06	t i i i i i i i i i i i i i i i i i i i
Terphenyl-d14	79		60 - 135				10/11/17 13:11	10/13/17 17:06	

Method: AK101 - Alaska - Gasoline Range Organics (GC) Analyzed RL MDL Unit Analyte Result Qualifier D Prepared Gasoline Range Organics (GRO) ND 1.0 0.33 mg/L 10/10/17 02:30 -C6-C10 %Recovery Qualifier Surrogate Limits Prepared Analyzed 125 X 75 - 120 10/10/17 02:30 Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) 103 68 - 119 10/10/17 02:30

TestAmerica Seattle

Dil Fac

Dil Fac

1

1

1

Client Sample Results

RL

0.10

Limits

50 - 150

MDL Unit

0.022 mg/L

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Result Qualifier

0.22

%Recovery Qualifier

83

Client: ERM Alaska, Inc. Project/Site: Eureka, Alaska 2017

Analyte

Surrogate

o-Terphenyl

DRO (nC10-<nC25)

TestAmerica Job ID: 580-71900-1

Client Sample ID: 17-ERK-SW-01 Date Collected: 10/05/17 10:25 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-3 Matrix: Water

10/13/17 08:49 10/17/17 03:18

10/13/17 08:49 10/17/17 03:18

Analyzed

Analyzed

Prepared

Prepared

D

Dil Fac

Dil Fac

1

1

Client Sample ID: 17-ERK-SW-02 Date Collected: 10/05/17 10:35

Date Received: 10/07/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.42	ug/L			10/10/17 17:19	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/10/17 17:19	1
Toluene	ND		2.0	0.24	ug/L			10/10/17 17:19	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/10/17 17:19	1
o-Xylene	ND		2.0	0.15	ug/L			10/10/17 17:19	1
ТАН	ND		3.0	0.42	ug/L			10/10/17 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	120		74 - 123					10/10/17 17:19	1
Toluene-d8 (Surr)	88		79 - 122					10/10/17 17:19	1
4-Bromofluorobenzene (Surr)	104		78_119					10/10/17 17:19	1
Dibromofluoromethane (Surr)	108		70 - 120					10/10/17 17:19	1
1,2-Dichloroethane-d4 (Surr)	95		70 - 120					10/10/17 17:19	1

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		4.0	0.12	ug/L		10/11/17 13:11	10/13/17 17:30	
2-Methylnaphthalene	ND		1.6	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Acenaphthene	ND		1.6	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Acenaphthylene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Anthracene	ND		0.16	0.040	ug/L		10/11/17 13:11	10/13/17 17:30	1
Benzo[a]anthracene	ND		12	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Benzo[a]pyrene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Benzo[g,h,i]perylene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Benzofluoranthene	ND		4.0	0.20	ug/L		10/11/17 13:11	10/13/17 17:30	1
Chrysene	ND		2.4	0.040	ug/L		10/11/17 13:11	10/13/17 17:30	1
Dibenz(a,h)anthracene	ND		2.4	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Fluoranthene	ND		12	0.040	ug/L		10/11/17 13:11	10/13/17 17:30	1
Fluorene	ND		8.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Indeno[1,2,3-cd]pyrene	ND		4.0	0.20	ug/L		10/11/17 13:11	10/13/17 17:30	1
Naphthalene	ND		1.6	0.40	ug/L		10/11/17 13:11	10/13/17 17:30	1
Phenanthrene	ND		4.0	0.080	ug/L		10/11/17 13:11	10/13/17 17:30	1
Pyrene	ND		8.0	0.16	ug/L		10/11/17 13:11	10/13/17 17:30	1
ТРАН	ND		12	0.20	ug/L		10/11/17 13:11	10/13/17 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	66		56 - 124				10/11/17 13:11	10/13/17 17:30	
Nitrobenzene-d5	89		59 - 123				10/11/17 13:11	10/13/17 17:30	Ĩ
Terphenyl-d14	74		60 - 135				10/11/17 13:11	10/13/17 17:30	1

RL Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics (GRO) ND 1.0 0.33 mg/L 10/10/17 03:01 1 -C6-C10 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 128 X 75 - 120 10/10/17 03:01 Trifluorotoluene (Surr) 1 4-Bromofluorobenzene (Surr) 105 68 - 119 10/10/17 03:01 1

TestAmerica Seattle

TestAmerica Job ID: 580-71900-1

Lab Sample ID: 580-71900-4

Matrix: Water

Client Sample ID: 17-ERK-SW-02 Date Collected: 10/05/17 10:35 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-4 Matrix: Water

ix: Water

Method: AK102 & 103 - A Analyte		nge Orga Qualifier	nics & Resid RL	dual Ran MDL	-	n <mark>ics (</mark> D	GC) Prepared	Analyzed	Dil Fac	5
DRO (nC10- <nc25)< th=""><th>0.10</th><th></th><th>0.10</th><th>0.023</th><th>mg/L</th><th></th><th>10/18/17 12:07</th><th>10/19/17 01:44</th><th>1</th><th></th></nc25)<>	0.10		0.10	0.023	mg/L		10/18/17 12:07	10/19/17 01:44	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	76		50 - 150				10/18/17 12:07	10/19/17 01:44	1	

Client Sample ID: 17-ERK-SWZ

Date Collected: 10/05/17 10:40 Date Received: 10/07/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.42	ug/L			10/10/17 17:45	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/10/17 17:45	1
Toluene	ND		2.0	0.24	ug/L			10/10/17 17:45	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/10/17 17:45	1
o-Xylene	ND		2.0	0.15	ug/L			10/10/17 17:45	1
ТАН	ND		3.0	0.42	ug/L			10/10/17 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	120		74 - 123					10/10/17 17:45	1
Toluene-d8 (Surr)	87		79 - 122					10/10/17 17:45	1
4-Bromofluorobenzene (Surr)	104		78_119					10/10/17 17:45	1
Dibromofluoromethane (Surr)	108		70 - 120					10/10/17 17:45	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 120					10/10/17 17:45	1

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	ND		4.0	0.12	ug/L		10/11/17 13:11	10/13/17 17:55	
2-Methylnaphthalene	ND		1.6	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Acenaphthene	ND		1.6	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Acenaphthylene	ND		4.0	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Anthracene	ND		0.16	0.040	ug/L		10/11/17 13:11	10/13/17 17:55	
Benzo[a]anthracene	ND		12	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Benzo[a]pyrene	ND		4.0	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Benzo[g,h,i]perylene	ND		4.0	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Benzofluoranthene	ND		4.0	0.20	ug/L		10/11/17 13:11	10/13/17 17:55	
Chrysene	ND		2.4	0.040	ug/L		10/11/17 13:11	10/13/17 17:55	
Dibenz(a,h)anthracene	ND		2.4	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Fluoranthene	ND		12	0.040	ug/L		10/11/17 13:11	10/13/17 17:55	
Fluorene	ND		8.1	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Indeno[1,2,3-cd]pyrene	ND		4.0	0.20	ug/L		10/11/17 13:11	10/13/17 17:55	
Naphthalene	ND		1.6	0.40	ug/L		10/11/17 13:11	10/13/17 17:55	
Phenanthrene	ND		4.0	0.081	ug/L		10/11/17 13:11	10/13/17 17:55	
Pyrene	ND		8.1	0.16	ug/L		10/11/17 13:11	10/13/17 17:55	
ТРАН	ND		12	0.20	ug/L		10/11/17 13:11	10/13/17 17:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	66		56 - 124				10/11/17 13:11	10/13/17 17:55	-
Nitrobenzene-d5	84		59 - 123				10/11/17 13:11	10/13/17 17:55	
Terphenyl-d14	70		60 - 135				10/11/17 13:11	10/13/17 17:55	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		1.0	0.33	mg/L			10/10/17 03:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	126	X	75 - 120					10/10/17 03:32	1
4-Bromofluorobenzene (Surr)	104		68 - 119					10/10/17 03:32	1

TestAmerica Seattle

Lab Sample ID: 580-71900-5

Matrix: Water

Client Sample ID: 17-ERK-SWZ Date Collected: 10/05/17 10:40 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-5 Matrix: Water

atrix: water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< th=""><th>0.099</th><th>J</th><th>0.10</th><th>0.023</th><th>mg/L</th><th></th><th>10/18/17 12:07</th><th>10/19/17 02:28</th><th></th></nc25)<>	0.099	J	0.10	0.023	mg/L		10/18/17 12:07	10/19/17 02:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl		Qualifier	50 - 150					Analyzed 10/19/17 02:28	-

Client Sample ID: 17-ERK-TB

Date Collected: 10/05/17 08:00 Date Received: 10/07/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.15	ug/L			10/18/17 10:43	1
1,1,2-Trichloroethane	ND		0.50	0.16	ug/L			10/18/17 10:43	1
1,1-Dichloroethene	ND		0.50	0.15	ug/L			10/18/17 10:43	1
1,2,4-Trichlorobenzene	ND		0.50	0.12	ug/L			10/18/17 10:43	1
1,2-Dichlorobenzene	ND		0.50	0.16	ug/L			10/18/17 10:43	1
1,2-Dichloroethane	ND		0.50	0.086	ug/L			10/18/17 10:43	1
1,2-Dichloropropane	ND		0.50	0.096	ug/L			10/18/17 10:43	1
1,4-Dichlorobenzene	ND		0.50	0.13	ug/L			10/18/17 10:43	1
Benzene	ND		0.50	0.082	ug/L			10/18/17 10:43	1
Carbon tetrachloride	ND		0.50	0.11	ug/L			10/18/17 10:43	1
Chlorobenzene	ND		0.50	0.14	ug/L			10/18/17 10:43	1
cis-1,2-Dichloroethene	ND		0.50	0.090	ug/L			10/18/17 10:43	1
Ethylbenzene	ND		0.50	0.099	ug/L			10/18/17 10:43	1
Methylene Chloride	ND		0.50	0.20	ug/L			10/18/17 10:43	1
Styrene	ND		0.50	0.089	ug/L			10/18/17 10:43	1
Tetrachloroethene	ND		0.50	0.18	ug/L			10/18/17 10:43	1
Toluene	ND		0.50	0.086	ug/L			10/18/17 10:43	1
trans-1,2-Dichloroethene	ND		0.50	0.090	ug/L			10/18/17 10:43	1
Trichloroethene	ND		0.50	0.13	ug/L			10/18/17 10:43	1
Vinyl chloride	ND		0.50	0.16	ug/L			10/18/17 10:43	1
Xylenes, Total	ND		0.50	0.086	ug/L			10/18/17 10:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene-d4 (Surr)	97		70 - 130			-		10/18/17 10:43	1
4-Bromofluorobenzene	104		70 - 130					10/18/17 10:43	1

Method: 624 - Volatile Organic Compounds (GC/MS)

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.42	ug/L			10/10/17 16:28	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/10/17 16:28	1
Toluene	ND		2.0	0.24	ug/L			10/10/17 16:28	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/10/17 16:28	1
o-Xylene	ND		2.0	0.15	ug/L			10/10/17 16:28	1
ТАН	ND		3.0	0.42	ug/L			10/10/17 16:28	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	120		74 - 123			-		10/10/17 16:28	1
Toluene-d8 (Surr)	89		79 - 122					10/10/17 16:28	1
4-Bromofluorobenzene (Surr)	100		78_119					10/10/17 16:28	1
Dibromofluoromethane (Surr)	105		70 - 120					10/10/17 16:28	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 120					10/10/17 16:28	1

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)										
Analyte Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1,2-Tetrachloroethane N	D	0.50	0.0090	ug/L			10/17/17 17:29	1		
1,1,2,2-Tetrachloroethane N	D	0.50	0.049	ug/L			10/17/17 17:29	1		
1,1,2-Trichloroethane N	D	0.50	0.017	ug/L			10/17/17 17:29	1		
1,1-Dichloroethene N	D	0.50	0.014	ug/L			10/17/17 17:29	1		
1,2-Dibromoethane N	D	0.50	0.014	ug/L			10/17/17 17:29	1		
1,2-Dichloroethane N	D	0.50	0.024	ug/L			10/17/17 17:29	1		

TestAmerica Seattle

Lab Sample ID: 580-71900-6 Matrix: Water

5

Lab Sample ID: 580-71900-6 Matrix: Water

5

Date Collected: 10/05/17 08:00 Date Received: 10/07/17 10:10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND	0.50	0.014	ug/L			10/17/17 17:29	1
2-Hexanone	ND	0.50	0.098	ug/L			10/17/17 17:29	1
Benzene	ND	0.50	0.0090	ug/L			10/17/17 17:29	1
Bromodichloromethane	ND	0.50	0.0060	ug/L			10/17/17 17:29	1
Bromoform	ND	0.50	0.013	ug/L			10/17/17 17:29	1
Bromomethane	ND	0.50	0.012	ug/L			10/17/17 17:29	1
Chloroform	ND	0.50	0.0090	ug/L			10/17/17 17:29	1
cis-1,3-Dichloropropene	ND	0.50	0.026	ug/L			10/17/17 17:29	1
Dibromochloromethane	ND	0.50	0.016	ug/L			10/17/17 17:29	1
Dibromomethane	ND	0.50	0.017	ug/L			10/17/17 17:29	1
Hexachlorobutadiene	ND	0.50	0.026	ug/L			10/17/17 17:29	1
Naphthalene	ND	0.50	0.013	ug/L			10/17/17 17:29	1
Tetrachloroethene	ND	0.50	0.017	ug/L			10/17/17 17:29	1
trans-1,3-Dichloropropene	ND	0.50	0.027	ug/L			10/17/17 17:29	1
Trichloroethene	ND	0.50	0.0090	ug/L			10/17/17 17:29	1
Vinyl chloride	ND	0.50	0.013	ug/L			10/17/17 17:29	1

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	65 - 143		10/17/17 17:29	1
4-Bromofluorobenzene (Surr)	103	75 - 125		10/17/17 17:29	1
Dibromofluoromethane (Surr)	101	77 - 118		10/17/17 17:29	1
Toluene-d8 (Surr)	100	82 - 122		10/17/17 17:29	1
Trifluorotoluene (Surr)	101	80 - 141		10/17/17 17:29	1

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		1.0	0.33	mg/L			10/09/17 18:48	1
	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
Surrogate	%Recovery	Quaimer	LIIIIIIS				Frepareu	Analyzeu	Dirrac
Trifluorotoluene (Surr)			75 - 120			-	Fiepareu	10/09/17 18:48	1

Lab Sample ID: 580-71900-7 Matrix: Water

Method: 8260C - Volatile Or Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.42	ug/L			10/10/17 18:10	1
Toluene	ND		2.0	0.24	ug/L			10/10/17 18:10	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/10/17 18:10	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/10/17 18:10	1
o-Xylene	ND		2.0	0.15	ug/L			10/10/17 18:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		80 - 122					10/10/17 18:10	1
Trifluorotoluene (Surr)	120		80 - 120					10/10/17 18:10	1
4-Bromofluorobenzene (Surr)	104		75 - 125					10/10/17 18:10	1
Dibromofluoromethane (Surr)	108		77 - 120					10/10/17 18:10	1
1,2-Dichloroethane-d4 (Surr)	95		80 - 126					10/10/17 18:10	1
Method: 8270D SIM - Semiv	olatile Organi	c Compou	inds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.016	0.0048	ug/L		10/11/17 13:53	10/19/17 22:16	1
2-Methylnaphthalene	ND		0.024	0.0072	ug/L		10/11/17 13:53	10/19/17 22:16	1
Acenaphthene	ND		0.016	0.0016	ug/L		10/11/17 13:53	10/19/17 22:16	1
Acenaphthylene	ND		0.016	0.0016	ug/L		10/11/17 13:53	10/19/17 22:16	1
Anthracene	ND		0.016	0.0024	ug/L		10/11/17 13:53	10/19/17 22:16	1
Benzo[a]anthracene	ND		0.016	0.0016	ug/L		10/11/17 13:53	10/19/17 22:16	1
Benzo[a]pyrene	ND	*	0.016	0.0024	ug/L		10/11/17 13:53	10/19/17 22:16	1
Benzo[b]fluoranthene	ND		0.016	0.0064	ug/L		10/11/17 13:53	10/19/17 22:16	1
Benzo[g,h,i]perylene	ND		0.016	0.0024	ug/L		10/11/17 13:53	10/19/17 22:16	1
Benzo[k]fluoranthene	ND		0.024	0.0072	ug/L		10/11/17 13:53	10/19/17 22:16	1
Chrysene	ND		0.016	0.0048	ug/L		10/11/17 13:53	10/19/17 22:16	1
Dibenz(a,h)anthracene	0.0019	J	0.016	0.0016	ug/L		10/11/17 13:53	10/19/17 22:16	1
Fluoranthene	ND		0.016	0.0016	ug/L		10/11/17 13:53	10/19/17 22:16	1
Fluorene	ND		0.016	0.0024	ug/L		10/11/17 13:53	10/19/17 22:16	1
Indeno[1,2,3-cd]pyrene	ND		0.016	0.0056	ug/L		10/11/17 13:53	10/19/17 22:16	1
Naphthalene	ND		0.032	0.010	ug/L		10/11/17 13:53	10/19/17 22:16	1
Phenanthrene	ND		0.016	0.0032	ug/L		10/11/17 13:53	10/19/17 22:16	1
Pyrene	ND		0.016	0.0032	ug/L		10/11/17 13:53	10/19/17 22:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	65		53 - 112				10/11/17 13:53	10/19/17 22:16	1
₋ Method: AK101 - Alaska - G	asoline Rang	e Organics	s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	ND		1.0	0.33	mg/L			10/10/17 04:34	1

-C6-C10			-		
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	126 X	75 - 120		10/10/17 04:34	1
4-Bromofluorobenzene (Surr)	105	68 - 119		10/10/17 04:34	1

Method: AK102 & 103 - Alaska	- Diesel Ra	ange Orga	nics & Residu	ual Rang	ge Org	anics (GC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>3.7</th><th>В</th><th>0.10</th><th>0.022</th><th>mg/L</th><th></th><th>10/17/17 08:55</th><th>10/17/17 20:01</th><th>1</th></nc25)<>	3.7	В	0.10	0.022	mg/L		10/17/17 08:55	10/17/17 20:01	1

Client Sample Results

Client: ERM Alaska, Inc. Project/Site: Eureka, Alaska 2017 TestAmerica Job ID: 580-71900-1

Client Sample ID: 17-ERK-MW-1 Lab Sample ID: 580-71900-7 Date Collected: 10/05/17 15:35 Matrix: Water Date Received: 10/07/17 10:10 Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 10/17/17 08:55 10/17/17 20:01 o-Terphenyl 67 50 - 150 1

Client Sample ID: 17-ERK-MWZ

Date Collected: 10/05/17 14:25 Date Received: 10/07/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.0090	ug/L			10/17/17 17:52	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.049	ug/L			10/17/17 17:52	1
1,1,2-Trichloroethane	ND		0.50	0.017	ug/L			10/17/17 17:52	1
1,1-Dichloroethene	ND		0.50	0.014	ug/L			10/17/17 17:52	1
1,2-Dibromoethane	ND		0.50	0.014	ug/L			10/17/17 17:52	1
1,2-Dichloroethane	ND		0.50	0.024	ug/L			10/17/17 17:52	1
1,4-Dichlorobenzene	ND		0.50	0.014	ug/L			10/17/17 17:52	1
2-Hexanone	ND		0.50	0.098	ug/L			10/17/17 17:52	1
Benzene	ND		0.50	0.0090	ug/L			10/17/17 17:52	1
Bromodichloromethane	ND		0.50	0.0060	ug/L			10/17/17 17:52	1
Bromoform	ND		0.50	0.013	ug/L			10/17/17 17:52	1
Bromomethane	ND		0.50	0.012	ug/L			10/17/17 17:52	1
Chloroform	ND		0.50	0.0090	ug/L			10/17/17 17:52	1
cis-1,3-Dichloropropene	ND		0.50	0.026	ug/L			10/17/17 17:52	1
Dibromochloromethane	ND		0.50	0.016	ug/L			10/17/17 17:52	1
Dibromomethane	ND		0.50	0.017	ug/L			10/17/17 17:52	1
Hexachlorobutadiene	ND		0.50	0.026	ug/L			10/17/17 17:52	1
Naphthalene	ND		0.50	0.013	ug/L			10/17/17 17:52	1
Tetrachloroethene	0.57		0.50	0.017	ug/L			10/17/17 17:52	1
trans-1,3-Dichloropropene	ND		0.50	0.027	ug/L			10/17/17 17:52	1
Trichloroethene	ND		0.50	0.0090	ug/L			10/17/17 17:52	1
Vinyl chloride	ND		0.50	0.013	ug/L			10/17/17 17:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		65 - 143		10/17/17 17:52	1
4-Bromofluorobenzene (Surr)	105		75 - 125		10/17/17 17:52	1
Dibromofluoromethane (Surr)	103		77 - 118		10/17/17 17:52	1
Toluene-d8 (Surr)	100		82 - 122		10/17/17 17:52	1
Trifluorotoluene (Surr)	101		80 - 141		10/17/17 17:52	1

Analyte	Result Qualifier	RL	MDL Unit	D Prepare	d Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	3.0	0.32 ug/L		10/11/17 21:21	1
1,1-Dichloroethane	ND	2.0	0.22 ug/L		10/11/17 21:21	1
1,1-Dichloropropene	ND	3.0	0.50 ug/L		10/11/17 21:21	1
1,2,3-Trichlorobenzene	ND *	5.0	0.46 ug/L		10/11/17 21:21	1
1,2,3-Trichloropropane	ND	2.0	0.41 ug/L		10/11/17 21:21	1
1,2,4-Trichlorobenzene	ND	2.0	0.15 ug/L		10/11/17 21:21	1
1,2,4-Trimethylbenzene	ND	3.0	0.42 ug/L		10/11/17 21:21	1
1,2-Dibromo-3-Chloropropane	ND	10	1.8 ug/L		10/11/17 21:21	1
1,2-Dichlorobenzene	ND	2.0	0.20 ug/L		10/11/17 21:21	1
1,2-Dichloropropane	ND	1.0	0.18 ug/L		10/11/17 21:21	1
1,3,5-Trimethylbenzene	ND	3.0	0.26 ug/L		10/11/17 21:21	1
1,3-Dichlorobenzene	ND	2.0	0.18 ug/L		10/11/17 21:21	1
1,3-Dichloropropane	ND	2.0	0.35 ug/L		10/11/17 21:21	1
2,2-Dichloropropane	ND	3.0	0.32 ug/L		10/11/17 21:21	1
2-Butanone	ND	20	4.7 ug/L		10/11/17 21:21	1
2-Chlorotoluene	ND	3.0	0.30 ug/L		10/11/17 21:21	1
4-Chlorotoluene	ND	2.0	0.28 ug/L		10/11/17 21:21	1
4-Isopropyltoluene	ND	3.0	0.26 ug/L		10/11/17 21:21	1

5

Matrix: Water

TestAmerica Seattle

TestAmerica Job ID: 580-71900-1

Lab Sample ID: 580-71900-8

Client Sample ID: 17-ERK-MWZ Date Collected: 10/05/17 14:25 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-8 Matrix: Water

1	Dil Fac	5
:21	1	
:21	1	
:21	1	
:21	1	
:21	1	
:21	1	8
:21	1	
:21	1	0
:21	1	3
:21	1	
:21	1	
:21	1	
:21	1	
:21	1	
:21	1	
:21	1	

Analyte	· · ·	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	ND		15	2.5	ug/L			10/11/17 21:21	1
Acetone	ND	*	50	7.8	ug/L			10/11/17 21:21	1
Bromobenzene	ND		2.0	0.18	ug/L			10/11/17 21:21	1
Bromochloromethane	ND	*	2.0	0.29	ug/L			10/11/17 21:21	1
Carbon disulfide	ND		1.0	0.11	ug/L			10/11/17 21:21	1
Carbon tetrachloride	ND	*	3.0	0.30	ug/L			10/11/17 21:21	1
Chlorobenzene	ND		2.0	0.17	ug/L			10/11/17 21:21	1
Chloroethane	ND		5.0	1.1	ug/L			10/11/17 21:21	1
Chloromethane	ND		20	5.4	ug/L			10/11/17 21:21	1
cis-1,2-Dichloroethene	ND		1.0	0.21	ug/L			10/11/17 21:21	1
Dichlorodifluoromethane	ND		5.0	0.98	ug/L			10/11/17 21:21	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/11/17 21:21	1
Isopropylbenzene	ND		2.0	0.30	ug/L			10/11/17 21:21	1
Methyl tert-butyl ether	ND	*	2.0	0.44	ug/L			10/11/17 21:21	1
Methylene Chloride	ND		5.0	1.4	ug/L			10/11/17 21:21	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L			10/11/17 21:21	1
n-Butylbenzene	ND		3.0	0.30	ug/L			10/11/17 21:21	1
N-Propylbenzene	ND		3.0	0.22	ug/L			10/11/17 21:21	1
o-Xylene	ND		2.0	0.15	ug/L			10/11/17 21:21	1
sec-Butylbenzene	ND		3.0	0.27	ug/L			10/11/17 21:21	1
Styrene	ND		5.0	1.0	ug/L			10/11/17 21:21	1
t-Butylbenzene	ND		3.0	0.27	ug/L			10/11/17 21:21	1
Toluene	ND		2.0	0.24	ug/L			10/11/17 21:21	1
trans-1,2-Dichloroethene	ND		3.0	0.71	ug/L			10/11/17 21:21	1
Trichlorofluoromethane	ND		3.0	0.63	ug/L			10/11/17 21:21	1
Commo ano to	0/ D = = = = = = = = = = = = = = = = = = =	Overlifier	1				Duran award	Amelumed	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		80 - 126		10/11/17 21:21	1
4-Bromofluorobenzene (Surr)	103		75 - 125		10/11/17 21:21	1
Dibromofluoromethane (Surr)	109		77 - 120		10/11/17 21:21	1
Toluene-d8 (Surr)	87		80 - 122		10/11/17 21:21	1
Trifluorotoluene (Surr)	119		80 - 120		10/11/17 21:21	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND	0.017	0.0052	ug/L		10/11/17 13:53	10/19/17 22:41	1
2-Methylnaphthalene	ND	0.026	0.0077	ug/L		10/11/17 13:53	10/19/17 22:41	1
Acenaphthene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 22:41	1
Acenaphthylene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 22:41	1
Anthracene	ND	0.017	0.0026	ug/L		10/11/17 13:53	10/19/17 22:41	1
Benzo[a]anthracene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 22:41	1
Benzo[a]pyrene	ND *	0.017	0.0026	ug/L		10/11/17 13:53	10/19/17 22:41	1
Benzo[b]fluoranthene	ND	0.017	0.0069	ug/L		10/11/17 13:53	10/19/17 22:41	1
Benzo[g,h,i]perylene	ND	0.017	0.0026	ug/L		10/11/17 13:53	10/19/17 22:41	1
Benzo[k]fluoranthene	ND	0.026	0.0077	ug/L		10/11/17 13:53	10/19/17 22:41	1
Chrysene	ND	0.017	0.0052	ug/L		10/11/17 13:53	10/19/17 22:41	1
Dibenz(a,h)anthracene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 22:41	1
Fluoranthene	ND	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 22:41	1
Fluorene	ND	0.017	0.0026	ug/L		10/11/17 13:53	10/19/17 22:41	1
Indeno[1,2,3-cd]pyrene	ND	0.017	0.0060	ug/L		10/11/17 13:53	10/19/17 22:41	1

Client: ERM Alaska, Inc. Project/Site: Eureka, Alaska 2017

TestAmerica Job ID: 580-71900-1

Client Sample ID: 17-ERK-MWZ Date Collected: 10/05/17 14:25 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-8 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.034	0.011	ug/L		10/11/17 13:53	10/19/17 22:41	1
Phenanthrene	ND		0.017	0.0034	ug/L		10/11/17 13:53	10/19/17 22:41	1
Pyrene	ND		0.017	0.0034	ug/L		10/11/17 13:53	10/19/17 22:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	68		53 - 112				10/11/17 13:53	10/19/17 22:41	1
Gasoline Range Organics (GRO) -C6-C10	ND		1.0		mg/L			10/10/17 05:05	
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	127	X	75 - 120					10/10/17 05:05	1
4-Bromofluorobenzene (Surr)	103		68 - 119					10/10/17 05:05	1
-									
Method: AK102 & 103 - Alas	ska - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgai	nics (O	GC)		
Method: AK102 & 103 - Alas Analyte		ange Orga Qualifier	nics & Resic _{RL}	ual Ran MDL		nics ((D	GC) Prepared	Analyzed	Dil Fac

DRO (nC10- <nc25)< th=""><th>0.052</th><th>J</th><th>0.10</th><th>0.022</th><th>mg/L</th><th>10/18/17 12:07</th><th>10/19/17 02:50</th><th>1</th></nc25)<>	0.052	J	0.10	0.022	mg/L	10/18/17 12:07	10/19/17 02:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	73		50 - 150			10/18/17 12:07	10/19/17 02:50	1

Client Sample ID: 17-ERK-MW-3 Date Collected: 10/05/17 14:15

Date Received: 10/07/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.0090	ug/L			10/17/17 18:17	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.049	ug/L			10/17/17 18:17	1
1,1,2-Trichloroethane	ND		0.50	0.017	ug/L			10/17/17 18:17	1
1,1-Dichloroethene	ND		0.50	0.014	ug/L			10/17/17 18:17	1
1,2-Dibromoethane	ND		0.50	0.014	ug/L			10/17/17 18:17	1
1,2-Dichloroethane	ND		0.50	0.024	ug/L			10/17/17 18:17	1
1,4-Dichlorobenzene	ND		0.50	0.014	ug/L			10/17/17 18:17	1
2-Hexanone	ND		0.50	0.098	ug/L			10/17/17 18:17	1
Benzene	ND		0.50	0.0090	ug/L			10/17/17 18:17	1
Bromodichloromethane	ND		0.50	0.0060	ug/L			10/17/17 18:17	1
Bromoform	ND		0.50	0.013	ug/L			10/17/17 18:17	1
Bromomethane	ND		0.50	0.012	ug/L			10/17/17 18:17	1
Chloroform	ND		0.50	0.0090	ug/L			10/17/17 18:17	1
cis-1,3-Dichloropropene	ND		0.50	0.026	ug/L			10/17/17 18:17	1
Dibromochloromethane	ND		0.50	0.016	ug/L			10/17/17 18:17	1
Dibromomethane	ND		0.50	0.017	ug/L			10/17/17 18:17	1
Hexachlorobutadiene	ND		0.50	0.026	ug/L			10/17/17 18:17	1
Naphthalene	ND		0.50	0.013	ug/L			10/17/17 18:17	1
Tetrachloroethene	ND		0.50	0.017	ug/L			10/17/17 18:17	1
trans-1,3-Dichloropropene	ND		0.50	0.027	ug/L			10/17/17 18:17	1
Trichloroethene	ND		0.50	0.0090	ug/L			10/17/17 18:17	1
Vinyl chloride	ND		0.50	0.013	ug/L			10/17/17 18:17	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		65 - 143		10/17/17 18:17	1
4-Bromofluorobenzene (Surr)	105		75 - 125		10/17/17 18:17	1
Dibromofluoromethane (Surr)	102		77 - 118		10/17/17 18:17	1
Toluene-d8 (Surr)	101		82 - 122		10/17/17 18:17	1
Trifluorotoluene (Surr)	102		80 - 141		10/17/17 18:17	1

