# FINAL

# **2019 Monitoring Report**

## **Operable Unit 2**

# **U.S. Army Garrison Alaska**



Site

ADEC File No. 108.38.069.01

**ADEC Hazard ID** 

DRMO

1122

Contract No. W911KB-16-D-0005 Task Order W911KB18F0053

December 2019



FAIRBANKS ENVIRONMENTAL SERVICES, INC.



#### DEPARTMENT OF THE ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, U.S. ARMY GARRISON ALASKA 1046 MARKS ROAD #6000 FORT WAINWRIGHT, ALASKA 99703-6000

December 17, 2019

**Directorate of Public Works** 

Subject: Submission of the Final 2019 Monitoring Report, Operable Unit 2, to State of Alaska Department Environmental Conservation.

Ms. Erica Blake Environmental Program Specialist Alaska Department of Environmental Conservation 610 University Avenue Fairbanks, AK 99709

Dear Ms. Blake:

This letter documents transmission of the Final 2019 Monitoring Report, Operable Unit 2, on Fort Wainwright to State of Alaska Department Environmental Conservation (ADEC).

A digital copy of the document will be provided to you and a CD will be delivered to ADEC in Fairbanks. A copy of the letter is being provided to Mr. Kevin Fraley, Environmental Program Specialist, ADEC and Ms. Sandra Halstead, Federal Facilities Superfund Site Manager, Environmental Protection Agency. If you would like to receive a hard copy of this document, please notify us within the next few weeks.

If you have questions or concerns regarding this action please contact the undersigned at (907) 361-6623 or email brian.m.adams18.civ@mail.mil, Ms. Bri Clark, Alternate Remedial Program Manager (907) 361-3001 or email brianne.r.clark.civ@mail.mil or you may contact Mr. Seth Reedy, Alternate Remedial Program Manager (907) 361-6489 or email seth.a.reedy.civ@mail.mil.

can h adam

Ɓrian Adams Remedial Project Manager

CF: HQ, USAG FWA CERCLA Administrative Records (w/o encls)



DEPARTMENT OF THE ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, U.S. ARMY GARRISON ALASKA 1046 MARKS ROAD #6000 FORT WAINWRIGHT, ALASKA 99703-6000

December 17, 2019

**Directorate of Public Works** 

Subject: Submission of the Final 2019 Monitoring Report, Operable Unit 2, to State of Alaska Department Environmental Conservation.

Mr. Kevin Fraley Environmental Program Specialist Alaska Department of Environmental Conservation 610 University Avenue Fairbanks, AK 99709

Dear Mr. Fraley:

This letter documents transmission of the Final 2018 Monitoring Report, Operable Unit 2, on Fort Wainwright to State of Alaska Department Environmental Conservation (ADEC).

A digital copy of the document will be provided to you and a CD will be delivered to ADEC in Fairbanks. A copy of the letter is being provided to Ms. Erica Blake, Environmental Program Specialist, ADEC and Ms. Sandra Halstead, Federal Facilities Superfund Site Manager, Environmental Protection Agency. If you would like to receive a hard copy of this document, please notify us within the next few weeks.

If you have questions or concerns regarding this action please contact the undersigned at (907) 361-6623 or email brian.m.adams18.civ@mail.mil, Ms. Bri Clark, Alternate Remedial Program Manager (907) 361-3001 or email brianne.r.clark.civ@mail.mil or you may contact Mr. Seth Reedy, Alternate Remedial Program Manager (907) 361-6489 or email seth.a.reedy.civ@mail.mil.

Fire The Ader.

Érian Adams Remedial Project Manager

CF: HQ, USAG FWA CERCLA Administrative Records (w/o encls)



DEPARTMENT OF THE ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, U.S. ARMY GARRISON ALASKA 1046 MARKS ROAD #4500 FORT WAINWRIGHT, ALASKA 99703-6000

December 17, 2019

**Directorate of Public Works** 

Subject: Submission of the Final 2019 Monitoring Report, Operable Unit 2, to Environmental Protection Agency.

Ms. Sandra Halstead Environmental Protection Agency Federal Facilities Superfund Site Manager Alaska Operations Office 222 W. 7<sup>th</sup> Ave, #19 Anchorage, AK 99513

Dear Ms. Halstead:

This letter documents transmission of the Final 2019 Monitoring Report, Operable Unit 2, on Fort Wainwright to the Environmental Protection Agency.

A digital copy of the document will be provided to you. A copy of this letter is being provided to Ms. Erica Blake, Environmental Protection Specialist, and Mr. Kevin Fraley, Environmental Program Specialist, Alaska Department of Environmental Conservation. If you would like to receive a hard copy of this document, please notify us within the next few weeks.

If you have questions or concerns regarding this action please contact the undersigned at (907) 361-6623 or email brian.m.adams18.civ@mail.mil, Ms. Bri Clark, Alternate Remedial Program Manager (907) 361-3001 or email brianne.r.clark.civ@mail.mil or you may contact Mr. Seth Reedy, Alternate Remedial Program Manager (907) 361-6489 or email seth.a.reedy.civ@mail.mil.

) he (Iden.

Brian Adams Remedial Project Manager

CF: HQ, USAG FWA CERCLA Administrative Records (w/o encls)

## FINAL

## **2019 Monitoring Report**

## Operable Unit 2 U.S. Army Garrison Alaska

**ADEC File Numbers** 

108.38.069.01 (DRMO)

ADEC Hazard IDs 1122 (DRMO)

December 2019

**Prepared for** 

U.S. Army Garrison Alaska

**Under Contract to** 

U.S. Army Corps of Engineers, Alaska District

Post Office Box 6898 JBER, Alaska 99506-0898 Contract W911KB-16-D-0005, Task Order W911KB18F0053

Prepared by

#### **Fairbanks Environmental Services**

3538 International Street Fairbanks, Alaska 99701 (907) 452-1006 FES Project No. 9011-17

#### TABLE OF CONTENTS

|     |      |                                                                       | Page Number    |
|-----|------|-----------------------------------------------------------------------|----------------|
| EXE | CUTI | VE SUMMARY                                                            | vii            |
| 1.0 | IN   | ITRODUCTION                                                           | 1-1            |
|     | 1.1  | DRMO Background                                                       | 1-1            |
|     | 1.2  | DRMO Subarea Descriptions                                             |                |
|     | 1.3  | OU2 Source Area Tracking                                              | 1-5            |
|     | 1.4  | Remediation Objectives                                                | 1-5            |
| 2.0 | FI   | ELD ACTIVITIES SUMMARY                                                |                |
|     | 2.1  | OU2 Groundwater Monitoring Program Summary                            |                |
|     | 2.2  | Groundwater Sampling Procedures                                       | 2-1            |
|     | 2.3  | Investigation-Derived Waste                                           |                |
|     | 2.4  | Groundwater Sample Data Quality                                       |                |
|     | 2.5  | Long-Term Monitoring Optimization and Statistical Evaluation<br>Goals |                |
|     | 2.6  | Institutional Controls Inspection                                     |                |
| 3.0 | DF   | RMO YARD GROUNDWATER MONITORING RESULTS (3-P/                         | ARTY) 3-1      |
|     | 3.1  | DRMO Yard Groundwater Elevations and Flow Direction                   |                |
|     | 3.2  | DRMO1 Subarea Groundwater Monitoring Results                          |                |
|     | 3.3  | DRMO1 (3-Party) LTMO Analysis Update                                  |                |
|     | 3.4  | DRMO4 Subarea Groundwater Monitoring Results                          |                |
|     | 3.5  | DRMO4 (3-Party) LTMO Analysis Update                                  | 3-13           |
|     | 3.6  | Comparison of 2019 Sampling Results to Current ADEC Clean             | up Levels 3-14 |
|     | 3.7  | Summary and Recommendations for DRMO 3-Party Sites                    | 3-15           |
| 4.0 | RE   | EFERENCES                                                             | 4-1            |

#### TABLES

- Table 1-1 Summary of DRMO Yard Subareas
- Table 1-2 Crosswalk Table for OU2 Source Area Tracking Numbers
- Table 1-3 DRMO ROD RAGs for Groundwater
- Table 2-1 Summary of the 2019 OU2 Groundwater Monitoring Program
- Table 3-1 OU2 DRMO Yard Groundwater Elevations
- Table 3-2 DRMO1 (3-Party) Subarea Groundwater Sample Results
- Table 3-3 DRMO4 (3-Party) Subarea Groundwater Sample Results
- Table 3-4 Mann-Kendall Trend Analysis for DRMO1 (3-Party) Wells
- Table 3-5 Mann-Kendall Trend Analysis for DRMO4 (3-Party) Wells
- Table 3-6 Comparison of Groundwater Results for ROD COCs to Current ADEC Cleanup Levels at OU2 DRMO 3-Party Sites

#### FIGURES

Figure 1-1 – Site Location Map

- Figure 1-2 DRMO Yard Subareas
- Figure 2-1 DRMO Yard Monitoring Well Locations
- Figure 3-1 DRMO1 Groundwater Sample Results
- Figure 3-2 DRMO4 Groundwater Sample Results
- Figure 3-3 DRMO Yard Groundwater Geochemistry

#### **GRAPHS (EMBEDDED IN THE TEXT)**

- Graph 3-1 PCE Concentrations and Water Levels in the DRMO1 ISCR Treatment Area
- Graph 3-2 TCE Concentrations and Water Levels in the DRMO1 ISCR Treatment Area
- Graph 3-3 Cis-1,2-DCE Concentrations and Water Levels in the DRMO1 ISCR Treatment Area
- Graph 3-4 DRO Concentrations in in AP-7560
- Graph 3-5 PCE Concentrations and Water Levels in DRMO4 Wells
- Graph 3-6 TCE Concentrations and Water Levels in DRMO4 Wells
- Graph 3-7 Cis-1,2-DCE Concentrations and Water Levels in DRMO4 Wells

#### APPENDICES

- Appendix A Sample Tracking and Analytical Results Tables
- Appendix B Chemical Data Quality Review, ADEC Checklists, and Supporting Information
- Appendix C Field Forms and Field Notes
- Appendix D Photo Log
- Appendix E LTMO Analysis Results

#### LIST OF ACRONYMS AND ABBREVIATIONS

| 1,1-DCE     | 1,1-dichloroethene                                                    |
|-------------|-----------------------------------------------------------------------|
| AAC         | Alaska Administrative Code                                            |
| AFCEE       | Air Force Center for Engineering and the Environment                  |
| ADEC        | Alaska Department of Environmental Conservation                       |
| AS          | air sparging                                                          |
| AWQS        | Alaska Water Quality Standards                                        |
| CD          | compact disc                                                          |
| CDQR        | Chemical Data Quality Review                                          |
| CERCLA      | Comprehensive Environmental Response, Compensation, and Liability Act |
| cis-1,2-DCE | cis-1,2-dichloroethene                                                |
| COC         | contaminants of concern                                               |
| CUL         | cleanup level                                                         |
| DERA        | Defense Environmental Restoration Account                             |
| DES         | Directorate of Emergency Services                                     |
| DO          | dissolved oxygen                                                      |
| DoD         | Department of Defense                                                 |
| DOL         | Directorate of Logistics                                              |
| DPW         | Directorate of Public Works                                           |
| DRO         | diesel range organics                                                 |
| DRMO        | Defense Reutilization Marketing Office                                |
| EPA         | Environmental Protection Agency                                       |
| FES         | Fairbanks Environmental Services Inc.                                 |
| FFA         | Federal Facilities Agreement                                          |
| GAC         | granular activated carbon                                             |
| GIS         | geographic information systems                                        |
| GRO         | gasoline range organics                                               |
| HLA         | Harding Lawson Associates                                             |
| HQAES       | Headquarters Army Environmental System                                |
| IC          | Institutional Control                                                 |
| IDW         | investigation-derived waste                                           |
| ISCR        | in-situ chemical reduction                                            |
| LBE         | Left Behind Equipment                                                 |
| LTMO        | long-term monitoring optimization                                     |
| MAROS       | Monitoring and Remediation Optimization System                        |
| MCL         | maximum contaminant level                                             |
| µg/L        | micrograms per liter                                                  |
| mg/L        | milligrams per liter                                                  |
| mV          | millivolts                                                            |
| NA          | natural attenuation                                                   |
| ND          | not detected                                                          |
| NRC         | National Response Corporation                                         |
| ORC         | oxygen-releasing compound                                             |
| ORP         | oxidation-reduction potential                                         |
| OU2         | Operable Unit 2                                                       |

#### LIST OF ACRONYMS AND ABBREVIATIONS CONT'D

| PCB           | polychlorinated biphenyl                 |
|---------------|------------------------------------------|
| PCE           | tetrachloroethene                        |
| QSM           | Quality Systems Manual                   |
| RAG           | Remedial Action Goal                     |
| RAO           | remedial action objective                |
| RI/FS         | Remedial Investigation/Feasibility Study |
| ROD           | Record of Decision                       |
| RPM           | Remedial Program Manager                 |
| SGS           | SGS North America Inc.                   |
| SVE           | soil vapor extraction                    |
| SVOC          | semivolatile organic compounds           |
| TCE           | trichloroethene                          |
| trans-1,2-DCE | trans-1,2-dichloethene                   |
| USACE         | U.S. Army Corps of Engineers             |
| USARAK        | U.S. Army Alaska                         |
| UST           | underground storage tank                 |
| VOC           | volatile organic compounds               |
| WSW           | Water Supply Well                        |

#### **EXECUTIVE SUMMARY**

Operable Unit 2 (OU2) currently includes two chlorinated solvent-contaminated sites at the Defense Reutilization Marketing Office (DRMO) Yard at U.S. Army Garrison, Alaska; DRMO1 and DRMO4. Cleanup activities at these sites were conducted under the 3-Party Agreement, and groundwater monitoring was conducted at each of the sites in 2019. The results of the 2019 monitoring program and recommendations for 2020 are presented in this report.

#### **DRMO Yard 3-Party Sites**

Chlorinated compounds exceeding Record of Decision (ROD) Remedial Action Goals (RAG) have historically been present within the DRMO1 and DRMO4 3-Party subareas of the DRMO Yard. Active treatment using air sparging (AS)/soil vapor extraction (SVE) was conducted between 1997 and 2005 at the DRMO1 site. Long-term monitoring optimization (LTMO) analysis of the sites in 2008 indicated stable and decreasing trends for the contaminants of concern (COCs), but also indicated that the contaminants would likely persist for a significant time above the RAG. Based on these results, a treatability study utilizing injection of an *in-situ* chemical reduction (ISCR) compound was completed (FES, 2018b). The goals of the treatability study were to evaluate the potential to stimulate reductive dechlorination, reduce the time required to achieve the RAG, and reduce long-term monitoring costs. Injections as part of the treatability study were dat the DRMO1 and DRMO4 sites in 2009. A second injection was completed at the DRMO1 and DRMO4 sites in 2009. A second injection was completed at the DRMO1 and DRMO4 sites in 2009. A second injection was completed at the DRMO1 and DRMO4 sites in 2009. A second injection was completed at the DRMO1 site in 2010, and a second injection was completed at the DRMO4 site in 2011.

Post-injection groundwater monitoring has been conducted at these sites and showed the stimulation of reducing conditions and biodegradation of the residual tetrachloroethene (PCE). PCE exceeded the RAG in one well in the DRMO1 source area (AP-10016R), but did not exceed the RAG in any well at the DRMO4 site during 2019. Groundwater geochemistry indicates that reducing conditions are persistent in these areas and natural attenuation of the residual PCE contamination is continuing.

Evaluation of the PCE and trichloroethene (TCE) plumes was completed at the DRMO1 and DRMO4 sites using the Monitoring and Remediation Optimization System (MAROS) software. The results at the DRMO1 site showed:

- Contaminant concentration trends for PCE and TCE do not indicate increasing concentrations that will result in additional exceedances of the RAG.
- The estimate of dissolved mass in the PCE and TCE plumes exhibited no trend, and recent estimates show the overall dissolved mass for both contaminants is stable.
- The location of the center of mass relative to the source for PCE and TCE exhibits an increasing trend, and has moved downgradient due to decreasing contaminant concentrations in the source area. However, it does not indicate migration of the plumes with concentrations above the RAG.

• The plume spread analysis for PCE and TCE generally showed no trend. The only exception was an increasing trend for TCE perpendicular to groundwater flow. However, there was no indication from TCE concentrations in individual wells that the plume is expanding above the RAG.

The results at the DRMO4 site showed:

- Contaminant concentration trends for PCE and TCE were stable or exhibited no trend. PCE has not been detected above the RAG since 2017, and TCE has not been detected since 2017.
- Quantitative plume analysis could not be completed due to the small well network; however, the sampling results show evidence of reductive dechlorination and the contaminant concentrations in downgradient wells have remained below the RAG. These results suggest the plumes are not expanding.

Overall, the LTMO analysis showed the PCE contaminant plumes at the DRMO1 and DRMO4 sites remain stable. Based on the 2019 sampling results, annual sampling should continue in the fall at the DRMO1 and DRMO4 3-Party sites.

#### **Contaminant Concentration Comparison to Current ADEC Cleanup Levels**

In November 2016, the Alaska Department of Environmental Conservation (ADEC) cleanup levels (CUL) were revised utilizing risk-based calculations. A second update for select compounds was completed in September 2018. This resulted in a significant change in the groundwater CUL for many compounds. The current CULs are found in Title 18 of the Alaska Administrative Code (AAC), Chapter 75.345 Table C, and would apply to 2-Party sites for evaluation of cleanup under ADEC regulations. In addition, the current ADEC CULs should be applied to ROD analytes for any 3-Party site transferred to the 2-Party program after ROD objectives are achieved, or upon agreement by the Army, ADEC, and the Environmental Protection Agency (EPA).

The 2019 groundwater sampling results at the OU2 3-Party sites were compared to current ADEC CULs for ROD COCs and non-ROD COCs for informational purposes. The comparison showed:

- ROD COC: PCE in AP-10016R at the DRMO1 3-Party site exceeded the ROD RAG, but was below the current ADEC CUL.
- Non-ROD COC: DRO exceeds the ADEC CUL in DRMO1 3-Party well AP-7560

#### **IC Inspection Summary**

An annual Institutional Controls (IC) inspection was conducted at the OU2 DRMO yard in 2019. The inspection showed the ICs have been properly implemented, and minor maintenance items (such as replacing locks on monitoring wells) were completed at the time of the inspection. A nonconformance issue was identified at the DRMO yard Water Supply Well (WSW) in 2018, and a letter detailing this issue was sent to EPA and ADEC. The well pump was locked out on November 21, 2018, and regulatory approval was requested to slowly fill the fire suppression tank with the well until permanent piping corrections could be completed. All 2019 filling events were documented, and piping modifications are anticipated to be completed in 2020. Further details regarding the IC inspection are presented in the 2019 IC inspection report (anticipated in spring 2020).

#### 1.0 INTRODUCTION

This report describes site activities and presents groundwater monitoring results from 2019 at Operable Unit 2 (OU2) sites on Fort Wainwright, Alaska. OU2 currently consists of the DRMO1 and DRMO4 3-Party sites in the Defense Reutilization Marketing Office (DRMO) Yard, since the former Building 1168 Leach Well site was removed from OU2 in 2018 as described in the *Interim Remedial Action Completion Report* (FES, 2018). This report also provides a summary of the Institutional Control (IC) inspections conducted at the OU2 sites during 2019.

This document and the associated fieldwork were completed by Fairbanks Environmental Services Inc. (FES) under U.S. Army Corps of Engineers (USACE) contract W911KB-16-D-0005, Task Order W911KB18F0053. The work was completed according to the 2019 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Sites Work Plan (FES, 2019); under authority of CERCLA; and in compliance with the OU2 Record of Decision (ROD; U.S. Army Alaska [USARAK], 1997), Federal Facility Agreement (FFA), and state of Alaska regulations.

#### 1.1 DRMO Background

The DRMO Yard is a fenced area of approximately 25 acres located in the southeast portion of the main post area of Fort Wainwright, Alaska. It lies northwest of the intersection of Badger Road and the Richardson Highway adjacent to Fairbanks, Alaska. Under a FFA between the U.S. Department of Defense (DoD), the Alaska Department of Environmental Conservation (ADEC), and the Environmental Protection Agency (EPA), the DRMO Yard was placed in OU2 for purposes of remediation under CERCLA. A site location map is included as Figure 1-1.

Historical activities conducted at the DRMO Yard included vehicle maintenance, drum storage, and open burning. The site was operated as a vehicle maintenance shop compound from 1945 until 1961 when it was converted to a salvage yard. Items stored at the salvage yard have included petroleum products, pesticides and herbicides, tar and asphalt, transformers, transformer oil [containing polychlorinated biphenyls (PCBs)], appliances, vehicles, and paint products. Currently, the DRMO Yard stores surplus equipment and supplies for the Army.

The Directorate of Logistics (DOL) has also constructed two large gravel pads in the DRMO Yard for storage and staging of equipment and vehicles prior to deployment. A number of fuel spills were observed as a result of the activities on these new pads. The nature and extent of these spills were investigated by Jacobs Engineering during 2010, and were described in the 2010 OU2 Monitoring Report (FES, 2011).

Contaminants were first observed in groundwater in the DRMO Yard during a study conducted at an adjacent facility between 1990 and 1993. Both diesel range organics (DRO) and trichloroethene (TCE) were discovered in groundwater samples collected from DRMO Yard wells

during this study. Pursuant to these findings, a preliminary source investigation was conducted at the DRMO Yard in 1992. This study consisted of groundwater and soil sampling, and indicated that diesel, naphthalene, petroleum hydrocarbons, and volatile organic compounds (VOCs) were present on site. A Remedial Investigation and Feasibility Study (RI/FS) was performed for all of OU2 in 1995 and characterized contamination throughout the DRMO Yard (Harding Lawson Associates [HLA], 1996). A ROD, prepared following completion of the RI/FS, specified the remedial actions to be undertaken to treat soil and groundwater contamination.

#### 1.2 DRMO Subarea Descriptions

Based on the findings of the RI/FS, the OU2 ROD identified five subareas of contamination within the DRMO Yard (USARAK, 1997). The subareas are shown on Figure 1-2 and summarized in Table 1-1.

| Subarea                                          | Regulatory<br>Authority | Location within DRMO<br>Yard                   | Remediation Status                              |  |  |  |
|--------------------------------------------------|-------------------------|------------------------------------------------|-------------------------------------------------|--|--|--|
| 3-PARTY SITES                                    |                         |                                                |                                                 |  |  |  |
| DRM01                                            | OU2 ROD<br>(3-Party)    | Central and northwest<br>(extending northwest) | OU2 AS/SVE Treatment<br>System<br>(1997–2005)   |  |  |  |
|                                                  |                         |                                                | ISCR Treatability Study (2009,<br>2010)         |  |  |  |
| DRMO4                                            | OU2 ROD<br>(3-Party)    | Southwest                                      | ISCR Treatability Study (2009,<br>2011)         |  |  |  |
|                                                  |                         | 2-PARTY SITES <sup>1</sup>                     |                                                 |  |  |  |
| DRMO1                                            | 2-Party                 | Central and northwest<br>(extending northwest) | DRMO1 AS/SVE Treatment<br>System<br>(1996-2003) |  |  |  |
| DRMO2 Building<br>5010 (Former<br>Building 5001) | 2-Party                 | East                                           | Long Term Monitoring                            |  |  |  |
| DRMO3                                            | 2-Party                 | South central                                  | Long Term Monitoring                            |  |  |  |
| DRMO5                                            | 2-Party                 | Central west<br>(across Channel B)             | DRMO5 AS/SVE Treatment<br>System<br>(1996-2003) |  |  |  |

#### Table 1-1. Summary of DRMO Yard Subareas

<sup>1</sup> Monitoring results from DRMO 2-Party sites are not presented in this report.

#### 1.2.1 DRMO1 Subarea

The DRMO1 subarea covers the central and northwest portions as well as a large area northwest of the DRMO Yard, and also includes Building 5008 and the Water Supply Well (WSW) house. Contaminants of concern (COCs) within this subarea historically have included tetrachloroethene (PCE), TCE, DRO, and gasoline range organics (GRO). Sources of contamination are believed to

have been waste oil drums and transformers previously stored in this area, and former diesel underground storage tanks (USTs). Two remediation systems, the DRMO1 (2-Party) air sparging (AS)/soil vapor extraction (SVE) treatment system and the DRMO1 (3-Party) AS/SVE treatment system, were installed in this subarea in 1996 and 1997, respectively, to treat soil and groundwater contamination. Although the treatment systems were initially effective in reducing groundwater contaminant concentrations, the systems were shutdown prior to achieving cleanup goals in all wells due to very low VOC removal rates.

Groundwater sampling of the DRMO1 (2-Party) wells following treatment system shutdown showed that there was not significant contaminant rebound, and continued operation of the system would result in limited impact to the residual contamination. As a result, the treatment system was decommissioned in 2008. Groundwater samples from the DRMO1 (2-Party) subarea are collected once every five years in coordination with the Five Year Review. Sampling at this site was conducted in 2019 and the results are presented in the Fort Wainwright Two-Party Report.

Groundwater sampling of the DRMO1 (3-Party) area between 2006 and 2008 did not identify contaminant rebound following the shutdown of the treatment system, and the system was decommissioned in October 2008. Long-term monitoring optimization (LTMO) analysis of the site completed in 2008 indicated stable and decreasing trends for the COCs, but also indicated that the contaminants will likely persist for a significant time above the Remedial Action Goal (RAG). Based on these results, an *in-situ* chemical oxidation (ISCR) treatability study was conducted to evaluate the effectiveness of reductive dechlorination to achieve RAGs in a shorter timeframe and reduce long-term monitoring costs. The treatability study (utilizing injection of the ISCR compound Adventus EHC<sup>®</sup>) was initiated in 2009 as described in the approved Work Plan (FES, 2009). Contaminant concentrations decreased as a result of the treatability study. However, the groundwater geochemistry returned to pre-injection conditions 10-months following the 2009 injection, indicating the ISCR product was depleted. As a result, a second injection was completed at this site in 2010. The second injection stimulated strong reducing conditions, and PCE and all degradation products were below RAGs in 2013. PCE concentrations were identified above the ADEC cleanup level (CUL) in one well (AP-10016) during 2014 and 2015. Groundwater monitoring was conducted in the DRMO1 (3-Party) treatment area during 2019 to continue evaluation of contaminant concentrations remaining in this area.

Groundwater samples from the WSW have been collected since 1998 to evaluate potential contaminant migration into the well. Samples are currently collected on an annual basis as part of the OU2 monitoring program.

#### 1.2.2 DRMO2 Subarea

The DRMO2 subarea covers the eastern quarter of the DRMO Yard and includes Buildings 5003 and 5010. COCs within this subarea historically have included DRO, GRO, and benzene. The

major source of contamination is believed to have been several diesel USTs, which were removed from this area. These USTs were associated with former Building 5001, which was situated in the current location of Building 5010. In addition, an estimated 3,000 to 8,000 gallons of diesel fuel was spilled near former Building 5001 in the early 1980s. There has been no active remediation within this subarea. Long-term monitoring is conducted on an annual basis at this site, and the results are described as part of the Fort Wainwright Two-Party Report.

#### 1.2.3 DRMO3 Subarea

DRMO3, the smallest subarea, includes Building 5007 and the area in the south central portion of the DRMO Yard, and extends south of the yard beyond the Alaska Railroad line and the Old Richardson Highway. COCs within this subarea historically have included DRO and GRO. There has been no active remediation within this subarea, and there has been no groundwater sampling in this subarea since 1994 as described in the RI (HLA, 1996).

#### 1.2.4 DRMO4 Subarea

The DRMO4 subarea encompasses the southwest section of the DRMO Yard which includes the Alaska Railroad spur line that enters the DRMO Yard, the associated loading ramp, and a portion of the Alaska Railroad line and the Old Richardson Highway south of the DRMO Yard. COCs within this subarea historically have included PCE, TCE, DRO, and GRO. Sources of contamination are believed to have been asphalt drums and transformers previously stored in this area, and potential releases associated with the railroad spur.

Groundwater data indicated that reductive dechlorination was occurring; however, the rate may be limited by the availability of carbon sources. LTMO analysis showed that the COCs have stable and decreasing concentration trends, although the contaminants will likely remain above the RAGs for a significant period of time. A treatability study utilizing the same ISCR compound as was used at the DRMO1 site was also completed at this site to evaluate stimulation of reductive dechlorination and the potential to achieve RAGs in a shorter timeframe. The first injection was completed at the DRMO4 site in 2009 (FES, 2010). Groundwater monitoring was continued during 2010 to evaluate the effectiveness of the injection, and a second injection was completed as part of the treatability study in 2011. Groundwater sampling results showed all PCE concentrations were below the RAG in all wells during May 2012 and August 2013. However, PCE exceedances were observed in two wells in October 2014, and in one well in August 2015. Groundwater monitoring was conducted in the DRMO4 (3-Party) treatment area during 2019 to continue evaluation of contaminant concentrations remaining in this area.

