670-38.002 98-32-01-030-06

Final Report

Contract No. DAHA90-94-D-0005 Delivery Order No. 0501

Preliminary Assessment/Site Investigation at the Savoonga Federal Scout Armory Savoonga, Alaska

Prepared for:

Alaska Army National Guard

RECEIVED

JAN 30 1998 DEPT. OF ENVIRONMENTAL CONSERVATION

Prepared by:

Ogden Environmental and Energy Services Co., Inc. 4040 B Street Anchorage AK 99503-5999 (907) 563-6436 (907) 561-8945 (fax)

January 1998

[C

FINAL REPORT FOR PRELIMINARY ASSESSMENT/SITE INVESTIGATION AT THE SAVOONGA FEDERAL SCOUT ARMORY SAVOONGA, ALASKA

Contract No. DAHA90-94-D-0005 Delivery Order No. 0501 Alaska Army National Guard (AKARNG)

PREPARED FOR:

STATE OF ALASKA DEPARTMENT OF MILITARY AND VETERAN AFFAIRS ARMY NATIONAL GUARD Environmental Office Box 5-549 Fort Richardson, Alaska 99505

PREPARED BY:

OGDEN ENVIRONMENTAL AND ENERGY SERVICES, CO., INC. 4040 B STREET ANCHORAGE, AK 99503-5999

JANUARY 1998

.

TABLE OF CONTENTS

<u>Section</u>	age
EXECUTIVE SUMMARYE	ES-1
1.0 INTRODUCTION	. 1-1
 2.0 PROJECT APPROACH 2.1 Overall Purpose and Objectives 2.2 Project Organization and Personnel Responsibilities 	2-1
2.2.1 Organization Chart2.2.2 Key Personnel Responsibilities	. 2-2
 3.0 SITE CHARACTERIZATION. 3.1 General Site Characteristics. 3.1.1 Location	. 3-1 . 3-1
3.1.3 Environmental Setting	, 3-1
3.1.4 Geology and Hydrogeology3.1.5 Climate	. 3-3
3.2 Facility Background Information and History	3-4
3.2.1 Facility Mission3.2.2 Facility Description	. 3-4
3.2.3 Areas of Concern	
 4.0 FIELD INVESTIGATION PROGRAM. 4.1 Field Program. 4.1.1 Field Sampling Program 	. 4-1
 4.1.2 Sampling Approach	. 4-1
4.2 Laboratory Program	. 4-3
4.2.2 Database Management	. 4-4
4.2.3 QA/QC Program	
5.1 Summary of Site Conditions and Observations	. 5-1
5.2 Summary of Field Screening Data5.3 Summary of Soil Analytical Results	. 5-1 . 5-1
5.3.1 Nature and Extent of Contamination	. 5-3
 5.3.2 Contaminant Migration Pathway 5.3.3 Regulatory Requirements	. 5-5
6.0 CONCLUSIONS AND RECOMMENDATIONS	. 6-1
6.2 Recommendations	
7.0 REFERENCES	. /•1

.

LIST OF TABLES

Table 4-1	Analytical Program Summary	<u>Page</u>
Table 5-1	IR Field Screening Results at Savoonga FSA	5-3
Table 5-2	Summary of Laboratory Detections for Soil Analytical Data	
Table 5-3	Non-UST Matrix Score Sheet for Savoonga FSA	5-7

LIST OF FIGURES

Figure 1-1	Project Location Map	<u>Page</u> 1-2
Figure 2-1	Project Organization Chart	2-2
Figure 3-1	Project Location	
Figure 3-2	Areas of Concern	
Figure 4-1	Field Screening and Soil Sample Locations	4-2
Figure 3-1 Figure 3-2 Figure 4-1 Figure 5-1	Field Screening and Analytical Soil Sample Results	5-2

LIST OF APPENDICES

- Appendix A Appendix B Appendix C Appendix D Analytical Laboratory Results Chain of Custody Forms

- Photographs Field Notes
- Appendix E IR Field Screening Procedure

LIST OF ACRONYMS

ACL	Alternative Cleanup Levels
ADEC	Alaska Department of Environmental Conservation
AKARNG	Alaska Army National Guard
Analytica	Analytica Alaska, Inc.
AOC	Areas of Concern
ARARs	Applicable or Relevant and Appropriate Requirements
AST	Aboveground Storage Tank
BTEX	Benzene, Toluene, Ethylbenzene, and total Xylenes
DCRA	Alaska Department of Community and Regional Affairs
DRO	Diesel Range Organics
EPA	Environmental Protection Agency
FSA	Federal Scout Armory
GRO	Gasoline Range Organics
GWSI	Ground Water Sites Inventory
HASP	Health and Safety Plan
IR	Infrared Spectrometry
MCL	Maximum Contaminant Levels
mg/kg	milligram/kilogram
NFA	No Further Action
Ogden	Ogden Environmental and Energy Services, Co., Inc.
PĂ/SI	Preliminary Assessment/Site Investigation
PMP	Project Management Plans
QA	Quality Assurance
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
SAP	Sampling and Analysis Plan
SOW	Scope of Work
TPH	Total Petroleum Hydrocarbons

EXECUTIVE SUMMARY

This report presents the purpose, scope, objectives, methods, and findings of a Preliminary Assessment/Site Investigation (PA/SI) conducted for the Alaska Army National Guard (AKARNG) at the Savoonga Federal Scout Armory (FSA). The purpose of the investigation was to collect information on current site conditions and historical activities in order to assess the potential threat posed to human health and the environment. Information review and development of Work Plans were conducted during March and April of 1996 and resulted in a site Sampling and Analysis Plan (SAP), Health and Safety Plan (HASP), Quality Assurance Project Plan (QAPP), and a Project Management Plan (PMP). These documents were reviewed by the AKARNG prior to implementing the field investigation.

Savoonga is located on the northeast coast of St. Lawrence Island in the Bering Sea, approximately 39 miles south of Gambell, and 164 miles west of Nome. The Savoonga ARNG FSA is located on the northwestern edge of the village of Savoonga.

During the Savoonga FSA PA/SI, a total of 12 locations were sampled. These locations were comprised of seven field screening soil samples and five analytical soil samples. The samples were analyzed for diesel range organics (DRO) and total petroleum hydrocarbons (TPH). The laboratory analysis were performed by Analytica Alaska, Inc. (Analytica).

The analytical results were compared to State of Alaska petroleum hydrocarbon cleanup guidelines to determine if any of the contaminant concentrations had exceeded these limits.

MAJOR FINDINGS

DRO contamination was detected in all five analytical samples at concentrations ranging from 12 to 160 mg/kg. The highest concentration detected was at location SV051 at a depth of 0.5 feet.

TPH contamination was detected in one of the five samples analyzed at a concentration of 26 mg/kg. The TPH contamination was detected at location SV051 at a depth of 0.5 feet.

CONCLUSIONS

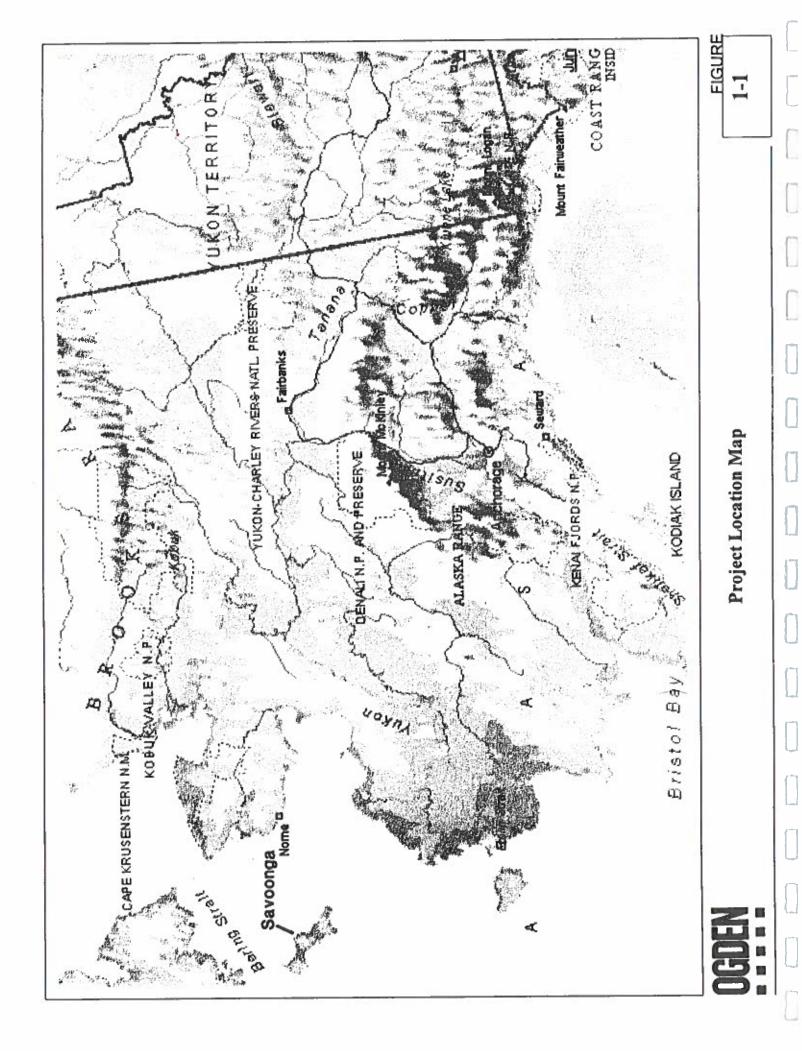
The following conclusions are based on the information obtained during this investigation:

- The soil contamination present appears to be the result of minor spills or leaks from fuel handling operations.
- The volume of contaminated soil was conservatively estimated to be no greater than 4 cubic yards. This estimate was based on an approximate area of contamination of 36 square feet and a depth of 3 feet (depth to permafrost).

The soil analytical results indicate that DRO is present at concentrations well below ADEC regulatory guidelines for cleanup.

RECOMMENDATIONS

Because current contamination levels are below applicable ADEC cleanup criteria, we recommend no further action at the AKARNG Savoonga FSA.


1.0 INTRODUCTION

The project was performed for the AKARNG under contract to the Army National Guard. This report was prepared by Ogden Environmental and Energy Services (Ogden) in accordance to the SOW authorized by Contract No. DAHA90-94-D-0005, Delivery Order No. 0501. The investigations was conducted following the requirements and guidelines outlined in the PMP, SAP, QAPP, and HASP prepared for this project.

The information provided in this report is in support of PA/SI for the AKARNG at the Savoonga FSA located in Savoonga, Alaska (Figure 1-1). The purpose of this investigation was to collect information on current site conditions and historical activities in order to assess the potential threat posed to human health and the environment. The results of the investigation will be used to categorize the site for further action.

Based on this investigation, the site was classified in one of the following categories:

- 1. No Further Action. The no further action alternative may be recommended if investigation results indicated that a site meets all of the following criteria:
 - The source of contamination has been removed (such as a storage tank) or fixed (such as a leaking valve).
 - After a reasonable field effort and visual inspection, a suspected contamination area cannot be found.
- 2. No Further Action with Limited Monitoring. This alternative may be recommended if investigation results indicate that site remediation goals can be met either through natural attenuation or through alternative cleanup levels (ACLs) negotiated with Alaska Department of Environmental Conservation (ADEC).

Natural attenuation (also called intrinsic remediation) entails, allowing natural subsurface processes such as dilution, volatilization, biodegradation, and chemical reactions to reduce petroleum hydrocarbon contaminant concentrations to acceptable levels.

Alternative cleanup levels are based on interim guidance established by ADEC that specifies soil cleanup levels for aboveground storage tank (AST) petroleum-contaminated Soils (ADEC, 1991). ADEC believes that these levels, albeit conservative, are protective of surface water and ground water quality and consider site-specific conditions.

Natural attenuation and/or ACLs may be selected it can be demonstrated to ADEC's satisfaction that degradation is proceeding at rates consistent with cleanup levels. All of the following criteria must also be met for both natural attenuation and ACLs.

- The source of contamination has been removed (such as a storage tank) or fixed (such as a leaking valve).
- Screening and sampling results confirm that most of the contaminated soil is generally below applicable ADEC cleanup levels, with limited quantities above cleanup levels.
- There will be no impact on potential receptors.
- The contaminants are either immobilized (by sorbing onto soil particles) or have limited migration before degradation occurs.
- Alternative remedial technologies are not technically or economically feasible, may not significantly speed up remediation time frames, and may cause more damage than benefit.
- Enough site characterization and information exists to recommend natural attenuation and/or propose ACLs, and a very strong scientific case can be made in predicting their success and protectiveness.

Using natural attenuation or ACLs also entails monitoring throughout the process; the monitoring will consist of sampling and sample analysis. Monitoring will verify that degradation is proceeding at rates consistent with cleanup objectives.

- 3. Additional Investigation Required. This alternative may be selected if enough information cannot be collected to recommend a remedial technology, or additional information is required to recommend natural attenuation or ACLs.
- 4. Follow-up Remedial Action. The follow-up remedial action alternative may be recommended if investigation results indicate that a site meets any of the following criteria:
 - The source of contamination has not been removed or fixed, and is not a de minimis release.
 - Screening and sampling results confirm that most of the contaminated soil is above applicable ADEC cleanup levels.
 - There is impact on potential receptors, and data indicate a need for action to reduce real or potential risk to human health or the environment.
 - The contaminants are highly mobile and have potential for significant off-site impact before realizing an acceptable decrease in observed concentration.
 - Alternative remedial technologies are technically and/or economically feasible, may significantly speed up remediation time frames, and may not cause more damage than benefit.
 - Site information suggests that a very strong scientific case cannot be made in predicting the success and protectiveness of natural attenuation or ACLs.

2.0 PROJECT APPROACH

The scope of this investigation included a review of file information and interviews with current and past employees and to conduct a site investigation to characterize potential petroleum contamination at the Savoonga FSA.

The scope of services for this project included the tasks described below:

- Task A:Determine through interview and literature searches the areas suspected of being
contaminated by petroleum products.
- Task B: Confirm through a field investigation the presence or absence of suspected contamination.
- Task C:Provide information that characterizes the site to such an extent that the potential
for off-site contamination migration may be identified.
- Task D: Compare results to cleanup standards and guidelines for either non-UST or USTrelated petroleum releases and recommend future investigations and action required at the site.

2.1 OVERALL PURPOSE AND OBJECTIVES

This report provide the AKARNG about the type and level of contamination at the Savoonga FSA. This information will be used to determine if contamination exists in concentrations greater than ADEC cleanup standards, and to help recommend appropriate actions.

The objective of the site investigation was to evaluate the environmental conditions of the Savoonga FSA facility, with respect to petroleum hydrocarbon contamination, and to evaluate potential petroleum hydrocarbon contamination by collecting soil samples for field screening and analytical laboratory analysis. During the site investigation, field personnel verified site conditions, surrounding land uses, and potential off-site sources or receptors.

2.2 PROJECT ORGANIZATION AND PERSONNEL RESPONSIBILITIES

2.2.1 Organization Chart

The organization of the project team is outlined in Figure 2-1.

2.2.2 Key Personnel Responsibilities

The key personnel positions responsible for assuring that the Savoonga PA/SI was conducted in accordance with standard and accepted operating procedures are shown in Figure 2-1. The duties of each position are described in the following text.

<u>Army National Guard, Contract Officer</u>: The Contract Officer is David Hunt. Mr. Hunt is responsible for the overall contract direction.

AKARNG, Project Manager: The AKARNG Project Manager is Norman Straub. He is responsible for the final review and approval of all reports and chemical analysis data.

<u>Ogden, Project Manager</u>: The Ogden Project Manager is David Bufo. Mr. Bufo is responsible for all field activities and deliverables under this SOW. No changes to the SOW were implemented without coordination with the Ogden Project Manager and prior approval by the AKARNG Contract Officer.

<u>Ogden, Field Team Members</u>: The Ogden Field Team included Archer Bishop and David Bufo. They were responsible for conducting sampling, to include all field quality control, instrument calibration, and field documentation. They have knowledge of standards and regulations applying to soil sampling.

No contact with the ADEC, the U.S. Environmental Protection Agency (EPA), other regulatory entities, or the press was made by Ogden personnel.

3.0 SITE CHARACTERIZATION

3.1 GENERAL SITE CHARACTERISTICS

3.1.1 Location

Savoonga is located on a bluff above the Bering Sea, approximately 39 miles south of Gambell, and 164 miles west of Nome. Coordinates for the facility are Township 21 South, Range 61 West, Section 5, Kateel River Meridian at 63° 42' north latitude, 170° 29' west longitude (Figure 3-1). The Savoonga FSA is located on the northwestern edge of the village of Savoonga, which is located on the northeast coast of St. Lawrence Island in the Bering Sea.

3.1.2 Geographical and Topographical Setting

Savoonga lies on the north coast of St. Lawrence Island. The village is situated on a bluff above the Bering Sea and the land south of the village is hilly. Atuk Mountain rises to a height of 2,207 feet only eight miles south of Savoonga. To the east and west of the village, the land is flat and has many bogs. Most development lies above the area identified as the 100-year flood zone.

The facility yard is generally level, and the entire FSA is constructed on a gravel pad that is surrounded by wet tundra. No vegetation reportedly grows on the gravel pad of the FSA, and the surrounding tundra is vegetated by low grass species. Surface drainage trends to the north toward the Bering sea. Vegetation consists primarily of sedges, berries, and mosses.

3.1.3 Environmental Setting

3.1.3.1 Ecosystems

Wildlife populations in the vicinity of Savoonga are large and varied; however, they are subject to substantial fluctuations through time. These fluctuations may be seasonal because of migration, or of longer duration if changes in the population base occurs. From U.S.G.S. Quadrangle:St Lawrence (1:250 000)

Savoonga is hailed as the "Walrus Capitol of the World." Residents hunt walrus and whales (bowhead, grey) in the spring and fall. During the summer, the people fish, crab, hunt birds, gather eggs and harvest various seafoods, greens, blackberries, salmonberries and cranberries. Seal, fish, and crab are harvested through the winter. Arctic fox is also found on the island. Some reindeer also roam freely on the island.

3.1.3.2 Socioeconomics

The residents of Savoonga are primarily Yupik Eskimos whose lifestyle consists primarily of subsistence supplemented with cash income. Census data from 1996 indicated a village population of just over 600 persons (DCRA, 1996).

3.1.3.3 Infrastructure

The present water supply for the village comes from a 195-foot deep well (installed in 1972) located about one-half mile south of the FSA at the end of the airstrip. Based on the direction of surface flow, the well is upgradient of the FSA. Water is pumped from the well into a 100,000 gallon storage tank in the village. Residents obtain water from two central watering points within the village.