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	3.0	0.32 ug/L		10/11/17 21:46	1
1,1-Dichloroethane	ND	2.0	0.22 ug/L		10/11/17 21:46	1
1,1-Dichloropropene	ND	3.0	0.50 ug/L		10/11/17 21:46	1
1,2,3-Trichlorobenzene	ND *	5.0	0.46 ug/L		10/11/17 21:46	1
1,2,3-Trichloropropane	ND	2.0	0.41 ug/L		10/11/17 21:46	1
1,2,4-Trichlorobenzene	ND	2.0	0.15 ug/L		10/11/17 21:46	1
1,2,4-Trimethylbenzene	ND	3.0	0.42 ug/L		10/11/17 21:46	1
1,2-Dibromo-3-Chloropropane	ND	10	1.8 ug/L		10/11/17 21:46	1
1,2-Dichlorobenzene	ND	2.0	0.20 ug/L		10/11/17 21:46	1
1,2-Dichloropropane	ND	1.0	0.18 ug/L		10/11/17 21:46	1
1,3,5-Trimethylbenzene	ND	3.0	0.26 ug/L		10/11/17 21:46	1
1,3-Dichlorobenzene	ND	2.0	0.18 ug/L		10/11/17 21:46	1
1,3-Dichloropropane	ND	2.0	0.35 ug/L		10/11/17 21:46	1
2,2-Dichloropropane	ND	3.0	0.32 ug/L		10/11/17 21:46	1
2-Butanone	ND	20	4.7 ug/L		10/11/17 21:46	1
2-Chlorotoluene	ND	3.0	0.30 ug/L		10/11/17 21:46	1
4-Chlorotoluene	ND	2.0	0.28 ug/L		10/11/17 21:46	1
4-Isopropyltoluene	ND	3.0	0.26 ug/L		10/11/17 21:46	1

TestAmerica Seattle

Lab Sample ID: 580-71900-9

Matrix: Water

RL

15

50

2.0

MDL Unit

2.5 ug/L

7.8 ug/L

0.18 ug/L

D

Prepared

Analyte

Acetone

Bromobenzene

4-Methyl-2-pentanone

Client Sample ID: 17-ERK-MW-3 Date Collected: 10/05/17 14:15 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-9 Matrix: Water

	8	
	9	

Analyzed	Dil Fac	5
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	9
10/11/17 21:46	1	
10/11/17 21:46	1	6
10/11/17 21:46	1	2
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	
10/11/17 21:46	1	

	• •=				-
Bromochloromethane	ND *	2.0	0.29 ug/L	10/11/17 21:46	1
Carbon disulfide	ND	1.0	0.11 ug/L	10/11/17 21:46	1
Carbon tetrachloride	ND *	3.0	0.30 ug/L	10/11/17 21:46	1
Chlorobenzene	ND	2.0	0.17 ug/L	10/11/17 21:46	1
Chloroethane	ND	5.0	1.1 ug/L	10/11/17 21:46	1
Chloromethane	ND	20	5.4 ug/L	10/11/17 21:46	1
cis-1,2-Dichloroethene	ND	1.0	0.21 ug/L	10/11/17 21:46	1
Dichlorodifluoromethane	ND	5.0	0.98 ug/L	10/11/17 21:46	1
Ethylbenzene	ND	3.0	0.21 ug/L	10/11/17 21:46	1
Isopropylbenzene	ND	2.0	0.30 ug/L	10/11/17 21:46	1
Methyl tert-butyl ether	ND *	2.0	0.44 ug/L	10/11/17 21:46	1
Methylene Chloride	ND	5.0	1.4 ug/L	10/11/17 21:46	1
m-Xylene & p-Xylene	ND	3.0	0.72 ug/L	10/11/17 21:46	1
n-Butylbenzene	ND	3.0	0.30 ug/L	10/11/17 21:46	1
N-Propylbenzene	ND	3.0	0.22 ug/L	10/11/17 21:46	1
o-Xylene	ND	2.0	0.15 ug/L	10/11/17 21:46	1
sec-Butylbenzene	ND	3.0	0.27 ug/L	10/11/17 21:46	1
Styrene	ND	5.0	1.0 ug/L	10/11/17 21:46	1
t-Butylbenzene	ND	3.0	0.27 ug/L	10/11/17 21:46	1
Toluene	ND	2.0	0.24 ug/L	10/11/17 21:46	1
trans-1,2-Dichloroethene	ND	3.0	0.71 ug/L	10/11/17 21:46	1
Trichlorofluoromethane	ND	3.0	0.63 ug/L	10/11/17 21:46	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 126	10/11/17 21:4	6 1
4-Bromofluorobenzene (Surr)	104		75 - 125	10/11/17 21:4	6 1
Dibromofluoromethane (Surr)	108		77 - 120	10/11/17 21:4	6 1
Toluene-d8 (Surr)	87		80 - 122	10/11/17 21:4	6 1
Trifluorotoluene (Surr)	120		80 - 120	10/11/17 21:4	6 1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

*

ND

ND

ND

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND	(0.017	0.0050	ug/L		10/11/17 13:53	10/19/17 23:05	1
2-Methylnaphthalene	ND	(0.025	0.0075	ug/L		10/11/17 13:53	10/19/17 23:05	1
Acenaphthene	ND	(0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:05	1
Acenaphthylene	ND	(0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:05	1
Anthracene	ND	(0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:05	1
Benzo[a]anthracene	ND	(0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:05	1
Benzo[a]pyrene	ND *	' (0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:05	1
Benzo[b]fluoranthene	ND	(0.017	0.0066	ug/L		10/11/17 13:53	10/19/17 23:05	1
Benzo[g,h,i]perylene	ND	(0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:05	1
Benzo[k]fluoranthene	ND	(0.025	0.0075	ug/L		10/11/17 13:53	10/19/17 23:05	1
Chrysene	ND	(0.017	0.0050	ug/L		10/11/17 13:53	10/19/17 23:05	1
Dibenz(a,h)anthracene	ND	(0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:05	1
Fluoranthene	ND	(0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:05	1
Fluorene	ND	(0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:05	1
Indeno[1,2,3-cd]pyrene	ND	(0.017	0.0058	ug/L		10/11/17 13:53	10/19/17 23:05	1

Client: ERM Alaska, Inc. Project/Site: Eureka, Alaska 2017

Client Sample ID: 17-ERK-MW-3 Date Collected: 10/05/17 14:15 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-9 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.033	0.011	ug/L		10/11/17 13:53	10/19/17 23:05	1
Phenanthrene	ND		0.017	0.0033	ug/L		10/11/17 13:53	10/19/17 23:05	1
Pyrene	ND		0.017	0.0033	ug/L		10/11/17 13:53	10/19/17 23:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	72		53 - 112				10/11/17 13:53	10/19/17 23:05	1
Gasoline Range Organics (GRO) -C6-C10	ND		1.0	0.33	mg/L			10/10/17 05:36	1
-C6-C10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	124	X	75 - 120					10/10/17 05:36	1
4-Bromofluorobenzene (Surr)	104		68 - 119					10/10/17 05:36	1
- Method: AK102 & 103 - Alas	ka - Diesel Ra	ange Orga	nics & Resid	lual Ran	de Orda	nics ((GC)		
Method: AK102 & 103 - Alas Analyte		ange Orga Qualifier	nics & Resic _{RL}		<mark>ge Orga</mark> Unit	nics ((D	GC) Prepared	Analyzed	Dil Fac

DRO (nc10- <nc25)< th=""><th>0.058</th><th>J</th><th>0.11</th><th>0.023 mg/L</th><th>10/10/17 12.07</th><th>10/19/17 03.13</th><th>I</th></nc25)<>	0.058	J	0.11	0.023 mg/L	10/10/17 12.07	10/19/17 03.13	I
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
o-Terphenyl	82		50 - 150		10/18/17 12:07	10/19/17 03:13	1

Client Sample ID: 17-ERK-EB

Date Collected: 10/05/17 16:06 Date Received: 10/07/17 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.0090	ug/L			10/17/17 18:40	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.049	ug/L			10/17/17 18:40	1
1,1,2-Trichloroethane	ND		0.50	0.017	ug/L			10/17/17 18:40	1
1,1-Dichloroethene	ND		0.50	0.014	ug/L			10/17/17 18:40	1
1,2-Dibromoethane	ND		0.50	0.014	ug/L			10/17/17 18:40	1
1,2-Dichloroethane	ND		0.50	0.024	ug/L			10/17/17 18:40	1
1,4-Dichlorobenzene	ND		0.50	0.014	ug/L			10/17/17 18:40	1
2-Hexanone	ND		0.50	0.098	ug/L			10/17/17 18:40	1
Benzene	ND		0.50	0.0090	ug/L			10/17/17 18:40	1
Bromodichloromethane	ND		0.50	0.0060	ug/L			10/17/17 18:40	1
Bromoform	ND		0.50	0.013	ug/L			10/17/17 18:40	1
Bromomethane	ND		0.50	0.012	ug/L			10/17/17 18:40	1
Chloroform	ND		0.50	0.0090	ug/L			10/17/17 18:40	1
cis-1,3-Dichloropropene	ND		0.50	0.026	ug/L			10/17/17 18:40	1
Dibromochloromethane	ND		0.50	0.016	ug/L			10/17/17 18:40	1
Dibromomethane	ND		0.50	0.017	ug/L			10/17/17 18:40	1
Hexachlorobutadiene	ND		0.50	0.026	ug/L			10/17/17 18:40	1
Naphthalene	ND		0.50	0.013	ug/L			10/17/17 18:40	1
Tetrachloroethene	0.53		0.50	0.017	ug/L			10/17/17 18:40	1
trans-1,3-Dichloropropene	ND		0.50	0.027	ug/L			10/17/17 18:40	1
Trichloroethene	ND		0.50	0.0090	ug/L			10/17/17 18:40	1
Vinyl chloride	ND		0.50	0.013				10/17/17 18:40	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		65 - 143		10/17/17 18:40	1
4-Bromofluorobenzene (Surr)	97		75 - 125		10/17/17 18:40	1
Dibromofluoromethane (Surr)	102		77 - 118		10/17/17 18:40	1
Toluene-d8 (Surr)	99		82 - 122		10/17/17 18:40	1
Trifluorotoluene (Surr)	102		80 - 141		10/17/17 18:40	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	3.0	0.32	ug/L			10/11/17 20:06	1
1,1-Dichloroethane	ND	2.0	0.22	ug/L			10/11/17 20:06	1
1,1-Dichloropropene	ND	3.0	0.50	ug/L			10/11/17 20:06	1
1,2,3-Trichlorobenzene	ND *	5.0	0.46	ug/L			10/11/17 20:06	1
1,2,3-Trichloropropane	ND	2.0	0.41	ug/L			10/11/17 20:06	1
1,2,4-Trichlorobenzene	ND	2.0	0.15	ug/L			10/11/17 20:06	1
1,2,4-Trimethylbenzene	ND	3.0	0.42	ug/L			10/11/17 20:06	1
1,2-Dibromo-3-Chloropropane	ND	10	1.8	ug/L			10/11/17 20:06	1
1,2-Dichlorobenzene	ND	2.0	0.20	ug/L			10/11/17 20:06	1
1,2-Dichloropropane	ND	1.0	0.18	ug/L			10/11/17 20:06	1
1,3,5-Trimethylbenzene	ND	3.0	0.26	ug/L			10/11/17 20:06	1
1,3-Dichlorobenzene	ND	2.0	0.18	ug/L			10/11/17 20:06	1
1,3-Dichloropropane	ND	2.0	0.35	ug/L			10/11/17 20:06	1
2,2-Dichloropropane	ND	3.0	0.32	ug/L			10/11/17 20:06	1
2-Butanone	ND	20	4.7	ug/L			10/11/17 20:06	1
2-Chlorotoluene	ND	3.0	0.30	ug/L			10/11/17 20:06	1
4-Chlorotoluene	ND	2.0	0.28	ug/L			10/11/17 20:06	1
4-Isopropyltoluene	ND	3.0	0.26	ug/L			10/11/17 20:06	1

TestAmerica Seattle

Matrix: Water

Lab Sample ID: 580-71900-10

RL

MDL Unit

D

Prepared

Client Sample ID: 17-ERK-EB Date Collected: 10/05/17 16:06 Date Received: 10/07/17 10:10

Analyte

Lab Sample ID: 580-71900-10 Matrix: Water

Analyzed

5

Dil Fac

8
9

11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	
11/17 20:06	1	

Analyte	Result	Quanner	112		onne	D Troparca	Analyzou	Dirruo
4-Methyl-2-pentanone	ND		15	2.5	ug/L		10/11/17 20:06	1
Acetone	ND	*	50	7.8	ug/L		10/11/17 20:06	1
Bromobenzene	ND		2.0	0.18	ug/L		10/11/17 20:06	1
Bromochloromethane	ND	*	2.0	0.29	ug/L		10/11/17 20:06	1
Carbon disulfide	ND		1.0	0.11	ug/L		10/11/17 20:06	1
Carbon tetrachloride	ND	*	3.0	0.30	ug/L		10/11/17 20:06	1
Chlorobenzene	ND		2.0	0.17	ug/L		10/11/17 20:06	1
Chloroethane	ND		5.0	1.1	ug/L		10/11/17 20:06	1
Chloromethane	ND		20	5.4	ug/L		10/11/17 20:06	1
cis-1,2-Dichloroethene	ND		1.0	0.21	ug/L		10/11/17 20:06	1
Dichlorodifluoromethane	ND		5.0	0.98	ug/L		10/11/17 20:06	1
Ethylbenzene	ND		3.0	0.21	ug/L		10/11/17 20:06	1
Isopropylbenzene	ND		2.0	0.30	ug/L		10/11/17 20:06	1
Methyl tert-butyl ether	ND	*	2.0	0.44	ug/L		10/11/17 20:06	1
Methylene Chloride	ND		5.0	1.4	ug/L		10/11/17 20:06	1
m-Xylene & p-Xylene	ND		3.0	0.72	ug/L		10/11/17 20:06	1
n-Butylbenzene	ND		3.0	0.30	ug/L		10/11/17 20:06	1
N-Propylbenzene	ND		3.0	0.22	ug/L		10/11/17 20:06	1
o-Xylene	ND		2.0	0.15	ug/L		10/11/17 20:06	1
sec-Butylbenzene	ND		3.0	0.27	ug/L		10/11/17 20:06	1
Styrene	ND		5.0		ug/L		10/11/17 20:06	1
t-Butylbenzene	ND		3.0	0.27	ug/L		10/11/17 20:06	1
Toluene	ND		2.0	0.24	ug/L		10/11/17 20:06	1
trans-1,2-Dichloroethene	ND		3.0	0.71	ug/L		10/11/17 20:06	1
Trichlorofluoromethane	ND		3.0	0.63	ug/L		10/11/17 20:06	1

Surrogate	%Recovery	Qualifier I	imits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		30 - 126	10/	/11/17 20:06	1
4-Bromofluorobenzene (Surr)	102	7	75 - 125	10/	/11/17 20:06	1
Dibromofluoromethane (Surr)	108	7	77 - 120	10/	/11/17 20:06	1
Toluene-d8 (Surr)	87	Ę	30 - 122	10/	/11/17 20:06	1
Trifluorotoluene (Surr)	120	٤	30 - 120	10/	/11/17 20:06	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.017	0.0051	ug/L		10/11/17 13:53	10/19/17 23:30	1
2-Methylnaphthalene	ND		0.025	0.0076	ug/L		10/11/17 13:53	10/19/17 23:30	1
Acenaphthene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:30	1
Acenaphthylene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:30	1
Anthracene	0.0036	JB	0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:30	1
Benzo[a]anthracene	0.0028	J	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:30	1
Benzo[a]pyrene	ND	*	0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:30	1
Benzo[b]fluoranthene	ND		0.017	0.0068	ug/L		10/11/17 13:53	10/19/17 23:30	1
Benzo[g,h,i]perylene	ND		0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:30	1
Benzo[k]fluoranthene	ND		0.025	0.0076	ug/L		10/11/17 13:53	10/19/17 23:30	1
Chrysene	ND		0.017	0.0051	ug/L		10/11/17 13:53	10/19/17 23:30	1
Dibenz(a,h)anthracene	ND		0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:30	1
Fluoranthene	0.0055	J	0.017	0.0017	ug/L		10/11/17 13:53	10/19/17 23:30	1
Fluorene	ND		0.017	0.0025	ug/L		10/11/17 13:53	10/19/17 23:30	1
Indeno[1,2,3-cd]pyrene	ND		0.017	0.0059	ug/L		10/11/17 13:53	10/19/17 23:30	1

Client: ERM Alaska, Inc. Project/Site: Eureka, Alaska 2017

Client Sample ID: 17-ERK-EB Date Collected: 10/05/17 16:06 Date Received: 10/07/17 10:10

Lab Sample ID: 580-71900-10 Matrix: Water

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.034	0.011	ug/L		10/11/17 13:53	10/19/17 23:30	1
0.0051	JB	0.017	0.0034	ug/L		10/11/17 13:53	10/19/17 23:30	1
0.0044	JB	0.017	0.0034	ug/L		10/11/17 13:53	10/19/17 23:30	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
70		53 - 112				10/11/17 13:53	10/19/17 23:30	1
ND		1.0	0.33	mg/L			10/10/17 06:07	1
						Prepared		Dil Fac
123	X	75 - 120					10/10/17 06:07	1
							40/40/47 00 07	
105		68 - 119					10/10/17 06:07	1
105 ka - Diesel Ra	ange Orga		lual Ran	ge Orgai	nics (C	GC)	10/10/17 06:07	1
	ND 0.0051 0.0044 %Recovery 70 asoline Range Result ND %Recovery	ND 0.0051 J B 0.0044 J B %Recovery Qualifier 70 70 asoline Range Organics Result Qualifier ND 8 %Recovery Qualifier ND 9	ND 0.034 0.0051 J B 0.017 0.0044 J B 0.017 %Recovery Qualifier Limits 70 53 - 112 asoline Range Organics (GC) Result Qualifier RL ND 1.0 1.0	ND 0.034 0.011 0.0051 J B 0.017 0.0034 0.0044 J B 0.017 0.0034 %Recovery Qualifier Limits 70 53 - 112 asoline Range Organics (GC) Result Qualifier RL MDL ND 1.0 0.33 0.33	ND 0.034 0.011 ug/L 0.0051 J B 0.017 0.0034 ug/L 0.0044 J B 0.017 0.0034 ug/L %Recovery Qualifier Limits 0.0034 ug/L %Recovery Qualifier Limits 0.0034 ug/L asoline Range Organics (GC) MDL Unit ND 1.0 0.33 mg/L 0.33 mg/L	ND 0.034 0.011 ug/L - 0.0051 J B 0.017 0.0034 ug/L 0.0044 J B 0.017 0.0034 ug/L %Recovery Qualifier Limits - 70 53 - 112 - - asoline Range Organics (GC) - - Result Qualifier RL MDL Unit D ND 1.0 0.33 mg/L - -	ND 0.034 0.011 ug/L 10/11/17 13:53 0.0051 J B 0.017 0.0034 ug/L 10/11/17 13:53 0.0044 J B 0.017 0.0034 ug/L 10/11/17 13:53 0.0044 J B 0.017 0.0034 ug/L 10/11/17 13:53 %Recovery Qualifier Limits Prepared 10/11/17 13:53 asoline Range Organics (GC) Result Qualifier RL MDL Unit D Prepared ND 1.0 0.33 mg/L D Prepared %Recovery Qualifier Limits Prepared Prepared	ND 0.034 0.011 ug/L 10/11/17 13:53 10/19/17 23:30 0.0051 J B 0.017 0.0034 ug/L 10/11/17 13:53 10/19/17 23:30 0.0044 J B 0.017 0.0034 ug/L 10/11/17 13:53 10/19/17 23:30 %Recovery Qualifier Limits 10.0034 ug/L 10/11/17 13:53 10/19/17 23:30 %Recovery Qualifier Limits Prepared Analyzed 70 53 - 112 10/11/17 13:53 10/19/17 23:30 asoline Range Organics (GC) MDL Unit D Prepared Analyzed ND 1.0 0.33 mg/L D Prepared Analyzed 10/10/17 1.0 0.33 mg/L D Prepared Analyzed 10/10/17 1.0 0.33 mg/L D Prepared Analyzed 10/10/17 1.0 0.33 mg/L

DRO (nC10- <nc25)< th=""><th>0.048</th><th>JB</th><th>0.10</th><th>0.022 mg/L</th><th>10/17/17 08:55</th><th>10/17/17 21:29</th><th>1</th></nc25)<>	0.048	JB	0.10	0.022 mg/L	10/17/17 08:55	10/17/17 21:29	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
o-Terphenyl	75		50 - 150		10/17/17 08:55	10/17/17 21:29	1

Lab Sample ID: MB 680-498776/9

Matrix: Water

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,2-Dichloropropane

1,4-Dichlorobenzene

Carbon tetrachloride

cis-1,2-Dichloroethene

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

trans-1,2-Dichloroethene

1,2-Dichlorobenzene-d4 (Surr)

4-Bromofluorobenzene

Chlorobenzene

Ethylbenzene

Styrene

Toluene

Benzene

1,2-Dichloroethane

1,1-Dichloroethene

Analyte

Analysis Batch: 498776

Method: 524.2 - Volatile Organic Compounds (GC/MS)

MB MB **Result Qualifier**

ND

0.130 J **Client Sample ID: Method Blank**

Analyzed

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

Prep Type: Total/NA

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

10/17/17 13:02	1	
10/17/17 13:02	1	11
10/17/17 13:02	1	
10/17/17 13:02	1	
10/17/17 13:02	1	
10/17/17 13:02	1	
10/17/17 13:02	1	
10/17/17 13:02	1	

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

10/17/17 13:02

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

MB	MB					
%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
117		70 - 130	-		10/17/17 13:02	1
99		70 - 130			10/17/17 13:02	1

Lab Sample ID: LCS 680-498776/3 **Matrix: Water** Analysis Batch: 498776

······ ,··· ···························	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	19.1		ug/L		95	70 - 130
1,1,2-Trichloroethane	20.0	18.0		ug/L		90	70 - 130
1,1-Dichloroethene	20.0	21.0		ug/L		105	70 - 130
1,2,4-Trichlorobenzene	20.0	22.9		ug/L		114	70 - 130
1,2-Dichlorobenzene	20.0	23.7		ug/L		118	70 - 130
1,2-Dichloroethane	20.0	17.9		ug/L		90	70 - 130
1,2-Dichloropropane	20.0	17.6		ug/L		88	70 - 130
1,4-Dichlorobenzene	20.0	23.1		ug/L		116	70 - 130
Benzene	20.0	18.6		ug/L		93	70 - 130
Carbon tetrachloride	20.0	19.8		ug/L		99	70 - 130
Chlorobenzene	20.0	20.6		ug/L		103	70 - 130
cis-1,2-Dichloroethene	20.0	20.4		ug/L		102	70 - 130
Ethylbenzene	20.0	22.0		ug/L		110	70 - 130
Methylene Chloride	20.0	20.6		ug/L		103	70 - 130
Styrene	20.0	22.4		ug/L		112	70 - 130
Tetrachloroethene	20.0	25.1		ug/L		125	70 - 130
Toluene	20.0	20.0		ug/L		100	70 - 130

TestAmerica Seattle

RL

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

MDL Unit

0.15 ug/L

0.16 ug/L

0.15 ug/L

0.12 ug/L

0.16 ug/L

0.086 ug/L

0.096 ug/L

0.13 ug/L

0.082 ug/L

0.11 ug/L

0.14 ug/L

0.090 ug/L

0.099 ug/L

0.20 ug/L

0.089 ug/L

0.18 ug/L 0.086 ug/L

0.090 ug/L

0.13 ug/L

0.16 ug/L

0.086 ug/L

D

Prepared

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-498776/3 Matrix: Water

Math			
Analy		tch: 4	09776

Added	Result	Qualifier	Unit	D	%Rec	Limits
20.0	21.1		ug/L		106	70 - 130
20.0	22.2		ug/L		111	70 ₋ 130
20.0	20.0		ug/L		100	70 - 130
40.0	44.3		ug/L		111	70 - 130
	20.0 20.0 20.0	20.0 21.1 20.0 22.2 20.0 20.0	20.0 21.1 20.0 22.2 20.0 20.0	20.0 21.1 ug/L 20.0 22.2 ug/L 20.0 20.0 ug/L	20.0 21.1 ug/L 20.0 22.2 ug/L 20.0 20.0 ug/L	20.0 21.1 ug/L 106 20.0 22.2 ug/L 111 20.0 20.0 ug/L 100

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichlorobenzene-d4 (Surr)	113		70 - 130
4-Bromofluorobenzene	103		70 - 130

Lab Sample ID: LCSD 680-498776/4 Matrix: Water

Analysis Batch: 498776									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	19.4		ug/L		97	70 - 130	2	30
1,1,2-Trichloroethane	20.0	18.5		ug/L		93	70 - 130	3	30
1,1-Dichloroethene	20.0	21.3		ug/L		107	70 - 130	1	30
1,2,4-Trichlorobenzene	20.0	23.2		ug/L		116	70 - 130	1	30
1,2-Dichlorobenzene	20.0	23.7		ug/L		118	70 - 130	0	30
1,2-Dichloroethane	20.0	18.7		ug/L		94	70 - 130	5	30
1,2-Dichloropropane	20.0	18.1		ug/L		90	70 - 130	2	30
1,4-Dichlorobenzene	20.0	23.4		ug/L		117	70 - 130	1	30
Benzene	20.0	19.2		ug/L		96	70 - 130	3	30
Carbon tetrachloride	20.0	20.4		ug/L		102	70 - 130	3	30
Chlorobenzene	20.0	21.4		ug/L		107	70 - 130	4	30
cis-1,2-Dichloroethene	20.0	20.9		ug/L		104	70 - 130	2	30
Ethylbenzene	20.0	22.5		ug/L		112	70 - 130	2	30
Methylene Chloride	20.0	21.0		ug/L		105	70 - 130	2	30
Styrene	20.0	22.6		ug/L		113	70 - 130	1	30
Tetrachloroethene	20.0	25.4		ug/L		127	70 - 130	1	30
Toluene	20.0	20.4		ug/L		102	70 - 130	2	30
trans-1,2-Dichloroethene	20.0	20.8		ug/L		104	70 - 130	2	30
Trichloroethene	20.0	22.8		ug/L		114	70 - 130	3	30
Vinyl chloride	20.0	19.7		ug/L		98	70 - 130	2	30
Xylenes, Total	40.0	44.6		ug/L		111	70 - 130	1	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichlorobenzene-d4 (Surr)	112		70 - 130
4-Bromofluorobenzene	99		70 - 130

Lab Sample ID: MB 680-498911/9 Matrix: Water Analysis Batch: 498911

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.15	ug/L			10/18/17 10:18	1
1,1,2-Trichloroethane	ND		0.50	0.16	ug/L			10/18/17 10:18	1
1,1-Dichloroethene	ND		0.50	0.15	ug/L			10/18/17 10:18	1

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Page 28 of 58

12/13/2017 (Rev. 1)

Lab Sample ID: MB 680-498911/9

Client Sample ID: Method Blank

5

107

Matrix: Water							Prep Type: To	otal/NA
Analysis Batch: 498911								
	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	0.50	0.12	ug/L			10/18/17 10:18	1
1,2-Dichlorobenzene	ND	0.50	0.16	ug/L			10/18/17 10:18	1
1,2-Dichloroethane	ND	0.50	0.086	ug/L			10/18/17 10:18	1
1,2-Dichloropropane	ND	0.50	0.096	ug/L			10/18/17 10:18	1
1,4-Dichlorobenzene	ND	0.50	0.13	ug/L			10/18/17 10:18	1
Benzene	ND	0.50	0.082	ug/L			10/18/17 10:18	1
Carbon tetrachloride	ND	0.50	0.11	ug/L			10/18/17 10:18	1
Chlorobenzene	ND	0.50	0.14	ug/L			10/18/17 10:18	1
cis-1,2-Dichloroethene	ND	0.50	0.090	ug/L			10/18/17 10:18	1
Ethylbenzene	ND	0.50	0.099	ug/L			10/18/17 10:18	1
Methylene Chloride	ND	0.50	0.20	ug/L			10/18/17 10:18	1
Styrene	ND	0.50	0.089	ug/L			10/18/17 10:18	1
Tetrachloroethene	ND	0.50	0.18	ug/L			10/18/17 10:18	1
Toluene	ND	0.50	0.086	ug/L			10/18/17 10:18	1
trans-1,2-Dichloroethene	ND	0.50	0.090	ug/L			10/18/17 10:18	1
Trichloroethene	ND	0.50	0.13	ug/L			10/18/17 10:18	1
Vinyl chloride	ND	0.50	0.16	ug/L			10/18/17 10:18	1
Xylenes, Total	ND	0.50	0.086	ug/L			10/18/17 10:18	1
	MB MB							
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene-d4 (Surr)	97	70 - 130					10/18/17 10:18	1