#### 1.2.5 DRMO5 Subarea

The DRMO5 subarea includes the west central portion and west gate of the DRMO Yard and extends west beyond the DRMO Yard to cover a portion of a slough (Channel B). COCs within

this subarea historically have included petroleum hydrocarbons (DRO and GRO). Sources of contamination are believed to be a former waste oil drum storage area and a former fire burn pit in the eastern portion of this subarea. One remediation system, the DRMO5 AS/SVE treatment system, was installed in this subarea in 1996 to treat soil and groundwater contamination. This system was shutdown in 2003 due to asymptotic VOC removal rates, and was decommissioned in October 2008. Groundwater samples from the DRMO5 subarea are collected once every five years in coordination with the Five Year Review. Sampling at this site was conducted in 2019 and the results are presented in the Fort Wainwright Two-Party Report.

#### 1.3 OU2 Source Area Tracking

The remaining OU2 source areas are tracked in the ADEC Contaminated Sites database, which is maintained by the ADEC project manager assigned to the site, and by the Army in the Headquarters Army Environmental System (HQAES) for funding purposes. The source area description, along with the HQAES and ADEC IDs are summarized in Table 1-2.

#### Table 1-2. Crosswalk Table for OU2 Source Area Tracking Numbers<sup>1</sup>

| OU2 Source Area    | HQAES<br>Number | ADEC File ID  | ADEC<br>Hazard ID | Site Status <sup>2</sup> |
|--------------------|-----------------|---------------|-------------------|--------------------------|
| DRMO 3-Party Sites |                 |               |                   |                          |
| DRMO1              | 02871.1024      | 108.38.069.01 | 1122              | Open                     |
| DRMO4              |                 |               |                   |                          |

<sup>1</sup> Based on information from the ADEC Contaminated Sites Database available at <u>http://dec.alaska.gov/Applications/SPAR/PublicMVC/CSP/Search</u> and the Army HQAES

<sup>2</sup> Site status from the ADEC Contaminated Sites Database

#### 1.4 Remediation Objectives

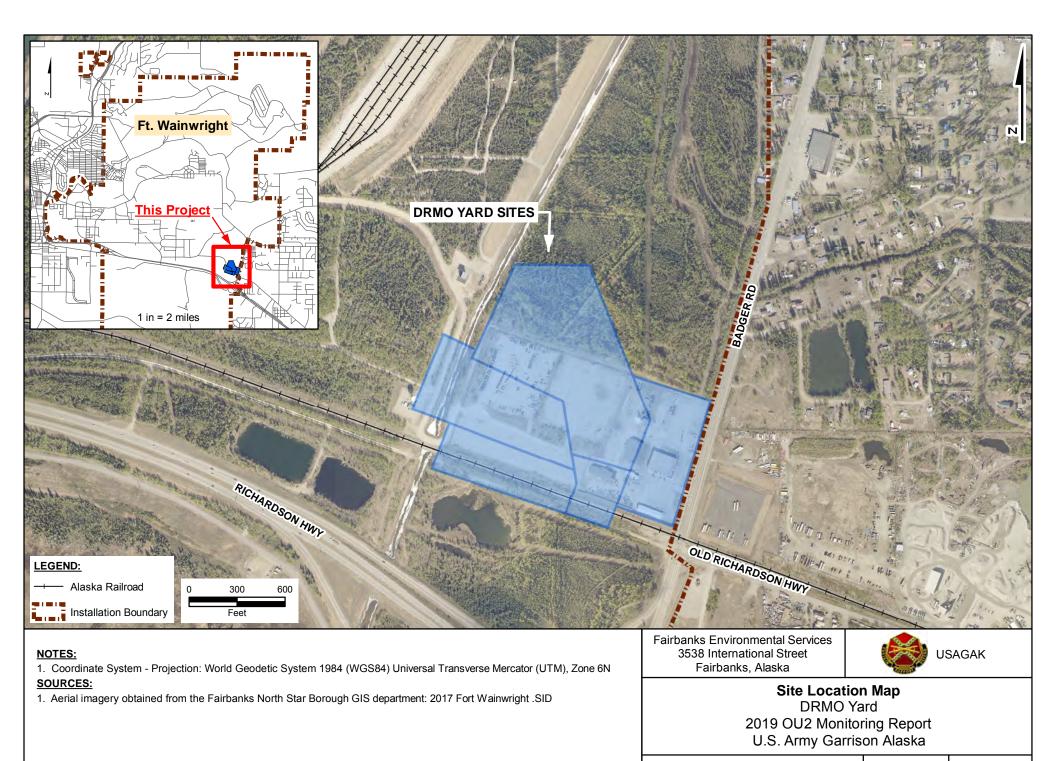
#### 1.4.1 OU2 Record of Decision

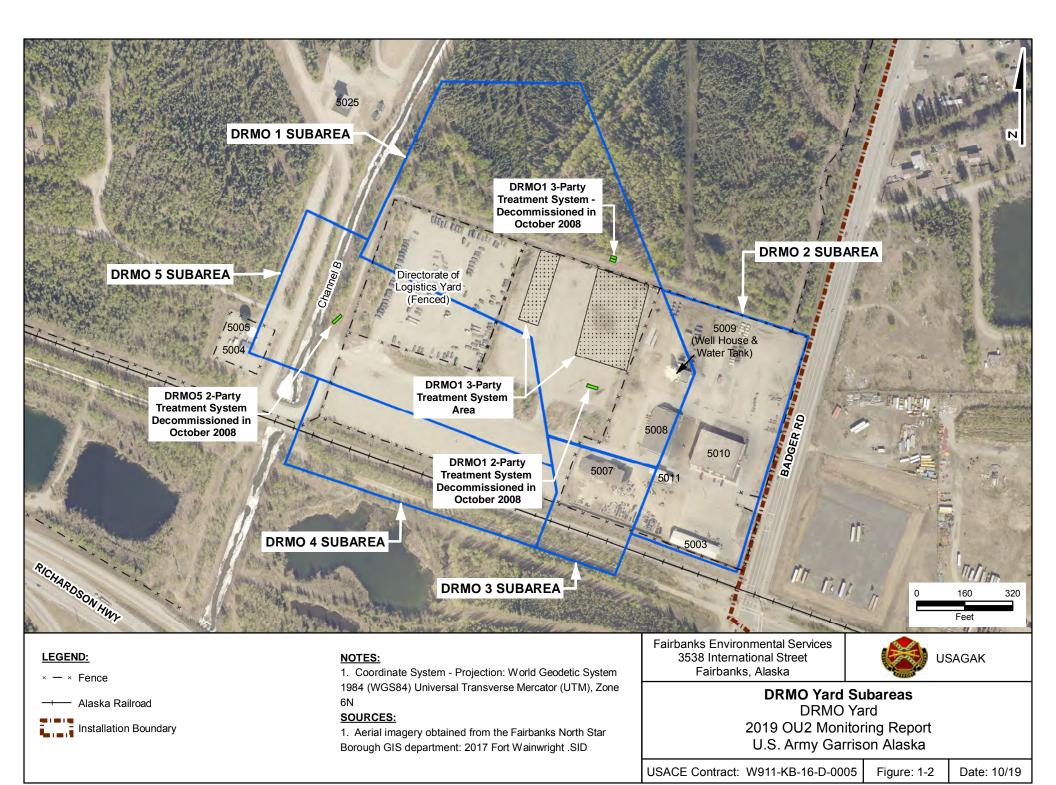
The OU2 ROD was signed under the FFA in March 1997 by the USARAK, ADEC, and EPA (USARAK, 1997). The ROD identified the following remedial action objectives (RAOs):

- Restore groundwater to its beneficial use of drinking water quality within a reasonable time frame through source control;
- Reduce or prevent further migration of contaminated groundwater from the source areas;
- Prevent use of groundwater containing contaminants at levels above federal Safe Drinking Water Act and State of Alaska Drinking Water Standard maximum contaminant levels (MCLs) and Alaska Water Quality Standards (AWQSs), and limit high-volume pumping from the aquifer at the DRMO Yard until state and federal MCLs are achieved;
- Use natural attenuation to attain AWQSs after reaching state and federal MCLs; and

• Prevent migration of soil contaminants to groundwater, which could result in groundwater contamination and exceedances of state and federal MCLs and AWQSs.

The RAGs for groundwater were established under the 3-Party FFA for DRMO1 and DRMO4. The ROD RAGs are presented in Table 1-3.


| Contaminants of Concern              | ROD RAG (µg/L) | Basis                   |
|--------------------------------------|----------------|-------------------------|
| Benzene                              | 5              | MCL                     |
| PCE                                  | 5              | MCL                     |
| TCE                                  | 5              | MCL                     |
| Vinyl Chloride                       | 2              | MCL (breakdown product) |
| 1,1-Dichloroethene (1,1-DCE)         | 7              | MCL (breakdown product) |
| cis-1,2-Dichloroethene (cis-1,2-DCE) | 70             | MCL (breakdown product) |


Table 1-3. DRMO ROD RAGs for Groundwater

 $\mu$ g/L – micrograms per liter

#### 1.4.2 <u>2-Party Agreement</u>

Since the primary COCs identified in subareas DRMO2, DRMO3, and DRMO5 were petroleum hydrocarbons, these areas were addressed separately under a 2-Party Agreement between USARAK and ADEC, rather than under the ROD. ADEC groundwater cleanup standards, as presented in Table C of Title 18 of the Alaska Administrative Code (AAC), Chapter 75.345 were adopted as remediation goals for areas not addressed in the ROD. In November 2016, the ADEC CULs were revised utilizing risk-based calculations. The ADEC CULs were revised again for select compounds in September 2018. These updates resulted in a significant change in the CULs from when the 2-Party Agreement was originally signed. The current levels (ADEC, 2018) will need to be utilized for 2-Party sites to attain cleanup complete under ADEC regulations. In addition, the current ADEC CULs will be applied to any 3-Party site transferred to the 2-Party program after ROD objectives are achieved, or by agreement of the Army, EPA, and ADEC.





#### 2.0 FIELD ACTIVITIES SUMMARY

This section describes the groundwater sampling procedures, investigation-derived waste (IDW) handling procedures, and a summary of the data quality review and annual IC inspection. Each of these activities was completed in August 2019.

#### 2.1 OU2 Groundwater Monitoring Program Summary

Groundwater samples are collected annually from the OU2 DRMO1 and DRMO4 sites. A summary of the 2019 OU2 groundwater monitoring program is summarized in Table 2-1. The 2019 groundwater sampling locations for the DRMO Yard are shown on Figure 2-1.

| OU2 Site          | Subarea/<br>Site | Number of<br>Wells/Probes | Contaminant<br>Analyses <sup>1</sup> | NA<br>Analyses <sup>3</sup> | Monitoring<br>Frequency |
|-------------------|------------------|---------------------------|--------------------------------------|-----------------------------|-------------------------|
| DRMO1 (3-Party)   | DRMO1            | 7                         | DRO <sup>2</sup> , VOC               | Tuon gulfato                | Annual                  |
| DRMO4 (3-Party)   | DRMO4            | 3                         | DRO <sup>2</sup> , VOC               | Iron, sulfate               | Annual                  |
| Water Supply Well | DRMO1            | 1                         | GRO, DRO, VOC, SVOC                  |                             | Annual                  |

 Table 2-1. Summary of the 2019 OU2 Groundwater Monitoring Program

NA – Natural Attenuation; SVOC – semivolatile organic compounds

<sup>1</sup> Contaminant analyses included the following methods: VOC (8260C), SVOC (8270D), GRO (AK101), and DRO (AK102)

<sup>2</sup> Only one well in the DRMO1 (3-Party) area (AP-7560) and one well in the DRMO4 (3-Party) area (AP-10445MW) were analyzed for DRO

<sup>3</sup> Natural attenuation analyses included the following methods: iron (6020A), sulfate (300.0)

Groundwater sampling at the DRMO 3-Party sites was conducted in August 2019. Groundwater monitoring was conducted in accordance with the procedures detailed in the 2019 Work Plan (FES, 2019). All groundwater samples were analyzed by SGS North America Inc., (SGS), of Anchorage, Alaska, as presented in Table 2-1.

The groundwater tracking table and analytical results are presented in Appendix A as Tables A-1 and A-2, respectively. The Chemical Data Quality Review (CDQR) and ADEC Laboratory Data Review Checklists summarizing the laboratory data review are presented in Appendix B. Copies of groundwater sample forms are included in Appendix C. Field parameters recorded on groundwater sample forms (dissolved oxygen [DO], temperature, pH, specific conductivity, oxidation-reduction potential [ORP], turbidity, and drawdown) are summarized in Table C-1.

#### 2.2 Groundwater Sampling Procedures

Low-flow methodology (Puls and Barcelona, 1996) was used to collect water samples from all monitoring wells. The low-flow sampling method utilized variable-speed submersible pumps, and dedicated Teflon-lined tubing to purge and sample the wells. The only exception to the low-flow

methodology was sampling of the WSW. Samples from the WSW are collected from a spigot (raw water tap) located directly downstream of the WSW source.

Groundwater was purged at a rate between 0.03 and 0.15 gallons per minute. Water quality measurements were recorded every five minutes and monitoring wells were purged until water quality parameters stabilized, per ADEC guidance (ADEC, 2019a). Field parameters were measured using YSI water quality meters installed in a flow through cell. The instruments were calibrated at the beginning of each day according to the manufacturer's instructions. Parameters measured included pH, temperature, specific conductivity, DO, and ORP. In addition, turbidity and drawdown were measured for each well and were recorded on sampling forms. Groundwater sampling forms are presented in Appendix C, and a summary of the field parameters is provided on Table C-1.

Following sampling, the submersible pumps were decontaminated in accordance with the procedures described in the Work Plan (FES, 2019). Rinsate samples were also collected to evaluate decontamination of the re-usable pumps. The rinsate sample results are discussed in the CDQR.

#### 2.3 Investigation-Derived Waste

IDW generated during OU2 field activities in 2019 included purge water, decontamination water, and general refuse (disposable tubing, nitrile gloves, etc.) from groundwater monitoring activities. All IDW and other waste streams were managed according to the procedures outlined in the Work Plan (FES, 2019).

Purge water was containerized at the time of sampling in 15-gallon polyethylene drums. The drums were labeled with a unique ID, and a form was completed documenting the ID and purge volume from each well. The drums were taken to the Fort Wainwright Defense Environmental Restoration Account (DERA) building for temporary storage. The purge water from the OU2 DRMO sites was disposed of as CERCLA waste. Complete documentation of the CERCLA waste disposal will be provided in the 2019 IDW Technical Memorandum.

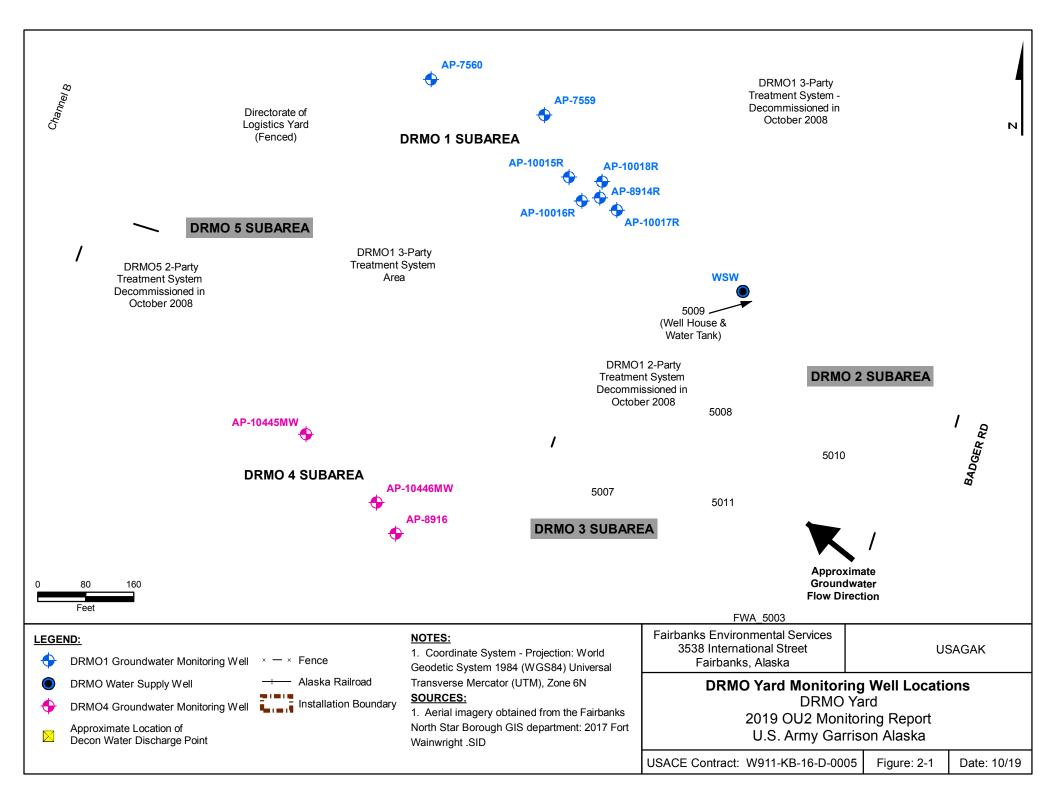
Following groundwater sampling, the submersible pumps used at the DRMO site were decontaminated in accordance with the Work Plan (FES, 2019), and the decontamination water was containerized and treated using granular activated carbon (GAC). The treated water was discharged on the site where the pumps were used, at a location that was vegetated and at least 100 feet from any surface water body source. The discharge location at the DRMO site is shown on Figure 2-1.

#### 2.4 Groundwater Sample Data Quality

The OU2 groundwater data were reviewed in order to assess whether analytical data met data quality objectives and were acceptable for use. The project data were reviewed for deviations to the requirements presented in the Work Plan (FES, 2019), the ADEC Technical Memorandum (ADEC, 2019b), and the DoD Quality Systems Manual (QSM), Version 5.1 (DoD, 2017).

Several results were qualified as potential estimates during the data review process; however, no data were rejected. In all cases, the impact to the overall project due to the data qualifications was minor. The reviewed data are presented in Appendix A, and are used in tables and figures throughout the report. The specific data quality issues found during the review are presented in the CDQR in Appendix B.

#### 2.5 Long-Term Monitoring Optimization and Statistical Evaluation of Treatment Goals


The sampling data are used to conduct LTMO analysis of the monitoring program. The analysis was initiated in 2008 following shutdown of the OU2 treatment systems and contaminant rebound study, and has been updated each year using the most recent sampling results. The update includes an evaluation of contaminant trends, plume stability, monitoring well redundancy, and sampling frequency using the Monitoring and Remediation Optimization System (MAROS) software developed by the Air Force Center for Engineering and the Environment (AFCEE). The MAROS software utilizes basic site-specific inputs (e.g., groundwater monitoring data, hydrogeologic parameters, and well location information) to conduct a statistical analysis of the groundwater monitoring system. The MAROS software is one among several tools that has been recommended for use in LTMO (EPA, 2005). The Remedial Program Managers (RPMs) at the Fort Wainwright Directorate of Public Works (DPW) recommended using MAROS to evaluate the monitoring program at OU2.

#### 2.6 Institutional Controls Inspection

An IC survey was completed during August 2019. The IC survey included an evaluation of the OU2 DRMO sites discussed in the OU2 ROD (DRMO1, DRMO4, and WSW). The IC inspection included a site visit to evaluate potential land use changes, site security (monitoring wells, etc., as applicable), or unauthorized excavation or groundwater use. In addition to the site visit, reviews of the Fort Wainwright IC geographic information system (GIS) layer and the site-specific information in the ADEC Contaminated Sites database were conducted. A summary of the 2019 IC survey is presented below, and the complete survey results will be included in the 2019 Fort Wainwright IC Inspection Report (expected spring 2020).

#### • DRMO Yard

- IC Description:
  - "Restricted access and well development restrictions, and a groundwater monitoring and evaluation program for the potable drinking water supply wells. These controls will remain in place as long as hazardous substances remain on site at levels that preclude unrestricted use"; and
  - "Additional institutional controls, including a limitation on refilling the DRMO Yard fire suppression water tank from the existing potable water supply well, until state and federal maximum contaminant levels are met (except in emergency situations)." (USARAK, 1997)
- o 2019 IC Inspection Results:
  - Access on the east side of the DRMO is now controlled by the Directorate of Emergency Services (DES) (formerly controlled by DRMO), and access on the west side is managed by the Left Behind Equipment (LBE) group.
  - It was determined in 2018 that the DRMO Yard fire suppression tank had been filled from the potable water well since it was installed. A notification of non-conformance was sent to the regulators on November 21, 2018, and the pump was locked out to prevent unauthorized use. The following activities were conducted in 2019:
    - $\circ$  No unauthorized operations of the WSW occurred during 2019.
    - $\circ~$  Each pump operation event was recorded on a fill log which was provided to ADEC and EPA.
    - Permanent piping corrections are anticipated to be completed in 2020.



#### 3.0 DRMO YARD GROUNDWATER MONITORING RESULTS (3-PARTY)

This section presents the groundwater monitoring results for the DRMO1 and DRMO4 3-Party sites through 2019. Groundwater sampling results for the DRMO1 site are summarized in Table 3-2 and Figure 3-1, and sampling results for the DRMO4 site are summarized in Table 3-3 and Figure 3-2. Groundwater geochemistry for the DRMO yard is presented in Figure 3-3. are summarized in Tables 3-2 and 3-3.

#### 3.1 DRMO Yard Groundwater Elevations and Flow Direction

Groundwater elevations from DRMO 3-Party wells are included on Table 3-1 and Graphs 3-1 and 3-5 (represented by groundwater in AP-8914R), and were approximately 0.5 foot lower in August 2019 than in August 2018. The 2019 water level was consistent with historic levels measured at the site, and groundwater was within the screen in all OU2 wells. The groundwater flow direction was consistent with past monitoring events and followed the regional groundwater flow (northwest).

#### 3.2 DRMO1 Subarea Groundwater Monitoring Results

Monitoring wells AP-7559, AP-7560, AP-8914R, AP-10015R, AP-10016R, AP-10017R, and AP-10018R were sampled in August 2019 to evaluate the progress towards achieving the RAGs at the DRMO1 site. The analytical results of the groundwater sampling are presented in Figure 3-1 and Table 3-2, with complete results in Table A-2. The results are discussed in the following sections.

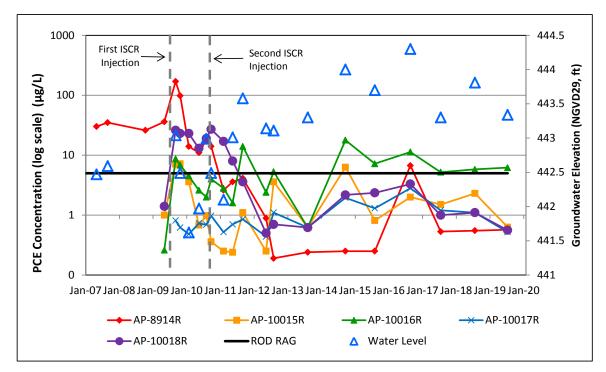
#### 3.2.1 Groundwater Geochemistry Trends

Groundwater geochemistry was evaluated at the DRMO1 3-Party subarea to evaluate the potential for reducing conditions and reductive dechlorination. Reducing conditions were stimulated as part of a treatability study through injection of Adventus EHC<sup>™</sup> in 2009 and 2010. The primary groundwater geochemistry parameters used in the evaluation were ORP, DO, dissolved metals, and dissolved anions.

The area where the greatest reducing conditions were observed following each injection was in the vicinity of AP-8914R and AP-10018/AP-10018R. This area had the highest PCE concentrations in groundwater, and was also the area with the highest density of injection points in the treatability study. The 2019 groundwater geochemistry results showed reducing conditions were persistent in monitoring wells AP-8914R, AP-10015R, AP-10016R, and AP-10018R; as indicated by dissolved oxygen less than 1 milligram per liter (mg/L), elevated dissolved iron, and

lower sulfate concentrations. Monitoring well AP-7560 was also characterized by similar reducing conditions, likely a result of the DRO contamination that is persistent in the vicinity of this well. The areas of iron- and sulfate-reducing conditions identified at the time of groundwater sampling in August 2019 are shown in Figure 3-2. The area of iron-reducing conditions (as indicated by dissolved iron concentrations greater than 5 mg/L) in the PCE source area included AP-10015R, AP-10018R, and AP-8914R. Iron reducing conditions were also observed around AP-7560, which is downgradient of the PCE source area and has the highest DRO concentrations observed in the DRMO1 3-Party site. The DRO contamination is likely associated with a UST removed from the area in 2008. Sulfate reducing conditions (as indicated by sulfate concentrations less than 20 mg/L) were also observed in AP-10015R, AP-10016R, AP-10018R, and AP-8914R.

#### 3.2.2 Contaminant Concentration Changes in the Treatability Study Area


#### PCE Concentration Trends

The PCE concentrations over time and visual trends for monitoring wells AP-8914R, AP-10015/AP-10015R, AP-10016/AP-10016R, AP-10017/AP-10017R, and AP-10018/AP-10018R are shown in Graph 3-1. Prior to the second EHC<sup>™</sup> injection in 2010, PCE was detected in groundwater above the RAG in AP-8914R and AP-10018. Following the 2010 injection, PCE concentrations increased slightly in these wells (as observed in the October 2010 sampling event), but then decreased below the RAG. PCE decreased below the RAG in AP-8914R and AP-10018 for the first time in 2011. The PCE concentration has remained below the RAG in subsequent sampling events in AP-10018 (and replacement AP-10018R in 2018), but exceeded the RAG in AP-8914R for the first time in 2016, as shown in Graph 3-1. The PCE concentration in AP-8914R has been below the RAG since 2017.

PCE in AP-10016 increased slightly following the 2009 injection, and exceeded the RAG in two post-injection sampling events (September and November 2009). The PCE concentration decreased below the RAG in February 2010, and did not immediately exceed the RAG following the second injection in August 2010. However, the PCE concentrations intermittently exceeded the RAG between 2011 and 2013, and have consistently exceeded the RAG since 2014 including exceedances in replacement well AP-10016R in 2018 and 2019. This well is cross-gradient of the 2010 injection area, and is characterized by sulfate reducing conditions.

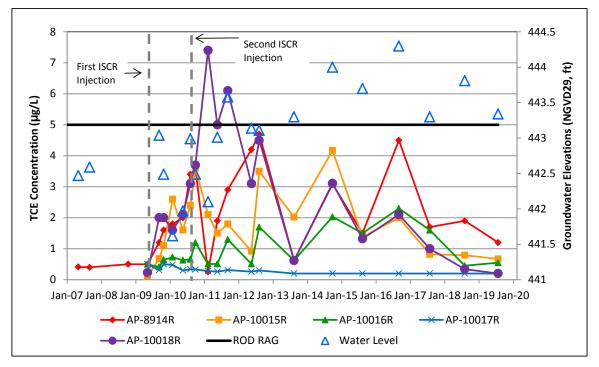
The other well where PCE exceeded the RAG following the second injection was in downgradient well AP-10015. This exceedance was observed in 2014 (October). However, the PCE concentrations observed in sampling events between 2015 and 2017 were below the RAG. The PCE concentration in replacement well AP-10015R has also remained below the RAG. Iron and sulfate reducing conditions are persistent in this well, and these results suggest that natural attenuation continues to reduce contaminant concentrations in the treatment area.

The PCE concentration in upgradient well AP-10017/AP-10017R has remained below the RAG in all sampling events conducted at the site.



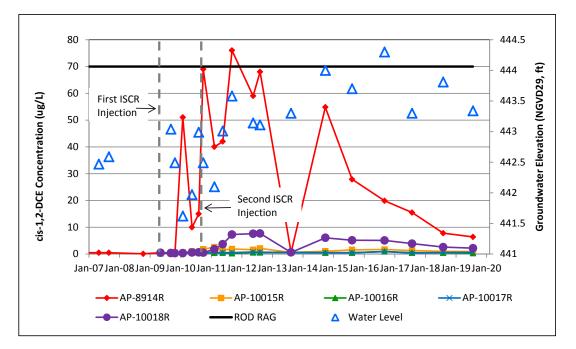
Graph 3-1. PCE Concentrations and Water Levels in the DRMO1 ISCR Treatment Area

Graph 3-1 includes water levels measured in the injection area (represented by water levels in AP-8914R). The relationship between the PCE concentration and water levels indicates that the wells with recent RAG exceedances (AP-10015/AP-10015R, AP-10016/AP-10016R, and AP-8914R) have been sensitive to changes in water levels since the second injection. When water level increases, the PCE concentration tends to increase, and when water level decreases, the PCE concentration decreases. These results suggest that residual source material may be trapped in low-permeability soils in the vicinity of these wells, that is not normally in contact with groundwater. During periods of high water levels, this contamination comes in contact with the groundwater, resulting in higher dissolved concentrations. Since reducing conditions are persistent in this area, the parent compound is likely degraded after it enters the groundwater system, resulting in a decrease in concentration.


The PCE concentrations in all DRMO1 ISCR treatment area wells have remained similar between 2017 and 2019, even though water levels have continued to fluctuate. This suggests any residual source material remaining in the soil may be depleted. This trend will continue to be evaluated in future monitoring events.

