

ENVIRONMENTAL CONSULTANTS

ALASKA SALES & SERVICE 1300 EAST 5TH AVENUE ANCHORAGE, ALASKA

2017 & 2018 FREE PRODUCT MONITORING AND GROUNDWATER MONITORING REPORT

November 2018

Diana Pfeiffer **Submitted to:**

Alaska Sales & Service Inc.

Submitted by: BGES, INC.

> 1042 East 6th Avenue Anchorage, Alaska 99501

Ph: (907) 644-2900 Fax: (907) 644-2901 WWW.BGESINC.COM

TABLE OF CONTENTS

1.0	INTRODUCTI	ON1		
2.0	SITE BACKGI	ROUND1		
3.0	FIELD ACTIV	ITIES4		
	3.1 Free Prod	duct Monitoring4		
	3.2 Groundw	vater Monitoring5		
4.0		N OF LABORATORY DATA6		
	4.1 August 2	017 Groundwater Samples6		
	•	2018 Groundwater Samples		
5.0		Y DATA QUALITY REVIEW7		
6.0		L SITE MODEL9		
7.0		S AND RECOMMENDATIONS9		
8.0	EXCLUSIONS	, CONSIDERATIONS, AND QUALIFICATIONS10		
		FIGURES (Located at End of Report)		
Figu	re 1	Site Vicinity Map		
Figu	re 2	Monitoring Well Locations, Groundwater Flow Direction, and Groundwater Results Map (2017)		
Figu	re 3	Monitoring Well Locations, Groundwater Flow Direction, and Groundwater Results Map (2018)		
		TABLES (Located at End of Report)		
Tabl	e 1	Monitoring Well Sampling Data (August 2017)		
Tabl	le 2	Monitoring Well Sampling Data (February 2018)		
Tabl	e 3	Groundwater Analytical Results (August 2017 & February 2018)		
		APPENDICES (Located at End of Report)		
App	endix A	Graphs of Historical Concentration Trends in Monitoring Well MW4		
Appendix B		Field Notes and Groundwater Monitoring Logs		
App	endix C	Laboratory Analytical Data Packages		
App	endix D	Laboratory Data Quality Control Checklists		
App	endix E	Conceptual Site Model		

Page i 10-013-06

ACRONYMS

AAC - Alaska Administrative Code

ADEC - Alaska Department of Environmental Conservation

AK - Alaska

AKS&S - Alaska Sales & Service

BGES - Braunstein Geological and Environmental Services

C - Celsius

DRO - Diesel Range Organics

GRO - Gasoline Range Organics

LOQ - Limit of Quantitation

LUST - Leaking Underground Storage Tank

mg/Kg - Milligrams per Kilogram

μg/L - Micrograms per Liter

PCE - Tetrachloroethene

QC - Quality Control

QEP - Qualified Environmental Professional

RPD - Relative Percent Difference

RRO - Residual Range Organics

SGS - SGS North America, Inc.

TCE - Trichloroethene

USTs - Underground Storage Tanks

VOCs - Volatile Organic Compounds

Page ii 10-013-06

1.0 INTRODUCTION

BGES, Inc. (BGES) was retained by Diana Pfeiffer of Alaska Sales & Service Inc., (AKS&S) to monitor for the presence of free product in all monitoring wells on site, address the former presence of free product in Monitoring Well MW4 utilizing a Well Boom, and perform groundwater sampling of Monitoring Well MW4 at the AKS&S Showroom Facility, located at 1300 East 5th Avenue in Anchorage, Alaska (Figure 1). Groundwater monitoring has been ongoing at this site since the removal of five underground storage tanks (USTs) in 1990. At the time of tank removals, the site was listed by the Alaska Department of Environmental Conservation (ADEC) as an "active" leaking underground storage tank (LUST) site. The site is currently listed as an "active" contaminated site by the ADEC (File Number 2100.26.227 and Hazard Identification Number 23886).

2.0 SITE BACKGROUND

In 1990, four gasoline USTs and one used oil UST were excavated and removed from the property. Approximately 60 cubic yards of impacted soils were also excavated and transported offsite for disposal. During the excavation activities, lead-impacted soils were discovered in association with a 1,500-gallon used oil tank (Tank 5) previously located south of, and adjacent to the property's main structure; these soils were excavated and transported to an out-of-state permitted hazardous waste disposal facility. Additional impacted soils in the vicinity of Tank 5 were left in place because of their proximity to the southern face of the structure located on the property.

Previous site reports have indicated that the excavation of Tank 5 extended to approximately 15 feet below grade, and that no confirmation soil samples were collected because soil contamination was observed throughout the excavation. In 1991, during the advancement of a soil boring completed as Monitoring Well MW4 in the vicinity of Tank 5, soil samples exhibited concentrations of lead, total petroleum hydrocarbons, tetrachloroethene (PCE), 1,1,1-trichloroethane, and benzene at 2,380 milligrams per kilogram (mg/Kg), 27,800 mg/Kg, 483 mg/Kg, 161 mg/Kg, and 104 mg/Kg, respectively; all of which exceeded the applicable ADEC cleanup criteria. That same year, three additional soil borings were completed as monitoring wells on the property to evaluate the lateral extent of the groundwater contamination at the site. Monitoring Well MW2 was placed east of, and adjacent to, the property's main structure; Monitoring Well MW3 was placed west of, and adjacent to the property's main structure; and Monitoring Well MW1 was placed south of the structure's southeastern corner (Figure 2).

Subsequent groundwater monitoring events performed at the site have shown MW4 to be the only monitoring

well in which groundwater samples have exhibited concentrations of contaminants that have exceeded ADEC cleanup criteria; with the exception of a concentration of chloroform that exceeded the ADEC cleanup criterion detected in a water sample collected from Monitoring Well MW3 in 2003. The report issued for the 2003 groundwater monitoring event states that the concentration of chloroform detected in the water sample collected from Monitoring Well MW3 was caused by biogenic interference, or a naturally occurring compound in such low levels that the concentration detected was of no concern.

The contaminant concentrations for groundwater samples collected from Monitoring Well MW4 have fluctuated since 1991. During the March 2003 groundwater monitoring event, Monitoring Well MW4 was found to contain approximately 0.55 foot of free product. After removing free product using a bailer, groundwater samples were collected. These samples exhibited concentrations of gasoline range organics (GRO), diesel range organics (DRO), residual range organics (RRO), toluene, ethylbenzene, and total xylene(s); all of which had increased from the previous sampling event. Concentrations of GRO, DRO, RRO, benzene, and toluene exceeded the ADEC cleanup criteria.

During the groundwater monitoring event performed on February 23, 2010, Monitoring Well MW4 was found to contain approximately 0.50 foot of free product; therefore, a groundwater sample was not collected from Monitoring Well MW4. The groundwater samples collected from Monitoring Wells MW2 and MW3 did not exhibit any contaminant concentrations in excess of ADEC cleanup criteria.

Groundwater samples were collected from Monitoring Well MW2 on September 5, 2014 utilizing both a nopurge sampling methodology and a low-flow sampling methodology. Monitoring Well MW4 was found to contain approximately 0.13 foot of free product; therefore, a groundwater sample was not collected from Monitoring Well MW4. The groundwater samples from Monitoring Well MW2, collected utilizing both sampling methodologies described above, did not exhibit any detectible contaminant concentrations.

Groundwater samples were collected from Monitoring Wells MW2 and MW4 on December 14, 2015. The samples were analyzed for GRO, DRO, volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons, and total lead. The groundwater samples from Monitoring Well MW2 did not exhibit any detectible contaminant concentrations. The groundwater sample from Monitoring Well MW4 exhibited a concentration of trichloroethene (TCE) of 6.52 micrograms per liter (μ g/L), which exceeded the ADEC cleanup criterion for this analyte.

Monitoring Wells MW1 through MW4 were evaluated for the presence of free product on July 13, 2016. Only

Monitoring Well MW4 exhibited free product, which was measured at 0.01 foot. The Well Boom in Monitoring Well MW4 was replaced with a new one at that time, and Monitoring Well MW4 did not exhibit measurable amounts of free product for the two successive monitoring events. Groundwater samples were collected from Monitoring Well MW4 on September 22, 2016 to evaluate the potential presence of dissolved-phase contamination. Groundwater Sample MW4 and its duplicate Sample MW5 exhibited concentrations of TCE up to 2.97 μ g/L (greatest concentration is presented), which exceeds the applicable ADEC cleanup criterion for this analyte of 2.8 μ g/L.

Most recently, BGES conducted semi-annual free product monitoring from Monitoring Wells MW1 through MW4, and groundwater sampling from Monitoring Well MW4 on August 25, 2017; and February 19, 2018. The results of these sampling events are the subject of this report. Graphs showing historical trends of 1,2,4-trimethylbenzene, DRO, TCE, RRO, and naphthalene concentrations within Monitoring Well MW4 are included in Appendix A

Free Product Remediation. Between June 10, 2010 to August 19, 2010 approximately 6.3 ounces of product were recovered from Monitoring Well MW4 by employees of AKS&S, utilizing an oleophilic absorbent pad, which was placed within the uppermost portion of the water column. During these activities, the thickness of the free product was reduced to immeasurable levels; however, trace amounts of product were observed coating portions of the tape and electronic interface probe that were lowered into Monitoring Well MW4.

Numerous attempts were made to recover free product between September 5, 2014 and December 12, 2014 from Monitoring Well MW4 after it was noted that it had returned to measurable levels following the 2010 recovery efforts. Several methodologies, including bailers and passive free product recovery systems, were utilized in these attempts, all of which were either unsuccessful or inefficient. Because free product had been observed intermittently in Monitoring Well MW4 since 2003, and it returned after the 2010 free product recovery efforts, were not successful, a Well Boom containing petroleum remediation powder was deployed on August 21, 2015. The Well Boom contains an oleophilic (attracts oils) and hydrophobic (repels water) nutrient base which absorbs the free product within Monitoring Well MW4 as well as releases nutrients to support bioremediation of free product and the dissolved-phase contamination within groundwater, in Monitoring Well MW4. Free product was reduced from 0.05 foot on August 21, 2015 to unmeasurable levels (less than 0.01 foot) as measured using an electronic interface probe by November 9, 2015. As mentioned above, a groundwater sample was collected from Monitoring Well MW4 in December of 2015. The Well Boom was removed from Monitoring Well MW4 one week prior to collection of the groundwater samples, and reinstalled

after the sampling event.

Vapor Intrusion Evaluation. A building survey was completed by BGES personnel on September 5, 2014 to identify building characteristics, potential vapor entry points into the building, and potential background sources of petroleum. Indoor and outdoor air samples were subsequently collected on September 8, 2014. The results of the building survey were presented in the Revised Work Plan, dated May 21, 2014. No potential vapor entry points were identified in the eastern portion of the building, which is located over the contaminated soil and groundwater plumes located near Monitoring Well MW4. The results of the first round of indoor air sampling indicated that all analytes were either detected below the ADEC target levels for commercial sites, or below the laboratory's reporting limits (which were below the ADEC target levels for commercial sites). Additional indoor air samples were collected during December of 2015 to evaluate the potential for vapor intrusion into the building during frozen ground conditions. All detectable analytes were less than the ADEC prescribed target levels for commercial facilities.

3.0 FIELD ACTIVITIES

All field work was performed by a Qualified Environmental Professional (QEP) as defined by the ADEC; and in accordance with ADEC's Field Sampling Guidance (May 2010 and August 2017). Groundwater monitoring activities were conducted in accordance with the *Revised Work Plan for Groundwater Monitoring and Evaluation of Vapor Intrusion at 1300 East 5th Avenue*, dated July 22, 2014, and with emailed ADEC approval to conduct continued groundwater monitoring, dated July 13, 2017.

Free product monitoring activities were conducted in accordance with a letter from the ADEC dated May 18, 2016, which requested that all monitoring wells on site be evaluated for the presence of free product on a semi-annual basis.

3.1 Free Product Monitoring

The Well Boom in Monitoring Well MW4 was removed from the well one week prior to the free product monitoring events as well as the groundwater sampling events in an effort to limit any potential interference with the measurement of free product and analytical results of the groundwater samples. Each of the four monitoring wells on the subject property were evaluated for the presence of free product with the use of an electronic oil-water interface probe on August 18, 2017, and February 12, 2018. None of the monitoring wells exhibited free product during either of these monitoring events. Upon completion of the groundwater sampling

events described in Section 3.2 below, the Well Boom was replaced within Monitoring Well MW4.

3.2 Groundwater Monitoring

Groundwater samples were collected from Monitoring Well MW4 on August 25, 2017, and February 19, 2018 utilizing a low-flow sampling methodology with a positive-displacement bladder pump. Weather conditions were rainy with an ambient temperature of approximately 55 degrees Fahrenheit on August 25, 2017; and clear with an ambient temperature of approximately 30 degrees Fahrenheit on February 19, 2018. One representative from BGES was onsite to perform the sampling. A copy of the field notes and groundwater monitoring logs are provided in Appendix B.

The depth to water was measured in each of the four monitoring wells on site using an electronic oil-water interface probe in order to evaluate for the presence of free product in all of the monitoring wells. The depth to water measurements were utilized to calculate the groundwater elevations; which were used to determine the groundwater flow direction and to calculate the gradient. The electronic oil-water interface probe was decontaminated prior to use and between monitoring wells by washing the cable and sensor in an Alconox (laboratory-grade) detergent solution, followed by a potable water rinse.

Prior to collecting the groundwater samples, the volume of water in Monitoring Well MW4 was calculated based on the depth to water, the total depth of the well, and the diameter of the well casing. After calculating the well volume, the bladder pump was positioned such that the intake was situated 0.5 foot below the top of the water column. The well was then purged at a rate of approximately 150 milliliters per minute (ml/min) on August 25, 2017 and approximately 400 ml/min on February 19, 2018. Groundwater quality parameters for pH, conductivity, temperature, and oxidation reduction potential were measured every 3 to 5 minutes with the use of a YSI Professional Plus water quality monitor, equipped with a flow-through cell, and these measurements were recorded on the groundwater monitoring logs. The water samples (including a duplicate sample) were collected after the parameters described above showed relative stability (in accordance with ADEC Field Sampling Guidance, published in August of 2017) and with an approximate flow rate of 150 ml/min.

Once the groundwater parameters had stabilized, the flow-through cell was removed from the sampling train for the collection of groundwater samples. Groundwater was then pumped directly into the laboratory-supplied sample jars and the samples scheduled for volatile analyses were collected first. In this case, the water was placed in 40 ml vials such that no headspace was present. Care was exercised to avoid spilling the hydrochloric

acid preservative while filling all containers. The sample containers were labeled, placed in a chilled cooler, and transported to SGS North America, Inc. (SGS), an ADEC-approved laboratory for analysis under chain-of-custody protocol. As a quality control measure, a laboratory-supplied trip blank accompanied the samples scheduled for the volatile analyses through the entirety of the sampling process and delivery to the laboratory. The data gathered during purging of Monitoring Well MW4 is listed in Tables 1 and 2, and a copy of the groundwater monitoring logs are included in Appendix B.

4.0 EVALUATION OF LABORATORY DATA

Laboratory analysis of the groundwater samples was performed by SGS, an ADEC-approved laboratory. The analytical results are summarized in Table 3 and a copy of the laboratory data packages are included in Appendix C. The analytical results were compared to the ADEC Method 2 Cleanup Criteria listed in Alaska Administrative Code (AAC) 75.345—Table C for groundwater, effective September 28, 2018.

The groundwater samples collected from Monitoring Well MW4 were analyzed for GRO by Alaska Method (AK) 101, DRO by AK 102, RRO by AK 103, and VOCs by Environmental Protection Agency (EPA) Method 8260C.

The water samples collected from the site were labeled, for example, MW4-0825, where the prefix "MW4" indicates the monitoring well from which the water sample was collected; and "-0825" indicates the month and day the sample was collected.

4.1 August 2017 Groundwater Samples

A duplicate groundwater sample was collected from MW4, which was labeled as MW5-0825, such that it was submitted "blindly" sample to the laboratory.

Sample MW4 and duplicate Sample MW5 exhibited concentrations of DRO and naphthalene up to 3,380 µg/L and 2.21 µg/L; respectively. These concentrations exceed the applicable ADEC cleanup criteria of 1,500 µg/L, and 1.7 µg/L for these analytes, respectively. RRO was also detected in Sample MW5 at a concentration of 1,110 µg/L, which exceeds the ADEC cleanup criterion of 1,100 µg/L for this analyte. All of the remaining analytes were either detected at concentrations below the applicable ADEC cleanup criteria or were not detected above the laboratory's limits of quantitation (LOQs). All of the LOQs were less than the applicable ADEC cleanup criteria, with the exception of 1,2,3-trichloropropane; therefore, it cannot be determined if the samples contain concentrations of this analyte that exceed the ADEC cleanup criterion.

Monitoring well locations and sample results are shown on Figure 2; the analytical results for the groundwater samples are included in Table 3; and a copy of the laboratory analytical data package is included in Appendix C.

4.2 February 2018 Groundwater Samples

A duplicate groundwater sample was collected from Monitoring Well MW4, which was labeled as MW5-0219, such that it was submitted "blindly" sample to the laboratory.

Sample MW4 exhibited concentrations of DRO and RRO of 1,660 μ g/L and 1,150 μ g/L; respectively. These concentrations exceed the applicable ADEC cleanup criteria of 1,500 μ g/L and 1,100 μ g/L, respectively. All of the remaining analytes were either detected at concentrations below the applicable ADEC cleanup criteria or were not detected above the LOQs. All of the LOQs were less than the applicable ADEC cleanup criteria, with the exception of 1,2,3-trichloropropane; therefore, it cannot be determined if the samples contain concentrations of this analyte that exceed the ADEC cleanup criterion.

Monitoring well locations and sample results are shown on Figure 3; the analytical results for the groundwater samples are included in Table 3; and a copy of the laboratory analytical data package is included in Appendix C.

5.0 LABORATORY DATA QUALITY REVIEW

Data quality was reviewed in accordance with ADEC guidance and standard industry practices. An ADEC laboratory data review checklist was completed for each laboratory work order and they are attached in Appendix D. The checklists provide an overview of the quality of the laboratory data. The following are discussions of our evaluation of sample conditions and laboratory procedures.

Groundwater Samples (SGS Work Order 1176061)

The samples were hand-delivered to SGS by BGES personnel under standard chain of custody protocol. The groundwater samples contained the proper preservatives for the requested analyses and no unusual sample conditions were noted by the laboratory. The temperature of the cooler containing the samples was measured at the time of receipt to be 4.2 degrees Celsius (C), which is within the ADEC-prescribed optimal temperature range of 0 to 6 degrees C. A trip blank sample accompanied the samples scheduled for volatile analyses (GRO and VOCs) through the entirety of the sampling process and delivery to the laboratory. A case narrative was

included with the laboratory data. No quality control (QC) failures were noted by SGS within the case narrative for this work order, however BGES identified the following QC failure.

RRO was detected in the Method Blank at an estimated concentration of 178 µg/L, indicating a potential for the reported concentrations of RRO within the groundwater samples to be biased high. For this reason, the reported concentrations of RRO within Samples MW4-0825 and MW5-0825 are flagged with a "J" in Table 3 and should be considered estimates. However, because these samples also exhibited concentrations of DRO and naphthalene that exceed the ADEC cleanup criteria, and because the Method Blank was derived from soils from another project; it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The LOQs for 1,2,3-trichloropropane exceeded the applicable ADEC cleanup criterion for Samples MW4-0825 and MW5-0825; as such it cannot be determined if the actual concentrations of this analyte exceed the ADEC cleanup criterion within these samples. Because Samples MW4-0825 and MW5-0825 contained concentrations of three or more analytes that exceeded the ADEC cleanup criteria, it is our opinion that this QC failure does not affect the interpretation of the data for their intended use.

Sample MW5-0825 was a duplicate of Sample MW4-0825 and was collected to evaluate sampling precision. The relative percent differences (RPDs) for all analytes that were detected in both samples ranged from 1 to 18 percent, which are below the ADEC prescribed limit of 30 percent for water samples and indicates acceptable field sampling precision. The RPDs between the reported concentrations of several analytes could not be calculated, as they were not detected above the LOQs.

Groundwater Samples (SGS Work Order 1180690)

The samples were hand-delivered to SGS by BGES personnel under standard chain of custody protocol. The groundwater samples contained the proper preservatives for the requested analyses and no unusual sample conditions were noted by the laboratory. The temperature of the cooler containing the samples was measured at the time of receipt to be 2.7 degrees C, which is within the ADEC-prescribed optimal temperature range of 0 to 6 degrees C. A trip blank sample accompanied the samples scheduled for volatile analyses (GRO and VOCs) through the entirety of the sampling process and delivery to the laboratory. A case narrative was included with the laboratory data. No QC failures were noted by SGS within the case narrative for this work order.

The LOQs for 1,2,3-trichloropropane exceeded the applicable ADEC cleanup criterion for Samples MW4-0219 and MW5-0219; as such it cannot be determined if the actual concentrations of this analyte exceed the ADEC

cleanup criterion within these samples. Because Sample MW4-0219 contained concentrations of DRO and RRO that exceeded the ADEC cleanup criteria, it is our opinion that this QC failure does not affect the interpretation of the data for their intended use.

Sample MW5-0219 was a duplicate of Sample MW4-0219 and was collected to evaluate sampling precision. The RPDs for 1,1,1-trichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-isopropyltoluene, naphthalene, n-propylbenzene, toluene, and total xylenes ranged from 0 to 7 percent, which are below the ADEC prescribed limit of 30 percent for water samples and indicates acceptable field sampling precision with respect to these analytes. The RPD for DRO was 83 percent, potentially indicating poor field sampling precision. The RPDs between the reported concentrations of several analytes could not be calculated, as they were not detected above the LOQs.

6.0 CONCEPTUAL SITE MODEL

A graphic conceptual site model detailing various potential exposure media, transport mechanisms, exposure pathways, and human receptors for identified contamination at this site was prepared and is included in Appendix E. The media identified at the site to which the contamination may have been directly released are subsurface soils and groundwater. The transport mechanisms through which contamination could have mobilized were identified to be migration to groundwater and volatilization.

Potential exposure pathways through which contamination at this site could impact potential current and/or future human receptors were identified to be incidental ingestion of soil and groundwater; dermal absorption of contaminants through contact with soil and groundwater; inhalation of volatile compounds in tap water; and inhalation of indoor and outdoor air. However, because indoor and outdoor air sampling, as discussed in Section 1 above, has not indicated elevated concentrations of these analytes, it is our opinion that this should not be considered a complete pathway.

Potential current and/or future human receptors for this site were identified to be commercial or industrial workers, site visitors and trespassers, and construction workers.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Monitoring Wells MW1 through MW4 were evaluated for the presence of free product on August 18, 2017 and February 12, 2018. None of the monitoring wells exhibited detectable amounts of free product on those dates. It is noted that free product has historically only been observed in Monitoring Well MW4.