70 - 130

Lab Sample ID: LCS 680-498911/3 **Matrix: Water** Analysis Batch: 498911

4-Bromofluorobenzene

Client Sample ID: Lab Control Sample Prep Type: Total/NA

10/18/17 10:18

1

·	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	18.6		ug/L		93	70 - 130
1,1,2-Trichloroethane	20.0	18.5		ug/L		93	70 - 130
1,1-Dichloroethene	20.0	21.2		ug/L		106	70 ₋ 130
1,2,4-Trichlorobenzene	20.0	20.6		ug/L		103	70 - 130
1,2-Dichlorobenzene	20.0	18.3		ug/L		91	70 - 130
1,2-Dichloroethane	20.0	17.4		ug/L		87	70 - 130
1,2-Dichloropropane	20.0	18.7		ug/L		93	70 - 130
1,4-Dichlorobenzene	20.0	19.0		ug/L		95	70 ₋ 130
Benzene	20.0	18.5		ug/L		93	70 - 130
Carbon tetrachloride	20.0	19.6		ug/L		98	70 - 130
Chlorobenzene	20.0	19.2		ug/L		96	70 - 130
cis-1,2-Dichloroethene	20.0	20.4		ug/L		102	70 - 130
Ethylbenzene	20.0	19.0		ug/L		95	70 - 130
Methylene Chloride	20.0	22.2		ug/L		111	70 - 130
Styrene	20.0	19.3		ug/L		97	70 - 130
Tetrachloroethene	20.0	19.0		ug/L		95	70 ₋ 130
Toluene	20.0	19.2		ug/L		96	70 ₋ 130
trans-1,2-Dichloroethene	20.0	21.1		ug/L		105	70 ₋ 130
Trichloroethene	20.0	19.4		ug/L		97	70 ₋ 130
Vinyl chloride	20.0	22.1		ug/L		110	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

1 2 3 4 5 6 7 8

Lab Sample ID: LCS 680-498911/3				Clie	nt Sar	nple ID	: Lab Control Sam
Matrix: Water							Prep Type: Total/
Analysis Batch: 498911							
•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Xylenes, Total	40.0	38.4		ug/L		96	70 - 130

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichlorobenzene-d4 (Surr)	96		70 - 130
4-Bromofluorobenzene	112		70 - 130

Lab Sample ID: LCSD 680-498911/4 Matrix: Water Analysis Batch: 498911

Analysis Batch: 498911											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane			20.0	18.3		ug/L		92	70 - 130	2	30
1,1,2-Trichloroethane			20.0	18.2		ug/L		91	70 - 130	2	30
1,1-Dichloroethene			20.0	21.3		ug/L		107	70 - 130	1	30
1,2,4-Trichlorobenzene			20.0	20.6		ug/L		103	70 - 130	0	30
1,2-Dichlorobenzene			20.0	18.3		ug/L		92	70 - 130	0	30
1,2-Dichloroethane			20.0	17.0		ug/L		85	70 - 130	2	30
1,2-Dichloropropane			20.0	18.1		ug/L		90	70 - 130	3	30
1,4-Dichlorobenzene			20.0	19.1		ug/L		95	70 - 130	1	30
Benzene			20.0	18.1		ug/L		90	70 - 130	2	30
Carbon tetrachloride			20.0	19.3		ug/L		96	70 - 130	2	30
Chlorobenzene			20.0	19.0		ug/L		95	70 - 130	1	30
cis-1,2-Dichloroethene			20.0	20.0		ug/L		100	70 - 130	2	30
Ethylbenzene			20.0	18.8		ug/L		94	70 - 130	1	30
Methylene Chloride			20.0	22.0		ug/L		110	70 - 130	1	30
Styrene			20.0	19.2		ug/L		96	70 - 130	0	30
Tetrachloroethene			20.0	19.1		ug/L		95	70 - 130	0	30
Toluene			20.0	19.0		ug/L		95	70 - 130	1	30
trans-1,2-Dichloroethene			20.0	21.0		ug/L		105	70 - 130	1	30
Trichloroethene			20.0	19.5		ug/L		98	70 - 130	0	30
Vinyl chloride			20.0	21.9		ug/L		109	70 - 130	1	30
Xylenes, Total			40.0	38.0		ug/L		95	70 - 130	1	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichlorobenzene-d4 (Surr)	96		70 - 130								

Method: 624 - Volatile Organic Compounds (GC/MS)

4-Bromofluorobenzene

115

Lab Sample ID: MB 580-258507/5 Matrix: Water Analysis Batch: 258507							Client Sam	ple ID: Method Prep Type: To	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.42	ug/L			10/10/17 13:32	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/10/17 13:32	1
Toluene	ND		2.0	0.24	ug/L			10/10/17 13:32	1

70 - 130

RL

3.0

2.0

3.0

Limits

74 - 123

79 - 122

78 - 119

70 - 120

70 - 120

MDL Unit

0.72 ug/L

0.15 ug/L

0.42 ug/L

D

Prepared

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

ND

ND

120

88

104

106

92

MB MB %Recovery Qualifier

Result Qualifier

Lab Sample ID: MB 580-258507/5

Matrix: Water

m-Xylene & p-Xylene

Trifluorotoluene (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Analyte

o-Xylene

Surrogate

TAH

Analysis Batch: 258507

Analyzed

10/10/17 13:32

10/10/17 13:32

10/10/17 13:32

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA Dil Fac 6 1 1 1

Prepared	Analyzed	Dil Fac	
	10/10/17 13:32	1	
	10/10/17 13:32	1	
	10/10/17 13:32	1	
	10/10/17 13:32	1	
	10/10/17 13:32	1	

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCS 580-258507/9 **Matrix: Water** Analysis Batch: 258507

LCS LCS Spike %Rec. Unit Analyte Added **Result Qualifier** D %Rec Limits Benzene 10.0 11.2 ug/L 112 37 - 151 Ethylbenzene 10.0 9.38 ug/L 94 37 - 162 ug/L Toluene 10.0 9.44 94 47 - 150 m-Xylene & p-Xylene 10.0 9.17 ug/L 92 78 - 114 o-Xylene 10.0 9.14 ug/L 91 77 - 116 TAH 50.0 48.3 ug/L 97 37 - 162

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	121		74 - 123
Toluene-d8 (Surr)	88		79 - 122
4-Bromofluorobenzene (Surr)	101		78 - 119
Dibromofluoromethane (Surr)	105		70 - 120
1,2-Dichloroethane-d4 (Surr)	95		70 - 120

Lab Sample ID: LCSD 580-258507/10 Matrix: Water

Analysis Batch: 258507

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	11.3		ug/L		113	37 - 151	1	30
Ethylbenzene	10.0	9.52		ug/L		95	37 - 162	2	30
Toluene	10.0	9.49		ug/L		95	47 - 150	1	30
m-Xylene & p-Xylene	10.0	9.37		ug/L		94	78 - 114	2	30
o-Xylene	10.0	9.53		ug/L		95	77 - 116	4	30
ТАН	50.0	49.2		ug/L		98	37 - 162	2	30

	LCSD	LCSD		
Surrogate	%Recovery	Qualifier	Limits	
Trifluorotoluene (Surr)	118		74 - 123	
Toluene-d8 (Surr)	86		79 - 122	
4-Bromofluorobenzene (Surr)	103		78_119	
Dibromofluoromethane (Surr)	107		70 - 120	

TestAmerica Seattle

Prep Type: Total/NA

12/13/2017 (Rev. 1)

Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 258507	-258507/10						C	lient S	Samp	ole	ID: Lab	Control Samp Prep Type: To	
	LCSD	LCS	D										
Surrogate	%Recovery	Qua	lifier	Limits									
1,2-Dichloroethane-d4 (Surr)	93			70 - 120									
lethod: 8260C - Volati	ile Organi	c C	ompou	nds by GC	C/MS								
Lab Sample ID: MB 580-2	58504/5								C	Clie	nt Sam	ple ID: Method	l Blank
Matrix: Water												Prep Type: To	
Analysis Batch: 258504													
-		MB	MB										
Analyte	Re	sult	Qualifier	RL			Unit		D	Pr	repared	Analyzed	Dil Fa
Benzene		ND		2.0		0.42	ug/L					10/10/17 13:32	
Ethylbenzene		ND		3.0		0.21	ug/L					10/10/17 13:32	
n-Xylene & p-Xylene		ND		3.0		0.72	ug/L					10/10/17 13:32	
o-Xylene		ND		2.0		0.15	ug/L					10/10/17 13:32	
oluene		ND		2.0		0.24	ug/L					10/10/17 13:32	
		MB	MR										
Surrogate	%Reco		Qualifier	Limits						Pr	repared	Analyzed	Dil Fa
oluene-d8 (Surr)		88	Quanter	80 - 122					-		epureu	$-\frac{10/10/17}{13:32}$	
rifluorotoluene (Surr)		120		80 - 120								10/10/17 13:32	
1-Bromofluorobenzene (Surr)		104		75 - 125								10/10/17 13:32	
Dibromofluoromethane (Surr)		106		77 - 120								10/10/17 13:32	
,2-Dichloroethane-d4 (Surr)		92		80 - 126								10/10/17 13:32	
_ab Sample ID: LCS 580-2	258504/9							Cli	ent s	San	nnle ID	: Lab Control S	Sample
Matrix: Water								•		Jun		Prep Type: To	
Analysis Batch: 258504													
				Spike	LCS	LCS	3					%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Benzene				10.0	11.2			ug/L		—	112	75 - 120	
Ethylbenzene				10.0	9.38			ug/L			94	75 - 120	
n-Xylene & p-Xylene				10.0	9.17			ug/L			92	75 - 120	
o-Xylene				10.0	9.14			ug/L			91	74 - 120	
Foluene				10.0	9.44			ug/L			94	75 - 120	
	LCS	LCS	;										
Surrogate	%Recovery	Qua	lifier	Limits									
Toluene-d8 (Surr)	88			80 - 122									
Trifluorotoluene (Surr)	121	Х		80 - 120									
1-Bromofluorobenzene (Surr)	101			75 - 125									
Dibromofluoromethane (Surr)	105			77 - 120									
1,2-Dichloroethane-d4 (Surr)	95			80 - 126									
_ab Sample ID: LCSD 580	259504/40							liont (Control Samp	
Matrix: Water												Prep Type: To	
Analysis Batch: 258504													

Analysis Batch: 258504

Prep Type: Total/NA

	Sp	ke LCSD	LCSD			%Rec.		RPD
Analyte	Ado	ed Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Benzene	1).0 11.3		ug/L	113	75 - 120	1	14
Ethylbenzene	1).0 9.52	2	ug/L	95	75 - 120	2	14

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 58 Matrix: Water Analysis Batch: 258504	30-258504/10			C	Client Sa	ample	ID: Lat	Control S Prep Typ			
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene			10.0	9.37		ug/L		94	75 - 120	2	14
o-Xylene			10.0	9.53		ug/L		95	74 - 120	4	16
Toluene			10.0	9.49		ug/L		95	75 - 120	1	13
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	86		80 - 122								

80 - 120

4-Bromofluorobenzene (Surr)	103	75 - 125
Dibromofluoromethane (Surr)	107	77 - 120
1,2-Dichloroethane-d4 (Surr)	93	80 - 126
_		

118

Lab Sample ID: MB 580-258603/5 Matrix: Water Analysis Batch: 258603

Trifluorotoluene (Surr)

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		3.0	0.32	ug/L			10/11/17 15:55	1
1,1-Dichloroethane	ND		2.0	0.22	ug/L			10/11/17 15:55	1
1,1-Dichloropropene	ND		3.0	0.50	ug/L			10/11/17 15:55	1
1,2,3-Trichlorobenzene	ND		5.0	0.46	ug/L			10/11/17 15:55	1
1,2,3-Trichloropropane	ND		2.0	0.41	ug/L			10/11/17 15:55	1
1,2,4-Trichlorobenzene	ND		2.0	0.15	ug/L			10/11/17 15:55	1
1,2,4-Trimethylbenzene	ND		3.0	0.42	ug/L			10/11/17 15:55	1
1,2-Dibromo-3-Chloropropane	ND		10	1.8	ug/L			10/11/17 15:55	1
1,2-Dichlorobenzene	ND		2.0	0.20	ug/L			10/11/17 15:55	1
1,2-Dichloropropane	ND		1.0	0.18	ug/L			10/11/17 15:55	1
1,3,5-Trimethylbenzene	ND		3.0	0.26	ug/L			10/11/17 15:55	1
1,3-Dichlorobenzene	ND		2.0	0.18	ug/L			10/11/17 15:55	1
1,3-Dichloropropane	ND		2.0	0.35	ug/L			10/11/17 15:55	1
2,2-Dichloropropane	ND		3.0	0.32	ug/L			10/11/17 15:55	1
2-Butanone	ND		20	4.7	ug/L			10/11/17 15:55	1
2-Chlorotoluene	ND		3.0	0.30	ug/L			10/11/17 15:55	1
4-Chlorotoluene	ND		2.0	0.28	ug/L			10/11/17 15:55	1
4-Isopropyltoluene	ND		3.0	0.26	ug/L			10/11/17 15:55	1
4-Methyl-2-pentanone	ND		15	2.5	ug/L			10/11/17 15:55	1
Acetone	ND		50	7.8	ug/L			10/11/17 15:55	1
Bromobenzene	ND		2.0	0.18	ug/L			10/11/17 15:55	1
Bromochloromethane	ND		2.0	0.29	ug/L			10/11/17 15:55	1
Carbon disulfide	ND		1.0	0.11	ug/L			10/11/17 15:55	1
Carbon tetrachloride	ND		3.0	0.30	ug/L			10/11/17 15:55	1
Chlorobenzene	ND		2.0	0.17	ug/L			10/11/17 15:55	1
Chloroethane	ND		5.0	1.1	ug/L			10/11/17 15:55	1
Chloromethane	ND		20	5.4	ug/L			10/11/17 15:55	1
cis-1,2-Dichloroethene	ND		1.0	0.21	ug/L			10/11/17 15:55	1
Dichlorodifluoromethane	ND		5.0	0.98	ug/L			10/11/17 15:55	1
Ethylbenzene	ND		3.0	0.21	ug/L			10/11/17 15:55	1
Isopropylbenzene	ND		2.0	0.30	ug/L			10/11/17 15:55	1
Methyl tert-butyl ether	ND		2.0	0.44	ug/L			10/11/17 15:55	1

Client Sample ID: Method Blank Prep Type: Total/NA

RL

5.0

3.0

3.0

3.0

2.0

3.0

5.0

3.0

2.0

3.0

MDL Unit

1.4 ug/L

0.72 ug/L

0.30 ug/L

0.22 ug/L

0.15 ug/L

0.27 ug/L

1.0 ug/L

0.27 ug/L

0.24 ug/L

0.71 ug/L

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB **Result Qualifier**

ND

Lab Sample ID: MB 580-258603/5

Matrix: Water

Methylene Chloride

n-Butylbenzene

N-Propylbenzene

sec-Butylbenzene

trans-1,2-Dichloroethene

t-Butylbenzene

m-Xylene & p-Xylene

Analyte

o-Xylene

Styrene

Toluene

Analysis Batch: 258603

Client Sample ID: Method Blank

10/11/17 15:55

10/11/17 15:55

10/11/17 15:55

Client Sample ID: Lab Control Sample

6

1

1

1

Prep Type: Total/NA									
		Ę							
Analyzed	Dil Fac								
10/11/17 15:55	1								
10/11/17 15:55	1								
10/11/17 15:55	1								
10/11/17 15:55	1								

10/11/17 15:55 1 10/11/17 15:55 1 10/11/17 15:55 1 10/11/17 15:55

Prep Type: Total/NA

Trichlorofluoromethane	ND		3.0	0.63 ug/L		10/11/17 15:55	1
	МВ	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		80 - 122			10/11/17 15:55	1
Trifluorotoluene (Surr)	123	X	80 - 120			10/11/17 15:55	1
4-Bromofluorobenzene (Surr)	105		75 - 125			10/11/17 15:55	1
Dibromofluoromethane (Surr)	107		77 - 120			10/11/17 15:55	1
1,2-Dichloroethane-d4 (Surr)	95		80 - 126			10/11/17 15:55	1

Lab Sample ID: LCS 580-258603/7 **Matrix: Water**

Analysis Batch: 258603

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	10.0	11.0		ug/L		110	74 - 130	
1,1-Dichloroethane	10.0	10.9		ug/L		109	70 - 120	
1,1-Dichloropropene	10.0	10.9		ug/L		109	75 - 120	
1,2,3-Trichlorobenzene	10.0	19.5	*	ug/L		195	74 - 123	
1,2,3-Trichloropropane	10.0	10.2		ug/L		102	76 - 124	
1,2,4-Trichlorobenzene	10.0	10.4		ug/L		104	76 - 120	
1,2,4-Trimethylbenzene	10.0	9.16		ug/L		92	75 ₋ 121	
1,2-Dibromo-3-Chloropropane	10.0	11.5		ug/L		115	58 - 133	
1,2-Dichlorobenzene	10.0	9.55		ug/L		95	80 - 120	
1,2-Dichloropropane	10.0	11.6		ug/L		116	72 - 120	
1,3,5-Trimethylbenzene	10.0	9.13		ug/L		91	75 - 122	
1,3-Dichlorobenzene	10.0	9.59		ug/L		96	80 - 121	
1,3-Dichloropropane	10.0	9.22		ug/L		92	79 ₋ 123	
2,2-Dichloropropane	10.0	8.86		ug/L		89	43 - 140	
2-Butanone	50.0	67.2		ug/L		134	58 - 135	
2-Chlorotoluene	10.0	9.98		ug/L		100	80 - 120	
4-Chlorotoluene	10.0	9.94		ug/L		99	80 - 121	
4-Isopropyltoluene	10.0	9.35		ug/L		94	77 - 120	
4-Methyl-2-pentanone	50.0	56.3		ug/L		113	76 - 124	
Acetone	50.0	68.5	*	ug/L		137	60 - 136	
Bromobenzene	10.0	9.87		ug/L		99	75 - 120	
Bromochloromethane	10.0	12.2	*	ug/L		122	78 ₋ 120	
Carbon disulfide	10.0	10.4		ug/L		104	69 - 122	
Carbon tetrachloride	10.0	13.1	*	ug/L		131	72 - 124	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-258603/7 Matrix: Water

watrix: w	ater
Analysis	Batch: 258603

Allalysis Dalcii. 20000							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chlorobenzene	10.0	9.83		ug/L		98	80 - 120
Chloroethane	10.0	9.91		ug/L		99	65 - 126
Chloromethane	10.0	8.88	J	ug/L		89	25 - 149
cis-1,2-Dichloroethene	10.0	11.3		ug/L		113	76 - 120
Dichlorodifluoromethane	10.0	4.88	J	ug/L		49	20 - 150
Ethylbenzene	10.0	9.19		ug/L		92	75 - 120
sopropylbenzene	10.0	9.31		ug/L		93	75 - 125
Methyl tert-butyl ether	10.0	11.8		ug/L		118	79 - 120
Methylene Chloride	10.0	10.9		ug/L		109	70 - 125
n-Xylene & p-Xylene	10.0	9.27		ug/L		93	75 - 120
n-Butylbenzene	10.0	9.14		ug/L		91	78 - 120
N-Propylbenzene	10.0	9.10		ug/L		91	80 - 124
p-Xylene	10.0	9.35		ug/L		94	74 - 120
ec-Butylbenzene	10.0	9.18		ug/L		92	78 - 125
Styrene	10.0	9.60		ug/L		96	76 - 121
-Butylbenzene	10.0	9.66		ug/L		97	80 - 121
Foluene	10.0	9.37		ug/L		94	75 - 120
rans-1,2-Dichloroethene	10.0	11.2		ug/L		112	72 - 124
Trichlorofluoromethane	10.0	9.38		ug/L		94	49 ₋ 144

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	87		80 - 122
Trifluorotoluene (Surr)	120		80 - 120
4-Bromofluorobenzene (Surr)	103		75 - 125
Dibromofluoromethane (Surr)	107		77 - 120
1,2-Dichloroethane-d4 (Surr)	91		80 - 126

Lab Sample ID: LCSD 580-258603/8 Matrix: Water Analysis Batch: 258603

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	10.0	11.5		ug/L		115	74 - 130	4	18
1,1-Dichloroethane	10.0	11.1		ug/L		111	70 - 120	2	20
1,1-Dichloropropene	10.0	11.0		ug/L		110	75 - 120	1	20
1,2,3-Trichlorobenzene	10.0	16.5	*	ug/L		165	74 - 123	17	17
1,2,3-Trichloropropane	10.0	10.4		ug/L		104	76 - 124	1	30
1,2,4-Trichlorobenzene	10.0	9.97		ug/L		100	76 - 120	4	22
1,2,4-Trimethylbenzene	10.0	9.30		ug/L		93	75 - 121	1	16
1,2-Dibromo-3-Chloropropane	10.0	11.1		ug/L		111	58 - 133	4	35
1,2-Dichlorobenzene	10.0	9.63		ug/L		96	80 - 120	1	15
1,2-Dichloropropane	10.0	11.8		ug/L		118	72 - 120	2	26
1,3,5-Trimethylbenzene	10.0	9.22		ug/L		92	75 - 122	1	14
1,3-Dichlorobenzene	10.0	9.81		ug/L		98	80 - 121	2	14
1,3-Dichloropropane	10.0	9.40		ug/L		94	79 - 123	2	35
2,2-Dichloropropane	10.0	9.01		ug/L		90	43 - 140	2	35
2-Butanone	50.0	63.7		ug/L		127	58 - 135	5	35
2-Chlorotoluene	10.0	9.96		ug/L		100	80 - 120	0	15

TestAmerica Seattle

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-258603/8 Matrix: Water

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Analysis Batch: 258603									
	A	1.000	1.000				0/ D		
	Spike	-	LCSD		_	~·-	%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chlorotoluene	10.0	9.89		ug/L		99	80 - 121	1	34
4-Isopropyltoluene	10.0	9.45		ug/L		95	77 - 120	1	13
4-Methyl-2-pentanone	50.0	58.9		ug/L		118	76 - 124	4	30
Acetone	50.0	73.4	*	ug/L		147	60 - 136	7	35
Bromobenzene	10.0	9.88		ug/L		99	75 - 120	0	13
Bromochloromethane	10.0	12.4	*	ug/L		124	78 - 120	2	35
Carbon disulfide	10.0	10.5		ug/L		105	69 - 122	1	20
Carbon tetrachloride	10.0	13.6	*	ug/L		136	72 - 124	4	19
Chlorobenzene	10.0	9.93		ug/L		99	80 - 120	1	15
Chloroethane	10.0	10.5		ug/L		105	65 - 126	5	35
Chloromethane	10.0	9.27	J	ug/L		93	25 - 149	4	35
cis-1,2-Dichloroethene	10.0	11.1		ug/L		111	76 - 120	1	15
Dichlorodifluoromethane	10.0	5.15		ug/L		52	20 - 150	5	35
Ethylbenzene	10.0	9.29		ug/L		93	75 - 120	1	14
Isopropylbenzene	10.0	9.66		ug/L		97	75 - 125	4	20
Methyl tert-butyl ether	10.0	12.1	*	ug/L		121	79 - 120	3	18
Methylene Chloride	10.0	11.3		ug/L		113	70 - 125	4	29
m-Xylene & p-Xylene	10.0	9.39		ug/L		94	75 - 120	1	14
n-Butylbenzene	10.0	9.39		ug/L		94	78 - 120	3	14
N-Propylbenzene	10.0	9.20		ug/L		92	80 - 124	1	13
o-Xylene	10.0	9.41		ug/L		94	74 - 120	1	16
sec-Butylbenzene	10.0	9.21		ug/L		92	78 - 125	0	15
Styrene	10.0	9.88		ug/L		99	76 - 121	3	16
t-Butylbenzene	10.0	9.77		ug/L		98	80 - 121	1	14
Toluene	10.0	9.57		ug/L		96	75 - 120	2	13
trans-1,2-Dichloroethene	10.0	11.2		ug/L		112	72 - 124	0	21
Trichlorofluoromethane	10.0	9.64		ug/L		96	49 - 144	3	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	86		80 - 122
Trifluorotoluene (Surr)	120		80 - 120
4-Bromofluorobenzene (Surr)	104		75 - 125
Dibromofluoromethane (Surr)	107		77 - 120
1,2-Dichloroethane-d4 (Surr)	92		80 - 126

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-259252/5 Matrix: Water Analysis Batch: 259252

Client Sample ID: Method Blank Prep Type: Total/NA

rinalycic Batchi 200202	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.0090	ug/L			10/17/17 14:11	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.049	ug/L			10/17/17 14:11	1
1,1,2-Trichloroethane	ND		0.50	0.017	ug/L			10/17/17 14:11	1
1,1-Dichloroethene	ND		0.50	0.014	ug/L			10/17/17 14:11	1
1,2-Dibromoethane	ND		0.50	0.014	ug/L			10/17/17 14:11	1
1,2-Dichloroethane	ND		0.50	0.024	ug/L			10/17/17 14:11	1

TestAmerica Seattle

5

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

5
6
8
9

Method: 8260C SIM - Volatile Organic Compounds (GC/MS) (Continued)
--

Lab Sample ID: MB 580-259252/5

Matrix: Water Analysis Batch: 259252

Analysis Datch. 200202									
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.50	0.014	ug/L			10/17/17 14:11	1
2-Hexanone	ND		0.50	0.098	ug/L			10/17/17 14:11	1
Benzene	ND		0.50	0.0090	ug/L			10/17/17 14:11	1
Bromodichloromethane	ND		0.50	0.0060	ug/L			10/17/17 14:11	1
Bromoform	ND		0.50	0.013	ug/L			10/17/17 14:11	1
Bromomethane	ND		0.50	0.012	ug/L			10/17/17 14:11	1
Chloroform	ND		0.50	0.0090	ug/L			10/17/17 14:11	1
cis-1,3-Dichloropropene	ND		0.50	0.026	ug/L			10/17/17 14:11	1
Dibromochloromethane	ND		0.50	0.016	ug/L			10/17/17 14:11	1
Dibromomethane	ND		0.50	0.017	ug/L			10/17/17 14:11	1
Hexachlorobutadiene	ND		0.50	0.026	ug/L			10/17/17 14:11	1
Naphthalene	ND		0.50	0.013	ug/L			10/17/17 14:11	1
Tetrachloroethene	ND		0.50	0.017	ug/L			10/17/17 14:11	1
trans-1,3-Dichloropropene	ND		0.50	0.027	ug/L			10/17/17 14:11	1
Trichloroethene	ND		0.50	0.0090	ug/L			10/17/17 14:11	1
Vinyl chloride	ND		0.50	0.013	ug/L			10/17/17 14:11	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		65 - 143		10/17/17 14:11	1
4-Bromofluorobenzene (Surr)	104		75 - 125		10/17/17 14:11	1
Dibromofluoromethane (Surr)	103		77 - 118		10/17/17 14:11	1
Toluene-d8 (Surr)	104		82 - 122		10/17/17 14:11	1
Trifluorotoluene (Surr)	102		80 - 141		10/17/17 14:11	1

Lab Sample ID: LCS 580-259252/6 Matrix: Water Analysis Batch: 259252

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Datch. 200202	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	5.00	5.13		ug/L		103	64 - 130
1,1,2,2-Tetrachloroethane	5.00	4.69		ug/L		94	65 - 130
1,1,2-Trichloroethane	5.00	4.63		ug/L		93	69 - 135
1,1-Dichloroethene	5.00	5.47		ug/L		109	70 - 120
1,2-Dibromoethane	5.00	4.70		ug/L		94	66 - 133
1,2-Dichloroethane	5.00	5.47		ug/L		109	58 - 143
1,4-Dichlorobenzene	5.00	5.00		ug/L		100	75 ₋ 130
2-Hexanone	25.0	21.1		ug/L		84	20 - 150
Benzene	5.00	5.52		ug/L		110	80 - 120
Bromodichloromethane	5.00	5.66		ug/L		113	75 - 120
Bromoform	5.00	5.06		ug/L		101	55 - 130
Bromomethane	5.00	4.76		ug/L		95	55 - 125
Chloroform	5.00	5.49		ug/L		110	80 - 120
cis-1,3-Dichloropropene	5.00	4.89		ug/L		98	77 - 130
Dibromochloromethane	5.00	4.99		ug/L		100	71 - 120
Dibromomethane	5.00	5.17		ug/L		103	61 - 142
Hexachlorobutadiene	5.00	5.82		ug/L		116	56 - 125
Naphthalene	5.00	5.12		ug/L		102	55 - 134
Tetrachloroethene	5.00	5.26		ug/L		105	70 ₋ 124

Method: 8260C SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580- Matrix: Water	259252/6				Clie	ent Sar	nple ID	: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 259252		Spike	LCS	LCS				%Rec.
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
trans-1,3-Dichloropropene		5.00	4.71		ug/L		94	73 - 122
Trichloroethene		5.00	5.85		ug/L		117	70 - 125
Vinyl chloride		5.00	5.17		ug/L		103	56 - 130
Surrogate	LCS LCS %Recovery Qualifier	Limits						

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			65 - 143
4-Bromofluorobenzene (Surr)	92		75 - 125
Dibromofluoromethane (Surr)	101		77_118
Toluene-d8 (Surr)	92		82 - 122
Trifluorotoluene (Surr)	101		80 - 141

Lab Sample ID: LCSD 580-259252/7 Matrix: Water Analysis Batch: 259252

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	5.00	5.20		ug/L		104	64 - 130	1	20
1,1,2,2-Tetrachloroethane	5.00	5.02		ug/L		100	65 - 130	7	18
1,1,2-Trichloroethane	5.00	4.70		ug/L		94	69 ₋ 135	2	24
1,1-Dichloroethene	5.00	5.85		ug/L		117	70 - 120	7	21
1,2-Dibromoethane	5.00	4.86		ug/L		97	66 - 133	3	17
1,2-Dichloroethane	5.00	5.63		ug/L		113	58 - 143	3	17
1,4-Dichlorobenzene	5.00	5.23		ug/L		105	75 - 130	4	17
2-Hexanone	25.0	23.4		ug/L		94	20 - 150	10	30
Benzene	5.00	5.64		ug/L		113	80 - 120	2	14
Bromodichloromethane	5.00	5.76		ug/L		115	75 - 120	2	14
Bromoform	5.00	5.26		ug/L		105	55 - 130	4	20
Bromomethane	5.00	4.89		ug/L		98	55 - 125	3	30
Chloroform	5.00	5.60		ug/L		112	80 - 120	2	15
cis-1,3-Dichloropropene	5.00	4.91		ug/L		98	77 - 130	0	24
Dibromochloromethane	5.00	5.07		ug/L		101	71 - 120	2	21
Dibromomethane	5.00	5.32		ug/L		106	61 - 142	3	15
Hexachlorobutadiene	5.00	5.95		ug/L		119	56 - 125	2	19
Naphthalene	5.00	5.42		ug/L		108	55 - 134	6	30
Tetrachloroethene	5.00	5.36		ug/L		107	70 - 124	2	20
trans-1,3-Dichloropropene	5.00	4.72		ug/L		94	73 - 122	0	30
Trichloroethene	5.00	6.01		ug/L		120	70 - 125	3	23
Vinyl chloride	5.00	5.47		ug/L		109	56 - 130	6	23

