

TABLE OF CONTENTS

Acro	onyms and AbbreviationsII
1.0	Executive Summary
2.0	Site Background1
3.0	Field Activities
4.0	Groundwater Monitoring Results
5.0	Remediation System5
6.0	Discussion Of Findings6
7.0	Conclusions and Recommendations6
8.0	Limitations6
110	T OF TABLES
	1 OF TABLES
Table	e 1 Groundwater Elevations
LIS	T OF FIGURES
Figur Figur Figur Figur	re 2 Site Plan with Groundwater Elevations and Analytical Results re 3 Remediation System Layout
API	PENDICES
A B	Site Background Field Methods and Procedures

Field Measurements, Notes, and Hydraulic Gradient Plot

Laboratory Analytical Report and ADEC Laboratory Data Review Checklist

Tables of Historical Monitoring Data

 \mathbf{C}

D E

ACRONYMS AND ABBREVIATIONS

ADEC Alaska Department of Environmental Conservation

AK Alaska Test Method

BTEX Benzene, Toluene, Ethylbenzene, and Xylenes

DO dissolved oxygen
DRO diesel range organics
EIT engineer-in-training

EPA U.S. Environmental Protection Agency

GCL groundwater cleanup level GRO gasoline range organics mg/L milligrams per liter

ORP oxidation-reduction potential

PE Professional Engineer
PQL practical quantitation limit

QA quality assurance QC quality control

Stantec Consulting Services Inc.

SVE soil vapor extraction

VOC volatile organic compound VSC vapor stripping and circulation

1.0 EXECUTIVE SUMMARY

This fourth quarter 2019 Monitoring Event Report was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Tesoro Refining and Marketing Company for Tesoro 2 Go Mart #52, located at 7172 West Parks Highway, Wasilla, Alaska (**Figure 1**). The methods used for this monitoring event were conducted in accordance with the Alaska Department of Environmental Conservation (ADEC) approved 2019 Corrective Action Work Plan for this site.

This monitoring event was conducted on October 17, 2019, by John Marshall, Environmental Scientist, Jake Keldsen, Engineer-in-Training (EIT), and Bob Gilfilian, Principal Engineer (PE), of Stantec. The monitoring event included the following tasks:

- Injecting Chemox solution in the remediation well RW 16-1
- Completing a vertical control survey of existing monitoring wells
- Measuring depth to groundwater
- Measuring field intrinsic water quality parameters
- Checking operation of the in-situ remediation system
- Collecting and analyzing groundwater samples from Monitoring Wells G-1, G-3, G-5, G-7, and MW16-2 (**Figure 2**).

Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeded the groundwater cleanup levels (GCLs) for the following monitoring wells:

- Monitoring Well G-3: diesel range organics (DRO)
- Monitoring Well MW16-2: 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene

Based on the groundwater depth measurements and the elevation survey of the tops of the monitoring wells, the average hydraulic gradient was determined to be flowing to the southwest at a bearing of 221 degrees with a gradient of 0.022 feet per foot. Groundwater flow direction and gradient were noted to be consistent with the historical results for this site, as shown on the groundwater flow summary ("rose diagram") presented on **Figure 2**.

During this monitoring event, the on-site groundwater remediation system, consisting of a vapor stripping and circulation (VSC) system was inspected to determine operational condition. The VSC compressor was activated and currently remains operational. Also, Stantec injected a chemox solution consisting of 55 pounds of Klozur One® product mixed in 50 gallons of water with a pressurized pump system into remediation well RW 16-1.

2.0 SITE BACKGROUND

Background information for this site is summarized in **Appendix A**.

3.0 FIELD ACTIVITIES

The following field activities were conducted during this monitoring event:

- Measured the depth to groundwater in Monitoring Wells G-1, G-3, G-4, G-5, G-7, and MW16-2. Groundwater depth measurements were used to calculate the hydraulic gradient and direction of flow for the groundwater table.
- Measured the following intrinsic water quality parameters in all wells sampled: temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and specific conductance.
- Checked the operation of the VSC treatment system.
- Collected groundwater samples from Monitoring Wells G-1, G-3, G-5, G-7, and MW16-2 and submitted them for laboratory analysis of: gasoline range organics (GRO) by Alaska Test Method (AK)101; DRO by AK102; and select volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Test Method 8260C.
- Completed a round of chemox (55 pounds of Klozur One®) injection in remediation well RW 16-1.
- Completed a vertical control survey of all active monitoring wells to determine elevations of the tops of the well casings.

Field methods and procedures are provided in **Appendix B** and field measurements and notes are provided in **Appendix C**.

4.0 GROUNDWATER MONITORING RESULTS

Table 1 presents groundwater elevations at this site based on the depths to static groundwater levels measured during this monitoring event.

Table 1 Groundwater ElevationsMeasured on October 17, 2019

Monitoring Well Identification	Top of Casing Elevation ¹ (feet)	Depth to Water (feet btoc)	Groundwater Elevation (feet)
G-1	97.50	NM	NM
G-3	97.14	33.60	63.54
G-4	96.30	34.96	61.34
G-5	99.43	37.75	61.68
G-7	97.58	36.00	61.58
RW16-1	97.46	NM	NM
MW16-2	97.24	32.07	65.17

Key:

1 – G-1, G-3, G-4, G-5, G-7, RW16-1, and MW16-2 surveyed on 10/17/19. Elevations are presented in respect to a local benchmark with 100-foot datum.

btoc - below top of casing

NM - Not measured

Field Parameters. Temperature, pH, DO, ORP, and specific conductance were measured following purging. All monitoring wells were purged of three monitoring well volumes prior to sampling with the exception of MW G-1 that was purged dry and then sampled after recovery. Results of water quality parameter testing are presented in **Table 2**.

 Table 2
 Field Parameters

Measured on October 17, 2019

Monitoring Well Identification	Purged Volume (gallons)	Temp. (°C)	pН	DO (mg/L)	ORP (mV)	SC (μs/cm°C)
G-1	0	NM	NM	NM	NM	NM
G-3	8.0	6.0	6.16	1.83	56.6	508
G-5	1.0	5.5	5.88	4.73	130.7	711
G-7	4.5	7.0	5.85	8.44	150.1	492
RW16-1	NS	NS	NS	NS	NS	NS
MW16-2	1.5	7.4	6.63	4.35	92.3	499

Key:

Appendix C.

°C – degrees Celsius

NS – not sampled

 μ S/cm°C – microSiemens per centimeter °C

ORP – oxidation-reduction potential

DO – dissolved oxygen

 $pH - -log[H^+]$

mg/L-milligrams/liter

 $SC-specific\ conductance$

mV – millivolts

Temp. – temperature

NM – not measured

A typewritten copy of the sampler's field measurements and notes are provided as a worksheet in

Groundwater Sample Analytical Results. Eurofins TestAmerica, Inc. performed all analysis of groundwater samples for this sampling event. Historical monitoring data for this site are presented in **Appendix D**. Laboratory analytical results are summarized in **Table 3**. The laboratory analytical report is provided in **Appendix E**.

Table 3 Groundwater Analytical Results

Samples collected on October 17, 2019

Sample Identification	Benzene ¹ (mg/L)	Toluene ¹ (mg/L)	Ethylbenzene ¹ (mg/L)	Xylenes ¹ (mg/L)	GRO (mg/L)	DRO ² (mg/L)	1,2,4- TMB ¹ (mg/L)	1,3,5- TMB ¹ (mg/L)
G-1	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	U (0.003)	U (0.003)
G-3	U (0.003)	U (0.002)	U (0.003)	U (0.003)	0.58	3.6 H	0.0093	0.012
G-5	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	U (0.003)	U (0.003)
G-7	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	U (0.003)	U (0.003)
MW16-2	U (0.003)	U (0.002)	0.0052	0.023	2.1	0.30	0.290	0.090
Dup-01	U (0.003)	U (0.002)	0.0050	0.022	2.2	0.31	0.200	0.088
Trip Blank	U (0.003)	U (0.002)	U (0.003)	U (0.003)	NT	NT	U (0.003)	U (0.003)
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	0.056	0.060

Key:

- 1 Analyzed by U.S. Environmental Protection Agency Method 8260C
- 2 Due to laboratory QC and/or surrogate failures in the initial extraction, the samples were re-extracted out of holding time and re-analyzed. The re-extracted batch also contained laboratory QC and/or surrogate failures. Both sets of data were reported by the laboratory. The higher of the two concentrations for each monitoring well is listed in this table.

Dup-01 Duplicate Sample of MW16-2

AK - Alaska Test Method

DRO – Diesel range organics, analyzed by AK102

GCLs – Groundwater cleanup levels, per Alaska Department of Environmental Conservation 18 Alaska Administrative Code 75.345, Table C, updated September 29, 2018.

GRO - Gasoline range organics, analyzed by AK101

H - Sample was prepped or analyzed beyond the specified holding time1

 $mg/L-milligrams\ per\ liter$

NT-not tested

1,2,4-TMB – 1,2,4-Trimethylbenzene

1,3,5-TMB – 1,3,5-Trimethylbenzene

U – Undetected above practical quantitation limits shown in parentheses.

Bold indicates the concentration exceeds the GCL or, if not detected, the practical quantitation limit exceeds the GCL.

Monitoring Wells G-1, G-3, G-5, G-7, and MW16-2 were sampled in accordance with the 2019 Work Plan.

Quality Assurance (QA)/Quality Control (QC) Review. Laboratory QC data and the ADEC Laboratory Data Review Checklist are included with the laboratory report in Appendix E.

A duplicate sample set was collected to determine the precision of the field collection and laboratory analysis for the sampling event. Sample Dup-01 is a duplicate of Sample MW16-2. Data presented in **Table 4** show that the precision for the duplicate sample set (analytes that were detected above the practical quantitation limit [PQL] and exceeded GCLs) was within the established QA criteria tolerances for Ethylbenzene, Xylenes, GRO, DRO and 1,3,5-trimethylbenzene, but not 1,2,4-Trimethylbenzene. Precision could not be calculated for Benzene and Toluene because they were not detected above the PQL in one or more sample. The holding times for GRO and VOCs were within established criteria but holding time issues were observed

for DRO. Due to laboratory QC and/or surrogate failures in the initial extraction, all of the DRO samples were re-extracted out of holding time and re-analyzed. The re-extracted batch also contained laboratory QC and/or surrogate failures. Both sets of data were reported by the laboratory. The higher of the two reported values for each monitoring well is listed in this quarterly report.

Table 4 Laboratory Quality Control Objectives

, ,	·
lity Control Designation	Olerance Results for this Event
g Times	·
Vater/to analyze	40 days 14 to 20 days
Vater/to extract	14 days 13 to 18 days
Vater/to analyze	14 days 5 days
Water/to analyze	14 days 5 to 6 days
Ouplicates – Precision	·
ne/Water	± 30% NC
e/Water	± 30% NC
enzene/Water	± 30% 3.92%
s/Water	± 30% 4.44%
Vater	± 30% -4.65%
Vater	± 30% -3.28%
rimethylbenzene	± 30% 36.73%
rimethylbenzene	± 30% 2.25%
Ouplicates – Precision ne/Water e/Water enzene/Water s/Water Vater Vater Trimethylbenzene	± 30% NC ± 30% NC ± 30% 3.92% ± 30% 4.44% ± 30% -4.65% ± 30% -3.28% ± 30% 36.73%

Key:

% – percent

 \pm – plus or minus

DRO - diesel range organics

GRO – gasoline range organics

NC – Not calculated because the analyte was not detected above the practical quantitation limit in one or more sample

VOCs - volatile organic compounds

5.0 REMEDIATION SYSTEM

The on-site groundwater treatment process consists of a VSC system and periodic injections of a chemox product into the groundwater table via the remediation well RW 16-1. The layout of the on-site VSC system and location of RW 16-1 are shown on **Figure 3**. The need for a replacement soil vapor extraction (SVE) blower was evaluated and determined to be unnecessary as the soil vapors in the VSC vault were noted to be absent based on field olfactory methods. The testing of soil vapors in the VSC vault will be conducted during the 2020 field monitoring season.

The VSC treatment system was found to be operating. The VSC compressor was operating in the normal range and operating the air-lift pump that produced a discharge of approximately 1 to 2 gallons per minute into the receiving well (G-1) for groundwater recirculation purposes as originally designed.

The remediation system includes the periodic injection of chemox into the groundwater table located adjacent to the VSC treatment system. The chemox consists of an oxidant product commercially referred to as Klozur One[®], which consists of a sodium persulfate compound that is manually injected as a solution into Remediation Well RW16-1 (see location on **Figure 3**). During the subject site visit, Stantec conducted a round of chemox injection into RW 16-1. Fifty gallons of a dissolved solution containing 55-pounds of Klozur One[®] was injected by gravity to RW 16-1.

6.0 DISCUSSION OF FINDINGS

Groundwater Hydraulic Characteristics. The hydraulic gradient for this monitoring event was found to be approximately 0.022 feet per foot, with flow tending toward the southwest at 221 degrees. The groundwater flow direction and gradient are consistent with past monitoring events, as shown on **Figure 2**. The elevations of the wells were resurveyed during this monitoring event.

Groundwater Quality. Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeding the GCLs for the following wells:

- Monitoring Well G-3: diesel range organics
- Monitoring Well MW16-2: 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene

All historic data for Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), GRO, DRO, and groundwater elevations for the monitoring wells associated with this site are tabulated in **Appendix D**. Graphs of historical groundwater elevations and contaminant concentrations for GRO and DRO in Monitoring Wells G-3 and G-5 are presented on **Figure 4**.

Remediation System. The VSC treatment system was found to be operating within normal range of performance and recirculating approximately 1 to 2 gallons per minute of groundwater into MW G-1 via an air lift pump in the VSC well. Also, Stantec injected a chemox solution consisting of 55 pounds of Klozur One® via a pressurized pump system into the remediation well RW 16-1.

7.0 CONCLUSIONS AND RECOMMENDATIONS

No anomalies were found during this fourth quarter 2019 monitoring event that require additional corrective action or changes to the approved year 2019 Corrective Action Work Plan for this site.

8.0 LIMITATIONS

Stantec conducted this monitoring event in accordance with the Corrective Action Work Plan approved by ADEC, and in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. All sampling activities were completed in accordance with the ADEC *Underground Storage Tanks Procedures Manual – Standard Sampling Procedures* (March 22, 2017). No other warranty, expressed or implied, is made. Data and recommendations made herein were prepared for Tesoro 2 Go Mart #52 and Tesoro Refining and Marketing Company. Information herein is for use at this site in accordance with the purpose of the report described.

FIGURES

Figure 1	Location and Vicinity Map
Figure 2	Site Plan with Groundwater Elevations and
	Analytical Results
Figure 3	Remediation System Layout
Figure 4	Graphs of Contaminant Concentrations and
	Groundwater Elevations

FILE: S:\CAD\Proj\Tesoro\TGMart052\MonEvent\2019\October2019\Fig01-Location and Vicinity Map Arctic Ocean PROJECT LOCATION GEORGE PARKS HWY ROAD

TESORO COMPANY TESORO 2 GO MART #52 OCTOBER 2019 MONITORING EVENT REPORT FIGURE

1

LEGEND:

PROPERTY LINE

2016 SOIL BORING/MONITORING WELL

MONITORING WELL AIR SPARGE WELL

AS AIR SPARGE

DRO DIESEL RANGE ORGANICS GRO **GASOLINE RANGE ORGANICS** GROUNDWATER ELEVATION GW Elev.

NOT MEASURED NM

UNDETECTED ABOVE PRACTICAL QUANTITATION LIMIT SHOWN IN PARENTHESES U

VAPOR STRIPPING AND CIRCULATION VSC

NOTES:

- 1. RESULTS SHOWN ARE FOR WELLS SAMPLED ON OCTOBER 17, 2019
- 2. RESULTS ARE IN MILLIGRAMS PER LITER
- 3. BOLD/ RED TEXT INDICATES CONTAMINANT CONCENTRATIONS ABOVE CLEANUP LEVELS FOR THIS SITE

TESORO COMPANY TESORO 2 GO MART #52 OCTOBER 2019 MONITORING EVENT REPORT

SITE PLAN WITH GROUNDWATER **ANALYTICAL RESULTS**

2 185751222 200,205

OCTOBER 2019 MONITORING EVENT REPORT REMEDIATION SYSTEM LAYOUT

Stantec

Figure 4
Graphs of Contaminant Concentrations and Groundwater Elevations

APPENDIX A – SITE BACKGROUND

Tesoro 2 Go Mart #52 (Mile 49 Parks Highway, Wasilla, Alaska) **ADEC Facility ID #648; ADEC File #2265.26.006**

September 1996. During the removal of the former underground storage tank (UST) fueling system (consisting of several fuel dispensers, two 12,000-gallon gasoline, and one 12,000-gallon diesel USTs) on September 7, 1996, petroleum contamination was encountered in the surrounding soil. Gilfilian Engineering conducted the UST site assessment work. Approximately 240 cubic yards of gasoline and 60 cubic yards of diesel contaminated soil was excavated and treated at Alaska Soil Recycling.

February 1997. The Alaska Department of Environmental Conservation (ADEC) reviewed the UST Closure Site Assessment Report prepared by Gilfilian Engineering. Subsequently, a Release Investigation (RI) Work Plan prepared by Gilfilian Engineering was approved by ADEC.

April 1997. The findings of the RI (later referred to as Phase I RI) showed high levels of diesel contamination under the diesel dispenser islands and gasoline contamination under the unleaded gasoline UST to 36 feet below ground surface (bgs). The RI included drilling five soil borings and installing and sampling one groundwater monitoring well (identified as G-1). Groundwater was also found to be contaminated. Subsequently, an ADEC-approved work plan was prepared by Gilfilian Engineering for Phase II RI.

December 1997. Phase II RI report submitted to ADEC. The RI included drilling soil borings and installing and sampling four groundwater monitoring wells (G-2, G-3, G-4 and G-5).

April 1998. ADEC approved the installation of a Soil Vapor Extraction (SVE) system.

June 1998. Gilfilian Engineering submitted a Well Search report to ADEC. The well search targeted an area of 0.25-mile radius centered on the gas station site.

July 1998. ADEC approved the work plan prepared by Gilfilian Engineering for a Phase III RI.

August 1998. A Phase III RI was completed at the site by Gilfilian Engineering. The RI included installing and sampling three groundwater monitoring wells (G-6, G-7, and G-8).

January 2002. Several "rising and falling head hydraulic conductivity tests" (slug tests using the Hvorslev method) were performed by Gilfilian Engineering on January 9, 2002. The hydraulic conductivity at Monitoring Wells G-4 and G-7 exceeded 171 feet/day. Based on the high hydraulic conductivity values, Gilfilian Engineering recommended a pilot test to determine the effectiveness of treating the groundwater with a vapor stripping and circulation (VSC) well.

March/April 2002. One soil boring was drilled on March 6, 2002, for installation of a VSC well. Benzene, toluene, ethylbenzene, and xylenes (BTEX), gasoline range organics (GRO), and diesel range organics (DRO) tested in soil samples collected from the soil boring were detected above

ADEC soil cleanup levels (SCLs). In addition, a second soil boring was drilled for installation of an air sparge (AS) well that was designated AS-1. Benzene, ethylbenzene, and GRO were detected above SCLs and BTEX and GRO were above the ADEC groundwater cleanup levels (GCLs) in AS-1. Pilot testing conducted in March and April 2002 showed the hydrogeological formation could not provide adequate water to operate a VSC or AS system at this site. Continued operation of the SVE system only was recommended, and the VSC well was subsequently connected to the SVE system.

June 2002. The SVE system was re-started on June 25, 2002 and was set to withdraw vapors from Wells SVE-1, SVE-5, and SVE-6. A significant increase in the volatile contaminant concentrations to 139 parts per million by volume (ppmv) as measured by a photoionization detector (PID), was noted in the SVE system discharge. By July 3, 2002, the volatile levels dropped to 58.5 ppmv, which was possibly related to the significant decrease in the thickness of free product measured in Monitoring Well G-1 (SVE-1).

December 2002. An SVE pilot study using a 5-horsepower FL-707 Rotron blower was conducted on December 19, 2002. The purpose was to determine if the use of a larger capacity blower would increase the recovery of volatile petroleum contaminants. The dramatic rise in PID readings during the second quarter of 2002 is attributed to the addition of SVE Wells 5, 6, and VSC.

October 2003. A 1-horsepower air compressor was installed for operation of the AS system. The AS well (AS-1) was previously installed at the site in 2002. The VSC manhole was reconfigured to enhance SVE system performance.

July 2004. The AS system was converted into a VSC system for pilot testing on July 21, 2004. Down well piping was installed in Monitoring Well VSC and connected to the compressor air supply line. Pilot testing indicated the system could be an effective groundwater treatment option. The AS compressor was removed from the site for maintenance.

September 2, 2004. The VSC system was activated following ADEC approval. The VSC system was treating approximately 1 gallon of contaminated groundwater per minute, or 1,440 gallons per day. The treated water was transferred (pumped by air) from the VSC well to Monitoring Well G-1 for circulation.