Groundwater flow direction was determined to be towards the north-northeast in August 2017 with a calculated hydraulic gradient of approximately 0.022 foot per linear foot (Figure 2). In February 2018, the groundwater flow direction was north-northeast with a calculated hydraulic gradient of approximately 0.022 foot per linear foot (Figure 3). Groundwater samples were collected from Monitoring Well MW4 on August 25, 2017 and February 19, 2018 to evaluate the potential presence of dissolved-phase contamination. Groundwater Sample MW4-0825 and its duplicate Sample MW5-0825 exhibited concentrations of DRO, RRO, and naphthalene of up to 3,380 μ g/L, 1,110 μ g/L, and 2.21 μ g/L, respectively; which exceed the applicable ADEC cleanup criteria for these analytes of 1,500 μ g/L DRO and 1,150 μ g/L RRO, which exceed the applicable ADEC cleanup criteria for these analytes.

BGES has collected groundwater samples from Monitoring Well MW4 during four sampling events since 2015. Analytes that have been detected at concentrations exceeding the ADEC cleanup criteria over the past four years include DRO, RRO, 1,2,4-trimethylbenzene, naphthalene, and TCE. On average, the concentrations of DRO and RRO have generally increased over time, while the concentrations of 1,2,4-trimethylbenzene, naphthalene, and TCE have generally decreased over time. These trends are represented on graphs in Appendix A.

We recommend continued use of the well boom for remediation of dissolved-phase petroleum hydrocarbons; continued biannual evaluations of free product; and continued biannual groundwater monitoring of Monitoring Well MW4 for DRO, RRO, and VOCs. We also recommend that a copy of this report be submitted to the ADEC Project Manager.

8.0 EXCLUSIONS, CONSIDERATIONS, AND QUALIFICATIONS

This report presents facts, observations, and inferences based on conditions observed during the period of our project activities, and only those conditions that were evaluated as part of our scope of work. Our conclusions are based solely on our observations made in the local vicinities of the free product monitoring and groundwater sampling locations. In addition, changes to site conditions may have occurred since we completed our project activities. These changes may be from the actions of man or nature. Changes in regulations may also impact the interpretation of site conditions. BGES will not disclose our findings to any parties other than our client as listed above, and the ADEC, as requested by our client, except as directed by our client, or as required by law.

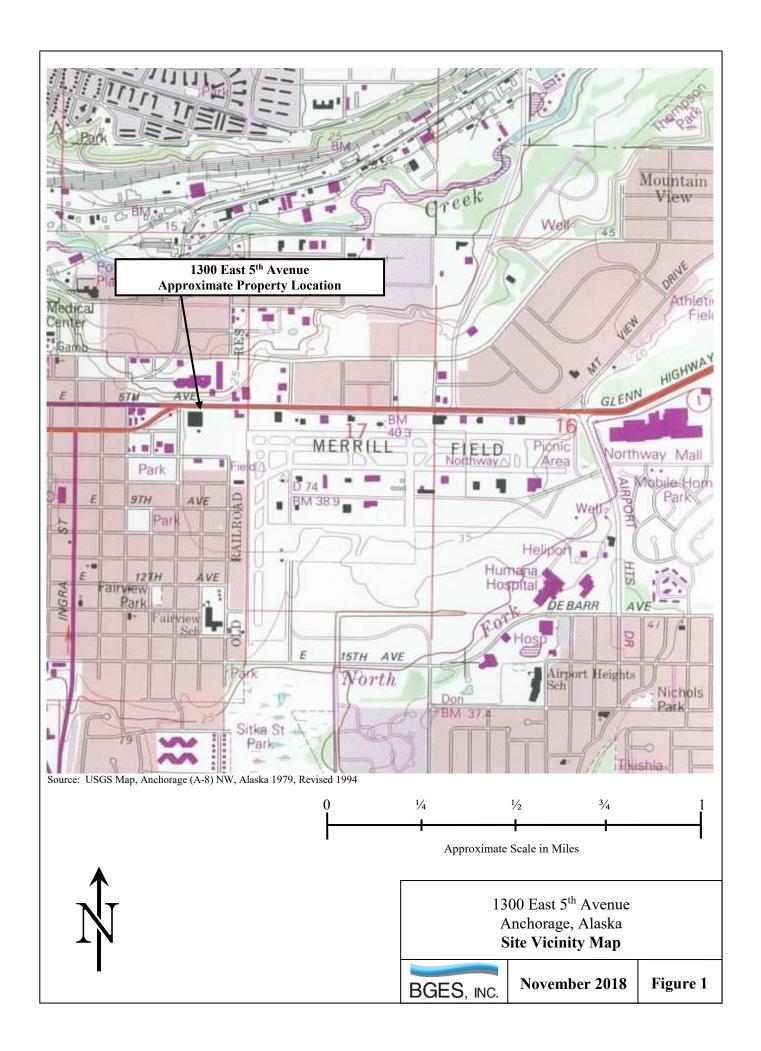
Kris Shippen, Environmental Scientist II of BGES, is a QEP as defined by the ADEC, and he performed the free product monitoring and groundwater sampling activities. This report was also completed by Mr. Shippen; and was reviewed by Jayne Martin, Senior Environmental Scientist of BGES. Ms. Martin is a QEP and has

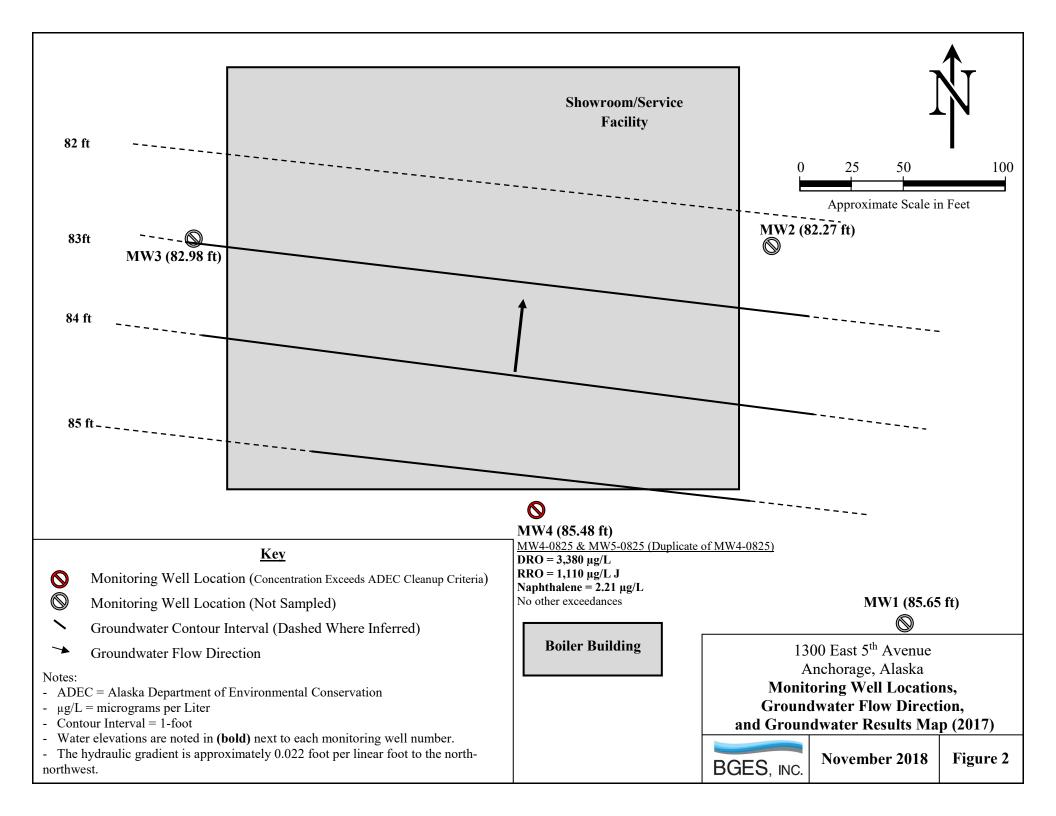
1300 E. 5th Ave., Anchorage, AK

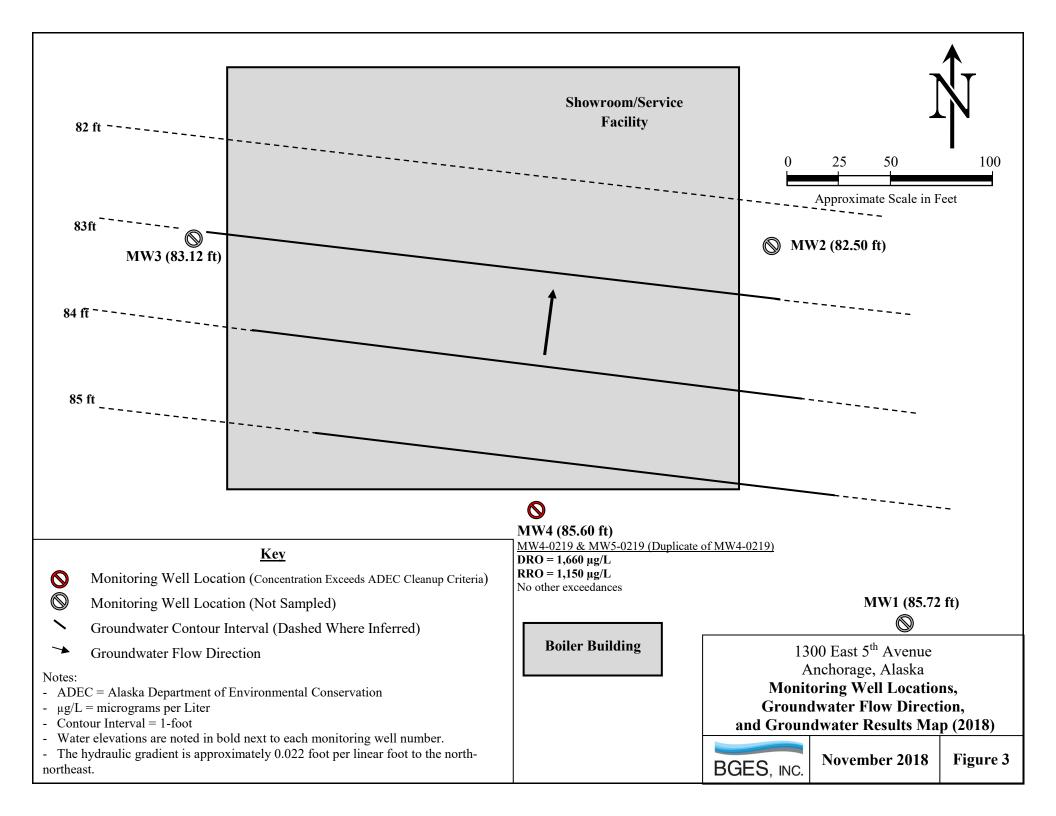
2017 & 2018 Free Product Monitoring and Groundwater Monitoring Report

more than 25 years of environmental consulting experience. She has conducted and managed hundreds of site characterization and remediation efforts throughout Alaska and the lower 48 states.

Prepared by


Reviewed by:


Kris Shippen


Jayne Martin

Environmental Scientist II

Senior Environmental Scientist

TABLE 1 1300 EAST 5TH AVENUE ANCHORAGE, ALASKA **MONITORING WELL SAMPLING DATA (August 2017)**

Well Number	MW1	MW2	MW3	MW4
Date Sampled				08/25/17
Date of Depth and Elevation Measurement	08/25/17	08/25/17	08/25/17	08/25/17
Time of Depth to Water Measurement	9:11	9:29	9:40	9:44
Time Sample Collected				13:10
Top of Casing Elevation (feet)	120.40	120.80	120.70	120.90
Depth to Water (feet below top of casing)	34.75	38.53	37.72	35.42
Groundwater Elevation in feet	85.65	82.27	82.98	85.48
Total Depth of Well (feet below top of casing)	44.20	45.72	42.33	44.52
Well Casing Diameter (inches)	4	4	4	4
Water Column	9.45	7.19	4.61	9.10
Standing Water Well Volume (gallons)	6.17	4.69	3.01	5.94
Purge Volume-Actual (gallons)				7.00
Temperature (degrees Celsius)				8.9/8.6/8.7/8.6/8.6
pH (standard units)				5.65/6.24/6.42/6.37/6.38
Conductivity (millisiemans per centimeter)				550/686/833/838/843
Oxidation Reduction Potential				-113.4/-135/-127.9/-128.3/-128.9
Notes:	Not Sampled; well	Not Sampled; well	Not Sampled; well	Well was in good
Values separated by / indicate readings for successive intervals	was in good condition.	was in good condition.	was in good condition.	condition, no free product was observed.
Sampler: K. Shippen				A flow-through cell was
Field parameters were measured with a YSI				utilized during sampling
Professional Plus water quality meter.				of this well.
Weather conditions on August 25, 2017 were		I	I	The well boom was removed on
rainy with an ambient temperature of approximately 55 degrees Fahrenheit.				August 18, 2017.

Page 1 of 1 10-013-05

TABLE 1 1300 EAST 5TH AVENUE ANCHORAGE, ALASKA

MONITORING WELL SAMPLING DATA (February 2018)

Well Number	MW1	MW2	MW3	MW4
Date Sampled				02/19/18
Date of Depth and Elevation Measurement	02/19/18	02/19/18	02/19/18	02/19/18
Time of Depth to Water Measurement	9:35	9:57	9:43	10:03
Time Sample Collected				13:10
Top of Casing Elevation (feet)	120.40	120.80	120.70	120.90
Depth to Water (feet below top of casing)	34.68	38.30	37.58	35.30
Groundwater Elevation in feet	85.72	82.50	83.12	85.60
Total Depth of Well (feet below top of casing)	44.20	45.72	42.30	43.10
Well Casing Diameter (inches)	4	4	4	4
Water Column	9.52	7.42	4.72	7.80
Standing Water Well Volume (gallons)	6.21	4.84	3.08	5.09
Purge Volume-Actual (gallons)				5.50
Temperature (degrees Celsius)				6.65/6.66/6.64
pH (standard units)				5.87/5.91/5.93
Conductivity (millisiemans per centimeter)				261/262/263
Oxidation Reduction Potential				-62.6/-70.2/-70.5
Notes:	Not Sampled; well	Not Sampled; well	Not Sampled; well	Well was in good
Values separated by / indicate readings for	was in good condition.	was in good condition.	was in good condition.	condition, no free product
successive intervals				was observed.
Sampler: K. Shippen				A flow-through cell was
Field parameters were measured with a YSI				utilized during sampling
Professional Plus water quality meter.				of this well
Weather conditions on February 19, 2018 were		Í.	i	The well boom was removed on
clear with an ambient temperature of				February 12, 2018.
approximately 30 degrees Fahrenheit.				

Page 1 of 1 10-013-05

TABLE 3 1300 EAST 5TH AVENUE ANCHORAGE, ALASKA

ANCHORAGE, ALASKA GROUNDWATER ANALYTICAL RESULTS (AUGUST 2017 & FEBRUARY 2018)

Sample No.	Parameter	Results (μg/L)	LOQ (µg/L)	ADEC Cleanup Criteria (µg/L)	Analytical Method			
August 2017 Sampling Event								
MW4-0825	GRO	121	100	2,200	AK 101			
	DRO	2,930	588	1,500	AK 102			
	RRO	931 J	490	1,100	AK 103			
	1,1,1-Trichloroethane	2.63	1.00	8,000	SW8260C			
	1,1-Dichloroethane	1.94	1.00	28	SW8260C			
	1,2,3-Trichloropropane	ND	1.00	0.0075	SW8260C			
	1,2,4-Trimethylbenzene	20.5	1.00	56	SW8260C			
	1,3,5-Trimethylbenzene	10.4	1.00	60	SW8260C			
	4-Isopropyltoluene	2.27	1.00	N/A	SW8260C			
	Benzene	ND	0.400	4.6	SW8260C			
	cis-1,2-Dichloroethene	1.02	1.00	36	SW8260C			
	Ethylbenzene	1.12	1.00	15	SW8260C			
	Naphthalene	2.21	1.00	1.7	SW8260C			
	n-Propylbenzene	2.03	1.00	660	SW8260C			
	Tetrachloroethene (PCE)	ND	1.00	41	SW8260C			
	Toluene	ND	1.00	1,100	SW8260C			
	Trichloroethene (TCE)	ND	1.00	2.8	SW8260C			
	Total Xylenes	7.74	3.00	190	SW8260C			
	All Other VOCs	ND	varies	varies	SW8260C			
MW5-0825								
Duplicate of MW4-0825	07.0	400	400		ATZ 101			
RPD =1%	GRO	120	100	2,200	AK 101			
RPD =14%	DRO	3,380	600	1,500	AK 102			
RPD =18%	RRO	1,110 J	500	1,100	AK 103			
RPD =2%	1,1,1-Trichloroethane	2.58	1.00	8,000	SW8260C			
RPD =3%	1,1-Dichloroethane	2.00	1.00	28	SW8260C			
	1,2,3-Trichloropropane	ND	1.00	0.0075	SW8260C			
RPD =2%	1,2,4-Trimethylbenzene	20.1	1.00	56	SW8260C			
RPD = 1%	1,3,5-Trimethylbenzene	10.3	1.00	60	SW8260C			
RPD = 1%	4-Isopropyltoluene	2.29	1.00	N/A	SW8260C			
	Benzene	ND	0.400	4.6	SW8260C			
RPD =2%	cis-1,2-Dichloroethene	1.00	1.00	36	SW8260C			
RPD =4%	Ethylbenzene	1.17	1.00	15	SW8260C			
RPD =1%	Naphthalene	2.19	1.00	1.7	SW8260C			
RPD =1%	n-Propylbenzene	2.01	1.00	660	SW8260C			
	Tetrachloroethene (PCE)	ND	1.00	41	SW8260C			
	Toluene	ND	1.00	1,100	SW8260C			
	Trichloroethene (TCE)	ND	1.00	2.8	SW8260C			
RPD =2%	Total Xylenes	7.90	3.00	190	SW8260C			
	All Other VOCs	ND	varies	varies	SW8260C			

Page 1 of 2 17-058-01

TABLE 3 1300 EAST 5TH AVENUE ANCHORAGE, ALASKA

GROUNDWATER ANALYTICAL RESULTS (AUGUST 2017 & FEBRUARY 2018)

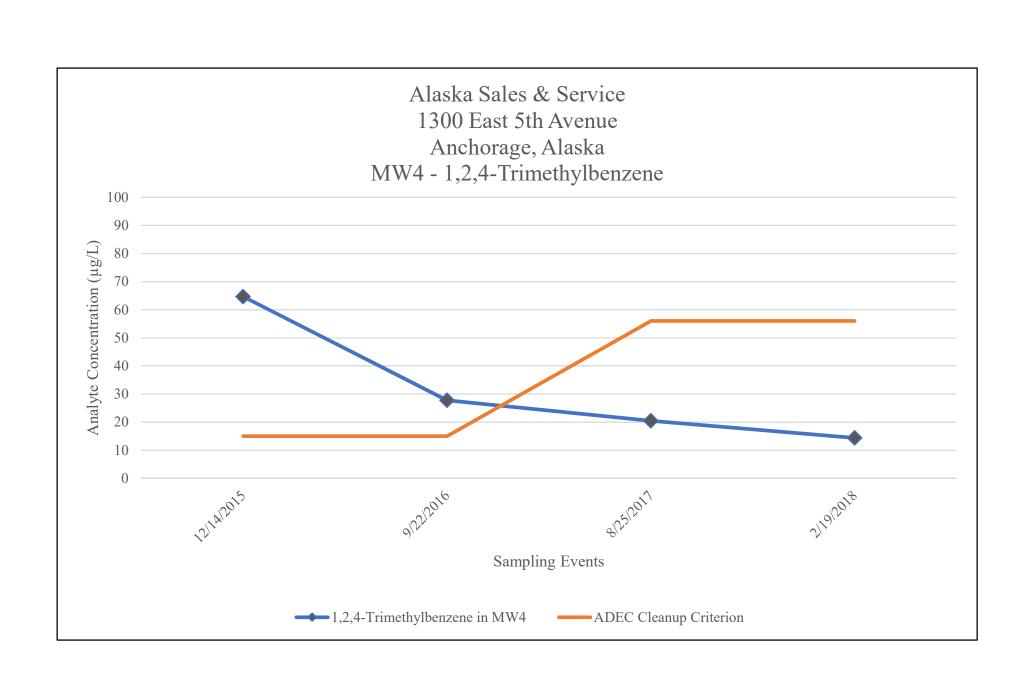
Sample No.	Parameter	Results (µg/L)	LOQ (µg/L)	ADEC Cleanup Criteria (μg/L)	Analytical Method
	Fe	bruary 2018 Sampling	Event		
MW4-0219	GRO	ND	100	2,200	AK 101
	DRO	1,660	566	1,500	AK 102
	RRO	1,150	472	1,100	AK 103
	1,1,1-Trichloroethane	2.07	1.00	8,000	SW8260C
	1,1-Dichloroethane	1.00	1.00	28	SW8260C
	1,2,3-Trichloropropane	ND	1.00	0.0075	SW8260C
	1,2,4-Trimethylbenzene	14.2	1.00	56	SW8260C
	1,3,5-Trimethylbenzene	7.55	1.00	60	SW8260C
	4-Isopropyltoluene	1.78	1.00	N/A	SW8260C
	Benzene	ND	0.400	4.6	SW8260C
	Ethylbenzene	ND	1.00	15	SW8260C
	Naphthalene	1.43	1.00	1.7	SW8260C
	n-Propylbenzene	1.34	1.00	660	SW8260C
	Tetrachloroethene (PCE)	ND	1.00	41	SW8260C
	Toluene	1.54	1.00	1,100	SW8260C
	Trichloroethene (TCE)	ND	1.00	2.8	SW8260C
	Total Xylenes	5.19	3.00	190	SW8260C
	All Other VOCs	ND	varies	varies	SW8260C
MW5-0219					
Duplicate of MW4-0219	GRO	ND	100	2,200	AK 101
RPD = 83%	DRO	684	577	1,500	AK 102
	RRO	ND	481	1,100	AK 103
RPD = 0%	1,1,1-Trichloroethane	2.07	1.00	8,000	SW8260C
	1,2,3-Trichloropropane	ND	1.00	0.0075	SW8260C
RPD = 1%	1,2,4-Trimethylbenzene	14.4	1.00	56	SW8260C
RPD = 2%	1,3,5-Trimethylbenzene	7.70	1.00	60	SW8260C
RPD = 2%	4-Isopropyltoluene	1.82	1.00	N/A	SW8260C
	Benzene	ND	0.400	4.6	SW8260C
	Ethylbenzene	ND	1.00	15	SW8260C
RPD = 7%	Naphthalene	1.54	1.00	1.7	SW8260C
RPD = 1%	n-Propylbenzene	1.36	1.00	660	SW8260C
	Tetrachloroethene (PCE)	ND	1.00	41	SW8260C
RPD = 2%	Toluene	1.51	1.00	1,100	SW8260C
	Trichloroethene (TCE)	ND	1.00	2.8	SW8260C
RPD = 2%	Total Xylenes	5.13	3.00	190	SW8260C
	All Other VOCs	ND	varies	varies	SW8260C

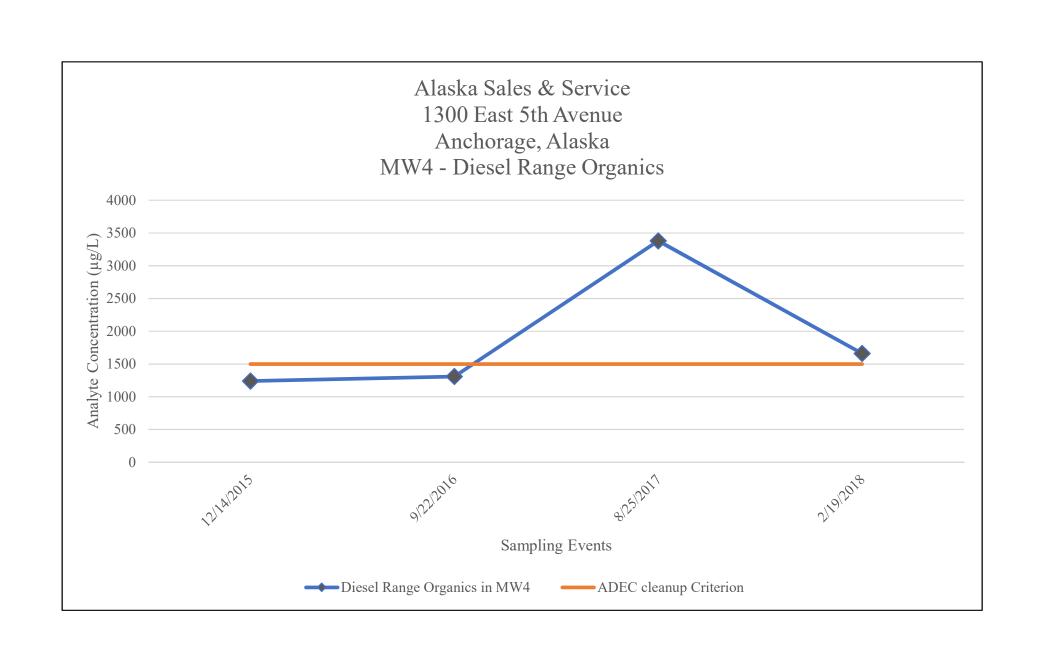
¹ Groundwater cleanup criteria are obtained from ADEC 18 AAC 75.345, Table C (September 2018).

