Savoonga Federal Scout Readiness Center Data Gap Investigation Report

Prepared for

Alaska Army National Guard Fort Richardson, Alaska

Contract No. W90FYQ-09-D-003 Delivery Order 2Z01

January 2013

949 East 36th Avenue Suite 500 Anchorage, AK 99508

Contents

Sect	ion		Page
Acro	nyms and	Abbreviations	v
1	Introd	uction	1-1
	1.1	Goals and Objectives of Data Gap Investigation	1-1
	1.2	Report Organization	1-1
2	Site Ba	ackground	2-1
	2.1	Site Location and Climate	2-1
	2.2	Site Characteristics	2-1
		2.2.1 Surface Water	2-1
		2.2.2 Hydrogeology	2-1
	2.3	Site Description and History	2-2
3	Previo	us Investigations and Remedial Actions	3-1
	3.1	1996 Preliminary Assessment/Site Investigation	3-1
	3.2	1998 Remedial Investigation	3-1
	3.3	2004 Alternate Cleanup Level Demonstration Project	3-2
	3.4	2008 Secondary Site Characterization	3-2
4	Data G	Gap Analysis	4-1
	4.1	Project Screening Levels	4-1
		4.1.1 Soil Screening Levels	4-1
		4.1.2 Groundwater Screening Levels	4-1
	4.2	Data Quality Objectives	4-3
	4.3	Conceptual Site Model	4-3
	4.4	Identification of Data Gaps	4-4
5	Field I	nvestigation Activities	5-1
	5.1	Site Reconnaissance	
	5.2	Sample Locations	
	5.3	Soil Sampling	
	5.4	Groundwater Sampling	
	5.5	Quality Control	
		5.5.1 Field Duplicate Samples	
		5.5.2 Equipment Blanks	
		5.5.3 Trip Blanks	5-5
6		mination Assessment	
	6.1	Nature and Extent of Soil Contamination	
	6.2	Nature and Extent of Groundwater Contamination	6-1
7	Cumul	ative Risk Assessment	
	7.1	Assessing Cumulative Risk	
	7.2	Cumulative Risk Results	7-1
8		usions and Recommendations	
	8.1	Conclusions	
	8.2	Proposed Soil Alternative Cleanup Levels	
	8.3	Recommended Remedial Actions	
		8.3.1 Contaminated Soil	8-3

	8.4 8.5	8.3.2 Contaminated Groundwater	8-4
9	Refere	nces	9-1
Appen	dixes		
A B C D	Laborat Hydroc	otes, Boring Logs, and Well Log tory Reports and Data Quality Evaluation (laboratory reports provided electronically only) arbon Risk Calculator – Cumulative Risk Results ase to Comments	
Tables			
4-1 4-2		eening Levels	
5-1		creening Results	
6-1		sults for BTEX, DRO, GRO, and RRO	
6-2		sults for PAHs	
6-3		Iwater Results for BTEX, DRO, and GRO	
6-4		lwater Results for PAHs	
7-1	Cumula	ative Risk Assessment	7-2
7-2	Risk As	sessment of Petroleum Hydrocarbons	7-
8-1	Soil Ing	estion Cleanup Levels	8-2
8-2		alation Cleanup Levels	
8-3	Modele	ed Contaminated Soil Impacts to Groundwater	8-3
Figures	S		
2-1	Savoon	ga Location Map	2-3
2-2		atures and Historical Sample Locations	
4-1	Concep	tual Site Model	4-5
4-2	•	tual Exposure Model	
5-1		d Groundwater Sample Locations	
6-1		mpling Results	
6-2		Iwater Sampling Results	
8-1	Propos	ed Area of Soil Excavation	8-5

Acronyms and Abbreviations

°F degrees Fahrenheit

μg/L micrograms per liter

AAC Alaska Administrative Code

ACL alternate cleanup level

ADEC Alaska Department of Environmental Conservation

ADNR Alaska Department of Natural Resources

ADOT&PF Alaska Department of Transportation & Public Facilities

AOC area of concern

Alaska Offshore Alaska Offshore, Inc.
ARNG Army National Guard

AST aboveground storage tank

ASTM ASTM International

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

Clarus Technologies, LLC

CSM conceptual site model

DGI data gap investigation

DQO data quality objective

DRO diesel-range organics

EPA U.S. Environmental Protection Agency

EPH extractable aliphatic and aromatic petroleum hydrocarbons

ERM ERM-West, Inc.

FSRC Federal Scout Readiness Center

GPS global positioning system

GRO gasoline-range organics

Hart Crowser, Inc.

HI hazard index

HRC hydrocarbon risk calculator

IC institutional control

mg/kg milligrams per kilogram

NAPL non-aqueous-phase liquid

North Wind North Wind, Inc.

Ogden Environmental and Energy Services, Inc.

PA preliminary assessment

PAH polynuclear aromatic hydrocarbon

PID photoionization detector

ppm parts per million

RI remedial investigation

RRO residual-range organics

SI site investigation
SL screening level

SSC secondary site characterization

UFP-QAPP Unified Federal Program-Quality Assurance Project Plan

VPH volatile aliphatic and aromatic petroleum hydrocarbons

yd³ cubic yards

Introduction

This data gap investigation (DGI) report provides background information, summarizes previous investigations, describes the updated conceptual site model (CSM), and provides the results of the recently completed field investigation at Savoonga Federal Scout Readiness Center (FSRC). The report includes recommendations for further remedial actions. This work was conducted under National Guard Bureau Contract W90FYQ-09-D-003, Task Order 2Z01.

1.1 Goals and Objectives of Data Gap Investigation

The goal of this DGI was to ensure that the Alaska Army National Guard (ARNG) has all the environmental data necessary to conduct remedial actions at Savoonga FSRC to allow divestiture of the leased property without the use of institutional controls (ICs).

To fulfill this goal, the following primary project objectives of the DGI for Savoonga FSRC were established:

- Ensure that adequate data are available to delineate the extent of petroleum-contaminated soil and
 groundwater related to previous heating oil spills and releases at Savoonga FSRC in accordance with Title 18,
 Chapter 75, Section 335 of the Alaska Administrative Code (18 AAC 75.335), which requires that, before
 proceeding with site cleanup under the site cleanup rules, a responsible person characterize the extent of
 hazardous substance contamination at the site including:
 - Identifying each (potential) hazardous substance at the site, including the concentration and extent of contamination; this information must be sufficient to determine cleanup options without ICs.
 - Evaluating the potential threat to human health, safety, and welfare, as well as to the environment, from site contamination.
 - Locating sources of known site contamination, including a description of possible releases into soil, sediment, groundwater, or surface water.
 - Evaluating the size of the contaminated area, including the concentrations and extent of any soil, sediment, groundwater, or surface water contamination.
 - Identifying the vertical depth to groundwater and the horizontal distance to nearby wells, surface water, and water supply intakes.
 - Evaluating the potential for surface water runoff from the site and the potential for surface water or sediment contamination.
 - Identifying the soil type and determining whether the soil is a continuing source of groundwater contamination.
- Evaluate the possibility of alternate cleanup levels (ACLs) for soil
- Identify appropriate remedial alternatives

1.2 Report Organization

The findings resulting from site activities are provided in the following sections:

- **Section 1–Introduction.** The introduction presents an overview of the DGI, including goals and objectives and report organization.
- Section 2–Site Background. The regional setting and site background information is presented in this section.

- Section 3—Previous Investigations and Remedial Actions. This section summarizes information from previous preliminary assessments (PAs), site investigations (SIs), and remedial actions conducted at Savoonga FSRC.
- Section 4-Data Gap Analysis. This section summarizes the project screening levels (SLs), data quality objectives (DQOs), identified data gaps, and the CSM.
- **Section 5–Field Activities.** This section describes and summarizes methods and procedures used to investigate the affected soil for Savoonga FSRC.
- **Section 6–Contamination Assessment.** This section assesses the extent of contamination across the site for all affected media, using historical and recently obtained data.
- **Section 7–Cumulative Risk Assessment.** Analytical results are analyzed to establish the potential risk to humans and the environment associated with the existing site contamination.
- **Section 8–Recommendations.** This section presents conclusions derived from the investigation data, presents proposed ACLs, and estimates the volume of contaminated soil that will require remedial action.
- Section 9–References. This section lists sources referenced in the text.

Site Background

This section summarizes the site location, climate, characteristics, and history of Savoonga FSRC.

2.1 Site Location and Climate

The City of Savoonga is located on the northern coast of St. Lawrence Island in the Bering Sea, approximately 164 miles west of Nome and 39 miles southeast of Gambell, Alaska (Figure 2-1). Atuk Mountain, with an elevation of 2,207 feet, is located approximately 8 miles to the south of the city. Savoonga FSRC is located at latitude 63.695329 degrees north and longitude –170.482770 degrees west, based on the 1984 (revised 2004) World Geodetic System (WGS 84) datum.

Savoonga has a subarctic maritime climate with some continental influences during winter. Summer temperatures average 40 degrees Fahrenheit (°F) to 51°F. Winter temperatures average –7°F to 11°F. Average annual total precipitation is 10 inches, with 58 inches of snowfall (Western Regional Climate Center, 2012). The island is subject to prevailing winds that average 18 miles per hour. The Bering Sea freezes in that area in mid-November, with ice breaking up in late May (Alaska Department of Commerce, Community, and Economic Development, Division of Community and Regional Affairs, 2012).

2.2 Site Characteristics

The Savoonga FSRC property is adjacent to the main beach access road on the northwestern side of the city, approximately 200 feet south of the Bering Sea waterfront. This well-traveled road forms the southeastern boundary of the site. Wet tundra occupies the area north and west of the FSRC. Surrounding properties include a store to the north, houses to the east, and two Alaska Department of Transportation & Public Facilities (ADOT&PF) buildings to the south. A single aboveground storage tank (AST) of unknown volume is located on ADOT&PF property between the FSRC buildings and the ADOT&PF buildings.

2.2.1 Surface Water

Standing surface water was noted immediately west of the armory buildings on adjoining properties. A crushed-gravel pad occupies much of the site. The FSRC buildings, the ASTs, and the storage shed are situated on the gravel pad. The elevation of the gravel pad results in a potentially radial surface drainage pattern that would direct runoff offsite in the immediate vicinity of the FSRC. To the north of the FSRC, the land begins to slope more steeply toward the Bering Sea. The potential for surface runoff is low, however, because of the coarse nature of the gravel pad material.

2.2.2 Hydrogeology

Savoonga is built on clayey silt that contains basalt boulders overlain by a layer of peat, roots, and organic material up to 1 foot in thickness. A series of scoracious basalt lava flows underlie the clayey silt overburden at approximately 12 feet bgs (Ogden Environmental and Energy Services, Inc. [Ogden], 1998; ERM-West, Inc. [ERM] and Hart Crowser, Inc. [ERM/Hart Crowser], 1999).

A permafrost map of Alaska compiled by the U.S. Geologic Survey characterizes the region as generally underlain by moderately thick to thin permafrost (Ogden, 1998). A 1996 community profile indicates that permafrost is continuous under Savoonga, with a 2- to 3-foot-thick surface-thaw layer (Ogden, 1998). In 1994, Clarke Engineering Company conducted a subsurface soil investigation for the City of Savoonga (Ogden, 1998). As part of the investigation, 11 test borings were installed, with 2 located near the FSRC. The soil boring logs indicated that permafrost was present at depths ranging from 1 to 3 feet below ground surface (bgs). Soil borings (with the exception of a background boring) from the remedial investigation (RI) (ERM/Hart Crowser, 1999) were limited in

depth because of the coarse nature of the gravel pad where FSRC buildings are located. Permafrost was encountered in the background boring at 3 feet bgs.

The water supply for Savoonga is a well that is located adjacent to the runway, approximately 0.75 mile southeast of and upgradient from the armory. The well log for this well was obtained from the Alaska Department of Natural Resources (ADNR) Well Log Tracking System (ADNR, 2012). The well was drilled in 1972 to 195 feet bgs. Permafrost was not encountered while the runway well was being drilled because the well was located within the thaw bulb associated with the drainage east of the village. In summer, water is found in the shallow subsurface soils above the permafrost table; the water is classified primarily as active layer (suprapermafrost) groundwater. Except for this seasonally thawed water in the active layer, true groundwater generally does not exist above the permafrost table (Ogden, 1998).

2.3 Site Description and History

Savoonga FSRC is an inoperable readiness center located on an approximately 1-acre, fairly flat lot near the west side of Savoonga. Buildings and equipment remaining at the FSRC include the following (Figure 2-2 and Photograph 1):

- A 20- by 60-foot, wood-framed building constructed in 1960 (Old FSRC); the prefabricated scout readiness center is a Butler-style building on an integrated foundation.
- A 30- by 40-foot, wood-framed building (New FSRC) constructed in 1985 to the southwest of the Old FSRC; the prefabricated scout readiness center is a Butler-style building on an integrated foundation.
- An elevated breezeway connecting the two FSRCs.
- A 1,500-gallon, double-walled, self-diked AST installed in 2002 adjacent to the New FSRC building.

PHOTOGRAPH 1 Savoonga FSRC buildings (Old FSRC at right, New FSRC at left), ASTs, and storage van. Looking northwest.

- Two 1,500-gallon, double-walled ASTs located installed in 1993 near the Old FSRC building.
- A crushed-rock (gravel) pad.
- A storage van.
- A hazardous material storage locker.
- A storage shed.

Abandoned or removed equipment relevant to the site characterization is:

A 3,000-gallon, double-walled AST replaced in 2002 adjacent to the New FSRC building

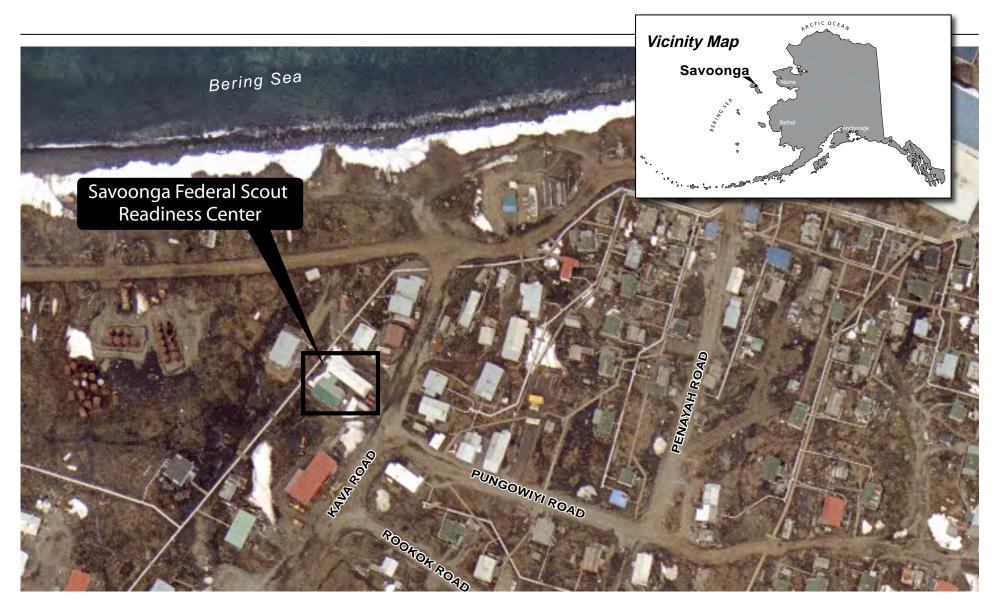
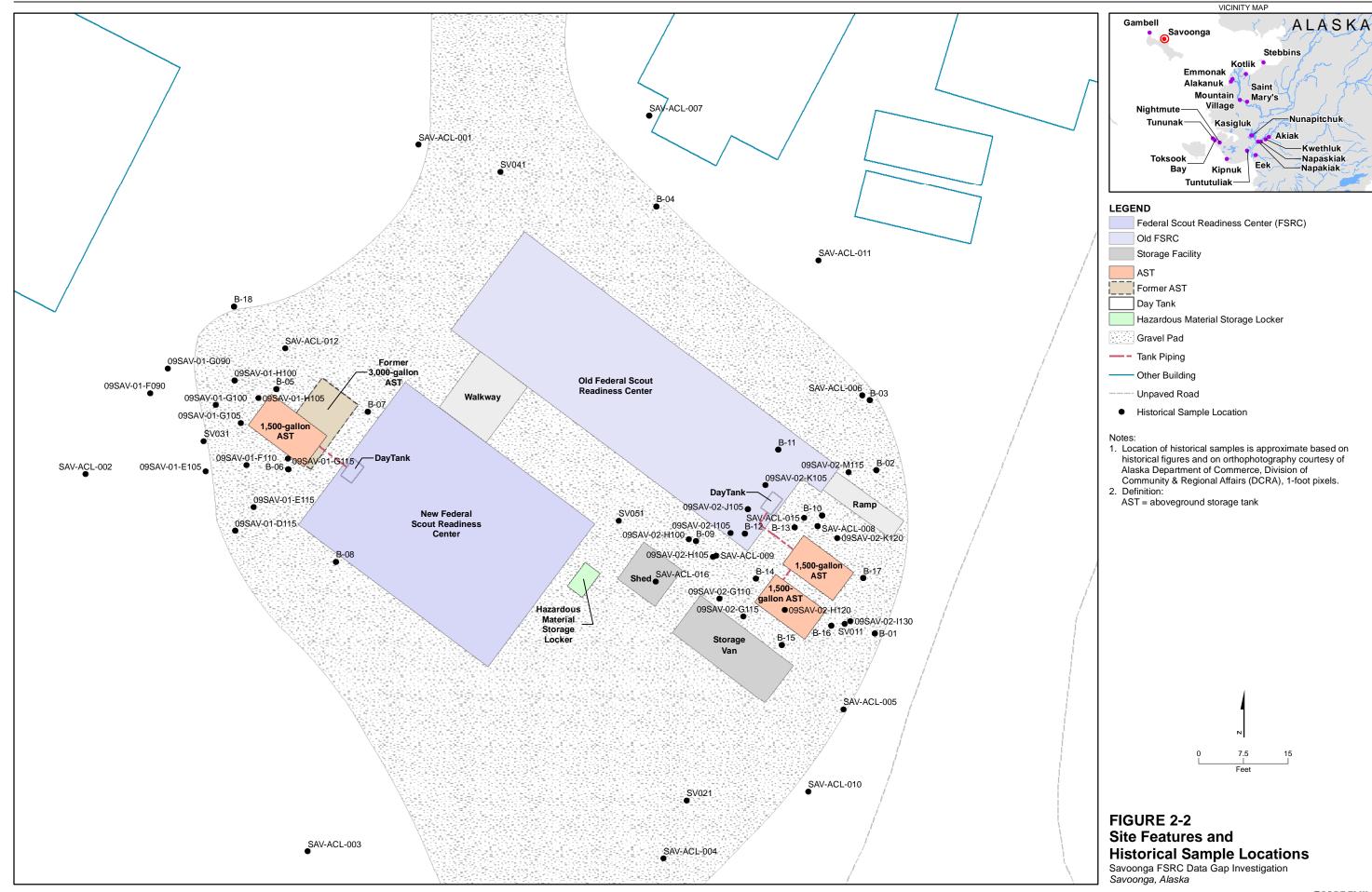



FIGURE 2-1 Savoonga Location Map

Data Gap Investigation Report

Army National Guard FSRCs, Alaska

Previous Investigations and Remedial Actions

This section briefly discusses known spills, previous investigations, and the results of each investigation at Savoonga FSRC. SLs discussed in this section are based on those used at the time of each investigation unless otherwise noted. Figure 2-2 presents all known historical sample locations and site features.

A spill of 500 to 3,000 gallons of fuel oil from a tank or fuel line at the site was reported in 1985. The spill reportedly was cleaned up by Alaska Offshore, Inc. (Alaska Offshore) in July 1985 (Alaska Offshore, 1985). The spill is assumed to have been associated with tanks near the Old FSRC building because the New FSRC building had not yet been constructed. No record of confirmation sampling or sampling conducted to determine whether residual contamination remained in the ground was found in ARNG files. During visual observation, it was estimated that the fuel had spread under the Old FSRC building, 30 feet to the main road (south), 150 feet to a neighboring store (north), and 75 feet to a house (east). A final spill report (Alaska Offshore, 1985) indicated that, in addition to the AST spill, holes in eight drums had resulted in the release of approximately 200 gallons of Jet A fuel. Contaminated snow and absorbents were collected and disposed of or were burned at the city dump (Clarus Technologies, LLC [Clarus], 2006).

A second release was reported during a 1992 ARNG site inspection. The discharge was a heating oil release of unknown quantity originating from an AST fuel line to the day tank; however, the location of the spill or associated tank was not specified (ERM/Hart Crowser, 1999).

Environmental investigations conducted at Savoonga FSRC include the following:

- PA/SI conducted by in August 1996 (Ogden, 1998)
- RI conducted by ERM/Hart Crowser in 1998 (ERM/Hart Crowser, 1999)
- ACL demonstration project conducted by Clarus in 2004 (Clarus, 2006)
- Secondary site characterization (SSC) conducted by North Wind, Inc. (North Wind) in 2008 (North Wind, 2009)

3.1 1996 Preliminary Assessment/Site Investigation

The 1996 PA/SI consisted of performing a soil survey using infrared spectrophotometer field screening as a tool to delineate several areas suspected of soil contamination (Ogden, 1998). The investigated locations were the area of the 1985 fuel spill, the area of the 1992 fuel spill, areas beneath the three ASTs, and the drum storage area. Ogden collected seven field screening and five analytical soil samples from the site. Samples were collected from the areas of concern (AOCs) and from areas of obvious contamination that were observed during the visit.

Field screening results of the soil samples collected from the AOCs ranged from nondetect to 400 parts per million (ppm). The two highest readings, 190 and 400 ppm, were from samples collected immediately adjacent to the northernmost Old FSRC AST and the New FSRC former AST; however, samples were not collected for laboratory analysis from those two locations. All samples submitted for analytical testing were collected at 0.5 foot bgs and were analyzed for diesel-range organics (DRO) and gasoline-range organics (GRO) by Alaska Methods AK102 and AK101, respectively. Laboratory results for DRO concentrations in the soil ranged from 12 to 160 mg/kg. Laboratory analysis did not indicate the presence of petroleum hydrocarbons at concentrations greater than SLs.

3.2 1998 Remedial Investigation

The RI consisted of installing and sampling 20 soil borings and installing one well point in September 1998 (ERM/Hart Crowser, 1999). A total of 12 soil borings were located to investigate the area around the former AST near the Old FSRC building and an area adjacent to the storage shed where drums had been stored, five borings were located near the former AST at the New FSRC, and three borings were located in background areas. A total of 42 soil samples were collected and submitted for laboratory analysis of DRO (Alaska Method AK102); GRO (Alaska Method AK101); residual-range organics (RRO) (Alaska Method AK103); and benzene, toluene, ethylbenzene, and xylenes (BTEX) (U.S. Environmental Protection Agency [EPA] Method SW8021). A groundwater

sample was not collected because of poor water flows at the installed well point. Because of the coarse nature of the gravel pad in which the FSRC is located, subsurface sample depths were generally limited to 2 to 2.5 feet bgs. Permafrost was encountered in only one boring, at 3 feet bgs. Concentrations of DRO that exceeded the SL were identified in samples from soil near the 3,000-gallon AST and the two 1,500-gallon ASTs (Figure 2-2). The maximum DRO concentration was reported at 17,000 milligrams per kilogram (mg/kg), in a sample taken near the Old FSRC ASTs. GRO, RRO, and BTEX compounds were also detected in the soil samples submitted for laboratory analysis; however, concentrations were less than their respective SLs.

3.3 2004 Alternate Cleanup Level Demonstration Project

The ACL demonstration project consisted of collecting soil and suprapermafrost groundwater samples at Savoonga FSRC in August 2004 to develop and present potentially applicable ACLs in accordance with regulation and guidance provided in 18 AAC 75 (Clarus, 2006). Seven primary soil samples and one field duplicate soil sample were collected to determine background concentrations of DRO. Five soil samples and one field duplicate were collected in known areas of contamination that had been identified during previous investigations. All soil samples were analyzed for DRO by Alaska Method AK102. Selected samples were also analyzed for GRO by Alaska Method AK101, for BTEX by EPA Method SW8021B, and for total organic carbon by EPA Method SW9060. Bulk density and grain size were also measured. DRO was not detected in soil samples at concentrations greater than the 250-mg/kg DRO SL. The maximum DRO concentration (233 mg/kg) was found in sample ACL-008, located near the 1,500-gallon AST.

Two well points were installed to approximately 4.5 bgs, and suprapermafrost groundwater was collected from each well point and submitted for laboratory analysis of DRO by Alaska Method AK102, GRO by Alaska Method AK101, BTEX by EPA Method SW8021B, and total dissolved solids by EPA Method 160.1. A third well point was not sampled because of refusal encountered during installation prior to reaching groundwater. No free product was encountered during collection of suprapermafrost groundwater samples. Suprapermafrost groundwater contained concentrations of DRO, toluene, and xylenes at both well point locations sampled; concentrations of GRO, benzene, and ethylbenzene were detected in the well point near the Old FSRC ASTs. DRO and benzene were detected at concentrations greater than SLs. Concentrations of DRO and BTEX compounds were higher in suprapermafrost groundwater samples collected near the two 1,500-gallon ASTs adjacent to the Old FSRC building.

3.4 2008 Secondary Site Characterization

A total of 48 soil borings were installed and sampled at Savoonga FSRC in June 2008 to delineate the extent and volume of petroleum-contaminated soil containing DRO at concentrations exceeding the Alaska Department of Environmental Conservation (ADEC) cleanup level of 250 mg/kg (North Wind, 2009). Borings were established and completed on 5-foot grids from both the Old and New FSRC building edges and concentrated around the ASTs. Frozen soil was encountered in all Grid 1 borings (west of the New FSRC building) at depths ranging from 0.5 to 1.5 feet bgs. Frozen soil was encountered in Grid 2 borings at depths ranging from 0.7 to 1.5 feet bgs. Not all borings from Grid 2 encountered frozen soil. A total of 90 soil samples were collected and field screened by photoionization detector (PID) to evaluate the presence or absence of hydrocarbons in the field. A total of 22 primary and 3 duplicate samples were selected for laboratory analysis of DRO by Alaska Method AK102. Field screening data and analytical results were compared. Results of field screening (PID analyses and hydrocarbon odor) and laboratory analyses exhibited a poor correlation for the Grid 1 samples collected west of the New FSRC. Because of auger refusal at shallow depths, limitations of accurate PID readings from soil at these shallow depths, heterogeneity of the sample material, and biogenic interference, an accurate estimate of and the extent and volume of DRO contamination could not be completed. Maximum PID readings were detected in the samples collected at the northwestern edge of the two 1,500-gallon ASTs. DRO was detected at concentrations greater than the SL in samples collected west and northwest of the New FSRC AST. Samples collected near the Old FSRC ASTs contained DRO at concentrations less than the SL. The investigation effort estimated a total area and volume of soil contaminated by DRO at concentrations exceeding 250 mg/kg (based on best professional judgment and

limited correlation of results) at 308 cubic feet (11 cubic yards $[yd^3]$). A final report has not been submitted for this investigation.

Data Gap Analysis

This section summarizes how the SLs and DQOs were established for the DGI and how previous investigation data were used, and presents the CSM of site conditions and the means of potential exposure at Savoonga FSRC. This section also presents the data gaps identified for Savoonga FSRC that were examined as part of the DGI.

4.1 Project Screening Levels

SLs are conservative, predominantly risk-based values that are used to characterize and determine the nature and extent of contamination in soil and groundwater. SLs are intended to be used for screening purposes only; exceedance of an SL is not necessarily an indication of unacceptable risk. Details about the SL selection process for each medium are provided in the Unified Federal Program-Quality Assurance Project Plan (UFP-QAPP) published as *Final Work Plan for Site Characterization at 21 Alaska Federal Scout Readiness Centers* (CH2M HILL, 2011).

4.1.1 Soil Screening Levels

Soil SLs are established in consideration of cumulative exposure of human receptors to contaminants in soil (and sediment) through direct contact and outdoor inhalation, as well as protection of groundwater. The project SLs established for Savoonga FSRC were based on ADEC cleanup levels provided in 18 AAC 75.

As presented in 18 AAC 75.340(a)(2), proposed soil cleanup levels for a site must be based on an estimate of the reasonable maximum exposure expected to occur under current and future site conditions. Soil SLs must be developed using ADEC Method 2 for soil contaminated with chemicals other than petroleum hydrocarbons, as set out in Table B1 of 18 AAC 75.341(c) and for soil contaminated with petroleum hydrocarbons, as set out in Table B2 of 18 AAC 75.341(d). The ADEC Method 2 cleanup levels presented in Tables B1 and B2 were determined for three potential exposure pathways—direct contact/ingestion, inhalation, and migration to groundwater—depending on the climatic zone in which the soil is located (arctic zone, under-40-inch zone, or over-40-inch zone). The cleanup level from Table B1 or B2 that applies to Savoonga FSRC is based on the exposure pathway with the most stringent value calculated for a site within the under-40-inch climatic zone. Based on available data, all three exposure pathways were considered potentially complete for Savoonga FSRC.

The project SLs are shown in Table 4-1. The project SLs for GRO and DRO in soil were set equal to the ADEC Method 2 cleanup levels for the migration-to-groundwater pathway; for RRO in soil, the SL was set equal to the ADEC Method 2 cleanup level for the ingestion pathway. For chemicals other than petroleum hydrocarbons, to account for possible cumulative risk associated with multiple chemical exposures, direct contact, and outdoor inhalation, cleanup levels were divided by a factor of 10. The SL for a specific chemical in soil was determined to be the lowest of the adjusted ADEC Method 2 direct contact or outdoor inhalation cleanup level and the ADEC Method 2 migration-to-groundwater cleanup level. Because of the extensive list of possible contaminants, only SLs for BTEX compounds are shown in Table 4-1.

4.1.2 Groundwater Screening Levels

Groundwater SLs are established in consideration of potential cumulative exposure of human receptors to contaminants through drinking groundwater. As defined under 18 AAC 75.345(b)(1), contaminated groundwater must meet the cleanup levels in 18 AAC 75.345(b)(1), Table C, if the current use or the reasonably expected potential future use of the groundwater, determined under 18 AAC 75.350, is a drinking-water source. In addition, 18 AAC 75.345(g) states that groundwater that is closely connected hydrologically to nearby surface water may not cause a violation of the water quality standards in 18 AAC 70 for surface water.

TABLE 4-1 **Soil Screening Levels**

Savoonga Federal Scout Readiness Center Data Gap Investigation

	ADEC Method 2 Cleanup Level			Evnosuro Bouto	Proposed ADEC		
Contaminant of Concern	Direct Contact/ Ingestion	Outdoor Inhalation	Migration to Groundwater	- Exposure Route of Primary Concern	Method 2 Soil Cleanup Level	Project Screening Level	
Gasoline-range organics	1,400	1,400	300	Migration to GW	300	300	
Diesel-range organics	10,250	12,500	250	Migration to GW	250	250	
Residual-range organics	10,000	22,000	11,000	Ingestion	10,000	10,000	
Benzene	150	11	0.025	Migration to GW	0.025	0.025	
Toluene	8,100	220	6.5	Migration to GW	6.5	6.5	
Ethylbenzene	10,100	110	6.9	Migration to GW	6.9	6.9	
Xylenes (total)	20,300	63	63	Inhalation	63	6.3	

Note: All values are presented in milligrams per kilogram. ADEC = Alaska Department of Environmental Conservation

GW = groundwater

Source: 18 AAC 75.341, Tables B1 and B2, under-40-inch zone

For GRO, DRO, and RRO, the project SLs were set equal to the cleanup levels in Table C of 18 AAC 75.345(b)(1). For all other compounds, SLs were derived by dividing the cleanup levels in Table C by a factor of 10 to account for possible cumulative risk associated with multiple chemical exposures. Table 4-2 summarizes the project SLs for contaminants that were expected to be encountered at Savoonga FSRC.

TABLE 4-2 **Groundwater Screening Levels**Savoonga Federal Scout Readiness Center Data Gap Investigation

Contaminant of Concern	18 AAC 75 Groundwater Cleanup Level (mg/L)	18 AAC 70 Water Supply, Aquiculture, Cleanup Level (μg/L)	Project Screening Level (mg/L)
Gasoline-range organics	2.2		2.2
Diesel-range organics	1.5		1.5
Residual-range organics	1.1		1.1
Benzene	0.005		0.0005
Гoluene	1.0		0.1
Ethylbenzene	0.7		0.07
(ylenes (total)	10		1.0
Total aromatic hydrocarbons		10	
Total aqueous hydrocarbons		15	

-- = not analyzed

μg/L = micrograms per liter

AAC = Alaska Administrative Code

mg/L = milligrams per liter

Source: 18 AAC 75.345(b)(1), Table C, and 18 AAC 70.020(b)(5)(A)(iii)

4.2 Data Quality Objectives

DQOs were established to provide benchmarks against which the quality of fieldwork and the quality of the resulting analytical data could be evaluated. The DQOs specified the type, quality, quantity, and uses of the data needed to adequately support environmental decisions at Savoonga FSRC. The DQOs could be fulfilled by using either existing data or data gathered during the 2011 DGI. Three DQOs were established for the 2011 DGI at Savoonga FSRC. The DQOs established the type and quantity of data necessary for determining the nature and extent of contamination in the soil and groundwater at the FSRC and specified the quality and quantity of data required to assess cumulative human health risk.

- DQO 1 established what data were necessary to determine whether further sampling of the soil would be required to define the nature and extent of contamination (and, secondarily, to support a remedial decision and cost savings for future remedial actions). The lateral extent of soil contamination would be adequately delineated only if all soil samples surrounding the potential source or release location contained concentrations of all target analytes below SLs. To help fulfill this objective, historical (previous investigation) data were evaluated for usability following the general procedures outlined in the UFP-QAPP (CH2M HILL, 2011). Data that (1) had been properly validated, (2) had been derived through use of ADEC-approved or EPA-approved analytical methods, and (3) reflected analytical detections greater than the limits of detection or lower than the SLs were considered usable for the purposes of determining the extent of contamination. Those data considered usable were also retained to characterize the site.
- DQO 2 established the type and quantity of data that were necessary to determine whether groundwater was present, contaminated, and acting as a transport mechanism to nearby surface water bodies. Historical (previous investigation) data were evaluated to determine (1) whether permafrost was present in the soil,
 (2) whether suprapermafrost groundwater was present and had been sampled between the apparent source area and the nearest surface water body, and (3) whether concentrations of all target analytes in the samples were below SLs and detection limits were appropriate.
- DQO 3 was established to determine the type and quantity of data required to ascertain whether current or
 hypothetical future residents, occupational workers, or construction/excavation workers might be exposed to
 constituent contaminant concentrations that could pose potentially unacceptable risks. Historical (previous
 investigation) data were also evaluated for usability, and those data that were considered usable were
 retained for use in risk assessment.

4.3 Conceptual Site Model

A CSM integrates (1) existing information and working assumptions about the physical site conditions; (2) the nature, occurrence, and distribution of chemicals; and (3) fate and transport processes. The CSM for Savoonga FSRC is based on the current understanding of site history and conditions.

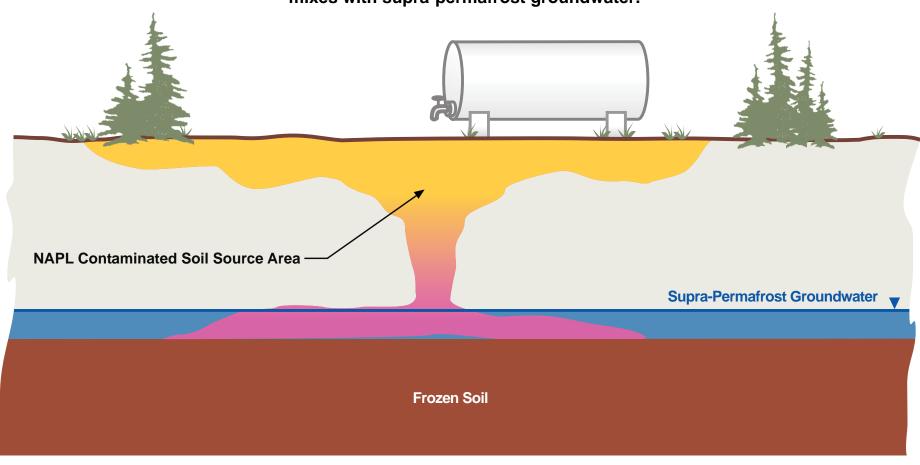
As a pure product, heating oil is less dense than water and is referred to as light non-aqueous-phase liquid (NAPL). When released to the ground surface, NAPL products spread laterally across the ground surface and infiltrate into the soil. The extent of lateral spreading across the ground surface is a function of quantity and rate of release and the permeability of surface soil. The infiltrating product from a surface spill tends to flow primarily vertically under the influence of gravity through larger air-filled soil pores, although capillary forces may cause some lateral spreading. When released in sufficient quantities, light NAPL product can migrate downward through soil and accumulate at the capillary fringe of the groundwater table surface. Because known spills at Savoonga FSRC are more than one decade old, it is very likely that gravity drainage and flow of the light NAPL product to a point of immobility have already occurred.

The CSM for the Savoonga FSRC site integrates information about leaks and spills of heating oil concentrated around the former heating oil AST. Each spill and leak of heating oil has spread both laterally and vertically from its point of release, resulting in surface and subsurface soil hydrocarbon contamination down to suprapermafrost groundwater (Figure 4-1).

The conceptual model for exposure at Savoonga FSRC, including past or current sources of contamination, chemical release mechanisms, transport/exposure media, potential exposure points, potential exposure routes, and potential receptors, is incidental human ingestion of surface soil and dermal contact with soil (Figure 4-2). Exposure to very shallow suprapermafrost groundwater and, subsequently, to surface water is considered a complete pathway; however, the nearest drinking water aquifer is present upgradient and beneath Savoonga FSRC at more than 180 feet bgs and is protected by nearly 170 feet of permafrost and therefore is not considered a complete exposure pathway. All potentially complete ecological exposure pathways are considered insignificant because of the small size of the site, the location within Savoonga, and the presence of more optimal habitat nearby.

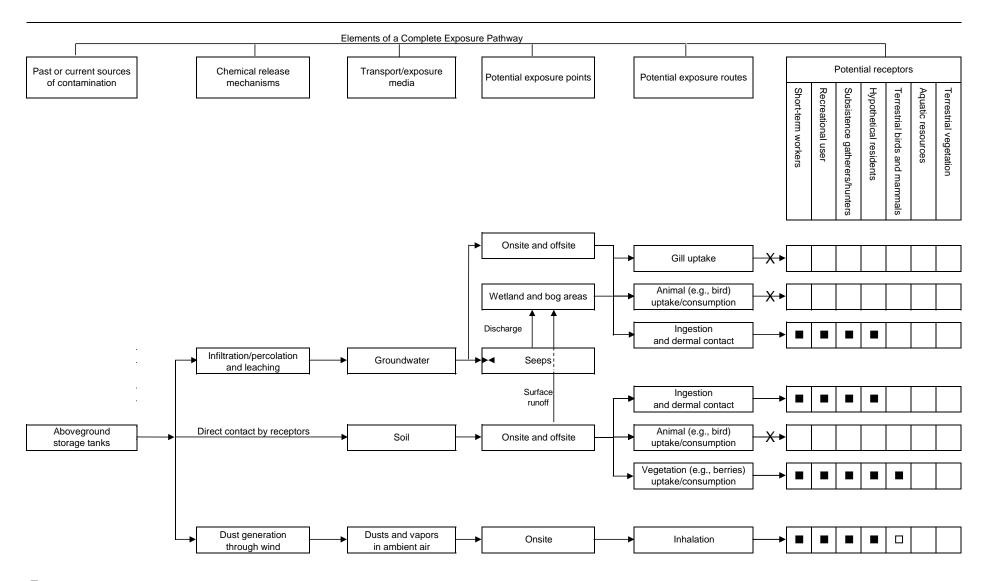
4.4 Identification of Data Gaps

Historical site use and previous investigation findings suggest that the primary source of contamination at Savoonga FSRC is associated with spills/leaks in an area concentrated around the former heating oil ASTs. Data collected during previous investigations indicated the presence of DRO in concentrations greater than the SL in soil to approximately 4.5 feet bgs. Historical investigation data indicate that detected concentrations of DRO at this site are likely to have been affected by biogenic material.


Concentrations of DRO detected in suprapermafrost groundwater samples exceed the groundwater SL, indicating that suprapermafrost groundwater has been contaminated. However, it is unknown whether contaminated suprapermafrost groundwater is migrating offsite toward the Savoonga River.

The data gaps that needed to be filled to determine the nature and extent of contamination at the site and to support risk assessment efforts were as follows:

- The lateral extent of DRO contamination present in soil at concentrations greater than the SL had not been adequately delineated. Consequently, additional surface and subsurface soil data were needed to adequately delineate the extent of DRO contamination in the soil.
- The lateral extent of DRO and benzene contamination present in suprapermafrost groundwater at
 concentrations greater than the SL had not been adequately delineated. Consequently, additional
 groundwater data were needed to adequately delineate the extent of DRO contamination and to determine
 whether contaminated suprapermafrost groundwater was migrating offsite toward the Bering Sea.
- Data for polynuclear aromatic hydrocarbons (PAHs), extractable aliphatic and aromatic petroleum
 hydrocarbons (EPH), volatile aliphatic and aromatic petroleum hydrocarbons (VPH), and BTEX were limited or
 not available because of IRA activities. PAH and BTEX data were necessary to assess cumulative risk to human
 health that could result from exposure to DRO. EPH and VPH data would aid in differentiating between
 aliphatic and aromatic hydrocarbons for the remaining contamination. These data could be used to help
 generate future site-specific cleanup levels for residual hydrocarbons.


Actions taken to fill these data gaps are discussed in Section 5.

Leak from AST above spilled hydrocarbon mass is sufficient to reach permafrost and mixes with supra-permafrost groundwater.

FIGURE 4-1 Conceptual Site Model

Savoonga FSRC Data Gap Investigation Report Savoonga, Alaska

■ = Potentially complete pathway (to be addressed quantitatively)

= Pathway considered minor (to be addressed qualitatively)

Blank = Incomplete pathway

X = Exposure route is not complete

Note: Exposure pathways assume current conditions of the site.

FIGURE 4-2 Conceptual Exposure Model

Potential Human and Ecological Exposures Savoonga Federal Scout Readiness Center Data Gap Investigation Savoonga, Alaska

Field Investigation Activities

The DGI field activities at Savoonga FSRC occurred on July 5, 6, 23, and 24, 2011. The field activities were conducted to satisfy the DQOs as presented in Section 4.1, to fill the data gaps identified in Section 4.3, and to support recommendations for remedial actions at the site.

5.1 Site Reconnaissance

On July 5, 2011, CH2M HILL field personnel conducted a site reconnaissance at Savoonga FSRC to find site features to assist in locating proposed nature-and-extent sampling points, including previous excavation limits, previous boreholes, and AST locations. Efforts were also made to identify any new areas of soil staining or distressed vegetation. No new sources of contamination were identified, and no evidence of stained soil, recent spills, or stressed vegetation was observed.

5.2 Sample Locations

The 13 initially planned soil boring locations (11SAVSB001 through 11SAVSB017) proposed in the UFP-QAPP (CH2M HILL, 2011) for Savoonga FSRC were established on July 5, 2011, (Figure 5-1), through use of a global positioning system (GPS) and were verified by taking measurements from building corners (Photograph 2). No stepout sample locations were established for the initial round of soil samples, based on visual observations and the lack of detection of hydrocarbon odors in the soil.

The locations for the two groundwater monitoring wells were established by GPS approximately 20 feet northeast and 38 feet northwest of the Old FSRC on July 5, 2011.

PHOTOGRAPH 2 Soil sample locations (flags from right to left) 11SAVSB004, 11SAVSB005, and 11SAVSB006. Looking northwest.

5.3 Soil Sampling

A total of 21 soil samples were collected from 12 of the

13 originally proposed locations, at depths ranging from 0 to 3 feet bgs. Samples were planned to be collected at greater depths throughout the site, but either frozen soil (permafrost) or shallow refusal caused by large gravel (cobbles) was encountered nearer the surface than anticipated, limiting soil collection depths. At 11SAVSB002, frozen soil was encountered before the desired sampling depth was reached; this location was not sampled.

Sample locations were drilled by using hand-auger or post-holing equipment augmented by use of a pry bar to remove large cobbles; discrete soil samples were collected using the methods described in the UFP-QAPP (CH2M HILL, 2011). All samples were field screened using a PID and were submitted for analysis of DRO (Alaska Method AK102); a subset of samples (from 11SAVSB001 and 11SAVSB007) were analyzed for EPH (Washington Method Northwest EPH), VPH (Washington Method Northwest VPH), BTEX (EPA Method SW8260B), and PAHs (EPA Method SW8270CSIM). Headspace PID readings were taken at each sample location and depth. Detected concentrations of volatile organic compounds ranged from less than 1 to 231 ppm. PID readings of the soil samples are summarized in Table 5-1. Moderate hydrocarbon odors were reported from the samples collected at deeper depths in 11SAVSB001.

5.4 Groundwater Sampling

Four temporary monitoring wells were installed at locations 11SAVGW0001, 11SAVGW002, 11SAVSB004, and 11SAVSB007 on June 24, 2011 (Photograph 3) through use of a peristaltic pump. The groundwater was slow to recover in the wells because the groundwater resided primarily in a very thin saturated layer lying directly above the permafrost; therefore, the wells were routinely pumped dry as a means of development.

Groundwater samples were collected from the four monitoring wells on June 24, 2011, using the methods described in the UFP-QAPP (CH2M HILL, 2011). The samples were submitted for analysis of DRO; the sample from 11SAVSB007 was also submitted for analysis of BTEX, PAH, EPH, and VPH.


TABLE 5-1
Field Screening Results
Savoonga Federal Scout Readiness Center Data Gap Investigation

<u>Javoonga reactars</u>	Suvoonga reaerai scoal keaamess center bata Gap investigation						
Sample Location	Sample Depth (feet bgs)	PID Reading (ppm)					
11SAVSB001	0 – 1	10.4					
	2	24					
	2.6	231					
11SAVSB003	0 – 1	<1					
	2.5	<1					
11SAVSB004	0 – 1	1.2					
	2 – 3	2					
11SAVSB005	0-1	<1					
	1 – 2	<1					
11SAVSB006	0-1	<1					
	1 – 2	5.7					
11SAV SB007	0 – 1	1.0					
	2 – 3	<1					
11SAVSB008	0 – 1	1.4					
	2 – 3	<1					
11SAVSB009	0 – 1	1.3					
	2 – 3	1.1					
11SAVSB010	0 – 0.5	1.4					
11SAVSB011	0 – 1	1.5					
	2 – 3	<1					
11SAVSB012	0 – 1	1.7					
	2 – 3	<1					
11SAVSB013	0 – 1	<1					
	1 – 1.5	1.3					

bgs = below ground surface PID = photoionization detector ppm = parts per million

PHOTOGRAPH 3
Groundwater monitoring wells 11SAVGW001 (adjacent to Old FSRC) and 11SAVGW002 (near) are shown.
Looking southwest.

