

FINAL GAMBELL SITE CHARACTERIZATION REPORT FEDERAL SCOUT READINESS CENTER ALASKA ARMY NATIONAL GUARD FY15 DEFENSE ENVIRONMENTAL RESTORATION PROGRAM (DERP)

CONTRACT NO. W91ZRU-15-C-0013

MAY, 2017

Prepared For: Alaska Army National Guard PO Box B, Camp Denali Fort Richardson, AK 99505-2610

Prepared By: Eagle Eye Electric, LLC, a subsidiary of Bering Straits Native Corporation 4600 Debarr Road, Suite 200 Anchorage, Alaska 99508-3216

TABLE OF CONTENTS

		F CONTENTS	
ACI	RONY	MS AND ABBREVIATIONS	v
EXI	ECUTI	VE SUMMARY	vii
1.0	INT	FRODUCTION	1
1.1	Pre	oject Objectives	1
1.2	Sit	e Characterization Report Organization	1
1.3		e Description and Background	
1.4		e Location and Characteristics	
1.5		mbell FSRC Property	
	1.5.1	Geology	
	1.5.2	Surface Water	
1.6	Da	ta Gap Analysis and Previous Investigations	
	1.6.1	2006 Site Investigation	
	1.6.2	6	
2.0	RE	GULATORY FRAMEWORK	
2.1	Со	ntaminants of Potential Concern in Groundwater and Applicable Cleanup Leve	els.7
3.0		CHARACTERIZATION ACTIVITIES	
3.1	Мо	bilization and Site Preparation	9
3.2	Мо	onitoring Well Installation	9
3.3	Мо	onitoring Well Development	10
3.4	Мо	onitoring Well Sampling	10
3.5		contamination Procedures	
3.6	Inv	vestigation Derived Wastes	11
3.7		mobilization and Site Restoration	
4.0	AN	ALYTICAL SAMPLE RESULTS	13
4.1	Da	ta Validation Summary	13
	4.1.1	Analytical Methods	
	4.1.2	Sample Holding Times and Preservation	14
	4.1.3	Precision	15
	4.1	.3.1 Field Duplicates	15
	4.1	.3.2 Laboratory Sample Duplicates and/or Spike Duplicates (Laboratory Contr	rol
		Samples or Matrix Spikes)	
	4.1.4	Accuracy	16
	4.1	.4.1 Laboratory Quality Control Samples Percent Recoveries – Spikes (Laborat	tory
		Control Samples and/or Matrix Spikes)	17
	4.1	.4.2 Surrogate Percent Recoveries	
	4.1.5	Representativeness	
	4.1.6	Comparability	18
	4.1.7	Completeness	
	4.1.8	Sensitivity	19
	4.1	.8.1 Limits of Detection	
	4.1	.8.2 Blank Results (Trip Blanks and Method Blanks)	19
	4.1.9	Data Summary	

5.0	CONCEPTUAL SITE MODEL2	20
6.0	CONCLUSIONS AND RECOMMENDATIONS2	23
7.0	REFERENCES2	25

TABLES

7
13
14
14
15

FIGURES

Figure 1	State and Site Location Maps
Figure 2	Monitoring Well Locations and Sample Results

APPENDICES

- Appendix A Photograph Log
- Appendix B Field Documentation
- B-1 Field Notes
- B-2 Monitoring Well Installation and Sample Forms
- Appendix C Laboratory Reports and Checklists
- C-1 Laboratory Data Reports
- C-2 ADEC Laboratory Data Review Checklists
- Appendix D Conceptual Site Models
- Appendix E ADEC Correspondence

ACRONYMS AND ABBREVIATIONS

°C	dograda Colcina
°C	degrees Celsius
°F	degrees Fahrenheit
AAC	Alaska Administrative Code
ACL	alternative cleanup level
ADEC	Alaska Department of Environmental Conservation
AKARNG	Alaska Army National Guard
AST	aboveground storage tank
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
COC	chain-of-custody
CSM	conceptual site model
DERP	Defense Environmental Restoration Program
DGI	Data Gap Investigation
DRO	diesel range organics
Eagle Eye	Eagle Eye Electric, Limited Liability Company
EPA	United States Environmental Protection Agency
EPH	extractable petroleum hydrocarbons
FSRC	Federal Scout Readiness Center
FY	Fiscal Year
GAC	granular activated carbon
GRO	gasoline range organics
HI	hazard index
Hoefler	Hoefler Consulting Group
HRC	Hydrocarbon Risk Calculator
IDW	investigation-derived waste
L	liter
LCS/LCSD	laboratory control sample/laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
MDL	method detection limit
µg/L	micrograms per liter
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MS/MSD	matrix spike/matrix spike duplicate
ND	non-detect
РАН	polycyclic aromatic hydrocarbons
PPE	personal protective equipment
PVC	polyvinyl chloride
RPD	relative percent difference
RRO	residual range organics
SC	site characterization
SCP	Site Characterization Plan

SCR	Site Characterization Report
SIM	Selective Ion Monitoring
ТОС	total organic carbon
VOC	volatile organic compound
VPH	volatile petroleum hydrocarbons

WRCC Western Regional Climate Center

EXECUTIVE SUMMARY

This Site Characterization Report describes the activities and findings of the 2016 site characterization (SC) activities conducted at the Alaska Army National Guard (AKARNG) Federal Scout Readiness Center (FSRC) in Gambell, Alaska. This work was performed by Eagle Eye Electric, Limited Liability Company (Eagle Eye), a subsidiary of Bering Straits Native Corporation, for AKARNG under Contract No. W91ZRU-15-C-0013.

The primary objective of the SC effort was to fill data gaps and define the nature and extent of groundwater contamination at the facility. A secondary objective included the development of cleanup levels that will allow unrestricted future use (if needed). However, cleanup levels were previously established and approved by the Alaska Department of Environmental Conservation (ADEC) as part of the 2011 data gap analysis performed by CH2MHill (CH2MHill 2013). Data collected as part of the SC will be combined with historical information in order to develop a Decision Document for the facility.

Groundwater Well Installation and Monitoring

Eagle Eye installed and sampled seven groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7) at the Gambell FSRC between June 29 and July 2, 2016. Water was observed from 6.7 to 8.4 feet below ground surface (bgs) during monitoring well installation. Each of the monitoring wells was installed to approximately 10 feet bgs. After the monitoring wells were developed, groundwater samples were collected from each well and analyzed for gasoline-range organics; diesel-range organics (DRO); residual-range organics; benzene, toluene, ethylene, xylenes, and polycyclic aromatic compounds by an offsite laboratory. The groundwater sample collected from MW-2 contained a concentration of DRO of 14 milligrams per liter (mg/L) and a concentration of naphthalene of 0.011 mg/L, which are greater than the respective ADEC Title 18 Alaska Administrative Code Chapter 75 Section 345 Table C cleanup levels of 1.5 mg/L and 0.0017mg. All other results were less the ADEC cleanup levels. Data collected as part of the 2016 SC effort also corroborates that groundwater flow direction at the site is to the north-northwest.

Recommendations

Data collected from site groundwater in 2011 and 2016 indicates that concentrations of DRO are present above the ADEC groundwater cleanup level. It is recommended that long-term groundwater monitoring be conducted on a regular basis to determine if additional actions need to be considered for site groundwater.

1.0 INTRODUCTION

This Site Characterization Report (SCR) describes the site characterization (SC) activities performed at the Gambell Federal Scout Readiness Center (FSRC) in 2016. The work described in this SCR was performed by Eagle Eye Electric, Limited Liability Company (Eagle Eye), a subsidiary of Bering Straits Native Corporation, for the Alaska Army National Guard (AKARNG) under Contract W91ZRU-15-C-0013. The work was performed in accordance with Alaska Department of Environmental Conservation (ADEC) regulations contained within the Alaska Administrative Code (AAC), Title 18, Chapter 75 (18 AAC 75) as revised through April 6, 2016 (ADEC 2016b); ADEC's *Site Closure/Cleanup Complete Memorandum* (ADEC 2016a); ADEC's *Field Sampling Guidance* (ADEC 2016c); ADEC's *Monitoring Well Guidance* (ADEC 2013); contract documents including the task Scope of Work provided in the Performance Work Statement; and local, state, and federal regulations and laws.

1.1 Project Objectives

The primary objective of the SC effort was to fill data gaps and define the nature and extent of groundwater contamination at the facility. A secondary objective included the development of cleanup levels that will allow unrestricted future use (if needed). However, cleanup levels were previously established and approved by the ADEC as part of the 2011 data gap analysis performed by CH2MHill (CH2MHill 2013). Data collected as part of the SC will be combined with historical information in order to develop a Decision Document for the facility.

1.2 Site Characterization Report Organization

This SCR outlines activities performed to meet the project objectives at the Gambell FSRC. The SCR is organized into the following sections:

- Section 1: Introduction. The introduction presents an overview of the SC activities, including the project objectives, SCR organization, and regional setting and site background information.
- Section 2: Regulatory Framework. This section summarizes the regulations and the groundwater cleanup levels applicable to this project.
- Section 3: Site Characterization Field Activities. This section describes the field methods used to install monitoring wells, collect groundwater samples, decontaminate equipment, and manage the investigation-derived waste.
- Section 4: Analytical Sample Results. This section summarizes and discusses the groundwater sample results and presents the data validation.
- Section 5: Conclusions and Recommendations. This section presents the conclusions and recommendations for the FSRC
- Section 6: References. Lists the sources referenced in the SCR.

1.3 Site Description and Background

This section summarizes the site location, climate, and environmental characteristics of Gambell, as well as the previous investigations performed at the Gambell FSRC. This information was obtained from the following sources:

- 2006 Site Investigation (Hoefler 2008)
- 2011 Gambell Federal Scout Readiness Center Data Gap Investigation (DGI) Report (CH2MHill 2013)

The ADEC Hazard ID number for the Gambell FSRC is 4276; the ADEC file number is 660.38.007.

1.4 Site Location and Characteristics

The City of Gambell is located on a gravel spit on the northwestern tip of Saint Lawrence Island in the Bering Sea, 36 miles from the coast of Siberia (**Figure 1**). This area is situated on 10.9 square miles of land and 19.5 square miles of water. Troutman Lake, located south of the city, is separated from the Bering Sea by a narrow gravel spit. The level of the lake is approximately 2 feet above sea level. Sevuokuk Mountain lies approximately 1 mile to the east of the city, rising to an elevation of 614 feet above sea level. The topography of the area is relatively flat.

The climate is maritime with continental influences in winter. Precipitation falls 300 days of the year with an annual precipitation of 17.6 inches and an average annual snowfall of 70.5 inches (Western Regional Climate Center [WRCC] 2015). Average summer temperatures range from 34 to 49.5 degrees Fahrenheit (°F) while average winter temperatures range from -2.5 to 12.1 °F (WRCC 2015).

1.5 Gambell FSRC Property

The Gambell FSRC property is owned by Sivuqaq Incorporated and is licensed to the Alaska AKARNG until June 30, 2020, with a 30-year renewal option. It is approximately ¼ mile northeast of the Gambell Airport. The facility is used as an office for the Native Corporation and for dry storage. The FSRC is located at latitude 63.7783386 degrees north and longitude –171.3400335 degrees west, based on the 1984 (revised 2004) World Geodetic System datum, and within Section 03 of Township 20 S, Range 67 W of the Kateel River Meridian. Gambell is located within the Cape Nome Recording District.

The Gambell FSRC is an inoperable scout readiness center. It currently contains the following:

- A 20- by 60-foot, prefabricated scout readiness center known as the Old FSRC, which was built around 1970
- A 30- by 40-foot, prefabricated scout readiness center known as the New FSRC, which was built in 1979 and attached to the Old FSRC with an enclosed walkway

- Two 1,500-gallon, double-walled aboveground storage tanks (AST) near the southeastern corner of the New FSRC building, west of the storage van, and two beside the northwestern corner of the Old FSRC building
- An 8- by 20-foot storage van east of the New FSRC building
- A 12- by 12-foot, metal storage shed, along the western property boundary
- A hazardous materials storage locker at the northwestern corner of the New FSRC

The Gambell FSRC previously contained:

- A 3,000-gallon, single walled heating oil AST
- An 8- by 12-foot, wooden storage shed, along the western property boundary

Site features are presented in **Figure 1**.

1.5.1 Geology

The dominant soil lithologies underlying the Gambell area are unconsolidated, poorly to well-sorted gravels with sand and poorly to well-sorted sand with gravels. Gravels are underlain by bedrock. The bedrock beneath Gambell consists of granitic Cretaceous plutonic rocks.

1.5.2 Surface Water

There are no surface water features at the site; however, there are three major surface water features in the area (Bering Sea, Kittilngook Bay, and Troutman Lake). Troutman Lake, the nearest body of surface water, is approximately 1,200 feet south of the site. The lake water is considered slightly brackish because of influences from the Bering Sea (U.S. Army Corps of Engineers [USACE] 2005). Surface water flow direction from the site is estimated to be toward the north, with localized variations because of mounded gravel.

1.5.3 Hydrogeology and Drinking Water

Permafrost is commonly encountered at depths ranging from 3 to 15 feet below ground surface (bgs). Historical data from two former water wells in Gambell suggested that the shallow permafrost was "seasonal" in nature (CH2MHill 2013). A 1985 investigation found permafrost to be discontinuous throughout the area. Where present, it was found between 7 to 10 feet bgs. Further investigations in 1992 indicated that permafrost is discontinuous nearest the sea and becomes continuous as you move south and east across the gravel spit toward the bluff. Shallow permafrost near the bluff was shown to vary seasonally in its distance from the bluff, therefore controlling the volume of the shallow drinking water aquifer at the base of the bluff. Permafrost was not encountered in any of the borings advanced in 2016.

Groundwater resources at Gambell are limited (CH2MHill 2013). During the 2016 data gap investigation, groundwater was encountered at the FSRC from 6.7 to 8.4 feet bgs and groundwater flow direction was established to the north-northwest. The village water well

provides the water for the town. Groundwater from the central spit area is often saline, difficult to recover in usable quantities, and is located in an active lens over permafrost.

The lack of shallow permafrost near the sea and the presence of saline groundwater were noted in two well logs from the Alaska Department of Natural Resources. One well was located about 1,000 feet west of the armory, in the old village site and the other well was located about 750 feet northwest of the armory, next to the former elementary school. In the units above the screened interval, both wells penetrated seasonally frozen gravel interlayered with thawed gravel. Both wells were abandoned due to poor water quality or low discharge rates. Groundwater for the new school and village is obtained from a shallow aquifer at the base of the bluff, located approximately 2,000 feet east of the armory. This aquifer occurs in a thaw bulb in the permafrost at the base of Sevuokuk Mountain. Although groundwater at the Gambell FSRC is not a current source or likely future source of drinking water, a drinking water determination per Title 18 Alaska Administrative Code (AAC) 75.350 has not been prepared or approved for the facility.

1.6 Data Gap Analysis and Previous Investigations

The only known contamination at the Gambell FSRC stems from an estimated 3,000-gallon spill of heating oil from a single-walled aboveground storage tank (AST) in 1983. The AST has since been removed. Due to the high permeability, well-drained, gravelly soils beneath the tank, the fuel likely moved downward to the permafrost, which is less than 10 feet below ground surface (bgs). The AKARNG conducted site inspections in 1990 and 1997 that identified stained soil at the 1983 spill location. In addition, several other surface stains and potential spill sources were identified (AKARNG 1990, 1997, 2003). No removal actions have been conducted to date. Sections 1.6.1 and 1.6.2 summarize the most recent data collected in 2006 and 2011. **Figure 2** presents the site features as well as the previous and recent 2016 soil and groundwater sample locations.

1.6.1 2006 Site Investigation

In 2006, Hoefler Consulting Group (Hoefler) collected and analyzed soil samples to investigate areas where past spills, past staining, and current staining had been reported or observed. Due to the coarse nature of the soil, the boring walls repeatedly collapsed. Therefore, the crew used temporary polyvinyl chloride (PVC) tubes to stabilize the boring walls in order to facilitate sample collection from depths greater than 1 foot bgs. Delineation samples were analyzed for diesel-range organics (DRO) and residual-range organics (RRO). Source area and near source area samples were analyzed for DRO, RRO, gasoline-range organics (GRO), benzene, toluene, ethylbenzene, and xylenes (BTEX), and total organic carbon (TOC). The data indicated concentrations of DRO above the ADEC Method Two soil cleanup level in four locations 1) north of the existing 1,500-gallon ASTs belonging to the old FSRC; 2) along the western edge of the old FSRC; 3) at the former snowmachine storage area; and 4) west of the Old FSRC ASTs, approximately where the former 3,000-gallon AST was situated (Hoefler 2008). No other analytes were detected above cleanup levels in site soil. However, it is important to note that soil samples could not be collected deeper than 3.5 feet bgs near the location of the 1983 heating oil spill. In

addition, groundwater samples were not collected because groundwater was not encountered at the depth of refusal (6.5 feet bgs) of the hand-driven groundwater monitoring probe.

Background samples were also collected and analyzed for DRO, RRO, and TOC to calculate alternative cleanup levels (ACLs). Based on this data, an ACL of 280 milligrams per kilogram (mg/kg) was calculated for DRO (Hoefler 2008). Unfortunately, insufficient data were collected to fully define the volume of contaminated soil above the ACL. However, the volume appears to be relatively small because the maximum detected concentrations were close to the ACL. **Figure 2** presents the 2006 sample locations and exceedances.

1.6.2 2011 Data Gap Analysis

In 2011, CH2MHill performed a DGI to ensure that the AKARNG had all of the environmental data necessary to conduct remedial actions at the Gambell FSRC to allow divesture of the leased property without the use of institutional controls. The analysis included a review of background information, a summary of previous investigations, an updated conceptual site model (CSM), and data collection and analysis of the 2006 and 2011 field efforts. The DGI field work included the collection of soil samples from 13 soil boring locations and groundwater samples from 10 groundwater monitoring well locations. All soil samples were analyzed for DRO; a subset of samples was also analyzed for BTEX, polycyclic aromatic hydrocabons (PAH), extractable petroleum hydrocarbons (EPH), and volatile petroleum hydrocarbons (VPH). All groundwater samples were analyzed for DRO; one sample was also analyzed for BTEX, PAHs, EPH, and VPH. Concentrations of DRO exceeded the ADEC Method Two soil cleanup level in two soil borings and the ADEC groundwater cleanup level in three of the sampled wells in 2011. The maximum concentration of DRO detected in site soil was 600 mg/kg; the maximum detected concentration in site groundwater was 33 milligrams per liter (mg/L). No other analytes were detected above cleanup levels in either site soil or groundwater. Figure 2 presents the 2011 sample locations and exceedances.

Based on all available data, including data collected in 2006 and 2011, an assessment of the cumulative risk was not required. However, cumulative risk for the site was assessed using the ADEC-approved hydrocarbon risk calculator (HRC). Results of the assessment indicate a cumulative carcinogenic cancer risk at 6 x 10^{-7} and a hazard index (HI) of 0.07 for cumulative non-carcinogenic risk. These results are less than the regulatory limits of 1 x 10^{-5} and 1, respectively.

The ADEC-approved HRC was also used to assess risk of petroleum hydrocarbons in soil. The maximum site concentration for DRO of 600 mg/kg was used in the risk calculations. The results of the assessment completed using the HRC showed that the risk for all petroleum hydrocarbons was less than the HI of 1 (Hoefler 2008). Data inputs were used to calculate a proposed ACL of 11,870 mg/kg for DRO.

The Report concluded that concentrations of DRO in soil exceed the ADEC Method 2 cleanup level, but not the proposed ACL of 11,870 mg/kg. The lateral extent of DRO-

contaminated soil has been adequately delineated and appears to exist sporadically to the northwest of the FSRC building. In addition, the existence of permafrost at approximately 7 to 9.5 feet bgs across the site limits the vertical extent of DRO-contaminated soil. DRO-contaminated suprapermafrost groundwater appears to extend laterally to the northwest corner of the FSRC property. However, it does not appear to be migrating offsite and potentially contaminating the Bering Sea. Based on the data collected to date, the Report recommended no further remedial action for either site soil or groundwater at Gambell FSRC. ADEC requested further delineation of site groundwater to confirm offsite migration is not occurring.

2.0 REGULATORY FRAMEWORK

ADEC is the regulatory authority governing the cleanup of petroleum-contaminated soil and groundwater at contaminated sites in Alaska. This SCR has been prepared in accordance with ADEC's *Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites* (ADEC 2009a). ADEC approval of the SCR will be attached in *Appendix E* as part of the final Report.

The activities described in this SCR were conducted in accordance with 18 AAC 75, *Oil and Other Hazardous Substances Pollution Control* (ADEC 2015). Other applicable ADEC guidance documents include *Site Closure/Cleanup Complete Memorandum* (ADEC 2016a), *Field Sampling Guidance* (ADEC 2016c), and *Monitoring Well Guidance (ADEC 2013)*. Field activities were overseen by a qualified environmental professional in accordance with 18 AAC 75.333 and the ADEC *Field Sampling Guidance* (ADEC *Sampling Guidance* (ADEC *Sampling Guidance*).

Data quality was evaluated based on their precision, accuracy, representativeness, completeness, and comparability. A thorough data quality review was conducted in accordance with *Environmental Laboratory Data and Quality Assurance Requirements Technical Memorandum* (ADEC 2009c). An ADEC Laboratory Data Review Checklist will be completed for each laboratory data package (*Appendix C*).

2.1 Contaminants of Potential Concern in Groundwater and Applicable Cleanup Levels

The primary contaminant of potential concern at the Gambell FSRC in site groundwater is DRO. ADEC Groundwater Cleanup Levels per 18 AAC 75 apply to site groundwater. The maximum detected concentrations of DRO compared to the cleanup level are presented in **Table 2-1**.

Contaminant of Potential Concern	Maximum Detected Concentration - 2016 Field Effort (Sample ID)	Maximum Detected Concentration – Previous Field Effort (Sample ID)	ADEC Groundwater Cleanup Level ¹
DRO	14 (16GAM02MW02)	33 (11GAMGW007)	1.5

TABLE 2-1: MAXIMUM DETECTED CONCENTRATIONS AND GROUNDWATER CLEANUP LEVELS

Notes:

¹ 18 AAC 88.345 Table C Cleanup Levels (ADEC 2016)

- All concentrations and cleanup levels are in mg/L

- DRO = diesel range organics

3.0 SITE CHARACTERIZATION ACTIVITIES

The activities proposed in the *Site Characterization Plan (SCP), Gambell FSRC, Gambell, Alaska* (Eagle Eye 2016) were performed at the Gambell FSRC in June and July 2016. Sections 3.1 through 3.5 describe the field activities that were conducted to meet the project objectives listed in Section 1.1. *Appendix B* includes the field forms from the field effort.

3.1 Mobilization and Site Preparation

Eagle Eye and its drilling subcontractor, Discovery Drilling, along with the drilling equipment and supplies, mobilized to Gambell on 28 and 29 June 2016 via commercial and chartered aircraft.

Upon arrival at the FSRC, site preparation activities included locating the areas of interest, clearing the site of obstacles and debris, identifying underground lines, marking the drilling/groundwater well locations, and securing all necessary equipment prior to the commencement of work.

3.2 Monitoring Well Installation

Seven permanent groundwater monitoring wells were installed on 30 June and 1 July 2016 to characterize potential groundwater contamination and to determine hydraulic gradient. Monitoring wells locations were selected based on site conditions, previous soil and groundwater sample results, and the determination of the site-specific groundwater flow direction to further refine the nature and extent of contamination at the site as described in the SCP (Eagle Eye 2016):

- 16GAMMW01 was installed just east of former monitoring well 11GAMGW006 and south of former monitoring well 11GAMGW007
- 16GAMMW02 was installed south and west of previous detections of DRO in groundwater (11GAMGW006) and soil (GAM-SI-11) greater than the ADEC cleanup levels
- 16GAMMW03 was installed southwest of former monitoring well 11GAMGW001
- 16GAMMW04 was installed northwest of former monitoring well 11GAMGW001 and southeast of former monitoring well 11GAMGW008
- 16GAMMW05 was installed northwest of former monitoring well 11GAMGW007
- 16GAMMW06 was installed north of the former monitoring well 11GAMGW008 and northeast of former monitoring well 11GAMGW007
- 16GAMMW07 was installed along the western edge of the property

One well could not be installed as planned; although several attempts were made near the western edge of the Old FSRC, water was not observed in any of the soil cores in this area. Additional attempts were restricted due to the presence of a buried electrical line. Outside of this line, all prior results were less than cleanup levels for site soil and groundwater.