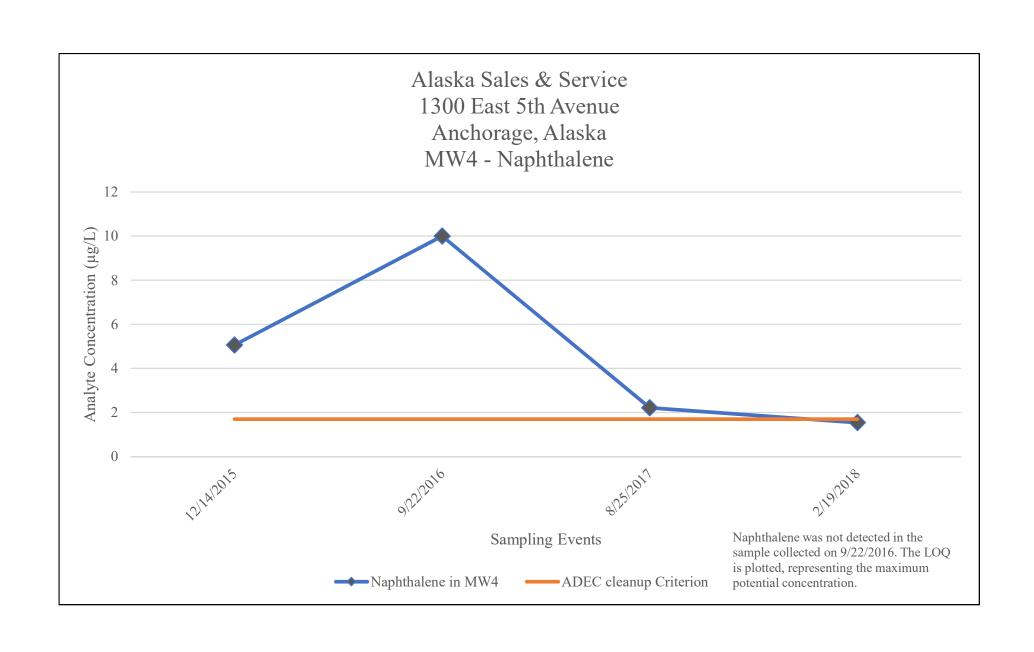
Bold = The concentration exceeds the applicable ADEC cleanup criterion.

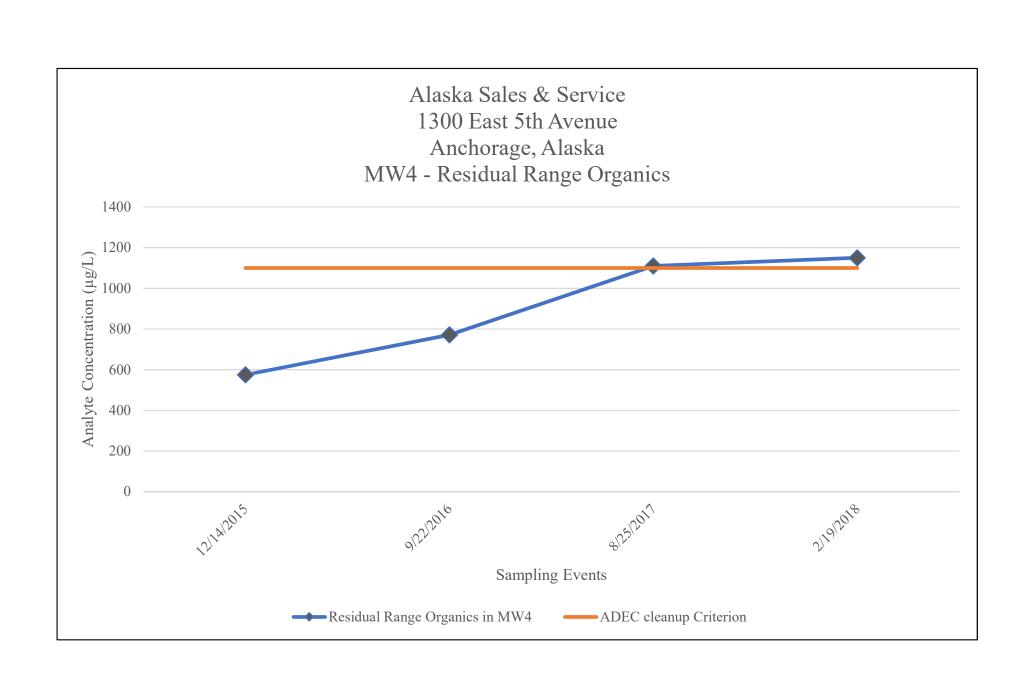
Italics = The LOQ exceeds the applicable ADEC cleanup criterion.

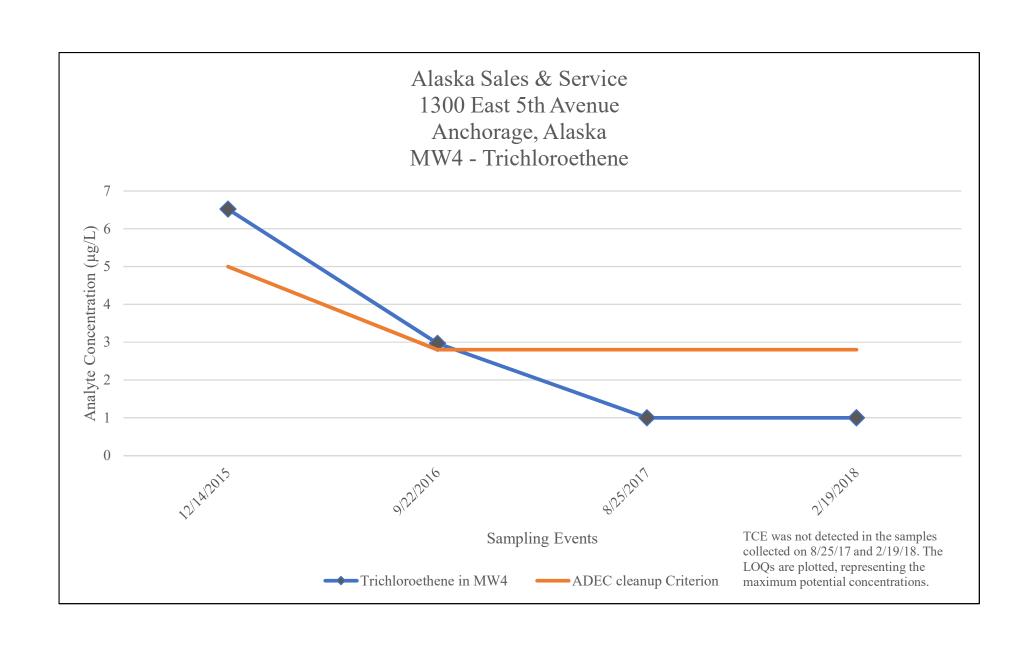
Page 2 of 2 17-058-01


AAC = Alaska Administrative Code; AK = Alaska Method; ADEC = Alaska Department of Environmental Conservation


μg/L = micrograms per liter; GRO = gasoline range organics; DRO = diesel range organics; RRO = residual range organics


VOCs = volatile organic compounds; LOQ = limit of quantitation; ND = not detected above the LOQ


RPD = Relative Percent Difference; N/A = not available


APPENDIX A GRAPHS OF HISTORICAL CONCENTRATION TRENDS IN MONITORING WELL MW4

APPENDIX B FIELD NOTES AND GROUNDWATER MONITORING LOGS

(20 37	on Sife to	1150 DTD 24429		S begin puging MWY Collect Samples MW4-0875 and Wplick MW5-0825	Asit Por dy	Plite in the Pain
8/25/17	Ofico Bles on Sample Muy	34.75		10:15 begin puging 13:10 Collect Samp	14:20 (2/65 0	
£11/81/13	Og: 05 BGGS ON Site to inspect and remain the well boam from in w 4	MW TO DTD D+W 35.5	Fernance Well Gran from well Boom			

2119/18	09:15 BGES on Site to monitar for free production MW I - MWY and collect Samples from MWY	MW Z 38.3 46.72 9:35 MW 2 38.3 46.72 9:35 MW 3 37.56 47.3 9:43 MW 4 35.3 43.1 10:03	Replace well boom BGES OF SETE FROM Wenner with the molenner wit
38 22/12/18 410° Claroly	09:00 BGCS ON-Site to remove well brown from MWY and to a were for product in the wey	Well ID DTP DTW TDW MW-4 Notare 35.40 4/3.1 (Errone Well boon & Stoic, 17)	09.30 BGES OPEN

GROUNDWATER MONITORING LOG

BGES, INC.

	Weather Conditio	ns	55° rain
8-25-17	Time of Depth to	Water Measurem	
1.1.	Date of Depth to	Nater Measurem	ent: 8-25-17
w TOC): 35.4		=0.1632 X Wate =0.6528 X Wate	be prop . MP10 Centraller
10:15 13:10 ~ 75al PURGE	A MINIMUM OF THR		
550 Cor 5 65 pH -113 4 OR 0.5 6d Vol 35.41 Dep 10:30 Tim	nductivity P ume Purged oth To Water	8.6 843 6.78 -128.9 6300 75.42 12)55	Depth of Bladder intake:
646 Cor 6.24 pH -135 OR 7.5 5~1 Vol 35.42 De	nductivity P ume Purged pth To Water		Purge Rate: 150 mymin
833 Cor 6.47 pH -127.9 OR 6 901 Vol 35.42 De	nductivity RP lume Purged pth To Water		Sample Rate: 150 m/min Sample ID: $MWY - 0825$ $MWS - 0825$
838 Co 6.37 pH -128.3 OF 6.901 Vo 35.42 De	nductivity RP lume Purged pth To Water		
	S S S S S S S S S S	Time of Depth to Date of Depth To Water Time of Measurement Solution Soluti	S-25-/7

Water Monitoring Log Form (Revised 3/20/15)

Well Number:	N4 + 7/19/88	Weather Conditions	30° cher
bate of Gampling Ever	II	Time of Depth to Water Measu	
Total Depth of Well (fee	et below TOC): 43.1	Date of Depth to Water Measur	rement: 2-19-18
Depth to Water (feet be Water Column (feet):	elow TOC): 35.3 7.8		poling Equipment: 56 1.75" bladde pup 1. Solonist Jutifice prope 6:19 + bladdys
Volume of well (gals)	5.09	=0.6528 X W	/ater Column (For 2-inch well) /ater Column (For 4-inch well)
Time Purging Began: Time of Sampling:	12:40	=1.4688 X W	ater Column (For 6-inch well)
Volume purged	5.5 PURGE A M	INIMUM OF THREE WELL VO	LUMES
Temperature (°C) Conductivity pH ORP Volume Purged Depth To Water Time of Measurement	38.3 Depth	e Purged To Water	Depth of Bladder intake:
Temperature (°C) Conductivity pH ORP Volume Purged Depth To Water	6.66	f Measurement rature (°C) ctivity e Purged To Water	Purge Rate: V 400 m/min
Time of Measurement Temperature (°C) Conductivity	17.50 Time of	f Measurement	Sample Rate:
pH ORP Volume Purged Depth To Water	5-93 pH -70.5 ORP -4.57 Volume	e Purged	Sample ID: MW4-0219 and Oup MW5-0219
Time of Measurement		Measurement	and Oup MWS-0219
Temperature (°C) Conductivity pH ORP Volume Purged Depth To Water Time of Measurement	Conduc pH ORP Volume Depth T		
Additional Notes:			

Page ____ ofl____

Project Number _____

APPENDIX C LABORATORY ANALYTICAL DATA PACKAGES

Laboratory Report of Analysis

To: BGES Inc.

1042 E. 6th Ave., Anchorage, AK 99501 (907)644-2900

Report Number: 1176061

Client Project: AK Sales & Service

Dear Jayne Martin,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Victoria Pennick 2017.09.08

11:39:12 -08'00'

Victoria Pennick

Project Manager

Victoria.Pennick@sgs.com

Date

Environmental Services - Alaska Division

SGS North America Inc.

Project Manager

Print Date: 09/07/2017 3:24:37PM

SGS North America Inc.

Case Narrative

SGS Client: **BGES Inc.**SGS Project: **1176061**Project Name/Site: **AK Sales & Service**Project Contact: **Jayne Martin**

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/07/2017 3:24:39PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICVInitial Calibration VerificationJThe quantitation is an estimation.LCS(D)Laboratory Control Spike (Duplicate)LLQC/LLIQCLow Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/07/2017 3:24:41PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	<u>Collected</u>	<u>Received</u>	<u>Matrix</u>
MW4-0825	1176061001	08/25/2017	08/25/2017	Water (Surface, Eff., Ground)
MW5-0825	1176061002	08/25/2017	08/25/2017	Water (Surface, Eff., Ground)
Trip Blank	1176061003	08/25/2017	08/25/2017	Water (Surface, Eff., Ground)

Method Description

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water
AK101 Gasoline Range Organics (W)

SW8260C Volatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: MW4-0825			
Lab Sample ID: 1176061001	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	2.93	mg/L
-	Residual Range Organics	0.931	mg/L
Volatile Fuels	Gasoline Range Organics	0.121	mg/L
Volatile GC/MS	1,1,1-Trichloroethane	2.63	ug/L
	1,1-Dichloroethane	1.94	ug/L
	1,2,4-Trimethylbenzene	20.5	ug/L
	1,3,5-Trimethylbenzene	10.4	ug/L
	4-Isopropyltoluene	2.27	ug/L
	cis-1,2-Dichloroethene	1.02	ug/L
	Ethylbenzene	1.12	ug/L
	Naphthalene	2.21	ug/L
	n-Propylbenzene	2.03	ug/L
	o-Xylene	1.85	ug/L
	P & M -Xylene	5.89	ug/L
	Xylenes (total)	7.74	ug/L
Client Sample ID: MW5-0825			
Lab Sample ID: 1176061002	Devemeter	Decult	Llaita
•	Parameter Diesel Range Organics	<u>Result</u> 3.38	<u>Units</u>
Semivolatile Organic Fuels		3.36 1.11	mg/L
Waladia Parala	Residual Range Organics	0.120	mg/L
Volatile Fuels	Gasoline Range Organics 1,1,1-Trichloroethane	2.58	mg/L
Volatile GC/MS	* *		ug/L
	1,1-Dichloroethane	2.00	ug/L
	1,2,4-Trimethylbenzene	20.1	ug/L
	1,3,5-Trimethylbenzene	10.3	ug/L
	4-Isopropyltoluene	2.29	ug/L
	cis-1,2-Dichloroethene	1.00	ug/L
	Ethylbenzene	1.17	ug/L
	Naphthalene	2.19	ug/L
	n-Propylbenzene	2.01	ug/L
	o-Xylene	1.91	ug/L
	P & M -Xylene	5.99	ug/L
	Xylenes (total)	7.90	ug/L

Print Date: 09/07/2017 3:24:43PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW4-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061001 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	2.93	0.588	0.176	mg/L	1		08/31/17 13:36
Surrogates							
5a Androstane (surr)	80.8	50-150		%	1		08/31/17 13:36

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 08/31/17 13:36 Container ID: 1176061001-G Prep Batch: XXX38284
Prep Method: SW3520C
Prep Date/Time: 08/28/17 08:55
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.931	0.490	0.147	mg/L	1		08/31/17 13:36
Surrogates							
n-Triacontane-d62 (surr)	89.6	50-150		%	1		08/31/17 13:36

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 08/31/17 13:36 Container ID: 1176061001-G Prep Batch: XXX38284 Prep Method: SW3520C Prep Date/Time: 08/28/17 08:55 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: MW4-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061001 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.121	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/28/17 21:23
Surrogates							
4-Bromofluorobenzene (surr)	97.4	50-150		%	1		08/28/17 21:23

Batch Information

Analytical Batch: VFC13842 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/28/17 21:23 Container ID: 1176061001-A Prep Batch: VXX31167
Prep Method: SW5030B
Prep Date/Time: 08/28/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW4-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061001 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
1,1,1-Trichloroethane	2.63	1.00	0.310	ug/L	1		09/03/17 22:46
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		09/03/17 22:46
1,1-Dichloroethane	1.94	1.00	0.310	ug/L	1		09/03/17 22:46
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,2,4-Trimethylbenzene	20.5	1.00	0.310	ug/L	1		09/03/17 22:46
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		09/03/17 22:46
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		09/03/17 22:46
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1		09/06/17 15:39
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,3,5-Trimethylbenzene	10.4	1.00	0.310	ug/L	1		09/03/17 22:46
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		09/03/17 22:46
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		09/03/17 22:46
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
4-Isopropyltoluene	2.27	1.00	0.310	ug/L	1		09/03/17 22:46
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		09/03/17 22:46
Benzene	0.400 U	0.400	0.120	ug/L	1		09/06/17 15:39
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
Bromoform	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
Bromomethane	5.00 U	5.00	1.50	ug/L	1		09/03/17 22:46
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		09/03/17 22:46
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
Chloroethane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46

Client Sample ID: MW4-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061001 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
Chloroform	1.00 U	1.00	<u>0.3</u> 0.310	ug/L	1	Limits	09/03/17 22:46
Chloromethane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:46
cis-1,2-Dichloroethene	1.02	1.00	0.310	ug/L	1		09/03/17 22:46
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		09/03/17 22:46
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:40
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:4
Ethylbenzene	1.12	1.00	0.310	ug/L	1		09/03/17 22:4
Freon-113	10.0 U	10.0	3.10	ug/L	1		09/03/17 22:4
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:4
sopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:4
Methylene chloride	5.00 U	5.00	1.00	ug/L	1		09/03/17 22:4
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		09/03/17 22:4
Naphthalene	2.21	1.00	0.310	ug/L	1		09/03/17 22:4
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:4
-Propylbenzene	2.03	1.00	0.310	ug/L	1		09/03/17 22:4
p-Xylene	1.85	1.00	0.310	ug/L ug/L	1		09/03/17 22:4
P & M -Xylene	5.89	2.00	0.620	ug/L	1		09/03/17 22:4
ec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:4
Styrene	1.00 U	1.00	0.310	ug/L ug/L	1		09/03/17 22:4
ert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		09/03/17 22:-
Tetrachloroethene	1.00 U	1.00	0.310	ug/L ug/L	1		09/03/17 22:4
oluene	1.00 U	1.00	0.310	ug/L ug/L	1		09/06/17 15:3
rans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L ug/L	1		09/03/17 13:3
rans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L ug/L	1		09/03/17 22:4
richloroethene	1.00 U	1.00	0.310	ug/L ug/L	1		09/03/17 22:4
richlorofluoromethane	1.00 U	1.00	0.310	ug/L ug/L	1		09/03/17 22:4
/inyl acetate	10.0 U	10.0	3.10	ug/L ug/L	1		09/03/17 22:4
/inyl chloride	0.150 U	0.150	0.0500	ug/L ug/L	1		09/03/17 22:4
•	7.74	3.00	1.00	ug/L ug/L	1		09/03/17 22:4
(ylenes (total)	1.14	3.00	1.00	ug/L	ı		03103111 22.4
ırrogates							
,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/03/17 22:4
1-Bromofluorobenzene (surr)	96.6	85-114		%	1		09/03/17 22:4
Foluene-d8 (surr)	99.9	89-112		%	1		09/03/17 22:4

Client Sample ID: MW4-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061001 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17144 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 09/06/17 15:39 Container ID: 1176061001-D

Analytical Batch: VMS17134 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 09/03/17 22:46 Container ID: 1176061001-D Prep Batch: VXX31230 Prep Method: SW5030B Prep Date/Time: 09/06/17 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX31215
Prep Method: SW5030B
Prep Date/Time: 09/03/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW5-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061002 Lab Project ID: 1176061 Collection Date: 08/25/17 13:30 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	3.38	0.600	0.180	mg/L	1		08/31/17 13:46
Surrogates							
5a Androstane (surr)	79.5	50-150		%	1		08/31/17 13:46

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 08/31/17 13:46 Container ID: 1176061002-G Prep Batch: XXX38284
Prep Method: SW3520C
Prep Date/Time: 08/28/17 08:55
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.11	0.500	0.150	mg/L	1		08/31/17 13:46
Surrogates							
n-Triacontane-d62 (surr)	88.7	50-150		%	1		08/31/17 13:46

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 08/31/17 13:46 Container ID: 1176061002-G Prep Batch: XXX38284 Prep Method: SW3520C Prep Date/Time: 08/28/17 08:55 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: MW5-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061002 Lab Project ID: 1176061 Collection Date: 08/25/17 13:30 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.120	LOQ/CL 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/28/17 21:42
Surrogates 4-Bromofluorobenzene (surr)	95.4	50-150		%	1		08/28/17 21:42

Batch Information

Analytical Batch: VFC13842 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/28/17 21:42 Container ID: 1176061002-A

Prep Batch: VXX31167
Prep Method: SW5030B
Prep Date/Time: 08/28/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW5-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061002 Lab Project ID: 1176061 Collection Date: 08/25/17 13:30 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