5.5 Quality Control

As established in the UFP-QAPP (CH2M HILL, 2011), samples were collected at Savoonga FSRC to satisfy the quality control requirements for the DGI. Quality control samples included field duplicate samples, matrix spike/matrix spike duplicate samples, equipment blank samples, and trip blank samples.

5.5.1 Field Duplicate Samples

Field duplicate samples are defined as two or more field samples taken at the same time from the same location. They are intended to represent the same population and are taken through all steps of the analytical procedure in an identical manner. These samples are used to assess precision of the entire data collection activity, including sampling, analysis, and site heterogeneity. Field duplicate samples are collected simultaneously or in immediate succession using identical recovery techniques and are treated in an identical manner during storage, transportation, and analysis.

Field duplicate soil samples for DRO were subsamples of a single sample collected. Each sample container was assigned a unique identification number in the field. One field duplicate of soil sample 11SAVB001_SO00-01 was collected for analysis of DRO, but the jar was broken in transit prior to submittal to the laboratory for analysis. A second field duplicate sample was scheduled to be collected from a deeper soil sample planned for 11SAVSB001, but refusal was encountered before sampling depth was reached and a second field duplicate sample was not collected.

A duplicate sample of groundwater was obtained from the monitoring well installed in 11SAVSB007 for analysis of DRO, PAH, BTEX, EPH, and VPH.

5.5.2 Equipment Blanks

An equipment blank is a sample of ASTM International (ASTM) Type II reagent-grade water poured into or poured over the sampling device, collected in a sample container, and transported to the laboratory for analysis. Equipment blanks may also be called rinse blanks or rinsate blanks. Equipment blanks are used to assess the effectiveness of equipment decontamination procedures.

One equipment blank was collected immediately after the sampling equipment (in this case, the hand auger) had been decontaminated for the final time at Savoonga FSRC. The equipment blank sample was submitted for analysis of DRO, BTEX, and PAH.

5.5.3 Trip Blanks

Trip blanks are used to assess the potential introduction of contaminants to sample containers during the field collection event, including transportation and storage procedures. A trip blank consists of a volatile organic analysis vial filled in the laboratory with ASTM Type II reagent-grade water or methanol, transported to the sampling site, handled like an environmental sample (without being opened), and returned to the laboratory for analysis. One trip blank accompanied the Savoonga FSRC soil samples sent to the laboratory for BTEX analysis, and one trip blank accompanied the equipment blank and groundwater samples sent to the laboratory for BTEX analysis.

ANC/123540017/ES012512133927ANC 5-:

Contamination Assessment

This section presents the completed assessment of the nature and extent of contamination at Savoonga FSRC. Field notes and other field forms generated during the field effort of the DGI are provided in Appendix A. Analytical data generated from the DGI by TestAmerica and an evaluation of the data quality are included as Appendix B.

6.1 Nature and Extent of Soil Contamination

Based on analytical results for soil samples collected during the DGI and on available historical data (as presented in Table 6-1), the lateral extent of petroleum-contaminated soil at Savoonga FSRC has been adequately delineated to the project SLs (DQO 1), as shown in Figure 6-1. Soil contaminated with DRO at concentrations above the SL appears to exist in three distinct areas adjacent to the two sets of site ASTs:

- The largest area is southeast of the Old FSRC between the building, the two 1,500-gallon ASTs, and the storage van.
- The second area is beneath the footprint of the 1,500-gallon AST located northwest of the New FSRC.
- The third and smallest area is approximately 40 feet northwest of the New FSRC, just off the edge of the gravel pad.

The vertical extent of DRO-contaminated soil appears to be limited to the depth of permafrost, which was reached during the DGI and other previous investigations at 2.5 to 3 feet bgs.

To further assess the nature of the soil contamination present at Savoonga FSRC, multiple soil samples were collected from the primary (southeast of the Old FSRC) and secondary source area (northwest of the New FSRC) that showed the highest remaining petroleum contamination. These samples were analyzed for BTEX, PAHs, EPH, and VPH. Laboratory results are presented in Tables 6-1 (BTEX) and 6-2 (PAHs). Laboratory results for EPH and VPH are discussed in Section 7.

6.2 Nature and Extent of Groundwater Contamination

As indicated by historical and current groundwater analytical results (summarized in Table 6-3 and presented in Figure 6-2), there is one known area at Savoonga FSRC where DRO concentrations in samples from suprapermafrost groundwater exceeded ADEC cleanup levels. Groundwater quality data obtained during the DGI (Figure 6-2) indicate that the contaminated groundwater south and east of the Old FSRC does not appear to be migrating toward the Bering Sea (DQO2). However, groundwater containing DRO in concentrations above cleanup levels remains in 11SAVSB004, southeast of the Old FSRC, and appears to be migrating offsite to the east.

To further assess the nature of the groundwater contamination present at Savoonga FSRC, a sample of groundwater was collected and analyzed for BTEX, PAHs, EPH, and VPH. Laboratory results of this sample (and historical sample results) are presented in Tables 6-3 (BTEX) and 6-4 (PAHs). Laboratory results for EPH and VPH are discussed in Section 7.

TABLE 6-1
Soil Results for BTEX, DRO, GRO, and RRO
Savoonga Federal Scout Readiness Center Data Gap Investigation

			Analyte	DRO	GRO	RRO	Benzene	Ethyl- benzene	Toluene	Xylenes (Total)
		Sample Depth	Screening Level	250	300	10000	0.025	6.9	6.5	6.3
Location	Sample ID	(feet bgs)	Sample Date							
11SAVSB001	11SAVSB001_S002-2.6	2 – 2.6	7/6/2011	17000			3.1	48	160	250
SAV-B-13	SAVB-13S1SS	0 – 0.5	9/2/1998	17000						
SAV-B-12	SAVB-12S2SS	0.5 – 1	9/2/1998	11000						
SAV-B-13	SAVB-13S2SS	1.5 – 2	9/2/1998	8900						
11SAVSB001	11SAVSB001_SO02	1 – 2	7/6/2011	4300			0.27 J	11 J	29 J	50 J
SAV-B-06	SAVB-6S2SS	1.5 – 2	9/2/1998	1500						
SAV-B-05	SAVB-5S2SS	1.5 – 2	9/2/1998	1300						
SAV-B-12	SAVB-12S1SS	0 – 0.5	9/2/1998	1100						
SAV-B-14	SAVB-14S2SS	1 – 1.5	9/2/1998	860						
09SAV-01-G105	09-SAV-01-G105-1_1	1.1 – 1.1	6/13/2009	844						
11SAVSB006	11SAVSB006_SO02	2 – 2	7/6/2011	660						
11SAVSB001	11SAVSB0001_SO00-01	0 – 1	7/6/2011	630						
09SAV-01-F090	09-SAV-01-F090-0.7	0.7 - 0.7	6/13/2009	606						
09SAV-01-G090	09-SAV-01-G090-0.7	0.7 - 0.7	6/13/2009	491						
SAV-B-10	SAVB-10S3SS	1 – 1.5	9/2/1998	400						
SAV-B-17	SAVB-17S2SS	2 – 2.5	9/2/1998	310	6	57	0.018 U	0.04		0.062
09SAV-01-F110	09-SAV-01-F110-0_8	0.8 - 0.8	6/13/2009	301						
SAV-B-10	SAVB-10S1SS	0.5 – 1	9/2/1998	250	0.79	360	0.017 U	0.017 U		0.019
SAV-B-09	SAVB-9S2SS	1 – 1.5	9/2/1998	240	27	93	0.021 U	0.11		0.24
SAV-ACL-008	SAV-ACL-008	1.33 – 1.58	8/24/2004	233 J	73 J		0.0135 U	0.027 U		0.715 J
SAV-B-14	SAVB-14S1SS	0.5 – 1	9/2/1998	190						

TABLE 6-1
Soil Results for BTEX, DRO, GRO, and RRO
Savoonga Federal Scout Readiness Center Data Gap Investigation

			Analyte	DRO	GRO	RRO	Benzene	Ethyl- benzene	Toluene	Xylenes (Total)
		Sample Depth -	Screening Level	250	300	10000	0.025	6.9	6.5	6.3
Location	Sample ID	(feet bgs)	Sample Date							
09SAV-02-I105	09-SAV-02-I105-1.0	1-1	6/13/2009	182						
SAV-B-11	SAVB-11S1SS	0 – 0.5	9/2/1998	180						
09SAV-01-G115	09-SAV-01-G115-0.5	0.5 – 0.5	6/13/2009	176						
SAV-ACL-004	SAV-ACL-004	0.58 – 0.58	8/24/2004	166						
SAV-ACL-002	SAV-ACL-002	0.83 – 0.83	8/24/2004	166 U						
SV051	96SV051SL	0.5 – 0.5	8/6/1996	160						
09SAV-02-J105	09-SAV-02-J105-0_9	0.9 - 0.9	6/13/2009	151						
11SAVSB009	11SAVSB009_S002-03	2 – 3	7/23/2011	140						
09SAV-01-D115	09-SAV-01-D115-1.5	1.5 – 1.5	6/13/2009	123						
09SAV-02-G115	09-SAV-02-G115-1.5	1.5 – 1.5	6/13/2009	110						
09SAV-02-G110	09-SAV-02-G110-1.5	1.5 – 1.5	6/13/2009	81.4						
11SAVSB003	11SAVSB003_S002-2.5	2 – 2.5	7/6/2011	74						
SAV-B-07	SAVB-7S2SS	1 – 1.5	9/2/1998	72						
11SAVSB007	11SAVSB007_S002-03	2 – 3	7/23/2011	71			0.0089 U	0.0089 U	0.012 U	0.027 U
SAV-B-07	SAVB-7S1SS	0.5 – 1	9/2/1998	71						
09SAV-02-K120	09-SAV-02-K120-1_8	1.8 – 1.8	6/13/2009	69.6						
SAV-ACL-009	SAV-ACL-009	0.92 – 1.17	8/24/2004	64.9	6.31		0.0139 U	0.0278 U		0.099
11SAVSB007	11SAVSB007_S000-01	0-1	7/5/2011	63						
SAV-ACL-011	SAV-ACL-011	0.87 – 1.08	8/24/2004	62.4						
11SAVSB013	11SAVSB0013_S000-01	0-1	7/5/2011	62						
11SAVSB011	11SAVSB011_S002-03	2-3	7/24/2011	53						

TABLE 6-1
Soil Results for BTEX, DRO, GRO, and RRO
Savoonga Federal Scout Readiness Center Data Gap Investigation

			Analyte	DRO	GRO	RRO	Benzene	Ethyl- benzene	Toluene	Xylenes (Total)
		Sample Depth	Screening Level	250	300	10000	0.025	6.9	6.5	6.3
Location	Sample ID	(feet bgs)	Sample Date							
09SAV-02-K105	09-SAV-02-K105-0.7	0.7 – 0.7	6/13/2009	52						
SAV-B-09	SAVB-9S1SS	0.5 – 1	9/2/1998	49						
09SAV-01-E105	09-SAV-01-E105-0.7	0.7 – 0.7	6/13/2009	48.3						
09SAV-01-E115	09-SAV-01-E115-1.0	1 – 1	6/13/2009	45.2						
SAV-B-16	SAVB-16S1SS	0.5 – 1	9/2/1998	42						
09SAV-02-H105	09-SAV-02-H105-1.8	1.8 – 1.8	6/13/2009	41.4						
SAV-B-02	SAV-2S1SS	0.5 – 1	9/2/1998	38						
SAV-ACL-010	SAV-ACL-010	0.83 – 1	8/24/2004	37.7	2.77 U		0.0139 U	0.0277 U		0.0416 U
SAV-ACL-003	SAV-ACL-003	0.83 - 0.83	8/24/2004	33.4						
09SAV-02-H120	09-SAV-02-H120-1.1	1.1 – 1.1	6/13/2009	32.8						
SAV-B-01	SAVB-1S1SS	0.5 – 1	9/2/1998	32						
11SAVSB012	11SAVSB0012_SO02-03	2 – 3	7/24/2011	29						
SAV-ACL-006	SAV-ACL-006	0.67 - 0.83	8/24/2004	29.2 U						
SAV-ACL-005	SAV-ACL-005	0.67 - 0.83	8/24/2004	29.1 U						
SAV-ACL-012	SAV-ACL-012	0.79 – 1	8/24/2004	29.1 U						
SAV-ACL-001	SAV-ACL-001	0.58 - 0.58	8/24/2004	29 U						
SAV-ACL-007	SAV-ACL-007	0.58 - 0.58	8/24/2004	28.1 U						
09SAV-02-M115	09-SAV-02-M115-1.5	1.5 – 1.5	6/13/2009	27.3						
09SAV-01-H100	09-SAV-01-H100-0.7	0.7 – 0.7	6/13/2009	26.3 U						
SAV-B-03	SAVB-3S2SS	1 – 1.5	9/2/1998	26						
SAV-B-06	SAVB-6S1SS	0.5 – 1	9/2/1998	26						

TABLE 6-1
Soil Results for BTEX, DRO, GRO, and RRO
Savoonga Federal Scout Readiness Center Data Gap Investigation

			Analyte	DRO	GRO	RRO	Benzene	Ethyl- benzene	Toluene	Xylenes (Total)
		Sample Depth -	Screening Level	250	300	10000	0.025	6.9	6.5	6.3
Location	Sample ID	(feet bgs)	Sample Date							
SAV-B-18	SAVB-18S2SS	1 – 1.5	9/2/1998	26						
09SAV-02-H100	09-SAV-02-H100-1.8	1.8 – 1.8	6/13/2009	24.3 U						
11SAVSB012	11SAVSB0012_S000-01	0-1	7/5/2011	24						
11SAVSB008	11SAVSB008_SO02-03	2 – 3	7/24/2011	23						
SV011	96SV011SL	0.5 – 0.5	8/6/1996	23						
09SAV-01-G100	09-SAV-01-G100-1.0	1 – 1	6/13/2009	22.6 U						
09SAV-01-H105	09-SAV-01-H105-0.5	0.5 – 0.5	6/13/2009	22.6 U						
09SAV-02-I130	09-SAV-02-I130-2.0	2 – 2	6/13/2009	22.4 U						
SAV-B-18	SAVB-18S1SS	0.5 – 1	9/2/1998	22						
SAV-B-15	SAVB-15S1SS	0.5 – 1	9/2/1998	20						
SAV-B-02	SAV-2S2SS	1 – 1.5	9/2/1998	18						
SV031	96SV031SL	0.5 – 0.5	8/6/1996	18						
11SAVSB004	11SAVSB004_S002-03	2 – 3	7/6/2011	16						
SAV-B-01	SAVB-1S2SS	1 – 1.5	9/2/1998	15						
11SAVSB013	11SAVSB013_S002-03	2 – 3	7/24/2011	14						
SV041	96SV041SL	0.5 – 0.5	8/6/1996	14						
SAV-B-15	SAVB-15S2SS	1.5 – 2	9/2/1998	13						
SV021	96SV021SL	0.5 – 0.5	8/6/1996	12						
SAV-B-03	SAVB-3S1SS	0.5 – 1	9/2/1998	12 U						
SAV-B-05	SAVB-5S1SS	0.5 – 1	9/2/1998	12 U						
SAV-B-08	SAVB-8S1SS	0 – 0.5	9/2/1998	12 U	0.64 U	63	0.016 U	0.016 U		0.016 U

ANC/123540017/ES012512133927ANC 6-5

TABLE 6-1 Soil Results for BTEX, DRO, GRO, and RRO Savoonga Federal Scout Readiness Center Data Gap Investigation

			Analyte	DRO	GRO	RRO	Benzene	Ethyl- benzene	Toluene	Xylenes (Total)
		Sample Depth -	Screening Level	250	300	10000	0.025	6.9	6.5	6.3
Location	Sample ID	(feet bgs)	Sample Date							
SAV-B-08	SAVB-8S2SS	0.5 – 1	9/2/1998	12 U						
SAV-B-11	SAVB-11S2SS	0.5 – 1	9/2/1998	12 U						
SAV-B-16	SAVB-16S2SS	1 – 1.5	9/2/1998	12 U						
SAV-B-04	SAVB-4S1SS	0.5 – 1	9/2/1998	11 U						
SAV-B-04	SAVB-4S2SS	1 – 1.5	9/2/1998	11 U						
11SAVSB005	11SAVSB005_S001_8	1.5 – 1.8	7/6/2011	2.9 B						
11SAVSB004	11SAVSB004_S001-02	1 – 2	7/6/2011	2.6 B						
11SAVSB010	11SAVSB0010_SO00-01	0-1	7/5/2011	2.4 B						
11SAVSB008	11SAVSB008_S000-01	0-1	7/5/2011	1.7 B						
11SAVSB009	11SAVSB009_S000-01	0-1	7/5/2011	1.6 B						
11SAVSB011	11SAVSB0011_SO00-01	0-1	7/5/2011	1.1 B						
SAV-B-17	SAVB-17S1SS	0.5 – 1	9/2/1998	0.25 U	0.69 U	110	0.017 U	0.017 U		0.017 U

Notes:

- 1. All units are in milligrams per kilogram.
- 2. Bold indicates that the analyte was detected.
- 3. Shading indicates that the result exceeded screening criteria.
- -- = not analyzed
- B = The analyte was detected in the associated method and/or calibration blank.

bgs = below ground surface

DRO = diesel-range organics

GRO = gasoline-range organics

J = The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

RRO = residual-range organics

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

ANC/123540017/ES012512133927ANC

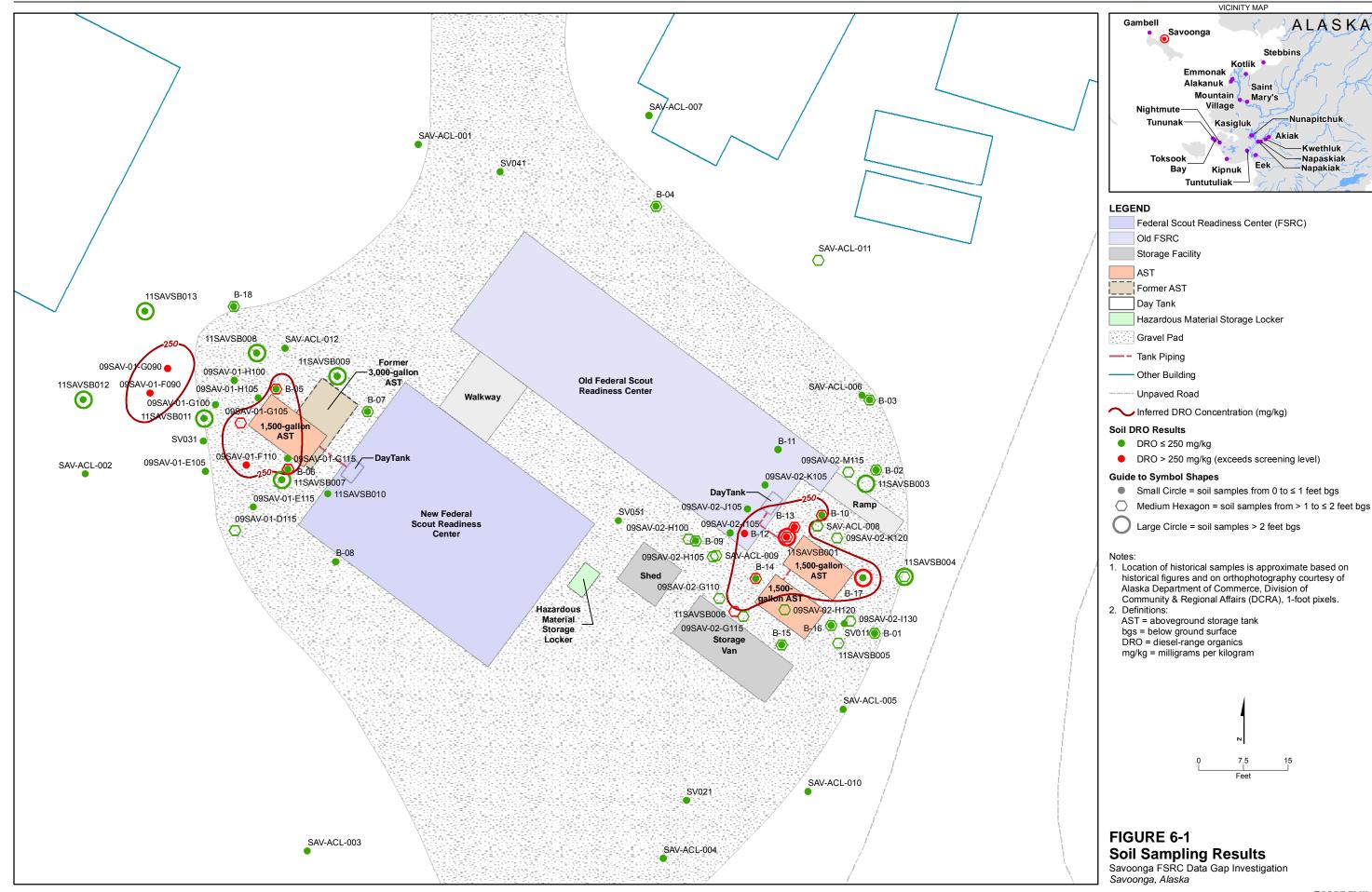


TABLE 6-2
Soil Results for PAHs
Savoonga Federal Scout Readiness Center Data Gap Investigation

				1- Methyl-	2- Methyl-	Ace-	Ace-		Benzo(a)-		Benzo(b)-	Benzo-	Benzo(k)-		Dibenz- (a,h)-			Indeno-		Phen-	
		Sample	Analyte	naphtha- lene	naphtha- lene	naphth- ene	naphthyl- ene	Anthra- cene	anthra- cene	Benzo(a)- pyrene	fluor- anthene	(g,h,i)- perylene	fluor- anthene	Chrysene	anthra- cene	Fluor- anthene	Fluorene	(1,2,3-cd)- pyrene	Naphtha- lene	anth- rene	Pyrene
		Depth	Screening Level	6.2	6.1	180	180	2060	0.49	0.049	0.49	140	4.9	49	0.049	190	220	0.49	2.8	2060	140
Location	Sample ID	(feet bgs)	Sample Date																		
11SAVSB001	11SAVSB0001 SO00-01	0-1	7/6/2011																		
11SAVSB001	11SAVSB001 SO02	1 – 2	7/6/2011	30	47	0.83 J	0.41 U	0.49 U	0.37 U	0.49 U	0.62 U	1.2 U	0.92 U	0.43 U	1.5 U	0.36 U	0.77 J	0.59 U	24	0.43 U	0.43 U
11SAVSB001	11SAVSB001 SO02-2.6	2 – 2.6	7/6/2011	230	360	6.9 J	2.9 U	3.5 U	2.7 U	3.6 U	4.5 U	8.9 U	6.7 U	3.1 U	11 U	2.6 U	5.4 J	4.3 U	180	3.1 U	3.1 U
11SAVSB003	11SAVSB003 SO02-2.5	2 – 2.5	7/6/2011																		
11SAVSB004	_ 11SAVSB004 SO01-02	1 – 2	7/6/2011																		
11SAVSB004	 11SAVSB004_S002-03	2 – 3	7/6/2011																		
11SAVSB005	11SAVSB005_S001_8	1.5 – 1.8	7/6/2011																		
11SAVSB006	11SAVSB006_S002	2 – 2	7/6/2011																		
11SAVSB007	11SAVSB007_S000-01	0 – 1	7/5/2011																		
11SAVSB007	11SAVSB007_S002-03	2 – 3	7/23/2011	0.011 U	0.011 U	0.012 U	0.0082 U	0.0098 U	0.0076 U	0.0099 U	0.013 U	0.025 U	0.019 U	0.0087 U	0.03 U	0.0073 U	0.012 U	0.012 U	0.0077 U	0.0087 U	0.0087 U
11SAVSB008	11SAVSB008_S000-01	0-1	7/5/2011																		
11SAVSB008	11SAVSB008_S002-03	2-3	7/24/2011																		
11SAVSB009	11SAVSB009_S000-01	0-1	7/5/2011																		
11SAVSB009	11SAVSB009_S002-03	2 – 3	7/23/2011																		
11SAVSB010	11SAVSB0010_S000-01	0-1	7/5/2011																		
11SAVSB011	11SAVSB0011_S000-01	0 – 1	7/5/2011																		
11SAVSB011	11SAVSB011_S002-03	2 – 3	7/24/2011																		
11SAVSB012	11SAVSB0012_S000-01	0 – 1	7/5/2011																		
11SAVSB012	11SAVSB0012_SO02-03	2 – 3	7/24/2011																		
11SAVSB013	11SAVSB0013_S000-01	0-1	7/5/2011																		
11SAVSB013	11SAVSB013_S002-03	2 – 3	7/24/2011																		
SAV-B-13	SAVB-13S1SS	0.5 – 1	9/2/1998			10 UJ		10 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	0.09 J	1 UJ	10 UJ	10 UJ	1 UJ	10 UJ	10 UJ	0.11 J
SAV-B-17	SAVB-17S1SS	0.5 – 1	9/2/1998			0.22 UJ		0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.009 J	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ

Notes:

bgs = below ground surface

ANC/123540017/ES012512133927ANC 6-9

^{1.} All units are in milligrams per kilogram.

^{2.} Bold indicates that the analyte was detected.

^{3.} Shading indicates that the result exceeded screening criteria.

^{-- =} not analyzed

J = The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

PAHs = polynuclear aromatic hydrocarbons

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.

6 CONTAMINATION ASSESSMENT

6-10 ANC/123540017/ES012512133927ANC

TABLE 6-3 **Groundwater Results for BTEX, DRO, and GRO**Savoonga Federal Scout Readiness Center Data Gap Investigation

		Analyte	DRO	GRO	Benzene	Ethylbenzene	Toluene	Xylenes (Total)
	_	Screening Level	1500	2200	0.5	70	100	1000
Location	Sample ID	Sample Date						
11SAVGW001	11SAVGW001_GWOX	7/24/2011	660					
11SAVGW002	11SAVGW002_GWOX	7/24/2011	810					
11SAVSB004	11SAVSB004_GWOX	7/24/2011	18,000 J					
11SAVSB007	11SAVSB007_GWOX	7/24/2011	1,100		0.2 UJ	0.2 UJ	0.4 UJ	1.2 UJ
SAV-ACL-015	SAV-ACL-015	8/25/2004	30,200	2,110	80.5	166	127	581
SAV-ACL-016	SAV-ACL-016	8/25/2004	4,070	50 U	0.5 U	0.5 U	7.18	4.43

Notes:

- 1. All units are in micrograms per liter.
- 2. Bold indicates that the analyte was detected.
- 3. Shading indicates that the result exceeded screening criteria.
- -- = not analyzed
- BTEX = benzene, toluene, ethylbenzene, and xylenes
- DRO = diesel-range organics
- GRO = gasoline-range organics
- J = The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.

ANC/123540017/ES012512133927ANC 6-11

6-12 ANC/123540017/ES012512133927ANC

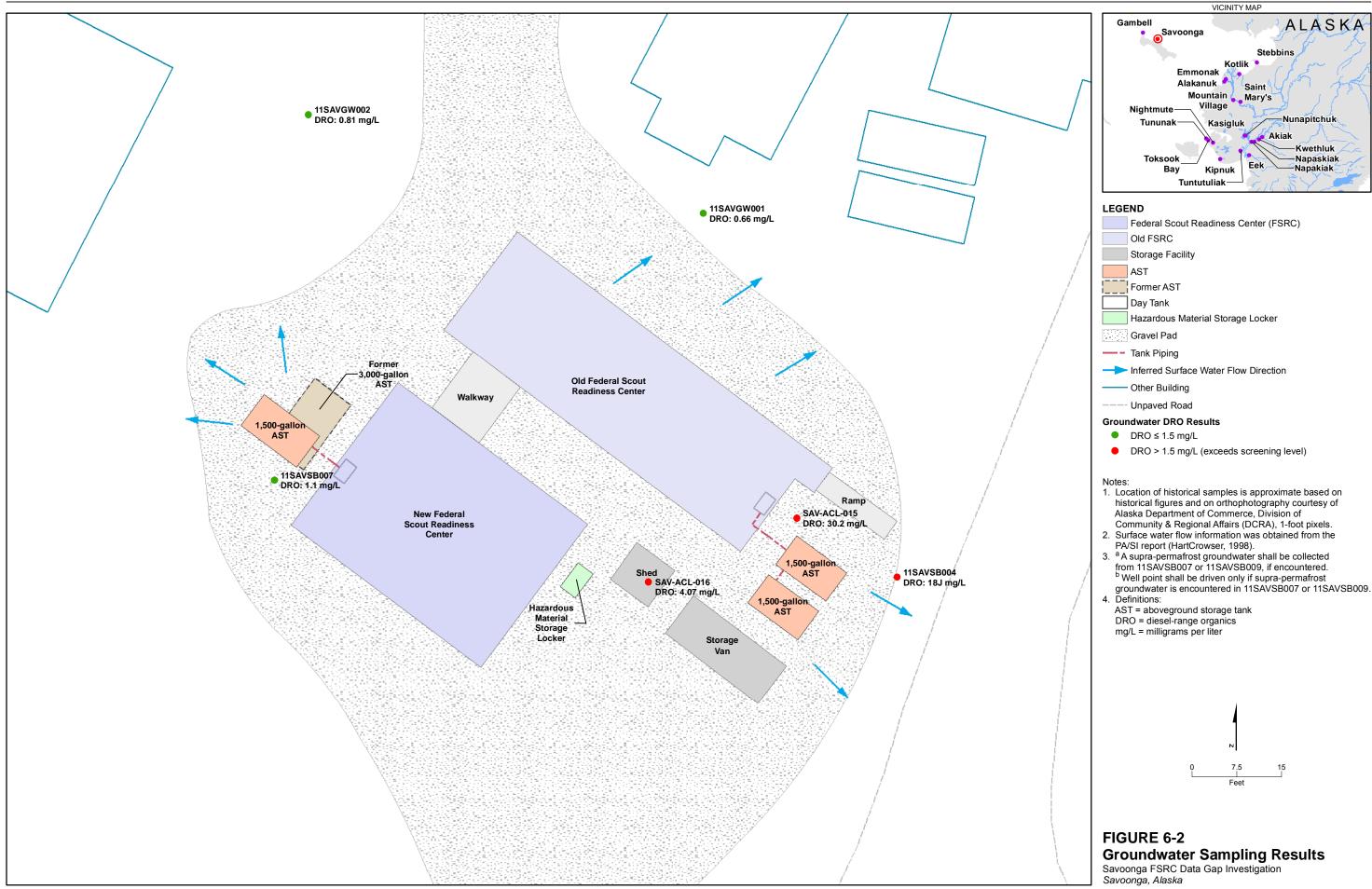


TABLE 6-4 **Groundwater Results for PAHs** Savoonga Federal Scout Readiness Center Data Gap Investigation

		Analyte	1- Methyl naphtha- lene	2- Methyl- naphtha- lene	Ace- naphth- ene	Ace- naphthyl- ene	Anthra- cene	Benzo(a)- anthra- cene	Benzo(a)- pyrene	Benzo(b)- fluor- anthene	Benzo- (g,h,i)- perylene	Benzo(k)- fluor- anthene	Chrysene	Dibenz(a,h)- anthra- cene	Fluor- anthene	Fluorene	Indeno- (1,2,3-cd)- pyrene	Naphtha- lene	Phen- anth- rene	Pyrene
		Screening Level	15	15	220	220	1100	0.12	0.02	0.12	110	1.2	12	0.012	150	150	0.12	73	1100	110
Location	Sample ID	Sample Date																		
11SAVGW001	11SAVGW001_GWOX	7/24/2011																		
11SAVGW002	11SAVGW002_GWOX	7/24/2011																		
11SAVSB004	11SAVSB004_GWOX	7/24/2011																		
11SAVSB007	11SAVSB007_GWOX	7/24/2011	0.25 J	0.27 J	0.052 UJ	0.052 UJ	0.052 UJ	0.052 UJ	0.052 UJ	0.1 UJ	0.052 UJ	0.052 UJ	0.052 UJ	0.1 UJ	0.052 UJ	0.027 J	0.1 UJ	0.098 J	0.052 UJ	0.052 UJ
SAV-ACL-015	SAV-ACL-015	8/25/2004																		
SAV-ACL-016	SAV-ACL-016	8/25/2004																		

Notes:

- All units are in micrograms per liter.
 Bold indicates that the analyte was detected.
- 3. Shading indicates that the result exceeded screening criteria.
- -- = not analyzed
- J = The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

PAHs = polynuclear aromatic hydrocarbons

UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.

ANC/123540017/ES012512133927ANC 6-15 6 CONTAMINATION ASSESSMENT

6-16 ANC/123540017/ES012512133927ANC

Cumulative Risk Assessment

This section summarizes the assessment of cumulative risk to human health completed for Savoonga FSRC, based on current site conditions (DQO 3) and based on a potential future remedial action.

7.1 Assessing Cumulative Risk

As defined by 18 AAC 75.325(g), the risk from remaining hazardous substances must not exceed a cumulative carcinogenic risk standard of 1 in 100,000 across all exposure pathways and must not exceed a cumulative noncarcinogenic risk standard at a hazard index (HI) of 1 across all exposure pathways.

The ADEC-approved hydrocarbon risk calculator (HRC) was used to determine the current cumulative risk for Savoonga FSRC (ADEC, 2011). The HRC is an alternative, peer-reviewed model used for calculating site-specific risks to human health under ADEC Method 3 (18 AAC 75.340[e]). The HRC is designed for use in assessing sites where there is petroleum contamination—specifically, the petroleum fractions, BTEX, PAHs, and other compounds dissolved in petroleum. In addition to petroleum compounds, a subset of approximately 120 additional compounds, selected based on their solubility characteristics from 18 AAC 75.341(c), Table B1, are included in the HRC to allow representative cumulative risk calculations for these compounds when they are present as constituents of a NAPL.

The use of the HRC requires collection of site-specific data to further characterize the nature of the hydrocarbon contamination at each site. This includes NAPL source area samples analyzed using Washington Method Northwest EPH and Washington Method Northwest VPH in addition to the ADEC methods for GRO, DRO and RRO. In the HRC, these hydrocarbon ranges are broken into narrower subsets and separated into aromatic and aliphatic hydrocarbon fractions. The HRC calculates the risk posed by the GRO, DRO, and RRO aromatic and aliphatic groups rather than presenting a hydrocarbon ACL. This approach allows the responsible party and ADEC to assess whether the site meets the risk criteria stipulated in 18 AAC 75. Consistent with ADEC guidance (ADEC, 2011), the HRC calculates risk for each of the hydrocarbon ranges, presents the numbers separately for each exposure pathway, and does not include those risks in the cumulative risk calculation for the site.

Each contaminant detected at a concentration above one-tenth of its respective Table B1 inhalation or direct contact cleanup level or 18 AAC 75.345(b)(1), Table C, cleanup level was included in the cumulative risk calculations. For groundwater, the site concentration used was the maximum concentration as identified in 18 AAC 75.380(c)(2).

7.2 Cumulative Risk Results

The HRC was used to assess cumulative risk for the Savoonga FSRC site, based on site current conditions (site soil properties, length of plume, and depth to groundwater), and it was assumed that all exposure pathways were complete. The contaminant concentrations used in the cumulative risk calculations were based on the maximum soil and groundwater concentrations documented for the site. Results of the assessment, provided in Appendix C and summarized in Table 7-1, showed a cumulative carcinogenic risk of 2×10^{-4} and a cumulative noncarcinogenic HI of 4. The risk results for current site conditions exceed the carcinogenic risk regulatory limit of 1×10^{-5} and the non-carcinogenic risk regulatory limit of an HI of 1. A significant portion of the risk identified for Savoonga FSRC is the result of elevated laboratory detection limits for certain PAH compounds that were not detected in soil.

The HRC was also used to assess risk associated with petroleum hydrocarbons for the Savoonga FSRC site. The concentrations for RRO, DRO, and GRO that were used in the calculations were based on the maximum reported soil concentrations of 360 mg/kg, 17,000 mg/kg, and 73 mg/kg, respectively. The EPH and VPH results for soil sampled from the secondary source area were not included in assessing site risk associated with petroleum hydrocarbons because the concentrations detected in

ANC/123540002/ES012512133927ANC 7-1

TABLE 7-1 **Cumulative Risk Assessment**Savoonga Federal Scout Readiness Center Data Gap Investigation

	Chemical of Potential Concern											
	Benzene	Toluene	Ethyl- benzene	Xylenes	1-Methyl- naphtha- lene	2-Methyl- naphtha- lene	Benzo(a)- pyrene	Benzo(b)- fluor- anthene	Dibenz(a,h)- anthra- cene	Indeno- (1,2,3-cd)- pyrene	Naphtha- lene	
Soil concentration (mg/kg)	3.1	160	48	250	230	360	0.49 U	0.62 U	1.5 U	0.59 U	180	
GW concentration (mg/L)	0.085	0.127	0.166	0.581	0.00025	0.00027	0.000052 U	0.0001 U	0.0001 U	0.0001 U	0.000098	
Individual Component Risk												
Soil direct contact HQ	0.0076	0.0043	0.0047	0.012	0.83	1.3					0.13	
Outdoor HQ	0.00014	1.5 x 10 ⁻⁶	1.2 x 10 ⁻⁵	3.6 x 10 ⁻⁴	5.0 x 10 ⁻⁷	4.5 x 10 ⁻⁷					7.5 x 10 ⁻⁷	
Indoor HQ	0.037	3.5 x 10 ⁻⁴	0.0024	0.070	1.2 x 10 ⁻⁵	9.2 x 10 ⁻⁶					2.0 x 10 ⁻⁵	
GW Ingestion HQ	0.58	0.0435	0.046	0.080	0.0017	0.0018					1.3 x 10 ⁻⁴	
Soil direct contact ILCR	2.1 x 10 ⁻⁷						3.7 x 10 ⁻⁵	1.3 x 10 ⁻⁶	3.7 x 10 ⁻⁵	1.2 x 10 ⁻⁶		
Outdoor inhalation ILCR	1.4 x 10 ⁻⁸		5.8 x 10 ⁻⁹				6.0 x 10 ⁻¹⁰	9.2 x 10 ⁻¹¹	1.6 x 10 ⁻¹⁰	1.7 x 10 ⁻¹²	3.3 x 10 ⁻¹¹	
Indoor inhalation ILCR	3.7 x 10 ⁻⁶		1.1 x 10 ⁻⁶				5.0 x 10 ⁻¹²	9.7 x 10 ⁻¹³	4.3 x 10 ⁻¹²	6.1 x 10 ⁻¹³	8.5x 10 ⁻¹⁰	
GW Ingestion ILCR	5.5 x 10 ⁻⁵						4.5 x 10 ⁻⁶	8.6 x 10 ⁻⁷	8.6 x 10 ⁻⁶	8.6 x 10 ⁻⁷		
Cumulative Risk Summation	1											
Hazard index						3						
ILCR						2 x 10 ⁻⁴						

Note: Shading indicates that the result exceeded applicable regulatory criteria (>10⁻⁵ or 1).

-- = not applicable

GW = groundwater

HQ = hazard quotient

ILCR = incremental lifetime cancer risk

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

7-2 ANC/123540002/ES012512133927ANC

the sample were extremely low. Only the primary source area samples were used to evaluate the nature of site contamination. The contaminated soil identified northwest of the New FSRC was assumed to be equivalent to the contamination southeast of the Old FSRC because leaks occurred from tanks that held the same heating oil and both spills (1985 and 1992) are more than two decades old (28 years and 21 years, respectively). Results of the assessment are provided in Appendix C and summarized in Table 7-2. The assessment determined that there is an ingestion risk for aliphatic DRO compounds for the Savoonga FSRC site.

TABLE 7-2
Risk Assessment of Petroleum Hydrocarbons
Savoonga Federal Scout Readiness Center Data Gap Investigation

	GRO Aromatics	DRO Aromatics	RRO Aromatics	GRO Aliphatics	DRO Aliphatics	RRO Aliphatics
Soil concentration (mg/kg)	0 ^a	1,567	124	25	15,433	236
GW concentration (mg/L)	0.044	1.24	0.00015	0.0047	0.0156	4.35 x 10 ⁻¹²
Soil direct contact HQ		0.39	0.041	5.0 x 10 ⁻⁵	1.5	0.0012
Outdoor inhalation HQ	1.6 x 10 ⁻⁵	3.7 x 10 ⁻⁴	No RfC	1.9 x 10 ⁻⁵	1.2 x 10 ⁻⁵	No RfC
Indoor inhalation HQ	0.0015	0.0018	No RfC	0.0067	0.0018	No RfC
Migration-to-GW HQ		0.089	1.5 x 10 ⁻⁵	2.7 x 10 ⁻⁶	6.3 x 10 ⁻¹⁵	6.3 x 10 ⁻¹⁵
GW Ingestion HQ	0.0061	0.052	0.000014	0.00020	0.00012	6.0 x 10 ⁻¹⁴

Note: Shading indicates that the result exceeded regulatory criteria (>1)

DRO = diesel-range organics

GRO = gasoline-range organics

GW = groundwater

HQ = hazard quotient

mg/kg = milligrams per kilogram

No RfC = no reference risk-based concentration available

RRO = residual-range organics

^aMeasured GRO aromatic concentration less than summation of benzene, toluene, ethylbenzene, and total xylenes concentration

^{-- =} not applicable

7-4 ANC/123540017/ES012512133927ANC

Conclusions and Recommendations

This section presents the conclusions of the DGI and provides recommendations for potential remedial action of contaminated soil and groundwater at Savoonga FSRC.

8.1 Conclusions

The following conclusions can be made about Savoonga FSRC, based on data provided in this report:

- Concentrations of DRO detected in soil exceeded 18 AAC 75.341(d), Table B2, cleanup levels and concentrations of benzene, toluene; concentrations of total xylenes detected in soil exceeded 18 AAC 75.341(c), Table B1, cleanup levels.
- The lateral extent of DRO-contaminated soil has been adequately delineated to the project SL. Soil contaminated with DRO above the SL exists in proximity to the two site AST locations.
- The vertical extent of DRO-contaminated soil is limited by the presence of permafrost. The estimated vertical depth of DRO-contaminated soil is 2.5 to 3 feet bgs.
- Concentrations of DRO and benzene detected in suprapermafrost groundwater exceeded 18 AAC 75.345,
 Table C, cleanup levels.
- The suprapermafrost groundwater does not appear to be migrating offsite northward toward the Bering Sea, the nearest surface water body; however, contaminated groundwater does appear to be migrating offsite to the east.
- Cumulative risk was assessed for the site based on current conditions. Each contaminant detected at a concentration above one-tenth of its 18 AAC 75.345(b)(1), Table B1, inhalation or direct contact cleanup level for soil or its 18 AAC 75.345(b)(1), Table C, cleanup level for groundwater was included in the cumulative risk calculations. The risk results for current site conditions were determined to be above the regulatory limit of 1 x 10⁻⁵ for carcinogenic risk and the regulatory HI limit of 1 for noncarcinogenic risk.
- The HRC was used to assess risk posed by the GRO, DRO, and RRO aromatic and aliphatic groups, based on current site conditions. The risk posed by the DRO aliphatic groups was found to be above the regulatory HI limit of 1 for noncarcinogenic risk.

8.2 Proposed Soil Alternative Cleanup Levels

As stated in 18 AAC 75.340(e), an ACL can be proposed under ADEC Method 3, provided that the ACL modifies only the migration-to-groundwater or inhalation cleanup levels from Table B1 of 18 AAC 75.341(c) or Table B2 of 18 AAC 75.341(d), based on use of approved site-specific data and an approved fate-and-transport model. The cleanup level that would then apply at the site for a hazardous substance would be the most stringent of the Table B1 direct contact cleanup level or the Table B2 ingestion cleanup level and the site-specific calculated cleanup levels for inhalation and migration to groundwater. A proposed migration-to-groundwater ACL must be protective of applicable groundwater cleanup levels under 18 AAC 75.345 and must not exceed the ingestion and inhalation levels of Tables B1 and B2.

The ingestion cleanup level for petroleum hydrocarbons in soil is presented in Table B2 of 18 AAC 75.341(d). To determine the total DRO concentration that would exceed the ingestion cleanup level for the aliphatic and aromatic fractions for Savoonga FSRC, the ingestion cleanup level for each fraction was divided by its calculated mass fraction (Table C-4 of Appendix C) (Table 8-1). The lesser of the calculated aliphatic and aromatic ingestion cleanup levels for DRO in soil was established as the Savoonga FSRC ingestion cleanup level for DRO in soil.

TABLE 8-1 **Soil Ingestion Cleanup Levels**

Savoonga Federal Scout Readiness Center Data Gap Investigation

	Mass Fracti	on ^a (Percent)	Ingestion Cle	anup Level ^b	 Savoonga Soil Ingestion 		
	Aromatics	Aliphatics	Aromatics	Aliphatics	Cleanup Level ^c		
Diesel-range organics	9.22	90.78	4,100	10,000	11,015		

Note: All units are in milligrams per kilogram.

Similarly to the ingestion cleanup level, the inhalation cleanup level for DRO was calculated for Savoonga FSRC, based on 18 AAC 75.341(d), Table B2, inhalation cleanup levels for the aliphatic and aromatic range divided by the site-specific calculated mass fraction (Table C-4 of Appendix C) (Table 8-2). The lesser of the calculated aliphatic and aromatic ingestion cleanup levels for DRO in soil was established as the Savoonga FSRC inhalation cleanup level for DRO in soil.

TABLE 8-2
Soil Inhalation Cleanup Levels
Savoonga Federal Scout Readiness Center Data Gap Investigation

•		Fraction ^a rcent)	Inhalation Cl (mg	•	Savoonga Soil Inhalation Cleanup Level ^c
	Aromatics	Aliphatics	Aromatics	Aliphatics	(mg/kg)
Diesel-range organics	9.22	90.78	5,000	10,000	11,015

^aMass fraction obtained from application of Washington Methods Northwest VPH and Northwest EPH

mg/kg = milligrams per kilogram

Because a proposed migration-to-groundwater ACL cannot exceed a site's calculated ingestion cleanup level (18 AAC 75.340[e]), the ingestion cleanup level for DRO (11,015 mg/kg) was used as input to the HRC to determine whether this soil concentration would produce a groundwater ingestion concentration that exceeds regulatory criteria (18 AAC 75.345). Similarly, because benzene concentrations in soil exceeded the 18 AAC 75.341(c), Table B1, migration-to-groundwater cleanup level, an initial benzene concentration of 0.27 (the remaining concentration, assuming that the soils containing high levels of DRO were excavated) was used as input into the HRC to determine whether this soil concentration would produce a groundwater ingestion concentration that exceeds regulatory criteria.

Initial modeling results indicated that the initially proposed DRO soil concentration did not exceed groundwater ingestion criteria. The initially modeled benzene soil concentration, on the other hand, caused an exceedance of groundwater ingestion criteria. Using an iterative approach, the benzene soil concentration was lowered until the modeled soil concentration achieved groundwater regulatory compliance. The results of the modeled soil impacts to site groundwater are presented in Table 8-3.