The seven monitoring wells were installed according to ADEC's Monitoring Well Guidance (ADEC 2013). Wells were installed using a Geoprobe drill and consisted of a 5-foot, 2-inch nominal diameter 10-slot Schedule 40 PVC well screen connected to a 2-inch nominal

diameter Schedule 40 PVC riser. Approximately 5 to 6 feet of 20-40 silica sand was placed within the annulus followed by approximately 2 to 4 feet of bentonite above the sand to serve as the annular space sealant. Each well was finished as a flush mounted well. Well installations procedures are detailed in the Record of Well Construction logs (*Appendix B*).

3.3 Monitoring Well Development

Newly installed wells were developed following installation per ADEC approval (*Appendix E*). The wells were developed by purging using a peristaltic pump. Wells were considered developed after at least three borehole volumes of water had been removed and field parameters stabilized, the maximum purge volume was achieved, or the well purged dry. Well development procedures were recorded on the Well Development Data Sheets (*Appendix B*). A summary for each well is presented in **Table 3-1**. Any equipment used for multiple wells was decontaminated between each well as described in Section 3.5. Purge water was accumulated in 5-gallon buckets for treatment with granular activated carbon (GAC). See Section 3.6 for more details.

Well ID	Total Volume Purged (L)	Development Status
MW01	36.00	Maximum purge volume reached
MW02	23.47	Maximum purge volume reached
MW03	15.00	Purged dry
MW04	41.95	Maximum purge volume reached
MW05	30.00	Field parameters stabilized
MW06	43.52	Maximum purge volume reached
MW07	22.00	Maximum purge volume reached

Notes:

- Well IDs begin with "16GAM"

-L = liters

3.4 Monitoring Well Sampling

Newly installed wells were sampled after development was completed per ADEC approval (*Appendix E*). A PID was used for air monitoring to analyze for volatile organic compounds (VOC) in the breathing zone prior to opening the well or removing the well plug and immediately after opening the well and removing the well plug. Depth to water was measured using an interface probe.

Purging was conducted with ADEC *Field Sampling Guidance* (ADEC 2016c) and the US Environmental Protection Agency (EPA) *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure* (EPA 1996).

Purging continued until water quality parameter stabilization was reached or the maximum purge volume was achieved. Once the parameters stabilized or the maximum purge volume was achieved, groundwater sampling commenced. Water was purged using the pump directly into the sampling container. The flow rate was continually adjusted to

attempt to ensure that the drawdown rate did not exceed 0.3 feet. Samples were collected in the following order:

- BTEX
- GRO
- DRO/RRO
- PAHs

The vials for BTEX and GRO were filled slowly to prevent splashing and entrapment of air bubbles. The bottles were filled until a meniscus formed. The cap was then secured and the bottle inverted, tapped firmly, and checked for the presence of air bubbles. Following completion of sampling, the pump was removed and the total depth of the well was measured. Well sampling procedures were recorded on the Well Purge and Sampling Form (*Appendix B*).

The following quality control samples were collected:

- Matrix spike and matrix spike duplicates (MS/MSD) (5% frequency)
- Field duplicates (10% frequency)
- Trip blanks (one per cooler for each VOC analysis including BTEX and GRO)

3.5 Decontamination Procedures

Reusable equipment (e.g., drill cutting shoes, drill stem augers) was decontaminated after use and between each well. Non-reusable equipment was disposed of as investigation derived waste (IDW) as described in Section 4.2.

Decontamination proceeded using brushes to scrub the drilling shoes with potable water, deionized water, and Alconox detergent over a catch basin to minimize the spread of contaminants.

3.6 Investigation Derived Wastes

Types of IDW included decontamination water, purge water, and well development water, used personal protective equipment (PPE), and other debris. Wastewater was treated with a GAC water filter system and discharged on site. No sheen was observed pre- or post-treatment. Field observations during treatment were noted in the logbook to document the condition of the discharged water.

Used PPE and other IDW solid waste was placed in plastic trash bags and disposed of as non-hazardous waste in the local landfill.

3.7 Demobilization and Site Restoration

Following the completion of the well installation, development, and sampling activities, the area surrounding each well was tamped down to meet the pre-existing terrain and grade. Site personnel, remaining materials and supplies, departed from Gambell via regularly scheduled and chartered aircraft on 2 July 2016.

4.0 ANALYTICAL SAMPLE RESULTS

Seven groundwater samples plus one duplicate were collected from the seven newly installed monitoring wells. The groundwater sample collected from MW-2 contained a concentration of DRO at 14 mg/L, which exceeds the ADEC 18 AAC 75.345 Table C cleanup level. In the same well, a concentration of naphthalene was also detected above cleanup level. All other analytes were either non-detect or were less than the ADEC 18 AAC 75.345 Table C cleanup level. All other analytes were either non-detect or were less than the ADEC 18 AAC 75.345 Table C cleanup levels. **Table 4-1** summarizes the sample that exceeded the ADEC groundwater cleanup level in 2016. **Appendix C** presents the complete analytical data set.

Analyte	Monitoring Well ID	Sample ID	Sample Date	Results (mg/L)	ADEC Cleanup Level (mg/L)
DRO	MW02	16GAM02MW02	07/01/2016	14	1.5
Naphthalene	MW02	16GAM02MW02	07/01/2016	0.011	0.0017

TABLE 4-1: GROUNDWATER SAMPLE RESULTS	TABLE 4-1:	GROUNDWATER SAMPLE RESULTS
---------------------------------------	-------------------	-----------------------------------

Notes:

ADEC = Alaska Department of Environmental Conservation DRO = diesel range organics mg/L = milligrams per liter

4.1 Data Validation Summary

The laboratory analytical data packages and associated documentation records were reviewed by a project chemist independent of the analytical laboratory and not directly involved with the project. Laboratory analyses were conducted by the ADEC-approved laboratory, ALS Environmental, located in Kelso, Washington. **Table 4-2** provides the data package summary.

TABLE 4-2: DATA PACKAGE SUMMARY

Data Package Number	Matrix
K1607616	Water

Chain-of-custody (COC) documentation was maintained to track collection, shipment, laboratory receipt, custody, and disposal of the samples. The ADEC Data Review Checklist is included in *Appendix C* and the data quality review is summarized below. This data quality review includes a review of the precision, accuracy, sensitivity, representativeness, comparability, and completeness of analytical results generated for the sampling activities conducted at the Gambell FSRC.

Data quality issues requiring results to be qualified are identified in the following sections. Any potential bias resulting from quality issue identified by the data qualifier is discussed and where possible, direction of bias is indicated (+/-).

4.1.1 Analytical Methods

Table 4-3 presents the analytical methods performed on the project samples.

Analyte	Analytical Method	Matrix
GRO	AK101	Water
DRO/RRO	AK102/AK103	Water
VOC (BTEX)	SW8260C	Water
PAH	SW8270D SIM	Water

 TABLE 4-3: ANALYTICAL METHODS

4.1.2 Sample Holding Times and Preservation

All samples were prepared and analyzed within the method-required holding times.

Samples were received at the laboratory in good condition and preserved appropriately for the analytical methods that were requested.

Six coolers containing groundwater samples were received at the laboratory with temperatures exceeding the recommended range of 4±2 degrees Celsius (°C). **Table 4-4** lists the cooler temperatures and temperature blank temperatures for each of the coolers.

Coolers were not identified and the COCs did not identify which samples were in which coolers, with the exception of one cooler that was identified on the laboratory cooler receipt form as containing the VOC samples (VOA vials).

All sample results were qualified as estimated (J-/UJ) to indicate a potential low bias. Sample results that were affected by other quality control failures as well may be qualified as estimated without direction of bias indicated (direction of bias indeterminate). Validation qualifiers are included with the results in the data summary table (*Appendix C*).

Cooler ID	Cooler Temperature (°C)	Temperature Blank (°C)
1	6.0	7.3
2	8.6	15.1
3	5.7	8.4
4	8.4	9.7
5	7.8	9.0
6 (VOA vials)	4.9	7.2

 TABLE 4-4:
 SAMPLE RECEIPT TEMPERATURES

4.1.3 Precision

4.1.3.1 Field Duplicates

One field duplicate was collected and analyzed for seven primary samples. Relative percent difference (RPD) was calculated for primary and duplicate samples where both results were greater than the limit of quantitation (LOQ) (Table 5-6). The recommended RPD for detected duplicate results for water samples is 30%. The higher of the two results was used for decision-making purposes.

Field duplicate pair 16GAM02MW02/16GAM08FD01 was analyzed by the methods listed in Table 4-3. Out of 26 pairs of duplicate results, nine pairs had both results that were non-detect.

Of the remaining 17 pairs of results, 13 pairs had both results greater than the LOQ and the RPDs were calculated. Seven pairs had results that were greater than the recommended 30% for waters (**Table 4-5**).

One pair of SW8270D SIM fluoranthene results and one pair of benzene results had both results less than the LOQ; therefore, no additional flags were required for RPD greater than the QC limit of 30% for waters. One pair of SW8270D SIM pyrene results and one pair of AK103 RRO results had one result less than the LOQ and one result greater than the LOQ; both results for each pair were qualified as estimated "J" (indeterminate bias).

Method	Analyte	K1607616-002 16GAM02MW02 7/1/16	K1607616-008 16GAM08FD01 7/1/16	RPD/Notes
SW8260C	Benzene	0.07 J	0.1 UJ	Both results < LOQ
SW8260C	Ethylbenzene	3.6 J-	3.7 J-	2.7
SW8260C	m,p-Xylenes	7.7 J-	8 J-	3.8
SW8260C	o-Xylene	0.67 J-	0.66 J-	1.5
SW8260C	Toluene	9.5 J-	10 J-	5.1
SW8270D SIM	2-Methylnaphthalene	12 J	0.15 J	195.1
SW8270D SIM	Acenaphthene	0.68 J	0.34 J	66.7
SW8270D SIM	Acenaphthylene	0.37 UJ	0.11 UJ	Both ND
SW8270D SIM	Anthracene	0.1 J	0.049 J	68.5
SW8270D SIM	Benz(a)anthracene	0.005 UJ	0.005 UJ	Both ND
SW8270D SIM	Benzo(a)pyrene	0.005 UJ	0.005 UJ	Both ND
SW8270D SIM	Benzo(b)fluoranthene	0.005 UJ	0.005 UJ	Both ND
SW8270D SIM	Benzo(g,h,i)perylene	0.005 UJ	0.005 UJ	Both ND
SW8270D SIM	Benzo(k)fluoranthene	0.005 UJ	0.005 UJ	Both ND
SW8270D SIM	Chrysene	0.005 UJ	0.005 UJ	Both ND
SW8270D SIM	Dibenz(a,h)anthracene	0.005 UJ	0.005 UJ	Both ND

 TABLE 4-5:
 RELATIVE PERCENT DIFFERENCE CALCULATIONS

Method	Analyte	K1607616-002 16GAM02MW02 7/1/16	K1607616-008 16GAM08FD01 7/1/16	RPD/Notes
SW8270D SIM	Dibenzofuran	0.72 J	0.29 J	85.1
SW8270D SIM	Fluoranthene	0.014 J	0.013 J	Both results < LOQ
SW8270D SIM	Fluorene	1.2 J	0.59 J	68.2
SW8270D SIM	Indeno(1,2,3-cd)pyrene	0.005 UJ	0.005 UJ	Both ND
SW8270D SIM	Naphthalene	11 J	1.1 J	163.6
SW8270D SIM	Phenanthrene	0.11 J-	0.096	13.6
SW8270D SIM	Pyrene	0.015 J	0.022 J	One FD >LOD & <loq, one FD >LOQ</loq,
AK 102.0/103.0	C10 - C25 DRO	14,000 J-	14,000 J-	0.0
AK 102.0/103.0	C25 - C36 RRO	360 J	510 J	One FD >LOD & <loq, one FD >LOQ</loq,
AK101	C6 - C10 GRO	310 J-	340 J-	9.2

Notes:

All results in μ g/L (micrograms per liter)

Bold indicates the result exceeds the cleanup level

Yellow highlighting indicates results qualified due to RPD outside criteria

DRO = diesel range organics

FD = field duplicate

GRO = gasoline range organics

J = estimated; result is greater than the MDL and less than the LOQ, the result is an estimated due to discrepancies in meeting certain analyte-specific quality control criteria

LOD = limit of detection

LOQ = limit of quantification

ND = nondetect

RPD = relative percent difference

RRO = residual range organics

U = not detected at the limit of detection

4.1.3.2 Laboratory Sample Duplicates and/or Spike Duplicates (Laboratory Control Samples or Matrix Spikes)

Laboratory precision was assessed by calculating the RPD between the laboratory control samples/laboratory control sample duplicates (LCS/LCSD). LCS/LSCD analyses were conducted at the required frequency of one per preparatory and analytical batch of 20 or fewer samples. The RPDs for LCS/LCSD recoveries were within laboratory limits; therefore, no data flags were required.

Matrix spike (MS) and MS duplicate (MSD) samples were submitted and analyzed. All RPDs for MS/MSD recoveries were within control limits.

4.1.4 Accuracy

Accuracy was assessed by calculating the percent recovery for LCS, MS, and surrogates. Surrogate recoveries represent the extraction efficiencies for groups of analytes within a sample.

4.1.4.1 Laboratory Quality Control Samples Percent Recoveries – Spikes (Laboratory Control Samples and/or Matrix Spikes)

All recoveries for LCS/LCSDs were within Alaska method quality control limits; therefore, no data flags were required.

One sample, 16GAM01MW01, was designated for MS/MSD. Recovery of SW8270D SIM analyte naphthalene exceeded the upper control limit in both the MS and MSD performed for sample 16GAM01MW01. The associated sample result was qualified as estimated ("J") because it falls between the method detection limit (MDL) and the LOQ. High recovery in the MS/MSD indicates a potential high bias, however, because this samples is also affected by the cooler temperature and temperature blank exceedances discussed in Section 4.1.2, the qualifier applied to the result is "J" (indeterminate bias).

4.1.4.2 Surrogate Percent Recoveries

In most cases, surrogate recoveries were within control limits. However, several samples had one or more surrogates that exceeded the upper control limits; as this indicates a potential high bias, no data flags were required for associated nondetect results and there was no effect on data quality or usability. Additional details are included in the ADEC laboratory data review checklist.

Several samples had surrogate recoveries that required results to be qualified. Validation qualifiers are included in the data summary tables (*Appendix C*).

For SW8260C, recovery of toluene-d8 (116%) and 4-bromofluorobenzene (115%) exceeded the upper control limits of 112% and 114%, respectively, in sample 16GAM07MW07. Several associated sample results were nondetect and as this indicates a potential high bias, no data flags were required and there was no effect on data quality/usability. Sample results for ethylbenzene (0.080 μ g/L) and m,p-xylenes (0.18 μ g/L) may be considered potentially biased high but since the results are significantly below the associated cleanup levels, there is no effect on data quality or usability. Both results are already flagged as estimated ("J") because the results fall between the MDL and the LOQ. These samples are also affected by the cooler temperature/temp blank exceedances discussed in Section 4.1.2. Therefore, the qualifier "J" (estimated, indeterminate bias) has been applied to the results.

For SW8270D SIM, recovery of surrogate fluorene-d10 exceeded the upper control limit of 114% at 136% in sample 16GAM08FD01. Several associated sample results were nondetect and as this indicates a potential high bias, no data flags were required and there was no effect on data quality/usability. Associated results with positive detections may be considered potentially biased high but since all qualified results are below the associated cleanup levels, there is no effect on data quality or usability. These results are also affected by cooler temp/temp blank exceedances, as discussed in Section 4.1.2, therefore these positive results were qualified as estimated "J" (indeterminate bias). In addition, recovery of surrogate terphenyl-d10 was less than the lower control limit of 58% at 44% in sample 16GAM02MW02. Associated sample results were qualified as estimated "J-/UJ" and may be

considered potentially biased low. The other two surrogates were recovered within control limits.

4.1.5 Representativeness

Representativeness is a qualitative parameter used to assess whether sample results are representative of true site conditions. Representativeness relative to analytical measurements is primarily influenced by application of consistent sampling and analytical methodology. Sample representativeness is considered acceptable for this project based on the following measures taken to maintain the integrity of material collected for analysis:

- 1. Sample collection was performed by an ADEC qualified environmental professional as detailed in 18 AAC 75.333 (ADEC 2016) using methods listed in the SCP (Eagle Eye 2016).
- 2. To minimize the potential for cross-contamination, sampling equipment was decontaminated between uses and new, pre-cleaned containers were used as specified in the SCP.
- 3. Samples were labeled and uniquely identified in accordance with the SCP, and field records indicate the monitoring well location from which each field sample was collected.
- 4. Laboratory protocol was performed in accordance with laboratory standard operating procedures.

4.1.6 Comparability

Comparability is a qualitative indicator of the confidence with which one data set can be compared to another. Project data set comparability is considered acceptable based on the following:

- 1. Sample collection and documentation was performed in accordance with the SCP (Eagle Eye 2016).
- 2. Standard analytical methods were used in accordance with the SCP (Eagle Eye 2016). Analytical results were reported in standard units.
- 3. Laboratory analyses were performed in accordance with the analytical method and laboratory quality assurance/quality control procedures.
- 4. Samples were prepared and analyzed within the method-required holding time.
- 5. Field instruments and measuring devices were calibrated daily and operated in accordance with the manufacturer recommendations.

4.1.7 Completeness

All data necessary to complete a Level II data quality assurance summary was provided. No data were rejected, and all results are considered usable indicating completeness of 100%.

4.1.8 Sensitivity

4.1.8.1 Limits of Detection

Several samples required dilutions for high concentrations of target analytes which caused reporting limits to be elevated. All reporting limits were below the site-specific cleanup level, and there were no nondetect results with reporting limits over the cleanup level. There was no effect on data quality or usability.

4.1.8.2 Blank Results (Trip Blanks and Method Blanks)

Method blanks were analyzed at the required frequencies of one per matrix, analysis, and 20 or fewer samples. No target analytes were detected in the method blanks at levels above the reporting limit.

4.1.9 Data Summary

Based on the review completed on the laboratory data package, no data were rejected. However, several data quality issues were identified that required results to be qualified. The most significant data quality issue identified for these project samples is the temperature exceedances associated with the sample coolers at the time they were received at the laboratory.

The results may be considered usable, with the limitations discussed in the previous sections and in the associated ADEC laboratory data review checklist with regard to the qualifiers applied to the results. The data qualifiers applied as indicated, specifically with regard to the temperature exceedances, may modify the usefulness of those individual values.

5.0 CONCEPTUAL SITE MODEL

CSMs were created for the Gambell FSRC site as part of the SC process. The CSM process assists in determining if any data gaps are present as well as complete pathways that need to be considered when working towards site closure. CSMs can be updated as more information is gathered at the site.

Using sample information collected from previous investigations along with the 2016 SC effort, the CSMs prepared for the SCP were reviewed. The conceptual model for exposure at Gambell FSRC incorporates past or current sources of contamination, chemical release mechanisms, transport/exposure media, potential exposure points, potential exposure routes, and potential receptors. The future scenario used in the models is conservative and assumes that the site and the adjoining properties will remain under the ownership of Sivugag Incorporated for the foreseeable future. Regarding human health exposure pathways, the inhalation of outdoor air exposure pathway is complete, but not significant at the site due to the small quantities and low concentrations of near-surface volatiles previously detected. Similarly, due to the shallow depth of some of the contaminated soil, incidental soil ingestion and dermal contact with soil is a complete, but unlikely, pathway of exposure. Although the public water supply for the village is an aquifer at the base of the mountain, approximately 2,000 feet east of the village, exposure to groundwater is considered complete because a formal groundwater determination per 18 AAC 75.350 has not been prepared for and approved by ADEC. All potentially complete ecological exposure pathways are considered insignificant because of the small size of the site, the location within Gambell, and the presence of more optimal habitat nearby. *Appendix D* presents the human health and ecological CSMs for the site.

6.0 CONCLUSIONS AND RECOMMENDATIONS

In June and July 2016, Eagle Eye installed and collected analytical groundwater samples from seven groundwater monitoring wells. Well locations were chosen based on prior data and inferred groundwater flow at the site. Only one groundwater sample collected in 2016 contained DRO and naphthalene at concentrations above the ADEC groundwater cleanup levels. Prior data from 2011 indicates that DRO is above the ADEC groundwater cleanup level in multiple locations. The information gathered in 2016 confirms the information presented in the conceptual sites models prepared for the SCP. Based on these data results, it is recommended that the site be recommended for cleanup complete with institutional controls and that long-term groundwater monitoring be conducted on a regular basis to determine if additional actions need to be considered for site groundwater. This information should be presented in a Decision Document for the site.

7.0 REFERENCES

Alaska Army National Guard (AKARNG). 2003 (March). Spill History. As referenced in Hoefler 2008.

AKARNG. 1990 (September). *Gambell AKARNG Scout Armory Spill Prevention, Control, and Countermeasure Plan and Installation Spill Contingency Plan.* September 1990. As referenced in Hoefler 2008.

AKARNG. 1997 (September). *Wincass Management Report B065, Alaska Army National Guard*. Prepared by Environmental Compliance Assessment System. As referenced in Hoefler 2008.

Alaska Department of Commerce, Community, and Economic Development, Division of Community and Regional Affairs (DCRA), 2014. Alaska Community Database Online, <u>http://commerce.state.ak.us/cra/DCRAExternal/community</u>, accessed December 4, 2014.

Alaska Department of Environmental Conservation (ADEC). 2016a (July). *Site Closure/Cleanup Complete Memorandum*

ADEC. 2016b (June). *Title 18 Alaska Administrative Code 75 Oil and Other Hazardous Substances Pollution Control.*

ADEC. 2016c (March). Field Sampling Guidance.

ADEC. 2013 (September). Monitoring Well Guidance.

ADEC. 2009a (September). Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites

ADEC. 2009b (March). Environmental Laboratory Data and Quality Assurance Requirements Technical Memorandum

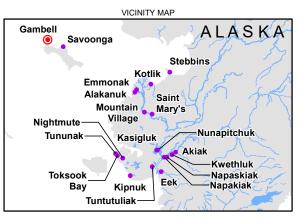
CH2MHill. 2013 (January). *Gambell, Federal Scout Readiness Center, Data Gap Investigation Report*. Prepared for Alaska Army National Guard.

Eagle Eye Electric, LLC (Eagle Eye), 2016. *Site Characterization Plan, Gambell Federal Scout Readiness Center, Gambell, Alaska, June 20, 2016.*

Environmental Protection Agency (EPA). 1996 (April). *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure*. EPA/540/S-95/504.

Hoefler Consulting Group (Hoefler). 2008 (January). Final Site Investigation and Restoration-Related Activities Project Report.

US Army Corps of Engineers (USACE). 2005 (June). Decision Document Gambell Formerly Used Defense Site F10AK0690, St. Lawrence Island, Alaska. As referenced in CH2MHill 2013.


Western Regional Climate Center (WRCC). 2015. www.wrcc.dri.edu/cgibin/cliMAIN.pl?akgamb Gambell, Alaska (503226), Period of Record Monthly Climate Summary, Period of Record: 9/1/1949 to 8/31/1997. Accessed December 2015.