October 2007. Ten confirmation soil borings (CSB-1 through CSB-10) were installed on October 3 through 9, 2007, near the former USTs and areas of previous investigations across the site. Benzene, ethylbenzene, xylenes, GRO, and DRO were detected above the SCLs in two or more borings. Toluene was the only analyte not detected above the SCLs in any soil boring.

September 2008. Three chemical oxidation applications were completed by MWH Americas, Inc. (MWH). Sampling of groundwater monitoring wells noted benzene, ethylbenzene, and GRO detected above the GCLs in Monitoring Well G-3.

February 2009. Monitoring Well G-3 showed a consistent trend in increased hydrocarbon concentrations, and a fine sediment with a hydrocarbon odor was found in the bottom of the

monitoring well. MWH recommended that the well be re-developed to remove the sediment build-up.

March 2009. Monitoring Well G-3 was redeveloped to remove the dark colored sediment. The sediment was noted to have a slight petroleum odor and heavy sheen.

January/June/August 2010. MWH performed potassium permanganate chemical oxidation treatments on January 27 and 28, June 11, and August 20, 2010. A solution of 3 percent potassium permanganate (180, 646, and 767 gallons, respectively) was injected into several groundwater monitoring wells.

October 30, 2012. The chemical oxidant Klozur CR[®] was injected into three on-site wells (Monitoring Well G-1 and SVE Wells SVE-5 and SVE-6). The Klozur CR[®] injection process was conducted to test the use of the existing remediation infrastructure for a means of delivering the chemical oxidant into the contaminated groundwater aquifer at the site, as well as evaluating the effectiveness of the chemical oxidant.

October 2012. Groundwater sample results were non-detect in all four monitoring wells sampled. The water table was considerably higher than normal, and the absence of dissolved contaminants was assumed to be associated with the high water table. The last time a high water table was observed was in October 2006, and the concentrations were all non-detects in all monitoring wells except for G-3, which was lower than historical concentrations at that time.

January 30, 2013. DRO was detected in Monitoring Wells G-1, G-3, and G-7, and toluene, ethylbenzene, and xylenes were detected in G-3 – with all analytes below the GCLs. The water table was higher than normal, and the concentrations detected were not believed to be indicative of the groundwater conditions at the site.

December 19, 2013. A chemical oxidation application of Klozur CR® was injected into three onsite wells: Monitoring Well G-1 and Remediation Wells SVE-5 and SVE-6.

February 2014. Groundwater sampling showed contaminant levels in all monitoring wells that were sampled remained below the GCLs for the last seven monitoring events.

May 2014. DRO was detected in Monitoring Well G-3 at 3.3 milligrams per liter (mg/L), exceeding the GCL for the first time since February 2011. The remediation system was operating on a full-time basis.

October 2014. Groundwater sampling showed contaminant levels in all monitoring wells were below GCLs. The remediation system was operating on a full-time basis.

February 2015. GRO and DRO were detected at 4.8 and 12 mg/L, respectively, in Monitoring Well G-3. All other analytes were below GCLs. Remediation system operating on full-time basis.

May 2015. GRO was detected at 2.6 mg/L in the duplicate sample collected from Monitoring Well G-3, the primary and all other analytes were below GCLs.

September 2015. Groundwater sampling showed contaminant levels in all monitoring wells were below GCLs. The remediation system was operating on a full-time basis.

October 2015. Three CSBs were installed by MWH to investigate the extent of any remaining soil contamination at the site. Two areas were investigated: the former diesel dispensers and the former gas dispensers and USTs. Soils encountered in the area of the former diesel dispensers had elevated headspace field screening results; however, DRO concentrations were below laboratory practical quantitation limits (PQLs). Soils encountered in the area of the former gas dispensers and USTs had detectable concentrations of GRO and one exceedance above the SCLs established for the site. Soil GRO contamination was limited to below the current groundwater level at the site. Similar observations were documented in 2007. Analytical results collected from the 2015 CSBs indicate that concentrations of petroleum contamination remaining at the site are generally decreasing when compared to the analytical results from the 2007 CSBs. Future management strategies at the site may include targeted chemical oxidation in the area of the former gas dispensers and USTs as represented by CSB 9-3, with no further cleanup action at the former diesel dispensers.

November 2015. GRO was detected at 3.2 mg/L in Monitoring Well G-3. An analytical sample was collected from the VSC well which indicated all analytes were below GCLs for the first time since September 2004. The remediation system was offline upon arrival at the site and remained offline pending groundwater conditions and further analytical sampling.

January 2016. The first quarter 2016 monitoring event was conducted on January 28, 2016. Results of the analytical sampling showed that all analytes were below GCLs, except GRO concentrations in Monitoring Well G-3. One or more analytes were detected above the PQLs in all the monitoring wells sampled, except Monitoring Well G-5. Analytical results from Remediation Well VSC were below PQLs.

May 2016. The second quarter 2016 monitoring event was conducted on May 9, 2016. All analytes were below the GCLs, only Monitoring Well G-3 had analytes detected above PQLs. Monitoring Wells G-2 and G-5 had insufficient water for sampling.

Four CSBs were placed at four locations surrounding the 2015 CSB 9-3, to the north, south, east, and west. Two discrete analytical soil samples were collected from CSB 16-1, CSB 16-2, and CSB 16-4, and one sample from CSB 16-3. These samples were collected from the locations with the highest PID readings, or at the water table interface if no detections were observed in field screened samples.

CSB 16-1 and CSB 16-2 (Samples CSB 16-1 38 and CSB 16-2 39), which were the closest to the former USTs and located to the north and east of 2015 CSB 9-3, respectively, both had GRO exceedances similar to the findings of the nearby 2015 Boring CSB 9-3. All the samples which exceeded SCLs were below the water table that was measured at a depth of 35.48 feet btoc in nearby Monitoring Well G-3 at the time of drilling. Analytical results at the water table interface at three locations were below laboratory PQLs. The CSB 16-3 and CSB 16-4, located at a greater

distance from the former USTs compared to CSB 16-1 and CSB 16-3 and to the south and west of 2015 CSB 9-3, did not have analyte exceedances. Soil Borings CSB 16-1 and CSB 16-2 were completed with PVC riser and screen assemblies to provide future access points for monitoring and/or remediation activities.

October 2016. The third quarter 2016 monitoring event took place on October 24, 2016. All wells listed in the 2016 Work Plan to be sampled in the third quarter had sufficient water for sampling. Monitoring Well G-3 had GRO detected above GCL. New Wells RW16-1 and MW16-2 were sampled for the first time. Remediation Well RW16-1 had all analytes, except benzene and toluene, detected above their GCLs. Monitoring Well MW16-2 had analytes detected above PQLs, but none above GCLs. The VSC system was not operating.

December 2016. The fourth quarter 2016 monitoring event took place on December 9, 2016. All wells listed in the 2016 Work Plan to be sampled in the fourth quarter had sufficient water for sampling. Monitoring Well G-3 had GRO detected above GCL (update effective November 6, 2016). Drinking water samples had no detections above PQLs. The VSC system was not operating.

February 2017. The first quarter 2017 monitoring event took place on February 8, 2017. Monitoring Wells G-1 and G-3 purged dry and did not recover sufficiently to allow for sampling. Monitoring Well G-5 was dry upon arrival at the site. Remediation Well RW16-1 and Monitoring Well MW16-2 were sampled. Ethylbenzene, xylenes, GRO, and DRO were detected above GCLs in both wells. The VSC system remained off-line due to low groundwater conditions and/or frozen circulation line. The SVE treatment system was not operational and will require maintenance to the blower system following spring breakup.

April and May 2017. The second quarter 2017 monitoring event took place on April 25, 2017. Analytes were detected above their GCLs in Monitoring Wells G-3, G-5, and MW16-2, and Remediation Well RW16-1. These wells had exceedances of specific volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) consisting of 1,2,4- and 1,3,5-trimethylbenzene compounds and naphthalene.

Routine maintenance was conducted on the SVE and VSC systems, but due to unresolved electrical power/control issues, both systems are currently not operating until additional corrective action services are provided by an electrician.

Also, representative water samples were collected from the domestic water systems serving the existing buildings on Lots 1, 3 and 4 in Runion Subdivision, and were analyzed for public drinking water VOCs and DRO. No detectable levels of contaminants were found in any of the domestic drinking water wells.

On May 3, 2017, the first phase of the pilot test was initiated with an injection of a chemical oxidant (chemox) consisting of Klozur CR® into the new Remediation Well RW16-1. The pilot test will be continued during the third and fourth quarters of 2017, when the wells will be resampled to determine the impact of the chemox injection. Subject to the findings of the 2017 monitoring events, the pilot test may be continued in 2018 with several more injections of Klozur CR®.

October 2017. The fourth quarter 2017 monitoring event took place on October 20, 2017. DRO was detected above the GCL in Monitoring Well G-3. Analytes detected above their GCLs in MW16-2 included: ethylbenzene, GRO, naphthalene, and 1,2,4-trimethylbenzene.

The SVE and VSC treatment systems were not operating due to electrical control systems malfunctions. The treatment systems are scheduled for replacement and/or upgrade in 2018.

The pilot test program for the chemox injection was initiated in May 2017 in accordance with the ADEC approved work plan for the 2017 Work Plan Task 3. The test results for intrinsic parameters measured during the October 2017 monitoring event indicate no unusual findings and will be monitored in future quarterly monitoring events scheduled for 2018 with additional applications of Klozur CR[®] into Remediation Well RW16-1.

February 2018. The first quarter 2018 monitoring event took place on February 13, 2018. Analytes detected above their GCLs included ethylbenzene and GRO in Monitoring Well MW16-2 and DRO in Monitoring Well G-3.

The SVE treatment system was off-line pending repairs. The operation of the VSC system was interrupted in the second quarter of 2017 relating to an issue with the variable frequency drive on the compressor and will be brought back online when the system can be evaluated by a licensed electrician.

Ongoing monitoring of sodium and total organic carbon, relating to the May 2017 chemical oxidation pilot test, showed elevated concentrations of both analytes in Monitoring Well G-3. Conductivity was also found to be elevated in Monitoring Well G-1, which may also indicate the presence of residual chemical oxidant.

August 2018. The third quarter monitoring event took place on August 17, 2018. Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeding the GCLs for: DRO in Monitoring Wells G-1 and G-3; GRO in Monitoring Well 16-2, and ethylbenzene, xylenes, GRO, and DRO in Remediation Well 16-1.

Several analytes for VOCs and polynuclear aromatic hydrocarbons (PAHs) were reported as undetected but had laboratory reporting limits that equaled or exceeded their corresponding GCLs. These undetected analytes were noted in all the wells that were sampled.

Also, representative water samples were collected from the domestic water systems serving the existing buildings on Lots 1&2, 4, and 5 in Runion Subdivision, and were analyzed for public drinking water VOCs. All the domestic drinking water wells were found to have no detectable levels of contaminants of concern.

The SVE and VSC treatment systems are not operating pending future repairs and/or modifications to the electrical systems which will be evaluated by a licensed electrician.

October 2018. The fourth quarter groundwater monitoring event was conducted on October 25, 2018. The monitoring event included measuring depth to water, field intrinsic water quality

parameters, and collecting and analyzing groundwater samples from Monitoring Wells G-1, G-3, G-5, G-7, and MW16-2. Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeding the GCLs for: DRO in Monitoring Well G-3; and 1,2,4-trimethylbenzene in Monitoring Well 16-2.

The VSC treatment system is currently operating and pumping, via the air-lift pump, approximately 2 to 3 gallons per minute on a continuous basis. During the 3rd quarter of 2018, Stantec completed a chemox injection Klozur One[®]. Fifty-five pounds of Klozur One[®] was mixed with approximately 100 gallons of clean water. The chemox solution was injected into Remediation Well RW 16-1.

February 2019. The first quarter 2019 monitoring event took place on February 26, 2019. The monitoring event included measuring depth to water, field intrinsic water quality parameters, and collecting and analyzing groundwater samples from Monitoring Wells G-1, G-3, G-5, G-7, and MW16-2. The depth to water and field intrinsic water quality parameters were also measured in Remediation Well RW16-1. Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeding the GCLs for: DRO in Monitoring Well G-3 and GRO in Monitoring Well 16-2.

The VSC and SVE treatment systems were found to be off (inoperative) upon arrival at the site due to an apparent power surge. Upon restart of the systems, the recirculation line was found to be frozen. The VSC and SVE systems were left off until spring thaw.

April 2019. The second quarter 2019 groundwater monitoring event was conducted on April 23 and 24, 2019. The monitoring event included measuring depth to groundwater and field intrinsic water quality parameters and collecting and analyzing groundwater samples from Monitoring Wells G-1, G-2, G-3, G-4, G-5, G-7, and MW16-2 and Remediation Well RW16-1.

Based on the groundwater depth measurements, the average hydraulic gradient was determined to be flowing to the south at a bearing of 183 degrees with a gradient of 0.02 feet per foot. Groundwater flow direction and gradient was noted to be consistent with the historical results for this site.

Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeded the GCLs for the following monitoring wells:

- Monitoring Well G-3 –DRO, 1,2,4-Trimethylbenzene, and 1,3,5-Trimethylbenzene
- Monitoring Well MW16-2 –GRO, 1,2,4-Trimethylbenzene, and 1,3,5-Trimethylbenzene

Representative water samples were also collected from the domestic water systems serving the existing buildings on Lots 1&2, 4, and 5 in Runion Subdivision, and were analyzed for drinking water analyses and DRO. All the domestic drinking water wells were found to have no detectable levels of contaminants of concern.

During this monitoring event, the on-site groundwater remediation system, consisting of a VSC system was inspected to determine its operational condition. The VSC treatment system was found

to be off (in-operative) upon arrival at the site due to an apparent power surge. The VSC system was left off until such time the electrical supply system could be evaluated to determine the cause of the power outages to the VSC compressor.

July 2019. The third quarter 2019 groundwater monitoring event was conducted on July 16, 2019. The monitoring event included measuring depth to groundwater and field intrinsic water quality parameters and collecting and analyzing groundwater samples from Monitoring Wells G-1, G-3, G-5, G-7, and MW16-2. In addition, depth to groundwater was measured at Monitoring Well G-4 and Remediation Well RW16-1 and field intrinsic water quality parameters were measured at Remediation Well RW16-1.

Based on the groundwater depth measurements, the average hydraulic gradient was determined to be flowing to the south at a bearing of 300 degrees with a gradient of 0.011 feet per foot. Groundwater flow direction and gradient were noted to be inconsistent with the historical results for this site. The change in groundwater flow may be a result of elevation changes due to "frost jacking" of the well casings on one or more monitoring wells that were noted during the sampling event. The elevations of the wells will be resurveyed during the 4th quarter monitoring event.

Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeded the GCLs for the following monitoring wells:

- Monitoring Well G-1 –DRO
- Monitoring Well G-3 –DRO
- Monitoring Well MW16-2 –GRO

The VSC groundwater treatment system was found to be off (inoperative) upon arrival at the site due to an apparent power surge. On a subsequent site visit conducted during the week of July 22, the VSC compressor was activated and currently remains operational. On July 25, 2019, Stantec injected a chemox solution consisting of 55 pounds of Klozur One® via a pressurized pump system into the remediation well RW 16-1.

October 2019. The fourth quarter 2019 groundwater monitoring event was conducted on October 17, 2019. The monitoring event included measuring depth to groundwater and field intrinsic water quality parameters and collecting and analyzing groundwater samples from Monitoring Wells G-1, G-3, G-5, G-7, and MW16-2. In addition, depth to groundwater was measured at Monitoring Well G-4.

Based on the groundwater depth measurements, the average hydraulic gradient was determined to be flowing to the southwest at a bearing of 221 degrees with a gradient of 0.022 feet per foot. Groundwater flow direction and gradient were noted to be consistent with the historical results for this site. The elevations of the wells were resurveyed during this monitoring event.

Results of the analytical sampling showed petroleum hydrocarbon contaminant concentrations exceeded the GCLs for the following monitoring wells:

- Monitoring Well G-3: DRO
- Monitoring Well MW16-2: 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene

The VSC groundwater treatment system was found to be operating within the normal range of performance with the production of 1 to 2 gallons per minute of recirculated groundwater with an air lift pump in the VSC well. Stantec injected a chemox solution consisting of 55 pounds of Klozur One® via gravity flow into the remediation well RW 16-1.

APPENDIX B - FIELD METHODS AND PROCEDURES

Tesoro 2 Go Mart #52 (Mile 49 Parks Highway, Wasilla, Alaska) **ADEC Facility ID #648; ADEC File #2265.26.006**

The following table presents the proposed tasks for the Alaska Department of Environmental Conservation (ADEC)-approved 2019 Corrective Action Work Plan. The scope of these tasks is based on the results and findings of the monitoring and remediation completed to date at Tesoro 2 Go Mart #52 (ADEC Facility ID #648; ADEC File #2265.26.006).

2019 Work Plan Schedule

	Work Plan Task	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
	Monitoring Wells: G-1, G-3, G-5, G-7, RW16-1, and MW16-2	B, G, D, I	G, D, V, P, I	B, G, D, I	B, G, D, I
Task 1	Monitoring Wells G-2 and G-4		G, D, V, P, I		
	Drinking Water Wells serving Lots 1 and 2, Lot 4, and Lot 5 in Runion Subdivision		D, E		
Task 2	Remediation System O&M	✓	✓	✓	✓
Task 3	Chemical Oxidation Treatment		✓	✓	✓

Key:

AK - Alaska Test Method

B – Benzene, toluene, ethylbenzene, and total xylenes by EPA Method 8021B.

D – Diesel range organics by AK102.

E – Drinking water parameters by EPA Method 524.1.

EPA – U.S. Environmental Protection Agency

G – Gasoline range organics by AK101.

I – Indicators, parameters tested include: dissolved oxygen, specific conductance, oxygen-reduction potential, pH, and temperature.

O&M – operation and maintenance

- P Polynuclear aromatic hydrocarbons (PAHs), i.e., semi-volatile organic compounds, by EPA Test Method 8270D Selective Ion Monitoring.
- V Volatile organic compounds by EPA Test Method 8260C.

The Corrective Action Work Plan for the year 2019 will be implemented by Stantec on behalf of Tesoro. Groundwater monitoring will be conducted to track migration and trends of contaminants that are present at the site. All sampling activities will be completed in accordance with ADEC's *Underground Storage Tanks Procedures Manual—Standard Sampling Procedures* (March 22, 2017).

The methods that will be used for conducting a monitoring event, unless otherwise noted in the monitoring report, will include:

• The static water levels in the monitoring wells will be measured with respect to the top of each well casing. The elevation of the static water level will be based on an arbitrary datum established on-site during a

- vertical control survey that will be completed by Stantec on an annual basis. The survey will be performed during the summer after the seasonal frost layer thaws.
- The monitoring wells will be purged of a minimum of three well bore volumes prior to collecting the water samples. A new, disposable, Teflon® bailer will be used to sample each well. The first bail of water removed from each well will be examined for petroleum odor, sheen, and any other unique physical features.
- Water and vapor samples will be collected in laboratory-supplied sample containers. The samples will be delivered to an ADEC-approved laboratory in accordance with standard chain-of-custody procedures.
- Additional water samples will be collected from the monitoring wells after the well has been purged, as
 described above, and tested in the field for chemical and physical intrinsic parameters listed in the 2019
 Work Plan Schedule shown above.

Appendix C Field Measurements and Notes

Project: <u>Tesoro 2 Go Mart #52</u> Project Phase: 4Q19 GWM Project number: <u>185750867</u> Date: <u>10/17/2019</u> Samplers: <u>JM/JK/BG</u>

Well ID	Volume Purged (gallons)	Sheen/ Odor	Temp. (°C)	рН	Dissolved Oxygen (mg/L)	ORP (mV)	Specific Conductance (µs/cm°C)	Top of Casing* (feet)	Depth to GW** (feet btoc)	Total Depth (feet)	GW Elev. (feet datum)
G-1	0 - grab sample	None/none					1	97.5	NM	36.4	NM
G-3	8.0	None/none	6.0	6.16	1.83	56.6	508	97.14	33.60	40.05	63.54
G-4	NS		-					96.30	34.96	40.80	61.34
G-5	1.0	None/none	5.5	5.88	4.73	130.7	711	99.43	37.75	41.12	61.68
G-7	4.5	None/none	7.0	5.85	8.44	150.1	492	97.58	36.00	45.10	61.58
MW 16-2	1.5	None/none	7.4	6.63	4.35	92.3	499	97.24	32.07	37.62	65.17
RW 16-1	NS							97.46	NM	40.10	NM

^{*} G-1, G-3, G-4, G-5, G-7, MW 16-2, and RW16-1 surveyed on 10/17/19.