Based on the calculated ingestion cleanup level presented in Table 8-1, the inhalation cleanup level presented in Table 8-2, and the results of the calculated impacts to groundwater presented in Table 8-3, the proposed soil ACLs for Savoonga FSRC are 0.13 mg/kg for benzene and 11,015 mg/kg for DRO.

8-2 ANC/123540017/ES012512133927ANC

^aMass fraction obtained from application of Washington Methods Northwest VPH and Northwest EPH

^bIngestion cleanup levels obtained from 18 AAC 75.341(d), Table B2

^cIngestion cleanup level = the lesser of the aromatic ingestion cleanup level ÷ aromatic mass fraction and the aliphatic ingestion cleanup level ÷ aliphatic mass fraction

^bInhalation cleanup levels obtained from 18 AAC 75.341(d), Table B2

^cInhalation cleanup level = the lesser of the aromatic inhalation cleanup level ÷ aromatic mass fraction and the aliphatic inhalation cleanup level ÷ aliphatic mass fraction

TABLE 8-3 Modeled Contaminated Soil Impacts to Groundwater

Savoonga Federa	Scout Readiness	Center Data	Gap Investigation

	Soil ACL (mg/kg)	Pore Water Concentration (mg/L) ^a			Groundwater Concentration (mg/L) ^b		
		Aromatics	Aliphatics	Total	Aromatics	Aliphatics	Total
Benzene	0.13	N/A	N/A	0.0394	N/A	N/A	0.0049
Diesel-range organics	11,015	1.21	0.0152	1.22	0.127	0.0016	0.129

^aModeled dissolved concentration in equilibrium with soil (results from cells P253 through P261 in the hydrocarbon risk calculator)

8.3 Recommended Remedial Actions

Based on the known extents of petroleum-contaminated soil and groundwater and the assessment of cumulative risk, the following recommendations for future remedial actions are made for each contaminated medium present at Savoonga FSRC.

8.3.1 Contaminated Soil

Given the inadequate site infrastructure, restricted usable space, and limited site access to Savoonga FSRC, onsite treatment of contaminated soil was not considered a possibility. Therefore, only offsite remedial actions for contaminated soil were considered. The only remedial action that was judged suitable for the contaminated soil at Savoonga FSRC was excavation and offsite disposal. Given a lateral extent of contaminated soil of approximately 570 square feet (Figure 6-1), with an assumed vertical extent of 3.5 feet bgs, there is approximately 74 in situ yd³ of contaminated soil above ADEC Method 2 cleanup levels (DRO concentrations above 250 mg/kg).

Because of the presence of contaminated groundwater, consideration needs to be given to the ACL as well as the complete removal of contaminated soil in terms of funding, site conditions, and projected long-term monitoring costs. Because of the large quantity of petroleum-contaminated soil present at the site, it is recommended that contaminated soil be excavated and removed only to the proposed ACL.

As shown in Table 6-1, there are three sample locations (for a total of three soil samples) where soil contains contaminant concentrations that exceed the proposed soil ACLs and requires remedial action. The three sample locations are borings 11SAVSB001, B12, and B13. The area of contamination is located between the northern AST and the Old FSRC and is approximately 12 feet wide by 6 feet long (Figure 8-1). It is recommended that the contaminated soil associated with these samples be excavated from the surface down to permafrost and shipped offsite for either thermal treatment or inclusion into an approved landfill for disposal.

Upon completion of the soil excavation efforts, confirmation soil samples should be collected to comply with regulatory guidance and submitted for laboratory analysis of BTEX, GRO, and DRO (including EPH and VPH), with at least one confirmation sample (from the location with highest remaining contamination) also being analyzed for PAHs. A cumulative risk assessment must again be completed subsequent to the remedial action (soil excavation efforts) to verify that the site meets the regulatory limits of 1×10^{-5} for carcinogenic risk and an HI of 1 for noncarcinogenic risk.

As required by 18 AAC 75.325(i), approval from ADEC will be required prior to any future excavation or disturbance of soil at Savoonga FSRC to prevent placement of petroleum-contaminated soil in environmentally sensitive areas.

^bModeled pore water concentration divided by calculated site-specific dilution attenuation factor

ACL = alternative cleanup level proposed for the migration-to-groundwater pathway

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

N/A = not applicable

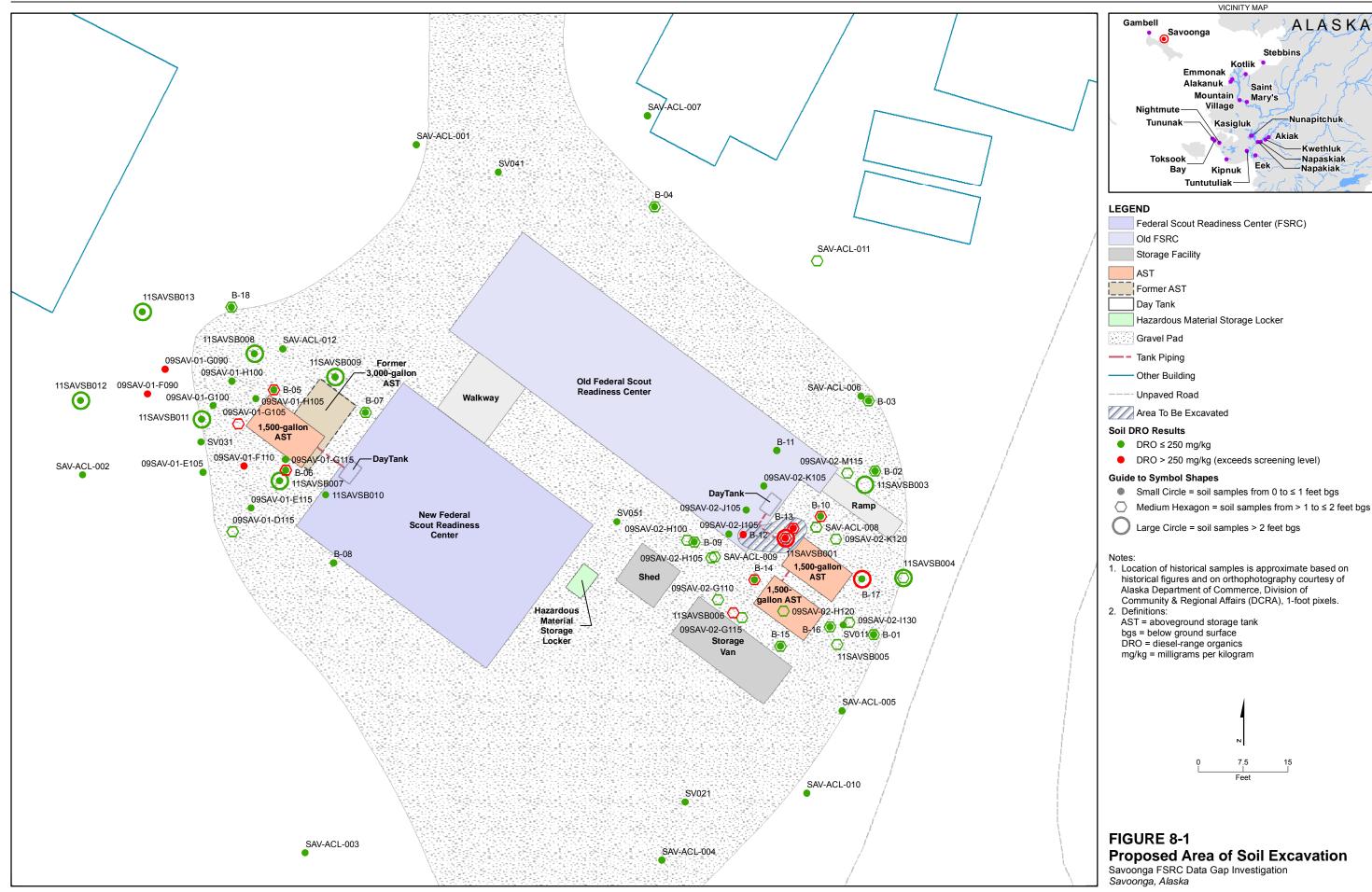
8.3.2 Contaminated Groundwater

Petroleum-contaminated suprapermafrost groundwater exists at Savoonga FSRC and requires remedial action. The concentrations of petroleum hydrocarbons (DRO) and benzene detected in groundwater samples are above the respective cleanup levels of 1.5 mg/L and 0.005 mg/L. Investigation results show that the contaminated groundwater is not migrating towards the Bering Sea to the north, but is migrating offsite to the east. There are no known drinking water wells onsite that could access the contaminated groundwater, nor are there known drinking water wells to the east of the site. The community of Savoonga currently obtains its water from a well located adjacent to the runway, approximately 0.75 mile southeast of and upgradient from Savoonga FSRC. In addition, the community well is set at a depth of 195 feet bgs and is not hydraulically connected to the contaminated shallower active-layer groundwater.

The recommended remedial action for the petroleum-contaminated groundwater at Savoonga FSRC is long-term monitoring of the natural reduction of petroleum contamination, verifying that the plume is stable or continuing to shrink subsequent to the proposed soil remedial action. Future groundwater samples should be collected from at least one source area well and one well to the east. The well locations would require ADEC approval. The groundwater quality should be monitored in the long term until contaminant concentrations in groundwater meet regulatory requirements.

8.4 Estimated Volume

The proposed area that requires excavation measures approximately 50 square feet (Figure 8-1). To be conservative, the DRO-contaminated soil is assumed to reach 3.5 feet bgs (given the elevated results for sample 11SAVSB001_S002-2.6 and assuming that permafrost is not encountered sooner). Therefore, the in situ volume of DRO-contaminated soil is estimated at 6.5 yd³.


8.5 Summary

The lateral and vertical extent of DRO-contaminated soil has been delineated to the project SL. Based on the results of the cumulative risk assessment completed for the Savoonga FSRC site under current conditions, carcinogenic and noncarcinogenic risk levels for hazardous substances in soil and groundwater are above regulatory limits. In addition, based on results from use of the HRC, the DRO aliphatic fractions pose an ingestion risk greater than State of Alaska regulations allow.

Based on proposed soil ACLs, it is estimated that 6.5 in situ yd³ of contaminated soil would require excavation to achieve the DRO and BTEX soil cleanup levels of 11,015 mg/kg and 0.13 mg/kg, respectively. The proposed remedial action would mitigate the ingestion risk posed by the aliphatic fractions of DRO.

Concentrations of DRO and benzene detected in groundwater are above the respective cleanup levels of 1.5 mg/L and 0.005 mg/L. There are no known drinking water wells onsite that could access the contaminated groundwater, nor are there known drinking water wells to the east of the site. The community of Savoonga currently obtains its water from a well located adjacent to the runway, approximately 0.75 mile southeast of and upgradient from the FSRC. The community well is set at a depth of 195 feet bgs and is not hydraulically connected to the contaminated shallower active-layer groundwater. The petroleum-contaminated groundwater at Savoonga FSRC should be sampled in the long term to monitor the natural reduction of petroleum contamination.

8-4 ANC/123540017/ES012512133927ANC

SECTION 9

References

Alaska Department of Commerce, Community, and Economic Development, Division of Community and Regional Affairs. 2012. *Alaska Community Database, Community Information Summaries, Savoonga*. Accessed during March 2012.

Alaska Department of Environmental Conservation (ADEC). 2011. *Implementing Guidance for the Method 3 Hydrocarbon Risk Calculator*. February 25.

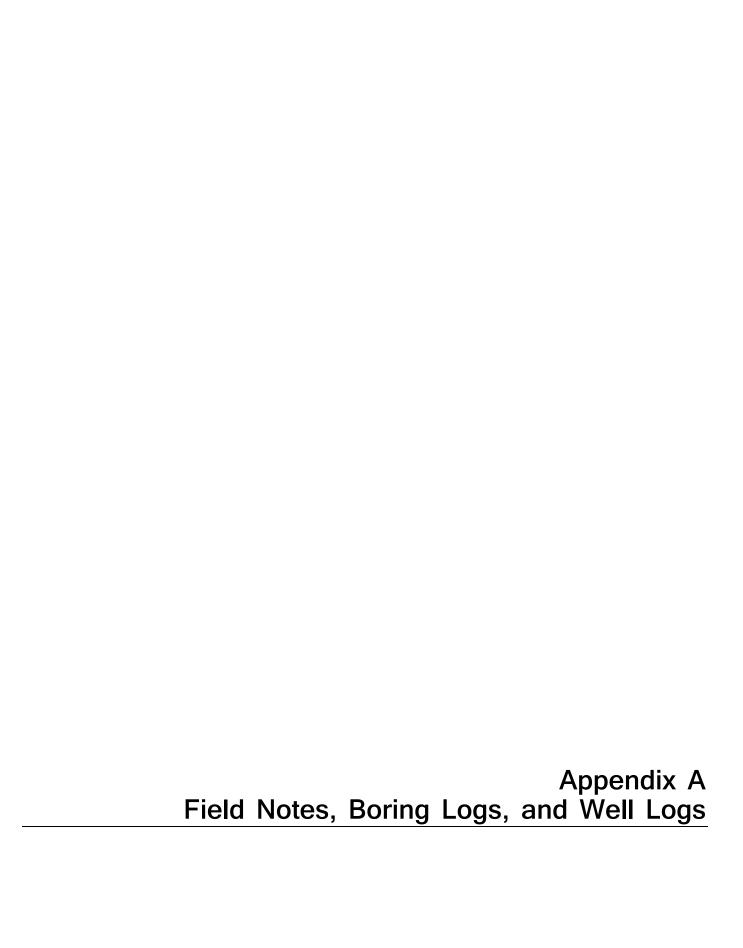
Alaska Department of Natural Resources (ADNR). 2012. Well Log Tracking System. http://www.navmaps.alaska.gov/welts. Accessed during March 2012.

Alaska Offshore, Inc. (Alaska Offshore). 1985. *Final Spill Report*. Prepared for Alaska Army National Guard. August 3.

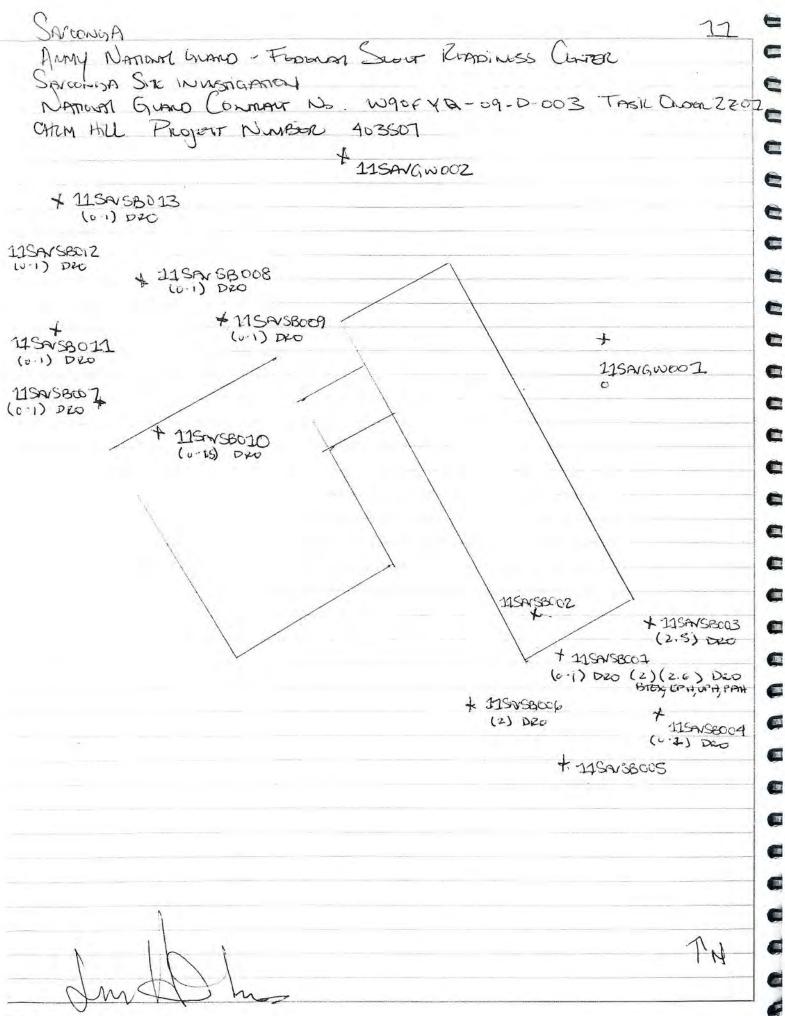
CH2M HILL. 2011. Final Work Plan for Site Characterization at 21 Alaska Federal Scout Readiness Centers. April.

Clarus Technologies, LLC (Clarus). 2006. *Alternate Cleanup Level Demonstration Project, Savoonga Federal Scout Armory*. May.

ERM-West, Inc., and Hart Crowser, Inc. (ERM/Hart Crowser). 1999. Site Investigation Army National Guard Scout Armory Savoonga, Alaska. Final. April.


North Wind, Inc. (North Wind). 2009. Secondary Site Characterization, Federal Scout Armory, Savoonga, Alaska. Draft. July.

Ogden Environmental and Energy Services, Inc. (Ogden). 1998. Report for Preliminary Assessment/ Site Investigation at the Savoonga Federal Scout Armory, Savoonga, Alaska. Final. January.


Western Regional Climate Center. 2012. Online database for Savoonga airport. http://www.wrcc.dri.edu/cgibin/cliMAIN.pl?ak0754. Accessed during March 2012.

ANC/123540017/ES012512133927ANC 9-

9-2 ANC/123540017/ES012512133927ANC

Anny MATIONAL GUARD FLOWER SLOT READINGS CONTER SALODONA SITE INVESTIGATION National Grand Compact No. WICTYA-09-D-0003 TASK ONDER 2202 CHEM HILL PROJEG NOVISTER 403507 DATE 05 JULY 2011 SIRe CONDITION : / Croop - CHEMICARY WEATHER 41° RAINES FUR PURSUALUR JAH, MIL EQUIPMENT COMBRATION MINISTER PID COMBRATE W/1503UTY PLANE 100 Annive AT AMPORT & WALK TO SITE MANLOUT BOILMY LOUPITONS of Grims waren For Deard From lowy STONE. BEGIN SOIL BOWNES A 12:00 -> TRIMBLE NOT WONKING MANK OUT to comons By Scale + MIMSURE SAMPIED THE FOILOWING Soil 115AVSB007_3000-07 DRO C 1340 Dec C 1345 715A SB009_ S000-01 11SN/SB0013_ S000-07 DEO 0 1415 DRO @ 1430 115AVSBOOT 3000.07 * 115A/SB0011_5000-01 DIW @ 1446 * 115AKSBOO8 _ 5000 01 D20 C 1455 11 SN/SB0010_ S000 01 Divo Q 1575 RINUSAL ALLOSS THE SITE AT I ONE FOOT BITOW GRADE; CLAYEY SAND WITH Guaral POUR UP EQUIPMENT AND WALL TO ALSTRIP PLATE TOADED By 1600 of Ringy to Dipping TO GAMBY THE TO WENT BACK At Nont Amport C 1750. Gras Gener & Stop At Hamburke STONE FOR POST HOLE DIGHTO. NONE OSTIMATO. RH BOUGHT A Chippen Too 1. * DISPLEGAND SAMPLE IF GOAL OF (2.3) & (4-5) FEET BUTON GRADE Due No

Anny Nahang GUARD - FLOWER SLOW READINESS CONTER SAVOGUSA SITE INVESTIGATION Nomand Guano Congresion No WOJFYQ DI-D-003 TASK CHOER 2207 CHEM HILL PROPER NUMBER 403507 06 July 2011 SITE CONDITION GOOD CHURNING A HAM IN NOW BUILDING Womter 420 WINDY, RAIN, FIGD POSSONNEL JMH RH ML EQUIPMENT CALIBRATICS MINI RAK PID (MIBRATE W/1508LTY/6)E AMING AT ATREPORT + WOLK TO SITE + SET UP FOR THE DAY GO TO love STALL FOR DECOME WATER Collecto THE Following Somples 113ASB007 _ S000-07 , DNO C. 1200 715A15B004-5000-07 D60 C 1215 115NSB001_ SOUZ.6 1245 DRO @ BITEX, Epit, UPH, PAH 175AVSB001 - 5002 DRO @ 1230 Brox, GPH, JPH, PANH 115N 5603_502.5 1 DEC C 1330 11SM SBOOK_ SOUZ DIG C. 405 115ASBOOS- SOOIS DROC 1440 1197452004 - SECZ-03 , DROC 1505 POUL UP GOVIPMENT AND WOLK TO AMSTRIP Plante lossoto & DOPMITTO NOME AT NOME AINPONT @ 1700

SATOONIGA	26
Anny NATIONAL GUARD - TEDERAL	
SALOOMA SIE INVESTIGATION	
Namenal Grano Congress No. W90FYQ-09-0-003	. TASIL Onour 2762
CHZM HILL Progent Number 405507	
3	
DATE 23 JULY 2011	
SITE COLDINON GOOD	
WEATHER 45 RM	
COUBINE MINI LINE PID OH CLOSZAG W/15, B	3251
CALLBRUME MIMI LIME PID OH CIORZAG W/15, B	my lut at 20 in
LOT 1039020 trush AL 0.0 Sprand 1	00, 101, 100 PPM
INDOOR AND Elppo Owoon And il ppor	
Thurso e 1950 - Would To Amon	1 & Sur up
For Day Tolles How Unly loc	ATE. NONE
Huiso e ~950 - Would To Amon For Day Tolker Aport Unity loc Was Completion For THIS SURE.	
2 Foot Pur physics Severy To 32	Byon Grade
2 Food Pier physics Severy To 32	
No GROUPER OUCOUTSED, KAIN WITTER	To Maring
THROUGHT CAMBY GRANET. HODSPACE JUST	
1150/SB007 USED POST HOTE DIGGER & BAM 3 FAST BUYOW GRADE. HOW ALCIDE TO COILER	TO ADVANTO TO
3 FRAT EURON GRADE. HOW HUGER TO COINER	(-3) (1240
of DRO, BTEX, VPH, EPH, PAH , SUELEN SI	G 70 ~ 4.0 Fr
Hole Couplary Filts Win Worm.	
	T
12 SAVGWOOZ; USON POST HOLE DIGUEL TO -	Answer Bourny
To & L From Balow Small No Soil Samples	COINCIES.
Mostly Duganic Umaion & Silt. INSTANTED	14 low. Miny
WATEN Filliso Area	
MAN WE DO IN TO	7
17 SAVGWOCT USED YEST HOLE 1441 TO A	property Bound
10 55 the took change No All SAMPIL	x colleged
12 SAVGWOCZ; USED POST HOIE DYGEN TO A TO ~ 38 FLE PUDL GIRAGE. NO S.I SAPPLE MOGRY CLAY GRENT, OFFET FROM DEPORT	LBY Livery
MCALERAN AND MICH CONTRACTOR NO.	1 -2 - 2
Ba lance Nasana (lasi (in) College	10 DED 2 2 6 1010
HEAVERDOT, AND AND 11 SAV SBOOG ADV By an Grand Mostry Cang GRAN; CONKUT	th Nr0 0.2 6 1212
and the mos	8 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10
Matter in this harmon	Scale: 1 square =

C

C

C

C

C

C

Army NAMONAL GUMO · FEDGERAR RUADINESS CENTRE SARCONGA SITE INVESTIGATION Nomenan Grano Comara No. W90FYQ-09- D-003 Task Closer 2201 CHZM HII Project Number 403507

Done 24 JULY 2017 SITE GODINON WEIS GWOOT AND SPOOT Politico Our of Grows WORSTER 50 Fog FUD PERSONES JUHL PLH ML Equipment Consideration: Companion Mine Pip at de 229 W/150647/line Lor: 1059010 INITIAN FREE PIR 0.0 INTITAL Spon Car 101, 103, 100 ppm DUTSIDE AL 6.0 INSIDE 21 ppm

11SASBOOZ_SOCZ.03 COILLIED @ 0740; POST HOLE DIGISTION USID TO ADDAME BOME TO 13 FEB BOOK GRADE SAMY STT; Blace SAMMANIO/ From ~ 27 From colleges DIEU'C 0740; Homo Spore of ppn; Sily Chay

115NISBOOIZ, SOOZ-03 COILMON C OSIO, POST HOLE DIGGER USIN TO ADVANTE BOMM TO "3 FRET BHOW GRAPE; TRUTIL 13 FLOOR; SMOOT STUT, BLACK SATURDED HEAD Sports il ppur

11 SAV SBOOT - SUOZ-03; CONTENDE C 0840; POST HATE DIGGIE USED TO ADVANCE BINING TO ~ 2.5 FEBT BUOW GNARE Thouse @ ~ 2.5; Smoot Start, Blown Starten Horosporus El ppm

11 SANSBOOIS SO 02-03; COILLUTED C 0900; POST HOLE DIGGER USED TO ADVANCE BOWN TO -3 FLAT BYON GRANCE; SILY CLAY, BLALL SATURATED HOMOSPACE 21 PPM

Colleges Mantingol Blance O 0900; The CHE IN THE COOLER APPENDED TO HAVE I LANCED.

14 RE-INSTANCED PUL WERLS GWOOZ + SBOOT: NO DELON PLOCHOURS POSSIBLE CAUSS CONTAMINATION.

SAUTONGA "

UGOD. Rain in NOME & forecast for Source is rain with 15-30 mph wind and areas of patchy Day, 0700 Subway breakfast/lunch 0750 Purchase case water & stape 2 boxes nitrils ship cargo to Gambell Remove 2001 Type 11 From cooler stadd tools, hitrils de baggage to Sevenga. Rodney Natl Guard rep meet e dirport & is going with us to Savoonga 1023 Av Gambell 1040 Av Sawyigg Mob gow from airport to FSRC (\$20 tal).
upack & get potable decon 1+20 at storp GPS battery is dead. Use tape & measure sample locations & place lags. The pad material is volcavic that has large rock & not very conduive to hand auger Michael used small dia auger and you have to really work to get Hown I.

NOME + SALOGNGA-

NOHE SAVOONGA 7/5/2011 TUESDAY SAVOCINGA Most of the holes down to I have water surface into them from surface water. The hand augers will not go more than I'bgs due to refusal hitting rocks, Plan to try & buy a post hole digger 4 metal Bar to dig down locals are very hoppy to see us carrings for sale. Tried to track down 4 coolers from the lab, Took 4 eals to find them \$ they were at the 1120 treatment plant. Paid local \$10 to bring them to the FSRC. Worked all sample locations & limited to I with augers we have. 1530 Denob & lock up gear in FSRC. \$ go to airport 1600 ERA picts us up. Go to Gambell (duil rig & materials eve on Tormac) Leave Gaubell 1740 AV NOME Anchose steel Far w points nitrils e

Scale 1 square=

20 SAVOONGA ISTEEL BAR POST HOLE DIG! ERA 7/6/2011 WEDNESDAY NOME-SAUCENCA - NOME 0730 Dvojp Jenny Michael, Rachey & Airport Pizza & go to Builders Supply & purchase posthole digger, Pickup everyone qo to ERA & then pick up Tom & return to ERA On hold waiting for people Tour & Rodney are going to Gambell Get a call from dvillers (Gary) they are flying ANC-Nome & in ~ 1/200 a Flight to Gambell a 1600 bus on Bearing Air, Let Tom & Rodney Know they show to be coming into Cambell in afternoon 1109 Ar Savonga (20-30 mple wind from 1137 Jenny Michael get decon water · a Rich starts on SBI Dig down to - 2.6 4 transition from fill & hit native tendra (organic matt) & sample brown sitty material bewath, which is frozen. Very strong hydrocarla water is seeping into the hok

STEEL BAR POST HOLE BIGGER

7/6/2011 WEDNESDAY SAVOONGA Stort on SBH dig down to ~2.5' # go through to native material mild hydrocarbon odor. Frozen Water seeping into hole em 1'bgs

Start on SB03 dig down to ~2.5' het frozen material. Wester sceping into hole.

Start on SADOS dig down to 2' and hit large rock across whole bottom of hole. REJECT

Try SB7 very rocky/gravelly at : surface & surface water is continuously flowing into the hole (sheen present). Abandone boving due to extensive water,

Start on SB4 dig down to ~2.8' water is seeping into hole e ~2' & but water is seeping in at hottom of hole,

from 2 / 695.

22 SAUDONGA STEEL BAR POST HOLE DIGGERS AVOONGA NOME 7/6/2011 WEDNESDAY It has been raining and blowing all days & wind is continuous 20-30 mph. 1530 Pack gear & demob. We did not complete all barings and sampling at depth due to inadequate tools on Tresday and limited time on ground Weds, (Shorted us Ihr waiting in mouning), Get Robin from across the street to have our gear to the airport 1600 ERA arrives & load our gear and return to Nome. 1652 Ar Nome Separate gear into stay in Nome palat 4 90 to Gample polat. Pull samples * Field gear to dry, Collect equip. blank pack samples. Introduce John Colley to Jeang & Mite drop them OFF e Rioport Pizza & go to ERA to pick my bag & get tape for sample cooler. AK Air Cargo closed John starts SSC training to Denny 0840 Rodner call bring 12 pak DC dany Food Scale To Rodner call bring 12 pak DC dany Food We croke Lodge of there is a store

THURSDAY NOME-GAMBELL GAMBELL 7/2/201 0630 Packup gelice & bagin to demols Nome to Gambell, Drop Jenny 4/7. ke & Awport Pizza, John helps ship samples. Ship samples AK Air Cavgo. Drop off great & ERA Sample Air Bill 027 7775 4202 Call test Americal ANC& Lu message 878. Refuel return rental car & had shopped e stove for food to bring 0906 Lu Nome 1955 Ar Gambel) Driller's made to Gambell on Berry Air Utility locates water & sewer clear Check w AUEC Roy on Fred 1800 478 1865 UUI Phone Leon 800 478-2020

Call AVEC ANC Diane & she faxes drawing of elec utility thes. Took 2 faxes to get right location & have to go to City office (one where we were at not working). Electis clear of where we are drilling

Scale Lat 🚆

7/22/2011 FRIDAY Gambell/Nome 0700 Repack sample coolers with fresh gelice. Record Wis WL' BTOC Location 11.63 Well riser hit 10.69 with 4 whooler 0716 GW5 0217C0719 GW6 10.44. Cw 7 GW8 10.12 0727 GW9 10,97 + 1000 Jenny & Michael leave on ERA to None 1630 Rich leaves ERA to Name 1730 Av Nome 7/23/2011 SATURDAY SAVONGA Savon 0820 Meet Jenny Michael e ERA 0900 Leave For Sourcong 1000 Ar Savosuca & setup 1045 Sairt on BBOOHGW (scaped soil previously) 0-27' Sity Sandy Gravel 2.7-3.2 Peat 3.2 frozes silt no water at it side Set well 1,2-3,2' screen

7/23/2011 SATURDAY Savorage Start on GW 1 Silty Saudy Grave | to 1.5' Peat to 2.0 water seeping in 8 1.5' 2.5' Frozen Silt grex 1422 Stort on GW2 0-1' Dark brown soil with organiss 1 - Grey silt Start SB9 Gravel to 2' tendra matt twater Water flaving ine 1' 2,5' Frozen gray sitt 1851 Pack up & go to airport No plane-fogged in Real house from Rowland Alousa \$ 125 Tperson hight 7/24/2011 SUNDAY Saucouse 0700 AV FSRC GWI & SBTGW wells were pulled a left by boving DRO Start SB8 Grave 1-1,5 wet, Toudra orgine cots water seeping in from b'clown

SBIA Brown soin evgaks 0-6"

Crey silt E"-2.5" & booldrse 2.5% for se

Scale: 1 square=

Solice Obligantimet trades Cambell for City SAUCONGA SUNDAY ALL BIGC GWZ WL= 269, TA= 4.46, Stictup= 250 SBYGW WL= 3,93, TD= 5,44, Sticke= 2,49 Jaw boile onica Silv K99 Jany Mike scuple remaine horing 0918 Reset GW1 & SB7GLe is brothenby Joanie & Foole Onga & BAMBELL Veroucco James 1145 GWI WL=4,19' 3,2'stickyp 2018 Ewinnie 90058 04 a Setts stut 5-2110 Antagomi whale home Jenny goes back to Nova on Braving Air Fareonga Harrison Miklahonky Prep & label GW sample jous & COC 1445 ERA cernives w peripunp & masterflex hose 2005 Stant GW sampling, SB4GW, GWI, GWZ Slight breeze all low flow & purge dry. SB7GW e Sua. bssd. ova prizzberis good producer & stabilize quickly 481810 Sample SB7 GW For primary & dup savongg James Vozera 009848 Sample SB4 (Keeps purging dry) bear w baby 1902 Sample GWI K 1953 Sample GWZ 2030 Pack samples & gear & leave FSRC T-5833 5235 Rent Roland Alowa's Louse \$ 125/page Rich 7/25/201/ NOME PLONDAY Foggy & drizzely ~ 480 cally 0630 Concell Name Maget (CA725) Charge 366 for Parel 0730 Call natt proj update & need return to Stebbins Carson Dozeva Ir/horned Duffin painted DAO SE COURSE OF ON PHILAD SE COURSE Yo-Yo (tyakiv Ship GW Leave Savoongy for Nome 1210 Ar Nome Samples Brandon Thony Walvus Glenn ODzevasuk 2222 Its Like or looking in the wrong avec there for more worse spell likewore new ERA to 1315 Leave Nome Foir Stebbins - St Marys Notified Lab = Scale: 1 square= Refer to RH BOOK 2/2 to see army national by at least 4-6 houses

SAMPLE TRACKING LOG

Project # 403507 Site: Snv con GA Page of

		Sample				TIME Shipment				
Date	ID	Location	Depth	Matrix	Туре	.Cooler ID	Ship Date	Method	Shipped To	Date Received
7511	116AVSB007	S000 07	6-1	Sol	DIZO	1340				
7.5.11	11SA/ SB009	the state of the s	0-1	Sel	DiZo	13.45				
1.5.11	115AV 580013		6.)	So.1	010	1415				
7.5.11	115AVS130012	3000 01	0-1	Soil	DRO	1430				
7.511	1194/50011	-500002	0-1	Soil	DRO	1946				
7.5.11	113WSB0008	-S000-01	0-1	Sol	DRO	1455				
7.5.11	11 SAV SBOOTO		005	Soil	Dizo	KK				
76-11	1184/360001	S000-01	0-1	Soil	DIZO	1200				
7.6.11	119AY \$60009		0-1	Soil	DEO	1715				
7.6.11	1158V590001	5002	2	So.)	DRO	1230				
					BIDY CAN					
7.611	115AV56001	5026	2.60	50.1	المالة مالم					
7-6-11	119148003	-50		Seil	epit upi		1			
7.6.11	11506810 3	5025	15	Soil	Dev	1330				
7.6.11	119N/SB006		2	Suil	DRO	405				
7-6-17	115A/SB065		1.8	Soil	DRO	1440				
7611	115×55009		23	Soil	DEO	1503				
										16.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302

509-924-9200 FAX 924-9290

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

425-420-9200 FAX 420-9210

				C	HAIN	OF	CUST	ODY	REP	ORT					Work O	rder#:		
CLIENT: ALMY NADERAL	GIAMO				INVOIC	E TO:	AATT	FLYN	12/						7	TURNA!	ROUND REQUES	T
REPORT TO: MAST PLYNN ADDRESS: CHE MAST MALL						9	472M	142L	6" A			500					Business Days * Inorganic Analyses	
PHONE: 907, 440, 30 FAX	ANL 99508				P.O. NUI		nine	nage	AL	- 99	SON					Petroleum	Hydrocarbon Analyses	1 <1
PROJECT NAME: SANCONGA							PR	ESERVAT	IVE						5	4	3 2 1	:1
PROJECT NUMBER: 41394	3.0	& more	none	Meny	Parmy	NHE									STD		12412	
	P	AB					REQUE	STED AN	ALYSES						07	THER	Specify:	
SAMPLED BY: MUL How	MILHAET LANDO	こかと	1 1	E	3 0	O									* Turnaround I	Requests les	s than standard may incu	Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	DE	Ept North	VPH D WA	PSTED	4443 H493									MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
175AVSB007_5000-	-01 7511 1	340 1	-	-	1	-									S	1		
2125458009 SOOU-U	1 7.511 13	15 1	-	+	-	-									5	1		
115A(SB0013_ S0 00 0)	7511 4	5 1	-	-	-	-									5	1		
7199/SB0017 - S000-05		01	-	-	-	-		0							5	1		
, 115AVSB 0011_ S000-	07 7511 14	46 1		_	-	-m	of Parks		D.						S	1		
. 175AYSB008 _ 5000		55 1	7	maril .	Jan.	1-	30	Can I	7 1	art					5	1		
, 119A/SB0010_ Sour		5 1	-	MALE	110	Track	in the	7							5	1		
. 115N SB001_ S0 07		30 1	1,	3	14º	4	A								5	E		
· 1159/580064_5000.		215 1	-	dr.	31	1									5	1		
1011SASBOUDI - SOOP-	-	200 1	-	-	-	-									5	1		
RELEASED BY: JENNY HOLF	APS		E.L		DATE	7.6	. 11		RECEIVE	DBY:	11000	-6-						1.6 111
PRINT NAME: JOHN HOLT	10	CHLM	MUL		TIME	1 8 9			PRINT NA	12.1	1600	- 4+	N. Dan	3	FIRM:	CHI		1730
RELEASED BY: MICHAEL Land	014					7.6			RECEIVE						FIRM:		DATE: TIME:	
PRINT NAME: MILE ADDITIONAL REMARKS:	Job J FIRM: (NIM	116		TIME	175	1		PRINT NA	AME:					PIKM:		TEMP:	

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

CLIENT: ALMY HOTOHO GUND

ADDRESS: A49 360 Ave Suite
PHONE: 90 1 440 Aby FAX: 901

SAMPLED BY: MICH HONN MICHAEL PARON

SAMPLING

DATE/TIME

PROJECT NAME: STODE A TSI

REPORT TO: MATT FTYNN

PROJECT NUMBER: 403507

CLIENT SAMPLE

IDENTIFICATION

115NSB001-S026

115NSB005 _ SP018

6 EQUIPHENT BLAN

Trup Blanck

Trup Blowic

RELEASED BY: MICHAEL

Juntolmus

JENNY HOLMES

RELEASED BY:

PRINT NAME:

PRINT NAME:

ADDITIONAL REMARKS:

175AV SBOOT - SOUZ-03 7.6.11

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

907-563-9200 FAX 563-9210

NONE

FIRM: CH ZM HILL

FIRM: CLAIM HILL

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: MANT FINAN TURNAROUND REQUEST CHZM HOLL in Business Days * 949 GAST 36 PAVE, SUHE SOO Organic & Inorganic Analyses ANCHORAGE AX 99508 P.O. NUMBER: PRESERVATIVE 3 2 1 <1 REQUESTED ANALYSES Turnaround Requests less than standard may incur Rush Charges. MATRIX LOCATION/ (W, S, O) CONT COMMENTS WO ID W W RECEIVED BY: 17 Control Control 7.6.11 1720 FIRM: TIME: PRINT NAME: TIME: DATE: RECEIVED BY: TIME TIME: 17 51 FIRM: PRINT NAME:

TEMP:

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302

503-906-9200 FAX 906-9210 9405 SW Nimbus Ave, Beaverton, OR 97008-7145

907-563-9200 FAX 563-9210

425-420-9200 FAX 420-9210

509-924-9200 FAX 924-9290

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: MATI TYNN TURNAROUND REQUEST CLIENT: Amy Honoral Grand CHIZM HILL in Business Days * 949 PASI SUT AME, SUTTE SOO REPORT TO: CHZMINI Organic & Inorganic Analyses ADDRESS: 949 EAST SLOTH AVE, SLITE SOO AN LITOMATIVE AT 199505 Anutowne AN 99508 P.O. NUMBER: PHONE: 3 2 1 <1 PROJECT NAME: SPYDONS A PRESERVATIVE NONE METHOD MITTHE NONE PROJECT NUMBER: 403507 REQUESTED ANALYSES SAMPLED BY: LIGH HOLL Turnaround Requests less than standard may incur Rush Charges. LOCATION/ MATRIX CLIENT SAMPLE SAMPLING COMMENTS WOID (W, S, O) CONT IDENTIFICATION DATE/TIME 115NSB007_S007-03 7.23.11 1515 , 4189YSBOO9. SO 07 03 7.24.11 115A SB008 _ 5007-03 7.69.11 . 11 SASBOOK - 5002-63 : 115AV SBULL - SOOZ-03 7-24 11 .11 SAISBOIS - SOOZ METHYMOL W , TIGP Blank THANK GUATE W · TILIP BLOW 7 74.1) DATE: 7.24.11 DATE: RECEIVED BY: In Honor RELEASED BY: CHLM HOL FIRM TIME: JENNY HOLMES TIME PRINT NAME: DATE: RECEIVED BY: DATE: RELEASED BY: FIRM: TIME: PRINT NAME: TIME: FIRM: PRINT NAME-TEMP: ADDITIONAL REMARKS:

<u>TestAmerica</u>

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave,Beaverton, OR 97008-7145 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

THE LEADER IN ENVIRONMENTAL TESTING

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

CHAIN OF CUSTODY REPORT Work Order #: TURNAROUND REQUEST INVOICE TO: CHAM HILL REPORT TO: Berney Kidd - Redding in Business Days * ADDRESS Organic & Inorganic Analyses P.O. NUMBER: PROJECT NAME: AUG Date Gop Analysis Sovoons 3 2 1 <1 PRESERVATIVE PROJECT NUMBER: 403507, ES, SVSC REQUESTED ANALYSES SAMPLED BY: R Horn, M Landon Turnaround Requests less than standard may incur Rush Charges MATRIX LOCATION/ CLIENT SAMPLE SAMPLING (W, S, O) CONT. COMMENTS WO ID IDENTIFICATION DATE/TIME 11SAVSBOOT - GWOX 11SAUSB907_GWOX 2 11SAUGWOOI - GUOX IISAUGWOOZ_GWOX TRIP BLANK DATE: RECEIVED BY: DATE: RELEASED BY: PRINT NAME: FIRM: TIME: TIME: RECEIVED BY: RELEASED BY: TIME: PRINT NAME: PRINT NAME TEMP: ADDITIONAL REMARKS:

PAGE

BORING NUMBER

115W GWOOL

SHEET 1 OF 1

VATION: LLING METH TER LEVELS TH BELOW SU	÷	PMENT USED : START STANDARD	SOIL DESCRIPTION	LOGGER: Joseph COMMENTS
INTERVA	The state of the s		SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F
) - 5_ 1 -	6 H	A LI	0-1 CLYNY SAMO WITH GRANGE , PSILONI MOIST	
			END OF BOUNG 1 FORT BESON GRADE	= - - - -
			23 July 2011 INSTAILED TO ~25 FUR BYOUN GRASSE 201 July 2011 Wall pulled Same TIME	
-			GROWD THIS MORNING	GON ONLY GOAL DECTOR SUPLA PURMA FROST 4 IMPARTS TO BORNAS
-				

BORING NUMBER

115A GW002

SHEET 1 OF 1

CT: TION:			nonen Gu	P. Harris S. L. Ha	DONGA		
NG MET		EQUIPME	NT USED: M START:	m Alista END: 7.5.11	LOGGER: JMH		
LEVEL	S : SURFACE (F	1	STANDARD .	SOIL DESCRIPTION	COMMENTS		
	PENETRATION RECOVERY (IN) #/TYPE #/TYPE 6"-6"-6"-6" (N)		PENETRATION TEST RESULTS 6"-6"-6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F		
-	b	tha	21	6-1 Poor Campail			
	ال	Ha	41	23 PART, DILLIAME BIONE SANGRADO			
o- -							
-			73)W1	101600 00 Bainy 3 TH BOWN GRAGE SUMBER 0-2 Fr BUS CONTRE			
-				Suna 0.2 Fr Bu	تتات		
-				CHUMOE	-		
1		V					
-							
=					- Gw Only		
3					Gom		
-					Supra Perma Filips 1 IMPAUS TO BRUINT SEA		
-					ENLY IT SUPER- PERM		
=					- 15 Grand AT . SB004		

PROJECT NUMBER 403S07 BORING NUMBER

11SAY 58001

SHEET 1 OF 1

ER LEVELS	1		START:	74. 11 END: 7 6.11 SOIL DESCRIPTION	LOGGER:	
INTERVA			PENETBATION PEST RESULTS P16-6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F	
S -	٤	ita	10 4	0-1 chycy smo wint GRANL BINNE MOIST	D120	
0 S _	6	на	24	2 Chayeys are with Black	- DIEC, CPH, VPH, BASK, PACK	
o _ .5-	6	ita	231	2 Chayeys are with GRANT BLOK MOST, STANDED THUM SIONS OF BOWN		
				Smoony Pener Doon		
					GOAL SOL (01) DEC/SED Q 1200 (28) DEO, GAA, VANT	
					Brex, PAH @1230 -	
					- VPH, BTOX, PAN 0 to 4	
-						

PROJECT NUMBER 403S07 BORING NUMBER
11SAY SECOZ

SHEET 1 OF 1

GH2	NIHILL		Cm =				
JECT:	Army M	Ancreal G		ONGA			
ATION.			DRILLING CONTRACTOR	(:			
LING METH	OD AND EQUIPME	NI USED:	SIANI.				
ER LEVELS	3:	STANDARD	SOIL DESCRIPTION	COMMENTS			
	URFACE (FT)	PENETRATION					
INTERV	RECOVERY (IN)	TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,			
	#/TYPE RESULTS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID			DRILLING FLUID LOSS,			
- 4		6"-6"-6" OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION.					
		(N)	MINERALOGY.	OVM (ppm): %G %S %F			
				-			
-							
	7 1 1						
				-1			
				.4			
-				Civil			
		1	0				
				-			
-		1					
-		1	1				
_			1	-			
		1		4			
1		1	1				
-		1	T .				
	1 1	1	T/	A 1			
				_			
-							
_		1		-			
1							
		1					
-	1 1	1		all			
_	1 1	1					
		1		-			
-							
>€							
				- Com Son			
				- SUMC. SOIL			
-				Gom. Soil (2-3) DRO/ILRO			
-		1					
		1		- (4.5) DRO/MO			
-							
			1				
			1	s a l.			
-				3			
-			4.				
1.2		1	1	-			
			1				
1000							

PROJECT NUMBER 463S07

BORING NUMBER
11SA/SB003

SHEET 1 OF 1

CHZMHII DJECT: AMMY I	NATIONAL GU	deline contractor:	10917
VATION : LLING METHOD AND EQ TER LEVELS :	START STANDARD	: 7.6 () END: 1.6.11 SOIL DESCRIPTION	LOGGER; COMMENTS
TH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY	PENETRATION	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F
. 0 -	Hn 0-1	Chayley Samo with Grace DANCE BROWN	<u></u>
20 6	Ha 41	25 TUNORA NAT DENA	DRO =
		EOB 2.5 WHITE SUPPLY IN TROM GIVE	GON SOIL (2.3) DID I HO 2.501 (4.5) DEU PHO ORDERSAL OR GW WILLIAMS