FIGURES

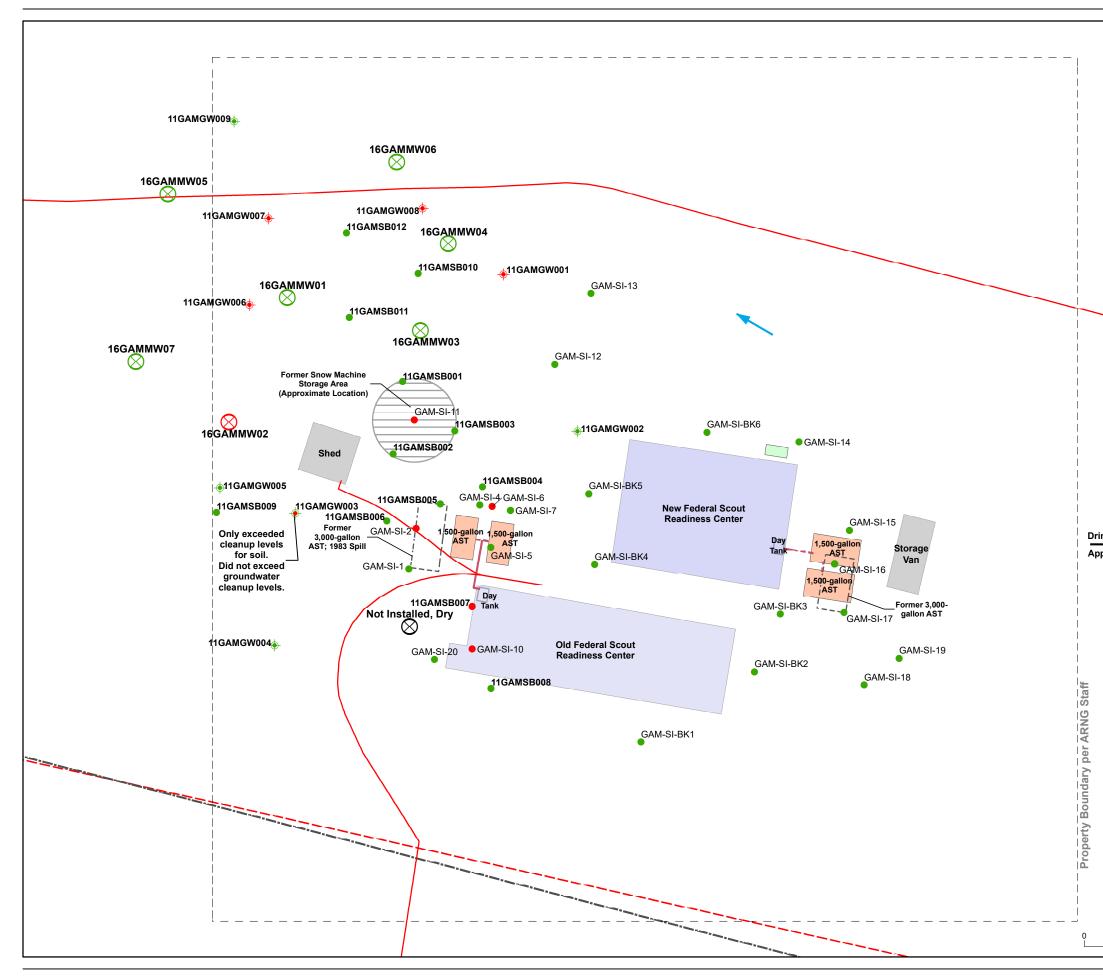


FIGURE 1 State and Site Location Maps Site Characterization Gambell Federal Scout Readiness Center Gambell, AK

GAMBELL OVERVIEW

Drinking Water Well Appx. 2,000 ft Away

--- Property Line - Tank Piping ---- Easement Line Electric Line ----- Fuel Line ----- Presumed Groundwater Flow Direction Monitoring Well Locations Installed and Sampled in 2016 not installed, dry ORO < 1.5 mg/L ORO ≥ 1.5 mg/L Previous Groundwater Sample Location (Sampled 2006-2011) • DRO < 1.5 mg/L • DRO ≥ 1.5 mg/L Previous Soil Sample Location (Sampled 2006-2011) DRO < 250 mg/kg</p> DRO ≥ 250 mg/kg, but < 10,250 mg/kg</p> Notes: 1. Location of historical samples is approximate based on historical figures and on orthophotography courtesy of Alaska Department of Commerce, Division of Community & Regional Affairs (DCRA), 1-foot pixels. 2. Definition: AST = aboveground storage tank DRO = diesel range organics 11.5 3. All prior wells have been abandoned/removed Feet

APPENDIX A

PHOTOGRAPH LOG

Photograph 1: Discovery drilling 16GAMMW01. Facing west.

Photograph 2: Setting up at 16GAMMW03 for well development. Facing south.

Photograph 3: Well monument at 16GAMMW04. Facing north.

Photograph 4: Well development at 16GAMMW04. Facing north.

Photograph 5: Four-wheeler and trailer used for gear transport. Facing east.

Photograph 6: The Gambell FSRC jobsite. Facing south.

Photograph 7: Developing 16GAMMW07. Facing northwest.

Photograph 8: Developing 16GAMMW07. Facing northeast.

Photograph 9: Developing 16GAMMW07. Facing northeast.

Photograph 10: Purging well 16GAMMW01 for sampling. Facing southeast.

Photograph 11: Shed used for swing tie measurements. Facing east.

Photograph 12: The Gambell FSRC jobsite. Facing northeast.

Photograph 13: Drill rig and tooling staged at the airport for pick-up by the Sherpa. Facing north.

Photograph 14: Purging well 16GAMMW04 for sampling. Facing north.

Photograph 15: GAC setup. Facing west.

Photograph 16: Collecting sample 16GAM01MW07. Facing north.

Photograph 17: Loading the drill rig mast onto the Sherpa for transport. Facing west.

Photograph 18: The Sherpa loaded up with gear. Facing south.

Photograph 19: Loading the drill rig into the Sherpa for transport. Facing south.

Photograph 20: Last load of gear loaded up and secured in the Sherpa. Facing north.

Photograph 21: The village of Gambell. Facing west.

APPENDIX B

FIELD DOCUMENTATION

B-1 FIELD NOTES

B-2 MONITORING WELL INSTALLATION AND SAMPLE FORMS

B-1 FIELD NOTES

Jure	30,2016 Gambell M. Helms	45°F, Clea/Sumy Slight Breeze
0600	Morning safety meeting w/ M. Helms and Discovery D	willing crew.
0620	Site walk. There are multiple indications of buried liv	res on site,
	We will need utility locates completed before drilling	the holes
	close to the buried electric line. Work on contacting	villagers
	to get someone to mark out lines.	
1030	Christian Johnson arrives in Gambell From Name. Alaska	Village Electric
	Cooperative contacts us to come out for utility locates.	
1300	The Gambell server and water company arrive on site for	Sewer and
	Mater locales.	к. —
1430	Lines have all been located. Drillers are just Anishing going	e through all
	their gear. Ready to drill.	J J
1440	Begin drilling at location closest to shed's NW corner.	
1455	Depthto 10! Nowater present. Drill to 15! Still no wate	(present.
1515	Move to next location ~30' 11 of shed. Doill to 10' Muter in	present Tactall
, , , , , , , , , , , , , , , , , , , ,	Move to next location ~30' N of shed. Drill to 10' Water is 1 well 16 GAMOHTMON 16 GAMMWOI,	Anoral Anoral I
1625	Begin Developing well once well construction is complete, Drillers A	
	another location. Had them step out/o' From 1st location. Step o	
	hit @ 10'. Install 16 GAMMWO2.	
1700	Drillers move to location ~25' W of 16 GAMMWOI. Water is	precent as In' T. L.M.
	well 16 GAM MW03.	MARCHAN (C) + MSIR
1730	Drillers move to location furthest south and closest to the old s	and continent to the
	Location is dry down to 15! Drillers step out 10'W away from 6	within Hole dailed
,	to 15! Still dry. Already have previous clean data on the	alles cide of
	electric line. Tell drillers to move locations	CANEL DALE DA
1742	Finish developing 166AMMWOL. Move set up to 166AMMWOD.	
1750	Begin well development of IGGAMMW02.	
1800	Arillers begin drilling at location ~ 20' NE of 16 GAMAWO3. Water	(Deepend a) (D)
	Install well 16 GAMAWO3 04.	Pursento C
1830	Drillers begin drilling at location 130'NW of KGAMMWOI, Water p	cargut or 101
	Install well 16 GAMMWOS.	icsent w 10,
1900	Driller begin drilling at location 240'E of 166AMMWest, water pre-	autor 10'
	Install well 16 GAMMWOG	SCHU (D) IV I
1930	Drillers are done for the night, C. Johason & M. Hehus stay on	ite de calende
	developing wells. Finish developing 1664MMW02 @ 1932. Move	SITE TO COMPACE
		over 1 TEGAMMUS
1950	to develop. Been and Dialon 1660000000	
2018	Begin pumping for developing 166AMMW02,	
2030	Well ran dry. & Finished developing 166AMMW03. Basso D. Millio Constitution for the la	
2100	Begin De-Mobe from the site for the day. Back at lodge. Complete daily Report. Done for the Day	
5100	buch an longe. Lomplete dally repert. None for the way	
		challer I. Di
	Rete in the Rain. Aligher W. Helen	6/30/16 10F1

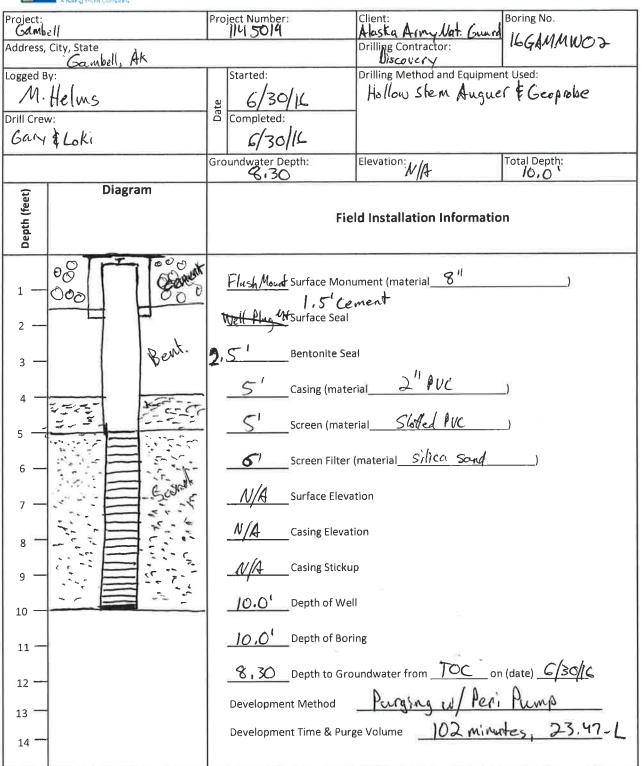
Rite in the Rain. The half W. Helm 6/30/16

45º Cleur/S	
Slight Bree.	M.Helms, C. Johnson Suiter 1, 2010
0700	M. Helms & C. Johnson meet for daily safety meeting. The drillers are done
	amiling so they are storting later today. Will go over safety meeting w
	them when they arrive on site for de-mobe of drilling equipment. Begin mobing gear to project site. Set up at 16GAMMWOY to develop
0725	Begin moting gear to project site. Set up at 16GAM MWOY to develop
	well.
0750	Begin developing 16 GAMMWOY, Run buckets full of water from June 30
	through GAC for discharge on site. No sheen present in discharge.
0915	Max purge Volume reached at 166AMMWOY. Move to 166AM MWOS.
6940	Begin Aevelopring 16GAMMWOS, Run additional buckets of water from this morning
	through GAC for discharge on site No sheen result in discharge Duillace on its
	No water is present at or around the proposed location of the well closest to
-	the Old Scont building have them move to a location ~30' SW of IIGANGWOOD.
	Water is present at 10' Lastel well 16 GAMANUD'T
1035	Finish developing 16 GAMMW05. Ato Stabilization became ters met Move
	to 16 GAM MWOG,
1050	Besin Leveloping 16GAMMWOG.
1907	Finish developing 16 GAMMWOG, Brian, the Sheipe pilot calls, has questions about
	gear staged on the bambell runnay. Go to runnay w/ drilles and stage gave
	how the pilot dants it. Move gear to 16GAN ANOT to devolop well.
1345	Begin developing 16 GAMMWO7.
1425	Finish developing 16 GAMMWO? May purge volume reached. Move to 16 GAMMWOI to water sample
1500	Set up at 16 GAM ANDI cond begin parging.
1545	Collect sample 16GAMOIMWOI. MS/MSD collected at this location. Sar Well
	Purge and Sampling Form for more information
1655	Set up at 166AMMWG2 and here proving
(1735)	Collect semple 16GMODMWOD A ME Sample 16GAMORATITY 16CAMOREANI
	was collected as a field duplicate at this location @ 1745
1630	Start purging at 166AMMW03
(1900)	Collect sample 16GAMOSMWOS.
1930	Separt site. Done for the day. Prepare and send daily re
	7/16
	N. I W turter
	- Wen Com
lofl	

450	F, Mostly	Sunny	Gambell	July 2, 2016
	15mph win	ds	M. Helms, C. Johnson	
3 070	0 6	aduct sa	rety meeting w/ Mt & CJ. Topic of the day	Proper Ergonomics.
	Ga	ther ge	r and consolidate for transport from the site.	
071		lked to 1	he Sherpe pilot. ETA is 0900 for Sherpa.	
075	D Beg	fin parge	g @ KGAMMWOY.	
) Cal	S Ma		purged at 16GAMMWO1. Collect somple 16GAMI	OYMWOY,
033	A Bea	ginpurgh	9 a) 16 GAMMUDS,	0-11,11070
0910		u volume	purged at 16GAMMWOS. Collect cample 16GAM	OS MWOS,
093	S M	av lahu	@ 16 GAM MWOG.	MOCHIMA
095	5 Re	ain auc	Eparsed at 16 GAMMWas. Collect sample 16 GA) ing @ 16 GAMMWO'T.	MOGMINOG.
1025	-) Ma	in the line	purged at KGAMMUDT. Collect sample 16GAM	OT MUNT
		r were d	thils on Monitoring well soundes see Well Purg	ing & Saughas Forme
	Ru	n all rem	whing purge water through the GAC systemand	discharge
	ON	site. No s	een present in discharge.	
1100	She	erpa arr	ves on site. Help pilots longed gear.	
1270	Sha	crea depa	its w/ first load to Sawanga,	
1245	Bai	ckons	the for Suring lies;	
)		56AMMW		
		Hom NW	corner of shed: 29.8	
		From N	corner of shed: 35.6'	
y		6GAMMI		
)			IW corner of Shed: 16.11 VE corner of Shed: 28,01	
)		16 GAMM	1/2:	
			IW corned of shed :36,0'	
			E corner of shed: 32.6'	
		166AMM	Woy	
			Werner of shed: 47.6' Ecorner of shed: 43:2'	
		/	E corner of shedi 43.2'	<u>Ś</u>
		6 GAMN	WOS:	
			IW corner of shed: 61.3	
			"E corner of shed 66.3"	
•		166A4M		
)			IW corner of shed: 65.0' E corner of shed: 59.9'	
		11 CAN	t corner of shad: >7.4	
)		16 GAM N	Worker of shed: 34.1'	
		(E corner of shed: 46.0°	
	Á11 -	M. 200	to Concorrent was not and the	1 Ka Can Ju
	hette	om Cornella	of the metal siding.	terren trem the
)	perfe	and assured	Rete in the Rain Micelien W. Hus 71.	2/16 1072
			Rite in the Kain Michen W. Hus	of the 18FX

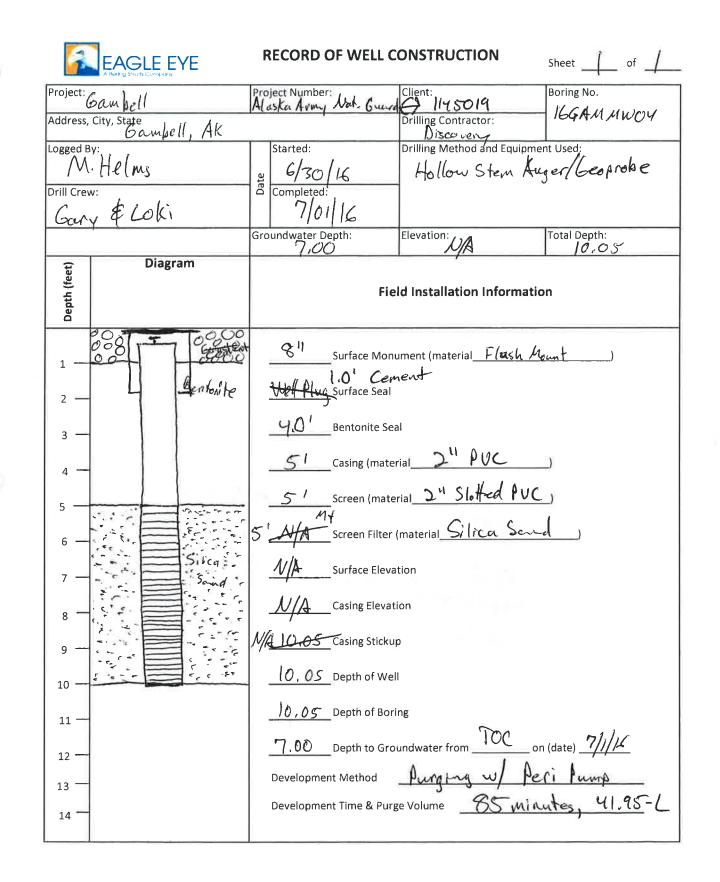
Gambell July2, 2016 Mt, CJ Done on site. Take gear back to housing, Will pack gear for Sherpa and 1300 Finish labeling jars if time allows. 1450 • Load up Sherpe for second load to Saverage 1630 Skerpa departs. Continue to pack gear. Transport gear down to alroort. e 1600 Sherpa headed to Nome for Fael. 1915 Sherpe back on site for last gear haul Depart Gambell for Savoenga 2030 Land in Sabourga, Unload gear and transport to site & housing, 2050 6 Complete daily report & send off. 6 6 6 63 6 **(** 6 Œ 6 ¢ ¢ ¢ ¢ Jof J.

B-2 MONITORING WELL INSTALLATION AND SAMPLE FORMS


Sheet _____ of _____

Duelest	Destant March 1					
Project: • Gambell	Project Number:	Client: Alasta Army National Guard	Boring No.			
Address, City, State Gambell, Ak		Drilling Contractor:	16GAMM001			
Logged By: M. Helms Drill Crew: Gary & Coki	Started: 6/30/16	Drilling Method and Equipment Used: Hollow Stew Auger				
	Groundwater Depth:	Elevation:	Total Depth:			
Diagram (teet) Debty		eld Installation Informatic				
1 - 0 $2 - 0$ $3 - 0$ $4 - 0$ $Benbrite$ $Seel 1$	8 ¹¹ Flush Multiturface Mor Wett Alace Surface Seal 3.08 Foot Bentonite Se More Casing (mate	ement al erial <u>2"PUC</u>				
5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Si lica Sand Screen Filter N/A Surface Elev. N/A Casing Eleva N/A Casing Sticku $\overline{q_1 q_5 l}$ Depth of We $\overline{q_1 (0,0^{-1})}$ Depth of Bor	tion up III ting bundwater from <u>TOC</u> or <u>Purging Uf Per</u>) (date) <u>C/30/14</u> 2 Pump whes J 36-L			

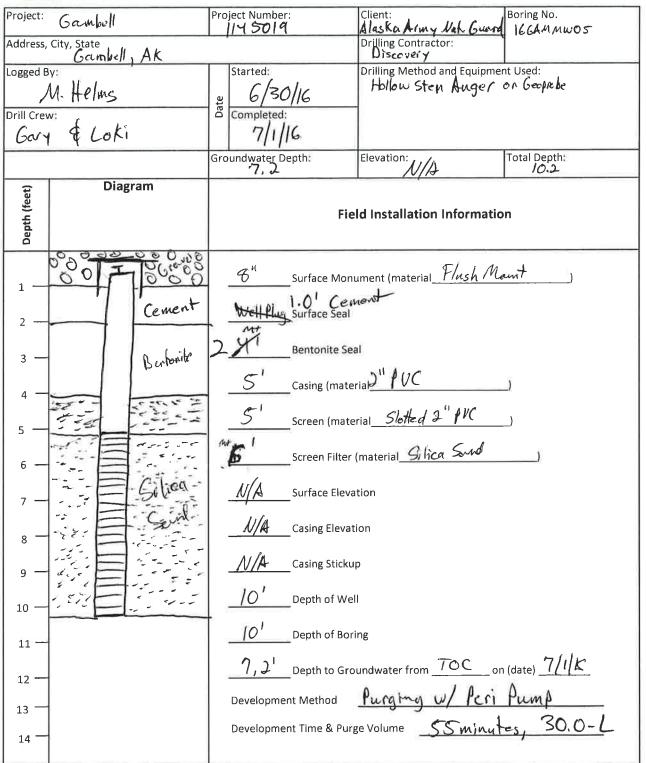
Checked: Minha Within 7/4/16


Checked: Minter W. A.L. 7/4/16

Sheet _____ of _____

Project: Gambell	Project Number:	Client: Alaska Army Mak Grand Boring No.				
Address, City, State Gambell, A	K	Drilling Contractor: Discover-/				
Logged By: M. Helms	e Started:	Drilling Method and Equipment Used: Hollow Stem Auger/Geoprobe				
Drill Crew: Gary & Loki	Completed:					
4	Groundwater Depth:	Elevation: IIA Total Depth:				
Diagram (feet) Depth (feet)		Field Installation Information				
2 - Ben	Flush Mount Surface Mo Flush Mount Surface Mo toolf flug Surface Ser for ite 25' Bentonite	ement				
3 - 4 4 - 5 6 - 5 7 - 5 8 - 5 9 - 5 10 - 11 - 12 - 13 - 14 - 12	$\frac{S'}{S}$ Bentonite s $\frac{S'}{S}$ Casing (ma $\frac{S'}{S}$ Screen (ma $\frac{S'}{S}$ Screen Filte $\frac{N/A}{S}$ Surface Ele $\frac{N/A}{C}$ Casing Elev $\frac{N/A}{C}$ Casing Stic $\frac{10.0^{1}}{D}$ Depth of W $\frac{10.0^{1}}{D}$ Depth of B	eterial <u>2" AVC</u>) aterial <u>2" Soffed AVC</u>) er (material <u>Solica soud</u>) evation vation kup Vell boring Groundwater from <u>TOC</u> on (date) <u>C/30/16</u> <u>Purging w/ Peri Pump</u>				

Checked: Minhard W. Mas 7/4/16



Reviewed: Michael W. Hol 7/4/16

100

Sheet of

Reviewed: Minhal W. Huber 7/4/16

Sheet _____ of _____

Project:	е (<u>н</u>	Project Nymber:	Client:	Boring No.			
· (Sambell	114509	Alaska Army National Guard 166AM MWOR				
Address,	City, State Gambell, AK		Drilling Contractor:				
Logged B	M. Helms	Started:	Discovery Drilling Method and Equipment Used: Hollow Stem Auger & Geofreks				
Drill Crev		Completed: 1/1/1-G					
Gar	y Eloki	Croundwater Depthy Elevation (Total Depthy					
		6.70	NA	9.90			
Depth (feet)	Diagram	Field Installation Information					
1 —	0000 T Groves	<u>G</u> ¹¹ M 1 <u>Well H</u> w Surface Seal	ument (material <u>Flush M</u> en¥	and)			
3 —	Bentanite	3 AI Bentonite Sea	al				
5		5 ¹ Casing (mate	rialAK	5			
4 — 5 —	A ALT AND A A A A A A A A A A A A A A A A A A		rial_Slated 2"PK				
6 —	Silica.	<u>Screen</u> Filter	(material Siliea Soul				
7 —	Sand	Surface Eleva	tion				
8 —		Casing Elevat	ion				
9 —		N/A Casing Sticku	p				
10 —		$\frac{10999}{10999}$ Depth of Well	II				
		9,9 ¹ Depth of Bor	ing				
11 -		6.7' Depth to Gro	undwater from \underline{TOC}_o	n (date) 7/1/K			
12 —		Development Method		Pump			
13 —							
14 -		Development Time & Pur	ge Volume	ras, 13:00-L			

Reviewed: Minha With 7/4/16

Project: Gambell	Project Number:	Client: Alask Army Nat. Guad	Boring No. 16644MW07		
Address, City, State Gambell, Ak		Drilling Contractor:	TO GRAMMOUT		
Logged By: M. Helms Drill Crew: Gary & Loki	Started: 6/30/6 Completed: 7/1/16	Drilling Method and Equipment Used: Hollow Sten Auger on Geoprofis			
	Groundwater Depth:	Elevation: NA	Total Depth:		
Depth (feet)		ld Installation Informatio			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I. O' Cem Surface Seal Surface Seal Bentonite Sea S' Casing (mater S' Screen (mater S' Screen Filter N/A Surface Eleva N/A Casing Elevat N/A Casing Stickup IO' Depth of Wel IO'	al rial <u>J" PVC</u> rial <u>Slotted</u> <u>2" PVC</u> (material <u>Silica Soud</u> tion ion p I undwater from <u>TOC</u> on <u>Furging W/ Ac</u>))		