D #0 1	1.00/01	D.		55	Allowable	D . A
					<u>Limits</u>	Date Analyzed 09/03/17 23:04
			-	•		
			•			09/03/17 23:04
						09/03/17 23:04
			-			09/03/17 23:04
			-			09/03/17 23:04
			-			09/03/17 23:04
			-			09/03/17 23:04
			-			09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
20.1	1.00	0.310	ug/L	1		09/03/17 23:04
10.0 U	10.0	3.10	ug/L	1		09/03/17 23:04
0.0750 U	0.0750	0.0180	ug/L	1		09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
0.500 U	0.500	0.150	ug/L	1		09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
10.3	1.00	0.310	ug/L	1		09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
0.500 U	0.500	0.150	ug/L	1		09/03/17 23:04
0.500 U	0.500	0.150	ug/L	1		09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
10.0 U	10.0	3.10	ug/L	1		09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
10.0 U	10.0	3.10	ug/L	1		09/03/17 23:04
1.00 U	1.00	0.310	ug/L	1		09/03/17 23:04
2.29	1.00	0.310	-	1		09/03/17 23:04
10.0 U	10.0	3.10	-	1		09/03/17 23:04
0.400 U	0.400	0.120	-	1		09/03/17 23:04
1.00 U	1.00	0.310	-	1		09/03/17 23:04
	1.00		-	1		09/03/17 23:04
	0.500		-	1		09/03/17 23:04
			Ū			09/03/17 23:04
			_			09/03/17 23:04
			•			09/03/17 23:04
			•			09/03/17 23:04
			-			09/03/17 23:04
1.00 U	1.00	0.130	ug/L ug/L	1		09/03/17 23:04
	10.0 U 0.0750 U 1.00 U 0.500 U 1.00 U 1.00 U 0.500 U 0.500 U 1.00 U 0.400 U 1.00 U 0.500 U 1.00 U 0.500 U 1.00 U 0.500 U	0.500 U 0.500 2.58 1.00 0.500 U 0.500 0.400 U 0.400 2.00 1.00 1.00 U 1.00 0.0750 U 0.750 1.00 U 1.00 0.500 U 0.500 1.00 U 1.00 0.500 U 0.500 1.00 U 1.00 0.500 U 0.500 1.00 U 1.00 1.00 U 1.00 0.500 U 0.500 1.00 U 1.00 0.500 U 0.500 1.00 U 1.00 0.500 U 0.500 1.00 U 1.00 0.500 U 0.500 1.00 U 1.00 0.500 U 1.00 0.500 U 1.00 0.500 U 0.500	0.500 U 0.500 0.150 2.58 1.00 0.310 0.500 U 0.500 0.150 0.400 U 0.400 0.120 2.00 1.00 0.310 1.00 U 1.00 0.310 <	0.500 U 0.500 0.150 ug/L 2.58 1.00 0.310 ug/L 0.500 U 0.500 0.150 ug/L 0.400 U 0.400 0.120 ug/L 2.00 1.00 0.310 ug/L 1.00 U 1.00	0.500 U 0.500 0.150 ug/L 1 2.58 1.00 0.310 ug/L 1 0.500 U 0.500 0.150 ug/L 1 0.400 U 0.400 0.120 ug/L 1 0.400 U 0.400 0.120 ug/L 1 1.00 U 1.00 0.310 ug/L	Result Qual LOQ/CL DL Units DF Limits

Client Sample ID: MW5-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061002 Lab Project ID: 1176061 Collection Date: 08/25/17 13:30 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyze</u>
Chloroform	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Chloromethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
cis-1,2-Dichloroethene	1.00	1.00	0.310	ug/L	1	09/03/17 23:
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1	09/03/17 23:
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1	09/03/17 23:
Dibromomethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Ethylbenzene	1.17	1.00	0.310	ug/L	1	09/03/17 23:
Freon-113	10.0 U	10.0	3.10	ug/L	1	09/03/17 23:
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Methylene chloride	5.00 U	5.00	1.00	ug/L	1	09/03/17 23:
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1	09/03/17 23:
Naphthalene	2.19	1.00	0.310	ug/L	1	09/03/17 23:
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
n-Propylbenzene	2.01	1.00	0.310	ug/L	1	09/03/17 23:
o-Xylene	1.91	1.00	0.310	ug/L	1	09/03/17 23:
P & M -Xylene	5.99	2.00	0.620	ug/L	1	09/03/17 23:
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Styrene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Toluene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Trichloroethene	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 23:
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1	09/03/17 23:
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1	09/03/17 23:
Xylenes (total)	7.90	3.00	1.00	ug/L	1	09/03/17 23:
urrogates						
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1	09/03/17 23:
4-Bromofluorobenzene (surr)	95.9	85-114		%	1	09/03/17 23:
Toluene-d8 (surr)	100	89-112		%	1	09/03/17 23:

Client Sample ID: MW5-0825

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061002 Lab Project ID: 1176061 Collection Date: 08/25/17 13:30 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17134 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 09/03/17 23:04 Container ID: 1176061002-D Prep Batch: VXX31215
Prep Method: SW5030B
Prep Date/Time: 09/03/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061003 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.100 U	0.100	0.0310	mg/L	1		08/28/17 20:45
Surrogates							
4-Bromofluorobenzene (surr)	90.7	50-150		%	1		08/28/17 20:45

Batch Information

Analytical Batch: VFC13842 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/28/17 20:45 Container ID: 1176061003-A Prep Batch: VXX31167
Prep Method: SW5030B
Prep Date/Time: 08/28/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061003 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	09/03/17 21:01
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	09/03/17 21:01
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1	09/03/17 21:01
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,2,4-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1	09/03/17 21:01
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1	09/03/17 21:01
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1	09/03/17 21:01
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1	09/03/17 21:01
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	09/03/17 21:01
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1	09/03/17 21:01
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
2-Hexanone	10.0 U	10.0	3.10	ug/L	1	09/03/17 21:01
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1	09/03/17 21:01
Benzene	0.400 U	0.400	0.120	ug/L	1	09/03/17 21:01
Bromobenzene	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1	09/03/17 21:01
Bromoform	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
Bromomethane	5.00 U	5.00	1.50	ug/L	1	09/03/17 21:01
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1	09/03/17 21:01
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1	09/03/17 21:01
Chloroethane	1.00 U	1.00	0.310	ug/L	1	09/03/17 21:01

Client Sample ID: Trip Blank

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061003 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits D	ate Analyze
<u>- arameter</u> Chloroform	1.00 U	1.00	0.310	ug/L	1	·	9/03/17 21:0
Chloromethane	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:0 9/03/17 21:0
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:0 9/03/17 21:0
cis-1,3-Dichloropropene	0.500 U	0.500	0.310	ug/L ug/L	1		9/03/17 21:0 9/03/17 21:0
Dibromochloromethane	0.500 U	0.500	0.150	ug/L ug/L	1		9/03/17 21:0 9/03/17 21:0
Dibromomethane	1.00 U	1.00	0.130	ug/L	1		9/03/17 21: 9/03/17 21:
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L ug/L	1		9/03/17 21: 9/03/17 21:
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21: 9/03/17 21:
Freon-113	10.0 U	10.0	3.10	ug/L ug/L	1		9/03/17 21: 9/03/17 21:
Hexachlorobutadiene	1.00 U	1.00	0.310	Ū	1		9/03/17 21: 9/03/17 21:
sopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L ug/L	1		9/03/17 21: 9/03/17 21:
,	5.00 U	5.00	1.00		1		9/03/17 21. 9/03/17 21:
Methylene chloride	10.0 U			ug/L	1		9/03/17 21. 9/03/17 21:
Methyl-t-butyl ether		10.0	3.10	ug/L			
Naphthalene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
o-Xylene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		9/03/17 21:
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
Styrene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
ert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
Гoluene	1.00 U	1.00	0.310	ug/L	1		9/03/17 21:
rans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	0	9/03/17 21:
rans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	0	9/03/17 21:
Trichloroethene	1.00 U	1.00	0.310	ug/L	1	0	9/03/17 21:
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1	0	9/03/17 21:
√inyl acetate	10.0 U	10.0	3.10	ug/L	1	0	9/03/17 21:
/inyl chloride	0.150 U	0.150	0.0500	ug/L	1	0	9/03/17 21:
Xylenes (total)	3.00 U	3.00	1.00	ug/L	1	0	9/03/17 21:
urrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1	0	9/03/17 21:
4-Bromofluorobenzene (surr)	103	85-114		%	1	0	9/03/17 21:
Toluene-d8 (surr)	101	89-112		%	1	0	9/03/17 21:

Client Sample ID: Trip Blank

Client Project ID: AK Sales & Service

Lab Sample ID: 1176061003 Lab Project ID: 1176061 Collection Date: 08/25/17 13:10 Received Date: 08/25/17 15:46 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17134 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 09/03/17 21:01 Container ID: 1176061003-D Prep Batch: VXX31215
Prep Method: SW5030B
Prep Date/Time: 09/03/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Blank ID: MB for HBN 1767109 [VXX/31167]

Blank Lab ID: 1408805

QC for Samples:

1176061001, 1176061002, 1176061003

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0310
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 91.1 50-150 %

Batch Information

Analytical Batch: VFC13842 Prep Batch: VXX31167
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/28/2017 8:00:00AM

Analyst: ST Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/28/2017 8:26:00PM Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1176061 [VXX31167]

Blank Spike Lab ID: 1408808 Date Analyzed: 08/28/2017 17:20 Spike Duplicate ID: LCSD for HBN 1176061

[VXX31167]

Spike Duplicate Lab ID: 1408809 Matrix: Water (Surface, Eff., Ground)

1176061001, 1176061002, 1176061003 QC for Samples:

Results by AK101

	E	Blank Spike	e (mg/L)	S	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.987	99	1.00	0.952	95	(60-120)	3.60	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	96.3	96	0.0500	95.8	96	(50-150)	0.50	

Batch Information

Analytical Batch: VFC13842 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX31167 Prep Method: SW5030B

Prep Date/Time: 08/28/2017 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Blank ID: MB for HBN 1767620 [VXX/31215]

Blank Lab ID: 1410363

QC for Samples:

1176061001, 1176061002, 1176061003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

Doromotor	Dogulto	1.00/01	DI	Llaita
Parameter 1,1,1,2-Tetrachloroethane	Results 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.130	ug/L ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.310	ug/L ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.130	ug/L ug/L
	0.500U	1.00	0.120	_
1,1-Dichloroethane				ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Blank ID: MB for HBN 1767620 [VXX/31215]

Blank Lab ID: 1410363

QC for Samples:

1176061001, 1176061002, 1176061003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	81-118		%
4-Bromofluorobenzene (surr)	105	85-114		%
Toluene-d8 (surr)	100	89-112		%

Blank ID: MB for HBN 1767620 [VXX/31215]

Blank Lab ID: 1410363

QC for Samples:

1176061001, 1176061002, 1176061003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS17134 Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Analytical Date/Time: 9/3/2017 3:21:00PM

Prep Batch: VXX31215 Prep Method: SW5030B

Prep Date/Time: 9/3/2017 12:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1176061 [VXX31215]

Blank Spike Lab ID: 1410366 Date Analyzed: 09/03/2017 17:46 Spike Duplicate ID: LCSD for HBN 1176061

[VXX31215]

Spike Duplicate Lab ID: 1410367 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1176061001, 1176061002, 1176061003

Results by SW8260C

Parameter Spike Result Rec (%) Spike Result Rec (%) Spike Result Rec (%) Calt Rep (%) Calt Ca			Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
1,1,1-Trichloroethane	<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	30	29.8	99	30	30.7	102	(78-124)	3.00	(< 20)
1,1,2-Trichloroethane 30 31.0 103 30 31.8 106 (80-119) 2.40 (<20) 1,1-Dichloroethane 30 28.0 93 30 27.7 92 (77-125) 1.10 (<20) 1,1-Dichloroethene 30 26.3 88 30 26.3 88 (71-131) 0.19 (<20) 1,1-Dichloroptopene 30 29.2 97 30 29.2 97 (<79-125) 0.21 (<20) 1,2,3-Trichloroppropane 30 30.2 101 30 31.4 105 (<69-120) 4.00 (<20) 1,2,4-Trichlorobenzene 30 30.7 102 30 31.8 106 (<69-130) 3.50 (<20) 1,2-Hrichlorobenzene 30 29.7 99 30 31.1 104 (<77-121) 3.6 (<20) 1,2-Dichlorobenzene 30 29.7 99 30 31.1 104 (<77-121) 3.6 (<20)	1,1,1-Trichloroethane	30	28.7	96	30	28.3	94	(74-131)	1.20	(< 20)
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	30	30.0	100	30	30.8	103	(71-121)	2.80	(< 20)
1,1-Dichloroethene 30 26.3 88 30 26.3 88 (71-131) 0.19 (<20) 1,1-Dichloropropene 30 29.2 97 30 29.2 97 (79-125) 0.21 (<20) 1,2,3-Trichlorobenzene 30 30.2 101 30 31.4 105 (69-129) 4.00 (<20) 1,2,3-Trichlorobenzene 30 30.7 102 30 31.8 106 (69-130) 3.50 (<20) 1,2,4-Trinchlorobenzene 30 30.7 102 30 31.8 106 (69-130) 3.50 (<20) 1,2,4-Trinchlorobenzene 30 27.5 92 30 29.6 99 (79-124) 7.30 (<20) 1,2-Dibromo-3-chloropropane 30 29.7 99 30 31.2 104 (62-128) 4.90 (<20) 1,2-Dibromethane 30 30.0 100 30 31.1 104 (77-121) 3.60 (<20) 1,2-Dichlorobenzene 30 28.9 96 30 29.8 99 (80-119) 3.10 (<20) 1,2-Dichloropropane 30 27.4 91 30 29.5 99 (78-122) 0.07 (<20) 1,3-Dichlorobenzene 30 28.5 95 30 29.2 97 (80-119) 2.70 (<20) 1,3-Dichlorobenzene 30 28.5 95 30 29.2 97 (80-119) 2.70 (<20) 1,3-Dichlorobenzene 30 28.7 99 30 31.5 105 (80-119) 2.30 (<20) 1,4-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (<20) 1,4-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (<20) 2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (<20) 2-Butanone (MEK) 90 89.1 99 90 97.9 100 (79-122) 4.20 (<20) 2-Butanone (MEK) 90 89.1 99 90 97.9 109 (57-139) 9.40 (<20) 2-Hutanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (<20) 3-Dichlorobenzene 30 28.8 99 99 (79-120) 2.60 (<20) 3-Dichlorobenzene 30 28.9 99 99 99 99 99 (79-120) 2.60 (<20) 3-Dichlorobenzene 30 28.9 99 99 99 99 99 99 99	1,1,2-Trichloroethane	30	31.0	103	30	31.8	106	(80-119)	2.40	(< 20)
1,1-Dichloropropene 30 29.2 97 30 29.2 97 (79-125) 0.21 (< 20) 1,2,3-Trichlorobenzene 30 30.2 101 30 31.4 105 (69-129) 4.00 (< 20) 1,2,3-Trichloropropane 30 29.4 98 30 31.1 104 (73-122) 5.60 (< 20) 1,2,4-Trimethrylbenzene 30 30.7 102 30 31.8 106 (69-130) 3.50 (< 20) 1,2,4-Trimethrylbenzene 30 27.5 92 30 29.6 99 (79-124) 7.30 (< 20) 1,2-Dibromo-3-chloropropane 30 29.7 99 30 31.2 104 (62-128) 4.90 (< 20) 1,2-Dibromoethane 30 30.0 100 30 31.1 104 (77-121) 3.60 (< 20) 1,2-Dichlorobenzene 30 28.9 96 30 29.8 99 (80-119) 3.10 (< 20) 1,2-Dichloropane 30 27.6 92 30 29.5 99 (73-128) 2.50 (< 20) 1,2-Dichloropane 30 29.6 99 30 29.5 99 (73-128) 2.50 (< 20) 1,3-Dichloropane 30 27.4 91 30 29.3 98 (75-124) 6.90 (< 20) 1,3-Dichloropane 30 30.8 103 30 31.5 105 (80-119) 2.70 (< 20) 1,3-Dichloropane 30 30.8 103 30 31.5 105 (80-119) 2.70 (< 20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (< 20) 1,4-Dichloropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20) 2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (< 20) 2-Butanone (MEK) 90 89.1 99 90 97.9 109 (57-139) 9.40 (< 20) 4-Chlorotoluene 30 28.7 96 30 29.8 96 (78-122) 3.80 (< 20) 4-Chlorotoluene 30 28.6 95 30 29.8 99 (79-120) 2.60 (< 20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (< 20) Benzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (< 20) Bromochloromethane 30 29.7 99 30 29.4 98 (79-125) 1.40 (< 20) Bromochloromethane 30 29.7 99 30 29.9 96 (78-123) 2.80 (< 20) Bromochloromethane 30 29.7 99 30 29.9 96 (78-123) 2.80 (< 20) Bromoc	1,1-Dichloroethane	30	28.0	93	30	27.7	92	(77-125)	1.10	(< 20)
1,2,3-Trichlorobenzene 30 30.2 101 30 31.4 105 (69-129 4.00 (<20 1.2,3-Trichloropropane 30 29.4 98 30 31.1 104 (73-122 5.60 (<20 1.2,4-Trichloropenzene 30 30.7 102 30 31.8 106 (69-130 3.50 (<20 1.2,4-Trichlorobenzene 30 27.5 92 30 29.6 99 (79-124 7.30 (<20 1.2,4-Trichloropenzene 30 29.7 99 30 31.2 104 (62-128 4.90 (<20 1.2-Dibromo-3-chloropropane 30 29.7 99 30 31.2 104 (62-128 4.90 (<20 1.2-Dibromoethane 30 30.0 100 30 31.1 104 (77-121 3.60 (<20 1.2-Dibromoethane 30 28.9 96 30 29.8 99 (80-119 3.10 (<20 1.2-Dichloropropane 30 27.6 92 30 26.9 90 (73-128 2.50 (<20 1.2-Dichloropropane 30 29.6 99 30 29.5 99 (78-122 0.07 (<20 1.3-Dichloropropane 30 27.4 91 30 29.3 98 (75-124 6.90 (<20 1.3-Dichloropropane 30 28.5 95 30 29.2 97 (80-119 2.30 (<20 1.3-Dichloropropane 30 28.5 95 30 29.2 97 (80-119 2.30 (<20 1.3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119 2.30 (<20 1.3-Dichloropropane 30 29.0 97 30 29.6 99 (79-118 2.10 (<20 2.2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139 7.90 (<20 2.2-Dichloropropane 30 28.7 96 30 29.9 100 (79-122 4.20 (<20 2.2-Dichlorobluene 30 28.7 96 30 29.9 100 (79-122 4.20 (<20 2.2-Dichlorobluene 30 28.7 96 30 29.8 96 (78-122 3.80 (<20 2.2-Dichlorobluene 30 28.7 96 30 29.8 96 (78-122 3.80 (<20 2.2-Dichlorobluene 30 28.7 96 30 29.8 96 (78-122 3.80 (<20 2.2-Dichlorobluene 30 28.6 95 30 30.0 100 (77-127 5.00 (<20 3.2-Dichlorobluene 30 28.6 95 30 30.0 100 (77-127 5.00 (<20 3.2-Dichlorobluene 30 28.3 94 30 28.8 96 (78-122 3.80 (<20 3.2-Dichlorobluene 30 29.8 99 30 29.5 98 (80-120 4.10 (<20 3.2-Dichlorobluen	1,1-Dichloroethene	30	26.3	88	30	26.3	88	(71-131)	0.19	(< 20)
1,2,3-Trichloropropane 30 29.4 98 30 31.1 104 (73-122) 5.60 (< 20) 1,2,4-Trichlorobenzene 30 30.7 102 30 31.8 106 (69-130) 3.50 (< 20) 1,2,4-Trimethylbenzene 30 27.5 92 30 29.6 99 (79-124) 7.30 (< 20) 1,2-Dibromo-3-chloropropane 30 29.7 99 30 31.2 104 (62-128) 4.90 (< 20) 1,2-Dibromo-brachane 30 30.0 100 30 31.1 104 (77-121) 3.60 (< 20) 1,2-Dichlorobenzene 30 28.9 96 30 29.8 99 (80-119) 3.10 (< 20) 1,2-Dichloropropane 30 27.6 92 30 26.9 90 (73-128) 2.50 (< 20) 1,2-Dichloropropane 30 27.6 92 30 29.5 99 (78-122) 0.07 (< 20) 1,3-Dichloropropane 30 27.4 91 30 29.3 98 (75-124) 6.90 (< 20) 1,3-Dichloropropane 30 28.5 95 30 29.2 97 (80-119) 2.70 (< 20) 1,3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119) 2.30 (< 20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (< 20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (< 20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (80-139) 7.90 (< 20) 2,2-Dichloropropane 30 28.7 96 30 29.9 100 (79-122) 4.20 (< 20) 2,2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20) 2-Hexanone 30 28.6 95 30 30.0 100 (79-122) 4.20 (< 20) 2-Hexanone 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20) 3-Hexanone 30 28.8 96 (78-122) 3.80 (< 20) 3-Hexanone 30 28.9 97 30 29.8 99 (79-120) 2.60 (< 20) 3-Hexanone 30 28.9 97 30 29.8 99 (79-120) 2.60 (< 20) 3-Hexanone 30 28.9 97 30 29.8 99 (79-120) 2.60 (< 20) 3-Hexanone 30 28.9 97 30 29.8 99 (79-120) 2.60 (< 20) 3-Hexanone 30 28.9 99 30 29.8 99 (79-120) 2.60 (< 20) 3-Hexanone 30 28.9 99 30 29.9 99	1,1-Dichloropropene	30	29.2	97	30	29.2	97	(79-125)	0.21	(< 20)
1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	30	30.2	101	30	31.4	105	(69-129)	4.00	(< 20)
1,2,4-Trimethylbenzene 30 27.5 92 30 29.6 99 (79-124) 7.30 (<20)	1,2,3-Trichloropropane	30	29.4	98	30	31.1	104	(73-122)	5.60	(< 20)
1,2-Dibromo-3-chloropropane 30 29.7 99 30 31.2 104 (62-128) 4.90 (< 20 1,2-Dibromoethane 30 30.0 100 30 31.1 104 (77-121) 3.60 (< 20 1,2-Dichlorobenzene 30 28.9 96 30 29.8 99 (80-119) 3.10 (< 20 1,2-Dichloropropane 30 27.6 92 30 26.9 90 (73-128) 2.50 (< 20 1,2-Dichloropropane 30 29.6 99 30 29.5 99 (78-122 0.07 (< 20 1,3-Dichlorobenzene 30 27.4 91 30 29.3 98 (75-124 6.90 (< 20 1,3-Dichloropropane 30 28.5 95 30 29.2 97 (80-119) 2.70 (< 20 1,3-Dichloropropane 30 28.5 97 30 29.5 99 (79-118) 2.70 (< 20 1,3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119) 2.30 (< 20 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118 2.10 (< 20 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20 2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (< 20 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20 2-Hexanone 30 27.7 93 30 28.8 96 (78-122) 3.80 (< 20 2-Hexanone 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20 2-Hexanone 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20 2-Hexanone 30 28.3 94 30 29.8 99 (79-120) 2.60 (< 20 3-Hexanone 30 28.3 94 30 29.8 99 (79-125) 4.20 (< 20 3-Hexanone 30 28.3 94 30 29.8 99 (79-125) 4.10 (< 20 3-Hexanone 30 28.3 94 30 29.8 99 (79-125) 4.10 (< 20 3-Hexanone 30 28.3 94 30 29.8 99 (79-125) 4.10 (< 20 3-Hexanone 30 28.3 94 30 29.8 99 (79-125) 4.10 (< 20 3-Hexanone 30 29.8 99 30 29.8 99 (79-125) 4.10 (< 20 3-Hexanone 30 29.8 99 30 29.8	1,2,4-Trichlorobenzene	30	30.7	102	30	31.8	106	(69-130)	3.50	(< 20)
1,2-Dibromoethane 30 30.0 100 30 31.1 104 (77-121) 3.60 (< 20)	1,2,4-Trimethylbenzene	30	27.5	92	30	29.6	99	(79-124)	7.30	(< 20)
1,2-Dichlorobenzene 30 28.9 96 30 29.8 99 (80-119) 3.10 (< 20)	1,2-Dibromo-3-chloropropane	30	29.7	99	30	31.2	104	(62-128)	4.90	(< 20)
1,2-Dichloroethane 30 27.6 92 30 26.9 90 (73-128) 2.50 (< 20) 1,2-Dichloropropane 30 29.6 99 30 29.5 99 (78-122) 0.07 (< 20) 1,3,5-Trimethylbenzene 30 27.4 91 30 29.3 98 (75-124) 6.90 (< 20) 1,3-Dichlorobenzene 30 28.5 95 30 29.2 97 (80-119) 2.70 (< 20) 1,3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119) 2.30 (< 20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (< 20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20) 2,2-Dichloropropane 30 28.7 96 30 29.9 100 (79-1	1,2-Dibromoethane	30	30.0	100	30	31.1	104	(77-121)	3.60	(< 20)
1,2-Dichloropropane 30 29.6 99 30 29.5 99 (78-122) 0.07 (<20) 1,3,5-Trimethylbenzene 30 27.4 91 30 29.3 98 (75-124) 6.90 (<20) 1,3-Dichlorobenzene 30 28.5 95 30 29.2 97 (80-119) 2.70 (<20) 1,3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119) 2.30 (<20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (<20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (<20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (<20) 2,2-Dichloropropane 30 28.7 96 30 29.9 104 (56-143) 5.30 (<20) 2,2-Dichloropropane 30 28.7 96 30 29.9 100 (79-122) <th>1,2-Dichlorobenzene</th> <th>30</th> <th>28.9</th> <th>96</th> <th>30</th> <th>29.8</th> <th>99</th> <th>(80-119)</th> <th>3.10</th> <th>(< 20)</th>	1,2-Dichlorobenzene	30	28.9	96	30	29.8	99	(80-119)	3.10	(< 20)
1,3,5-Trimethylbenzene 30 27.4 91 30 29.3 98 (75-124) 6.90 (< 20) 1,3-Dichlorobenzene 30 28.5 95 30 29.2 97 (80-119) 2.70 (< 20) 1,3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119) 2.30 (< 20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (< 20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20) 2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (< 20) 2-Chlorotoluene 30 28.7 96 30 29.9 100 (79-122) 4.20 (< 20) 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20) 4-Sopropyltoluene 30 27.7 93 30 28.8 96 (78-122) <	1,2-Dichloroethane	30	27.6	92	30	26.9	90	(73-128)	2.50	(< 20)
1,3-Dichlorobenzene 30 28.5 95 30 29.2 97 (80-119) 2.70 (< 20) 1,3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119) 2.30 (< 20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (< 20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20) 2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (< 20) 2-Chlorotoluene 30 28.7 96 30 29.9 100 (79-122) 4.20 (< 20) 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20) 4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.	1,2-Dichloropropane	30	29.6	99	30	29.5	99	(78-122)	0.07	(< 20)
1,3-Dichloropropane 30 30.8 103 30 31.5 105 (80-119) 2.30 (< 20) 1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (< 20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20) 2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (< 20) 2-Chlorotoluene 30 28.7 96 30 29.9 100 (79-122) 4.20 (< 20) 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20) 4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130)	1,3,5-Trimethylbenzene	30	27.4	91	30	29.3	98	(75-124)	6.90	(< 20)
1,4-Dichlorobenzene 30 29.0 97 30 29.6 99 (79-118) 2.10 (<20) 2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (<20) 2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (<20) 2-Chlorotoluene 30 28.7 96 30 29.9 100 (79-122) 4.20 (<20) 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (<20) 4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (<20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (<20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (<20) Benzene 30 28.3 94 30 29.8 99 (79-120) 2.60	1,3-Dichlorobenzene	30	28.5	95	30	29.2	97	(80-119)	2.70	(< 20)
2,2-Dichloropropane 30 30.2 101 30 27.9 93 (60-139) 7.90 (< 20) 2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (< 20) 2-Chlorotoluene 30 28.7 96 30 29.9 100 (79-122) 4.20 (< 20) 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20) 4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (< 20) Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (< 20) Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10	1,3-Dichloropropane	30	30.8	103	30	31.5	105	(80-119)	2.30	(< 20)
2-Butanone (MEK) 90 89.1 99 90 93.9 104 (56-143) 5.30 (<20) 2-Chlorotoluene 30 28.7 96 30 29.9 100 (79-122) 4.20 (<20) 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (<20) 4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (<20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (<20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (<20) Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (<20) Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (<20) Bromochloromethane 30 29.7 99 30 28.9 96 (78-123) 2.80 (<20) Bromodichloromethane 30 29.8 99 30 29.4 98 (79-125) 1.40 (<20) Bromoform 30 32.1 107 30 32.3 108 (66-130) 0.68 (<20) Bromomethane 30 26.1 87 30 25.9 86 (53-141) 0.46 (<20)	1,4-Dichlorobenzene	30	29.0	97	30	29.6	99	(79-118)	2.10	(< 20)
2-Chlorotoluene 30 28.7 96 30 29.9 100 (79-122) 4.20 (< 20) 2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20) 4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (< 20) Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (< 20) Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (< 20) Bromochloromethane 30 29.7 99 30 28.9 96 (78-123) 2.80 (< 20) Bromoform 30 32.1 107 30 32.3 108 (66-130) 0.68 (2,2-Dichloropropane	30	30.2	101	30	27.9	93	(60-139)	7.90	(< 20)
2-Hexanone 90 89.2 99 90 97.9 109 (57-139) 9.40 (< 20) 4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (< 20) Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (< 20) Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (< 20) Bromochloromethane 30 29.7 99 30 28.9 96 (78-123) 2.80 (< 20) Bromoform 30 32.1 107 30 32.3 108 (66-130) 0.68 (< 20) Bromomethane 30 26.1 87 30 25.9 86 (53-141) 0.46 (< 20	2-Butanone (MEK)	90	89.1	99	90	93.9	104	(56-143)	5.30	(< 20)
4-Chlorotoluene 30 27.7 93 30 28.8 96 (78-122) 3.80 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (< 20) Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (< 20) Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (< 20) Bromochloromethane 30 29.7 99 30 28.9 96 (78-123) 2.80 (< 20) Bromoform 30 32.1 107 30 32.3 108 (66-130) 0.68 (< 20) Bromomethane 30 26.1 87 30 25.9 86 (53-141) 0.46 (< 20)	2-Chlorotoluene	30	28.7	96	30	29.9	100	(79-122)	4.20	(< 20)
4-Isopropyltoluene 30 28.6 95 30 30.0 100 (77-127) 5.00 (< 20) 4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (< 20) Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (< 20) Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (< 20) Bromochloromethane 30 29.7 99 30 28.9 96 (78-123) 2.80 (< 20) Bromodichloromethane 30 29.8 99 30 29.4 98 (79-125) 1.40 (< 20) Bromoform 30 32.1 107 30 32.3 108 (66-130) 0.68 (< 20) Bromomethane 30 26.1 87 30 25.9 86 (53-141) 0.46 (< 20)	2-Hexanone	90	89.2	99	90	97.9	109	(57-139)	9.40	(< 20)
4-Methyl-2-pentanone (MIBK) 90 91.6 102 90 95.5 106 (67-130) 4.20 (< 20) Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (< 20) Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (< 20) Bromochloromethane 30 29.7 99 30 28.9 96 (78-123) 2.80 (< 20) Bromodichloromethane 30 29.8 99 30 29.4 98 (79-125) 1.40 (< 20) Bromoform 30 32.1 107 30 32.3 108 (66-130) 0.68 (< 20) Bromomethane 30 26.1 87 30 25.9 86 (53-141) 0.46 (< 20)	4-Chlorotoluene	30	27.7	93	30	28.8	96	(78-122)	3.80	
Benzene 30 29.0 97 30 29.8 99 (79-120) 2.60 (< 20)	4-Isopropyltoluene	30	28.6	95	30	30.0	100	(77-127)	5.00	(< 20)
Bromobenzene 30 28.3 94 30 29.5 98 (80-120) 4.10 (< 20)	4-Methyl-2-pentanone (MIBK)	90	91.6	102	90	95.5	106	(67-130)	4.20	(< 20)
Bromochloromethane 30 29.7 99 30 28.9 96 (78-123) 2.80 (< 20)	Benzene	30	29.0	97	30	29.8	99	(79-120)	2.60	(< 20)
Bromodichloromethane 30 29.8 99 30 29.4 98 (79-125) 1.40 (< 20)	Bromobenzene	30	28.3	94	30	29.5	98	(80-120)	4.10	(< 20)
Bromoform 30 32.1 107 30 32.3 108 (66-130) 0.68 (< 20)	Bromochloromethane	30	29.7	99	30	28.9	96	(78-123)	2.80	(< 20)
Bromomethane 30 26.1 87 30 25.9 86 (53-141) 0.46 (< 20)	Bromodichloromethane	30	29.8	99	30		98	(79-125)	1.40	
	Bromoform	30	32.1	107	30	32.3	108	(66-130)	0.68	
Carbon disulfide 45 39.8 89 45 39.4 88 (64-133) 1.10 (< 20)	Bromomethane	30	26.1	87	30	25.9	86	(53-141)	0.46	(< 20)
	Carbon disulfide	45	39.8	89	45	39.4	88	(64-133)	1.10	(< 20)