°C - degree Celsius NS - not sampled

μs/cm°C - microsiemens per centimeter degrees Celsius

btoc - below top of casing

datum - locally established benchmark at 100 feet

elev. - elevation GW - groundwater mg/L - milligrams per liter

NM - Not measured

ORP - oxidation reduction potential

Instruments/methods used	Model	
Static water level	Heron	H01L
Conductivity	YSI	30
Dissolved Oxygen	YSI	85
Temperature	YSI	85
ORP	Beckman	410
рН	Beckman	255
Temp, pH, ORP, DO, Specific Conductance	YSI	556

Well	Observations	Well Dia.	Time
G-1	Clear		
G-1		2-inch	11:10
G-3	Dark grey		
G-3		4-inch	15:00
G-4	Not sampled	2-inch	
G-5	Slight red tint	2-inch	16:15
G-7	Clear	2-inch	17:00
RW16-1	Not sampled	2-inch	
MW16-2	Dup-01 taken	2-inch	12:30
Dup-01	Duplicate of MW16-2		13:00

^{**} Measured depth with tape on bailer

Tesoro 2 Go Mart #52 -Groundwater Elevation Contours October 17, 2019

Local Easting (Feet)

Local Easting (Feet)

Linear Interpolation Method Major Contour Interval 2.00 feet Minor Contour Interval 0.50 feet Polynomial Regression Interpolation Method Major Contour Interval 1.00 feet Minor Contour Interval 0.50 feet

Elevation datum is locally established at 100 feet.

Monitoring Well G-1										
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev			
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)			
24-Apr-97	3.700	28.00	12.00	64.00	170.00	11.00	62.20			
03-Sep-97	0.001	12.00	5.20	41.00	85.00	12.00	65.72			
29-Dec-97	0.042	2.00	1.50	9.30	34.00	3.30	64.24			
23-Apr-98	0.130	3.90	4.10	23.00	91.00	8.30	62.07			
03-Aug-98	0.140	3.10	3.00	19.00	76.00	12.00	64.22			
02-Nov-98	0.121	4.59	4.76	27.12	70.00	5.58	63.06			
12-Feb-99	0.001	5.40	4.00	24.00	91.00	19.00	61.56			
11-May-99	Ice	Ice	Ice	Ice	Ice	Ice	NM			
30-Aug-99	0.001	3.10	5.60	36.00	190.00	10.00	63.46			
29-Oct-99	0.001	0.026	0.035	0.21	0.89	0.45	66.59			
08-Feb-00	0.001	3.30	4.40	26.00	10.00	NT	63.11			
08-Jun-00	0.001	0.051	0.110	0.61	2.30	0.33	69.16			
30-Aug-00	0.001	0.500	0.92	5.00	19.00	0.57	66.72			
30-Nov-00	0.001	1.20	2.30	11.00	42.00	1.90	64.34			
05-Feb-01	0.001	3.40	4.70	25.00	94.00	5.20	62.39			
	0.001	0.967	2.62	15.36	41.10	1.90	63.81			
10-May-01	0.013	0.401	0.652	6.18	14.30	1.99	64.29			
16-Aug-01										
09-Nov-01 15-Feb-02	0.013 0.036	0.608 2.820	1.750 3.640	9.55 21.59	25.40 66.10	3.16 3.66	63.50 62.09			
	0.036		9.940		113.00					
30-May-02		5.520		51.80		92.60	62.63			
14-Aug-02	0.048	2.13	6.15	37.27	99.60	11.20	64.02			
14-Nov-02	0.053	2.35	5.37	27.17	105	1.51	68.74			
28-Jan-03	U (0.025)	0.462	1.04	7.55	24.8	3.83	65.52			
17-Apr-03	0.217	1.15	4.55	26.9	117	4.7	63.23			
17-Jul-03	U (0.05)	1.81	6	35.6	104	8.34	62.90			
02-Oct-03	0.184	1.84	5.34	33.4	137	U (0.32)	62.80			
20-Jan-04	U (0.2)	2.46	5.9	34.8	100	10.6	62.17			
13-Apr-04	U (0.1)	1.49	6.37	37.5	109	6.97	63.76			
20-Jul-04	U (0.25)	0.612	2.67	26.2	87.1	8.09	63.34			
02-Sep-04	U (0.05)	0.38	2.6	18.4	48.5	4.94	NM			
13-Oct-04	U (0.005)	0.615	0.232	1.87	5.98	1.9	65.10			
28-Jan-05	U (0.0005)	0.121	0.0843	0.582	2.08	0.818	NM			
11-Apr-05	U (0.0005)	0.069	0.0374	0.306	0.963	0.78	66.35			
12-Aug-05	U (0.0005)	U (0.0005)	U (0.0005)	0.0031	U (0.05)	0.528	68.33			
07-Oct-05	U (0.0005)	0.0103	0.0082	0.0713	0.24	U (0.397)	71.48			
14-Feb-06	U (0.0005)	0.00831	0.0041	0.0482	0.141	0.676	64.20			
18-Apr-06	0.0147	0.0874	0.962	6.64	24.8	8.37	63.30			
06-Jul-06	U (0.0005)	0.00359	0.00289	0.0539	0.153	U (0.394)	63.46			
26-Oct-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.391)	76.53			
02-Feb-07	U (0.0005)	0.21	0.257	1.95	7.79	1.04	NM			
19-Apr-07	U (0.0005)	0.165	0.13	1.12	4.12	0.894	65.01			
07-Aug-07	U (0.0005)	0.0536	0.0392	0.277	0.891	0.582	65.31			
23-Oct-07	U (0.0005)	U (0.0005)	U (0.0005)	0.00566	U (0.05)	U (0.424)	64.23			
22-Feb-08	U (0.0005)	0.0129	0.00712	0.068	0.229	0.479	62.02			
15-Apr-08	U (0.0005)	0.0247	0.0137	0.116	0.45	0.667	62.01			
27-Aug-08	U (0.0005)	0.00662	0.00397	0.0477	0.172	U (0.4)	63.33			
22-Oct-08	U (0.0005)	0.032	0.0226	0.255	0.742	U (0.427)	64.14			
05-Feb-09	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.463)	62.48			
08-Apr-09	U (0.0005)	U (0.0005)	U (0.0005)	0.0021	U (0.05)	U (0.424)	62.85			
09-Jul-09	U (0.0005)	0.00137	U (0.001)	0.0188	0.106	U (0.397)	63.28			
04-Nov-09	U (0.0005)	0.00856	0.00624	0.0639	0.271	U (0.403)	63.73			
27-Jan-10	U (0.0005)	0.00123	U (0.001)	0.0168	0.0757	0.844	61.69			
27-May-10	U (0.0005)	0.0114	0.0117	0.0923	0.257	0.538	63.28			
19-Aug-10	U (0.0005)	U (0.0005)	0.000537	0.0189	0.184	U (0.455)	63.88			
26-Oct-10	U (0.0005)	0.00441	0.00443	0.0574	0.181	0.993	68.65			
17-Feb-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.491	NM			
09-Jun-11	U (0.0005)	0.000913	0.000945	0.0425	0.143	0.635	61.52			
20-Sep-11	U (0.0005)	U (0.0005)	U (0.0005)	0.00236	U (0.05)	U (0.431)	63.43			
	U (0.0005)	0.0121	0.0565	0.345	0.851	U (0.417)	71.53			
21-Oct-11				0.0410	0.0787	0.712	NM			
17-Feb-12	U (0.0005)	0.00128	0.00235	0.0410	0.0707	0.712				
17-Feb-12	U (0.0005) U (0.0005)				0.0767					
	U (0.0005) U (0.0005) U (0.0005)	0.00128 0.00572 0.00468	0.00235 0.0250 0.0139	0.3390 0.1450		0.596 U (0.424)	70.40 73.90			

	Monitoring Weil 3-1									
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev			
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)			
30-Jan-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.461	65.97			
10-May-13	U (0.0005)	0.000670	0.0140	0.166	0.248	U (0.424)	71.17			
11-Oct-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.431)	74.89			
11-Dec-13	U (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.403)	75.74			
19-Feb-14	U (0.0005)	0.000667	U (0.0005)	0.00281	U (0.05)	U (0.403)	70.68			
01-May-14	U (0.0005)	U (0.001)	0.0038	0.02800	0.110	U (0.41)	66.53			
30-Oct-14	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	64.40			
11-Feb-15	NT	NT	NT	NT	NT	NT	62.86			
15-May-15	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (0.05)	0.34	61.97			
02-Sep-15	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	0.150	U (0.40)	62.83			
12-Nov-15	U (0.0020)	U (0.0020)	U (0.0030)	U (0.0020)	U (0.050)	0.63	64.35			
28-Jan-16	U (0.0020)	U (0.0020)	U (0.0030)	U (0.0020)	U (0.050)	0.88	63.11			
09-May-16	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.41)	66.37			
24-Oct-16	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.41)	64.10			
09-Dec-16	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (0.05)	U (0.11)	63.52			
08-Feb-17	NT	NT	NT	NT	NT	NT	62.98			
25-Apr-17	U (0.0002)	U (0.002)	U (0.003)	U (0.002)	U (1.0)	0.99	64.05			
20-Oct-17	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (1.0)	1.4	64.50			
13-Feb-18	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (1.0)	0.88	62.88			
17-Aug-18	U (0.015)	U (0.01)	U (0.015)	U (0.015)	U (0.25)	1.6	64.19			
25-Oct-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	64.36			
26-Feb-19	U (0.003)	U (0.002)	0.0066	U (0.003)	U (0.25)	0.51	62.74			
24-Apr-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.25)	72.81			
16-Jul-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	1.6	64.25			
17-Oct-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	NM			
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA			

			Monitoring	y Well G-2			
Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)
24-Apr-97	U	0.001	Ü	0.0023	U	U	NM
03-Sep-97	Ü	0.001	Ü	0.0021	Ü	Ü	66.46
29-Dec-97	Ü	U	Ü	U	U	U	65.30
23-Apr-98	Ü	0.002	Ü	U	Ü	Ü	62.94
03-Aug-98	Ü	U	Ü	U	Ü	Ü	64.10
02-Nov-98	U	U	Ü	U	U	U	63.99
12-Feb-99	NT	NT	NT	NT	NT	NT	NM
11-May-99	U	U	U	U	U	U	61.57
30-Aug-99	Ü	Ü	Ü	U	Ü	0.100	64.82
29-Oct-99	Ü	Ü	Ü	U	Ü	U	66.80
08-Feb-00	NT	NT	NT	NT	NT	NT	62.77
08-Jun-00	U	U	U	0.00	U	U	69.20
30-Aug-00	NT	NT	NT	NT	NT	NT	NM
30-Nov-00	U	U	U	U	U	U	65.20
05-Feb-01	NT	NT	NT	NT	NT	NT	NM
10-May-01	U	U	0.005	0.021	0.114	U	64.07
09-Nov-01	Ü	Ü	U	U	U	Ü	63.28
15-Feb-02	NT NT	NT	NT	NT	NT	NT	NM
30-May-02	NT	NT	NT	NT	NT	NT	NM
14-Aug-02	NT	NT	NT	NT	NT	NT	65.91
14-Nov-02	NT	NT	NT	NT	NT	NT	NM
28-Jan-03	NT	NT	NT	NT	NT	NT	NM
17-Apr-03	NT	NT	NT	NT	NT	NT	64.19
17-Jul-03	NT	NT	NT	NT	NT	NT	NM
02-Oct-03	NT	NT	NT	NT	NT	NT	NM
20-Jan-04	NT	NT	NT	NT	NT	NT	NM
13-Apr-04	U (0.0005)	U (0.0005)	0.000557	0.00745	U (0.05)	U (0.5)	65.96
20-Jul-04	NT	NT	NT	NT	NT	NT	NM
02-Sep-04	NT	NT	NT	NT	NT	NT	NM
28-Jan-05	NT	NT	NT	NT	NT	NT	NM
11-Apr-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.421	65.96
12-Aug-05	NT	NT	NT	NT	NT	NT	NM
07-Oct-05	NT	NT	NT	NT	NT	NT	NM
14-Feb-06	NT	NT	NT	NT	NT	NT	NM
18-Apr-06	NT	NT	NT	NT	NT	NT	64.58
06-Jul-06	NT	NT	NT	NT	NT	NT	NM
26-Oct-06	NT	NT	NT	NT	NT	NT	NM
02-Feb-07	NT	NT	NT	NT	NT	NT	NM
19-Apr-07	NT	NT	NT	NT	NT	NT	NM
07-Aug-07	NT	NT	NT	NT	NT	NT	NM
23-Oct-07	NT	NT	NT	NT	NT	NT	NM
22-Feb-08	NT	NT	NT	NT	NT	NT	NM
15-Apr-08	NT	NT	NT	NT	NT	NT	62.74
27-Aug-08	NT	NT	NT	NT	NT	NT	NM
22-Oct-08	NT	NT	NT	NT	NT	NT	NM
05-Feb-09	NT	NT	NT	NT	NT	NT	NM
08-Apr-09	NT	NT	NT	NT	NT	NT	NM
09-Jul-09	NT	NT	NT	NT	NT	NT	NM
04-Nov-09	NT	NT	NT	NT	NT	NT	NM
27-Jan-10	NT	NT	NT	NT	NT	NT	NM
27-May-10	NT	NT	NT	NT	NT	NT	NM
Zi iviay io	NT	NT	NT	NT	NT	NT	NM
19-Aug-10				NT	NT	NT	NM
	NT	NT	NT	111	INI	INI	INIVI
19-Aug-10		NT NT	NT NT	NT	NT	NT	NM
19-Aug-10 26-Oct-10	NT						
19-Aug-10 26-Oct-10 17-Feb-11	NT NT	NT	NT	NT	NT	NT	NM
19-Aug-10 26-Oct-10 17-Feb-11 09-Jun-11	NT NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NM NM
19-Aug-10 26-Oct-10 17-Feb-11 09-Jun-11 20-Sep-11	NT NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NM NM NM
19-Aug-10 26-Oct-10 17-Feb-11 09-Jun-11 20-Sep-11 21-Oct-11	NT NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NM NM NM
19-Aug-10 26-Oct-10 17-Feb-11 09-Jun-11 20-Sep-11 21-Oct-11 17-Feb-12	NT NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NM NM NM NM
19-Aug-10 26-Oct-10 17-Feb-11 09-Jun-11 20-Sep-11 21-Oct-11 17-Feb-12 17-May-12	NT NT NT NT NT NT U (0.0005)	NT NT NT NT NT U (0.0005)	NT NT NT NT NT U (0.0005)	NT NT NT NT NT U (0.0015)	NT NT NT NT NT U (0.05)	NT NT NT NT NT U (0.410)	NM NM NM NM NM 65.11
19-Aug-10 26-Oct-10 17-Feb-11 09-Jun-11 20-Sep-11 21-Oct-11 17-Feb-12 17-May-12 05-Sep-12	NT NT NT NT NT NT U (0.0005)	NT NT NT NT NT U (0.0005)	NT NT NT NT NT U (0.0005)	NT NT NT NT NT U (0.0015)	NT NT NT NT NT U (0.05)	NT NT NT NT NT U (0.410)	NM NM NM NM NM 65.11

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
11-Oct-13	NT	NT	NT	NT	NT	NT	74.73
11-Dec-13	NT	NT	NT	NT	NT	NT	NM
19-Feb-14	NT	NT	NT	NT	NT	NT	NM
01-May-14	U (0.0005)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	U (0.40)	66.19
30-Oct-14	NT	NT	NT	NT	NT	NT	NM
11-Feb-15	NT	NT	NT	NT	NT	NT	NM
15-May-15	NT	NT	NT	NT	NT	NT	DRY
02-Sep-15	NT	NT	NT	NT	NT	NT	NM
12-Nov-15	NT	NT	NT	NT	NT	NT	NM
28-Jan-16	NT	NT	NT	NT	NT	NT	NM
09-May-16	NT	NT	NT	NT	NT	NT	DRY
24-Oct-16	NT	NT	NT	NT	NT	NT	NM
09-Dec-16	NT	NT	NT	NT	NT	NT	NM
08-Feb-17	NT	NT	NT	NT	NT	NT	NM
25-Apr-17	U (0.0002)	U (0.002)	U (0.003)	U (0.002)	U (1.0)	U (0.11)	64.07
20-Oct-17	NT	NT	NT	NT	NT	NT	65.23
13-Feb-18	NT	NT	NT	NT	NT	NT	NM
17-Aug-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	64.74
25-Oct-18	NT	NT	NT	NT	NT	NT	NM
26-Feb-29	NT	NT	NT	NT	NT	NT	NM
24-Apr-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.27)	64.70
16-Jul-19	NT	NT	NT	NT	NT	NT	NM
17-Oct-19	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

			MOIIICOIIIIQ	g Well G-3			
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
24-Apr-97	0.001	7.60	5.40	26.00	70.00	5.10	64.02
03-Sep-97	0.080	2.00	1.40	7.70	21.00	7.50	64.72
29-Dec-97	0.057	0.43	1.50	4.70	19.00	3.50	63.33
23-Apr-98	0.001	0.49	3.10	10.00	40.00	6.90	61.11
03-Aug-98	0.140	0.45	3.30	10.00	39.00	2.00	62.23
02-Nov-98	0.001	0.58	3.00	10.27	30.00	2.43	62.07
12-Feb-99	0.001	0.52	3.90	12.00	48.00	8.00	60.58
11-May-99	0.051	0.12	1.02	4.16	14.00	17.60	60.43
30-Aug-99	0.001	0.12	1.60	3.90	19.00	4.60	62.48
29-Oct-99	0.0018	0.0016	0.017	0.073	0.32	0.92	66.44
08-Feb-00	0.007	0.0380	0.470	0.890	4.00	0.00	62.56
08-Jun-00	0.001	U	0.003	0.01	0.00	1.10	69.16
30-Aug-00	0.001	0.0018	0.004	0.03	0.12	0.51	66.67
30-Nov-00	0.006	0.0320	0.320	0.68	2.90	5.50	63.83
05-Feb-01	0.006	0.1400	0.460	0.90	4.30	5.90	61.72
10-May-01	0.001	U	0.003	0.009	0.00	12.80	62.84
16-Aug-01	0.005	0.0613	0.390	0.856	2.76	8.75	63.44
09-Nov-01	0.034	0.0828	0.019	0.103	0.57	1.57	62.59
15-Feb-02	0.008	0.1190	0.049	0.156	0.87	70.70	61.16
30-May-02	0.021	0.0809	0.200	0.605	2.25	34.20	62.13
14-Aug-02	0.029	0.1470	0.488	1.490	5.44	5.68	63.37
14-Nov-02	0.0658	0.186	0.804	1.9704	8.97	4.08	68.85
28-Jan-03	0.0571	0.0914	0.319	0.644	2.93	7.89	64.85
17-Apr-03	0.00288	0.0274	0.0282	0.082	0.585	4.58	62.58
17-Jul-03	U (0.0005)	0.0165	0.0107	0.0327	0.233	7.48	62.29
02-Oct-03	U (0.0005)	0.00224	0.000626	0.00232	U (0.08)	1.14	62.25
20-Jan-04	U (0.0005)	0.0439	0.00399	0.0127	0.144	1.83	61.39
13-Apr-04	U (0.005)	0.0261	0.0472	0.148	0.855	2.89	62.78
20-Jul-04	U (0.0005)	0.0305	0.0028	0.00853	0.164	19.4	63.86
02-Sep-04	NT	NT	NT	NT	NT	NT	NM
13-Oct-04	U (0.0005)	0.000537	U (0.0005)	U (0.001)	U (0.08)	2.11	64.04
28-Jan-05	0.000857	0.0293	0.00078	0.0038	0.0973	3.65	64.60
11-Apr-05	0.00311	0.0113	0.00232	0.0253	0.127	2.58	63.60
12-Aug-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.14	68.30
07-Oct-05	U (0.0005)	0.00234	U (0.0005)	U (0.0015)	U (0.05)	2.85	71.45
14-Feb-06	0.000874	0.076	0.00129	0.0072	0.215	3	63.13
18-Apr-06	U (0.0005)	0.0614	0.000884	0.00356	0.181	7.64	62.66
06-Jul-06	U (0.0005)	0.00252	U (0.0005)	U (0.0015)	U (0.05)	3.17	62.79
26-Oct-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.06	76.42
02-Feb-07	0.00528	0.0513	0.0017	0.0154	0.236	2.27	NM
19-Apr-07	NT	NT	NT	NT	NT	NT	NM
07-Aug-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.841	62.24
23-Oct-07	0.00502	0.0358	0.02	0.0319	0.322	1.41	62.23
21-Feb-08	0.00517	0.0307	0.067	0.144	0.771	0.93	60.73
15-Apr-08	0.00562	0.04	0.135	0.211	1.44	0.604	60.72
27-Aug-08	0.0138	0.436	0.842	2.88	7.26	0.978	62.69
22-Oct-08	0.0124	0.514	0.96	3.57	9.55	0.83	62.80
05-Feb-09	U (0.01)	0.234	1.17	4.73	15.7	0.909	61.40
19-Feb-09	0.0071	0.0493	0.0834	0.241	1.04	9.47	NM
08-Apr-09	U (0.005)	0.0702	0.378	1.43	4.2	1.51	60.84
09-Jul-09	U (0.0005)	0.0415	1.12	4.32	3.01	1.81	61.93
04-Nov-09	U (0.0005)	0.101	0.579	2.55	12.7	U (0.400)	61.69
27-Jan-10	U (0.0005)	0.0157	0.337	2.01	6.47	1.12	60.29
27-May-10	U (0.0005)	0.000748	0.0379	0.137	0.936	1.01	61.19
19-Aug-10	U (0.0005)	0.000756	0.0336	0.120	0.933	U (0.403)	62.19
26-Oct-10	U (0.0025)	U (0.0025)	0.153	0.643	4.62	U (0.397)	61.98
17-Feb-11	U (0.0005)	0.00112	0.0647	0.222	2.11	4.10	60.36
09-Jun-11	0.000536	0.00188	0.0666	0.232	2.26	U (0.446)	60.45
20-Sep-11	U (0.0005)	0.000718	0.0235	0.0794	1.69	U (0.400)	62.17
21-Oct-11	0.00107	0.00126	0.0325	0.105	2.51	U (0.417)	61.76
17-Feb-12	0.000809	0.000792	0.0536	0.131	2.62 5.91	1.15	60.66
17-May-12	0.00117	0.00164	0.0899	0.303		0.560	62.88
05-Sep-12	U (0.0005)	U (0.0005)	0.166	0.049	0.710	U (0.424)	NM