Reviewed: Michael W. Hala 7/4/16

											a a
	EAG	LE EN	/E			AT 4	QUEET	al and	. 17		1
	A Being Struits	Company	WE		OPMENT D		SHEE	WELLI	D: 16G	AN,	MWOI
C		CT NAME		AL L				SI	I	Dev	eloper Initials
	Mbell			Alaska			Guard	Gambell So		Sta	///T
SUN		55° 1			adings of Total Vo	D		C/z	dic	162	1
SURV 55 F Ambient D Breathing Zone In Well 6/30/16 1675/1792 Well Information											
	2) SS / 2	(in) <u>Dr</u>	illing Water Add None		Built TD of Casing		1	e Diameter(in) / 0.362 6 / 0.55 (filter pack		98	foot (gal/ft) 10 / 1.34
Depth to Pr	roduct (ft T	<u>OC)</u>	Depth to GW (ft	TOC) Init	ial TD of Casing (9.95	<u>(ft)</u>	Produc	t Thickness (ft) a	and Volume	Reco	vered (mL)
			well = (TD of ca		water) + gal/ft; sul			TD of casing -	Depth Top F	Filter F	ack *gal/ft
-					= 2 * Added Wate						
			./		2 gal (* 3.785 L/g		(R) = 2) Lanen			
			$g_{a}^{a} + 3 * ()$	<u>95</u> gal = <u></u>	15 gal (* 3.785 gal (* 3.785	L/gal :	999	T) LUJC 15	-		
Max Purge	Vol. = 2 *	01 5	gal + 10 * <u>0</u> +		urging Info						
Sta	rt Time		Finish Tim		nal TD of Casing				Used for Pu	irging	
16:	25		1742	.	9,95		sprinkler submersil	oump w/ surge b ole pump	lock		
	Color		Odor		neen Purged	Dry	peristaltic Stabil	ization Meters	Pump In	ntake I	Depth (ft btoc)
Clear Clo	6			derate Yes Yes YSI Multi							1
Other	818		Faint Str	rong No Hach Turk			(during stabilization)				
Purging rea	ached: St	ability Ma	ax Vol. Purç	e water was:	reated Stored	Other	Note:				
		ume		Acceptable Range to Demonstrate Stal							
Time (HH:mm)	(Gallons	or Liters)	± 1.0 °C	± 3%	± 10% or 0.3 mg/L (whichever is greater)	r is greater)		± 10 mV			VTU Water Level (feet btoc)
	Change	Total	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	(s	pH td units)	ORP (mV)	Turbidit (NTU)		
1630	0.0	0,0	4,95	383	11.46		.16	173.2	373	_	7,30
1635	2.5	2.5	3,69	361	11.74	6	,23	132,3	727.	_	7,30
1640	9.9	5.0	2.06	317	12.62	6	.31	127.1	734,		7.30
16 45	2.5	7,5	1.64	304	13,10	G	. 37	124.5	717.		7.30
1650	2.5	10.0	1.54	295	13.23	6	,38	122.6	1001		7.30
1655	2.5	12,5	1.50	277	13.44		,45	120.0	994.		7.30
MOO	2.5	15.0	1,43	254	13.96	6	,51	118.9	992.		7.30
1705	2,5	17,5	1,32	243	14.30		,57	118.7	875		1.30
1710	2.5	20,0	1.34	233	14.34		,57	119,5	665		7.30
1715	25	22,5	1.46	224	14.56		.5-1	119.3	893		7.30
1720	2.5	25.0	1.35	215	14.95		,57	120.9	472		7,3C)
175	2.5	27.5	1.30	208	14.71	6	.52	122.0	308		7.30
1730	2.5	30.0	1.34	204	14.73		.53	123.0	439		7,30
1735	2.5	32.5		199	14.75		5.53	124.8	585		7.30
1740	2.5	35.0		195	14.82		,.55	125,9	463	i. [7.5
1742	1.0	360	MA	x PURC	E VOL	R	eache	d			
					-						
					1	1	۰. ۸	1			

Alichar W. Hehor 6/30/16

WELL DEVELOPMENT DATA SHEET WELL ID: 166AMMW02

PROJECT NAME CLIENT SITE Developer Initials											
PROJECT NAME						CLIENT					aveloper Initials
Gay	Alaska Army National Guard				Gambel /		tart/Ehd Times				
WE	ATHER/TE			PID Readings of Total VOCs (ppm)					1 1		
Sann	SP		Ambient <u>-</u>	<u>9</u> B	reathing Zone 🗲	2_1	n Well	_ 6/30	0/15 r	1932	
Well Information											
	rial / Size	(in) Dr	illing Water Add	ed (gal)		uilt TD of Casin	<u>a (ft)</u>		Diameter(in) / (2011 00
(PVC/	2) SS/2		None			0.0'		(4.5/0		5 8 / 0.898 porosity = 0.3)	10 / 1.34
Depth to Pr	oduct (ft T	OC)	Depth to GW (ft	TOC)	Initia	al TD of Casing	(ft)	Product	Thickness (ft) a	nd Volume Re	covered (mL)
N/K	}		8.30			10,01			NIA		
Borehole V	ol. (BV) wa	ater table	well = (TD of ca ter + 3 * BV M	sing – dep	th to w	ater) * gal/ft; su	bmerg	ed well = (T	D of casing – D	Depth Top Filte	r Pack *gal/ft
-			ft) * $O, 3C_2$								
								^			
			gal + 3 * <u>0.6</u>								
Max Purge	Vol. = 2*		gal + 10 * O.						L)	_	
Cto	rt Time		Finish Time			rging Info		lion	Fauinment	Used for Purgir	10
<u>51a</u>				÷			111		ump w/ surge b		
1750	D		1932			10,0		submersib			
	Color		Odor		She	een Purge		The second se	zation Meters	Rump Intak	e Depth (ft btoc)
Clear Clo	udy Brow	n 7	None Mod	erate	Ye		Tb	YSI Multi N		9.7	0
Other:			Faint Stro	° I			-	Hach Turb	idimeter	(during	stabilization)
Purging rea	ached: St	ability M	ax Vol. Purg	e water w	as:(Tr	eated Stored	Other	Note:			
	Val				Acc	eptable Range to	Demo	nstrate Stab	ility		
Time		or Liters)	± 1.0 °C	± 3%	± 3% ± 10% or 0.3 mg/L (whichever is greater)			±0.1	± 10 mV	± 10 mV ± 10% or ±1 NTU	
(HH:mm)	Change	Total	Temperature	Conductivity		DO		pH	ORP	Turbidity	(feet btoc)
10 mm		1.15	(°C)	(µS/cr		(mg/L)	(std units)		(mV) 70,1	(NTU) 249.4	8,75
1805	1,15		2.61	1003		9.72		.55		1001	8.8
1810	1.15	7.45		81.		10.49		.58	69.5	187.4	
1815	1.15	7.15	2.37	66		11.00	-	. 60	71.3	628.6	<u>D</u>
1820	1.15	THE	2.31	63		10.89	-	.56	73.3	326.5	8.9
1825	1.15	5.75	2.1A	67	(10.14	6	.55	76.7	423.8	8,9
1830	1.15	6.90	2.59	75	9	9.25	4	.52	81.9	332.5	8.9
1835	1.15			87	1	8.74	4	0.49	84.8	68.01	8.9
1840	1.15			938		8.07		0.48	82.9	120.9	8.9
1845				98		7.26		0.49	72.3	52.11	
1850			2.25	100		6.26		0.49	60.3	45.81	
1855				103		6.25		0.48	51.7	80.5	
	140	11. 10	2.38	100		9,30		.46	41.9	230.0	9.1
1900									37.9	31.72	
1905			2.24	1097		5.67		5,47			
1910	1.40			1113		5.58		.46	36.0	29.33	
1915			2.24	113		5.35		5.46	34,3	27,07	
1920	1.40	20.15	2.19	115		5.40		0.46	33.4	25,99	
1925	1.40	21.55	2.12	117:		5.33		.46	37.1	23.99	
1930	1.40	22.95	- 2.21	1189		503	4	.46	33.1	21.66	9,1
1932		23.4		4X	PO	IR GE	1	10L,	Read	hed	
			1		_						

Mihal W. Hrs 6/30/15

			EAG		E we	ELL DE	VELC	PME	NT DA	ATA	SHEE	r v	/ELL II	D: 16 GA1	M	WOZ
8			PROJE	CT NAME				CL	IENT				SI	TE	_	loper Initials
		Ga	mbell		5	Alask	a Ai	M	Nath	ma	Guard	6	ambe	:11	$\boldsymbol{\mathcal{C}}$	J.
				EMPERAT		E	ID Rea		Total VC				DA		Star	VEnd Times
		50)°F/50	uny		Ambient	9_	Breathing	Zone 🕘	In	n Well 📿		6/3	30/15	19:	50/2019
	10					-	We	II Info	ormati	on			1	1		/
		Well Mate		And a second	lling Water Add	ded (gal)			f Casing					Gallons per li		
			2 SS / 2		None		1	10.2			4.5/1	(filt		porosity = 0.	3)	10 / 1.34
		Depth to Pr	A		Depth to GW (fi G, CO			10.0	Casing (f			/	VIA	and Volume R		
		Borehole V	ol. (BV) w	ater table v	vell = (TD of ca	ising – der	pth to w	/ater) *	gal/ft; sub	merg	ed well = (TD of cas	sing — I	Depth Top Fil	er Pa	ack *gal/ft
		Min Purge BV = (<u>/ Ĉ</u>	Vol. = 2 * . ft – _	Added Wat	er + 3 * BV	Max Purge ≩al/ft = _0	= Vol. =	2 * Add _gal (* 3	ed Water .785 L/ga	י + 10 1 = _)	⁺Β∨ [. <u>71</u> _ [)				
					gar+3* <u>0.7</u>											
		Max Purge	Vol. = 2 *		gal + 10 * <u>0</u> ,							<u>U</u> L)				
	1	Sta	rt Time		Finish Tim				Infor Casing (1011	Equi	oment	Used for Pure	ina	
		195	1		2019				05		sprinkler submersi	oump w/ s				
			Color		Odor		She	een	Purged	Drv	peristaltic Stabi	pump ization M	eters	Pump Inta	ke D	epth (ft btoo
		Clear Clou			-	erate		es	Yes	<u> </u>	YSI Multi			9,0		
		Other:	,			ong	C	6	No		Hach Tur					bilization)
		Purging rea	ched: St	ability Ma	x Vol. Purg	ge water w	vas: G	reated	Stored C	Dther	Note: A	urged	Bry			
)		Time	Vol (Gallons	ume			-		Range to I		nstrate Sta			1	_	Water Level
		Time (HH:mm)		\sim	± 1.0 °C Temperature	± 3% Conduc		(whicheve	is greater)		± 0.1	± 10 OR		± 10% or ±1 N Turbidity	TU	(feet btoc)
		2000	Change	Total	(°C)	(µS/c	m)		g/L)		d units)	(m\	<u> </u>	(NTU)	-	2.20
		2000	5.0	5.0	1.09	46	7	19.			2.10	103		010.	\geq	875
		2005	2.5	7.5	0.99	40	3		83		.06	108	.9	589.	4	9.1
		2010	2.5	10.0	1.0	32	7	18.	08	7	. 02	104	.1	485.	0	9.6
		2015	2.5	12.5	1.34	321	5	17.	66	6	0.91	102	.1	550		
		2020		15.0		di	20									
		2025	25	17.5	<u> </u>		1									
		2030	20	30.0			_									
			nE	22.5				-			_		_	-		
		2035	45									_	-		-	
	15	2042	2.0	25.0												
		2098	2.5	27.5						_			-		-	<u>5</u>
															-	
										_					_	
4															_	
\mathcal{I}														-		
														100		

Mihal W. Also 6/39/6

				/E we		OPMENT D	ATA SHEE	T WELL II	d: 166,AMA	IWOY
1		PROJE	CT NAME			CLIENT		SI		veloper Initials
	-	ambel	•		Alaska A	my Natio	nal Guard	Gam		FECT
		ATHER/TI			-	adings of Total V	S S S S S S S S S S S S S S S S S S S			art/End Times
	450/	Sanny	/			Breathing Zone			116 01	:50/09:
	Woll Moto	erial / Size	(in) Dr	Illing Water Ad		Built TD of Casing		e Diameter/in) /	Gallons per linea	ar foot (gal/ft)
	S	2 SS/2	and the second second	None	acu (gan	10.05	4.5/	0.363 6/0.55	55 8 / 0.898	10 / 1.34
	Depth to P		00)		TOC) Ini	lial TD of Casing	(ft) Produc		c porosity = 0.3) and Volume Rec	overed (mL)
	NIG		<u></u>	Depth to GW (f		10.05		NA		
	Borehole V	ol. (BV) w				water) * gal/ft; su		TD of casing -	Depth Top Filter	Pack *gal/ft
						= 2 * Added Wate gal (* 3.785 L/g		N N		
						<u>gal (* 3.785 L/g</u> <u>20_</u> gal (* 3.785				
						gal (* 3.785 00 gal (* 3.78				
	Max Purge	Vol. = 2 -		gai + 10 " L		urging Info		<u>(</u> L)		
	Sta	rt Time		Finish Tim		nal TD of Casing	(ft)	And the second s	Used for Purging	1
	0	1:50		69:15	-	10.05	sprinkler	pump w/ surge b ble pump	DIOCK	
		Color		Odor		neen Purgeo	peristaltic Drv Stabi	i pump lization Meters	Pump Intake	Depth (ft btoc)
	Clear Clo		'n	~		res Ye			9.	
	Other:	-		Faint Str	ong 🤇	No No	Hach Tur	bidimeter	8021-0231	tabilization)
	Purging rea	ached: St	ability Ma	x Vol. Pur	ge water was:	reated Stored	Other Note:			
		Volu	ume		Ac	ceptable Range to	Demonstrate Sta	bility		
	Time (HH:mm)	(Gallons	or Liters)	± 1.0 °C	± 3%	± 10% or 0.3 mg/L (whichever is greater)	± 0.1	± 10 mV	± 10% or ±1 NTU	Water Level (feet btoc)
		Change	Total	Temperature (°C)	Conductivity (uS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	
	04:00	4.0	4.0	1.15	10.13	22.61	6.38	163.8	84.91	7.7
	08:05	2.0	6.0	0.69	949	14.80	6.57	161.7	106.0	7.9
	08:10	2.0		0.55	930	14.22	6.64	160.3	74.78	8.0
	08:15				900	13.95	6.67	158.9	77.61	8.0
	08:20				919	13.64	6.69	156.8	47.94	8.0
	08:25	2.5	14.5	0.34	1045	13.36	6.63	158.4	32,48	7.95
				0.31	1153	12.80	6.58	160.6	22.19	20
	08:35	2.75	19.75	0.30	1398	12.22	6.52	164.3	16.98	8.1
	08:40	2.75	22.50	0.28	1589	11.0	6.50	164.9	15.1	8.1
	08:45				1758	10.52	6.49	165.5		8.2
	08:50			0.28	1872	9.51	6.49	166.0	8.62	8.2
				0.33	1990	8.74	6.48	166.8	5.97	8.2
	09:00				2078	13.21	6.48	166.7	49.33	8.2
	09:05		36.25		2147	7.77	6.48	167.0	5.09	8.3
	09:10		39.0	0.28	2205	7.37	6.48	166.9	85.63	
	09:15		41.75	MA		GE VE		ached		1
)										

Revend Alilul W. Hus 7/4/15

			/E we	LL DEV	ELO	PMENT [ΟΑΤΑ	A SHEE		D: 16 GAM	MW05-
	PROJE	CT NAME				CLIENT			SI		eveloper Initials
Go	inho,	1C		Alaska	Acv	ny Nati	emal	Caller	GAN	1	AC
WE	ATHER/TI	EMPERAT	URE	PI	Read	lings of Total	OCs (ppm)	DA		tart/End Times
4	51	Sung		Ambient	Br	eathing Zone	9	In Well _ 🕑	<u>+</u> 7/1/	16 00	1:35/1035
	/	\mathcal{O}			Wel	I Informa	tion				,
A	rial / Size		illing Water Add	led (gal)		ilt TD of Casin	<u>g (ft)</u>	5	le Diameter(in) /		
PVC7	2 SS/2 /		None			10.2		4.57	0.362 6 / 0.55 (filter pack	55 8 / 0.898 porosity = 0.3)	10 / 1.34
Depth to Pr	roduct (ft T	<u>OC)</u>	Depth to GW (ft	TOC)	Initia	TD of Casing	(ft)	Produc	t Thickness (ft) a	and Volume Rec	overed (mL)
NIA		atas table i	7.2	oing dont	/(5.2	hmore		TD of casing - I	Dooth Too Filton	Pook *aal/ft
			ter+3*BV ľ						(TD of casing = I	Depth Top Filter	Fack yaint
			ft) * 0. 36)						.)		
			gaL+ 3 * 1, 04								
			-gal - 10 * 1.0								
				Well	Pur	ging Info	rma	tion			
Sta	rt Time		Finish Time	2	(ft)	sprinkler	Equipment pump w/ surge b	Used for Purgin	9		
09	40		1035			10.2		submersi	ble pump	IUCK	
	Color		Odor		Shee		d Dry	peristaltic Stabi	pump lization Meters	Pump Intake	Depth (ft bloc)
	udy Brow	'n		erate	Ye			YSI Multi	Meter	10.0	`)
Other:			Faint Stro	ong	No		2	Hach Tur	bidimeter	5201 23	tabilization)
Purging rea	ched: (St	ability Ma	ax Vol. Purg	e water wa	s: Tre	ated Stored	Other	Note:			
		ume		bility							
Time (HH:mm)	(Gallons	or Liters)	± 1.0 °C	± 3%	0	± 10% or 0.3 mg/L whichever is greater		± 0.1	± 10 mV	± 10% or ±1 NTU	Water Level (feet btoc)
	Change	Total	Temperature (°C)	Conductiv (µS/cm)		DO (mg/L)	(s	pH td units)	ORP (mV)	Turbidity (NTU)	
050	5.50	5.30	0.48	162	-	12.96	1	1.11	125.0	469.0	7.2
0955	2,75	8.25	0.44	157		12.66	6	.96	125.1	734.4	7.2
10:00	2.75		0.41	155		12.69	6	.83	125.2	364.2	7.2
1005	2.75	13.75	0.41	152		12.61	6	.74	125,1	564.0	7.2
1010		16.25	0.42	150		12.74	_	5.70	125.3	304,0	7.2
1015	2.75		0.43	149		12.43		0.67	125.3	280.9	7.2
1020			0.43	149		12.50			125.3	267.2	
1025			0.44	147		12.56		0.62	125.6	258.4	
1030		27,25		145		12.57		.60	125.8	236,4	
1035			0.43	143		12.48		.59	126,2	233.0	
10,0	6115		hilizeti		_						1.6
		טור	mi lizeri	on l	ver	where	3	reac	NECY		
										2	
				÷							
							-				
			1 1 .	- N							

Reviewed: Minhow W. Huber 7/4/16

n,

WELL DEVELOPMENT DATA SHEET WELL ID: 16 GAMMW OG

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(DROIE										_	CI	_	Da	veloper Initia
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 .		1		41 6	k		1	1	n		-			P
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				TUDE								4 (sam la	e //		
	~	1			- 1		-		-			_	71	171/		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Sa	M/	SO	F		Ambient					n Well 📿		1	11/6	, 10	30/100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.7												~ "		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Drilling Wat	er Add	led (gal)	<u>As-B</u>		2	<u>(ft)</u>						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PVC7			No	n			9,0	10		(4.570					107 1.34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(DO			TOC)	Initi			(ft)	Produc	t Thickr	ness (ft)	and Vo	olume Reco	overed (mL)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													N/A		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												ID of C	asing –	Depth	I op Filter	Pack *gal/ft
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+					-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
Well Purging Information Start Time Finish Time Final TD of Casing (f) Galion Winge Block submersible pump $12O2$ $9,90$ Stabilization Meters Purged Dry Color Color Odor Sheen Purged Dry Stabilization Meters Pump Intake Depth (f) Color Mone Moderate Yes Yes Yes YSI Multi Meter Pump Intake Depth (f) Purging reached: Stabilization Meters Purged Dry Stabilization Vering (relation or Liters) Volume Purge water was: Treaded Stored Other Note: Under Liters Total Temperature Component/(lister) Demonstrate Stability Purged Value Purged Value (HH:mm) Volume Total Temperature Component/(lister) Do Purged Value Purged Value (HH:mm) Total Temperature Component/(lister) Do Purged Value Purged Value (11:00 G.O G.O O																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Max Purge	Vol. = 2		_gal + 10	• <u>1,1</u>							_ L)				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sta	rt Time		Finis	h Tim							Ea	uipment	Used	for Puraina	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A				_	-		ac	30			oump w	/ surge t			5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	105	peristaltic pump														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Color Odor Sheen Purged Dry Stabilization Meters Pump Intake Der											Depth (ft bto				
(utiling stability (utiling sta	\ /	udy Brow	/n				~	-	· · ` ∽						9.6	50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Stro	ong	<u> </u>	10	No.	<u>)</u>	Hach Turl	oidimete	er		(during st	abilization)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Volume Acceptable Range to Demonstrate Stability														
ChangeTotalTemperature (°C)Conductivity (IIS/cm)DO (mg/L)pH (etd units)ORP (mV)Turbidity (NTU)11:00 6.0 6.0 0.64 2.31 50.33 7.11 139.0 824.5 7.02 11:05 3.0 9.0 0.47 2.27 18.52 7.15 138.8 630.9 7.02 11:10 3.0 12.0 0.42 2.12 17.62 7.10 137.7 352.6 7.02 11:15 3.0 15.0 0.444 191 17.06 7.03 136.1 241.6 7.02 11:15 3.0 15.0 0.444 191 17.06 7.03 136.1 241.6 7.02 11:20 3.0 18.0 0.490 175 16.33 6.944 135.1 179.1 7.02 11:25 3.0 21.0 0.473 163 15.966 6.871 135.0 142.44 7.02 11:30 3.0 24.0 0.433 157 15.794 6.833 135.1 120.94 7.02 11:35 3.0 27.0 0.433 157 15.746 6.75 136.8 83.94 7.02 11:40 3.0 30.0 0.443 142 15.577 6.72 139.2 73.35 7.02 11:45 3.0 33.0 0.443 142 15.577 6.72 139.2 73.35 7.02 11:45 3.0 34.0 0.444 13				± 1.0	°C	± 3%					± 0.1	± 1	0 mV	± 10%	6 or ±1 NTU	Water Leve
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(in third)	Change	Total					C	00	(et		-				(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11:00	6.0	6.0	_					-						design of the second se	7.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11:05	3.0		0.4	7	22-	ר	18	52	7	15	139	3.8	6	30.9	7.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2	217	2	17.	62	ר`	.10	13-	1.7	3:	52.6	7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11:15	3.0	1		4	191		17.	06	7.	03	136	s.1	24	11.6	7.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11:20				0	175	5			6	.94	135	5.1	1-	19.1	7.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11:25	3.0		_						6	87			10	12.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	15-	7									7.0
11:403.030.00.4314615.466.75136.883.97.011:453.033.00.4314215.576.72139.273.357.011:503.036.00.4314015.466.69139.167.457.011:553.039.00.4413815.286.67141.262.17.0																
11:45 3.0 33.0 0.43 142 15.57 6.72 139.2 73.35 7.0 11:50 3.0 36.0 0.43 140 15.46 6.69 139.1 67.45 7.0 11:55 3.0 39.0 0.44 138 15.28 6.67 141.2 62.1 7.0										-				0	39	
11:50 3.0 36.0 0.43 140 15.46 6.69 139.1 67.45 7.0																
11:55 3.0 39.0 0.44 138 15.28 6.67 141.2 62.1 7.0																
	and the set of the									9	1.7					
$(x_1, y_2, y_3) \in (x_1, y_2, y_3) = (x_1, y_1) = (x_1, y_2) = (x_1, $																
	12:00			_		136								15	>.1	7,0
12:02 1.5 43.52 MAX Purke Vol. Reached	12:02	1.5	43.52	- /	MA	X P	Un	30	Vol	6	Real	he	cl			
					1											
A = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		I	l					1	1				1			I