Savoonga operates its own sewage system. Honeybuckets are used by residents and community hauling service is provided. A central sewage lagoon provides for disposal and treatment. The FSA utilizes a composting toilet system. Garbage collection services are provided and a local landfill is available.

3.1.4 Geology and Hydrogeology

The village is built on clayey silt that contains basalt boulders overlain by a one-foot thick layer of black peat, roots, and organic material. Bedrock, possibly basalt, occurs at a depth of approximately 12 feet below ground surface. Permafrost is continuous under the village, with a two to three foot thick surface-thaw layer (DCRA, 1996). Permafrost impedes the downward and lateral movement of water.

3.1.5 Climate

The climate at Savoonga is considered to be subarctic maritime with continental influences during the winter. Winter lows can reach $-7^{\circ}F$, and summer highs generally reach only around 50°F. Average precipitation is 16 inches annually, with 80 inches of snowfall. The island is subject to prevailing winds, averaging 12 to 23 miles per hour (DCRA, 1996).

3.2 FACILITY BACKGROUND INFORMATION AND HISTORY

3.2.1 Facility Mission

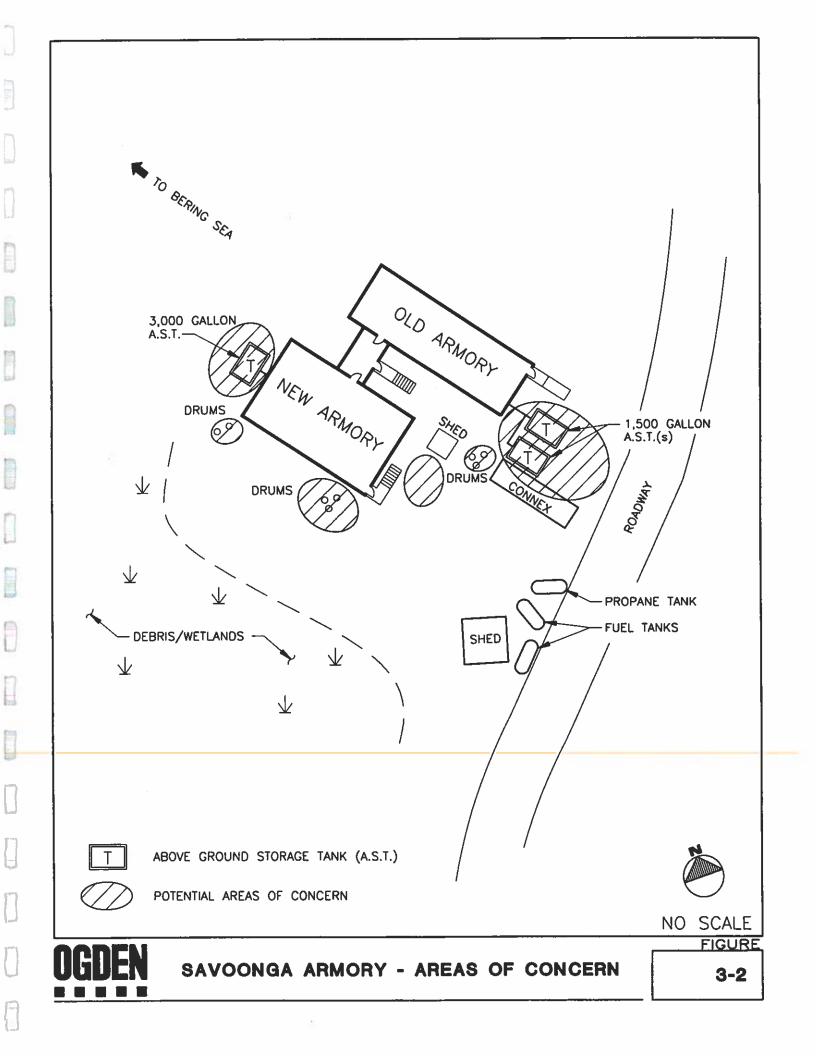
Since its formation during World War II, the AKARNG's Federal Scouts have been tasked with providing defense for Alaska. In the late 1950s, the Scout mission was expanded to include search and rescue operations. With the expansion has come the construction and operation of Army Aviation Operations Facilities, FSAs, and Organizational Maintenance Shops.

The military mission of the Savoonga FSA is reconnaissance, surveillance, and screening. The civilian mission of the FSA includes responding to disasters and search and rescue. The AKARNG is mobilized for these missions by direction of the Governor of the State of Alaska and operations are integrated with Emergency Services, Department of Military and Veterans Affairs.

3.2.2 Facility Description

The Savoonga FSA facility consists of a 20 x 60 foot wood-framed building constructed in 1960 ("Old" Armory) and a 30 x 40 foot wood framed building ("New" Armory) constructed in approximately 1985 (1990 and 1995 SPCC Plan data). The two Armory buildings are connected to each other by a breezeway. The facility also includes a 3,000-gallon, double-walled aboveground fuel tank located adjacent to the New Armory building, two 1,500-gallon double-walled aboveground storage tanks adjacent to the Old Armory building, drum storage areas, a drum storage shed, and a conex storage van.

Land uses surrounding the FSA include undeveloped tundra to the north, west, and southeast, a northeast-southwest trending roadway immediately south of the site; a store to the northeast; maintenance garage to the south; and a warehouse to the southwest. An aboveground power transmission line trends in a generally east-west direction south of the FSA. Residential dwellings are reportedly located within 50-feet of the FSA property. A 4,600 foot gravel airstrip is located southwest of the village.


3.2.3 Areas of Concern

Four areas of concern (AOC) were identified during the records search. These AOCs are described as follows and their approximate locations are shown in Figure 3-2.

<u>Fuel Spill</u>: A reported spill of 500 to 3,000 gallons of fuel oil from a broken fuel line, and 200 gallons of Jet A50 fuel from leaking drums was reported at the site in 1985. The spill was reportedly cleaned up by Alaska Offshore, Inc. in July 1985. No record of confirmation sampling or sampling results to determine if residual contamination was left in the ground were observed in the AKARNG files. The spill is assumed to have been associated with the tanks next to the Old Armory building since the New Armory was not constructed at this time. The 1985 spill left a visible stain and noticeable odor still detectable in 1990 (SPCC 1990).

<u>Fuel Spill</u>: Another fuel line leak 'from the fuel tank to the furnace' was reported in June 1992 during an Environmental Compliance Assessment Survey investigation. The release was reported in a Spill Notification Report filed with the ADEC in May 1994. It is unknown which fuel tank was involved in the reported release, and no information regarding cleanup or remediation was observed in the files.

<u>Aboveground Fuel Storage Tanks</u>: The area surrounding the three existing aboveground fuel storage tanks and associated piping are areas of potential concern.

-

[

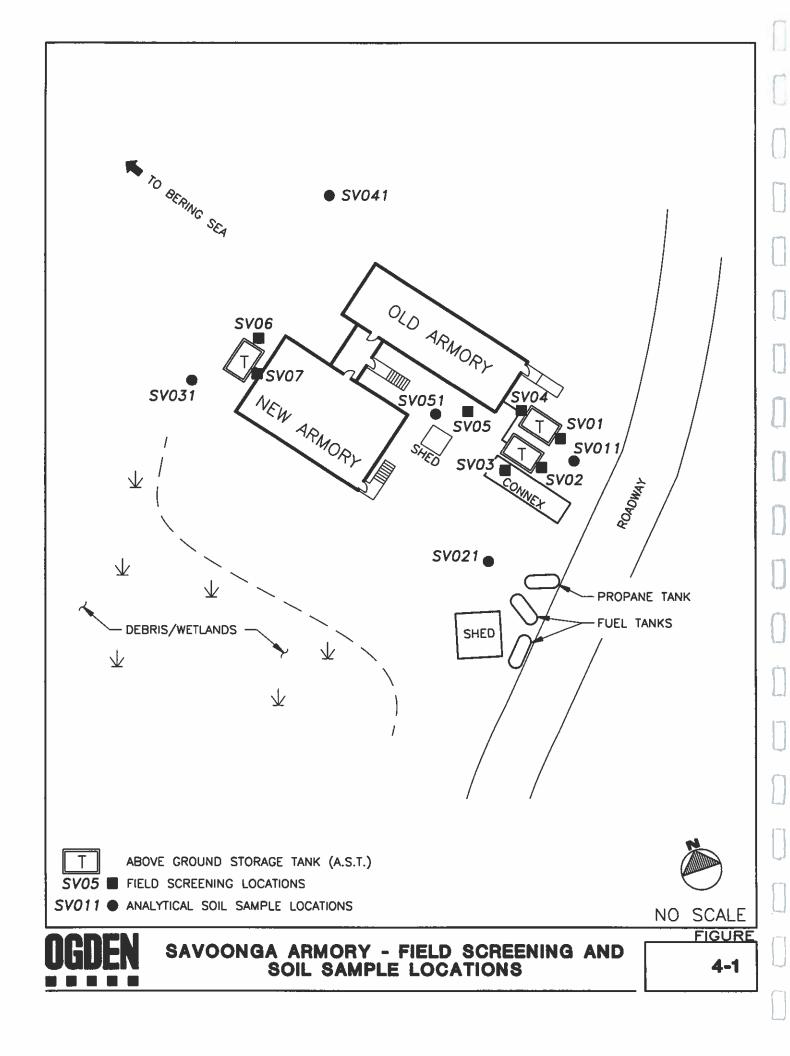
Drum Storage Areas: The drum storage shed, conex storage van, and areas of current and former drum storage are areas of concern. Drum storage areas have been documented next to the New Armory AST (Mogas), between the conex storage van and the New Armory building (Mogas, Jet A1, Jet A50, and unknown petroleum, oil, and lubricant products), and south of the New Armory building (Mogas).

4.0 FIELD INVESTIGATION PROGRAM

4.1 FIELD PROGRAM

A site investigation was conducted at the Savoonga FSA on August 6, 1996. The site investigation included performing a soil survey utilizing Infrared (IR) Spectrophotometry field screening as a tool to delineate the general area of suspected contamination. Data presented in the Work Plan and onsite visual inspections were used to guide selection of screening and sampling locations. Once the zone of soil contamination was estimated by this screening methodology, select samples were collected and submitted for off-site analytical analyses of petroleum contaminants.

4.1.1 Field Sampling Program


Ogden collected seven field screening samples and five analytical samples from this site. Soil samples were collected from the AOCs and from areas of obvious contamination observed during the site visit. The sample locations are shown on Figure 4-1.

4.1.2 Sampling Approach

The field sampling program was designed to evaluate potential petroleum release areas and the extent of contamination. The sampling strategy included field screening and analytical sampling.

Field screening of soils was performed utilizing IR spectrophotometry as a tool. Field screening samples were collected from AOCs and areas of suspected contamination based on visual observation. Field screening was used to identify specific locations for sampling.

Analytical soil samples were collected at each AOC described and areas of potential concern. The soil samples were submitted for laboratory analysis.

4.1.3 Sample Collection

Soil samples were collected at each location as follows:

- Most soil samples were screened for TPH to help delineate the horizontal extent of contamination. Soil samples to be submitted for off-site laboratory analysis were collected form the sites which IR indicated as having the highest TPH levels of those samples collected for field screening.
- Soil samples for off-site analysis were collected using a decontaminated stainless steel hand trowel or shovel and placed into sample jars. Subsurface soil samples were collected to a maximum depth of 0.5 feet.
- Appropriate amber or colorless glass containers with Teflon[®]-lined lids, provided by the laboratory, were used for sample collection.

4.2 LABORATORY PROGRAM

Laboratory analyses for the Savoonga FSA PA/SI were performed by Analytica located in Anchorage, Alaska. Results are included in Appendix A.

4.2.1 Summary of Analytical Methods

Laboratory analytical procedures are outlined in the laboratory's QA plan. All analytical methods were performed in accordance with applicable EPA SW-846 publication protocol or standard methods (EPA, 1987) and ADEC-approved methods (AK101 and AK102).

A summary of the analytical methods used for the Savoonga Armory PA/SI are provided in Table 4-1.

Parameter	EP Method
Diesel Range Organics (DRO)	AK 102
Total Petroleum Hydrocarbons (TPH)	EPA 418.1

Table 4-1. Analytical Program Summary

4.2.2 Database Management

Ogden managed the data collection through field notebooks, sample labels, custody seals, photographs, and chain-of-custody forms. Appendix A includes laboratory results; Appendix B includes chain-of-custody forms; Appendix C includes photographs; Appendix D includes all field notes; and Appendix E includes the IR field screening procedure.

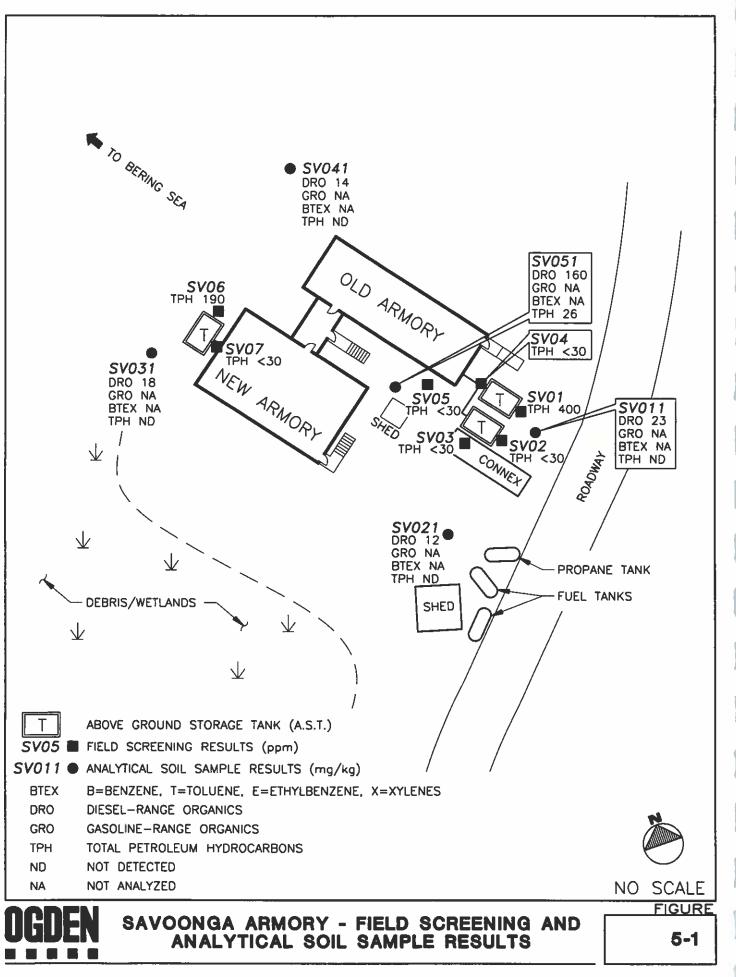
4.2.3 QA/QC Program

Sampling efforts for this project was conducted in accordance with EPA and ADEC guidelines for QA/QC, as described in the Project Manage Plan QAPP (Ogden, 1998). Sample duplicates are included in the sampling program.

5.0 INVESTIGATION RESULTS

5.1 SUMMARY OF SITE CONDITIONS AND OBSERVATIONS

Site conditions and observations are as follows:


- Soil is gravelly with little fines.
- General housekeeping is poor. Debris is scattered about and swampy area to southwest of Armory has metal debris in it.
- South of FSA near road is a rusted propane tank and two rusted fuel tanks (empty) and a shed.
- Snow machines on southwest side of conex storage van.
- Two overturned drums between the shed and tank. No other drums are observed onsite.

5.2 SUMMARY OF FIELD SCREENING DATA

Field screening of soils was performed by using a field-portable IR spectrophotometer to measure TPH by EPA Method 418.1. Experience has shown that the IR-measured TPH concentration in a soil sample is generally greater than the corresponding diesel and gasoline concentrations. This difference was used to conservatively estimate the level of contamination. Table 5-1 presents the results from the field screening. Figure 5-1 shows field screening and soil sample locations and results.

5.3 Summary of Soil Analytical Results

Because of the petroleum hydrocarbon contaminants released at the site, all samples were analyzed for DRO and TPH compounds. Soil samples were submitted to Analytica for analyses. A summary of the soil quality results which shows only the analytes detected is provided in Table 5-2. Figure 5-1 presents the soil sample locations and results.

Sample Number	Depth (feet)	Result (mg/kg)
SA1	0.5	400
SA2	0.5	<30
SA3	0.5	<30
SA4	0.5	<30
SA5	0.5	<30
SA6	0.5	190
SA7	0.5	<30

Table 5-1
IR Field Screening Results at the Savoonga FSA

5.3.1 Nature and Extent of Contamination.

DRO contamination was detected in all five samples analyzed at concentrations ranging from 12 to 160 mg/kg. The highest concentration detected was at location SV051 at a depth of 0.5 feet.

TPH contamination was detected in one of the five samples analyzed at a concentration of 26 mg/kg. The TPH contamination was detected at location SV051 at a depth of 0.5 feet.

5.3.2 Contaminant Migration Pathway

Potential pathways for contaminant migration from this site include air, soil, surface water, and ground water. One primary pathway for migration of contaminants contained in the subsurface soil is by infiltration through soils to ground water and subsequent transport via ground water movement as a dissolved constituent. A secondary migration pathway includes volatilization of contaminants from the subsurface soil and release to the atmosphere. A third migration pathway includes transportation of contaminated surface soil by erosion processes and possible dissolution into surface runoff. The relative importance of each of the migration pathways is dependent on several factors, including the contaminant properties (i.e., solubility, volatility, sorptivity) and physical site characteristics.

•

TABLE 5-2 Summary of Laboratory Detections for Soil Analytical Data Savoonga Federal Scout Armory Savoonga, Alaska August 1996						
Sample Location	Sample ID	Depth (ft.)	Analyte	Method	Results (mg/Kg)*	Detection Limit (mg/Kg)
Diesel Range	Organics					
SV011	96SV011SL	0.5	DRO	AK102	23	4.6
SV021	96SV021SL	0.5	DRO	AK102	12	4.4
SV031	96SV031SL	0.5	DRO	AK102	18	4.9
SV041	96SV041SL	0.5	DRO	AK102	14	4.6
SV051	96SV051SL	0.5	DRO	AK102	160	4.7
Total Petroleu	ım Hydrocarboı	15				
SV051	96SV051SL	0.5	TPH	E418.1	26	19

*Bold type indicates detections above Level C cleanup levels.