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
30-Oct-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.431)	76.33
30-Jan-13	U (0.0005)	0.00364	0.0182	0.056	0.818	0.670	65.89
10-May-13	0.00153	0.00151	0.0554	0.167	1.35	U (0.439)	65.55
11-Oct-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.391)	74.62
11-Dec-13	U (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.417)	75.70
19-Feb-14	U (0.0005)	U (0.0005)	0.00066	0.00177	U (0.05)	0.928	70.63
01-May-14	U (0.0005)	0.001	0.0066	0.017	0.300	4.80	65.77
30-Oct-14	U (0.0005)	U (0.0005)	0.0097	0.023	0.460	1.00	63.61
11-Feb-15	0.002	0.0011	0.0870	0.240	4.80	12.00	61.31
15-May-15	U (0.002)	U (0.002)	0.0078	0.015	2.6	1.3	60.81
02-Sep-15	U (0.0002)	U (0.001)	0.0079	0.0064	1.1	U (0.40)	61.30
12-Nov-15	U (0.0020)	U (0.0020)	0.036	0.069	3.2	0.26	63.19
28-Jan-16	U (0.0020)	U (0.0020)	0.027	0.052	3.2	0.76	61.95
09-May-16	0.0002	U (0.001)	0.0086	0.012	1.6	0.58	62.85
24-Oct-16	0.0002	U (0.001)	0.0017	0.0036	4.4	0.37	62.53
09-Dec-16	U (0.002)	U (0.002)	0.002	0.0038	4.2	0.48	61.97
08-Feb-17	NT	NT	NT	NT	NT	NT	61.12
25-Apr-17	U (0.0002)	U (0.002)	0.0089	0.016	2.3	4.7	62.36
20-Oct-17	U (0.002)	U (0.002)	U (0.003)	U(0.003)	U(1.0)	3	63.07
13-Feb-18	U (0.002)	0.0054	U (0.003)	0.0047	U (1.0)	6.7	61.76
17-Aug-18	U (0.003)	0.00091 J	0.0047	0.00938 J	0.99	3.2	62.78
25-Oct-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	0.37	2.3	63.06
26-Feb-19	U (0.003)	U (0.002)	0.006	0.013	1.7	8.5	61.46
24-Apr-19	U (0.003)	U (0.002)	0.0034	0.0068	1.6	7.7	62.48
16-Jul-19	U (0.003)	U (0.002)	0.0033	0.006	1.3	4.6	63.05
17-Oct-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	0.58	3.6 H	65.53
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well G-4											
Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)				
24-Apr-97	U	0.001	U	0.0048	U	NT	NM				
03-Sep-97	Ü	U	Ü	U	Ü	0.32	63.34				
29-Dec-97	Ü	Ü	Ü	U	Ü	U	62.44				
23-Apr-98	Ü	Ü	Ü	Ü	U	Ü	58.99				
03-Aug-98	Ü	Ü	Ü	Ü	Ü	Ü	61.02				
02-Nov-98	Ü	0.0012	Ü	0.0011	Ü	Ü	60.65				
12-Feb-99	Ü	U	Ü	U	Ü	0.36	57.89				
10-May-99	Ü	Ü	0.0065	0.0279	0.091	1.98	57.53				
30-Aug-99	Ü	Ü	U	U	U	U	60.64				
29-Oct-99	Ü	Ü	Ü	Ü	Ü	Ü	66.09				
08-Feb-00	NT	NT	NT	NT	NT	NT	NM				
08-Jun-00	U	U	U	U	U	0.300	68.92				
30-Aug-00	NT	NT	NT	NT	NT	NT	NM				
30-Nov-00	U	U	U	U	U	U	63.27				
05-Feb-01	NT	NT	NT	NT	NT	NT	60.65				
10-May-01	U	U	U	0.002	U	U	61.25				
09-Nov-01	Ü	U	U	U	U	U	61.22				
15-Feb-02	NT	NT	NT	NT	NT	NT	58.19				
30-May-02	U	0.003	U	U	U	U	59.63				
14-Aug-02	NT	0.003 NT	NT	NT	NT	NT	61.84				
14-Aug-02 14-Nov-02	NT	NT	NT	NT	NT	NT	NM				
28-Jan-03	NT	NT	NT	NT	NT	NT	64.13				
28-Jan-03 17-Apr-03	U (0.0005)	U (0.0005)	U (0.0005)	U (0.001)	U (0.08)	U (0.25)	61.10				
17-Apr-03	NT	NT	NT	NT	NT	NT	60.82				
02-Oct-03	NT	NT	NT	NT	NT	NT					
20-Jan-04	NT	NT	NT	NT	NT	NT	60.39 58.80				
13-Apr-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.5)	59.58				
20-Jul-04	NT	NT	NT	NT	NT	0 (0.5) NT	59.56 NM				
02-Sep-04	NT	NT	NT NT	NT	NT	NT NT	NM				
	NT NT	NT	NT	NT	NT	NT	63.32				
28-Jan-05 11-Apr-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.67	62.06				
12-Aug-05	NT	NT	NT	NT	NT	NT	NM				
07-Oct-05	NT	NT	NT	NT	NT	NT	71.21				
14-Feb-06	NT	NT	NT	NT	NT	NT	62.63				
18-Apr-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.407)	61.01				
06-Jul-06	NT	NT	NT	NT	NT	NT	61.46				
26-Oct-06	NT	NT	NT	NT	NT	NT	76.18				
02-Feb-07	NT	NT	NT	NT	NT	NT	NM				
	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.431)	62.50				
19-Apr-07 07-Aug-07	NT	NT	NT	NT	NT	NT	NM				
23-Oct-07	NT	NT	NT	NT	NT	NT	NM				
23-Oct-07 22-Feb-08	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NM				
	U (0.0005)										
15-Apr-08 27-Aug-08	NT	U (0.0005) NT	U (0.0005) NT	U (0.0015) NT	U (0.05) NT	0.436 NT	58.07 61.28				
27-Aug-08 22-Oct-08	NT NT	NT	NT NT	NT	NT NT	NT NT	61.54				
	NT NT	NT NT	NT NT	NT	NT NT	NT NT	59.07				
05-Feb-09 19-Feb-09	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.463)	59.07 NM				
08-Apr-09	NT	0 (0.0005) NT	0 (0.0005) NT	0 (0.0015) NT	0 (0.05) NT	0 (0.463) NT	57.24				
08-Apr-09 09-Jul-09	NT NT	NT	NT NT	NT	NT NT	NT NT	59.94				
09-Jul-09 04-Nov-09	NT NT	NT	NT NT	NT	NT NT	NT NT	59.94 NM				
27-Jan-10	NT	NT	NT	NT	NT	NT	56.82				
27-Jan-10 27-May-10	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.431)	57.47				
19-Aug-10	NT	NT	NT	NT	NT	NT	59.04				
26-Oct-10	NT NT	NT	NT NT	NT	NT NT	NT NT	59.04				
17-Feb-11	NT	NT	NT	NT	NT	NT	56.83				
09-Jun-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.424)	57.29				
20-Sep-11	NT	NT	NT	NT	NT	0 (0.424) NT	59.96				
21-Oct-11	NT NT	NT	NT NT	NT	NT NT	NT NT	59.90				
17-Feb-12	NT NT	NT	NT NT	NT	NT NT	NT NT	59.90				
17-Feb-12 17-May-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.819	60.90				
05-Sep-12	NT	NT	NT	NT	NT	0.819 NT	NM				
30-Oct-12	NT NT		NT NT	NT	NT NT	NT NT	76.02				
		NT									
30-Jan-13	NT	NT	NT	NT	NT	NT	65.81				

			- Inomiconing				
Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)
	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)		, , ,	64.66
10-May-13	0 (0.0005) NT	NT	NT	NT	U (0.05) NT	U (0.463) NT	
11-Oct-13							74.35
11-Dec-13	NT	NT	NT	NT	NT	NT	NM
19-Feb-14	NT	NT	NT	NT	NT	NT	70.46
01-May-14	U (0.0005)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	U (0.42)	65.39
30-Oct-14	NT	NT	NT	NT	NT	NT	NM
11-Feb-15	NT	NT	NT	NT	NT	NT	NM
15-May-15	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (0.05)	U (0.23)	57.78
02-Sep-15	NT	NT	NT	NT	NT	NT	NM
12-Nov-15	NT	NT	NT	NT	NT	NT	61.97
28-Jan-16	NT	NT	NT	NT	NT	NT	60.14
09-May-16	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.42)	60.67
24-Oct-16	NT	NT	NT	NT	NT	NT	60.7
09-Dec-16	NT	NT	NT	NT	NT	NT	59.94
08-Feb-17	NT	NT	NT	NT	NT	NT	57.36
25-Apr-17	U (0.0002)	U (0.002)	U (0.003)	U (0.002)	U (1.0)	U (0.11)	58.77
20-Oct-17	NT	NT	NT	NT	NT	NT	61.02
13-Feb-18	NT	NT	NT	NT	NT	NT	59.22
17-Aug-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	60.90
25-Oct-18	NT	NT	NT	NT	NT	NT	61.56
26-Feb-19	NT	NT	NT	NT	NT	NT	NM
24-Apr-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.28)	60.29
16-Jul-19	NT	NT	NT	NT	NT	NT	61.15
17-Oct-19	NT	NT	NT	NT	NT	NT	63.33
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well G-5											
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev				
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)				
24-Apr-97	0.032	0.56	0.91	5.20	17.00		58.34				
03-Sep-97	0.001	U	1.10	5.40	25.00	4.80	63.30				
29-Dec-97	0.065	0.15	1.00	4.70	19.00	4.00	62.25				
23-Apr-98	0.048	0.068	0.38	1.70	11.00	2.70	59.07				
03-Aug-98	0.001	U	U	0.0019	0.00	0.27	60.74				
02-Nov-98	0.026	0.01	0.12	0.27	3.70	1.82	60.43				
12-Feb-99	NT	NT	NT	NT	NT	NT	NM				
10-May-99	NT	NT	NT	NT	NT	NT	NM				
31-Aug-99	0.011	0.029	0.340	0.900	4.60	0.950	60.55				
29-Oct-99	0.024	0.006	0.066	0.110	2.70	0.40	66.08				
08-Feb-00	0.008	0.006	0.053	0.100	4.20	NT	61.10				
08-Jun-00	0.001	U	0.023	0.04	0.61	0.00	69.02				
30-Aug-00	0.001	U	0.004	0.008	0.220	0.001	66.58				
30-Nov-00	0.012	0.006	0.079	0.140	3.900	0.490	63.26				
05-Feb-01	0.015	0.008	0.016	0.026	2.100	0.320	60.47				
10-May-01	0.007	U	0.061	0.100	1.620	0.001	61.12				
16-Aug-01	0.031	0.011	0.042	0.065	2.740	U	62.11				
09-Nov-01	0.004	U	U	0.002	0.258	U	61.05				
15-Feb-02	NT	NT	NT	NT	NT	NT	NM				
30-May-02	NT	NT	NT	NT	NT	NT	NM				
14-Aug-02	0.013	0.003	0.145	0.182	2.530	0.552	61.71				
14-Nov-02	0.00257	U (0.002)	U (0.002)	U (0.002)	0.137	U (0.5)	68.57				
28-Jan-03	0.064	U (0.02)	0.0733	0.0667	2.4	1.2	64.08				
17-Apr-03	0.0181	0.002	0.0834	0.186	3.14	0.418	61.01				
17-Jul-03	U (0.005)	U (0.005)	0.0666	0.184	2.72	U (0.5)	60.80				
02-Oct-03	0.0125	0.00577	0.127	0.217	4.33	U (0.32)	60.51				
20-Jan-04	NT	NT	NT	NT	NT	NT	NM				
13-Apr-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	0.0539	U (0.5)	59.99				
20-Jul-04	0.00351	U (0.0005)	0.0561	0.0239	1.7	0.484	60.95				
02-Sep-04	NT 0.009	NT 0.00455	NT 0.0003	NT 0.112	NT 2.74	NT 0.442	NM 57.70				
13-Oct-04 28-Jan-05	0.0011	0.00155 0.00198	0.0893 0.0183	0.113 0.02	2.71 1.35	0.443 0.45	57.72 63.15				
11-Apr-05	U (0.0005)	0.000845	0.0138	0.02	1.06	U (0.391)	61.89				
12-Aug-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	68.20				
07-Oct-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.407)	71.31				
14-Feb-06	0.00186	0.00136	0.0163	0.0066	1.34	0.475	62.43				
18-Apr-06	0.0018	0.000663	0.153	0.24	2.04	0.693	62.00				
06-Jul-06	0.00141	0.00158	0.0932	0.103	1.14	U (0.41)	61.34				
26-Oct-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	76.31				
02-Feb-07	NT	NT	NT	NT	NT	NT	NM				
19-Apr-07	U (0.0005)	U (0.0005)	0.0163	0.0227	0.774	U (0.435)	62.68				
07-Aug-07	0.00147	U (0.0005)	0.00611	0.007	0.529	U (0.407)	60.94				
23-Oct-07	U (0.0005)	U (0.0005)	0.00534	0.00603	0.4	U (0.446)	60.75				
21-Feb-08	0.00231	0.000739	0.0592	0.0523	1.97	U (0.417)	58.73				
15-Apr-08	NT	NT	NT	NT	NT	NT	58.39				
27-Aug-08	U (0.0005)	U (0.0005)	0.0203	0.0243	0.506	U (0.4)	61.12				
22-Oct-08	U (0.0005)	U (0.0005)	0.00629	0.00512	0.35	U (0.420)	61.35				
05-Feb-09	0.00093	0.00211	0.0898	0.101	2.02	0.59	59.36				
19-Feb-09	0.00249	0.00283	0.129	0.262	1.96	0.689	NM				
08-Apr-09	0.0058	0.169	0.26	0.634	3.84	U (0.435)	57.51				
09-Jul-09	0.00267	0.00452	0.184	0.284	2.51	U (0.410)	60.05				
04-Nov-09	0.00365	0.00739	0.292	0.645	4.13	U (0.397)	59.31				
27-Jan-10	0.00385	0.0313	0.499	1.51	7.17	U (0.427)	57.11				
27-May-10	0.0022	0.0218	0.406	1.22	5.19	0.668	57.97				
19-Aug-10	0.00105	0.00307	0.233	0.977	3.27	0.415	59.56				
26-Oct-10	U (0.0022)	U (0.0005)	0.0449	0.0723	0.741	U (0.403)	60.06				
17-Feb-11	0.00291	0.0034	0.108	0.472	3.11	U (0.410)	57.11				
09-Jun-11	0.00199	0.00405	0.173	0.856	5.08	0.436	57.63				
20-Sep-11	0.00101	0.00133	0.0362	0.138	0.975	U (0.403)	60.13				
21-Oct-11	U (0.0005)	U (0.0005)	0.0121	0.0303	0.365	U (0.439)	60.05				
17-Feb-12	0.00403	0.00497	0.0807	0.476	2.80	0.726	57.53				
17-May-12	0.000704	0.000734	0.0125	0.0378	0.683	0.541	60.79				
05-Sep-12	NT	NT	NT	NT	NT	NT	NM				

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
30-Oct-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.410)	76.18
30-Jan-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	65.81
10-May-13	0.000520	0.000627	U (0.0005)	0.00194	0.221	U (0.400)	64.83
11-Oct-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.439)	74.49
11-Dec-13	U (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.403)	75.58
19-Feb-14	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.400)	70.56
01-May-14	U (0.005)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	U (0.41)	65.66
30-Oct-14	0.000860	U (0.0005)	U (0.0005)	U (0.0015)	0.190	U (0.42)	62.96
11-Feb-15	U (0.0005)	U (0.0005)	0.0031	0.0031	0.280	U (0.42)	59.60
15-May-15	NT	NT	NT	NT	NT	NT	DRY
02-Sep-15	NT	NT	NT	NT	NT	NT	DRY
12-Nov-15	U (0.0020)	U (0.0020)	U (0.0030)	U (0.0020)	0.32	U (0.21)	61.78
28-Jan-16	U (0.0020)	U (0.0020)	U (0.0030)	U (0.0020)	U (0.050)	U (0.11)	60.14
9-May-16	NT	NT	NT	NT	NT	NT	DRY
24-Oct-16	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.41)	60.57
9-Dec-16	U (0.002)	U (0.001)	0.0063	0.0034	0.17	U (0.12)	59.98
8-Feb-17	NT	NT	NT	NT	NT	NT	DRY
24-Apr-17	U (0.0002)	U (0.001)	0.085	0.44	1.4	0.22	59.64
20-Oct-17	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U(1.0)	U(0.110)	60.86
13-Feb-18	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (1.0)	U (0.13)	59.52
17-Aug-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	60.76
25-Oct-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	61.38
26-Feb-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	0.12	59.39
24-Apr-19	U (0.003)	U (0.002)	0.0086	0.0068	U (0.25)	U (0.27)	60.41
16-Jul-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	61.58
17-Oct-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	63.67
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Date Benzene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L) Xylenes (mg/L) GRO (mg/L) DRO (mg/L) 03-Sep-97 U 0.013 0.006 0.042 0.088 13 29-Dec-97 0.039 0.0019 0.0014 0.0087 0.031 3.600 03-Aug-98 U	GW Elev (feet) NM NM 60.89 60.97 61.46 58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM 61.63
03-Sep-97 U 0.013 0.006 0.042 0.088 13 29-Dec-97 0.039 0.0019 0.0014 0.0087 0.031 3.600 03-Aug-98 U U U U U U U 02-Nov-98 0.001 0.0085 0.014 0.070 0.190 U 12-Feb-99 U U U U U U U 11-May-99 U	NM NM 60.89 60.97 61.46 58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM
29-Dec-97 0.039 0.0019 0.0014 0.0087 0.031 3.600 03-Aug-98 U <th>NM 60.89 60.97 61.46 58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM</th>	NM 60.89 60.97 61.46 58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM
03-Aug-98 U	60.89 60.97 61.46 58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM
02-Nov-98 0.001 0.0085 0.014 0.070 0.190 U 12-Feb-99 U U U U U U U 11-May-99 U<	60.97 61.46 58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM
12-Feb-99 U	61.46 58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM
11-May-99 U U U U 0.0026 U U 30-Aug-99 U	58.37 61.27 66.60 61.54 69.19 66.68 63.30 NM
30-Aug-99 U	61.27 66.60 61.54 69.19 66.68 63.30 NM
29-Oct-99 U	66.60 61.54 69.19 66.68 63.30 NM
08-Feb-00 NT	61.54 69.19 66.68 63.30 NM
08-Jun-00 U	69.19 66.68 63.30 NM
30-Aug-00 NT	66.68 63.30 NM
30-Nov-00 U	63.30 NM
05-Feb-01 NT U U U U U U U U U U U U U U U U U U NT U U U U U U U U U	NM
10-May-01 U NT U	
09-Nov-01 U U U U U U 15-Feb-02 NT NT NT NT NT NT 30-May-02 U U U U U U	
15-Feb-02 NT NT NT NT NT NT NT NT NT U	
30-May-02 U U U U U	61.39
	NM
14-Aug-02 NI NI NI NI NI NI	60.60
	NM NM
14-Nov-02 NT	NM
28-Jan-03 N1 17-Apr-03 U (0.0005) U (0.0005) U (0.0005) U (0.001) U (0.08) U (0.25)	61.44
17-Apr-03 0 (0.0005) 0 (0.0005) 0 (0.0005) 0 (0.001) 0 (0.08) 0 (0.25)	61.44
17-Jul-03	61.21 NM
20-Jan-04 NT NT NT NT NT NT NT	NM
13-Apr-04 U (0.0005) U (0.0005) U (0.0005) U (0.0015) U (0.05)	61.21
20-Jul-04 NT NT NT NT NT NT NT	NM
02-Sep-04 NT NT NT NT NT NT NT	NM
28-Jan-05 NT NT NT NT NT NT	NM
11-Apr-05 NT NT NT NT NT NT	NM
12-Aug-05 NT NT NT NT NT NT	NM
07-Oct-05 NT NT NT NT NT NT	NM
14-Feb-06 NT NT NT NT NT NT	NM
18-Apr-06 NT NT NT NT NT NT	NM
06-Jul-06 NT NT NT NT NT NT	NM
26-Oct-06 NT NT NT NT NT NT NT	NM
02-Feb-07 NT	NM
19-Apr-07 NT NT NT NT NT NT	NM
07-Aug-07 NT NT NT NT NT NT	NM
23-Oct-07 NT NT NT NT NT NT	NM
22-Feb-08 NT NT NT NT	NM
15-Apr-08 NT NT NT NT NT NT	NM
27-Aug-08 NT NT NT NT NT NT NT NT	NM
22-Oct-08 NT	NM
05-Feb-09 NT	NM NM
08-Apr-09 NT NT NT NT NT 09-Jul-09 NT NT NT NT NT NT	NM NM
09-Jul-09 NT NT NT NT NT NT NT NT NT	NM
27-Jan-10 NT NT NT NT NT NT NT	NM
27-Jan-10 NT NT NT NT NT NT NT NT	NM
19-Aug-10 NT NT NT NT NT NT NT	NM
26-Oct-10 NT NT NT NT NT NT	NM
17-Feb-11 NT NT NT NT NT NT NT	NM
09-Jun-11 NT NT NT NT NT NT	NM
20-Sep-11 NT NT NT NT NT NT	NM
21-Oct-11 NT NT NT NT NT NT	NM
17-Feb-12 NT NT NT NT NT NT	NM
17-May-12 NT NT NT NT NT NT	NM
05-Sep-12 NT NT NT NT NT NT	NM
30-Oct-12 NT NT NT NT NT NT	NM
30-Jan-13 NT NT NT NT NT NT	NM
10-May-13 NT NT NT NT NT NT	NM
11-Oct-13 NT NT NT NT NT NT	NM
11-Dec-13 NT NT NT NT NT NT	NM