Reviewed: Minhay W. Huls 7/4/16

	~	EAG		YE we	ELL DEV	elopmi	ENT D/	ATA SHEE	T WELL I	D: IEGAMMI	N07
(e) ·		PROJE			A laska PIE	A .		al Guerd		hell (reloper Initials
	S	Mny	55	SF	Ambient	Breathing	Zone		7 7/1/	16	
	Mall Mat	erial / Size	(in) D	illing Water Add		Well Inf				Gallons per linea	5/142
	PVC /	2 SS/2		None	,	10.	C	4.57	0.362 6 / 0.55 (filter pack	55 8 / 0.898 (porosity = 0.3)	10 / 1.34
	Depth to P			Depth to GW (f)		Initial TD o		<u>Produc</u>		and Volume Reco	overed (mL)
	Borehole	/ol. (BV) w		well = (TD of ca		to water) *	gal/ft; sub		(TD of casing -	Depth Top Filter I	Pack *gal/ft
				ter + 3 * BV ft) * <u>0.362</u>	-				`		
				gal+ 3 *0,5							
	Min Purge Max Purge			gal + 3 * 0, 5							
		e vol. = 2 *	\nearrow	gai + 10 0,		Purging					
	Sta	art Time		Finish Tim		Final TD o		<u>ft)</u>		Used for Purging	
	134	15		1425		10.	0	submers	pump w/ surge b ible pump	DIOCK	
		Color		Odor		Sheen	Purged	peristaltic Dry Stab	c pump ilization Meters	Pump Intake	Depth (ft bloc)
	Clear Clo	udy Brow	'n	\sim	lerate	Yes	Yes			9.7	
	Other:			Cetting	ong	(No)	(No		rbidimeter	(during st	abilization)
	Purging re	ached: SI	ability	ax Vol. Purg	ge water was	Treated	Stored (Other Note:			
	Time		ume or Liters)		1		Range to	Demonstrate Sta	1		Water Level
	Time (HH:mm)	<u> </u>	· · · · ·	± 1.0 °C Temperature	± 3% Conductiv	(whicheve	r is greater)	± 0,1	± 10 mV ORP	± 10% or ±1 NTU Turbidity	(feet btoc)
	1000	Change	Total	(°C)	(µS/cm)	. (m	g/L)	(std units)	(mV)	(NTU)	\$11.
	1345	4.4	4.4	0.88	212		05	5.42	169.5	73.12	8.4
	1350	2.2	6.6	0.68	212		.52	5.75	163.1	38.49	8.4
	1355	2.2	88	0.59	213		.04	5.94	158.0	23.54	8.4
			11.0			00	42	6.12	152.0		8.4
	1405			1.05	217		34	6.13	153.4	16.06	S.T.
	1410			0.65	215		.80 45	6.17	152.1	9.07	8_4 8.4
	1420			0.03	213		45		150.9	9.3	8.4
	1425		22.0		di) P	10. 00	TS IN	Reac	100.1 had	1.2	<u></u>
	1140	6,6	ouce.	Max		ge	101.	1 chi	nea		
				· · · · · · · · · · · · · · · · · · ·							
		-									
0											
					-						
						Λ	1 t	1 14 1			

Reviewed: Milling W. Hils 7/4/16

	YE	W	ELL PUR	GE AND) SAMPLI	NG FORM	l WE	LL ID: [6	6AMMwo		SHEE	T:l of
PROJECT NAME Ga.	nnell			w	/ELL CONDITION	New			DIAMETER	O.D.	I.D,	VOLUME (GAL/LIN FT)
CLIENT Alaska	1	Native	mal Gas	cd. DA	AMAGE PRESENT	Non	2.		2"	2.375"	2.067"	0.17
SITE Gag	mbel	1		DI	EPTH TO WATER (FROM TOC)	7.3			3"	3.5"	3.068"	0.38
SAMPLER CT	IMH				DEPTH TO BASE (FROM TOC)	10.0)		4"	4.5" 4	1.026"	0.66
WEATHER/	AL 1	55°1	1	HE	EIGHT OF WATER	2.7	·		6"	6.625" 6	5.065"	1,5
	21/14	20			WELL VOLUME	0,40	0		8	8.625"	7.981"	2.6
START TIME 15:							4			0.025	1501	2.0
END TIME 153												
				S	SAMPLING D	ATA						
SAMPLE TYPE (GW, PRODUCT, OTHER):	Gran	nd L	vater									
SAMPLE COLLECTED WITH:	Bailer		Submersibl	e	Bladd	er <u>X</u>	Peristaltic	2-	0	ther (sp	ecify))
MADE OF:			Stainless St	eel	PVC		Teflon		X D	isposabl	e LDF	ΡE
SAMPLING DECON PROCEDURE:												
SAMPLE DESCRIPTION: (color, free product thickness, odor,	lear	no	odor									
turbidity)												
CRITERIA FOR STABLE PARAMET		· 1-		SAMPLING N	OTES:							Î
Temperature	Stability Cri	teria	li in the second se									
рН	± 0.1											
Conductivity	± 3%											
ORP	± 10mV ± 10%											
Dissolved Oxygen Turbidity	± 10%											
			F	IELD WAT	ER QUALITY	PARAMETERS	5					
Time Purged Volu	1e Water Leve	Draw Down	Temperature	рН	Conductivity	ORP	D.O. (%)	D.O. (mg/L)	Turbidity	Colo	. 1	Odor
(Gallon)	7.3	0.0	('F or 'C)	6.72	$\frac{(\mu S/cm)}{204}$	122.7		16.65	24.1	Light B		Mane
15/5 1.36	7.3	0.0	1.36	6.12	200	126.3		Million	15.95	Light 1		Nono
1520 2.74	7.3	00	1.39	6.65	197	128.1	120.4	16.91	10.92	Clea	_	None
1825 3.4	7.3	0.0	1,23	6.61	191	131.9		17.07	9.78	Clean		None
1530 4.1	7.3	0.0	1.23	6-60	188	133.3	122.2	17.26	7,92			None
1535 4.8	7.3	0:0	1.24	6.58	186	135.3	122.7	17.32	8.59	clea	R	None
1540	Sta	biliz	ation	Der	tamete		eache	d				
	_									_		
	-										_	
	1					FORMATION						
				ANALYTICA	AL SAMPLE IN	IFORMATION	4	_				
Analyte Time DRO/RRO 1545	16 G A	Identific M 01		IMS	Additional Sa	•			Identific	ation		
GRO/BTEX 1545	16 GA	M.DT.	MW D1	MSIM	/MSD DU SD		2					
ЕРН/УРН				100			3					
PAH 1545	16 GAM	OIM	WOI M	s/msd			3					
Other												

Alifu W. Ho 7/1/16

			_								_		
E	AGLE EY	E	W	ELL PUR	GE AND	SAMPLI	NG FORM	l Wi	ell id: 14	/aAm.	nwo2	SHEE	т: / of /
PROJECT NAME	Gamb	ell			w	ELL CONDITION	New			DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	T. /		Vottono	al Guai	DA	MAGE PRESENT	None			2**	2.375"	2.067"	0.17
SITE	Gamb	1875	00.11040	n Chas	DE	EPTH TO WATER	8.24			3"	3,5"	3.068"	0.38
SAMPLER	MANIC	T			D	(FROM TOC) DEPTH TO BASE	10.0			4*	4.5*	4.026"	0.66
WEATHER/	MATCH/C	1	5°E			(FROM TOC) IGHT OF WATER	1,76			6"	6.625"	6.065"	1.5
TEMPERATURE DATE	Sun		SF		÷	COLUMN WELL VOLUME	0.30					_	
START TIME	51/21	16				WELL VOLUME	0.00			8	8 625"	7.981*	2,6
END TIME	1720												
					S	AMPLING D	ATA						
SAMPLE TYPE PRODUCT, OT	Sec. 901	iran	di	water									
SAMPLE COLLE		Bailer		Submersible	9	Bladde		Peristaltic		0	ther (s	necify	
WITH:	-	Dallel	-	Subinersion		int							
MADE OF SAMPLING DE PROCEDUR	CON			Stainless St	eel 🥕	PVC		Teflon	<u> </u>	<u>×</u> D	isposat	ole LDF	Έ
SAMPLE DESCRI	-			. 1									
(color, free pro thickness, or		ean.	no	odar									
turbidity)				_									
2000004-0157	ABLE PARAMETERS				SAMPLING NO	DTES:							
Parameter Temperature		Stability Crit	eria	1									
pH		± 0.1											
Conductivity		± 3%											
ORP		± 10mV	_									6	
Dissolved Oxyger	n	± 10%											
Turbidity		± 10%]									
				F	IELD WAT		PARAMETER						
Time	Purged Volume (Gallon)	Water Level	Draw Down	Temperature (*F or *C)	рН	Conductivity (µS/cm)	ORP	D.O. (%)	D.O. (mg/L)	Turbidity	Co	or	Odor
1700	1.32	9.0	0.76	1.69	676	248	130.1	97-1	13,52	30.1d	Che	14.	none
1705	1.69	9.1	0.86	1.91	6.68	243	127.8	97.2	13.39	44.17	de		none
1710	1.95	9.2	0.96	2.17	6.63	247	126.3	94.2	13.00	55.33	clee		none
1715	2.21	9.2 9.25	0.96	2.02	6.61	276	125.9						none
1700	0.71	M	av	Purge		. Re	132.1 ached	01.0	ru · ·	50,00	CIE	<u>a</u>	TOTIC
				0	~								
			_										
				1	ANALYTICA	L SAMPLE IN	FORMATION	4					
Analyte	Time		Identific	ation		Additional Sa	mple Time			Identific	ation		
· ·		GAM			_	Du	plicate 174	5 11	oGAn	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D C	51	
GRO/BTEX	735 14	GAM	07_N	NWOIL			plicate 1742	- 10	OGAN	108F	Dol		
EPH/VPH													
	735 (4	GAn	-02 W	wor			1745	. Ik	GAW	08 F	DO		
Other	<u> </u>						3						
			1										
		1.1	[r	(1 1)			4						
	\checkmark	//* ,	I IAT	the			7/1/10						
		1h Ma	VV-	The			.1 (1.0						

Temperature 1.3% AH 0.1 Some 0.1 Some 0.1 Some 10mV Sisobled Doxgen ± 10% FIELD WATER QUALITY PARAMETERS Time Purged Volume Color Odd Time Purged Volume Temperature pH Conductivity ORP D.0.(%) D.0.(%) <th colspa="</th"><th></th><th>ΈΝ</th><th>ELL PUR</th><th>GE AND</th><th>SAMPLI</th><th>NG FORM</th><th>WE</th><th>:LL ID: [(</th><th>GAMM</th><th>11103</th><th>SHEE</th><th>T: of </th></th>	<th></th> <th>ΈΝ</th> <th>ELL PUR</th> <th>GE AND</th> <th>SAMPLI</th> <th>NG FORM</th> <th>WE</th> <th>:LL ID: [(</th> <th>GAMM</th> <th>11103</th> <th>SHEE</th> <th>T: of </th>		Έ Ν	ELL PUR	GE AND	SAMPLI	NG FORM	WE	:LL ID: [(GAMM	11103	SHEE	T: of	
CLEAR Allaska Arrwy Material Galance David Presson Control Watter None 27 2.37 2.07 0.37 STAT Open to watter State Material State State <t< td=""><td></td><td>bell</td><td></td><td>w</td><td>ELL CONDITION</td><td>New</td><td></td><td></td><td></td><td>1</td><td></td><td>VOLUME</td></t<>		bell		w	ELL CONDITION	New				1		VOLUME		
STE AMPLIE Gambel/ (mitrovaria) Opening to the interval preserved pre		rmy Nation	al Gue co	DA	MAGE PRESENT				2"	2.375"	2,067"			
SAMPLING CONTINUE Multi-(CC		1 1 1	n Oner c	DE					3"	3.5"	3.068"	0.38		
Mathematics	_ Uam	<u>bev</u>							- 37					
DDTR D7/D//1/2 WELL VOLUME D. 34 p* 15.65* 2.6 START TIME [2]30 [1]5 SAMPLING DATA SAMPLING DATA <t< td=""><td>I CHT/</td><td>9</td><td>2.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 612</td><td>3990</td><td></td></t<>	I CHT/	9	2.4							- 612	3990			
START TIME LQ 30 T END TIME [Q152] SAMPLING DATA SAMPLING COL Gradul Usite SAMPLING COL Gradul Usite SAMPLING COL Bailer Submersible Bladder Peristaltic Other (specify) MARE TWE COL Teflon X Disposable LDPE SAMPLING OLCON MADE OF Stalinless Steel YVC Teflon X Disposable LDPE SAMPLING OLCON MADE OF Stalinless Steel YVC Teflon X Disposable LDPE SAMPLING OLCON MADE OF Stalinless Steel YVC Teflon X Disposable LDPE SAMPLING CONT CLEAR Mod DA Teflon X Disposable LDPE SAMPLING CONT CLEAR Mod DA Teflon X Disposable LDPE SAMPLING CONT CLEAR Mod DA Teflon X Disposable LDPE SAMPLING CONT Sampling Charles		AN. 50	+				1		ь.	6.625"	6.065"	1,5		
END TIME Tell 5: SAMPLETYPE (GW, PROCUC, DTHRB); Ground, Lucker MADE DF: Submersible MADE DF: Stainless Steel SAMPLE COLLECED Bailer SAMPLE COLLECED Bailer SAMPLE COLLECED Bailer SAMPLE DISCONPRODUCTION: CLEAR Reference Law More Collece SAMPLE DISCONPRODUCTION: CLEAR Reference 13% Indiverse Collece SAMPLING NOTE: SAMPLE DISCONPRODUCTION: SAMPLING NOTE: SAMPLE DISCONPRODUCTION: SAMPLING NOTE: SAMPLING NOTE: SAMPLING NOTE: Stailing Chech 100mV Stailing Chech SAMPLING NOTE: Stailing Chech 100mV Staili	01	01/16		v	VELL VOLUME	0.3	1		8"	8.625"	7.981"	2.6		
SAMPLING DATA SAMPLING DATA MARKET VARE (W) Galance Other (specify) MARKET VARE (W) Disposable LDPE MARKET VARE (W) Disposable LDPE SAMPLING NOTES: SAMPLING NOTE:		1												
SAMPLING INFORMATION: Growney under SAMPL DESCRIPTION: Bailer Submersible Bladder Yeristaltic Other (specify) SAMPL DESCRIPTION: Clear No Other (specify) Disposable LDPE SAMPL DESCRIPTION: Clear No Other (specify) Disposable LDPE SAMPLING DECON Sampling Other Sampling Other Disposable LDPE SAMPLING DECON Sampling Other Sampling Other Disposable LDPE Sampling Other Sampling	END TIME [4]5			5	AMPLING DA									
SAMPLICE COLLECTED Baller Submersible Bladder Yeristaltic Other (specify) MAGE DS: Stainless Steel PVC Teflon Disposable LDPE SAMPLING CICK Stainless Steel SAMPLING NOTE: Sampling Notes Stainley Stability Criteria Sampling Notes: Sampling Notes: Stainley Stainley: Sampling Notes: Sampling Notes: Stainley: Stainley: Sampling Notes: Sampling Notes: Stainley: Stainley: Sampling Notes: Sampling Notes: Stainley: Stain: Sampling Notes:	SAMPLE TYPE (GW,	Games	110hel	<u> </u>						-				
WTIE: Bailer Submersible Bladder Peristaltic Other (specify) MADE OF: Stainless Steel PVC Teflon Disposable LDPE SAMPLING DECN Stainless Steel PVC Teflon Disposable LDPE SAMPLING DECN CLEAR No OL Disposable LDPE Sampling Decon CLEAR No OL Disposable LDPE Sampling Decon Sampling Decon Sampling Decon Sampling Decon Disposable LDPE Sampling Decon Time Sampling Decon Disposable LDPE Disposable LDPE		anound	world											
MARC OF: Stainless Steel PVC Teflon Disposable LDPE SAMPLING DECON PROCEDOR: CLEAR No OLF Disposable LDPE SAMPLING DECON PROCEDOR: CLEAR No OLF Disposable LDPE SAMPLING DECON PROCEDOR: CLEAR No OLF Disposable LDPE Same Stability Cited a representation Stability Cited a sindicativity Sampuno NOTES: Stander Stability Cited a representation FIELD WATER QUALITY PARAMETERS Color Oder Stability Cited a representation FIELD WATER QUALITY PARAMETERS Discoved Oxygen 10% Discoved Oxygen 10% Stability Cited a representation FIELD WATER QUALITY PARAMETERS Discoved Oxygen 210% Discoved Oxygen 10% Discoved Oxygen None Di		Bailer	Submersible	-	Bladde	er <u>×</u>	Peristaltic	-	0	ther (s	oecify)			
SAMPLIE DESCRIPTION: PROCEDUE: SAMPLIE DESCRIPTION: (color, free product) bitchenes, odg. Sampling State PARAMETERS: SAMPLING NOTES: SAMPLING NOTES: SA	MADE OF:		Stainless Ste	el 🔎			Teflon		XD	isposak	ole LDł	ΡE		
the initiality citeria SAMPLING NOTES: SAMPLING NOT				-	<u> </u>									
the initiality citeria SAMPLING NOTES: SAMPLING NOT	thickness, odar,													
Parameter Stability Criteria Temperature 13% DN 101 Conductivity 13% DR 100% Databased Doggen 110% Turbidity 100% Turbidity 100% Turbidity 100% Turbidity 100% Turbidity 100% Turbidity 100% Time Purged Volume Water Level Draw Down Time Color Color 0.472 S.4. 7.4.2 T.2. 7.4.2 T.2. 7.4.2 T.2. 7.4.2 T.2. 7.4.2 T.2. 7.4.2 T.2. 7.4.7 T.2. 7.4.2 T.2. 7.4.7 T.2. 7.4.7 T.2. 7.4.7 T.2. 7.4.7 T.2. 7.4.7 T.2. 7.4.7 T.2. 7.4.	thickness, odor, turbidity)													
Temperature 1.3% AH 0.1 Some 0.1 Some 0.1 Some 10mV Sisobled Doxgen ± 10% FIELD WATER QUALITY PARAMETERS Time Purged Volume Color Odd Time Purged Volume Temperature pH Conductivity ORP D.0.(%) D.0.(%) <th colspa="</td"><td>CRITERIA FOR STABLE PARAMETER</td><td>S:</td><td></td><td>SAMPLING NO</td><td>DTES:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>CRITERIA FOR STABLE PARAMETER</td> <td>S:</td> <td></td> <td>SAMPLING NO</td> <td>DTES:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CRITERIA FOR STABLE PARAMETER	S:		SAMPLING NO	DTES:								
BH ± 0.1 Conductivity ± 336 BP ± 10m/ Discolved Dargen ± 10% FIELD WATER QUALITY PARAMETERS FIELD WATER QUALITY PARAMETERS Time Purged Volume (Gallon) Water Level Draw Down Temperature ("for (*) pH Conductivity ORP D.O. (mg/l) Turbidity Color Oddor 1/3/35 O.472 \$3.4 O.4 2.57 11.6 41.65 1/49.0 2.96.9 3/1/1 2.05.6 light bary nome 1/3/35 O.472 \$3.4 O.4 2.457 7.16 3%1 138.4 1/47.7 19.81 75.26 light bary nome 1/3/45 I.277 9.1 I.4 1.457 7.16 3%1 138.4 1/9.43 6276 cleaser nome 1/3/45 I.277 9.1 I.4 6.97 3.27 1/3.0 1/3.72 1/9.37 6/4.0 Cleaser nome 1/3/50 I.644 9.5 I.55 I.4/6 6.97 3.27 1/40.0 1/3.72 1	Parameter	Stability Criteria												
Conductivity ± 3% SRP ± 10mV Specked Oxygen ± 10mV Turbidity ± 10mV Stabued Oxygen ± 10% FIELD WATER QUALITY PARAMETERS Time Purged Volume Water Level Conductivity 08P D.0. (%) D.0. (mg/L) Turbidity Color Odor 1840 O.84 8.8 O.4 Z.5 T.16 YG2 YLI 2.05/Light box/ none 1840 O.84 8.8 O.4 Z.4 T.16 YG2 YLI 2.05/Light box/ none 1840 O.84 8.8 O.4 Z.4 T.16 YG2 YG2 none none 1845 1.2.7 7.1 J.4 YG2 T.92 YG3 J47.2 J38.4 J9.9 G4.0 Clear none 1850 1.64 9.5 J.5 J.46 G.97 32.7 J40.0 J38.2 J9.37 G4.0	Temperature													
Dissolved Oxygen ± 10% Turbidity ± 10% FIELD WATER QUALITY PARAMETERS FIELD WATER QUALITY PARAMETERS Time Purged Volume (Galon) Water Level Draw Down Temperature (1° or 'C) pH Conductivity (us/cm) ORP D.O. (%) D.O. (%) D.O. (mg/4) Turbidity Color Odor 1/335 O.42 7.41 2.42 1.45 1/4.65 1/49.0 2.90.9 3/11 2.05.6 (ight for, non.e.) 1/840 O.841 8.52 O.9 1.45 7.16 3/81 138.4 19.31 7.526 (ight for, non.e.) 1/845 1.27 9.7 1.11 1.422 7.02 3/83 142.2 138.4 19.37 64.0 Clear non.e. 1/850 1.64 9.5 1.96 6.97 32.7 140.0 138.2 19.37 64.0 Clear non.e. 1/850 1.64 9.5 1.96 6.97 32.7 140.0 138.2 19.37 64.0 Clear non.e. 1.6 1.6	pn Conductivity													
FIELD WATER QUALITY PARAMETERS FIELD WATER QUALITY PARAMETERS Time Priged Volume Conductivity ORP D.0. (%)	ORP													
FIELD WATER QUALITY PARAMETERS Time Purged Volume (Gallon) Water Level Draw Down Temperature (Territor) pH Conductivity (LyS/cm) ORP D.O. (%) D.O. (%) D.O. (mg/l) Turbidity Color Odor 1/835 0.942 5.94 0.4 2.57 1.16 4(65 1/49.D 2.96.9 3/11 2.05.6 /ight bru/none none 1840 0.844 8.5 0.5 1.45 7.16 381 138.4 19.81 75.26 /ight bru/none none 1845 1.27 7.1 1.1 1.422 7.02 383 147.2 138.4 19.81 75.26 /ight bru/none none 1850 1.644 9.5 1.5 1.46 6.97 32.7 140.0 138.7 19.37 64.0 Clear none 1850 1.644 9.5 1.5 1.46 6.97 32.7 140.0 138.7 19.37 64.0 Clear none 1850 1.644 9.5 1.5 1.46 6.97 32.7 140.0 138.7 19.37	Dissolved Oxygen Turbidity													
Time Purged Volume (Gallon) Water Level Draw Down Temperature (For 'C) pH Conductivity (µ5/cm) DRP D.O. (%) D.O. (mg/L) Turbidity Color Odor 1835 0.42 7.4 0.4 2.51 1,16 465 149.0 29.9 74.1 203.6 1.94.1 hand			I El			PARAMETERS				_				
Time Gallon) Water terel Draw Down ("For 'C) PH (µS/cm) ONP D.D. (%) D.D. (%) <td>Purged Volume</td> <td>r - r</td> <td></td> <td>LED WAII</td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td>r</td> <td></td> <td></td>	Purged Volume	r - r		LED WAII					I	r				
1840 0.84 8.8 0.8 1.45 7.16 381 138.4 141.7 19.81 75.26 1.444 home 1845 1.27 9.1 1.1 1.42 7.02 383 142.2 138.4 19.37 64.0 clear home 1850 1.64 9.5 1.5 1.46 6.97 32.7 140.0 138.2 19.37 64.0 clear home 1850 1.64 9.5 1.5 1.46 6.97 32.7 140.0 138.2 19.37 64.0 clear home 1850 1.64 9.5 1.5 1.46 6.97 32.7 140.0 138.2 19.37 64.0 clear home 1850 1.64 9.5 1.5 1.46 6.97 32.7 140.0 138.2 19.37 64.0 clear home 1.6 1850 1.64 1.6 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 </td <td>(Gallon)</td> <td></td> <td></td> <td>· ·</td> <td>(µS/cm)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Odor</td>	(Gallon)			· ·	(µS/cm)							Odor		
1845 1.27 9.1 1.1 1.42 7.02 383 1422 138,4 19.43 6236 clear none 1850 1.64 9.5 1.5 1.46 6.97 327 140.0 138.2 19.37 64.0 clear none MAX 7.02GF Vol<	states and an other state and in community of the state o		2.67				290.9							
1350 1.64 9.5 1.5 1.46 6.97 327 140.0 138.2 19.37 64.0 Clear Nowle MAX TUPGEP Vol<				and the second s			141.1							
MAX TURGE VOL Renched Indianal Indianal Indianal Indin Indin <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>e e un</td><td></td><td></td><td></td><td></td><td></td></t<>							e e un							
Image: Second	1000 1.01							11.37	01.0	- Cate		1000		
Analyte Time Identification Additional Sample Time Identification DRO/RRO 1900 166Am 63 MW 03 Duplicate														
Analyte Time Identification Additional Sample Time Identification DRO/RRO 1900 166Am 63 MW 03 Duplicate														
Analyte Time Identification Additional Sample Time Identification DRO/RRO 1930 166Am 63 MW 03 Duplicate										-				
Analyte Time Identification Additional Sample Time Identification DRO/RRO 1900 166Am 63 MW 03 Duplicate														
Analyte Time Identification Additional Sample Time Identification DRO/RRO 1900 166Am 63 MW 03 Duplicate														
DRO/RRO 1900 16 GAM 63 MW 03 Duplicate			A	NALYTICA	L SAMPLE IN	IFORMATION	1							
EPH/VPH	Analyte Time	Identific	ation		Additional Sa	mple Time			Identific	ation				
EPH/VPH	DRO/RRO 1920	GAM 62	MUL AZ		Du	plicate								
EPH/VPH	GRO/BTEX 1920 1	6GAM 02	MWI 03		2.	******	•							
BALL IRACO IL CALL OF WILL OF	EPH/VPH						· · ·							
		6GAM03.	mw 03			**								
Other	Other						e e <u></u>							
											_			