5.3.3 Regulatory Requirements

Target regulatory clean-up levels for soils at this site are based on the ADEC Soil Matrix Score Sheet for non-UST sites. The soil matrix determination is taken from Table I of ADEC guidance document entitled "Interim Guidance for Non-UST Contaminated Soil Cleanup Levels", dated July 17, 1991. The matrix score sheet determines the clean-up category based on five criteria:

- Depth to Ground water,
- Mean Annual Precipitation,
- Soil Type (Unified Soil Classification)
- Potential Receptors, and
- Volume of Contaminated Soil.

Each matrix score sheet category has its associated clean-up levels for GRO, DRO, benzene, and Total BTEX.

When the petroleum contaminant is known, such as diesel, aviation gas, motor vehicle gas, or JP-4, GRO or DRO analysis is preferred. Occasionally EPA Method 418.1 is not suitable for the analysis of volatile organic hydrocarbon compounds since this method also detects biogenic hydrocarbons.

5.3.4 Summary of Results

Soil contamination appears to be a result of spills or leaks from fuel handling operations. The soil quality results indicate that DRO and TPH are not present at concentrations in excess of ADEC regulatory guidelines for cleanup. The soil matrix score sheet for the Savoonga FSA is based on the following criteria determinations:

Depth to Ground water: The site's close proximity to wetlands and evidence of standing water indicate the depth to water is less than five feet below ground surface. Based on contamination present to a depth of 0.5 feet and an estimated ground water

level less than five feet below ground surface, the depth to ground water is less than 4.5 feet.

Mean Annual Precipitation: The average precipitation for Savoonga is ten inches per year.

Soil Type (Unified Soil Classification): Based on soil samples taken, the soil on site is classified as fine-grained soil with high organic content.

Potential Receptors: The present water supply for Savoonga comes from a 195-foot deep well located about one-half mile from the village at the south end of the airstrip. The airstrip is approximately 1.5 miles from the FSA.

Volume of Contaminated Soil: Based on an approximate area of 36 square feet and an estimated average thickness of 3 feet, based an estimated depth to permafrost of 3 feet, the volume of contaminated soil is 4 cubic yards or de minimus (<25 cubic yards).

Based on the above criteria the matrix score for the Savoong FSA is Category C. This requires the following soil cleanup levels:

DRO	1,000 mg/kg
GRO	500 mg/kg
TPH	2,000 mg/kg
Benzene	0.5 mg/kg
BTEX	50 mg/kg

Table 5-3 presents the Non-UST matrix score sheet for the Savoonga FSA.

1

0

E

The second

户

Н

L

.

Table 5-3 Matrix Score Sheet Savoonga Federal Scout Armory							
1.	Depth to Subsurface	Parameter Matrix Score					
	<5 feet 5-15 feet 15-25 feet 25-50 feet >50 feet	10					
2.	Mean Annual Preci	pitation		Parameter Matrix Score			
	>40 inches 25-40 inches 15-25 inches <15 inches	3					
3.	Soil Type (Unified	Soil Classification	ı)	Parameter	r Matrix Score		
	Clean, coarse-grain Coarse-grained soil Fine-grained soils (Fine grained soils (1					
4.					Parameter Matrix Score		
	Public well within Private well within Municipal/private v Municipal/private v No known well with No known well with Non-potable ground		8				
5.	Volume of Contam			Parameter Matrix Score			
	>500 cubic yards(10)100-500 cubic yards(8)25-100 cubic yards(5)>De Minimis-25 cubic yards(2)De Minimis(0)						
Tot	al Matrix Score			2	22		
	Cleanup Level in mg/kg						
	Matrix Score	line/Unknow Benzene	n BTEX				
Lev Lev	rel A >40 rel B 27-40 rel C 21-26 rel D <20	100 200 1,000 2,000	50 100 500 1,000	0.1 0.5 0.5 0.5	10 15 50 100		

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Based on the soil quality results, petroleum hydrocarbons are not present at concentrations in excess of ADEC cleanup levels. The soil contamination that is present appears to be the result of minor spills or leaks from fuel handling operations. The volume of contaminated soil was conservatively estimated to be no greater than 4 cubic yards. This estimate was based on an approximate area of contamination of 36 square feet and a depth of 3 feet (depth to permafrost).

Ground water was not investigated at this site. The potential for ground water migration of contaminants is moderate to low, primarily due to permafrost impeding downward and lateral movement of ground water and possibly acting as an aquitard. The data on ground water movement is not available for this site. A community well is located approximately 0.5 miles south of the village at the end of the airstrip. No information on the depth of the well or ground water is available at this time.

Based on the information obtained during this investigation, the following conclusions were identified.

- Evidence suggests that the areas of contamination are a result of spills and leaks during fueling handling operations. The areas of contamination were from DRO and TPH in the soil.
- The volume of contaminated soil was conservatively estimated to be no greater than 4 cubic yards.
- The soil quality results indicate that DRO is present at concentrations well below ADEC regulatory guidelines for cleanup.

÷

6.2 **Recommendations**

Because current contamination levels are below applicable ADEC cleanup criteria, we recommend no further action at the AKARNG Savoonga FSA.

7.0 REFERENCES

Alaska Department of Community and Regional Affairs (DCRA), Community Profile, Savoonga. March 14, 1996.

Alaska Department of Environmental Conservation (ADEC) Interim Guidance for Non-UST Contaminated Soil Cleanup Levels, July 17, 1991.

Alaska Ground-Water Site Inventory (GWSI) October 21, 1996.

ENSR, Spill Prevention, Control, and Countermeasure Plan and Installation Spill Contingency Plan for the Savoonga Armory. Prepared for the Alaska Army Nation Guard. January 1995.

Ogden Environmental and Energy Services, Final Project Management Plans, Preliminary Assessment/Site Investigation at 14 Various Sites in Alaska. Prepared for State of Alaska, Department of Military and Veteran Affairs, Army National Guard, Environmental Office. January, 1998

Ogden Environmental and Energy Services, Final Work Plan, Preliminary Assessment/Site Investigation at 14 Various Sites, Alaska. Prepared for Army National Guard, Alaska District. December, 1997.

Preparer Unknown, Savoonga AKARNG Scout Armory Spill Prevention Control and Countermeasure Plan and Installation Spill Contingency Plan. September 1990.

U.S. Environmental Protection Agency, Methods for Chemical Analysis for Water and Wastes, EPA 600/4-7-020, revised March 1983, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268.

Method for the Determination of Diesel Range Organics, American Petroleum Institute/U.S. Environmental Protection Agency, Consensus Method, 1992.

Method for the Determination of Gasoline Range Organics, American Petroleum Institute/U.S. Environmental Protection Agency, Consensus Method, 1992.

Test Methods for Evaluating Solid Waste, SW-846, 2nd Edition, revised April 1985; 3rd Edition, September 1986.

US Environmental Protection Agency, Office of Emergency and Remedial Response, A Compendium of Superfund Field Operations Methods, EPA/5010/P-87/001, December 1987.

0	
	APPENDIX A ANALYTICAL LABORATORY RESULTS
自	
	-

		Location	SV011		SV021		SV031		SV041		SV051	
	Sarr	Sample Number	96SV011SL		96SV021SL		96SV031SL		96SV041SL		96SV051SL	
		Sample Date	8/6/96		8/6/96		8/6/96		8/6/96		8/6/96	
		Matrix	SL									
		Depth	0.5		0.5		0.5		0.5'		0.5	
	0	Sample Type										
Analyte	Method	Units										
DRO DIESEL RANGE ORGANICS	AK102	бу/бш	33	[4.6]	12	[4.4]	18	[4.9]	14	[4.6]	160	[4.7]
GRO GASOLINE RANGE ORGANICS	AK101	руудт	NA									
BTEX BENZENE	SW8020	BX/Gm	NA									
TOLUENE	SW8020	BX/gm	NA									
ETHYLBENZENE	SW8020	mg/Kg	NA									
XYLENES, TOTAL	SW8020	mg/Kg	NA									
TPH PETROLEUM HYDROCARBONS	E418.1	gy/gm	QN	[61]	Q	[18]	QN	[20]	GN	[61]	26	[61]

16/9Gr-

1

 $\left[\right]$

efuo

2. udowfud

1

0

D

Ì

Line 14

R

Ц

l, i

OGDEN ENVIRONMENTAL & ENERGY 4040 B STREET ANCHORAGE, AK. 99503-5999

Attn: MR. ARCHER BISHOP

Order #: A6-08-030 Date Reported: 08/27/96 11:53 Project Name: PA/SI 14 SITES Date Received: 08/08/96 Date Completed: 08/27/96

SANPLE IDENTIFICATION

Sample		Sample	
Number	<u>Client Description</u>	<u>Number</u>	<u>Client Description</u>
01	96WA011SL	14	ST96051SL
02	96WA012SL	15	ST96061SL
03	96WA021SL	16	965M0115L
04	96WA031SL	17	965M0125L
05	96WA041SL	18	965M0215L
06	96WA051SL	19	96SM031SL
07	96WA061SL	20	965H041SL
08	96WA071SL	21	965V011SL
09	ST96011SL	22	965V021SL
10	ST96012SL	23	965V0315L
11	ST96021SL	24	965V0415L
12	ST96031SL	25	965V051SL
13	ST96041SL		

Enclosed are the analytical results for the submitted samples. All analyses met quality assurance objectives, except where noted in the case narratives. If you have any questions regarding the analyses, please feel free to call.

Stemberik Boude

Steven E. Bonde Technical Director

OGDEN ENVIRONMENTAL & ENERGY CASE NARRATIVE

ADEC Laboratory Approval Number: UST-014

The DRO samples were extracted on 08/14/96 and 08/13/96.

The TPH samples were extracted on 08/14/96 and 08/13/96.

All results are reported on a dry weight basis.

The samples were received properly packed in one cooler at 1.7°C and were refrigerated upon receipt.

Sample dilutions are listed in the matrix/dilution field. For example, a 50x dilution for DRO and 20x dilution for TPH will be listed as DRO50X TPH20X.

Data Flag Definitions:

- U Indicates the analyte was analyzed for but not detected (ND). The reported value is the practical quantitation limit.
- J Indicates an estimated value for the detected analyte. The analyte result is greater than zero but less than the sample practical quantitaion limit.
- CU The DRO surrogate (OTP) recoveries that are outside of the acceptable limits (50-150%) are due to the required extract dilutions and to co-elution with sample analytes of similar boiling points. Therefore these recoveries are reported as not calculated (CU).
- NC The BTEX/VPH surrogate (p-bromofluorobenzene) recoveries that are outside of the acceptable limits (50-150%) are due to the required extract dilutions and to co-elution with sample analytes of similar boiling points. Therefore these recoveries are reported as not calculated (NC).

Analyst:	Al boude	Date:	8,28,95
Analyst:	RUR	Date:	8,28,26
Analyst:	Renein Jilk	Date:	8,28,96

Order # A6-08-030 Analytica Ak.

14

H

OGDEN ENVIRONMENTAL & ENERGY Test results by sample

Collected: 08/06/96 Sample: 21A 965V0115L Matrix: SOIL Method_ <u>Result</u> <u>Limit</u> Units <u>Analyzed</u> Test Description 3550\AK102 DRO in solids by AK102. 08/19/96 3550\AK102 23 4.6 mg/Kg Diesel Range Organics Surrogates, % Recovery 125 Min: 50 Max: 150 o-Terphenyl 3550\418.1 U 19 mg/Kg 08/14/96 TPH in solids by EPA 418.1 Sample: 22A 96SV021SL Collected: 08/06/96 Matrix: SOIL <u>Analyzed</u> Result Limit. Units Test Description Nethod_ DRO in solids by AK102. 3550\AK102 08/19/96 3550\AK102 4.4 mg/Kg 'Diesel Range Organics 12 Surrogates, % Recovery 128 50 150 Min: Max: o-Terphenyl 08/14/96 U 18 3550\418.1 mg/Kg TPH in solids by EPA 418.1 Collected: 08/06/96 Sample: 23A 96\$V031SL Matrix: SOIL Nethod___ Result <u>Limit</u> Units <u>Analyzed</u> Test Description 3550\AK102 DRO in solids by AK102. Diesel Range Organics 3550\AK102 18 4.9 mg/Kg 08/19/96 Surrogates, % Recovery 50 150 124 Min: Max: o-Terphenyl 08/14/96 TPH in solids by EPA 418.1 3550\418.1 U 20 mg/Kg Sample: 24A 965V0415L Collected: 08/06/96 Matrix: SOIL Test Description <u>Hethod</u> <u>Result</u> <u>Limit</u> <u>Units</u> Analyzed 3550\AK102 DRO in solids by AK102. Diesel Range Organics 3550\AK102 14 4.6 mg/Kg 08/19/96 Surrogates, % Recovery o-Terphenyl 114 Min: 50 Max: 150 3550\418.1 U 08/14/96 TPH in solids by EPA 418.1 19 mg/Kg Collected: 08/06/96 Matrix: SOIL Sample: 25A 965V0515L Test Description Method <u>Result</u> Limit Units Analyzed DRO in solids by AK102. 3550\AK102 Diesel Range Organics 3550\AK102 160 4.7 mg/Kg 08/19/96 Surrogates, % Recovery o-Terphenyl 125 Min: 50 150 Max: TPH in solids by EPA 418.1 3550\418.1 26 19 08/14/96 mg/Kg

Order # A6-08-030 Analytica Ak.

OGDEN ENVIRONMENTAL & ENERGY TEST METHODOLOGIES

Nethod 418.1 from Methods for Chemical Analysis of Water and Wastes, USEPA-600/4-79-020, March 1983, is used for the analysis of total petroleum hydrocarbons (TPH).

Solids are prepared according to method 3550 (sonication) per USEPA SW-846.

Method AK102 from the State of Alaska, Department of Environmental Conservation (ADEC), Storage Tank Program, Underground Storage Tanks Procedures Manual, 18 AAC 78, as amended through January 31, 1996; is referenced for the analysis of diesel range organics (DRO), calibrating with diesel fuel #1, #2, and kerosene and a quantitation range of C10-C24.

Solids are prepared via sonication per AK102 and U.S. EPA SW-846 method 3550.

l.

F

ы

Í

包 H

M

÷ .

QC Evaluation Summary

Client:	Ogden Environmental and
	Energy Systems
Method:	AK 102
Criteria:	ADEC
AAI Project #:	A6-08-030
Client Project #:	PA/SI 14 Sites
Matrix:	Soil
Number of Samples:	25

QC Parameter	Method Criteria Acceptance	Comments/Actions
Holding Times	⊠Pass ∐Fail	
Initial Calibration	⊠Pass □Fail	
Continuing Calibration	⊠Pass □Fail	
Method Blanks	⊠Pass □Fall	
QC Spike Samples	⊠Pass □Fail	
MS/MSD	⊠Pass ⊡Fail	
Calculations	⊠Pass □Fail	
Surrogate Recoveries	⊠Pass ∏Fail	Surrogates for samples 9 & 10 were diluted out due to high levels of organics native to the samples.
Retention Times	⊠Pass □Fail	

Comments/ Identification	Samples 1, 2, 5, 9 - 11, 16, & 17 exhibit an organic envelope consistent with a middle diesel range distillate, e.g. DF2 or JP-8.
	The DRO result from sample 3 is due to the light ends of a
	residual range hydrocarbon envelopes resembling a lubricating oil.
	Samples 4, 12 - 15, & 21 - 24 contain unknown organic compounds most consistent with biogenic material.
	The DRO results from samples 6 - 8, & 25 appear to be from a combination of a middle diesel range distillate, a lubricating oil, and biomass.

Atentrik (Soude Approved: Reviewed By:

Revision 0

Page 1

The Science of Analysis, The Art of Service Analytica Alaska Inc. 811 W 8th Avenue, Anchorage, AK 99501 • (907) 258-2155 • FAX (907)258-6634

QA/QC:

Data meets guidelines established within the SOP for the Analytica Alaska, Inc. Data Reporting Level 3.

Sould Approved **Reviewed By:** Page 2

Revision 0

The Science of Analysis, The Art of Service Analytica Alaska Inc. 811 W 8th Avenue, Anchorage, AK 99501 • (907) 258-2155 • FAX (907)258-6634

Analytica Alaska, Inc.

QC Evaluation Summary

1.1

10

님

日 Н

 \Box

Client:	Ogden Environmental and
	Energy Systems
Method:	EPA 418.1
Criteria:	ADEC
AAI Project #:	A6-08-030
Client Project #:	PA/SI 14 Sites
Matrix:	Soil
Number of Samples:	25

QC Parameter	Method Criteria Acceptance	Comments/Actions
Holding Times	⊠Pass ⊡Fail	
Initial Calibration	⊠Pass □Fail	
Continuing Calibration	⊠Pass □Fail	
Method Blanks	⊠Pass □Fail	
QC Spike Samples	⊠Pass □Fail	
MS/MSD	⊠Pass □Fail	
Calculations	⊠Pass □Fail	

Comments	Samples 5, 8, 12, 13, 15 - 18, & 20 - 24 are below reporting limits.
	All other samples contain aliphatic hydrocarbons.

QA/QC:

.

Data meets guidelines established within the SOP for the Analytica Alaska, Inc. Data Reporting Level 3.