#### Concentration Changes of Reductive Dechlorination Daughter Products

The decreases in the PCE concentrations shown in graph 3-1 were compared to concentrations of reductive dechlorination daughter products (TCE, cis-1,2-dichloroethene [cis-1,2-DCE], and trans-1,2-dichloroethene [trans-1,2-DCE]). Occurrences of these compounds are a strong indicator of


the occurrence of reductive dechlorination, as these daughter products were either not detected or were detected only at trace levels prior to the treatability study.

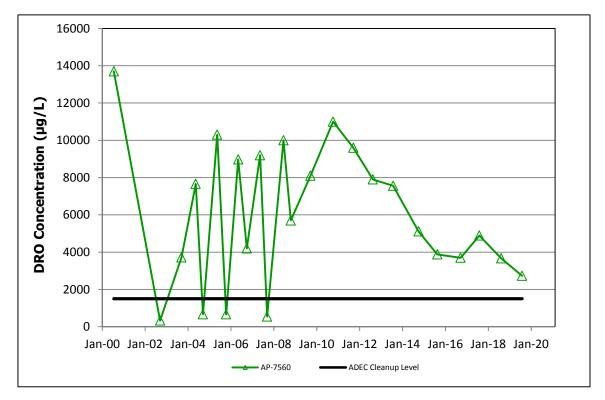
The TCE concentration changes over time and visual trends are shown in Graph 3-2, and complete results of the daughter product detections are presented in Table 3-2. As shown in Graph 3-2, TCE has remained below the RAG in all wells at the DRMO1 (3-Party) site since 2012. The highest concentrations have been identified in AP-8914R, AP-10015/AP-10015R, and AP-10018/AP-10018R. The graph also shows elevated TCE concentrations at different times in AP-8914R and AP-10015, although concentrations have remained below the RAG.



Graph 3-2. TCE Concentrations and Water Levels in the DRMO1 ISCR Treatment Area

Another daughter product with significant detections resulting from the treatability study injections is cis-1,2-DCE, as shown in Graph 3-3. The highest concentration of cis-1,2-DCE has been observed in AP-8914R, where an increasing trend was observed following the first injection in 2009. A decrease in cis-1,2-DCE was initially observed following the second injection event in 2010, but concentrations exceeded the RAG in the September 2011 sampling event. Cis-1,2-DCE decreased below the RAG in the 2012 events and has remained below the RAG. The next highest cis-1,2-DCE concentration has been observed in AP-10018, where some of the highest PCE and TCE concentrations have also been observed; though cis-1,2-DCE has never exceeded the RAG.




#### Graph 3-3. cis-1,2-DCE Concentrations and Water Levels in the DRMO1 ISCR Treatment Area

Trace detections of other reductive dechlorination daughter products including trans-1,2-DCE, 1,1-dichloroethene (1,1-DCE), and vinyl chloride have been observed in post-injection sampling events, although no RAG exceedances of any of these daughter products have been observed. Detection of these daughter products provides evidence that complete degradation of PCE through reductive dechlorination is occurring at the site. Changes in the concentrations of the daughter products (particularly vinyl chloride) will continue to be evaluated as part of the annual sampling program.

#### 3.2.3 <u>Contaminant Concentration Changes Outside of the Treatability Study</u> <u>Area</u>

The only two monitoring wells sampled in 2019 that were outside of the treatability study area were AP-7559 and AP-7560. Other monitoring wells sampled as part of DRMO1 have been eliminated from the well network based on LTMO analysis. PCE and TCE have been consistently detected below RAGs in the areas outside of the treatability study area, likely as a result of PCE releases from drum storage areas across the DRMO1 subarea (HLA, 1996). However, in 2016, PCE exceeded the RAG in AP-7559 for the first time since 2001. The PCE concentration was below the RAG in the 2018 and 2019 monitoring events and was similar to concentrations observed since the treatment system was shut down in 2006. The PCE concentrations in this well will continue to be evaluated in future sampling events.

DRO analysis is performed for samples collected from AP-7560 since it is the only DRMO1 3-Party area having DRO exceedances. DRO is consistently detected above the ADEC CUL in AP-7560, likely due to a former UST that was identified upgradient of this well during treatment system decommissioning (see Figure 3-1). The DRO concentration changes and visual trend for AP-7560 is shown in Graph 3-4. The highest DRO detection was 13,700 micrograms per liter (µg/L) in June 2000, with typical detections between 5,000 µg/L and 10,000 µg/L. Graph 3-4 shows significantly less variability in DRO concentrations since 2008 when the sample frequency decreased from semi-annually to annually. Sampling is conducted in the fall since the DRO concentration in AP-7560 was consistently higher in the fall versus the spring sampling events. The analytical results indicate an overall decreasing trend since 2010, and the 2019 result was the lowest observed since 2007. Groundwater geochemistry results indicate biodegradation of DRO is likely occurring under iron-reducing conditions.



Graph 3-4. DRO Concentrations in AP-7560

#### 3.3 DRMO1 (3-Party) LTMO Analysis Update

The LTMO analysis (initially conducted in 2008) was updated using data collected between 2010 and 2019 for the DRMO1 (3-Party) site to evaluate the current monitoring well network in terms of the remediation objectives. This time period of analysis was chosen to represent the site trends following the second ISCR injection in August 2010.

#### 3.3.1 <u>Statistical Trend Analysis Results</u>

Plume stability was evaluated using the statistical trend analysis in the MAROS software, which determines trends of contaminant concentrations in individual wells based on the Mann-Kendall test and linear regression. The trend for each COC was selected based on the highest confidence analysis method. The trend results for PCE and TCE are presented in Table 3-4 and are based on the Mann-Kendall trend analysis. Complete MAROS results are presented in Appendix E.

| Well               | Relative Location to                         | Contaminants of Concern |            |
|--------------------|----------------------------------------------|-------------------------|------------|
| wen                | Injection Area                               | PCE                     | TCE        |
| AP-10017/AP-10017R | Upgradient                                   | No Trend                | Decreasing |
| AP-8914R           | Within treatability study area               | No Trend                | Stable     |
| AP-10016/AP-10016R |                                              | No Trend                | No Trend   |
| AP-10018/AP-10018R |                                              | Decreasing              | Decreasing |
| AP-10015/AP-10015R | Downgradient of treatability –<br>study area | Probably<br>Increasing  | Stable     |
| AP-7559            |                                              | No Trend                | No Trend   |
| AP-7560            |                                              | Stable                  | No Trend   |

 Table 3-4. Mann-Kendall Trend Analysis for DRMO1 (3-Party) Wells

Trends in **bold type** exceeded the RAG during the time period used in the LTMO analysis (2010-2019).

Table 3-4 identifies the contaminant trends for wells upgradient, within, and downgradient of the injection area, and the results showed:

• **Upgradient well AP-10017/AP-10017R:** No trend for PCE and a decreasing trend for TCE. Concentrations have remained below the RAG.

#### Injection area wells AP-8914R, AP-10016/AP-10016R, and AP-10018/AP-10018R:

- PCE concentration trend in AP-10018/AP-10018R was decreasing, and the PCE concentration in AP-10016/AP-10016R and AP-8914R exhibited no trend. The only PCE exceedance in 2019 was observed in AP-10016R.
- Concentration trends for TCE were decreasing for AP-10018/AP-10018R, no trend for AP-10016/AP-10016R, and stable for AP-8914R. TCE has remained below the RAG in each of these wells since 2012.
- Downgradient wells AP-10015R, AP-7559, and AP-7560:
  - PCE exhibited a probably increasing trend in AP-10015/AP-10015R, no trend in AP-7559, and a stable trend in AP-7560. PCE in AP-10015 increased following the injections and was above the RAG in 2014. However, the PCE concentration has remained below the RAG in the sampling events between 2015 and 2019. These

results suggest the increasing trend identified by MAROS is a result of the PCE increases following injections and do not represent a continuing increasing trend.

- No Trend for TCE was observed in downgradient wells AP-7559 and AP-7560, and a stable trend was observed in AP-10015R. All TCE concentrations have remained below the RAG in downgradient wells since the injections.
- The trend results do not indicate significant downgradient migration of PCE or TCE from the treatability study area.

#### 3.3.2 Spatial Moment Analysis Results

The spatial moment analysis in the MAROS software included an evaluation of dissolved contaminant mass (zeroth moment), trend of the location of the center of mass relative to the source (first moment), and trend of plume spread in the direction of groundwater flow and perpendicular to groundwater flow since the second ISCR injection in 2010. Not all wells were sampled during each monitoring event. As a result, there was variability in the spatial moment analysis as the size of the monitoring area changed. This analysis is based on an evaluation of the results considering the number of wells in each sampling event.

The results of the dissolved mass (zeroth moment) analysis for in the DRMO1 (3-Party) area showed:

- The PCE dissolved mass has been variable since the injection, and exhibited no trend. However, dissolved mass estimates have been generally stable since 2014.
- The TCE dissolved mass estimate also exhibited no trend, and TCE remains below the RAG in individual wells.

The results of the analysis of the location of the center of mass relative to the source (first moment) are summarized as follows:

- The center of mass of PCE and TCE exhibited increasing trends over the period of analysis.
- However, this does not indicate expansion of the plumes at concentrations greater than the RAG, since the primary reason for the increasing trend is decreasing contaminant concentrations in source area wells. Only one well had PCE above the RAG in 2019, and no wells had TCE concentrations exceeding the RAG.

The plume spread results in the direction of groundwater flow and perpendicular to groundwater flow (second moment) showed:

• PCE trends exhibited no trend in the direction of groundwater flow, and no trend perpendicular to groundwater flow. These results indicate that although there have been intermittent RAG exceedances, there is no significant indication of plume spread.

• TCE exhibited a stable trend in the direction of groundwater flow, and no trend perpendicular to groundwater flow. The plume spread estimated in 2019 was within the range observed since 2010, and no indication of plume spread.

#### 3.3.3 Monitoring Well Network and Sampling Frequency Evaluation

MAROS software was also used to evaluate the redundancy of the monitoring well network and sampling frequency at the DRMO1 (3-Party) site. The goals were to verify that the monitoring network was sufficient for decision making, and then optimize it by identifying redundant wells and determining the most efficient sampling frequency.

The output from the MAROS software analysis for well redundancy and sampling frequency is provided in Appendix E, and shows that the only well recommended for removal from the monitoring program was AP-10015R based on TCE results. A qualitative evaluation of the results showed that AP-10015R should be retained in the monitoring well network since it is the closest downgradient well to the injection area and provides an indication of potential downgradient contaminant migration.

A review of the uncertainty of the residual TCE and PCE plumes within the monitoring well network showed Moderate and Small uncertainty. No wells are recommended for installation or removal based on the 2019 sampling event results.

The sampling frequency results from the MAROS software recommended annual sampling for most wells. Biennial sampling was recommended for some wells that have exhibited stable concentrations below the RAG. However, annual sampling should be continued for all DRMO1 wells since contaminants remain above the RAG.

#### 3.4 DRMO4 Subarea Groundwater Monitoring Results

Three monitoring wells at the DRMO4 site (AP-10446MW [replacement well for PO5], AP-8916, and AP-10445MW [replacement well for Probe B]) were sampled in August 2019. The wells were sampled as part of the annual monitoring event to evaluate the progress towards achieving the RAGs. Groundwater analytical results are presented in Table 3-3. Geochemical and contaminant concentration trends are discussed in the following sections.

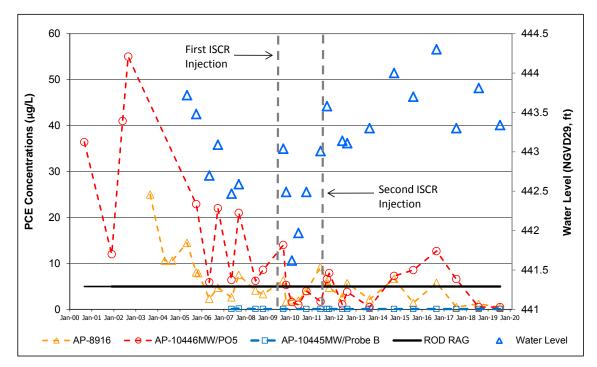
#### 3.4.1 Groundwater Geochemistry Trends

Groundwater geochemistry indicators (redox potential, DO, dissolved metals, and sulfate) were measured at the DRMO4 (3-Party) site to evaluate the potential for conditions supportive of reductive dechlorination. In 2019, these parameters were measured in AP-10446MW (within the 2009 injection treatability study area), in AP-8916 (upgradient, and within the 2011 injection treatability study area), and AP-10445MW (downgradient of the injection treatability study area).

The results and approximate regions of reduced geochemistry based on the 2019 monitoring results are shown on Figure 3-2.

The 2019 results showed groundwater in the vicinity of AP-8916 was characterized by reducing conditions, with ORP less than 0 millivolts (mV) and dissolved oxygen less than 1 mg/L. A dissolved iron concentration of 20.6 mg/L and a sulfate concentration of 4.3 mg/L were also observed in AP-8916, which suggests potential for biodegradation through iron and sulfate reduction. Groundwater geochemistry in downgradient wells AP-10445MW and AP-10446MW was characterized by concentrations of dissolved iron and sulfate similar to background levels, and dissolved oxygen less than 2 mg/L.

#### 3.4.2 Contaminant Concentration Trends


#### PCE Concentration Trends

The PCE concentration changes over time and visual trends for AP-10446MW/PO5, AP-8916, and downgradient well AP-10445MW/Probe B from September 2000 through August 2019 are shown in Graph 3-5. The injection events completed as part of the treatability study are also shown on the graph (August 2009 near PO5 and September 2011 near AP-8916).

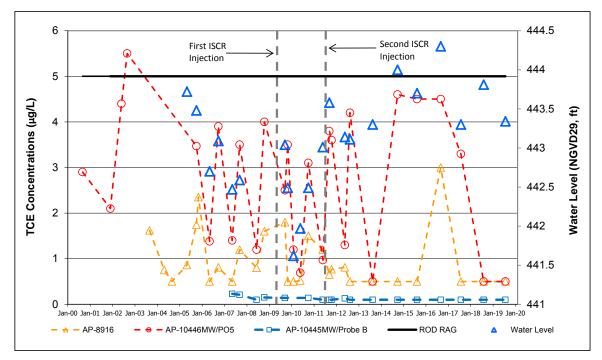
As shown in Graph 3-5, the PCE concentrations in AP-10446MW/PO5 were variable following the August 2009 Adventus EHC<sup>™</sup> injection. PCE was below the RAG in PO5 during the 2012 and 2013 sampling events, but exceeded the RAG between 2014 and 2017. PCE was not detected in replacement well AP-10446MW in the 2018 or 2019 sampling event, similar to the 2013 result. Concentrations will continue to be evaluated in the replacement well in future sampling events.

PCE concentrations in AP-8916 have also been variable; however, the September 2011 Adventus EHC<sup>™</sup> injection was the first to target the groundwater in the vicinity of this well. PCE decreased below the RAG in AP-8916 immediately following the 2011 injection, but rebounded slightly above at the 11-month post-injection sampling event. PCE concentrations were below the RAG in the 2013 and 2015 sampling events, and above the RAG in the 2014 and 2016 sampling events. PCE has remained below the RAG since 2017.

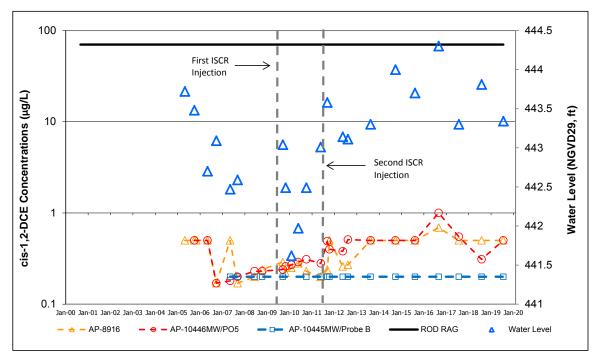
PCE has been either not detected or detected at trace concentrations in Probe B/AP-10045MW, located approximately 150 feet downgradient from PO5/AP-10446MW. This indicates no significant downgradient migration of PCE has occurred at the DRMO4 (3-Party) site.



Graph 3-5. PCE Concentrations and Water Levels in DRMO4 Wells


The groundwater elevation at the DRMO4 site (as measured in AP-8916) is also shown in Graph 3-5. The graph indicates some correlation between water levels and PCE concentration in PO5 prior to the first injection, with higher concentrations in the fall when water levels were typically higher. Following the injections, the sample frequency was reduced to an annual sampling event in the fall, when the highest PCE concentrations were typically observed. The association between water levels and PCE concentration is not as apparent in the sampling events following the injection, possibly due to a significant amount of source contamination being removed by the ISCR injection.

#### Concentration Changes of Reductive Dechlorination Daughter Products


The distribution of PCE daughter products are indicative of reductive dechlorination occurring in the DRMO4 area, and the daughter products TCE and cis-1,2-DCE were detected in PO5 and AP-8916. TCE and cis-1,2-DCE has never been detected above trace concentrations in Probe B/AP-10445MW. The visual trends of TCE and cis-1,2-DCE, along with the water levels from AP-8916, are shown on graphs 3-6 and 3-7 respectively.

TCE has not been detected in AP-8916 since 2012, with the exception of 2016 when it was detected at 3  $\mu$ g/L. TCE concentrations fluctuated in PO5, but TCE has not been detected in replacement well AP-10046MW. TCE has never been detected above trace levels in Probe B/AP-10045MW.

The cis-1,2-DCE concentrations in AP-10446MW/PO5 and AP-8916 increased since the injection events, indicating reductive dechlorination was stimulated as a result of the treatability study. However, cis-1,2-DCE concentrations have remained below the RAG.



Graph 3-6. TCE Concentrations and Water Levels in DRMO4 Wells



Graph 3-7. Cis-1,2-DCE Concentrations and Water Levels in DRMO4 Wells

# **DRO Concentration Trends**

DRO concentrations have also been monitored in DRMO4 wells since sampling began in 1994. As shown on Figure 3-1, the DRO concentrations never exceeded the ADEC CUL in PO5, but exceeded the CUL in AP-8916 following the 2011 ISCR injection. The ISCR compound (Adventus EHC<sup>™</sup>) included an organic carbon source that was detected in the DRO range. This was confirmed when silica gel analysis was used on groundwater samples collected from the injection treatment area at DRMO1 (3-Party) during the 2012 sampling event. As a result, the DRO exceedances in AP-8916 were attributed to the injection product and not contamination.

DRO exceedances have been intermittently observed in Probe B since 2011, although the concentrations were only slightly above the CUL. The DRO concentration observed in replacement well AP-10445MW in 2019 was below the ADEC CUL.

## 3.5 DRMO4 (3-Party) LTMO Analysis Update

LTMO analysis was limited at the DRMO4 site due to the small number of wells. However, the trends in individual wells were determined using MAROS software, and the plume stability was evaluated on a qualitative basis.

## 3.5.1 Statistical Trend Analysis Results

A statistical trend analysis was conducted for the individual monitoring wells at the DRMO4 site using the MAROS software. The data used in the analysis were from October 2011 to August 2019 to represent the period of time following the injection events at the DRMO4 site. The trend results for PCE and TCE are presented in Table 3-5, and are based on the Mann-Kendall test. Complete MAROS results are presented in Appendix E.

| Well               | Relative Location to       | <b>Contaminants of Concern</b> |          |  |  |  |
|--------------------|----------------------------|--------------------------------|----------|--|--|--|
| Well               | Injection Area             | PCE                            | TCE      |  |  |  |
| AD 9016            | Within 2011 injection area | Probably                       | No Trond |  |  |  |
| AP-8916            | Within 2011 injection area | Decreasing                     | No Trend |  |  |  |
| AP-10446MW/PO5     | Within 2009 injection area | Stable                         | Stable   |  |  |  |
| AP-10445MW/Probe B | Downgradient               | Not Detected <sup>1</sup>      | No Trend |  |  |  |

 Table 3-5.
 Mann-Kendall Trend Analysis for DRMO4 (3-Party) Wells

Trends in **bold type** exceeded the RAG during the time period used in the LTMO analysis (2011-2019). <sup>1</sup> PCE was not detected in downgradient well Probe B/AP-10445MW between 2010 and 2019.

Table 3-5 shows that two of the three wells sampled at the DRMO4 site had PCE above the RAG since the injections were completed (AP-8916 and PO5). The PCE concentration in AP-8916 has fluctuated slightly above and slightly below the RAG since 2011, but has remained consistently below the RAG in recent sampling events. The trend results for PCE in PO5 showed a stable trend. The highest concentration detected in PO5 within that period was 14  $\mu$ g/L immediately

following the injection. PCE concentrations subsequently decreased below the RAG and briefly exceeded the RAG again in fall 2011. PCE has not been detected in replacement well AP-10446MW.

The PCE concentrations downgradient of the injection area have remained less than the RAG, as shown in the low-level detections in AP-10445MW/Probe B. All sampling results in this well have been near the detection limit or not detected.

TCE concentrations were below the RAG in each of the three wells during the period of analysis. Concentrations have typically been less than 1  $\mu$ g/L, and TCE was not detected in any of the wells in 2019.

## 3.5.2 Plume Stability Evaluation

The plume stability evaluation could not be conducted using the tools in the MAROS software due to the limited number of wells. As a result, a qualitative evaluation of plume stability was completed.

- PCE concentrations in PO5 initially increased following the 2009 injection, but then decreased as a result of the stimulation of reductive dehalogenation from the ISCR compound. PCE concentrations initially decreased in AP-8916 following the injection in 2011, and reducing conditions are persistent in AP-8916 and AP-10446MW/PO5.
- PCE concentrations increased above the RAG in AP-8916 and PO5 since 2014, but have decreased since 2016. PCE was below the RAG in AP-8916 and the replacement well for PO5 (AP-10446MW) in 2019.
- The PCE concentration in downgradient well Probe B/AP-10445MW has remained below the RAG (mostly non-detect results), which is an indicator that the plume is not expanding.
- TCE and cis-1,2-DCE concentrations increased since the injection, which indicates evidence of reductive dechlorination. TCE and cis-1,2-DCE concentrations have remained below the RAG.

Based on these results, annual sampling (conducted in the fall) should continue at this site to evaluate groundwater geochemistry and contaminant concentration trends, and to document progress towards achieving the remedial objectives.

## 3.6 Comparison of 2019 Sampling Results to Current ADEC Cleanup Levels

The 2019 groundwater contaminant concentrations were compared to the ADEC CULs to allow for an evaluation of current compliance with 2-Party program closure requirements. ADEC CUL comparisons for DRMO1 and DRMO4 3-Party wells are presented in Table A-2, and summarized in Table 3-6.

2.8 (AP-7560)

ND

ND

6.4 (AP-8914R)

| <b>Cleanup Level</b> | s <sup>1</sup> at OU2 DR | MO 3-Party Sites                                     |                                          |                                            |  |  |  |  |
|----------------------|--------------------------|------------------------------------------------------|------------------------------------------|--------------------------------------------|--|--|--|--|
| Contaminant          | ROD RAG<br>(µg/L)        | Current ADEC<br>Cleanup Level<br>(µg/L) <sup>1</sup> | 2019 ADEC<br>Cleanup Level<br>Exceedance | 2019 Maximum<br>Concentration<br>(Well ID) |  |  |  |  |
| Benzene              | Benzene 5                |                                                      | None                                     | ND                                         |  |  |  |  |
| PCE                  | 5                        | 41                                                   | None                                     | 6.2 (AP-10016R)                            |  |  |  |  |

None

None

None

None

Table 3-6. Comparison of Groundwater Results for ROD COCs to Current ADEC

2.8

0.19

280

36

Table C, 18 AAC 75.345 (ADEC, 2018)

5

2

7

70

ND = Not Detected

TCE

Vinyl Chloride

1,1-DCE

1,2-DCE

The following summarizes the ADEC CUL comparison for ROD COCs:

- PCE concentrations were above the ROD RAG in one well at the DRMO1 3-Party site. • However, the PCE concentrations were below the current ADEC CUL in all wells at the DRMO1 and DRMO4 sites.
- TCE concentrations either met or were below the ROD RAG and current ADEC CUL in all • wells at the DRMO1 and DRMO4 3-Party sites.
- All remaining ROD COCs had groundwater concentrations below both ROD RAG and ADEC CULs.

#### 3.7 Summary and Recommendations for DRMO 3-Party Sites

Groundwater sampling results from 2019 showed that PCE remains slightly above the ROD RAG in one source area well at the DRMO1 3-Party site, but was below the ROD RAG in each of the three wells at the DRMO4 3-Party site for the second consecutive monitoring event. The treatability study was successful in stimulating reducing conditions, and reductive dehalogenation daughter products TCE and cis-1,2-DCE continue to be detected, but remain below RAGs at the DRMO1 (3-Party) and DRMO4 (3-Party) sites. This indicates that biodegradation continues to occur at these sites.

LTMO analysis showed that annual sampling is recommended to continue to evaluate groundwater geochemistry and contaminant concentration trends. Annual sampling (conducted in the fall) would be sufficient to document progress towards achieving the RAGs for the sites.