BORING NUMBER 11 SAV SBOOO4

SHEET 1 OF 1

TER LEVEL	S:		START:	75.11 END: 7.5.11	LOGGER: COMMENTS
	SURFACE (F VAL (FT) RECOVE		PENETRATION TEST PERFOLTS 6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F
5 - 0	þ	uha	1.2	O. 2 Chycy Sms wint GRAVEL , BEUM MO, ST	DRO -
15	Q	на	2	1223 Tunka Mar Chyly Smun Brown Smunis	
-			بلاس	231 VM 70-77 3:2 FT BETTE W CAM	- -
			1	SUMBER SET 1.2-3 WATER SERPINGTONS SUPPRE No GROUP	2
1 1 1				BOUTH USED A	i wa a w
					- (2-3) DEC/1000 & 1505 - (2-3) DEC/1000 & 1505
					- GROUNDWATER - TBO DRO/RED - SUPLA POUMAFROST -
-					- HADSPACE > SAPPH OR VISUAL - ADDITIONAL SAMPLES (AST (6)

BORING NUMBER 11SAY S16005

SHEET 1 OF 1

ER LEVELS H BELOW SUI	: RFACE (FT	QUIPMEN	START: STANDARD PENETRATION	1.6.11 END: 7.6.11 SOIL DESCRIPTION	LOGGER: COMMENTS
INTERVA	RECOVER		TEST RESULTS 6"-6"-6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION, OVM (ppm): %G %S %F
-	6	На		6 1 Clayer Spans	
0 .S_ 0	4	HX	21	1-2 Chargey Smuo wint Gravel, Same	DIZO 1.8@ 144
-					-
-					
-					
1 1 1					- GORL SOIL - (2-3) DIZO/X40 - (4-5) DIZO/REO

BORING NUMBER

SHEET 1 OF 1

SOIL BORING LOG

CH2MHILL SAVOONG A NATIONAL GUAND LOCATION: DRILLING CONTRACTOR: PROJECT ELEVATION: DRILLING METHOD AND EQUIPMENT USED: TOPO POLICE
START: 7-61) LOGGER: WIX 7-4311 END: COMMENTS WATER LEVELS : SOIL DESCRIPTION STANDARD DEPTH BELOW SURFACE (FT) PENETRATION DEPTH OF CASING, DRILLING RATE. INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, TEST RECOVERY (IN) DRILLING FLUID LOSS, MOISTURE CONTENT, RELATIVE DENSITY, RESULTS #/TYPE TESTS, AND INSTRUMENTATION. OR CONSISTENCY, SOIL STRUCTURE, 6"-6"-6"-6" %G %S %F OVM (ppm): MINERALOGY. (N) Grand Done Brond 0.5 M 11 1.0 1.5 5.7 1.2 Clayery Sans work- DRO Grand Draw Board Saturation 20 Ma 6 1.5-GOAL SCIL -(23) DEO/1200 (1405) (4-5) DEO/1200

BORING NUMBER
13 SPV SB007

SHEET 1 OF 1

LING METHOD AND EQ TER LEVELS : TH BELOW SURFACE (FT)	START STANDARD PENETRATION	TO IT END: 7 S. IL SOIL DESCRIPTION	LOGGER: COMMENTS
INTERVAL (FT) RECOVERY		SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F
1.5 - 4.5 - 5.5 - 5.0	m 10	Blaul: Sitty SAD w/ SANY SILT SCHOOL SET 2-9 FOR GRANDE	STE ; HOVE TO THE WITH W

BORING NUMBER

115N S130008

SHEET 1 OF 1

SOIL BORING LOG

CH2MHILL MUNY MMCM GUND LOCATION: PROJECT : DRILLING CONTRACTOR ELEVATION : DRILLING METHOD AND EQUIPMENT USED : COMMENTS END: 7-5-11 START 1.5.11 WATER LEVELS : SOIL DESCRIPTION STANDARD DEPTH BELOW SURFACE (FT) PENETRATION INTERVAL (FT) DEPTH OF CASING, DRILLING RATE, SOIL NAME, USCS GROUP SYMBOL, COLOR, TEST RECOVERY (IN) DRILLING FLUID LOSS. MOISTURE CONTENT, RELATIVE DENSITY, RESULTS TESTS, AND INSTRUMENTATION. OR CONSISTENCY, SOIL STRUCTURE, 6"-6"-6"-6" PION %G %S %F OVM (ppm): MINERALOGY. 0-1 Clayer Sons and Charact with augmic; DRO MA 0 -1.4 6 0.5 -Brown MO19 10 Fruzza CAD OR BOMNY 10 pro 6-1) @ 1955 24 July 2011 2.3 SAMOY CAM SILY FROM 2.1 21 C 0740 Gorl. Soil (2) DIO/140 (4.5) DX0/1200 Q REFUSIAL OR GOD INSTRUMENTE PROJECT NU

PROJECT NUMBER 403507 BORING NUMBER 11SA SBOOG

SHEET 1 OF 1

JECT : ATION : LING METHOD AND EQUIPME	NT USED	DRILLING CONTRACTOR	
TER LEVELS :	START	7.5.1 END: 7.	LOGGER: JMH
TH BELOW SURFACE (FT)	STANDARD	SOIL DESCRIPTION	COMMENTS
INTERVAL (FT)	PENETRATION	of the U.S. T. Co., Care Commentary, purpose	
RECOVERY (IN)	TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS,
#/TYPE	RESULTS	MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.
	6"-6"-6" (N)	MINERALOGY.	OVM (ppm): %G %S %F
0 - 6 HA 10 15	1.3	0-2 Chyny Smo MT. GHAMA NO. ST BOOM WITH CHIMMICS RUCKSM ON ROCK	DRO -
	1.1	GOO OF BONNY 200 FULLY BOON GINNOC DIW (41) @ 1345 2.3 7.23 11 CLAYEY SHO W/ GNACL (2.3) @ 1515	Soil & Gow - Grac (0.1) Drotred - C 1345 - (2.3) Drotred (2.15)(- (4.5) Drotred - Grandward TBD - Suprapermarkust If Guccipalso of Not - Collected in SBCOT - Drotred Sport on Mist Hendspare Sport on Mist Anderson Samples to base

BORING NUMBER

SHEET 1 OF 1

SOIL BORING LOG

CH2MHILL Anny MMORA GUAND LOCATION: PROJECT: DRILLING CONTRACTOR: ELEVATION: DRILLING METHOD AND EQUIPMENT USED LOGGER: JALY
COMMENTS 7.5.11 END: START 7.5.11 WATER LEVELS STANDARD SOIL DESCRIPTION DEPTH BELOW SURFACE (FT) PENETRATION INTERVAL (FT) DEPTH OF CASING, DRILLING RATE, TEST PREDULTS SOIL NAME, USCS GROUP SYMBOL, COLOR, RECOVERY (IN) MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, #/TYPE TESTS, AND INSTRUMENTATION. OR CONSISTENCY, SOIL STRUCTURE, 6"-6"-6"-6" %G %S %F MINERALOGY. OVM (ppm): (N) 0-20.5 DRO 0 -1/19 14 0 Clayed SAN with GRABL MOST BROME ROFUSON FROTON 6.5 1.0 (0-05) @ ISIS GORL: SOIL (6-1) DIW/140 (2-3) DRO/140 (4-5) DRO/100 B LOPUSPIL OIL GIV IMPRICES HEADSPACE > SPPM OR STANING ADDITIONAL SCATHLAST

BORING NUMBER
11SAVSBCO11

SHEET 1 OF 1

'ATION : LING METHOD AI ER LEVELS : H BELOW SURFAC		STANDARD	7.5.1\ END: 7.5.1\ SOIL DESCRIPTION	LOGGER: JMH COMMENTS
INTERVAL (FT)		PENETRATION TEST RESULTS 6"-6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F
5-0-5	HA	1.5	GNO OF BOMM TO DITO (0.1) Q 1446 1.29. U 2.3 STRAY SILT BLOKE, SAME (2.3) C 0840	

BORING NUMBER 11_SAV SBOO 12

SHEET 1 OF 1

BELOW SURFACE (FT) STANDARD		START:	MAND NOR END: 7.5 11 SOIL DESCRIPTION	LOGGER: Just	
INTERV		(FT)		SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F
5	6	HA	1.7	10.1 enhanc; perm Moist Kepusan; me and	
			۷\	END OF BONING 10 0-1 C 1430 DICO 24 July 2011 2-3 Smay S.M. BIAC Samples Dico @ 0810	
					- Good Soil (01) Dro/reso (23) Dro/reso (4.5) Dro/reso - Chaism on invince - Haospire > Spry on somm in Aroun

PROJECT NUMBER
403S07

BORING NUMBER

11 SA/SBOOIS

SHEET 1 OF 1

SOIL BORING LOG

ROJECT: ANY IMPORT GUARD LOCATION: SAVONGA
DRILLING CONTRACTOR:

ATION:	HOD AND	EQUIPMEN	START:	1.5.11 END: 1.5.11	LOGGER: July
ER LEVEL	.S:		STANDARD .	SOIL DESCRIPTION	COMMENTS
	SURFACE (F VAL (FT) RECOVE		PENETRATION TEST RESULTS 6"-6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (ppm): %G %S %F
5 -	4	4a 4a	1.3	0.1 ORGANCS, MOIST BURLL 1.15 SILM Clay Black	DEO
5_	4			MOIST FROTON POONSAL	- - - -
				6 2 1 1 1 5	
-				DIED (0-1) C 1415	
1 1 1				SANDY CLAY FOURER	- - -
-					_ GOM SOIL
=					- (0-1) DRO/MO - (2-3) DRO/MO
=					(2.3) DEO/REO
-					- (4.5) ENDITOR
					- interface
-					HOROSOPHE > SPOM

CH2IVI	HILL						Well ID:	GW	(
roject: L	J.S. Army	National Guar	d FSRC C	Sap Analysi	is			Date:	2/24/201
roject #:	The second second second second							Start Time:	
								End Time:	
							primary d		
							primary d		
Sample ID):						primary d		
							0.45um/1.0		
enth to 1	op of Prod	duct (FTOC):	_		Depth to	Water (F7	OC):	4.10	
Depth to (Dil/Water li	nterface (FTO	C):			oth (FTOC	:):	5,54	10
The second secon		1 in	2 in.			olumn (Ft)		-	
gal/Ft of c	2011.91	0.041	0.163			olume (ga	al)		
	ke Depth				Screen I	nterval d Stickup			
	W (FTOC				ivieasure	ч энскир			
Method o	f Purging	(circle one)	TUED.		Delles TE	TON CC	OTHER.		
Pump: Sl	JB BLDR	PERIST O	(apm):		Bailer: TER		Bailer Vol.	(nale) n	25/033
Pump Tin	ne:	Flow Rate Vol. Purge	ed (gals):		Vol Purge		Danet VUI.	(gais). U.2	.Ji 0.33
		Parameters	(30.0)		1	(35).			
Paramete		Working Rang	ne	Stability C	riteria		Depth to V	Vater Stabi	lization
			± 1.0 °C	- none			DTW		
рН		0-14		± 0.1					
				± 3%	0.0//				
			± 10% or	0.2 mg/L					
Turbidity				1070 01	-101110				
Instrum	ent Obse	rvations							
Round	Time	Water Level (ft BTOC)	Volume Purged (gallons)	pН	Cond (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (C)	ORP (mV)
1	1643		0.1	6.44	157	NA	32.8	4.63	81,2
2	1648	pargecky	0.2	5.93	742	-	3816	4.87	110.5
3									Cala Co
4					- 1				0
5									
6									
7								1	
8									
9									
Notes: Dra Minimal dra	aw-down achi	ld ideally be less the eved and measure ater levels in the w	d by: 1) pum	rom the origina ping at a low ra	al depth to grou ate (approxima	ndwater. tely 1 liter/ 3	minutes or .1 g	al/min) and 2)	
	y Observ								
	, 0.00.1	Clear, Amb	er. Tan. A	Brown. Gre	ev. Milkv W	hite. Oth	er:		
COLOR		None, Low,	. 70	The same of the sa				ical ?. Unk	nown
Color:				and a second	The second second				44.4
Odor: Turbidi	tv:	None, Low,	Medium,	righ, wen	Turbia, T	cavy onto			

CH2IVI							Well ID:		-2/11/201
A0 - 4 - 4 - 7		National Guar	d FSRC G	Sap Analys	is				7 34 201
roject #: 4									1100
								dup other:	
Sample ID									
sample ID	-				Filtered?		0.45um/1.		
enth to T	on of Proc	duct (FTOC):		NA	Depth to	Water (FT	OC):		
Depth to C	il/Water li	nterface (FTC	(C):		Total Dep	oth (FTOC):	4.47	
	ameter:	(in	2 in.			olumn (Ft): 'olume (ga			
gal/Ft of c	asing: ike Depth	0.04	0.163		Screen Ir		"7		
	W (FTOC				-0. 2020.000	d Stickup			
		(circle one)							
Pump: SL	IB BLDR	(PERIST) O	THER:		Bailer: TEF			20014 2	
Pump Tvr	e: Geopur	P2 Flow Rate	e (gpm):		Required F Vol Purgeo		Bailer Vol	. (gals): 0.2	25/ 0.33
		Vol. Purg	eu (gais):		TVOI Fulged	(gals).			-, -
		Parameters Working Ran	ae	Stability (Criteria	_	Depth to	Water Stab	ilization
Paramete Temperat		>0.00 °C	a-	± 1.0 °C			Time	DTW	
рН		0-14		± 0.1					
Conducti	vity	0-9.99 S/m		± 3% ± 10% or 0.2 mg/L			-		
Dissolved Turbidity	Oxygen	0-19.99 mg/L 0-800 NTU			<10 NTU				
	ent Obse	ryations							
mstrum	ent Obsc	Trationo	24.4.2						
Round	Time	Water Level (ft BTOC)	Volume Purged (gallons)	рН	Cond (mS/cm)	Turbidity (NTU)	DO (mg/L)		
1	1908	4.06	0.1	6.36	1142	NA	11,33	5.36	-44.5
2	1723	4.38	0.2	6.49		-	11,0	5.55	-44.5
3	. [.]	(1)	, the	1	1100			7,127	
									-
4									
5		-			-				
6			1	1					-
7				1			-	-	
100									
8					1000				
a	w-down shou	ld ideally be less t	han 0.3 feet f	from the origin	al depth to grou	indwater	minutes or 1	gal/min) and 2)
9 Notes: Dra	aw-down ach measuring w	ieved and measur rater levels in the v	vell.	ibing at a low	rate (approxima	may interro	minutes of all	garning and 2	,
9 Notes: Dra									
9 Notes: Dra Minimal dr continually	04	aliulis		Brown Gr	ev Milky M	hite Oth	er:		
9 Notes: Dra Minimal dra continually Sensor	y Observ	Cloor Amb	or lan		CV. WILLIAM VV	inco, Oth	· · ·		
9 Notes: Dra Minimal dr continually	y Observ	Clear, Amb	er, Tan,∢ Medium	High. Ver	y Strong, H	2S. Fuel	Like, Cher	nical?. Unl	known

CH2N	MHILL						Well ID:	SBG	W4	1
Project:	U.S. Army	National Gua	rd FSRC	Gap Analys	sis			Date:	7/24/201	d
Project #:	403507							Start Time:	1530	
ield Tea	m: Rit,	14								
Sample II	D:	٢,			Time:		primary o			
Sample II	D:	٤,			Time:		primary o	dup other:		1
Sample II	D:				Time:					
					Filtered?		and the second distriction of			
Denth to	Top of Pro	duct (FTOC):			- Denth to	Water (F	LOC)-	290		1
		Interface (FTC		_		epth (FTOC		5.446	Sfoc	
	liameter:		2 in.	-		olumn (Ft)		717	21.5	
gal/Ft of		0.041	0.163			Volume (ga				
	ake Depth			-	Screen I Measure	Interval ed Stickup				
Method	of Purging	(circle one)							-	-
Pump: S	UB BLDR	PERIST O	THER:			FLON SS				7
Pump Ty	pe:tech	En Flow Rate	e (gpm):			Pulls:	Bailer Vol.	(gals): 0.2	25/ 0.33	1
Pump Ti		Vol. Purg	ed (gals):	-	Vol Purge	d (gals):				
	2 4 110 1111 11 11 11	Parameters		104.199	.,					
Paramet		Working Ran >0.00 °C	ge	Stability C	criteria			Vater Stab	ilization	1
Tempera pH	iture	0-14		± 0.1	_		Time	DTW		1
Conduct		0-9.99 S/m		± 3%					-	1
		0-19.99 mg/L		± 10% or	0.2 mg/L					1
Turbidity		0-800 NTU		± 10% or	<10 NTU					
Instrum	ent Obse	rvations								
Round	Time	Water Level (ft BTOC)	Volume Purged (gallons)	рН	Cond (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (C)	ORP (mV)	
1	1535	4.35	0.1	6,35	867	NA	14.8	4.58	580	1
2	1540	4.86	0.2	6.29	858	-	17.6	4,24	34,3	1
	-	5.40 dr	Pm =	6,19		17.5	7 7 7 A 10 TO	ついかつ		-
3	1545				821		14.0	3.51	16.0	purgeo
4	wie	5.86	J. Li	6.40	921	-, -00.0	12.1	4,44	1.3	
5										
6										
7										
8										
9										
Notes: Dra Minimal dr	aw-down achi	d ideally be less the	d by: 1) pump				minutes or .1 g	al/min) and 2)		
	y Observ	ater levels in the w	GIII.							
Color:	, -25011	Clear, Ambe	er. Tan. F	Brown Gre	v Milky \//	hite Othe	er:			1
							ike, Chemi	cal 2 Unk	20110	

CH2IVI	HILL						Well ID:	5137	GW
roject; L	J.S. Army	National Gua	rd FSRC (Gap Analysi	is			Date:	7/24/20
roject #:	403507							Start Time:	1735
ield Tear	n: RIT M	1-						End Time:	
ample ID	1150	VSB00	17 _ (LICY'S	Time:	1211	primary d	up other:	
ample IF	1186	ev SB90	7 (36.10X			primary d		
ample IF	- 110	LV GIJ LO		160010					
ampie iz					Filtered?	Y/N	0.45um/1.0		
anth to T	Con of Pro	duct (FTOC):		-	Denth to	Water (FT	OC).	4.06	
		nterface (FTC	C):			pth (FTOC		1100	
Casing di		1 in	2 in.		The state of the s	olumn (Ft)			
al/Ft of c		0.041	0.163		Casing \	/olume (ga	al)		
	ake Depth				Screen I				
table DT	W (FTOC);			Measure	d Stickup			
lethod o	of Purging	(circle one)	T) 185		In 11		0711		
oump: St	JB BLDR	PERIST O	THER:		Bailer: TEI Required I			(mala): 0 1	510.22
Pump Typ Pump Tin	oe:6 <i>00 (µ m</i> ne:	Vol. Purg	ed (gals):		Vol Purge		Bailer Vol.	(gais): 0.2	25/ 0.33
		Parameters	ou (gaio).		ron algo	a (galo).			
Paramete		Working Ran	ge	Stability C	riteria		Depth to V	Vater Stabi	lization
	emperature >0.00 °C ± 1.0 °C						Time	DTW	
OH 0-14 ± 0.1									
Conductivity 0-9.99 S/m ± 3% Dissolved Oxygen 0-19.99 mg/L ± 10% or				± 3%	0.2 ma/l				
Dissolved Turbidity	Oxygen	0-800 NTU		± 10% or	<10 NTU				
	ent Obse				7-	_			
Round	Time	Water Level (ft BTOC)	Volume Purged (gallons)	pН	Cond (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (C)	ORP (mV)
1	1739	4.13	0.1	6.78	514	NA	3.6	5.06	-13,1
2	1745	4.13	0.2	647	510	2-	2,3	5.51	-21.8
3	1749	421	0.3	6.68	508	-	2.7	5.91	-757
4	1754	11.20	0.4	6.66	500	100	2.9	6.59	-26.1
5	1107	4.1	U. 1	6.60	10.0		0(1)	01.77	
6									
7				1					-
8									-
9		All the after the second	100 C D f==1 f	rom the sales	I double to	industra:			10-
Minimal dra	aw-down achi	ld ideally be less the eved and measure ater levels in the w	ed by: 1) pum	ping at a low ra	ate (approxima	indwater. itely 1 liter/ 3	minutes or ,1 g	al/min) and 2)	
	y Observ								
Color:		Clear, Amb	er, Tan, I	Brown, Gre	y, Milky W	hite, Othe	er:		
Odor:		None, Low;						ical ?, Unk	nown
Turbidit	ty:	None, Low,	Medium,	High, Very	Turbid, F	leavy Silts			

Alaska Federal Scout Readiness Center - Savoonga Soil and Groundwater Sampling - July 2011 Data Quality Evaluation Report

Introduction

The objective of this data quality evaluation (DQE) report is to assess the data quality of analytical results for soil and groundwater samples collected from the Alaska Federal Scout Readiness Center – Savoonga. Samples were collected to address data gaps in the characterization of total petroleum hydrocarbon contamination at the site. Individual method requirements and guidelines from the Work Plan for Site Characterization at 21 Alaska Federal Scout Readiness Centers, Alaska Army National Guard, April 2011 (ANG QAPP) were used in this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 21 normal soil samples , four normal groundwater samples, one groundwater field duplicate (FD), five trip blanks (TB) and one equipment blank (EB). All samples were collected July 5 through July 24, 2011. A list of samples associated with this DQE is included in Attachment A. The sample results were reported as three sample delivery groups (SDG) presented in Table 1. The analyses were performed by TestAmerica in Sacramento, California (SVLS) and TestAmerica in Tacoma, Washington (SVTT). Samples were collected and shipped by overnight carrier to SVLS. SVLS was responsible for shipment of samples to SVTT.

Table 1 Sample Delivery Groups
G1G120514
G1G260466
G1G270477

Five methods were used to analyze the environmental samples. Selected samples were analyzed for one or more of the following analytes/methods in Table 2.

Table 2 Analytical Parameters								
<u>Parameter</u>	Method	<u>Laboratory</u>						
Diesel Range Organics (DRO)	AK102	SVLS						
Extractable Petroleum Hydrocarbon Speciation (EPH)	NWEPH	SVTT						
Purgeable Petroleum Hydrocarbon Speciation (VPH)	NWVPH	SVTT						
Volatile Organic Compounds	SW8260B	SVLS						
Polynuclear Aromatic Hydrocarbons	SW8270C-SIM	SVLS						

The assessment of data includes a review of: (1) the chain-of-custody documentation; (2) holding-time compliance; (3) the required quality control (QC) samples at the specified frequencies; (4) method blanks; (5) laboratory control sample/laboratory control sample duplicates (LCS/LCSD); (6) surrogate spike recoveries; (7) matrix spike/matrix spike duplicate (MS/MSD) samples; and (8) initial and continuing calibration information and other method-specific criteria as defined by the ANG QAPP.

Field samples were also reviewed to ascertain field compliance and data quality issues. This included a review of FDs, TBs and an EB.

Data flags were assigned according to the ANG QAPP. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the ANG QAPP and are defined below:

- J = The analyte was positively identified, and the quantitation is an estimation because of discrepancies in meeting certain analyte-specific QC criteria. Or the analyte was positively identified, but the associated concentration is estimated above the method detection limit and below the limit of quantitation (LOQ).
- R = The data are rejected because of deficiencies in meeting QC criteria and may not be used for decision making.
- B = The analyte was detected in the sample at a concentration less than or equal to five times (10 times for common laboratory contaminants) the blank concentration.
- U = The analyte was analyzed for, but the analyte was not detected.
- UJ = The analyte was not detected; however, the result is estimated because of discrepancies in meeting certain analyte-specific QC criteria.

Findings

The overall summaries of the data validation findings are contained in the following sections and Table 3.

Also included as documentation of data validation findings is the Alaska Department of Environmental Conservation Laboratory Data Review Checklist (Version 2.7, January 2010). A checklist is provided for each laboratory SDG and can be found in Attachment B to this DQE. Only QC exceedances that resulted in data qualifiers being applied are discussed in the text and laboratory checklists.

Holding Times

All holding-time criteria were met with the following exceptions:

Groundwater samples 11SAVSB007_GWOX and 11SAVSB907_GWOX were extracted three days past holding time for Method SW8260B due to laboratory oversight. Twelve associated non-detected results were qualified as estimated and flagged "UJ".

Calibration

All initial and continuing calibration criteria were met.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination with the following exceptions:

C16-C21 aliphatics and C8-C10 aliphatics were detected below the LOQ in the method blanks for Method NWEPH. Four associated soil sample results, and one associated groundwater sample result, were detected less than five times the blank concentrations. The results were qualified as estimated and flagged "B".

C12-C13 aromatics, C5-C6 aliphatics, C6-C8 aliphatics, C8-C10 aromatics, and total VPH were detected below the LOQ in the method blanks for Method NWVPH. Seven associated soil sample results, and four associated groundwater sample results, were detected less than five times the blank concentrations. The results were qualified as estimated and flagged "B".

Field Blanks

Five TBs were collected and were free of contamination with the following exceptions:

C12-C13 aromatics and total VPH were detected below the LOQ in the TBs for Method NWVPH. Four associated groundwater sample results were detected less than five times the blank concentrations. The results were qualified as estimated and flagged "B".

One EB was collected and was free of contamination with one exception.

DRO was detected below the LOQ in the EB for Method AK102. Six associated soil sample results were detected less than five times the blank concentration. The results were qualified as estimated and flagged "B".

3

Field Duplicates

One FD set was collected. Precision was acceptable. A summary of FD precision is included in Table 4.

Matrix Spike Samples

The results of MS/MSD analyses provide information about the possible influence of the matrix on either accuracy or precision of the measurements. The field crew designated samples for MS/MSD analysis. All acceptance criteria were met with a few exceptions.

The recoveries of C10-C12 aliphatics, C21-C34 aliphatics, C21-C34 aromatics, and C8-C10 aliphatics were less than ANG QAPP criteria in the MS and/or MSD of soil sample 11SAVSB007_SO02-03 for Method NWEPH, indicating associated sample results are possibly biased low. Additionally, the RPDs of C10-C12 aliphatics and C12-C16 aliphatics were above ANG QAPP criteria in the MS/MSD set of this same sample. Five associated detected soil sample results were qualified as estimated and flagged "J".

Surrogates

Surrogates were added to all samples for the methods requiring their use. Surrogate recoveries met criteria with a few exceptions.

Surrogate recovery was less than ANG QAPP criteria in soil sample 11SAVSB001_SO02 for Method SW8260B, indicating associated sample results are possibly biased low. Six associated detected results were qualified as estimated and flagged "J".

Surrogate recovery was less than ANG QAPP criteria in groundwater sample 11SAVSB907_GWOX for Method SW8270C-SIM, indicating associated sample results are possibly biased low. Four associated detected results were qualified as estimated and flagged "J"; 14 associated non-detected results were qualified as estimated and flagged "UJ".

Surrogate recovery was greater than ANG QAPP criteria in groundwater sample 11SAVSB004_GWOX for Method AK102, indicating associated sample results are possibly biased high. One associated detected result was qualified as estimated and flagged "J".

Laboratory Control Samples

LCS/LCSDs were analyzed and all accuracy and precision criteria were met with one exception.

The recoveries of C8-C10 aliphatics and C8-C10 aromatics were less than ANG QAPP criteria in a LCS and/or LCSD for Method NWEPH, indicating associated sample results are possibly biased low. Two associated detected groundwater sample results were qualified as estimated and flagged "J"; two associated non-detected groundwater sample results were qualified as estimated and flagged "UJ".

Internal Standards

All internal standard acceptance criteria were met.

Chain of Custody

Groundwater sample 11SAVSB907_GWOX was received at the laboratory improperly preserved for Method SW8270C-SIM. Four associated detected sample results were qualified as

estimated and flagged "J"; 14 associated non-detected results were qualified as estimated and flagged "UJ".

Overall Assessment

The final activity in the DQE is an assessment of whether the data meet the data quality objectives. The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decision making process. The precision, accuracy, representativeness, completeness and comparability are addressed in the ANG QAPP. The following summary highlights the data evaluation findings for the above defined events:

- 1. No data were rejected and the completeness objective of 90 percent for soil samples and 95 percent for aqueous samples for each matrix/method/analyte combination was met.
- 2. Approximately 28 percent of the AK102 soil data were qualified because of low-level field blank contamination. The degree to which blank contamination was observed is within reasonable method expectations considering the small size of the dataset.
- 3. Approximately 4 percent of the NWEPH soil data, and 20 percent of the NWEPH groundwater data, were qualified because of low-level laboratory blank contamination. The degree to which blank contamination was observed is within reasonable method expectations considering the small size of the dataset.
- 4. Approximately 30 percent of the NWVPH soil data, and 25 percent of the NWVPH groundwater data, were qualified because of low-level laboratory blank contamination. The degree to which blank contamination was observed is within reasonable method expectations considering the small size of the dataset.
- 5. Surrogate recovery exceedances were observed for Methods AK102, SW8260B, and SW8270C-SIM; 25 results were qualified as estimated.
- 6. LCS/LCSD recovery exceedances were observed for Method NWEPH; four results were qualified as estimated.
- 7. MS/MSD recovery and RPD exceedances were observed for Method NWEPH; five results were qualified as estimated.
- 8. Two groundwater samples were extracted outside of holding time for Method SW8260B due to laboratory oversight; 12 results were qualified as estimated.
- 9. One groundwater sample was received at the laboratory improperly preserved for Method SW8270C-SIM; 18 results were qualified as estimated.
- 10. Although data were qualified as estimated due to QC exceedances as noted, overall precision and accuracy of the data, as measured by field and laboratory QC indicators suggest that data are usable for projects objectives.

Table 3 - Validation Flags

Field ID	Method	Analyte	Final	Units	Final Flag	Reason
4404\/00004_000 00	AKAOO	Discal Banga Organica	Result			ED 4.00
11SAVSB0004_SO0-02	AK102 NWVPH	Diesel Range Organics	2.6	mg/kg	В	EB <loq< td=""></loq<>
11SAVSB001_SO02		C5-C6 Aliphatics	1.8	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB001_SO02	SW8260B	Benzene	0.27	mg/kg	J 	Sur <lcl< td=""></lcl<>
11SAVSB001_SO02	SW8260B	Ethylbenzene	11	mg/kg	J	Sur <lcl< td=""></lcl<>
11SAVSB001_SO02	SW8260B	m-Xylene & p-Xylene	29	mg/kg	J	Sur <lcl< td=""></lcl<>
11SAVSB001_SO02	SW8260B	o-Xylene	21	mg/kg	J	Sur <lcl< td=""></lcl<>
11SAVSB001_SO02	SW8260B	Toluene	1.1	mg/kg	J	Sur <lcl< td=""></lcl<>
11SAVSB001_SO02	SW8260B	Xylenes (total)	50	mg/kg	J	Sur <lcl< td=""></lcl<>
11SAVSB001_SO2.6	NWVPH	C5-C6 Aliphatics	1.7	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB001_SO2.6	NWVPH	C6-C8 Aliphatics	22	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB0010_SO00-01	AK102	Diesel Range Organics	2.4	mg/kg	В	EB <loq< td=""></loq<>
11SAVSB0011_SO00-01	AK102	Diesel Range Organics	1.1	mg/kg	В	EB <loq< td=""></loq<>
11SAVSB004_GWOX	AK102	Diesel Range Organics	18000	ug/L	J	Sur>UCL
11SAVSB005_SO01.8	AK102	Diesel Range Organics	2.9	mg/kg	В	EB <loq< td=""></loq<>
11SAVSB007_GWOX	NWEPH	C16-C21 Aliphatics	7.9	ug/L	В	LB <loq< td=""></loq<>
11SAVSB007_GWOX	NWEPH	C8-C10 Aliphatics	6.3	ug/L	В	LCSD <lcl< td=""></lcl<>
11SAVSB007_GWOX	NWEPH	C8-C10 Aliphatics	6.3	ug/L	В	LB <loq< td=""></loq<>
11SAVSB007_GWOX	NWEPH	C8-C10 Aliphatics	6.3	ug/L	В	LCS <lcl< td=""></lcl<>
11SAVSB007_GWOX	NWEPH	C8-C10 Aromatics	15	ug/L	UJ	LCS <lcl< td=""></lcl<>
11SAVSB007_GWOX	NWVPH	C12-C13 Aromatics	15	ug/L	В	LB <loq< td=""></loq<>
11SAVSB007_GWOX	NWVPH	C12-C13 Aromatics	15	ug/L	В	TB <loq< td=""></loq<>
11SAVSB007_GWOX	NWVPH	Total VPH	41	ug/L	В	TB <loq< td=""></loq<>
11SAVSB007_GWOX	NWVPH	Total VPH	41	ug/L	В	LB <loq< td=""></loq<>
11SAVSB007_GWOX	SW8260B	Benzene	0.2	ug/L	UJ	HTa>UCL
11SAVSB007_GWOX	SW8260B	Ethylbenzene	0.2	ug/L	UJ	HTa>UCL
11SAVSB007_GWOX	SW8260B	m-Xylene & p-Xylene	0.8	ug/L	UJ	HTa>UCL
11SAVSB007_GWOX	SW8260B	o-Xylene	0.4	ug/L	UJ	HTa>UCL
11SAVSB007_GWOX	SW8260B	Toluene	0.4	ug/L	UJ	HTa>UCL
11SAVSB007_GWOX	SW8260B	Xylenes (total)	1.2	ug/L	UJ	HTa>UCL
11SAVSB007_SO02-03	NWEPH	C10-C12 Aliphatics	1	mg/Kg	J	SD <lcl< td=""></lcl<>
11SAVSB007_SO02-03	NWEPH	C10-C12 Aliphatics	1	mg/Kg	J	MSRPD
11SAVSB007_SO02-03	NWEPH	C12-C16 Aliphatics	2.4	mg/Kg	J	MSRPD
11SAVSB007_SO02-03	NWEPH	C21-C34 Aliphatics	7.2	mg/Kg	J	SD <lcl< td=""></lcl<>
11SAVSB007_SO02-03	NWEPH	C21-C34 Aliphatics	7.2	mg/Kg	J	MS <lcl< td=""></lcl<>
11SAVSB007_SO02-03	NWEPH	C21-C34 Aromatics	9.9	mg/Kg	J	SD <lcl< td=""></lcl<>
11SAVSB007_SO02-03	NWEPH	C21-C34 Aromatics	9.9	mg/Kg	J	MS <lcl< td=""></lcl<>
11SAVSB007_SO02-03	NWEPH	C8-C10 Aliphatics	0.4	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB007_SO02-03	NWEPH	C8-C10 Aliphatics	0.4	mg/Kg	В	SD <lcl< td=""></lcl<>

Field ID	Method	Analyte	Final Result	Units	Final Flag	Reason
11SAVSB007_SO02-03	NWEPH	C8-C10 Aliphatics	0.4	mg/Kg	В	MS <lcl< td=""></lcl<>
11SAVSB007_SO02-03	NWVPH	C12-C13 Aromatics	0.17	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB007_SO02-03	NWVPH	C5-C6 Aliphatics	0.13	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB007_S002-03	NWVPH	C8-C10 Aromatics	0.18	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB007_SO02-03	NWVPH	Total VPH	0.7	mg/Kg	В	LB <loq< td=""></loq<>
11SAVSB008_SO00-01	AK102	Diesel Range Organics	1.7	mg/kg	В	EB <loq< td=""></loq<>
11SAVSB009_S000-01	AK102	Diesel Range Organics	1.6	mg/kg	В	EB <loq< td=""></loq<>
11SAVSB907_GWOX	NWEPH	C16-C21 Aliphatics	8.5	ug/L	В	LB <loq< td=""></loq<>
11SAVSB907_GWOX	NWEPH	C8-C10 Aliphatics	6.3	ug/L	В	LCSD <lcl< td=""></lcl<>
11SAVSB907_GWOX	NWEPH	C8-C10 Aliphatics	6.3	ug/L	В	LCS <lcl< td=""></lcl<>
11SAVSB907_GWOX	NWEPH	C8-C10 Aliphatics	6.3	ug/L	В	LB <loq< td=""></loq<>
11SAVSB907_GWOX	NWEPH	C8-C10 Aromatics	15	ug/L	UJ	LCS <lcl< td=""></lcl<>
11SAVSB907_GWOX	NWVPH	C12-C13 Aromatics	15	ug/L	В	LB <loq< td=""></loq<>
11SAVSB907_GWOX	NWVPH	C12-C13 Aromatics	15	ug/L	В	TB <loq< td=""></loq<>
11SAVSB907_GWOX	NWVPH	Total VPH	44	ug/L	В	TB <loq< td=""></loq<>
11SAVSB907_GWOX	NWVPH	Total VPH	44	ug/L	В	LB <loq< td=""></loq<>
11SAVSB907_GWOX	SW8260B	Benzene	0.2	ug/L	UJ	HTa>UCL
11SAVSB907_GWOX	SW8260B	Ethylbenzene	0.2	ug/L	UJ	HTa>UCL
11SAVSB907_GWOX	SW8260B	m-Xylene & p-Xylene	0.8	ug/L	UJ	HTa>UCL
11SAVSB907_GWOX	SW8260B	o-Xylene	0.4	ug/L	UJ	HTa>UCL
11SAVSB907_GWOX	SW8260B	Toluene	0.4	ug/L	UJ	HTa>UCL
11SAVSB907_GWOX	SW8260B	Xylenes (total)	1.2	ug/L	UJ	HTa>UCL
11SAVSB907_GWOX	SW8270C-SIM	1-Methylnaphthalene	0.25	ug/L	J	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	1-Methylnaphthalene	0.25	ug/L	J	PRES
11SAVSB907_GWOX	SW8270C-SIM	2-Methylnaphthalene	0.27	ug/L	J	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	2-Methylnaphthalene	0.27	ug/L	J	PRES
11SAVSB907_GWOX	SW8270C-SIM	Acenaphthene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Acenaphthene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Acenaphthylene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Acenaphthylene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Anthracene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Anthracene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Benzo(a)anthracene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Benzo(a)anthracene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Benzo(a)pyrene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Benzo(a)pyrene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Benzo(b)fluoranthene	0.1	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Benzo(b)fluoranthene	0.1	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Benzo(ghi)perylene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Benzo(ghi)perylene	0.052	ug/L	UJ	PRES

Field ID	Method	Analyte	Final Result	Units	Final Flag	Reason
11SAVSB907_GWOX	SW8270C-SIM	Benzo(k)fluoranthene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Benzo(k)fluoranthene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Chrysene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Chrysene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Dibenz(a,h)anthracene	0.1	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Dibenz(a,h)anthracene	0.1	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Fluoranthene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Fluoranthene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Fluorene	0.027	ug/L	J	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Fluorene	0.027	ug/L	J	PRES
11SAVSB907_GWOX	SW8270C-SIM	Indeno(1,2,3-cd)pyrene	0.1	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Indeno(1,2,3-cd)pyrene	0.1	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Naphthalene	0.098	ug/L	J	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Naphthalene	0.098	ug/L	J	PRES
11SAVSB907_GWOX	SW8270C-SIM	Phenanthrene	0.052	ug/L	UJ	PRES
11SAVSB907_GWOX	SW8270C-SIM	Phenanthrene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Pyrene	0.052	ug/L	UJ	Sur <lcl< td=""></lcl<>
11SAVSB907_GWOX	SW8270C-SIM	Pyrene	0.052	ug/L	UJ	PRES

Notes:

EB<LOQ =Equipment blank concentration less than the limit of quantitation

HTa>UCL = Analytical holding time exceeded

LB<LOQ = Laboratory blank concentration less than the limit of quantitation

 $LCS < LCL = Laboratory \ control \ sample \ recovery \ less \ than \ the \ lower \ control \ limit$

LCSD<LCL = Laboratory control sample duplicate recovery less than the lower control limit

MS<LCL = Matrix spike recovery less than the lower control limit

MSRPD = Matrix spike relative percent difference criterion exceeded

PRES = Sample improperly preserved

SD<LCL = Matrix spike duplicate recovery less than the lower control limit

Sur<LCL = Surrogate recovery less than lower control limit

Sur>UCL = Surrogate recovery greater than upper control limit

TB<LOQ =Trip blank concentration less than the limit of quantitation

Table 4 - Field Duplicate Precision

Method	Analyte	Normal Sample	Normal Result	Field Duplicate	Duplicate Result	RPD	Criteria	Matrix
AK102	Diesel Range Organics	11SAVSB007_GWOX	1100	11SAVSB907_GWOX	940	16	20	WATER
NWEPH	C10-C12 Aliphatics	11SAVSB007_GWOX	8.7 J	11SAVSB907_GWOX	9.5 J	NC	20	WATER
NWEPH	C10-C12 Aromatics	11SAVSB007_GWOX	10 J	11SAVSB907_GWOX	9.2 J	NC	20	WATER
NWEPH	C12-C16 Aliphatics	11SAVSB007_GWOX	12 J	11SAVSB907_GWOX	14 J	NC	20	WATER
NWEPH	C12-C16 Aromatics	11SAVSB007_GWOX	28 J	11SAVSB907_GWOX	28 J	NC	20	WATER
NWEPH	C16-C21 Aliphatics	11SAVSB007_GWOX	7.9 B	11SAVSB907_GWOX	8.5 B	NC	20	WATER
NWEPH	C16-C21 Aromatics	11SAVSB007_GWOX	14 J	11SAVSB907_GWOX	15 J	NC	20	WATER
NWEPH	C21-C34 Aliphatics	11SAVSB007_GWOX	16 J	11SAVSB907_GWOX	17 J	NC	20	WATER
NWEPH	C21-C34 Aromatics	11SAVSB007_GWOX	37 J	11SAVSB907_GWOX	45 J	NC	20	WATER
NWEPH	C8-C10 Aliphatics	11SAVSB007_GWOX	6.3 B	11SAVSB907_GWOX	6.3 B	NC	20	WATER
NWEPH	C8-C10 Aromatics	11SAVSB007_GWOX	15 UJ	11SAVSB907_GWOX	15 UJ	NC	20	WATER
NWVPH	C10-C12 Aliphatics	11SAVSB007_GWOX	7.2 J	11SAVSB907_GWOX	7.5 J	NC	20	WATER
NWVPH	C10-C12 Aromatics	11SAVSB007_GWOX	14 J	11SAVSB907_GWOX	14 J	NC	20	WATER
NWVPH	C12-C13 Aromatics	11SAVSB007_GWOX	15 B	11SAVSB907_GWOX	15 B	NC	20	WATER
NWVPH	C5-C6 Aliphatics	11SAVSB007_GWOX	2.9 U	11SAVSB907_GWOX	3.9 J	NC	20	WATER
NWVPH	C6-C8 Aliphatics	11SAVSB007_GWOX	0.8 U	11SAVSB907_GWOX	0.8 U	NC	20	WATER
NWVPH	C8-C10 Aliphatics	11SAVSB007_GWOX	1.6 U	11SAVSB907_GWOX	1.6 U	NC	20	WATER
NWVPH	C8-C10 Aromatics	11SAVSB007_GWOX	5.2 U	11SAVSB907_GWOX	5.2 U	NC	20	WATER
NWVPH	Total VPH	11SAVSB007_GWOX	41 B	11SAVSB907_GWOX	44 B	NC	20	WATER
SW8260B	Benzene	11SAVSB007_GWOX	0.2 UJ	11SAVSB907_GWOX	0.2 UJ	NC	30	WATER
SW8260B	Ethylbenzene	11SAVSB007_GWOX	0.2 UJ	11SAVSB907_GWOX	0.2 UJ	NC	30	WATER
SW8260B	m-Xylene & p-Xylene	11SAVSB007_GWOX	0.8 UJ	11SAVSB907_GWOX	0.8 UJ	NC	30	WATER
SW8260B	o-Xylene	11SAVSB007_GWOX	0.4 UJ	11SAVSB907_GWOX	0.4 UJ	NC	30	WATER
SW8260B	Toluene	11SAVSB007_GWOX	0.4 UJ	11SAVSB907_GWOX	0.4 UJ	NC	30	WATER
SW8260B	Xylenes (total)	11SAVSB007_GWOX	1.2 UJ	11SAVSB907_GWOX	1.2 UJ	NC	30	WATER
SW8270C-SIM	1-Methylnaphthalene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.25 J	NC	30	WATER
SW8270C-SIM	2-Methylnaphthalene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.27 J	NC	30	WATER
SW8270C-SIM	Acenaphthene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Acenaphthylene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Anthracene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Benzo(a)anthracene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER

Method	Analyte	Normal Sample	Normal Result	Field Duplicate	Duplicate Result	RPD	Criteria	Matrix
SW8270C-SIM	Benzo(a)pyrene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Benzo(b)fluoranthene	11SAVSB007_GWOX	0.21 U	11SAVSB907_GWOX	0.1 UJ	NC	30	WATER
SW8270C-SIM	Benzo(ghi)perylene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Benzo(k)fluoranthene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Chrysene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Dibenz(a,h)anthracene	11SAVSB007_GWOX	0.21 U	11SAVSB907_GWOX	0.1 UJ	NC	30	WATER
SW8270C-SIM	Fluoranthene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Fluorene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.027 J	NC	30	WATER
SW8270C-SIM	Indeno(1,2,3-cd)pyrene	11SAVSB007_GWOX	0.21 U	11SAVSB907_GWOX	0.1 UJ	NC	30	WATER
SW8270C-SIM	Naphthalene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.098 J	NC	30	WATER
SW8270C-SIM	Phenanthrene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER
SW8270C-SIM	Pyrene	11SAVSB007_GWOX	0.11 U	11SAVSB907_GWOX	0.052 UJ	NC	30	WATER

NC = Not calculated because both results were not reported above the LOQ

Attachment A

Sample ID	Sample Type	Collection Date	Matrix
11SAVGW001_GWOX	N	7/24/2011	WATER
11SAVGW002_GWOX	N	7/24/2011	WATER
11SAVSB0001_SO00-01	N	7/6/2011	SOIL
11SAVSB0004_SO0-02	N	7/6/2011	SOIL
11SAVSB001_SO02	N	7/6/2011	SOIL
11SAVSB001_SO2.6	N	7/6/2011	SOIL
11SAVSB0010_SO00-01	N	7/5/2011	SOIL
11SAVSB0011_SO00-01	N	7/5/2011	SOIL
11SAVSB0012_SO00-01	N	7/5/2011	SOIL
11SAVSB0012_SO02-03	N	7/24/2011	SOIL
11SAVSB0013_SO00-01	N	7/5/2011	SOIL
11SAVSB003_SO2.5	N	7/6/2011	SOIL
11SAVSB004_GWOX	N	7/24/2011	WATER
11SAVSB004_SO02-03	N	7/6/2011	SOIL
11SAVSB005_SO01.8	N	7/6/2011	SOIL
11SAVSB006_SO02	N	7/6/2011	SOIL
11SAVSB007_GWOX	N	7/24/2011	WATER
11SAVSB007_SO00-01	N	7/5/2011	SOIL
11SAVSB007_SO02-03	N	7/23/2011	SOIL
11SAVSB008_SO00-01	N	7/5/2011	SOIL
11SAVSB008_SO02-03	N	7/24/2011	SOIL
11SAVSB009_SO00-01	N	7/5/2011	SOIL
11SAVSB009_SO02-03	N	7/23/2011	SOIL
11SAVSB011_SO02-03	N	7/24/2011	SOIL
11SAVSB013_SO02-03	N	7/24/2011	SOIL
11SAVSB907_GWOX	FD	7/24/2011	WATER
Equipment Blank_070611	EB	7/6/2011	WATER
Trip Blank_070611	ТВ	7/6/2011	WATER
Trip Blank_070611_2	ТВ	7/6/2011	WATER
Trip Blank_1_072411	ТВ	7/24/2011	SOIL
Trip Blank_2_072411	ТВ	7/24/2011	SOIL
TRIP BLANK_GWOX072411	ТВ	7/24/2011	WATER