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
19-Feb-14	NT	NT	NT	NT	NT	NT	NM
01-May-14	NT	NT	NT	NT	NT	NT	NM
30-Oct-14	NT	NT	NT	NT	NT	NT	NM
11-Feb-15	NT	NT	NT	NT	NT	NT	NM
15-May-15	NT	NT	NT	NT	NT	NT	NM
02-Sep-15	NT	NT	NT	NT	NT	NT	NM
12-Nov-15	NT	NT	NT	NT	NT	NT	NM
28-Jan-16	NT	NT	NT	NT	NT	NT	NM
09-May-16	NT	NT	NT	NT	NT	NT	NM
24-Oct-16	NT	NT	NT	NT	NT	NT	NM
09-Dec-16	NT	NT	NT	NT	NT	NT	NM
08-Feb-17	NT	NT	NT	NT	NT	NT	NM
25-Apr-17	NT	NT	NT	NT	NT	NT	NM
20-Oct-17	NT	NT	NT	NT	NT	NT	NM
13-Feb-18	NT	NT	NT	NT	NT	NT	NM
17-Aug-18	NT	NT	NT	NT	NT	NT	NM
25-Oct-18	NT	NT	NT	NT	NT	NT	NM
26-Feb-19	NT	NT	NT	NT	NT	NT	NM
24-Apr-19	NT	NT	NT	NT	NT	NT	NM
16-Jul-19	NT	NT	NT	NT	NT	NT	NM
17-Oct-19	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well G-7											
Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)				
03-Aug-98	U	U	U	U	U	U	59.62				
02-Nov-98	Ü	0.005	0.012	0.058	0.16	Ü	59.19				
12-Feb-99	U	U	U	U	U	0.79	54.81				
10-May-99	U	U	U	U	U	0.45	54.19				
30-Aug-99	Ü	U	Ü	Ü	Ü	U	58.32				
29-Oct-99	U	U	U	Ü	U	U	66.07				
08-Feb-00	NT	NT	NT	NT	NT	NT	60.91				
08-Jun-00	U	U	U	U	U	U	68.93				
30-Aug-00	NT	NT	NT	NT	NT	NT	NM				
30-Nov-00	U	U	U	U	U	U	63.27				
05-Feb-01	NT	NT	NT	NT	NT	NT	NM				
10-May-01	U	U	U	U	U	U	59.55				
09-Nov-01	U	U	U	U	U	U	59.79				
15-Feb-02	NT	NT	NT	NT	NT	NT	NM				
30-May-02	U	U	U	U	U	2.47	56.63				
14-Aug-02	NT	NT	NT	NT	NT	NT	59.20				
14-Nov-02	NT	NT	NT	NT	NT	NT	NM				
28-Jan-03	NT	NT	NT	NT	NT	NT	NM				
17-Apr-03	U (0.0005)	U (0.0005)	U (0.0005)	U (0.001)	U (0.08)	U (0.25)	59.37				
17-Jul-03	NT	NT	NT	NT	NT	NT	NM				
02-Oct-03	NT	NT	NT	NT	NT	NT	NM				
20-Jan-04	NT	NT	NT	NT	NT	NT	NM				
13-Apr-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.5)	55.28				
20-Jul-04	NT	NT	NT	NT	NT	ŇT ´	NM				
02-Sep-04	NT	NT	NT	NT	NT	NT	NM				
28-Jan-05	NT	NT	NT	NT	NT	NT	NM				
11-Apr-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.435)	61.36				
12-Aug-05	NT	NT	NT	NT	NT	NT	NM				
07-Oct-05	NT	NT	NT	NT	NT	NT	NM				
14-Feb-06	NT	NT	NT	NT	NT	NT	NM				
18-Apr-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.397)	58.98				
06-Jul-06	NT	NT	NT	NT	NT	NT	NM				
26-Oct-06	NT	NT	NT	NT	NT	NT	NM				
02-Feb-07	NT	NT	NT	NT	NT	NT	NM				
19-Apr-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.42)	NM				
07-Aug-07	NT	NT	NT	NT	NT	NT	NM				
23-Oct-07	NT	NT	NT	NT	NT	NT	NM				
22-Feb-08	NT	NT	NT	NT	NT	NT	NM				
15-Apr-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.673	55.30				
27-Aug-08	NT	NT	NT	NT	NT	NT	NM				
22-Oct-08	NT	NT	NT	NT	NT	NT	NM				
19-Feb-09	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.455)	NM				
08-Apr-09	NT	NT	NT	NT NT	NT	NT	NM				
09-Jul-09	NT	NT	NT	NT	NT	NT	NM				
04-Nov-09	NT	NT	NT	NT	NT LL(0.05)	NT	NM				
27-Jan-10	U (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.397)	53.89				
27-May-10	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.439)	54.20				
19-Aug-10	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.410) U (0.407)	55.54 57.61				
26-Oct-10	U (0.0005)	U (0.0005) U (0.0005)	U (0.0005) U (0.0005)	U (0.001) U (0.0015)	U (0.08)		57.61 53.66				
17-Feb-11 09-Jun-11	U (0.0005) U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05) U (0.05)	U (0.403) U (0.439)	53.66 54.23				
20-Sep-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.439)	54.23				
21-Oct-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.413)	57.46				
17-Feb-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.584	54.08				
17-Feb-12 17-May-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.628	59.53				
18-Jul-12	U (0.0005)	U (0.0010)	U (0.0010)	U (0.0013)	U (0.05)	U (0.403)	NM				
05-Sep-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0030)	U (0.05)	U (0.400)	62.00				
30-Oct-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.397)	75.98				
30-Jan-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.531	65.85				
15-Feb-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	64.02				
10-May-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	64.65				
11-Oct-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	74.31				
11-Oct-13 11-Dec-13	U (0.0005)	U (0.0003)	U (0.0003)	U (0.0013)	U (0.05)	U (0.410)	75.38				
11-Dec-13	U (0.0005)	U (U.UUT)	U (U.UU1)	U (U.UU3)	U (U.U5)	0 (0.410)	70.38				

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
19-Feb-14	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.407)	70.46
01-May-14	U (0.0005)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	U (0.39)	65.63
30-Oct-14	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.39)	62.96
11-Feb-15	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.42)	57.40
15-May-15	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.42)	54.98
02-Sep-15	U (0.0020)	U (0.001)	U (0.001)	U (0.001)	0.16	U (0.42)	55.74
12-Nov-15	U (0.0020)	U (0.0020)	U (0.0030)	U (0.0020)	U (0.050)	U (0.20)	61.73
28-Jan-16	U (0.0020)	U (0.0020)	U (0.0030)	U (0.0020)	U (0.050)	0.23	58.37
09-May-16	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.41)	56.26
24-Oct-16	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.41)	59.67
09-Dec-16	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (0.05)	U (0.11)	58.06
08-Feb-17	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (0.05)	U (0.11)	54.46
25-Apr-17	U (0.0002)	U (0.001)	U (0.001)	U (0.003)	U (1.0)	U (0.11)	55.08
20-Oct-17	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (1.0)	U (0.110)	59.98
13-Feb-18	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (1.0)	U (0.12)	56.66
17-Aug-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	60.08
25-Oct-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	61.28
26-Feb-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.13)	57.07
24-Apr-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.26)	58.43
16-Jul-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	61.50
17-Oct-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	63.57
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well G-8											
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev				
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)				
03-Aug-98	U	U	U	U	U	U	59.56				
02-Nov-98	U	0.003	0.0074	0.0037	0.094	U	59.18				
12-Feb-99	U	U	U	U	U	U	54.79				
10-May-99	U	U	U	U	U	U	54.13				
30-Aug-99	U	U	U	U	U	U	58.25				
29-Oct-99	U	U	U	U	U	U	66.00				
08-Feb-00	NT	NT	NT	NT	NT	NT	60.88				
08-Jun-00	U	U	U	U	U	U	68.89				
30-Aug-00	NT	NT	NT	NT	NT	NT	NM				
30-Nov-00	U	U	U	U	U	0.130	63.25				
05-Feb-01	NT	NT	NT	NT	NT	NT	NM				
10-May-01	U	U	U	U	U	U	59.49				
09-Nov-01	Ü	Ü	Ü	U	Ü	Ü	59.78				
15-Feb-02	NT	NT	NT	NT	NT	NT	NM				
30-May-02	U	U	U	U	U	U	56.58				
14-Aug-02	NT	NT	NT	NT	NT	NT	59.15				
14-Nov-02	NT	NT	NT	NT	NT	NT	NM				
28-Jan-03	NT	NT	NT	NT	NT	NT	NM				
17-Apr-03	U (0.0005)	U (0.0005)	U (0.0005)	U (0.001)	U (0.08)	U (0.25)	59.34				
17-Apr-03	NT	NT	NT	NT	NT	NT	99.34 NM				
02-Oct-03	NT	NT	NT	NT	NT	NT	NM				
20-Jan-04	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NM				
	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.5)	55.21				
13-Apr-04 20-Jul-04	NT	NT	NT	NT	NT	, ,	NM				
		NT	NT	NT		NT					
02-Sep-04	NT				NT	NT	NM				
28-Jan-05	NT	NT	NT	NT	NT	NT	NM				
11-Apr-05	NT	NT	NT	NT	NT	NT	NM				
12-Aug-05	NT	NT	NT	NT	NT	NT	NM				
07-Oct-05	NT	NT	NT	NT	NT	NT	NM				
14-Feb-06	NT	NT	NT	NT	NT	NT	NM				
18-Apr-06	NT	NT	NT	NT	NT	NT	NM				
06-Jul-06	NT	NT	NT	NT	NT	NT	NM				
26-Oct-06	NT	NT	NT	NT	NT	NT	NM				
02-Feb-07	NT	NT	NT	NT	NT	NT	NM				
19-Apr-07	NT	NT	NT	NT	NT	NT	NM				
07-Aug-07	NT	NT	NT	NT	NT	NT	NM				
23-Oct-07	NT	NT	NT	NT	NT	NT	NM				
22-Feb-08	NT	NT	NT	NT	NT	NT	NM				
15-Apr-08	NT	NT	NT	NT	NT	NT	NM				
27-Aug-08	NT	NT	NT	NT	NT	NT	NM				
22-Oct-08	NT	NT	NT	NT	NT	NT	NM				
05-Feb-09	NT	NT	NT	NT	NT	NT	NM				
08-Apr-09	NT	NT	NT	NT	NT	NT	NM				
09-Jul-09	NT	NT	NT	NT	NT	NT	NM				
04-Nov-09	NT	NT	NT	NT	NT	NT	NM				
27-Jan-10	NT	NT	NT	NT	NT	NT	NM				
27-May-10	NT	NT	NT	NT	NT	NT	NM				
19-Aug-10	NT	NT	NT	NT	NT	NT	NM				
26-Oct-10	NT	NT	NT	NT	NT	NT	NM				
17-Feb-11	NT	NT	NT	NT	NT	NT	NM				
09-Jun-11	NT	NT	NT	NT	NT	NT	NM				
20-Sep-11	NT	NT	NT	NT	NT	NT	NM				
21-Oct-11	NT	NT	NT	NT	NT	NT	NM				
17-Feb-12	NT	NT	NT	NT	NT	NT	NM				
17-May-12	NT	NT	NT	NT	NT	NT	NM				
05-Sep-12	NT	NT	NT	NT	NT	NT	NM				
30-Oct-12	NT	NT	NT	NT	NT	NT	NM				
30-Jan-13	NT	NT	NT	NT	NT	NT	NM				
10-May-13	NT	NT	NT	NT	NT	NT	NM				
11-Oct-13	NT	NT	NT	NT	NT	NT	NM				
11-Dec-13	NT	NT	NT	NT	NT	NT	NM				
19-Feb-14	NT	NT	NT	NT	NT	NT	NM				
01-May-14	NT	NT	NT	NT	NT	NT	NM				
0 1-1VIay-14	INI	IN I	INI	INI	INI	INI	INIVI				

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
30-Oct-14	NT	NT	NT	NT	NT	NT	NM
11-Feb-15	NT	NT	NT	NT	NT	NT	NM
15-May-15	NT	NT	NT	NT	NT	NT	NM
02-Sep-15	NT	NT	NT	NT	NT	NT	NM
12-Nov-15	NT	NT	NT	NT	NT	NT	NM
28-Jan-16	NT	NT	NT	NT	NT	NT	NM
09-May-16	NT	NT	NT	NT	NT	NT	NM
24-Oct-16	NT	NT	NT	NT	NT	NT	NM
09-Dec-16	NT	NT	NT	NT	NT	NT	NM
08-Feb-17	NT	NT	NT	NT	NT	NT	NM
25-Apr-17	NT	NT	NT	NT	NT	NT	NM
20-Oct-17	NT	NT	NT	NT	NT	NT	NM
13-Feb-18	NT	NT	NT	NT	NT	NT	NM
17-Aug-18	NT	NT	NT	NT	NT	NT	NM
25-Oct-18	NT	NT	NT	NT	NT	NT	NM
26-Feb-19	NT	NT	NT	NT	NT	NT	NM
24-Apr-19	NT	NT	NT	NT	NT	NT	NM
16-Jul-19	NT	NT	NT	NT	NT	NT	NM
17-Oct-19	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well VSC

	Monitoring Well VSC											
Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)					
28-Jan-03	U (0.05)	5.9	2.52	13.97	53.7	3.5	65.52					
17-Apr-03	0.141	5.73	2.69	16	75.3	2.54	NM					
17-Jul-03	U (0.05)	18.5	7.64	43.3	161	4.73	NM					
02-Oct-03	NT	NT	NT	NT	NT	NT	NM					
20-Jan-04	U (0.2)	4.89	3.03	18.7	52.4	4.06	NM					
13-Apr-04	U (0.1)	7.93	4.78	23.8	90	1.34	NM					
20-Jul-04	U (0.25)	5.78	2.5	23.4	88.8	4.96	NM					
02-Sep-04	U (0.5)	11.7	10.4	75.1	229	18.9	NM					
02-Sep-04	NT	NT	NT	NT	NT	NT	NM					
28-Jan-05	NT	NT	NT	NT	NT	NT	NM					
11-Apr-05	NT	NT	NT	NT	NT	NT	NM					
12-Aug-05	NT	NT	NT	NT	NT	NT	NM					
07-Oct-05	NT	NT	NT	NT	NT	NT	NM					
14-Feb-06	NT	NT	NT	NT	NT	NT	NM					
18-Apr-06	NT	NT	NT	NT	NT	NT	NM					
06-Jul-06	NT	NT	NT	NT	NT	NT	NM					
26-Oct-06	NT	NT	NT	NT	NT	NT	NM					
02-Feb-07	NT	NT	NT	NT	NT	NT	NM					
19-Apr-07	NT	NT	NT	NT	NT	NT	NM					
07-Aug-07	NT	NT	NT	NT	NT	NT	NM					
23-Oct-07	NT	NT	NT	NT	NT	NT	NM					
22-Feb-08	NT	NT	NT	NT	NT	NT	NM					
15-Apr-08	NT	NT	NT	NT	NT	NT	NM					
27-Aug-08	NT	NT	NT	NT	NT	NT	NM					
22-Oct-08	NT	NT	NT	NT	NT	NT	NM					
05-Feb-09	NT	NT	NT	NT	NT	NT	NM					
08-Apr-09	NT	NT	NT	NT	NT	NT	NM					
09-Jul-09	NT	NT	NT	NT	NT	NT	NM					
04-Nov-09	NT	NT	NT	NT	NT	NT	NM					
27-Jan-10	NT	NT	NT	NT	NT	NT	NM					
27-May-10	NT	NT	NT	NT	NT	NT	NM					
19-Aug-10	NT	NT	NT	NT	NT	NT	NM					
26-Oct-10	NT	NT	NT	NT	NT	NT	NM					
17-Feb-11	NT	NT	NT	NT	NT	NT	NM					
09-Jun-11	NT	NT	NT	NT	NT	NT	NM					
20-Sep-11	NT	NT	NT	NT	NT	NT	NM					
21-Oct-11	NT	NT	NT	NT	NT	NT	NM					
17-Feb-12	NT	NT	NT	NT	NT	NT	NM					
17-May-12	NT	NT	NT	NT	NT	NT	NM					
05-Sep-12	NT	NT	NT	NT	NT	NT	NM					
30-Oct-12	NT	NT	NT	NT	NT	NT	NM					
30-Jan-13	NT	NT	NT	NT	NT	NT	NM					
10-May-13	NT	NT	NT	NT	NT	NT	NM					
11-Oct-13	NT	NT	NT	NT	NT	NT	NM					
11-Dec-13	NT	NT	NT	NT	NT	NT	NM					
19-Feb-14	NT	NT	NT	NT	NT	NT	NM					
01-May-14	NT	NT	NT	NT	NT	NT	NM					
30-Oct-14	NT	NT	NT	NT	NT	NT	NM					
11-Feb-15	NT	NT	NT	NT	NT	NT	NM					
15-May-15	NT	NT	NT NT	NT	NT NT	NT	NM					
02-Sep-15 14-Oct-15	NT	NT	NT	NT	NT	NT 1.0	NM					
	U (0.0010) NT	U (0.0010) NT	U (0.0010) NT	U (0.0030) NT	U (0.01) NT	1.0 NT	NM NM					
12-Nov-15 28-Jan-16	U (0.0020)	U (0.0020)	U (0.0020)	U (0.0020)	U (0.050)	U (0.012)	NM					
09-May-16	NT	NT	NT	NT	NT	NT	NM					
24-Oct-16	NT	NT	NT	NT	NT	NT	NM					
09-Dec-16	NT	NT	NT	NT	NT	NT	NM					
09-Dec-16 08-Feb-17	NT	NT	NT	NT	NT	NT	NM					
25-Apr-17	NT	NT	NT	NT	NT	NT	NM					
20-Oct-17	NT	NT	NT	NT	NT	NT	NM					
13-Feb-18	NT	NT	NT	NT	NT	NT	NM					
17-Aug-18	NT	NT	NT	NT	NT	NT	NM					
25-Oct-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	61.28					
20-001-10	U (U.UUJ)	U (U.UUZ)	J (0.003)	U (U.UUJ)	U (U.ZJ)	U (U. 12)	01.20					