## Table 3-1. OU2 DRMO Yard Groundwater Elevations

|                                          |                         |                                    |                                    |                                   |         | Aug-18                   |                                          |        | Aug-19                   |                                          |
|------------------------------------------|-------------------------|------------------------------------|------------------------------------|-----------------------------------|---------|--------------------------|------------------------------------------|--------|--------------------------|------------------------------------------|
| Location                                 | Well Number             | Total Well<br>Depth (feet<br>btoc) | Screened<br>Interval (feet<br>bgs) | Well Elevation<br>(feet - NGVD29) |         | Water<br>Level<br>(btoc) | Water<br>Elevation<br>(feet -<br>NGVD29) | Date   | Water<br>Level<br>(btoc) | Water<br>Elevation<br>(feet -<br>NGVD29) |
|                                          | AP-8914R                | 18.2                               | 6 - 16                             | 454.14                            | 8/16/18 | 10.33                    | 443.81                                   | 8/6/19 | 10.80                    | 443.34                                   |
|                                          | AP-7559                 | 20.0                               | 6 - 16                             | 454.00                            | 8/16/18 | 10.13                    | 443.87                                   | 8/7/19 | 10.54                    | 443.46                                   |
| DBM01 (2 Barty) Treatment                | AP-7560                 | 20.1                               | 6 - 16                             | 453.31                            | 8/16/18 | 9.65                     | 443.66                                   | 8/7/19 | 10.07                    | 443.24                                   |
| DRMO1 (3-Party) Treatment<br>System Area | AP-10015R <sup>1</sup>  | 20.35                              | 7.7 - 17.7                         | 456.16                            | 8/16/18 | 12.32                    | 443.84                                   | 8/6/19 | 12.83                    | 443.33                                   |
|                                          | AP-10016R <sup>1</sup>  | 20.40                              | 7 - 17                             | 456.33                            | 8/16/18 | 12.46                    | 443.87                                   | 8/6/19 | 12.92                    | 443.41                                   |
|                                          | AP-10017R <sup>1</sup>  | 20.35                              | 7 - 17                             | 455.95                            | 8/16/18 | 12.02                    | 444.31                                   | 8/6/19 | 12.52                    | 443.81                                   |
|                                          | AP-10018R <sup>1</sup>  | 20.43                              | 7.4 - 17.4                         | 455.72                            | 8/16/18 | 11.86                    | 443.86                                   | 8/6/19 | 12.34                    | 443.38                                   |
|                                          | AP-10446MW <sup>1</sup> | 20.5                               | 7.5 - 17.5                         | 455.46                            | 8/17/18 | 11.47                    | 443.99                                   | 8/7/19 | 11.86                    | 443.60                                   |
| DRMO4 (3-Party) Source Area              | AP-8916                 | 16.28                              | 5 - 15                             | 452.82                            | 8/17/18 | 10.77                    | 442.05                                   | 8/7/19 | 11.12                    | 441.70                                   |
|                                          | AP-10445MW <sup>1</sup> | 20.4                               | 7.4 - 17.4                         | 456.14                            | 8/17/18 | 11.47                    | 444.67                                   | 8/7/19 | 12.65                    | 443.49                                   |

<sup>1</sup> Monitoring wells AP-10015R, AP-10016R, AP-10017R, AP-10018R, AP-10445MW, and AP-10446MW were replacement wells installed in 2018.

bgs - below ground surface

btoc - below top of casing

NGVD29 - North American Vertical Datum of 1929

NM - not measured during the sampling event

NA - not applicable since the well was not sampled

## Table 3-2. 2013 - DRMO1 (3-Party) Subarea Groundwater Sample Results

|             | Relative       |                          |                         | Water                    |                          | ttenuation<br>meters | Non-ROD COCs (µg/L) - compared<br>against ADEC CULs <sup>1</sup> | ROD      | COCs (µg/L | ) - compare | d against ROD  | RGs / ADEC | CULs <sup>1</sup> |
|-------------|----------------|--------------------------|-------------------------|--------------------------|--------------------------|----------------------|------------------------------------------------------------------|----------|------------|-------------|----------------|------------|-------------------|
| Well Number | Location       | Sample Number            | Date                    | Elevation<br>(NGVD29 ft) | Dissolved Iron<br>(mg/L) | Sulfate (mg/L)       | DRO                                                              | Benzene  | TCE        | PCE         | Vinyl Chloride | 1,1-DCE    | cis-1,2-DCE       |
| ROD CLEANUP | PLEVELS (3-Par | ty Site) / ADEC CLEA     | ANUP LEVEL <sup>1</sup> |                          |                          |                      | 1,500                                                            | 5 / 4.6  | 5 / 2.8    | 5 / 41      | 2 / 0.19       | 7 / 280    | 70 / 36           |
|             |                | 15FWOU224WG              | 8/24/2015               | 443.82                   | ND(0.25)                 | 22.0                 | NA                                                               | ND(0.2)  | ND(0.5)    | 1.3         | ND(0.5)        | ND(0.5)    | ND(0.5)           |
| AP-10017    |                | 16FWOU219WG              | 9/14/2016               | 444.40                   | ND (0.25)                | 20.9                 | NA                                                               | ND (0.2) | ND (0.5)   | 2.8         | ND (0.5)       | ND (0.5)   | 0.93 J            |
|             | Upgradient     | 17FWOU217WG              | 8/9/2017                | 443.40                   | ND (0.25)                | 20.4                 | NA                                                               | ND (0.2) | ND (0.5)   | 1.2         | ND (0.075)     | ND (0.5)   | 0.4 J             |
| AP-10017R   |                | 18FWOU216WG              | 8/16/2018               | 443.93                   | 0.35 J                   | 22.6                 | NA                                                               | ND (0.2) | ND (0.5)   | 1.1         | ND (0.075)     | ND (0.5)   | 0.63 J            |
| /4 1001/10  |                | 19FWOU201WG              | 8/6/2019                | 443.43                   | 0.21 J                   | 23.8                 | NA                                                               | ND (0.2) | ND (0.5)   | 0.52 J      | ND (0.075)     | ND (0.5)   | 0.67 J            |
|             |                |                          |                         |                          |                          |                      |                                                                  |          |            |             |                |            |                   |
|             |                | 15FWOU223WG              | 8/24/2015               | 443.7                    | 56.0                     | 21.1                 | NA                                                               | ND (0.2) | 1.5        | ND(0.5)     | ND(0.5)        | ND(0.5)    | 27.9              |
|             |                | 16FWOU220WG              | 9/14/2016               | 444.3                    | 33.7                     | 23.1                 | NA                                                               | ND (0.2) | 4.5        | 6.7         | ND (0.5)       | ND (0.5)   | 19.9              |
| AP-8914R    |                | 17FWOU219WG              | 8/9/2017                | 443.3                    | 27.1                     | 8.7                  | NA                                                               | ND (0.2) | 1.7        | 0.53 J      | ND (0.075)     | ND (0.5)   | 15.5              |
|             |                | 18FWOU214WG              | 8/16/2018               | 443.8                    | 25.2                     | 20.4                 | NA                                                               | ND (0.2) | 1.9        | 0.55 J      | ND (0.075)     | ND (0.5)   | 7.8               |
|             |                | 19FWOU205WG              | 8/6/2019                | 443.3                    | 27.2                     | 19.3                 | NA                                                               | ND (0.2) | 1.2        | 0.57 J      | ND (0.075)     | ND (0.5)   | 6.4               |
|             |                |                          |                         |                          |                          |                      |                                                                  |          |            |             |                |            |                   |
|             |                | 15FWOU220WG              | 8/24/2015               | 443.60                   | 6.4                      | 12.9                 | NA                                                               | ND (0.2) | 1.5        | 7.2         | ND (0.5)       | ND (0.5)   | ND (0.5)          |
| AP-10016    |                | 16FWOU221WG              | 9/14/2016               | 444.14                   | 4.52                     | 13.3                 | NA                                                               | ND (0.2) | 2.1        | 11.3        | ND (0.5)       | ND (0.5)   | 0.97 J            |
| Ar-10010    | Source Area    | 16FWOU222WG <sup>2</sup> | 5/14/2010               | 111.11                   | 4.71                     | 13.3                 | NA                                                               | ND (0.2) | 2.3        | 10.8        | ND (0.5)       | ND (0.5)   | 0.95 J            |
|             | Source Area    | 17FWOU215WG              | 8/9/2017                | 443.17                   | 5.97                     | 10.0                 | NA                                                               | ND (0.2) | 1.6        | 5.2         | ND (0.075)     | ND (0.5)   | 0.50 J            |
| AP-10016R   |                | 18FWOU213WG              | 8/16/2018               | 443.87                   | 1.65                     | 11.0                 | NA                                                               | ND (0.2) | 0.45 J     | 5.8         | ND (0.075)     | ND (0.5)   | ND (0.5)          |
| AI 10010K   |                | 19FWOU204WG              | 8/6/2019                | 443.41                   | 1.98                     | 10.1                 | NA                                                               | ND (0.2) | 0.55 J     | 6.2         | ND (0.075)     | ND (0.5)   | 0.32 J            |
|             |                |                          |                         |                          |                          |                      |                                                                  |          |            |             |                |            |                   |
|             |                | 15FWOU222WG              | 8/24/2015               | 443.66                   | 37.5                     | 33.9                 | NA                                                               | ND (0.2) | 1.3        | 2.4         | ND (0.5)       | ND (0.5)   | 5.2               |
| AP-10018    |                | 16FWOU218WG              | 9/14/2016               | 444.21                   | 20.9                     | 15.5                 | NA                                                               | ND (0.2) | 2.1        | 3.3         | ND (0.5)       | ND (0.5)   | 5.1               |
|             |                | 17FWOU214WG              | 8/9/2017                | 443.23                   | 15.1                     | 14.3                 | NA                                                               | ND (0.2) | 1.0        | 1.0         | ND (0.075)     | ND (0.5)   | 3.9               |
| AP-10018R   |                | 18FWOU215WG              | 8/16/2018               | 443.86                   | 8.7                      | 9.8                  | NA                                                               | ND (0.2) | 0.34 J     | 1.1         | ND (0.075)     | ND (0.5)   | 2.6               |
| AF-10010K   |                | 19FWOU202WG              | 8/6/2019                | 443.38                   | 6.0                      | 11.0                 | NA                                                               | ND (0.2) | ND (0.5)   | 0.56 J      | ND (0.075)     | ND (0.5)   | 2.2               |
|             |                |                          |                         |                          |                          |                      |                                                                  |          |            |             |                |            |                   |
|             |                | 15FWOU219WG              | 8/21/2015               | 443.76                   | ND (0.25)                | 38                   | NA                                                               | ND (0.2) | ND (0.5)   | 4.5         | ND (0.5)       | ND (0.5)   | ND (0.5)          |
|             | [              | 16FWOU212WG              | 9/16/2016               | 444.40                   | ND (0.25)                | 31.2                 | NA                                                               | ND (0.2) | 0.63 J     | 5.5         | ND (0.5)       | ND (0.5)   | 0.86 J            |
| AP-7559     | Downgradient   | 17FWOU221WG              | 8/9/2017                | 443.40                   | ND (0.25)                | 27.9                 | NA                                                               | ND (0.2) | 0.46 J     | 3.4         | ND (0.075)     | ND (0.5)   | ND (0.5)          |
|             | [              | 18FWOU209WG              | 8/16/2018               | 443.87                   | ND (0.25)                | 27.3                 | NA                                                               | ND (0.2) | 0.49 J     | 3.5         | ND (0.075)     | ND (0.5)   | ND (0.5)          |
|             |                | 19FWOU208WG              | 8/7/2019                | 443.46                   | ND (0.25)                | 26.3                 | NA                                                               | ND (0.2) | 0.51 J     | 3.4         | ND (0.075)     | ND (0.5)   | ND (0.5)          |

## Table 3-2. 2013 - DRMO1 (3-Party) Subarea Groundwater Sample Results

|             | Relative Course Number Date                                         |                           |           | Water                    |                                         | Attenuation<br>meters | Non-ROD COCs (µg/L) - compared<br>against ADEC CULs <sup>1</sup> | ROD      | COCs (µg/L) | ) - compare | d against ROD  | RGs / ADEC | CULs <sup>1</sup> |
|-------------|---------------------------------------------------------------------|---------------------------|-----------|--------------------------|-----------------------------------------|-----------------------|------------------------------------------------------------------|----------|-------------|-------------|----------------|------------|-------------------|
| Well Number | Location                                                            | Sample Number             | Date      | Elevation<br>(NGVD29 ft) | Dissolved Iron<br>(mg/L) Sulfate (mg/L) |                       | DRO                                                              | Benzene  | TCE         | PCE         | Vinyl Chloride | 1,1-DCE    | cis-1,2-DCE       |
| ROD CLEANUP | ROD CLEANUP LEVELS (3-Party Site) / ADEC CLEANUP LEVEL <sup>1</sup> |                           |           |                          |                                         |                       | 1,500                                                            | 5 / 4.6  | 5 / 2.8     | 5 / 41      | 2 / 0.19       | 7 / 280    | 70 / 36           |
|             |                                                                     | 15TFTOU225WG              | 8/24/2015 | 443.67                   | 13.8                                    | 36.4                  | 4,320                                                            | ND (0.2) | 2.5         | 4.3         | ND (0.5)       | ND (0.5)   | 1.1               |
|             |                                                                     | 15TFTOU226WG <sup>2</sup> | 0/24/2013 | 5/21/2013 TT5.0/         | 14.1                                    | 36.0                  | 3,880                                                            | ND (0.2) | 3.1         | 4.0         | ND (0.5)       | ND (0.5)   | 1.0               |
|             |                                                                     | 16TFTOU213WG              | 9/13/2016 | 444.17                   | 10.2                                    | 24.4                  | 3,520                                                            | ND (0.2) | 2.3         | 3.0         | ND (0.5)       | ND (0.5)   | 0.9 J             |
|             |                                                                     | 16TFTOU214WG <sup>2</sup> | 9/13/2010 | 9/13/2016 444.17         | 10.9                                    | 25.9                  | 3,700                                                            | ND (0.2) | 2.4         | 3.2         | ND (0.5)       | ND (0.5)   | 1.33 J            |
| AP-7560     |                                                                     | 17FWOU222WG               | 8/9/2017  | 443.21                   | 10.1                                    | 14.3                  | 4,470                                                            | ND (0.2) | 1.0         | 1.4         | ND (0.075)     | ND (0.5)   | 0.36 J            |
| Ai -7300    |                                                                     | 17FWOU223WG <sup>2</sup>  | 0/9/2017  | 113.21                   | 10.3                                    | 13.5                  | 4,890                                                            | ND (0.2) | 1.0         | 1.3         | ND (0.075)     | ND (0.5)   | 0.33 J            |
|             |                                                                     | 18FWOU210WG               | 8/16/2018 | 443.66                   | 11.9                                    | 22.4                  | 3,040                                                            | ND (0.2) | 2.3         | 1.8         | ND (0.075)     | ND (0.5)   | 0.88 J            |
|             | Downgradient                                                        | 18FWOU211WG <sup>2</sup>  | 0/10/2010 | 445.00                   | 10.8                                    | 22.6                  | 3,670                                                            | ND (0.2) | 2.2         | 1.9         | ND (0.075)     | ND (0.5)   | 0.87 J            |
|             | Downgradienc                                                        | 19FWOU208WG               | 8/7/2019  | 444.24                   | 8.6                                     | 21.2                  | 2,730                                                            | ND (0.2) | 2.7         | 1.7         | ND (0.075)     | ND (0.5)   | 1.1               |
|             |                                                                     | 19FWOU209WG <sup>2</sup>  | 0/7/2015  | 111.21                   | 8.9                                     | 20.5                  | 1,910                                                            | ND (0.2) | 2.8         | 1.7         | ND (0.075)     | ND (0.5)   | 1.2               |
|             |                                                                     |                           |           |                          |                                         |                       |                                                                  |          |             |             |                |            |                   |
|             |                                                                     | 15FWOU221WG               | 8/24/2015 | 443.66                   | 13.0                                    | 15.6                  | NA                                                               | ND (0.2) | 1.4         | 0.81 J      | ND (0.5)       | ND (0.5)   | 1.6               |
| AP-10015    |                                                                     | 16FWOU217WG               | 9/14/2016 | 444.21                   | 7.8                                     | 15.3                  | NA                                                               | ND (0.2) | 2.0         | 2.0         | ND (0.5)       | ND (0.5)   | 1.7               |
|             |                                                                     | 17FWOU213WG               | 8/9/2017  | 443.19                   | 8.9                                     | 11.3                  | NA                                                               | ND (0.2) | 0.82 J      | 1.5         | ND (0.075)     | ND (0.5)   | 1.3               |
| AP-10015R   |                                                                     | 18FWOU212WG               | 8/16/2018 | 443.84                   | 7.1                                     | 9.1                   | NA                                                               | ND (0.2) | 0.79 J      | 2.3         | ND (0.075)     | ND (0.5)   | 1.0               |
| A 10015K    |                                                                     | 19FWOU203WG               | 8/6/2019  | 443.33                   | 7.1                                     | 8.7                   | NA                                                               | ND (0.2) | 0.67 J      | 0.63 J      | ND (0.075)     | ND (0.5)   | 0.99 J            |

### <u>Notes</u>

Results in blue and bold font exceed ROD RGs.

**Results in green and bold font exceed ADEC CULs.** 

Results in red and bold font exceed both ROD RGs and ADEC CULs.

<sup>1</sup> OU2 ROD analytes are compared against ROD RGs and ADEC CULs.

<sup>2</sup> The ADEC CUL values are Groundwater Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27, 2018).

<sup>3</sup> Sample is a Field Duplicate of the sample immediately above.

### Data Qualifiers

ND - Not detected at the detection limit (LOD in parentheses)

B - Result is qualified as a potential high estimate due to contamination present in a blank sample

J - Result is estimated due to a QC issue or because it is less than the LOQ. If result is biased low or high, it is specified as "J-" and "J+"

## Acronyms/Abbreviations

- COC contaminant of concern CUL - cleanup level DCE - dichloroethene
- DRO diesel range organics
- LOD limit of detection
- LOQ limit of quantitation
- µg/L micrograms per liter
- mg/L milligrams per liter
- mS/cm micro Siemens per centimeter mV - millivolts NA - not analyzed or not applicable NGVD29 - North American Vertical Datum of 1929 ORP - oxidation-reduction potential PCE - tetrachloroethene ROD - Record of Decision TCE - trichloroethene

|             | Relative      |                     |            | Water<br>Elevation |                          | ttenuation<br>neters | Non-ROD COCs (µg/L) - compared<br>against ADEC CULs <sup>1</sup> | BOD(COCc(uc/L)) = compared against BOD(BCc(L)) = Compared BOD(BCC(L)) = Compared against BO |          |          |                   |          |             |
|-------------|---------------|---------------------|------------|--------------------|--------------------------|----------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------------|----------|-------------|
| Well Number | Location      | Sample Number       | Date       | (feet<br>NGVD29)   | Dissolved Iron<br>(mg/L) | Sulfate (mg/L)       | DRO                                                              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TCE      | PCE      | Vinyl<br>Chloride | 1,1-DCE  | cis-1,2-DCE |
| ROD CLEANUP | LEVELS (3-Par | ty Site) / ADEC CLE | ANUP LEVEL | 1                  |                          |                      | 1,500                                                            | 5 / 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 / 2.8  | 5 / 41   | 2 / 0.19          | 7 / 280  | 70 / 36     |
|             |               | 15FWOU216WG         | 8/21/2015  | 441.97             | 34.1                     | 0.9                  | 499 B                                                            | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | 1.4      | ND(0.5)           | ND(0.5)  | ND(0.5)     |
|             |               | 16FWOU215WG         | 9/13/2016  | 442.52             | 13.0                     | 3.9                  | 440 J,B                                                          | 0.13 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0      | 5.79     | ND (0.5)          | ND (0.5) | 0.69 J      |
| AP-8916     | Upgradient    | 17FWOU220WG         | 8/9/2017   | 441.61             | 22.6                     | 2.4                  | 410 J                                                            | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.075)        | ND (0.5) | ND (0.5)    |
|             |               | 18FWOU219WG         | 8/17/2018  | 442.05             | 25.4                     | 9.4                  | NA                                                               | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | 1.2      | ND (0.075)        | ND (0.5) | ND (0.5)    |
|             |               | 19FWOU207WG         | 8/7/2019   | 441.70             | 20.6                     | 4.3                  | NA                                                               | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | 0.44 J   | ND (0.075)        | ND (0.5) | ND (0.5)    |
|             |               |                     |            |                    |                          |                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |                   |          |             |
|             |               | 15FWOU217WG         | 8/21/2015  | NM                 | 4.4                      | 25.9                 | 199 J,B                                                          | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5      | 8.56     | ND (0.5)          | ND (0.5) | ND (0.5)    |
| PO5         |               | 16FWOU224WG         | 9/14/2016  | NM                 | 4.3                      | 27.8                 | 278 J,B                                                          | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5      | 12.7     | ND (0.5)          | ND (0.5) | 1.0         |
|             | Source Area   | 17FWOU216WG         | 8/9/2017   | NM                 | 4.1                      | 34.9                 | 172 J                                                            | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3      | 6.6      | ND (0.075)        | ND (0.5) | 0.55 J      |
| AP-10446MW  |               | 18FWOU218WG         | 8/17/2018  | 443.99             | 3.8                      | 27.9                 | NA                                                               | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.075)        | ND (0.5) | 0.31 J      |
| AP-10440MW  |               | 19FWOU212WG         | 8/7/2019   | 443.6              | 3.9                      | 27.4                 | NA                                                               | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.075)        | ND (0.5) | ND (0.5)    |
|             |               |                     |            |                    |                          |                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |                   |          |             |
|             |               | 15FWOU218WG         | 8/21/2015  | 443.59             | 2.8                      | 32.9                 | 613 J,B                                                          | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.5)          | ND (0.5) | ND (0.5)    |
| Probe B     |               | 16FWOU223WG         | 9/14/2016  | 443.91             | 3.1                      | 37.8                 | 2,020                                                            | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.5)          | ND (0.5) | ND (0.5)    |
|             | Downgradient  | 17FWOU218WG         | 8/9/2017   | 443.20             | 2.6                      | 30.7                 | 640                                                              | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.075)        | ND (0.5) | ND (0.5)    |
| AP-10445MW  |               | 18FWOU217WG         | 8/17/2018  | 443.83             | 0.9                      | 31.1                 | 1,670                                                            | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.075)        | ND (0.5) | ND (0.5)    |
| AP-10445MW  |               | 19FWOU208WG         | 8/7/2019   | 443.49             | 0.9                      | 27.3                 | 280 J                                                            | ND (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.5) | ND (0.5) | ND (0.075)        | ND (0.5) | ND (0.5)    |

### <u>Notes</u>

**Results in blue and bold font exceed ROD RGs.** 

Results in green and bold font exceed ADEC CULs.

### Results in red and bold font exceed both ROD RGs and ADEC CULs.

<sup>1</sup> OU2 ROD analytes are compared against ROD RGs and ADEC CULs.

<sup>2</sup> The ADEC CUL values are Groundwater Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27, 2018).

<sup>3</sup> Sample is a Field Duplicate of the sample immediately above.

### Data Qualifiers

ND - Not detected at the detection limit (LOD in parentheses)

B - Result is qualified as a potential high estimate due to contamination present in a blank sample

J - Result is estimated due to a QC issue or because it is less than the LOQ. If result is biased low or high, it is specified as "J-" and "J+"

## Acronyms/Abbreviations

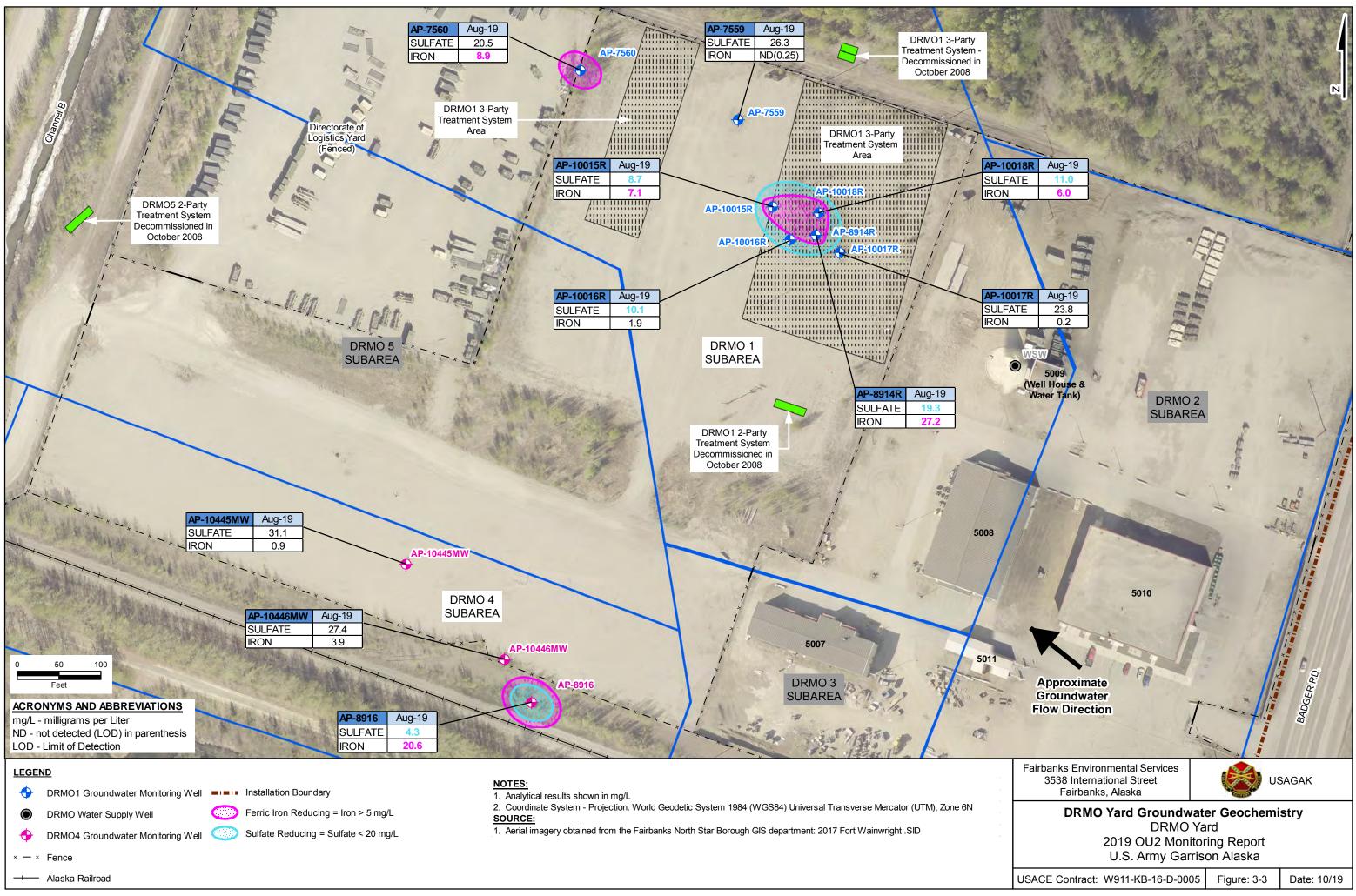
| btoc - below top of casing    |
|-------------------------------|
| COC - contaminants of concern |
| CUL - cleanup level           |
| DCE - dichloroethene          |
| DRO - diesel range organics   |
| LOD - limit of detection      |
| LOQ - limit of quantitation   |
| µg/L - micrograms per liter   |

mg/L - milligrams per liter

mV - millivolts NA - not analyzed or not applicable NGVD29 - North American Vertical Datum of 1929 NM - not measured ORP - oxidation-reduction potential