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	111		65 - 143
4-Bromofluorobenzene (Surr)	98		75_125
Dibromofluoromethane (Surr)	100		77 - 118
Toluene-d8 (Surr)	89		82 - 122
Trifluorotoluene (Surr)	100		80 - 141

TestAmerica Seattle

6

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-25858 Matrix: Water Analysis Batch: 258841								le ID: Methoc Prep Type: To Prep Batch: 3	otal/NA
Analyte		MB Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		1.0				10/11/17 13:11	10/13/17 14:58	
	ND		0.40	0.030	-		10/11/17 13:11	10/13/17 14:58	1
2-Methylnaphthalene					•				1
Acenaphthene	ND		0.40	0.020			10/11/17 13:11		1
Acenaphthylene	ND		1.0	0.020	ug/L		10/11/17 13:11	10/13/17 14:58	1
Anthracene	ND		0.040	0.010	ug/L		10/11/17 13:11	10/13/17 14:58	1
Benzo[a]anthracene	ND		3.0	0.020	ug/L		10/11/17 13:11	10/13/17 14:58	1
Benzo[a]pyrene	ND		1.0	0.020	ug/L		10/11/17 13:11	10/13/17 14:58	1
Benzo[g,h,i]perylene	ND		1.0	0.020	ug/L		10/11/17 13:11	10/13/17 14:58	1
Benzofluoranthene	ND		1.0	0.050	ug/L		10/11/17 13:11	10/13/17 14:58	1
Chrysene	ND		0.60	0.010	ug/L		10/11/17 13:11	10/13/17 14:58	1
Dibenz(a,h)anthracene	ND		0.60	0.020	ug/L		10/11/17 13:11	10/13/17 14:58	1
Fluoranthene	ND		3.0	0.010	ug/L		10/11/17 13:11	10/13/17 14:58	1
Fluorene	ND		2.0	0.020	ug/L		10/11/17 13:11	10/13/17 14:58	1
Indeno[1,2,3-cd]pyrene	ND		1.0	0.050	ug/L		10/11/17 13:11	10/13/17 14:58	1
Naphthalene	ND		0.40	0.10	ug/L		10/11/17 13:11	10/13/17 14:58	1
Phenanthrene	ND		1.0	0.020	ug/L		10/11/17 13:11	10/13/17 14:58	1
Pyrene	ND		2.0	0.040	ug/L		10/11/17 13:11	10/13/17 14:58	1
ТРАН	ND		3.0	0.050	ug/L		10/11/17 13:11	10/13/17 14:58	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	73		56 - 124
Nitrobenzene-d5	86		59 - 123
Terphenyl-d14	72		60 - 135

Lab Sample ID: LCS 580-258585/2-A **Matrix: Water** Analysis Batch: 258841

Client Sample ID: Lab Control Sample

10/11/17 13:11 10/13/17 14:58

10/11/17 13:11 10/13/17 14:58

10/11/17 13:11 10/13/17 14:58

Prepared

Prep Type: Total/NA Prep Batch: 258585

Analyzed

Dil Fac

1

1

1

Analysis Datch. 200041	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	2.00	1.57		ug/L		79	20 - 150
2-Methylnaphthalene	2.00	1.54		ug/L		77	20 - 150
Acenaphthene	2.00	1.50		ug/L		75	47 - 145
Acenaphthylene	2.00	1.38		ug/L		69	33 - 145
Anthracene	2.00	1.47		ug/L		74	27 - 133
Benzo[a]anthracene	2.00	1.67	J	ug/L		83	33 - 143
Benzo[a]pyrene	2.00	1.66		ug/L		83	17 - 163
Benzo[g,h,i]perylene	2.00	1.82		ug/L		91	1 - 219
Benzofluoranthene	4.00	3.72		ug/L		93	46 - 153
Chrysene	2.00	1.64		ug/L		82	17 - 168
Dibenz(a,h)anthracene	2.00	1.78		ug/L		89	1 - 227
Fluoranthene	2.00	1.77	J	ug/L		88	26 - 137
Fluorene	2.00	1.78	J	ug/L		89	59 - 121
Indeno[1,2,3-cd]pyrene	2.00	1.66		ug/L		83	1 - 171
Naphthalene	2.00	1.52		ug/L		76	21 - 133
Phenanthrene	2.00	1.58		ug/L		79	54 - 120
Pyrene	2.00	1.81	J	ug/L		90	52 - 115
ТРАН	32.0	26.8		ug/L		84	50 - 150

Limits

56 - 124

59 - 123

60 - 135

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

70

92

78

Matrix: Water

2-Fluorobiphenyl

Nitrobenzene-d5

Terphenyl-d14

Surrogate

Analysis Batch: 258841

Lab Sample ID: LCS 580-258585/2-A

Client Sample ID: Lab Control Sample

1 2 3 4 5 6 7

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 258585

Lab Sample ID: LCSD 580-258585/3-A Matrix: Water

Analysis Batch: 25884	1	Spike		LCSD				Prep Ba %Rec.	atch: 28	58585 RPD
Analyte		Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene		2.00	1.64		ug/L		82	20 - 150	4	50
2-Methylnaphthalene		2.00	1.60		ug/L		80	20 - 150	4	50
Acenaphthene		2.00	1.60		ug/L		80	47 - 145	6	50
Acenaphthylene		2.00	1.46		ug/L		73	33 - 145	5	50
Anthracene		2.00	1.45		ug/L		72	27 - 133	2	50
Benzo[a]anthracene		2.00	1.70	J	ug/L		85	33 - 143	2	50
Benzo[a]pyrene		2.00	1.60		ug/L		80	17 - 163	4	50
Benzo[g,h,i]perylene		2.00	1.80		ug/L		90	1_219	2	50
Benzofluoranthene		4.00	3.56		ug/L		89	46 - 153	4	50
Chrysene		2.00	1.68		ug/L		84	17 - 168	3	50
Dibenz(a,h)anthracene		2.00	1.78		ug/L		89	1 - 227	0	50
Fluoranthene		2.00	1.75	J	ug/L		87	26 - 137	1	50
Fluorene		2.00	1.88	J	ug/L		94	59 - 121	6	50
Indeno[1,2,3-cd]pyrene		2.00	1.69		ug/L		85	1 - 171	2	50
Naphthalene		2.00	1.59		ug/L		80	21 - 133	4	50
Phenanthrene		2.00	1.58		ug/L		79	54 - 120	0	50
Pyrene		2.00	1.75	J	ug/L		88	52 - 115	3	50
ТРАН		32.0	26.9		ug/L		84	50 - 150	0	50
	LCSD LCSD									
Surrogate	%Recovery Qualifier	Limits								

covery Qualifie	r Limits
73	56 - 124
95	59 - 123
75	60 - 135
	95

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-2585 Matrix: Water Analysis Batch: 259300	594/1-А мв	МВ					i i	le ID: Method Prep Type: To Prep Batch: 2	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.020	0.0060	ug/L		10/11/17 13:53	10/19/17 16:57	1
2-Methylnaphthalene	ND		0.030	0.0090	ug/L		10/11/17 13:53	10/19/17 16:57	1
Acenaphthene	ND		0.020	0.0020	ug/L		10/11/17 13:53	10/19/17 16:57	1
Acenaphthylene	ND		0.020	0.0020	ug/L		10/11/17 13:53	10/19/17 16:57	1
Anthracene	0.00440	J	0.020	0.0030	ug/L		10/11/17 13:53	10/19/17 16:57	1
Benzo[a]anthracene	ND		0.020	0.0020	ug/L		10/11/17 13:53	10/19/17 16:57	1
Benzo[a]pyrene	ND		0.020	0.0030	ug/L		10/11/17 13:53	10/19/17 16:57	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

5

6

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 580-258 Matrix: Water Analysis Batch: 259300	594/1-A							le ID: Method Prep Type: To Prep Batch: 2	otal/NA
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND		0.020	0.0080	ug/L		10/11/17 13:53	10/19/17 16:57	1
Benzo[g,h,i]perylene	ND		0.020	0.0030	ug/L		10/11/17 13:53	10/19/17 16:57	1
Benzo[k]fluoranthene	ND		0.030	0.0090	ug/L		10/11/17 13:53	10/19/17 16:57	1
Chrysene	ND		0.020	0.0060	ug/L		10/11/17 13:53	10/19/17 16:57	1
Dibenz(a,h)anthracene	ND		0.020	0.0020	ug/L		10/11/17 13:53	10/19/17 16:57	1
Fluoranthene	ND		0.020	0.0020	ug/L		10/11/17 13:53	10/19/17 16:57	1
Fluorene	ND		0.020	0.0030	ug/L		10/11/17 13:53	10/19/17 16:57	1
Indeno[1,2,3-cd]pyrene	ND		0.020	0.0070	ug/L		10/11/17 13:53	10/19/17 16:57	1
Naphthalene	ND		0.040	0.013	ug/L		10/11/17 13:53	10/19/17 16:57	1
Phenanthrene	0.00759	J	0.020	0.0040	ug/L		10/11/17 13:53	10/19/17 16:57	1
Pyrene	0.00462	J	0.020	0.0040	ug/L		10/11/17 13:53	10/19/17 16:57	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	84		53 - 112				10/11/17 13:53	10/19/17 16:57	1

Lab Sample ID: LCS 580-258594/2-A Matrix: Water Analysis Batch: 259300

Analysis Batch: 259300	Spike	LCS	LCS				Prep Batch: 258594 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	4.00	2.80		ug/L		70	57 - 120
2-Methylnaphthalene	4.00	2.54		ug/L		64	61 - 120
Acenaphthene	4.00	2.65		ug/L		66	62 - 120
Acenaphthylene	4.00	2.85		ug/L		71	63 - 120
Anthracene	4.00	3.30		ug/L		83	69 - 120
Benzo[a]anthracene	4.00	3.03		ug/L		76	71 - 120
Benzo[a]pyrene	4.00	3.01	*	ug/L		75	76 - 120
Benzo[b]fluoranthene	4.00	2.82		ug/L		71	66 - 120
Benzo[g,h,i]perylene	4.00	2.71		ug/L		68	61 - 120
Benzo[k]fluoranthene	4.00	2.80		ug/L		70	68 - 120
Chrysene	4.00	2.66		ug/L		67	64 - 120
Dibenz(a,h)anthracene	4.00	3.07		ug/L		77	60 - 125
Fluoranthene	4.00	3.30		ug/L		82	70 - 120
Fluorene	4.00	2.86		ug/L		72	68 - 120
Indeno[1,2,3-cd]pyrene	4.00	2.84		ug/L		71	63 - 120
Naphthalene	4.00	2.48		ug/L		62	62 - 120
Phenanthrene	4.00	2.76		ug/L		69	65 - 120
Pyrene	4.00	3.28		ug/L		82	69 - 120
	1.00						

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
Terphenyl-d14	74	53 - 112

Lab Sample ID: LCSD 580-258594/3-A			C	Client S	Sample	ID: Lat	o Control	Sample	e Dup
Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 259300							Prep Ba	atch: 2	58594
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene	4.00	3.07		ug/L		77	57 - 120	9	17

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCSD 580-258 Matrix: Water	594/3-A					Client Sa	ample	ID: Lat	Control Prep Ty	pe: Tot	al/NA
Analysis Batch: 259300									Prep Ba	atch: 28	
			Spike		LCSD				%Rec.		RPD
Analyte			Added		Qualifier		D	%Rec	Limits	RPD	Limit
2-Methylnaphthalene			4.00	2.83		ug/L		71	61 - 120	11	16
Acenaphthene			4.00	2.80		ug/L		70	62 - 120	5	13
Acenaphthylene			4.00	3.03		ug/L		76	63 - 120	6	13
Anthracene			4.00	3.40		ug/L		85	69 - 120	3	17
Benzo[a]anthracene			4.00	3.23		ug/L		81	71 - 120	6	16
Benzo[a]pyrene			4.00	3.25		ug/L		81	76 - 120	8	17
Benzo[b]fluoranthene			4.00	3.03		ug/L		76	66 - 120	7	20
Benzo[g,h,i]perylene			4.00	2.92		ug/L		73	61 - 120	8	16
Benzo[k]fluoranthene			4.00	3.07		ug/L		77	68 - 120	9	20
Chrysene			4.00	2.90		ug/L		73	64 - 120	9	16
Dibenz(a,h)anthracene			4.00	3.33		ug/L		83	60 - 125	8	15
Fluoranthene			4.00	3.50		ug/L		88	70 - 120	6	20
Fluorene			4.00	2.97		ug/L		74	68 - 120	4	12
Indeno[1,2,3-cd]pyrene			4.00	3.04		ug/L		76	63 - 120	7	15
Naphthalene			4.00	2.74		ug/L		68	62 - 120	10	15
Phenanthrene			4.00	2.91		ug/L		73	65 - 120	5	15
Pyrene			4.00	3.45		ug/L		86	69 - 120	5	17
	LCSD LO	CSD									
Surrogate %F	Recovery Q	ualifier	Limits								
Terphenyl-d14	76		53 - 112								

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Lab Sample ID: MB 580-25 Matrix: Water	8416/6						Cli	ent San	nple ID: Method Prep Type: To	
Analysis Batch: 258416	МВ	МВ								
Analyte	Result	Qualifier	RL		MDL Unit	I	ו כ	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		1.0		0.33 mg/L				10/09/17 17:15	1
	MB	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	111		75 - 120						10/09/17 17:15	1
4-Bromofluorobenzene (Surr)	104		68 - 119						10/09/17 17:15	1
Lab Sample ID: LCS 580-2 Matrix: Water Analysis Batch: 258416	58416/7		Spike	1.05	LCS	Clie	nt Sa	imple ID	: Lab Control S Prep Type: To %Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO) -C6-C10			1.00	0.957		mg/L		96	77 - 123	
	LCS LC	S								
Surrogate	%Recovery Qu	alifier	Limits							
Trifluorotoluene (Surr)	111		75 - 120							
4-Bromofluorobenzene (Surr)	107		68 - 119							

Lab Sample ID: MB 580-28	58753/1-A						Client Sam	ole ID: Method	d Blank
Matrix: Water								Prep Type: To	
Analysis Batch: 258895								Prep Batch:	258753
		MB				_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>ND</td><td></td><td>0.10</td><td>0.022</td><td>mg/L</td><td></td><td>10/13/17 08:49</td><td>10/16/17 22:14</td><td>-</td></nc25)<>	ND		0.10	0.022	mg/L		10/13/17 08:49	10/16/17 22:14	-
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	101		50 - 150				10/13/17 08:49	10/16/17 22:14	
Lab Sample ID: LCS 580-2	258753/2-A					Client	t Sample ID:	Lab Control	
Matrix: Water								Prep Type: T	
Analysis Batch: 258895			0					Prep Batch:	25875
Analyta			Spike	LCS LCS		11		%Rec.	
Analyte DRO (nC10- <nc25)< td=""><td></td><td></td><td>Added</td><td>Result Qua</td><td>alitier</td><td>Unit</td><td>_</td><td>Limits 75 - 125</td><td></td></nc25)<>			Added	Result Qua	alitier	Unit	_	Limits 75 - 125	
DNU (IIU IU-NIU20)			2.00	1./1		mg/L	85	13-123	
	LCS LC	s							
Surrogate	%Recovery Qu	alifier	Limits						
o-Terphenyl	94		50 - 150						
Lab Completing 10, 1 CCD 500	050750/0 4				_	liant Can		Control Com	
Lab Sample ID: LCSD 580	-258/53/3-A				U U	lient San	ipie ID: Lab	Control Samp	
Matrix: Water								Prep Type: To Prep Batch:	
Analysis Batch: 258895			Spike	LCSD LCS	SD			%Rec.	Z30753 RPE
Analyte			Added	Result Qua		Unit	D %Rec	Limits RPI	
DRO (nC10- <nc25)< td=""><td></td><td></td><td>2.00</td><td>1.90</td><td></td><td>mg/L</td><td>95</td><td>75 - 125 1</td><td>0 16</td></nc25)<>			2.00	1.90		mg/L	95	75 - 125 1	0 16
		6 0							
Surroacto	LCSD LC %Recovery Qu		Limito						
Surrogate o-Terphenyl	109		Limits 50 - 150						
	103		50 - 750						
Lab Sample ID: MB 580-25	58982/1-A						Client Sam	ole ID: Metho	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 259043								Prep Batch:	258982
	MB	MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>0.208</td><td></td><td>0.10</td><td>0.022</td><td>mg/L</td><td></td><td>10/17/17 08:55</td><td>10/17/17 17:26</td><td>1</td></nc25)<>	0.208		0.10	0.022	mg/L		10/17/17 08:55	10/17/17 17:26	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	72		50 - 150				10/17/17 08:55	10/17/17 17:26	1
Lab Sample ID: LCS 580-2	.58982/2-A					Client		Lab Control	
Matrix: Water								Prep Type: To	
Analysis Batch: 259043			Spike					Prep Batch:	258982
			Spike Added	LCS LCS		Unit	D %Rec	%Rec. Limits	
Analyta						UIII	D 70KeC	LIIIIIIS	
Analyte									
Analyte DRO (nC10- <nc25)< td=""><td></td><td></td><td>2.00</td><td>1.55</td><td></td><td>mg/L</td><td></td><td>75 - 125</td><td></td></nc25)<>			2.00	1.55		mg/L		75 - 125	
-	LCS LC %Recovery Qu								

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued)

Lab Sample ID: LCSD 580 Matrix: Water											Control S Prep Typ		
Analysis Batch: 259043											Prep Ba		
				Spike		-	LCSD				%Rec.		RPD
Analyte				Added			Qualifier		D		Limits	RPD	Limi
DRO (nC10- <nc25)< td=""><td></td><td></td><td></td><td>2.00</td><td></td><td>1.50</td><td></td><td>mg/L</td><td></td><td>75</td><td>75 - 125</td><td>3</td><td>16</td></nc25)<>				2.00		1.50		mg/L		75	75 - 125	3	16
	LCSD	LCS	SD										
Surrogate	%Recovery	Qua	alifier	Limits									
o-Terphenyl	72			50 - 150									
Lab Sample ID: MB 580-2	59154/1 - Δ								Cli	ent Sam	ple ID: M	ethod	Blank
Matrix: Water	00104/11/								011	ont oun	Prep Ty		
Analysis Batch: 259215											Prep Ba		
		MB	МВ										
Analyte	Re	sult	Qualifier		RL		MDL Uni		D F	Prepared	Analyz	zed	Dil Fac
DRO (nC10- <nc25)< td=""><td></td><td>ND</td><td></td><td></td><td>0.10</td><td>0</td><td>.022 mg/</td><td>L</td><td>10/</td><td>18/17 12:07</td><td>7 10/18/17</td><td>18:19</td><td>1</td></nc25)<>		ND			0.10	0	.022 mg/	L	10/	18/17 12:07	7 10/18/17	18:19	1
		MВ	МВ										
Surrogate	%Reco	very	Qualifier	Limi	ts				F	Prepared	Analyz	zed	Dil Fac
o-Terphenyl		82		50 - 1	150				10/	18/17 12:0	7 10/18/17	18:19	î
Lab Sample ID: LCS 580-2	259154/2-A							Clie	ent Sa	mple ID:	Lab Con		
Matrix: Water Analysis Batch: 259215											Prep Typ Prep Ba		
Analysis Batch. 239213				Spike		LCS	LCS				%Rec.		59154
Analyte				Added		-	Qualifier	Unit	D	%Rec	Limits		
DRO (nC10- <nc25)< td=""><td>·</td><td></td><td></td><td>2.00</td><td></td><td>1.62</td><td></td><td>mg/L</td><td></td><td>81</td><td>75 - 125</td><td></td><td></td></nc25)<>	·			2.00		1.62		mg/L		81	75 - 125		
	LCS	100											
Surrogate	%Recovery			Limits									
o-Terphenyl	79			50 - 150									
Lab Sample ID: LCSD 580)-259154/3-A							Client S	ample	ID: Lab	Control		
Matrix: Water											Prep Typ		
Analysis Batch: 259215											Prep Ba	atch: 2	
Ausslate				Spike		-	LCSD	11	_	0/ D	%Rec.		RPD
Analyte DRO (nC10- <nc25)< td=""><td></td><td></td><td></td><td>Added</td><td></td><td>1.67</td><td>Qualifier</td><td></td><td> D</td><td>%Rec 83</td><td>Limits</td><td>RPD 3</td><td>Limi 16</td></nc25)<>				Added		1.67	Qualifier		D	%Rec 83	Limits	RPD 3	Limi 16
				2.00		1.07		mg/L		00	10-120	3	10
	LCSD												
• •	0/ 8	^	lifian	Limite									
Surrogate o-Terphenyl	%Recovery 83	Qua	anner	Limits 50 - 150									

Date Collected: 10/05/17 09:45

Date Received: 10/07/17 10:10

Prep Type

Total/NA

Client Sample ID: 17-ERK-DW-01

Batch

Туре

Analysis

Batch

524.2

Method

Lab Sample ID: 580-71900-1

Lab

TAL SAV

2 3 4 5 6 7 8

9 10

580-71900-2 Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 580-71900-3

Lab Sample ID: 580-71900-4

Client Sample	ID: 47.			Sample ID:	-

Run

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	524.2		1	498776	10/17/17 14:19	DAS	TAL SAV
Total/NA	Prep	3510C			258594	10/11/17 13:53	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	259300	10/19/17 21:52	W1T	TAL SEA

Dilution

Factor

1

Batch

Prepared

Number or Analyzed Analyst

498776 10/17/17 13:56 DAS

Client Sample ID: 17-ERK-SW-01 Date Collected: 10/05/17 10:25 Date Received: 10/07/17 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	258507	10/10/17 16:54	P1P	TAL SEA
Total/NA	Prep	CWA_Prep_CLLE			258585	10/11/17 13:11	MRG	TAL SEA
Total/NA	Analysis	625		1	258841	10/13/17 17:06	ERZ	TAL SEA
Total/NA	Analysis	AK101		1	258416	10/10/17 02:30	RSB	TAL SEA
Total/NA	Prep	3510C			258753	10/13/17 08:49	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	258895	10/17/17 03:18	W1T	TAL SEA

Client Sample ID: 17-ERK-SW-02 Date Collected: 10/05/17 10:35 Date Received: 10/07/17 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	258507	10/10/17 17:19	P1P	TAL SEA
Total/NA	Prep	CWA_Prep_CLLE			258585	10/11/17 13:11	MRG	TAL SEA
Total/NA	Analysis	625		1	258841	10/13/17 17:30	ERZ	TAL SEA
Total/NA	Analysis	AK101		1	258416	10/10/17 03:01	RSB	TAL SEA
Total/NA	Prep	3510C			259154	10/18/17 12:07	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	259215	10/19/17 01:44	W1T	TAL SEA

Dilution

Factor

1

1

1

1

Run

Batch

Number

Prepared

258507 10/10/17 17:45 P1P

258585 10/11/17 13:11 MRG

258841 10/13/17 17:55 ERZ

258416 10/10/17 03:32 RSB

259154 10/18/17 12:07 NDB

259215 10/19/17 02:28 W1T

or Analyzed Analyst

Date Collected: 10/05/17 10:40

Date Received: 10/07/17 10:10

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client Sample ID: 17-ERK-SWZ

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Batch

624

625

AK101

3510C

AK102 & 103

Method

CWA_Prep_CLLE

5 7

Lab Sample ID: 580-71900-6

Lab

TAL SEA

TAL SEA

TAL SEA

TAL SEA

TAL SEA

TAL SEA

Matrix: Water

Client Sample ID: 17-ERK-TB Date Collected: 10/05/17 08:00 Date Received: 10/07/17 10:10

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	524.2		1	498911	10/18/17 10:43	DAS	TAL SAV
Total/NA	Analysis	624		1	258507	10/10/17 16:28	P1P	TAL SEA
Total/NA	Analysis	8260C SIM		1	259252	10/17/17 17:29	IWH	TAL SEA
Total/NA	Analysis	AK101		1	258416	10/09/17 18:48	RSB	TAL SEA

Client Sample ID: 17-ERK-MW-1 Date Collected: 10/05/17 15:35 Date Received: 10/07/17 10:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	258504	10/10/17 18:10	P1P	TAL SEA
Total/NA	Prep	3510C			258594	10/11/17 13:53	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	259300	10/19/17 22:16	W1T	TAL SEA
Total/NA	Analysis	AK101		1	258416	10/10/17 04:34	RSB	TAL SEA
Total/NA	Prep	3510C			258982	10/17/17 08:55	APR	TAL SEA
Total/NA	Analysis	AK102 & 103		1	259043	10/17/17 20:01	W1T	TAL SEA

Client Sample ID: 17-ERK-MWZ Date Collected: 10/05/17 14:25 Date Received: 10/07/17 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	258603	10/11/17 21:21	T1W	TAL SEA
Total/NA	Analysis	8260C SIM		1	259252	10/17/17 17:52	IWH	TAL SEA
Total/NA	Prep	3510C			258594	10/11/17 13:53	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	259300	10/19/17 22:41	W1T	TAL SEA
Total/NA	Analysis	AK101		1	258416	10/10/17 05:05	RSB	TAL SEA
Total/NA	Prep	3510C			259154	10/18/17 12:07	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	259215	10/19/17 02:50	W1T	TAL SEA

Lab Sample ID: 580-71900-7 Matrix: Water

Lab Sample ID: 580-71900-8

TestAmerica Seattle

Matrix: Water

Client Sample ID: 17-ERK-MW-3

2 3 4 5 6 7

Lab Sample ID: 580-71900-9 Matrix: Water

Date Collected: 10/05/17 14:15 Date Received: 10/07/17 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	258603	10/11/17 21:46	T1W	TAL SEA
Total/NA	Analysis	8260C SIM		1	259252	10/17/17 18:17	IWH	TAL SEA
Total/NA	Prep	3510C			258594	10/11/17 13:53	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	259300	10/19/17 23:05	W1T	TAL SEA
Total/NA	Analysis	AK101		1	258416	10/10/17 05:36	RSB	TAL SEA
Total/NA	Prep	3510C			259154	10/18/17 12:07	NDB	TAL SEA
Total/NA	Analysis	AK102 & 103		1	259215	10/19/17 03:13	W1T	TAL SEA

Lab Sample ID: 580-71900-10

Matrix: Water

Client Sample ID: 17-ERK-EB Date Collected: 10/05/17 16:06 Date Received: 10/07/17 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	258603	10/11/17 20:06	T1W	TAL SEA
Total/NA	Analysis	8260C SIM		1	259252	10/17/17 18:40	IWH	TAL SEA
Total/NA	Prep	3510C			258594	10/11/17 13:53	NDB	TAL SEA
Total/NA	Analysis	8270D SIM		1	259300	10/19/17 23:30	W1T	TAL SEA
Total/NA	Analysis	AK101		1	258416	10/10/17 06:07	RSB	TAL SEA
Total/NA	Prep	3510C			258982	10/17/17 08:55	APR	TAL SEA
Total/NA	Analysis	AK102 & 103		1	259043	10/17/17 21:29	W1T	TAL SEA

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Client: ERM Alaska, Inc. Project/Site: Eureka, Alaska 2017 TestAmerica Job ID: 580-71900-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-18
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	01-31-18
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-18
US Fish & Wildlife	Federal		LE058448-0	10-31-18
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-18

Laboratory: TestAmerica Savannah

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
	AFCEE		SAVLAB	
Alabama	State Program	4	41450	06-30-18
Alaska	State Program	10		06-30-18
Alaska (UST)	State Program	10	UST-104	11-05-17 *
Arizona	State Program	9	AZ808	12-14-17 *
Arkansas DEQ	State Program	6	88-0692	02-01-18
California	State Program	9	2939	06-30-18
Colorado	State Program	8	N/A	12-31-17
Connecticut	State Program	1	PH-0161	03-31-19
Florida	NELAP	4	E87052	06-30-18
GA Dept. of Agriculture	State Program	4	N/A	06-12-18
Georgia	State Program	4	803	06-30-18
Guam	State Program	9	15-005r	04-16-18
Hawaii	State Program	9	N/A	06-30-18
Illinois	NELAP	5	200022	11-30-18
Indiana	State Program	5	N/A	06-30-18
lowa	State Program	7	353	06-30-19
Kentucky (DW)	State Program	4	90084	12-31-17
Kentucky (UST)	State Program	4	18	06-30-18
Kentucky (WW)	State Program	4	90084	12-31-18 *
L-A-B	DoD ELAP		L2463	09-22-19
L-A-B	ISO/IEC 17025		L2463.01	09-22-19
Louisiana	NELAP	6	30690	06-30-18
Louisiana (DW)	NELAP	6	LA160019	12-31-18
Maine	State Program	1	GA00006	09-24-18
Maryland	State Program	3	250	12-31-17
Massachusetts	State Program	1	M-GA006	06-30-18
Michigan	State Program	5	9925	06-30-18
Mississippi	State Program	4	N/A	06-30-18
Nebraska	State Program	7	TestAmerica-Savannah	06-30-18
New Jersey	NELAP	2	GA769	06-30-18
New Mexico	State Program	6	N/A	06-30-18
New York	NELAP	2	10842	03-31-18
North Carolina (DW)	State Program	4	13701	07-31-18
North Carolina (WW/SW)	State Program	4	269	12-31-17
Oklahoma	State Program	6	9984	08-31-18

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: ERM Alaska, Inc. Project/Site: Eureka, Alaska 2017