Monitoring Well VSC

Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)
26-Feb-19	NT	NT	NT	NT	NT	NT	NM
24-Apr-19	NT	NT	NT	NT	NT	NT	NM
16-Jul-19	NT	NT	NT	NT	NT	NT	NM
17-Oct-19	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
02-Feb-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	NM
19-Apr-07	NT	`NT	`NT	NT	NT	`NT	NM
07-Aug-07	NT	NT	NT	NT	NT	NT	NM
23-Oct-07	NT	NT	NT	NT	NT	NT	NM
22-Feb-08	NT	NT	NT	NT	NT	NT	NM
15-Apr-08	NT	NT	NT	NT	NT	NT	NM
27-Aug-08	NT	NT	NT	NT	NT	NT	NM
22-Oct-08	NT	NT	NT	NT	NT	NT	NM
05-Feb-09	NT	NT	NT	NT	NT	NT	NM
08-Apr-09	NT	NT	NT	NT	NT	NT	NM
09-Jul-09	NT	NT	NT	NT	NT	NT	NM
04-Nov-09	NT	NT	NT	NT	NT	NT	NM
27-Jan-10	NT	NT	NT	NT	NT	NT	NM
27-May-10	NT	NT	NT	NT	NT	NT	NM
19-Aug-10	NT	NT	NT	NT	NT	NT	NM
26-Oct-10	NT	NT	NT	NT	NT	NT	NM
17-Feb-11	NT	NT	NT	NT	NT	NT	NM
09-Jun-11	NT	NT	NT	NT	NT	NT	NM
20-Sep-11	NT	NT	NT	NT	NT	NT	NM
21-Oct-11	NT	NT	NT	NT	NT	NT	NM
17-Feb-12	NT	NT	NT	NT	NT	NT	NM
17-May-12	NT	NT	NT	NT	NT	NT	NM
05-Sep-12	NT	NT	NT	NT	NT	NT	NM
30-Oct-12	NT	NT	NT	NT	NT	NT	NM
30-Jan-13	NT	NT	NT	NT	NT	NT	NM
10-May-13	NT	NT	NT	NT	NT	NT	NM
11-Oct-13	NT	NT	NT	NT	NT	NT	NM
11-Dec-13	NT	NT	NT	NT	NT	NT	NM
19-Feb-14	NT	NT	NT	NT	NT	NT	NM
01-May-14	NT	NT	NT	NT	NT	NT	NM
30-Oct-14	NT	NT	NT	NT	NT	NT	NM
11-Feb-15	NT	NT	NT	NT	NT	NT	NM
15-May-15	NT	NT	NT	NT	NT	NT	NM
02-Sep-15	NT	NT	NT	NT	NT	NT	NM
12-Nov-15	NT	NT	NT	NT	NT	NT	NM
28-Jan-16	NT	NT	NT	NT	NT	NT	NM
09-May-16	NT	NT	NT	NT	NT	NT	NM
24-Oct-16	NT	NT	NT	NT	NT	NT	NM
09-Dec-16	NT	NT	NT	NT	NT	NT	NM
08-Feb-17	NT	NT	NT	NT	NT	NT	NM
25-Apr-17	NT	NT	NT	NT	NT	NT	NM
20-Oct-17	NT	NT	NT	NT	NT	NT	NM
13-Feb-18	NT	NT	NT	NT	NT	NT	NM
17-Aug-18	NT	NT	NT	NT	NT	NT	NM
25-Oct-18	NT	NT	NT	NT	NT	NT	NM
26-Feb-19	NT	NT	NT	NT	NT	NT	NM
24-Apr-19	NT	NT	NT	NT	NT	NT	NM
16-Jul-19	NT	NT	NT	NT	NT	NT	NM
17-Oct-19	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Remediation Well RW16-1

Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)
24-Oct-16	U (0.0002)	0.019	1.7	10.1	30	4.6	NM
	. ,						
09-Dec-16	NT	NT	NT	NT	NT	NT	NM
08-Feb-17	U (0.002)	0.0048	7.9	8.9	25	2.7	NM
25-Apr-17	U (0.002)	U (0.001)	U (0.750)	4.83	12	2.4	NM
20-Oct-17	NT	NT	NT	NT	NT	NT	64.44
13-Feb-18	NT	NT	NT	NT	NT	NT	63.41
17-Aug-18	U (0.003)	0.0018 J	1.2	8.5	24	7.9	64.14
25-Oct-18	NT	NT	NT	NT	NT	NT	68.84
26-Feb-19	NT	NT	NT	NT	NT	NT	63.80
24-Apr-19	NT	NT	NT	NT	NT	NT	NM
16-Jul-19	NT	NT	NT	NT	NT	NT	64.06
17-Oct-19	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well MW16-2

Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)
25-Oct-16	NT	NT	NT	NT	NT	NT	NM
09-Dec-16	U (0.0002)	U (0.001)	0.022	0.429	2	0.25	NM
08-Feb-17	U (0.002)	0.0078	0.44	3.3	19	2.1	NM
25-Apr-17	U (0.0002)	U (0.002)	U (0.30)	1	8.7	0.86	NM
20-Oct-17	U (0.002)	U (0.002)	0.042	0.125	2.2	0.26	64.50
13-Feb-18	U (0.002)	U (0.002)	0.051	0.177	6.1	0.59	63.62
17-Aug-18	U (0.003)	U (0.002)	0.015	0.0771	2.4	0.63	64.26
25-Oct-18	U (0.003)	U (0.002)	0.0036	0.013	1	0.31	64.32
26-Feb-19	U (0.003)	U (0.002)	0.0066	0.023	4.6	1.1	62.77
24-Apr-19	U (0.003)	U (0.002)	0.0065	0.027	4.2	0.58	63.62
16-Jul-19	U (0.003)	U (0.002)	0.0066	0.031	3.4	0.67	64.30
17-Oct-19	U (0.003)	U (0.002)	0.0052	0.023	2.1	0.30	67.16
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Key:

DRO - diesel range organics

GCL - ground water cleanup levels GRO - gasoline range organics

GW - ground water

H - sample was prepped or analyzed beyond the specified holding time

mg/L - milligrams per liter

NA - not applicable

NM - not measured

NT - not tested

U - Undetected above practical quantitation limits. **Bold**, shade indicates the concentration exceeds the GCL or, if not detected, the reporting limit exceeds the GCL

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-90108-1

Client Project/Site: Tesoro - 2Go Mart 52

For:

Stantec Consulting Services Inc 1835 S. Bragraw Suite 350 Anchorage, Alaska 99508

Attn: John Marshall

M. Elains Walker

Authorized for release by: 11/8/2019 10:35:12 AM

Elaine Walker, Project Manager II (253)248-4972

elaine.walker@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 580-90108-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	12
Chronicle	17
Certification Summary	19
Sample Summary	20
Chain of Custody	21
Receint Checklists	23

3

4

5

7

8

10

10

Case Narrative

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 52 Job ID: 580-90108-1

Job ID: 580-90108-1

Laboratory: Eurofins TestAmerica, Seattle

Narrative

Job Narrative 580-90108-1

Receipt

Seven samples were received on 10/18/2019 10:22 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.7° C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW 16-2 (580-90108-5) and Dup-01 (580-90108-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method AK102 & 103: The following sample was diluted due to the nature of the sample matrix: G-3 (580-90108-2). Elevated reporting limits (RLs) are provided.

Method AK102 & 103: Due to quality control and/or surrogate failures in the initial extraction, G-1 (580-90108-1), G-3 (580-90108-2), G-5 (580-90108-3), G-7 (580-90108-4), MW 16-2 (580-90108-5), Dup-01 (580-90108-6) and (LCS 580-315859/2-A) were re-extracted out of holding time and re-analyzed. The re-extracted batch 580-315859 and 580-315859 contains low-biased LCS recovery and surrogates below control limits for two samples. Both sets of data for these samples are reported.

Method AK102 & 103: Method blank (MB 580-315552/1-A) recovered outside of control limits, low-biased, for o-Terphenyl surrogate. Samples associated with this method blank have been re-extracted out-of-hold with concurring results. Both sets of data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

6

7

o

_

10

Definitions/Glossary

Client: Stantec Consulting Services Inc Job ID: 580-90108-1

Project/Site: Tesoro - 2Go Mart 52

Qualifiers

Qualifier

GC Semi VOA

Qualifier Description LCS or LCSD is outside acceptance limits.

Н Sample was prepped or analyzed beyond the specified holding time

Χ Surrogate is outside control limits

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
0/ D	Develop Description

Percent Recovery %R **CFL** Contains Free Liquid CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL **Practical Quantitation Limit**

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

Eurofins TestAmerica, Seattle

Client Sample ID: G-1
Date Collected: 10/17/19 11:10

Lab Sample ID: 580-90108-1

Matrix: Water

. . .

Vater

Date Received: 10/18/19 10:22	
Method: 8260C - Volatile Organic Co	mpou

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0		ug/L			10/22/19 19:19	1
1,3,5-Trimethylbenzene	ND		3.0		ug/L			10/22/19 19:19	1
Benzene	ND		3.0		ug/L			10/22/19 19:19	1
Ethylbenzene	ND		3.0		ug/L			10/22/19 19:19	1
Isopropylbenzene	ND		2.0		ug/L			10/22/19 19:19	1
m-Xylene & p-Xylene	ND		3.0		ug/L			10/22/19 19:19	1
n-Butylbenzene	ND		3.0		ug/L			10/22/19 19:19	1
o-Xylene	ND		2.0		ug/L			10/22/19 19:19	1
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 19:19	1
t-Butylbenzene	ND		3.0		ug/L			10/22/19 19:19	1
Toluene	ND		2.0		ug/L			10/22/19 19:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		80 - 126					10/22/19 19:19	1
4-Bromofluorobenzene (Surr)	97		80 - 120					10/22/19 19:19	1
Dibromofluoromethane (Surr)	97		80 - 120					10/22/19 19:19	1
Toluene-d8 (Surr)	100		80 - 120					10/22/19 19:19	1
Trifluorotoluene (Surr)	99		80 - 120					10/22/19 19:19	1
- Method: AK101 - Alaska - G	asoline Rango	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		0.25		mg/L			10/22/19 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	68		50 - 150			-		10/22/19 16:39	1
4-Bromofluorobenzene (Surr)	104		50 ₋ 150					10/22/19 16:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>ND</th><th></th><th>0.12</th><th></th><th>mg/L</th><th></th><th>10/30/19 13:05</th><th>10/31/19 17:41</th><th>1</th></nc25)<>	ND		0.12		mg/L		10/30/19 13:05	10/31/19 17:41	1
DRO (nC10- <nc25)< td=""><td>ND</td><td>H *</td><td>0.11</td><td></td><td>mg/L</td><td></td><td>11/04/19 09:46</td><td>11/05/19 19:05</td><td>1</td></nc25)<>	ND	H *	0.11		mg/L		11/04/19 09:46	11/05/19 19:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				10/30/19 13:05	10/31/19 17:41	1
o-Terphenyl	63		50 ₋ 150				11/04/19 09:46	11/05/19 19:05	1

Client Sample ID: G-3

Lab Sample ID: 580-90108-2

Matrix: Water

Date Collected: 10/17/19 15:00 Date Received: 10/18/19 10:22

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	9.3		3.0		ug/L			10/22/19 19:44	1
1,3,5-Trimethylbenzene	12		3.0		ug/L			10/22/19 19:44	1
Benzene	ND		3.0		ug/L			10/22/19 19:44	1
Ethylbenzene	ND		3.0		ug/L			10/22/19 19:44	1
Isopropylbenzene	ND		2.0		ug/L			10/22/19 19:44	1
m-Xylene & p-Xylene	ND		3.0		ug/L			10/22/19 19:44	1
n-Butylbenzene	ND		3.0		ug/L			10/22/19 19:44	1
o-Xylene	ND		2.0		ug/L			10/22/19 19:44	1
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 19:44	1
t-Butylbenzene	ND		3.0		ug/L			10/22/19 19:44	1
Toluene	ND		2.0		ug/L			10/22/19 19:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		80 - 126					10/22/19 19:44	1
4-Bromofluorobenzene (Surr)	98		80 - 120					10/22/19 19:44	1
Dibromofluoromethane (Surr)	97		80 - 120					10/22/19 19:44	1
Toluene-d8 (Surr)	99		80 - 120					10/22/19 19:44	1
Trifluorotoluene (Surr)	98		80 - 120					10/22/19 19:44	1
			- · - ·						•
									·
			s (GC)						
Analyte	Result	e Organics Qualifier	s (GC)	MDL		D	Prepared	Analyzed	Dil Fac
Analyte			s (GC)	MDL	Unit mg/L	<u>D</u>	Prepared	Analyzed 10/22/19 17:03	
Analyte Gasoline Range Organics (GRO) -C6-C10	Result	Qualifier	s (GC)	MDL		<u>D</u>	Prepared Prepared	•	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Result 0.58	Qualifier	RL 0.25	MDL		<u>D</u>	·	10/22/19 17:03	Dil Fac
Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	Result 0.58	Qualifier	(GC) RL 0.25	MDL		<u>D</u>	·	10/22/19 17:03 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	## Result 0.58 ## Recovery 57 106	Qualifier Qualifier	RL 0.25 Limits 50 - 150 50 - 150		mg/L	D	·	10/22/19 17:03 Analyzed 10/22/19 17:03	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen	Result 0.58 %Recovery 57 106	Qualifier Qualifier	RL 0.25 Limits 50 - 150 50 - 150		mg/L	D_	·	10/22/19 17:03 Analyzed 10/22/19 17:03	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen Analyte	Result 0.58 %Recovery 57 106	Qualifier Qualifier Cs by FID	RL 0.25	e Orgar	mg/L		Prepared	Analyzed 10/22/19 17:03 10/22/19 17:03 10/22/19 17:03	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	Result 0.58 %Recovery 57 106 nated Organi Result	Qualifier Qualifier Cs by FID Qualifier	RL 0.25	e Orgar	mg/L tics) Unit		Prepared Prepared 10/30/19 13:05	10/22/19 17:03 Analyzed 10/22/19 17:03 10/22/19 17:03 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen Analyte DRO (nC10- <nc25)< td=""><td>Result 0.58 %Recovery 57 106 nated Organi Result 0.83</td><td>Qualifier Qualifier Cs by FID Qualifier H *</td><td> RL 0.25 </td><td>e Orgar</td><td>mg/L Mics) Unit mg/L</td><td></td><td>Prepared Prepared 10/30/19 13:05</td><td>Analyzed 10/22/19 17:03 Analyzed 10/22/19 17:03 10/22/19 17:03 Analyzed 10/31/19 18:01</td><td>Dil Fac</td></nc25)<>	Result 0.58 %Recovery 57 106 nated Organi Result 0.83	Qualifier Qualifier Cs by FID Qualifier H *	RL 0.25	e Orgar	mg/L Mics) Unit mg/L		Prepared Prepared 10/30/19 13:05	Analyzed 10/22/19 17:03 Analyzed 10/22/19 17:03 10/22/19 17:03 Analyzed 10/31/19 18:01	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen Analyte DRO (nC10- <nc25) (nc10-<nc25)<="" dro="" td=""><td>Result 0.58 %Recovery 57 106 nated Organi Result 0.83 3.6</td><td>Qualifier Qualifier Cs by FID Qualifier H *</td><td> RL 0.25 </td><td>e Orgar</td><td>mg/L Mics) Unit mg/L</td><td></td><td>Prepared Prepared 10/30/19 13:05 11/04/19 09:46</td><td>Analyzed 10/22/19 17:03 Analyzed 10/22/19 17:03 10/22/19 17:03 Analyzed 10/31/19 18:01 11/06/19 09:28</td><td>Dil Fac Dil Fac Dil Fac 1 20</td></nc25)>	Result 0.58 %Recovery 57 106 nated Organi Result 0.83 3.6	Qualifier Qualifier Cs by FID Qualifier H *	RL 0.25	e Orgar	mg/L Mics) Unit mg/L		Prepared Prepared 10/30/19 13:05 11/04/19 09:46	Analyzed 10/22/19 17:03 Analyzed 10/22/19 17:03 10/22/19 17:03 Analyzed 10/31/19 18:01 11/06/19 09:28	Dil Fac Dil Fac Dil Fac 1 20

Client Sample ID: G-5

Lab Sample ID: 580-90108-3

Matrix: Water

Date Collected: 10/17/19 16:15 Date Received: 10/18/19 10:22

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0		ug/L			10/22/19 20:08	
1,3,5-Trimethylbenzene	ND		3.0		ug/L			10/22/19 20:08	1
Benzene	ND		3.0		ug/L			10/22/19 20:08	1
Ethylbenzene	ND		3.0		ug/L			10/22/19 20:08	1
Isopropylbenzene	ND		2.0		ug/L			10/22/19 20:08	1
m-Xylene & p-Xylene	ND		3.0		ug/L			10/22/19 20:08	1
n-Butylbenzene	ND		3.0		ug/L			10/22/19 20:08	1
o-Xylene	ND		2.0		ug/L			10/22/19 20:08	1
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 20:08	1
t-Butylbenzene	ND		3.0		ug/L			10/22/19 20:08	1
Toluene	ND		2.0		ug/L			10/22/19 20:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 126					10/22/19 20:08	
4-Bromofluorobenzene (Surr)	97		80 - 120					10/22/19 20:08	1
Dibromofluoromethane (Surr)	97		80 - 120					10/22/19 20:08	1
Toluene-d8 (Surr)	99		80 - 120					10/22/19 20:08	
Trifluorotoluene (Surr)	100		80 - 120					10/22/19 20:08	1
Method: AK101 - Alaska - G	asoline Rango	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		0.25		mg/L			10/22/19 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	61		50 - 150					10/22/19 17:27	1
4-Bromofluorobenzene (Surr)	107		50 - 150					10/22/19 17:27	1
Method: AK102 - Nonhaloge	nated Organi	cs by FID	(Diesel Rang	e Orgar	nics)				
Analyte		Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>ND</td><td></td><td>0.12</td><td></td><td>mg/L</td><td></td><td>10/30/19 13:05</td><td>10/31/19 18:21</td><td>1</td></nc25)<>	ND		0.12		mg/L		10/30/19 13:05	10/31/19 18:21	1
DRO (nC10- <nc25)< td=""><td>ND</td><td>H *</td><td>0.11</td><td></td><td>mg/L</td><td></td><td>11/04/19 09:46</td><td>11/06/19 09:50</td><td>1</td></nc25)<>	ND	H *	0.11		mg/L		11/04/19 09:46	11/06/19 09:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	125		50 - 150				10/30/19 13:05	10/31/19 18:21	1

Client Sample ID: G-7

Surrogate

o-Terphenyl

o-Terphenyl

Date Received: 10/18/19 10:22

Lab Sample ID: 580-90108-4 Date Collected: 10/17/19 17:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0		ug/L			10/22/19 20:33	1
1,3,5-Trimethylbenzene	ND		3.0		ug/L			10/22/19 20:33	1
Benzene	ND		3.0		ug/L			10/22/19 20:33	1
Ethylbenzene	ND		3.0		ug/L			10/22/19 20:33	1
Isopropylbenzene	ND		2.0		ug/L			10/22/19 20:33	1
m-Xylene & p-Xylene	ND		3.0		ug/L			10/22/19 20:33	1
n-Butylbenzene	ND		3.0		ug/L			10/22/19 20:33	1
o-Xylene	ND		2.0		ug/L			10/22/19 20:33	1
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 20:33	1
t-Butylbenzene	ND		3.0		ug/L			10/22/19 20:33	1
Toluene	ND		2.0		ug/L			10/22/19 20:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 126					10/22/19 20:33	1
4-Bromofluorobenzene (Surr)	97		80 - 120					10/22/19 20:33	1
Dibromofluoromethane (Surr)	98		80 - 120					10/22/19 20:33	1
Toluene-d8 (Surr)	100		80 - 120					10/22/19 20:33	1
Trifluorotoluene (Surr)	100		80 - 120					10/22/19 20:33	1
<mark>Method: AK101 - Alaska - G</mark> Analyte		Organics Qualifier	(GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		0.25		mg/L			10/22/19 17:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate			50 - 150					10/22/19 17:51	1
Trifluorotoluene (Surr)	88		00 - 100						
•	88 104		50 - 150					10/22/19 17:51	1
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhaloge	104 enated Organi		50 - 150 (Diesel Rang			Г.	Dramavad		
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhaloge Analyte	104 enated Organi Result	cs by FID Qualifier	50 - 150 (Diesel Rang RL	e Organ	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	104 enated Organi	Qualifier	50 - 150 (Diesel Rang			<u>D</u>	10/30/19 13:05		