Atten Grike Bonde Approved: Reviewed By:_ Page 1

Revision 0

The Science of Analysis, The Art of Service Analytica Alaska Inc. 811 W 8th Avenue, Anchorage, AK 99501 • (907) 258-2155 • FAX (907)258-6634

QA Summary

ß

0

0

U

U

1

I

-

1

ĥ

Ŀ

QA/QC Summary Report Work Order: A608030 Client: OGDEN

					B	LANK							
	Test (Class/	Hatrix/	Ref	Spk					Conv	<i>ı</i> .		
Seq. Sample ID	Code	Sub/Dup	Sub	Seq	•	Diluti	ion I	leight	Volume	Facto	or Flag	g Ver	
2 MB 0814		SBP	S		- 4			0.397	1.0	1.0)	PWS	
					Đe	tection			Spe				
Analytes		Re	esult			Limit			Low	High			
<u>Diesel Range Org</u>	anics		Ų			3.97				<u> </u>			
o-Terphenyl		4	<u></u>			0.099	<u>4.961</u>	<u> 91.8</u>	60	120			
					B	LANK							
	Test	Class/	Matrix/	Ref	_					Conv			
Seq. Sample ID	Code	Sub/Dup	Sub	Seq	Seq	Diluti	ion I	Veight	Volume	Facto	or Fla	g Ver	
3 MB 0813	AK102	S B P	S			1.	.0 50	0.989	1.0	1.0)	PWS	
Ameliation		Ð	esult			tection Limit			Spe Low				
Analytes DIESEL RANGE ORG	TANTCO	R.	U			3.92			LOW	nign			
O-TERPHENYL	ANTICO		5,858			0.098	4,903	119		120			
						0.070	4.703			<u></u>			
					S	PIKE							
	Test	Class/	Matrix/	Ref	Spk					Con	<i>ı</i> .		
Seq. Sample ID	Code	Sub/Dup	Sub	Seq	Seq	Dilut	ion (Weight	Volume	Facto	or Fla	g. Ver	
												-	
•			S	13			.0 5	0.374	1.0	1.0	0	PWS	
					•		.0 5	0.374	1.0	1.0	D	PWS	
			S	13					1.0 Spe		0	PWS	
22 K608030-13A Analytes	AK102	SKH R	S Ui esult	13 nspike Resul	d De	1. etection Limit	Spike Value	Rec-	Spe Low	cs High	0	PWS	
22 K608030-13A Analytes Diesel Range Org	AK102	S K H R	S Un esult 60,56	13 nspike Resul 5.5	d De .t .9	1. etection Limit <u>4.93</u>	Spike Value 61.57	Rec- overy 	Spe Low 50	cs High) 	PWS	
Analytes	AK102	S K H R	S Ui esult	13 nspike Resul	d De .t .9	1. etection Limit	Spike Value 61.57	Rec- overy 	Spe Low 50	cs High) 		
22 K608030-13A Analytes <u>Diesel Range Orc</u>	AK102	S K H R	S Un esult 60,56	13 nspike Resul 5.5	d De t 2 2	1. tection Limit <u>4.93</u> 0.123	Spike Value <u>61.57</u> <u>6.157</u>	Rec- overy 	Spe Low 50	cs High 			
22 K608030-13A Analytes Diesel Range Org	AK102	S K H	S Li esult <u>60,56</u> 5,702	13 nspike Resul <u>5.5</u> 5.37	xd De t 19 12 2 5	1. etection Limit <u>4.93</u>	Spike Value <u>61.57</u> <u>6.157</u>	Rec- overy 	Spe Low 50	cs High 			
22 K608030-13A Analytes <u>Diesel Range Orc</u> <u>o-Terphenyl</u>	AK102	S K H	S u esult 60,56 5,702 Matrix/	13 napike Resul 5.5 5.37 Ref	xd De t 19 12 2 5	1 tection Limit <u>4.93</u> 0.123 PIKE DUP	Spike Value 61.57 6.157 LICATE	Rec- overy 	Spe Low 50 50	cs High <u>150</u> Con			
22 K608030-13A Analytes <u>Diesel Range Orc</u> <u>o-Terphenyl</u> Seq. Sample ID	AK102 ganics Test Code	S K H R(Class/	S esult 60,56 5,702 Matrix/ Sub	13 nspike Resul 5.5 5.37 Ref Seq	d De t 2 2 5 Spk	1. tection Limit <u>4.93</u> 0.123 PIKE DUP Dilut	Spike Value 61.57 6.157 LICATE	Rec- overy 89,3 92.6	Spe Low 50 50	cs High <u>150</u> Con	v. pr Fla		
22 K608030-13A Analytes <u>Diesel Range Orc</u> <u>o-Terphenyl</u> Seq. Sample ID	AK102 ganics Test Code	SKH Ru Class/ Sub/Dup	S esult 60,56 5,702 Matrix/ Sub	13 nspike Resul 5.5 5.37 Ref Seq	d De t <u>9</u> <u>2</u> Spk Seq	1. tection Limit <u>4.93</u> 0.123 PIKE DUP Dilut	Spike Value 61.57 6.157 LICATE	Rec- overy 	Spe Low 50 50 Volume	cs High <u>150</u> 150 Con Fact	v. pr Fla	g Ver	
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A	AK102 ganics Test Code	SKH Re Class/ Sub/Dup SKHD	S eault 60,56 5.702 Matrix/ Sub S	13 nspike Resul <u>5.5</u> 5.37 Ref Seq 13 nspike	d De t 2 2 5 5 5 5 8 5 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 tection Limit <u>4.93</u> <u>0.123</u> PIKE DUP Dilut 1 stection	Spike Value 61.57 6.157 LICATE ion .0 5 Spike	Rec- overy 89.3 92.6 Weight 0.150 Rec-	Spe Low 	cs High 150 150 Con Fact 1.1	v. pr Fla D PD Spe	g Ver PWS cs Refere	mce
22 K608030-13A Analytes <u>Diesel Range Orc</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes	AK102 ganics Test Code AK102	SKH Ro Class/ Sub/Dup SKHD	S esult 60,56 5,702 Matrix/ Sub S U esult	13 nspike Resul 5.5 5.37 Ref Seq 13 nspike Resul	d De t 2 2 5 5 5 5 8 5 8 4 2 2 2 2 2 5 5 8 4 5 6 4 5 6 5 6 7 5 5 8 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 5 5	1 tection Limit <u>4.93</u> <u>0.123</u> PIKE DUP Dilut 1 tection Limit	Spike Value <u>61.57</u> <u>6.157</u> LICATE ion .0 5 Spike Value	Rec- overy 	Spe Low <u>50</u> 50 Volume 1.0 Spe Low	cs High <u>150</u> Con Fact 1. cs R High	v. or Fla D PD Spe Low H	g Ver PWS cs Refere igh Recove	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Org</u>	AK102 ganics Test Code AK102	S K H R CLass/ Sub/Dup S K H D R	S esult 60.56 5.702 Matrix/ Sub S U esult 56.30	13 nspike Resul 5.5 5.37 Ref Seq 13 nspike Resul 5.5	d De t 2 2 Spk Seq 22 d De t 22	1 tection Limit <u>4.93</u> <u>0.123</u> PIKE DUP Dilut 1 etection Limit <u>4.95</u>	Spike Value 61.57 6.157 LICATE ion .0 5 Spike Value 61.85	Rec- overy 	Spe Low <u>50</u> 50 Volume 1.0 Spe Low 50	cs High 150 	v. or Fla D PD Spe Low H	g Ver PWS cs Refere igh Recove 20 89.3	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Orc</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes	AK102 ganics Test Code AK102	S K H R(CLass/ Sub/Dup S K H D R	S esult 60,56 5,702 Matrix/ Sub S U esult	13 nspike Resul 5.5 5.37 Ref Seq 13 nspike Resul	d De t 2 2 Spk Seq 22 d De t 22	1 tection Limit <u>4.93</u> <u>0.123</u> PIKE DUP Dilut 1 tection Limit	Spike Value 61.57 6.157 LICATE ion .0 5 Spike Value 61.85	Rec- overy 	Spe Low <u>50</u> 50 Volume 1.0 Spe Low 50	cs High 150 	v. or Fla D PD Spe Low H	g Ver PWS cs Refere igh Recove	mce try RPD
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Org</u>	AK102 ganics Test Code AK102	S K H R(CLass/ Sub/Dup S K H D R	S esult 60.56 5.702 Matrix/ Sub S U esult 56.30	13 nspike Resul 5.5 5.37 Ref Seq 13 nspike Resul 5.5	d De t 2 3 5 5 5 8 4 2 2 4 2 2 2 2	1. tection Limit <u>4.93</u> <u>0.123</u> DILUT DILUT 1 etection Limit <u>4.95</u> <u>0.124</u>	Spike Value 61.57 6.157 LICATE ion .0 5 Spike Value 61.85	Rec- overy 	Spe Low <u>50</u> 50 Volume 1.0 Spe Low 50	cs High 150 	v. or Fla D PD Spe Low H	g Ver PWS cs Refere igh Recove 20 89.3	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Org</u>	AK102 manics Test Code AK102 ganics	S K H R(Class/ Sub/Dup S K H D R(S esult 60,56 5.702 Matrix/ Sub S U esult 56.30 5.798	13 nspike Resul 5.5 5.37 Ref Seq 13 nspike Resul 5.5 5.37	d De t 2 2 3 5 5 5 8 4 2 2 2 2 2 2 2 2 2 2 2 3 5 5 8 4 5 2 2 2 2 3 5 5 8 5 8 4 5 2 2 2 3 5 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	1 tection Limit <u>4.93</u> <u>0.123</u> PIKE DUP Dilut 1 etection Limit <u>4.95</u>	Spike Value 61.57 6.157 LICATE ion .0 5 Spike Value 61.85	Rec- overy 	Spe Low <u>50</u> 50 Volume 1.0 Spe Low 50	cs High 150 	v. or Fla D PD Spe Low H	g Ver PWS cs Refere igh Recove 20 89.3	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Orc</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Orc</u> <u>o-Terphenyl</u>	AK102 ganics Test Code AK102 ganics Test	S K H R(Class/ Sub/Dup S K H D R(Class/	S esult 60,56 5,702 Matrix/ Sub S U esult 56,30 5,798	13 nspike Resul 5.5 5.37 Ref Seq 13 nspike Resul 5.5 5.37 Ref	d De t 2 2 5 5 5 5 8 2 2 2 2 2 2 2 2 5 5 5 5 5	1. tection Limit 4.93 0.123 PIKE DUP Dilut 1 tection Limit 4.95 0.124 SPIKE	Spike Value <u>61.57</u> <u>6.157</u> LICATE ion .0 5 Spike Value <u>61.85</u> <u>6.185</u>	Rec- overy 	Spe Low <u>50</u> <u>50</u> Volume 1.0 Spe Low <u>50</u> <u>50</u>	cs High 150 	v. or Fla 0 PD Spe Low H	g Ver PWS cs Refere igh Recove 20 89.3 20 92.6	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID	AK102: ganics Test Code AK102 ganics Test Code	SKH Rd Class/ Sub/Dup SKHD Rd Class/ Sub/Dup	S esult 60,56 5,702 Matrix/ Sub S Uu esult 5,798 Matrix/ Sub	13 nspike Resul <u>5.5</u> 5.37 Ref Seq 13 nspike Resul <u>5.5</u> 5.37 Ref Seq	d De t 2 2 5 5 5 5 8 2 2 2 2 2 2 2 2 5 5 5 5 5	1. tection Limit 4.93 0.123 0.123 PIKE DUP Dilut 1 etection Limit 4.95 0.124 0.124 Dilut	Spike Value <u>61.57</u> <u>6.157</u> LICATE ion .0 5 Spike Value <u>61.85</u> <u>6.185</u>	Rec- overy 	Spe Low 50 50 50 Volume 1.0 Spe Low 50 50 50 50 50 50 50 50 50 50 50 50	cs High 150 	v. or Fla 0 PD Spe Low H	g Ver PWS cs Refere 20 89.3 20 92.6	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID	AK102: ganics Test Code AK102 ganics Test Code	SKH Rd Class/ Sub/Dup SKHD Rd Class/ Sub/Dup	S esult 60,56 5,702 Matrix/ Sub S U esult 56,30 5,798	13 nspike Resul 5.5 5.37 Ref Seq 13 nspike Resul 5.5 5.37 Ref	d De t 2 2 5 5 5 5 8 2 2 2 2 2 2 2 2 5 5 5 5 5	1. tection Limit 4.93 0.123 0.123 PIKE DUP Dilut 1 etection Limit 4.95 0.124 0.124 Dilut	Spike Value <u>61.57</u> <u>6.157</u> LICATE ion .0 5 Spike Value <u>61.85</u> <u>6.185</u>	Rec- overy 	Spe Low <u>50</u> <u>50</u> Volume 1.0 Spe Low <u>50</u> <u>50</u>	cs High 150 	v. or Fla 0 PD Spe Low H	g Ver PWS cs Refere igh Recove 20 89.3 20 92.6	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID	AK102: ganics Test Code AK102 ganics Test Code	SKH Rd Class/ Sub/Dup SKHD Rd Class/ Sub/Dup	S esult 60,56 5,702 Matrix/ Sub 5.798 Matrix/ Sub S	13 nspike Resul <u>5,5</u> 5,37 Ref Seq 13 nspike Resul <u>5,5</u> <u>5,37</u> Ref Seq 6	d De t 2 3 5pk Seq 22 d De t 2 2 3 5pk Seq 5pk Seq	1. etection Limit <u>4.93</u> <u>0.123</u> <u>0.123</u> Dilut Dilut 1 etection Limit <u>4.95</u> <u>0.124</u> <u>0.124</u> <u>0.124</u> <u>0.124</u> <u>0.124</u> <u>0.124</u> <u>1</u>	Spike Value <u>61.57</u> <u>6.157</u> LICATE ion .0 5 Spike Value <u>61.85</u> <u>6.185</u> ion .0 5	Rec- overy 	Spe Low <u>50</u> <u>50</u> Volume 1.0 Spe Low <u>50</u> <u>50</u> Volume 1.0	cs High <u>150</u> <u>150</u> Fact 1.1 cs R High <u>150</u> <u>150</u> Con Fact 1.	v. or Fla 0 PD Spe Low H	g Ver PWS cs Refere 20 89.3 20 92.6	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID	AK102: manics Test Code AK102 ganics Test Code	S K H Ru Class/ Sub/Dup S K H D Ru Class/ Sub/Dup S K M	S esult 60,56 5,702 Matrix/ Sub 5.798 Matrix/ Sub S	13 nspike Resul <u>5,5</u> 5,37 Ref Seq 13 nspike Resul <u>5,5</u> <u>5,37</u> Ref Seq 6	d De t 2 3 5 5 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5	1. tection Limit 4.93 0.123 0.123 PIKE DUP Dilut 1 etection Limit 4.95 0.124 0.124 Dilut	Spike Value <u>61.57</u> <u>6.157</u> LICATE ion .0 5 <u>Spike</u> <u>61.85</u> <u>6.185</u> ion .0 5 Spike	Rec- overy 	Spe Low <u>50</u> 50 Volume 1.0 Spe 50 50 Volume 1.0	cs High <u>150</u> <u>150</u> Fact 1. cs R High <u>150</u> <u>150</u> Con Fact 1.	v. or Fla 0 PD Spe Low H	g Ver PWS cs Refere 20 89.3 20 92.6	ence ery RPD
22 K608030-13A Analytes <u>Diesel Range Orco</u> <u>o-Terphenyl</u> Seq. Sample ID 23 K608030-13A Analytes <u>Diesel Range Orco</u> <u>o-Terphenyl</u> Seq. Sample ID 30 K608030-21K	AK102: ganics Test Code AK102 ganics Test Code AK102	SKH Ru Class/ Sub/Dup SKHD Ru Class/ Sub/Dup SKM	S esult <u>60,56</u> <u>5,702</u> Matrix/ Sub <u>5,798</u> Matrix/ Sub S U esult	13 napike Resul 5.5 5.37 Ref Seq 13 nspike Resul 5.5 5.37 Ref Seq 6 mspike Resul	d De t 2 3 5 5 5 5 2 2 5 5 2 5 5 2 5 5 5 5 5 5	1 etection Limit <u>4.93</u> <u>0.123</u> PIKE DUP Dilut 1 etection Limit <u>4.95</u> <u>0.124</u> Dilut 1 SPIKE Dilut 1 etection Limit	Spike Value <u>61.57</u> <u>6.157</u> LICATE ion .0 5 Spike Value <u>61.85</u> <u>6.185</u> ion .0 5 Spike Value	Rec- overy 	Spe Low <u>50</u> 50 Volume 1.0 Spe Low 50 50 1.0 Spe Low	cs High <u>150</u> <u>150</u> Fact 1. Con <u>150</u> <u>150</u> Con Fact 1. Con Fact High	V. or Fla D Spe Low H v. or Fla O	g Ver PWS cs Refere 20 89.3 20 92.6	ence ery RPD <u>1.18</u>

The Science of Analysis, The Art of Service Analytica Alaska Inc. 811 W 8th Avenue, Anchorage, AK 99501 · (907) 258-2155 · FAX (907)258-8634

QA/QC Summary Report Work Order: A608030 Client: OGDEN

08/27/96 14:17:10

O-TERPHENYL

SPIKE DUPLICATE Conv. Test Class/ Matrix/ Ref Spk Volume Factor Flag Ver Dilution Weight Code Sub/Dup Sub Seq Seq Seq. Sample ID 1.0 50.479 1.0 1.0 PWS 31 K608030-21K AK102S K H D 6 30 S Unspiked Detection Spike Rec-Specs **RPD Specs** Reference Low High Low High Recovery RPD V Limit Value overy Analytes Result Result <u>50 150 20 93.3 12.8 Y</u> 4.54 56.80 82.1 DIESEL RANGE ORGANICS 69,38 22.77 7.167 0.114 5.680 111 50 150 20 113 1.79 Y 6,328 O-TERPHENYL SPIKE Matrix/ Ref Spk Conv. Test Class/ Dilution Weight Volume Factor Flag Ver Sub/Dup Sub Seq Seq Seq. Sample ID Code 1.0 PUS LCS 0814 2 1.0 50.971 1.0 τ. AK1025 K S S Unspiked Detection Spike Rec-Specs ۷ Low High Result Result Limit Value overy Analytes 49.05 60 120 102 Y 49.94 3.92 U Diesel Range Organics <u>50 150</u> 4.553 4.905 98.9 4.852 0.098 o-Terphenyl SPIKE DUPLICATE Test Class/ Matrix/ Ref Spk Conv. Seq Seq Sub/Dup Sub Dilution Weight Volume Factor Flag Ver Code Seq. Sample ID 1.0 50.901 1.0 **PWS** 2 3 1.0 4 LCSD 0814 AK102S K S D S **RPD Specs** Reference Unspiked Detection Spike Rec-Specs Limit Value overy Low High Low High Recovery RPD V Result Result Analytes <u>20 102 19.1 Y</u> 3.93 49.11 84.2 60 120 41.34 U Diesel Range Organics 4.553 0.098 4.911 93.2 50 150 <u>20 98.9 5.93 Y</u> 4.578 o-Terphenyl SPIKE Test Class/ Hatrix/ Ref Spk Conv. Dilution Weight Volume Factor Flag. Ver Seq. Sample ID Code Sub/Dup Sub Seq Seq AK102S K S 3 1.0 50.156 1.0 1.0 PUS 4 LCS 0813 S Unspiked Detection Spike Rec-Specs Value overy ۷ Result Limit Low High Analytes Result 3,99 49.84 93.7 60 120 DIESEL RANGE ORGANICS 46,71 _U __ Y O-TERPHENYL 6,963 6,457 0,100 4,984 140 50 150 Y SPIKE DUPLICATE Test Class/ Hatrix/ Ref Spk Conv. Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver LCSD 0813 3 4 1.0 50.652 1.0 1.0 PUS 5 AK102S K S D S Unspiked Detection Spike Rec-**RPD Specs** Reference Speca Analytes Result Result Limit Value overy Low High Low High Recovery RPD V DIESEL RANGE ORGANICS 44.15 U____ <u>3.95 49.36 89.4 60 120 20 93.7 4.70 Y</u>