Mihu W. Hoto 7/1/16

		E	W	ELL PUR	GE AND) SAMPLI	NG FORM	1		GAMMU	VOY	SHEE	T:l of	
PROJECT NAME	Gamb	ell			w	ELL CONDITION	New			DIAMETER	0.D.	1.D.	VOLUME (GAL/LIN FT)	
CLIENT	10		Americal	Guard	DA	MAGE PRESENT	None			2**	2.375"	2.067"	0.17	
SITE	Gambe	11			DI	EPTH TO WATER (FROM TOC)	7.0			3"	3,5"	3.068"	0.38	
SAMPLER	Mf/C	5			C	(FROM TOC)	10.0			4"	4.5"	4.026"	0.66	
WEATHER/ TEMPERATURE	50° F/	Mostly	Sunny		HE	IGHT OF WATER COLUMN	3.0			6"	6.625"	6.065"	1,5	
DATE	7/2/10					WELL VOLUME	0.51			8"	8.625"	7.981"	2.6	
START TIME	0150													
END TIME	0335						TA					-		
SAMPLE TYPE	GW.				5	AMPLING DA								
PRODUCT, OT	HER):(spenne	d Weter	<u> </u>			* /							
SAMPLE COLLE WITH:	CTED	Bailer		Submersible	e	Bladde	er 📈	Peristaltic	_	0	ther (s	pecify))	
MADE OF				Stainless Sto	eel	PVC		Teflon		λD	isposat	le LDI	PE	
SAMPLING DE PROCEDUR					-44	<u> </u>		-	د	·				
	SAMPLE DESCRIPTION: (color, free product thickness, odor, turbidity)													
	or,	,												
CRITERIA FOR ST	ABLE PARAMETERS	:			SAMPLING N	OTES:							3	
Parameter		Stability Crit	eria	E										
Temperature		± 3% ± 0.1												
pH Conductivity		± 0.1 ± 3%												
ORP		± 10mV												
Dissolved Oxyger	1	± 10%												
Turbidity		± 10%												
			_	F	IELD WAT	ER QUALITY	PARAMETER	S				_		
Time	Purged Volume (Gallon)	Water Level	Draw Down	Temperature (°F or °C)	рН	Conductivity (µS/cm)	ORP	D.O. (%)	D.O. (mg/L)	Turbidity	Col	or	Odor	
0805	0.49	8.7	1.3	0.98	6.35	421	155.5	100.4	14.27	30.88	clea	5	none	
0810	0.98	8.4	1.4	0.91	6.38	485	157.8	100.1	14.25	29.78	cle	5	none	
0815	1.47	8.5	1.5	0,79	6.40	643	159.7	98.0	13.84	35.36	chea	~	non.0	
		Ma	XP	inge	Vol.	Read	the d							
			e.	J							L			
		_												
-				4	NALYTIC	AL SAMPLE IN	FORMATIO	N						
Analyte	Time		Identific			Additional Sa				Identific	ation			
		GGA	20	MWOY			plicate							
GRO/BTEX		664	Mont	TUDY										
EPH/VPH		- yet												
PAH	0815	6 GA	MOY/	MWOY										
Other							-							
											_			

Muhal Willie 7/2/16

											_	_	
E	AGLE EY	Έ	W	/ELL PUR	GE AN	D SAMPLI	NG FORM	1 w	ell ID: /(GAMMU	05	SHEE	T: lof l
PROJECT NAME	Gam	bell			١	WELL CONDITION	New			DIAMETER	0.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	Alaska A		Nation	ial Guarr	d o	AMAGE PRESENT	Abne			2**	2.375"	2.067"	0.17
SITE	Gambel				[(FROM TOC)	7.20	2		3**	3.5"	3.068"	0.38
SAMPLER	MILC	5				DEPTH TO BASE (FROM TOC)	10.20			4*	4.5"	4.026"	0.66
WEATHER/ TEMPERATURE	Sunny	150°P			н	EIGHT OF WATER COLUMN	3,0			6"	6,625"	6.065"	1,5
DATE	m/2 11	6				WELL VOLUME	0,5	<		8"	8.625*	7,981"	2,6
START TIME	0835		1										
END TIME		ous o	905			SAMPLING D	ΔΤΔ						
SAMPLE TYPE	- 23-412/1	Com	Juck	01		SAIVIPLING D							
PRODUCT, OT SAMPLE COLLI		22	druat			-5/0/-1/2/2	Ň 2						
WITH:	-	Bailer		Submersibl	e	Bladd	er <u>V</u>	_Peristaltic	-	0	ther (s	pecify)
MADE OF				Stainless St	eel 🧹	PVC		Teflon	-	XD	isposat	ole LDI	PE
SAMPLING DE PROCEDUR		_											
SAMPLE DESCRI (color, free pro	IPTION: oduct	ear,	no	odor	~								
thickness, or turbidity	dor,	1											
CRITERIA FOR ST	ABLE PARAMETERS):				OTES:							
Parameter		Stability Crit	erla	1									
pH		± 3% ± 0.1		1									
Conductivity		± 3%											
ORP		± 10mV											
Dissolved Oxyge	n	± 10%		1									
Turbidity		± 10%											
				F	IELD WAT	TER QUALITY	PARAMETER	S				-	
Time	Purged Volume (Gallon)	Water Level	Draw Down	Temperature (°F or °C)	рН	Conductivity (µS/cm)	ORP	D.O. (%)	D.O. (mg/L)	Turbidity	Col	or	Odor
0780	0.59	7.2	0.0	0.99	6.96	158	137.8	98.6	14.09	156.6	cle	_	none
0845	1.58	7.2	0.0	0,85	6.74	152	139.6	97.4	13.85	133.5	Clea		hone
0250	2,17	7.2 Mase	D.O Pina	0.94 Vol.	6.60 R-2ac	149 theol	142.7	97.0	13.83	114.9	che		none
		Mase	Ping	V 01.	preal	heat						_	
		_											L-
										J			
		_			ANALYTIC	AL SAMPLE I	NFORMATIO	N			_	_	
Analyte	Time		Identific	ation		Additional Sa	mple Time			Identific	ation		
DRO/RRO	0900	16GAM	OSMU	105		Du	plicate						
GRO/BTEX C	2900 1	6 GAN	105 MU	005									
	1 0000	6 GAL	105 M	WOST				-					
Other													
	1.000 million	1. 1	111	<u>, 11 1</u>		7							
	~	Muh	al V	1. Hu	6	7/2	16						
		20 - 20 - Million	- 1 ·										

		_	_										
EA		E	W		GE AND	SAMPLI	NG FORM	l Wi	ELL ID: [6	GAMOC	AWOG	SHEE	т: і оf і
PROJECT NAME	Gambel	1			w	ELL CONDITION	New			DIAMETER	O.D.	1,D,	VOLUME (GAL/LIN FT)
CLIENT	Alaska A		attanal	Cuerd	DA	MAGE PRESENT	None			2**	2,375"	2.067"	0.17
SITE	Gambell	100	in new off	Giudi 1		PTH TO WATER (FROM TOC)	6.70			3"	3.5"	3.068"	0,38
SAMPLER	MIC	7			D	EPTH TO BASE	10,04			4"	4.5*	4.026"	0.66
WEATHER/	6		1 . 1	. 50°F		(FROM TOC) IGHT OF WATER	3.34	1		6"	6.625"	6.065"	1.5
TEMPERATURE DATE	Samry,	10-150	nphwind	1 50 F		COLUMN VELL VOLUME	0.51	0		8"		7.091	2.6
START TIME	0910	6	_				0.5	/		8	8.625"	7,981"	2,0
END TIME	09 45		-										
					S	AMPLING D	ATA						
SAMPLE TYPE		Grou	nd wo	ter									
SAMPLE COLLE WITH:		Bailer		Submersible	2	Bladd	er <u>X</u>	Peristaltic		0	ther (sp	ecify)	
MADE OF:				Stainless Ste	el	PVC		Teflon		N D	isposab	le LDF	ΡE
SAMPLING DE				Stanness Sta		<u> </u>							
SAMPLE DESCRIF (color, free pro thickness, od	duct <u> </u>	ear,	\sim	oder									
turbidity)			_										
CRITERIA FOR ST	ABLE PARAMETERS	i:			SAMPLING NO	DTES:							
Parameter		Stability Crit	erla	1									
Temperature pH		± 3% ± 0.1											
Conductivity		± 3%											
ORP		± 10mV											
Dissolved Oxyger	1	± 10%											
Turbidity		± 10%											
				F	IELD WAT		PARAMETER	5					-
Time	Purged Volume (Gallon)	Water Level	Draw Down	Temperature (*F or *C)	рН	Conductivity (µS/cm)	ORP	D.O. (%)	D.O. (mg/L)	Turbidity	Cold	or	Odor
0915	0.57	6.95	0.25	1.32	6.79	144	150.8	290.0	35.22	107.4	cleo		nonp
0920	1.14	7.0	0.30	1.00	6.84	139	152.0	120.8	17.14	57.67	de		none
0925	1.71	7.0	0.30	0,92	6.81	136	151.4	118.7	16.84	41.03		_	none
0930	2.28	7.0	0.30	0.83	6.77	135	1.50.3	11/2.4	16.59	72.09	cles	LC_	none
		Ma	the T	Rige	Vol.	Reac	ned						
													· · · · · · · · · · · · · · · · · · ·
												_	
				ŀ	ANALYTIC	AL SAMPLE II	NFORMATIO	N					
Analyte	Time	10.04					ample Time			Identifi	cation		
	0975 -	1644		WOG		Du	plicate	-					
GRO/BTEX EPH/VPH	0935	16 (38	MOGN	1006				-					
	0735	16 GAN	106M	WAG				-					
Other		10 1787	001				-						
			A 0	0				4					

Mahar W. M. 7/2/16

WELL PURGE AND SAMPLING FORM WELL DL: & CMMUUO? Select of f Current Marka Army, Adhivesa Current Non-Q 27 227 207 200 202 Star Gar beld. Union rice Non-Q 27 207 200 202 20												_		7.
Mailer Make Carlow State Weil (Notifier) Alexand Device (Control of the second	E/	AGLE EY	Έ	W	ELL PUR	GE AND	SAMPLI	NG FORM	l w	ELL ID: K	GAMMU	700	SHEE	T: of (
CLEAR Macka brow, Addressal Guard Damage RESINt Apple 2* 237 0.37 SMER Gan bell Demonstration Stational Stational <td>PROJECT NAME</td> <td>Gam</td> <td>bell</td> <td></td> <td></td> <td>w</td> <td>ELL CONDITION</td> <td>New</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>VOLUME</td>	PROJECT NAME	Gam	bell			w	ELL CONDITION	New	1					VOLUME
star Garnbell Derivation S.4 31 32 300F 0.38 Samual MALL C3 Derivation Io.D 41 43 430F 0.66 Vextury Samual Samual Derivation Io.D 41 43 430F 0.66 Internation Samual Derivation Io.D 41 43 430F 0.66 Internation Samual Derivation Io.D 41 43 430F 0.66 Internation Samual Derivation Io.D 41 437 430F 0.66 Internation Origina Vextury Derivation Derivation Derivation 0.7 at and to and the ansate ansate and the ansate	CLIENT	ALLA	-	bional	Guard	DA	MAGE PRESENT	None			2"	2.375"	2.067"	
Source MALL CD 41 62 42 62 025 Wextweet Santer Mar. Santer Mar. </td <td>SITE</td> <td>0</td> <td></td> <td>(II)-Null</td> <td>60040</td> <td>DI</td> <td></td> <td>04</td> <td></td> <td>-</td> <td>3"</td> <td>3.5"</td> <td>3.068"</td> <td>0.38</td>	SITE	0		(II)-Null	60040	DI		04		-	3"	3.5"	3.068"	0.38
Weather Source Original Original <thoriginal< th=""> <thoriginal< th=""> <tho< td=""><td>SAMPLER</td><td></td><td></td><td></td><td></td><td></td><td>EPTH TO BASE</td><td></td><td></td><td></td><td>4"</td><td>4.5"</td><td>4.026"</td><td>0.66</td></tho<></thoriginal<></thoriginal<>	SAMPLER						EPTH TO BASE				4"	4.5"	4.026"	0.66
DATE D7/07/16 WILLYDUMK D. D7 at accr zear zear <td></td> <td>6</td> <td></td> <td>me in</td> <td>710</td> <td>CT ? PHE</td> <td>IGHT OF WATER</td> <td>1 /</td> <td></td> <td></td> <td>6"</td> <td>6.625"</td> <td>6.065"</td> <td>1.5</td>		6		me in	710	CT ? PHE	IGHT OF WATER	1 /			6"	6.625"	6.065"	1.5
START TIME OP S.S. SAMPLE TWE (BW, MORELOW, CHINE) Galler Submersible Bladder A Peristaltic Other (specify) MARLE TWE (BW, WTR: Baller Submersible Bladder A Peristaltic Other (specify) MARLE TWE (BW, WTR: Baller Submersible Bladder A Peristaltic Other (specify) MARLE TWE (BW, WTR: Baller Submersible Bladder A Peristaltic Other (specify) Market Discounce Stainless Steel A Stainless Steel Disposable LDPE Market Discounce Stainless Steel Stainless Steel Disposable LDPE Mission Stainless Steel Stainless Steel Disposable LDPE Mission Stainless Steel Stainless Steel Disposable LDPE Mission Stainless Steel Stainless Steel Stainless Steel Disposable LDPE Mission Stainless Steel Stainless Steel Stainless Steel Stainless Steel Stainless Steel Mission Stainless Steel Stainless Steel Stainless Steel Stainless Steel Stainless Steel Mission Stainless Steel Stainless Steel </td <td></td> <td></td> <td>1</td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.</td> <td>9 cas"</td> <td>7 0.91"</td> <td>26</td>			1		10						0.	9 cas"	7 0.91"	26
TO 3.5 SAMPLING DATA SAMPLING DATA SAMPLING DATA PRODUCT, OTHER Bailer Submersible Bladder A Peristaltic Other (specify) MADE ON: Colspan="2">Stalinless Steel PVC Tefion Disposable LDPE SAMPLING DATA MADE ON: Colspan="2">Colspan="2" SAMPLING DATA VIE Sampling Colspan="2" Colspan="2" Colspan="2" SAMPLING DATA POLICEDINE FIELD WATER QUALITY PARAMETERS Time Temperature PI Conductively Tere Go Time Temperature PI Conductively Tere Go				5				0.001			8	8.025	7.981	2.0
Sameter Vere GWL PRODUCT, OTHER SAME LOCALCTOD WITE: Caller Bailer Submersible Stainless Steel Bladder FVC Peristalic Tefion Other (specify) Disposable LDPE SAME LOCACTOD WITE: Stainless Steel FVC Tefion Disposable LDPE Same Escampton: takker, deer, witeker, deer, witeker, witeker, deer, witeker, witeker, witeker, deer, witeker,	END TIME													
PROUCH, OTHER: LIGUN & LIGUN SAMPLECOLLECTOR Bailer Submersible Fersitalic Other (specify) MOL OF: Stainless Steel MVC Teflon Disposable LDPE SAMPLE ODECON Stainless Steel MVC Teflon Disposable LDPE SAMPLE DESCHITON: CLEAN: MOL OF: Stainless Steel MVC Teflon Disposable LDPE SAMPLE DESCHITON: CLEAN: MOL OF: Stainless Steel MVC Teflon Disposable LDPE MOL OF: Stainless Steel MVC Teflon Disposable LDPE SAMPLE DESCHITON: CLEAN: MOL OF: Stainless Steel MVC Teflon Disposable LDPE MURE DESCHITON: CLEAN: MOL OF: Stainless Steel MUC OF: Stainless Steel MUC OF: MURE DESCHITON: CLEAN: MOL OF: Stainless Steel MUC OF: Stainless Steel MUC OF: Baseded Gorgen 1100% Stainless Steel MUC OF: Stainless Steel MUC OF: Teslon: MUC OF: Investig: 10:0 D.0 Stainless Steel MUC OF:						S	AMPLING D	ATA						
SAMPLICOLLETED Bailer Submersible Bladder Peristatic Other (specify) MODE OF: Stainless Steel MOV Teflon Disposable LDPE SAMPLICONCON Concerning for gradual statution Disposable LDPE Disposable LDPE SAMPLICONCON Concerning for gradual statution Concerning for gradual statution Disposable LDPE SAMPLICONCON Concerning for gradual statution Concerning for gradual statution Concerning for gradual statution Disposable LDPE SAMPLING INCONCON Concerning for gradual statution Concerning for gradual statution Disposable LDPE SAMPLING INCONCON Sampling for gradual statution Sampling for gradual statution Disposable LDPE File Statution Statution Sampling for gradual statution Sampling for gradual statution Disposable LDPE File File Statution Statution Sampling for gradual statution Disposable concerning for gradual statution Disposable concerning for gradual statution Statution Statution Statution Disposable concerning for gradual statution Disposable concerning for gradual statution Statution St	1 DOM: 0.116250311A /M/04	(GW, HER): GI	and	, water	6									
MADL OF: Stainless Steel Teflon Disposable LDPE SAMELING DECON PROCEDURE: Stainless Steel FVC Teflon Disposable LDPE SAMELING DECON PROCEDURE: SAMELING NOTES: SAMELING NOTES: Stainless Steel						e	Bladde	er K	Peristaltic		0	ther (si	pecify	
SAMUE DECON PROCEDURE: SAMUE DECONTON: (clear, free product bubbles, obs.) Clear, no Samuer Status (clear, free product bubbles, obs.) Clear, no Samuer Status (clear, free product bubbles, obs.) Samuer Status (clear, free product bubbles, obs.) Parameter Impactative pit to 10.107V Desorved Sorgen 1.007V Do. (mg/l) Twidiffy Conferctivity 1.007V Do. (mg/l) Twidiffy Conferctivity 1.007V Do. (mg/l) Twidiffy Conferctivity 0.0000 Do. (mg/l) Conferctivity		7	Sanci		5		Int			_	$\overline{\nabla}$			
SAMPLIGSCHUCK: (colir, frequencies, color, color	SAMPLING DE	CON			Stainless St	^{eel}	¥⊂PVC	-	letion			isposat	DIE LDI	Έ
turbidity	SAMPLE DESCRI		0.0		1									
SAMPLING NOTES: SECURATION: SECURATION: SAMPLING NOTES: SECURATION: SAMPLING NOTES: SECURATION: SECURATION: SECURATION: ID: 10 (J: 2) (J: 4)			ear	no	200	~								
Parameter Stability Criteria Temperature 1:3% pit 2:0.1 Conductivity 1:3% DRP 1:0/mV Disavied Oxygen 1:10% Turbidity 1:10% FIELD WATER QUALITY PARAMETERS Time Purged Volume (Gallon) Temperature (IO: DO Q. 4 Q. 4 D.0 (IO: SO Q. 8 Q. 4 D.0 Z. 5 (I. 6.2 I. 7.7 I. 7.7 I. 7.7 Class None IO: IO (. 2 2.4 D.0 Q. 2.5 I. 6.40 Q. 4.7 I. 6.3 I. 6.40 Class None IO: IS I. 6 8.44 D.0 Q. 2.5 I. 7.7 I. 7.		2												
Imparature # 3% pH ± 0.1 Conductivity # 3% DBS # 10mV DBSONEd Oxygen ± 10mV DSONEd Oxygen ± 10mV DSONEd Oxygen ± 0x3 molecular IO: 10 1, 2, 3, 44 0, 0, 3, 55 6, 544 2, 0c4 1/8, 4/ 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 37 1/6, 57 1/6, 37 1/6, 57 1/6, 37 1/6, 50 1/6, 50 1/6, 50 1/6, 57 1/6, 57 <t< td=""><td>1992 (1993) (1993) (1993)</td><td>ABLE PARAMETERS</td><td></td><td></td><td></td><td>SAMPLING N</td><td>OTES:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1992 (1993) (1993) (1993)	ABLE PARAMETERS				SAMPLING N	OTES:							
Conductivity ± 3% ORP ± 10m/v Disolved Oxygen ± 10% Turbidity ± 10% FIELD WATER QUALITY PARAMETERS Time Purged Volume (tere) Draw Down (terpreture (ts/cm)) ORP D.O. (m) // Turbidity Color Odor 10:10 0.4 9.4 O.O 3.6% 6.44 2.0% 1/3.3 17.70 37.17 Clear hom- 10:10 1.2 2.44 D.O 3.6% 6.444 2.0% 1/8.4 1/3.3 0.0 (m)/1 Turbidity Color Odor 10:10 1.2 2.44 D.O 2.64 2.0% 1/54.8 1/8.4 1/6.13 3.0 Clear hom- 10:10 1.2 8.44 D.O 2.544 2.0% 1/54.8 1/8.54 1/6.37 1.56 Clear hom- 10:15 1.6 8.44 D.O 2.544 2.0% 1/6.7.7 1/6.37 1.56 Clear hom- 10/1.15 Analyte Time transfer to the fill to	GOV GEOSTOVINIT			eria	ľ									
I 10mV Bisolved Oxygen 1 10% FIELD WATER QUALITY PARAMETERS Time Purged Volume Water Level Draw Down Temperature pH Conductivity ORP D.0. (%) D.0. (%) D.0. (%) D.0. (mg/1) Order Oddr Time Purged Volume Water Level Draw Down Temperature pH Conductivity ORP D.0. (%) D.0. (mg/1) Turbidity Colspan="2">Colspan="2"Colspan="2														
Dissolved Oxygen ± 10% Turbidity ± 10% Time Prifed Volume (callen) Vater Level Draw Down Temperature (per circl) pH Canductivity (LS/cml) ORP D.0. (%) D.0. (mg/L) Turbidity Color Odor 10:10:0 0.4 9.4 0.0 3.5% 6.51 2.1 \$ 1/08.4 13.3 17.70 37.17 Clear non.e 10:00:0 0.4 9.4 0.0 3.5% 6.51 2.1 \$ 1/08.4 13.3 17.70 37.17 Clear non.e 10:10:1 1.4 9.0 2.54 6.40 2.00 1.54.8 1/2.6 7.17 Clear non.e 10:15 1.6 8.4 0.0 2.54 6.40 2.00 1.54.8 16.39 1.56 clear non.e 10:15 1.6 8.4 0.0 2.23 6.37 2.11 15.7.9 16.39 1.56 clear non.e M/0 & Vort_s Vol. Reschards 1 1 1 1 1 1 1	Conductivity		± 3%											
Turbidity FIELD WATER QUALITY PARAMETERS FIELD WATER QUALITY PARAMETERS Time Purged Volume Temperature pH Conductivity OBP D.0. (%)	ORP		± 10mV											
FIELD WATER QUALITY PARAMETERS Time Purged Volume (Gallon) Water Level Draw Down Temperature (For 'C) pt Conductivity (us/cm) OBP D.O. (%) D.O. (mg/l) Turbidity Color Odor 10:10 0.4 9,4 0.0 3.5% 6.51 2.1 \$\subset\$ 1/9.6 /6.00 7.17 Clear Non-ex 10:10 1.2 9.4 0.0 3.5% 6.44 2.04 2.04 3.77 1/9.6 /6.06 7.17 clear Non-ex 10:10 1.2 9.4 0.0 2.5% 6.44 2.04 1/9.6 /6.013 3.00 Clear Non-ex 10:10 1.2 9.4 0.0 2.2% 6.44 2.04 1/9.5 /6.013 3.00 Clear non-ex 10:115 1.6 8.4 0.0 2.2% Vol. Read Level 16.37 1.5% clear non-ex Mode Processon Vol. Read Level 10.1 157.7 1/9.5% 16.37 1.5% clear non-ex <	Dissolved Oxyger	1	± 10%											
Time Purged Volume (Eslion) Water Level Draw Down Temperature (F or C) pH Conductivity (LS/cm) ORP D.O. (%) D.O. (mg/L) Turbidity Color Odor 10:10 0.4 9.4 0.0 3.99 6.51 2.15 11/8.4 17.70 37.17 Clear Non. 10:05 0.8 9.4 0.0 3.99 6.44 209 16.13 17.70 37.17 Clear Non. 10:10 (.2 9.4 0.0 2.554 6.44 209 16.13 1/9.6 16.00 7.17 Clear Non.e 10:15 1.6 8.4 0.0 2.23 6.33 211 157.9 16.39 1.56 clear non.e 10:15 1.6 8.4 0.0 2.23 6.33 211 157.9 16.39 1.56 clear non.e 10:15 1.6 8.4 0.0 2.23 1.8 2.4 2.4 1.4 1.4 <td< td=""><td>Turbidity</td><td></td><td>± 10%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Turbidity		± 10%											
Time Orac Down (Yor C) PH (us/cm) ORP D.0. (%) D.0. (%) D.0. (mg/t) Turninty Coor Oder 10:D0 0.4 9.4 0.0 3.83 6.51 2.1 \$ 11.08 47.73 37.17 Clear Man. 10:05 0.8 9.4 0.0 3.63 6.44 209 16.13 17.70 37.17 Clear Man. 10:10 (.2 9.4 0.0 2.54 6.40 209 159.8 1/8.4 66.13 3.00 clear man.e 10:15 1.6 8.44 0.0 2.23 6.33 21.1 157.9 16.39 1.56 clear none 10:15 1.6 8.44 0.0 2.23 6.33 21.1 157.9 16.39 1.56 clear none 10:15 1.6 8.44 0.0 2.23 6.33 21.1 157.9 16.39 1.56 clear none 10:15 1.6 8.44 0.0 2.23 6.33 21.1 157.					F	IELD WAT	ER QUALITY	PARAMETER	s			_		
10:05 0.8 9.4 0.0 3.09 6.444 209 161.3 //9.6 /6.06 7.17 clear viona 10:10 1.2 9.4 0.0 2.54 6.40 209 /59.8 //8.4 /6.13 3.0 clear viona 10:15 1.6 8.4 0.0 2.23 6.38 2.1 /57.9 /6.79 /6.39 /.56 clear viona 10:15 1.6 8.4 0.0 2.23 6.38 2.1 /57.9 /6.39 /.56 clear viona 10:15 1.6 8.4 0.0 2.23 6.38 2.1 //57.9 //6.39 /.56 clear viona 10:15 1.6 8.4 0.0 2.23 /.6 2.9 /.6 /	Time		Water Level	Draw Down		рн		ORP	D.O. (%)	D.O. (mg/L)	Turbidity	Col	or	Odor
10:10 1.2 2.4 0.0 2.54 6.40 209 154.8 18.4 16.13 3.0 chear none 10:15 1.6 8.4 0.0 2.23 6.38 211 157.9 16.39 1.56 chear none Max Max Varae Vol. Reached		0.4		0.0			215	and the second se			-	cle	ar	none
10:15 1.6 8.4 0.0 2.23 6.33 211 157.9 16.39 1.56 clear none Max Nax Nax Nax Nax Nax Nax Nax Nax Max Nax Nax Nax Nax Nax Nax Nax Nax Max Nax Nax Nax Nax Nax Nax Nax Nax Analyte Identification Additional Sample Time Identification Nax Nax </td <td>10:05</td> <td>0.8</td> <td>9.4</td> <td>0.0</td> <td>3.09</td> <td>6.44</td> <td>209</td> <td>161.3</td> <td>119.6</td> <td>16.06</td> <td>7.17</td> <td>dee</td> <td><</td> <td>NONe</td>	10:05	0.8	9.4	0.0	3.09	6.44	209	161.3	119.6	16.06	7.17	dee	<	NONe
10:15 1.6 8.4 0.0 2.23 6.33 211 157.9 16.39 1.56 clear none Max Nax Nax Nax Nax Nax Nax Nax Nax Max Nax Nax Nax Nax Nax Nax Nax Nax Max Nax Nax Nax Nax Nax Nax Nax Nax Analyte Identification Additional Sample Time Identification Nax Nax </td <td>10:10</td> <td>1.2</td> <td>8.4</td> <td>0.0</td> <td>2.54</td> <td>6.40</td> <td>209</td> <td>159.8</td> <td>118.4</td> <td>16.13</td> <td>3.0</td> <td>de</td> <td>a/</td> <td>none</td>	10:10	1.2	8.4	0.0	2.54	6.40	209	159.8	118.4	16.13	3.0	de	a/	none
Analyte Time Identification Additional Sample Time Identification DR0/RR0 102.5 (6 GAM 37 MW 07 GR0/BTEX 107.5 (6 GAM 37 MW 07 EPH/VPH PAH 102.5 (6 GAM 07 MW 07 Other				0.0	2.23				119.5			che	a/	
Analyte Time Identification Additional Sample Time Identification DRO/RRO 1025 16 GAM 37 MW 07 EPH/VPH PAH 1025 16 GAM07 MW 07 Other			Ma	K Y	inge	Vol.	Real	hed						
Analyte Time Identification Additional Sample Time Identification DRO/RRO 102.5 16 GAM 07 MW 07 Duplicate					0						_			
Analyte Time Identification Additional Sample Time Identification DRO/RRO 102.5 16 GAM 07 MW 07 Duplicate														
Analyte Time Identification Additional Sample Time Identification DRO/RRO 102.5 16 GAM 07 MW 07 Duplicate														
Analyte Time Identification Additional Sample Time Identification DRO/RRO 102.5 16 GAM 07 MW 07 Duplicate														
Analyte Time Identification Additional Sample Time Identification DRO/RRO 102.5 16 GAM 07 MW 07 Duplicate						L								
DRO/RRO 1025 16 GAM 07 MW 07 Duplicate GRO/BTEX 1025 16 GAM 07 MW 07					/	ANALYTICA	AL SAMPLE IN	IFORMATION					_	
GRO/BTEX 1025 16 GAM 02 MW 07 EPH/VPH			C A .								Identific	ation		
EPH/VPH PAH 1025 Other							Du	plicate						
PAH 1025 [6 GAMOIMU07 Other		025 16	aan	1011	wor				- () 					
Other		025 16	GAM	orm	W07									
Michael W. A. Ja 7/2/16	Other							-						
Minhal V. A. Do 7/2/16														
			hi	hul	p. A.	Ja	- 7	216						