TestAmerica Job ID: 580-71900-1

Laboratory: TestAmerica Savannah (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Pennsylvania	NELAP	3	68-00474	06-30-18
Puerto Rico	State Program	2	GA00006	12-31-17
South Carolina	State Program	4	98001	06-30-18
Tennessee	State Program	4	TN02961	06-30-18
Texas	NELAP	6	T104704185-16-9	11-30-18
Texas	State Program	6	T104704185	06-30-18
US Fish & Wildlife	Federal		LE058448-0	07-31-18
USDA	Federal		SAV 3-04	06-14-20 *
Virginia	NELAP	3	460161	06-14-18
Washington	State Program	10	C805	06-10-18
West Virginia (DW)	State Program	3	9950C	12-31-17
West Virginia DEP	State Program	3	094	06-30-18
Wisconsin	State Program	5	999819810	08-31-18
Wyoming	State Program	8	8TMS-L	06-30-16 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
580-71900-1	17-ERK-DW-01	Water	10/05/17 09:45	10/07/17 10:10	
580-71900-2	17-ERK-DWZ	Water	10/05/17 09:50	10/07/17 10:10	
580-71900-3	17-ERK-SW-01	Water	10/05/17 10:25	10/07/17 10:10	
580-71900-4	17-ERK-SW-02	Water	10/05/17 10:35	10/07/17 10:10	
580-71900-5	17-ERK-SWZ	Water	10/05/17 10:40	10/07/17 10:10	
580-71900-6	17-ERK-TB	Water	10/05/17 08:00	10/07/17 10:10	
580-71900-7	17-ERK-MW-1	Water	10/05/17 15:35	10/07/17 10:10	
580-71900-8	17-ERK-MWZ	Water	10/05/17 14:25	10/07/17 10:10	
580-71900-9	17-ERK-MW-3	Water	10/05/17 14:15	10/07/17 10:10	
580-71900-10	17-ERK-EB	Water	10/05/17 16:06	10/07/17 10:10	

TestAmerica Seattle

Phone (253) 922-2310 Fax (253) 922-5047

5755 8th Street East

Tacoma, WA 98424

Loc: 580 **71900**

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Sampler: K.M.v	way 15.	Staviwat	Lab PM Zalma		ayse	1					Ć	arrier T	racking	g No(s	.):			COC No: 580-26097-860	14.1	
Client Contact: Stephen Witzmann	Phone: 907.	264-44	0)	E-Mail: kayse	zal	lmai@	testar	neric	ainc.	com									Page: Page 1 of 8		
Company: ERM Alaska, Inc.									Ar	naly	sis R	equ	este	d					Job #:		
Address: 825 W 8th Ave, Suite 200	Due Date Reques	ted:	**********							-	Ī	T	T				Τ		Preservation Co		
City.	TAT Requested (c	lays):															لد		A - HCL B - NaOH	M - Hexan N - None	-
Anchorage State, Zip:		indard															1ah		C - Zn Acetate D - Nitric Acid	0 - AsNaC P - Na2O4	S
AK, 99501-4427 Phone:	PO#	(FIUL) C													ank		6		E - NaHSO4 F - MeOH	Q - Na2SC R - Na2S2	03
907-264-4401(Tel) Email:	Purchase Orde	r Requested	l		ío)										- Trip Blank	Blank	11.0		G - Amchlor H - Ascorbic Acid		odecahydrate
stephen.witzmann@erm.com	WO #:				DE NOT	ÓN		voc				3			Voc-1		1.	2000	I - Ice J - Di Water	U - Aceton V - MCAA	
Project Name: Eureka, Alaska 2017	Project #: 58011705			2	11	5		N WIS	õ		PAHs				× WIS	2 I	·E624	aine	K - ÉDTA L - ÉDA	W - pH 4-5 Z - other (s	
Site: Eureka Lodge	SSOW#:		···· · · · · · · · · · · · · · · · · ·		Perform MS/MSD (Yes		8260C - AK 8260C VOC	8260C_SIM - AK 8260CSIM	AK102_103 - Alaska - DRO	GRO	8270D_SIM - 8270OSIM PAHs			AK101	8260CSIM	- E524,2 - Trip	-3	of containers	Other:		
		Τ	Sample Mati	ix i		EX	8260(AK	- Alas		8270D_SIM - 827	C24 Emi DIEV ECA	625	260C,	- AK	524.2_Preserved	624 . Rowuld	ber o			
			Type (www. S=sol	id, 📕			- AK	SIM	2_101	1 - Al	WIS		PAH	, m	NHS .	Pres	3	Nun			
Sample Identification	Sample Date	Sample Time	(C≖comp, o=wash G=grab) вт=Tissue	unii 3	Leo d	8260C - BTEX	8260(82600	AK10	AK101 - Alaska	82705	100	625 - PAH E625	624_5mt, 8260C,	8260C_SIM - AK	524.2	670	Total	Special I	nstructions	s/Note:
	\equiv	\geq	Preservation Co		Φ	(a		Acres 10 acres	A /			A A	N	A		MA		Х			
7-ERK-DW-01	10/5/17	0945	Wat	I							2 2							5			
17-ERK-DWZ	10/5/17	0950	Wat	er N	1 N	1					23							5			
7-ERK SW-01	10/5/17	1025	Wat	er 1	N	J			2	3		3	2					<u>j</u> 0			
17 - ERK - SW - 02	1015/17	1035	Wat	er þ	W	1				3		1	2					1Þ			
17 - ERK -SWZ	16 5/17	1040	Wate	er N	IN					3		3	2					16			
17-ERK-TB	10/5/17	0800	Wate	er N	N					3			1	1	3	3	3	12			
17- ERK-MW-1	10/5/17	1535	Wate			13				-	2	1	+	†	2	_	-	jD			
17 · ERK - MWZ	1015/17	1425	Wate		Ŵ		3	3		1	2		+					3			
17 - ERK - MW-3	10/5/17	1415	Wate		N		3				2							ų į			
17. ERK - EB	12/5/17	1606	Wate		N		3				2							5			
	<u>~~</u> 2 1+	1000	Wate			<u>v</u>	2	-	-	-			-					13	580-71900 CH	ain of Cus	tody
Possible Hazard Identification	i				Sa	ample	Disp	osal	(A fe	e m	ay be	asse	ssed	if sa	mple	s are	e ret	aine	d longer than 1	month)	
Non-Hazard 🗁 Flammable 🔤 Skin Irritant 🗧	Poison B Unkno	wn CR	adiological				eturn				ļΧ.	Disp	osal E	y Lal	5	Ε			re For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	pecial	Instru	ction	s/QC	Req	uirem	ents:									
mpty Kit Relinquished by:		Date:		Ťi	me:								Meth	od of S							
elinquished by: Min Rm	Date/Time: ∫< {6 { (]	1000	Company	M		Rece	ived by	~			حـــــ		1		Date/		5/1	7	11:12	Company 7 A	AIC
Relinquished by:	Date/Time:	15:70	Company	•		Rece	wed by	Z	ð	<					Date/				1010	Company	
telinquished by:	Date/Time:		Company	<u>, r</u>			ived by								Date/	lime:	1		1910	Company	<u> </u>
Custody Seals Intact: Custody Seal No.:						Coole	Y Tem	peratu	re(s) °/) and	Other F	emar	(S)								
			Pac	e 51	of	58	11-	7: (1.8	/	verter f									12/1:	<u>3/2017 (</u>

TBA^L Cooler Cor O.4 Unc 5.3 Cooler Dsc Lr > Bir @Lab Ż Packing Bubble Custody Seal X Yes Wet/Parts G.S.

TBAL Cooler Cor. 0.5 Unc 6.2 Cooler Dsc LS Blue al Lab Wet/Parts Packing Bubble

Custody Scal XYes No

TB #2 Cooler Cor 0.9 -0.2 Cooler Dsc 2-3 SJ -0.2 Wet/ Farth Packing Bubble S. S

Ż Custody Seal ZYes_

Testamerica The leader in environmental testing	Test America Anchorage Cooler Receipt Form for Direct Ship Samples	horage orm for amples
CLIENT: ERM PROJECT: Evite	. ka	
Date /Time Cooler Arrived 10 / 6 / 17 11 : 12 Cooler si	Cooler signed for by: $\frac{A_{A}J_{A}c_{V}}{(Print name)}$	
<u>Preliminary Examination Phase:</u>		
Date cooler opened: $\overline{\mathbb{N}}$ same as date received or	Cooler not opened	
Cooler opened by (print) $\frac{A_{\Lambda}\partial_{\ell}\epsilon_{\nu}}{A_{\Lambda}\partial_{\ell}\epsilon_{\nu}}$ $r_{\ell}l_{\ell}l_{\ell}$ (sign)		
1. Delivered by <u>ALASKA AIRLINES</u> <u>Fed-Ex</u> <u>UPS</u> <u>NAC</u> <u>LYNDEN</u>	LYNDEN KCLIENT Other:	
	(include copy of shipping papers in file)	
 Were custody seals unbroken and intact on arrival? 	Date//	
3. Were custody papers sealed in a plastic bag?	Not Not	Not checked
4. Were custody papers filled out properly (ink, signed, etc.)? Yes	° 2	Not checked
5. Did you sign the custody papers in the appropriate place? \square Yes	Ň	Not checked
6. Was ice used? 🕅 Yes 🔲 No Type of ice: 🗌 blue ice 🕅 gel ice	\Box real ice $\Box dr$ ice Condition of lee: $\sum o \ell \ell$	044
Temperature by Digi-Thermo Probe <u> </u>	Rec # 5	
7. Was ice changed or added? \square Yes	° Z	□ Not checked
8. Packing in Cooler: A bubble wrap styrofoam cardboard Other.		
9. Did samples arrive in plastic bags?	°۲	□ Not checked
10. Did all bottles arrive unbroken, and with labels in good condition? 🕎 Yes	No Not	Not checked
Comments		
L	Form No. AK-FORM-SPL-003. June 2010	June 2010
		2

5

Testamerial testing	Test America Anchorage Cooler Receipt Form for Direct Ship Samples	rage n for ples
CLIENT: ERM PROJECT: Evited	Ła	
Date /Time Cooler Arrived 10 / 6 / 17 11 : 12 Cooler sig	Cooler signed for by: $\frac{A_{1}J_{2}\iota_{2}}{(Print name)}$	
<u>Preliminary Examination Phase:</u>		
Date cooler opened: 🛛 same as date received or / /	Cooler not opened	
Cooler opened by (print) $\frac{A_{\Lambda}\partial_{\ell}\epsilon_{\mathcal{W}}}{R_{\Lambda}l_{\ell}\ell_{\rm h}}$ (sign)		
1. Delivered by <u>ALASKA AIRLINES</u> <u>Fed-Ex</u> <u>UPS</u> <u>NAC</u> <u>LYNDEN</u>	LYNDEN KCLIENT Other	
Shipment Tracking # if applicable (include o	(include copy of shipping papers in file)	
2. Number of Custody Seals O Signed by Were custody seals unbroken and intact on arrival?	Date/	
3. Were custody papers sealed in a plastic bag^2	🔀 No 🛛 🗌 Not checked	ked
4. Were custody papers filled out properly (ink, signed, etc.)? (Yes	No No Not checked	ked
5. Did you sign the custody papers in the appropriate place? \square Yes	No Not checked	ked
6. Was ice used? 🖄 Yes 🔲 No Type of ice: 🗌 blue ice 🕅 gel ice 🛛 rea	\Box real ice \Box drv ice Condition of lee: $5eFF$	
Temperature by Digi-Thermo Probe <u><i>S</i></u> , <u>6</u> °C Thermometer <u>#</u> <u>R</u> Acceptance Criteria: 0 - 6°C	Rec # 5	
7. Was ice changed or added?	No Not checked	ked
8. Packing in Cooler: A hubble wrap styrofoam cardboard Other		
9. Did samples arrive in plastic bags?	No Not checked	ked
10. Did all bottles arrive unbroken, and with labels in good condition? 🕎 Yes	No Not checked	ked
Comments		
Fo	Form No. AK-FORM-SPL-003, June 2010	e 2010

5

Testamerica The leader in environmental testing	Test America Anchorage Cooler Receipt Form for Direct Ship Samples
CLIENT: ERM PROJECT: Ewika	q
Date /Time Cooler Arrived 10 / 6 / 17 11 : 12 Cooler sign	Cooler signed for by: $A_{1}b_{1}\epsilon_{1}$, $P_{1}l_{1}l_{1}$ (Print name)
<u>Preliminary Examination Phase:</u>	
Date cooler opened: \square same as date received or / / /	Cooler not opened
Cooler opened by (print) $\frac{A_{\Lambda}\partial_{\ell}\epsilon_{M}}{R_{\ell}\ell_{M}}$ $\Gamma_{\ell}\ell_{M}$ (sign).	Con and
1. Delivered by <u>ALASKA AIRLINES</u> <u>Fed-Ex</u> <u>UPS</u> <u>NAC</u> <u>LYNDEN</u>	YNDEN KCLIENT Other:
Shipment Tracking # if applicable (include cof 2. Number of Custody Seals [7] Signed by	(include copy of shipping papers in file)
inbroken and in	
3. Were custody papers sealed in a plastic bag? \Box Yes	No 🗌 Not checked
4. Were custody papers filled out properly (ink, signed, etc.)? Yes	No Not checked
5. Did you sign the custody papers in the appropriate place? X Yes	□ No □ Not checked
6. Was ice used? 🖄 Yes 🔲 No Type of ice: 🗌 blue ice 🛛 gel ice 🔤 real i	\Box real ice \Box dry ice Condition of Ice: $5ot^{4}t$
Temperature by Digi-Thermo Probe <u>33</u> °C Thermometer # Rec Acceptance Criteria: 0 - 6°C	# S
7. Was ice changed or added? \overline{X} Yes	No Not checked
8. Packing in Cooler: A bubble wrap styrofoam cardboard Other.	
9. Did samples arrive in plastic bags?	No Not checked
10. Did all bottles arrive unbroken, and with labels in good condition? SY es	No Not checked
Comments	
For	Form No. AK-FORM-SPL-003, June 2010

5

5755 8th Street East Tacoma、WA 98424 Phone (253) 922-5047	0	hain c	of Cus	Chain of Custody Record	cord			
Client Information (Sub Contract Lab)	Sampler			Lab PM: Zalmai, Kavse	Kavse 1	Carrier Tracking No(s)		COC No: 580-50400 1
	Phane:			E-Mail.				Page
Shipping/Keceiving Commany				Kayse.z	Kayse zaimai@testamericainc.com Accreditations Required (See note)	n Alaska		Page 1 of 1
TestAmerica Laboratories, Inc.								580-71900-1
Address 5102 LaRoche Avenue,	Due Date Requested 10/18/2017	;p			Ana	Analysis Requested		Cod
City Savannah	TAT Requested (days):	ys):						A - HCL M - Hexane B - NaOH N - None C - Zn Acetale O - AsNaO2
State, ZIP GA, 31404	T							
Phone 912-354-7858(Tel) 912-352-0165(Fax)	#04			(_	F - MeOH R - Na2S203 G - Amchlor S - H2SO4 H - Accordin Acid T 1 TED Dovement
	WO#			OF NO	(0)			J - DI Water
Project Name Eureka: Alaska 2017	Project # 58011705			səy) e	1 10 81			K - EDTA L - EDA
Site	#MOSS			oldma	N as			Other:
Samole Identification - Client ID (Lab ID)	Samole Date	Sample Time	Sample Type (C=comp, G=crab)	Matrix (wwwator, s=solid. Onwate/oil.	eviorasi9_234,2 524,2_Preserved			Cotal Number
(and another a substance in the substance and substance	X	X	0	-	X			
17-ERK-DW-01 (580-71900-1)	10/5/17	09.45 Alaskan		Water	×			3
17-ERK-DWZ (580-71900-2)	10/5/17	09.50 Alaskan		Water	×			3
17-ERK-TB (580-71900-6)	10/5/17	08:00		Water	×			3
		Mashal						
Note: Since laboratory accreditations are subject to change. TrastAmerica Laboratories, inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc.	ioratories, inc. places the flests/matrix being analyzi rrent to date, return the su	ownership of n id, the sample: gned Chain of	ethod, analyte s must be ship Custody attest	& accreditation co ped back to the Te ing to said complic	mpliance upon out subcontract stAmerica laboratory or other in: ance to TestAmerica Laboratori	aboratories. This sample shipment i itructions will be provided. Any chan ss. Inc.	s forwarded un ges to accredit	ider chain-of-custody if the laboratory doe tation status should be brought to TestAme
Possible Hazard Identification		0			Sample Disposal (A fe	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	es are reta	ined longer than 1 month)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	ble Rank: 2			Special Instructions/QC Requirements	Cequirements:]]	Archive For Months
Empty Kit Relinquished by: /		Date	l	T	Time.	Method of Shipment	nent:	
Relinquished by TOW DUNC		£1/6		Company TA-Sec Company	Received by		Date/Time D-10-1 Date/Time	1/900 Comparts A
Reimquished by	DateTtime			Company	Received by	Date	Date/Time	Company
Custody Seals Intact: Custody Seal No.:					Cooler Temperature(s) "C and Other Remarks	and Other Remarks	0, 0	re/0.7°C
						5) - う >

I

Login Sample Receipt Checklist

Client: ERM Alaska, Inc.

Login Number: 71900 List Number: 1 Creator: Gall, Brandon A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-71900-1

List Source: TestAmerica Seattle

Client: ERM Alaska, Inc.

Login Number: 71900 List Number: 2 Creator: Anderson, Jordan K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Savannah

List Creation: 10/10/17 10:51 AM

APPENDIX E

ADEC Checklist and Quality Assurance Report

- Page Intentionally Left Blank -

E. QUALITY ASSURANCE REVIEW

Laboratory quality assurance/quality control (QA/QC) data associated with the analysis of project samples has been reviewed to evaluate the usability of the analytical data generated during the October 2017 water monitoring event at the Eureka Lodge, Alaska for Crowley Maritime Corporation.

Water samples were collected, reported, and shipped in general accordance with the work plan (OASIS 2012, ERM 2017). Sample analysis was performed by Alaska Department of Environmental Conservation (ADEC) certified laboratories for applicable analytical methods.

All data were reviewed in accordance with United States Environmental Protection Agency (EPA) National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2017), analytical methodology and ADEC regulatory guidance documents (ADEC 2017). This data review focused on the following QC parameters and impact on data quality objectives (DQOs): usability: sample handling and chain-of-custody documentation; holding time compliance; field QC (trip blanks, equipment blanks, field duplicates); laboratory QC (method blanks, laboratory control samples (LCS) and LCS duplicates (LCSD), surrogates, matrix spikes (MS) and MS duplicates [MSD]), method reporting limits; and completeness.

The samples were delivered to TestAmerica in Anchorage, Alaska.

Groundwater samples were analyzed for the following:

- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), EPA Method 8260C;
- Volatile Organic Compounds (VOCs), EPA Method 8260C;
- Gasoline Range Organics (GRO), AK101;
- Diesel Range Organics (DRO), AK102;
- Poly-cyclic Aromatic Hydrocarbons (PAHs), EPA Method 8270D SIM.

Surface water samples were analyzed for the following:

- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), EPA Method 624;
- GRO, AK101;
- DRO, AK102;
- PAHs, EPA Method 625.

Drinking water samples were analyzed for the following:

- VOCs, EPA Method 524.2;
- PAHs, EPA Method 8270D SIM.

Samples were shipped to TestAmerica in Tacoma, WA for analysis. TestAmerica in Savannah, GA performed the E524.2 analysis on drinking water samples. The October 2017 water sample results were reported in TestAmerica Job 580-71900-1.

Results that were detected at concentrations below the reporting limit (RL) but above the method detection limits (MDLs) are flagged "J" and considered estimated. Results detected at concentrations below the MDL are considered not detected (ND).

Some sample results were considered estimations due to QA/QC discrepancies. All results are suitable for use. The details of this review and qualification of the data are summarized in the following sections.

E.1. Sample Handling and Chain of Custody

The sample coolers were shipped with custody seals intact. CoC forms, laboratory sample receipt forms, and case narratives were reviewed to evaluate the integrity of the samples and the quality of the associated data. All sample containers in the sample coolers were received at the laboratory intact and within the specified temperature range of <6°C.

E.2. Holding Time Compliance

All samples were extracted, digested and analyzed within the holding time criteria for the applicable analytical methods and in accordance with work plan specifications.

E.3. Field QA/QC

Field QA/QC protocols are designed to measure for potential sample bias as a result of sampling procedures and possible contamination during collection and transport of samples. Collection and analysis of field duplicates facilitates an evaluation of precision that takes into account potential variables associated with sampling procedures, site heterogeneity and laboratory analyses. Trip blanks are used to monitor sample containers and possible cross-contamination of samples. Field equipment blanks are used to assess the efficiency of field equipment decontamination procedures in preventing cross contamination between samples. During this sampling event, trip blanks, equipment blanks, and field duplicates were submitted for analysis.

E.3.1. Trip Blanks

Trip blanks were prepared by the laboratory, shipped to the site with the empty sample bottles/containers, stored with sample containers during the field event, and transported with the collected samples back to the laboratory for analysis.

Trip blanks were placed in the cooler with associated matrix specific volatile organics samples (GRO/VOC) and analytes detected in the trip blanks were below the RL for all analytes.

E.3.2. Equipment Blanks

Equipment rinse blanks were prepared in the field for groundwater samples collected with the submersible pump.

Several compounds were detected above the method detection limit (MDL) in the equipment blanks at concentrations similar to method blank results. All analytes detected in the equipment blanks were below the reporting limit (RL). Sample results detected at similar concentrations were qualified (UB) as non-detected at the RL. The detected equipment blank results and qualified sample results are listed in Table QA-1.

E.3.3. Field Duplicates

Three field duplicates were submitted. The frequency of field duplicate collection met the 10% frequency requirements for each method and matrix specified in the work plan.

When analytes were present in concentrations below the RL in one or both samples, no valid comparison could be made. The primary sample and duplicate relative percent differences (RPDs) met applicable control limits.

Overall, there was adequate comparability of field duplicate results to meet project data quality objectives. The detected field duplicate results and RPD are listed in Table QA-2.

E.4. Laboratory QA/QC

E.4.1. Method Blanks

Method blanks were analyzed concurrent with an analytical batch of 20 or fewer primary samples for each of the analytical methods performed on project samples. Target analytes were not detected (ND) in any method blanks, with the following exceptions listed in Table QA-2.

- 1,2,4-Trichlorobenzene was detected at a trace concentration above the MDL in the E524.2 method blank. All associated sample results for this compound were ND and were not affected.
- DRO was detected at a trace concentration above the MDL in one AK102 method blank. Since the result is less than half of the RL, no corrective action was required. The result for DRO in associated sample 17-ERK-EB was within five times the method blank concentration and qualified (UB) as non-detected at the RL due to laboratory contamination.
- Anthracene, phenanthrene and pyrene were detected at trace concentrations above the MDL in the 8270D SIM method blank. The results for these PAHs in associated sample 17-ERK-EB were within five times the method blank concentration and qualified (UB) as non-detected at the RL due to laboratory contamination. All associated sample results for these compounds were ND and were not affected.

E.4.2. Laboratory Control Samples

The laboratory monitors internal precision and accuracy for each analytical batch with a set of laboratory control samples (LCS/LCSD). A known quantity of target analytes are added to blank laboratory control samples prior to extraction and analysis and recoveries are calculated. Acceptable recovery criteria vary with each analytical method and matrix. All LCS/LCSD samples met laboratory and project QC goals for target analytes, with the following exceptions listed in Table QA-3.

- Method 8260B LCS and/or LCSD %R were high for the following VOCs: 1,2,3trichlorobenzene, acetone, bromochloromethane, carbon tetrachloride, and methyl tert-butyl ether. The associated VOC results were non-detect and not affected by the high %R.
- A method 8270D SIM LCS %R was low for benzo(a)pyrene. The LCSD %R was acceptable for this compound. The non-detect results for benzo(a)pyrene are flagged as estimated, UJ-L in the samples above.

E.4.3. Surrogates

System Monitoring Compounds (Surrogates) are specified for organic chromatographic analytical procedures. Surrogates are compounds similar to target analytes and are added to each sample prior to collection or extraction. Subsequent surrogate recovery indicates overall method performance. Surrogate recoveries were within prescribed control limits for all primary samples, method blanks, LCS/LCSD, MS/MSD and other QA/QC samples, with several exceptions listed in Table QA-4.

• The surrogate trifluorotoluene recoveries were above the control limit for several QC and project samples. Qualifiers were not required for the QC sample results. The associated sample results for GRO were non-detect and not affected by the high %R.

E.4.4. Matrix Spikes

Extra volumes of primary field samples were collected and submitted to the laboratory for matrix spike/matrix spike duplicate (MS/MSD) analyses. Matrix spikes have a known quantity of target analytes are added (spiked) to field samples. Spike recoveries are calculated and are used to evaluate both site conditions and laboratory quality control. Matrix spikes met recovery percentages (%R) and relative percent difference (RPD) limits.

E.4.5. Reporting and Method Detection Limits (Sensitivity)

The RLs provided adequate sensitivity needed to meet project objectives for most target compounds. The reporting limits (RLs) were below ADEC groundwater cleanup levels (CL) in the project samples, with several exceptions listed in Table QA-6.

The results for the following VOCs in samples 17-ERK-MW-3 and 17-ERK-MWZ were reported as ND with RL above the ADEC groundwater CLs: 1,2,3-trichloropropane, 1,2-

dibromoethane, 1,1,2-trichloroethane and vinyl chloride. The limits of detection (LOD), calculated as twice the MDL, were also compared to the ADEC CLs. The LODs for 1,2dibromoethane, 1,1,2-trichloroethane and vinyl chloride are below the ADEC groundwater CL and meet the sensitivity required to determine achievement of cleanup criteria.

The results for 1,2,3-trichloropropane do not meet the sensitivity required to determine achievement of cleanup criteria. Method 8260C does not currently achieve the GW CL of 0.0075 ug/L for 1,2,3-trichloropropane.

E.5. Precision and Accuracy

Precision criteria monitor analytical reproducibility. Accuracy criteria monitor agreement of measured results with "true values" established by spiking applicable samples with a known quantity of analyte or surrogate. Precision and accuracy were evaluated by comparing LCS/LCSDs, MS/MSDs and field duplicate pairs for this project. Field duplicates and MS/MSD samples were collected in accordance with work plan specifications. Field duplicate RPDs met applicable control limits. Recoveries and RPDs for all LCS/LSCD and MS/MSD samples were within required limits, with any exceptions noted in the Laboratory QC section.

E.5.1. Completeness

Data completeness is defined as the percentage of usable data (usable data divided by the total possible data). The overall project completeness goal is 90%:

% completeness = <u>number of valid (i.e., non-R flagged) results</u>

number of possible results

All requested analyses were performed in accordance with Work Plan specifications. No results were qualified as unusable (i.e., "R"). Completeness for this project is 100%.

E.5.2. Representativeness

Data representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or environmental condition. The number and selection of samples were specified in the work plan and verified in the field to account accurately for site variations and sample matrices. The DQO for representativeness was met.

E.5.3. Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Data produced for this project followed applicable field sampling techniques and specific analytical methodology. The DQO for comparability was met.

E.6. Data Summary

In general, the overall quality of the data was acceptable. The data quality was determined as acceptable or estimated. Acceptable data are associated with QC data that meet all QC criteria or with QC samples that did not meet QC criteria but data quality objectives were not affected. Estimated J results are considered inaccurate due to a bias created by matrix interference or QC acceptance criteria which were not met. No results were rejected. The EPA National Functional Guidelines (EPA 2017) were used to evaluate the acceptability of the data.

Data quality meets established DQO established for this project. With the exceptions noted above, all data are suitable for their intended use.

REFERENCES

- ADEC. 2017. Laboratory Data Review Checklist. July.
- ADEC. 2017. Technical Memorandum: Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. March.
- ADEC. 2017. Technical Memorandum: Guidelines for Treatment of Non-detect Values, Data Reduction for Multiple-Detections and Comparison of Quantitation Limits to Cleanup Values. April.
- EPA. 2017. Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-2017-002). January.
- ERM Alaska, Inc. (ERM) 2017. *Addendum to the 2012 Groundwater and Surface Water Monitoring Work Plan,* Eureka Lodge, Alaska. ADEC Filed Number 210.28.006, Hazard ID 25595. 8 September.
- OASIS Environmental (OASIS). 2012. 2012 Groundwater and Surface Water Monitoring Work Plan, Eureka Lodge, Alaska. 4 June.

- Page Intentionally Left Blank -

Table QA-1 Blank and Associated Suspect Sample Detections 2017 Water Monitoring Crowley Eureka Lodge Eureka, Alaska

Lab	Blank		Associated		Reported	Report		ERM
Package	Type	Blank ID	Samples	Detected Compound	Concentration	Limit	Units	Qualifier
580-71900-1	MB	MB 680-498776/9		1,2,4-Trichlorobenzene	0.13	0.50	µg/L	
580-71900-1	MB	MB 580-258982/1-A	See below	DRO	0.208	0.10	mg/L	
			17-ERK-EB	DRO	0.048	0.10	mg/L	UB
			17-ERK-MW-3	DRO	0.058	0.11	mg/L	UB
			17-ERK-MWZ	DRO	0.052	0.10	mg/L	UB
580-71900-1	MB	MB 580-258594/1-A	See below	Anthracene	0.00440	0.020	µg/L	
		MB 580-258594/1-A	See below	Phenanthrene	0.00759	0.020	µg/L	
		MB 580-258594/1-A	See below	Pyrene	0.00462	0.020	µg/L	
			17-ERK-EB	Anthracene	0.0036	0.017	µg/L	UB
			17-ERK-EB	Phenanthrene	0.0051	0.017	µg/L	UB
			17-ERK-EB	Pyrene	0.0044	0.017	µg/L	UB
580-71900-1	EB	17-ERK-EB	17-ERK-EB	Tetrachloroethene	0.53	0.50	µg/L	
			17-ERK-MWZ	Tetrachloroethene	0.57	0.50	μg/L	UB

Lab reports reviewed: 580-71900-1

Key:

MB = Method blank

EB = Equipment blank

 μ g/L = Micrograms per liter

mg/L = Milligrams per liter

UB = Result is reported non-detect due to blank contamination.