Blank Spike ID: LCS for HBN 1176061 [VXX31215]

Blank Spike Lab ID: 1410366 Date Analyzed: 09/03/2017 17:46 Spike Duplicate ID: LCSD for HBN 1176061

[VXX31215]

Spike Duplicate Lab ID: 1410367 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1176061001, 1176061002, 1176061003

Results by SW8260C

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	30.1	100	30	29.5	98	(72-136)	2.00	(< 20)
Chlorobenzene	30	28.3	94	30	29.3	98	(82-118)	3.40	(< 20)
Chloroethane	30	25.6	85	30	28.2	94	(60-138)	9.90	(< 20)
Chloroform	30	27.6	92	30	27.2	91	(79-124)	1.20	(< 20)
Chloromethane	30	28.3	94	30	26.5	88	(50-139)	6.50	(< 20)
cis-1,2-Dichloroethene	30	28.4	95	30	28.2	94	(78-123)	0.57	(< 20)
cis-1,3-Dichloropropene	30	30.7	102	30	30.5	102	(75-124)	0.46	(< 20)
Dibromochloromethane	30	31.9	106	30	32.5	108	(74-126)	2.10	(< 20)
Dibromomethane	30	28.9	96	30	28.4	95	(79-123)	1.60	(< 20)
Dichlorodifluoromethane	30	28.7	96	30	27.2	91	(32-152)	5.20	(< 20)
Ethylbenzene	30	28.9	96	30	30.1	100	(79-121)	4.10	(< 20)
Freon-113	45	40.3	90	45	40.3	89	(70-136)	0.17	(< 20)
Hexachlorobutadiene	30	30.9	103	30	30.5	102	(66-134)	1.50	(< 20)
Isopropylbenzene (Cumene)	30	28.9	96	30	29.5	98	(72-131)	2.10	(< 20)
Methylene chloride	30	27.9	93	30	27.5	92	(74-124)	1.60	(< 20)
Methyl-t-butyl ether	45	45.6	101	45	44.9	100	(71-124)	1.70	(< 20)
Naphthalene	30	30.5	102	30	32.7	109	(61-128)	7.00	(< 20)
n-Butylbenzene	30	28.2	94	30	29.4	98	(75-128)	4.30	(< 20)
n-Propylbenzene	30	27.7	92	30	28.9	96	(76-126)	4.20	(< 20)
o-Xylene	30	29.3	98	30	30.0	100	(78-122)	2.60	(< 20)
P & M -Xylene	60	57.6	96	60	59.2	99	(80-121)	2.70	(< 20)
sec-Butylbenzene	30	28.2	94	30	29.3	98	(77-126)	3.70	(< 20)
Styrene	30	30.1	100	30	30.6	102	(78-123)	1.80	(< 20)
tert-Butylbenzene	30	28.0	93	30	29.1	97	(78-124)	3.90	(< 20)
Tetrachloroethene	30	29.6	99	30	31.5	105	(74-129)	6.10	(< 20)
Toluene	30	27.8	93	30	29.3	98	(80-121)	5.20	(< 20)
trans-1,2-Dichloroethene	30	28.0	93	30	27.7	92	(75-124)	0.93	(< 20)
trans-1,3-Dichloropropene	30	28.4	95	30	28.7	96	(73-127)	1.30	(< 20)
Trichloroethene	30	29.5	98	30	30.1	100	(79-123)	1.90	(< 20)
Trichlorofluoromethane	30	28.2	94	30	27.6	92	(65-141)	2.30	(< 20)
Vinyl acetate	30	31.0	103	30	28.1	94	(54-146)	9.60	(< 20)
Vinyl chloride	30	27.8	93	30	27.0	90	(58-137)	2.70	(< 20)
Xylenes (total)	90	86.8	97	90	89.2	99	(79-121)	2.70	(< 20)

Blank Spike ID: LCS for HBN 1176061 [VXX31215]

Blank Spike Lab ID: 1410366 Date Analyzed: 09/03/2017 17:46 Spike Duplicate ID: LCSD for HBN 1176061

[VXX31215]

Spike Duplicate Lab ID: 1410367 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1176061001, 1176061002, 1176061003

Results by SW8260C

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	98	98	30	92.6	93	(81-118)	5.70	
4-Bromofluorobenzene (surr)	30	94.1	94	30	94.6	95	(85-114)	0.49	
Toluene-d8 (surr)	30	103	103	30	103	103	(89-112)	0.13	

Batch Information

Analytical Batch: VMS17134
Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Prep Batch: VXX31215
Prep Method: SW5030B

Prep Date/Time: 09/03/2017 00:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Blank ID: MB for HBN 1767790 [VXX/31230]

Blank Lab ID: 1410992

QC for Samples: 1176061001

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	101	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	99.5	89-112		%

Batch Information

Analytical Batch: VMS17144 Analytical Method: SW8260C

Instrument: VPA 780/5975 GC/MS

Analyst: FDR

Analytical Date/Time: 9/6/2017 11:15:00AM

Prep Batch: VXX31230 Prep Method: SW5030B

Prep Date/Time: 9/6/2017 12:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Leaching Blank

Blank ID: LB for HBN 1767691 [TCLP/9036]

Blank Lab ID: 1410538

QC for Samples: 1176061001

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

Parameter	Results	LOQ/CL	<u>DL</u>	Units
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	104	81-118		%
4-Bromofluorobenzene (surr)	100	85-114		%
Toluene-d8 (surr)	98.4	89-112		%

Batch Information

Analytical Batch: VMS17144 Analytical Method: SW8260C

Instrument: VPA 780/5975 GC/MS

Analyst: FDR

Analytical Date/Time: 9/6/2017 8:19:00PM

Prep Batch: VXX31230 Prep Method: SW5030B

Prep Date/Time: 9/6/2017 12:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1176061 [VXX31230]

Blank Spike Lab ID: 1410993 Date Analyzed: 09/06/2017 11:41

QC for Samples: 1176061001

Spike Duplicate ID: LCSD for HBN 1176061

[VXX31230]

Spike Duplicate Lab ID: 1410994 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2-Dichloroethane	30	30.3	101	30	30.0	100	(73-128)	0.80	(< 20)
Benzene	30	32.3	108	30	31.7	106	(79-120)	1.80	(< 20)
Toluene	30	31.0	103	30	30.0	100	(80-121)	3.40	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.2	99	30	99	99	(81-118)	0.17	
4-Bromofluorobenzene (surr)	30	99.6	100	30	100	100	(85-114)	0.47	
Toluene-d8 (surr)	30	99.6	100	30	98.5	99	(89-112)	1.10	

Batch Information

Analytical Batch: VMS17144
Analytical Method: SW8260C
Instrument: VPA 780/5975 GC/MS

Analyst: FDR

Prep Batch: VXX31230
Prep Method: SW5030B

Prep Date/Time: 09/06/2017 00:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Blank ID: MB for HBN 1767040 [XXX/38284]

Blank Lab ID: 1408492

QC for Samples:

1176061001, 1176061002

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 76.2 60-120 %

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK102

Instrument: Agilent 7890B F

Analyst: JMG

Analytical Date/Time: 8/31/2017 10:59:00AM

Prep Batch: XXX38284 Prep Method: SW3520C

Prep Date/Time: 8/28/2017 8:55:33AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1176061 [XXX38284]

Blank Spike Lab ID: 1408493 Date Analyzed: 08/31/2017 11:10 Spike Duplicate ID: LCSD for HBN 1176061

[XXX38284]

Spike Duplicate Lab ID: 1408494 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1176061001, 1176061002

Results by AK102

	E	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	18.7	94	20	18.5	92	(75-125)	1.30	(< 20)
Surrogates									
5a Androstane (surr)	0.4	101	101	0.4	101	101	(60-120)	0.81	

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38284 Prep Method: SW3520C

Prep Date/Time: 08/28/2017 08:55

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Blank ID: MB for HBN 1767040 [XXX/38284]

Blank Lab ID: 1408492

QC for Samples:

1176061001, 1176061002

Matrix: Water (Surface, Eff., Ground)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.178J0.5000.150mg/L

Surrogates

n-Triacontane-d62 (surr) 95.1 60-120 %

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: JMG

Analytical Date/Time: 8/31/2017 10:59:00AM

Prep Batch: XXX38284 Prep Method: SW3520C

Prep Date/Time: 8/28/2017 8:55:33AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1176061 [XXX38284]

Blank Spike Lab ID: 1408493 Date Analyzed: 08/31/2017 11:10 Spike Duplicate ID: LCSD for HBN 1176061

[XXX38284]

Spike Duplicate Lab ID: 1408494 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1176061001, 1176061002

Results by AK103

		Blank Spike	e (mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	20.0	100	20	19.4	97	(60-120)	2.90	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	96.2	96	0.4	96.8	97	(60-120)	0.63	

Batch Information

Analytical Batch: XFC13740 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38284
Prep Method: SW3520C

Prep Date/Time: 08/28/2017 08:55

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide

laska Maryland lew Jersey New York lorth Carolina Indiana Vest Virgina Kentucky

www.us.sgs.com

	CLIENT:	BGES Inc				Instructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.								_ 1				
	CONTACT:	Kris Shippen 907-644-2900					Section 3 Preservative							Page of				
Section 1	PROJECT NAME:						Pres: Type:	/ _{KC} i	/ _K ci	, / _K ÇV								
	REPORTS T	ORTS TO: E-MAIL:					Comp										÷.	
	INVOICE TO	Jayne Martin : BGES Inc	QUOTE #: P.O. #:	ope	n	A I N	MI (Multi-	101)	(20g)	X103) LV						·		en e
	RESERVED for lab use	SAMPLE IDENTIFICAT	ION DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	incre- mental)	GRO (AK101)	VOCs (8260C)	DRO/RRO (AK102/AK103) 1								REMARKS/ LOC ID
ŀ	DA-4	MW4-0825	8-75-17	13:10	W	8	5	χ	X	X								
	2)A-H	MWS-0825	8-25-17	13:30	W	8	6	X	X	X								
7	(3)A-C	Trip blank			W	3		X										
Section ,	3/D-F	Trip blank			W	3			X									
ğ																		
٦					ļ			<u> </u>										
								-										
					<u> </u>													
	Relinquishe	ed By: (1)	Date	Time	Received By	/:	<u> </u>	<u> </u>		Secti	on 4	D	OD Pro	ject?	9	Data	Delive	rable Requirements:
	<i>7</i> /1		8-25-17	15:46						Coole	er ID:							QC2/DV
	Belingeishe	d-By: (2)	Date	Time	Received By	/ :				4		ırnaroı	ınd Tin	ne and/	or Spec	ial Inst	ruction	s:
Section 5	Ballia andaha										Standard							
	neiinquisne	elinquished By: (3) Date Time Received By			sy:				Temp Blank °C: 4.2024					Chai	Chain of Custody Seal: (Circle)			
	Relinquishe	uished By: (4) Date Time Received For Start 15:45					For Laboratory By:									BROKEN ABSENT		
			0/25/4	15:40	de	100				(See	attach	ed San	nple Re	ceipt F	orm)	(See at	tached	Sample Receipt Form)

200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms-and-conditions

MD

e-Sample Receipt Form

SGS Workorder #:

1176061

I						5 U	<u> </u>	ı		
Review Criteria	Condition (Yes, No, N/A		eptions I						
Chain of Custody / Temperature Requi		Yes Exemption permitted if sampler hand carries/delivers.								
Were Custody Seals intact? Note # &	location	I/A Hand Deliv	/ered							
COC accompanied sa	amples?	'es								
Yes **Exemption permitted if	f chilled & c	ollected <8 hou	ırs ago, or for sar	mples where	chilling is r	not requi	red			
<u>—</u>	Υ	es Cooler ID:	1	@	4.2 °(CTherm	ı. ID: 🗅	24		
		Cooler ID:		@	0(C Therm	ı. ID:			
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)?	Cooler ID:		@	01	C Therm	ı. ID:			
		Cooler ID:		@	0,	C Therm	ı. ID:			
	Cooler ID:		@	0,	C Therm	ı. ID:				
*If >6°C, were samples collected <8 hours	s ago?		ı							
γ										
If <0°C, were sample containers ice	e free?	Ι/Δ								
ii o o, nore campie comamere io	ooo.									
If samples received without a temperature blank, the	"cooler									
temperature" will be documented in lieu of the temperature l										
"COOLER TEMP" will be noted to the right. In cases where no										
temp blank nor cooler temp can be obtained, note "amb										
"0	chilled".									
Note: Identify containers received at non-compliant tempe	erature .									
Use form FS-0029 if more space is n										
Holding Time / Documentation / Sample Condition R	equireme	nts Note: Refe	r to form F-083 "	Sample Guid	de" for spec	rific holdi	na tim	96		
Were samples received within holding			1 10 1011111 -000	oampic out	101 3pcc	inc riolar	ng time			
Welle campilee received within helding	9									
Do samples match COC** (i.e.,sample IDs,dates/times colle	octod)2	'oe								
		es								
**Note: If times differ <1hr, record details & login pe		_								
Were analyses requested unambiguous? (i.e., method is speci analyses with >1 option for a		es								
analyses with >1 option for all	ilalysis)									
		N	/A ***Exemption	permitted for	or metals (e	e.g,200.8	/6020/	<u>4).</u>		
Were proper containers (type/mass/volume/preservative***	*)used?	es								
Volatile / LL-Hg Rec										
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa										
Were all water VOA vials free of headspace (i.e., bubbles ≤										
Were all soil VOAs field extracted with MeOH	·									
			rd procedures an	d may impa	ot data qua	lity				
Note to Client: Any "No", answer above indicates no	on-compilar	ice with Standa	ru procedures an	u may impa	ci uala qual	iity.				
Additiona	al notes (if applicable)):							
							· <u></u>			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1176061001-A	HCL to pH < 2	ОК			
1176061001-B	HCL to pH < 2	ОК			
1176061001-C	HCL to pH < 2	ОК			
1176061001-D	HCL to pH < 2	OK			
1176061001-E	HCL to pH < 2	OK			
1176061001-F	HCL to pH < 2	OK			
1176061001-G	HCL to pH < 2	OK			
1176061001-H	HCL to pH < 2	OK			
1176061002-A	HCL to pH < 2	OK			
1176061002-B	HCL to pH < 2	OK			
1176061002-C	HCL to pH < 2	OK			
1176061002-D	HCL to pH < 2	OK			
1176061002-E	HCL to pH < 2	OK			
1176061002-F	HCL to pH < 2	OK			
1176061002-G	HCL to pH < 2	OK			
1176061002-H	HCL to pH < 2	OK			
1176061003-A	HCL to pH < 2	OK			
1176061003-B	HCL to pH < 2	OK			
1176061003-C	HCL to pH < 2	OK			
1176061003-D	HCL to pH < 2	OK			
1176061003-E	HCL to pH < 2	OK			
1176061003-F	HCL to pH < 2	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.
- FR- The container was received frozen and not usable for Bacteria or BOD analyses.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

8/25/2017 37 of 37

Laboratory Report of Analysis

To: BGES Inc.