Limits

50 - 150

50 - 150

%Recovery Qualifier

90

50

Analyzed

Prepared

<u>10/30/19 13:05</u> <u>10/31/19 18:41</u>

11/04/19 09:46 11/06/19 10:34

Dil Fac

Client Sample ID: MW 16-2

Lab Sample ID: 580-90108-5

Matrix: Water

Date Collected: 10/17/19 12:30 Date Received: 10/18/19 10:22

Analyte	anic Compo Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,3,5-Trimethylbenzene	90		3.0		ug/L			10/22/19 20:58	
Benzene	ND		3.0		ug/L			10/22/19 20:58	
Ethylbenzene	5.2		3.0		ug/L			10/22/19 20:58	
Isopropylbenzene	17		2.0		ug/L			10/22/19 20:58	
m-Xylene & p-Xylene	23		3.0		ug/L			10/22/19 20:58	
n-Butylbenzene	5.3		3.0		ug/L			10/22/19 20:58	
o-Xylene	ND		2.0		ug/L			10/22/19 20:58	
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 20:58	
t-Butylbenzene	ND		3.0		ug/L			10/22/19 20:58	
Toluene	ND		2.0		ug/L			10/22/19 20:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	96		80 - 126					10/22/19 20:58	
4-Bromofluorobenzene (Surr)	99		80 - 120					10/22/19 20:58	
Dibromofluoromethane (Surr)	97		80 - 120					10/22/19 20:58	
Toluene-d8 (Surr)	101		80 - 120					10/22/19 20:58	
Trifluorotoluene (Surr)	100		80 - 120					10/22/19 20:58	
Method: 8260C - Volatile Orga Analyte		unds by G Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trimethylbenzene	290		15		ug/L			10/23/19 20:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	98		80 - 126					10/23/19 20:31	
4-Bromofluorobenzene (Surr)	99		80 - 120					10/23/19 20:31	
B.11 (1 (2)									
Dibromofluoromethane (Surr)	97		80 - 120					10/23/19 20:31	
	97 101		80 - 120 80 - 120					10/23/19 20:31 10/23/19 20:31	
Toluene-d8 (Surr)									
Toluene-d8 (Surr) Trifluorotoluene (Surr)	101 99	e Organics	80 - 120 80 - 120					10/23/19 20:31	
Toluene-d8 (Surr) Trifluorotoluene (Surr) <mark>Wethod: AK101 - Alaska - Gas</mark> Analyte	101 99 soline Rang	e Organics Qualifier	80 - 120 80 - 120 S (GC)	MDL	Unit	D	Prepared	10/23/19 20:31	Dil F
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO)	101 99 soline Rang		80 - 120 80 - 120	MDL	Unit mg/L	<u>D</u>	Prepared	10/23/19 20:31 10/23/19 20:31	Dil F
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) C6-C10	101 99 soline Rang Result	Qualifier	80 - 120 80 - 120 S (GC)	MDL		<u>D</u>	Prepared Prepared	10/23/19 20:31 10/23/19 20:31 Analyzed	Dil F
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	soline Rang Result 2.1	Qualifier	80 - 120 80 - 120 S (GC) RL 0.25	MDL		<u>D</u>	<u> </u>	10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16	
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	soline Rang Result 2.1	Qualifier	80 - 120 80 - 120 S (GC) RL 0.25	MDL		<u>D</u>	<u> </u>	10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed	
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen	soline Rang Result 2.1 %Recovery 70 122	Qualifier Qualifier	80 - 120 80 - 120 S (GC) RL 0.25 Limits 50 - 150 50 - 150	e Orgar	mg/L	<u>D</u>	Prepared	10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16	Dil F
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen Analyte	soline Rang Result 2.1 %Recovery 70 122 atted Organi Result	Qualifier Qualifier	80 - 120 80 - 120 6 (GC) RL 0.25 Limits 50 - 150 50 - 150 (Diesel Rang RL	e Orgar	mg/L nics) Unit		Prepared Prepared	10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16	Dil F
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen Analyte DRO (nC10- <nc25)< td=""><td>soline Rang Result 2.1 %Recovery 70 122</td><td>Qualifier Qualifier ics by FID Qualifier</td><td>80 - 120 80 - 120 6 (GC) RL 0.25 Limits 50 - 150 50 - 150</td><td>e Orgar</td><td>mg/L</td><td></td><td>Prepared</td><td>10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16 10/22/19 18:16</td><td>Dil F</td></nc25)<>	soline Rang Result 2.1 %Recovery 70 122	Qualifier Qualifier ics by FID Qualifier	80 - 120 80 - 120 6 (GC) RL 0.25 Limits 50 - 150 50 - 150	e Orgar	mg/L		Prepared	10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16 10/22/19 18:16	Dil F
Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen Analyte DRO (nC10- <nc25) (nc10-<nc25)<="" dro="" td=""><td>## 101 99 Soline Rang Result 2.1 ## 2.1 ## 2.2 ## 3.30 0.23</td><td>Qualifier Qualifier ics by FID Qualifier H *</td><td>80 - 120 80 - 120 8 (GC) RL 0.25 Limits 50 - 150 50 - 150 (Diesel Rang RL 0.11 0.11</td><td>e Orgar</td><td>mg/L mg/L</td><td></td><td>Prepared Prepared 10/30/19 13:05 11/04/19 09:46</td><td>10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16 10/22/19 18:16 10/31/19 19:01 11/06/19 10:56</td><td>Dil F</td></nc25)>	## 101 99 Soline Rang Result 2.1 ## 2.1 ## 2.2 ## 3.30 0.23	Qualifier Qualifier ics by FID Qualifier H *	80 - 120 80 - 120 8 (GC) RL 0.25 Limits 50 - 150 50 - 150 (Diesel Rang RL 0.11 0.11	e Orgar	mg/L mg/L		Prepared Prepared 10/30/19 13:05 11/04/19 09:46	10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16 10/22/19 18:16 10/31/19 19:01 11/06/19 10:56	Dil F
Dibromofluoromethane (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 - Nonhalogen Analyte DRO (nC10- <nc25) (nc10-<nc25)="" dro="" o-terphenyl<="" surrogate="" td=""><td>soline Rang Result 2.1 %Recovery 70 122 ated Organ Result 0.30</td><td>Qualifier Qualifier ics by FID Qualifier H *</td><td>80 - 120 80 - 120 8 (GC) RL 0.25 Limits 50 - 150 50 - 150 (Diesel Rang RL 0.11</td><td>e Orgar</td><td>mg/L mg/L</td><td></td><td>Prepared Prepared 10/30/19 13:05</td><td>10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16 10/22/19 18:16</td><td>Dil F</td></nc25)>	soline Rang Result 2.1 %Recovery 70 122 ated Organ Result 0.30	Qualifier Qualifier ics by FID Qualifier H *	80 - 120 80 - 120 8 (GC) RL 0.25 Limits 50 - 150 50 - 150 (Diesel Rang RL 0.11	e Orgar	mg/L mg/L		Prepared Prepared 10/30/19 13:05	10/23/19 20:31 10/23/19 20:31 Analyzed 10/22/19 18:16 Analyzed 10/22/19 18:16 10/22/19 18:16 10/22/19 18:16	Dil F

Client Sample ID: Dup-01

Lab Sample ID: 580-90108-6

Matrix: Water

Date Collected: 10/17/19 13:00 Date Received: 10/18/19 10:22

o-Terphenyl

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,3,5-Trimethylbenzene	88		3.0		ug/L			10/22/19 21:22	
Benzene	ND		3.0		ug/L			10/22/19 21:22	
Ethylbenzene	5.0		3.0		ug/L			10/22/19 21:22	
Isopropylbenzene	16		2.0		ug/L			10/22/19 21:22	
m-Xylene & p-Xylene	22		3.0		ug/L			10/22/19 21:22	
n-Butylbenzene	5.2		3.0		ug/L			10/22/19 21:22	
o-Xylene	ND		2.0		ug/L			10/22/19 21:22	
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 21:22	
t-Butylbenzene	ND		3.0		ug/L			10/22/19 21:22	
Toluene	ND		2.0		ug/L			10/22/19 21:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		80 - 126					10/22/19 21:22	
4-Bromofluorobenzene (Surr)	98		80 - 120					10/22/19 21:22	
Dibromofluoromethane (Surr)	98		80 - 120					10/22/19 21:22	
Toluene-d8 (Surr)	99		80 - 120					10/22/19 21:22	
Trifluorotoluene (Surr)	100		80 - 120					10/22/19 21:22	
Method: 8260C - Volatile Orga	Result	unds by G Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trimethylbenzene	200		15		ug/L			10/23/19 20:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		80 - 126					10/23/19 20:56	
4-Bromofluorobenzene (Surr)	97		80 - 120					10/23/19 20:56	
Dibromofluoromethane (Surr)	98		80 - 120					10/23/19 20:56	
Toluene-d8 (Surr)	100		80 - 120					10/23/19 20:56	
Trifluorotoluene (Surr)	99		80 - 120					10/23/19 20:56	
Method: AK101 - Alaska - Gas	soline Range	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	2.2		0.25		mg/L			10/22/19 18:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	67		50 - 150					10/22/19 18:40	
4-Bromofluorobenzene (Surr)	121		50 - 150					10/22/19 18:40	
Method: AK102 - Nonhalogen							_		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>0.31</td><td></td><td>0.12</td><td></td><td>mg/L</td><td></td><td>10/30/19 13:05</td><td>10/31/19 19:22</td><td></td></nc25)<>	0.31		0.12		mg/L		10/30/19 13:05	10/31/19 19:22	
DRO (nC10- <nc25)< td=""><td>0.24</td><td>H *</td><td>0.12</td><td></td><td>mg/L</td><td></td><td>11/04/19 09:46</td><td>11/06/19 11:39</td><td></td></nc25)<>	0.24	H *	0.12		mg/L		11/04/19 09:46	11/06/19 11:39	

<u>10/30/19 13:05</u> <u>10/31/19 19:22</u>

11/04/19 09:46 11/06/19 11:39

50 - 150

50 - 150

120

70

Client Sample Results

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 52

Lab Sample ID: 580-90108-7

Matrix: Water

Job ID: 580-90108-1

Client Sample ID: Trip Blank Date Collected: 10/17/19 08:00

Date Received: 10/18/19 10:22

vater

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0		ug/L			10/22/19 15:25	1
1,3,5-Trimethylbenzene	ND		3.0		ug/L			10/22/19 15:25	1
Benzene	ND		3.0		ug/L			10/22/19 15:25	1
Ethylbenzene	ND		3.0		ug/L			10/22/19 15:25	1
Isopropylbenzene	ND		2.0		ug/L			10/22/19 15:25	1
m-Xylene & p-Xylene	ND		3.0		ug/L			10/22/19 15:25	1
n-Butylbenzene	ND		3.0		ug/L			10/22/19 15:25	1
o-Xylene	ND		2.0		ug/L			10/22/19 15:25	1
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 15:25	1
t-Butylbenzene	ND		3.0		ug/L			10/22/19 15:25	1
Toluene	ND		2.0		ug/L			10/22/19 15:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 126					10/22/19 15:25	1
4-Bromofluorobenzene (Surr)	97		80 - 120					10/22/19 15:25	1
Dibromofluoromethane (Surr)	100		80 - 120					10/22/19 15:25	1
Toluene-d8 (Surr)	99		80 - 120					10/22/19 15:25	1
Trifluorotoluene (Surr)	102		80 - 120					10/22/19 15:25	1

Client: Stantec Consulting Services Inc Job ID: 580-90108-1

Project/Site: Tesoro - 2Go Mart 52

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-314852/6

Matrix: Water

Analysis Batch: 314852

Client Sample ID: Method Blank Prep Type: Total/NA

	MB N	ИВ							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0		ug/L			10/22/19 15:00	1
1,3,5-Trimethylbenzene	ND		3.0		ug/L			10/22/19 15:00	1
Benzene	ND		3.0		ug/L			10/22/19 15:00	1
Ethylbenzene	ND		3.0		ug/L			10/22/19 15:00	1
Isopropylbenzene	ND		2.0		ug/L			10/22/19 15:00	1
m-Xylene & p-Xylene	ND		3.0		ug/L			10/22/19 15:00	1
n-Butylbenzene	ND		3.0		ug/L			10/22/19 15:00	1
o-Xylene	ND		2.0		ug/L			10/22/19 15:00	1
sec-Butylbenzene	ND		3.0		ug/L			10/22/19 15:00	1
t-Butylbenzene	ND		3.0		ug/L			10/22/19 15:00	1
Toluene	ND		2.0		ug/L			10/22/19 15:00	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 126		10/22/19 15:00	1
4-Bromofluorobenzene (Surr)	99		80 - 120		10/22/19 15:00	1
Dibromofluoromethane (Surr)	99		80 - 120		10/22/19 15:00	1
Toluene-d8 (Surr)	100		80 - 120		10/22/19 15:00	1
Trifluorotoluene (Surr)	101		80 - 120		10/22/19 15:00	1

Lab Sample ID: LCS 580-314852/3

Matrix: Water

Analysis Batch: 314852

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1,2,4-Trimethylbenzene 10.0 10.4 ug/L 104 80 - 120 1,3,5-Trimethylbenzene 10.0 10.5 ug/L 105 80 - 120 Benzene 10.0 10.4 104 75 - 121 ug/L Ethylbenzene 10.0 10.3 103 80 - 120 ug/L ug/L Isopropylbenzene 10.0 10.3 103 75 - 120 m-Xylene & p-Xylene 10.0 10.3 ug/L 103 80 - 120 10.5 n-Butylbenzene 10.0 ug/L 105 78 - 120 105 o-Xylene 10.0 10.5 ug/L 80 - 120 sec-Butylbenzene 10.0 10.5 ug/L 105 78 - 120 t-Butylbenzene 10.0 10.4 ug/L 104 80 - 121 Toluene 10.0 10.0 ug/L 100 80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		80 - 126
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	101		80 - 120
Toluene-d8 (Surr)	99		80 - 120
Trifluorotoluene (Surr)	101		80 - 120

Job ID: 580-90108-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-314852/4

Matrix: Water

Analysis Batch: 314852

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
10.0	10.3		ug/L		103	80 - 120	1	16
10.0	10.2		ug/L		102	80 - 120	2	14
10.0	10.3		ug/L		103	75 - 121	0	14
10.0	10.2		ug/L		102	80 - 120	2	14
10.0	10.3		ug/L		103	75 - 120	0	20
10.0	10.3		ug/L		103	80 - 120	0	14
10.0	10.4		ug/L		104	78 - 120	2	14
10.0	10.3		ug/L		103	80 - 120	2	16
10.0	10.4		ug/L		104	78 - 120	1	15
10.0	10.2		ug/L		102	80 - 121	1	14
10.0	9.97		ug/L		100	80 - 120	0	19
	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Added Result 10.0 10.3 10.0 10.2 10.0 10.3 10.0 10.2 10.0 10.3 10.0 10.3 10.0 10.4 10.0 10.4 10.0 10.4 10.0 10.2	Added Result Qualifier 10.0 10.3 10.0 10.2 10.0 10.3 10.0 10.2 10.0 10.3 10.0 10.3 10.0 10.4 10.0 10.4 10.0 10.2	Added Result Qualifier Unit 10.0 10.3 ug/L 10.0 10.2 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.4 ug/L 10.0 10.3 ug/L 10.0 10.4 ug/L 10.0 10.4 ug/L 10.0 10.2 ug/L	Added Result Qualifier Unit D 10.0 10.3 ug/L ug/L 10.0 10.3 ug/L 10.0 10.2 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.4 ug/L 10.0 10.4 ug/L 10.0 10.4 ug/L 10.0 10.2 ug/L	Added Result Qualifier Unit D %Rec 10.0 10.3 ug/L 103 10.0 10.2 ug/L 102 10.0 10.2 ug/L 102 10.0 10.3 ug/L 103 10.0 10.3 ug/L 103 10.0 10.4 ug/L 104 10.0 10.3 ug/L 103 10.0 10.3 ug/L 103 10.0 10.4 ug/L 104 10.0 10.4 ug/L 104 10.0 10.2 ug/L 104	Added Result Qualifier Unit D %Rec Limits 10.0 10.3 ug/L 103 80 - 120 10.0 10.2 ug/L 102 80 - 120 10.0 10.3 ug/L 103 75 - 121 10.0 10.3 ug/L 103 75 - 120 10.0 10.3 ug/L 103 80 - 120 10.0 10.4 ug/L 104 78 - 120 10.0 10.3 ug/L 103 80 - 120 10.0 10.3 ug/L 103 80 - 120 10.0 10.3 ug/L 103 80 - 120 10.0 10.3 ug/L 104 78 - 120 10.0 10.4 ug/L 104 78 - 120 10.0 10.2 ug/L 104 78 - 120 10.0 10.2 ug/L 102 80 - 121	Added Result Qualifier Unit D %Rec Limits RPD 10.0 10.3 ug/L 103 80 - 120 1 10.0 10.2 ug/L 102 80 - 120 2 10.0 10.3 ug/L 103 75 - 121 0 10.0 10.3 ug/L 103 75 - 120 0 10.0 10.3 ug/L 103 80 - 120 0 10.0 10.4 ug/L 104 78 - 120 2 10.0 10.3 ug/L 103 80 - 120 2 10.0 10.3 ug/L 103 80 - 120 2 10.0 10.3 ug/L 103 80 - 120 2 10.0 10.3 ug/L 104 78 - 120 1 10.0 10.4 ug/L 104 78 - 120 1 10.0 10.2 ug/L 104 78 - 120 1

LCSD LCSD

MB MB

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		80 - 126
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	100		80 - 120
Toluene-d8 (Surr)	101		80 - 120
Trifluorotoluene (Surr)	101		80 - 120

Lab Sample ID: MB 580-314939/6

Matrix: Water

Analysis Batch: 314939

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0		ug/L			10/23/19 12:39	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		80 - 126			-		10/23/19 12:39	1
4-Bromofluorobenzene (Surr)	98		80 - 120					10/23/19 12:39	1
Dibromofluoromethane (Surr)	99		80 - 120					10/23/19 12:39	1
Toluene-d8 (Surr)	100		80 - 120					10/23/19 12:39	1
Trifluorotoluene (Surr)	101		80 - 120					10/23/19 12:39	1

A

Lab Sample ID. LCS 560-3 14939/3	Chefft Sample ID. Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 314939	

	Spike	LUS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4-Trimethylbenzene	10.0	10.5		ug/L		105	80 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		80 - 126
4-Bromofluorobenzene (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	100		80 - 120
Trifluorotoluene (Surr)	99		80 - 120

Eurofins TestAmerica, Seattle

Job ID: 580-90108-1

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 52

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-314939/4 **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 314939

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trimethylbenzene	10.0	9.98		ug/L		100	80 - 120	5	16

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		80 - 126
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	100		80 - 120
Trifluorotoluene (Surr)	101		80 - 120

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Lab Sample ID: MB 580-314836/7 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 314836

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	ND	0.25	mg/L			10/22/19 11:27	1
-C6-C10							

	MB MB				
Surrogate	%Recovery Qualif	fier Limits	Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	97	50 - 150		10/22/19 11:27	1
4-Bromofluorobenzene (Surr)	100	50 - 150		10/22/19 11:27	1

Lab Sample ID: LCS 580-314836/8 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 314836

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	1.00	1.03		mg/L		103	77 - 123	

-C6-C10

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
Trifluorotoluene (Surr)	92	50 - 150
4-Bromofluorobenzene (Surr)	113	50 ₋ 150

Lab Sample ID: LCSD 580-314836/9 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 314836

Analysis Baton, 614000									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	 1.00	1.02		mg/L		102	77 - 123	1	20

-C6-C10

	LUSD LUSD	
Surrogate	%Recovery Qualifie	er Limits
Trifluorotoluene (Surr)	90	50 - 150
4-Bromofluorobenzene (Surr)	110	50 - 150

LCCD LCCD

Eurofins TestAmerica, Seattle

Prep Type: Total/NA

Job ID: 580-90108-1

Method: AK102 - Nonhalogenated Organics by FID (Diesel Range Organics)

Lab Sample ID: MB 580-315552/1-A

Matrix: Water

Analysis Batch: 315685 MB MB Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 315552

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte DRO (nC10-<nC25) 0.11 <u>10/30/19 13:05</u> <u>10/31/19 16:40</u> $\overline{\mathsf{ND}}$ mg/L

MB MB

%Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed o-Terphenyl 48 X 50 - 150 10/30/19 13:05 10/31/19 16:40

Lab Sample ID: LCS 580-315552/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 315685

Prep Type: Total/NA

75 - 125

Prep Batch: 315552

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec

DRO (nC10-<nC25) 2.00 1.80 mg/L

LCS LCS

Limits Surrogate %Recovery Qualifier o-Terphenyl 100 50 - 150

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 580-315552/3-A

Matrix: Water

Analysis Batch: 315685

Prep Type: Total/NA **Prep Batch: 315552** %Rec. **RPD**

90

Spike LCSD LCSD Added Limits RPD Limit Analyte Result Qualifier Unit D %Rec DRO (nC10-<nC25) 2.00 1.72 mg/L 86 75 - 125 20

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 95

Lab Sample ID: MB 580-315859/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 316018

Prep Type: Total/NA

Prep Batch: 315859

Result Qualifier **MDL** Unit Analyte RL Analyzed Dil Fac Prepared DRO (nC10-<nC25) 0.11 mg/L 11/04/19 09:24 11/05/19 13:34 ND

MR MR

MB MB

Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac o-Terphenyl 72 50 - 150 11/04/19 09:24 11/05/19 13:34

Lab Sample ID: LCS 580-315859/2-A

Matrix: Water

Analysis Batch: 316018

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 315859**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits DRO (nC10-<nC25) 2.00 1.39 75 - 125 mg/L 69