<u>6.951</u> <u>6.457</u> <u>0.099</u> <u>4.936</u> <u>141</u> <u>50</u> <u>150</u> <u>20</u> <u>140</u> <u>0.712</u> <u>Y</u>

D

0

Q

L

B

100

Ы

Ł

L

Ţ

QA/QC Summary Report Work Order: A608030 Client: OGDEN

				CONTROL						
	Test Class/		Ref Spk				Conv.			
Seq. Sample ID	Code Sub/Du	•	Seq Seq	Dilution	-	Volume		Flag	Ver	
1 CCVSD1 0816	AK102S T I	S		1.0	1.0	1.0	1.0		PWS	
		Theo	retical D	etection S	ike Rec-	Spec	\$			
Analytes		Result	Value	Limit Va	lue overy	Low	High			١
Diesel Range Org	anics	447.85	500	40.00 50	.006	75	125			
<u>o-Terphenyl</u>	·	<u> </u>		1.000 50	000 0	50	150			· `
				CONTROL						
	Test Class/	Hatrix/	Ref Spk				Conv.			
Seq. Sample ID	Code Sub/Du	p Sub	Seq Seq	Dilutio	Weight	Volume	Factor	Flag	Ver	
11 CCVSD2 0816	AK102S T I	S		1.0	1.0	1.0	1.0		PWS	
		Theo	retical D	Detection S	ike Rec-	Spec	5			
Analytes		Result	Value	-	lue overy	-				١
Diesel Range Org	anics	449.35	500		. <u></u>		125			
o-Terphenyl	۰	U			000 0		150			`
	Test Class/	Matrix/	Ref Spk	CONTROL			Conv.			
Seq. Sample ID	Code Sub/Du	-	Seq Seq	Dilutio	. Weight	Volume		Fiad	Ver	
18 CCVSD3 0816	AK102S T I	S S	bed bed	1.0	1.0	1.0	1.0	i tag	PWS	
		Theo	retical E	Detection S	oike Rec-	Spec	\$			
						•				_
Analytes		Result	Value	Limit V	lue overy	Low	High			1
Diesel Range Org		448.43	Value 500	Limit V 40.00 50	lue overy	Low 75	High 125			3
•				Limit V	lue overy	Low 75	High			
Diesel Range Org	<u>anics</u>	<u>448.43</u> U	500	Limit V 40.00 50	lue overy	Low 75	High 125			3
<u>Diesel Range Org</u> <u>o-Terphenyl</u>	Test Class/	<u>448.43</u> <u>U</u> Matrix/		Limit V 40.00 50 1.000 50 CONTROL	alue overy).00 <u>89.7</u> .000 <u>0</u>	Low 	High 125 150 Conv.		_	3
<u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID	Test Class/ Code Sub/Du	<u>448.43</u> <u>U</u> Matrix/ up Sub	500	Limit V 40.00 50 1.000 50 CONTROL Dilutio	alue overy 0.00 <u>89.7</u> 000 <u>0</u>	Low 	High <u>125</u> <u>150</u> Conv. Factor		Ver	3
<u>Diesel Range Org</u> <u>o-Terphenyl</u>	Test Class/	<u>448.43</u> <u>U</u> Matrix/		Limit V 40.00 50 1.000 50 CONTROL	alue overy).00 <u>89.7</u> .000 <u>0</u>	Low 	High 125 150 Conv.		_	3
<u>Diesel Range Org</u> <u>o-Terphenyl</u> Seq. Sample ID	Test Class/ Code Sub/Du	448.43 U Natrix/ up Sub S	500 Ref Spk Seq Seq	Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0	alue overy 0.00 <u>89.7</u> 000 <u>0</u>	Low 	High <u>125</u> <u>150</u> Conv. Factor 1.0		Ver	3
Diesel Range Org o-Terphenyl Seq. Sample ID	Test Class/ Code Sub/Du	448.43 U Natrix/ up Sub S	500 Ref Spk Seq Seq	Limit Vi 40.00 50 1.000 50 CONTROL Dilutio 1.0 Detection S	alue overy 0.00 <u>89.7</u> 000 <u>0</u> 0 Weight 1.0	Low 75 50 Volume 1.0	High <u>125</u> <u>150</u> Conv. Factor 1.0		Ver	3
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org	Test Class/ Code Sub/Du AK102S T I	448.43 U Matrix/ Up Sub S S	500 Ref Spk Seq Seq	Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit V <u>40.00</u> <u>50</u>	alue overy 0.00 <u>89.7</u> 000 0 Weight 1.0 Dike Rec-	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u>		Ver	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes	Test Class/ Code Sub/Du AK102S T I	448.43 U Matrix/ Up Sub S S Theo Result	500 Ref Spk Seq Seq Dretical I Value	Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit V <u>40.00</u> <u>50</u>	alue overy 0.00 <u>89.7</u> 000 <u>0</u> 0 Weight 1.0 0 ike Rec- alue overy	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High		Ver PWS	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org	Test Class/ Code Sub/Du AK102S T I	448.43 U Natrix/ p Sub S Theo Result 405.84	500 Ref Spk Seq Seq Dretical I Value	Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit V <u>40.00</u> <u>50</u>	alue overy 0.00 <u>89.7</u> 0.000 <u>0</u> 0.000 <u>0</u> 0.00 Weight 1.0 0.00 Rec- alue overy 0.00 <u>81.2</u>	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u>		Ver PWS	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org	Test Class/ Code Sub/Du AK102S T I	448.43 U Natrix/ p Sub S Theo Result 405.84	500 Ref Spk Seq Seq Dretical I Value	Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u>	alue overy 0.00 <u>89.7</u> 0.000 <u>0</u> 0.000 <u>0</u> 0.00 Weight 1.0 0.00 Rec- alue overy 0.00 <u>81.2</u>	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u>		Ver PWS	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org o-Terphenyl	Test Class/ Code Sub/Du AK102S T I	448.43 U Natrix/ p Sub S Theo Result 405.84 U Hatrix/	500 Ref Spk Seq Seq pretical (Value 500	Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit V <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u>	alue overy 0.00 89.7 000 0 Weight 1.0 0.00 Rec- alue overy 0.00 81.2 0.00 0	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u> <u>150</u> Conv.	Flag	Ver PWS	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org o-Terphenyl Seq. Sample ID	Test Class/ Code Sub/Du AK102S T I menics	448.43 U Natrix/ p Sub S Theo Result 405.84 U Hatrix/	SOO Ref Spk Seq Seq Diretical I Value SOO Ref Spk	Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL	alue overy 0.00 89.7 000 0 Weight 1.0 0.00 Rec- alue overy 0.00 81.2 0.00 0	Low <u>75</u> <u>50</u> Volume 1.0 Spec Low <u>75</u> <u>50</u>	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u> <u>150</u> Conv.	Flag	Ver PWS	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org o-Terphenyl Seq. Sample ID	Test Class/ Code Sub/Du AK102S T I menics Test Class/ Code Sub/Du	448.43 U Natrix/ up Sub S Theo Result 405.84 U Hatrix/ up Sub S	500 Ref Spk Seq Seq Dretical (Value 500 Ref Spk Seq Seq	Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection Si Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0	alue overy 0.00 89.7 000 0 Weight 1.0 000 81.2 000 0 1.0 Weight 1.0	Low 75 50 Volume 1.0 Spec Low 75 50 Volume 1.0	High <u>125</u> <u>150</u> Conv. Factor 1.0 S High <u>125</u> <u>150</u> Conv. Factor 1.0	Flag	Ver PWS	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org o-Terphenyl Seq. Sample ID	Test Class/ Code Sub/Du AK102S T I menics Test Class/ Code Sub/Du	448.43 U Natrix/ up Sub S Theo Result 405.84 U Hatrix/ up Sub S	500 Ref Spk Seq Seq Dretical (Value 500 Ref Spk Seq Seq	Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilutio 1.0 Detection S	alue overy 0.00 <u>89.7</u> 000 0 Weight 1.0 0 Ke Rec- alue overy 0.00 <u>81.2</u> 000 0 0 00	Low 75 50 Volume 1.0 Spec 50 Volume 1.0	High <u>125</u> <u>150</u> Conv. Factor 1.0 S High <u>125</u> <u>150</u> Conv. Factor 1.0 S	Flag	Ver PWS	
Diesel Range Org o-Terphenyl Seq. Sample ID 24 CCVSD4 0816 Analytes Diesel Range Org o-Terphenyl Seq. Sample ID 25 CCVSD3 0823	Test Class/ Code Sub/Du AK102S T I Manics Test Class/ Code Sub/Du AK102S T I	448.43 U Natrix/ p Sub S Theo Result 405.84 U Hatrix/ up Sub S Theo	500 Ref Spk Seq Seq Dretical I Value 500 Ref Spk Seq Seq	Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.00 Detection S Limit Vi <u>40.00</u> <u>50</u> <u>1.000</u> <u>50</u> CONTROL Dilution 1.0 Detection S Limit Vi	alue overy 0.00 <u>89.7</u> 000 0 Weight 1.0 0ike Rec- alue overy 0.00 <u>81.2</u> 0.00 <u>0</u> 1.0 weight 1.0	Low 75 50 Volume 1.0 Spec 50 Volume 1.0 Spec	High <u>125</u> <u>150</u> Conv. Factor 1.0 S High <u>125</u> <u>150</u> Conv. Factor 1.0 S	Flag	Ver PWS	

The Science of Analysis, The Art of Service Analytica Alaska Inc. 811 W 8th Avenue, Anchorage, AK 99501 · (907) 258-2155 · FAX (907)258-6634

 \mathcal{L}

QA/QC Summary Report Work Order: A608030 Client: OGDEN

					CONTROL							
	Test Cl	/ •	Hatrix/	Ref Spk	CONTROL				Conv.			
Com Complex TD		ass/ r ub/Dup	Sub	Seq Seq	Dilu	tion (Weight	Volume		Flag	Ver	
Seq. Sample ID 26 CCVSD4 0823	AK102S	• •	S	sey sey		1.0	1.0	1.0	1.0	, tug	PWS	
20 ((VSD4 0025	ANIUES		3			1.0	1.0	1.0				
			Theo	oretical [etection	Spike	Rec-	Spec	S			
Analytes		Ret	sult	Value	Limit	•	overy	Low				v
Diesel Range Org	anics			500.00			96.8		-			<u> </u>
o-Terphenyl			U		1,000							<u> </u>
<u> </u>												
					CONTROL.							
	Test Cl	ass/ I	Matrix/	Ref Spk					Conv.			
Seq. Sample ID	Code S	ub/Dup	Sub	Seq Seq	Ðilu	tion	Weight	Volume	Factor	Flag	Ver	
1 CCVSD1 0815	AK102S	TI	S			1.0	1.0	1.0	1.0		PWS	
			The	oretical I	Detection	Spike	Rec-	Spec	5			
Analytes		Re	sult	Value	Limit	Value	overy	Low	High			v
Diesel Range Org	anics	47	1.65	500	40.00	500.00	<u>94.3</u>		125			<u> </u>
o-Terphenyl			<u> </u>		1.000	50,000	0	<u> </u>	150			<u> </u>
					CONTROL							
	Test Cl	ass/ I	Matrix/	Ref Spk					Conv.			
Seq. Sample ID	Code S	ub/Dup	Sub	Seq Seq	Dilu	tion	Weight	Volume	Factor	Flag	Ver	
13 CCVSD2 0815	AK102S	TI	S			1.0	1.0	1.0	1.0		PWS	
			The	oretical	Detection	Spike	Rec-	Spec	8			
Analytes		Re	The sult	oretical Value	Detection Limit	•	Rec-	Spec Low				v
Analytes DIESEL RANGE ORG	GANICS				Limit	Value		Low				v Y
	GANICS		sult	Value	Limit	Value 500.00	overy 93.0	Low 75	High 125			
DIESEL RANGE OR	GANICS		sult 4.85	Value	Limit 40.00	Value 500.00	overy 93.0	Low 75	High 125			<u> </u>
DIESEL RANGE OR	GANICS		sult 4.85	Value	Limit 40.00	Value 500.00	overy 93.0	Low 75	High 125			<u> </u>
DIESEL RANGE OR	GANICS Test Cl	46	sult 4.85	Value 500	Limit 40.00	Value 500.00	overy 93.0	Low 75	High 125 150 Conv.			<u> </u>
DIESEL RANGE OR	Test Cl	46	sult <u>4.85</u> U	Value 500	Limit 40.00 1.000 CONTROL Dilu	Value 500.00 50.000	very	Low 	High 125 150 Conv. Factor		Ver	<u> </u>
DIESEL RANGE ORG	Test Cl	46	sult <u>4.85</u> U Matrix/	Value 500	Limit 40.00 1.000 CONTROL Dilu	Value 500.00 50.000	overy 93.0 0	Low 75 50	High 125 150 Conv.		Ver PWS	<u> </u>
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID	Test Cl Code S	46	sult <u>4.85</u> U Matrix/ Sub S	Value 500 Ref Spk Seq Seq	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu	Value 500.00 50.000	overy 93.0 0 Weight 1.0	Low 	High 125 150 Conv. Factor			<u> </u>
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815	Test Cl Code S	46	sult <u>4.85</u> U Matrix/ Sub S The	Value 500 _ Ref Spk Seq Seq	Limit 40.00 1.000 CONTROL Dilu Detection	Value 500.00 50.000	e overy 93.0 93.0 9.0 0 9.0 0 9.0 0 9.0 0 9.0 0 0 9.0 0 0 9.0 0 0 0	Low 	High 125 Conv. Factor 1.0			<u> </u>
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes	Test Cl Code 5 AK102S	.ass/ sub/Dup T I Re	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult	Value 500 Ref Spk Seq Seq oretical Value	Limit 40.00 _ 1.000 _ CONTROL Dilu Detection Limit	Value 500.00 50.000	Weight 1.0 Rec- e overy	Low 75 50 Volume 1.0 Spec	High <u>125</u> Conv. Factor 1.0	Flag	PWS	· ¥ · ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG	Test Cl Code 5 AK102S	.ass/ sub/Dup T I Re	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u>	Value 500 _ Ref Spk Seq Seq	Limit 40.00 1.000 CONTROL Dilu Detection Limit 40.00	Value 500.000 50.000 1100 1.0 Spike Value 500.000	Weight 1.0 Rec- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u>	Flag	PWS	· ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes	Test Cl Code 5 AK102S	.ass/ sub/Dup T I Re	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult	Value 500 Ref Spk Seq Seq oretical Value	Limit 40.00 1.000 CONTROL Dilu Detection Limit 40.00	Value 500.00 50.000	Weight 1.0 Rec- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> Conv. Factor 1.0	Flag	PWS	· ¥ · ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG	Test Cl Code 5 AK102S	.ass/ sub/Dup T I Re	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u>	Value 500 Ref Spk Seq Seq oretical Value	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u>	Value 500.000 50.000 1100 1.0 Spike Value 500.000	Weight 1.0 Rec- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u>	Flag	PWS	· ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG	Test Cl Code S AK102S SANICS	46 .ass/ Gub/Dup T I 40	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u> <u>U</u>	Value 500 Ref Spk Seq Seq oretical Value 500	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u>	Value 500.000 50.000 1100 1.0 Spike Value 500.000	Weight 1.0 Rec- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 a High <u>125</u> <u>150</u>	Flag 	PWS	· ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL	Test CL Code S AK102S GANICS Test CL	46 .ass/ 1 Sub/Dup T I 40 40	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u> <u>U</u> Matrix/	Value <u>500</u> Ref Spk Seq Seq oretical Value <u>500</u> Ref Spk	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL	Value 500.00 50.000 1.0 50.000 50.000 50.000	overy 93.0 93.0 0 Weight 1.0 Rec- overy 80.7 0	Low 75 50 Volume 1.0 Spec Low 75 50	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u> <u>150</u> Conv.	Flag	PWS 	· ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID	Test Cl Code 5 AK102S SANICS Test Cl Code 5	46 sub/Dup T I 40 40 40 Lass/ Sub/Dup	Antrix/ Sub S The suit 3.63 U Hatrix/ Sub	Value 500 Ref Spk Seq Seq oretical Value 500	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu	Value 500.00 50.000 100 1.0 50.000 50.000 50.000	very 93.0 93.0 0 Weight 1.0 Rec- overy 80.7 0 0 0	Low 75 50 Volume 1.0 Spec Low 75 50 Volume	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u> <u>150</u> Conv. Factor	Flag	PWS	· ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL	Test Cl Code 5 AK102S SANICS Test Cl Code 5	46 sub/Dup T I 40 40 40 Lass/ Sub/Dup	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u> <u>U</u> Matrix/	Value <u>500</u> Ref Spk Seq Seq oretical Value <u>500</u> Ref Spk	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu	Value 500.00 50.000 1.0 50.000 50.000 50.000	overy 93.0 93.0 0 Weight 1.0 Rec- overy 80.7 0	Low 75 50 Volume 1.0 Spec Low 75 50	High <u>125</u> <u>150</u> Conv. Factor 1.0 s High <u>125</u> <u>150</u> Conv.	Flag	PWS 	· ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID	Test Cl Code 5 AK102S SANICS Test Cl Code 5	46 sub/Dup T I 40 40 40 Lass/ Sub/Dup	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u> <u>U</u> Matrix/ Sub S	Value 500 Ref Spk Seq Seq oretical Value 500 Ref Spk Seq Seq	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu	Value 500.00 50.000 ition 1.0 Spike Value 500.00 50.000 ution 1.0	overy 93.0 93.0 0 Weight 1.0 Rec- overy 80.7 0 Weight 1.0	Low <u>75</u> <u>50</u> Volume 1.0 Spec Low <u>75</u> <u>50</u> Volume 1.0	High <u>125</u> <u>150</u> Conv. Factor 1.0 S High <u>125</u> <u>150</u> Conv. Factor 1.0	Flag	PWS	· ¥
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 32 CCVSD4 0815	Test Cl Code 5 AK102S SANICS Test Cl Code 5	46 Sub/Dup T I 40 Lass/ Sub/Dup T I	sult 4.85 U Matrix/ Sub S The sult 3.63 U Matrix/ Sub S The	Value <u>500</u> Ref Spk Seq Seq oretical Value <u>500</u> Ref Spk Seq Seq oretical	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection	Value <u>500.00</u> 50.000 tion 1.0 Spike Value <u>500.00</u> 50.000 tion 1.0 Spike Solow	overy 93.0 93.0 0 Weight 1.0 Rec- overy 80.7 0 0 0 Weight 1.0 Rec- 0 80.7 0 80.7 0 0 0 Weight 1.0 Rec- Rec-	Low <u>75</u> <u>50</u> Volume 1.0 Spec Low <u>75</u> <u>50</u> Volume 1.0 Spec	High <u>125</u> <u>150</u> Conv. Factor 1.0 a High <u>125</u> <u>150</u> Conv. Factor 1.0 a	Flag	PWS	Y Y Y
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 32 CCVSD4 0815 Analytes	Test Cl Code S AK102S SANICS Test Cl Code S AK102S	46 Sub/Dup T I 40 Lass/ Sub/Dup T I Re	sult 4.85 U Matrix/ Sub S The sult 3.63 U Matrix/ Sub S The sult	Value <u>500</u> Ref Spk Seq Seq oretical Value <u>500</u> Ref Spk Seq Seq oretical Value	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit	Value 500.00 50.000 110 1.0 Spike 500.000 50.000 110 1.0 Spike Value	Weight 1.0 Rec- overy 80.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Low 75 50 Volume 1.0 Spec Low 75 50 Volume 1.0 Spec Low	High <u>125</u> <u>150</u> Conv. Factor 1.0 High <u>125</u> <u>150</u> Conv. Factor 1.0 S High	Flag	PWS Ver PWS	тарана таран
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 32 CCVSD4 0815 Analytes DIESEL RANGE ORG	Test Cl Code S AK102S SANICS Test Cl Code S AK102S	46 Sub/Dup T I 40 Lass/ Sub/Dup T I Re	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u> <u>U</u> Matrix/ Sub S The sult <u>4.85</u>	Value <u>500</u> Ref Spk Seq Seq oretical Value <u>500</u> Ref Spk Seq Seq oretical Value <u>500</u>	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u>	Value <u>500.00</u> 50.000 50.000 1.0 Spike <u>500.000</u> 1.0 Spike <u>500.000</u> 1.0 Spike <u>500.000</u>	overy 93.0 93.0 0 Weight 1.0 Rec- overy 80.7 0 Weight 1.0 Rec- overy 9.00 0 Weight 1.0 Rec- overy 0.00 0 Weight 1.0 1.0 1.0 0 0	Low 75 50 Volume 1.0 Spec Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 S High <u>125</u> Conv. Factor 1.0 S High <u>125</u> Conv.	Flag	PWS Ver PWS	Y Y Y Y Y Y
DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 24 CCVSD3 0815 Analytes DIESEL RANGE ORG O-TERPHENYL Seq. Sample ID 32 CCVSD4 0815 Analytes	Test Cl Code S AK102S SANICS Test Cl Code S AK102S	46 Sub/Dup T I 40 Lass/ Sub/Dup T I Re	sult <u>4.85</u> <u>U</u> Matrix/ Sub S The sult <u>3.63</u> <u>U</u> Matrix/ Sub S The sult <u>4.85</u>	Value <u>500</u> Ref Spk Seq Seq oretical Value <u>500</u> Ref Spk Seq Seq oretical Value	Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u> <u>1.000</u> CONTROL Dilu Detection Limit <u>40.00</u>	Value <u>500.00</u> 50.000 50.000 1.0 Spike <u>500.000</u> 1.0 Spike <u>500.000</u> 1.0 Spike <u>500.000</u>	Weight 1.0 Rec- overy 80.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Low 75 50 Volume 1.0 Spec Low 75 50 Volume 1.0 Spec Low 75	High <u>125</u> <u>150</u> Conv. Factor 1.0 High <u>125</u> <u>150</u> Conv. Factor 1.0 S High	Flag	PWS Ver PWS	Y Y Y Y Y Y