EB = equipment blank FD= field duplicate N = normal sample

TB = trip blank

Laboratory Data Review Checklist

Compl	eted by:	Jamie Beckett					
Title:		Associate Cher	mist		D	ate:	Dec 13, 2011
CS Rej	port Name:				R	eport Date:	Aug 2, 2011
Consul	ltant Firm:	CH2M Hill					
Laboratory Name:		TestAmerica Sacramento Laboratory Repo		eport Numb	port Number: G1G120514		
ADEC	File Number:			ADEC RecKe	ey Number:		
1. La	<u>lboratory</u>						
	-	ADEC CS appro	oved laboratory r	eceive and perfor	rm all of th	e submitted	sample analyses?
	• Yes		O NA (Plea	-		omments:	zumpro umarjizos.
	*			r "network" labor g the analyses Al	•		d to an alternate
	• Yes	○ No	ONA (Pleas	e explain)	C	omments:	
7	TestAmerica Se	eattle					
2. <u>Ch</u>	ain of Custody	(COC)					
	a. COC infor	mation complet	ed, signed, and d	ated (including re	eleased/rec	eived by)?	
_	• Yes	○ No	ONA (Pleas	e explain)	C	omments:	
	b. Correct ar	alyses requeste	d?				
_	• Yes	○ No	ONA (Plea	ase explain)	C	omments:	
3. <u>Lal</u>	ooratory Samp	e Receipt Docu	mentation				
	a. Sample/co	oler temperatur	e documented an	d within range at	receipt (4°	± 2° C)?	
	• Yes	○ No	○ NA (Ple	ase explain)	C	omments:	

1 1	servation acce _l	,	preserved VOC soil (GRO, BTEX,
• Yes	○ No	ONA (Please explain)	Comments:
c. Sample con	dition docume	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	○ No	○ NA (Please explain)	Comments:
All samples rece	ived intact and	within temperature.	
	• •	•	r example, incorrect sample contained insufficient or missing samples, etc.?
○ Yes	○ No	NA (Please explain)	Comments:
e. Data quality	y or usability a	ffected? (Please explain)	
			Comments:
All data are usab	le.		
ase Narrative			
	understandabl	e?	
• Yes	○ No	○ NA (Please explain)	Comments:
b. Discrepance	ies, errors or Q	C failures identified by the lab?	
• Yes	○ No	○ NA (Please explain)	Comments:
Detects in the me	ethod blank for	method NWVPH.	
c. Were all co	rrective actions	s documented?	
• Yes	○ No	ONA (Please explain)	Comments:
1 3371	CC 1		4. 0
d. What is the	effect on data	quality/usability according to the c	ease narrative? Comments:

• Yes	○ No	○ NA (Please explain)	Comments:
b. All applica	ble holding tin	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils re	ported on a dry	y weight basis?	
• Yes	○ No	○ NA (Please explain)	Comments:
d. Are the rep	orted PQLs lea	ss than the Cleanup Level or the min	imum required detection level for the
• Yes	○ No	○NA (Please explain)	Comments:
		affected? (Please explain)	
	y or usability a	· · · · · · · · · · · · · · · · · · ·	Comments:
e. Data qualit all data are usab C Samples a. Method Bla	y or usability a ole. nk	· · · · · · · · · · · · · · · · · · ·	Comments:
e. Data qualit all data are usab C Samples a. Method Bla	y or usability a ole. nk ethod blank re	nffected? (Please explain) ported per matrix, analysis and 20 sa	Comments:
e. Data qualit all data are usab C Samples a. Method Bla i. One m	y or usability able.	ported per matrix, analysis and 20 sa	Comments:
e. Data qualit all data are usab C Samples a. Method Bla i. One m	y or usability a le. nk ethod blank resethod blank resethod blank resethod blank	ported per matrix, analysis and 20 sa O NA (Please explain) ults less than PQL?	Comments:
e. Data qualit all data are usab C Samples a. Method Bla i. One m Ye ii. All me	y or usability a ble. nk ethod blank results thod blank results one No	ported per matrix, analysis and 20 sa O NA (Please explain) ults less than PQL?	Comments: mples? Comments:

5. <u>Samples Results</u>

	• Yes	○ No	ONA (Please explain)	Comments:
Asso	ciated samp	le results less	than five times the blank concentra	tion were flagged "B".
	v. Data qu	ality or usabi	lity affected? (Please explain)	Comments:
Data	a qualified a	s estimated.		
	-			
b.	Laboratory	Control Samp	ple/Duplicate (LCS/LCSD)	
	_		CCSD reported per matrix, analysis required per SW846)	and 20 samples? (LCS/LCSD required
	• Yes	○ No	○ NA (Please explain)	Comments:
	ii. Metals/samples?	Inorganics - (One LCS and one sample duplicate r	reported per matrix, analysis and 20
	○ Yes	○ No	• NA (Please explain)	Comments:
No n	netals analyz	zed.		
	project spe	ecified DQOs	ent recoveries (%R) reported and wi , if applicable. (AK Petroleum meth %-120%; all other analyses see the le	
	• Yes	○ No	○NA (Please explain)	Comments:
	limits? An	nd project spec	cified DQOs, if applicable. RPD rep	ed and less than method or laboratory orted from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
	• Yes	○ No	ONA (Please explain)	Comments:
NA				
	v. If %R c	or RPD is outs	ide of acceptable limits, what samp	les are affected? Comments:
NA				

O Yes	○ No	• NA (Please explain)	Comments:
	•	bility affected? (Please explain)	Comments:
All data are usa	able.		
c. Surrogates	- Organics O	nly	
i. Are surr	ogate recover	ies reported for organic analyses - f	ield, QC and laboratory samples?
Yes	○ No	ONA (Please explain)	Comments:
project sp	•	s, if applicable. (AK Petroleum metl	thin method or laboratory limits? And hods 50-150 %R; all other analyses see
○ Yes	No	○ NA (Please explain)	Comments:
Surrogate recov	very exceedan	ces were observed for Method SW8	3260B.
iii. Do the clearly de	_	ts with failed surrogate recoveries h	have data flags? If so, are the data flags
• Yes	○ No	○ NA (Please explain)	Comments:
For low recover	ies, associated	l detected results were flagged "J".	
iv. Data q	uality or usab	oility affected? (Use the comment bo	ox to explain.). Comments:
Data qualified a	s estimated in	sample 11SAVSB001_SO02.	
Soil i. One trip		ed per matrix, analysis and for each	Chlorinated Solvents, etc.): Water and cooler containing volatile samples?
• Yes	○ No	○ NA (Please explain.)	Comments:
(If not,	a comment e	xplaining why must be entered belo	
• Yes	○ No	○ NA (Please explain.)	Comments:

iii. All re	sults less than I	PQL?	
• Yes	○ No	O NA (Please explain.)	Comments:
iv. If abo	ove PQL, what	samples are affected?	
			Comments:
NA			
y Doto c	molity or usobil	lity affected? (Please explain.)	
v. Data Ç	quanty of usaon	my affected: (1 lease explain.)	Comments:
NA			Comments.
e. Field Dupli	ianta		
1		bmitted per matrix, analysis and 10	project samples?
., 0.1.0		onnoun per mann, ananyone and 10	project sampres
• Yes	○ No	○ NA (Please explain)	Comments:
No FD in this S	SDG (see G1G2	270477)	
ii. Subm	nitted blind to la	b?	
• Yes	○ No	O NA (Please explain.)	Comments:
No FD in this S	SDG (see G1G2	70477)	
		ve percent differences (RPD) less the water, 50% soil)	nan specified DQOs?
	I	RPD (%) = Absolute Value of: $(R_{1+} R_{1+} R_{1+$	
Where	$R_1 = $ Sample Co		~/ /
]	$R_2 = Field Dup!$	licate Concentration	
○ Yes	○ No	NA (Please explain)	Comments:
No FD in this S	SDG (see G1G2	270477)	
iv. Data	quality or usab	ility affected? (Use the comment bo	x to explain why or why not.)
○ Yes	○ No	NA (Please explain)	Comments:
No FD in this S	SDG (see G1G2	270477)	

f. Decontamina	ation or Equip	ment Blank (if applicable)	
• Yes	○ No	ONA (Please explain)	Comments:
i. All result	ts less than PQ	DL?	
○ Yes	No	ONA (Please explain)	Comments:
esel Range Org	anics for meth	nod AK102.	
ii. If above	PQL, what sa	mples are affected?	
			Comments:
_			011_SO00-01, 11SAVSB005_SO01.8,
iii. Data qu	ality or usabil	ity affected? (Please explain.)	
4			Comments:
ects less than	five times the	blank concentration were qualified	d as estimated and flagged "B".
Data Flags/Q	ualifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
a. Defined and	appropriate?		
○ Yes	○ No	• NA (Please explain)	Comments:
	i. All result Yes Yes Sel Range Org ii. If above SAVSB0004_S GAVSB008_SO iii. Data que Tects less than a	i. All results less than PQ Yes No Sel Range Organics for meth ii. If above PQL, what sa SAVSB0004_SO0-02, 11SA SAVSB008_SO00-01, 11SA iii. Data quality or usabil Sects less than five times the Data Flags/Qualifiers (ACC) Defined and appropriate?	i. All results less than PQL? O Yes No NA (Please explain) sel Range Organics for method AK102. ii. If above PQL, what samples are affected? SAVSB0004_SO0-02, 11SAVSB0010_SO00-01, 11SAVSB003AVSB008_SO00-01, 11SAVSB009_SO00-01 iii. Data quality or usability affected? (Please explain.) sects less than five times the blank concentration were qualified. Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?

Reset Form

Laboratory Data Review Checklist

Comp	oleted by:	Jamie Beckett					
Title:		Associate Che	mist			Date:	Dec 13, 2011
CS Re	eport Name:					Report Date:	Aug 16, 2011
Consu	ıltant Firm:	CH2M Hill					
Labor	aboratory Name: TestAmerica Sacramento			Laboratory Report Number: G1G260466			
ADEC	C File Number:		ADEC RecKe	ey Numb	er:		
1. <u>L</u>	aboratory						
	a. Did an	ADEC CS appro	oved laboratory r	eceive and perfor	orm all of	the submitted	sample analyses?
	• Yes	○ No	O NA (Plea	se explain.)		Comments:	
	b. If the samples were transferred to and laboratory, was the laboratory perform				•		d to an alternate
	• Yes	○ No	ONA (Pleas	e explain)		Comments:	
	TestAmerica Se	attle					
2. <u>Cl</u>	nain of Custody	(COC)					
	a. COC infor	mation complet	ed, signed, and d	ated (including r	released/i	received by)?	
ſ	• Yes	○ No	○ NA (Pleas	e explain)		Comments:	
	b. Correct an	alyses requeste	d?				
_	• Yes	○ No	ONA (Plea	ase explain)		Comments:	
3. <u>La</u>	aboratory Sampl	e Receipt Docu	mentation				
	a. Sample/co	oler temperatur	e documented an	d within range at	t receipt	$(4^{\circ} \pm 2^{\circ} \text{ C})$?	
	• Yes	○ No	○NA (Ple	ase explain)		Comments:	

• Yes	○ No	○NA (Please explain)	
		(Trease explain)	Comments:
One VPH sample	received with	inadequate methanol preservation	(soil absorption of methanol).
c. Sample cond	dition docume	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	○ No	ONA (Please explain)	Comments:
All samples recei	ved intact and	within temperature.	
	• •	•	r example, incorrect sample containers/nsufficient or missing samples, etc.?
○ Yes	\bigcirc No	NA (Please explain)	Comments:
e Data quality	or usahility a	ffected? (Please explain)	
c. Data quanty	or usuomity u	rected. (Fleuse explain)	Comments:
All data are usabl	e.		
ase Narrative			
a. Present and	understandabl	e?	
• Yes	○ No	○ NA (Please explain)	Comments:
b. Discrepanci	es, errors or O	C failures identified by the lab?	
Yes	○ No	ONA (Please explain)	Comments:
		methods NWEPH and NWVPH. T	•
c. Were all cor	rective action		
• Yes	○ No	○ NA (Please explain)	Comments:
		41. / 4.44	
d. What is the	effect on data	quality/usability according to the c	ase narrative? Comments:

• Yes	○ No	○ NA (Please explain)	Comments:
b. All applical	ble holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rep	oorted on a dry	weight basis?	
• Yes	○ No	○ NA (Please explain)	Comments:
d. Are the rep project?	orted PQLs les	s than the Cleanup Level or the min	nimum required detection level for
• Yes	○ No	○NA (Please explain)	Comments:
e. Data quality	y or usability a	ONA (Please explain) ffected? (Please explain)	Comments:
e. Data quality	y or usability at	<u> </u>	
e. Data quality All data are usab C Samples a. Method Blar	y or usability at le.	<u> </u>	Comments:
e. Data quality All data are usab C Samples a. Method Blar	y or usability at le. nk ethod blank rep	ffected? (Please explain) ported per matrix, analysis and 20 sa	Comments:
e. Data quality All data are usab C Samples a. Method Blan i. One mo	y or usability at le. nk ethod blank rep	orted per matrix, analysis and 20 st	Comments:
e. Data quality All data are usab C Samples a. Method Blan i. One mo	y or usability at le. le. nk ethod blank rep s	ffected? (Please explain) ported per matrix, analysis and 20 sa	Comments:

	• Yes	○ No	ONA (Please explain)	Comments:
Asso	ciated samp	le results less	than five times the blank concentration	tion were flagged "B".
	v. Data qu	ality or usabi	lity affected? (Please explain)	Comments:
Data	qualified a	s estimated.		
b.	Laboratory	Control Samp	ple/Duplicate (LCS/LCSD)	
	_		CCSD reported per matrix, analysis equired per SW846)	and 20 samples? (LCS/LCSD required
	• Yes	○ No	○ NA (Please explain)	Comments:
	ii. Metals/samples?	Inorganics - (One LCS and one sample duplicate r	reported per matrix, analysis and 20
	○ Yes	○ No	• NA (Please explain)	Comments:
No m	netals analyz	zed.		
	project spe	ecified DQOs	ent recoveries (%R) reported and wi , if applicable. (AK Petroleum meth %-120%; all other analyses see the la	
	• Yes	○ No	ONA (Please explain)	Comments:
	limits? An	d project spec	cified DQOs, if applicable. RPD rep	ed and less than method or laboratory orted from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
	• Yes	○ No	ONA (Please explain)	Comments:
NA				
	v. If %R c	or RPD is outs	ide of acceptable limits, what sampl	les are affected? Comments:
NA				

○ Yes	○ No	• NA (Please explain)	Comments:
vii. Data q	uality or usat	pility affected? (Please explain)	Comments:
All data are usa	ble.		
c. Surrogates	- Organics Or	ıly	
i. Are surro	ogate recoveri	es reported for organic analyses - fie	eld, QC and laboratory samples?
• Yes	○ No	CNA (Please explain)	Comments:
project spe		, if applicable. (AK Petroleum metho	nin method or laboratory limits? And ods 50-150 %R; all other analyses see
• Yes	\bigcirc No	○ NA (Please explain)	Comments:
clearly de	-	NA (Please explain)	ve data flags? If so, are the data flags Comments:
iv. Data qı	uality or usab	ility affected? (Use the comment box	t to explain.). Comments:
All data are usab	ole.		
Soil i. One trip		ed per matrix, analysis and for each c	hlorinated Solvents, etc.): Water and cooler containing volatile samples?
• Yes	○ No	○ NA (Please explain.)	Comments:
		transport the trip blank and VOA san aplaining why must be entered below	•
• Yes	○ No	○ NA (Please explain.)	Comments:

iii. All re	sults less than I	PQL?	
• Yes	○ No	O NA (Please explain.)	Comments:
iv. If abo	ove PQL, what	samples are affected?	
			Comments:
NA			
y Doto c	molity or usobil	lity affected? (Please explain.)	
v. Data Ç	quanty of usaon	my affected: (1 lease explain.)	Comments:
NA			Comments.
e. Field Dupli	ianta		
1		bmitted per matrix, analysis and 10	project samples?
., 0.1.0		onnoun per mann, ananyone and 10	project sampres
• Yes	○ No	○ NA (Please explain)	Comments:
No FD in this S	SDG (see G1G2	270477)	
ii. Subm	nitted blind to la	b?	
• Yes	○ No	O NA (Please explain.)	Comments:
No FD in this S	SDG (see G1G2	70477)	
		ve percent differences (RPD) less the water, 50% soil)	nan specified DQOs?
	I	RPD (%) = Absolute Value of: $(R_{1+} R_{1+} R_{1+$	
Where	$R_1 = $ Sample Co		~/ /
]	$R_2 = Field Dup!$	licate Concentration	
○ Yes	○ No	NA (Please explain)	Comments:
No FD in this S	SDG (see G1G2	270477)	
iv. Data	quality or usab	ility affected? (Use the comment bo	x to explain why or why not.)
○ Yes	○ No	NA (Please explain)	Comments:
No FD in this S	SDG (see G1G2	270477)	

f. Decontamin	nation or Equip	ment Blank (if applicable)	
• Yes	○ No	○ NA (Please explain)	Comments:
i. All resu	ılts less than PQ	L?	
• Yes	○ No	ONA (Please explain)	Comments:
	e PQL, what sa	mples are affected?	Comments:
NA			
iii. Data ç	uality or usabil	ity affected? (Please explain.)	Comments:
All data are usab	ole.		
Other Data Flags/C	Qualifiers (ACO	E, AFCEE, Lab Specific, etc.)	
a. Defined and	d appropriate?		
• Yes	○ No	ONA (Please explain)	Comments:
C34 Aromatics 11SAVSB007_5 11SAVSB007_5	(MS - 11SAVS) SO02-03MS). T SO02-03SD), C	B007_SO02-03MS), C8-C10 Aliph These SD's were out of control: C10 21-C34 Aliphatics (SD - 11SAVSI	O-C12 Aliphatics (SD - B007_S002-03SD), <u>C21-C34 Aromatics</u>
1	-	SD), C8-C10 Aliphatics (SD - 11SA)'s were out of control: C10-C12 A	
00		3007_SO02-03). Detects flagged "J	• • • • • • • • • • • • • • • • • • • •

Laboratory Data Review Checklist

Comp	oleted by:	Jamie Beckett					
Title:		Associate Chemist		Date:	Dec 13, 2011		
CS Re	eport Name:					Report Date:	Aug 16, 2011
Consu	ıltant Firm:	CH2M Hill					
Labor	atory Name:	TestAmerica Sacramento Laboratory Report Nur		mber: G1G270	477		
ADEC	C File Number:			ADEC RecKe	ey Numb	er:	
1. <u>L</u>	aboratory						
	a. Did an	ADEC CS appro	oved laboratory r	eceive and perfor	orm all of	the submitted	sample analyses?
	• Yes	○ No	O NA (Plea	se explain.)		Comments:	
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?						
	TestAmerica Se	attle					
2. <u>Cl</u>	nain of Custody	(COC)					
	a. COC infor	mation complet	ed, signed, and d	ated (including r	released/i	received by)?	
	• Yes	○ No	○ NA (Pleas	e explain)		Comments:	
	b. Correct an	alyses requeste	d?				
	• Yes	○ No	ONA (Plea	ase explain)		Comments:	
3. <u>La</u>	aboratory Sampl	e Receipt Docu	mentation				
	a. Sample/co	oler temperatur	e documented an	d within range at	t receipt	$(4^{\circ} \pm 2^{\circ} \text{ C})$?	
	• Yes	○ No	○NA (Ple	ase explain)		Comments:	

		ervation accep orinated Solve	· · · · · · · · · · · · · · · · · · ·	preserved VOC soil (GRO, BTEX,
	○ Yes	No	○ NA (Please explain)	Comments:
	1		7_GWOX was two upon receipt at . Results qualified as estimated and	
c. S	Sample cond	lition documer	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
	• Yes	○ No	○ NA (Please explain)	Comments:
All sar	mples receiv	ved intact and	within temperature.	
		• •	•	example, incorrect sample containers/nsufficient or missing samples, etc.?
	○ Yes	○ No	•NA (Please explain)	Comments:
е. Г	Data quality	or usability af	fected? (Please explain)	Comments:
Data q	ualified as	estimated.		
Case Naı	<u>rrative</u>			
a. P	resent and u	ınderstandable	?	
	• Yes	○ No	ONA (Please explain)	Comments:
b. I	Discrepancie	es, errors or Q	C failures identified by the lab?	
	• Yes	○ No	○ NA (Please explain)	Comments:
				outside of control limits for multiple vation exceedance for SW8270C-SIM.
c. V	Were all core	cective actions No	documented? ○ NA (Please explain)	Comments:
d. V	What is the o	effect on data	quality/usability according to the ca	ase narrative? Comments:
		estimated.		

• Yes	○ No	ONA (Please explain)	Comments:
b. All applicat	ole holding tim	es met?	
○ Yes	No	ONA (Please explain)	Comments:
These NativeIDs SW8260B. Non-		ing time: 11SAVSB007_GWOX, 1 "UJ".	1SAVSB907_GWOX for method
c. All soils rep	orted on a dry	weight basis?	
○ Yes	○ No	• NA (Please explain)	Comments:
d. Are the repo	orted PQLs les	s than the Cleanup Level or the min	imum required detection level for the
• Yes	○ No	○NA (Please explain)	Comments:
Data qualified as	estimated.		Comments:
C Samples			
a. Method Blar		oorted per matrix, analysis and 20 sa	mnles?
	•	•	imples:
• Ye	s O No	○ NA (Please explain)	Comments:
		Its less than PQL?	G
○ Ye	s • No	ONA (Please explain)	Comments:
C16-C21 Alipha method NWVPI	*	Aliphatics for method NWEPH. C12	2-C13 Aromatics, Total VPH for
iii. If abov	e PQL, what s	amples are affected?	Comments:

	iv. Do the	affected samp	ole(s) have data flags? If so, are the	data flags clearly defined?
	• Yes	○ No	ONA (Please explain)	Comments:
Assoc	ciated samp	le results less	than five times the blank concentration	tion were flagged "B".
	v. Data qu	ality or usabil	lity affected? (Please explain)	Comments:
Data	qualified as	s estimated.	<u> </u>	
<u> </u>	1			
b. 1	Laboratory	Control Samp	ole/Duplicate (LCS/LCSD)	
	_		CCSD reported per matrix, analysis equired per SW846)	and 20 samples? (LCS/LCSD required
	• Yes	○ No	○ NA (Please explain)	Comments:
	ii. Metals/lsamples?	Inorganics - (One LCS and one sample duplicate r	reported per matrix, analysis and 20
	○ Yes	○ No	NA (Please explain)	Comments:
No m	etals analyz	zed.		
	project spe	ecified DQOs	ent recoveries (%R) reported and wi , if applicable. (AK Petroleum meth %-120%; all other analyses see the la	, and the second se
	○ Yes	No	ONA (Please explain)	Comments:
		D analytes we BS) for metho		es (BD), C8-C10 Aliphatics (BS), C8-
	limits? An	d project spec	cified DQOs, if applicable. RPD rep	ted and less than method or laboratory ported from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
	• Yes	○ No	○ NA (Please explain)	Comments:
NA				
	v. If %R o	r RPD is outs	ide of acceptable limits, what sampl	les are affected? Comments:
11SA	VSB007 C	GWOX, 11SA	VSB907 GWOX	

• Yes	○ No	ONA (Please explain)	Comments:
Detects flagg	ed "J"; non-detec	ets flagged "UJ".	
vii. Dat	a quality or usab	ility affected? (Please explain)	Comments:
Data qualifie	d as estimated.		
c Surrogati	es - Organics On	lv	
•	C	es reported for organic analyses - fi	ield, OC and laboratory samples?
• Yes	○ No	ONA (Please explain)	Comments:
ii Agay	uraay All paraay	at recoveries (9/P) reported and wi	thin method or laboratory limits? And
project	•	, if applicable. (AK Petroleum meth	nods 50-150 %R; all other analyses see
\bigcirc Ye	es • No	○ NA (Please explain)	Comments:
Surrogate rec	overy exceedance	es were observed for Methods AK	102 and SW8270C-SIM.
	he sample result defined?	s with failed surrogate recoveries h	ave data flags? If so, are the data flags
• Yes	○ No	○ NA (Please explain)	Comments:
		ssociated detected results were flag	ged "J". For low recoveries non-detects
were flagged ' iv. Data	quality or usabi	lity affected? (Use the comment bo	
			Comments:
Data qualified	l as estimated in	samples 11SAVSB907_GWOX, 1	ISAVSB004_GWOX.
d. Trip Blan Soil	nk - Volatile ana	lyses only (GRO, BTEX, Volatile of	Chlorinated Solvents, etc.): Water and
	rip blank reporte enter explanation	- ·	cooler containing volatile samples?
	O No	O NA (Please explain.)	Comments:
(If not, ● Yes	e cooler used to t		amples clearly indicated on the COC?

iii. All resu	ılts less than F	PQL?	
○ Yes	No	O NA (Please explain.)	Comments:
These analytes ha	d Blank detec	ets: C12-C13 Aromatics (TB), Tota	al VPH (TB) for method NWVPH.
iv. If abov	e PQL, what	samples are affected?	
			Comments:
11SAVSB007_G	WOX, 11SA	VSB907_GWOX	
v. Data qu	ality or usabil	lity affected? (Please explain.)	
1	J	, ,	Comments:
Detects less than	five times the	e blank concentration were qualifie	ed as estimated and flagged "B".
e. Field Duplica	ate		
i. One field	l duplicate sul	bmitted per matrix, analysis and 10	project samples?
• Yes	○ No	○NA (Please explain)	Comments:
		0 1 1 1 (C 13 11 2 1 - F 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ii. Submit	ted blind to la	b?	
• Yes	○ No	○ NA (Please explain.)	Comments:
© 163		Tri (Ficuse explains)	Comments.
		ve percent differences (RPD) less to water, 50% soil)	than specified DQOs?
	I	RPD (%) = Absolute Value of: $(R_1 + R_2)$	
Where R	1 = Sample Co		
R_2	e Field Dupl	licate Concentration	
• Yes	○ No	ONA (Please explain)	Comments:
iv. Data qu	uality or usabi	ility affected? (Use the comment be	ox to explain why or why not.)
○ Yes	○ No	NA (Please explain)	Comments:
All data are usab	le.		

	○ Yes	No	○NA (Please explain)	Cammanta
			11/1 (1 lease explain)	Comments:
	i. All result	s less than PQ	L?	
	○ Yes	○ No	NA (Please explain)	Comments:
	ii If ahove	POI what sa	mples are affected?	
	11. 11 doove	1 QL, what sa	imples are affected:	Comments:
NA				
	iii. Data qu	ality or usabil	ity affected? (Please explain.)	Comments:
ΙA				
ner I	Data Flags/Qu	,	PE, AFCEE, Lab Specific, etc.)	
		,	© NA (Please explain)	Comments:

Reset Form

Appendix C
Hydrocarbon Risk Calculator –
Cumulative Risk Results

Table C-1 Source of Input Parameters for HRC Savoonga FSRC, Savoonga, Alaska

Soil Conditions		
Parameter	Model Input	Reference
Bulk Density (lbs/ft^3)	93.6	ADEC default value
Specific Gravity	2.65	ADEC default value
Moisture Content (% by weight)	10%	ADEC default value
Organic Carbon Fraction -foc	0.001	ADEC default value
Soil Tomporature (Colcius)	6	Conservative estimate (higher than the average annual air temperature and above typical average soil temperature at permafrost sites).
Soil Temperature (Celsius)	6	and above typical average soil temperature at permatrost sites).

Hydrogeologic Conditions		
Parameter	Model Input	Reference
Source Length (ft)	60	Length of inferred source area scaled off of site maps.
Average Precipitation (in/yr)	10	Average of annual weather data
Aquifer Hydraulic Conductivity (cm/sec)	0.0027777	ADEC default value
Aquifer thickness (ft)	5	ADEC default value
Infiltration Rate (m/yr)	0.051	20 % of precipitation (equals the default assumption).
Hydraulic Gradient	0.002	ADEC default value
Potable or Non-potable Aquifer	1	Potable groundwater.

Exposure Routes Complete at Present Time		
Soil Direct Contact	Complete	Conceptual Site Model
Outdoor Air	Complete	Conceptual Site Model
Indoor Air	Incomplete	Elevated Buildings
Groundwater Ingestion	Incomplete	No wells or buildings present

Climate Related Outdoor Air Inhalation and Soil Dire							
Parameter	Model Input	Reference					
Climate Zone	2	Default for the <40 inch precipitation zone.					

Groundwater Depth & Fluctuation and Source Depth	1	
Depth to Groundwater at Seasonal Low Water Level		
at Downgradient End of Source (ft)	2	Estimated depth to groundwater from site data
Seasonal Water Level Fluctuation (ft)	1	Estimated value.
Depth to Bottom of Source Zone at downgradient		
Edge of Source (ft)	3	Measured value based on sampling data
Depth to Top of Area wide Source Zone at		
Downgradient Edge of Source (ft)	0	Measured value based on sampling data

Chemical Concentration Sources		
сос	Model Input	Reference
PAH - Soil	Actual	Max detected or detection limit
PAH - GW	Actual	Max detected or detection limit
BTEX - Soil	Actual	Max detected
BTEX - GW	Actual	Max detected or detection limit
GRO - Soil	Actual	Max detected
DRO - Soil	Actual	Max detected
RRO - Soil	Actual	Max detected
GRO - GW	Actual	Max detected
DRO - GW	Actual	Max detected
RRO - GW	Actual	Max detected

TABLE C-2
Source Area Soil Results for BTEX, DRO, and GRO
Savoonga Federal Scout Readiness Center Data Gap Investigation

										Ethylbenzen	Xylenes
				Analyte>>	DRO	GRO	RRO	Benzene	Toluene	e	(Total)
		Sample Depth		Units>>	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location	Sample ID	(feet bgs)	Sample Date	SL>>	250	300	10000	0.025	6.5	6.9	63
11SAVSB001	11SAVSB001_S002-2.6	2 - 2.6	7/6/2011		17000			3.1	35	48	250
SAV-B-13	SAVB-13S1SS	0 - 0.5	9/2/1998		17000						
SAV-B-12	SAVB-12S2SS	0.5 - 1	9/2/1998		11000						
SAV-B-13	SAVB-13S2SS	1.5 - 2	9/2/1998		8900						
11SAVSB001	11SAVSB001_S002	1 - 2	7/6/2011		4300			0.27 J	29 J	11 J	50 J
SAV-B-06	SAVB-6S2SS	1.5 - 2	9/2/1998		1500						
SAV-B-05	SAVB-5S2SS	1.5 - 2	9/2/1998		1300						
SAV-B-12	SAVB-12S1SS	0 - 0.5	9/2/1998		1100						
SAV-B-14	SAVB-14S2SS	1 - 1.5	9/2/1998		860						
09SAV-01-G105	09-SAV-01-G105-1_1	1.1 - 1.1	6/13/2009		844						
11SAVSB006	11SAVSB006_SO02	2 - 2	7/6/2011		660						
11SAVSB001	11SAVSB0001_SO00-01	0 - 1	7/6/2011		630						
09SAV-01-F090	09-SAV-01-F090-0.7	0.7 - 0.7	6/13/2009		606						
09SAV-01-G090	09-SAV-01-G090-0.7	0.7 - 0.7	6/13/2009		491						
SAV-B-10	SAVB-10S3SS	1 - 1.5	9/2/1998		400						
SAV-B-17	SAVB-17S2SS	2 - 2.5	9/2/1998		310	6	57	0.018 U		0.04	0.062
09SAV-01-F110	09-SAV-01-F110-0_8	0.8 - 0.8	6/13/2009		301						

Notes:

- 1. All units in milligrams per kilogram.
- 2. Bold indicates that the analyte was detected.
- 3. Shading indicates that the result exceeded screening criteria.
- -- = not analyzed

DRO = diesel-range organics

GRO = gasoline-range organics

J = The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

RRO = residual-range organics

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

TABLE C-3
Groundwater Results for BTEX, DRO, and GRO
Savoonga Federal Scout Readiness Center Data Gap Investigation

								Xylenes
		Analyte:	DRO	GRO	Benzene	Ethylbenzene	Toluene	(Total)
		Screening Level:	1500	2200	0.5	70	100	1000
Location	Sample ID	Sample Date						
11SAVGW001	11SAVGW001_GWOX	7/24/2011	660					
11SAVGW002	11SAVGW002_GWOX	7/24/2011	810					
11SAVSB004	11SAVSB004_GWOX	7/24/2011	18,000 J					
11SAVSB007	11SAVSB007_GWOX	7/24/2011	1100		0.2 UJ	0.2 UJ	0.4 UJ	1.2 UJ
SAV-ACL-015	SAV-ACL-015	8/25/2004	30,200	2,110	80.5	166	127	581
SAV-ACL-016	SAV-ACL-016	8/25/2004	4,070	50 U	0.5 U	0.5 U	7.18	4.43

Notes:

- 1. All units in micrograms per liter.
- 2. Bold indicates that the analyte was detected.
- 3. Shading indicates that the result exceeded screening criteria .
- -- = Not analyzed
- BTEX = benzene, toluene, ethylbenzene, and xylenes
- DRO = diesel-range organics
- GRO = gasoline-range organics
- J = The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.

Table C-4A VPH Results from Non Source Area Samples --- Savoonga Federal Scout Readiness Center, Alaska

					1	Benzene			Toluene			Ethylbenzene			Xvlene (tota	D		8-C10 Aroma Method	atics	C9-C10 Aromatics	C10	-C12 Aromati	cs	C12-C13	Aromatics		5-C6 Alipha	ics	C6-C8	Aliphatics		C8-C10 A	phatics	С	10-C12 Aliph	atics	Total		
					Lab	Method Detection			Method Detection			Method		Lab	Method Detection			Method Detection			Lab	Method	Stat	C12-C13 Met Lab Dete			Method Detection		Lab De	ethod tection 5	Stat I	Meth ab Detec	od ion Stat		Method Detection		Lab	Method (GRO (calculated
Site Name	Location Name	Sample	Sample Date	Sample ID	Result (mg/kg)	Limit (ma/ka)	Stat Value	Result (mg/kg)	Limit (ma/ka)	Stat Value	Lab Result	Detection Limi	t Stat Value	Result (mg/kg)	Limit (mg/kg)	Stat Value	Result (mg/kg)	Limit (mg/kg)	Stat Value (mg/kg)	Calculated	Result (mg/kg)	Limit (mg/kg)	Value (mg/kg) (Result Lir	it Stat Va	ue Result	Limit (mg/kg)	Stat Value	Result (mg/kg) (n	Limit V	alue Re	sult Lim	t Value	Result (mg/kg)	Limit (mg/kg)	Stat Value	Result	Limit (mg/kg)	as sum of C5 to C10 A&A) (mg/kg))
Savoonga	11SAVSB007	2 - 3	7/23/2011	11SAVSB007_SO02-03	ND ND	0.0039	0.0039	0.008	0.0053	0.008	ND ND	0.0078	0.0078	ND ND	0.0059	0.0059	0.18	0.068	0.18	0.1663	0.18	0.068	0.18	0.17 0.0	38 0.17	0.13	0.068	0.13	ND (0.068 0	.068	ND 0.06	8 0.068	0.1	0.068	0.1	(mg/kg)	(mg/ng/	0.46

										rabie	C-4D	EPH Kes	uits ire	om nor	Sourc	e Area	ı əamp	ies	Savoon	ga rede	rai Sc	out Rea	anness	Cente	, Alaska	1													
					1 Ci	08-C10 Aroma	natics	C9-C10 Aromatics	(C10-C12 Aroma	itics	C12	C16 Aromat	ics	C1	6-C21 Aroma	atics	(C21-C34 Arom	atics	C8	-C10 Aliphati	cs	C10-C12	Aliphatics	С	12-C16 Alipi	hatics	C16	6-C21 Alipha	des	C21-C	34 Aliphatics					Sum of all	
						Method				Method			Method			Method						Method		Met	nod		Method			Method	7		Aethod	DF	RO DF	RO DRO (Su	um RRO (sum		Extractable
					Lab	Detection	4	Calculated	Lab	Detection			Detection		Lab	Detection		Lab	Method		Lab	Detection	Stat	Lab Dete	tion	Lab	Detection	1	Lab	Detection	Stat	Lab Dr	atection St	at Arom	natics Aliph	natics of C10 to	o of C21 to	Fractions	Petroleum
		Sample			Result	Limit	Stat Value	Value	Result	Limit	Stat Value	Lab Result	Limit	Stat Value	Result	Limit	Stat Value	Result	Detection	Stat Value	Result	Limit	Value R	esult Lir	nit Stat Val	ue Result	Limit	Stat Value	Result	Limit	Value	Result	Limit Va	lue C10 tr	o C21 C10 t	to C21 C21 A&/	A) C34 A&A[*]	Stat Values	Hydrocarbons
Site Name	Location Name	Depth (ft)	Sample Date	Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Limit (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) (n	ng/kg) (mg	kg) (mg/kg) (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) ((mg/kg) (mg/kg) (mg	/kg) (mg	/kg) (mc	J/kg) (mg/kg)) (mg/kg)	(mg/kg)	(mg/kg)
Savoonga	11SAVSB007	2 - 3	7/23/2011	11SAVSB007_SO02-03	ND	1.3	1.3	1.2863	ND	0.096	0.096	ND	1.3	1.3	ND	1.3	1.3	9.9	1.3	9.9	0.4	0.036	0.4	1 0.	3 1	2.4	1.3	2.4	ND	1.3	1.3	7.2	1.3 7	.2 2.6	396 4	.7 7.396	17.1	26	

Table C-4C Source Area BTEX and VPH Data --- Savoonga Federal Scout Readiness Center, Alaska

									INA	L COII	taiiiiiat	eu son s	ouice /	AI Ea II	yuroca	I DOIT C	iiai act	erizatic	JII 30	ivooniga i	euera	ai Scou	LNEa	uiiiess	Jenilei, I	Niaska														
					1	Benzene			Toluene			Ethylbenzene			Xylene (total		С	8-C10 Aroma	ntics	C9-C10 Aromatics		-C12 Aromatic	cs		3 Aromatics		C5-C6 Aliph	atics	С	6-C8 Aliphat	ics	C8	-C10 Aliphatic	s		0-C12 Aliphat		Total \		
						Method			Method						Method			Method				Method		Me			Method			Method			Method			Method			Method	GRO (calculated
					Lab	Detection		Lab	Detection			Method		Lab	Detection		Lab	Detection			Lab	Detection	Stat	Lab Det	ection	Lab	Detection	1	Lab	Detection	Stat	Lab	Detection	Stat	Lab	Detection	1 1	Lab	Detection	as sum of C5 to
		Sample			Result	Limit	Stat Value	Result	Limit	Stat Value	Lab Result	Detection Limi	t Stat Value	Result	Limit	Stat Value	Result	Limit	Stat Value	Calculated	Result	Limit	Value	Result L	mit Stat Va	lue Result	Limit	Stat Value	e Result	Limit	Value	Result	Limit	Value	Result	Limit	Stat Value	Result	Limit	C10 A&A)
Site Name	Location Name	Depth (ft)	Sample Date	Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Value (mg/kg)	(mg/kg)	(mg/kg) (i	mg/kg)	(mg/kg) (m	g/kg) (mg/k	g) (mg/kg) (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg))
Savoonga	11SAVSB001	2 - 2	7/6/2011	11SAVSB001_SO02	0.27	0.032	0.27	1.1	0.043	1.1	11	0.063	11	50	0.048	50	190	1.3	190	129	330	1.3	330	290	.3 290	1.8	1.3	1.8	40	1.3	40	160	1.3	160	220	1.3	220			393.17
Savoonga	11SAVSB001	2.6 - 2.6	7/6/2011	11SAVSB001_SO2.6	3.1	0.14	3.1	35	0.2	35	48	0.29	48	250	0.22	250	140	1.5	140	0	230	1.5	230	200	.5 200	1.7	1.5	1.7	22	1.5	22	57	1.5	57	100	1.5	100			416.80
							1.685			18.050			29.500			150.000			165.000	64.500		2	280.000		245.0	00		1.750			31.000			108.500			160.000	#DIV/0!		

"ND" results are assumed to be the following fraction of the detection limit: 1

Table C-4D Source Area EPH Data --- Savoonga Federal Scout Readiness Center, Alaska

NAPL Contaminated Soil Source Area Hydrocarbon Characterization --- Sayoonga Federal Scout Readiness Center, Alaska

									INA	FL COII	lamma	eu son c	Jource	Alea I	yuroc	ai boii C	iiai aci	ciizati	011 Ja	voonga	reuera	ai ocout i	Cauii	11633 66	illei, Ai	aska														
					1 C8	3-C10 Aroma	atics	C9-C10 Aromatics	С	10-C12 Arom	atics	C1:	2-C16 Aroma		С	16-C21 Aroma	ntics		C21-C34 Arom	atics		C10 Aliphatics		C10-C12 A			2-C16 Alipha	atics	C16-0	C21 Aliphati	cs		34 Aliphatics					S	um of all	
						Method				Method			Method			Method						Method		Metho	d		Method			Method	_	M	Method	D	RO	DRO	DRO (Sum	RRO (sum	EPH	Extractable
					Lab	Detection		Calculated	Lab	Detection			Detection	n	Lab	Detection		Lab	Method		Lab	Detection St	ıt Li	ab Detection	on	Lab	Detection		_Lab _ E	Detection	Stat	Lab De	tection S	stat Aron	matics /	Aliphatics	of C10 to	of C21 to F	ractions	Petroleum
		Sample			Result	Limit	Stat Value	Value	Result	Limit	Stat Value	Lab Result	Limit	Stat Value	Result	Limit	Stat Value	Result	Detection	Stat Value	Result	Limit Val	ie Re	sult Limit	Stat Value	Result	Limit	Stat Value	Result	Limit	Value	Result	Limit Va	alue C10	to C21 C	J10 to C21	C21 A&A)	C34 A&A) Sta	at Values 1	Hydrocarbons
Site Name	Location Name	Depth (ft)	Sample Date	Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Limit (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) (mg.	kg) (mg	/kg) (mg/kg) (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) (n	ng/kg) (mr	g/kg) (m	g/kg)	(mg/kg)	(mg/kg)	(mg/kg) (mg/kg)	(mg/kg)
Savoonga	11SAVSB001	2 - 2	7/6/2011	11SAVSB001_SO02					270	0.42	270	590	5.9	590	200	1.2	200	14	1.2	14			25	5.6	2500	3000	59	3000	170	5.9	170	22	1.2	22 1/	060	5670	6730	36	6766	
Savoonga	11SAVSB001	2.6 - 2.6	7/6/2011	11SAVSB001_SO2.6					400	0.49	400	940	6.8	940	370	1.4	370	150	1.4	150			10	000 6.4	10000	11000	68	11000	610	68	610	290	1.4 2	290 1	710	21610	23320	440	23760	
								#DIV/0!			335.000			765.000			285.000			82.000					6250.0			7000.0			390.0		15	56.0						

Table C-4E Source Area Hydrocarbon Characterization

	Tubl	C O 7	_ 00	ui cc A	u cu i iy	ai ocai	0011 01	iaiacteii	Lation								
Compounds and A&A EC Fractions	В	Т	E	х	C9-C10 Aromatics	C10-C12 Aromatics	C12-C16 Aromatics	C16-C21 Aromatics	C21-C34 Aromatics	C5-C6 Aliphatics	C6-C8 Aliphatics	C8-C10 Aliphatics	C10-C12 Aliphatics	C12-C16 Aliphatics	C16-C21 Aliphatics	C21-C34 Aliphatics	TPH
Source of data used as input to the characterization were overlap exists (enter: max, VPH or EPH)					VPH												
Average concentration in A&A EC groups (mg/kg)	1.6850	18.0500	29.5000	150.0000	64.5000	335.000	765.000	285.000	82.000	1.75	31.00	108.50	6,250.00	7,000.00	390.00	156.00	15668
Fraction of TPH mass in A&A EC groups	0.000107544	0.001152	0.0018828	0.0095737	0.0041167	0.0213812	0.0488257	0.018189959	0.005233602	0.0001117	0.0019786	0.0069249	0.3989026	0.4467709	0.0248915	0.009956609	1.000
GRO, DRO & RRO A&A Groups	GR	O aromatic	:s				DRO aromat	tics	RRO aromatics	G	RO aliphation	es	0	RO aliphatic	es:	RRO aliphatics	
Sum of A&A EC mass fractions within GRO, DRO & RRO A&A Groups	0.016832732					0.0883968			0.005233602	0.0090152			0.870565			0.009956609	1.000
Mass fraction of A&A EC Groups within GRO, DRO & RRO A&A Groups	0.006388989	0.0684399	0.1118547	0.5687527	0.2445637	0.2418773	0.5523466	0.205776173	1	0.0123894	0.219469	0.7681416	0.4582111	0.5131965	0.0285924	1	
Sum of A&A EC mass fractions within GRO, DRO & RRO A&A Groups	1.000					1.000			1	1.000	-		1.000			1	

GRO % aromatics	65.12%
GRO % aliphatics	34.88%
DRO % aromatics	9.22%
DRO % aliphatics	
RRO % aromatics	34.45%
RRO % aliphatics	65.55%

Table C-4E: HRC Input

input to cells C14 to C16 (4-phase, cum	ulative risk calcs)	input to cells D75 to D77 phase, cumulative ris	(4- k calcs)	input to cells D79 to D84 (4-phase calcs)	, cumulative risk
GRO: fraction aromatic DRO: fraction aromatic RRO: fraction aromatic	0.6512 0.0922 0.3445	$ \begin{aligned} & \text{Aromatic } C_{10}C_{12} \\ & \text{Aromatic } C_{12}C_{18} \\ & \text{Aromatic } C_{10}C_{21} \end{aligned} $	0.2418773 0.5523466 0.2057762	Aliphatic C ₂ -C ₆ Aliphatic C ₂ -C ₆ Aliphatic C ₂ -C ₁₀ Aliphatic C ₁₀ -C ₁₂ Aliphatic C ₁₂ -C ₁₆ Aliphatic C ₁₂ -C ₁₆	0.0123894 0.219469 0.7681416 0.4582111 0.5131965 0.0285924

Notes: A&A EC = aliphatic and aromatic equivalent carbon
This spreadsheet has been developed to help HRC users calculate 1) the soil GRO, DRO and RRO aromatic fractions, which are input values in cells C14 to C16 of the HRC; and 2) the equivalent carbon mass fractions within the GRO
aliphatic, DRO aromatic, and DRO aliphatic groups, which are input values to cells D75 to D77 and D79 to D84 of the HRC. The table number, title and data in this spreadsheet are presented as an example and should be changed by the user so that the data becomes specific to their site.