APPENDIX C

LABORATORY REPORTS AND CHECKLISTS C-1 LABORATORY DATA TABLES C-2 ADEC LABORATORY DATA REVIEW CHECKLISTS

C-1 LABORATORY DATA TABLES

						Chain-of	-Custody	y Report					
	0	Eagle Eye Ele 1145019-Gan				-of-Custody: Laboratory:		ronmental		: Cooler #1-6 : Eagle Eye Electric		L Number: 1 Report To: 1	N/A Eagle Eye Electric
COC Samala ID	Lee ID	Collection	Collection	Samular	Ouantity	Container	Volume	Preservative	Maduin	Analyses Requested Group		ТАТ	Notes:
COC Sample ID	Loc ID	Date	Time	Sampler		Type 40-mL	volume		Matrix		QC		Notes:
16GAM01MW01	MW01	7/1/2016	1545	MH/CJ	18	VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101	MS/MSD	15 day	
16GAM01MW01	MW01	7/1/2016	1545	MH/CJ	6	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103	MS/MSD	15 day	
16GAM01MW01	MW01	7/1/2016	1545	MH/CJ	6	1-L Amber		4° +/- 2°C	GW	SW8270D SIM	MS/MSD	15 day	
16GAM02MW02	MW02	7/1/2016	1735	MH/CJ	6	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
16GAM02MW02	MW02	7/1/2016	1735	MH/CJ	2	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103		15 day	
16GAM02MW02	MW02	7/1/2016	1735	MH/CJ	2	1-L Amber		4° +/- 2°C	GW	SW8270D SIM		15 day	
16GAM03MW03	MW03	7/1/2016	1900	MH/CJ	6	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
16GAM03MW03	MW03	7/1/2016	1900	MH/CJ	2	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103		15 day	
16GAM03MW03	MW03	7/1/2016	1900	MH/CJ	2	1-L Amber		4° +/- 2°C	GW	SW8270D SIM		15 day	
16GAM04MW04	MW04	7/2/2016	0815	MH/CJ	6	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
16GAM04MW04	MW04	7/2/2016	0815	MH/CJ	2	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103		15 day	
16GAM04MW04	MW04	7/2/2016	0815	MH/CJ	2	1-L Amber		4° +/- 2°C	GW	SW8270D SIM		15 day	
16GAM05MW05	MW05	7/2/2016	0900	MH/CJ	6	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
16GAM05MW05	MW05	7/2/2016	0900	MH/CJ	2	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103		15 day	
16GAM05MW05	MW05	7/2/2016	0900	MH/CJ	2	1-L Amber		4° +/- 2°C	GW	SW8270D SIM		15 day	
16GAM06MW06	MW06	7/2/2016	0935	MH/CJ	6	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
16GAM06MW06	MW06	7/2/2016	0935	MH/CJ	2	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103		15 day	
16GAM06MW06	MW06	7/2/2016	0935	MH/CJ	2	1-L Amber		4° +/- 2°C	GW	SW8270D SIM		15 day	
16GAM07MW07	MW07	7/2/2016	1025	MH/CJ	6	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
16GAM07MW07	MW07	7/2/2016	1025	MH/CJ	2	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103		15 day	
16GAM07MW07	MW07	7/2/2016	1025	MH/CJ	2	1-L Amber		4° +/- 2°C	GW	SW8270D SIM		15 day	
16GAM08FD01	MW02	7/1/2016	1745	MH/CJ	6	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
16GAM08FD01	MW02	7/1/2016	1745	MH/CJ	2	250-mL Amber		HCL, 4° +/- 2°C	GW	AK102/AK103		15 day	
16GAM08FD01	MW02	7/1/2016	1745	MH/CJ	2	1-L Amber		4° +/- 2°C	GW	SW8270D SIM		15 day	
16GAMTB001		7/1/2016	0900	MH/CJ	3	40-mL VOAs		HCL, 4° +/- 2°C	GW	SW8260C, AK101		15 day	
Special Instructions:													
Relinquish By:								Relinquish By:					
Received By:						Date/Time		Received By:	Signature/Printed Name				Date/Time
	Signature/Printed Na	me				Date/Time		-	Signature/Printed Name]	Date/Time

2016 GAMBELL FSRC SITE CHARACTERIZATION ANALYTICAL RESULTS

				K1607616-001	K1607616-002	K1607616-003	K1607616-004	K1607616-005
				16GAM01MW01	16GAM02MW02	16GAM03MW03	16GAM04MW04	16GAM05MW05
Method	Analyte	TableC	Units	7/1/16	7/1/16	7/1/16	7/1/16	7/1/16
8260C	Benzene	4.6	ug/L	0.1 UJ	0.07 J	0.1 UJ	0.1 UJ	0.1 UJ
8260C	Ethylbenzene	15	ug/L	0.1 UJ	3.6 J-	0.1 UJ	0.1 UJ	0.1 UJ
8260C	m,p-Xylenes	190	ug/L	0.2 UJ	7.7 J-	0.2 UJ	0.2 UJ	0.2 UJ
8260C	o-Xylene	190	ug/L	0.2 UJ	0.67 J-	0.2 UJ	0.2 UJ	0.2 UJ
8260C	Toluene	1100	ug/L	0.13 J-	9.5 J-	0.95 J-	0.1 UJ	0.1 UJ
8270D SIM	2-Methylnaphthalene	36	ug/L	0.04 J-	12 J	0.0054 UJ	0.0052 UJ	0.0047 J-
8270D SIM	Acenaphthene	530	ug/L	0.005 UJ	0.68 J	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Acenaphthylene	260	ug/L	0.0047 J-	0.37 UJ	0.011 J-	0.0052 UJ	0.0051 UJ
8270D SIM	Anthracene	43	ug/L	0.043 J-	0.1 J	0.025 J-	0.0052 UJ	0.0051 UJ
8270D SIM	Benz(a)anthracene	0.12	ug/L	0.0033 J-	0.005 UJ	0.0071 J-	0.0052 UJ	0.0051 UJ
8270D SIM	Benzo(a)pyrene	0.034	ug/L	0.005 UJ	0.005 UJ	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Benzo(b)fluoranthene	0.8	ug/L	0.005 UJ	0.005 UJ	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Benzo(g,h,i)perylene	0.26	ug/L	0.005 UJ	0.005 UJ	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Benzo(k)fluoranthene	0.8	ug/L	0.005 UJ	0.005 UJ	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Chrysene	2	ug/L	0.005 UJ	0.005 UJ	0.015 J	0.0052 UJ	0.0051 UJ
8270D SIM	Dibenz(a,h)anthracene	0.034	ug/L	0.005 UJ	0.005 UJ	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Dibenzofuran	7.9	ug/L	0.005 UJ	0.72 J	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Fluoranthene	260	ug/L	0.02 UJ	0.014 J	0.022 UJ	0.021 UJ	0.021 UJ
8270D SIM	Fluorene	290	ug/L	0.005 UJ	1.2 J	0.055 J-	0.0052 UJ	0.0059 J-
8270D SIM	Indeno(1,2,3-cd)pyrene	0.19	ug/L	0.005 UJ	0.005 UJ	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Naphthalene	1.7	ug/L	0.03 J	11 J	0.0054 UJ	0.0052 UJ	0.0051 UJ
8270D SIM	Phenanthrene	170	ug/L	0.005 UJ	0.11 J-	0.14 J-	0.0052 UJ	0.0051 UJ
8270D SIM	Pyrene	120	ug/L	0.0064 J-	0.015 J	0.0093 J-	0.011 UJ	0.011 UJ
AK 102.0/103.0	C10 - C25 DRO	1500	ug/L	1300 J-	14000 J-	1100 J-	980 J-	270 J-
AK 102.0/103.0	C25 - C36 RRO	1100	ug/L	170 J-	360 J	280 J-	320 J-	180 J-
AK101	C6 - C10 GRO	2200	ug/L	60 J-	310 J-	30 J-	25 UJ	25 UJ

Notes:

Bold red indicates that the result exceeds the18 AAC 75 Table C groundwater cleanup level (ADEC 2016). ug/L = microgram(5) per liter (-) = indicates that the result is potentially biased low DRO = diesel-range organics GRO = gasoline-range organics

J = estimated; the value is greater than or equal to the MDL and less than the LOQ, or or the quantitation is an estimation due to discrepances in meeting certain analyte-specific quality control criteria.

NA = not analyzed RRO = residual-range organics U = nondetect; the value shown is the limit of detection (LOD).

2016 GAMBELL FSRC SITE CHARACTERIZATION ANALYTICAL RESULTS

				K1607616-006 16GAM06MW06	K1607616-007 16GAM07MW07	K1607616-008 16GAM08FD01 7/1/16	K1607616-009 16GAMTB001
Method	Analyte	TableC	Units	7/1/16	7/1/16	Dup of 16GAM02MW02	7/1/16
8260C	Benzene	4.6	ug/L	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ
8260C	Ethylbenzene	15	ug/L	0.1 UJ	0.08 J	3.7 J-	0.1 UJ
8260C	m,p-Xylenes	190	ug/L	0.2 UJ	0.18 J	8 J-	0.2 UJ
8260C	o-Xylene	190	ug/L	0.2 UJ	0.2 UJ	0.66 J-	0.2 UJ
8260C	Toluene	1100	ug/L	0.1 UJ	0.1 UJ	10 J-	0.1 UJ
8270D SIM	2-Methylnaphthalene	36	ug/L	0.005 UJ	0.0083 J	0.15 J	NA
8270D SIM	Acenaphthene	530	ug/L	0.005 UJ	0.005 UJ	0.34 J	NA
8270D SIM	Acenaphthylene	260	ug/L	0.005 UJ	0.005 UJ	0.11 UJ	NA
8270D SIM	Anthracene	43	ug/L	0.005 UJ	0.065 J	0.049 J	NA
8270D SIM	Benz(a)anthracene	0.12	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Benzo(a)pyrene	0.034	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Benzo(b)fluoranthene	0.8	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Benzo(g,h,i)perylene	0.26	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Benzo(k)fluoranthene	0.8	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Chrysene	2	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Dibenz(a,h)anthracene	0.034	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Dibenzofuran	7.9	ug/L	0.005 UJ	0.005 UJ	0.29 J	NA
8270D SIM	Fluoranthene	260	ug/L	0.02 UJ	0.02 UJ	0.013 J	NA
8270D SIM	Fluorene	290	ug/L	0.005 J-	0.005 UJ	0.59 J	NA
8270D SIM	Indeno(1,2,3-cd)pyrene	0.19	ug/L	0.005 UJ	0.005 UJ	0.005 UJ	NA
8270D SIM	Naphthalene	1.7	ug/L	0.005 UJ	0.0088 J	1.1 J	NA
8270D SIM	Phenanthrene	170	ug/L	0.005 UJ	0.005 UJ	0.096 J	NA
8270D SIM	Pyrene	120	ug/L	0.01 UJ	0.0067 J	0.022 J	NA
AK 102.0/103.0	C10 - C25 DRO	1500	ug/L	160 J-	970 J-	14000 J-	NA
AK 102.0/103.0	C25 - C36 RRO	1100	ug/L	170 J-	140 J-	510 J	NA
AK101	C6 - C10 GRO	2200	ug/L	25 UJ	86 J-	340 J-	25 UJ

Notes:

Bold red indicates that the result exceeds the18 AAC 75 Table C groundwater cleanup level (ADEC 2016). ug/L = microgram(s) per liter (-) = indicates that the result is potentially biased low DRO = diesel-range organics GRO = gasoline-range organics

J = estimated; the value is greater than or equal to the MDL and less than the LOQ, or or the quantitation is an estimation due to discrepances in meeting certain analyte-specific quality control criteria.

NA = not analyzed RRO = residual-range organics U = nondetect; the value shown is the limit of detection (LOD).

C-2 ADEC LABORATORY DATA REVIEW CHECKLISTS

Laboratory Data Review Checklist

Completed by:	Kelly Janukajtis		
Title:	Project Chemist	Date:	30 August 2016
CS Report Name:	Gambell FSRC Site Characterization	Report Date:	:
Consultant Firm:	Eagle Eye Electric, LLC		
Laboratory Name	ALS Environmental	Laboratory Report Nu	umber: K1607616
ADEC File Numb	AD	EC RecKey Number:	
	ADEC CS approved laboratory receive Yes No NA (Pleas	-	e submitted sample analyses? Comments:
	amples were transferred to another "networy, was the laboratory performing the a Yes INO NO NA (Pleas	nalyses ADEC CS ap e explain.)	oproved? Comments:
		ommentar in Keiso, w	
a. COC i	nformation completed, signed, and dated	(including released/r e explain.)	received by)? Comments:
_	t analyses requested? Yes No NA (Pleas	e explain.)	Comments:
a. Sampl	mple Receipt Documentation e/cooler temperature documented and wi Yes No NA (Pleas	0 1	$(4^{\circ} \pm 2^{\circ} \text{ C})?$ Comments:
	ers containing nine groundwater samples vere received with cooler temperatures/te		
- 6.0°C - 8.6°C	C/7.3°C - 8.4°C/9.7°C C/15.1°C - 7.8°C/9.0°C C/8.4°C - 4.9°C/7.2°C		

b.	Sample preserva Volatile Chlorina ⊠Yes	1	e – acidified waters, Methanol pre etc.)? NA (Please explain.)	eserved VOC soil (GRO, BTEX, Comments:
c.	Sample condition	n documented	 broken, leaking (Methanol), zer NA (Please explain.) 	ro headspace (VOC vials)? Comments:
I	All samples were 1	received in goo	od condition.	
d.	•	1	s, were they documented? For exa e temperature outside of acceptable	T T
	Yes	🗌 No	NA (Please explain.)	Comments:
	The cooler temperation otified.	tures/temp bla	unks were recorded on the cooler r	receipt form and the client was
e.	Data quality or u	sability affect	ed? (Please explain.)	Comments:
	ll results have bee iased low.	en qualified as	estimated (J-/UJ) to indicate that	the results may be potentially
ase <u>N</u> a.	Narrative Present and unde ⊠Yes	erstandable?	NA (Please explain.)	Comments:
b.	Discrepancies, en	rrors or QC fa	ilures identified by the lab?	Comments:
I	All QC items iden	tified in the ca	se narrative are discussed in the re	elevant sections of this checklist
с.	Were all correcti ⊠Yes	ve actions doo	cumented?	Comments:
d.	What is the effec	et on data qual	ity/usability according to the case	narrative? Comments:
I	Effects on data qua	ality/usability	are discussed in the relevant section	ons of this checklist.
-	l <u>es Results</u> Correct analyses ⊠Yes	performed/rej	ported as requested on COC?	Comments:

5.

4.

b. All appl	icable holding times r es INO	net? NA (Please explain.)	Comments:
c. All soils	reported on a dry we es INO	ight basis? ⊠NA (Please explain.)	Comments:
No soil sa	mples were submitted	or analyzed for this SDG.	
d. Are the project?	reported PQLs less th	an the Cleanup Level or the minim	num required detection level for th
Γ J̃⊠Y	es 🗌 No	NA (Please explain.)	Comments:
		ons during analysis for high concer ts were below cleanup levels.	ntrations of target analytes. All
e. Data qu	ality or usability affec	ted?	Comments:
There was	no effect on the data	quality or usability.	
i. (⊠Y		orted per matrix, analysis and 20 s	amples? Comments:
ii. ⊿ ⊠Y	All method blank resu es INO	lts less than PQL?	Comments:
No analy	es were detected above	ve the LOQ in the MBs.	
iii.]	f above PQL, what sa	mples are affected?	Comments:
Not applie	able.		
iv. l □Y		e(s) have data flags and if so, are th NA (Please explain.)	he data flags clearly defined? Comments:
v.]	Data quality or usabili	ty affected? (Please explain.)	Comments:
		quality or usability.	

6.