Page 4

F

5

11.24

Ŀ

L.

l

QA/QC Summary Report Work Order: A608030 Client: OGDEN

		6L/	NK				
	Test Class/ Hatrix/				Conv.		
Seq. Sample ID	Code Sub/Dup Sub	•	Dilution W	eicht Vol		Flag Ver	_
• •		sey sey	1.0 15	•	.0 1.0	BC	
. HR 091340	TPH_S B P S		1.0 15	.521 1	.0 1.0	BLU	,
		Dete	ection		Specs		
Analytes	Result		nit		w High		
трн	U	_	<u>_16</u>				
				····			
		BL	INK				
	Test Class/ Matrix/	Ref Spk			Conv.		
Seq. Sample ID	Code Sub/Dup Sub	Seq Seq	Dilution W	eight Vol	ume Factor	Flag Ver	r
2 MB 081496	TPH_S BP S		1.0 15	.815 1	.0 1.0	BC	D
			ection		Speca		
Analytes	Result		init		w High		
<u>TPH</u>	<u> </u>						
	Test Class/ Matrix/	SP] Pef Sok	.KE		Conv.		
Seq. Sample ID	Code Sub/Dup Sub	ket spk Seg Seg	Délution II	alahe V-I		Flag Ve	_
• •	TPHSKN S	seq seq 5	Dilution W	-	ume factor	Flag Vel BC	
×000030=03A	160_3 K 11 3	2	1.0 15	.721 1	.0 1.0	вс	
	10	nsnikad Deta	ction Spike	Rec-	Spece		
Analytes	Result		init Value		specs w High		
TPH			<u>17 347</u>	-	io <u>120</u>		
Seq. Sampie ID	-	Seq Seq	Dilution W	-		Flag Ve	
7 K608030-05A	TPH_S KMD S	56	1.0 15	.186 1	.0 1.0	BC	0
			ection Snike	Rec-	Spece PPD		eference
		Inspiked Deta		ne a			ci ci ci ci
Analytes		Inspiked Deta Result Li	•	overy Lo	•	•	PCOVERV RPD
Analytes TPH	Result	Result L	i≣it Value		w High Lo	w High R	•
•		Result L	imit Value	•	•	w High R	•
•	Result	Result L	i≣it Value	•	w High Lo	w High R	•
<u>TPH</u>	Result 327 Test Class/ Matrix/	Result Li U SPI Ref Spk	init Value 18 360 IKE	90.8 6	w High Lo 50 120 Conv.	w High R 20	<u>89.9</u> 0.996
TPHSeq. Sample ID	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub	Result L U SPJ Ref Spk Seq Seq	imit Value <u>18 360</u> IKE Dilution_W	<u>90.8</u> 6	w High Lo 30 <u>120</u> Conv. .ume_Factor	w High R 20	<u>89.9</u> 0.996
TPHSeq. Sample ID	Result 327 Test Class/ Matrix/	Result L U SPJ Ref Spk Seq Seq	imit Value <u>18 360</u> IKE Dilution_W	<u>90.8</u> 6	w High Lo 50 120 Conv.	w High R 20	89.9 0.996
TPHSeq. Sample ID	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S	Result L U SP Ref Spk Seq Seq 9	imit Value <u>18</u> <u>360</u> IKE Dilution 1.0 15	<u>90.8</u> 6	Conv. Conv. Lume_Factor	w High Ra 20 Flag_Ve	89.9 0.996
<u>TPH</u> Seq. Sample ID 10 K608030-25A	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S	Result L: U SP: Ref Spk Seq Seq 9 mapiked Dete	imit Value <u>18</u> <u>360</u> IKE <u>Dilution</u> 1.0 15 ection Spike	<u>90.8</u> 6	Conv. Conv. ume_Factor 0 1.0 Specs	w High Ra 20 Flag_Ve	
TPH Seq. Sample ID 10 K608030-25A Analytes	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result	Result L U SPJ Ref Spk Seq Seq 9 Saspiked Deto Result L	imit Value <u>18 360</u> IKE <u>Dilution W</u> 1.0 15 ection Spike imit Value	90.8 6	W High Lo <u>0 120</u> Conv. .umeFactor 1.0 1.0 Specs W High	v High R 20 Flag Ve BC	<u>89.9</u> 0,996 r
<u>ТРН</u> Seq. Sample ID 10 к608030-25А	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result	Result L U SPJ Ref Spk Seq Seq 9 Saspiked Deto Result L	imit Value <u>18</u> <u>360</u> IKE <u>Dilution</u> 1.0 15 ection Spike	90.8 6	W High Lo <u>0 120</u> Conv. .umeFactor 1.0 1.0 Specs W High	v High R 20 Flag Ve BC	<u>89.9</u> 0,996 r
TPH Seq. Sample ID 10 K608030-25A Analytes	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result	Result L: U SP: Ref Spk Seq Seq 9 shapiked Dete Result L: 22	INTE Value 18 360 IKE Dilution W 1.0 15 ection Spike INTE Value 17 331	90.8 6	W High Lo <u>0 120</u> Conv. .umeFactor 1.0 1.0 Specs W High	v High R 20 Flag Ve BC	<u>89.9</u> 0.996 r
TPH Seq. Sample ID 10 K608030-25A Analytes	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result 318	Result L: U SP: Ref Spk Seq Seq 9 haspiked Dete Result L: 22 SP:	imit Value <u>18 360</u> IKE <u>Dilution W</u> 1.0 15 ection Spike imit Value	90.8 6	Conv. Conv. umeFactor 1.0 1.0 Specs W High 20 120	w High R 20 Flag Ver BC	<u>89.9</u> 0,996 r
TPH Seq. Sample ID 10 K608030-25A Analytes TPH	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result 318 Test Class/ Matrix/	Result L: SP: Ref Spk Seq Seq 9 mspiked Dete Result L: 22 SP: Ref Spk	INTERINE Value 18 360 INTERINE 18 360 INTERINE INTERINE INTERINE INTERINE INTERINE INTERINE INTERINE INTERINE INTERINE INTERINE INTERINE INTERIO INTE	90.8 6	W High Lo <u>120</u> Conv. Conv. Conv. Specs W High <u>50</u> 120 Conv.	v High Ru 20 Flag Ve BC	89.9 0.996 r
TPH Seq. Sample ID 10 K608030-25A Analytes TPH Seq. Sample ID	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result 318 Test Class/ Matrix/ Code Sub/Dup Sub	Result L SP Ref Spk Seq Seq 9 Inspiked Dete Result L 22 SP Ref Spk Seq Seq	imit Value <u>18</u> <u>360</u> IKE <u>Dilution</u> 1.0 15 Ection Spike imit Value <u>17</u> <u>331</u> IKE DUPLICATE Dilution W	<u>90.8</u> eight Vol .097 1 Rec- overy Lo .89.4 <u>6</u> leight Vol	Conv. Conv. Lume_Factor 1.0 1.0 Specs W High 20 120 Conv. Lume Factor	Flag Ver	<u>89.9</u> 0.996 r o
TPH Seq. Sample ID 10 K608030-25A Analytes TPH Seq. Sample ID	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result 318 Test Class/ Matrix/	Result L SP Ref Spk Seq Seq 9 Inspiked Dete Result L 22 SP Ref Spk Seq Seq	imit Value <u>18</u> <u>360</u> IKE <u>Dilution</u> 1.0 15 Ection Spike imit Value <u>17</u> <u>331</u> IKE DUPLICATE Dilution W	<u>90.8</u> eight Vol .097 1 Rec- overy Lo .89.4 <u>6</u> leight Vol	Conv. Conv. Lume_Factor 1.0 1.0 Specs W High 20 120 Conv. Lume Factor	Flag Ver	<u>89.9</u> 0.996 r o
TPH Seq. Sample ID 10 K608030-25A Analytes TPH Seq. Sample ID	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result 318 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M D S	Result L U SP Ref Spk Seq Seq 9 hapiked Dete Result L 22 SP Ref Spk Seq Seq 9 10	INTER STATES	<u>90.8</u> eight Vol .097 1 Rec- overy Lo .89.4 6 leight Vol .082 1	W High Lo 0 120 Conv. Ume Factor 1.0 1.0 Specs W High 0 120 Conv. Lume Factor 1.0 1.0	Flag Ve Flag Ve BC	89.9 0.996 r 0
TPH Seq. Sample ID 10 K608030-25A Analytes TPH Seq. Sample ID	Result 327 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M S U Result 318 Test Class/ Matrix/ Code Sub/Dup Sub TPH_S K M D S	Result L: SP: Ref Spk Seq Seq 9 mspiked Dete Result L: 22 SP: Ref Spk Seq Seq 9 10 mspiked Dete	imit Value <u>18</u> <u>360</u> IKE <u>Dilution</u> 1.0 15 Ection Spike imit Value <u>17</u> <u>331</u> IKE DUPLICATE Dilution W	<u>90.8</u> eight Vol .097 1 Rec- overy Lo .89.4 eight Vol .082 1 Rec-	Conv. Conv. Lume_Factor L.O 1.0 Specs W High Conv. Lume Factor L.O 1.0 Specs RPD	Flag Ve Flag Ve BC	89.9 0.996

The Science of Analysis, The Art of Service Analytics Alasks Inc. 811 W 8th Avenue, Anchorage, AK 99501 • (907) 258-2155 • FAX (907)258-6634

QA/QC Summary Report Work Order: A608030 Client: OGDEN

08/27/96 14:17:10

٠

		SPIKE		
	Test Class/ Matrix/ Ref Spk		Conv.	
eq. Sample ID	Code Sub/Dup Sub Seq Seq	Dilution Weig		
LCS 081396	ТРН_S KS S 2	1.0 15.20	3 1.0 1.0 BCO	
	Itemstead	Detection Spike Re	c- Specs	
4-01-000	•	Limit Value ov	-	
Analytes TPH			• •	
<u></u>	222			
		SPIKE DUPLICATE		
	Test Class/ Matrix/ Ref Spk		Conv.	
eq. Sample ID	Code Sub/Dup Sub Seq Seq	Dilution Weig	ht Volume Factor Flag Ver	
LCSD 081396	TPH_S KSD S 2 3	1.0 15.83	3 1.0 1.0 BCO	
		nation onthe D		
Analytaa	Unspiked Result Result	Detection Spike Re Limit Value ov		
Analytes	297U			•
ТРН		10 510 7		
		SPIKE	21	
	Test Class/ Matrix/ Ref Spk		Conv.	
eq. Sample ID	Code Sub/Dup Sub Seq Seq		ht Volume Factor Flag Ver	
LCS 081496	TPH_S KS S 2	1.0 15.9		
	Unspiked	Detection Spike Re		
Analytes	Result Result	Limit Value ov		
ТРН	<u>292</u> U	<u> 16 </u>	23.0 60 120	
		ODTHE OUDITONTE		
	Test Class/ Natrix/ Ref Spk	SPIKE DUPLICATE	Conv.	
eg Sample ID	Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seg Seg		Conv. The Volume Factor Flag Ver	
	Code Sub/Dup Sub Seq Seq	Dilution Weig	ht Volume Factor Flag Ver	
	Code Sub/Dup Sub Seq Seq	Dilution Weig	ht Volume Factor Flag Ver	
LCSD 081496	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3	Dilution Weig 1.0 15.50 Detection Spike Ro	ght Volume Factor Flag Ver 06 1.0 1.0 BCO ec- Specs RPD Specs Refere	
LCSD 081496	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value on	ght Volume Factor Flag Ver 06 1.0 1.0 BCO ec- Specs RPD Specs Refere very Low High Low High Recove	ry RPD
LCSD 081496	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked	Dilution Weig 1.0 15.50 Detection Spike Ro	ght Volume Factor Flag Ver 06 1.0 1.0 BCO ec- Specs RPD Specs Refere very Low High Low High Recove	ry RPD
LCSD 081496	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result	Dilution Weig 1.0 15.50 Detection Spike Ru Limit Value of 16 322 9	ght Volume Factor Flag Ver 06 1.0 1.0 BCO ec- Specs RPD Specs Refere very Low High Low High Recove	ry RPD
LCSD 081496	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value of 16 322 0 CONTROL	ght Volume Factor Flag Ver 06 1.0 1.0 BCO ec- Specs RPD Specs Refere very Low High Low High Recove	ry RPD
LCSD 081496 Analytes TPH	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value of 16 322 0 CONTROL	ght Volume Factor Flag Ver 06 1.0 1.0 BCO ec- Specs RPD Specs Refere very Low High Low High Recove 04.1 60 120 20 93.0 Conv.	ry RPD
LCSD 081496 Analytes TPH eq. Sample ID	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value or 16 322 0 CONTROL Dilution Weig	ght Volume Factor Flag Ver 26 1.0 1.0 BCO 26 Specs RPD Specs Reference 26 Yery Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver	ry RPD
LCSD 081496 Analytes TPH eq. Sample ID	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value or 16 322 0 CONTROL Dilution Weig	ght Volume Factor Flag Ver 06 1.0 1.0 BCO ec- Specs RPD Specs Refere very Low High Low High Recove 04.1 60 120 20 93.0 Conv.	ry RPD
LCSD 081496 Analytes TPH seq. Sample ID	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S Theoretical	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value or 16 322 0 CONTROL Dilution Weig	ght Volume Factor Flag Ver 26 1.0 1.0 BCO ec- Specs RPD Specs Refere very Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO	ry RPD
LCSD 081496 Analytes TPH ieq. Sample ID ICV	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S	Dilution Weig 1.0 15.50 Detection Spike Ru Limit Value of 16 322 0 CONTROL Dilution Weig 1.0 1	ght Volume Factor Flag Ver 26 1.0 1.0 BCO 20 Specs RPD Specs Reference 24.1 60 120 20 93.0 Conv. 20 93.0 Conv. 20 1.0 1.0 BCO 20 20 93.0 Conv. 20 20 20 93.0 Conv. 20 20 93.0 Conv. 20 20 20 20 20 20 20 20 20 20 20 20 20 2	ry RPD
LCSD 081496 Analytes TPH Geq. Sample ID	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S Theoretical Result Value	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value or 16 322 9 CONTROL Dilution Weig 1.0 1 Detection Spike Ro	ght Volume Factor Flag Ver 26 1.0 1.0 BCO 20 Specs RPD Specs Reference 24.1 60 120 20 93.0 Conv. 24.1 Volume Factor Flag Ver 20 1.0 1.0 BCO 20 Specs 20 Yer 20 Yer 2	ry RPD
LCSD 081496 Analytes TPH ieq. Sample ID ICV Analytes	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S Theoretical Result Value	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value or 16 322 0 CONTROL Dilution Weig 1.0 1 Detection Spike Ro Limit Value or	ght Volume Factor Flag Ver 26 1.0 1.0 BCO 20 Specs RPD Specs Reference 24.1 60 120 20 93.0 Conv. 24.1 Volume Factor Flag Ver 20 1.0 1.0 BCO 20 Specs 20 Yer 20 Yer 2	ry RPD
LCSD 081496 Analytes TPH Geq. Sample ID I CV Analytes	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S Theoretical Result Value 97 100	Dilution Weig 1.0 15.50 Detection Spike Ru Limit Value or 16 322 0 CONTROL Dilution Weig 1.0 1 Detection Spike Ru Limit Value or 5 0 CONTROL	ght Volume Factor Flag Ver 26 1.0 1.0 BCO ac- Specs RPD Specs Refere very Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO ac- Specs very Low High 27.0 75 125	ry RPD
Analytes TPH Geq. Sample ID ICV Analytes TPH	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S Theoretical Result Value 97 100	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value of 16 322 0 CONTROL Dilution Weig 1.0 1 Detection Spike Ro Limit Value of 5 0 CONTROL	ght Volume Factor Flag Ver 26 1.0 1.0 BCO ec- Specs RPD Specs Reference Very Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO ec- Specs Very Low High 27.0 75 125 Conv.	ry RPD
LCSD 081496 Analytes TPH Geq. Sample ID I CV Analytes TPH Seq. Sample ID	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S Theoretical Result Value 97 100 - Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Sec	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value of 16 322 0 CONTROL Dilution Weig 1.0 1 Detection Spike Ro Limit Value of 5 0 CONTROL	ght Volume Factor Flag Ver 26 1.0 1.0 BCO ac- Specs RPD Specs Refere very Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO ac- Specs very Low High 27.0 75 125	ry RPD
LCSD 081496 Analytes TPH Geq. Sample ID I CV Analytes TPH Seq. Sample ID	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 303 U Test Class/ Matrix/ Ref Spk Code Sub/Dup Sub Seq Seq TPH_S T I S Theoretical Result Value 97 100	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value of 16 322 0 CONTROL Dilution Weig 1.0 1 Detection Spike Ro Limit Value of 5 0 CONTROL CONTROL Dilution Weig	ght Volume Factor Flag Ver 26 1.0 1.0 BCO ec- Specs RPD Specs Reference Very Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO ec- Specs Very Low High 27.0 75 125 Conv.	ry RPD
LCSD 081496 Analytes TPH eq. Sample ID ICV Analytes TPH	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 	Dilution Weig 1.0 15.50 Detection Spike Ru Limit Value or 16 322 0 CONTROL Dilution Weig 1.0 1 Detection Spike Ru Limit Value or 5 0 CONTROL Dilution Weig 1.0 1	ght Volume Factor Flag Ver 26 1.0 1.0 BCO ac- Specs RPD Specs Reference Very Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO	ry RPD
Analytes <u>TPH</u> Seq. Sample ID 1 ICV Analytes <u>TPH</u> Seq. Sample ID	Code Sub/Dup Sub Seq Seq TPH_S K S D S 2 3 Unspiked Result Result 	Dilution Weig 1.0 15.50 Detection Spike Ro Limit Value or 16 322 0 CONTROL Dilution Weig 1.0 1 Detection Spike Ro CONTROL Dilution Weig 1.0 1 Detection Spike Ro Dilution Weig 1.0 1	ght Volume Factor Flag Ver 26 1.0 1.0 BCO ec- Specs RPD Specs Reference Very Low High Low High Recove 24.1 60 120 20 93.0 Conv. ght Volume Factor Flag Ver .0 1.0 1.0 BCO ec- Specs Very Low High 27.0 75 125	ry RPD