- ROD Record of Decision
- TCE trichloroethene

mS/cm - milliSiemens per centimeter


PCE - tetrachloroethene

| AP-7559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AP-10015R*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (16, 6-16) May-98 Oct-98 Jun-99 Sep-99 Jun-00 Sep-00 May-01 Oct-01 Sep-03 May-04 Sep-04 May-05 Oct-05 May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DRO         NA         NA         ND (316)         ND (353)         NA         NA         NA         112         146         150         80         66.7         6           PCE         13         13         4.6         4.6         4.7         4.9         7.55         6.22         4.49         4.59         4.48         3.84         2.42         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2p-11 May-12 Aug-12 Aug-13 Oct-14 Aug-15 Sep-16 Aug-17 Aug-18 Aug-19<br>40+ NM 850 NA 947 NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TCE 1 ND (1) 0.41 0.5 0.49 0.49 ND (1) ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1) 0.43 0.42 0.42 0.34 BENZENE ND(1) 0.08 0.07 0.06 0.09 0.07 0.08 0.21 ND(0.5) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06 0.11 0.08 ND(0.24) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2) ND(0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1         ND(0.2)         3.6         ND(0.62)         6.3         0.81         2.0         1.5         2.3         0.63           1.8         0.92 <b>3.5</b> 2.02 <b>4.17</b> 1.38         2.0         0.82         0.79         0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DRO 71 NA 90 NA NA 130 NA NA 77 NM 80 NA ND(300) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A NA NA NA NA CIS-1,2-DCE ND(1) 0.32 0.34 0.52 1.0 0.73 1.8 2.6 1.5 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9 1.6 2.1 ND(0.62) 1.05 1.59 1.7 1.3 1.0 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PCE         2.2         1.1         4.1         3         3.1         3.2         2.6         2.8         4         2.9         ND(0.2)         ND(0.62)         4.6         4           TCE         0.51         ND(1)         0.51         0.52         0.51         0.52         0.42         0.48         0.58         0.61         0.69         ND(0.62)         0.58                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.48 443.03 443.1 443.16 443.88 443.66 444.21 443.19 443.84 443.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AP-7560<br>(13.5, 6-16) May-98 Oct-98 Jun-99 Sep-99 Jun-00 Sep-00 May-01 Oct-01 Sep-02 Sep-03 May-04 Sep-04 May-05 Oct-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May-06 Oct-06 AP-10016R*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DRO NA NA NA ND (531) 13,700 NA NA NA 330 3,720 7,660 670 10,300 664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,970 4,200 (17, 7-17) May-09 Sep-09 Nov-09 Feb-10 Jun-10 Aug-10 Oct-10 Feb-11 Jun-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 Sep-11 May-12 Aug-12 Aug-13 Oct-14 Aug-15 Sep-16 Aug-17 Aug-18 Aug-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (1)         2.8           ND (1)         1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120+         NM         1,900         NA         2,120         NA         NA         NA         NA           ND(0.5)         0.22         0.08         ND(0.2)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WATER ELEV.         NM         442.67         442.21         442.59         NM         443.71         442.66         442.48         443.54         444.04         443.61         443.03         443.46         443.12           AP-7560         May-07         Sep-07         Jun-08         Oct-08         Sep-09         Oct-10         Sep-11         Aug-12         Aug-13         Oct-14         Aug-15         Sep-16         Aug-17         Aug-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 442.41         442.79         PCE         0.26         8.7         6.8         4.5         2.6         2.0         4.0         2.8         1.6           Aug-19         TCE         ND(1)         0.41         0.64         0.73         0.63         0.66         1.2         0.51         0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DRO 9,200 550 10,000 5,700 8,100 11,000 9,600 7,900 7,560 5,190 4,320 3,700 4,890 3,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,730 CIS-1,2-DCE ND(1) 0.23 0.31 0.38 0.53 0.54 0.43 0.43 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.28 0.60 0.57 ND(0.62) ND(0.5) ND(0.5) 0.97 0.50 ND(0.5) 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PCE         2.1         3.6         1.2         0.8         1.8         1.8         2.2         ND(0.62)         1.1         4.26         3.2         1.4         1.9           TCE         0.98         1.9         0.4         0.82         0.9         0.95         2.0         1.2         ND(0.62)         ND(0.5)         3.14         2.4         1.0         2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7         WATER ELEV.         443.04         442.53         441.45         441.93         442.47         442.04         442.97           2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 443.42 443.04 443.08 443.1 443.81 443.6 444.14 443.17 443.87 443.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WATER ELEV. 442.16 443.13 442.55 442.83 442.91 442.31 443.4 443.02 443.13 443.83 443.67 444.17 443.21 443.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 444.24 AP-10018R*<br>(AP-10018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May-09 Sep-09 Nov-09 Feb-10 Jun-10 Aug-10 Oct-10 Feb-11 Jun-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 Sep-11 May-12 Aug-12 Aug-13 Oct-14 Aug-15 Sep-16 Aug-17 Aug-18 Aug-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DRO         NA         4,100*         NA         NA         NA         T1,000         NA         NA           BENZENE         ND(1)         0.16         0.2         0.12         0.16         0.15         0.24         0.42         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,700+         NM         1,200         NA         347         NA         NA         NA         NA         NA           0.12         0.39         0.11         ND(0.2)         ND(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCE 1.4 26 23 23 13 19 27 17 8.0<br>TCE 0.23 2.0 2.0 1.6 2.1 3.1 3.7 7.4 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.6 0.5 0.7 ND(0.62) 2.2 2.35 3.3 1.0 1.1 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CIS-1,2-DCE ND(1) 0.41 0.32 0.35 0.63 0.64 0.55 1.8 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.3 7.6 7.7 ND(0.62) 6.08 5.16 5.1 3.9 2.6 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SUBAREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WATER ELEV. 443.03 443.05 442.53 441.38 441.94 442.97 442.49 442.06 442.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01 443.55 443.13 443.1 443.21 443.96 443.66 444.21 443.23 443.86 443.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The VERICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AP-8914R<br>(16.5, 6.5-16.5) Sep-03 May-04 Sep-04 May-05 Oct-05 May-06 Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DRO - diesel range organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ep-06         May-07         Sep-07         DESTROYED.         Oct-08         May-09         Sep-09         Nov-09         Feb-10           170         130         200         COULD NOT         520         NA         8,600*         NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Area Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41         30         35         COLLECT SAMPLE.         26         36         170         98         14           0.48         0.41         0.4         WELL WAS         0.5         ND (1)         1.2         1.6         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cis-1,2-DCE - Cis-1,2-Dichloroethene Decommissioned in October 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CIS-1,2-DCE ND(1) ND(1) ND (1) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID(1) ND(1) ND(1) REINSTALLED IN 0.11 ND (1) ND(0.5) 0.5 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ISCR - In-Situ Chemical Reduction Underground Storage Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AP-10018R<br>WATER ELEV. 444.31 443.9 443.27 443.72 443.48 442.7 44<br>AP-8914R Jun-10 Aug-10 Oct-10 Feb-11 Jun-11 Sep-11 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43.09         442.47         442.59         OCTOBER 2008.         NA         NA         443.04         442.49         441.62         Aug-12           ay-12         Aug-12         Aug-13         Oct-14         Aug-15         Sep-16         Aug-17         Aug-18         Aug-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND - not detected (LOQ is shown for data prior to 2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRO NA NA 42,000 NA NA 2,500+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NM 6,800 NA 586 NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LOQ - Limit of Quantitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCE 2.0 3.4 3.6 ND (0.5) 1.9 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89         0.19         ND(0.62)         ND(0.5)         ND(0.5)         6.7         0.53         0.55         0.57           4.2         4.7         ND(0.62)         3.09         1.5         4.5         1.7         1.9         1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NI - no information available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER ELEV. 441.97 442.99 442.49 442.1 443.01 443.58 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59         68         ND(0.62)         54.8         27.9         19.9         15.5         7.8         6.4           43.14         443.11         443.3         444         443.7         444.3         443.3         443.81         443.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NM - not measured DRMO1 3-Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AP-10017R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R - Rejected value based on questionable analytical data<br>NGVD29 - National Geodetic Vertical Datum of 1929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DRMO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| data not available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUBAREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AP-10017R*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (AP-10017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (17, 7-17)         May-09         Sep-09         Nov-09         Feb-10         Jun-10         Aug-10         Oct-10         Feb-11         Jun-11         Sep-11         May-12         Aug-12         Aug-13         Oct-14           DRO         NA         570         NA         NA         NA         720         NA         NA         52+         NA         580         NA         424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         ND(1)         0.06         0.04         0.05         0.08         ND(0.5)         0.06         0.19         ND(0.5)         0.07         0.32         ND(0.1)         ND(0.24)         ND(0.2           PCE         ND(1)         0.81         0.62         0.48         0.73         0.69         0.97         0.52         0.70         0.85         0.44         1.1         ND (0.62)         1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND(0.2)         ND(0.2)         ND(0.2)         ND(0.2)         ND(0.2)         Approximate           1.3         2.8         1.2         1.1         0.52         (Well House & Groundwater)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KEY:           Purple Line =         Sample Month         Brown Line =         Black Line =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) ND(0.5) ND(0.5) ND(0.5) ND(0.5) ND(0.5) Water Tank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Treatment System — and Year _ ISCR _ ISCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (i) ND(0.5) 0.93 0.4 0.63 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shut Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CIS-1,2-DCE         0.11         0.49         0.6         0.83         0.75         0.51         0.69         0.52         0.59         0.76         0.70         ND(0.62)         ND(0.52)           WATER ELEV.         443.04         442.52         441.56         442.01         443.04         442.54         442.14         443.06         443.55         443.19         443.18         443.29         444.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 443.82 444.4 443.4 444.31 443.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Shut Down Injection 1 Injection 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CIS-1,2-DCE 0.11 0.49 0.49 0.6 0.83 0.75 0.51 0.69 0.52 0.59 0.76 0.70 ND(0.62) ND(0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 443.82 444.4 443.4 444.31 443.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Depth,<br>Screened (16.5, 6.5-16.5) Oct-05 May-06 May-09 Sep-09 Nov-09 Aug-10 Oct-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CIS-1,2-DCE       0.11       0.49       0.49       0.6       0.83       0.75       0.51       0.69       0.52       0.59       0.76       0.70       ND(0.62)       ND(0.52)         WATER ELEV.       443.04       443.09       442.52       441.56       442.01       443.04       442.54       442.14       443.06       443.55       443.19       443.18       443.29       444.01         WATER SUPPLY WELL<br>(100+, NI)       Apr-98       Jul-98       Sep-98       Apr-99       May-99       Aug-99       Nov-01       Sep-02       Jul-03       Aug-03       Sep-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AP-8914R         AP-8914R           Screened         (16.5, 6.5-16.5)           Interval (bgs)         DRO           125         164           NA         NA           VA         VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CIS-1,2-DCE         0.11         0.49         0.6         0.83         0.75         0.51         0.69         0.52         0.59         0.76         0.70         ND(0.62)         ND(0.52)           WATER ELEV.         443.04         443.09         442.52         441.56         442.01         443.04         442.54         442.14         443.06         443.55         443.19         443.18         443.29         444.01           WATER SUPPLY WELL<br>(100+, NI)         Apr-98         Jul-98         Sep-98         Apr-99         May-99         Aug-99         Nov-01         Sep-02         Jul-03         Aug-03         Sep-03           DRO         ND (260)         80         60         ND (45)         57         ND (100)         ND (495)         ND (170)         92.5         204         177         N           BENZENE         ND (0.5)         ND (0.5)         ND (0.4)         ND (0.4)         ND (0.4)         ND (0.5)         ND (0.4)         ND (0.4)         ND (0.5)         ND (0.4)         ND (0.4)         ND (0.5)         ND (0.4)         ND (0.4) | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | AP-8914R                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CIS-1,2-DCE         0.11         0.49         0.6         0.83         0.75         0.51         0.69         0.52         0.59         0.76         0.70         ND(0.62)         ND(0.52)           WATER ELEV.         443.04         443.09         442.52         441.56         442.01         443.04         442.54         442.14         443.06         443.55         443.19         443.18         443.29         444.01           WATER SUPPLY WELL<br>(100+, NI)         Apr-98         Jul-98         Sep-98         Apr-99         May-99         Aug-99         Nov-01         Sep-02         Jul-03         Aug-03         Sep-03           DRO         ND (260)         80         60         ND (45)         57         ND (100)         ND (495)         ND (170)         92.5         204         177         N           BENZENE         ND (0.5)         ND (0.5)         ND (0.5)         ND (0.4)         ND (0.4)         ND (0.4)         ND (0.5)         ND (0.4)         ND (0.4) | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | Total Depth,<br>Screened<br>Interval (bgs)       AP-8914R<br>(16.5, 6.5-16.5)       Oct-05       May-06       May-09       Sep-09       Nov-09       Aug-10       Oct-10         DRO       125       164       NA       8,600*       NA       NA       42,000         PCE       44.8       29       36       170       98       18       14         TCE       0.41       ND (1)       ND (1)       ND (1)       1.2       16       3.4       3.6         Cls5.1.2-DCE       ND(1)       ND (1)       ND (1)       ND (1)       1.5       56       9         WATER ELEV.       443.48       442.7       NA       443.04       442.49       442.49       442.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CIS-1,2-DCE         0.11         0.49         0.6         0.83         0.75         0.51         0.69         0.52         0.59         0.76         0.70         ND(0.62)         ND(0.52)           WATER ELEV.         443.04         443.09         442.52         441.56         442.01         443.04         442.54         442.14         443.06         443.55         443.19         443.18         443.29         444.01           WATER SUPPLY WELL<br>(100+, NI)         Apr-98         Jul-98         Sep-98         Apr-99         May-99         Aug-99         Nov-01         Sep-02         Jul-03         Aug-03         Sep-03           DRO         ND (260)         80         60         ND (45)         57         ND (100)         ND (495)         ND (170)         92.5         204         177         N           BENZENE         ND (0.5)         ND (0.5)         ND (0.5)         ND (0.4)         ND (0.4)         ND (0.4)         ND (0.5)         ND (0.4)         ND (0.4)         ND (0.5)         ND (0.4)         ND (0.4) | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | AP-8914R<br>Screened<br>Interval (bgs)         AP-8914R<br>(16.5, 6.5-16.5)         Oct-05         May-06         May-09         Sep-09         Nov-09         Aug-10         Oct-10           DRO         125         164         NA         8,600°         NA         NA         42,000           PCE         44.8         29         36         170         98         18         14           TCE         0.41         ND (1)         ND (1)         1.2         1.6         3.4         3.6           CIS-1,2-DCE         ND(1)         ND (1)         ND (1)         1.2         1.6         3.4         3.6           CIS-1,2-DCE         ND(1)         ND (1)         ND (42,49)         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,49         442,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CIS-1,2-DCE         0.11         0.49         0.6         0.83         0.75         0.51         0.69         0.52         0.59         0.76         0.70         ND(0.62)         ND(0.52)           WATER ELEV.         443.04         443.09         442.52         441.56         442.01         443.04         442.54         442.14         443.06         443.55         443.19         443.18         443.29         444.01           WATER SUPPLY WELL<br>(100+, NI)         Apr-98         Jul-98         Sep-98         Apr-99         May-99         Aug-99         Nov-01         Sep-02         Jul-03         Aug-03         Sep-03           DRO         ND (260)         80         60         ND (45)         57         ND (100)         ND (495)         ND (170)         92.5         204         177         N           BENZENE         ND (0.5)         ND (0.5)         ND (0.5)         ND (0.5)         ND (0.4)         ND (0.4) | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | Total Depth,<br>Screened<br>Interval (bgs)       AP-8914R<br>(16.5, 6.5-16.5)       Oct-05       May-06       May-06       May-09       Sep-09       Nov-09       Aug-10       Oct-10         DRO       125       164       NA       8,600°       NA       NA       442,000         PCE       44.8       29       36       170       98       18       14         Contaminants<br>of Concern       CIS-1.2-DCE       ND(1)       ND (1)       ND (1)       ND (1)       1.5       69         WATER ELEV.       443.48       442.7       NA       443.04       442.49       442.49         Water Elevations<br>in Feet (NGVD29)       Water Elevations       Sectors       Sectors       Sectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CIS-1,2-DCE       0.11       0.49       0.6       0.83       0.75       0.51       0.69       0.52       0.59       0.76       0.70       ND(0.62)       ND(0.52)         WATER ELEV.       443.04       443.09       442.52       441.56       442.01       443.04       442.54       442.14       443.06       443.55       443.19       443.18       443.29       444.01         WATER SUPPLY WELL<br>(100+, NI)       Apr-98       Jul-98       Sep-98       Apr-99       May-99       Aug-99       Nov-01       Sep-02       Jul-03       Aug-03       Sep-03         DRO       ND (260)       80       60       ND (45)       57       ND (100)       ND (170)       92.5       204       177       N         BENZENE       ND (0.5)       ND (0.5)       ND (0.5)       ND (0.4)       ND (1)                                                                                        | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | Total Depth,<br>Screened<br>Interval (bgs)       AP-8914R<br>(16.5, 6.5-16.5)       Oct-05       May-06       May-06       May-09       Sep-09       Nov-09       Aug-10       Oct-10         DRO       125       164       NA       8,600*       NA       NA       442,000         PCE       44.8       29       36       170       98       18       14         Contaminants<br>of Concern       CIS-1.2-DCE       ND(1)       ND (1)       ND (1)       ND (1)       1.2       16       3.4       3.6         WATER ELEV.       443.48       442.7       NA       443.04       442.49       442.99       442.49         Water Elevations<br>in Feet (NGVD29)       Water Elevations<br>in Feet (NGVD29)       Water August       Variable Services       USAGAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CIS-1,2-DCE       0.11       0.49       0.49       0.6       0.83       0.75       0.51       0.69       0.52       0.59       0.76       0.70       ND(0.62)       ND(0.52)         WATER ELEV.       443.04       443.09       442.52       441.56       442.01       443.04       442.54       442.14       443.06       443.55       443.19       443.18       443.29       444.01         WATER SUPPLY WELL<br>(100+, NI)       Apr-98       Jul-98       Sep-98       Apr-99       May-99       Aug-99       Nov-01       Sep-02       Jul-03       Aug-03       Sep-03         DRO       ND (260)       80       60       ND (45)       57       ND (100)       ND (170)       92.5       204       177       N         BENZENE       ND (0.5)       ND (0.5)       ND (0.4)                                                                         | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | Total Depth,<br>Screened<br>Interval (bgs)       AP-8914R<br>(16.5, 6.5-16.5)       Oct-05       May-06       May-06       May-09       Sep-09       Nov-09       Aug-10       Oct-10         DRO       125       164       NA       8.600*       NA       NA       42,000         PCE       44.8       29       36       170       98       18       14         Contaminants<br>of Concern       Image: Clishight of the provided state of the pro |
| CIS-1,2-DCE       0.11       0.49       0.49       0.6       0.83       0.75       0.51       0.69       0.52       0.59       0.76       0.70       ND(0.62)       ND(0.52)         WATER ELEV.       443.04       443.09       442.52       441.56       442.01       443.04       442.54       442.14       443.06       443.55       443.19       443.18       443.29       444.01         WATER SUPPLY WELL<br>(100+, NI)       Apr-98       Jul-98       Sep-98       Apr-99       May-99       Aug-99       Nov-01       Sep-02       Jul-03       Aug-03       Sep-03         DRO       ND (260)       80       60       ND (45)       57       ND (100)       ND (495)       ND (170)       92.5       204       177       N         BENZENE       ND (0.5)       ND (0.5)       ND (0.4)                                                                         | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND (0.5)         ND ( | Total Depth,<br>Screened<br>Interval (bgs) <b>AP-8914R Marcella (bgs) Marcella (bgs) Contaminants</b><br>of Concern <b>Marcella (bgs) Marcella (bgs) Marcella (bgs) Marcella (bgs) Marcella (bgs) Contaminants</b><br>of Concern <b>Marcella (bgs) Marcella (bgs)</b> <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CIS-1,2-DCE       0.11       0.49       0.6       0.83       0.75       0.51       0.69       0.52       0.59       0.76       0.70       ND(0.62)       ND(0.52)         WATER ELEV.       443.04       443.09       442.52       441.56       442.01       443.04       442.54       442.14       443.06       443.55       443.19       443.18       443.29       444.01         WATER SUPPLY WELL<br>(100+, NI)       Apr-98       Jul-98       Sep-98       Apr-99       May-99       Aug-99       Nov-01       Sep-02       Jul-03       Aug-03       Sep-03         DRO       ND (260)       80       60       ND (45)       57       ND (100)       ND (495)       ND (170)       92.5       204       177       N         BENZENE       ND (0.5)       ND (0.5)       ND (0.4)       ND (0.4)       ND (0.4)       ND (0.5)       ND (2)       ND (0.4)                                                                       | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | Total Depth,<br>Screened<br>Interval (bgs)       AP-8914R<br>(16.5, 6.5-16.5)       Oct-05       May-06       May-06       May-09       Sep-09       Nov-09       Aug-10       Oct-10         DRO       125       164       NA       8,600*       NA       NA       442,000         PCE       44.8       29       36       170       98       18       14         Contaminants<br>of Concern       CIS-1.2-DCE       ND(1)       ND (1)       ND (1)       ND (1)       1.2       1.6       3.4       3.6         Contaminants<br>of Concern       WATER ELEV.       443.48       442.7       NA       443.04       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49       442.49 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CIS-1,2-DCE       0.11       0.49       0.49       0.6       0.83       0.75       0.51       0.69       0.52       0.59       0.76       0.70       ND(0.62)       ND(0.52)         WATER ELEV.       443.04       443.09       442.52       441.56       442.01       443.04       442.54       442.14       443.06       443.55       443.19       443.18       443.29       444.01         WATER SUPPLY WELL<br>(100+, NI)       Apr-98       Jul-98       Sep-98       Apr-99       May-99       Aug-99       Nov-01       Sep-02       Jul-03       Aug-03       Sep-03         DRO       ND (260)       80       60       ND (45)       57       ND (0.0)       ND (495)       ND (0.70)       92.5       204       177       N         BENZENE       ND (0.5)       ND (0.5)       ND (0.4)                                                                        | Oct-03       Nov-03       Dec-03       Feb-04       Mar-04       Jun-04       Aug-04       Nov-04       Dec-04       Jan-05       Mar-05       May-05         ND (316)       85       ND (333)       ND (319)       70.4       ND (323)       128       ND (323)       66.2       ND (316)       ND (319)       95.1         ND (0.4)                                                               | Total Depth,<br>Screened<br>Interval (bgs) <b>AP-8914R</b><br><b>(16.5, 6.5-16.5)</b> Oct-05 May-06 May-09 Sep-09 Nov-09 Aug-10 Oct-10<br>DRO 125 164 NA 8,600* NA NA 42,000<br>PCE 44.8 29 36 170 98 18 14<br>TCE 0.41 ND (1) ND (1) ND (10) 0.55 0.5 15 69<br>WATER ELEV. 443.48 442.7 NA 443.04 442.49 442.99 442.49          Contaminants<br>of Concern          WATER ELEV. 443.48 442.7 NA 443.04 442.49 442.99 442.49          Water Elevations<br>in Feet (NGVD29)         Fairbanks Environmental Services<br>3538 International Street<br>Fairbanks, Alaska         DRMO1 Groundwater Sample Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CIS-1,2-DCE       0.11       0.49       0.49       0.6       0.83       0.75       0.51       0.69       0.52       0.59       0.76       0.70       ND(0.62)       ND(0.52)         WATER ELEV.       443.04       443.09       442.52       441.56       442.01       443.04       442.54       442.14       443.06       443.55       443.19       443.18       443.29       444.01         WATER SUPPLY WELL<br>(100+, NI)       Apr-98       Jul-98       Sep-98       Apr-99       May-99       Aug-99       Nov-01       Sep-02       Jul-03       Aug-03       Sep-03         DRO       ND (260)       80       60       ND (45)       57       ND (100)       ND (495)       ND (170)       92.5       204       177       N         BENZENE       ND (0.5)       ND (0.5)       ND (0.5)       ND (0.4)                                                                         | Oct-03         Nov-03         Dec-03         Feb-04         Mar-04         Jun-04         Aug-04         Nov-04         Dec-04         Jan-05         Mar-05         May-05           ND (316)         85         ND (333)         ND (319)         70.4         ND (323)         128         ND (323)         66.2         ND (316)         ND (319)         95.1           ND (0.4)         ND ( | Total Depth,<br>Screened<br>Interval (bgs)       AP-8914R<br>(16.5, 6.5-16.5)       Oct-05       May-06       May-09       Sep-09       Nov-09       Aug-10       Oct-10         DR0       125       164       NA       8,600*       NA       NA       442,000         PCE       44.8       29       36       170       98       18       14         Contaminants<br>of Concern       Image: Concern                                                                                                                                                                                                                                                                                                                                                                                                                 |

| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (16.7, 5-15) May-07 Sep-07 Jun-08 Oct-08 Sep-09 Jun-11 Sep-11 Oct-11 May-12 Aug-12 Aug-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DRO 64 150 68 1,400 1,000 NA 4,500 NA NA 2,200 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,320 613 2,020 640 DRO 280 ND (429) 110 ND (170) 100 232 196 170 90 110 130 240 220 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE 0.22 0.13 ND(1) 0.18 0.15 0.09 0.07 0.09 0.22 0.08 ND(0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4) ND(0.2) ND(0.2) ND(0.2) ND(0.2) BENZENE 7.5 1.33 0.84 ND (2) 1.3 ND (0.4) ND (0.4) 0.13 0.19 0.11 0.11 0.3 0.22 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCE 0.091 0.19 ND(1) ND(1) 0.09 ND(0.5) ND(0.5) ND(0.5) ND(0.2) ND(0.2) ND(0.2) ND(0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2) ND(0.5) ND(0.5) ND(0.5) ND(0.5) TCE 3.8 2.9 2.1 4.4 5.5 3.47 1.38 3.9 1.4 3.5 1.2 4.0 2.5 3.5 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WATER ELEV.         NA         NA         NA         442.88         443.46         442.53         443.01         442.98         443.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 443.87 443.59 443.91 443.2 P05 Feb-10 Jun-10 Oct-10 Jun-11 Sep-11 Oct-11 May-12 Aug-12 Aug-13 Oct-14 Aug-15 Sep-16 Aug-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AP-10445MW*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRO NA NA 140 NA 120 NA NM 83 ND(0.39) 228 199 278 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (17.4, 7.4-17.4) Aug-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BENZENE         0.32         0.39         0.28         0.09         0.11         0.11         0.28         0.10         ND(0.2)         ND(0.2)         ND(0.2)         ND(0.2)         ND(0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DRO 1,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCE 1.6 1.0 4.0 1.7 6.6 7.9 1.1 3.8 ND(0.62) 7.3 8.56 12.7 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCE         1.2         0.69         3.1         0.97         3.8         3.6         1.3         4.2         ND(0.62)         4.63         4.5         4.5         3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5) ND(0.5) AP-10446MW*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5) ND(0.5) (17.5, 7.5-17.5) Aug-18 Aug-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WATER ELEV. 444.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 443.49 DRO NA NA /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AP-10445MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PCE ND(0.5) ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | / TCE ND(0.5) ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER ELEV. 443.99 443.60 DRMO 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRMO 4 / SUBAREA /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SUBAREA SUBAREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AP-8916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Opt 08 Son 00 Nev 00 Ech 10 PO5 AP-10446MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oct-08         Sep-09         Nov-09         Feb-10           790         870         NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 790         870         NA         NA           ND (1)         ND (1)         ND (0.5)         /************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BENZENE         ND (0.4)         0.28         ND (0.4)         ND (0.4)         ND (0.4)         ND (1)         ND (1)         ND (1)           PCE         25         10.6         14.5         8.03         2.32         4.7         2.6         7.5         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (1)     ND (1)     ND (1)     ND (0.5)       3.3     6.3     1.7     2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PCE         25         10.0         10.0         14.3         5.03         2.32         4.7         2.0         7.3         4.1           TCE         1.62         0.75         ND (1)         0.86         1.74         ND (1)         0.81         ND (5)         1.2         0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5         0.5         1.7         2.0           1.6         1.8         ND(0.5)         ND(0.86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WATER ELEV. 444.42 444.00 443.45 443.70 443.57 442.82 443.26 442.48 443.52 442.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AP-8916         Jun-10         Oct-10         Jun-11         Sep-11         Oct-11         May-12         Aug-13         Oct-14         Aug-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DRO NA 1,000 NA 170 NA NM 10,000 1,530 630 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 440 410 NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13 ND(0.2) ND(0.2) ND(0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0 <b>9.2 6.1</b> 4.7         2.7 <b>5.7</b> 2.18 <b>6.7</b> 1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.13         ND(0.2)         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0 <b>9.2 6.1</b> 4.7         2.7 <b>5.7</b> 2.18 <b>6.7</b> 1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0 <b>9.2 6.1</b> 4.7         2.7 <b>5.7</b> 2.18 <b>6.7</b> 1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0 <b>9.2 6.1</b> 4.7         2.7 <b>5.7</b> 2.18 <b>6.7</b> 1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           ACRONYMS AND ABBREVIATIONS<br>DRO - diesel range organics         DRO         ABBREVIATIONS         DRO         DRO         ABBREVIATIONS         ACRONYMS         AND         ACRONYMS         ACRONYMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13         ND(0.2)         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           ACRONYMS AND ABBREVIATIONS         DRO - diesel range organics         PCE - tetrachloroethene         443.45         442.10         441.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.13         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - diesel range organics         PCE - tetrachloroethene         TCE - trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.13       ND(0.2)       ND(0.2)         5.8       ND(0.5)       1.2       0.44         3.0       ND(0.5)       ND(0.5)         442.52       441.61       442.05       441.70    Approximate Groundwater Flow Direction          KEY:       Sample Month ISCR Injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - diesel range organics         PCE - tetrachloroethene         TCE - trichloroethene         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.13 ND(0.2) ND(0.2)<br>5.8 ND(0.5) 1.2 0.44<br>3.0 ND(0.5) ND(0.5)<br>442.52 441.61 442.05 441.70<br>Approximate<br>Groundwater<br>Flow Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - diesel range organics         PCE - tetrachloroethene         TCE - trichloroethene         TCE - trichloroethene         5         5         5         5         5         5         5         5         5         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13 ND(0.2) ND(0.2)<br>5.8 ND(0.5) 1.2 0.44<br>3.0 ND(0.5) ND(0.5) ND(0.5)<br>442.52 441.61 442.05 441.70<br>Approximate<br>Groundwater<br>Flow Direction<br>KEY: Sample Month<br>and Year ISCR Injection<br>Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - diesel range organics         PCE - tetrachloroethene         Experimental Reduction         Experimantred reduction         Experimental Reductio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.13 ND(0.2) ND(0.2)<br>58 ND(0.5) 1.2 0.44<br>3.0 ND(0.5) ND(0.5) ND(0.5)<br>442.52 441.61 442.05 441.70<br>Approximate<br>Groundwater<br>Flow Direction<br>KEY: Sample Month<br>and Year<br>Vell D<br>AP-8916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - diesel range organics         PCE - tetrachloroethene         1.4         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5 <td>0.13 ND(0.2) ND(0.2) ND(0.2)<br/>58 ND(0.5) ND(0.5) ND(0.5) ND(0.5)<br/>442.52 441.61 442.05 441.70<br/>Approximate<br/>Groundwater<br/>Flow Direction<br/>KEY: Sample Month<br/>and Year<br/>Vel ID<br/>AP: 9316<br/>Sep-03 Sep-11 Oct-11<br/>Total Depth,<br/>Direction<br/>Key 10<br/>1260 1270 MD</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.13 ND(0.2) ND(0.2) ND(0.2)<br>58 ND(0.5) ND(0.5) ND(0.5) ND(0.5)<br>442.52 441.61 442.05 441.70<br>Approximate<br>Groundwater<br>Flow Direction<br>KEY: Sample Month<br>and Year<br>Vel ID<br>AP: 9316<br>Sep-03 Sep-11 Oct-11<br>Total Depth,<br>Direction<br>Key 10<br>1260 1270 MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - diesel range organics         PCE - tetrachloroethene         TCE - trichloroethene         500         500         500         500         500         500         500         500         500         500         500         500         500         500 <td>0.13 ND(0.2) ND(0.2) ND(0.2)<br/>58 ND(0.5) 1.2 0.44<br/>3.0 ND(0.5) ND(0.5) ND(0.5)<br/>442.52 441.61 442.05 441.70<br/>Approximate<br/>Groundwater<br/>Flow Direction<br/>KEY: Sample Month ISCR Injection<br/>Event<br/>Event<br/>Event<br/>Sample Month OF Sep-03 Sep-11 Oct-11<br/>Total Depth, Seened Sep-11 Oct-11<br/>National Section Sep-11 Oct-11<br/>National Section Section Sep-11 Oct-11<br/>National Section Sectio</td> | 0.13 ND(0.2) ND(0.2) ND(0.2)<br>58 ND(0.5) 1.2 0.44<br>3.0 ND(0.5) ND(0.5) ND(0.5)<br>442.52 441.61 442.05 441.70<br>Approximate<br>Groundwater<br>Flow Direction<br>KEY: Sample Month ISCR Injection<br>Event<br>Event<br>Event<br>Sample Month OF Sep-03 Sep-11 Oct-11<br>Total Depth, Seened Sep-11 Oct-11<br>National Section Sep-11 Oct-11<br>National Section Section Sep-11 Oct-11<br>National Section Sectio                                                                                                                                                                                                                                                                                                                                                                            |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - diesel range organics         PCE - tetrachloroethene         5         5         5         5         5         5         7         7         6         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13 ND(0.2) ND(0.2)<br>58 ND(0.5) 1.2 0.44<br>3.0 ND(0.5) ND(0.5) ND(0.5)<br>442.52 441.61 442.05 441.70<br>Approximate<br>Groundwater<br>Flow Direction<br>KEY: Sample Month<br>ad Year<br>Vell ID<br>AP3916<br>Screened<br>ItSCR Injection<br>Event<br>Event<br>Event<br>Event<br>Event<br>Event<br>Event<br>Event<br>Event<br>Event<br>Event<br>Event<br>ND(0.4) 0.09 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MACRONYMS AND ABBREVIATIONS         DRO - diesel range organics         PCE - tetrachloroethene         5         5         7         2.18         6.7         1.4           DRO - liesel range organics         PCE - tetrachloroethene         5         5         6.00         7         0.01         1         0         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13         ND(0.2)         ND(0.2)           5.8         ND(0.5)         1.2         0.44           3.0         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.2)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.34         443.45         442.10         441.97           WATER ELEV.         442.05         k42.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - liceic lange organics         PCE - tricehoroethene         bgs         below ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.13         ND(0.2)         ND(0.2)           5.6         ND(0.5)         1.2         0.41           3.0         ND(0.5)         ND(0.5)         ND(0.5)           442.52         441.61         442.05         441.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.62)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           MACRONYMS AND ABBREVIATIONS         DRO - diesel range organics         PCE - tetrachloroethene         5         5         7         2.18         6.7         1.4           DRO - liesel range organics         PCE - tetrachloroethene         5         5         6.00         7         0.01         1         0         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13 ND(0.2)<br>5.6 ND(0.5) ND(0.5)<br>3.0 ND(0.5) ND(0.5)<br>442.52 441.61 442.05 441.70<br>Approximate<br>Groundwater<br>Flow Direction<br>KEY: Sample Month<br>ad Year<br>User Event<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened<br>Screened |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.64         443.22         443.73         442.89         443.34         443.34         443.45         442.10         441.97           WATER ELEV.         440.06         is solve in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13       ND(0.2)       ND(0.2)         3.6       ND(0.5)       1.2       0.44         3.0       ND(0.5)       ND(0.5)         442.52       441.61       442.05       441.70         Approximate<br>Flow Direction         View Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.2)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.34         443.45         442.10         441.97           WATER ELEV.         442.05         k42.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           DRO - liceic lange organics         PCE - tricichloroethene         bgs         below grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.13       ND(0.2)       ND(0.2)         3.6       ND(0.5)       1.2       0.44         3.0       ND(0.5)       ND(0.5)       ND(0.5)         442.52       441.61       442.05       441.70         Agroximate<br>Groundwater<br>Flow Direction       Sample Month       SCR lipicular         MU(0.2)       ND(0.5)       ND(0.5)       ND(0.5)         MU(0.2)       Automatical concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that       Earlanks Environmetal Steret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.2)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.01         6.6         0.77         0.81         ND(0.2)         ND(0.2)         ND(0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.13       ND(0.2)       ND(0.2)         3.6       ND(0.5)       1.2       0.44         3.0       ND(0.5)       ND(0.5)       ND(0.5)         442.52       441.81       442.05       441.70         Approximate<br>Groundwater<br>Flow Direction         MEX         Mode to the second RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in blue. Contaminant concentrations that exceed RDD RGs are shown in green. Contaminant concentrations that exceed RDD RGs are shown in green. Contaminant concentrations that exceed RDD RGs are shown in blue. Solution RD RGs are shown in green. Contaminant concentrations that exceed RDD RGs are shown in Blue. Solution RD RGs are shown in green. Contaminant concentrations that exceed RDD RGs are shown in green. Contaminant concentrations that exceed RDD RGs are shown in green. Contaminant concentrations that exceed RDD RGs are shown in green. Contaminant concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.64         443.22         443.73         442.89         443.34         443.34         443.45         442.10         441.97           VEC         tetrachloroethene         Dgc         tetrachloroethene         Units in up/L         Units in up/L         Units in up/L         DRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.13       ND(0.2)       ND(0.2)         3.0       ND(0.5)       1.2       0.44         3.0       ND(0.5)       ND(0.5)         442.52       441.61       442.05       441.70         Approximate<br>Groundwater<br>Flow Direction         Mile to the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BENZENE         0.34         0.59         ND (0.5)         0.09         0.46         ND(0.7)         0.28         ND(0.24)         ND(0.2)         ND(0.2)           PCE         1.9         4.0         9.2         6.1         4.7         2.7         5.7         2.18         6.7         1.4           TCE         0.52         1.5         1.2         0.65         0.77         0.81         ND(0.1)         ND(0.2)         ND(0.5)         ND(0.5)           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.25         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           WATER ELEV.         442.64         443.22         443.73         442.89         443.34         443.45         442.10         441.97           LECE trianchioroethene         Dgs - below ground surface         ND - not detected (LOQ is shown for data prior to 2012)         LOQ - Limit of Detection         LOQ - Limit of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13       ND(0.2)       ND(0.2)       ND(0.2)         53       ND(0.5)       1.2       0.44         3.0       ND(0.5)       ND(0.5)       ND(0.5)         442.52       441.61       442.05       441.70         Approximate<br>Groundwater<br>Flow Direction         KEY:         Use of the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BENZENE0.340.59ND (0.5)0.090.46ND(0.7)0.28ND(0.24)ND(0.2)ND(0.2)PCE1.94.09.26.14.72.75.72.186.71.4TCE0.521.51.20.650.770.81ND(0.1)ND(0.62)ND(0.5)ND(0.5)WATER ELEV.442.25442.64443.22443.73442.89443.34443.34443.45442.10441.97WATER ELEV.442.25442.64443.22443.73442.89443.34443.34443.45442.10441.97PCE - tetrachloroetheneTCE - trichloroetheneTCE - trichloroetheneTCE - trichloroetheneTCE - trichloroetheneDQ - Limit of DetectionLOQ - Limit of DetectionLOQ - Limit of DetectionLOQ - Limit of QuantitationNA - not analyzedNI - no information availableNA - not analyzedNI - no information availableNM - not measuredNS - not sampledNGVD29 - National Geodetic Vertical Datum of 1929- data not available data not availablePCE5.04.6PCETCE5.02.8PCEDRMO4 Groundwater Monitoring WellImage: Decommissioned Groundwater Monitoring Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13       ND(0.2)       ND(0.2)       ND(0.2)         53       ND(0.5)       1.2       0.41         30       ND(0.5)       ND(0.5)       ND(0.5)         442.52       441.61       442.05       441.70         Piper scimate<br>froundivater,<br>Flow Direction         Minute Science S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BENZENE       0.34       0.59       ND (0.5)       0.09       0.46       ND(0.7)       0.28       ND(0.24)       ND(0.2)       ND(0.2)         PCE       1.9       4.0       9.2       6.1       4.7       2.7       5.7       2.18       6.7       1.4         TCE       0.52       1.5       1.2       0.65       0.77       0.81       ND(0.1)       ND(0.62)       ND(0.5)       ND(0.5)         WATER ELEV.       442.25       442.64       443.22       443.73       442.89       443.34       443.34       443.45       442.10       441.97         WATER ELEV.       442.25       442.64       443.22       443.73       442.89       443.34       443.34       443.45       442.10       441.97         WATER ELEV.       442.25       442.64       443.22       443.73       442.89       443.34       443.45       442.10       441.97         V       - ditasel range organics       PCE - itrachloroethene       - ditasel range organics       - dita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 133       ND(0.2)       ND(0.2)       ND(0.2)         533       ND(0.5)       1.2       0.44         543       A42.05       441.70       Agproximate<br>Grountwater<br>Flow Direction       Flow         543       ND(0.5)       1.42.05       441.70       Agproximate<br>Grountwater<br>Flow Direction       Flow         64       Output       1.5       5.91       1.0c1.1       Flow       Flow         64       Output       1.5       5.91       1.0c1.1       Flow       Flow         64       Output       1.0c1       Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BENZENE0.340.59ND (0.5)0.090.46ND(0.7)0.28ND(0.24)ND(0.2)ND(0.2)PCE1.94.09.26.14.72.75.72.186.71.4TCE0.521.51.20.650.770.81ND(0.1)ND(0.62)ND(0.5)ND(0.5)WATER ELEV.442.25442.64443.22443.73442.89443.34443.34443.45442.10441.97WATER ELEV.442.25442.64443.22443.73442.89443.34443.34443.45442.10441.97PCE - tetrachloroetheneTCE - trichloroetheneTCE - trichloroetheneTCE - trichloroetheneTCE - trichloroetheneDQ - Limit of DetectionLOQ - Limit of DetectionLOQ - Limit of DetectionLOQ - Limit of QuantitationNA - not analyzedNI - no information availableNA - not analyzedNI - no information availableNM - not measuredNS - not sampledNGVD29 - National Geodetic Vertical Datum of 1929- data not available data not availablePCE5.04.6PCETCE5.02.8PCEDRMO4 Groundwater Monitoring WellImage: Decommissioned Groundwater Monitoring Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 131       ND(0.2)       ND(0.2)       ND(0.2)         533       ND(0.5)       1.2       0.41         30       ND(0.5)       ND(0.5)       ND(0.5)         442.52       441.61       442.05       441.70         Piper oximate<br>for Dunivater,<br>Flow Direction         Mile device the second colspan="2">Second colspan="2"         Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