1042 E. 6th Ave., Anchorage, AK 99501 (907)644-2900

Report Number: 1180690

Client Project: Alaska Sales & Service

Dear Jayne Martin,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jillian at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Date

Sincerely,

SGS North America Inc.

cn=Jillian Vlahovich, o=SGS

North America, Inc., ou=Environmental

Division,

email=Jillian.Vlahovich@sq

s.com, c=US

2018.02.28 15:46:37 -09'00'

Jillian Vlahovich Project Manager

Jillian.Vlahovich@sgs.com

Print Date: 02/28/2018 3:33:41PM

Case Narrative

SGS Client: BGES Inc. SGS Project: 1180690 Project Name/Site: Alaska Sales & Service Project Contact: Jayne Martin

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 02/28/2018 3:33:42PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification

J The quantitation is an estimation.

LCS(D) Laboratory Control Spike (Duplicate)

LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 02/28/2018 3:33:43PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	<u>Collected</u>	<u>Received</u>	<u>Matrix</u>
MW4-0219	1180690001	02/19/2018	02/19/2018	Water (Surface, Eff., Ground)
MW5-0219	1180690002	02/19/2018	02/19/2018	Water (Surface, Eff., Ground)
Trip Blank	1180690003	02/19/2018	02/19/2018	Water (Surface, Eff., Ground)

Method Description

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water
AK101 Gasoline Range Organics (W)

SW8260C Volatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: MW4-0219			
Lab Sample ID: 1180690001	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1.66	mg/L
-	Residual Range Organics	1.15	mg/L
Volatile GC/MS	1,1,1-Trichloroethane	2.07	ug/L
	1,1-Dichloroethane	1.00	ug/L
	1,2,4-Trimethylbenzene	14.2	ug/L
	1,3,5-Trimethylbenzene	7.55	ug/L
	4-Isopropyltoluene	1.78	ug/L
	Naphthalene	1.43	ug/L
	n-Propylbenzene	1.34	ug/L
	o-Xylene	1.41	ug/L
	P & M -Xylene	3.78	ug/L
	Toluene	1.54	ug/L
	Xylenes (total)	5.19	ug/L
Client Sample ID: MW5-0219			
Lab Sample ID: 1180690002	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.684	mg/L
Volatile GC/MS	1,1,1-Trichloroethane	2.07	ug/L
	1,2,4-Trimethylbenzene	14.4	ug/L
	1,3,5-Trimethylbenzene	7.70	ug/L
	4-Isopropyltoluene	1.82	ug/L
	Naphthalene	1.54	ug/L
	n-Propylbenzene	1.36	ug/L
	o-Xylene	1.42	ug/L
	P & M -Xylene	3.71	ug/L
	Toluene	1.51	ug/L
	Xylenes (total)	5.13	ug/L

Client Sample ID: MW4-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690001 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	1.66	0.566	0.170	mg/L	1		02/26/18 12:12
Surrogates							
5a Androstane (surr)	84.7	50-150		%	1		02/26/18 12:12

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 02/26/18 12:12 Container ID: 1180690001-G

Prep Batch: XXX39093 Prep Method: SW3520C Prep Date/Time: 02/23/18 08:40 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.15	0.472	0.142	mg/L	1		02/26/18 12:12
Surrogates							
n-Triacontane-d62 (surr)	93.2	50-150		%	1		02/26/18 12:12

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK103

Analyst: CMS

Analytical Date/Time: 02/26/18 12:12 Container ID: 1180690001-G Prep Batch: XXX39093 Prep Method: SW3520C Prep Date/Time: 02/23/18 08:40 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Client Sample ID: MW4-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690001 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.100 U	0.100	0.0310	mg/L	1		02/21/18 00:36
Surrogates							
4-Bromofluorobenzene (surr)	96.9	50-150		%	1		02/21/18 00:36

Batch Information

Analytical Batch: VFC14058 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 02/21/18 00:36 Container ID: 1180690001-A

Prep Batch: VXX31958
Prep Method: SW5030B
Prep Date/Time: 02/20/18 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW4-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690001 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:18
1,1,1-Trichloroethane	2.07	1.00	0.310	ug/L	1	02/26/18 15:18
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:18
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1	02/26/18 15:18
1,1-Dichloroethane	1.00	1.00	0.310	ug/L	1	02/26/18 15:18
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,2,4-Trimethylbenzene	14.2	1.00	0.310	ug/L	1	02/26/18 15:18
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:18
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1	02/26/18 15:18
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:18
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,3,5-Trimethylbenzene	7.55	1.00	0.310	ug/L	1	02/26/18 15:18
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:18
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:18
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:18
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
2-Hexanone	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:18
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
4-Isopropyltoluene	1.78	1.00	0.310	ug/L	1	02/26/18 15:18
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:18
Benzene	0.400 U	0.400	0.120	ug/L	1	02/26/18 15:18
Bromobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:18
Bromoform	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
Bromomethane	5.00 U	5.00	1.50	ug/L	1	02/26/18 15:18
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:18
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:18
Chloroethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:18

Client Sample ID: MW4-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690001 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits Date Analyze
Chloroform	1.00 U	1.00	0.310	ug/L	<u> </u>	02/26/18 15:
Chloromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L ug/L	1	02/26/18 15:
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:
Dibromomethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Freon-113	10.0 U	10.0	3.10	ug/L ug/L	1	02/26/18 15:
				_		
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Methylene chloride	5.00 U	5.00	1.00	ug/L	1	02/26/18 15:
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:
Naphthalene	1.43	1.00	0.310	ug/L	1	02/26/18 15:
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
n-Propylbenzene	1.34	1.00	0.310	ug/L	1	02/26/18 15:
o-Xylene	1.41	1.00	0.310	ug/L	1	02/26/18 15:
P & M -Xylene	3.78	2.00	0.620	ug/L	1	02/26/18 15:
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Styrene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Toluene	1.54	1.00	0.310	ug/L	1	02/26/18 15:
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Trichloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1	02/26/18 15:
Xylenes (total)	5.19	3.00	1.00	ug/L	1	02/26/18 15:
urrogates						
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1	02/26/18 15:
4-Bromofluorobenzene (surr)	98.4	85-114		%	1	02/26/18 15:
Toluene-d8 (surr)	97.4	89-112		%	1	02/26/18 15:

Client Sample ID: MW4-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690001 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17615 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 02/26/18 15:18 Container ID: 1180690001-D

Prep Batch: VXX31970
Prep Method: SW5030B
Prep Date/Time: 02/26/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW5-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690002 Lab Project ID: 1180690 Collection Date: 02/19/18 13:30 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.684	0.577	0.173	mg/L	1		02/26/18 12:21
Surrogates							
5a Androstane (surr)	83.3	50-150		%	1		02/26/18 12:21

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 02/26/18 12:21 Container ID: 1180690002-G

Prep Batch: XXX39093 Prep Method: SW3520C Prep Date/Time: 02/23/18 08:40 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.481 U	0.481	0.144	mg/L	1		02/26/18 12:21
Surrogates							
n-Triacontane-d62 (surr)	90.9	50-150		%	1		02/26/18 12:21

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK103

Analyst: CMS

Analytical Date/Time: 02/26/18 12:21 Container ID: 1180690002-G

Prep Batch: XXX39093 Prep Method: SW3520C Prep Date/Time: 02/23/18 08:40 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: MW5-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690002 Lab Project ID: 1180690 Collection Date: 02/19/18 13:30 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 02/21/18 00:55
Surrogates							
4-Bromofluorobenzene (surr)	98.5	50-150		%	1		02/21/18 00:55

Batch Information

Analytical Batch: VFC14058 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 02/21/18 00:55 Container ID: 1180690002-A Prep Batch: VXX31958
Prep Method: SW5030B
Prep Date/Time: 02/20/18 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW5-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690002 Lab Project ID: 1180690 Collection Date: 02/19/18 13:30 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:35
1,1,1-Trichloroethane	2.07	1.00	0.310	ug/L	1	02/26/18 15:35
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:35
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1	02/26/18 15:35
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,2,4-Trimethylbenzene	14.4	1.00	0.310	ug/L	1	02/26/18 15:35
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:35
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1	02/26/18 15:35
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:35
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,3,5-Trimethylbenzene	7.70	1.00	0.310	ug/L	1	02/26/18 15:35
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:35
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:35
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:35
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
2-Hexanone	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:35
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
4-Isopropyltoluene	1.82	1.00	0.310	ug/L	1	02/26/18 15:35
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:35
Benzene	0.400 U	0.400	0.120	ug/L	1	02/26/18 15:35
Bromobenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:35
Bromoform	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
Bromomethane	5.00 U	5.00	1.50	ug/L	1	02/26/18 15:35
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1	02/26/18 15:35
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1	02/26/18 15:35
Chloroethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 15:35

Client Sample ID: MW5-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690002 Lab Project ID: 1180690 Collection Date: 02/19/18 13:30 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Chloromethane	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		02/26/18 15:35
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		02/26/18 15:35
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Freon-113	10.0 U	10.0	3.10	ug/L	1		02/26/18 15:35
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Methylene chloride	5.00 U	5.00	1.00	ug/L	1		02/26/18 15:35
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		02/26/18 15:35
Naphthalene	1.54	1.00	0.310	ug/L	1		02/26/18 15:35
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
n-Propylbenzene	1.36	1.00	0.310	ug/L	1		02/26/18 15:35
o-Xylene	1.42	1.00	0.310	ug/L	1		02/26/18 15:35
P & M -Xylene	3.71	2.00	0.620	ug/L	1		02/26/18 15:35
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Styrene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Toluene	1.51	1.00	0.310	ug/L	1		02/26/18 15:35
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1		02/26/18 15:35
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		02/26/18 15:35
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		02/26/18 15:35
Xylenes (total)	5.13	3.00	1.00	ug/L	1		02/26/18 15:35
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		02/26/18 15:35
4-Bromofluorobenzene (surr)	98.9	85-114		%	1		02/26/18 15:35
Toluene-d8 (surr)	99.9	89-112		%	1		02/26/18 15:35

Client Sample ID: MW5-0219

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690002 Lab Project ID: 1180690 Collection Date: 02/19/18 13:30 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17615 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 02/26/18 15:35 Container ID: 1180690002-D Prep Batch: VXX31970
Prep Method: SW5030B
Prep Date/Time: 02/26/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690003 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.100 U	0.100	0.0310	mg/L	1		02/20/18 23:41
Surrogates							
4-Bromofluorobenzene (surr)	85.6	50-150		%	1		02/20/18 23:41

Batch Information

Analytical Batch: VFC14058 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 02/20/18 23:41 Container ID: 1180690003-A

Prep Batch: VXX31958
Prep Method: SW5030B
Prep Date/Time: 02/20/18 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690003 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Danamatan	D O	1.00/01		1.1-:4-	DE	<u>Allowable</u>	Data Arabara
Parameter 1.1.1.2 Tetrachlereethans	<u>Result Qual</u> 0.500 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 02/26/18 13:34
1,1,1,2-Tetrachloroethane	1.00 U			_	1		
1,1,1-Trichloroethane		1.00	0.310	ug/L			02/26/18 13:34
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		02/26/18 13:34
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		02/26/18 13:34
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,2,4-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		02/26/18 13:34
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		02/26/18 13:34
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1		02/26/18 13:34
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		02/26/18 13:34
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		02/26/18 13:34
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		02/26/18 13:34
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		02/26/18 13:34
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		02/26/18 13:34
Benzene	0.400 U	0.400	0.120	ug/L	1		02/26/18 13:34
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		02/26/18 13:34
Bromoform	1.00 U	1.00	0.310	ug/L	1		02/26/18 13:34
Bromomethane	5.00 U	5.00	1.50	ug/L	1		02/26/18 13:34
Carbon disulfide	10.0 U	10.0	3.10	ug/L ug/L	1		02/26/18 13:34
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L ug/L	1		02/26/18 13:34
Chlorobenzene	0.500 U	0.500	0.310	_	1		02/26/18 13:34
Chloroethane	1.00 U	1.00		ug/L	1		02/26/18 13:34
Chioroethane	1.00 U	1.00	0.310	ug/L	ı		02/20/18 13:34

Client Sample ID: Trip Blank

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690003 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits Date Anal
<u>Chloroform</u>	1.00 U	1.00	<u>DL</u> 0.310	ug/L	1	02/26/18 1
Chloromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L ug/L	1	02/26/18 1
cis-1,3-Dichloropropene	0.500 U	0.500	0.310	ug/L ug/L	1	02/26/18 1
Dibromochloromethane	0.500 U	0.500	0.150	ug/L ug/L	1	02/26/18 1
Dibromocnioromethane	1.00 U	1.00	0.130	Ū	1	02/26/18 1
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
				ug/L		
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
Freon-113	10.0 U	10.0	3.10	ug/L	1	02/26/18 1
lexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
sopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
Methylene chloride	5.00 U	5.00	1.00	ug/L	1	02/26/18 1
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1	02/26/18 1
Naphthalene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
o-Xylene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1	02/26/18 1
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
Styrene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
ert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
Гoluene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
rans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
rans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
Trichloroethene	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1	02/26/18 1
/inyl acetate	10.0 U	10.0	3.10	ug/L	1	02/26/18 1
/inyl chloride	0.150 U	0.150	0.0500	ug/L	1	02/26/18 1
Kylenes (total)	3.00 U	3.00	1.00	ug/L	1	02/26/18 1
urrogates						
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1	02/26/18 1
1-Bromofluorobenzene (surr)	100	85-114		%	1	02/26/18 1
Foluene-d8 (surr)	96.8	89-112		%	1	02/26/18 1

Client Sample ID: Trip Blank

Client Project ID: Alaska Sales & Service

Lab Sample ID: 1180690003 Lab Project ID: 1180690 Collection Date: 02/19/18 13:10 Received Date: 02/19/18 16:51 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17615 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 02/26/18 13:34 Container ID: 1180690003-D Prep Batch: VXX31970
Prep Method: SW5030B
Prep Date/Time: 02/26/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Blank ID: MB for HBN 1776801 [VXX/31958]

Blank Lab ID: 1435072

QC for Samples:

1180690001, 1180690002, 1180690003

Matrix: Water (Surface, Eff., Ground)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0310mg/L

Surrogates

4-Bromofluorobenzene (surr) 88.9 50-150 %

Batch Information

Analytical Batch: VFC14058 Prep Batch: VXX31958
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 2/20/2018 8:00:00AM

Analyst: ST Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 2/20/2018 3:00:00PM Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1180690 [VXX31958]

Blank Spike Lab ID: 1435075 Date Analyzed: 02/20/2018 21:49 Spike Duplicate ID: LCSD for HBN 1180690

[VXX31958]

Spike Duplicate Lab ID: 1435076 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1180690001, 1180690002, 1180690003

Results by AK101

		Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.957	96	1.00	0.948	95	(60-120)	0.91	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	94.6	95	0.0500	101	101	(50-150)	6.90	

Batch Information

Analytical Batch: VFC14058
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX31958
Prep Method: SW5030B

Prep Date/Time: 02/20/2018 08:00

Spike Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL $\,$

Blank ID: MB for HBN 1776935 [VXX/31970]

Blank Lab ID: 1435554

QC for Samples:

1180690001, 1180690002, 1180690003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

,				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Blank ID: MB for HBN 1776935 [VXX/31970]

Blank Lab ID: 1435554

QC for Samples:

1180690001, 1180690002, 1180690003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	101	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	96.6	89-112		%
• •				

Blank ID: MB for HBN 1776935 [VXX/31970]

Blank Lab ID: 1435554

QC for Samples:

1180690001, 1180690002, 1180690003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS17615 Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Analytical Date/Time: 2/26/2018 8:51:00AM

Prep Batch: VXX31970 Prep Method: SW5030B

Prep Date/Time: 2/26/2018 12:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1180690 [VXX31970]

Blank Spike Lab ID: 1435555 Date Analyzed: 02/26/2018 09:07 Spike Duplicate ID: LCSD for HBN 1180690

[VXX31970]

Spike Duplicate Lab ID: 1435556 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1180690001, 1180690002, 1180690003