Yes	red per AK me	NA (Please explain.)	Comments:
ii. Meta	ls/Inorganics –	- one LCS and one sample duplicate	e reported per matrix, analysis and
samp Yes	-	NA (Please explain.)	Comments:
No metals anal	yses were requ	uested or performed for this SDG.	
And p AK10 Yes All LCS/LCSI	project specifie 2 75%-125%, No D recoveries we	cent recoveries (%R) reported and y ed DQOs, if applicable. (AK Petrol AK103 60%-120%; all other analy NA (Please explain.) ere within control limits. e within control limits, with the fol	eum methods: AK101 60%-120%, yses see the laboratory QC pages) Comments:
fe	or the MS/MSI	 Recovery of naphthalene exceeded D (120%/124%) performed for sample result of 0.030 ug/L was qualified 	ple 16GAM01MW01. The
fo ax b ir le te	or the MS/MSI associated samp etween the MI adicates a poten evel, there is no emperature/ter	D (120%/124%) performed for same	ple 16GAM01MW01. The ed as estimated "J" because it falls " would be applied and as this l below the associated cleanup sample is affected by the cooler sed in Section 3.a. Therefore, the
iv. Preci labor LCS/	or the MS/MSI ssociated samp etween the ME adicates a poter evel, there is no emperature/tem ualifier applied sion – All relat atory limits? A LCSD, MS/MS	D (120%/124%) performed for sample result of 0.030 ug/L was qualified DL and the LOQ. A qualifier of "J+ ntial high bias and the result is well to effect on the data usability. This superature blank exceedance discuss	aple 16GAM01MW01. The ed as estimated "J" because it falls " would be applied and as this l below the associated cleanup sample is affected by the cooler sed in Section 3.a. Therefore, the bias).
iv. Preci labor LCS/ other ∑Yes	or the MS/MSI ssociated samp etween the ME adicates a poter evel, there is no emperature/terr ualifier applied sion – All relat atory limits? A LCSD, MS/MS analyses see th □ No	D (120%/124%) performed for sample result of 0.030 ug/L was qualified DL and the LOQ. A qualifier of "J+ ntial high bias and the result is well of effect on the data usability. This is apperature blank exceedance discuss d to the result is "J" (indeterminate tive percent differences (RPD) report and project specified DQOs, if apple SD, and or sample/sample duplicat he laboratory QC pages)	aple 16GAM01MW01. The ed as estimated "J" because it falls " would be applied and as this 1 below the associated cleanup sample is affected by the cooler sed in Section 3.a. Therefore, the bias). orted and less than method or icable. RPD reported from e. (AK Petroleum methods 20%; a Comments:
fo a: b ir le te q iv. Preci labor LCS/ other ⊠Yes	or the MS/MSI ssociated samp etween the ME adicates a poter evel, there is no emperature/terr ualifier applied sion – All relat atory limits? A LCSD, MS/MS analyses see th □ No	D (120%/124%) performed for sample result of 0.030 ug/L was qualified DL and the LOQ. A qualifier of "J+ ntial high bias and the result is well of effect on the data usability. This is apperature blank exceedance discuss d to the result is "J" (indeterminate tive percent differences (RPD) report and project specified DQOs, if appl SD, and or sample/sample duplicat he laboratory QC pages) NA (Please explain.)	aple 16GAM01MW01. The ed as estimated "J" because it falls -" would be applied and as this 1 below the associated cleanup sample is affected by the cooler sed in Section 3.a. Therefore, the bias). orted and less than method or icable. RPD reported from e. (AK Petroleum methods 20%; a Comments:

There was no effect on data quality or usability.2.7Page 4 of 9

c. Surrogates – Organics Only

, ~ ~ _	 or organic analyses – fi Please explain.)	eld, QC and laboratory samples?
	rease explain.)	Comments:

				hin method or laboratory limits? m methods 50-150 %R; all other
analyses	see the laborat	ory report pages)		
Yes	No No	NA (Please	explain.)	Comments:
All surrogate rec	overies were wi	thin control limits	, with the follow	ving exceptions:
exceeded all samp	d the upper cont le surrogate rec effect on the dat	trol limits of 150%	6 in the LCS. M ptable. No data	6) and o-terphenyl (175%) S/MSD surrogate recoveries and flags were required and there
Th con oReco 16 po eff oReco up Se hig qu (0. po lev fla Th dis	ere were no ass ntrol limits for to overy of one or a GAM04MW04 tential high bias fect on data qua overy of toluene per control limit veral associated gh bias, no data ality/usability. S 18 ug/L) were of tential high bias vels, there is no gged as estimat esse samples are scussed in Secti	ociated detections the LCS/LCSD. more surrogates ex , 16GAM05MW0 s and the associate lity or usability. -d8 (116%) and 4 ts of 112% and 11 I sample results we flags were require Sample results for qualified "J+" to in s and the results an effect on data qua ed ("J") because t e also affected by t on 3.a. Therefore,	s in the MB and exceeded the upp 5, and 16GAM0 ed sample results -bromofluorober 4%, respectively ere nondetect an ed and there was ethylbenzene (0 ndicate a potenti re significantly b lity or usability. he results fall be the cooler tempe	method blank and LCS/LCSD. all recoveries were within er control limit for samples 06MW06. As this indicates a s are nondetect, there is no nzene (115%) exceeded the y, in sample 16GAM07MW07. ad as this indicates a potential s no effect on data 0.080 ug/L) and m,p-xylenes ial high bias. As this indicates a below the associated cleanup . Both results are already etween the MDL and the LOQ. erature/temp blank exceedances ' (estimated, indeterminate bias)
- SW8270	s been applied t			
oRecci 13 and no wc qu qu qu ext qu oRecci 44 est	overy of surroga 6% in sample 1 d as this indicat effect on data of ould be qualified alified results a ality or usability ceedances as di alified as estima overy of surroga % in sample 16 cimated "J-/UJ"	6GAM08FD01. S es a potential high quality/usability. A d as estimated "J+ re below the assoc y. These results ar scussed in Section ated "J" (indeterm the terphenyl-d10 y GAM02MW02. A	everal associated bias, no data fla Associated result and considered ciated cleanup le e also affected b 3.a., therefore p inate bias). was less than the Associated sample dered potentially	er control limit of 114% at d sample results were nondetect ags were required and there was ts with positive detections d potentially biased high. As all evels, there is no effect on data by cooler temp/temp blank positive results have been e lower control limit of 58% at le results were qualified as y biased low. The other two

flags clearly defined?	
\square Yes \square No \square NA (Please explain.)Comments:	
iv. Data quality or usability affected? (Use the comment box to explain.) Comments:	
Effects on data quality/usability discussed in Section ii above.	
 d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.) <u>Soil</u> 	
i. One trip blank reported per matrix, analysis and for each cooler containing vol (If not, enter explanation below.)	latile samples?
Yes \square No \square NA (Please explain.)Comments:	
 ii. Is the cooler used to transport the trip blank and VOA samples clearly indicate (If not, a comment explaining why must be entered below) ☑Yes □ No □NA (Please explain.) Comments: 	ed on the COC
iii. All results less than PQL? Yes No NA (Please explain.) Comments:	
No analytes were detected in the trip blanks.	
iv. If above PQL, what samples are affected? Comments:	
Not applicable.	
v. Data quality or usability affected? (Please explain.) Comments:	
There was no effect on data quality or usability.	
e. Field Duplicate	
i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes No NA (Please explain.) Comments:	
One field duplicate was submitted for 7 primary samples.	

ii. Submit ⊠Yes	ted blind to lat	o?	Comments:
		ve percent differences (RPD) le water, 50% soil)	ess than specified DQOs?
RPD (9	%) = Absolute	value of: (R_1-R_2) x 100	

$$((R_1+R_2)/2)$$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration [Yes] No [NA (Please explain.)

Field duplicate pair 16GAM02MW02/16GAM08FD01 was analyzed for AK101, AK102/103, SW8260 BTEX, and SW8270D SIM. The RPD was calculated for pairs of results over the LOQ. Out of 26 pairs of duplicate results, 9 pairs had both results that were nondetect. Of the remaining 17 pairs of results, one pair of fluoranthene results and one pair of benzene results had both results less than the LOQ therefore no flags were required for failed RPDs. Of the remaining 15 pairs of results, one pair of SW8270D SIM pyrene results and one pair of AK103 RRO results had one result less than the LOQ and one result greater than the LOQ; both pairs of results were qualified as estimated "J" (indeterminate bias). The remaining 13 pairs had both results greater than the LOQ and the RPDs were calculated. Six pairs had results that were greater than the recommended 30% for waters and the results were qualified as estimated "J", indeterminate bias.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Comments:

In general, 8 pairs were in disagreement. This indicates a nonhomogeneity of the sample matrix. The higher of the two results will be used for decision-making. As one pair of results for DRO had both results over the cleanup level and all other results were below cleanup levels, there was no effect on data usability.

f. Decontamination or Equipment Blank (If not used explain why).

Yes	🗌 No	⊠NA (Please explain.)	Comments:	
Decon/equipmen	t blank not requ	ired for this project.		
i. All res	ults less than P	QL?		
Yes	🗌 No	NA (Please explain.)	Comments:	

ii. If above PQL, what samples are affected?

Comments:

iii. Data quality or usability affected? (Please explain.)

Comments:

There was no effect on data quality or usability.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

NA (Please explain.)

Comments:

No additional flags were required.

APPENDIX D

CONCEPTUAL SITE MODELS

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	
File Number:	
Completed by:	

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

USTs	Vehicles
☐ ASTs	Landfills
Dispensers/fuel loading racks	Transformers
Drums	Other:
Release Mechanisms (check potential release mecha	anisms at the site)
□ Spills	Direct discharge
□ Leaks	Burning
	Other:
Impacted Media (check potentially-impacted media	at the site)
□ Surface soil (0-2 feet bgs*)	Groundwater
□ Subsurface soil (>2 feet bgs)	Surface water
Air	🗌 Biota
□ Sediment	Other:
Receptors (check receptors that could be affected by	contamination at the site)
Residents (adult or child)	Site visitor
Commercial or industrial worker	Trespasser
Construction worker	Recreational user
□ Subsistence harvester (i.e. gathers wild foods)	Farmer
Subsistence consumer (i.e. eats wild foods)	Other:

- Subsistence consumer (i.e. eats wild foods)

1

- **2. Exposure Pathways:** (*The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".*)
- a) Direct Contact -
 - 1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

If the box is checked, label this pathway complete:	
Comments:	
	_
2. Dermal Absorption of Contaminants from Soil	
Are contaminants present or potentially present in surface soil between 0 and 15 feet below (Contamination at deeper depths may require evaluation on a site specific basis.)	w the ground surface
Can the soil contaminants permeate the skin (see Appendix B in the guidance document)?	,
If both boxes are checked, label this pathway complete:	
Comments:	
Ingestion - 1. Ingestion of Groundwater	
Have contaminants been detected or are they expected to be detected in the groundwater, or are contaminants expected to migrate to groundwater in the future?	
Could the potentially affected groundwater be used as a current or future drinking water source? Please note, only leave the box unchecked if DEC has determined the ground-water is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.	
If both boxes are checked, label this pathway complete:	
Comments:	
	_

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

	ts:
8. Ingesti	on of Wild and Farmed Foods
	in an area that is used or reasonably could be used for hunting, fishing, or g of wild or farmed foods?
Do the site	e contaminants have the potential to bioaccumulate (see Appendix C in the guidance)?
biota? (i.e	ontaminants located where they would have the potential to be taken up into e. soil within the root zone for plants or burrowing depth for animals, in ter that could be connected to surface water, etc.)
If all o	of the boxes are checked, label this pathway complete:
Comment	ts:
nhalation- 1. Inhalat	- ion of Outdoor Air
	minants present or potentially present in surface soil between 0 and 15 feet below the rface? (Contamination at deeper depths may require evaluation on a site specific basis
ground su	contaminants in soil volatile (see Appendix D in the guidance document)?
-	
Are the	a boxes are checked, label this pathway complete:

 \square

 \square

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Comments:

 \square

 \square

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be protective of this pathway.

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be protective of this pathway.

Check the box if further evaluation of this pathway is needed:

Comments:

 \square

 \square

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.
- Chromium is present in soil that can be dispersed as dust particles of any size.

Generally, DEC direct contact soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because it is assumed most dust particles are incidentally ingested instead of inhaled to the lower lungs. The inhalation pathway only needs to be evaluated when very small dust particles are present (e.g., along a dirt roadway or where dusts are a nuisance). This is not true in the case of chromium. Site specific cleanup levels will need to be calculated in the event that inhalation of dust containing chromium is a complete pathway at a site.

Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site:		Instructions: Follow the numbered consider contaminant concentration use controls when describing path	ons or engi				
Completed By: Date Completed:		use controls when describing pair	Identify the	receptors po			
(1) (2) Check the media that could be directly affected by the release.	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.	"F" for future future recep Curre	athway: Ente e receptors, ptors, or "I" fo ent & Fu	"C/F" for b or insignific iture R	ooth curre cant expo Recep	ent and osure. Dtors
Media Transport Mechanisms Direct release to surface soil check soil Surface Migration to subsurface check soil Soil Migration to groundwater check groundwater (0-2 ft bgs) Volatilization check air	Exposure Media	Exposure Pathway/Route	Residents (adults or children) industriad or	Site visitors, trespassers, or recreational users Construction	Farmers or subsistence	Subsistence consumers Other	
Runoff or erosion check surface water Uptake by plants or animals check biota Other (list):	soil Der	dental Soil Ingestion mal Absorption of Contaminants from Soil alation of Fugitive Dust estion of Groundwater					- - _
Soil Volatilization check air (2-15 ft bgs) Uptake by plants or animals check biota Other (list): Other (list): Direct release to groundwater check groundwater	groundwater Der	mal Absorption of Contaminants in Groundwater alation of Volatile Compounds in Tap Water					_
Ground- water Flow to surface water body <u>check surface water</u> <i>Flow to sediment</i> <u>check surface water</u> <i>Uptake by plants or animals</i> <u>check biota</u> Other (list):		alation of Outdoor Air alation of Indoor Air alation of Fugitive Dust					-
Direct release to surface water check surface water Surface Volatilization check air Water Sedimentation check sediment Uptake by plants or animals check biota Other (list):	surface water Der	estion of Surface Water mal Absorption of Contaminants in Surface Water alation of Volatile Compounds in Tap Water					
Direct release to sediment check sediment Sediment Resuspension, runoff, or erosion check surface water Uptake by plants or animals check biota Other (list):		ect Contact with Sediment]

Revised, 4/11/2010

"Gequ{ uvgo 'Eqpegr vvcnUvvg'O qf gn

''''Ueqr kpi 'Hqt o ''

Site Name: Completed by: Date:

Instructions: Follow the italicized instructions in each section below. "Off-ramps," where the evaluation ends before completing all of the sections, can be taken when indicated by the instructions. Comment boxes should be used to help support your answers.

1. Direct Visual Impacts and Acute Toxicity

Are direct impacts that may result from the site contaminants evident, or is acute toxicity from high contaminant concentrations suspected? *Check the appropriate box.*

Yes – describe observations below and evaluate all of the remaining sections without taking any off-ramps.

No – go to next section.

Comments:

2. Terrestrial and Aquatic Exposure Routes

Check each terrestrial and aquatic route that could occur at the site.

Terrestrial Exposure Routes

Exposure to water-borne contaminants as a result of wading or swimming in
contaminated waters or ingesting contaminated water
Contaminant uptake in terrestrial plants whose roots are in contact with
contaminated surface water
Contaminant migration via saturated or unsaturated groundwater zones and

discharge at upland "seep" locations (not associated with a wetland or water body)

Contaminant uptake by terrestrial plants whose roots are in contact with soil moisture or groundwater present within the root zone (generally no more than 4 feet below ground surface)

Particulates deposited on plants directly or from rain splash

Incidental ingestion and/or exposure while animals grub for food, burrow (up to 2 feet for small animals or 6 feet for large animals), or groom

	Inhalation of fugitive dust or vapors disturbed by foraging or burrowing activities
	Bioaccumulatives (other than PAHs, which bioaccumulate more readily in aquatic environments) taken up by soil invertebrates, which are in turn eaten by higher food chain organisms (see the Policy Guidance on Developing Conceptual Site Models)
	Other site-specific exposure pathways
Aar	atic Exposure Routes
	Contaminated surface runoff migration to water bodies through swales, drainage ditches, or overland flow
	Aquatic receptors exposed through osmotic exchange, respiration, or ventilation of surface waters
	Contaminant migration via saturated or unsaturated groundwater zones and discharge at "seep" locations along banks or directly to surface water
	Deposition into sediments from upwelling of contaminated groundwater
	Aquatic receptors may be exposed directly to contaminated sediments through foraging or burrowing, or indirectly exposed due to osmotic exchange, respiration, or ventilation of sediment pore water.
	Aquatic plants rooted in contaminated sediments
	Bioaccumulatives (see the Policy Guidance on Developing Conceptual Site Models) taken up by sediment invertebrates, which are in turn eaten by higher food chain organisms
	Other site specific annears nothing

Other site-specific exposure pathways

If any of the above boxes are checked go on to the next section. If none are checked, end the evaluation and check the box below.

OFF-RAMP: NO FURTHER ECOLOGICAL EVALUATION NECESSARY

Comments:

3. Habitat

Check all that may apply. See Ecoscoping Guidance for additional help.

Habitat that could be affected by the contamination supports valued species (i.e., species that are regulated, used for subsistence, have ceremonial importance, have commercial value, or provide recreational opportunity)

Critical habitat or anadromous stream in an area that could be affected by the contamination

Habitat that is important to the region that could be affected by the contamination

Contamination is in a park, preserve, or wildlife refuge

If any of the above boxes are checked go on to the next scoping factor. If none are checked, end the evaluation and check the box below.

OFF-RAMP: NO FURTHER ECOLOGICAL EVALUATION NECESSARY

Comments:

4. Contaminant Quantity

Check all that may apply. See Ecoscoping Guidance for additional help.

Endangered-, threatened-, or species of special concern are present

The aquatic environment is or could be affected

Non-petroleum contaminants may be present, or the total area of petroleumcontaminated surface soil exceeds one-half acre

If any of the above boxes are checked go on to the next scoping factor. If none are checked, end the evaluation and check the box below.

OFF-RAMP: NO FURTHER ECOLOGICAL EVALUATION NECESSARY

Comments:

5. Toxicity Determination

Check all that apply.

Bioaccumulative chemicals are present (see Policy Guidance on Developing Conceptual Site Models)

Contaminants exceed benchmark levels (see the Ecological Benchmark Tool in RAIS, available at: http://rais.ornl.gov/tools/eco_search.php)

If either box is checked complete a detailed Ecological Conceptual Site Model (see DEC's Conceptual Site Model Guidance) and submit it with the form to you DEC Project Manager.

If neither box is checked, check the box below and submit this form to your DEC Project Manager.

OFF-RAMP: NO FURTHER ECOLOGICAL EVALUATION NECESSARY

Comments:

Ecoscoping Graphic Gambell FSRC

Primary Sources	Release Mechanisms	Secondary Sources	Transport Mechanisms		Exposure Media		Exposure Route		Eco	logical Recepto	ors	
								Vegetation	Invertebrates	Reptiles and Amphibians	Fish	Birds and Mammals
Aboveground Storage Tanks	→ Historic releases (spills and discharges) →	Contaminated surface and subsurface soils	Groundwater Flow/Seepage/ Runoff	→	Surface soil	\rightarrow	Direct contact or Uptake	•	_	_	_	•
Dispensers and Transfer Lines	Direct discharge						Incidental ingestion	-	_	_	-	•
Vehicles							Food chain	_	_	—	_	-
				\rightarrow	Subsurface soil	\rightarrow	Ingestion	•	_	_	_	•
							Food chain	—	—	—	—	-
				\rightarrow	Surface water	\rightarrow	Direct contact or Absorption	_	_	_	_	_
							Ingestion	—	_	_	_	_
							Food chain	_	—	—	_	—
				\rightarrow	Sediment	\rightarrow	Direct contact or Absorption	-	_	_	_	_
							Ingestion	_	-	_	_	-
							Food chain	—	—	—	—	-
• •	complete pathway			\rightarrow	Biota]→	Food chain	_	_	_	_	•
	ncomplete pathway			\rightarrow	Groundwater	\rightarrow		Evalua	ted as surface wa	ater at discharge	points	
			v → Volatilization	L	Air	\rightarrow	Inhalation	_	_	—	_	•

(This Page Intentionally Left Blank)

APPENDIX E

ADEC CORRESPONDENCE

(This Page Intentionally Left Blank)

RE W91ZRU-15-C-0003 Gambell Site Characterization Plan responses to comments From: Duncan, Danielle L (DEC) <danielle.duncan@alaska.gov> Thursday, June 02, 2016 12:31 PM Sent: Jenni fer Wehrmann To: jennifer.n.nutt2.mil@mail.mil; Palmieri, Anne Marie G (DEC) Cc: RE: W91ZRU-15-C-0003 Gambell Site Characterization Plan, responses Subject: to comments Jennifer, due to the remoteness of the site, your proposal to develop and sample the wells without waiting 24 hours is approved. Please submit all water stabilization parameters etc. as usual. Thanks! From: Jennifer Wehrmann [mailto:jwehrmann@beringstraits.com] Sent: Thursday, June 02, 2016 11:53 AM To: Duncan, Danielle L (DEC) <danielle.duncan@alaska.gov> Cc: jennifer.n.nutt2.mil@mail.mil; Palmieri, Anne Marie G (DEC) <annemarie.palmieri@alaska.gov> Subject: RE: W91ZRU-15-C-0003 Gambell Site Characterization Plan, responses to comments Dani el l e, We had an afterthought on the Gambell & Savoonga work plans. Would ADEC approve us to develop the wells sooner than 24 hours after installation with the direct push drill rig? Because both Gambell & Savoonga are so remote we are trying to overcome some of the logistical challenges with the drill rig and field crew. Monitoring well development is outlined in Section 4.3 of the work plans. We would also like approval to sample when development is complete, rather than waiting another 24 hours (outlined in Section 4.4). Please advise. Jenni fer From: Duncan, Danielle L (DEC) [mailto:danielle.duncan@alaska.gov] Sent: Thursday, May 26, 2016 8:16 AM To: Jenni fer Wehrmann Cc: jennifer.n.nutt2.mil@mail.mil; Palmieri, Anne Marie G (DEC) Subject: RE: W91ZRU-15-C-0003 Gambell Site Characterization Plan, responses to comments Greetings, please find the attached response to the comment responses. I look forward to receiving the final work plan. Please note: the (WORK PLAN/REPORT) may be submitted electronically. If your submittal exceeds 8 megabytes, you may submit it to me through the Alaska ZendTo "drop-off" option at https://drop.state.ak.us/drop/. The Division of SPAR/Contaminated Sites Program prefers and encourages electronic submittals. I have sent the original in the mail, thanks and have a nice day! From: Jennifer Wehrmann [mailto:jwehrmann@beringstraits.com] Sent: Tuesday, May 10, 2016 1:21 PM To: Duncan, Danielle L (DEC) <danielle.duncan@alaska.gov> Cc: jennifer.n.nutt2.mil@mail.mil Subject: W91ZRU-15-C-0003 Gambell Site Characterization Plan, responses to comments Good afternoon, Danielle, Please see attached for draft responses to comments and an updated figure showing the proposed well

RE W91ZRU-15-C-0003 Gambell Site Characterization Plan responses to comments locations for your review. Please let us know if these revisions meet your approval. If so, we will revise the site characterization plan accordingly. We also plan to revise the Savoonga Site Characterization Plan and reissue that document (with the correct figure) for your review. I wanted your feedback on these response to comments first though.

Thanks for your feedback, Jenni fer

Jennifer Wehrmann, PMP Environmental Project Manager Paragon Professional Services, LLC A Bering Straits Company 4600 Debarr Road, Suite 200 | Anchorage, AK 99508 Phone 907-563-3788 | Fax 907-563-2742 Direct 907-334-8347 | Mobile 907-382-0146 jwehrmann@beringstraits.com | www.beringstraits.com

WARNING: The information contained in this email (including any attachments) is CONFIDENTIAL and may be PRIVILEGED. If you are not the intended recipient of this email, you may not read, retain, copy, or distribute this email. If you have received this email in error, please advise us by return email and call the sender at 907-563-3788. Thank you.

DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites Program

> PO Box 111800 410 Willoughby Ave #303 Juncau, AK 99811-1800 Main: 907-465-5390 Fax: 907-465-5218 www.dec.alaska.gov

File No: 660.38.007

December 28, 2016

Sent via electronic mail only 2LT Jennifer Nutt Alaska Army National Guard Construction Facilities Management Office PO Box 5800 JBER, AK 99505-0800

Re: Draft Gambell Site Characterization Report Gambell Federal Scout Readiness Center (FSRC) Gambell, Alaska Alaska Army National Guard

Dear Ms. Nutt:

The Alaska Department of Environmental Conservation (ADEC) received a copy of the above referenced document by electronic mail. I have reviewed the document and provided the comments in the attached table. I look forward to the responses and/or a final draft of the report.

If you have any questions regarding this letter or concerns please feel free to contact me by telephone at 907-465-5207 or email at Danielle.Duncan@alaska.gov.

Sincerely,

Danielle Duncan Project Manager

cc: Anne Marie Palmieri, Environmental Program Specialist IV, ADEC, via electronic mail

Danielle Duncan EPS III- Comments on: Draft Site Characterization Report Gambell Federal Scout Readiness Center, December 28, 2016

Comment No.	Page	Section	Comment / Recommendation
1.	2	1.5	Township should be 20 S and range should be 67 W
2.		Figures	Please add the location of the community groundwater drinking water well to the figures or add an additional figure showing its location relative to the site.
3.		C-1 Lab data tables	Note that the cleanup levels have been revised – update the analytical results tables. New cleanup levels can be found at: <u>http://dec.alaska.gov/spar/regulation_projects/cs18AAC75.htm</u> . Naphthalene in sample MW2 is in exceedance. The CSM will also require updating.
4.	- 30	C-1 Lab data tables	The table cuts off the sample description for the duplicate. 16GAM08FD01 7/1/16 Dup of ???
5.		CSM	Groundwater is used for drinking water in the community therefore, groundwater on site is a potential source of drinking water.
6.		CSM	The CSM indicates the presence of stained soil in several locations - is this still true?