2 Enter the BTEX, EPH and VPH concentration data from the more heavily contaminated portions of the source area (sample results with GRO concentrations above 300 and DRO or RRO concentrations above 250 mg/kg) into the light yellows cells in Tables 6A and 6B (it is best if the lab results are reported to the detection limit and estimated or "J" results are used when they occur). The BTEX data should come from the 8021 or 8260 test methods (don't use the BTEX values produced by the VPH test method.) If a lab result is non-detect, neter 'ND' into the "Lab Result" columnor Table 6A columnor Table 6A used to suspine a 'statistical value' equal to the method detection limit to all non-detect concentration data (the fraction of the detection limit used in the statistical value calculation may be adjusted by changing cell H18). The values needed by the HRC will be calculated automatically and displayed in Table 6D.

The spreadsheet calculates the average concentration value within each A&A EC fraction (e.g., C8 – C10 aromatics) as shown in the gray highlighted lines of Table 6A and 6B. The spreadsheet pulls the average concentrations in each A&A EC fraction from the VPH and EPH data into a summary table (line 3 of Table 6C).

For A&A EC fractions assured by both the VPH and EPH enthods, the spreadsheet, by default, selects the higher of the two overlapping average concentrations. If the user has reason to believe that the either the VPH or EPH result of the overlapping ranges is a more representative value, then that value may be selected by entening "VPH" or "EPH" in the light velow coils in line 2 of Table 6C (rational for the selection must be supplied in the report). In general, the VPH data is thought to be more representative of the C1-C10 fractions and the EPH data is thought to be more representative of the C1-C10 fractions and the EPH data is thought to be more representative of the C1-C10 fractions and the EPH data is thought to be more representative of the C1-C10 fractions and the EPH data is the VPH and EPH data may be used to help assess whether the VPH or EPH data is used as input to the hydrocarbon characterization).

The concentrations within the A&A EC fractions are added to get a total petroleum hydrocarbon (TPH) concentration (cell V40). Then the mass fraction within each A&A EC fraction is calculated by dividing the average concentration within the fraction by the TPH concentration as shown in the row labeled "Fraction of TPH mass within A&A EC groups."

The spreadsheet calculates the mass fraction of each A&A EC group within the larger (SRD aliphabic, DRD aromatic and DRO aliphabic groups by dividing the mass fraction of each A&A EC group within the TPH, by the sum of the mass fractions within the larger (SRO aliphabic, DRO aromatic and DRO aliphabic groups by dividing the mass fraction of each A&A EC group within the TPH, by the sum of the mass fractions within the larger (SRO aliphabic, DRO aromatic and DRO aliphabic, DRO aromatic and DRO aliphabic, DRO aromatic and DRO aliphabic groups (as shown lines 6 and 7 of Table 6C). These values are inputs for cells D75 to D77 and cells D79 to D84 of the HRC and are shown in Table 3.10D in a format where they can be readily copied and pasted into the HRC.

The GRQ, DRQ and RRQ commals fractions are calculated (e.g. the sum of the GRQ aromatic mass fractions divided by the sum of the GRQ aromatic mass fractions) and are shown in Table 3.10D in a format where they can be readily copied and pasted into cells C14 to C16 of the HRC.

Note that the fractions used as input to cells D75 to D77, D79 to D81 and D82 to D84 must total to 1. Therefore it is recommended that the values in Table 6D be copied and pasted into the HRC (rather than manually entered into the HRC).

When pasting the Table 6D values into the HRC use the "paste special values" option so that the formatting of the HRC is preserved.

9 The user can add rows to the middle of Table 6B and 6B as needed.

C6-C10	C10-C25	C25-C36
GRO	DRO	RRO
Stat Value (mg/kg)	Stat Value (mg/kg)	Stat Value (mg/kg)
	4300	
	17000	

C6-C10	C10-C25	C25-C36
GRO	DRO	RRO
Stat Value (mg/kg)	Stat Value (mg/kg)	Stat Value (mg/kg)
	4300	
	17000	

				Facility Location:			Facility Name:					
Table C-5	Hydrod	arbon Risk C	alculator	Savoonga,	Alaska		Savoonga	ARNG FSR				
Page 1		put Parameters:			Version 1.1, Lawrence Acor	mb, Geosphere, Inc.,	March 4, 2011	Solver solution based on w 1999; VBA macro by To		Solv	er Instructions & Informa	ition:
Site Specific and/or Field Data in Ye	low Highlighted Cells	Chemical Concentrations in Site Groundwater (mg/L):	Calculate	Dissolved Phase Half Life (days; used in DAF calculations):	Soil Conditions:	Site Specific and/or Field Data in Yellow Highlighted Cells	ADEC Default Value (all climate zones)	FYI Unit Con	versions		in tool, installed from the prims the calculations must be	
Concentrations in Site So	ils (mg/kg):	Benzene (mg/L)	0.085	400	bulk density (lbs/ft^3)	93.6	93.6	bulk density conversion input (g/cm^3)	bulk density output (lbs/ft^3)	Enter site specific hy- groundwater conditions	drocarbon concentration da data.	ata, and soil and
ienzene (c & nc)	3.1	Toluene (mg/L)	0.127	100	bulk density (g/cm^3)	1.50	1.5	1.66	103.584	2. Click on the "Calcula	te" button in cell D4. The ph d the results are saved in the	
oluene (nc)	35.	Ethylbenzene (mg/L)	0.166	100	specific gravity	2.65	2.65	K (ft/day)	K (cm/sec)			
thylbenzene (c & nc)	48.	Xylene (mg/L)	0.581	100	porosity	0.434	0.43	400	0.141111111	Any time data entry va calculated (click on the '	alues are changed the spre	adsheet should be re
ylenes (total) (nc)	250.	GRO (mg/L)	2.11	100	moisture content (% by weight)	10	10	Exposure Routes Complete	at Present Time	Molar density (mol/L)*N/ value=.0001	APL filled porosity initial	0.156352631
					, , ,				enter 1 for complete pathways; 0 for			
RO (mg/kg)	73.	DRO (mg/L)	30.2	100	foc	0.0010	0.001	Exposure Routes	incomplete pathways	Initial air filled porosity (used to start iterations)	0.284
PRO (mg/kg)	17,000.	RRO (mg/L)	1.48E-05	100	water filled porosity	0.150	0.15	Soil Direct Contact	1		equation (should be zero o	4.30E-12
tRO (mg/kg)	360.	GRO aromatics (mg/L)	0.0443	100	air filled porosity	0.250	0.28	Outdoor Air	1	close to zero, i.e. a very	small number)	
otal Petroleum Hydrocarbons (mg/kg) GRO Aromatics Fraction (ADEC	17,721.561	DRO aromatics (mg/L)	0.0754	100	NAPL filled porosity	0.034	+	Indoor Air	0			
lefault=0.50) DRO Aromatics Fraction (ADEC	0.65	RRO aromatics (mg/L)	1.48E-05	100	water saturation	34.57%		Groundwater Ingestion	0			
efault=0.40) RO Aromatics Fraction (ADEC	0.09	GRO aliphatics (mg/L)	0.036	100	NAPL saturation	7.79%						
lefault=0.40)	0.34	DRO aliphatics (mg/L)	4.34E-04	100	Soil temp (C) Soil Grain Size Description (USCS or other;	6	25		Climate Related (Outdoor Air Inhalation a	nd Soil Direct Contact Ex	posure Parameters
iee Note #1 regarding use of ND values		RRO aliphatics (mg/L)	4.35E-12	100	used to label CSM)	Sand with Silt	ADEC Default Values <40	ADEC Default Values >40"	Olimanta Zana at aita (a	-4 747	'2" for the <40" precip zone	2
cenaphthene (nc)	0.83	Acenaphthene (nc)	5.20E-05	10,000	Hydrogeologic Conditions:		precip/yr	precip/yr	aı	nd "3" for the >40" precip :	zone)	
cenaphthylene (nc)	0.41	Acenaphthylene (nc)	5.20E-05	10,000	Source length (ft)	60	105	105		ation Exposure Frequency ays/yr)	ADEC Defa	ault Values
anthracene (nc)	0.49	Anthracene (nc)	5.20E-05	10,000	Average precipitation (in/yr)	10	25.59	118.11	Residential	Industrial	arctic zone; precip	<40"; precip >40"
Benzo(g,h,i)perylene (nc)	1.2	Benzo(g,h,i)perylene (nc)	5.20E-05	10,000	Default Estimated Infiltration Rate (20% of precip, m/yr)	0.051	0.13	0.6	270	250	Res 200; 270; 330 / I	Indus 200; 250; 25
Tuoranthene (nc)	0.36	Fluoranthene (nc)	5.20E-05	10,000	Aquifer hydraulic conductivity (cm/sec)	2.78E-03	2.78E-03	2.78E-03	Q/C for volatilization	on to Outdoor Air calcs.		
fluorene (nc)	0.77	Fluorene (nc)	2.70E-05	10,000	Aquifer thickness (ft; below low water at downgradient edge of source)	32.8	32.8	32.8	Residential	Industrial		
laphthalene (c & nc)	180.	Naphthalene (c & nc)	9.80E-05	10,000	Source length (m)	18	32	32	90.82	90.82 t seasonal low water level	100.13; 90.	.82; 82.72
henanthrene (nc)	0.43	Phenanthrene (nc)	5.20E-05	10,000	Infiltration rate (m/yr)	0.051	0.13	0.6	source (ft)		at downgradient end of	2
Pyrene (nc) Benzo(a)anthracene (c)	0.43	Pyrene (nc) Benzo(a)anthracene (c)	5.20E-05 5.20E-05	10,000 10,000	Hydraulic gradient Aquifer hydraulic conductivity (m/yr)	0.002 8.76E+02	0.002 8.76E+02	0.002 8.76E+02	seasonal water table flu	ctuation (ft) ce zone at downgradient e	odge of course (ft)	3
										-	-	
Benzo(b)fluoranthene (c)	0.62	Benzo(b)fluoranthene (c)	1.00E-04	10,000	Aquifer thickness (ft; below low water)	10.0	10.0	10.0	saturated source thickne	e source zone at downgra ess at low water level (ft; o	idient edge of source (ft) depth of NAPL source belov	
Benzo(k)fluoranthene (c)	0.92	Benzo(k)fluoranthene (c)	5.20E-05	10,000	Mixing Zone Depth minimum of (m)	5.5	5.5 maximum minimum DAF (for all	5.5 maximum	low water table) saturated source thickne	ess at high water level (ft;	thickness of saturated	1
Benzo(a)pyrene (c)	1.8	Benzo(a)pyrene (c)	5.20E-05	10,000	Dilution Factor (lower seasonal value)	5.1	compounds)	6.0 purce, 1 indicates a saturated	source zone below high			2.00
Chrysene (c)	0.43	Chrysene (c)	5.20E-05	10,000	Vadose Zone or Smear Zone Source?	1	zone source	, 10 for non-potable aquifer (to I	total thickness of the so	urce zone (ft)		3
Dibenz(a,h)anthracene (c)	1.8	Dibenz(a,h)anthracene (c)	1.00E-04	10,000	Potable or Non-potable Aquifer?	1	considered non-potable t evaluated and determined	he groundwater must have been to be non-potable by the ADE	seasonal water table flu saturated source thickne	ess at low water level (m;	depth of source below lov	0.305
ndeno(1,2,3-cd)pyrene (c)	0.59	Indeno(1,2,3-cd)pyrene (c)	1.00E-04	10,000			as per 1	8 AAC 75.350	water table)	ess at high water level (m.		0.305
-Methylnaphthalene (nc)	c 230.	1-Methylnaphthalene (nc)	2.50E-04	1,000	ADEC Reckey No.:				below high water table)	ess at riigii water iever (iii.	, trickriess of source zone	0.610
-Methylnaphthalene (nc)		2-Methylnaphthalene (nc)	2.70E-04	1,000	ADEC File ID		_				hrough zone of seasonal	
	c c				Latitude Longitude				Source Depth input (c the floor slab or baser		ontaminated soil is preser	nt above the bottom
	С				Width of Source (ft)	20			Source Depth input ar	nd J&E model input do n	ot agree, check the input	to cell N28 and/or ce
ı	с				Area of NAPL contaminated soil source (ft^2)	6,000			C61, D61, E61 and G57	7 to be sure they match	site conditions.	
r					Ground surface slope (ft/ft, assumed to be in direction of groundwater flow)	0.002			Enter the thickness of and E61 . If you don't entering a relatively si	know the thickness of u	il immediately below the s ncontaminated soil below	slab in cells C61, D61 the slab consider
									emening a relatively st	man ulickiless.		
					-							
					=							
					1							

Table C-5	Migration to Indoor Air Data Entry	Savoonga, Alaska	Savoonga ARNG FSRC
Page 2	NAPL source area soil gas concentrations or measured soil gas concentrations used as input. Attenuation factor "alpha" ca migration to indoor air pathway shown in section 6 below and entered into the cumulative risk calculations.	alculated by the Johnson & Ettinger model following the EPA advanced soil gas solution to the J &	& E model. Incremental risk posed by NAPL source area soil gas concentrations via
Site Specific and/or Field Data in Vellow His	philiphted Celle		

Site Specific and/or Field Data in Yellow Hi	ighlighted Cells											
Soil Properties:	Upper most uncontaminated soil layer immediately below slab	Middle Layer (not contaminated)	Bottom Layer (not contaminated)	Building Properties:	input value	default input values: basement	default input values: slab on grade			Hur	nan Health Exposure Crite	eria
								L _T = total source-building				
bulk density (lbs/ft^3)	93.60	93.60	93.60	Lb = length of building (cm)	1000	1000	1000	separation distance (cm)	1		Residential	Industrial
bulk density (g/cm^3)	1.50	1.50	1.50	Wb = width of building (cm)	1000	1000	1000	Acrack= area of total cracks (cm^2) = Xcrack* Wcrack = Ab/n	400	Target Carcinogenic Ris (TRC; default = 10^-5)	k 1.00E-05	1.00E-05
specific gravity of solids	2.65	2.65	2.65	Hb = height of building (cm)	244	366	244	Xcrack = floor -wall seam perimeter (cm)	4000	THQ= target hazard quotient (default = 1.0)	1	1
porosity	0.43	0.43	0.43	ER = air exchange rate (1/hr)	0.25	0.25		u = viscosity of air (g/cm-sec)	1.74E-04	ATc= averaging time carcinogen (days), (=70 years)	25,550	25,550
moisture content (% by weight)	10.00	10.00	10.00	Lf = depth below grade of bottom of floor slab or basement (cm)	15	200	15	Zcrack = crack depth below grade (cm)	15	ATnc= averaging time non-carcinogen	30	30
foc	0.001	0.001	0.001	Lf = depth below grade of bottom of floor slab or basement (ft)	0.49212	6.5616	0.49212	equation 16 r crack= n /(Ab /Xcrack)	1.00E-01	ED= exposure duration (30 years)		25
water filled porosity	0.150	0.150	0.150	Lcrack = enclosed space foundation thickness orslab thickness (cm)	10	10	10	n = Acrack/Ab (0<=n<=1)	3.77E-04	EF= effective exposure frequency (350 days/year)	350	83.33333333
air filled porosity	0.284	0.284	0.284	delta P = pressure differential between building and soil (g/cm-s^2)	40	40 g/cm-s^2 = 4 pascals (Pa)	typical conservative value = 4 or 5 Pa; max range = 0 to 20 Pa	equation 14 Q building=building ventilation rate (cm^3/sec) = (Lb*Wb*Hb*ER)/3.600s/h	1.69E+04		days per week	5
Thickness of uncontaminated soil layers above source at building location (ft: upper most layer must extend below the depth of foundation; used to define the source-building separation distance)	0.1	0.1	0.1	kv = soil vapor permeability= top soil layer (cm^2)	2.40E-09	1.00E-08		equation 14 Q building-building ventilation rate (cm^3/sec; if a value is input it will be used in the alpha calculationoptional)		Industrial Scenario Exposure Frequency input values	, .	
layer thickness (cm)	15.34	3.05	3.05	A _B = surface area of enclosed space below grade (cm^2)	1.06E+06		lls+ basement floor or area	equation 15 Q soil = (2* pi *	2.43E+00		hours per day weeks per year	50
Ls (ft) = Total depth to contaminant or to soil gas sample if soil gas data used as input to model	0.3	Ls (cm)	9.14	Q building=building ventilation rate (cm^3/sec)	1.69E+04			Rc (gas constant, cal/mol- degree K	1.9872	C cancer =	[(TCR*ATc)/(EF*ED*UR F)]	
kv = soil vapor permeability (cm^2; est. values in cells Q65 to S65)	2.40E-09	2.40E-09	2.40E-09	Wcrack = floor-wall seam crack width (cm)	0.1			R (gas constant, atm-m^3/mol- degree K	8.2057E-05	C non-cancer =	(TQH*Rfc*1000ug/mg)	
		cell N28) indicates that contaminate the bottom of the floor slab or		and/or cells C61, D61, E61 and	Enter the thickness of the uncontamin D61 and E61 . If you don't know the thi consider entering a thickness only slig	ckness of uncontaminate	ed soil below the slab					

Table C-5	P	hase Partitioning R	Results		Savoonga, Alaska		Savo	onga ARNG F	SRC			
Page 3 column 1	2 3	4	5	6	7	8	9	10	11	12	13	14
Hydrocarbon Fractions	Median Equivalent Carbon	Distribution of DRO & GRO into Aromatic & Aliphatic Equivalent Carbon Ranges (varies by fuel type)	Bulk Soil Concentration (mg/kg)	Fraction of TPH Mass	Xi (Mole Fraction in NAPL using 4-phase model; unique solution)	Concentration in Soil Water (mg of chemical/L of pore water)	Concentration in Soil Gas (mg/L pore air)	% of Hydrocarbon Mass in Dissolved Phase	% of Hydrocarbon Mass in Vapor Phase	% of Hydrocarbon Mass Adsorbed to Soils	% of Hydrocarbon Mass in NAPL	Sum of Dissolved, Vapor, Adsorbed and NAPL Phases
Benzene C _s -C ₇	6.50	from analysis	3.100	0.000175	3.59E-04	6.42E-01	6.09E-02	2.071%	0.328%	3.427%	94.17%	100.00%
Toluene C ₇ -C ₈	7.58	from analysis	35.000	0.001975	3.57E-03	1.88E+00	1.89E-01	0.536%	0.090%	1.437%	97.94%	100.00%
Ethylbenzene C ₆ -C ₉	8.50	from analysis	48.000	0.002709	4.29E-03	7.26E-01	7.73E-02	0.151%	0.027%	0.783%	99.04%	100.00%
Xylene C ₆ -C ₉	8.63	from analysis	250.000	0.014107	2.25E-02	2.38E+00	2.10E-01	0.095%	0.014%	0.422%	99.47%	100.00%
Aromatic C ₉ -C ₁₀	9.50	from analysis	0.000	0.000000	0.00E+00	0.00E+00	0.00E+00	0.000%	0.000%	0.000%	0.00%	0.00%
Aromatic C ₁₀ -C ₁₂	11.00	0.24188	379.035	0.021388	2.78E-02	6.83E-01	2.38E-02	0.018%	0.001%	0.452%	99.53%	100.00%
Aromatic C ₁₂ -C ₁₆	13.00	0.55235	865.557	0.048842	5.71E-02	5.33E-01	8.76E-03	0.006%	0.000%	0.245%	99.75%	100.00%
Aromatic C ₁₆ -C ₂₁	17.00	0.20578	322.463	0.018196	1.79E-02	2.41E-02	1.02E-04	0.001%	0.000%	0.075%	99.92%	100.00%
Aromatic C ₂₁ -C ₃₅	25.00	1.0000	124.034	0.006999	5.36E-03	1.51E-04	3.17E-08	0.000%	0.000%	0.008%	99.99%	100.00%
Aliphatic C ₅ -C ₆	5.50	0.01239	0.315	0.000018	3.67E-05	1.32E-03	2.61E-02	0.042%	1.378%	0.336%	98.24%	100.00%
Aliphatic C ₆ -C ₈	7.00	0.21947	5.588	0.000315	5.22E-04	2.80E-03	5.80E-02	0.005%	0.173%	0.191%	99.63%	100.00%
Aliphatic C ₈ -C ₁₀	9.00	0.76814	19.558	0.001104	1.44E-03	6.13E-04	1.53E-02	0.000%	0.013%	0.095%	99.89%	100.00%
Aliphatic C ₁₀ -C ₁₂	11.00	0.45821	7071.547	0.399036	4.28E-01	1.45E-02	4.47E-01	0.000%	0.001%	0.049%	99.95%	100.00%
Aliphatic C ₁₂ -C ₁₆	13.00	0.51320	7920.133	0.446921	4.07E-01	1.10E-03	8.04E-02	0.000%	0.000%	0.026%	99.97%	100.00%
Aliphatic C ₁₆ -C ₂₁	17.00	0.02859	441.265	0.024900	1.75E-02	2.97E-07	1.40E-04	0.000%	0.000%	0.008%	99.99%	100.00%
Aliphatic C ₂₁ -C ₃₅	25.00	1.0000	235.966	0.013315	6.44E-03	4.35E-12	6.03E-08	0.000%	0.000%	0.001%	100.00%	100.00%
			17721.561	100.0000%	1.00000	6.89E+00	1.20E+00					

sum of GRO aromatic mass fractions must equal 1 7.069958E+00
sum of GRO aliphatic mass fractions must equal 1 1.000000E+00
sum of DRO aromatic mass fractions must equal 1 1.000000E+00
sum of DRO aliphatic mass fractions must equal 1 1.000000E+00

361.561 sum of GRO concentrations should equal input GRO concentration

17000.000 sum of DRO concentrations must equal input DRO concentration 360.000 sum of RRO concentrations must equal input RRO concentration

Note: GRO aromatics less than sum of BTEX

Table C-5		OON DIICO	Contact Risks					
Page 4		Savoonga	, Alaska			Savoonga ARNG FS	RC	
1	2	3	4	5	6	7	8	9
Compounds		Sample Concentrations (mg/kg)	Soil Direct Contact Risk Based Level Residential Land Use	Residential Land Use Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance with risk levels (0= in compliance; 1= not in compliance)	Soil Direct Contact Risk Based Level	Industrial Land Use Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance wit risk levels (0= in compliance; 1= not in compliance)
Benzene (c & nc)	nc	3.1	406.	0.0076	0	8,176.	3.79E-04	0
Toluene (nc)	nc	35.	8,111.	0.0043	0	163,520.	2.14E-04	0
Ethylbenzene (c & nc)	nc	48.	10,139.	0.0047	0	204,400.	2.35E-04	0
Xylenes (total) (nc)	nc	250.	20,278.	0.0123	0	408,800.	6.12E-04	0
GRO Aromatics (nc)	nc	0.00E+00	20,278.	0.00E+00	0	408,800.	0.00E+00	0
DRO Aromatics (nc)	nc	1,567.	4,056.	0.3864	0	81,760.	0.0192	0
RRO Aromatics (nc)	nc	124.	3,042.	0.0408	0	61,320.	0.002	0
GRO Aliphatics (nc)	nc	25.4608	506,944.	5.02E-05	0	10,220,000.	2.49E-06	0
DRO Aliphatics (nc)	nc	15,433.	10,139.	1.5222	1	204,400.	0.0755	0
RRO Aliphatics (nc)	nc	236.	202,778.	0.0012	0	4,088,000.	5.77E-05	0
Acenaphthene (nc)	nc	0.83	2,798.	2.97E-04	0	18,765.	4.42E-05	0
Acenaphthylene (nc)	nc	0.41	2,798.	1.47E-04	0	18,765.	2.18E-05	0
Anthracene (nc)	nc	0.49	20,566.	2.38E-05	0	188,220.	2.60E-06	0
Benzo(g,h,i)perylene (nc)	nc	1.2	1,399.	8.58E-04	0	9,383.	1.28E-04	0
Fluoranthene (nc)	nc	0.36	1,865.	1.93E-04	0	12,510.	2.88E-05	0
Fluorene (nc)	nc	0.77	2,347.	3.28E-04	0	18,448.	4.17E-05	0
Naphthalene (c & nc)	nc	180.	1,394.	0.1292	0	12,998.	0.0138	0
Phenanthrene (nc)	nc	0.43	20,566.	2.09E-05	0	188,220.	2.28E-06	0
Pyrene (nc)	nc	0.43	1,399.	3.07E-04	0	9,383.	4.58E-05	0
Benzene (c & nc)	С	3.1	151.	0.0206	0	1,041.	0.003	0
Ethylbenzene (c & nc)	O	35.	No Sfo	0.00E+00	0	No Sfo	0.00E+00	0
Benzo(a)anthracene (c)	O	0.37	4.8866	0.0757	0	12.017	0.0308	0
Benzo(b)fluoranthene (c)	O	0.62	4.8866	0.1269	0	12.017	0.0516	0
Benzo(k)fluoranthene (c)	O	0.92	48.8656	0.0188	0	120.	0.0077	0
Benzo(a)pyrene (c)	O	1.8	0.4887	3.6836	1	1.2017	1.4979	1
Chrysene (c)	O	0.43	489.	8.80E-04	0	1,202.	3.58E-04	0
Dibenz(a,h)anthracene (c)	o	1.8	0.4887	3.6836	1	1.2017	1.4979	1
Indeno(1,2,3-cd)pyrene (c)	o	0.59	4.8866	0.1207	0	12.017	0.0491	0
Naphthalene (c & nc)	С	180.	No Sfo	0.00E+00	0	No Sfo	0.00E+00	0
1-Methylnaphthalene (nc)	nc	230	279.	0.8252	0	2,600.	0.0885	0
2-Methylnaphthalene (nc)	nc	360	279.	1.2916	1	2,600.	0.1385	0
	nc							
	nc							
	nc							
	nc							
	nc							
	С				_			
	С							
	С							
	С							
	С							
	С							
	С							
Carcinogenic Cumulative Risk				7.7308	1		3.1382	1
Non-carcinogenic Cumulative Risk	+			2.2771	1	<u> </u>	0.2426	0

Values shown in the fourth and seventh columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Page 5		Savoonga	, Alaska			Savoonga ARNG FS	RC	
1	2	3	4	5	6	7	8	9
Compounds		Vapor Concentration in Sample (based on 3 or 4- phase partitioning, whichever is	Residential Site Hypothetical Soil Vapor Concentration when HQ=1 or Target Risk =10^5 (mg/L; from 3- phase equation)	Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance with risk levels (0= in compliance; 1= not in compliance)	Industrial Site Hypothetical Soil Vapor Concentration when HQ=1 or Target Risk =10-5 (mg/L; from 3-phase equation)	Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance with risk levels (0= in compliance; 1= not in compliance)
Benzene (c & nc)	nc	0.0081	56.5702	1.43E-04	0	167.	4.82E-05	0
Toluene (nc)	nc	0.0128	8,355.	1.53E-06	0	24,712.	5.17E-07	0
Ethylbenzene (c & nc)	nc	0.0177	1,442.	1.23E-05	0	4,266.	4.15E-06	0
Xylenes (total) (nc)	nc	0.0512	144.	3.57E-04	0	425.	1.21E-04	0
GRO Aromatics (nc)	nc	0.0045	282.	1.59E-05	0	834.	5.36E-06	0
DRO Aromatics (nc)	nc	0.0026	70.6108	3.73E-05	0	209.	1.26E-05	0
RRO Aromatics (nc)	nc	3.10E-09	No RfC	0.00E+00	0	No RfC	0.00E+00	0
GRO Aliphatics (nc)	nc	0.8987	47,488.	1.89E-05	0	140,454.	6.40E-06	0
DRO Aliphatics (nc)	nc	0.0134	1,083.	1.24E-05	0	3,202.	4.18E-06	0
RRO Aliphatics (nc)	nc	6.03E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Acenaphthene (nc)	nc	6.45E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Acenaphthylene (nc)	nc	5.22E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Anthracene (nc)	nc	1.52E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Benzo(g,h,i)perylene (nc)	nc	3.07E-11	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Fluoranthene (nc)	nc	1.98E-09	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Fluorene (nc)	nc	1.75E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Naphthalene (c & nc)	nc	4.25E-07	0.5641	7.54E-07	0	1.6685	2.55E-07	0
Phenanthrene (nc)	nc	1.27E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Pyrene (nc)	nc	2.49E-09	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Benzene (c & nc)	С	0.0081	5.6409	0.0014	0	20.0209	4.03E-04	0
Ethylbenzene (c & nc)	С	0.0177	30.5978	5.78E-04	0	109.	1.63E-04	0
Benzo(a)anthracene (c)	С	1.94E-09	3.65E-04	5.32E-06	0	0.0013	1.50E-06	0
Benzo(b)fluoranthene (c)	С	1.51E-10	1.64E-05	9.23E-06	0	5.81E-05	2.60E-06	0
Benzo(k)fluoranthene (c)	С	5.72E-11	1.21E-04	4.72E-07	0	4.30E-04	1.33E-07	0
Benzo(a)pyrene (c)	С	3.86E-11	6.46E-07	5.98E-05	0	2.29E-06	1.69E-05	0
Chrysene (c)	С	7.12E-10	0.022	3.24E-08	0	0.078	9.12E-09	0
Dibenz(a,h)anthracene (c)	С	2.64E-12	1.68E-08	1.57E-04	0	5.97E-08	4.42E-05	0
Indeno(1,2,3-cd)pyrene (c)	С	5.01E-11	3.00E-06	1.67E-05	0	1.06E-05	4.71E-06	0
Naphthalene (c & nc)	С	4.25E-07	0.129	3.30E-06	0	0.458	9.29E-07	0
1-Methylnaphthalene (nc)	nc	1.19E-06	2.397	4.95E-07	0	7.0897	1.67E-07	0
2-Methylnaphthalene (nc)	nc	9.41E-07	2.0734	4.54E-07	0	6.1324	1.53E-07	0
	nc	2			-			-
	nc							
	nc							
	nc							
	nc							
	С							
	c			1				
	С			1				
	С			1				
	c							
	С			1				
	С			 				
0 1 1 0 1 1 1 1 1 1	C			0.0000			0.075.04	
Carcinogenic Cumulative Risk	-			0.0023 5.15E-04	0		6.37E-04 1.74E-04	0

Values shown in the fourth and seventh columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Table C-5		Migration	to Indoor Air Va	apor Inhalation	n Risks				
Page 6		Savoonga	, Alaska			Savoonga ARNG FS	RC		
1	2	3	4	5 Residential Land Use Building Vapor Concentration when HQ=1 or Target Risk =10^-5	6 Residential Land Use Fractic	7	8 Industrial Land Use Building Vapor Concentration when HQ=1 or Target Risk =10^-5 (ug/m^3; Value	9 Industrial Land Use Fraction of Risk Based	10 Industrial Land Use check for
		Vapor Concentration	Building Vapor Concentration given	(ug/m^3; Value listed depends on whether C or NC risks are	of Risk Based Concentration (values greater than 1 excee	d with risk levels (0= in compliance; 1= not in	listed depends on whether C or NC risks	Concentration (values greater than 1 exceed the	compliance with risk levels (in compliance; 1= not in
Compounds			site conditions (ug/m^3)	being evaluated)	the risk based target)	compliance)	are being evaluated)	risk based target)	compliance)
Benzene (c & nc)	nc	8,069.	1.156	31.2857	0.03695	0	157.7.	0.00733	0
Toluene (nc)	nc	12,779.	1.8307	5,214.	3.511E-04	0	26,280.0.	6.966E-05	0
Ethylbenzene (c & nc)	nc	17,686.	2.5324	1,043.	0.00243	0	5,256.0.	4.818E-04	0
Xylenes (total) (nc)	nc	51,222.	7.3331	104.	0.07032	0	525.6.	0.01395	0
GRO Aromatics (nc)	nc	4,475.	0.6415	417.	0.00154	0	2,102.4.	3.051E-04	0
DRO Aromatics (nc)	nc	2,634.	0.3776	209.	0.00181	0	1,051.2.	3.592E-04	0
RRO Aromatics (nc)	nc	0.0031	4.45E-07	No RfC	0.000E+00	0	No RfC	0.000E+00	0
GRO Aliphatics (nc)	nc	898,708.	129.	19,189.	0.00671	0	96,710.4.	0.00133	0
DRO Aliphatics (nc)	nc	13,381.	1.9181	1,043.	0.00184	0	5,256.0.	3.649E-04	0
RRO Aliphatics (nc)	nc	0.0603	8.65E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Acenaphthene (nc)	nc	0.0645	9.21E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Acenaphthylene (nc)	nc	0.0522	7.46E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Anthracene (nc)	nc	0.0152	2.17E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Benzo(g,h,i)perylene (nc)	nc	3.07E-05	1.11E-08	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Fluoranthene (nc)	nc	0.002	2.84E-07	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Fluorene (nc)	nc	0.0175	2.49E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Naphthalene (c & nc)	nc	0.4254	6.09E-05	3.1286	1.946E-05	0	15.768	3.860E-06	0
Phenanthrene (nc)	nc	0.0127	1.81E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Pyrene (nc)	nc	0.0025	3.56E-07	No RfC	0.000E+00	0	No RfC	0.000E+00	0
Benzene (c & nc)	С	8,069.	1.156	3.1197	0.37054	0	15.72308	0.07352	0
Ethylbenzene (c & nc)	c	17,686.	2.5324	22.1212	0.11448	0	111.5.	0.02271	0
	c	0.0019	2.78E-07	0.2765	1.006E-06	0	1.39364	1.996E-07	0
Benzo(a)anthracene (c)	c					0			0
Benzo(b)fluoranthene (c)		1.51E-04	2.69E-08	0.2765	9.727E-08		1.39364	1.930E-08	0
Benzo(k)fluoranthene (c)	С	5.72E-05	1.17E-08	2.7652	4.230E-09	0	13.93636	8.393E-10	
Benzo(a)pyrene (c)	С	3.86E-05	1.39E-08	0.0277	5.027E-07	0	0.13936	9.974E-08	0
Chrysene (c)	С	7.12E-04	1.02E-07	27.6515	3.686E-09	0	139.4.	7.313E-10	0
Dibenz(a,h)anthracene (c)	С	2.64E-06	1.19E-08	0.0277	4.290E-07	0	0.13936	8.513E-08	0
Indeno(1,2,3-cd)pyrene (c)	С	5.01E-05	1.69E-08	0.2765	6.112E-08	0	1.39364	1.213E-08	0
Naphthalene (c & nc)	С	0.4254	6.09E-05	0.7157	8.505E-05	0	3.60706	1.688E-05	0
1-Methylnaphthalene (nc)	nc	1.1864	1.70E-04	14.6	1.162E-05	0	73.584	2.305E-06	0
2-Methylnaphthalene (nc)	nc	0.941	1.35E-04	14.6	9.215E-06	0	73.584	1.828E-06	0
	nc								
	nc								
	nc								
	nc								
	nc								
	С								
<u></u>	С								
	С	-							
	С								
	С								
	С								
	С								
Carcinogenic Cumulative Risk	-				0.4851	0	1	0.0963	0
Jaromogenic Gunidiative NSK				1	0.4031	U	1	0.0303	U

Values shown in the fifth and eighth columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Table C-5		Calculate	d Migration to G	roundwater L	evels						
Page 7		Savoonga	, Alaska			Savoonga ARNG FS	RC				
1	2	3	4	5	6	7	8	9	10	11	12
		Dissolved Concentration in Soil Sample (based on 3 or 4 phase partitioning, whichever is			Residential Land Soil Moistur Target Concentration (MCL o Risk Based Concentration Multiplied by the DAFMCLs values used fo		in compliance; potability of groundwater not	Industrial Land Human Health Risk Based Drinking Water	Industrial Land Soil Moisture Target Concentration (MCL or Risk Based Concentration Multiplied by the DAFMCLs values used for compounds	Hypothetical Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target;	Check for compliance with regulatory levels (MCLs used for compounds with MCLs. Residential RBCs used for compounds withou MCLs: 0= in compliance
Compounds		accurate, mg/l)	Maximum Contaminant Level (mg/L)	Concentration (mg/l)	compounds with MCLs)	0)	considered)	Concentration (mg/l)	with MCLs)	MCLs not used)	1= not in compliance)
Benzene (c & nc)	nc	0.6419	0.005	0.146	4.000E-02	0.5495	1	0.2044	4.000E-02	0.3925	1
Toluene (nc)	nc	1.8761	1.	2.92	9.222E+00	0.0697	0	4.088	9.222E+00	0.0498	0
Ethylbenzene (c & nc)	nc	0.7258	0.7	3.65	6.545E+00	0.0213	0	5.11	6.545E+00	0.0152	0
Xylenes (total) (nc)	nc	2.3812	10.	7.3	6.804E+01	0.035	0	10.22	9.320E+01	0.025	0
GRO Aromatics (nc)	nc	0.00E+00		7.3	6.941E+01	0.00E+00	0	10.22	9.718E+01	0.00E+00	0
DRO Aromatics (nc)	nc	1.2396		1.46	1.390E+01	0.0892	0	2.044	1.946E+01	0.0637	0
RRO Aromatics (nc)	nc	1.51E-04		1.095	1.043E+01	1.45E-05	0	1.533	1.460E+01	1.04E-05	0
GRO Aliphatics (nc)	nc	0.0047		183.	1.738E+03	2.73E-06	0	256.	2.433E+03	1.95E-06	0
DRO Aliphatics (nc)	nc	0.0156		3.65	3.476E+01	4.49E-04	0	5.11	4.866E+01	3.20E-04	0
RRO Aliphatics (nc)	nc	4.35E-12		73.	6.951E+02	6.26E-15	0	102.	9.732E+02	4.47E-15	0
Acenaphthene (nc)	nc	9.507E-04		2.19	1.585E+01	6.00E-05	0	3.066	2.219E+01	4.28E-05	0
Acenaphthylene (nc)	nc	0.00188		2.19	1.585E+01	1.19E-04	0	3.066	2.219E+01	8.49E-05	0
Anthracene (nc)	nc	8.685E-05		10.95	9.448E+01	9.19E-07	0	15.33	1.323E+02	6.57E-07	0
Benzo(g,h,i)perylene (nc)	nc	3.443E-06		1.095	1.043E+01	3.30E-07	0	1.533	1.460E+01	2.36E-07	0
Fluoranthene (nc)	nc	2.927E-05		1.46	1.359E+01	2.15E-06	0	2.044	1.903E+01	1.54E-06	0
Fluorene (nc)	nc	6.472E-04		1.46	1.172E+01	5.52E-05	0	2.044	1.640E+01	3.95E-05	0
Naphthalene (c & nc)	nc	1,44654		0.73	4.372E+00	0.3309	0	1.022	6.120E+00	0.2363	0
Phenanthrene (nc)	nc	1.434E-04		10.95	9.466E+01	1.52E-06	0	15.33	1.325E+02	1.08E-06	0
	nc	4.831E-05		1.095	1.019E+01	4.74E-06	0	1.533	1.426E+01	3.39E-06	0
Pyrene (nc)	IIC -	0.6419	0.005	0.0155	4.000E-02	5.1812	1	0.026	4.000E-02	3.0841	1
Benzene (c & nc)	C										0
Ethylbenzene (c & nc)	С	0.7258 3.027E-06	0.7 0.001	No Sfo 0.0012	6.545E+00 9.514E-03	0.00E+00 2.73E-04	0	No Sfo 0.002	6.545E+00 9.514E-03	0.00E+00 1.62E-04	0
Benzo(a)anthracene (c)	С										-
Benzo(b)fluoranthene (c)	С	9.205E-07	0.001	0.0012	9.522E-03	8.29E-05	0	0.002	9.522E-03	4.93E-05	0
Benzo(k)fluoranthene (c)	С	2.226E-06	0.001	0.0117	9.522E-03	2.00E-05	0	0.0196	9.522E-03	1.19E-05	0
Benzo(a)pyrene (c)	С	3.543E-06	2.00E-04	1.17E-04	1.111E-03	0.0032	0	1.96E-04	1.866E-03	0.0019	0
Chrysene (c)	С	7.307E-06	0.1	0.1167	9.514E-01	6.58E-06	0	0.196	9.514E-01	3.92E-06	0
Dibenz(a,h)anthracene (c)	С	1.664E-05	1.00E-04	1.17E-04	9.522E-04	0.015	0	1.96E-04	9.522E-04	0.0089	0
Indeno(1,2,3-cd)pyrene (c)	С	9.261E-08	0.001	0.0012	9.522E-03	8.34E-06	0	0.002	9.522E-03	4.96E-06	0
Naphthalene (c & nc)	С	1.44654		No Sfo	No Sfo	0.00E+00	0	No Sfo	No Sfo	0.00E+00	0
1-Methylnaphthalene (nc)	nc	0.38609		0.146	1.309E+00	0.2948	0	0.2044	1.833E+00	0.2106	0
2-Methylnaphthalene (nc)	nc	0.73607		0.146	1.308E+00	0.5628	0	0.2044	1.831E+00	0.402	0
	nc										
	nc										
	nc										
	nc										
	nc										
	С										
	С										
	С										
	c										
	c										
	,										
	С										
O	С					F 1000	_			2 0054	
Carcinogenic Cumulative Risk	+					5.1998	1			3.0951	1
Non-carcinogenic Cumulative Risk			<u> </u>			1.8643		l		1.3316	1

Values shown in the sixth and tenth columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^4-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

^{&#}x27;>1E+308' indicates that the DAF value is greater can be calculated in excel (i.e. compounds are essentially immobile) and "1/>1E+308' indicates that the risk and or equilibrium concentration is very low (inconsequential).

Table C-5		Groundw	ater Ingestion R	isk (Measured	d Concentrati	ons)					
Page 8		Savoonga,	Alaska			Savoonga ARNG FS	RC				
1	2	3	4	5	6	7	8	9	10	11	12
Compounds		Dissolved Concentration Measured in Water Sample (mg/l)	Maximum Contaminant Level (mg/L)	Residential Land Use Human Health Risk Based Water Concentration (mg/l)	Groundwater Compliance Concentration (MCL or Residential Land Use Health Based Water Concentration at down gradient edge of source area; mg/l)	Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target; MCLs not used)	Check for compliance with regulatory levels (MCLs used for compounds with MCLs: 0= in compliance; 1= not in compliance)	Industrial Land Use Human Health Based Water Concentration (mg/l)	Groundwater Compliance Concentration (MCL or Industrial Land Use Health Based Water Concentration at down gradient edge of source area; mg/l)	Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target; MCLs not used)	Check for compliance with regulatory levels (MCLs used for compounds with MCLs 0= in compliance; 1= no in compliance)
Benzene (c & nc)	nc	0.085	0.005	0.146	0.005	0.5822	1	0.2044	0.005	0.4159	1
Toluene (nc)	nc	0.127	1.	2.92	1.	0.0435	0	4.088	1.	0.0311	0
Ethylbenzene (c & nc)	nc	0.166	0.7	3.65	0.7	0.0455	0	5.11	0.7	0.0325	0
Xylenes (total) (nc)	nc	0.581	10.	7.3	7.3	0.0796	0	10.22	10.	0.0568	0
GRO Aromatics (nc)	nc	0.0443		7.3	7.3	0.0061	0	10.22	10.22	0.0043	0
DRO Aromatics (nc)	nc	0.0754		1.46	1.46	0.0516	0	2.044	2.044	0.0369	0
RRO Aromatics (nc)	nc	1.48E-05		1.095	1.095	1.35E-05	0	1.533	1.533	9.65E-06	0
GRO Aliphatics (nc)	nc	0.036		183.	183.	1.97E-04	0	256.	256.	1.41E-04	0
DRO Aliphatics (nc)	nc	4.34E-04		3.65	3.65	1.19E-04	0	5.11	5.11	8.49E-05	0
RRO Aliphatics (nc)	nc	4.35E-12		73.	73.	5.96E-14	0	102.	102.	4.26E-14	0
Acenaphthene (nc)	nc	5.20E-05		2.19	2.19	2.37E-05	0	3.066	3.066	1.70E-05	0
Acenaphthylene (nc)	nc	5.20E-05		2.19	2.19	2.37E-05	0	3.066	3.066	1.70E-05	0
Anthracene (nc)	nc	5.20E-05		10.95	10.95	4.75E-06	0	15.33	15.33	3.39E-06	0
Benzo(g,h,i)perylene (nc)	nc	5.20E-05		1.095	1.095	4.75E-05	0	1.533	1.533	3.39E-05	0
Fluoranthene (nc)	nc	5.20E-05		1.46	1.46	3.56E-05	0	2.044	2.044	2.54E-05	0
Fluorene (nc)	nc	2.70E-05		1.46	1.46	1.85E-05	0	2.044	2.044	1.32E-05	0
Naphthalene (c & nc)	nc	9.80E-05		0.73	0.73	1.34E-04	0	1.022	1.022	9.59E-05	0
Phenanthrene (nc)	nc	5.20E-05		10.95	10.95	4.75E-06	0	15.33	15.33	3.39E-06	0
Pyrene (nc)	nc	5.20E-05		1.095	1.095	4.75E-05	0	1.533	1.533	3.39E-05	0
Benzene (c & nc)	С	0.085	0.005	0.0155	0.005	5.4892	1	0.026	0.005	3.2674	1
Ethylbenzene (c & nc)	С	0.166	0.7	No Sfo	0.7	0.00E+00	0	No Sfo	0.7	0.00E+00	0
Benzo(a)anthracene (c)	С	5.20E-05	0.001	0.0012	0.001	0.0446	0	0.002	0.001	0.0265	0
Benzo(b)fluoranthene (c)	С	1.00E-04	0.001	0.0012	0.001	0.0857	0	0.002	0.001	0.051	0
Benzo(k)fluoranthene (c)	С	5.20E-05	0.001	0.0117	0.001	0.0045	0	0.0196	0.001	0.0027	0
Benzo(a)pyrene (c)	С	5.20E-05	2.00E-04	1.17E-04	1.17E-04	0.4457	0	1.96E-04	1.96E-04	0.2653	0
Chrysene (c)	С	5.20E-05	0.1	0.1167	0.1	4.46E-04	0	0.196	0.1	2.65E-04	0
Dibenz(a,h)anthracene (c)	С	1.00E-04	1.00E-04	1.17E-04	1.00E-04	0.8571	0	1.96E-04	1.00E-04	0.5102	0
Indeno(1,2,3-cd)pyrene (c)	С	1.00E-04	0.001	0.0012	0.001	0.0857	0	0.002	0.001	0.051	0
Naphthalene (c & nc)	С	9.80E-05		No Sfo	No Sfo	0.00E+00	0	No Sfo	No Sfo	0.00E+00	0
1-Methylnaphthalene (nc)	nc	0.00025		0.146	0.146	0.0017	0	0.2044	0.2044	0.0012	0
2-Methylnaphthalene (nc)	nc	0.00027		0.146	0.146	0.0018	0	0.2044	0.2044	0.0013	0
	nc										
	nc										
	nc										
	nc										
	nc										
	С										
	С					•					
	С										
	С										
	С										
	С										
	С										
Carcinogenic Cumulative Risk	П					7.013	1			4.1744	1
ouromogenic oumulative Nisk											

Values shown in the seventh and eleventh columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic compounds. Carcinogenic compounds shown in bold.