Results by SW8260C

Parameter Spike Result Rec (%) Spike Result Rec (%) Spike Result Rec (%) Cl. RPD (%) RPD (%) Cl.			Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
1,1,1-Trichloroethane	<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	30	32.0	107	30	31.9	106	(78-124)	0.22	(< 20)
1,1,2-Trichloroethane 30 32.1 107 30 32.0 107 (80-119) 0.37 (< 20)	1,1,1-Trichloroethane	30	30.9	103	30	30.8	103	(74-131)	0.26	(< 20)
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	30	31.2	104	30	30.4	101	(71-121)	2.50	(< 20)
1,1-Dichloroethene 30 29.7 99 30 29.3 98 (71-131) 1.30 (<20) 1,1-Dichloropropene 30 32.3 108 30 32.4 108 (79-125) 0.15 (<20) 1,2,2-Trichlorobenzene 30 32.2 107 30 32.0 107 (69-129) 0.65 (<20) 1,2,3-Trichlorobenzene 30 32.8 109 30 32.5 108 (69-130) 0.92 (<20) 1,2,4-Trinchlorobenzene 30 31.7 106 30 31.6 105 (79-124) 0.25 (<20) 1,2,4-Trinchlorobenzene 30 31.7 106 30 31.6 105 (79-124) 0.25 (<20) 1,2-Dibromo-3-chloropropane 30 31.5 105 30 31.7 106 (77-121) 0.76 (<20) 1,2-Dibromoethane 30 31.5 105 30 31.7 106 (77-121) 0.76 (<20) 1,2-Dichlorobenzene 30 31.7 106 30 31.8 103 (80-119) 0.52 (<20) 1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122) 1.90 (<20) 1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122) 1.90 (<20) 1,3-Dichlorobenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (<20) 1,3-Dichlorobenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (<20) 1,3-Dichlorobenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (<20) 1,3-Dichlorobenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (<20) 1,3-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118) 0.25 (<20) 1,4-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118) 0.25 (<20) 1,4-Dichloropropane 30 31.5 105 30 31.1 104 (79-118) 0.25 (<20) 1,4-Dichloropropane 30 31.5 105 30 31.1 104 (79-118) 0.25 (<20) 1,4-Dichloropropane 30 31.5 105 30 31.1 104 (79-118) 0.40 (<20) 2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (<20) 2-Butanone (MEK) 90 86.6 107 90 96.3 107 (67-130) 0.24 (<20) 2-Hutanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (<20) Benzene 30 31.2 104 30 31.2 104 (79-120) 1.	1,1,2-Trichloroethane	30	32.1	107	30	32.0	107	(80-119)	0.37	(< 20)
1,1-Dichloropropene 30 32.3 108 30 32.4 108 (79-125) 0.15 (<20) 1,2,3-Trichlorobenzene 30 32.2 107 30 32.0 107 (69-129) 0.65 (<20) 1,2,3-Trichloropropane 30 30.4 101 30 29.5 98 (73-122) 3.00 (<20) 1,2,4-Trimethrylbenzene 30 32.8 109 30 32.5 108 (69-130) 0.92 (<20) 1,2,4-Trimethrylbenzene 30 31.7 106 30 31.6 105 (79-124) 0.25 (<20) 1,2-Dibromo-3-chloropropane 30 31.5 105 30 31.7 106 (77-121) 0.76 (<20) 1,2-Dichlorobenzene 30 30.6 102 30 30.8 103 (80-119) 0.52 (<20) 1,2-Dichloropapane 30 31.7 106 30 31.1 104 (78-122) 1.90 (<20) 1,2-Dichloropapane 30 31.7 106 30 31.1 104 (78-122) 1.90 (<20) 1,3-Dichloropapane 30 30.7 102 30 30.6 102 (80-119) 0.33 (<20) 1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119) 0.25 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.1 104 (78-112) 1.90 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.1 104 (79-118) 1.40 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.1 104 (79-118) 1.40 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.1 104 (79-118) 1.40 (<20) 2-Dichloropropane 30 31.1 104 30 31.1 104 (79-118) 1.40 (<20) 2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (<20) 2-Butanone (MEK) 90 86.6 107 90 96.3 107 (77-127) 0.22 (<20) 4-Chlorotoluene 30 31.2 104 30 31.2 104 (79-120) 1.00 (<20) Benzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (<20) Benzene 30 31.2 104 30 31.2 104 (79-120) 1.00 (<20) Bromochloromethane 30 31.2 104 30 31.2 104 (79-120) 1.40 (<20) Bromochloromethane 30 31.2 104 30 31.2 104 (66-130) 1.40 (<20) Bromochloromethane 30 31.7 106 30 31.2 104 (66-130) 1.50 (<20)	1,1-Dichloroethane	30	29.5	98	30	29.5	98	(77-125)	0.03	(< 20)
1,2,3-Trichlorobenzene 30 32.2 107 30 32.0 107 (69-129) 0.65 (<20) 1,2,3-Trichloropropane 30 30.4 101 30 29.5 98 (73-122) 3.00 (<20) 1,2,4-Trichlorobenzene 30 32.8 109 30 32.5 108 (69-130) 0.92 (<20) 1,2,4-Trimethylbenzene 30 31.7 106 30 31.6 105 (79-124) 0.25 (<20) 1,2,1-Trimethylbenzene 30 31.7 106 30 31.6 105 (79-124) 0.25 (<20) 1,2-Dibromo-3-chloropropane 30 31.5 105 30 31.7 106 (77-121) 0.76 (<20) 1,2-Dibromoethane 30 31.5 105 30 31.7 106 (77-121) 0.76 (<20) 1,2-Dichlorobenzene 30 30.6 102 30 30.8 103 (80-119) 0.52 (<20) 1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122) 1.90 (<20) 1,3,5-Trimethylbenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (<20) 1,3-Dichlorobenzene 30 30.7 102 30 30.6 102 (80-119) 0.33 (<20) 1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119) 0.25 (<20) 1,4-Dichloropropane 30 31.1 104 30 30.7 102 (80-119) 0.25 (<20) 1,4-Dichloropropane 30 31.1 104 30 30.7 102 (80-119) 0.25 (<20) 1,4-Dichloropropane 30 31.1 104 30 31.1 104 (79-118) 1.40 (<20) 2,2-Dichloropropane 30 31.1 104 30 31.1 104 (79-118) 1.40 (<20) 2,2-Dichloropropane 30 31.2 104 30 31.4 105 (79-122) 0.42 (<20) 2-Hexanone 90 84.2 94 90 83.8 93 (56-143) 0.40 (<20) 2-Hexanone 90 89.9 100 90 90.0 100 (77-127) 0.22 (<20) 4-Hothyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (77-127) 0.22 (<20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (77-127) 0.22 (<20) Bromoehloromethane 30 31.2 104 30 31.2 104 (78-122) 1.40 (<20) Bromoehloromethane 30 31.2 104 30 31.2 104 (66-130) 1.50 (<20) Bromoehlane 30 31.2 104 30 31.2 104	1,1-Dichloroethene	30	29.7	99	30	29.3	98	(71-131)	1.30	(< 20)
1,2,3-Trichloropropane 30 30.4 101 30 29.5 98 (73-122 3.00 (< 20 1,2,4-Trichlorobenzene 30 32.8 109 30 32.5 108 (69-130) 0.92 (< 20 1,2,4-Trichlorobenzene 30 31.7 106 30 31.6 105 (79-124 0.25 (< 20 1,2,4-Trichlorobenzene 30 31.0 103 30 30.4 101 (62-128 1.90 (< 20 1,2-Dibromo-3-chloropropane 30 31.5 105 30 31.7 106 (77-121 0.76 (< 20 1,2-Dichlorobenzene 30 30.6 102 30 30.8 103 (80-119 0.52 (< 20 1,2-Dichlorobenzene 30 30.6 102 30 30.8 103 (80-119 0.52 (< 20 1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122 1.90 (< 20 1,3-Dichloropropane 30 31.7 106 30 31.8 106 (75-124 0.22 (< 20 1,3-Dichloropropane 30 30.7 102 30 30.6 102 (80-119 0.33 (< 20 1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119 0.25 (< 20 1,4-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118 1.40 (< 20 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (80-139 1.20 (< 20 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (80-139 1.20 (< 20 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (80-139 1.20 (< 20 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (80-139 1.20 (< 20 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (80-139 1.20 (< 20 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (80-139 1.20 (< 20 2,2-Dichloropropane 30 31.2 104 30 31.4 105 (79-122 0.42 (< 20 2,2-Dichloropropane 30 31.5 105 30 31.2 104 (78-122 1.10 (< 20 2,2-Dichlorobluene 30 31.2 104 30 31.2 104 (78-122 1.10 (< 20 2,2-Dichlorobluene 30 31.5 105 30 31.2 104 (78-122 1.10 (< 20 2,2-Dichlorobluene 30 31.5 105 30 31.2 104 (78-122 1.10 (< 20 2,2-Dichlorobluene 30 31.5 105 30 31.2 104 (78-122 1.10 (< 20 2,2-Dichlorobluene 30 31.2 104	1,1-Dichloropropene	30	32.3	108	30	32.4	108	(79-125)	0.15	(< 20)
1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	30	32.2	107	30	32.0	107	(69-129)	0.65	(< 20)
1,2,4-Trimethylbenzene 30 31.7 106 30 31.6 105 (79-124) 0.25 (< 20)	1,2,3-Trichloropropane	30	30.4	101	30	29.5	98	(73-122)	3.00	(< 20)
1,2-Dibromo-3-chloropropane 30 31.0 103 30 30.4 101 (62-128) 1.90 (< 20 1,2-Dibromoethane 30 31.5 105 30 31.7 106 (77-121) 0.76 (< 20 1,2-Dichlorobenzene 30 30.6 102 30 30.8 103 (80-119) 0.52 (< 20 1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122 1.90 (< 20 1,3-Dichloropropane 30 31.7 106 30 31.8 106 (75-124 0.22 (< 20 1,3-Dichlorobenzene 30 31.7 106 30 31.8 106 (75-124 0.22 (< 20 1,3-Dichloropropane 30 32.2 107 30 30.6 102 (80-119) 0.33 (< 20 1,3-Dichloropropane 30 32.2 107 30 30.2 107 (80-119) 0.25 (< 20 1,3-Dichloropropane 30 31.5 105 30 31.1 104 (79-118 1.40 (< 20 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139 1.20 (< 20 2,2-Dichloropropane 30 31.2 104 30 31.4 105 (79-122 0.42 (< 20 2-Hexanone 90 89.9 100 90 90.0 100 (57-139 0.07 (< 20 2-Hexanone 30 31.5 105 30 31.2 104 (78-122 1.10 (< 20 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (77-127 0.22 (< 20 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (77-127 0.22 (< 20 4-Methyl-2-pentanone 30 31.2 104 30 31.2 104 (79-120 1.00 (< 20 4-Methyl-2-pentanone 30 31.2 104 30 31.2 104 (79-120 1.00 (< 20 4-Methyl-2-pentanone 30 31.2 104 30 31.2 104 (79-120 1.00 (< 20 4-Methyl-2-pentanone 30 31.2 104 30 31.2 104 (79-120 1.00 (< 20 4-Methyl-2-pentanone 30 31.2 104 30 31.2 104 (79-125 0.48 (< 20 0.48 0.49 0.4	1,2,4-Trichlorobenzene	30	32.8	109	30	32.5	108	(69-130)	0.92	(< 20)
1,2-Dibromoethane 30 31.5 105 30 31.7 106 (77-121) 0.76 (< 20)	1,2,4-Trimethylbenzene	30	31.7	106	30	31.6	105	(79-124)	0.25	(< 20)
1,2-Dichlorobenzene 30 30.6 102 30 30.8 103 (80-119) 0.52 (< 20) 1,2-Dichloroethane 30 27.5 92 30 27.3 91 (73-128) 0.77 (< 20) 1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122) 1.90 (< 20) 1,3-Dichlorobenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (< 20) 1,3-Dichlorobenzene 30 30.7 102 30 30.6 102 (80-119) 0.33 (< 20) 1,3-Dichlorobropropane 30 30.7 102 30 30.6 102 (80-119) 0.33 (< 20) 1,4-Dichlorobropropane 30 31.5 105 30 31.1 104 (79-118) 1.40 (< 20) 2,2-Dichlorobropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20)	1,2-Dibromo-3-chloropropane	30	31.0	103	30	30.4	101	(62-128)	1.90	(< 20)
1,2-Dichloroethane 30 27.5 92 30 27.3 91 (73-128) 0.77 (< 20) 1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122) 1.90 (< 20) 1,3,5-Trimethylbenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (< 20) 1,3-Dichlorobenzene 30 30.7 102 30 30.6 102 (80-119) 0.33 (< 20) 1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119) 0.25 (< 20) 1,4-Dichloropropane 30 31.5 105 30 31.1 104 (79-118) 1.40 (< 20) 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20) 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20) 2,2-Dichloropropane 30 31.2 104 30 31.4 105	1,2-Dibromoethane	30	31.5	105	30	31.7	106	(77-121)	0.76	(< 20)
1,2-Dichloropropane 30 31.7 106 30 31.1 104 (78-122) 1.90 (< 20) 1,3,5-Trimethylbenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (< 20) 1,3-Dichlorobenzene 30 30.7 102 30 30.6 102 (80-119) 0.33 (< 20) 1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119) 0.25 (< 20) 1,4-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118) 1.40 (< 20) 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20) 2,2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (< 20) 2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (< 20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139	1,2-Dichlorobenzene	30	30.6	102	30	30.8	103	(80-119)	0.52	(< 20)
1,3,5-Trimethylbenzene 30 31.7 106 30 31.8 106 (75-124) 0.22 (< 20) 1,3-Dichlorobenzene 30 30.7 102 30 30.6 102 (80-119) 0.33 (< 20) 1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119) 0.25 (< 20) 1,4-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118) 1.40 (< 20) 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20) 2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (< 20) 2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (< 20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (< 20) 4-Isopropyltoluene 30 31.5 105 30 31.2 104 (78-122) </th <th>1,2-Dichloroethane</th> <th>30</th> <th>27.5</th> <th>92</th> <th>30</th> <th>27.3</th> <th>91</th> <th>(73-128)</th> <th>0.77</th> <th>(< 20)</th>	1,2-Dichloroethane	30	27.5	92	30	27.3	91	(73-128)	0.77	(< 20)
1,3-Dichlorobenzene 30 30.7 102 30 30.6 102 (80-119) 0.33 (< 20) 1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119) 0.25 (< 20) 1,4-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118) 1.40 (< 20) 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20) 2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (< 20) 2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (< 20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (< 20) 4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (< 20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127)	1,2-Dichloropropane	30	31.7	106	30	31.1	104	(78-122)	1.90	(< 20)
1,3-Dichloropropane 30 32.2 107 30 32.2 107 (80-119) 0.25 (< 20) 1,4-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118) 1.40 (< 20) 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20) 2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (< 20) 2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (< 20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (< 20) 4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (< 20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (< 20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130)<	1,3,5-Trimethylbenzene	30	31.7	106	30	31.8	106	(75-124)	0.22	(< 20)
1,4-Dichlorobenzene 30 31.5 105 30 31.1 104 (79-118) 1.40 (<20) 2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (<20) 2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (<20) 2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (<20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (<20) 4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (<20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (<20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (<20) Benzene 30 31.2 104 30 30.9 103 (80-120) 0.74<	1,3-Dichlorobenzene	30	30.7	102	30	30.6	102	(80-119)	0.33	(< 20)
2,2-Dichloropropane 30 31.1 104 30 30.7 102 (60-139) 1.20 (< 20) 2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (< 20) 2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (< 20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (< 20) 4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (< 20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (< 20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (< 20) Benzene 30 30.9 103 30.9 103 (80-120) 0.74 (< 20) Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (<	1,3-Dichloropropane	30	32.2	107	30	32.2	107	(80-119)	0.25	(< 20)
2-Butanone (MEK) 90 84.2 94 90 83.8 93 (56-143) 0.40 (< 20) 2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (< 20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (< 20) 4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (< 20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (< 20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (< 20) Benzene 30 30.9 103 30.9 104 (79-120) 1.00 (< 20) Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (< 20) Bromochloromethane 30 31.2 104 30 31.0 103 (79-125) 0.48 (<	1,4-Dichlorobenzene	30	31.5	105	30	31.1	104	(79-118)	1.40	(< 20)
2-Chlorotoluene 30 31.2 104 30 31.4 105 (79-122) 0.42 (< 20) 2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (< 20) 4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (< 20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (< 20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (< 20) Benzene 30 30.9 103 30 31.2 104 (79-120) 1.00 (< 20) Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (< 20) Bromochloromethane 30 31.2 104 30 31.0 103 (79-125) 0.48 (< 20) Bromoform 30 31.7 106 30 31.2 104 (66-130) 1.50	2,2-Dichloropropane	30	31.1	104	30	30.7	102	(60-139)	1.20	(< 20)
2-Hexanone 90 89.9 100 90 90.0 100 (57-139) 0.07 (< 20) 4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (< 20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (< 20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (< 20) Benzene 30 30.9 103 30 31.2 104 (79-120) 1.00 (< 20) Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (< 20) Bromochloromethane 30 29.6 99 30 29.2 97 (78-123) 1.40 (< 20) Bromoform 30 31.7 106 30 31.2 104 (66-130) 1.50 (< 20) Bromomethane 30 25.0 83 30 26.8 89 (53-141) 7.10 <	2-Butanone (MEK)	90	84.2	94	90	83.8	93	(56-143)	0.40	(< 20)
4-Chlorotoluene 30 31.5 105 30 31.2 104 (78-122) 1.10 (< 20) 4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (< 20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (< 20) Benzene 30 30.9 103 30 31.2 104 (79-120) 1.00 (< 20) Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (< 20) Bromochloromethane 30 29.6 99 30 29.2 97 (78-123) 1.40 (< 20) Bromoform 30 31.2 104 30 31.0 103 (79-125) 0.48 (< 20) Bromomethane 30 31.7 106 30 31.2 104 (66-130) 1.50 (< 20) Bromomethane 30 25.0 83 30 26.8 89 (53-141) 7.10	2-Chlorotoluene	30	31.2	104	30	31.4	105	(79-122)	0.42	(< 20)
4-Isopropyltoluene 30 32.2 107 30 32.2 107 (77-127) 0.22 (< 20) 4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (< 20) Benzene 30 30.9 103 30 31.2 104 (79-120) 1.00 (< 20) Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (< 20) Bromochloromethane 30 29.6 99 30 29.2 97 (78-123) 1.40 (< 20) Bromodichloromethane 30 31.2 104 30 31.0 103 (79-125) 0.48 (< 20) Bromoform 30 31.7 106 30 31.2 104 (66-130) 1.50 (< 20) Bromomethane 30 25.0 83 30 26.8 89 (53-141) 7.10 (< 20)	2-Hexanone	90	89.9	100	90	90.0	100	(57-139)	0.07	(< 20)
4-Methyl-2-pentanone (MIBK) 90 96.6 107 90 96.3 107 (67-130) 0.24 (< 20) Benzene 30 30.9 103 30 31.2 104 (79-120) 1.00 (< 20) Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (< 20) Bromochloromethane 30 29.6 99 30 29.2 97 (78-123) 1.40 (< 20) Bromodichloromethane 30 31.2 104 30 31.0 103 (79-125) 0.48 (< 20) Bromoform 30 31.7 106 30 31.2 104 (66-130) 1.50 (< 20) Bromomethane 30 25.0 83 30 26.8 89 (53-141) 7.10 (< 20)	4-Chlorotoluene	30	31.5	105	30	31.2	104	(78-122)	1.10	
Benzene 30 30.9 103 30 31.2 104 (79-120) 1.00 (< 20)	4-Isopropyltoluene	30	32.2	107	30	32.2	107	(77-127)	0.22	(< 20)
Bromobenzene 30 31.2 104 30 30.9 103 (80-120) 0.74 (< 20)	4-Methyl-2-pentanone (MIBK)	90	96.6	107	90	96.3	107	(67-130)	0.24	(< 20)
Bromochloromethane 30 29.6 99 30 29.2 97 (78-123) 1.40 (< 20)	Benzene	30	30.9	103	30	31.2	104	(79-120)	1.00	(< 20)
Bromodichloromethane 30 31.2 104 30 31.0 103 (79-125) 0.48 (< 20)	Bromobenzene	30	31.2	104	30	30.9	103	(80-120)	0.74	(< 20)
Bromoform 30 31.7 106 30 31.2 104 (66-130) 1.50 (< 20)	Bromochloromethane	30	29.6	99	30	29.2	97	(78-123)	1.40	(< 20)
Bromomethane 30 25.0 83 30 26.8 89 (53-141) 7.10 (< 20)	Bromodichloromethane	30	31.2	104	30	31.0	103	(79-125)	0.48	
	Bromoform	30	31.7	106	30	31.2	104	(66-130)	1.50	
Carbon disulfide 45 43.8 97 45 43.5 97 (64-133) 0.78 (< 20)	Bromomethane	30	25.0	83	30	26.8	89	(53-141)	7.10	(< 20)
	Carbon disulfide	45	43.8	97	45	43.5	97	(64-133)	0.78	(< 20)

Blank Spike ID: LCS for HBN 1180690 [VXX31970]

Blank Spike Lab ID: 1435555 Date Analyzed: 02/26/2018 09:07 Spike Duplicate ID: LCSD for HBN 1180690

[VXX31970]

Spike Duplicate Lab ID: 1435556 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1180690001, 1180690002, 1180690003

Results by SW8260C

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Carbon tetrachloride	30	32.3	108	30	32.1	107	(72-136)	0.62	(< 20)
Chlorobenzene	30	29.6	99	30	29.7	99	(82-118)	0.30	(< 20)
Chloroethane	30	25.6	85	30	25.1	84	(60-138)	1.70	(< 20)
Chloroform	30	28.8	96	30	28.5	95	(79-124)	1.20	(< 20)
Chloromethane	30	28.3	94	30	28.3	94	(50-139)	0.07	(< 20)
cis-1,2-Dichloroethene	30	29.5	98	30	29.3	98	(78-123)	0.61	(< 20)
cis-1,3-Dichloropropene	30	32.7	109	30	32.4	108	(75-124)	0.92	(< 20)
Dibromochloromethane	30	31.6	105	30	31.7	106	(74-126)	0.47	(< 20)
Dibromomethane	30	28.8	96	30	28.4	95	(79-123)	1.50	(< 20)
Dichlorodifluoromethane	30	30.4	101	30	30.5	102	(32-152)	0.39	(< 20)
Ethylbenzene	30	30.8	103	30	30.9	103	(79-121)	0.36	(< 20)
Freon-113	45	42.6	95	45	42.6	95	(70-136)	0.09	(< 20)
Hexachlorobutadiene	30	33.1	110	30	33.1	110	(66-134)	0.00	(< 20)
Isopropylbenzene (Cumene)	30	30.6	102	30	31.3	104	(72-131)	2.10	(< 20)
Methylene chloride	30	29.3	98	30	29.1	97	(74-124)	0.82	(< 20)
Methyl-t-butyl ether	45	46.2	103	45	45.4	101	(71-124)	1.60	(< 20)
Naphthalene	30	32.6	109	30	33.2	111	(61-128)	1.80	(< 20)
n-Butylbenzene	30	32.5	108	30	32.4	108	(75-128)	0.49	(< 20)
n-Propylbenzene	30	31.6	105	30	31.9	106	(76-126)	1.10	(< 20)
o-Xylene	30	30.8	103	30	31.4	105	(78-122)	2.00	(< 20)
P & M -Xylene	60	61.4	102	60	61.9	103	(80-121)	0.79	(< 20)
sec-Butylbenzene	30	32.0	107	30	32.4	108	(77-126)	1.30	(< 20)
Styrene	30	31.1	104	30	31.3	104	(78-123)	0.51	(< 20)
tert-Butylbenzene	30	32.4	108	30	32.2	107	(78-124)	0.62	(< 20)
Tetrachloroethene	30	32.1	107	30	32.8	109	(74-129)	2.30	(< 20)
Toluene	30	29.9	100	30	30.1	100	(80-121)	0.53	(< 20)
trans-1,2-Dichloroethene	30	29.8	99	30	30.0	100	(75-124)	0.90	(< 20)
trans-1,3-Dichloropropene	30	32.2	107	30	32.4	108	(73-127)	0.65	(< 20)
Trichloroethene	30	31.2	104	30	31.2	104	(79-123)	0.16	(< 20)
Trichlorofluoromethane	30	27.2	91	30	27.0	90	(65-141)	0.67	(< 20)
Vinyl acetate	30	27.7	92	30	27.5	92	(54-146)	0.80	(< 20)
Vinyl chloride	30	28.7	96	30	28.8	96	(58-137)	0.42	(< 20)
Xylenes (total)	90	92.3	103	90	93.4	104	(79-121)	1.20	(< 20)

Blank Spike ID: LCS for HBN 1180690 [VXX31970]

Blank Spike Lab ID: 1435555 Date Analyzed: 02/26/2018 09:07 Spike Duplicate ID: LCSD for HBN 1180690

[VXX31970]

Spike Duplicate Lab ID: 1435556 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1180690001, 1180690002, 1180690003

Results by SW8260C

		Blank Spik	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	92.6	93	30	91.9	92	(81-118)	0.83	
4-Bromofluorobenzene (surr)	30	101	101	30	99.2	99	(85-114)	1.80	
Toluene-d8 (surr)	30	102	102	30	102	102	(89-112)	0.07	

Batch Information

Analytical Batch: VMS17615
Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Prep Batch: VXX31970
Prep Method: SW5030B

Prep Date/Time: 02/26/2018 00:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Blank ID: MB for HBN 1776844 [XXX/39093]

Blank Lab ID: 1435255

QC for Samples:

1180690001, 1180690002

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 85.8 60-120 %

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: CMS

Analytical Date/Time: 2/26/2018 10:54:00AM

Prep Batch: XXX39093 Prep Method: SW3520C

Prep Date/Time: 2/23/2018 8:40:20AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1180690 [XXX39093]

Blank Spike Lab ID: 1435256 Date Analyzed: 02/26/2018 11:03 Spike Duplicate ID: LCSD for HBN 1180690

[XXX39093]

Spike Duplicate Lab ID: 1435257 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1180690001, 1180690002

Results by AK102

	· ·	Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	20	18.8	94	20	18.1	91	(75-125)	3.60	(< 20)
Surrogates									
5a Androstane (surr)	0.4	103	103	0.4	99.7	100	(60-120)	3.70	

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: CMS

Prep Batch: XXX39093
Prep Method: SW3520C

Prep Date/Time: 02/23/2018 08:40

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Blank ID: MB for HBN 1776844 [XXX/39093]

Blank Lab ID: 1435255

QC for Samples:

1180690001, 1180690002

Matrix: Water (Surface, Eff., Ground)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.250U0.5000.150mg/L

Surrogates

n-Triacontane-d62 (surr) 94.3 60-120 %

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: CMS

Analytical Date/Time: 2/26/2018 10:54:00AM

Prep Batch: XXX39093 Prep Method: SW3520C

Prep Date/Time: 2/23/2018 8:40:20AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1180690 [XXX39093]

Blank Spike Lab ID: 1435256 Date Analyzed: 02/26/2018 11:03 Spike Duplicate ID: LCSD for HBN 1180690

[XXX39093]

Spike Duplicate Lab ID: 1435257 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1180690001, 1180690002

Results by AK103

			_						
	E	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	18.7	93	20	17.8	89	(60-120)	4.90	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	97.1	97	0.4	94.5	95	(60-120)	2.70	

Batch Information

Analytical Batch: XFC14073 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: CMS