Table QA-2 Field Duplicate Results and Calculated Relative Percent Differences 2017 Water Monitoring Crowley Eureka Lodge Eureka, Alaska

	Primary/		Conce	ntration		RPD		ERM
Lab Package	Duplicate	Compound	Sample	Duplicate	Units	limit (%)	RPD (%)	Qualifier
580-71900-1	17-ERK-DW-01/17-ERK-DWZ	Toluene	0.16	0.17	µg/L	<30	6	
580-71900-1	17-ERK-SW-02/17-ERK-SWZ	DRO	0.10	0.099	mg/L	<30	1	

Lab reports reviewed: 580-71900-1

Key:

 $\mu g/L$ = Micrograms per liter

mg/L = Milligrams per liter

RPD = Relative percent difference

% = percent

Table QA-3 LCS/LCSD Recoveries Outside of Acceptable Limits 2017 Water Monitoring Crowley Eureka Lodge Eureka, Alaska

	Spike	Associated		LCS	LCSD	Limit		RPD	Result	ERM
Lab Package	Sample ID	Sample	Compound	(%R)	(%R)	(%R)	RPD	Limit	(µg/L)	Qualifier
580-71900-1	LCS 580-258603/7; LCSD	See below	1,2,3-Trichlorobenzene	195	165	74-123	17	<17		
	580-258603/8	See below	Acetone	137	147	60 - 136	7	<35		
		See below	Bromochloromethane	122	124	78 - 120	2	<35		
		See below	Carbon tetrachloride	131	136	72 - 124	4	<19		
		See below	Methyl tert-butyl ether	118	121	79 - 120	3	<18		
580-71900-1	LCS 580-258594/2-A;	See below	Benzo[a]pyrene	75	81	76 - 120	8	<17		
	LCSD 320-170990/5-A	17-ERK-DW-01	Benzo[a]pyrene						ND	UJ-L
	-	17-ERK-DWZ	Benzo[a]pyrene						ND	UJ-L
		17-ERK-EB	Benzo[a]pyrene						ND	UJ-L
		17-ERK-MW-1	Benzo[a]pyrene						ND	UJ-L
		17-ERK-MW-3	Benzo[a]pyrene						ND	UJ-L
		17-ERK-MWZ	Benzo[a]pyrene						ND	UJ-L

Lab reports reviewed: 580-71900-1

Key:

UJ-L = Result is not detected and considered estimated due to the LCS/LCSD not meeting quality control criteria.

 $\mu g/L$ = Micrograms per liter

ND = Not detected

RPD = Relative percent difference

%R - Percent recovery

Table QA-4 Surrogate Recovery Results out of Acceptable Limits 2017 Water Monitoring Crowley Eureka Lodge Eureka, Alaska

						ERM
Lab Package	Sample ID	Method	Surrogate	Recovery (%)	Limit (%)	Qualifier
580-71900-1	LCS 580-258504/9	8260C	Trifluorotoluene	121	80-120	
	MB 580-258603/5	8260C	Trifluorotoluene	123	80-120	
580-71900-1	17-ERK-EB	AK101	Trifluorotoluene	123	75-120	
	17-ERK-MW-1	AK101	Trifluorotoluene	126	75-120	
	17-ERK-MW-3	AK101	Trifluorotoluene	124	75-120	
	17-ERK-MWZ	AK101	Trifluorotoluene	127	75-120	
	17-ERK-SW-01	AK101	Trifluorotoluene	125	75-120	
	17-ERK-SW-02	AK101	Trifluorotoluene	128	75-120	
	17-ERK-SWZ	AK101	Trifluorotoluene	126	75-120	
	17-ERK-TB	AK101	Trifluorotoluene	127	75-120	

Lab reports reviewed: 580-71900-1

Key:

% = percent

Table QA-5 Continuing Calibration Recovery Results out of Acceptable Limits 2017 Water Monitoring Crowley Eureka Lodge Eureka, Alaska

						ERM
Lab Package	Sample ID	Method	Compound	Drift (%)	Limit (%)	Qualifier
580-71900-1	CCV 580-258603/3	8260C	Trifluorotoluene	20.8	20	
	CCV 580-258504/3	8260C	Trifluorotoluene	> 20	20	
	CCV 580-258603/3	8260C	8 VOCs	> 20	20	
	CCV 580-258603/3	8260C	Dichlorodifluoromethane	<- 20	20	
	17-ERK-EB	8260C	Dichlorodifluoromethane			UJ-C
	17-ERK-MW-3	8260C	Dichlorodifluoromethane			UJ-C
	17-ERK-MWZ	8260C	Dichlorodifluoromethane			UJ-C
	CCV 580-259252/3	8260C SIM	Hexachlorobutadiene	> 20	20	
	CCV 580-258841/3	E625	Nitrobenzene-d5	25	20	

Lab reports reviewed: 580-71900-1

Key:

UJ- = Result is not detected and estimated due to continuing calibration verification standard not meeting quality control criteria.

% = percent

- Page Intentionally Left Blank -

TABLE QA-6

Reporting Limit Exceeds Cleanup Level 2017 Water Monitoring Crowley Eureka Lodge Eureka, Alaska

Method	Analyte or Compound	ADEC CLs (ug/L)	Associated Sample IDs	Result (µg/L)	MDL (µg/L)	LOD (2x MDL) (µg/L)	RL (µg/L)
8260C	1,2,3-trichloropropane	0.0075	17-ERK-MW-3	ND (2)	0.41	0.82	2
8260C	1,2,3-trichloropropane	0.0075	17-ERK-MWZ	ND (2)	0.41	0.82	2
8260C SIM	1,2-Dibromoethane	0.075	17-ERK-MW-3	ND (0.5)	0.014	0.028	0.5
8260C SIM	1,2-Dibromoethane	0.075	17-ERK-MWZ	ND (0.5)	0.014	0.028	0.5
8260C SIM	1,1,2-Trichloroethane	0.41	17-ERK-MW-3	ND (0.5)	0.017	0.034	0.5
8260C SIM	1,1,2-Trichloroethane	0.41	17-ERK-MWZ	ND (0.5)	0.017	0.034	0.5
8260C SIM	Vinyl chloride	0.19	17-ERK-MW-3	ND (0.5)	0.013	0.026	0.5
8260C SIM	Vinyl chloride	0.19	17-ERK-MWZ	ND (0.5)	0.013	0.026	0.5

Lab reports reviewed: 580-71900-1

Notes:

 $\mu g/L$ = Micrograms per liter

LOD = Limit of Detection; calculated as 2 times the MDL

MDL = Method Detection Limit

RL = Reporting Limit

ND = Not detected at the RL.

- Page Intentionally Left Blank

Laboratory Data Review Checklist

Completed By:

Elsie King

Title:

Project Chemist

Date:

11/1/2017

CS Report Name:

Crowley Eureka Lodge, Eureka, Alaska

Report Date:

11/6/2017

Consultant Firm:

ERM Alaska, Inc.

Laboratory Name:

TestAmerica Laboratories, Inc., Tacoma, Washington

Laboratory Report Number:

580-71900-1

ADEC File Number:

Hazard Identification Number:

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

		• Yes	O No	Comments:
	b			o another "network" laboratory or sub-contracted to an oratory performing the analyses ADEC CS approved?
		• Yes	○ No	Comments:
	Meth	od 524.2 ((drinking water method)	was subcontracted to TestAmerica – Savannah.
Ch	iain o	f Custody	<u>(CoC)</u>	
i	a. C	oC inform	nation completed, signed,	and dated (including released/received by)?
		• Yes	🔿 No	Comments:
	b. C	orrect Ana	alyses requested?	
		• Yes	O No	Comments:
La	borat	ory Samp	le Receipt Documentation	<u>n</u>
i	a. Sa	ample/coo	ler temperature documer	nted and within range at receipt $(0^{\circ} \text{ to } 6^{\circ} \text{ C})?$
		• Yes	O No	Comments:
			servation acceptable – ac lorinated Solvents, etc.)?	idified waters, Methanol preserved VOC soil (GRO, BTEX,

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

• Yes O No Comments:	Yes O No
----------------------	----------

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

• Yes • No Comments:

A discrepancy was noted for the sample containers provided for methods E625 and SW8270D SIM. For method E625, samples were submitted in 250 mL containers, instead of 1L containers. The RLs for the E625 results have been elevated x4 as a result. For method 8270D SIM, the samples were submitted in 1 L containers, instead of the 250 mL containers. The laboratory extracted a 250 mL volume from the 1L bottle; the results are not affected.

e. Data quality or usability affected?

Comments:

Data is acceptable.

4. Case Narrative

a. Present and understandable?

• Yes O No

Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes O No

E524.2: Method blank results for a VOC compound was detected below the LOQ.

8260C: Several CCV recoveries were high, however, associated sample results were all ND and not affected. Surrogate trifluorotoluene (TFT) recoveries were high in several CCV, MB and LCS samples. A CCV recovery was low for dichlorodifluoromethane.

Comments:

8260C SIM: A CCV recovery was high, however, associated sample results were all ND and not affected.

AK101: Surrogate recoveries were high in several samples; associated sample results were all ND and not affected.

625: Surrogate nitrobenzene-de5 recovery was high in a CCV sample.

8270D SIM: Method blank results for three PAH compounds were detected below the LOQ. The LCS %R was low for benzo(a)pyrene. The opening DFTPP tune had a tailing factor exceedance for benzidine; however, this compound was not representative of target PAH analytes.

AK102: A method blank result for DRO was detected above the LOQ. Surrogate n-triacontane-d62 recovery was high in a CCV.

c. Were all corrective actions documented?

• Yes O No Comments:

Corrective action was not performed for MB results that were detected below the LOQ. Corrective action was not performed for MB results that were detected above the LOQ if sample results were <LOQ or greater than 10x the method blank.

Corrective action was not performed for surrogate recoveries in batch QC (MB, LCS, and CCV) samples; all other surrogate %R recoveries were acceptable.

Corrective action was not performed for high CCV, LCS or surrogate recoveries when associated sample results were non-detect.

Corrective action was not performed for the single low 8270D SIM LCS recovery. The LCSD recovery was acceptable and all other PAH recoveries were acceptable. Data was qualified as estimated.

A reporting limit standard was analyzed for dichlorofluoromethane as confirmation of non-detect results associated with the low CCV recovery.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Several results were flagged due to method blank results (See section 6.a.) and LCS recoveries (See section 6.b.)

The dichlorofluoromethane results for samples 17-ERK-EB, 17-ERK-MW-3 and 17-ERK-MWZ were flagged as estimated UJ-C due to a low CCV.

No sample results required flags due to surrogate recoveries. (See section 6.c.)

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

• Yes O No Comments:

b. All applicable holding times met?

c. All soils reported on a dry weight basis?

○ Yes ● No Comments:

NA- water samples

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

○ Yes ● No Comments:

LOQ/RL were above the ADEC Method GW CLs for 1,1,2-trichloroethane, 1,2,3-trichloropropane, ethylene dibromide, and vinyl chloride, for ND results in the groundwater samples. The limits of detection (LOD as 2*DL) were below the CLs, with the exception of 1,2,3-trichloropropane. The LOQ for PAHs by method E625 (GC/MS) were elevated x4 due to incorrect sample volume collected. The LOQ for total PAHs by E625 exceeds the criteria for TAQH criteria of 0.015 mg/L; however the LOD for the total PAHs meets the ADEC water quality criteria.

e. Data quality or usability affected?

• Yes O No Comments:

The LOD for the ND results were below the ADEC CLs and water quality criteria for most results, indicating acceptable sensitivity.

The sample results listed below were reported as ND with LOD above the ADEC CLs, and do not meet the sensitivity required to determine achievement of cleanup criteria. Method 8260C does not currently achieve the GW CL of 0.0075 ug/L for 1,2,3-trichloropropane. 17-ERK-MW-3 and 17-ERK-MWZ: 1,2,3-trichloropropane ND (2).

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

• Yes O No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes O No Comments:

524.2: 1,2,4-Trichlorobenzene was detected < ¹/₂ the LOQ at 0.130 ug/L. 8270D SIM: The following PAH compounds were detected < ¹/₂ the LOQ: anthracene at 0.0040 ug/L; phenanthrene at 0.00759 ug/L; pyrene at 0.00462 ug/L. AK102: DRO was detected > the LOQ at 0.208 mg/L.

iii. If above LOQ, what samples are affected?

Comments:

Samples associated with the 524.2 blank are: 17-ERK-DW-01, 17-ERK-DWZ, 17-ERK-DWZ, and 17-ERK-TB.

Samples associated with the 8270D SIM blank are: 17-ERK-DW-01, 17-ERK-DWZ, 17-ERK-EB, 17-ERK-MW-1, 17-ERK-MW-3, and 17-ERK-MWZ.

Samples associated with the DRO blank are: 17-ERK-EB and 17-ERK-MW-1.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes O No Comments:

Method 524.2 1,2,4-trichlorobenzene results were not affected. All associated sample results for this compound were ND.

Associated PAH results reported below the LOQ in the equipment rinse sample were flagged as nondetected, UB at the LOQ/RL. All other associated sample results for these compounds were ND. The associated DRO result reported below the LOQ in the equipment rinse sample was flagged as nondetected, UB at the LOQ/RL. The other associated result was > 5x the blank concentration and not affected.

v. Data quality or usability affected?

Comments:

Results flagged UB may be biased high due to lab contamination and have been reported as ND at the LOO/RL.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes \bigcirc No

- Comments:
- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- O Yes No Comments:

NA – Organics only.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
- Yes • No Comments:

8260B: The LCS and/or LCSD %R were high for the following VOCs: 1,2,3-trichlorobenzene, acetone, bromochloromethane, carbon tetrachloride, and methyl tert-butyl ether. 8270D SIM: A LCS %R was low for benzo(a)pyrene. The LCSD %R was acceptable for this compound.

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes O No	Comments:	

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

8260C: 17-ERK-EB, 17-ERK-MW-3, and 17-ERK-MWZ 8270D SIM: 17-ERK-DW-01, 17-ERK-DWZ, 17-ERK-EB, 17-ERK-MW-1, 17-ERK-MW-3, 17-ERK-MWZ

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

The non-detect results for benzo(a)pyrene are flagged as estimated, UJ-L in the samples above. The VOC results were non-detect and not affected by the high %R.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Results flagged UJ-L were estimated values with a low bias.

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

• Yes O No Comments:

- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- Yes No Comments:

AK101: Surrogate TFT %Rs were above the control limits for all samples, but results were ND and not affected by high %R. The other surrogate %R was within control limits. 8260C: Surrogate trifluorotoluene (TFT) recoveries were high in several CCV, MB and LCS samples. This surrogate had acceptable %R in samples and was not associated with target compounds. AK102: Surrogate n-Triacontane-d62 recovery was high in a CCV. This surrogate was not associated with DRO.The other surrogate %R was within control limits.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

○ Yes ● No Comments:

No sample results were qualified for surrogate recoveries.

iv. Data quality or usability affected?

Comments:

Sample results are acceptable.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

Yes	O No	Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes	O No	Comments:

iii. All results less than LOQ?

• Yes • No Comments:

iv. If above LOQ, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data is acceptable.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes	O No	Comments:
17-ERK-DW-0	1 and 17-ERK-DWZ	
17-ERK-MW-3	and 17-ERK-MWZ	
17-ERK-SW-02	2 and 17-ERK-SWZ	

ii. Submitted blind to lab?

• Yes O No Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:

 $\frac{(R_1 - R_2)}{((R_1 + R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

• Yes • No Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data is acceptable.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

• Yes • No • Not Applicable

On equipment blank was collected for groundwater samples that were collected with the submersible pump.

- i. All results less than LOQ?
- O Yes 🔍 No

Comments:

8260C SIM: Tetrachloroethene was detected > LOQ, at 0.53 ug/L. 8270D SIM: The following PAH compounds were detected < $\frac{1}{2}$ the LOQ: anthracene at 0.0036 ug/L; benzo(a)anthracene at 0.0028 ug/L, fluoranthene at 0.0055 ug/L, phenanthrene at 0.0051 ug/L; pyrene at 0.0044 ug/L. The results for anthracene, phenanthrene, and pyrene were reported as ND (0.017) ug/L and qualified UB due to method blank contamination.

AK102: DRO was detected $< \frac{1}{2}$ the LOQ at 0.048 mg/L. The result was reported as ND (0.1) mg/L and qualified UB due to method blank contamination.

ii. If above LOQ, what samples are affected?

Comments:

8260C SIM:17-ERK-MW-3 and 17-ERK-MWZ 8270D SIM: 17-ERK-MW-1, 17-ERK-MW-3, and 17-ERK-MWZ AK102: 17-ERK-MW-1, 17-ERK-MW-3, and 17-ERK-MWZ iii. Data quality or usability affected?

Comments:

8260C SIM: The tetrachloroethene result in sample 17-ERK-MWZ was reported as ND (0.57) ug/L and qualified UB due to equipment blank contamination. The result in the parent sample 17-ERK-MW-3 was ND.

8270D SIM: All associated PAH results were ND and not affected.

AK102: The DRO results in samples 17-ERK-MW-3 and 17-ERK-MWZ were reported as ND (0.11 and 0.10, respectively) mg/L and qualified UB due to equipment blank contamination.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

• Yes • No Comments:

Lab flags are defined in the laboratory report.

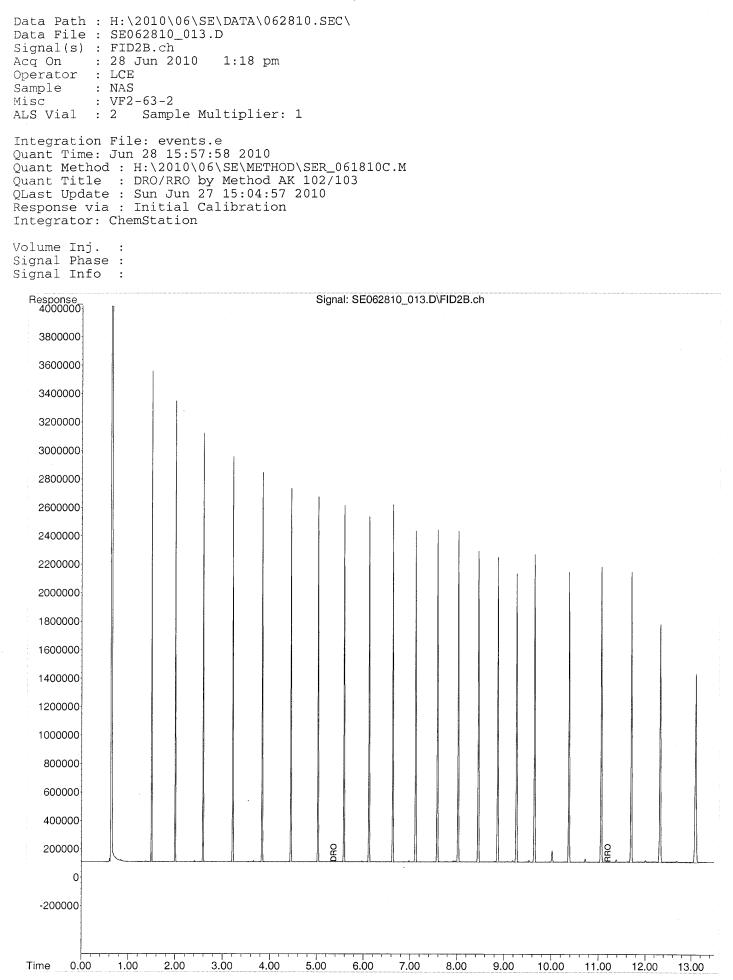
APPENDIX F

Estimation of Fuel Contamination Removed

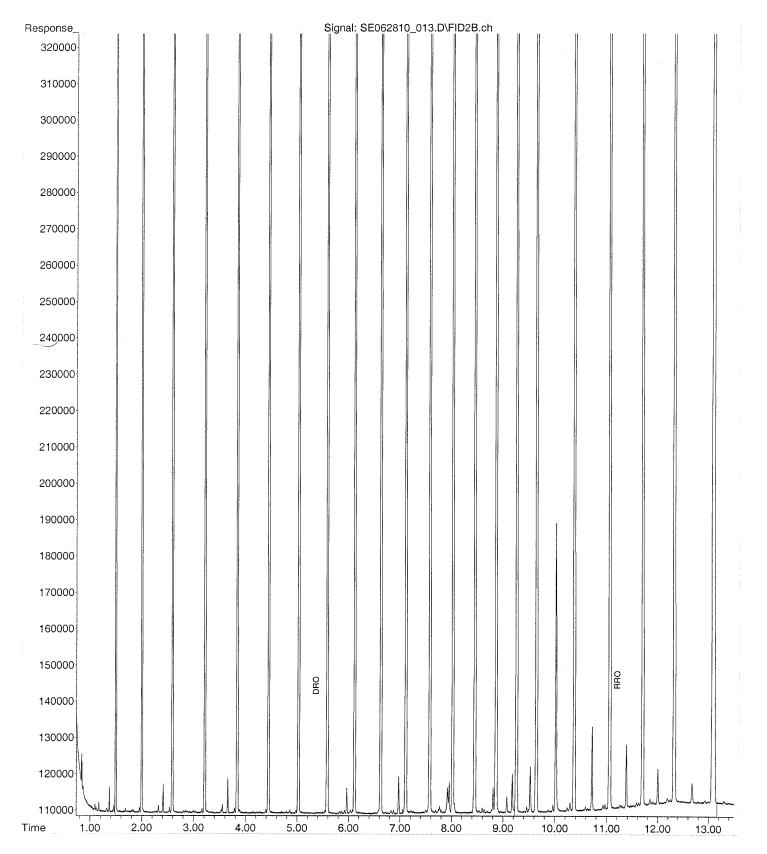
- Page Intentionally Left Blank

Appendix F Estimate of Volume Removed during 2010 Excavation

Item	Value	Units	Comment / Source
Volume of Supreme Unleaded			
Gasloine Released			
Volume released	10	gallons	Estimated by Crowley Petroleum Distribution, Inc. Page 1 of the 2010 <i>Spill</i> <i>Response Report</i>
Volume released	38	Liters	
Soil removed on 15 and 16 June 2010			
Amount of contamianted soil excavated	13	tons	Page 6 of the 2010 Spill Response Report
Amount of contamianted soil excavated	11,818	kg	
Fuel Concentrations			
Based on characterization Sample EL-5			
GRO	1,250	mg/kg	Table 2 of the 2010 Spill Response Report
DRO	7,670	mg/kg	Table 2 of the 2010 Spill Response Report
Fuel Removed			
GRO	15	kg	
DRO	91	kg	
Fuel Density			Published fuel density values have been used and represent the average of the lower and upper estimates
Gasoline	739	kg/m3	Exxon SDS, Gasoline, Unleaded Automotive
Diesel Fuel	805	kg/m3	Exxon SDS, No. 1 Diesel Fuel
Fuel Volume in Removed Soil			
Gasoline	20	Liters	
Diesel Fuel	113	Liters	
Soil removed on 28 and 29 September 2010			
Amount of contamianted soil excavated	86.23	tons	Page 4 of the 2010 Spill Response Remedial Action Report
Amount of contamianted soil excavated	78,391	kg	
Fuel Concentrations			
 Two concentrations were averaged to estimate this concentration: Concentration measured in Sample EL-5 Average concentrations from the excavation confirmation samples (Eureka-East, Eureka-South, Eureka-West, Eureka-North, Eureka-BTM-North, Eureka-BTM-South) 			

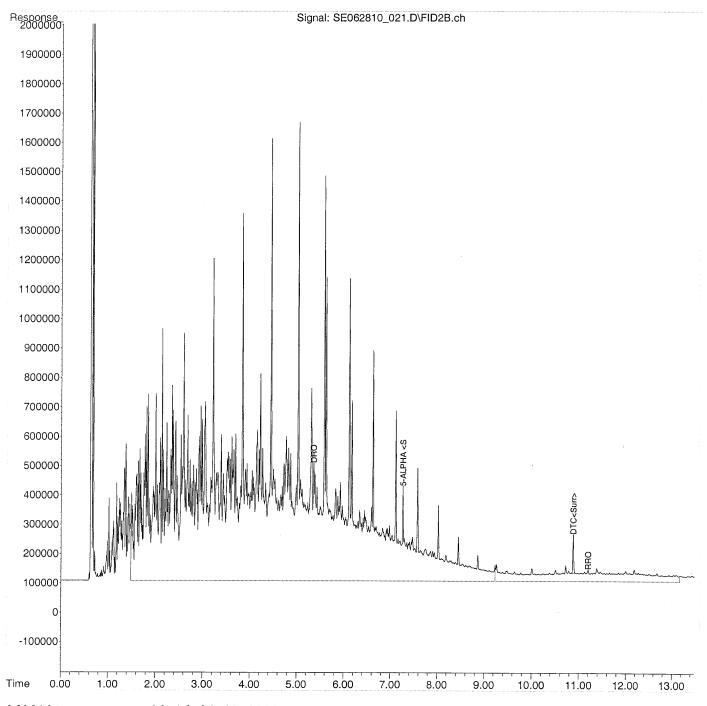

Appendix F Estimate of Volume Removed during 2010 Excavation

Item	Value	Units	Comment / Source
GRO	683	mg/kg	Table 2 of the 2010 Spill Response Report
DRO	4,814	mg/kg	Table 2 of the 2010 Spill Response Report
Fuel Removed GRO	E 4	1.0	
Diesel Fuel	54 377	kg kg	
Fuel Volume in Removed Soil	577	ĸg	
Gasoline	72	Liters	
Diesel Fuel	469	Liters	
Total Fuel Volume in Removed Soil			
Gasoline	92	Liters	
DRO	581	Liters	


APPENDIX G

Historical Chromatographs

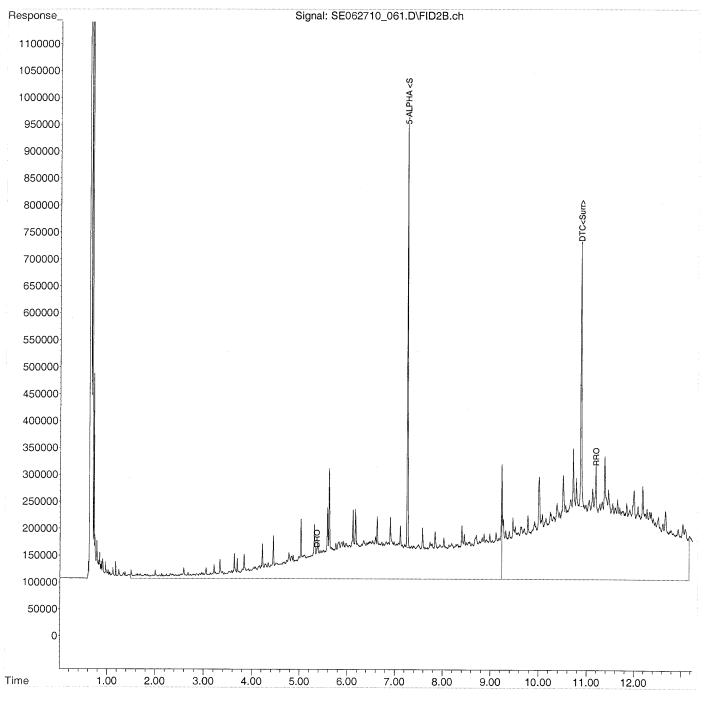
- Page Intentionally Left Blank -


File :H:\2010\06\SE\DATA\062810.SEC\SE062810_013.D
Operator : LCE
Acquired : 28 Jun 2010 1:18 pm using AcqMethod SE_ACQ_2009_DUAL.M
Instrument : SE
Sample Name: NAS
Misc Info : VF2-63-2
Vial Number: 2

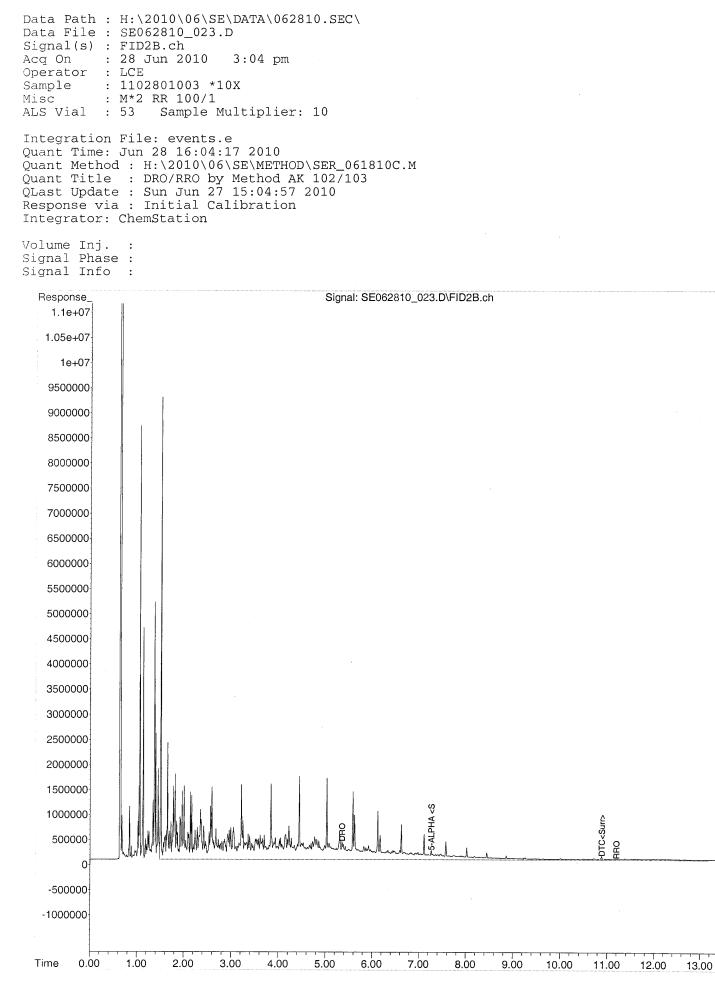
(QT Reviewed)

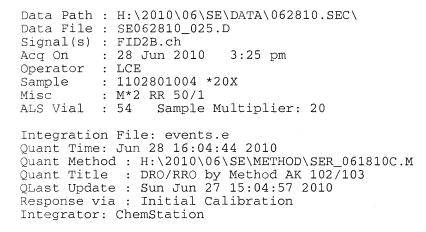
```
Data Path : H:\2010\06\SE\DATA\062810.SEC\
Data File : SE062810_021.D
Signal(s) : FID2B.ch
           : 28 Jun 2010
Acq On
                             2:43 pm
Operator
          : LCE
           : 1102801001 *4X
Sample
Misc
           : M*2 RR 250/1
ALS Vial
          : 52
                   Sample Multiplier: 4
Integration File: events.e
Quant Time: Jun 28 16:03:32 2010
\tilde{Q}uant Method : H:\2010\06\SE\METHOD\SER_061810C.M
Quant Title : DRO/RRO by Method AK 102/103
QLast Update : Sun Jun 27 15:04:57 2010
Response via : Initial Calibration
Integrator: ChemStation
```