LCS LCS

%Recovery Qualifier Surrogate Limits o-Terphenyl 50 - 150 71

Eurofins TestAmerica, Seattle

QC Sample Results

Client: Stantec Consulting Services Inc Job ID: 580-90108-1

Project/Site: Tesoro - 2Go Mart 52

Method: AK102 - Nonhalogenated Organics by FID (Diesel Range Organics) (Continued)

Lab Sample ID: LCSD 580-315859/3-A Matrix: Water Analysis Batch: 316018			(Client Sa	ample	ID: Lat	Control Prep Tyl Prep Ba	pe: Tot	al/NA
Analysis Batch. 910010	Spike	LCSD	LCSD				%Rec.	itteri. J	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
DRO (nC10- <nc25)< td=""><td>2.00</td><td>1.61</td><td></td><td>mg/L</td><td></td><td>80</td><td>75 - 125</td><td>15</td><td>20</td></nc25)<>	2.00	1.61		mg/L		80	75 - 125	15	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	80		50 - 150

Client Sample ID: G-1

Date Collected: 10/17/19 11:10 Date Received: 10/18/19 10:22

Lab Sample ID: 580-90108-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	314852	10/22/19 19:19	T1W	TAL SEA
Total/NA	Analysis	AK101		1	314836	10/22/19 16:39	DCV	TAL SEA
Total/NA	Prep	3510C			315859	11/04/19 09:46	NRF	TAL SEA
Total/NA	Analysis	AK102		1	316018	11/05/19 19:05	W1T	TAL SEA
Total/NA	Prep	3510C			315552	10/30/19 13:05		TAL SEA
Total/NA	Analysis	AK102		1	315685	10/31/19 17:41	JCM	TAL SEA

Lab Sample ID: 580-90108-2

Lab Sample ID: 580-90108-3

Lab Sample ID: 580-90108-4

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 10/17/19 15:00

Client Sample ID: G-3

Date Received: 10/18/19 10:22

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			314852	10/22/19 19:44	T1W	TAL SEA
Total/NA	Analysis	AK101		1	314836	10/22/19 17:03	DCV	TAL SEA
Total/NA	Prep	3510C			315859	11/04/19 09:46	NRF	TAL SEA
Total/NA	Analysis	AK102		20	316018	11/06/19 09:28	W1T	TAL SEA
Total/NA	Prep	3510C			315552	10/30/19 13:05		TAL SEA
Total/NA	Analysis	AK102		1	315685	10/31/19 18:01	JCM	TAL SEA

Client Sample ID: G-5

Date Collected: 10/17/19 16:15

Date Received: 10/18/19 10:22

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			314852	10/22/19 20:08	T1W	TAL SEA
Total/NA	Analysis	AK101		1	314836	10/22/19 17:27	DCV	TAL SEA
Total/NA	Prep	3510C			315859	11/04/19 09:46	NRF	TAL SEA
Total/NA	Analysis	AK102		1	316018	11/06/19 09:50	W1T	TAL SEA
Total/NA	Prep	3510C			315552	10/30/19 13:05		TAL SEA
Total/NA	Analysis	AK102		1	315685	10/31/19 18:21	JCM	TAL SEA

Client Sample ID: G-7

Date Collected: 10/17/19 17:00

Date Received: 10/18/19 10:22

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			314852	10/22/19 20:33	T1W	TAL SEA
Total/NA	Analysis	AK101		1	314836	10/22/19 17:51	DCV	TAL SEA
Total/NA	Prep	3510C			315859	11/04/19 09:46	NRF	TAL SEA
Total/NA	Analysis	AK102		1	316018	11/06/19 10:34	W1T	TAL SEA
Total/NA	Prep	3510C			315552	10/30/19 13:05		TAL SEA
Total/NA	Analysis	AK102		1	315685	10/31/19 18:41	JCM	TAL SEA

Page 17 of 23

11/8/2019

Lab Chronicle

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 52

Lab Sample ID: 580-90108-5

Matrix: Water

Job ID: 580-90108-1

Client Sample ID: MW 16-2 Date Collected: 10/17/19 12:30 Date Received: 10/18/19 10:22

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	314852	10/22/19 20:58	T1W	TAL SEA
Total/NA	Analysis	8260C	DL	5	314939	10/23/19 20:31	W1T	TAL SEA
Total/NA	Analysis	AK101		1	314836	10/22/19 18:16	DCV	TAL SEA
Total/NA	Prep	3510C			315859	11/04/19 09:46	NRF	TAL SEA
Total/NA	Analysis	AK102		1	316018	11/06/19 10:56	W1T	TAL SEA
Total/NA	Prep	3510C			315552	10/30/19 13:05		TAL SEA
Total/NA	Analysis	AK102		1	315685	10/31/19 19:01	JCM	TAL SEA

Lab Sample ID: 580-90108-6 Client Sample ID: Dup-01 Date Collected: 10/17/19 13:00

Matrix: Water

TAL SEA

TAL SEA

Date Received: 10/18/19 10:22

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 314852 10/22/19 21:22 T1W Total/NA Analysis 8260C TAL SEA Total/NA Analysis 8260C DL 5 314939 10/23/19 20:56 W1T TAL SEA Total/NA TAL SEA Analysis AK101 1 314836 10/22/19 18:40 DCV Total/NA 3510C 315859 11/04/19 09:46 NRF TAL SEA Prep Total/NA Analysis AK102 1 316018 11/06/19 11:39 W1T TAL SEA

Lab Sample ID: 580-90108-7 Client Sample ID: Trip Blank Date Collected: 10/17/19 08:00 **Matrix: Water**

1

315552 10/30/19 13:05

10/31/19 19:22 JCM

315685

Date Received: 10/18/19 10:22

Prep

Analysis

Batch Batch Dilution Batch **Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA Analysis 8260C 10/22/19 15:25 T1W TAL SEA

Laboratory References:

Total/NA

Total/NA

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

3510C

AK102

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Job ID: 580-90108-1

Project/Site: Tesoro - 2Go Mart 52

Laboratory: Eurofins TestAmerica, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-024	01-19-22
ANAB	Dept. of Defense ELAP	L2236	01-19-22
ANAB	ISO/IEC 17025	L2236	01-19-22
Montana (UST)	State	NA	04-13-21
Oregon	NELAP	WA100007	11-06-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	US Federal Programs	P330-17-00039	02-10-20
Washington	State	C553	02-17-20

3

4

6

Ω

9

10

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 52

Job ID: 580-90108-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
580-90108-1	G-1	Water	10/17/19 11:10	10/18/19 10:22	
580-90108-2	G-3	Water	10/17/19 15:00	10/18/19 10:22	
580-90108-3	G-5	Water	10/17/19 16:15	10/18/19 10:22	
580-90108-4	G-7	Water	10/17/19 17:00	10/18/19 10:22	
580-90108-5	MW 16-2	Water	10/17/19 12:30	10/18/19 10:22	
580-90108-6	Dup-01	Water	10/17/19 13:00	10/18/19 10:22	
580-90108-7	Trip Blank	Water	10/17/19 08:00	10/18/19 10:22	

3

4

5

O

8

a

40

2000 W. International Airport Road Suite AlD		Chai	Chain of Custody Record	d 249746	TestAmerica
Anchorage, AK 99502 Phone: 907.563.9200 Fax: 907.563.9210	Regulatory Program:	m:			THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.
	Project Manager:	MA .	Site Contact:	Date: totiche	TAL-8210 (0713)
Stuntec	Tel/Fax:		Lab Contact:	12	COC NO:
765 E. Lireweed	Analysis Turnaround Time	around Time	(10/11
Phone: (407) 780-7506	CALENDAR DAYS TAT if different from Below	WORKING DAYS	<i>†5.')</i>		Ise Only:
Fax: Project Name: TNS 52	2 weeks	S	N /A		
Site: 7 < 50.70 PO# 10.57 = 0.51.5	1 week		MSD (Y)		
	1 day	day Sample	2 (580-90108 Chain of Custody	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Sample Identification	Sample Sample (C=	Type # of C=Comp, G=Grab) Matrix Cont.	iltered S erform I		
1-5	91110	3	2		Sample Specific Notes:
6-3	1500		4%		
6-5	1615	8	1		
(-5)	1700	20	6 6		
2-91 MW 19-2	0521	8	-		
10-000	1300	4 4	6 6 7		
Trip Blank	1946 JOININGSOD	6 TB 3	N W K		
3					
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; E	5=NaOH; 6= Other		7 7 7 7		
A Hazardous Waste? dispose of the sample.	Please List any EPA Waste Codes for the sample in the	s for the sample in the		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ned longer than 1 month)
Non-Hazard Hammable Skin Irritant	☐ Poison B	Unknown	Return to Client	Disnocal hy Lah	
Special Instructions/QC Requirements & Comments:					Months
Intact: Yes No	Custody Seal No.:		Cooler Temp. (°C): Obs'd	S'd: Corr'd: 1.7	Therm ID No .
The second second	Company:	Date/Time:	Received by:	Company:	Date/Time:
	Company:		Received by:	Company:	Date/Time:
Selinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:
2019					

TestAmerica Anchorage 2000 W. International Airport Road Suite A10

Anchorage, AK 99502 Phone: 907.563,9200 Fax: 907.563.9210

Chain of Custody Record

249746

TestAmerica Laboratories, Inc.

, word. 307.303, 3200 1 62. 307.303.3210	Regulatory Program:]DW []NPDES	RCRA Other:		TAL-8210 (0713)
Client Contact	Project Manager:	;	Site Contact:	Date: /c/is/i4	COC No:
Company Name: Stantec	Tel/Fax:			Carrier:	ofCOCs
Address: 725 E. Eirented in \$1.200	Analysis Turnaround				Sampler: Juke Keksen
City/State/Zip: A wwwage, AK, 94503	······································	KING DAYS	$(t^{(\xi)})$		For Lab Use Only:
Phone: (407) 780-7206	TAT if different from Below				
Fax: Project Name: TNS C7	2 weeks	[:	(N)		
	1 week		MSD (YIMSD (YIMS		
	2 days		MS SW		
PO# 165750867	1 day			580-90108 Chain of Custod	ly
•	Type	.	Perform M AK101 A K10 8760 (
Committee to the control of the cont	Sample Sample (C=Comp.	#of	AK10 AK10 8760		
Sample Identification	The second secon				Sample Specific Notes:
	1948/110 G	Gu 81	MNU SIFI I I I I		
G-3	1 1500	1 8	I LXXIII		
G-5	1615	1 6			
G-7	1700	1 8	\ \ 		
MW 16-Z	 				
	1230	3			
1240-01	V 1300 V	4 8			
Trip Blank	15 101711 0500 1- 1	TB 3			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;					
Possible Hazard Identification:	5=NaOH; 6= Other		мяц		
are any samples from a listed EPA Hazardous Waste? Please comments Section if the lab is to dispose of the sample.	a List any EPA Waste Codes for the	e sample in the	Sample Disposal (A fee may be as	sessed if samples are retained	longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B Unknow	/n	Return to Client Dispo	osal by Lab Archive for	Marcha
pecial Instructions/QC Requirements & Comments:			E Neturi to Cheric E Dispo	sal by Lab Archive for	Months
,					
Custody-Seals Intact: Yes No	Custody Seal No.:		Cooler Temp. (°C): Obs'd	Corr'd: [. 7 T	Therm ID No.:
elinguished by:	Company: D	Date/Time: 🖍	Received by:		Date/Ţime:,
13/6/ 1000	Starte 1	0/18/14/02	12 3	TA-AK	10/18/19 10:22
elingdished by:	Company: D	Date/Time:	Received by:		Date/Time:
	· · · · · · · · · · · · · · · · · · ·	0/18/19 13:00	1 • • • • • • • • • • • • • • • • • • •	TASEA	10/19/19 0930
elinquished by:	Company: D	Date/Time:	Received in Laboratory by:		Date/Time:

Client: Stantec Consulting Services Inc

Job Number: 580-90108-1

Login Number: 90108

List Number: 1

Creator: Pilch, Andrew C

List Source: Eurofins TestAmerica, Seattle

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:	
Erin O'Malley	
Title:	
Environmental Engineer	
Date:	
11/18/19	
Consultant Firm:	
Stantec Consulting Services Inc.	
Laboratory Name:	
TestAmerica Seattle	
Laboratory Report Number:	
580-90108-1	
Laboratory Report Date:	
11/8/2019	
CS Site Name:	
Tesoro 2Go Mart 52	
ADEC File Number:	
2265.26.006	
Hazard Identification Number:	
23769	

5	80-90108-1
Labo	ratory Report Date:
1	1/8/2019
CS S	ite Name:
Т	Cesoro 2Go Mart 52
N	Note: Any N/A or No box checked must have an explanation in the comments box.
	<u>aboratory</u>
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	$Yes \boxtimes No \square N/A \square$ Comments:
2. <u>C</u>	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes \boxtimes No \square N/A \square Comments:
	b. Correct analyses requested?
	Yes \boxtimes No \square N/A \square Comments:
3. <u>L</u>	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? Yes⊠ No□ N/A□ Comments:
	Comments.
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	Yes \boxtimes No \square N/A \square Comments:

5	80-90108-1
Labo	oratory Report Date:
1	1/8/2019
CS S	ite Name:
Т	Tesoro 2Go Mart 52
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:
	Samples arrived in good condition, properly preserved, and , where required, on ice.
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	$Yes \boxtimes No \square N/A \square$ Comments:
	e. Data quality or usability affected? Comments:
	No.
4	. Case Narrative
	a. Present and understandable?
	Yes⊠ No□ N/A□ Comments:
	 b. Discrepancies, errors, or QC failures identified by the lab? Yes⊠ No□ N/A□ Comments:
	TESE INOL IN/ALL COMMENTS.
	c. Were all corrective actions documented?
	Yes⊠ No□ N/A□ Comments:
	d. What is the effect on data quality/usability according to the case narrative?
	Comments:
	See below sections.

580-90108-1			
Laboratory Report Da	te:		
11/8/2019			
CS Site Name:			
Tesoro 2Go Mart :	52		
5. <u>Samples Results</u>			
a. Correct and	alyses performed	/reported as requested on COC?	
Yes⊠	No□ N/A□	Comments:	
b. All applica	ble holding time	s met?	
	No⊠ N/A□	Comments:	
(580-90108-1) Dup-01 (580-9 analyzed. The surrogates belo Method AK10 biased, for o-T	, G-3 (580-90108) 00108-6) and (LC) re-extracted bate ow control limits 2 & 103: Method erphenyl surroga	quality control and/or surrogate failures in the initial e 8-2), G-5 (580-90108-3), G-7 (580-90108-4), MW 16-CS 580-315859/2-A) were re-extracted out of holding to the 580-315859 and 580-315859 contains low-biased Lot for two samples. Both sets of data for these samples and blank (MB 580-315552/1-A) recovered outside of coate. Samples associated with this method blank have besults. Both sets of data are reported.	2 (580-90108-5), time and re- CS recovery and re reported.
	l issues further d		
•	ported on a dry v		
-	No□ N/A⊠	Comments:	
No soil sample			
the project	-	than the Cleanup Level or the minimum required dete	ection level for
1 68	INUL IN/AL	Comments.	

e. Data quality or usability affected?

The DRO results where the samples were extracted outside of analytical holding time are affected. However, both sets of DRO data were reported and the highest concentration for each sample was used in the project report. These concentrations are consistent with historical DRO data for each individual location.

580-90108-1
Laboratory Report Date:
11/8/2019
CS Site Name:
Tesoro 2Go Mart 52
5. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
$Yes \boxtimes No \square N/A \square$ Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□ Comments:
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
Not applicable.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
No affected samples.
v. Data quality or usability affected? Comments:
No
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes⊠ No□ N/A□ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes□ No□ N/A⊠ Comments:

No metals/inorganics.

580-90108-1	
Laboratory Report Date:	
11/8/2019	
CS Site Name:	
Tesoro 2Go Mart 52	
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limit project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120% AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages Yes □ No ⋈ N/A □ Comments: 	%,
Method AK102 & 103: Due to quality control and/or surrogate failures in the initial extraction (580-90108-1), G-3 (580-90108-2), G-5 (580-90108-3), G-7 (580-90108-4), MW 16-2 (580-90108-6) and (LCS 580-315859/2-A) were re-extracted out of holding time and ranalyzed. The re-extracted batch 580-315859 and 580-315859 contains low-biased LCS recoversurrogates below control limits for two samples. Both sets of data for these samples are reported	0108-5), re- ery and
iv. Precision – All relative percent differences (RPD) reported and less than method or lab limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the labor QC pages)	and or
$Yes \boxtimes No \square N/A \square$ Comments:	
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:	
G-1 (580-90108-1), G-3 (580-90108-2), G-5 (580-90108-3), G-7 (580-90108-4), MW 16-2 (580-90108-5), Dup-01 (580-90108-6) and (LCS 580-315859/2-A)	30-
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes⊠ No□ N/A□ Comments:	
vii. Data quality or usability affected? (Use comment box to explain.) Comments:	
No. Data usable as qualified based on LCS issues. Out of hold time extraction causes the data usability issues. However, the highest of the two sampling results for DRO is consistent with historical data for each individual location.	

Page 6 November 2019

580-90108-1	
Laboratory Report Date:	
11/8/2019	
CS Site Name:	
Tesoro 2Go Mart 52	
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project	
i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?	
Yes \square No \square N/A \square Comments:	
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?	
Yes□ No□ N/A□ Comments:	
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits ar project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes□ No□ N/A□ Comments: 	nd
TESE INOE IN/ACT COMMINENTS.	
iv. Precision – All relative percent differences (RPD) reported and less than method or laborat limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laborator QC pages)	
$Yes \square No \square N/A \square$ Comments:	
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:	
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	
Yes□ No□ N/A□ Comments:	

580-90108-1
aboratory Report Date:
11/8/2019
S Site Name:
Tesoro 2Go Mart 52
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
 d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods On i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes⊠ No□ N/A□ Comments:
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits ar project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
Yes \square No \boxtimes N/A \square Comments:
Method AK102 & 103: Due to quality control and/or surrogate failures in the initial extraction, G-1 (580-90108-1), G-3 (580-90108-2), G-5 (580-90108-3), G-7 (580-90108-4), MW 16-2 (580-90108-Dup-01 (580-90108-6) and (LCS 580-315859/2-A) were re-extracted out of holding time and reanalyzed. The re-extracted batch 580-315859 and 580-315859 contains low-biased LCS recovery a surrogates below control limits for two samples. Both sets of data for these samples are reported.
Method AK102 & 103: Method blank (MB 580-315552/1-A) recovered outside of control limits, lobiased, for o-Terphenyl surrogate. Samples associated with this method blank have been re-extracted out-of-hold with concurring results. Both sets of data are reported.
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes⊠ No□ N/A□ Comments:
iv. Data quality or usability affected?

Comments:

No. Data usable as qualified based on surrogate percent recoveries. Out of hold time extraction causes the data usability issues. However, the highest of the two sampling results for DRO is consistent with historical data for each individual location.

Page 8 November 2019

580-90108-1					
Laboratory Report Date:					
11/8/2019					
CS Site Name:					
Tesoro 2Go Mart 52					
e. Trip Blanks					
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile san (If not, enter explanation below.) 					
$Yes \boxtimes No \square N/A \square$ Comments:					
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC (If not, a comment explaining why must be entered below)					
$Yes \boxtimes No \square N/A \square$ Comments:					
iii. All results less than LOQ and project specified objectives? Yes⊠ No□ N/A□ Comments:					
iv. If above LOQ or project specified objectives, what samples are affected? Comments:					
Not applicable.					
v. Data quality or usability affected? Comments:					
No.					
 f. Field Duplicate i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes⊠ No□ N/A□ Comments: 					
ii. Submitted blind to lab? Yes⊠ No□ N/A□ Comments:					
Yes, samples MW16-2 and DUP-01					

580-90108-1					
aboratory Report Date:					
11/8/2019					
S Site Name:					
Tesoro 2Go Mart 52					
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration					
$Yes \square No \boxtimes N/A \square$ Comments:					
RPD met the DQOs for all detected analytes above GCLs, except 1,2,4-Trimethylbenzene.					
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:					
No. Reported concentrations were consistently above the GCL for 1,2,4-Trimethylbenzene in both primary and duplicate samples.					
 g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)? Yes□ No□ N/A⋈ Comments: 					
No decontamination or equipment blanks were required for this project.					
 i. All results less than LOQ and project specified objectives? Yes□ No□ N/A⊠ Comments: 					
No decontamination or equipment blanks submitted.					
ii. If above LOQ or project specified objectives, what samples are affected? Comments:					
No decontamination or equipment blanks submitted.					
iii. Data quality or usability affected? Comments:					
No decontamination or equipment blanks submitted.					

	580-90108-1					
Laboratory Report Date:						
	11/8/2019					
CS Site Name:						
	Tesoro 2Go Mart 52					
7.	7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)					
	a. Defined and appropriate?					
	Yes⊠ No□ N/A□	Comments:				