Prep Batch: XXX39093 Prep Method: SW3520C

Prep Date/Time: 02/23/2018 08:40

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

SGS NORTH AMERICA INC. CHAIN OF CUSTODY RECORD

1180690

0690 ntal Services
Road
9518
35ka

	CLIENT: BGES Inc.						INSTRUCTOR OF THE PROPERTY OF	(STRUCTION OMISSIONS	IS: SECT	STION SELAY	o F	ASET TASES	8 1-5 MUST BE FILLED OUT THE ONSET OF ANALYSIS.	LEDO	UT.		1
<u> </u>	contact: Kris Shippen	PHONE #: 907-644-2900	7-644	2900		SECTION 3	ON 3				PRES	PRESERVATIVE	J			The state of the s	Page of
AOIT):	PROJECT PROJECT PROJECT PAME: Alaska Sales & Service	PROJECT/ PWSID/ PERMIT#:		:		# U	SAMPLE TYPE:	НСГ	НСГ	НСГ							
12	REPORTS TO: Kris Shippen	E-MAIL: Kri	Kris@bgesi	sinc.com	mc	0 z ⊢	Comp Grab	-	-	٨٠							
****	INVOICE TO: Jayne Martin	QUOTE#: OPEN P.O. #:	N			∢ – z	MI (Multi-	\AK1	9Z8/s	/K103) F							
∀SI	RESERVED FOR LAB SAMPLE IDENTIFICATION USE	TION DATE		TIME IH:MM	MATRIX/ MATRIX CODE	шко	mental)			DRO/RR							REMARKS/ LOC ID
uəwəl	MW4-0219	2/19/2018		13:10	W	8	ŋ	>	\ \ \	\ \ >							
Nanag	(3) A - (4) MW5-0219	2/19/2018	18 13:30	:30	W	8	ဗ	>	` `	>							
	√ (2)				W	3		/									
	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS				W	3			<i>></i>								
rk of S	10	-															
gemab																	
ent ber																	
əfsige																	
is a re																	
ses																	
pəvie	RELINQUISHED BY: (1)	DATE	TIME		RECEIVED BY:	::			S	CTIO	SECTION 4 DOD Project? NO	Projec	t? NO		DATA [JELIVER	DATA DELIVERABLE REQUIREMENTS:
ghts res	The state of the s	81-61-2	19:91	15				\wedge	ပြီ မိ	COC ID: Cooler ID:	1				Level 2	2 2	
n IIA - ⊒	REKINGOISHED BY:(2)	DATE	TIME		RECEIVED BY:	\ <u>k</u>			22	QUESTE	D TURNA	ROUND.	IIME AND	OOR SPE	CIAL INS	REQUESTED TURNAROUND TIME AND/OR SPECIAL INSTRUCTIONS	SNS
- 2014	NO		$\overline{}$	ackslash	١				S)	Standard	ard						
- Jas Inc	SECINQUISHED BY:(3)	DATE	TIME		RECEIVED BY:	:,				Ç		O WINAURO	Ģ		CHLAIR	10 to 1	CHAIN OF CUSTOBY SEAL; (CIRCLE)
SGS North	RELINQUISHED BY:44)	2/19	78 (6.5	5(A SAMEDIA	VED FOR LABO	AND LONG	LE L	ΠΤ	688	OR AMBIENT [] See attacted Sample Receipt Form	OR AMBIENT []	[]	(111	È,	NTACT BROKE	NTACT BROKEN ABSENT
)										Markette in an article	ratesarasoratesaras	abatistaki urakndikalez	racant askralazioni		S SHARRARY PRINTS	erffærint trækstæten	

http://www.sgs.com/terms-and-condi fant Delivere

'101_eCOC_Revised_2015-8-;

e-Sample Receipt Form

SGS Workorder #:

1180690

1						9	U
Review Criteria	Condition (Ye	s, No, N/A	Exc	eptions No	ted below		
Chain of Custody / Temperature Requi		,	Exemption pe	ermitted if samp	oler hand carries	/delive	ers.
Were Custody Seals intact? Note # &	location n/a	ABSENT					
COC accompanied sa	amples? yes						
n/a **Exemption permitted if	chilled & coll	ected <8 hou	rs ago, or for san	nples where ch	illing is not requi	red	
	yes	Cooler ID:	1	@	2.7 °C Therm	ı. ID:	D41
	n/a	Cooler ID:		@	°C Therm	ı. ID:	
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)? n/a	Cooler ID:		@	°C Therm	ı. ID:	
	n/a			@	°C Therm		
	n/a	Cooler ID:		@	°C Therm		
*If >6°C, were samples collected <8 hours	s ago? n/a		•			1	
		1					
If <0°C, were sample containers ice	e free? n/a						
		1					
If samples received without a temperature blank, the	"cooler	1					
temperature" will be documented in lieu of the temperature by	blank &	I					
"COOLER TEMP" will be noted to the right. In cases where no		I					
temp blank nor cooler temp can be obtained, note "amb	oient" or chilled".	1					
	crimeu .						
Note: Identify containers received at non-compliant tempe							
Use form FS-0029 if more space is n	needed.						
Holding Time / Documentation / Sample Condition Re	equirement	Note: Refe	r to form F-083 "S	Sample Guide"	for specific holdi	ing tin	nes.
Were samples received within holding							
		1					
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? yes						
**Note: If times differ <1hr, record details & login pe	er COC.					_	
Were analyses requested unambiguous? (i.e., method is speci	ified for yes						
analyses with >1 option for ar		1					
			/a *** [normitted (notale (a = acc	2/6000	141
Word proper containers (the selection to the selection to	t)uaada		/a ***Exemption	penniced for r	netals (e.g,200.8	<i>51</i> 002(JPA).
Were proper containers (type/mass/volume/preservative***							
Volatile / LL-Hg Reg							-
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sal							
Were all water VOA vials free of headspace (i.e., bubbles ≤							
Were all soil VOAs field extracted with MeOH							
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd procedures and	d may impact o	lata quality.		
Additiona	al notes (if	applicable)	:				
. identification	(
							ļ
							ļ

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1180690001-A	HCL to pH < 2	ОК			
1180690001-B	HCL to pH < 2	ОК			
1180690001-C	HCL to pH < 2	ОК			
1180690001-D	HCL to pH < 2	ОК			
1180690001-E	HCL to pH < 2	ОК			
1180690001-F	HCL to pH < 2	ОК			
1180690001-G	HCL to pH < 2	ОК			
1180690001-H	HCL to pH < 2	ОК			
1180690002-A	HCL to pH < 2	ОК			
1180690002-B	HCL to pH < 2	ОК			
1180690002-C	HCL to pH < 2	ОК			
1180690002-D	HCL to pH < 2	ОК			
1180690002-E	HCL to pH < 2	ОК			
1180690002-F	HCL to pH < 2	ОК			
1180690002-G	HCL to pH < 2	ОК			
1180690002-H	HCL to pH < 2	ОК			
1180690003-A	HCL to pH < 2	ОК			
1180690003-B	HCL to pH < 2	ОК			
1180690003-C	HCL to pH < 2	ОК			
1180690003-D	HCL to pH < 2	ОК			
1180690003-E	HCL to pH < 2	ОК			
1180690003-F	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

2/19/2018 34 of 34

APPENDIX D LABORATORY DATA REVIEW CHECKLISTS

Laboratory Data Review Checklist

Completed By:	
Rose Pollock	
Title:	
Environmental Scientist II	
Date:	
10/31/2018	
CS Report Name:	
2017 & 2018 Free Product Monit	toring and Groundwater Monitoring Report
Report Date:	
November 2018	
Consultant Firm:	
BGES, Inc.	
Laboratory Name:	
SGS North America, Inc.	
Laboratory Report Number:	
1176061	
ADEC File Number:	
2100.26.227	
Hazard Identification Number:	
23886	

July 2017 Page 1

1.	<u>Labo</u>	ratory	, -				
	a.	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?					
		(• Yes	O No	Comments:		
				•	to another "network" laboratory or sub-contracted to an boratory performing the analyses ADEC CS approved?		
		(O Yes	O No	Comments:		
	Sa	mples	were n	ot transferred.			
2.	Chair	n of C	ustody	(CoC)			
	a.	CoC	inform	ation completed, signed	d, and dated (including released/received by)?		
		- (• Yes	O No	Comments:		
	b.	Corr	ect Ana	lyses requested?			
		(• Yes	O No	Comments:		
3.	. Laboratory Sample Receipt Documentation						
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?						
		(• Yes	O No	Comments:		
	The temperature of the cooler containing the samples was measured at the time of receipt to be 4.2 degrees C, which is within the ADEC-prescribed optimal temperature range of 0 to 6 degrees C.						
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?						
		(• Yes	O No	Comments:		
	c.	Sam	ple con	dition documented – br	oken, leaking (Methanol), zero headspace (VOC vials)?		
		(• Yes	O No	Comments:		

July 2017 Page 2

No unusual sample conditions were noted.

1176061

1	1	7	6	Λ	6	1
п	- 1	- /	()	1,	()	1

5.

	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?							
		O Yes	O No	Comments:				
	No discrepancies were noted.							
	e.	Data quality	or usability affected?					
				Comments:				
4.	. Case Narrative							
	a. Present and understandable?							
		Yes	O No	Comments:				
	b. Discrepancies, errors, or QC failures identified by the lab?							
		© Yes	• No	Comments:				
	c. Were all corrective actions documented?							
		O Yes	C No	Comments:				
	d. What is the effect on data quality/usability according to the case narrative?							
	Comments:							
Sa	Samples Results							
	a. Correct analyses performed/reported as requested on COC?							
		• Yes	O No	Comments:				
	b.	All applical	ble holding times met?					
		Yes	C No	Comments:				

July 2017 Page 3

1	1	7	6	Λ	6	1
	- 1	- /	()	1,	()	

6.

	c. All soils rep	orted on a dry weight basi	IS?							
	© Yes	O No	Comments:							
	This work order does not contain soil samples.									
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?									
	© Yes	No	Comments:							
	MW4-0825 and analyte exceed MW5-0825 con	MW5-0825; as such it cathe ADEC cleanup criterion tained concentrations of the	eeded the applicable ADEC cleanup criterion for Samples annot be determined if the actual concentrations of this on within these samples. Because Samples MW4-0825 and hree or more analytes that exceeded the ADEC cleanup are does not affect the interpretation of the data for their							
	e. Data quality	or usability affected?								
Г	O Yes	• No	Comments:							
QC	Samples Samples									
	a. Method Bla	nk								
	i. One	method blank reported per	r matrix, analysis and 20 samples?							
	• Yes	C No	Comments:							
	ii. All method blank results less than limit of quantitation (LOQ)?									
	ii. All r	nethod blank results less t	han limit of quantitation (LOQ)?							
	ii. All r	nethod blank results less the	han limit of quantitation (LOQ)? Comments:							
ſ	_		•							
	© Yes		Comments:							
	© Yes	O No	Comments:							
	© Yes	O No	Comments: re affected?							
	€ Yes	O No ove LOQ, what samples a	Comments: re affected?							
	€ Yes	O No ove LOQ, what samples a	Comments: re affected? Comments:							

1	1	7	6	Λ	6	1
	- 1	-/	6	1,	h	

v.	Data	quality or us	sability affected?	
			Comments:	
b. Labora	tory	Control Sam	ple/Duplicate (LCS/LCSD)	
i.			.CS/LCSD reported per ma methods, LCS required per	trix, analysis and 20 samples? (LCS/LCSD SW846)
⊚`	Yes	O No	Comments:	
ii.		als/Inorganic amples?	s – one LCS and one sampl	e duplicate reported per matrix, analysis and
0	Yes	No	Comments:	
Samples of	n this	work order	were not analyzed for meta	ls/inorganics.
iii.	And	project spec	ified DQOs, if applicable. (orted and within method or laboratory limits? AK Petroleum methods: AK101 60%-120%, other analyses see the laboratory QC pages)
⊙ `	Yes	O No	Comments:	
iv.	labo	ratory limits'/LCSD, MS/	And project specified DQ	RPD) reported and less than method or Os, if applicable. RPD reported from le duplicate. (AK Petroleum methods 20%; all
•	Yes	O No	Comments:	
v.	If %	R or RPD is	outside of acceptable limits	, what samples are affected?
			Commer	nts:
vi.	Do t	he affected s	ample(s) have data flags? If	f so, are the data flags clearly defined?
0	Yes	O No	Comments:	

vii. Data quality or usability affected? (Use comment box to explain.)

	_			ne ⁻	4	
v	o	Ш	П	10	M	S.

c. Surrogates – Organics Only
i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?
• Yes • No Comments:
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
• Yes • No Comments:
iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
© Yes © No Comments:
iv. Data quality or usability affected?
Comments:
d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
© Yes © No Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
© Yes © No Comments:
All samples on this work order were submitted in a single cooler.

061					
	iii. All 1	results less th	an LOQ?		
	• Yes	O No		Comments:	
	iv. If ab	ove LOQ, w	hat samples	are affected?	
				Comments:	
	D-4-	114	1. :1:4 66	4. 49	
	v. Data	ı quality or us	sability affec	Comments:	
. <u> </u>				Comments.	
e. I	Field Duplic	cate			
	i. One	field duplica	te submitted	per matrix, analysis and 10 project samples?	
	Yes	O No		Comments:	
	ii. Subı	mitted blind t	o lab?		
	Yes	O No		Comments:	
			_	at differences (RPD) less than specified DQOs?	
	(Red	commended:	30% water, 5 6) = Absolute		
		М D (7	0) 110301dt	$\frac{(R_1 + R_2)}{((R_1 + R_2)/2)} \times 100$	
			Where	R_1 = Sample Concentration	
				R_2 = Field Duplicate Concentration	
	Yes	O No		Comments:	
prec whice field	ple MW5-(ision. The ch are below sampling p	0825 was a de RPDs for all w the ADEC- precision. Th	analytes that prescribed line RPDs between	ample MW4-0825 and was collected to evaluate st were detected in both samples ranged from 1 to mit of 30 percent for water samples and indicates ween the reported concentrations of several analytabove the LOQs.	18 percent, acceptable
	iv. Data	quality or us	sability affec	ted? (Use the comment box to explain why or wh	y not.)
				Comments:	
No.	See 6.e.iii a	above.			

7.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).
○ Yes ○ No ○ Not Applicable
The approved scope of work for this project did not include decontamination or equipment blanks.
i. All results less than LOQ?
© Yes © No Comments:
ii. If above LOQ, what samples are affected?
Comments:
iii. Data quality or usability affected?
Comments:
Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
O Yes O No Comments:
No other data flags were appropriate for this work order.

Laboratory Data Review Checklist

ompleted By:
Rose Pollock
itle:
Environmental Scientist II
Pate:
10/31/2018
S Report Name:
2017 & 2018 Free Product Monitoring and Groundwater Monitoring Report
eport Date:
November 2018
onsultant Firm:
BGES, Inc.
aboratory Name:
SGS North America, Inc.
aboratory Report Number:
1180690
DEC File Number:
2100.26.227
azard Identification Number:
23886

1.	<u>Labo</u>	<u>ratory</u>				
	a.	Did an A	DE	C CS approve	ed laboratory	y receive and perform all of the submitted sample analyses?
			es	O No		Comments:
				*		another "network" laboratory or sub-contracted to an atory performing the analyses ADEC CS approved?
		© Ye	es	O No		Comments:
	Sa	imples wei	re no	ot transferred		
2.	Chair	n of Custo	dy (CoC)		
	a.	CoC info	rma	tion complet	ed, signed, a	and dated (including released/received by)?
			es	O No		Comments:
	b.	Correct A	Anal	yses requeste	ed?	
			es	O No		Comments:
3.	Labo	ratory San	nple	Receipt Doc	umentation	
	a.	Sample/o	coole	er temperatur	e documente	ed and within range at receipt (0° to 6° C)?
		⊙ Ye	es	O No		Comments:
		_			_	the samples was measured at the time of receipt to be 2.7 escribed optimal temperature range of 0 to 6 degrees C.
	b.			ervation acceporinated Solv		lified waters, Methanol preserved VOC soil (GRO, BTEX,
		⊙ Ye	es	O No		Comments:
	c.	Sample of	ond	ition docume	nted – broke	en, leaking (Methanol), zero headspace (VOC vials)?
			es	O No		Comments:
	No	o unusual s	samp	ole condition	s were noted	l.

1180690

1	1	8	n.	6	a	U
	- 1	α	. ,,	u	71	

	samples, etc	>. ?	
	© Yes	O No	Comments:
No	o discrepancie	es were noted.	
e.	Data quality	y or usability affec	eted?
			Comments:
. <u>C</u>	Case Narrative	<u>2</u>	
a	. Present and	d understandable?	
	• Yes	O No	Comments:
b	. Discrepanc	cies, errors, or QC	failures identified by the lab?
	O Yes	No	Comments:
c.	. Were all co	orrective actions d	locumented?
	© Yes	O No	Comments:
d	. What is the	e effect on data qu	nality/usability according to the case narrative?
			Comments:
amı	ples Results		
а	. Correct ana	alvses nerformed/i	reported as requested on COC?
u	• Yes	•	Comments:
	<u> </u>	1 INU	Comments.
L h	All applica	ble holding times	met?
	• Yes		Comments:

11806	90									
	c. All soils re	ported on a dry weight bas	sis?							
	O Yes	O No	Comments:							
	This work order does not contain soil samples.									
	d. Are the rep	*	Cleanup Level or the minimum required detection level for							
	O Yes	No	Comments:							
	MW4-0219 an analyte exceed MW5-0219 co	The LOQs for 1,2,3-trichloropropane exceeded the applicable ADEC cleanup criterion for Samples MW4-0219 and MW5-0219; as such it cannot be determined if the actual concentrations of this analyte exceed the ADEC cleanup criterion within these samples. Because Samples MW4-0219 and MW5-0219 contained concentrations of DRO and RRO that exceeded the ADEC cleanup criteria, it is our opinion that this QC failure does not affect the interpretation of the data for their intended use.								
	e. Data qualit	y or usability affected?								
	O Yes	No	Comments:							
6. <u>Q</u> 0	a. Method Blank i. One method blank reported per matrix, analysis and 20 samples?									
	Yes	O No	Comments:							
	ii. All	method blank results less	than limit of quantitation (LOQ)?							
	• Yes	C No	Comments:							
	iii. If al	bove LOQ, what samples a	are affected?							
			Comments:							
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined									
	O Yes	O No	Comments:							
	v. Dat	a quality or usability affec	ted?							
			Comments							

1180690

b. I	Laboratory	Control Samp	le/Duplicate (LCS/LCSD)
	_		CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD nethods, LCS required per SW846)
	• Yes	O No	Comments:
		als/Inorganics amples?	– one LCS and one sample duplicate reported per matrix, analysis and
_	O Yes	No	Comments:
Sam	ples on thi	s work order w	vere not analyzed for metals/inorganics.
	And	l project specif	rcent recoveries (%R) reported and within method or laboratory limits? fied DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, 6, AK103 60%-120%; all other analyses see the laboratory QC pages)
	Yes	O No	Comments:
	labo LCS	oratory limits? . S/LCSD, MS/N	ative percent differences (RPD) reported and less than method or And project specified DQOs, if applicable. RPD reported from MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; at the laboratory QC pages)
	• Yes	O No	Comments:
	v If%	P or RPD is o	utside of acceptable limits, what samples are affected?
	V. 11 /	K UI KI D 15 O	Comments:
			Comments.
	· D		
			mple(s) have data flags? If so, are the data flags clearly defined?
	O Yes	O No	Comments:
	vii. Data	ı quality or usa	ability affected? (Use comment box to explain.)
			Comments:

1	1	8	0	6	9	0

c. Surro	gates -	- Organics Only							
i.	i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?								
•	Yes	O No	Comments:						
ii.	And		eries (%R) reported and within method or laboratory limits? if applicable. (AK Petroleum methods 50-150 %R; all other port pages)						
•	Yes	O No	Comments:						
iii		he sample results with fais clearly defined?	led surrogate recoveries have data flags? If so, are the data						
С	Yes	O No	Comments:						
iv	. Data	quality or usability affec	ted?						
			Comments:						
d. Trip b	olank –	- Volatile analyses only (C	GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and						
i.	sam	ples?	atrix, analysis and for each cooler containing volatile						
	(If n	ot, enter explanation belo	w.)						
•	Yes	O No	Comments:						
ii.		<u> </u>	the trip blank and VOA samples clearly indicated on the laining why must be entered below)						
•	Yes	O No	Comments:						
All samp	les on	this work order were sub	mitted in a single cooler.						
iii	. All r	results less than LOQ?							
•	Yes	O No	Comments:						

0690
iv. If above LOQ, what samples are affected?
Comments:
v. Data quality or usability affected?
Comments:
a Field Dunlingto
e. Field Duplicatei. One field duplicate submitted per matrix, analysis and 10 project samples?
• Yes • No Comments:
ii. Submitted blind to lab?
• Yes • No Comments:
iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
Sample MW5-0219 was a duplicate of Sample MW4-0219 and was collected to evaluate sampling precision. The RPDs for 1,1,1-trichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4 isopropyltoluene, naphthalene, n-propylbenzene, toluene, and total xylenes ranged from 0 to 7 percent, which are below the ADEC-prescribed limit of 30 percent for water samples and indicates acceptable field sampling precision with respect to these analytes. The RPD for DRO was 83 perceptable indicating poor field sampling precision. The RPDs between the reported concentration of several analytes could not be calculated, as they were not detected above the LOQs. iv. Data quality or usability affected? (Use the comment box to explain why or why not.)
Comments:

1180690

7.

f. Decont below)		ation or	Equipment Blank (If not applicable, a comment stating why must be entered
0	Yes	O No	Not Applicable
The approx	ved so	cope of v	work for this project did not include decontamination or equipment blanks.
i.	All ro	esults les	es than LOQ?
0	Yes	O No	Comments:
ii.	If abo	ove LOC), what samples are affected?
			Comments:
iii.	Data	quality	or usability affected?
			Comments:
Other Data Fla	ags/Q	ualifiers	(ACOE, AFCEE, Lab Specific, etc.)
a. Define	d and	appropr	iate?
0	Yes	No	Comments:
No other d	lata fl	ags were	appropriate for this work order.

APPENDIX E CONCEPTUAL SITE MODEL

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: 1300 East 5th Avenue, Anchorage Alaska 99501 Alaska Sales & Service		Instructions: Follow the numbered consider contaminant concentrations use controls when describing path	ons or	r eng				ot		
Completed By: Rose Pollock Date Completed: 9/27/2018							(5)			_
(1) Check the media that could be directly affected by the release. For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.	expo "F" f futur C	osure p for futur re rece _l	pathwa re rece ptors,	y: Ente eptors, or "I" fo & Fu	er "C" for "C/F" for or insigni I ture	r curren r both c ificant e	ed by each treceptor current arexposure	ors, nd e.
Media Transport Mechanisms	Exposure Media	Exposure Pathway/Route	/	fren)	ke/s	l use	Vorke bsiste	. /	j /	
Surface Migration to subsurface Check so Check so Soil Migration to groundwater Check groundwa	[Residents (adult	Commercial or	Site visitors, to	Construction	Farmers or subsisten	Subsistence consum.	Other	,
Runoff or erosion check surface water	V	idental Soil Ingestion		F	F	F				
Uptake by plants or animals check biot	soil Der	rmal Absorption of Contaminants from Soil								
Other (list):	Inh.	alation of Fugitive Dust							\neg	
Subsurface Direct release to subsurface soil Check so				<u> </u>		F				
Soil (2-15 ft bgs) Uptake by plants or animals Check biot		estion of Groundwater		F	F	F	-			
(2-15 π bgs) Uptake by plants or animals check biot Other (list):		rmal Absorption of Contaminants in Groundwater alation of Volatile Compounds in Tap Water		F	F	F				
	<u> </u>	alation of volatile Compounds in Tap Water		<u> </u>	Г	Г				
Ground- water Direct release to groundwater Check groundwater Check groundwater Check a check a check surface water body Check surface water body	✓ Inh	alation of Outdoor Air		_	C/F					
Flow to sediment check sedimer		alation of Indoor Air		C/F	C/F	C/F	$\overline{}$	+	\dashv	
Uptake by plants or animals check biot Other (list):	inn.	alation of Fugitive Dust								
	□ Ina	estion of Surface Water								
Surface Volatilization check aurface water check surface water check aurface water check surface water		rmal Absorption of Contaminants in Surface Water					\rightarrow	+	\dashv	
Water Sedimentation check sedimen		alation of Volatile Compounds in Tap Water					\rightarrow	+	\dashv	
Uptake by plants or animals check biot		anation of volutile compounds in Tup video								
Other (list):	sediment	ect Contact with Sediment							\neg	
Direct release to sediment check sediment		oot contact with countries								
Sediment Resuspension, runoff, or erosion Uptake by plants or animals Other (list):		estion of Wild or Farmed Foods								
	<u>'</u>					Rev	ised, 1	0/01/	2010	_