Volume Inj. : Signal Phase : Signal Info :

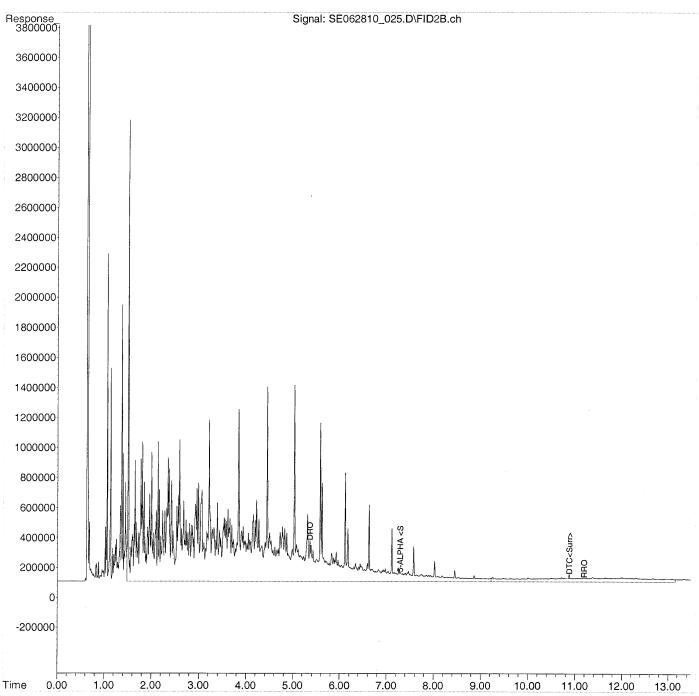


(VI IVENTEMORY)

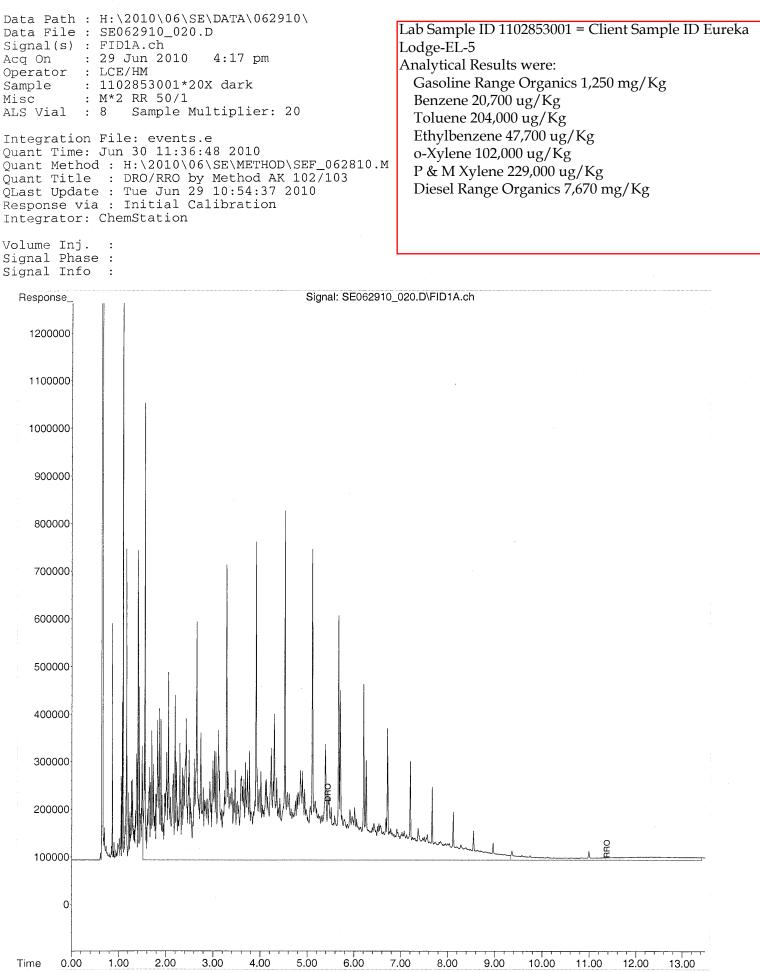

```
Data Path : H:\2010\06\SE\DATA\062710.SEC\
Data File : SE062710_061.D
Signal(s) : FID2B.ch
          : 28 Jun 2010
                          6:58 am
Acq On
Operator
         : LCE
Sample
          : 1102801002
Misc
          : M*2
          : 68
ALS Vial
                 Sample Multiplier: 1
Integration File: events.e
Quant Time: Jun 28 10:49:01 2010
Quant Method : H:\2010\06\SE\METHOD\SER_061810C.M
Quant Title : DRO/RRO by Method AK 102/103
QLast Update : Sun Jun 27 15:04:57 2010
Response via : Initial Calibration
```


Volume Inj. : Signal Phase : Signal Info :

Integrator: ChemStation



(QT Reviewed)



Volume Inj. : Signal Phase : Signal Info :

(QT Reviewed)

- Page Intentionally Left Blank -

APPENDIX H

Torkelson Forensic Soil Sample Results

- Page Intentionally Left Blank -

Torkelson Geochemistry, Inc.

2528 South Columbia Place, Tulsa, Oklahoma 74114-3233 Voice 918-749-8441, Fax 918-749-6005

October 25, 2017

Stephen Witzmann ERM 825 West 8th Ave. Anchorage, AK 99501

Subject: Hydrocarbon fingerprint analysis and evaluation of three soil samples from the Eureka Lodge, Eureka, Alaska.

Introduction

Three soil samples were submitted to Torkelson Geochemistry by ERM. for extraction, hydrocarbon fingerprint (capillary gas chromatography) analysis and interpretation of results, see chain of Custody, Figure 1.

The following are my interpretations/opinions of the data. Please keep in mind that these interpretations are made without any hands on knowledge of the site or other analyses done on the samples. In addition, the petroleum in the samples has probably been altered/weathered which can make an accurate interpretation of product type somewhat more difficult since some of the key features of the product have been altered or removed by the evaporation, water washing and perhaps bacterial processes.

Discussion of Gas Chromatography Results

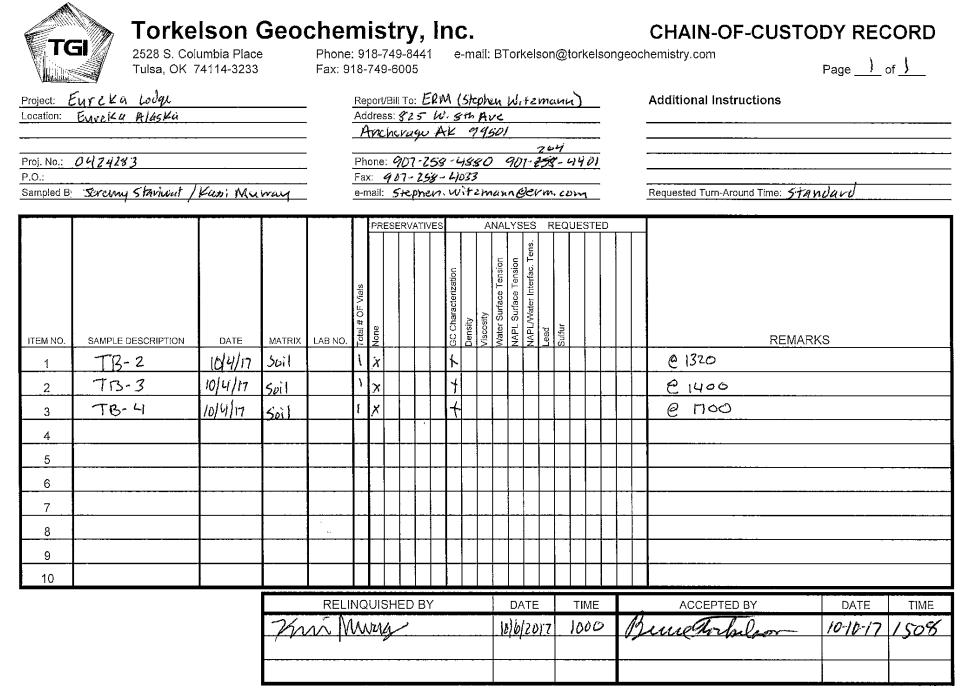
The material extracted from soil sample TB-2 appears to be a mixture of extremely weathered middle distillate, either diesel fuel or fuel oil, and a smaller amount of unidentifiable heavier material. The gas chromatogram of the TB-2 extract (Figures 2 and 7) shows a series of peaks that starts at about nC9 and continues to the end of the chromatogram and an unresolved hump that starts at about nC10, reaches a maximum at about nC14 or nC15 and continues to about nC24. The range, types of peaks, proportions of peaks and unresolved hump from nC9 to nC24 are typical of an extremely weathered middle distillate probably a diesel fuel or fuel oil. The most noticeable weathering of middle distillates is biodegradation which selectively reduces the size of the normal paraffin peaks (labeled nC8 to nC25) relative to other peaks such as the isoprenoid peaks (labeled IP13, IP14, IP15, IP16, IP18, Pristane and Phytane. Based on the degree of biodegradation and the technique first developed by Christensen and Larsen (1993) and later confirmed and expanded upon by Schmidt, Beckmann and Torkelson (1999) and Hurst and Schmidt (2005), sample TB-2 is estimated to have been released about 16 +/-2 years ago. The identity of the material from nC24 to the end of the chromatogram is not clear, one possibility is weathered lube oil.

The material extracted from the TB-3 soil sample appears to be a moderately weathered middle distillate, either diesel fuel or fuel oil. The gas chromatogram of the TB-3 extract (Figures 3 and 8) shows a series of peaks that starts at about ethylbenzene (EB) and continues to about nC26 and an unresolved hump that starts at about nC10, reaches a maximum at about nC14 or nC15 and continues to about nC26. The range, types of peaks, proportions of peaks and unresolved hump are typical of a moderately weathered middle distillate probably a diesel fuel or fuel oil. The most noticeable weathering of middle distillates is biodegradation which selectively reduces the size of the normal paraffin peaks (labeled nC8 to nC25) relative to other peaks such as the isoprenoid peaks (labeled IP13, IP14, IP15, IP16, IP18, Pristane and Phytane. Based on the degree of biodegradation and the technique first developed by Christensen and Larsen (1993) and later confirmed and expanded upon by Schmidt, Beckmann and Torkelson (1999) and Hurst and Schmidt (2005), the extract from soil sample TB-3 is estimated to have been released about 3 +/-2 years ago.

The material extracted from the TB-4 soil sample appears to be a mixture of severely weathered middle distillate, either diesel fuel or fuel oil and a much smaller amount of unidentifiable heavier material. The gas chromatogram of the TB-4 extract (Figures 4 and 9) shows a series of peaks that starts at about nC11 and continues to about

nC36 and an unresolved hump that starts at about nC11, reaches a maximum at about nC16 or nC17 and continues to about nC26. The range, types of peaks, proportions of peaks and unresolved hump from nC11 to nC26 are typical of an severely weathered middle distillate probably a diesel fuel or fuel oil. The most noticeable weathering of middle distillates is biodegradation which selectively reduces the size of the normal paraffin peaks (labeled nC8 to nC25) relative to other peaks such as the isoprenoid peaks (labeled IP13, IP14, IP15, IP16, IP18, Pristane and Phytane. Based on the degree of biodegradation and the technique first developed by Christensen and Larsen (1993) and later confirmed and expanded upon by Schmidt, Beckmann and Torkelson (1999) and Hurst and Schmidt (2005), sample TB-4 is estimated to have been released about 12 +/-2 years ago. The identity of the material from nC26 to the end of the chromatogram is not clear, one possibility is weathered lube oil.

Please let me know if you have any questions regarding this preliminary interpretation.


Bune tobulan

Bruce Torkelson

Christensen, L. B. and Larsen, T. H., "Method for Determining the Age of Diesel Oil Spills in the Soil, Ground Water Monitoring and Remediation," Vol.. 13, No. 4, pp. 1420-149 (1993).

Schmidt, G.W., Beckmann, D.D., and Torkelson, B.E., "Advances in Correlation and Age Dating of Petroleum Products Released to Soils and Groundwater", proceedings of the IPEC meeting, Houston, TX, November, 1999.

Hurst, R.W. and Schmidt, G.W., "Age significance of nC17/Pr ratios in forensic investigations of refined product and crude oil releases", Environmental Geosciences, Vol 12, No. 3, September 2005, pp. 177-192.

Torkelson Geochemistry, Inc. GC/FID

Eureka Lodge, Eureka, Alaska Sample ID : TB-2 Acquired : Oct 24, 2017 12:36:14

c:\ezchrom\chrom\17117\tb-2.sl -- Channel A

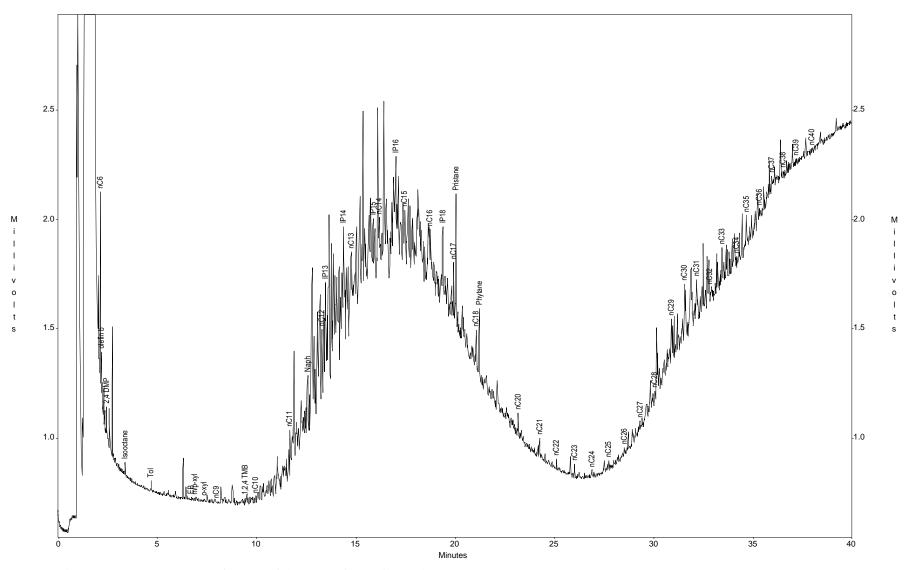


Figure 2, Gas chromatogram of extract of the extract from soil sample TB-2.

0

t

Torkelson Geochemistry, Inc. GC/FID

Eureka Lodge, Eureka, Alaska Sample ID : TB-3 Acquired : Oct 24, 2017 10:58:38

М

i Т Т

i v 0

Т t

s

c:\ezchrom\chrom\17117\tb-3.sl -- Channel A

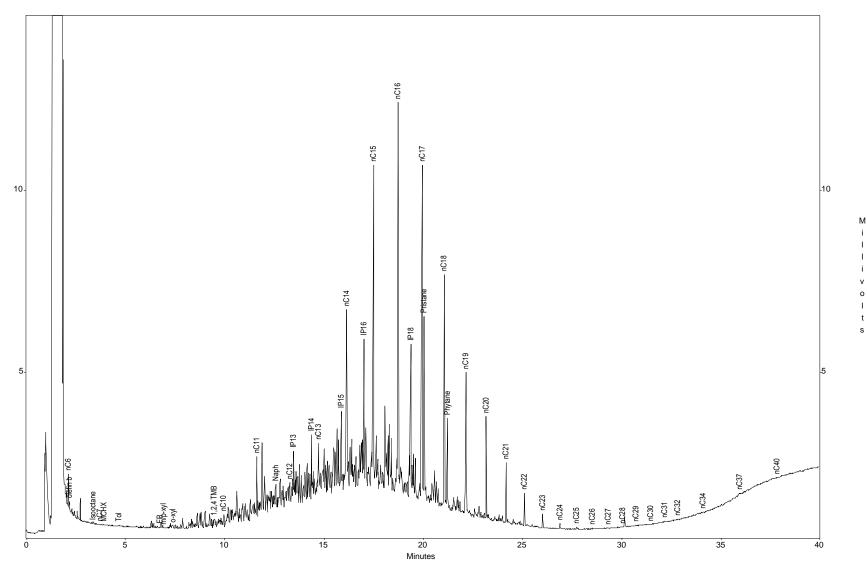


Figure 3, Gas chromatogram of extract of the extract from soil sample TB-3.

Torkelson Geochemistry, Inc. GC/FID

Eureka Lodge, Eureka, Alaska Sample ID : TB-4 Acquired : Oct 24, 2017 11:48:22

c:\ezchrom\chrom\17117\tb-4.sl -- Channel A

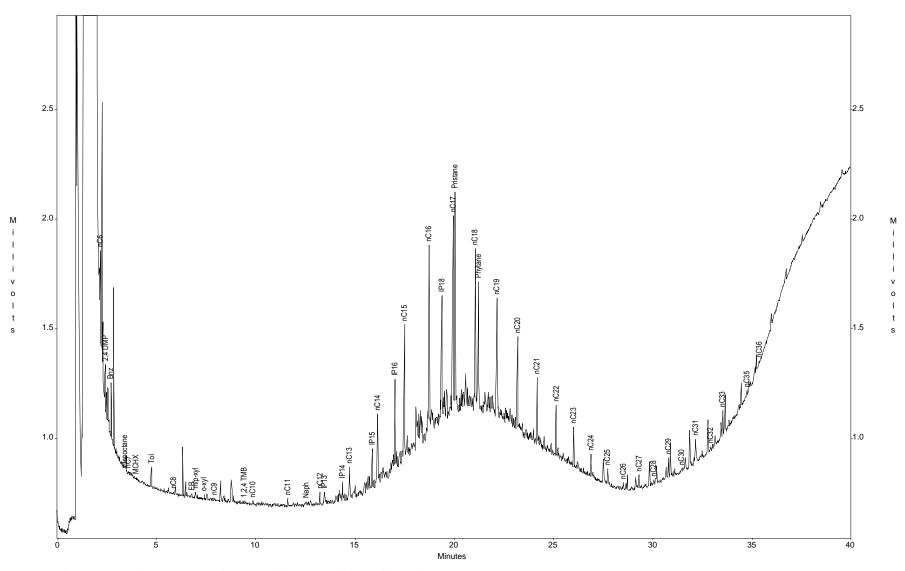


Figure 4, Gas chromatogram of extract of the extract from soil sample TB-4.

Torkelson Geochemistry, Inc. GC/FID

Eureka Lodge, Eureka, Alaska Sample ID : Gas/Dies/Wax std : Oct 24, 2017 08:36:16 Acquired

T

i

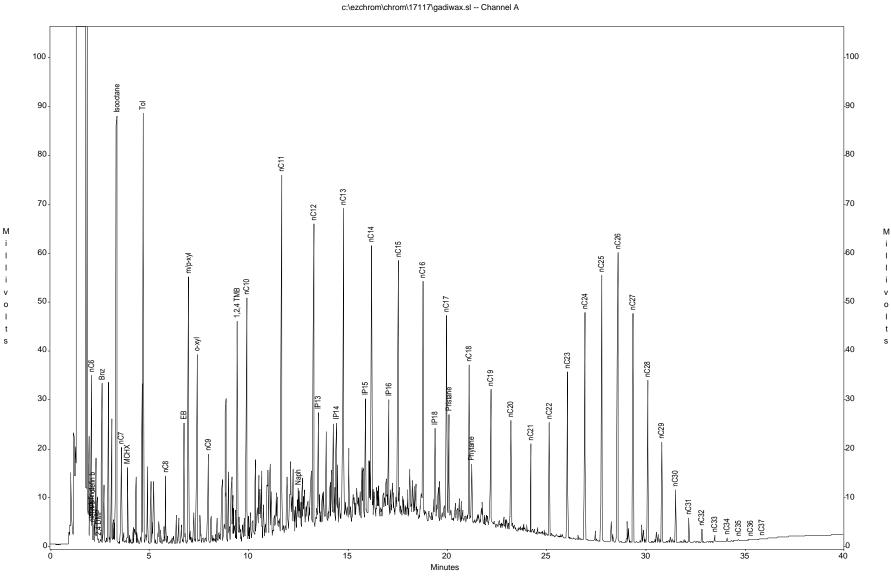


Figure 5, Gas chromatogram of laboratory standard (gasoline/diesel/wax mixture).

Μ

0

Т

t

s

40

Torkelson Geochemistry, Inc. GC/FID

Eureka Lodge, Eureka, Alaska Sample ID : Blank Acquired : Oct 24, 2017 09:23:39

М

i

v o

Т

t

s

ò

c:\ezchrom\chrom\17117\blank.sl -- Channel A 2.5 2.5 2.0 2.0-1.5-1.5 1.0-1.0 Tol EB mp-xyl nC14 nC16 IP18

Figure 6, Gas chromatogram of laboratory Blank.

5

10

15

20

Minutes

25

30

35

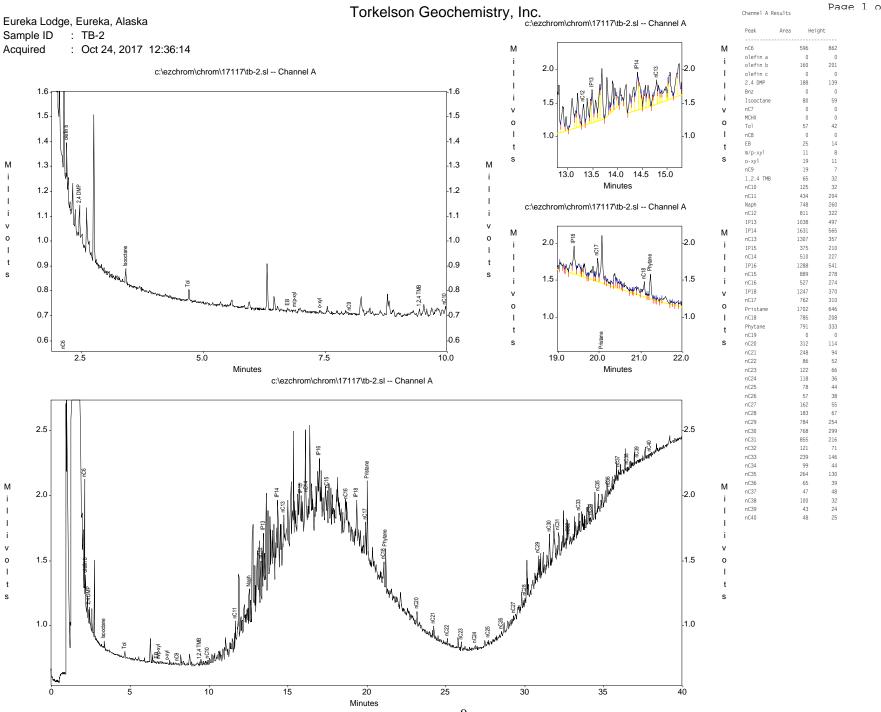


Figure 7, Multipanel display of gas chromatogram of the extract from soil sample TB-2.

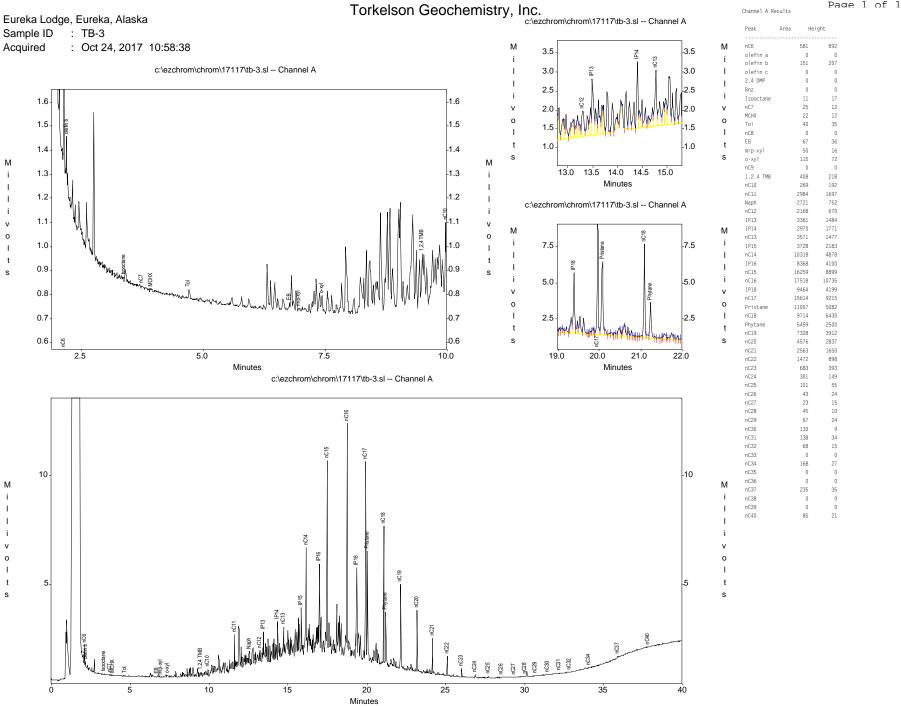


Figure 8, Multipanel display of gas chromatogram of the extract from soil sample TB-3.

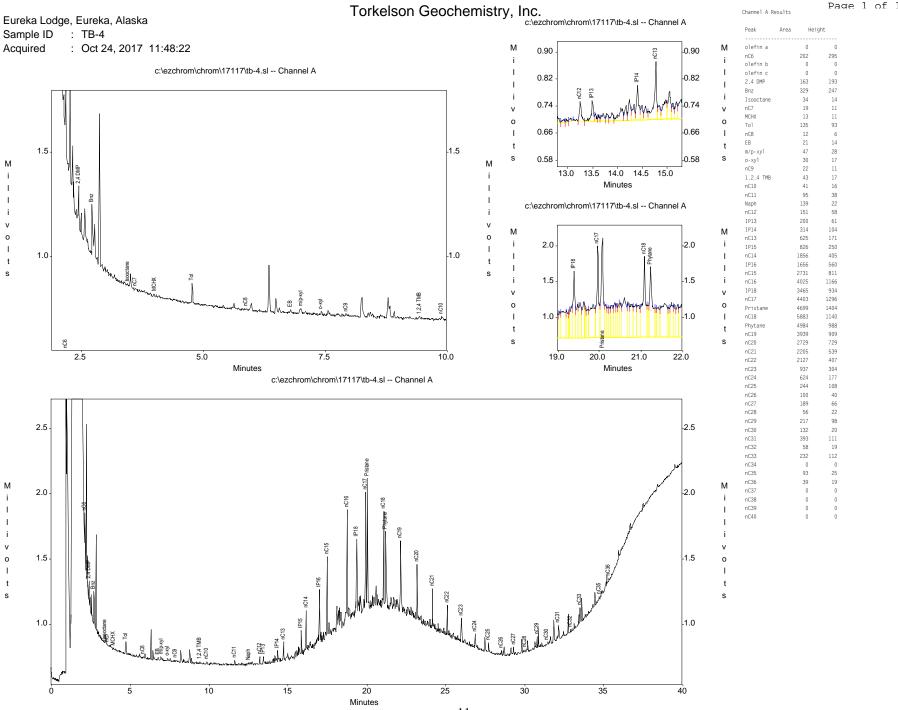


Figure 9, Multipanel display of gas chromatogram of the extract from soil sample TB-4.

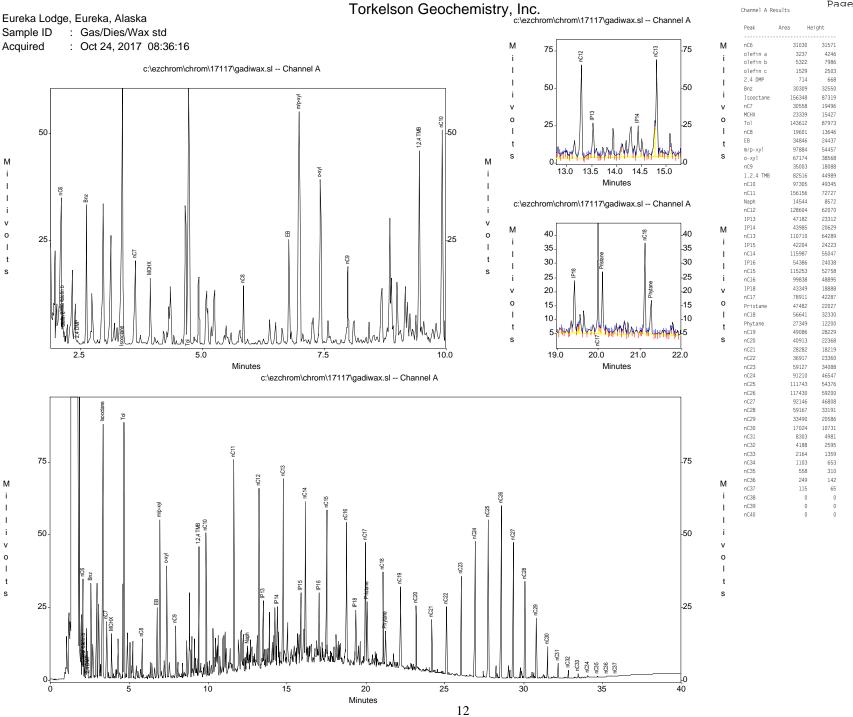


Figure 10, Multipanel display of gas chromatogram of laboratory standard (gasoline/diesel/wax mixture).