If the groundwater is non-potable then groundwater ingestion risk is zero.

Table C-5		Potential	Cumulative Risk	Assuming A	II Pathways C	complete				DRO, GRO and I	RRO not included in	n cumulative risk o	calculations
Page 9	;	Savoonga	, Alaska			Savoonga ARNG F	SRC						
1	2	3	4	5	6	7	8	9	10	11	12	13	14 Industrial Site Check
Compounds		raction of Soil Direct Contact Risk, Residential Site	Fraction of Outdoor Air Inhalation Risk Residential Site	Fraction of Indoor Air Inhalation	Fraction of Groundwater on Ingestion Risk, Residential Site	Sum of Fraction of Risk Values for Residential Site	Residential Site Check for compliance with risk levels (0= in compliance 1= not in compliance)	Fraction of Soil Direct Contact Risk, Industrial Site	Fraction of Outdoor Air Inhalation Risk, Industrial Si	Fraction of Indoor Air Inhalation Risk, te Industrial Site	Fraction of Groundwater Ingestion Risk, Industrial Site	Sum of Fraction of Risk Values for Industrial Site	for compliance with ri levels (0= in compliance; 1= not in
Benzene (c & nc)	nc	0.0076	1.43E-04	0.0369	0.5822	0.6269	0	3.79E-04	4.82E-05	0.0073	0.4159	0.4236	0
Toluene (nc)	nc	0.0043	1.53E-06	3.51E-04	0.0435	0.0482	0	2.14E-04	5.17E-07	6.97E-05	0.0311	0.0314	0
Ethylbenzene (c & nc)	nc	0.0047	1.23E-05	0.0024	0.0455	0.0527	0	2.35E-04	4.15E-06	4.82E-04	0.0325	0.0332	0
Xylenes (total) (nc)	nc	0.0123	3.57E-04	0.0703	0.0796	0.1626	0	6.12E-04	1.21E-04	0.014	0.0568	0.0715	0
GRO Aromatics (nc)	nc												
DRO Aromatics (nc)	nc												
RRO Aromatics (nc)	nc												
GRO Aliphatics (nc)	nc												
DRO Aliphatics (nc)	nc												
RRO Aliphatics (nc)	nc												
Acenaphthene (nc)	nc	2.97E-04	0.00E+00	0.00E+00	2.37E-05	3.20E-04	0	4.42E-05	0.00E+00	0.00E+00	1.70E-05	6.12E-05	0
Acenaphthylene (nc)	nc	1.47E-04	0.00E+00	0.00E+00	2.37E-05	1.70E-04	0	2.18E-05	0.00E+00	0.00E+00	1.70E-05	3.88E-05	0
Anthracene (nc)	nc	2.38E-05	0.00E+00	0.00E+00	4.75E-06	2.86E-05	0	2.60E-06	0.00E+00	0.00E+00	3.39E-06	6.00E-06	0
Benzo(g,h,i)perylene (nc)	nc	8.58E-04	0.00E+00	0.00E+00	4.75E-05	9.05E-04	0	1.28E-04	0.00E+00	0.00E+00	3.39E-05	1.62E-04	0
Fluoranthene (nc)	nc	1.93E-04	0.00E+00	0.00E+00	3.56E-05	2.29E-04	0	2.88E-05	0.00E+00	0.00E+00	2.54E-05	5.42E-05	0
Fluorene (nc)	nc	3.28E-04	0.00E+00	0.00E+00	1.85E-05	3.47E-04	0	4.17E-05	0.00E+00	0.00E+00	1.32E-05	5.49E-05	0
Naphthalene (c & nc)	nc	0.1292	7.54E-07	1.95E-05	1.34E-04	0.1293	0	0.0138	2.55E-07	3.86E-06	9.59E-05	0.0139	0
Phenanthrene (nc)	nc	2.09E-05	0.00E+00	0.00E+00	4.75E-06	2.57E-05	0	2.28E-06	0.00E+00	0.00E+00	3.39E-06	5.68E-06	0
Pyrene (nc)	nc	3.07E-04	0.00E+00	0.00E+00	4.75E-05	3.55E-04	0	4.58E-05	0.00E+00	0.00E+00	3.39E-05	7.97E-05	0
Benzene (c & nc)	С	0.0206	0.0014	0.3705	5.4892	5.8818	1	0.003	4.03E-04	0.0735	3.2674	3.3443	1
Ethylbenzene (c & nc)	С	0.00E+00	5.78E-04	0.1145	0.00E+00	0.1151	0	0.00E+00	1.63E-04	0.0227	0.00E+00	0.0229	0
Benzo(a)anthracene (c)	С	0.0757	5.32E-06	1.01E-06	0.0446	0.1203	0	0.0308	1.50E-06	2.00E-07	0.0265	0.0573	0
Benzo(b)fluoranthene (c)	С	0.1269	9.23E-06	9.73E-08	0.0857	0.2126	0	0.0516	2.60E-06	1.93E-08	0.051	0.1026	0
Benzo(k)fluoranthene (c)	С	0.0188	4.72E-07	4.23E-09	0.0045	0.0233	0	0.0077	1.33E-07	8.39E-10	0.0027	0.0103	0
Benzo(a)pyrene (c)	С	3.6836	5.98E-05	5.03E-07	0.4457	4.1293	1	1.4979	1.69E-05	9.97E-08	0.2653	1.7632	1
Chrysene (c)	С	8.80E-04	3.24E-08	3.69E-09	4.46E-04	0.0013	0	3.58E-04	9.12E-09	7.31E-10	2.65E-04	6.23E-04	0
Dibenz(a,h)anthracene (c)	С	3.6836	1.57E-04	4.29E-07	0.8571	4.5409	1	1.4979	4.42E-05	8.51E-08	0.5102	2.0081	1
Indeno(1,2,3-cd)pyrene (c)	С	0.1207	1.67E-05	6.11E-08	0.0857	0.2065	0	0.0491	4.71E-06	1.21E-08	0.051	0.1001	0
Naphthalene (c & nc)	С	0.00E+00	3.30E-06	8.51E-05	0.00E+00	8.83E-05	0	0.00E+00	9.29E-07	1.69E-05	0.00E+00	1.78E-05	0
1-Methylnaphthalene (nc)	nc	0.8252	4.95E-07	1.16E-05	0.0017	0.8269	0	0.0885	1.67E-07	2.31E-06	0.0012	0.0897	0
2-Methylnaphthalene (nc)	nc	1.2916	4.54E-07	9.21E-06	0.0018	1.2934	1	0.1385	1.53E-07	1.83E-06	0.0013	0.1398	0
	nc												
	nc												
	nc												
	nc												
	nc												
	С												
	С												
	С												
	С												
	С												
	С												
	С												
Carcinogenic Cumulative Risk	+					15.2312						7.4095	1
Non-carcinogenic Cumulative Risk	1 1		i	1	1	3.1423	1		1	1	1	0.8036	0

Table C-5	Cumulati	ve Risk for Path	ways Complet	e at Present	Time				DRO, GRO and	RRO not included in	n cumulative risk	calculations
Page 10	Savoonga	ı, Alaska			Savoonga ARNG I	FSRC						
1 2		4	5	6	7	8	9	10	11	12	13	14
	Fraction of Soil Direct	t Fraction of Outdoor Air Inhalation Risl	k, Fraction of Indoor Air Inhalatio		Sum of Fraction of Risk Values for		Fraction of Soil Direct Contact Risk, Industrial	Fraction of Outdoor Air	Fraction of Indoor Air Inhalation Risk,	Fraction of Groundwater	Sum of Fraction of Risk	Industrial Site Check for compliance with ris levels (0= in compliance; 1= not in
Compounds	Residential Site	Residential Site	Risk, Residential Site	Site	Residential Site	1= not in compliance)	Site	Inhalation Risk, Industrial Site		Site	Values for Industrial Site	
Benzene (c & nc) n		1.43E-04	0.00E+00	0.00E+00	0.0078	0	3.79E-04	4.82E-05	0.00E+00	0.00E+00	4.27E-04	0
Toluene (nc) n		1.53E-06	0.00E+00	0.00E+00	0.0043		2.14E-04	5.17E-07	0.00E+00	0.00E+00	2.15E-04	
Ethylbenzene (c & nc) n		1.23E-05	0.00E+00	0.00E+00	0.0047	0	2.35E-04	4.15E-06	0.00E+00	0.00E+00	2.39E-04	0
Xylenes (total) (nc) n		3.57E-04	0.00E+00	0.00E+00	0.0127	0	6.12E-04	1.21E-04	0.00E+00	0.00E+00	7.32E-04	- 0
GRO Aromatics (nc) n DRO Aromatics (nc) n												+
RRO Aromatics (nc) n												
GRO Aliphatics (nc) n												-
										1		+
DRO Aliphatics (nc) n RRO Aliphatics (nc) n										1		+
Acenaphthene (nc) n		0.00E+00	0.00E+00	0.00E+00	2.97E-04	0	4.42E-05	0.00E+00	0.00E+00	0.00E+00	4.42E-05	0
		0.00E+00	0.00E+00	0.00E+00	1.47E-04	0	2.18E-05	0.00E+00	0.00E+00	0.00E+00	2.18E-05	0
Acenaphthylene (nc) n Anthracene (nc) n		0.00E+00	0.00E+00	0.00E+00	2.38E-05	0	2.60E-06	0.00E+00	0.00E+00	0.00E+00	2.60E-06	0
` '		0.00E+00	0.00E+00	0.00E+00	8.58E-04	0	1.28E-04	0.00E+00	0.00E+00	0.00E+00	1.28E-04	0
Benzo(g,h,i)perylene (nc) n Fluoranthene (nc) n		0.00E+00 0.00E+00	0.00E+00	0.00E+00	1.93E-04	0	2.88E-05	0.00E+00	0.00E+00	0.00E+00	2.88E-05	0
Fluoranthene (nc) n		0.00E+00	0.00E+00	0.00E+00	1.93E-04 3.28E-04	0	4.17E-05	0.00E+00	0.00E+00	0.00E+00	4.17E-05	0
' '		7.54E-07	0.00E+00	0.00E+00	0.1292	0	0.0138	2.55E-07	0.00E+00	0.00E+00	4.17E-05 0.0138	0
Naphthalene (c & nc) n Phenanthrene (nc) n		7.54E-07 0.00E+00	0.00E+00	0.00E+00	2.09E-05	0	2.28E-06	0.00E+00	0.00E+00	0.00E+00	2.28E-06	0
		0.00E+00	0.00E+00	0.00E+00	3.07E-04	0	4.58E-05	0.00E+00	0.00E+00	0.00E+00	4.58E-05	0
Pyrene (nc) n Benzene (c & nc)		0.002+00	0.00E+00	0.00E+00	0.022	0	0.003	4.03E-04	0.00E+00	0.00E+00	0.0034	0
		5.78E-04	0.00E+00	0.00E+00 0.00E+00	5.78E-04	0	0.003 0.00E+00	4.03E-04 1.63E-04	0.00E+00	0.00E+00 0.00E+00	1.63E-04	0
- Language (Control		5.76E-04 5.32E-06	0.00E+00	0.00E+00	0.0757	0	0.00E+00	1.50E-06	0.00E+00	0.00E+00	0.0308	0
(-)		9.23E-06	0.00E+00	0.00E+00	0.1269	0	0.0508	2.60E-06	0.00E+00	0.00E+00	0.0516	0
. , , , , , , , , , , , , , , , , , , ,		9.23E-06 4.72E-07	0.00E+00	0.00E+00	0.0188	0	0.0077	1.33E-07	0.00E+00	0.00E+00	0.0077	0
Benzo(k)fluoranthene (c) c Benzo(a)pyrene (c) c		4.72E-07 5.98E-05	0.00E+00	0.00E+00	3.6836	1	1.4979	1.69E-05	0.00E+00	0.00E+00	1.4979	1
(-),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3.24E-08	0.00E+00	0.00E+00	8.80E-04	0	3.58E-04	9.12E-09	0.00E+00	0.00E+00	3.58E-04	0
Chrysene (c) c Dibenz(a,h)anthracene (c) c		1.57E-04	0.00E+00	0.00E+00	3.6837	1	1.4979	9.12E-09 4.42E-05	0.00E+00	0.00E+00	1.4979	1
1.7	0.1207	1.67E-05	0.00E+00	0.00E+00	0.1208			4.42E-05 4.71E-06	0.00E+00	0.00E+00		0
Indeno(1,2,3-cd)pyrene (c) C Naphthalene (c & nc) C		1.67E-05 3.30E-06	0.00E+00	0.00E+00 0.00E+00	3.30E-06	0	0.0491 0.00E+00	9.29E-07	0.00E+00	0.00E+00 0.00E+00	0.0491 9.29E-07	0
rapitalaidio (o a ilo)	0.002100	4.95E-07	0.00E+00	0.00E+00	0.8252	0	0.00E+00	1.67E-07	0.00E+00	0.00E+00	9.29E-07 0.0885	0
1-Methylnaphthalene (nc) n 2-Methylnaphthalene (nc) n		4.54E-07	0.00E+00	0.00E+00	1.2916	1	0.0885	1.53E-07	0.00E+00	0.00E+00	0.1385	0
2-weinymaphinaiene (nc) n		4.54E-07	0.00E+00	0.00E+00	1.2916	'	0.1303	1.53E-07	0.00E+00	0.00E+00	0.1305	- 0
n												+
n				+						 		+
n												+
n				+						 		+
n						+				+		+
				1						1		+
										+		+
										1		+
										+		+
				1		_				+		+
				1		_				+		+
	+			+	7 700					+	0.4000	
Carcinogenic Cumulative Risk	+			 	7.733					1	3.1389	1
Non-carcinogenic Cumulative Risk	1				2.2776	1	1	1			0.2427	0

Values shown in the second through sixth and eighth through twelfth columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Table C-5		Partitioni	ng into Groundv	vater & Surfac	e Water			
Page 11		Savoonga	, Alaska			Savoonga ARNG FS	RC	
1	2	Calculated Equilibrium Conc. (from soil data & solver or goal seek)	4 Measured Dissolved Phase Conc.	Groundwater Compliance Concentration (MCL or Residential Land Use Health Based Water Concentration at down gradient edge of source	Check for vadose zone fill potential (DAF of 3.3; 0 =suitable for vadose zone fill 1 =not suitable for vadose zone fill; "ND" input	7 Check for saturated zone fill potential (DAF of 1; 0 =suitable for saturated zone fill; 1 =not suitable for saturated zone fill; 70?	8 Ambient Water Quality	9 Check for surface wate body fill potential (DAF 1; 0 =suitable for fill in surface water; 1 =not suitable for fill in surface water; "ND" input concentrations not
Compounds		(mg/L)	(mg/L)	area; mg/l)	concentrations not assessed)	input concentrations not assessed)	Criteria (mg/L)	assessed)
Benzene		0.6419	0.085	0.005	1	1	0.005	1
Foluene		1.8761 0.7258	0.127 0.166	1. 0.7	0	0		
Ethylbenzene					0	0		
Kylene SRO Aromatics		2.3812 0.00E+00	0.581 0.0443	7.3 7.3	0	0		
DRO Aromatics		1.2396	0.0443	1.46	0	0		
RRO Aromatics		1.51E-04	1.48E-05	1.46	0	0		
GRO Aliphatics		0.0047	0.036	183.	0	0		
ORO Aliphatics	1	0.0156	4.34E-04	3.65	0	0		
RRO Aliphatics		4.35E-12	4.35E-12	73.	0	0		
Acenaphthene		9.51E-04	5.20E-05	2.19	0	0		
Acenaphthylene		0.0019	5.20E-05	2.19	0	0		
Anthracene		8.68E-05	5.20E-05	10.95	0	0		
Benzo(g,h,i)perylene		3.44E-06	5.20E-05	1.095	0	0		
Fluoranthene		2.93E-05	5.20E-05	1.46	0	0		
luorene		6.47E-04	2.70E-05	1.46	0	0		
Naphthalene		1.4465	9.80E-05	0.73	0	0		
Phenanthrene		1.43E-04	5.20E-05	10.95	0	0		
Pyrene		4.83E-05	5.20E-05	1.095	0	0		
Benzo (a) Anthracene		3.03E-06	5.20E-05	0.001	0	0		
Benzo (b) fluoranthene		9.21E-07	1.00E-04	0.001	0	0		
Benzo (k) fluoranthene		2.23E-06	5.20E-05	0.001	0	0		
Benzo (a) pyrene		3.54E-06	5.20E-05	1.17E-04	0	0		
Chrysene		7.31E-06	5.20E-05	0.1	0	0		
Dibenz (a,h) anthracene		1.66E-05	1.00E-04	1.00E-04	0	0		
ndeno (1,2,3-cd) pyrene		9.26E-08	1.00E-04	0.001	0	0		
I-Methylnaphthalene (nc)		0.3861	2.50E-04	0.146	0	0		
2-Methylnaphthalene (nc)		0.7361	2.70E-04	0.146	0	0		
ГАН		5.625	0.959				0.01	1
ΓAqH		7.0753	0.96				0.015	1
	-	7.0753	0.90				230	1
ORO sheen (mg/kg)								

Residential Site (rounded to 1 carcinogenic direct contact criteria (o in compliance) with risk criteria (o in compliance) into in compliance) contact criteria exceeded) Potential Carcinogenic Cumulative Fraction of Risk 20 2 1 1 2 2 2 1 2 2 2 2 2 2			Site Statu	us Summary				
1	Page 12		Savoonga	, Alaska			Savoonga ARNO	G FSRC
white the state to be considered to the consideration of the considerati	1	2	3	4	5	6	7	8
Presented Risk 20 2 1 1 Protected Nor-carcinopenic Curulative Risk 2 3 1 1 0 0 Sarrow Chromaton Risk 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Residential Site (rounded to 1	with risk criteria (0= in compliance; 1 or >1 = not in compliance; number is the number of carcinogenic and non- carcinogenic direct contact criteria	for compliance with risk criteria (0= in compliance; 1= not in	for compliance with risk criteria (0= in compliance; 1=	with risk criteria (0= in compliance; 1 or >1 = not in compliance; number is the number of carcinogenic and non-carcinogenic direct	groundwater check f compliance (0= in compliance; 1 = not
Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. 1 Migration to groundwater criteria have not been attained in surface and subsurface soils.	Potential Carcinogenic Cumulative Fraction of Risk		20	2			1	
Esting Cardinogenic Cumulative (excision of Pilak (Potential Non-carcinogenic		2	1			0	
Ro Aromatics Ro	Existing Carcinogenic Cumulative						U	
ARC Atomatics Ref Atomatics O O O O O O O O O O O O O O O O O O O	Existing non-carcinogenic Cumulative							
ARC Atomatics Ref Atomatics O O O O O O O O O O O O O O O O O O O	GRO Aromatics	Г		0	0	0	0	0
ARC Aliphatics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		T						
ARO Aliphatics check for ultimate GRO, DRO, RRO compliance Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. 1 Migration to groundwater criteria have not been attained in surface and subsurface soils. 4 Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination				0				
check for ultimate GRO, DRO, RRO compliance Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. 1 Migration to groundwater criteria have not been attained in surface and subsurface soils. 4 Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination	GRO Aliphatics			0	0	0	0	0
Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. 1 Migration to groundwater criteria have not been attained in surface and subsurface soils. 4 Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination	ORO Aliphatics	L		1	0	0	0	0
Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. 1 Migration to groundwater criteria have not been attained in surface and subsurface soils. 4 Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination	RRO Aliphatics	丄		0	0	0	0	0
Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination	Site conditions are							1
determination	Migration to groun	ıdv	water criter	ia have not been a	ttained in surfa	ce and subsur	face soils.	4
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.		t c	loseout cri	teria, eligible only	for a 'cleanup c	omplete with i	nstitutional controls'	
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.								
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.								
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.		<u> </u>						
	\ DRO polar fraction		ay be presei	nt, the risk posed by	the polar fraction	is not known.		
	A DRO polar fraction		ay be presei	nt, the risk posed by	the polar fraction	is not known.		

				Facility Location:			Facility Name:					
Table C-6	Hydro	carbon Risk C	Calculator	Savoonga,	Alaska		Savoonga	ARNG FSR	C Propose	ed ACLs		
Page 1		put Parameters:			Version 1.1, Lawrence Acor	mb, Geosphere, Inc.,	, March 4, 2011	Solver solution based on w 1999; VBA macro by T		Solv	ver Instructions & Informa	ition:
Site Specific and/or Field Data in Ye	ellow Highlighted Cells	Chemical Concentrations in Site Groundwater (mg/L):	Calculate	Dissolved Phase Half Life (days; used in DAF calculations):	Soil Conditions:	Site Specific and/or Field Data in Yellow Highlighted Cells	ADEC Default Value (all climate zones)	FYI Unit Con	versions		in tool, installed from the press the calculations must be	
Concentrations in Site So	oils (mg/kg):	Benzene (mg/L)	0.085	400	bulk density (lbs/ft^3)	93.6	93.6	bulk density conversion input (g/cm^3)	bulk density output (lbs/ft^3)	Enter site specific hy- groundwater conditions	drocarbon concentration da data.	ata, and soil and
Benzene (c & nc)	0.13	Toluene (mg/L)	0.127	100	bulk density (g/cm^3)	1.50	1.5	1.66	103.584	2. Click on the "Calcula	te" button in cell D4. The pl d the results are saved in t	
oluene (nc)	35.	Ethylbenzene (mg/L)	0.166	100	specific gravity	2.65	2.65	K (ft/day)	K (cm/sec)			
ithylbenzene (c & nc)	48.	Xylene (mg/L)	0.581	100	porosity	0.434	0.43	400	0.141111111	Any time data entry va calculated (click on the '	alues are changed the spre	adsheet should be re
(ylenes (total) (nc)	250.	GRO (mg/L)	2.11	100	moisture content (% by weight)	10	10	Exposure Routes Complete		1	APL filled porosity initial	0.103651463
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(g-)			(10.00)				enter 1 for complete pathways; 0 for			
GRO (mg/kg)	73.	DRO (mg/L)	30.2	100	foc	0.0010	0.001	Exposure Routes	incomplete pathways	Initial air filled porosity (used to start iterations)	0.284
DRO (mg/kg)	11,015.	RRO (mg/L)	1.48E-05	100	water filled porosity	0.150	0.15	Soil Direct Contact	1	Conservation of volume	equation (should be zero of	2.11E-11
RRO (mg/kg)	360.	GRO aromatics (mg/L)	0.0443	100	air filled porosity	0.262	0.28	Outdoor Air	1	close to zero, i.e. a very		
Fotal Petroleum Hydrocarbons (mg/kg) GRO Aromatics Fraction (ADEC	11,733.591	DRO aromatics (mg/L)	0.0754	100	NAPL filled porosity	0.022	-	Indoor Air	0			
default=0.50) DRO Aromatics Fraction (ADEC	0.65	RRO aromatics (mg/L)	1.48E-05	100	water saturation	34.57%		Groundwater Ingestion	0			
default=0.40)	0.09	GRO aliphatics (mg/L)	0.036	100	NAPL saturation	5.14%						
RRO Aromatics Fraction (ADEC default=0.40)	0.34	DRO aliphatics (mg/L)	4.34E-04	100	Soil temp (C)	6	25		Climate Related	Outdoor Air Inhalation a	nd Soil Direct Contact Ex	posure Parameters
See Note #1 regarding use of ND values		RRO aliphatics (mg/L)	4.35E-12	100	Soil Grain Size Description (USCS or other; used to label CSM)	Sand with Silt						2
Acenaphthene (nc)	0.83	Acenaphthene (nc)	5.20E-05	10,000	Hydrogeologic Conditions:		ADEC Default Values <40 precip/yr	ADEC Default Values >40" precip/yr		nter "1" for an arctic site; " nd "3" for the >40" precip:	'2" for the <40" precip zone zone)	
cenaphthylene (nc)	0.41	Acenaphthylene (nc)	5.20E-05	10,000	Source length (ft)	60	105	105		ation Exposure Frequency	ADEC Defa	ault Values
inthracene (nc)	0.49	Anthracene (nc)	5.20E-05	10,000	Average precipitation (in/yr)	10	25.59	118.11	Residential	Industrial	arctic zone; precip	<40"; precip >40"
Benzo(g,h,i)perylene (nc)	1.2	Benzo(g,h,i)perylene (nc)	5.20E-05	10,000	Default Estimated Infiltration Rate (20% of precip, m/yr)	0.051	0.13	0.6	270	250	Res 200; 270; 330 /	
Fluoranthene (nc)	0.36	Fluoranthene (nc)	5.20E-05	10,000	Aquifer hydraulic conductivity (cm/sec)	2.78E-03	2.78E-03	2.78E-03		on to Outdoor Air calcs.		
Fluorene (nc)	0.77	Fluorene (nc)	2.70E-05	10,000	Aquifer thickness (ft; below low water at downgradient edge of source)	32.8	32.8	32.8	Residential	Industrial		
Naphthalene (c & nc)	180.	Naphthalene (c & nc)	9.80E-05	10,000	Source length (m)	18	32	32	90.82	90.82	100.13; 90	.82; 82.72
Phenanthrene (nc)	0.43	Phenanthrene (nc)	5.20E-05	10,000	Infiltration rate (m/yr)	0.051	0.13	0.6	depth to groundwater a source (ft)	t seasonal low water level	at downgradient end of	2
Pyrene (nc)	0.43	Pyrene (nc)	5.20E-05	10,000	Hydraulic gradient	0.002	0.002	0.002	seasonal water table flu	ctuation (ft)		1
Benzo(a)anthracene (c)	0.37	Benzo(a)anthracene (c)	5.20E-05	10,000	Aquifer hydraulic conductivity (m/yr)	8.76E+02	8.76E+02	8.76E+02	depth to bottom of sour	ce zone at downgradient e	edge of source (ft)	3
Benzo(b)fluoranthene (c)	0.62	Benzo(b)fluoranthene (c)	1.00E-04	10,000	Aquifer thickness (ft; below low water)	10.0	10.0	10.0	1	e source zone at downgra		0
Benzo(k)fluoranthene (c)	0.92	Benzo(k)fluoranthene (c)	5.20E-05	10,000	Mixing Zone Depth minimum of (m)	5.5	5.5 maximum	5.5 maximum	low water table)		depth of NAPL source belo	1
Benzo(a)pyrene (c)	1.8	Benzo(a)pyrene (c)	5.20E-05	10,000	Dilution Factor (lower seasonal value)	5.1	minimum DAF (for all compounds)	6.0	saturated source thickn source zone below high	ess at high water level (ft; water table)	thickness of saturated	2.00
Chrysene (c)	0.43	Chrysene (c)	5.20E-05	10,000	Vadose Zone or Smear Zone Source?	1	zone source	ource, 1 indicates a saturated	total thickness of the so	urce zone (ft)		3
Dibenz(a,h)anthracene (c)	1.8	Dibenz(a,h)anthracene (c)	1.00E-04	10,000	Potable or Non-potable Aquifer?	1	considered non-potable t	, 10 for non-potable aquifer (to he groundwater must have bee	b n seasonal water table flu			0.305
ndeno(1,2,3-cd)pyrene (c)	0.59	Indeno(1,2,3-cd)pyrene (c)	1.00E-04	10,000				d to be non-potable by the ADE 8 AAC 75.350	Osaturated source thickn water table)	ess at low water level (m;	depth of source below lov	0.305
-Methylnaphthalene (nc)	nc 230.	1-Methylnaphthalene (nc)	2.50E-04	1,000	ADEC Reckey No.:				saturated source thickn below high water table)	ess at high water level (m	; thickness of source zone	0.610
	nc 360.	2-Methylnaphthalene (nc)	2.70E-04	1,000	ADEC File ID				Smear Zone Source	NAPL source extends to	hrough zone of seasonal	water table fluctuation
	nc	z monymaphinatorio (no)	2.702 01	1,000	Latitude					ell N28) indicates that co	ontaminated soil is prese	
	nc nc				Longitude Width of Source (ft)	20						
	nc				Area of NAPL contaminated soil source (ft^2)	6,000				of J&E model input do n to be sure they match	ot agree, check the input site conditions.	to cell N28 and/or ce
	nc				Ground surface slope (ft/ft, assumed to be in direction of groundwater flow)	0.002			Enter the thickness of and E61 . If you don't	the uncontaminated so	il immediately below the s	slab in cells C61, D61
	С								entering a relatively s			
	c c											
	С											
	c c				-							
	c											

Table C-6	Migration to Indoor Air Data Entry	Savoonga, Alaska	Savoonga ARNG FSRC Proposed
Page 2	NAPL source area soil gas concentrations or measured soil gas concentrations used as input. Attenuation factor "alpha" ca migration to indoor air pathway shown in section 6 below and entered into the cumulative risk calculations.	culated by the Johnson & Ettinger model following the EPA advanced soil gas solution to the J &	& E model. Incremental risk posed by NAPL source area soil gas concentrations via
Cita Cassifia and/or Field Data in Vallow His	blighted Cells		

Site Specific and/or Field Data in Yellow H	ighlighted Cells											
Soil Properties:	Upper most uncontaminated soil layer immediately below slab	Middle Layer (not contaminated)	Bottom Layer (not contaminated)	Building Properties:	input value	default input values:	default input values: slab on grade			Hun	nan Health Exposure Crit	eria
								L _T = total source-building				
bulk density (lbs/ft^3)	93.60	93.60	93.60	Lb = length of building (cm)	1000	1000	1000	separation distance (cm)	1		Residential	Industrial
bulk density (g/cm^3)	1.50	1.50	1.50	Wb = width of building (cm)	1000	1000	1000	Acrack= area of total cracks (cm^2) = Xcrack* Wcrack = Ab/n	400	Target Carcinogenic Ris (TRC; default = 10^-5)	k 1.00E-05	1.00E-05
specific gravity of solids	2.65	2.65	2.65	Hb = height of building (cm)	244	366	244	Xcrack = floor -wall seam perimeter (cm)	4000	THQ= target hazard quotient (default = 1.0)	1	1
porosity	0.43	0.43	0.43	ER = air exchange rate (1/hr)	0.25	0.25		u = viscosity of air (g/cm-sec)	1.74E-04	ATc= averaging time carcinogen (days), (=70 years)	25,550	25,550
moisture content (% by weight)	10.00	10.00	10.00	Lf = depth below grade of bottom of floor slab or basement (cm)	15	200	15	Zcrack = crack depth below grade (cm)	15	ATnc= averaging time non-carcinogen	30	30
foc	0.001	0.001	0.001	Lf = depth below grade of bottom of floor slab or basement (ft)	0.49212	6.5616	0.49212	equation 16 r crack= n /(Ab /Xcrack)	1.00E-01	ED= exposure duration (30 years)		25
water filled porosity	0.150	0.150	0.150	Lcrack = enclosed space foundation thickness or slab thickness (cm)	10	10	10	n = Acrack/Ab (0<=n<=1)	3.77E-04	EF= effective exposure frequency (350 days/year)	350	83.33333333
air filled porosity	0.284	0.284	0.284	delta P = pressure differential between building and soil (g/cm-s^2)	40	40 g/cm-s^2 = 4 pascals (Pa)	typical conservative values = 4 or 5 Pa; max range = 0 to 20 Pa	equation 14 Q building=building ventilation rate (cm^3/sec) = (Lb*Wb*Hb*ER)/3,600s/h	1.69E+04		days per week	5
Thickness of uncontaminated soil ayers above source at building location it; upper most layer must extend below he depth of foundation; used to define the source-building separation distance)	0.1	0.1	0.1	kv = soil vapor permeability= top soil laver (cm ²)	2.40E-09	1.00E-08		equation 14 Q building=building ventilation rate (cm^3/sec; if a value is input it will be used in the alpha calculationoptional)		Industrial Scenario Exposure Frequency input values	hours per day	0
laver thickness (cm)	15.34	3.05	3.05	A _B = surface area of enclosed space below grade (cm^2)	1.06E+06		lls+ basement floor or area	equation 15 Q soil = (2* pi *	2.43E+00		weeks per year	50
Ls (ft) = Total depth to contaminant or to soil gas sample if soil gas data used as input to model	0.3	Ls (cm)	9.14	Q building=building ventilation rate (cm^3/sec)	1.69E+04	grado		Rc (gas constant, cal/mol- degree K	1.9872	C cancer =	[(TCR*ATc)/(EF*ED*UR F)]	30
kv = soil vapor permeability (cm^2; est. values in cells Q65 to S65)	2.40E-09	2.40E-09	2.40E-09	Wcrack = floor-wall seam crack width (cm)	0.1			R (gas constant, atm-m^3/mol- degree K	8.2057E-05	C non-cancer =	(TQH*Rfc*1000ug/mg)	
		cell N28) indicates that contaminate the bottom of the floor slab or		and/or cells C61, D61, E61 and	Enter the thickness of the uncontamina D61 and E61 . If you don't know the thic consider entering a thickness only slig	kness of uncontaminate	ed soil below the slab					

Table C-6	P	hase Partitioning R	esults		Savoonga, Alaska		Savoonga A	RNG FSRC Pro	posed ACLs			
Page 3 column 1 2	3	4	5	6	7	8	9	10	11	12	13	14
Hydrocarbon Fractions	Median Equivalent Carbon	Distribution of DRO & GRO into Aromatic & Aliphatic Equivalent Carbon Ranges (varies by fuel type)	Bulk Soil Concentration (mg/kg)	Fraction of TPH Mass	Xi (Mole Fraction in NAPL using 4-phase model; unique solution)	Concentration in Soil Water (mg of chemical/L of pore water)	Concentration in Soil Gas (mg/L pore air)	% of Hydrocarbon Mass in Dissolved Phase	% of Hydrocarbon Mass in Vapor Phase	% of Hydrocarbon Mass Adsorbed to Soils	% of Hydrocarbon Mass in NAPL	Sum of Dissolved, Vapor, Adsorbed and NAPL Phases
Benzene C ₅ -C ₇	6.50	from analysis	0.130	0.000011	2.20E-05	3.94E-02	3.74E-03	3.033%	0.502%	5.020%	91.45%	100.00%
Toluene C ₇ -C ₈	7.58	from analysis	35.000	0.002983	5.32E-03	2.80E+00	2.82E-01	0.800%	0.140%	2.144%	96.92%	100.00%
Ethylbenzene C ₆ -C ₉	8.50	from analysis	48.000	0.004091	6.45E-03	1.09E+00	1.16E-01	0.227%	0.042%	1.175%	98.56%	100.00%
Xylene C ₈ -C ₉	8.63	from analysis	250.000	0.021306	3.38E-02	3.58E+00	3.16E-01	0.143%	0.022%	0.635%	99.20%	100.00%
Aromatic C ₉ -C ₁₀	9.50	from analysis	0.000	0.000000	0.00E+00	0.00E+00	0.00E+00	0.000%	0.000%	0.000%	0.00%	0.00%
Aromatic C ₁₀ -C ₁₂	11.00	0.24188	245.592	0.020931	2.71E-02	6.66E-01	2.33E-02	0.027%	0.002%	0.681%	99.29%	100.00%
Aromatic C ₁₂ -C ₁₆	13.00	0.55235	560.830	0.047797	5.57E-02	5.20E-01	8.56E-03	0.009%	0.000%	0.369%	99.62%	100.00%
Aromatic C ₁₆ -C ₂₁	17.00	0.20578	208.937	0.017807	1.75E-02	2.36E-02	9.97E-05	0.001%	0.000%	0.113%	99.89%	100.00%
Aromatic C ₂₁ -C ₃₅	25.00	1.0000	124.034	0.010571	8.09E-03	2.28E-04	4.78E-08	0.000%	0.000%	0.012%	99.99%	100.00%
Aliphatic C ₅ -C ₆	5.50	0.01239	0.315	0.000027	5.49E-05	1.97E-03	3.89E-02	0.062%	2.153%	0.502%	97.28%	100.00%
Aliphatic C ₆ -C ₈	7.00	0.21947	5.588	0.000476	7.86E-04	4.22E-03	8.74E-02	0.008%	0.273%	0.287%	99.43%	100.00%
Aliphatic C ₈ -C ₁₀	9.00	0.76814	19.558	0.001667	2.17E-03	9.24E-04	2.31E-02	0.000%	0.021%	0.143%	99.84%	100.00%
Aliphatic C ₁₀ -C ₁₂	11.00	0.45821	4581.947	0.390498	4.18E-01	1.42E-02	4.37E-01	0.000%	0.002%	0.074%	99.92%	100.00%
Aliphatic C ₁₂ -C ₁₆	13.00	0.51320	5131.780	0.437358	3.98E-01	1.07E-03	7.86E-02	0.000%	0.000%	0.040%	99.96%	100.00%
Aliphatic C ₁₆ -C ₂₁	17.00	0.02859	285.913	0.024367	1.71E-02	2.91E-07	1.37E-04	0.000%	0.000%	0.012%	99.99%	100.00%
Aliphatic C ₂₁ -C ₃₅	25.00	1.0000	235.966	0.020110	9.71E-03	6.57E-12	9.10E-08	0.000%	0.000%	0.001%	100.00%	100.00%
			11733.591	100.0000%	1.00000	8.74E+00	1.41E+00					

 sum of GRO aromatic mass fractions must equal 1
 7.007483E+00

 sum of GRO aliphatic mass fractions must equal 1
 1.000000E+00

 sum of DRO aromatic mass fractions must equal 1
 1.000000E+00

 sum of DRO aliphatic mass fractions must equal 1
 1.000000E+00

358.591 sum of GRO concentrations should equal input GRO concentration

11015.000 sum of DRO concentrations must equal input DRO concentration 360.000 sum of RRO concentrations must equal input RRO concentration

Note: GRO aromatics less than sum of BTEX

Table C-6		Soil Direct Contact Risks											
Page 4		Savoonga	, Alaska			Savoonga ARNG FS	RC Propose	d ACLs					
1	2	3	4	5	6	7	8	9					
Compounds		Sample Concentrations (mg/kg)	Soil Direct Contact Risk Based Level Residential Land Use	Residential Land Use Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance with risk levels (0= in compliance; 1= not in compliance)	Soil Direct Contact Risk Based Level Industrial Land Use	Industrial Land Use Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance w risk levels (0= in compliance; 1= not in compliance)					
Benzene (c & nc)	nc	0.13	406.	3.21E-04	0	8,176.	1.59E-05	0					
Toluene (nc)	nc	35.	8,111.	0.0043	0	163,520.	2.14E-04	0					
Ethylbenzene (c & nc)	nc	48.	10,139.	0.0047	0	204,400.	2.35E-04	0					
Xylenes (total) (nc)	nc	250.	20,278.	0.0123	0	408,800.	6.12E-04	0					
GRO Aromatics (nc)	nc	0.00E+00	20,278.	0.00E+00	0	408,800.	0.00E+00	0					
DRO Aromatics (nc)	nc	1,015.	4,056.	0.2504	0	81,760.	0.0124	0					
RRO Aromatics (nc)	nc	124.	3,042.	0.0408	0	61,320.	0.002	0					
GRO Aliphatics (nc)	nc	25.4608	506,944.	5.02E-05	0	10,220,000.	2.49E-06	0					
DRO Aliphatics (nc)	nc	10,000.	10,139.	0.9863	0	204,400.	0.0489	0					
RRO Aliphatics (nc)	nc	236.	202,778.	0.0012	0	4,088,000.	5.77E-05	0					
Acenaphthene (nc)	nc	0.83	2,798.	2.97E-04	0	18,765.	4.42E-05	0					
Acenaphthylene (nc)	nc	0.41	2,798.	1.47E-04	0	18,765.	2.18E-05	0					
Anthracene (nc)	nc	0.49	20,566.	2.38E-05	0	188,220.	2.60E-06	0					
Benzo(g,h,i)perylene (nc)	nc	1.2	1,399.	8.58E-04	0	9,383.	1.28E-04	0					
Fluoranthene (nc)	nc	0.36	1,865.	1.93E-04	0	12,510.	2.88E-05	0					
Fluorene (nc)	nc	0.77	2,347.	3.28E-04	0	18,448.	4.17E-05	0					
Naphthalene (c & nc)	nc	180.	1,394.	0.1292	0	12,998.	0.0138	0					
			20,566.		0	· ·	2.28E-06	0					
Phenanthrene (nc)	nc	0.43		2.09E-05	0	188,220.		0					
Pyrene (nc)	nc	0.43	1,399. 151.	3.07E-04 8.64E-04	0	9,383. 1,041.	4.58E-05 1.25E-04	0					
Benzene (c & nc)	С				0	·		0					
Ethylbenzene (c & nc)	С	35.	No Sfo	0.00E+00	0	No Sfo	0.00E+00						
Benzo(a)anthracene (c)	С	0.37	4.8866	0.0757		12.017	0.0308	0					
Benzo(b)fluoranthene (c)	С	0.62	4.8866	0.1269	0	12.017	0.0516	0					
Benzo(k)fluoranthene (c)	С	0.92	48.8656	0.0188	0	120.	0.0077	0					
Benzo(a)pyrene (c)	С	1.8	0.4887	3.6836	1	1.2017	1.4979	1					
Chrysene (c)	С	0.43	489.	8.80E-04	0	1,202.	3.58E-04	0					
Dibenz(a,h)anthracene (c)	С	1.8	0.4887	3.6836	1	1.2017	1.4979	1					
Indeno(1,2,3-cd)pyrene (c)	С	0.59	4.8866	0.1207	0	12.017	0.0491	0					
Naphthalene (c & nc)	С	180.	No Sfo	0.00E+00	0	No Sfo	0.00E+00	0					
1-Methylnaphthalene (nc)	nc	230	279.	0.8252	0	2,600.	0.0885	0					
2-Methylnaphthalene (nc)	nc	360	279.	1.2916	1	2,600.	0.1385	0					
	nc												
	nc												
	nc												
	nc												
	nc												
	С												
	С												
	С												
	С												
	С												
	С												
	С												
Carcinogenic Cumulative Risk				7.7111	1		3.1354	1					
Non-carcinogenic Cumulative Risk	1			2.2698	1		0.2422	0					

Values shown in the fourth and seventh columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^ -5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Page 5		Savoonga	. Alaska			Savoonga ARNG FS	RC Propose	d ACLs
1	2	3	4	5	6	7	8	9
Compounds		Vapor Concentration in Sample (based on 3 or 4- phase partitioning, whichever is accurate, mg/L)	Residential Site Hypothetical Soil Vapor Concentration when HQ=1 or Target Risk =10^5 (mg/L; from 3- phase equation)	Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance with risk levels (0= in compliance; 1= not in compliance)	Industrial Site Hypothetical Soil Vapor Concentration when HQ=1 or Target Risk =10-5 (mg/L, from 3-phase equation)	Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target)	Check for compliance with cisk levels (0= in compliance; 1= not in compliance)
Benzene (c & nc)	nc	0.0081	56.5702	1.43E-04	0	167.	4.82E-05	0
Toluene (nc)	nc	0.0128	8,355.	1.53E-06	0	24,712.	5.17E-07	0
Ethylbenzene (c & nc)	nc	0.0177	1,442.	1.23E-05	0	4,266.	4.15E-06	0
Xylenes (total) (nc)	nc	0.0512	144.	3.57E-04	0	425.	1.21E-04	0
GRO Aromatics (nc)	nc	0.0045	282.	1.59E-05	0	834.	5.36E-06	0
DRO Aromatics (nc)	nc	0.0026	70.6108	3.73E-05	0	209.	1.26E-05	0
RRO Aromatics (nc)	nc	3.10E-09	No RfC	0.00E+00	0	No RfC	0.00E+00	0
GRO Aliphatics (nc)	nc	0.8987	47,488.	1.89E-05	0	140,454.	6.40E-06	0
DRO Aliphatics (nc)	nc	0.0134	1,083.	1.24E-05	0	3,202.	4.18E-06	0
RRO Aliphatics (nc)	nc	6.03E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Acenaphthene (nc)	nc	6.45E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Acenaphthylene (nc)	nc	5.22E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Anthracene (nc)	nc	1.52E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Benzo(g,h,i)perylene (nc)	nc	3.07E-11	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Fluoranthene (nc)	nc	1.98E-09	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Fluorene (nc)	nc	1.75E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Naphthalene (c & nc)	nc	4.25E-07	0.5641	7.54E-07	0	1.6685	2.55E-07	0
Phenanthrene (nc)	nc	1.27E-08	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Pyrene (nc)	nc	2.49E-09	No RfC	0.00E+00	0	No RfC	0.00E+00	0
Benzene (c & nc)	С	0.0081	5.6409	0.0014	0	20.0209	4.03E-04	0
Ethylbenzene (c & nc)	С	0.0177	30.5978	5.78E-04	0	109.	1.63E-04	0
Benzo(a)anthracene (c)	С	1.94E-09	3.65E-04	5.32E-06	0	0.0013	1.50E-06	0
Benzo(b)fluoranthene (c)	С	1.51E-10	1.64E-05	9.23E-06	0	5.81E-05	2.60E-06	0
Benzo(k)fluoranthene (c)	С	5.72E-11	1.21E-04	4.72E-07	0	4.30E-04	1.33E-07	0
Benzo(a)pyrene (c)	С	3.86E-11	6.46E-07	5.98E-05	0	2.29E-06	1.69E-05	0
Chrysene (c)	С	7.12E-10	0.022	3.24E-08	0	0.078	9.12E-09	0
Dibenz(a,h)anthracene (c)	С	2.64E-12	1.68E-08	1.57E-04	0	5.97E-08	4.42E-05	0
Indeno(1,2,3-cd)pyrene (c)	С	5.01E-11	3.00E-06	1.67E-05	0	1.06E-05	4.71E-06	0
Naphthalene (c & nc)	С	4.25E-07	0.129	3.30E-06	0	0.458	9.29E-07	0
1-Methylnaphthalene (nc)	nc	1.19E-06	2.397	4.95E-07	0	7.0897	1.67E-07	0
2-Methylnaphthalene (nc)	nc	9.41E-07	2.0734	4.54E-07	0	6.1324	1.53E-07	0
	nc							
	nc							
	nc							
	nc							
	nc							
	С				_			
	С							
	С							
	С							
	С							
	С							
	С							
Carcinogenic Cumulative Risk				0.0023	0		6.37E-04	0
Non-carcinogenic Cumulative Risk				5.15E-04	0		1.74E-04	0