| USACE Contract: W911-KB-16-D-0005 | Figure: 3-2 | Date: 10/19 |
|-----------------------------------|-------------|-------------|
|-----------------------------------|-------------|-------------|



# 4.0 **REFERENCES**

Alaska Department of Environmental Conservation (ADEC), 2019a. Field Sampling Guidance. October.

- ADEC, 2019b. Technical Memorandum Data Quality Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data. October.
- ADEC, 2018. *18 AAC 75, Oil and Other Hazardous Substances Pollution Control.* As amended through October 27, 2018.
- Department of Defense (DoD), 2017. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1.
- EPA, 2005. Roadmap to Long-Term Monitoring Optimization. EPA 542-R-05-003. May.
- Fairbanks Environmental Services (FES), 2019. *2019 CERCLA Sites Work Plan Operable Units 1 Through 6.* Fort Wainwright, Alaska. July.
- FES, 2018a. *Interim Remedial Action Completion Report Building 1168 Leach Well.* Fort Wainwright, Alaska. November.
- FES, 2018b. DRMO1 and DRMO4 Treatability Study Report. Fort Wainwright, Alaska. April.
- FES, 2011. 2010 Annual Monitoring Report, Operable Unit 2, Fort Wainwright, Alaska. July.
- FES, 2010. 2009 Annual Monitoring Report, Operable Unit 2, Fort Wainwright, Alaska. June.
- FES, 2009. 2009 Work Plan. Operable Unit 2, Fort Wainwright, Alaska. May.
- Harding Lawson Associates (HLA), 1996. *Operable Unit 2 Final Remedial Investigation Report*, Fort Wainwright, Alaska. (Volumes I and II). January 25.
- Puls, R.W. and M. J. Barcelona, 1996. *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.* EPA/540/S-95/504. April.
- U.S. Army Alaska (USARAK), 1997. *Record of Decision for Operable Unit 2*, Fort Wainwright, Alaska. January.

**APPENDIX A** 

SAMPLE TRACKING AND ANALYTICAL RESULTS TABLES

| Sample Number  | Sample<br>Location   | Sample Depth<br>(feet bgs) | Sample Type                       | Matrix | Sampler<br>Initials | Sample<br>Date | Sample<br>Time | VOC<br>8260C | GRO<br>AK101   | DRO<br>AK102 | SVOC<br>8270D  | Dissolved<br>Iron<br>6020A | Sulfate<br>300.0 | SDG     | Cooler ID  |
|----------------|----------------------|----------------------------|-----------------------------------|--------|---------------------|----------------|----------------|--------------|----------------|--------------|----------------|----------------------------|------------------|---------|------------|
| DRMO Yard      |                      |                            |                                   |        |                     |                |                |              |                |              |                |                            |                  |         |            |
| 19FWOU201WG    | AP-10017R            | 14.5                       | Primary                           | WG     | AS                  | 08/06/19       | 1030           | Х            |                |              |                | Х                          | Х                | 1194497 | 080801,-02 |
| 19FWOU202WG    | AP-10018R            | 14.3                       | Primary                           | WG     | AS                  | 08/06/19       | 1140           | Х            |                |              |                | Х                          | Х                | 1194497 | 080801,-02 |
| 19FWOU203WG    | AP-10015R            | 14.8                       | Primary                           | WG     | AS                  | 08/06/19       | 1245           | Х            |                |              |                | Х                          | Х                | 1194497 | 080801,-02 |
| 19FWOU204WG    | AP-10016R            | 14.9                       | Primary                           | WG     | AS                  | 08/06/19       | 1355           | Х            |                |              |                | Х                          | Х                | 1194497 | 080801,-02 |
| 19FWOU205WG    | AP-8914R             | 12.8                       | Primary                           | WG     | AS                  | 08/06/19       | 1500           | Х            |                |              |                | Х                          | Х                | 1194497 | 080801,-02 |
| 19FWOU206WG    | WSW                  | unknown <sup>1</sup>       | Primary                           | WG     | AS                  | 08/07/19       | 1015           | Х            | X <sup>2</sup> | Х            | X <sup>2</sup> |                            |                  | 1194497 | 080801,-02 |
| 19FWOU207WG    | AP-8916              | 13.0                       | Primary                           | WG     | CB                  | 08/07/19       | 1050           | Х            |                |              |                | Х                          | х                | 1194497 | 080801,-02 |
| 19FWOU208WG    | AP-7560              | 12.1                       | Primary/MS/MSD*                   | WG     | AS                  | 08/07/19       | 1125           | X*           |                | X*           |                | X*                         | X*               | 1194497 | 080801,-02 |
| 19FWOU209WG    | AP-7070<br>(AP-7560) | 12.1                       | Field Duplicate of<br>19FWOU208WG | WG     | AS                  | 08/07/19       | 1135           | Х            |                | х            |                | х                          | х                | 1194497 | 080801,-02 |
| 19FWOU210WG    | AP-10445MW           | 14.6                       | Primary                           | WG     | CB                  | 08/07/19       | 1200           | Х            |                | Х            |                | Х                          | х                | 1194497 | 080801,-02 |
| 19FWOU211WG    | AP-7559              | 12.5                       | Primary                           | WG     | AS                  | 08/07/19       | 1300           | Х            |                |              |                | Х                          | х                | 1194497 | 080801,-02 |
| 19FWOU212WG    | AP-10446MW           | 13.8                       | Primary                           | WG     | CB                  | 08/07/19       | 1305           | Х            |                |              |                | Х                          | х                | 1194497 | 080801,-02 |
| QUALITY CONTRO | L SAMPLES            |                            |                                   |        |                     |                |                |              |                |              |                |                            |                  |         |            |
| 19FWOU2EB01WQ  | Rinsate 1            |                            | Equipment Blank                   | WQ     | AS                  | 08/07/19       | 1530           | Х            |                | Х            |                | Х                          | Х                | 1194497 | 080801,-02 |
| 19FWOU2TB01WQ  | Trip Blank           |                            | Trip Blank                        | WQ     |                     | 08/06/19       | 800            | Х            | Х              |              |                |                            |                  | 1194497 | 080801     |

Note: All samples were submitted to SGS North America, Inc. of Anchorage, Alaska for analysis. The standard 21-day turnaround time was requested for all analyses. All sampling activities were conducted under NPDL work order number 19-074.

\* Denotes MS/MSD sample

<sup>1</sup> The depth at which sample 19FWOU206WG was collected is unknown. The WSW is sampled from a building faucet, per standard protocol.

<sup>2</sup> Neither field duplicate samples nor MS/MSD samples were collected for GRO and SVOC analyses, per the approved Work Plan (FES, 2019). These methods are only employed for samples collected from the Water Supply Well (WSW). The WSW is also sampled by a different entity under the Drink Water Program, during which all quality control criteria are met. The sample results from this sampling event are used as supplemental data and the collection of quality control samples is not required.

AS - Aaron Swank mL - milliliter bas - below ground surface MS/MSD - matrix spike/matrix spike duplicate SDG - sample data group °C - degrees Celsius DRO - diesel range organics SVOC - semivolatile organic compounds GRO - gasoline range organics VOA - volatile organic analysis HCl - hydrochloric acid VOC - volatile organic compounds HDPE - high-density polyethylene WG - groundwater matrix HNO3 - nitric acid WQ - water quality control L - liter WSW - Water Supply Well

<u>Water Sample Collection</u> (all samples were field-preserved at 0 to 6°C) VOC - three HCI-preserved, 40 mL VOA vials GRO - three HCI-preserved, 40 mL VOA vials DRO - two HCI-preserved, 250 mL amber bottles SVOC - two non-preserved, 1 L amber bottles Fe - one HNO<sub>3</sub>-preserved, 250 mL HDPE bottle, field-filtered SO<sub>4</sub> - one non-preserved, 125 mL HDPE bottle

|                                               |                    |                      | Sample ID                             | 19FWOU201WG               | 19FWOU202WG               | 19FWOU203WG               | 19FWOU204WG               | 19FWOU205WG               |
|-----------------------------------------------|--------------------|----------------------|---------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                               |                    |                      | Location ID                           | AP-10017R                 | AP-10018R                 | AP-10015R                 | AP-10016R                 | AP-8914R                  |
|                                               |                    | Sa                   | mple Data Group                       | 1194497                   | 1194497                   | 1194497                   | 1194497                   | 1194497                   |
|                                               |                    |                      | Laboratory ID                         | 1194497001                | 1194497002                | 1194497003                | 1194497004                | 1194497005                |
|                                               |                    |                      | Collection Date                       | 8/6/2019                  | 8/6/2019                  | 8/6/2019                  | 8/6/2019                  | 8/6/2019                  |
|                                               |                    |                      | Matrix                                | WG                        | WG                        | WG                        | WG                        | WG                        |
|                                               |                    |                      | Sample Type                           | Primary                   | Primary                   | Primary                   | Primary                   | Primary                   |
| Analyte                                       | Method             | Units                | OU2 ROD RG /<br>ADEC CUL <sup>1</sup> | Result [LOD]<br>Qualifier |
| Gasoline Range Organics                       | AK101              | μg/L                 | 2,200                                 | -                         | -                         | -                         | -                         | -                         |
| Diesel Range Organics                         | AK102              | μg/L                 | 1,500                                 | -                         | -                         | -                         | -                         | -                         |
| Sulfate                                       | E300.0             | μg/L                 | NE                                    | 23800 [200]               | 11000 [200]               | 8690 [200]                | 10100 [200]               | 19300 [200]               |
| Iron                                          | SW6020A            | μg/L                 | NE                                    | 205 [250] J               | 6030 [250]                | 7100 [250]                | 1980 [250]                | 27200 [250]               |
| 1,1,1,2-Tetrachloroethane                     | SW8260C            | μg/L                 | 5.7                                   | ND [0.250]                |
| 1,1,1-Trichloroethane                         | SW8260C            | μg/L                 | 8,000                                 | ND [0.500]                |
| 1,1,2,2-Tetrachloroethane                     | SW8260C            | μg/L                 | 0.76                                  | ND [0.250]                |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         | SW8260C            | μg/L                 | 10,000                                | ND [5.00]                 |
| 1,1,2-Trichloroethane                         | SW8260C            | μg/L                 | 0.41                                  | ND [0.200]                |
| 1,1-Dichloroethane                            | SW8260C            | μg/L                 | 28                                    | ND [0.500]                |
| 1,1-Dichloroethene                            | SW8260C            | μg/L                 | 7.0 / 280                             | ND [0.500]                |
| 1,1-Dichloropropene<br>1,2,3-Trichlorobenzene | SW8260C<br>SW8260C | μg/L<br>μg/L         | NE<br>NE                              | ND [0.500]<br>ND [0.500]  |
| 1,2,3-Trichloropropane                        | SW8260C            | μg/L<br>μg/L         | 0.0075                                | ND [0.500]                |
| 1,2,4-Trichlorobenzene                        | SW8260C            | μg/L                 | 4.0                                   | ND [0.500]                |
| 1,2,4-Trimethylbenzene                        | SW8260C            | μg/L                 | 56                                    | ND [0.500]                |
| 1,2-Dibromo-3-chloropropane                   | SW8260C            | μg/L                 | NE                                    | ND [5.00]                 |
| 1,2-Dibromoethane                             | SW8260C            | μg/L                 | 0.075                                 | ND [0.0375]               |
| 1,2-Dichlorobenzene                           | SW8260C            | μg/L                 | 300                                   | ND [0.500]                |
| 1,2-Dichloroethane                            | SW8260C            | μg/L                 | 1.7                                   | ND [0.250]                |
| 1,2-Dichloropropane                           | SW8260C            | μg/L                 | 8.2                                   | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]<br>ND [0.500]  |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene | SW8260C<br>SW8260C | μg/L<br>μg/L         | 60<br>300                             | ND [0.500]<br>ND [0.500]  |
| 1,3-Dichloropropane                           | SW8260C            | μg/L                 | 4.7                                   | ND [0.250]                |
| 1,4-Dichlorobenzene                           | SW8260C            | μg/L                 | 4.8                                   | ND [0.250]                |
| 2,2-Dichloropropane                           | SW8260C            | μg/L                 | NE                                    | ND [0.500]                |
| 2-Butanone                                    | SW8260C            | μg/L                 | 5,600                                 | ND [5.00]                 |
| 2-Chlorotoluene                               | SW8260C            | μg/L                 | NE                                    | ND [0.500]                |
| 2-Hexanone                                    | SW8260C            | μg/L                 | 38                                    | ND [5.00]                 |
| 4-Chlorotoluene                               | SW8260C            | μg/L                 | NE                                    | ND [0.500]                |
| 4-Isopropyltoluene<br>4-Methyl-2-pentanone    | SW8260C<br>SW8260C | μg/L<br>μg/L         | NE<br>6,300                           | ND [0.500]<br>ND [5.00]   |
| Benzene                                       | SW8260C            | μg/L<br>μg/L         | 5.0 / 4.6                             | ND [0.200]                |
| Bromobenzene                                  | SW8260C            | μg/L                 | 62                                    | ND [0.500]                |
| Bromochloromethane                            | SW8260C            | μg/L                 | NE                                    | ND [0.500]                |
| Bromodichloromethane                          | SW8260C            | μg/L                 | 1.3                                   | ND [0.250]                |
| Bromoform                                     | SW8260C            |                      | 33                                    | ND [0.500]                |
| Bromomethane                                  | SW8260C            | μg/L                 | 7.5                                   | ND [2.50]                 |
| Carbon disulfide                              | SW8260C            | μg/L                 | 810                                   | ND [5.00]                 |
| Carbon tetrachloride                          | SW8260C<br>SW8260C | μg/L<br>μg/L         | 4.6<br>78                             | ND [0.500]<br>ND [0.250]  |
| Chlorobenzene<br>Chloroethane                 | SW8260C<br>SW8260C |                      | 21,000                                | ND [0.250]<br>ND [0.500]  |
| Chloroform                                    | SW8260C            |                      | 2.20                                  | ND [0.500]                |
| Chloromethane                                 | SW8260C            |                      | 190                                   | 0.31 [0.500] J            | 0.35 [0.500] J            | 0.39 [0.500] J            | 0.32 [0.500] J            | ND [0.500]                |
| cis-1,2-Dichloroethene                        | SW8260C            | μg/L                 | <b>70</b> / 36                        | 0.67 [0.500] J            | 2.23 [0.500]              | 0.99 [0.500] J            | 0.32 [0.500] J            | 6.36 [0.500]              |
| cis-1,3-Dichloropropene                       | SW8260C            |                      | 4.7                                   | ND [0.250]                |
| Dibromochloromethane                          | SW8260C            |                      | 8.7                                   | ND [0.250]                |
| Dibromomethane                                | SW8260C            |                      | 8.3                                   | ND [0.500]                |
| Dichlorodifluoromethane                       | SW8260C            | μg/L                 | 200                                   | ND [0.500]                |
| Ethylbenzene                                  | SW8260C            | μg/L                 | 15<br>1.4                             | ND [0.500]                |
| Hexachlorobutadiene<br>Isopropylbenzene       | SW8260C<br>SW8260C | μg/L<br>μg/L         | 1.4<br>450                            | ND [0.500]<br>ND [0.500]  |
| Methylene chloride                            | SW8260C<br>SW8260C | μg/L<br>μg/L         | 450                                   | ND [0.500]<br>ND [2.50]   |
| Methyl-tert-butyl ether (MTBE)                |                    |                      | 140                                   | ND [5.00]                 |
| ,                                             | SW8260C            | μu/L                 |                                       |                           |                           |                           |                           | . []                      |
| Naphthalene                                   | SW8260C<br>SW8260C |                      | 1.7                                   | ND [0.500]                |
| Naphthalene<br>n-Butylbenzene                 |                    | μg/L                 |                                       |                           |                           |                           | ND [0.500]                | ND [0.500]<br>ND [0.500]  |
|                                               | SW8260C            | μg/L<br>μg/L<br>μg/L | 1.7                                   | ND [0.500]                | ND [0.500]                | ND [0.500]                |                           |                           |

|                                            |                               |              | Sample ID                             | 19FWOU201WG                 | 19FWOU202WG                 | 19FWOU203WG                 | 19FWOU204WG                 | 19FWOU205WG               |
|--------------------------------------------|-------------------------------|--------------|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|
|                                            |                               |              | Location ID                           | AP-10017R                   | AP-10018R                   | AP-10015R                   | AP-10016R                   | AP-8914R                  |
|                                            |                               | Sa           | mple Data Group                       | 1194497                     | 1194497                     | 1194497                     | 1194497                     | 1194497                   |
|                                            |                               |              | Laboratory ID                         | 1194497001                  | 1194497002                  | 1194497003                  | 1194497004                  | 1194497005                |
|                                            |                               |              | Collection Date                       | 8/6/2019                    | 8/6/2019                    | 8/6/2019                    | 8/6/2019                    | 8/6/2019                  |
|                                            |                               |              | Matrix                                | WG                          | WG                          | WG                          | WG                          | WG                        |
|                                            |                               |              | Sample Type                           | Primary                     | Primary                     | Primary                     | Primary                     | Primary                   |
| Analyte                                    | Method                        | Units        | OU2 ROD RG /<br>ADEC CUL <sup>1</sup> | Result [LOD]<br>Qualifier   | Result [LOD]<br>Qualifier   | Result [LOD]<br>Qualifier   | Result [LOD]<br>Qualifier   | Result [LOD]<br>Qualifier |
| Styrene                                    | SW8260C                       | μg/L         | 1,200                                 | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                |
| tert-Butylbenzene                          | SW8260C                       | μg/L         | 690                                   | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                |
| Tetrachloroethene (PCE)                    | SW8260C                       | μg/L         | 5.0 / 41                              | 0.52 [0.500] J              | 0.56 [0.500] J              | 0.63 [0.500] J              | 6.15 [0.500]                | 0.57 [0.500] J            |
| Toluene                                    | SW8260C                       |              | 1,100                                 | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                |
| trans-1,2-Dichloroethene                   | SW8260C                       |              | 360                                   | ND [0.500]                  | 6.77 [0.500]                | 2.28 [0.500]                | 0.48 [0.500] J              | 5.09 [0.500]              |
| trans-1,3-Dichloropropene                  | SW8260C                       |              | 4.7                                   | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                |
| Trichloroethene (TCE)                      | SW8260C                       |              | 5.0 / 2.8                             | ND [0.500]                  | ND [0.500]                  | 0.67 [0.500] J              | 0.55 [0.500] J              | 1.22 [0.500]              |
| Trichlorofluoromethane                     | SW8260C                       |              | 5,200                                 | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                  | ND [0.500]                |
| Vinyl acetate                              | SW8260C                       |              | 410<br>2.0 / 0.19                     | ND [5.00]<br>ND [0.0750]    | ND [5.00]<br>ND [0.0750]    | ND [5.00]<br>ND [0.0750]    | ND [5.00]<br>ND [0.0750]    | ND [5.00]<br>ND [0.0750]  |
| Vinyl chloride<br>o-Xylene                 | SW8260C<br>SW8260C            |              | 2.0 / 0.19<br>190                     | ND [0.0750]<br>ND [0.500] J | ND [0.0750]<br>ND [0.500] |
| Xylene, Isomers m & p                      | SW8260C                       |              | 190                                   | ND [0.300] J                | ND [0.300] J<br>ND [1.00]   | ND [0.300] J                | ND [0.500] J<br>ND [1.00]   | ND [0.500]                |
| Xylenes                                    | SW8260C                       | 10           | 190                                   | ND [1.50]                   | ND [1.50]                   | ND [1.50]                   | ND [1.50]                   | ND [1.50]                 |
| •                                          |                               |              |                                       |                             |                             | • •                         |                             |                           |
| 1,2,4-Trichlorobenzene                     | SW8270D                       |              | 4.0                                   | -                           | -                           | -                           | -                           | -                         |
| 1,2-Dichlorobenzene                        | SW8270D                       |              | 300                                   | -                           | -                           | -                           | -                           | -                         |
| 1,3-Dichlorobenzene                        | SW8270D                       |              | 300                                   | -                           | -                           | -                           | -                           | -                         |
| 1,4-Dichlorobenzene<br>1-Chloronaphthalene | SW8270D<br>SW8270D            |              | 4.8<br>NE                             | -                           | -                           | -                           | -                           | -                         |
| 1-Methylnaphthalene                        | SW8270D<br>SW8270D            |              | 11                                    | -                           | -                           | -                           | -                           | -                         |
| 2,4,5-Trichlorophenol                      | SW8270D                       |              | 1,200                                 | -                           | -                           | -                           | -                           | -                         |
| 2,4,6-Trichlorophenol                      | SW8270D                       |              | 12                                    | -                           | _                           | _                           | -                           | -                         |
| 2,4-Dichlorophenol                         | SW8270D                       |              | 46                                    | -                           | -                           | -                           | -                           | -                         |
| 2,4-Dimethylphenol                         | SW8270D                       |              | 360                                   | -                           | -                           | -                           | -                           | -                         |
| 2,4-Dinitrophenol                          | SW8270D                       |              | 39                                    | -                           | -                           | -                           | -                           | -                         |
| 2,4-Dinitrotoluene                         | SW8270D                       | μg/L         | 2.4                                   | -                           | -                           | -                           | -                           | -                         |
| 2,6-Dichlorophenol                         | SW8270D                       | μg/L         | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 2,6-Dinitrotoluene                         | SW8270D                       | μg/L         | 0.49                                  | -                           | -                           | -                           | -                           | -                         |
| 2-Chloronaphthalene                        | SW8270D                       |              | 750                                   | -                           | -                           | -                           | -                           | -                         |
| 2-Chlorophenol                             | SW8270D                       |              | 91                                    | -                           | -                           | -                           | -                           | -                         |
| 2-Methyl-4,6-dinitrophenol                 | SW8270D                       |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 2-Methylnaphthalene                        | SW8270D                       |              | 36                                    | -                           | -                           | -                           | -                           | -                         |
| 2-Methylphenol (o-Cresol)                  | SW8270D                       |              | 930                                   | -                           | -                           | -                           | -                           | -                         |
| 2-Nitroaniline                             | SW8270D                       |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 2-Nitrophenol<br>3.3'-Dichlorobenzidine    | SW8270D<br>SW8270D            |              | NE<br>1.3                             | -                           | -                           | -                           | -                           | -                         |
| 3-Methylphenol/4-Methylphenol Coelution    |                               |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 3-Nitroaniline                             | SW8270D                       |              | NE                                    | _                           | -                           | -                           | -                           | -                         |
| 4-Bromophenyl phenyl ether                 | SW8270D                       |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 4-Chloro-3-methylphenol                    | SW8270D                       |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 4-Chloroaniline                            | SW8270D                       |              | 3.7                                   | -                           | -                           | -                           | -                           | -                         |
| 4-Chlorophenyl phenyl ether                | SW8270D                       |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 4-Nitroaniline                             | SW8270D                       |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| 4-Nitrophenol                              | SW8270D                       | 1.2          | NE                                    | -                           | -                           | -                           | -                           | -                         |
| Acenaphthene                               | SW8270D                       |              | 530                                   | -                           | -                           | -                           | -                           | -                         |
| Acenaphthylene                             | SW8270D                       |              | 260                                   | -                           | -                           | -                           | -                           | -                         |
| Aniline                                    | SW8270D                       |              | NE                                    | -                           | -                           | -                           | -                           | -                         |
| Anthracene                                 | SW8270D                       |              | 43                                    | -                           | -                           | -                           | -                           | -                         |
| Azobenzene                                 | SW8270D                       |              | NE<br>0.20                            | -                           | -                           | -                           | -                           | -                         |
| Benzo(a)anthracene                         | SW8270D<br>SW8270D            |              | 0.30<br>0.25                          | -                           | -                           | -                           | -                           | -                         |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene     | SW8270D<br>SW8270D            |              | 2.5                                   | -                           | -                           | -                           | -                           | -                         |
| Benzo(g,h,i)perylene                       | SW8270D<br>SW8270D            |              | 0.26                                  | -                           | -                           | -                           | -                           | -                         |
| Benzo(k)fluoranthene                       | SW8270D                       | · -          | 0.80                                  | -                           | -                           | -                           | -                           | -                         |
|                                            |                               |              |                                       |                             |                             | _                           | -                           | _                         |
| Benzoic acid                               |                               | μa/L         | 75,000                                | -                           | -                           | -                           | -                           | -                         |
|                                            | SW8270D<br>SW8270D            |              | 75,000<br>2,000                       | -                           | -                           | -                           | -                           | -                         |
| Benzoic acid                               | SW8270D<br>SW8270D<br>SW8270D | μg/L<br>μg/L | ,                                     |                             |                             |                             |                             |                           |
| Benzoic acid<br>Benzyl alcohol             | SW8270D<br>SW8270D            | μg/L<br>μg/L | 2,000                                 |                             |                             |                             |                             | -<br>-<br>-<br>-          |