The Science of Analysis, The Art of Service Analytica Alaska Inc. 811 W 8th Avenue, Anchorage, AK 99501 • (907) 258-2155 • FAX (907)258-6634

Page 6

L

L

B

[7]

L

111

l.

Ì.

L

.1

QA/QC Summary Report Work Order: A608030 Client: OGDEN

		CONTROL				
Test Class/	Matrix/ Ref Spk			Conv.		
Seq. Sample ID Code Sub/Dup	Sub Seq Seq	Dilution	Weight	Volume Factor F	lag Ver	
1 ICV TPH_S T I	S	1.0	1.0	1.0 1.0	BCO	
	Theoretical [etection Spike	e Rec-	Specs		
Analytes Re	esult Value	Limit Value	e overy	Low High		۷
трн	97 100	5		75 125		Y
		CONTROL				
Test Class/	Matrix/ Ref Spk			Conv.		
Seq. Sample ID Code Sub/Dup	Sub Seq Seq	Dilution	Weight	Volume Factor F	lag Ver	
12 ICV TPH_S T I	S	1.0	1.0	1.0 1.0	всо	
	Theoretical D	etection Spike	e Rec-	Specs		
Analytes Re	esult Value	Limit Value	e overy	Low High		۷
<u>TPH</u>	<u>96100 _</u>	5	96.0	75 125		Y.

Support Documentation

Page

1

PERCENT MOISTURE WORKSHEET ANALYTICA ALASKA, INC.

Π

Date: 08/14 196

Sample \ LGN	Boat	Boat + Wet	Wet Sample	Boat + Dry	Sample	Percent
Number	Weight	Sample Wt.	Weight	Sample Wt.	Water Wt.	Moist. (%)
BLANK	1.092	11.515	10.423	11.513	0.002	0.0
A608030-21 *	1.096	12.466	11.370	11.009	1.457	12.8
A608030-22	1.079	12.777	11.698	11.677	1.100	9.4
A608030-23	1.076	12.991	11.915	10.761	2.230	18.7
A608030-24	1.078	12.749	11.671	11.130	1.619	13.9
A608030-25	1.089	13.600	12.511	11.716	1.884	15.1
A608024-12	1.083	12.629	11.546	10.979	1.650	14.3
A608024-13	1.080	13.198	12.118	11.965	1.233	10.2
A608024-14	1.085	12.723	11.638	10.320	2.403	20.6
A608024-14DUP	1.071	12.160	11.089	9.811	2.349	21.2

NOTE: All Items Listed Below Must be Kept on File for at Least 3 Years After Analysis:

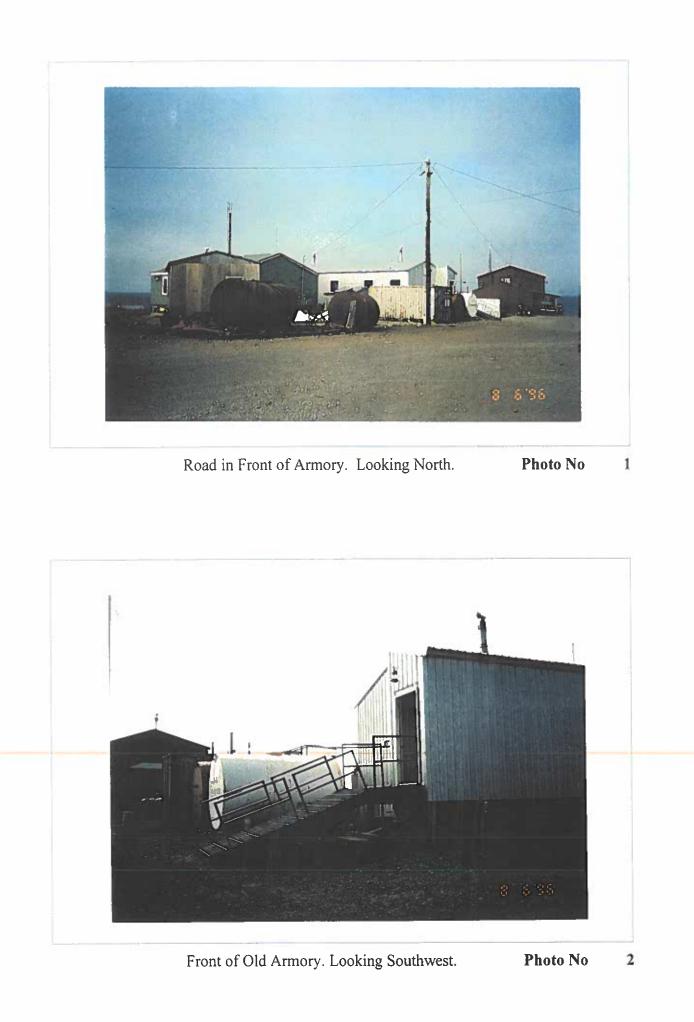
Laboratory File Identification Number Original Data Package (With Analyst's Initial) Sample Queue Chromatograms Included Chromatograms Clearly Labeled Chromatograms Baseline-Baseline Integrated Integration Report Included (Clearly Labeled) Calibration Report (With Analyst's Initials) Date/Time of Initial Calibration Concentration Range Clearly Indicated Composition of Calibration Standard(s) Lab Control Standard Analyzed, Date/Time Continuing Calibration Standard Analyzed, Date/Time Surrogate Used Surrogate Properly Identified > Percent Recovery for Each Sample Acceptable Range Indicated $\overline{}$ Outliers Explained Alkane/Window Retention Time Standard Analyzed Components Properly Indentified Column Performance/Separation Number Date Determined ✓ Analyst's Initials Spike/Spike Duplicate Analyzed Recoveries Relative % Difference Acceptable range Clearly Indicated Outliers Explained Blank Data (No Blank Correction of Field Samples!) Reagent Blank Method Blank Bottle Blank References (Library) Sample Included Pattern Match/Narrative Summary

ĽÄ	ALYTICA 14 PAIST	
roje	er received on <u>8/8/96</u> and opened on <u>8/8/8</u> by <u>MAT</u>	
001		
•	Were custody seals on outside of cooler?	yes (O)
	If yes, how many and where?	YES NO
•	Were custody papers taped to lid inside cooler?	NO NO
•	Were custody papers properly filled out (ink, signed, etc.)?	YESNO
•	Did you sign custody papers in the appropriate place?	YES NO
• •	Did you attach shipper's packing slip to this form?	YES NO
•	What kind of packing material was used? NONE	~
•	Was sufficient ice used (if appropriate)?	YES NO
•	Were all bottles sealed in separate plastic bags	yes No
•	Did all bottles arrive in good condition (unbroken)?	YES NO
0.	Were all bottle labels complete (No., date, signed, analysis, pres., etc)?	YES NO
1.	Did all bottle labels and tags agree with custody papers?	(YES) NO
2.	Were correct bottles used for the tests indicated?	(YES) NO
3.	Were VOA vials checked for absence of air bubbles, and noted if so? \sim	4 YES NO
4.	Was sufficient amount of sample sent in each bottle?	YES NO
5.	Temperature of cooler(s) upon receipt: <u>1.7c</u>	
	Identification number of thermometer: <u>250657</u>	
	Is the temperature within $4 \pm 2^{\circ}$ C?: Yes \Box Yes \Box Yes \Box Yes \Box No \Box No \Box	Yes 🗋 Yes 🗆 No 🖾 No 🗆
Expl	lain any discrepancies <u>Curred</u> , How Delluged,	ONE BOKE

6 · · ·

L'INTER OF

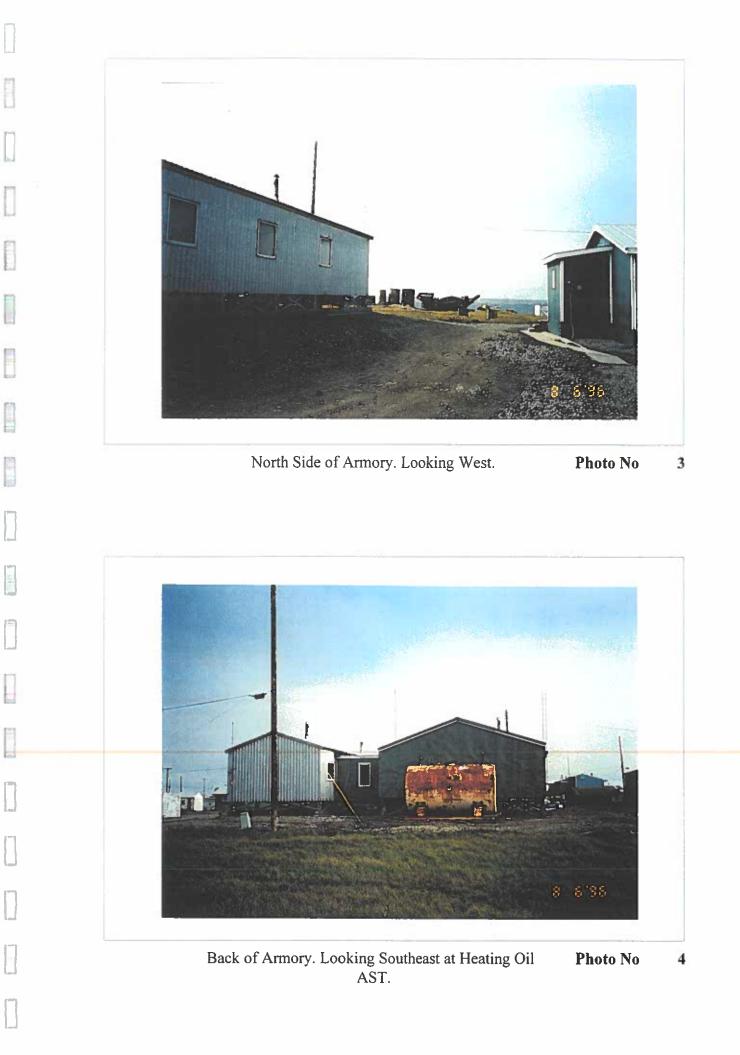
B

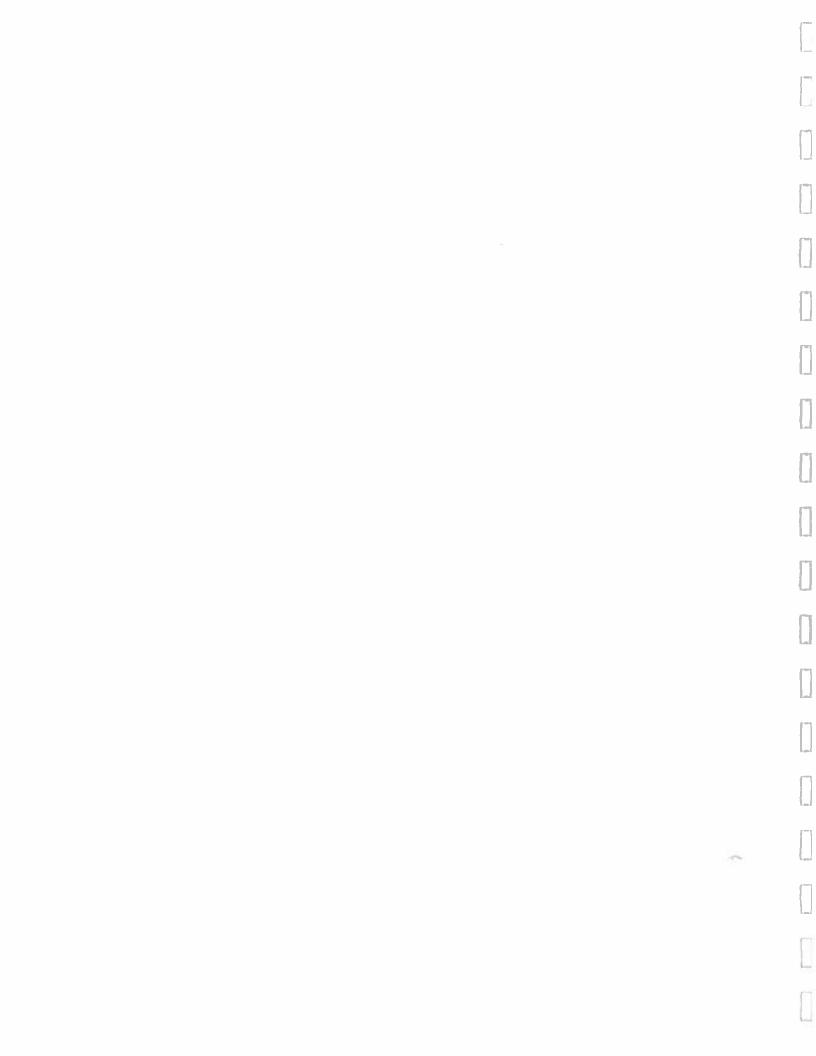

0

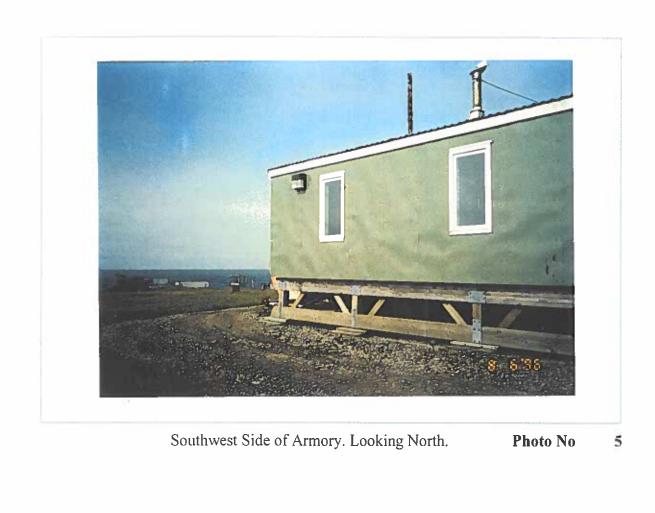
APPENDIX B CHAIN-OF-CUSTODY

.