Values shown in the fourth and seventh columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Table C-6		Migration to Indoor Air Vapor Inhalation Risks											
Page 6		Savoonga	, Alaska			Savoonga ARNG FS	RC Propose	ed ACLs					
1	2	3	4	5	6	7	8	9	10				
		Vapor Concentration	Building Vapor Concentration given	Residential Land Use Building Vapor Concentration when HC=1 or Target Risk =10^-5 (ug/m^3; Value listed depends on whether C or NC risks are		Residential Land Use check for compliance with risk levels (0= in compliance; 1= not in		Industrial Land Use Fraction of Risk Based Concentration (values greater than 1 exceed the	Industrial Land Use check fo compliance with risk levels ((in compliance; 1= not in				
Compounds		in Sample (ug/m^3)	site conditions (ug/m^3)	being evaluated)	the risk based target)	compliance)	are being evaluated)	risk based target)	compliance)				
Benzene (c & nc)	nc	8,069.	1.156	31.2857	0.03695	0	157.7.	0.00733	0				
Toluene (nc)	nc	12,779.	1.8307	5,214.	3.511E-04	0	26,280.0.	6.966E-05	0				
Ethylbenzene (c & nc)	nc	17,686.	2.5324	1,043.	0.00243	0	5,256.0.	4.818E-04	0				
Xylenes (total) (nc)	nc	51,222.	7.3331	104.	0.07032	0	525.6.	0.01395	0				
GRO Aromatics (nc)	nc	4,475.	0.6415	417.	0.00154	0	2,102.4.	3.051E-04	0				
DRO Aromatics (nc)	nc	2,634.	0.3776	209.	0.00181	0	1,051.2.	3.592E-04	0				
RRO Aromatics (nc)	nc	0.0031	4.45E-07	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
GRO Aliphatics (nc)	nc	898,708.	129.	19,189.	0.00671	0	96,710.4.	0.00133	0				
DRO Aliphatics (nc)	nc	13,381.	1.9181	1,043.	0.00184	0	5,256.0.	3.649E-04	0				
RRO Aliphatics (nc)	nc	0.0603	8.65E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Acenaphthene (nc)	nc	0.0645	9.21E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Acenaphthylene (nc)	nc	0.0522	7.46E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Anthracene (nc)	nc	0.0152	2.17E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Benzo(g,h,i)perylene (nc)	nc	3.07E-05	1.11E-08	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Fluoranthene (nc)	nc	0.002	2.84E-07	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Fluorene (nc)	nc	0.0175	2.49E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Naphthalene (c & nc)	nc	0.4254	6.09E-05	3.1286	1.946E-05	0	15.768	3.860E-06	0				
Phenanthrene (nc)	nc	0.0127	1.81E-06	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Pyrene (nc)	nc	0.0025	3.56E-07	No RfC	0.000E+00	0	No RfC	0.000E+00	0				
Benzene (c & nc)	С	8,069.	1.156	3.1197	0.37054	0	15.72308	0.07352	0				
Ethylbenzene (c & nc)	С	17,686.	2.5324	22.1212	0.11448	0	111.5.	0.02271	0				
Benzo(a)anthracene (c)	С	0.0019	2.78E-07	0.2765	1.006E-06	0	1.39364	1.996E-07	0				
Benzo(b)fluoranthene (c)	С	1.51E-04	2.69E-08	0.2765	9.727E-08	0	1.39364	1.930E-08	0				
Benzo(k)fluoranthene (c)	С	5.72E-05	1.17E-08	2.7652	4.230E-09	0	13.93636	8.393E-10	0				
Benzo(a)pyrene (c)	С	3.86E-05	1.39E-08	0.0277	5.027E-07	0	0.13936	9.974E-08	0				
Chrysene (c)	С	7.12E-04	1.02E-07	27.6515	3.686E-09	0	139.4.	7.313E-10	0				
Dibenz(a,h)anthracene (c)	С	2.64E-06	1.19E-08	0.0277	4.290E-07	0	0.13936	8.513E-08	0				
Indeno(1,2,3-cd)pyrene (c)	С	5.01E-05	1.69E-08	0.2765	6.112E-08	0	1.39364	1.213E-08	0				
Naphthalene (c & nc)	С	0.4254	6.09E-05	0.7157	8.505E-05	0	3.60706	1.688E-05	0				
1-Methylnaphthalene (nc)	nc	1.1864	1.70E-04	14.6	1.162E-05	0	73.584	2.305E-06	0				
2-Methylnaphthalene (nc)	nc	0.941	1.35E-04	14.6	9.215E-06	0	73.584	1.828E-06	0				
	nc												
	nc						1						
	nc												
	nc												
	nc						 						
	С						1						
	С												
	С												
	С						1						
	С						1						
	С												
	С						1						
Carcinogenic Cumulative Risk	+				0.4851	0	-	0.0963	0				
Non-carcinogenic Cumulative Risk					0.1101	0		0.0218	0				

Values shown in the fifth and eighth columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Table C-6		Calculate	d Migration to G	roundwater Le	evels						
Page 7		Savoonga	, Alaska			Savoonga ARNG FS	RC Propose	d ACLs			
1	2	3	4	5	6	7	8	9	10	11	12
		Dissolved Concentration in Soil Sample (based on 3 or 4 phase partitioning, whichever is			Residential Land Soil Moistur Target Concentration (MCL o Risk Based Concentration Multiplied by the DAFMCLs values used fo		in compliance; potability of groundwater not	Industrial Land Human Health Risk Based Drinking Water	Industrial Land Soil Moisture Target Concentration (MCL or Risk Based Concentration Multiplied by the DAFMCLs values used for compounds	Hypothetical Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target;	Check for compliance with regulatory levels (MCLs used for compounds with MCLs Residential RBCs user for compounds withou MCLs: 0= in complianc
Compounds		accurate, mg/l)	Maximum Contaminant Level (mg/L)	Concentration (mg/l)	compounds with MCLs)	0)	considered)	Concentration (mg/l)	with MCLs)	MCLs not used)	1= not in compliance)
Benzene (c & nc)	nc	0.0394	0.005	0.146	4.000E-02	0.0338	0	0.2044	4.000E-02	0.0241	0
Toluene (nc)	nc	2.8005	1.	2.92	9.222E+00	0.104	0	4.088	9.222E+00	0.0743	0
Ethylbenzene (c & nc)	nc	1.0894	0.7	3.65	6.545E+00	0.0319	0	5.11	6.545E+00	0.0228	0
Xylenes (total) (nc)	nc	3.5822	10.	7.3	6.804E+01	0.0526	0	10.22	9.320E+01	0.0376	0
GRO Aromatics (nc)	nc	0.00E+00		7.3	6.941E+01	0.00E+00	0	10.22	9.718E+01	0.00E+00	0
DRO Aromatics (nc)	nc	1.2093		1.46	1.390E+01	0.087	0	2.044	1.946E+01	0.0622	0
RRO Aromatics (nc)	nc	2.28E-04		1.095	1.043E+01	2.19E-05	0	1.533	1.460E+01	1.56E-05	0
GRO Aliphatics (nc)	nc	0.0071		183.	1.738E+03	4.09E-06	0	256.	2.433E+03	2.92E-06	0
DRO Aliphatics (nc)	nc	0.0152		3.65	3.476E+01	4.38E-04	0	5.11	4.866E+01	3.13E-04	0
RRO Aliphatics (nc)	nc	6.57E-12		73.	6.951E+02	9.45E-15	0	102.	9.732E+02	6.75E-15	0
Acenaphthene (nc)	nc	0.00143		2.19	1.585E+01	9.02E-05	0	3.066	2.219E+01	6.44E-05	0
Acenaphthylene (nc)	nc	0.0028		2.19	1.585E+01	1.77E-04	0	3.066	2.219E+01	1.26E-04	0
Anthracene (nc)	nc	1.307E-04		10.95	9.448E+01	1.38E-06	0	15.33	1.323E+02	9.88E-07	0
Benzo(g,h,i)perylene (nc)	nc	5.171E-06		1.095	1.043E+01	4.96E-07	0	1.533	1.460E+01	3.54E-07	0
Fluoranthene (nc)	nc	4.400E-05		1.46	1.359E+01	3.24E-06	0	2.044	1.903E+01	2.31E-06	0
Fluorene (nc)	nc	9.713E-04		1.46	1.172E+01	8.29E-05	0	2.044	1.640E+01	5.92E-05	0
Naphthalene (c & nc)	nc	2.16367		0.73	4.372E+00	0.4949	0	1.022	6.120E+00	0.3535	0
Phenanthrene (nc)	nc	2.156E-04		10.95	9.466E+01	2.28E-06	0	15.33	1.325E+02	1.63E-06	0
Pyrene (nc)	nc	7.255E-05		1.095	1.019E+01	7.12E-06	0	1.533	1.426E+01	5.09E-06	0
Benzene (c & nc)		0.0394	0.005	0.0155	4.000E-02	0.3183	0	0.026	4.000E-02	0.1894	0
Ethylbenzene (c & nc)	_	1.0894	0.7	No Sfo	6.545E+00	0.00E+00	0	No Sfo	6.545E+00	0.00E+00	0
Benzo(a)anthracene (c)	_	4.559E-06	0.001	0.0012	9.514E-03	4.11E-04	0	0.002	9.514E-03	2.44E-04	0
	r	1.387E-06	0.001	0.0012	9.522E-03	1.25E-04	0	0.002	9.522E-03	7.43E-05	0
Benzo(b)fluoranthene (c) Benzo(k)fluoranthene (c)	-	3.352E-06	0.001	0.0117	9.522E-03	3.02E-05	0	0.0196	9.522E-03	1.80E-05	0
	-		2.00E-04	1.17E-04			0			0.0029	0
Benzo(a)pyrene (c)	c	5.337E-06			1.111E-03	0.0048		1.96E-04	1.866E-03		
Chrysene (c)	С	1.099E-05	0.1	0.1167	9.514E-01	9.90E-06	0	0.196	9.514E-01	5.90E-06	0
Dibenz(a,h)anthracene (c)	С	2.478E-05	1.00E-04	1.17E-04	9.522E-04	0.0223	0	1.96E-04	9.522E-04	0.0133	0
Indeno(1,2,3-cd)pyrene (c)	c	1.396E-07	0.001	0.0012	9.522E-03	1.26E-05	0	0.002	9.522E-03	7.48E-06	0
Naphthalene (c & nc)	-	2.16367		No Sfo	No Sfo	0.00E+00	0	No Sfo	No Sfo	0.00E+00	0
1-Methylnaphthalene (nc)	nc	0.58051		0.146	1.309E+00	0.4433	0	0.2044	1.833E+00	0.3167	0
2-Methylnaphthalene (nc)	nc	1.10555		0.146	1.308E+00	0.8453	0	0.2044	1.831E+00	0.6038	0
Γ	nc										
	nc										
	nc										
	nc										
	nc										
	С										
	С										
<u> </u>	С										
	С										
	С										
1	С										
1	С										
						0.346	0			0.2059	0
Carcinogenic Cumulative Risk	1 1										

Values shown in the sixth and tenth columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^4-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

^{&#}x27;>1E+308' indicates that the DAF value is greater can be calculated in excel (i.e. compounds are essentially immobile) and "1/>1E+308' indicates that the risk and or equilibrium concentration is very low (inconsequential).

Table C-6		Groundy	ater Ingestion R	isk (Measured	d Concentrati	ons)					
Page 8		Savoonga	, Alaska			Savoonga ARNG FS	RC Propose	d ACLs			
1	2	3	4	5	6	7	8	9	10	11	12
Compounds		Dissolved Concentration Measured in Water Sample (mg/l)	Maximum Contaminant Level (mg/L)	Residential Land Use Human Health Risk Based Water Concentration (mg/l)	Groundwater Compliance Concentration (MCL or Residential Land Use Health Based Water Concentration at down gradient edge of source area; mg/l)	Fraction of Risk Based Concentration (values greater than 1 exceed the risk based target; MCLs not used)	Check for compliance with regulatory levels (MCLs used for compounds with MCLs: 0= in compliance; 1= not in compliance)	Industrial Land Use Human Health Based Water Concentration (mg/l)	Groundwater Compliance Concentration (MCL or Industrial Land Use Health Based Water Concentration at down gradient edge of source area; mg/l)	MCLs not used)	Check for complianc with regulatory level (MCLs used for compounds with MCL 0= in compliance; 1= r in compliance)
Benzene (c & nc)	nc	0.085	0.005	0.146	0.005	0.5822	1	0.2044	0.005	0.4159	1
Toluene (nc)	nc	0.127	1.	2.92	1.	0.0435	0	4.088	1.	0.0311	0
Ethylbenzene (c & nc)	nc	0.166	0.7	3.65	0.7	0.0455	0	5.11	0.7	0.0325	0
Xylenes (total) (nc)	nc	0.581	10.	7.3	7.3	0.0796	0	10.22	10.	0.0568	0
GRO Aromatics (nc)	nc	0.0443		7.3	7.3	0.0061	0	10.22	10.22	0.0043	0
DRO Aromatics (nc)	nc	0.0754		1.46	1.46	0.0516	0	2.044	2.044	0.0369	0
RRO Aromatics (nc)	nc	1.48E-05		1.095	1.095	1.35E-05	0	1.533	1.533	9.65E-06	0
GRO Aliphatics (nc)	nc	0.036		183.	183.	1.97E-04	0	256.	256.	1.41E-04	0
DRO Aliphatics (nc)	nc	4.34E-04		3.65	3.65	1.19E-04	0	5.11	5.11	8.49E-05	0
RRO Aliphatics (nc)	nc	4.35E-12		73.	73.	5.96E-14	0	102.	102.	4.26E-14	0
Acenaphthene (nc)	nc	5.20E-05		2.19	2.19	2.37E-05	0	3.066	3.066	1.70E-05	0
Acenaphthylene (nc)	nc	5.20E-05		2.19	2.19	2.37E-05	0	3.066	3.066	1.70E-05	0
Anthracene (nc)	nc	5.20E-05		10.95	10.95	4.75E-06	0	15.33	15.33	3.39E-06	0
Benzo(g,h,i)perylene (nc)	nc	5.20E-05		1.095	1.095	4.75E-05	0	1.533	1.533	3.39E-05	0
Fluoranthene (nc)	nc	5.20E-05		1.46	1.46	3.56E-05	0	2.044	2.044	2.54E-05	0
Fluorene (nc)	nc	2.70E-05		1.46	1.46	1.85E-05	0	2.044	2.044	1.32E-05	0
Naphthalene (c & nc)	nc	9.80E-05		0.73	0.73	1.34E-04	0	1.022	1.022	9.59E-05	0
Phenanthrene (nc)	nc	5.20E-05		10.95	10.95	4.75E-06	0	15.33	15.33	3.39E-06	0
Pyrene (nc)	nc	5.20E-05		1.095	1.095	4.75E-05	0	1.533	1.533	3.39E-05	0
Benzene (c & nc)	С	0.085	0.005	0.0155	0.005	5.4892	1	0.026	0.005	3.2674	1
Ethylbenzene (c & nc)	С	0.166	0.7	No Sfo	0.7	0.00E+00	0	No Sfo	0.7	0.00E+00	0
Benzo(a)anthracene (c)	С	5.20E-05	0.001	0.0012	0.001	0.0446	0	0.002	0.001	0.0265	0
Benzo(b)fluoranthene (c)	С	1.00E-04	0.001	0.0012	0.001	0.0857	0	0.002	0.001	0.051	0
Benzo(k)fluoranthene (c)	С	5.20E-05	0.001	0.0117	0.001	0.0045	0	0.0196	0.001	0.0027	0
Benzo(a)pyrene (c)	С	5.20E-05	2.00E-04	1.17E-04	1.17E-04	0.4457	0	1.96E-04	1.96E-04	0.2653	0
Chrysene (c)	С	5.20E-05	0.1	0.1167	0.1	4.46E-04	0	0.196	0.1	2.65E-04	0
Dibenz(a,h)anthracene (c)	С	1.00E-04	1.00E-04	1.17E-04	1.00E-04	0.8571	0	1.96E-04	1.00E-04	0.5102	0
Indeno(1,2,3-cd)pyrene (c)	С	1.00E-04	0.001	0.0012	0.001	0.0857	0	0.002	0.001	0.051	0
Naphthalene (c & nc)	С	9.80E-05		No Sfo	No Sfo	0.00E+00	0	No Sfo	No Sfo	0.00E+00	0
1-Methylnaphthalene (nc)	nc	0.00025		0.146	0.146	0.0017	0	0.2044	0.2044	0.0012	0
2-Methylnaphthalene (nc)	nc	0.00027		0.146	0.146	0.0018	0	0.2044	0.2044	0.0013	0
	nc										
	nc										
	nc										
	nc										
	nc										
	С										
	С										
	С										
	С										
	С										
	С										
	С										
Carcinogenic Cumulative Risk						7.013	1			4.1744	1
Non-carcinogenic Cumulative Risk			-			0.7547	0			0.539	0

Values shown in the seventh and eleventh columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic compounds. Carcinogenic compounds shown in bold.

If the groundwater is non-potable then groundwater ingestion risk is zero.

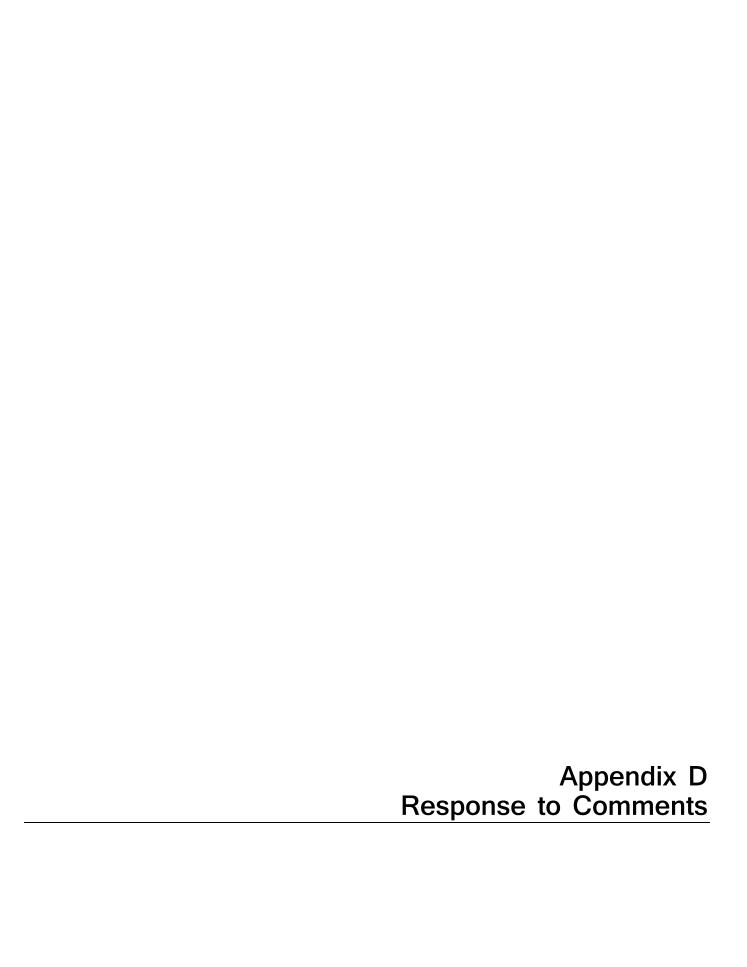

Table C-6		Potential	Cumulative Risk	Assuming Al	I Pathways	Complete				DRO, GRO and	RRO not included in	cumulative risk	calculations
Page 9		Savoonga	, Alaska			Savoonga ARNG FS	SRC Propose	d ACLs					
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Compounds		Fraction of Soil Direct Contact Risk, Residential Site	Fraction of Outdoor Air Inhalation Risk Residential Site	Fraction of Indoor Air Inhalation Risk, Residential Site	Fraction of Groundwater Ingestion Risk, Residential Site	Sum of Fraction of Risk Values for Residential Site	Residential Site Check for compliance with risk levels (0= in compliance 1= not in compliance)	Contact Risk, Industrial	Fraction of Outdoor Air Inhalation Risk, Industrial Site	Fraction of Indoor Air Inhalation Risk, Industrial Site	Fraction of Groundwater Ingestion Risk, Industrial Site	Sum of Fraction of Risk Values for Industrial Site	
Benzene (c & nc)	nc	3.21E-04	1.43E-04	0.0369	0.5822	0.6196	0	1.59E-05	4.82E-05	0.0073	0.4159	0.4232	0
Toluene (nc)	nc	0.0043	1.53E-06	3.51E-04	0.0435	0.0482	0	2.14E-04	5.17E-07	6.97E-05	0.0311	0.0314	0
Ethylbenzene (c & nc)	nc	0.0047	1.23E-05	0.0024	0.0455	0.0527	0	2.35E-04	4.15E-06	4.82E-04	0.0325	0.0332	0
Xylenes (total) (nc)	nc	0.0123	3.57E-04	0.0703	0.0796	0.1626	0	6.12E-04	1.21E-04	0.014	0.0568	0.0715	0
GRO Aromatics (nc)	nc												
DRO Aromatics (nc)	nc												
RRO Aromatics (nc)	nc												
GRO Aliphatics (nc)	nc												
DRO Aliphatics (nc)	nc												
RRO Aliphatics (nc)	nc												
Acenaphthene (nc)	nc	2.97E-04	0.00E+00	0.00E+00	2.37E-05	3.20E-04	0	4.42E-05	0.00E+00	0.00E+00	1.70E-05	6.12E-05	0
Acenaphthylene (nc)	nc	1.47E-04	0.00E+00	0.00E+00	2.37E-05	1.70E-04	0	2.18E-05	0.00E+00	0.00E+00	1.70E-05	3.88E-05	0
Anthracene (nc)	nc	2.38E-05	0.00E+00	0.00E+00	4.75E-06	2.86E-05	0	2.60E-06	0.00E+00	0.00E+00	3.39E-06	6.00E-06	0
Benzo(g,h,i)perylene (nc)	nc	8.58E-04	0.00E+00	0.00E+00	4.75E-05	9.05E-04	0	1.28E-04	0.00E+00	0.00E+00	3.39E-05	1.62E-04	0
Fluoranthene (nc)	nc	1.93E-04	0.00E+00	0.00E+00	3.56E-05	2.29E-04	0	2.88E-05	0.00E+00	0.00E+00	2.54E-05	5.42E-05	0
Fluorene (nc)	nc	3.28E-04	0.00E+00	0.00E+00	1.85E-05	3.47E-04	0	4.17E-05	0.00E+00	0.00E+00	1.32E-05	5.49E-05	0
Naphthalene (c & nc)	nc	0.1292	7.54E-07	1.95E-05	1.34E-04	0.1293	0	0.0138	2.55E-07	3.86E-06	9.59E-05	0.0139	0
Phenanthrene (nc)	nc	2.09E-05	0.00E+00	0.00E+00	4.75E-06	2.57E-05	0	2.28E-06	0.00E+00	0.00E+00	3.39E-06	5.68E-06	0
Pyrene (nc)	nc	3.07E-04	0.00E+00	0.00E+00	4.75E-05	3.55E-04	0	4.58E-05	0.00E+00	0.00E+00	3.39E-05	7.97E-05	0
Benzene (c & nc)	С	8.64E-04	0.0014	0.3705	5.4892	5.8621	1	1.25E-04	4.03E-04	0.0735	3.2674	3.3415	1
Ethylbenzene (c & nc)	С	0.00E+00	5.78E-04	0.1145	0.00E+00	0.1151	0	0.00E+00	1.63E-04	0.0227	0.00E+00	0.0229	0
Benzo(a)anthracene (c)	С	0.0757	5.32E-06	1.01E-06	0.0446	0.1203	0	0.0308	1.50E-06	2.00E-07	0.0265	0.0573	0
Benzo(b)fluoranthene (c)	С	0.1269	9.23E-06	9.73E-08	0.0857	0.2126	0	0.0516	2.60E-06	1.93E-08	0.051	0.1026	0
Benzo(k)fluoranthene (c)	С	0.0188	4.72E-07	4.23E-09	0.0045	0.0233	0	0.0077	1.33E-07	8.39E-10	0.0027	0.0103	0
Benzo(a)pyrene (c)	С	3.6836	5.98E-05	5.03E-07	0.4457	4.1293	1	1.4979	1.69E-05	9.97E-08	0.2653	1.7632	1
Chrysene (c)	С	8.80E-04	3.24E-08	3.69E-09	4.46E-04	0.0013	0	3.58E-04	9.12E-09	7.31E-10	2.65E-04	6.23E-04	0
Dibenz(a,h)anthracene (c)	С	3.6836	1.57E-04	4.29E-07	0.8571	4.5409	1	1.4979	4.42E-05	8.51E-08	0.5102	2.0081	1
Indeno(1,2,3-cd)pyrene (c)	С	0.1207	1.67E-05	6.11E-08	0.0857	0.2065	0	0.0491	4.71E-06	1.21E-08	0.051	0.1001	0
Naphthalene (c & nc)	С	0.00E+00	3.30E-06	8.51E-05	0.00E+00	8.83E-05	0	0.00E+00	9.29E-07	1.69E-05	0.00E+00	1.78E-05	0
1-Methylnaphthalene (nc)	nc	0.8252	4.95E-07	1.16E-05	0.0017	0.8269	0	0.0885	1.67E-07	2.31E-06	0.0012	0.0897	0
2-Methylnaphthalene (nc)	nc	1.2916	4.54E-07	9.21E-06	0.0018	1.2934	1	0.1385	1.53E-07	1.83E-06	0.0013	0.1398	0
	nc												
	nc												
	nc												
	nc												
	nc						+		1	1	1		4
	С						1		1	1			1
	С						+			1			-
	С						+	-	1	+			1
	С						+	1	1	+			+
	С						+	1	1	+			+
	С						+	1	1	+			+
	С						+	 	1	+	1		+
Carcinogenic Cumulative Risk						15.2114	+	1	1	+		7.4067	1
Non-carcinogenic Cumulative Risk						3.135		1	1			0.8032	0
Values shown in the second through s	sixth and	d eighth through twelf	th columns are the normalized fraction	of the risk based level, and not t	he carcinogenic risk level. Th	e fraction of risk multiplied by 10 [^] -5 equals	the carcinogenic risk level	for the carcinogenic comp	ounds. Carcinogenic compound	ls shown in bold.			

Table C-6	Cumulati	ve Risk for Path	ways Complet	e at Present	Time				DRO, GRO and	RRO not included in	n cumulative risk	calculations
Page 10	Savoonga	ı, Alaska			Savoonga ARNG I	FSRC Propose	ed ACLs					
1 1		4	5	6	7	8	9	10	11	12	13	14
	Fraction of Soil Direct	t Fraction of Outdoor Air Inhalation Risl	k, Fraction of Indoor Air Inhalatio		Sum of Fraction of Risk Values for		Fraction of Soil Direct Contact Risk, Industrial	Fraction of Outdoor Air	Fraction of Indoor Air Inhalation Risk,	Fraction of Groundwater	Sum of Fraction of Risk	Industrial Site Check for compliance with ris levels (0= in compliance; 1= not in
Compounds	Residential Site	Residential Site	Risk, Residential Site	Site	Residential Site	1= not in compliance)	Site	Inhalation Risk, Industrial Site		Site	Values for Industrial Site	
Benzene (c & nc)		1.43E-04	0.00E+00	0.00E+00	4.63E-04	0	1.59E-05	4.82E-05	0.00E+00	0.00E+00	6.41E-05	0
Toluene (nc)		1.53E-06	0.00E+00	0.00E+00	0.0043		2.14E-04	5.17E-07	0.00E+00	0.00E+00	2.15E-04	
Ethylbenzene (c & nc)		1.23E-05	0.00E+00	0.00E+00	0.0047	0	2.35E-04	4.15E-06	0.00E+00	0.00E+00	2.39E-04	0
Xylenes (total) (nc) n		3.57E-04	0.00E+00	0.00E+00	0.0127	0	6.12E-04	1.21E-04	0.00E+00	0.00E+00	7.32E-04	- 0
GRO Aromatics (nc) n DRO Aromatics (nc) n												-
` '												
RRO Aromatics (nc) n GRO Aliphatics (nc) n												-
										1		+
DRO Aliphatics (nc) n RRO Aliphatics (nc) n										1		+
Acenaphthene (nc)		0.00E+00	0.00E+00	0.00E+00	2.97E-04	0	4.42E-05	0.00E+00	0.00E+00	0.00E+00	4.42E-05	0
		0.00E+00	0.00E+00	0.00E+00	1.47E-04	0	2.18E-05	0.00E+00	0.00E+00	0.00E+00	2.18E-05	0
Acenaphthylene (nc) n Anthracene (nc) n		0.00E+00	0.00E+00	0.00E+00	2.38E-05	0	2.60E-06	0.00E+00	0.00E+00	0.00E+00	2.60E-06	0
		0.00E+00	0.00E+00	0.00E+00	8.58E-04	0	1.28E-04	0.00E+00	0.00E+00	0.00E+00	1.28E-04	0
Benzo(g,h,i)perylene (nc) n Fluoranthene (nc) n		0.00E+00 0.00E+00	0.00E+00	0.00E+00	1.93E-04	0	2.88E-05	0.00E+00	0.00E+00	0.00E+00	2.88E-05	0
Fluoranthene (nc)		0.00E+00	0.00E+00	0.00E+00	1.93E-04 3.28E-04	0	4.17E-05	0.00E+00	0.00E+00	0.00E+00	4.17E-05	0
' '		7.54E-07	0.00E+00	0.00E+00	0.1292	0	0.0138	2.55E-07	0.00E+00	0.00E+00	4.17E-05 0.0138	0
Naphthalene (c & nc) n Phenanthrene (nc) n		7.54E-07 0.00E+00	0.00E+00	0.00E+00	2.09E-05	0	2.28E-06	0.00E+00	0.00E+00	0.00E+00	2.28E-06	0
		0.00E+00	0.00E+00	0.00E+00	2.09E-05 3.07E-04	0	4.58E-05	0.00E+00	0.00E+00	0.00E+00	4.58E-05	0
	8.64E-04	0.002+00	0.00E+00	0.00E+00	0.0023	0	1.25E-04	4.03E-04	0.00E+00	0.00E+00	5.28E-04	0
Benzene (c & nc)		5.78E-04	0.00E+00	0.00E+00 0.00E+00	5.78E-04	0	0.00E+00	4.03E-04 1.63E-04	0.00E+00	0.00E+00 0.00E+00	5.28E-04 1.63E-04	0
- Linguistance (commo		5.76E-04 5.32E-06	0.00E+00	0.00E+00	0.0757	0	0.00E+00	1.50E-06	0.00E+00	0.00E+00	0.0308	0
(-)		9.23E-06	0.00E+00	0.00E+00	0.1269	0		2.60E-06	0.00E+00	0.00E+00	0.0516	0
		9.23E-06 4.72E-07	0.00E+00	0.00E+00	0.0188	0	0.0516 0.0077	1.33E-07	0.00E+00	0.00E+00	0.0077	0
Benzo(k)fluoranthene (c) (Benzo(a)pyrene (c)		4.72E-07 5.98E-05	0.00E+00	0.00E+00	3.6836	1	1.4979	1.69E-05	0.00E+00	0.00E+00	1.4979	1
(-),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3.24E-08	0.00E+00	0.00E+00	8.80E-04	0	3.58E-04	9.12E-09	0.00E+00	0.00E+00	3.58E-04	0
Chrysene (c) (d) Dibenz(a,h)anthracene (c)	3.6836	1.57E-04	0.00E+00	0.00E+00	3.6837	1	1.4979	9.12E-09 4.42E-05	0.00E+00	0.00E+00	1.4979	1
1.7	0.1207	1.67E-05	0.00E+00	0.00E+00	0.1208			4.42E-05 4.71E-06	0.00E+00	0.00E+00		0
Indeno(1,2,3-cd)pyrene (c) (Naphthalene (c & nc)		1.6/E-05 3.30E-06	0.00E+00	0.00E+00 0.00E+00	3.30E-06	0	0.0491 0.00E+00	9.29E-07	0.00E+00	0.00E+00 0.00E+00	0.0491 9.29E-07	0
rapilalaidio (o a lio)	0.002100	4.95E-07	0.00E+00	0.00E+00	0.8252	0	0.00E+00	9.29E-07 1.67E-07	0.00E+00	0.00E+00	9.29E-07 0.0885	0
1-Methylnaphthalene (nc) n 2-Methylnaphthalene (nc) n		4.54E-07	0.00E+00	0.00E+00	1.2916	1	0.0885	1.53E-07	0.00E+00	0.00E+00	0.1385	0
2-Methylnaphthalene (nc)		4.54E-07	0.00E+00	0.00E+00	1.2916	'	0.1303	1.55E-07	0.00E+00	0.00E+00	0.1305	- 0
n												+
n				+						+		+
n												+
n				+						+		+
ı n										+		+
				1						1		+
										+		+
										1		+
										+		+
				1		_				+		+
				1		_				+		+
	+			+	7.7400			+		+	0.400	
Carcinogenic Cumulative Risk	+				7.7133					 	3.136	1
Non-carcinogenic Cumulative Risk	1				2.2703	1	1	1			0.2424	0

Values shown in the second through sixth and eighth through twelfth columns are the normalized fraction of the risk based level, and not the carcinogenic risk level. The fraction of risk multiplied by 10^-5 equals the carcinogenic risk level for the carcinogenic compounds. Carcinogenic compounds shown in bold.

Table C-6		Partitioning into Groundwater & Surface Water										
Page 11		Savoonga	, Alaska			Savoonga ARNG FSI	RC Propose	d ACLs				
1 Compounds	2	Calculated Equilibrium Conc. (from soil data & solver or goal seek) (mg/L)	4 Measured Dissolved Phase Conc. (mg/L)	Groundwater Compliance Concentration (MCL or Residential Land Use Health Based Water Concentration at down gradient edge of source area; mg/l)	6 Check for vadose zone fill potential (DAF of 3.3; 0 =suitable for vadose zone fill; "ND" input concentrations not assessed)	7 Check for saturated zone fill potential (DAF of 1; 0 -suitable for saturated zone fill; 11 -not suitable for saturated zone fill; 10? input concentrations not assessed)	8 Ambient Water Quality Criteria (mg/L)	9 Check for surface wate body fill potential (DAF 1; 0 = suitable for fill in surface water; 1 =not suitable for fill in surface water; "ND" input concentrations not assessed)				
Benzene		0.0394	0.085	0.005	1	1	0.005	1				
Toluene		2.8005	0.127	1.	0	0						
Ethylbenzene		1.0894	0.166	0.7	0	0						
Xylene		3.5822	0.581	7.3	0	0						
GRO Aromatics		0.00E+00	0.0443	7.3	0	0						
DRO Aromatics		1.2093	0.0754	1.46	0	0						
RRO Aromatics		2.28E-04	1.48E-05	1.095	0	0						
GRO Aliphatics		0.0071	0.036	183.	0	0						
DRO Aliphatics		0.0152	4.34E-04	3.65	0	0						
RRO Aliphatics		6.57E-12	4.35E-12	73.	0	0						
Acenaphthene		0.0014	5.20E-05	2.19	0	0						
Acenaphthylene		0.0028	5.20E-05	2.19	0	0						
Anthracene		1.31E-04	5.20E-05	10.95	0	0						
Benzo(g,h,i)perylene		5.17E-06	5.20E-05	1.095	0	0						
Fluoranthene		4.40E-05	5.20E-05	1.46	0	0						
Fluorene		9.71E-04	2.70E-05	1.46	0	0						
Naphthalene		2.1637	9.80E-05	0.73	0	0						
Phenanthrene		2.16E-04	5.20E-05	10.95	0	0						
Pyrene		7.25E-05	5.20E-05	1.095	0	0						
Benzo (a) Anthracene		4.56E-06	5.20E-05	0.001	0	0						
Benzo (b) fluoranthene		1.39E-06	1.00E-04	0.001	0	0						
Benzo (k) fluoranthene		3.35E-06	5.20E-05	0.001	0	0						
Benzo (a) pyrene		5.34E-06	5.20E-05	1.17E-04	0	0						
Chrysene Chrysene		1.10E-05	5.20E-05	0.1	0	0						
Dibenz (a,h) anthracene		2.48E-05	1.00E-04	1.00E-04	0	0						
Indeno (1,2,3-cd) pyrene		1.40E-07	1.00E-04	0.001	0	0						
1-Methylnaphthalene (nc)		0.5805	2.50E-04	0.146	0	0						
2-Methylnaphthalene (nc)		1.1055	2.70E-04	0.146	0	0						
ГАН		7.5115	0.959				0.01	1				
TAqH		9.6809	0.96				0.015	1				
DRO sheen (mg/kg)							230	1				
				L			_50					

Precision of Risk 20 2 2 1 1 Proteintal Non-carcinogenic Cumulative Risk 3 1 1 Practice of Risk 7,7133 Existing non-carcinogenic Cumulative Risk 7,7133 Existing non-carcinogenic Risk 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Table C-6		Site Stati	us Summary			O A DAI	- FORO
Section Sect	Page 12		Savoonga	. Alaska				
Curulative Risks for protection of Risks for the control of the co	<u> </u>	2	3		5	6	7	8
Presented Non-carcinogenic Cumulative Presented Non-carcinogenic Cumulative Presented Non-carcinogenic Cumulative Presented Non-carcinogenic Cumulative Presented Risk			Residential Site (rounded to 1	with risk criteria (0= in compliance; 1 or >1 = not in compliance; number is the number of carcinogenic and non- carcinogenic direct contact criteria	for compliance with risk criteria (0= in compliance; 1= not in	for compliance with risk criteria (0= in compliance; 1=	with risk criteria (0= in compliance; 1 or >1 = not in compliance; number is the number of carcinogenic and non-carcinogenic direct	groundwater check for compliance (0= in compliance; 1 = not in
Comutative Risk Estaing Carcinogenic Cumulative Praction of Risk Estaing Charcinogenic Cumulative Praction of Risk Estaing Charcinogenic Cumulative Praction of Risk Estaing Charcinogenic Cumulative Practical Risk Risk 2,27733 RRO Anomatics RRO Anomatics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Potential Carcinogenic Cumulative Fraction of Risk		20	2			1	
Resulting ron-carcinogenic Cumulative 2.2703 RRO Aromatics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Potential Non-carcinogenic Cumulative Risk		3	1			0	
RRA W	Existing Carcinogenic Cumulative Fraction of Risk		7.7133	_				
DRD Anomatics RRD Atomatics DRD Applications DRD Alphantics DRD Al	Existing non-carcinogenic Cumulative Risk		2.2703					
DRD Anomatics RRD Atomatics DRD Applications DRD Alphantics DRD Al	GRO Aromatics	Г		0	0	0	0	0
RRO Alphates 0	DRO Aromatics	t						
GRO Aliphatics 0 0 0 0 0 0 0 0 0 0	RRO Aromatics							
DRO Alphatics	GRO Aliphatics	L			0		0	
Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. Migration to groundwater criteria have not been attained in surface and subsurface soils. 2 Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination	DRO Aliphatics							0
Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. 1 Migration to groundwater criteria have not been attained in surface and subsurface soils. 2 Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination	RRO Aliphatics	L		0	0	0	0	0
Site conditions do not meet the ADEC human health risk standard established in 18 AAC 75.325. Site conditions are not protective of human health under an unrestricted (residential) landuse scenario. 1 Migration to groundwater criteria have not been attained in surface and subsurface soils. 2 Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination	check for ultimate GRO D	RΩ	RRO compliance	0				
Site does not meet closeout criteria, eligible only for a 'cleanup complete with institutional controls' determination								1
determination	Site conditions are scenario.	e n	ot protecti	ve of human health	n under an unre	estricted (resid	ential) landuse	-
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.	Site conditions are scenario. Migration to groun	e n	ot protecti	ve of human health	n under an unre	estricted (residence of the control	ential) landuse	-
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.	Site conditions are scenario. Migration to groun	e n	ot protecti	ve of human health	n under an unre	estricted (residence of the control	ential) landuse	-
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.	Site conditions are scenario. Migration to groun Site does not meet	e n	ot protecti	ve of human health	n under an unre	estricted (residence of the control	ential) landuse	-
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.	Site conditions are scenario. Migration to groun Site does not meet	e n	ot protecti	ve of human health	n under an unre	estricted (residence of the control	ential) landuse	-
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.	Site conditions are scenario. Migration to groun Site does not meet	e n	ot protecti	ve of human health	n under an unre	estricted (residence of the control	ential) landuse	-
A DRO polar fraction may be present, the risk posed by the polar fraction is not known.	Site conditions are scenario. Migration to groun Site does not meet	e n	ot protecti	ve of human health	n under an unre	estricted (residence of the control	ential) landuse	-
	Site conditions are scenario. Migration to groun Site does not meet	e n	ot protecti	ve of human health	n under an unre	estricted (residence of the control	ential) landuse	
	Site conditions are scenario. Migration to ground Site does not meet determination	e m	water criter	ve of human health	ttained in surfa	estricted (residence and subsur	ential) landuse	
	Site conditions are scenario. Migration to ground Site does not meet determination	e m	water criter	ve of human health	ttained in surfa	estricted (residence and subsur	ential) landuse	
	Site conditions are scenario. Migration to ground Site does not meet determination	e m	water criter	ve of human health	ttained in surfa	estricted (residence and subsur	ential) landuse	-

DOCUMENT REVIEW RECORD

DOCUMENT PREPARER: CH2M HILL

DOCUMENT TITLE: Savoonga Federal Scout Readiness Center, Draft Data Gap Investigation Report, April 2012

W	Alaska DEC
Alt	420
- 600	200
100	

REVIEWED BY: ADEC
REVIEWER: Deb Caillouet

REVIEWER: Ded Calliquet									
Comment Number	Section, Paragraph, Page	Reviewer Comment	Preparer Response						
1.	Section 5.3	The GRO results were not collected in 2011 from the most contaminated soil, therefore this is considered a data gap.	As stated in the work plan, GRO was not considered a COPC; therefore, soil samples were not collected and analyzed for GRO. VPH results of the soil sample collected in 2011 from the area showing the highest amount of contamination (11SAVSB001) confirms only low levels of GRO exist.						
		Additionally, why was a GRO value of 6 mg/kg used as the HRC input rather than the maximum detected GRO level, 73 mg/kg (2004)?	As shown in Table C-2, 6 mg/kg was the highest GRO detected in source area samples. However, the HRC will be re-run with an input GRO concentration changed to show 73 mg/kg.						
2.	Section 5.5.1, Page 5-5	Explain why soil field duplicates were not collected and analyzed at the required frequency (10%) for all analyses.	As stated in Section 5.5.1 one duplicate soil sample was collected for DRO but was broken in transit. A second, deeper soil sample duplicate for all analytes was planned, achieving the 10% requirement; however, we were unable to collect this sample due to encountering frozen soil prior to reaching the necessary depth. The field crew did not re-sample, thus not meeting 10% duplicate criteria.						
3.	Section 6.1, Page 6-1	The field notes/boring logs indicate very hard boring but only a couple mention frozen. The difficulty of hand augering was known prior to work plan development and should have been addressed in the selection of the field equipment. There is no indication of continuous permafrost at the site. Remove the statement. ADEC does not believe the	We agree that large cobbles within the gravel pad have limited vertical depth of sampling during all sampling events, but we still believe that permafrost nonetheless exists at depth across the entire site. The cobbles (local backfill) encountered at depth were likely partially frozen within the upper reaches of the frozen zone, limiting our ability to detect the permafrost directly. All historical data suggests permafrost is continuous						

Response to comments: Eek Federal Scout Readiness Center, Draft Data Gap Investigation Report, March 2012

		site was characterized to depth completely. This can be addressed in the remedial action, but makes the risk assessment very questionable.	across all of Savoonga, including our site (Section 2.2.2). Why would our site not have continuous permafrost? Unless a very shallow layer of clay or silt exists uniformly across the site, we have no other explanation of the consistent layer of shallow groundwater (within the active layer) verified across the site.
4.	Section 6.2, Page 6-1	Sample SB004 is near the property line and at 18 mg/l. This is an indication that contamination has migrated off-site.	Accepted. Text will be revised to state this.
5.	Section 6.1, Page 6-1	Separate sources of soil contamination are documented. Per guidance, these should be evaluated separately OR documentation provided to support the assumption that the fuel type, spill date, etc. are similar enough to group as one data set.	Accepted. This will be further discussed. A second source sample was collected (11SAVSB007_S002-03) adjacent location B-06, the highest contamination west of the New FSRC, but the DRO concentration in the sample was well below cleanup levels and the data deemed not very useful. However, we feel that the heating oil spilled is nearly identical (same fuel in both tanks) and is only a few years apart in age (both over 2 decades old). Therefore, the source sample collected is adequate to characterize both spills.
6.	Section 6.3, Page 6-17	A 350 determination is not appropriate, contaminated groundwater is migrating off-site.	Accepted. The request for a 350 determination will be removed.
7.	Section 8, Page 8-1	The first sentence of Section 1.1 "The goal of the DGI was to ensure that the Alaska Army National Guard (ARNG) has all the environmental data necessary to conduct remedial actions at St. Mary's FSRC to allow divestiture of the leased property without the use of institutional controls." has not been addressed by the recommended remedial actions. Please refer to the ADEC Site Closure Memorandum and the Institutional Control Guidance and provide the requirements that would be placed on the site under the recommended action. This will allow the Guard to determine if any of the requirements would be considered institutional controls under their land transfer policies.	Accepted. ICs have been identified for the management of the contaminated groundwater. However, for the contaminated soil, to be consistent with ADEC requirements, the following paragraph will be added to the end of Section 8.2.1 "As required by 18 AAC 75.325(i), approval from ADEC will be required prior to any future excavation or disturbance of soil at Akiak FSRC to prevent placement of petroleum-contaminated soil in environmentally sensitive areas."

Response to comments: Eek Federal Scout Readiness Center, Draft Data Gap Investigation Report, March 2012

8.	Page 8-2	Figure 8-1 missing	Figure 8-1 to be provided in final.			
9.	Section 8.2.2, Page 8-2	18 AAC 75.380.c.2 requires groundwater concentrations to be stable or decreasing to obtain site closure. This has not been demonstrated.	This will be demonstrated with the LTM program. The spill is well over a decade old. We do not anticipate the GW concentrations to be increasing.			
10.	Appendix B, ADEC Checklist G1G260466	3.b. The sample had excess soil, or not enough methanol for VPH.	Accepted. The checklist has been updated to reflect this.			
11.	Section 7.2, Page 7-1	The department does not accept the submitted proposed values as valid 95%UCLs; 1) The plotted data is indicative of sub-populations; i.e. areas of higher (>4300) and lower (<4300) concentrations.	Accepted. Only maximum concentrations will be used for calculating cumulative risk.			
12.	Appendix C, Table C4	Why are the EPH/VPH results from "Non-Source Area Samples" included? These should not be used as HRC data inputs and removed from the table. As such, only the single EPH/VPH sample from the	The non-source samples were not used as inputs in the HRC calculations. They are only presented to state that they existed but were not used. In point of fact, there were two EPH/VPH samples used as the			
		former storage van area is the basis of fractionization data and HRC input?	basis of fractionization data and HRC input. These results were considered adequate to define the nature of the site contamination (see comment #5).			
13.	Section 7.2 and Appendix C	The hypothetical scenario statistics are not accepted. Propose a site specific alternate cleanup level, use this as the HRC DRO input concentration and submit the results. All soils above this concentration would require remediation/removal.	Accepted. The hypothetical scenario statistics will be removed and a DRO ACL will be proposed.			
REVIEWED BY: ARNG REVIEWER: SGT Jennifer Nutt						
Comment Number	Section, Paragraph, Page	Reviewer Comment	Preparer Response			
1.	Section 5.3	Limited vertical extent due to gravel and permafrost: need regulator feedback. Past sampling shows limited	Accepted. This issue can be addressed through remedial action (future excavation).			

vertical delineation as well. If ADEC concurs with	
report and Section 8.2, then the site characterization is	
adequate. If not, then path forward will need to be	
reevaluated.	