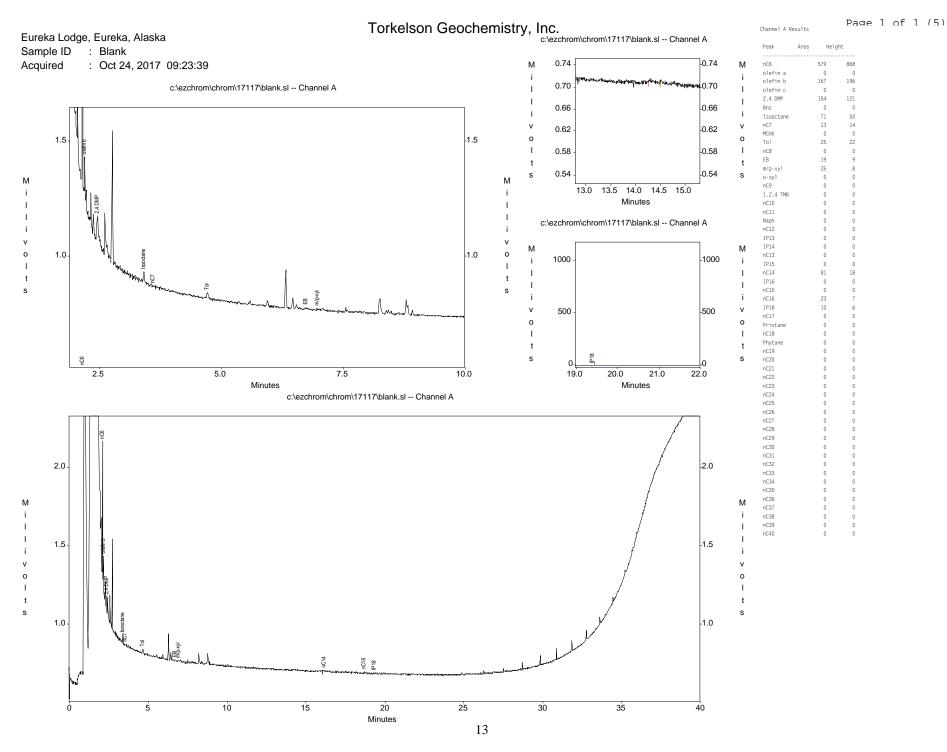


Figure 11, Multipanel display of gas chromatogram of laboratory Blank.

- Page Intentionally Left Blank -

APPENDIX I

Responses to ADEC Comments

- Page Intentionally Left Blank

Stephen Witzmann

From:	Lidren, Grant M (DEC) <grant.lidren@alaska.gov></grant.lidren@alaska.gov>
Sent:	Tuesday, May 22, 2018 11:20 AM
То:	Stephen Witzmann
Cc:	Prathap Kodial (prathap.kodial@crowley.com); Carrie Godden
	(carrie.godden@crowley.com); Jeff Leety
Subject:	RE: Eureka Lodge Report: Draft Responses to ADEC Comments

Stephen, I have no objections to ERM's response to DEC comments. Please finalize the document and submit an electronic copy.

Thanks, Grant

From: Stephen Witzmann [mailto:Stephen.Witzmann@erm.com]
Sent: Tuesday, May 22, 2018 11:15 AM
To: Lidren, Grant M (DEC) <grant.lidren@alaska.gov>
Cc: Prathap Kodial (prathap.kodial@crowley.com) <prathap.kodial@crowley.com>; Carrie Godden (carrie.godden@crowley.com) <carrie.godden@crowley.com>; Jeff Leety <Jeff.Leety@erm.com>
Subject: FW: Eureka Lodge Report: Draft Responses to ADEC Comments

Hi Grant,

Please find the modified response to comments form attached.

Please let me know if it is OK to finalize the document.

Thanks, Stephen

From: Lidren, Grant M (DEC) <grant.lidren@alaska.gov>
Sent: Friday, May 18, 2018 2:28 PM
To: Stephen Witzmann <<u>Stephen.Witzmann@erm.com</u>>
Cc: Prathap Kodial (prathap.kodial@crowley.com) prathap.kodial@crowley.com; Carrie Godden
(carrie.godden@crowley.com) <carrie.godden@crowley.com</pre>; Jeff Leety <<u>Jeff.Leety@erm.com</u>>
Subject: RE: Eureka Lodge Report: Draft Responses to ADEC Comments

Stephen, see my response to ERM comments and one additional DEC comment.

Thanks, Grant

From: Lidren, Grant M (DEC)
Sent: Friday, May 18, 2018 11:12 AM
To: 'Stephen Witzmann' <<u>Stephen.Witzmann@erm.com</u>>
Cc: Prathap Kodial (prathap.kodial@crowley.com) <prathap.kodial@crowley.com
; Carrie Godden
(carrie.godden@crowley.com) <carrie.godden@crowley.com
; Jeff Leety <<u>Jeff.Leety@erm.com</u>>
Subject: RE: Eureka Lodge Report: Draft Responses to ADEC Comments

Received, thanks. I'm just starting to review, but I went ahead and updated the problem comment on the public CS database. Note: Crowley was RP for 2008 release:

...In 2002, 450 gallons of heating oil spilled "several hundred feet east of the gasoline and diesel storage tanks" and the lake (closed spill No. 02239912002). In 2008, three gallons of diesel were released(closed spill No 08239905002). The Eureka Lodge has been selling fuel since at least 1948 (Anchorage Museum of History & Art. Library & Archives).

From: Stephen Witzmann [mailto:Stephen.Witzmann@erm.com]
Sent: Friday, May 18, 2018 8:45 AM
To: Lidren, Grant M (DEC) <grant.lidren@alaska.gov>
Cc: Prathap Kodial (prathap.kodial@crowley.com) <prathap.kodial@crowley.com>; Carrie Godden
(carrie.godden@crowley.com) <carrie.godden@crowley.com>; Jeff Leety <Jeff.Leety@erm.com>
Subject: Eureka Lodge Report: Draft Responses to ADEC Comments

Good morning Grant,

Attached please find the following documents relating to the Eureka Lodge Report:

- Draft responses to ADEC comments
- An updated version of Figure 3
- 2002 Spill Report (details are in SearchedSpills.xlsx)

You had provided the 2010 Spill Summary Report with your comments. It provides additional information on the 2002 spill. Based on that information we located the 2002 spill report on the ADEC website.

The available data indicates that a large (at least 450 gallon) spill occurred in 2002 due to corrosion of structural/mechanical components. No responsible party was identified, no cleanup was done, and the case was closed with no further action.

Two removal actions were conducted to address the 2010 spill, which appears to have been much smaller. That work was followed up with site characterization and monitoring in 2012, 2013, and 2017. As stated in the draft report, based on the estimated volume of fuel removed in soil excavated after the 2010 spill (MLFA 2010a, 2010b), the results of forensic analysis, and review of a chromatograph from the soil removed in 2010, residual fuel contamination appears to be from an older middle range distillate fuel spill at the site. The new information provides further support for that conclusion.

Once you have had a chance to review this material, please let us know if you would like to discuss it, or whether the responses to ADEC's comments are acceptable.

Thanks, Stephen

Stephen Witzmann, PE Board Certified Environmental Engineer

ERM Alaska, Inc. 825 W. 8th Avenue | Anchorage, AK, 99501 T 907 264 4401 | M 907 444 4391 (cell) Main 907 258 4800

stephen.witzmann@erm.com www.erm.com

This message contains information which may be confidential, proprietary, privileged, or otherwise protected by law from disclosure or use by a third party. If you have received this message in error, please contact us immediately at (303) 741-5050 and take the steps necessary to delete the message completely from your computer system. Thank you.

Please visit ERM's web site: http://www.erm.com

This message contains information which may be confidential, proprietary, privileged, or otherwise protected by law from disclosure or use by a third party. If you have received this message in error, please contact us immediately at (303) 741-5050 and take the steps necessary to delete the message completely from your computer system. Thank you.

Please visit ERM's web site: <u>http://www.erm.com</u>

This message contains information which may be confidential, proprietary, privileged, or otherwise protected by law from disclosure or use by a third party. If you have received this message in error, please contact us immediately at (303) 741-5050 and take the steps necessary to delete the message completely from your computer system. Thank you.

Please visit ERM's web site: http://www.erm.com

- Page Intentionally Left Blank

Responses to ADEC Comments on the 2017 Monitoring Report Eureka Lodge Comments provided by Grant Lidren

Comment #	Section	Page	ADEC Comment	Response	
				The 2010 second sentence of Section 2.1 will be replaced with the following text, "Based on the Spill Summary Report (Spill Number 10239916202), Crowley personnel initially estimated that 20 gallons of supreme unleaded gasoline were released to the soil beneath the tank. This estimate was based on the flow rate of the pump and estimated reaction time for the truck driver. The 2010 <i>Spill Response Report</i> estimated the release volume as ten gallons. The exact amount of fuel released is unknown."	OK. This ad the report:
premium gasoline gallons, but the e The tank was not of the AST. Addit before any soil w	Crowley initially estimated amount of premium gasoline spilled was up to 20 gallons, but the exact amount is unknown. The tank was not gauged prior to the filling of the AST. Additionally, it took five days before any soil was excavated(see attached PERP spill report).	The Spill Summary Report (PERP spill report) will be included in Appendix I of the report: Respons to ADEC Comments. The 2010 Spill Summary Report references the 2002 spill case file, which also contains pertinent information. The following information concerning the 2002 spill will be added to the text: "The release occurred on approximately April 29th, 2002, included 450 gallons of home heating oil (or diesel fuel), and was recorded as case file 02239912002. The location of the 2002 spill is unknow and variously reported as "some distance east of gasoline tank" and "several hundred feet east." The following data is listed in the ADEC Spill Prevention and Response Spill Database: a. Responsible party for the 2002 spill: unknown b. Response: "Field Visit/s" c. Cause: Corrosion (Mechanical/Structural) d. Status: Case Closed, No Further Action on September 5th, 2002.			
2	General	General	Note: ADEC did not review or approve the soil sampling documented in the report.	Comment noted.	ОК
3	3.5	14	Where were the forensic soil samples collected and by what means (note: the report states the locations are displayed on figure 3, but I am unable to locate)? Note, the final excavation depths, completed in September 2010, were 3 ft bgs on north end and max depth of excavation was 6-7 ft bgs on other boundaries. The 2017 forensic samples were collected 1.5, 2.15 and 3.7 ft. bgs.	The sample locations were added to Figure 3 (attached). The following text will be added to document where and how the samples were collected. "To assess impacted soil, sample locations and depths were determined based on two factors. First, the extent and distribution of residual contamination as documented in the 2010 <i>Spill Response Remedial Action Report</i> and the 2011 <i>Site Characterization Report</i> was considered. Second, because the September 2010 removal action excavation was lined with polyethylene sheeting prior to backfill, the sheeting was used to distinguish impacted soil from backfill. Samples TB-2 and TB-3 were collected outside of the footprint of the September 2010 excavation; sample TB-4 was collected beneath the backfill from the 2010 excavation. Samples were collected using a soil auger and clean sample spoon. Unpreserved 4 ounce jars were filled with soil and submitted to Torkelson Geochemistry, Inc., a firm that specializes in forensic evaluation. "	ОК

ADEC Comment and Final Resolution

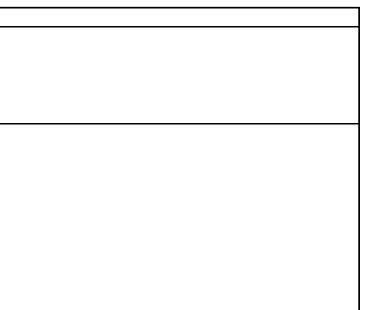
additional background information should be added to ort: In 2008, three gallons of diesel were released(closed 08239905002). The Eureka Lodge has been selling fuel least 1948 (Anchorage Museum of History & Art. Library & .).

recommended changes will be made.

Summary Report provided by ADEC will be included in an x to the report.

4	3.1.1	11	Groundwater sample collection: ADEC regulates the groundwater pathway unless we are in the arctic zone, in an area of continuous permafrost, or a 350 determination has been made. Since these situations do not apply to this site, ADEC will regulate the groundwater in the monitoring wells as a potential drinking water source, which appear hydraulically connected to surface water.	Groundwater at the site is used for a drinking water system. Thus, groundwater at the site is considered to be a drinking water source, and the provisions of 18 AAC 75.350 are not applicable to the site. ERM concurs that there is a hydrologic connection present at the site. This connection is very limited and appears to run from the nearby lake, downgradient to the drinking water well. This connection is limited to a gravel lens from 20 feet bgs to 22 feet bgs that intercepts the drinking water well. The hydrologic connection does not extend to the monitoring wells. These wells do not intercept any geological stratum that would be recognized as productive aquifer material. Instead, water accumulating in the monitoring wells appears to be stagnant water accumulating slowly over time from precipitation and snow melt. This water is not associated with an aquifer, and continued monitoring of these wells is providing no useful data. According to ADEC Monitoring Well Guidance, "The goal is to obtain reliable and representative information regarding aquifer characteristics, groundwater flow directions, groundwater chemical and physical characteristics, and groundwater samples." The soils in the area of the monitoring wells have essentially no transmissivity or storativity (per the definitions in 18 AAC 75.990). No aquifer is present. Data from the monitoring wells cannot contribute to the goal.	"drinkin changed t pathway.' groundwa Current an suspected could trar bgs Eurek feet away evaluation borings/M
5	3.2	12	Surface Water Sample Collection: section states samples were collected as shown on figure 3. Explain where/how the samples were collected(i.e. reference photo 12). Are there other people using the surface water at this area? It is my understanding this is a community drinking water source.	Please refer to the updated version of Figure 3 for sample collection locations. Section 3.2 will be revised to add reference to photograph 12 and explain how samples were collected: "Surface water samples 17-ERK-SW-01 and 17-ERK-SW-02 (and duplicate sample 17-ERK- SWZ) were collected at the locations shown on Figure 3 and Photograph 12. These samples were collected using an extended pole with a beaker on the end. The beaker was dipped into the surface water to about 0.5 inches deep. The sample containers were filled up one by one starting with the volatile samples: GRO and BTEX." The following text will also be added to this section, "This surface water body is no longer used as a drinking water source. The Eureka Lodge now uses their drinking water well described in Section 3.3 and shown in Photographs 10 and 11. Based on input from the owners of the lodge, no other community members drink from the surface water body." Under 18 AAC 70.020, the State of Alaska protects surface waters for a variety of designated uses, including use of fresh water as a potential drinking water supply.	ок

ent noted. The sentence at the end of 3.1.1.1. states sing water is not a valid exposure pathway." this should be d to "drinking water does not appear to be a valid exposure y." As stated in the previous comment, DEC regulates water at this site as a potential drinking water source. and additional data could lead to a decision that this ed melt water lense is not a transport mechanism that ransport contaminants to surface water and/or the 20 foot eka lodge drinking water well located approximately 200 ay. This than leads to the potential need for further ion including the advancement of additionally /MWs to determine the extent of soil contamination to the nd west and extent of potential groundwater ination and flow direction.


e recommended rewording to the sentence at the end of 3.1.1.1 will be made.

Responses to ADEC Comments on the 2017 Monitoring Report Eureka Lodge Comments provided by Grant Lidren

		1			1
6	3.3	12	Drinking Water Sample Collection: explain how/where the drinking water sample was collected(i.e. reference photo 11).	The following text will be added to Section 3.3: "Photograph 11 of Appendix C, was taken inside of the drinking water well house. The picture shows the top of the drinking water well with a PVC pipe connecting into the drinking water well filtration system. Located on the PVC pipe before the filtration system is a red valve with a hose connection. The hose connection leads outside of the well house. In order to bypass the filtration system and the collection storage tanks, once the system was fully purged, the drinking water sample was collected directly from the hose connection on the outside of the well house. Volatile samples were collected first, followed by nonvolatile samples. " Photograph 11 description was also updated to provide more detail: "Photograph 11: Inside of well house, PVC pipe leads from drinking water well to filtration system and the drinking water storage tanks. Once the system was purged, the sample was collected prior to the filters."	ОК
7	7	22	Forensic Sample Analysis and Interpretation states "Three subsurface soil samples were collected at the site for forensic analysis." However, only two soil samples were collected from subsurface, one soil sample was collected from the surface.	Sentence was updated to, "Three soil samples were collected at the site for forensic analysis."	ОК
8	8.3		Drinking Water states "Analytical results from the Eureka Lodge drinking water well indicated no impact from petroleum contamination. Toluene was the only constituent detected and it was three orders of magnitude lower than the drinking water maximum contaminant level." However, since toluene was detected, this pathway is considered complete for petroleum constituents. Additionally, where is that toluene result coming from? Contaminated groundwater could be impacting the drinking water well. Revise	Section 8.3 will be rewritten: "Analytical results from the Eureka Lodge drinking water well indicated no significant impact from petroleum contamination. Possible sources of the contamination may include the 2010 spill, other spills known to have occurred at the site, other unidentified releases, or components of the drinking water system. Given the extremely low concentration of toluene detected (0.17J µg/L) relative to the drinking water maximum contaminant level (1,000 µg/L), the proposal for periodic monitoring appears to be more than adequate. " The Human Health Conceptual Site Model included in the 2011 Site Characterization Report shows ingestion of groundwater and dermal absorption of contaminants in groundwater as potentially complete. Previous reports were reviewed for information on toluene. Toluene appears to have been a compound released in the 2010 spill (2010 <i>Spill Response Report</i>). However, it appears to have been removed to concentrations below the cleanup level (2010 <i>Spill Response Remedial</i> <i>Action Report</i>). The 2011 Site Characterization Report found toluene present in soils, but at concentrations below the cleanup level. Photograph 11 of the <i>2017 Monitoring Report</i> , shows that the drinking water system appears to be built with PVC piping. PVC pipe joint compounds generally contain petroleum distillates. As mentioned in response to comment 6, the description for Photograph 11 was updated with more detail.	OK

Responses to ADEC Comments on the 2017 Monitoring Report Eureka Lodge Comments provided by Grant Lidren

9	Figure 3	The units should be ug/L not mg/L.	Figure 3 Updated	ОК
10	Figure 3	The drinking water well sample and duplicate contained toluene at 0.16J ug/L and 0.17J ug/L. DEC regulates off the higher of the two. Please update the figure to the higher toluene result of 0.17J	Figure 3 Updated	ок
11	Figure 3 and section 3.4	only two MWs surveyed, it is hard to discern true groundwater flow. Additionally, if this is just a localized melt lense as discussed in the report, there is minimal, if any, association with the surface water. This section needs to be updated. any references to groundwater	The following text will be added to Section 3.4: "The geological stratum below the site (primarily silt that is likely frozen most of the year) is generally not recognized as productive aquifer material.	ОК

Alaska Department of Environmental Conservation SPILL PREVENTION AND RESPONSE

CONTAMINATED SITES PREVENTION PREPAREDNESS & RESPONSE RESPONSE FUND ADMIN REPORT A SPILL You are here: DEC / SPAR / PPR / SPAR Online Services / Spill Search /Spill Details

Spill Name:	Eureka Lodge			Facility Nan	ne:	EUREKA LODGE
Spill Date:	4/30/2002 12:00:	00 AM		Facility Addre	ss:	MP 128 Glenn Hwy Glennallen, 99588
Spill Number:	02239912002					
Area:	Central Alaska					More Information on Facility
Subarea:	Cook Inlet					
Region:	Mat-Su Valley			Responsible Party:		Unknown
Location:	EUREKA ROADHO	DUSE				
Media Impacted:	_			Facility Ty	oe:	Other
						More Information on Responsible Party
SUBSTANCE	RELEASED	CONTAINED	RECO	OVERED	UNI	T DISPOSAL METHOD
Diesel	450.000	_	_		Gal	llons —
ACTION						ACTION DATE
Case Closed, No Fur	ther Action					9/5/2002

Public Notices • Regulations • Statutes Press Releases • Contact • Sitemap

State of Alaska Department of Environmental Conservation

410 Willoughby Suite 303 P.O. Box 1111800 Juneau, AK 99811 Phone: 907-465-5066

Division of Spill Prevention and Response

Fax: 907-465-5070 TDD: 800-770-8973

Spill Summary Report 08239905002 08239905002 Spill Number: Spill Name: Eureka Lodge Overfill Crowley Spill Date/Time: 02/19/2008 12:00 Primary Responsible Party: Crowley Petroleum Distribution, Inc. Case Closed Date: 10/14/2008 Bob Cox Reporter: File Number: **Response Type:** Phone Follow-up Ledger Code: Staff Name: Brown, John **IRIS Location: IRIS Sublocation:** Comment: **Facility/Site Location** Facility/Site Name: Eureka Lodge Area: Central Alaska Address Line #1: MP 128 Sub-Area: Cook Inlet Address Line #2: Region: Glenn Highway North City/State/ZIP Code: None Specified, AK Location: GLENN HWY N. UNKNOWN FacilityType: Other Facility Subtype: Facility Note: Resturant Product Released Substance **Qty Unit** Subtype Name Qty **Disposal Description Disposal Note** Released 3.000 Gallons INCINERATED Trasported to ASR Diesel

Substance Note:

Cause/Source

Contibuting Cause

Overfill, Human Factors (Primary)

Cause Note: Accidental Overfill of above ground heating oil tank

Source Note:

Spill Cleanup Actions

Action Description	Staff Name	Action Date	Action Due Date	Completed	Action Note
Complaint/Report Received	Brown, John	09/18/2008		Yes	
Communication, Other	Brown, John	09/30/2008		Yes	Crowley advises that additiona historcal contamination has been verified.
Case Closed, No Further Action	Brown, John	10/14/2008		Yes	

- Page Intentionally Left Blank

Spill Summary Report

10239916202 Spill Number: Spill Name: Crowley Eureka Lodge gasoline overfill Spill Date/Time: 06/11/2010 17:45 Primary Responsible Party: Crowley Petroleum Distribution, Inc. Case Closed Date: 12/08/2010 Virgin, Beth (Crowley) Reporter: File Number: **Response Type:** Field Visit/s Ledger Code: Staff Name: Huddleston, Neil **IRIS Location: IRIS Sublocation:** Comment: **Facility/Site Location** Facility/Site Name: EUREKA LODGE Area: Central Alaska Address Line #1: MP 128 Glenn Hwy Sub-Area: Cook Inlet Address Line #2: HC01 Box 2240 Region: Mat-Su Valley Location: EUREKA ROADHOUSE

Facility Subtype:

City/State/ZIP Code: Glennallen, AK 99588 FacilityType: Gas Station Facility Note:

Product Released

Substance Subtype Name	Qty Released	Qty Unit	Disposal Desc	iption Disposal Note
Gasoline	20.000	Gallons	MULTIPLE	Crowley qty estimate based on pump rate, driver reaction time (rough). Pooled liquid recovered with absorbents, burned at Crowley Glenallen shop; soil to ASR.

Substance Note:

Cause/Source

Contibuting Cause

Overfill, Human Factors (Primary)

Cause Note: Tank was not gauged prior to fill. Fuel escaped from vent as tank was being filled from header.

Source Note: 2000 gal premium gasoline compartment of 6000 gal storage tank.

Spill Cleanup Actions

Action Description	Staff Name	Action Date	Action Due Date	Completed	Action Note
Complaint/Report Received	Huddleston, Neil	06/14/2010		Yes	Recd by phone.
Communication, Other	Huddleston, Neil	06/14/2010		Yes	Call to Darla Fimpel, lodge owner. Recd permission for site visit 6/15. Ms Fimpel said she had not been aware of the spill before I called.
Communication, Other	Huddleston, Neil	06/14/2010		Yes	Follow-up phone call to Beth Virgin. Est. tank ~100 ft from lake; stain ~4 x 5 ft; premium tank compartment = 2k gal. Recd 6/11 photos from Virgin by email. *Arranged to meet Crowley rep on-site 6/15.

10239916202

Action Description	Staff Name	Action Date	Action Due Date	Completed	Action Note
Field Visit	Huddleston, Neil	06/15/2010		Yes	[1 of 2] Arrived 1145, intro to Darla in lodge, met Crowley and Michael Foster & Assoc. reps at spill site. 1 Crowley employee excavating stained soil from under tank by shovel to supersack on flatbed truck. Stained area larger than reported, primarily under N 1/2 of tank, extends ~1-2 ft beyond skids either side. Soil wet with fuel to 10 in depth, odor to ~18 in at silt layer (historical spills?). Crowley truck on site 1430 to remove fuel from tank to aid excavation.
Field Visit	Huddleston, Neil	06/15/2010		Yes	[2 of 2] *Recommended bringing in addl crew to remove contam ASAP given unknown spill qty, sand/gravel soil and proximity to lodge water source (in lake ~40 ft from N edge of tank); OKd removing soil only above less permeable silt layer. Foster & Assoc will provide cleanup plan. 2 supersacks of soil to Crowley Palmer for temp storage.
Cleanup Plan Received	Huddleston, Neil	06/16/2010		Yes	By email from Greg Cvitash, Foster & Assoc. (6/15 on-site rep). Addl personnel to do hand excavation today; will request soil transport auth once volume determined.
Communication, Other	Huddleston, Neil	06/17/2010		Yes	Call from Cvitash asking about info for soil transport form. I requested he obtain a soil sample known to contain fuel from 6/11 spill from sacked soil for comparison to pit- bottom samples he thinks may have contam from previous event. Will need good evidence of historical contam if responsibility for addl cleanup to move from Crowley.
Soil Transport Letter	Huddleston, Neil	06/21/2010		Yes	8.5 yds to ASR.
Other	Huddleston, Neil	06/21/2010		Yes	Reviewed case file 02239912101, 450 gal HHO release at Eureka Lodge bunkhouse April 29, 2002. Site appears to have been some distance east of gasoline tank. Confirmed 6/22 by Cvitash: MLFA was contractor on 02 spill; staff report it was several hundred feet east.
Communication, Other	Huddleston, Neil	06/25/2010		Yes	Signed, returned ASR closure request for 13.05 tons of soil.
Communication, Other	Huddleston, Neil	07/06/2010		Yes	Call to Virgin for status update. Cvitash reported 7/1 that lab results were in, should have report prepared week of 7/5.
Communication, Other	Huddleston, Neil	07/09/2010		Yes	Cvitash response to 7/1 email req status update. Lab results in, report expected early next week. Site checked by Crowley multi times weekly; cover intact, will check under next week.
Communication, Other	Huddleston, Neil	07/15/2010		Yes	Email exch w/ Cvitash: Crowley looked at site 7/13, found excavation dry, cover intact. Report finalized, to be delivered ASAP.

Action Description	Staff Name	Action Date	Action Due Date	Completed	Action Note
Interim Report	Huddleston, Neil	07/30/2010		Yes	MLFA report received. GRO and/or BTEX components above migration to g/w levels in 3 of 4 samples. High DRO also present in same samples. Sample closest to lake ND for all.
Cleanup Plan Requested	Huddleston, Neil	08/02/2010		Yes	Call to Virgin to request additional cleanup based on GRO/BTEX sampling results.
Meeting	Huddleston, Neil	08/02/2010		Yes	Met w/ Linda Neuchterlein, CS. May have interest in historical DRO once gasoline is cleaned up. Keather McLoone will consult on continuing cleanup.
Communication, Other	Huddleston, Neil	08/04/2010		Yes	Call from Cvitash (w/ McLoone, CS). Need additional gasoline cleanup - explore moving tank(s), in-place treatment, proximal excavation to determine spread.
Communication, Other	Huddleston, Neil	08/11/2010		Yes	Email exch w/ Cvitash: workplan with Crowley for review.
Communication, Other	Huddleston, Neil	08/13/2010		Yes	Call to Jim Fimpel, lodge owner. Has had no contact from Crowley or MLFA. He has been at lodge for 17 years, in area for 40. USTs at site in 70s, other tanks there in the 60s - probably decades worth of spills there. *I told him after gasoline is cleaned up, his involvement in further cleanup will likely be sought. I recommended he add addl containment to prevent spill to lake, though we dont regulate his tanks; he said he had considered it.
Communication, Other	Huddleston, Neil	08/13/2010		Yes	Call from Cvitash asking if DRO sampling required. *Sampling guidelines dont require for gasoline, but would prefer it to reduce uncertainties in results and to note level of historical DRO contam.
Cleanup Plan Approved	Huddleston, Neil	08/23/2010		Yes	
Cleanup Plan Received	Huddleston, Neil	08/23/2010		Yes	Recd by email from Cvitash. Plan to move tank to continue excavation.
Communication, Other	Huddleston, Neil	08/31/2010		Yes	Email from Cvitash saying work tentatively sched for 9/22.
Communication, Other	Huddleston, Neil	09/21/2010		Yes	Call from Cvitash. When equipment arrived on site 9/20 to move tank, owner said he wants 5 more days of fuel sales to finish busy season. Cleanup delayed 1 week - tank to move 9/27, excavation 9/28.
Field Visit	Huddleston, Neil	09/28/2010		Yes	Arrived 12:15. Cvitash and 3 Crowley employees at site with excavator. Excavation ~10x12x4 ft deep; 1 side- dump semi-trailer (~17 cy) filled and sent to Wasilla 11:50; waiting on empty truck. N sidewall PID 150, E 100, S 3,000 (! beyond original surface stain), W dark w/ odor (PID missing). Trucks wont arrive til 17:00; departed 15:00. Backfill gravel coming in on trucks from Wasilla.
Communication, Other	Huddleston, Neil	09/28/2010		Yes	Late voice msg from Cvitash. 3 trucks filled 9/28, another on-site 9/29 for addl excavation. 5 cy stockpiled on liner. Expect total 68 cy. Tracy Bradford will be on-site 9/29 for MLFA.

Action Description	Staff Name	Action Date	Action Due Date	Completed	Action Note
Communication, Other	Huddleston, Neil	09/29/2010		Yes	Call from Bradford w/ final soil vol. Will collect confirmation samples and backfill. W excav sidewall (by 2nd storage tank) still looks contaminated; asserts it must be historical.
Soil Transport Letter	Huddleston, Neil	09/29/2010		Yes	Recd form from Cvitash 9/24. Soil volume of 100 tons called in from excavation 9/29 by Bradford. *Emailed to Bradford, Cvitash, cc: ASR.
Final Report	Huddleston, Neil	11/08/2010		Yes	From Cvitash. 6 of 6 samples above mig-to-gw for benzene (range .04 - 21.2 mg/kg); 1 also high for DRO (558); 1 also high for ethylben., xyl., GRO (604) and DRO (10,900). Highest DRO at west & south sides.
Communication, Other	Huddleston, Neil	12/06/2010		Yes	MLFA reports and draft CS site intake form to Keather McLoone for review > OK to submit.
Case Closed, Transferred To CS	Huddleston, Neil	12/08/2010		Yes	Transfer approved by John Brown. Electronic case file and intake form to Mitzi Read; copy of paper file to Sue Carberry.