7				1			7							1	8														
0	duest		3	a,	28	N IS	colligene	aı	8 ∀ 7	13	14	15	di	ίĨ	- 25	ž	; ;	29	C.P	23	24	50	C Standard TURNAROUND C 2 business days	s day					OF)
M	ğ	ŀ	et.			(M	ojəq	əəs) H	รกษ	9												oles		sines					4
080	Rec			8	sisk	ieu¥	Jəqt	ן נסג היו	oloh		98) 1											'EL eliverat	ND s days	sss day		iners.	S I	I	E E
2							1	ubieW (Tare													QAVOC LEVEL	AROU	busine	ONLY.	Conta	$d \mid$		PAGE
B	/Si							5	>Hd													S S S		1992 1992	Ю Ш	nple	7-1-	0	
LGN: CSN:	aly																					U		00	SU A	of Sai	eived rs:	4	
	Analysis	<u> </u>		A	_		- 4																		ANALYTICA USE	Arbill / Freight #: Condition of Sample Containers	Temp Received: # of Coolers:	1	
1	11			15			1										_								ANA	Conc	Temp # of (Seals:	
8	rd						1640												_		\dashv							11 10	
11e 20	00	- 35			000			əds) sıt d3 kq t											\neg	-	\rightarrow							poj	101
4 800 4	Record	2	GZQ J					ileloV-in				N.			54		_		-			_				{	10		17
kwa) oradć -886 -525	L /							λq səμ			_			_	- 20				\neg	-	\rightarrow	\neg						7-7	1
Interlocken Parkway, Suite 200 Broomfield, Colorado 80021 (303) 469-8868 FAX: (303) 469-5254	dy							XA Vd (2.0			—		_			_			-	-		-		BY:		2		R, A
1 (303 (303)	Sto.	1	*.					AA VA C		5	$\overline{}$		7	$\overline{}$	7	7	7		$\overline{}$	$\overline{}$	\neg	5		211	VED	ein	ated Name		Nue.
325 Interlocken Broomfield, (303) FAX: (303)	Custod					1.1	-	AA VO C		-	-	_	_	-			-		7	┛	_	×	~	<u>~</u> `	RECEIVED BY:	Signature			Date/
325 L B F				÷		1.8		1 pN 324		$\overline{}$	<	$\overline{}$	2	$\overline{}$		Z	7	Ż	7	7	-	7							
	of				W	0016	3/059	ie ką Ha	ששם												ſ	-						נ י	C S
	12				W	si 08	3/000	ος λα Ης	1HD		_											-1			2) s		1
	hain	$r_{\rm el}$	(Alioeds	s) 20)9 JO	0208	3/080	ος <i>ί</i> .α χ	378												54	2	17. 41		sur			x	<u></u>
811 W. 8tn Ave. Anchorage, AK 99501 (907) 258-2155 FAX: (907) 258-6634	Ö						tion	/ /µ0a	171				1	60							Ŕ,	+	-		<u>а</u> .		تبح ال		2
n AK 9 AK 9 8-215 8-663			14	"a"			servation	/ ss e/5	170		3	15									┓	-	•		ISINC	A	LÉ V		ie i
αge. 7) 25i 7) 25i					9	3	srs/Pr	The north	u 0†				1	*)									-		RELINQUISHED	Signatur	Patted		Date/Time.
81 1 (907 (907	-				H		# Containers/Pre	SSBID	Z0 🕈							1				_					æ	5	a I		Ö
FAX					R R		Ŭ *	SSBIÐ	zo g	-	-	-	-	-	-		-	-	-	-	-	=							1586
		<u>م</u>	15.	2	Ľ	e e		XĻ	лем						8	. ₹	·			$ \downarrow$	92							3	
		Nam	F	lö	1	umbe	pəį	၁ဓ။၀၃ န	əmiT	16 50	050	1100	310	312	315	3 5	323	7.70	7.4	00	5	1810	-	-	-				
		Project Name	APR	Report To:	Sampler:	P.O. Number	0.01	00000	and	8-656													1	- "	1.	INN		} .	24
$\mathbf{O}^{\mathbf{Z}}$		<u>.</u> a.	1		S.	<u> </u>	pet	Collec		- 20	_	×.		<u>**</u>	—		-	_	=		2	2	4		RECEIVED BY		Primed Name	18	ie d
E.																			8		ן ג :		ł		CEIV	Signation	Ted	EN	
\succ								•					2									L			RE	is V		<u>E</u>	$\frac{Dateh}{7\beta}$
No				1								4	•									515			Ġ.		1		
× <						オト		b	e ID				×.				4			**		NI Di	1	L	IPLEI		l l		ТЛ
ANALYT			2				3	8945	Sample ID	-75	52	SC	51	251	2156	3156	4156	2	S C.J	22	7			136	SAN		2 2		1 X
74		ē	\$	ress	ts .	ř	Ž	0 7			15	1	1	2/	21	31	54,	1	215	315	4151	9651	121	6.5	D BY	B	and a	1	m
	MJ.	у Nar)lode	y Add	0	È	e .	5.7		64	5	S.	8	30	2	2	2	0	1	3	e	VTS 2	Γ		ISH	<u>_</u>	ame		نی زوار
		Company Name	Õ	Company Address	dotat	Hickorce	felephone	ú,		50	2 2 2	-96	76 820	90 50	Sur	96 Smg	9652	3	S.	, S	X	COMMENTS			RÉLINDUISHED BY SAMPLER.	Signature	Printed Name	A M	Date/Time:
		S				Y	-	₽ ₹ IJ	1	579	5r96	N. N	96	96	36	. <u></u> .	96	96	96	56	Vale	ğ	R		ΗĒĹ	Sign	Print		Date
]			م	No.			1 States	;						•	ा • •	i X							1					-	
- Tan			- Arr													- 12			\$				2						

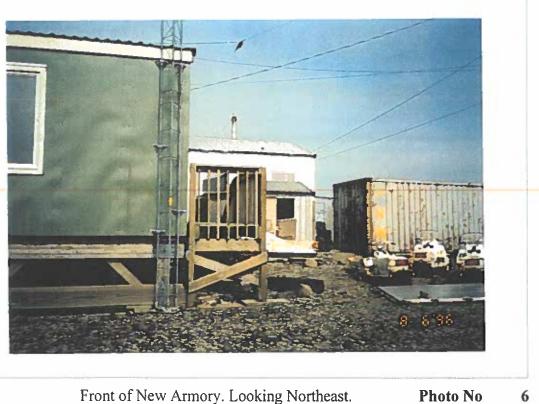

APPENDIX C PHOTOGRAPHS




1

1.00

Sec. E. 4



E

110

Front of New Armory. Looking Northeast.

Photo No

[]

APPENDIX D FIELD NOTES

FIEL

E

0

1

0

16° WWW Y bu concert and 1 N Come of out the S comer of out ARI 32' 55 & S Commen of New ARA ¢0 いたち CH04 11154 ner to over fund down by the sit the (any test of () -00 2/2 2/2 CENNER -32' -23' 5154 Sus Booking 1 5*60 PLAC WATE 96 25'552 \$ 5 0 nute fines 10' WE & IL' NW 1 NW 5AV worked 060 ARIN 6:30 CLEANING WP & SITE DCBUS ちょうち Ľ. たかろ NEW ARM A1510 SAMPLES 2 6 Auc gu 5:50 6:00 5:55 105 01.0 3154 16-1 T-T-E AS 35 ちちいち ଷ 965V \$ 11 5L Lesip 513L JESUPZISC 76540 415C 16SUD 31SL A. to Son VER? GEONELLY . NOT MUCH Lorde FUEL ROTTO is A RWITED PROPAUL FANK W/ BUNDS IN BERWEEN SHED and sever of m curst ribude and As South of Coullex NEAR DAVERNEA bencht your KERING is pool. S.U.S. STARICE - Legorn bucker s'orner two y AREA TO SW of NEW 628E40 AND TWO RELATED (DISIMOLD 7) TWO OVERTURNED DEMUN SO DEBRIS SLATTREED About. 1 mil y CONNEX 020 SNOW MACHINES Armary HAS METHL THURS ATING A SHERD. FINE WHERER'S THUK PAIR. Not PRAVENT STOR OF 6 AUG 91 VAN. Pr 7)ANG/ pten. Š

L My 94 Thursvird 2 my 94 Thursvird 2 is - Movie BARE TO MESTER		

. .

APPENDIX E IR FIELD SCREENING PROCEDURES

PROCEDURES FOR FIELD ANALYSIS OF TOTAL PETROLEUM HYDROCARGONS BY INFRARED SPECTROPHOTOMETRY

Target Constituents

Petroleum Hydrocarbons

Sample Matrix

Soils or Sediments

Sample Preparation

Chemical Drying, Freon Extraction

Instrumental Method

Infrared Spectrophotometry

Detection Level

The method detection limit (MDL) for total petroleum hydrocarbons is estimated to be 20.0 mg/kg (ppm). In general, the detection level of this method is a function of sample matrix, sample preparation, and instrument performance, and can vary significantly from the stated MDL.

<u>Comments</u>

It is recommended that conditions of sampling, sample pretreatment, and analysis be standardized to ensure comparability of the final results.

1.0 Scope and Application

1.1 This method is used for field analysis of soils and sediments for total petroleum hydrocarbons, such as fuels and oils. It is presented as a means to rapidly characterize contamination in site investigation-derived samples. The method is sensitive to petroleum-based hydrocarbons and can be cross sensitive to other hydrocarbons.

Target Contaminants

Gasoline Diesel Fuel Oil Stoddard Solvent Mineral Spirits

- 1.2 Application of this method is limited to the analysis of soil and sediments for TPH. Results are reported as TPH in milligrams per kilograms (ppm) based on quantification against a reference oil.
- 1.3 This TPH method utilizes a silica gel cleanup of the sample extract. Silica gel removes constituents such as animal greases and vegetable oils.
- 1.4 The method detection limit (MDL) for TPH is estimated to be 15.0 mg/kg (ppm). This estimate is the result of previous method development work and may vary in response to the complexity of the sample matrix.

2.0 Summary of Method

2.1 The method presented here is a modification of EPA Method 418.1, "Petroleum Hydrocarbons, Total Recoverable," found in EPA-600/4-79-020, Methods of Chemical Analysis of Water and Wastes. A modification of Method 418.1 is required to process soil samples. Specifically the sample extraction steps described by Method 418.1 are appropriate for water samples; this method requires modification for processing of soil samples. In brief, an aliquot of samples is immersed with Freon, chemically dried with sodium sulfate, extracted by manual shaking or sonification, and a portion of the extract is passed through silica gel and then analyzed by infrared spectrophotometry.

3.0 Interferences and Limitations

- 3.1 This method will measure only Freon extractables.
- 3.2 Heavy molecular weight petroleum hydrocarbons, such as asphalt oils, are not reliably extracted by Freon, and therefore, will not be reliably quantified by the TPH analysis.
- 3.3 To the extent possible, sampling techniques, sample pretreatment, and analysis should be standardized to ensure comparability in the final results.

4.0 Safety

- 4.1 Samples contaminated with TPH constituents may be hazardous. Samples may include flammables, explosives, and potentially carcinogenic compounds. All samples are assumed to be hazardous and should be handled as such. All stock and working calibration standards, as well as all samples, shall be handled with the utmost care using good laboratory techniques in order to avoid harmful exposures.
- 4.2 Lab analysts shall wear lab coast, safety glasses, and surgical gloves at all times when preparing and handling standards and samples.

4.3 Freon 113 (1,1,2-trichloro-1,2,2-triflouoethane) is regulated by ÒSHA. The permissible exposure limit is 1,000 ppm. Primary routes of exposure are: inhalation, skin or eye contact, and oral. Effects of short-term exposure are light-headedness, giddiness, shortness of breath, and may lead to narcosis and cardiac irregularities.

First Aid Measures

If inhales: Remove to fresh air.

In case of eye contact: Immediately flush eye with copious quantities of water for 15 minutes.

In case of skin contact: Immediately wash skin with copious quantities of soap and water.

- 4.4 Sample preparation should be performed in a ventilated area with adequate skin and eye protection.
- 4.5 All of the target compounds have "good warning properties." Any situation that leads to or causes noticeable odors or produces any physical symptoms in the worker shall be investigated immediately followed by appropriate corrective actions.
- 4.6 First aid kit, eye wash, and chemical spill cleanup kit shall be available for use at all times.

5.0 Apparatus and Materials

- A. Buck Scientific HC-404 IR Analyzer
- B. mm quartz cuvettes (2 minimum) with stopper
- C. Electronic balance with 1,500 g capacity and 0.01g sensitivity
- D. Pipettes Volumetric or automatic to deliver Freon (10 mL)
- E. Beakers 2-150 mL (minimum), more beakers may be useful
- F. Pasteur pipettes and bulbs
- G. Stainless steel sample spatula ("scupula") 2 minimum
- H. 40mL VOA vials
- I. Sample reservoirs with particulate filters (GAC)
- J. Silica gel filter cartridges (GAC)
- K. mL gas-tight syringe with luer lock tip
- L. Sample reservoir sealer
- M. Sample Rack
- N. Volumetric flasks for dilution
- O. Scientific calculator with linear regression capability

6.0 Chemicals and Reagents

- A. Freon 113 (1,1,2-trichloro-1,2,2-trifluoroethane)
- B. Sodium sulfate, anhydrous, reagent grade, powdered
- C. Complete set of calibration standards (made up in advance of site visit)

7.0 Calibration (Performed prior to field visits.)

- 7.1 Reference Oil (Provided by Laboratory)—Pipette 15.0 ml n-hexadecane, 15.0 isooctane, and 10.0 ml chlorobenzene into a 50-ml glass stoppered bottle. This reference oil mixture is considered as TPH at a neat concentration (pure form). Maintain the integrity of the mixture by keeping stoppered, except with withdrawing aliquots.
- 7.2 Stock Standard—Pipette 1.0 ml referenced oil (7.1) into a tared 200-ml volumetric flask and immediately stoppered. Weigh and dilute to volume with

fluorocarbon-113. Calculate TPH stock standard solution concentration as milligrams per liter (mg/l).

- 7.3 Work Standards—Pipette appropriate volumes of stock standard (7.2) into 100mi volumetric flasks according to the cell path length to be used. Dilute to volume with fluorocarbon-113. Calculate concentration of the TPH working standards from the stock standard, mg/l.
- 7.4 Using the linear regression function of a scientific calculator, calculate the correlation coefficient (r) derived from standard concentration versus IR absorbance reading. The value of r must be greater than or equal to 0.995.

8.0 Instrument Set-up

Let standards warm to ambient temperature during the instrument warm-up (should only take 10-15 minutes). REMEBER TO KEEP STANDARDS TIGHTLY CAPPED WHEN NOT IN USE. Cap immediately after filling cuvette. As soon as you are done calibrating, get them back into the cooler.

- A. Locate IR on a level, vibration free table, protected from wind and moisture.
- B. Switch IR on and let warm up for 30 minutes or more WITH DOOR OPEN. IR is designated to operate with the door open (the door is only a dust cover for storage).
- C. "Unlock" the Coarse and Fine controls by turning the locking dials counterclockwise.
- D. In ABS mode adjust the Coarse and Fine controls for .000 on the display (this is normally between 9 and 10 on the Coarse setting dial. Relock these dials when settings are finished.
- E. In %T (T for Transmittance) mode use the %T calibration dial on back panel to get 100.0 on the display.
- F. Block the beam by pulling up on the sample rack inside the IR sample chamber. Adjust the 0%T control (front panel) for .000 on the display. This is also a "locking" dial.
- G. Change to ABS mode (.000 on display).
- H. TOUCHING ONLY THE GLAZED SIDE WALLS OF THE CUVETTE AT ALL TIMES, add clean Freon to a cuvette (equipment blank). Put cuvette in sample rack with black line showing (the cuvettes are directional and need to be placed in the IR the same way each time).
- I. Let the display stabilize (10-30 seconds). The Freon we are using generally gives a reading of about 0.130. If the reading is much higher (0.145), double check the zero settings then recheck the equipment blank reading. If still high, the Freon may have become contaminated. Check a blank from the second bottle of Freon if you suspect contamination.
- J. Leaving the equipment blank in the IR, "unlock" the Coarse and Fine controls and adjust for .000 on the display. Relock the controls when finished.
- K. Switch to CONC. X 1 mode. This will give sample readings in concentration.
- L. Take out the equipment blank cuvette. Discard the Freon and allow cuvette to briefly air dry. Fill cuvette with 300 ppm standard. Place in IR.

Let reading stabilize. If reading is not 300 (209 to 301), unlock CONC CAL dial and adjust until reading is 300. Relock dial.

- M. Remove cuvette and rinse with clean Freon. Allow cuvette to briefly air dry. Using a new pasteur pipette, fill with 60 or 120 ppm standard. Record reading in data notebook and discard standard.
- N. Repeat step M with a more concentrated standard (120 or 210 ppm). Record reading and discard standard.
- O. Compare readings of both standards to the expected readings. Both should be within 15% of the actual value. If not, double check the equipment blank, 300 ppm standard, whether the cuvette is clean, etc. If this doesn't fix the problem, try the other vial of standard at the same concentration.
- P. When ready to proceed with samples, rinse cuvette with Freon and check equipment blank reading. If higher than first equipment blank of the day, rinse cuvette again. Use the same cuvette for all samples, rinsing with clean Freon between each reading.

9.0 Sample Extraction and Analysis

For a single sample, complete the eight steps listed below without pausing. If analyzing many samples, complete steps 1,2, and 3 together for each sample before going to step 4 (in other words, you can pause after step 3 before going to step 4). Steps 4 through 8 can be completed as there is time.

- 1. Zero the balance with an uncapped, LABELED VOA vial. Weigh \cong 5 (± 0.2g) of sample and record weight in 0.0g.
- 2. Add sodium sulfate and mix with spatula. Sample should have a dry, grainy appearance when enough sodium sulfate has been added. Several grams may be needed if sample is very wet. If extracting several samples at once, perform this step and the next before going to the next sample.
- 3. Volumetrically add 10.0 mL of Freon to the sample vial and cap the vial. Set aside at this point if extracting several samples and go back to step 1 for the next sample.
- 4. Shake vigorously for 5 minutes. (Note on sample dryness: Sample is not dry enough if it sticks substantially to side walls of VOA vial when shaking with Freon. If this happens, open the vial and use a spatula to loosen the sample from the side walls, breaking it up as best you can. Recap and continue shaking.
- 5. Pour several millimeters of the samples into a sample (filtering) reservoir with filter disk and filter cartridge in place. Reserve a few millimeters of sample in the capped VOA vial in case you forgot to record the reading or need to take another reading of the sample for some reason.
- 6. Attach the metal pressure seal to the filter reservoir and twist into place. Attach the 25 mL syringe to the pressure seal. Slowly pressurize the filter reservoir, pushing sample dropwise through the filters. Discard the first ≈ 10 drops of filtered sample. Collect the next 2.5 to 3 mL of sample in a cuvette. Do not try to force the sample through too fast. This will cause channeling in the silica gel filter which will lead to inadequate filtering.
- 7. Record sample reading. If reading is above 300, record as >300. Be sure to rinse the cuvette with clean Freon at least twice after a "hot" sample.

8. If there are samples remaining, return to step 4.

10.0 Calculations

Convert sample IR readings from mg/L (of TPH in extract) to mg/kg (of TPH in original sample) wet weight. Use calculation below:

Concentration of TPH, kg = {MxV}+(ERxWS)

Where:

M=miligrams/liter (mg/L) of TPH (conversion from absorbance reading) V=original volume, in mL, of the original sample added to the VOA vial WS=weight, in grams, of the original sample added to the VOA vial

For samples that were recorded as >300, record the sample concentration as >600. For samples with an instrument reading of less than 15, record the sample concentration as <30.

11.0 Quality Assurance

Analysis of equipment blanks at the beginning of each day's analysis, and after every 10 samples.

Daily calibration checks performed prior to analysis of each day's lot of samples, after each lot of 10 samples, and after the last sample for the day is analyzed. Extraction Blank analysis once per day or with every 20 samples. Use "blank sand" and carry through the entire extraction and analysis procedure.

Analysis of field duplicate samples at a frequency of 1 in 20 samples.