|                             |         |       | Sample ID                             | 19FWOU201WG               | 19FWOU202WG               | 19FWOU203WG               | 19FWOU204WG               | 19FWOU205WG               |
|-----------------------------|---------|-------|---------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                             |         |       | Location ID                           | AP-10017R                 | AP-10018R                 | AP-10015R                 | AP-10016R                 | AP-8914R                  |
|                             |         | Sa    | mple Data Group                       | 1194497                   | 1194497                   | 1194497                   | 1194497                   | 1194497                   |
|                             |         |       | Laboratory ID                         | 1194497001                | 1194497002                | 1194497003                | 1194497004                | 1194497005                |
|                             |         |       | Collection Date                       | 8/6/2019                  | 8/6/2019                  | 8/6/2019                  | 8/6/2019                  | 8/6/2019                  |
|                             |         |       | Matrix                                | WG                        | WG                        | WG                        | WG                        | WG                        |
|                             |         |       | Sample Type                           | Primary                   | Primary                   | Primary                   | Primary                   | Primary                   |
| Analyte                     | Method  | Units | OU2 ROD RG /<br>ADEC CUL <sup>1</sup> | Result [LOD]<br>Qualifier |
| bis(2-Chloroisopropyl)ether | SW8270D | μg/L  | NE                                    | -                         | -                         | -                         | -                         | -                         |
| bis-(2-Ethylhexyl)phthalate | SW8270D | 10    | 56                                    | -                         | -                         | -                         | -                         | -                         |
| Carbazole                   | SW8270D | μg/L  | NE                                    | -                         | -                         | -                         | -                         | -                         |
| Chrysene                    | SW8270D | μg/L  | 2.0                                   | -                         | -                         | -                         | -                         | -                         |
| Dibenzo(a,h)anthracene      | SW8270D | μg/L  | 0.25                                  | -                         | -                         | -                         | -                         | -                         |
| Dibenzofuran                | SW8270D | μg/L  | 7.9                                   | -                         | -                         | -                         | -                         | -                         |
| Diethyl phthalate           | SW8270D | μg/L  | 15,000                                | -                         | -                         | -                         | -                         | -                         |
| Dimethyl phthalate          | SW8270D | μg/L  | 16,000                                | -                         | -                         | -                         | -                         | -                         |
| Di-n-butyl phthalate        | SW8270D | μg/L  | 900                                   | -                         | -                         | -                         | -                         | -                         |
| Di-n-octyl phthalate        | SW8270D | μg/L  | 22                                    | -                         | -                         | -                         | -                         | -                         |
| Fluoranthene                | SW8270D | μg/L  | 260                                   | -                         | -                         | -                         | -                         | -                         |
| Fluorene                    | SW8270D | μg/L  | 290                                   | -                         | -                         | -                         | -                         | -                         |
| Hexachlorobenzene           | SW8270D | μg/L  | 0.098                                 | -                         | -                         | -                         | -                         | -                         |
| Hexachlorobutadiene         | SW8270D | μg/L  | 1.4                                   | -                         | -                         | -                         | -                         | -                         |
| Hexachlorocyclopentadiene   | SW8270D | μg/L  | 0.41                                  | -                         | -                         | -                         | -                         | -                         |
| Hexachloroethane            | SW8270D | μg/L  | 3.3                                   | -                         | -                         | -                         | -                         | -                         |
| Indeno(1,2,3-cd)pyrene      | SW8270D | μg/L  | 0.19                                  | -                         | -                         | -                         | -                         | -                         |
| Isophorone                  | SW8270D | μg/L  | 780                                   | -                         | -                         | -                         | -                         | -                         |
| Naphthalene                 | SW8270D | μg/L  | 1.7                                   | -                         | -                         | -                         | -                         | -                         |
| Nitrobenzene                | SW8270D | μg/L  | 1.4                                   | -                         | -                         | -                         | -                         | -                         |
| n-Nitrosodimethylamine      | SW8270D | μg/L  | 0.0011                                | -                         | -                         | -                         | -                         | -                         |
| n-Nitrosodi-n-propylamine   | SW8270D | μg/L  | 0.11                                  | -                         | -                         | -                         | -                         | -                         |
| n-Nitrosodiphenylamine      | SW8270D | μg/L  | 120                                   | -                         | -                         | -                         | -                         | -                         |
| Pentachlorophenol           | SW8270D | μg/L  | 0.41                                  | -                         | -                         | -                         | -                         | -                         |
| Phenanthrene                | SW8270D | μg/L  | 170                                   | -                         | -                         | -                         | -                         | -                         |
| Phenol                      | SW8270D | μg/L  | 5,800                                 | -                         | -                         | -                         | -                         | -                         |
| Pyrene                      | SW8270D | μg/L  | 120                                   | -                         | -                         | -                         | -                         | -                         |

### Results in blue and bold font exceed ROD RGs.

### Results in green and bold font exceed ADEC CULs.

### No ROD analytes exceed both the ROD RGs and ADEC CULs

Grey shaded results are non-detect with LODs above OU2 ROD RGs and/or ADEC CULs \*OU2 ROD analytes and RGs are identified in blue text. The

<sup>1</sup> **OU2 ROD analytes and RGs are identified in blue text.** The remaining values are ADEC Groundwater Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27. 2018).

#### Data Qualifiers:

- B result may be due to cross-contamination
- J result qualified as estimate because it is less than the LOQ or due to a QC

J+ - result qualified as estimate with a high-bias due to a QC failure

- J- result qualified as estimate with a low-bias due to a QC failure
- ND not detected [LOD presented in brackets]

### Acronyms:

- CUL cleanup level LOD - limit of detection LOQ - limit of quantitation MS/MSD - matrix spike/matrix spike duplicate µg/L - micrograms per liter mg/L - milligrams per liter NE - not established QC - quality control RG - remedial goal ROD - Record of Decision WG - groundwater
- WQ water QC sample

|                                               |                    |              | Sample ID                             | 19FWOU206WG               | 19FWOU207WG                  | 19FWOU208WG               | 19FWOU209WG                       | 19FWOU210WG               |
|-----------------------------------------------|--------------------|--------------|---------------------------------------|---------------------------|------------------------------|---------------------------|-----------------------------------|---------------------------|
|                                               |                    |              | Location ID                           | WSW                       | AP-8616                      | AP-7560                   | AP-7070                           | AP-10445MW                |
|                                               |                    | Sa           | mple Data Group                       | 1194497                   | 1194497                      | 1194497                   | 1194497                           | 1194497                   |
|                                               |                    |              | Laboratory ID                         | 1194497006                | 1194497007                   | 1194497008                | 1194497011                        | 1194497012                |
|                                               |                    |              | Collection Date                       | 8/7/2019                  | 8/7/2019                     | 8/7/2019                  | 8/7/2019                          | 8/7/2019                  |
|                                               |                    |              | Matrix                                | WG                        | WG                           | WG                        | WG                                | WG                        |
|                                               | -                  |              | Sample Type                           | Primary                   | Primary                      | Primary/MS/MSD            | Field Duplicate of<br>19FWOU208WG | Primary                   |
| Analyte                                       | Method             | Units        | OU2 ROD RG /<br>ADEC CUL <sup>1</sup> | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier    | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier         | Result [LOD]<br>Qualifier |
| Gasoline Range Organics                       | AK101              | μg/L         | 2,200                                 | ND [50]                   | -                            | -                         | -                                 | -                         |
| Diesel Range Organics                         | AK102              | μg/L         | 1,500                                 | ND [300]                  | -                            | 2730 [288] J              | 1910 [283] J                      | 280 [283] J               |
| Sulfate                                       | E300.0             | μg/L         | NE                                    | -                         | 4300 [200]                   | 21200 [200] J-            | 20500 [200] J-                    | 27300 [200]               |
| Iron                                          | SW6020A            | μg/L         | NE                                    | -                         | 20600 [250]                  | 8570 [250]                | 8880 [250]                        | 867 [250]                 |
| 1,1,1,2-Tetrachloroethane                     | SW8260C            | μg/L         | 5.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| 1,1,1-Trichloroethane                         | SW8260C            | μg/L         | 8,000                                 | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,1,2,2-Tetrachloroethane                     | SW8260C            | μg/L         | 0.76                                  | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         | SW8260C            | μg/L         | 10,000                                | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                         | ND [5.00]                 |
| 1,1,2-Trichloroethane                         | SW8260C            | μg/L         | 0.41                                  | ND [0.200]                | ND [0.200]                   | ND [0.200]                | ND [0.200]                        | ND [0.200]                |
| 1,1-Dichloroethane                            | SW8260C            | μg/L         | 28                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,1-Dichloroethene                            | SW8260C            | μg/L         | 7.0 / 280                             | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,1-Dichloropropene<br>1,2,3-Trichlorobenzene | SW8260C<br>SW8260C | μg/L<br>μg/L | NE<br>NE                              | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]     | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]          | ND [0.500]<br>ND [0.500]  |
| 1,2,3-Trichloropropane                        | SW8260C<br>SW8260C | μg/L<br>μg/L | 0.0075                                | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,2,4-Trichlorobenzene                        | SW8260C            | μg/L         | 4.0                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,2,4-Trimethylbenzene                        | SW8260C            | μg/L         | 56                                    | ND [0.500]                | 8.39 [0.500]                 | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,2-Dibromo-3-chloropropane                   | SW8260C            | μg/L         | NE                                    | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                         | ND [5.00]                 |
| 1,2-Dibromoethane                             | SW8260C            | μg/L         | 0.075                                 | ND [0.0375]               | ND [0.0375]                  | ND [0.0375]               | ND [0.0375]                       | ND [0.0375]               |
| 1,2-Dichlorobenzene                           | SW8260C            | μg/L         | 300                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,2-Dichloroethane                            | SW8260C            | μg/L         | 1.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| 1,2-Dichloropropane                           | SW8260C            | μg/L         | 8.2                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene | SW8260C<br>SW8260C | μg/L<br>μg/L | 60<br>300                             | ND [0.500]<br>ND [0.500]  | 2.46 [0.500]<br>ND [0.500]   | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]          | ND [0.500]<br>ND [0.500]  |
| 1,3-Dichloropropane                           | SW8260C            | μg/L         | 4.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| 1,4-Dichlorobenzene                           | SW8260C            | μg/L         | 4.8                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| 2,2-Dichloropropane                           | SW8260C            | μg/L         | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 2-Butanone                                    | SW8260C            | μg/L         | 5,600                                 | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                         | ND [5.00]                 |
| 2-Chlorotoluene                               | SW8260C            | μg/L         | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 2-Hexanone                                    | SW8260C            | μg/L         | 38                                    | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                         | ND [5.00]                 |
| 4-Chlorotoluene                               | SW8260C            | μg/L         | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| 4-Isopropyltoluene<br>4-Methyl-2-pentanone    | SW8260C<br>SW8260C | μg/L<br>μg/L | NE<br>6,300                           | ND [0.500]<br>ND [5.00]   | 3.54 [0.500]<br>ND [5.00]    | ND [0.500]<br>ND [5.00]   | ND [0.500]<br>ND [5.00]           | ND [0.500]<br>ND [5.00]   |
| Benzene                                       | SW8260C<br>SW8260C | μg/L<br>μg/L | 5.0 / 4.6                             | ND [0.200]                | ND [0.200]                   | ND [0.200]                | ND [0.200]                        | ND [0.200]                |
| Bromobenzene                                  | SW8260C            | μg/L         | 62                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Bromochloromethane                            | SW8260C            | μg/L         | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Bromodichloromethane                          | SW8260C            | μg/L         | 1.3                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| Bromoform                                     | SW8260C            |              | 33                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Bromomethane                                  | SW8260C            | μg/L         | 7.5                                   | ND [2.50]                 | ND [2.50]                    | ND [2.50]                 | ND [2.50]                         | ND [2.50]                 |
| Carbon disulfide                              | SW8260C            | μg/L         | 810                                   | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                         | ND [5.00]                 |
| Carbon tetrachloride                          | SW8260C            | μg/L         | 4.6                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Chlorobenzene<br>Chloroethane                 | SW8260C<br>SW8260C | μg/L<br>μg/L | 78<br>21,000                          | ND [0.250]<br>ND [0.500]  | ND [0.250]<br>ND [0.500]     | ND [0.250]<br>ND [0.500]  | ND [0.250]<br>ND [0.500]          | ND [0.250]<br>ND [0.500]  |
| Chloroform                                    | SW8260C            | μg/L<br>μg/L | 21,000                                | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Chloromethane                                 | SW8260C            |              | 190                                   | 0.56 [0.500] J            | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| cis-1,2-Dichloroethene                        | SW8260C            | μg/L         | <b>70</b> / 36                        | ND [0.500]                | ND [0.500]                   | 1.14 [0.500]              | 1.17 [0.500]                      | ND [0.500]                |
| cis-1,3-Dichloropropene                       | SW8260C            | μg/L         | 4.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| Dibromochloromethane                          | SW8260C            | μg/L         | 8.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                        | ND [0.250]                |
| Dibromomethane                                | SW8260C            | μg/L         | 8.3                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Dichlorodifluoromethane                       | SW8260C            | μg/L         | 200                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Ethylbenzene                                  | SW8260C            |              | 15                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Hexachlorobutadiene                           | SW8260C            | μg/L         | 1.4                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Isopropylbenzene<br>Methylene chloride        | SW8260C<br>SW8260C | μg/L<br>μg/L | 450<br>110                            | ND [0.500]<br>ND [2.50]   | 1.53 [0.500]<br>ND [2.50]    | ND [0.500]<br>ND [2.50]   | ND [0.500]<br>ND [2.50]           | ND [0.500]<br>ND [2.50]   |
| Methyl-tert-butyl ether (MTBE)                | SW8260C            | μg/L<br>μg/L | 140                                   | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                         | ND [5.00]                 |
| Naphthalene                                   | SW8260C            |              | 1.7                                   | ND [0.500]                | 0.54 [0.500] J               | 0.53 [0.500] J            | 0.57 [0.500] J                    | ND [0.500]                |
|                                               |                    |              |                                       |                           |                              |                           |                                   |                           |
| n-Butylbenzene                                | SW8260C            | μg/L         | 1,000                                 | ND [0.500]                | 2.42 [0.500]                 | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| · · · ·                                       | SW8260C<br>SW8260C | μg/L<br>μg/L | 1,000<br>660                          | ND [0.500]<br>ND [0.500]  | 2.42 [0.500]<br>3.37 [0.500] | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]          | ND [0.500]<br>ND [0.500]  |

|                                                 |                    |              | Sample ID                             | 19FWOU206WG               | 19FWOU207WG               | 19FWOU208WG               | 19FWOU209WG                       | 19FWOU210WG               |
|-------------------------------------------------|--------------------|--------------|---------------------------------------|---------------------------|---------------------------|---------------------------|-----------------------------------|---------------------------|
|                                                 |                    |              | Location ID                           | WSW                       | AP-8616                   | AP-7560                   | AP-7070                           | AP-10445MW                |
|                                                 |                    | Sa           | mple Data Group                       | 1194497                   | 1194497                   | 1194497                   | 1194497                           | 1194497                   |
|                                                 |                    |              | Laboratory ID                         | 1194497006                | 1194497007                | 1194497008                | 1194497011                        | 1194497012                |
|                                                 |                    |              | Collection Date                       | 8/7/2019                  | 8/7/2019                  | 8/7/2019                  | 8/7/2019                          | 8/7/2019                  |
|                                                 |                    |              | Matrix                                | WG                        | WG                        | WG                        | WG                                | WG                        |
|                                                 |                    |              | Sample Type                           | Primary                   | Primary                   | Primary/MS/MSD            | Field Duplicate of<br>19FWOU208WG | Primary                   |
| Analyte                                         | Method             | Units        | OU2 ROD RG /<br>ADEC CUL <sup>1</sup> | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier         | Result [LOD]<br>Qualifier |
| Styrene                                         | SW8260C            | μg/L         | 1,200                                 | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| tert-Butylbenzene                               | SW8260C            |              | 690                                   | ND [0.500]                | 0.37 [0.500] J            | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Tetrachloroethene (PCE)                         | SW8260C            |              | <mark>5.0</mark> / 41                 | ND [0.500]                | 0.44 [0.500] J            | 1.65 [0.500]              | 1.72 [0.500]                      | ND [0.500]                |
| Toluene                                         | SW8260C            |              | 1,100                                 | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| trans-1,2-Dichloroethene                        | SW8260C            |              | 360                                   | ND [0.500]                | ND [0.500]                | 1.56 [0.500]              | 1.64 [0.500]                      | ND [0.500]                |
| trans-1,3-Dichloropropene                       | SW8260C            |              | 4.7                                   | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Trichloroethene (TCE)<br>Trichlorofluoromethane | SW8260C<br>SW8260C |              | 5.0 / 2.8<br>5,200                    | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]  | 2.7 [0.500]<br>ND [0.500] | 2.76 [0.500]<br>ND [0.500]        | ND [0.500]<br>ND [0.500]  |
| Vinyl acetate                                   | SW8260C<br>SW8260C |              | 410                                   | ND [5.00]                 | ND [0.500]                | ND [0.300]                | ND [5.00]                         | ND [5.00]                 |
| Vinyl chloride                                  | SW8260C            |              | 2.0 / 0.19                            | ND [0.0750]               | ND [0.0750]               | ND [0.0750]               | ND [0.0750]                       | ND [0.0750]               |
| o-Xylene                                        | SW8260C            |              | 190                                   | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                        | ND [0.500]                |
| Xylene, Isomers m & p                           | SW8260C            |              | 190                                   | ND [1.00]                 | 1 [1.00] J                | ND [1.00]                 | ND [1.00]                         | ND [1.00]                 |
| Xylenes                                         | SW8260C            |              | 190                                   | ND [1.50]                 | 1 [1.50] J                | ND [1.50]                 | ND [1.50]                         | ND [1.50]                 |
| 1,2,4-Trichlorobenzene                          | SW8270D            | uc/l         | 4.0                                   | ND [5.00]                 | -                         | -                         | • •                               | -                         |
| 1,2,4-1 richlorobenzene<br>1,2-Dichlorobenzene  | SW8270D<br>SW8270D |              | 4.0<br>300                            | ND [5.00]<br>ND [5.00]    | -                         | -                         | -                                 | -                         |
| 1,3-Dichlorobenzene                             | SW8270D<br>SW8270D |              | 300                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 1,4-Dichlorobenzene                             | SW8270D            |              | 4.8                                   | ND [5.00]                 | -                         | _                         | -                                 | -                         |
| 1-Chloronaphthalene                             | SW8270D            |              | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 1-Methylnaphthalene                             | SW8270D            |              | 11                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2,4,5-Trichlorophenol                           | SW8270D            | μg/L         | 1,200                                 | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2,4,6-Trichlorophenol                           | SW8270D            | μg/L         | 12                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2,4-Dichlorophenol                              | SW8270D            | μg/L         | 46                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2,4-Dimethylphenol                              | SW8270D            |              | 360                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2,4-Dinitrophenol                               | SW8270D            |              | 39                                    | ND [25.0]                 | -                         | -                         | -                                 | -                         |
| 2,4-Dinitrotoluene                              | SW8270D            |              | 2.4                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2,6-Dichlorophenol                              | SW8270D            |              | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2,6-Dinitrotoluene<br>2-Chloronaphthalene       | SW8270D<br>SW8270D |              | 0.49<br>750                           | ND [5.00]<br>ND [5.00]    | -                         | -                         | -                                 | -                         |
| 2-Chlorophenol                                  | SW8270D<br>SW8270D |              | 91                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2-Methyl-4,6-dinitrophenol                      | SW8270D<br>SW8270D |              | NE                                    | ND [25.0]                 | -                         | -                         | -                                 | -                         |
| 2-Methylnaphthalene                             | SW8270D            |              | 36                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2-Methylphenol (o-Cresol)                       | SW8270D            |              | 930                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2-Nitroaniline                                  | SW8270D            |              | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 2-Nitrophenol                                   | SW8270D            | μg/L         | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 3,3'-Dichlorobenzidine                          | SW8270D            | μg/L         | 1.3                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 3-Methylphenol/4-Methylphenol Coelution         | SW8270D            |              | NE                                    | ND [10.0]                 | -                         | -                         | -                                 | -                         |
|                                                 | SW8270D            |              | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 4-Bromophenyl phenyl ether                      | SW8270D            |              | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 4-Chloro-3-methylphenol                         | SW8270D            |              | NE<br>2 7                             | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| 4-Chloroaniline                                 | SW8270D<br>SW8270D |              | 3.7<br>NE                             | ND [5.00]<br>ND [5.00]    | -                         | -                         | -                                 | -                         |
| 4-Chlorophenyl phenyl ether<br>4-Nitroaniline   | SW8270D<br>SW8270D |              | NE                                    | ND [5.00]<br>ND [5.00]    | -                         | -                         | -                                 | -                         |
| 4-Nitrophenol                                   | SW8270D<br>SW8270D |              | NE                                    | ND [25.0]                 | -                         | -                         | -                                 | -                         |
| Acenaphthene                                    | SW8270D            |              | 530                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Acenaphthylene                                  | SW8270D            |              | 260                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Aniline                                         | SW8270D            |              | NE                                    | ND [25.0]                 | -                         | -                         | -                                 | -                         |
| Anthracene                                      | SW8270D            |              | 43                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Azobenzene                                      | SW8270D            | μg/L         | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Benzo(a)anthracene                              | SW8270D            |              | 0.30                                  | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Benzo(a)pyrene                                  | SW8270D            |              | 0.25                                  | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Benzo(b)fluoranthene                            | SW8270D            |              | 2.5                                   | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Benzo(g,h,i)perylene                            | SW8270D            |              | 0.26                                  | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Benzo(k)fluoranthene                            | SW8270D            |              | 0.80                                  | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| Benzoic acid<br>Benzyl alcohol                  | SW8270D<br>SW8270D |              | 75,000<br>2,000                       | ND [25.0]<br>ND [5.00]    | -                         | -                         | -                                 | -                         |
| Benzyl alconol<br>Benzyl butyl phthalate        | SW8270D<br>SW8270D |              | 2,000                                 | ND [5.00]<br>ND [5.00]    | -                         | -                         | -                                 | -                         |
| bis-(2-Chloroethoxy)methane                     | SW8270D<br>SW8270D |              | NE                                    | ND [5.00]                 | -                         | -                         | -                                 | -                         |
| bis-(2-Chloroethyl)ether                        | SW8270D            |              | 0.14                                  | ND [5.00]                 | -                         | -                         | -                                 | -                         |
|                                                 | 21102100           | ~9' <b>-</b> | U. 17                                 |                           |                           |                           |                                   |                           |

|                             |         |       | Sample ID             | 19FWOU206WG  | 19FWOU207WG  | 19FWOU208WG    | 19FWOU209WG                    | 19FWOU210WG  |
|-----------------------------|---------|-------|-----------------------|--------------|--------------|----------------|--------------------------------|--------------|
|                             |         |       | Location ID           | WSW          | AP-8616      | AP-7560        | AP-7070                        | AP-10445MW   |
|                             |         | Sa    | mple Data Group       | 1194497      | 1194497      | 1194497        | 1194497                        | 1194497      |
|                             |         |       | Laboratory ID         | 1194497006   | 1194497007   | 1194497008     | 1194497011                     | 1194497012   |
|                             |         |       | Collection Date       | 8/7/2019     | 8/7/2019     | 8/7/2019       | 8/7/2019                       | 8/7/2019     |
|                             |         |       | Matrix                | WG           | WG           | WG             | WG                             | WG           |
|                             |         |       | Sample Type           | Primary      | Primary      | Primary/MS/MSD | Field Duplicate of 19FWOU208WG | Primary      |
| Analyte                     | Method  | Units | OU2 ROD RG /          | Result [LOD] | Result [LOD] | Result [LOD]   | Result [LOD]                   | Result [LOD] |
| -                           |         |       | ADEC CUL <sup>1</sup> | Qualifier    | Qualifier    | Qualifier      | Qualifier                      | Qualifier    |
| bis(2-Chloroisopropyl)ether | SW8270D | 1.1   | NE                    | ND [5.00]    | -            | -              | -                              | -            |
| bis-(2-Ethylhexyl)phthalate | SW8270D |       | 56                    | ND [5.00]    | -            | -              | -                              | -            |
| Carbazole                   | SW8270D |       | NE                    | ND [5.00]    | -            | -              | -                              | -            |
| Chrysene                    | SW8270D | 1.2   | 2.0                   | ND [5.00]    | -            | -              | -                              | -            |
| Dibenzo(a,h)anthracene      | SW8270D | μg/L  | 0.25                  | ND [5.00]    | -            | -              | -                              | -            |
| Dibenzofuran                | SW8270D | μg/L  | 7.9                   | ND [2.50]    | -            | -              | -                              | -            |
| Diethyl phthalate           | SW8270D | μg/L  | 15,000                | ND [5.00]    | -            | -              | -                              | -            |
| Dimethyl phthalate          | SW8270D | μg/L  | 16,000                | ND [5.00]    | -            | -              | -                              | -            |
| Di-n-butyl phthalate        | SW8270D | μg/L  | 900                   | ND [5.00]    | -            | -              | -                              | -            |
| Di-n-octyl phthalate        | SW8270D | μg/L  | 22                    | ND [5.00]    | -            | -              | -                              | -            |
| Fluoranthene                | SW8270D | μg/L  | 260                   | ND [5.00]    | -            | -              | -                              | -            |
| Fluorene                    | SW8270D | μg/L  | 290                   | ND [5.00]    | -            | -              | -                              | -            |
| Hexachlorobenzene           | SW8270D | μg/L  | 0.098                 | ND [5.00]    | -            | -              | -                              | -            |
| Hexachlorobutadiene         | SW8270D | μg/L  | 1.4                   | ND [5.00]    | -            | -              | -                              | -            |
| Hexachlorocyclopentadiene   | SW8270D | μg/L  | 0.41                  | ND [15.0]    | -            | -              | -                              | -            |
| Hexachloroethane            | SW8270D | μg/L  | 3.3                   | ND [5.00]    | -            | -              | -                              | -            |
| Indeno(1,2,3-cd)pyrene      | SW8270D | μg/L  | 0.19                  | ND [5.00]    | -            | -              | -                              | -            |
| Isophorone                  | SW8270D | μg/L  | 780                   | ND [5.00]    | -            | -              | -                              | -            |
| Naphthalene                 | SW8270D | μg/L  | 1.7                   | ND [5.00]    | -            | -              | -                              | -            |
| Nitrobenzene                | SW8270D |       | 1.4                   | ND [5.00]    | -            | -              | -                              | -            |
| n-Nitrosodimethylamine      | SW8270D |       | 0.0011                | ND [5.00]    | -            | -              | -                              | -            |
| n-Nitrosodi-n-propylamine   | SW8270D |       | 0.11                  | ND [5.00]    | -            | -              | -                              | -            |
| n-Nitrosodiphenylamine      | SW8270D | μg/L  | 120                   | ND [5.00]    | -            | -              | -                              | -            |
| Pentachlorophenol           | SW8270D |       | 0.41                  | ND [25.0]    | -            | -              | -                              | -            |
| Phenanthrene                | SW8270D |       | 170                   | ND [5.00]    | -            | -              | -                              | -            |
| Phenol                      | SW8270D |       | 5,800                 | ND [5.00]    | -            | -              | -                              | -            |
| Pyrene                      | SW8270D |       | 120                   | ND [5.00]    | -            | -              | -                              | -            |
|                             |         |       |                       |              |              |                |                                |              |

### Results in blue and bold font exceed ROD RGs.

### Results in green and bold font exceed ADEC CULs.

### No ROD analytes exceed both the ROD RGs and ADEC CULs

Grey shaded results are non-detect with LODs above OU2 ROD RGs and/or ADEC CULs \*OU2 ROD analytes and RGs are identified in blue text. The

<sup>1</sup> **OU2 ROD analytes and RGs are identified in blue text.** The remaining values are ADEC Groundwater Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27. 2018).

#### Data Qualifiers:

- B result may be due to cross-contamination
- J result qualified as estimate because it is less than the LOQ or due to a QC

J+ - result qualified as estimate with a high-bias due to a QC failure

- J- result qualified as estimate with a low-bias due to a QC failure
- ND not detected [LOD presented in brackets]

### Acronyms:

- CUL cleanup level
- LOD limit of detection
- LOQ limit of quantitation
- MS/MSD matrix spike/matrix spike duplicate
- µg/L micrograms per liter
- mg/L milligrams per liter
- NE not established
- QC quality control RG - remedial goal
- ROD Record of Decision
- WG groundwater
- WQ water QC sample

|                                               |                    |              | Sample ID                             | 19FWOU211WG               | 19FWOU212WG                  | 19FWOU2EB01WC             | 19FWOU2TB01WQ             |
|-----------------------------------------------|--------------------|--------------|---------------------------------------|---------------------------|------------------------------|---------------------------|---------------------------|
|                                               |                    |              | Location ID                           | AP-7559                   | AP-10446MW                   | Rinsate 1                 | Trip Blank                |
|                                               |                    | Sa           | mple Data Group                       | 1194497                   | 1194497                      | 1194497                   | 1194497                   |
|                                               |                    |              | Laboratory ID                         | 1194497013                | 1194497014                   | 1194497015                | 1194497016                |
|                                               |                    |              | Collection Date                       | 8/7/2019                  | 8/7/2019                     | 8/7/2019                  | 8/6/2019                  |
|                                               |                    |              | Matrix                                | WG                        | WG                           | WQ                        | WQ                        |
|                                               |                    |              | Sample Type                           | Primary                   | Primary                      | Equipment Blank           | Trip Blank                |
| Analyte                                       | Method             | Units        | OU2 ROD RG /<br>ADEC CUL <sup>1</sup> | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier    | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier |
| Gasoline Range Organics                       | AK101              | μg/L         | 2,200                                 | -                         | -                            | -                         | ND [50]                   |
| Diesel Range Organics                         | AK102              | μg/L         | 1,500                                 | -                         | -                            | ND [288]                  | -                         |
| Sulfate                                       | E300.0             | μg/L         | NE                                    | 26300 [200]               | 27400 [200]                  | ND [100]                  | -                         |
| Iron                                          | SW6020A            | μg/L         | NE                                    | ND [250]                  | 3910 [250]                   | ND [250]                  | -                         |
| 1,1,1,2-Tetrachloroethane                     | SW8260C            | μg/L         | 5.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| 1,1,1-Trichloroethane                         | SW8260C            | μg/L         | 8,000                                 | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 1,1,2,2-Tetrachloroethane                     | SW8260C            | μg/L         | 0.76                                  | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         | SW8260C            | μg/L         | 10,000                                | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                 |
| 1,1,2-Trichloroethane                         | SW8260C            | μg/L         | 0.41                                  | ND [0.200]                | ND [0.200]                   | ND [0.200]                | ND [0.200]                |
| 1,1-Dichloroethane                            | SW8260C            | μg/L         | 28                                    | ND [0.500]                | 0.33 [0.500] J<br>ND [0.500] | ND [0.500]                | ND [0.500]                |
| 1,1-Dichloropropene                           | SW8260C<br>SW8260C | μg/L<br>μg/L | 7.0 / 280<br>NE                       | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]     | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]  |
| 1,2,3-Trichlorobenzene                        | SW8260C<br>SW8260C | μg/L<br>μg/L | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 1,2,3-Trichloropropane                        | SW8260C            | μg/L         | 0.0075                                | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 1,2,4-Trichlorobenzene                        | SW8260C            | μg/L         | 4.0                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 1,2,4-Trimethylbenzene                        | SW8260C            | μg/L         | 56                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 1,2-Dibromo-3-chloropropane                   | SW8260C            | μg/L         | NE                                    | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                 |
| 1,2-Dibromoethane                             | SW8260C            | μg/L         | 0.075                                 | ND [0.0375]               | ND [0.0375]                  | ND [0.0375]               | ND [0.0375]               |
| 1,2-Dichlorobenzene                           | SW8260C            | μg/L         | 300                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 1,2-Dichloroethane                            | SW8260C            | μg/L         | 1.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| 1,2-Dichloropropane<br>1,3,5-Trimethylbenzene | SW8260C<br>SW8260C | μg/L<br>μg/L | 8.2<br>60                             | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]     | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]  |
| 1,3-Dichlorobenzene                           | SW8260C            | μg/L<br>μg/L | 300                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 1,3-Dichloropropane                           | SW8260C            |              | 4.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| 1,4-Dichlorobenzene                           | SW8260C            | μg/L         | 4.8                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| 2,2-Dichloropropane                           | SW8260C            | μg/L         | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 2-Butanone                                    | SW8260C            | μg/L         | 5,600                                 | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                 |
| 2-Chlorotoluene                               | SW8260C            | μg/L         | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| 2-Hexanone                                    | SW8260C            | μg/L         | 38                                    | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                 |
| 4-Chlorotoluene<br>4-Isopropyltoluene         | SW8260C<br>SW8260C | μg/L<br>μg/L | NE<br>NE                              | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]     | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]  |
| 4-Nethyl-2-pentanone                          | SW8260C            | μg/L<br>μg/L | 6,300                                 | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                 |
| Benzene                                       | SW8260C            | μg/L         | <b>5.0</b> / 4.6                      | ND [0.200]                | ND [0.200]                   | ND [0.200]                | ND [0.200]                |
| Bromobenzene                                  | SW8260C            | μg/L         | 62                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| Bromochloromethane                            | SW8260C            | μg/L         | NE                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| Bromodichloromethane                          | SW8260C            | μg/L         | 1.3                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| Bromoform                                     | SW8260C            |              | 33                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| Bromomethane                                  | SW8260C            |              | 7.5                                   | ND [2.50]                 | ND [2.50]                    | ND [2.50]                 | ND [2.50]                 |
| Carbon disulfide<br>Carbon tetrachloride      | SW8260C<br>SW8260C |              | 810<br>4.6                            | ND [5.00]<br>ND [0.500]   | ND [5.00]<br>ND [0.500]      | ND [5.00]<br>ND [0.500]   | ND [5.00]<br>ND [0.500]   |
| Chlorobenzene                                 | SW8260C            |              | 78                                    | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| Chloroethane                                  | SW8260C            |              | 21,000                                | ND [0.500]                | ND [0.500]                   | ND [0.200]                | ND [0.500]                |
| Chloroform                                    | SW8260C            |              | 2.20                                  | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| Chloromethane                                 | SW8260C            |              | 190                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| cis-1,2-Dichloroethene                        | SW8260C            | 10           | <b>70</b> / 36                        | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| cis-1,3-Dichloropropene                       | SW8260C            |              | 4.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| Dibromochloromethane                          | SW8260C            |              | 8.7                                   | ND [0.250]                | ND [0.250]                   | ND [0.250]                | ND [0.250]                |
| Dibromomethane<br>Dichlorodifluoromethane     | SW8260C<br>SW8260C |              | 8.3<br>200                            | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]     | ND [0.500]<br>ND [0.500]  | ND [0.500]<br>ND [0.500]  |
| Ethylbenzene                                  | SW8260C<br>SW8260C |              | 15                                    | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| Hexachlorobutadiene                           | SW8260C            |              | 1.4                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| Isopropylbenzene                              | SW8260C            |              | 450                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| Methylene chloride                            | SW8260C            |              | 110                                   | ND [2.50]                 | ND [2.50]                    | ND [2.50]                 | ND [2.50]                 |
| Methyl-tert-butyl ether (MTBE)                | SW8260C            |              | 140                                   | ND [5.00]                 | ND [5.00]                    | ND [5.00]                 | ND [5.00]                 |
| Naphthalene                                   | SW8260C            |              | 1.7                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| n-Butylbenzene                                | SW8260C            |              | 1,000                                 | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| n-Propylbenzene                               | SW8260C            |              | 660                                   | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |
| sec-Butylbenzene                              | SW8260C            | μg/L         | 2,000                                 | ND [0.500]                | ND [0.500]                   | ND [0.500]                | ND [0.500]                |

|                                                |                    |              | Sample ID                             | 19FWOU211WG               | 19FWOU212WG               | 19FWOU2EB01WC             | 19FWOU2TB01WQ             |
|------------------------------------------------|--------------------|--------------|---------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                                |                    |              | Location ID                           | AP-7559                   | AP-10446MW                | Rinsate 1                 | Trip Blank                |
|                                                |                    | Sa           | mple Data Group                       | 1194497                   | 1194497                   | 1194497                   | 1194497                   |
|                                                |                    |              | Laboratory ID                         | 1194497013                | 1194497014                | 1194497015                | 1194497016                |
|                                                |                    |              | Collection Date                       | 8/7/2019                  | 8/7/2019                  | 8/7/2019                  | 8/6/2019                  |
|                                                |                    |              | Matrix                                | WG                        | WG                        | WQ                        | WQ                        |
|                                                |                    |              | Sample Type                           | Primary                   | Primary                   | Equipment Blank           | Trip Blank                |
| Analyte                                        | Method             | Units        | OU2 ROD RG /<br>ADEC CUL <sup>1</sup> | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier | Result [LOD]<br>Qualifier |
| Styrene                                        | SW8260C            | μg/L         | 1,200                                 | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| tert-Butylbenzene                              | SW8260C            | μg/L         | 690                                   | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| Tetrachloroethene (PCE)                        | SW8260C            | μg/L         | 5.0 / 41                              | 3.44 [0.500]              | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| Toluene                                        | SW8260C            | μg/L         | 1,100                                 | ND [0.500]                | ND [0.500]                | 0.75 [0.500] J            | ND [0.500]                |
| trans-1,2-Dichloroethene                       | SW8260C            |              | 360                                   | 0.31 [0.500] J            | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| trans-1,3-Dichloropropene                      | SW8260C            |              | 4.7                                   | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| Trichloroethene (TCE)                          | SW8260C            |              | 5.0 / 2.8                             | 0.51 [0.500] J            | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| Trichlorofluoromethane                         | SW8260C            |              | 5,200                                 | ND [0.500]                | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| Vinyl acetate                                  | SW8260C            | μg/L         | 410                                   | ND [5.00]                 | ND [5.00]                 | ND [5.00]                 | ND [5.00]                 |
| Vinyl chloride                                 | SW8260C            |              | 2.0 / 0.19                            | ND [0.0750]               | ND [0.0750]               | ND [0.0750]               | ND [0.0750]               |
| o-Xylene                                       | SW8260C<br>SW8260C |              | 190<br>190                            | ND [0.500]<br>ND [1.00]   | ND [0.500]                | ND [0.500]                | ND [0.500]                |
| Xylene, Isomers m & p<br>Xylenes               | SW8260C<br>SW8260C | μg/L<br>μg/L | 190<br>190                            | ND [1.00]<br>ND [1.50]    | ND [1.00]<br>ND [1.50]    | ND [1.00]<br>ND [1.50]    | ND [1.00]<br>ND [1.50]    |
|                                                |                    |              |                                       | [טכ.ון שא                 | [טכ.ון שא                 | [טכ.ון שא                 | [טכּיון שא                |
| 1,2,4-Trichlorobenzene                         | SW8270D            | 10           | 4.0                                   | -                         | -                         | -                         | -                         |
| 1,2-Dichlorobenzene                            | SW8270D            |              | 300                                   | -                         | -                         | -                         | -                         |
| 1,3-Dichlorobenzene                            | SW8270D            |              | 300                                   | -                         | -                         | -                         | -                         |
| 1,4-Dichlorobenzene                            | SW8270D            | μg/L         | 4.8                                   | -                         | -                         | -                         | -                         |
| 1-Chloronaphthalene                            | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| 1-Methylnaphthalene                            | SW8270D            |              | 11                                    | -                         | -                         | -                         | -                         |
| 2,4,5-Trichlorophenol                          | SW8270D            | 1.2          | 1,200                                 | -                         | -                         | -                         | -                         |
| 2,4,6-Trichlorophenol                          | SW8270D            |              | 12                                    | -                         | -                         | -                         | -                         |
| 2,4-Dichlorophenol                             | SW8270D            |              | 46<br>360                             | -                         | -                         | -                         | -                         |
| 2,4-Dimethylphenol<br>2,4-Dinitrophenol        | SW8270D<br>SW8270D |              | 39                                    | -                         | -                         | -                         | -                         |
| 2,4-Dinitrotoluene                             | SW8270D            |              | 2.4                                   | -                         | -                         | -                         | -                         |
| 2,6-Dichlorophenol                             | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| 2,6-Dinitrotoluene                             | SW8270D            |              | 0.49                                  | -                         | -                         | -                         | -                         |
| 2-Chloronaphthalene                            | SW8270D            |              | 750                                   | -                         | -                         | -                         | -                         |
| 2-Chlorophenol                                 | SW8270D            |              | 91                                    | -                         | -                         | -                         | -                         |
| 2-Methyl-4,6-dinitrophenol                     | SW8270D            | μg/L         | NE                                    | -                         | -                         | -                         | -                         |
| 2-Methylnaphthalene                            | SW8270D            | μg/L         | 36                                    | -                         | -                         | -                         | -                         |
| 2-Methylphenol (o-Cresol)                      | SW8270D            | μg/L         | 930                                   | -                         | -                         | -                         | -                         |
| 2-Nitroaniline                                 | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| 2-Nitrophenol                                  | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| 3,3'-Dichlorobenzidine                         | SW8270D            |              | 1.3                                   | -                         | -                         | -                         | -                         |
|                                                | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| 3-Nitroaniline                                 | SW8270D            | P-3          | NE                                    | -                         | -                         | -                         | -                         |
| 4-Bromophenyl phenyl ether                     | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| 4-Chloro-3-methylphenol                        | SW8270D<br>SW8270D |              | NE<br>3.7                             | -                         | -                         | -                         | -                         |
| 4-Chloroaniline<br>4-Chlorophenyl phenyl ether | SW8270D<br>SW8270D |              | 3.7<br>NE                             | -                         | -                         | -                         | -                         |
| 4-Chlorophenyl phenyl ether                    | SW8270D<br>SW8270D |              | NE                                    | -                         | -                         | -                         | -                         |
| 4-Nitrophenol                                  | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| Acenaphthene                                   | SW8270D            |              | 530                                   | -                         | -                         | -                         |                           |
| Acenaphthylene                                 | SW8270D            |              | 260                                   | -                         | -                         | -                         | -                         |
| Aniline                                        | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| Anthracene                                     | SW8270D            |              | 43                                    | -                         | -                         | -                         | -                         |
| Azobenzene                                     | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| Benzo(a)anthracene                             | SW8270D            | μg/L         | 0.30                                  | -                         | -                         | -                         | -                         |
| Benzo(a)pyrene                                 | SW8270D            |              | 0.25                                  | -                         | -                         | -                         | -                         |
| Benzo(b)fluoranthene                           | SW8270D            |              | 2.5                                   | -                         | -                         | -                         | -                         |
| Benzo(g,h,i)perylene                           | SW8270D            |              | 0.26                                  | -                         | -                         | -                         | -                         |
| Benzo(k)fluoranthene                           | SW8270D            |              | 0.80                                  | -                         | -                         | -                         | -                         |
| Benzoic acid                                   | SW8270D            |              | 75,000                                | -                         | -                         | -                         | -                         |
| Benzyl alcohol                                 | SW8270D            |              | 2,000                                 | -                         | -                         | -                         | -                         |
| Benzyl butyl phthalate                         | SW8270D            |              | 160                                   | -                         | -                         | -                         | -                         |
| bis-(2-Chloroethoxy)methane                    | SW8270D            |              | NE                                    | -                         | -                         | -                         | -                         |
| bis-(2-Chloroethyl)ether                       | SW8270D            | μy/L         | 0.14                                  | -                         | -                         | -                         | -                         |

|                             |             |         | Sample ID             | 19FWOU211WG     | 19FWOU212WG  | 19FWOU2EB01WC | 19FWOU2TB01WQ |
|-----------------------------|-------------|---------|-----------------------|-----------------|--------------|---------------|---------------|
|                             |             |         | Location ID           | AP-7559         | AP-10446MW   | Rinsate 1     | Trip Blank    |
|                             |             | Sa      | mple Data Group       | 1194497         | 1194497      | 1194497       | 1194497       |
|                             |             |         | Laboratory ID         | 1194497013      | 1194497014   | 1194497015    | 1194497016    |
|                             |             |         | Collection Date       | 8/7/2019        | 8/7/2019     | 8/7/2019      | 8/6/2019      |
|                             |             |         | Matrix                | WG              | WG           | WQ            | WQ            |
|                             | Sample Type | Primary | Primary               | Equipment Blank | Trip Blank   |               |               |
| Analyte                     | Method      | Units   | OU2 ROD RG /          | Result [LOD]    | Result [LOD] | Result [LOD]  | Result [LOD]  |
| Analyte                     | Wethod      | Units   | ADEC CUL <sup>1</sup> | Qualifier       | Qualifier    | Qualifier     | Qualifier     |
| bis(2-Chloroisopropyl)ether | SW8270D     | μg/L    | NE                    | -               | -            | -             | -             |
| bis-(2-Ethylhexyl)phthalate | SW8270D     |         | 56                    | -               | -            | -             | -             |
| Carbazole                   | SW8270D     | μg/L    | NE                    | -               | -            | -             | -             |
| Chrysene                    | SW8270D     | μg/L    | 2.0                   | -               | -            | -             | -             |
| Dibenzo(a,h)anthracene      | SW8270D     | μg/L    | 0.25                  | -               | -            | -             | -             |
| Dibenzofuran                | SW8270D     | μg/L    | 7.9                   | -               | -            | -             | -             |
| Diethyl phthalate           | SW8270D     | μg/L    | 15,000                | -               | -            | -             | -             |
| Dimethyl phthalate          | SW8270D     | μg/L    | 16,000                | -               | -            | -             | -             |
| Di-n-butyl phthalate        | SW8270D     | μg/L    | 900                   | -               | -            | -             | -             |
| Di-n-octyl phthalate        | SW8270D     | μg/L    | 22                    | -               | -            | -             | -             |
| Fluoranthene                | SW8270D     | μg/L    | 260                   | -               | -            | -             | -             |
| Fluorene                    | SW8270D     | μg/L    | 290                   | -               | -            | -             | -             |
| Hexachlorobenzene           | SW8270D     |         | 0.098                 | -               | -            | -             | -             |
| Hexachlorobutadiene         | SW8270D     | μg/L    | 1.4                   | -               | -            | -             | -             |
| Hexachlorocyclopentadiene   | SW8270D     | μg/L    | 0.41                  | -               | -            | -             | -             |
| Hexachloroethane            | SW8270D     | μg/L    | 3.3                   | -               | -            | -             | -             |
| Indeno(1,2,3-cd)pyrene      | SW8270D     | μg/L    | 0.19                  | -               | -            | -             | -             |
| Isophorone                  | SW8270D     | μg/L    | 780                   | -               | -            | -             | -             |
| Naphthalene                 | SW8270D     | μg/L    | 1.7                   | -               | -            | -             | -             |
| Nitrobenzene                | SW8270D     | μg/L    | 1.4                   | -               | -            | -             | -             |
| n-Nitrosodimethylamine      | SW8270D     | μg/L    | 0.0011                | -               | -            | -             | -             |
| n-Nitrosodi-n-propylamine   | SW8270D     | μg/L    | 0.11                  | -               | -            | -             | -             |
| n-Nitrosodiphenylamine      | SW8270D     | μg/L    | 120                   | -               | -            | -             | -             |
| Pentachlorophenol           | SW8270D     |         | 0.41                  | -               | -            | -             | -             |
| Phenanthrene                | SW8270D     | μg/L    | 170                   | -               | -            | -             | -             |
| Phenol                      | SW8270D     | μg/L    | 5,800                 | -               | -            | -             | -             |
| Pyrene                      | SW8270D     | μg/L    | 120                   | -               | -            | -             | -             |

### Results in blue and bold font exceed ROD RGs.

### Results in green and bold font exceed ADEC CULs.

### No ROD analytes exceed both the ROD RGs and ADEC CULs

Grey shaded results are non-detect with LODs above OU2 ROD RGs and/or ADEC CULs \*OU2 ROD analytes and RGs are identified in blue text. The

<sup>1</sup> **OU2 ROD analytes and RGs are identified in blue text.** The remaining values are ADEC Groundwater Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27. 2018).

#### Data Qualifiers:

- B result may be due to cross-contamination
- J result qualified as estimate because it is less than the LOQ or due to a QC

J+ - result qualified as estimate with a high-bias due to a QC failure

- J- result qualified as estimate with a low-bias due to a QC failure
- ND not detected [LOD presented in brackets]

### Acronyms:

- CUL cleanup level LOD - limit of detection LOQ - limit of quantitation MS/MSD - matrix spike/matrix spike duplicate µg/L - micrograms per liter mg/L - milligrams per liter NE - not established QC - quality control RG - remedial goal ROD - Record of Decision WG - groundwater
- WQ water QC sample

# **APPENDIX B**

CHEMICAL DATA QUALITY REVIEW, ADEC CHECKLISTS, AND SUPPORTING INFORMATION

# FINAL

# CHEMICAL DATA QUALITY REVIEW

# **Operable Unit 2**

Fort Wainwright, Alaska

NPDL # 19-074

Prepared: September 25, 2019

Prepared for and Under Contract to

# Army Corps of Engineers - Alaska District

Prepared by

# Fairbanks Environmental Services, Inc.

I certify that all data quality review criteria described in Section 1.1 were assessed, and that qualifications were made according to the criteria outlined in the Final Postwide Uniform Federal Policy for Quality Assurance Project Plans (UFP-QAPP).

Vanessa Ritchie Project Chemist Page intentionally left blank

# LIST OF ACRONYMS AND ABBREVIATIONS

| AAC  | Alaska Administrative Code                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------|
| AAC  |                                                                                                               |
| ADEC | Alaska Department of Environmental Conservation                                                               |
| AK   |                                                                                                               |
| В    | analytical result is qualified as a potential high estimate due to contamination present<br>in a blank sample |
| °C   | degrees Celsius                                                                                               |
| CCV  | continuing calibration verification                                                                           |
| CDQR | Chemical Data Quality Review                                                                                  |
| COC  | chain-of-custody                                                                                              |
| DL   | detection limit                                                                                               |
| DoD  | United States Department of Defense                                                                           |
| DQO  | data quality objective                                                                                        |
| DRO  | diesel range organics                                                                                         |
| DRMO | Defense Reutilization Marketing Office                                                                        |
| ELAP | Environmental Laboratory Accreditation Program                                                                |
| EPA  | United States Environmental Protection Agency                                                                 |
| FES  | Fairbanks Environmental Services, Inc                                                                         |
| GRO  | gasoline range organics                                                                                       |
| ICV  | internal calibration verification                                                                             |
| J    | analytical result is qualified as an estimated value because the concentration is less                        |
| 5    | than the LOQ                                                                                                  |
| ]+   | analytical result is qualified as an estimated value with a high-bias due to a QC                             |
|      | deviation                                                                                                     |
| J-   | analytical result is qualified as an estimated value with a low-bias due to a QC                              |
|      | deviation                                                                                                     |
| LCS  | laboratory control sample                                                                                     |
| LCSD | laboratory control sample duplicate                                                                           |
| LOD  | limit of detection                                                                                            |
| LOQ  | limit of quantitation                                                                                         |
| µg/L | micrograms per liter                                                                                          |
| MS   | matrix spike sample                                                                                           |
| MSD  | matrix spike duplicate sample                                                                                 |
| NA   | not applicable                                                                                                |
| ND   | non-detect result                                                                                             |
| NPDL | North Pacific Division Laboratory                                                                             |
| OU2  | Operable Unit 2                                                                                               |
| QC   | quality control                                                                                               |
| QSM  | Quality Systems Manual for Environmental Laboratories                                                         |
| R    | analytical result is rejected and is not suitable for project use                                             |
| ROD  | Record of Decision                                                                                            |
| RPD  | relative percent difference                                                                                   |
| SDG  | sample data group                                                                                             |

# LIST OF ACRONYMS AND ABBREVIATIONS (continued)

- SGS SGS North America, Inc.
- SVOC semi-volatile organic compound
- UFP-QAPP Postwide Uniform Federal Policy Quality Assurance Project Plans
- USACE United States Army Corps of Engineers
- VOC volatile organic compound
- WSW Water Supply Well

This Chemical Data Quality Review (CDQR) summarizes the technical review of analytical results generated in support of groundwater sample collection at the Operable Unit 2 (OU2) Defense Reutilization Marketing Office (DRMO) Yard during 2019. The groundwater events are summarized in Section 1.3. Groundwater sample summary and analytical results tables are presented in Appendix A.

FES reviewed project and quality control (QC) analytical data to assess whether the data met the designated quality objectives and were acceptable for project use. The project data were reviewed for deviations to the requirements presented in the Final 2019 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Sites Work Plan (FES, 2019); Final Postwide Uniform Federal Policy for Ouality Assurance Project Plans (UFP-QAPP; FES, 2016); Alaska Department of Environmental Conservation (ADEC) Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data Technical Memo (ADEC, 2019a); and United States Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories (QSM), Version 5.1 (DoD, 2017). The review included evaluation of the following: sample collection and handling, holding times, blanks (to assess contamination), project sample and laboratory QC sample duplicates (to assess precision), laboratory control samples (LCSs) and sample surrogate recoveries (to assess accuracy), and matrix spike sample (MS) recoveries (to assess matrix effects). Calibration curves and continuing calibration verification (CCV) recoveries were not reviewed unless a QC discrepancy was noted by the laboratory in a case narrative. QC deviations that do not impact data quality (e.g., high LCS recovery associated with non-detect results), are not discussed. More elaborate data quality descriptions are reported in the ADEC Laboratory Data Review Checklists, which are included at the end of Appendix B.

Groundwater results and limits of detection (LODs) for non-detect results were compared to OU2 Record of Decision (ROD) remedial goals, or cleanup levels presented in Title 18 of the Alaska Administrative Code (AAC) Chapter 75.345, Table C (ADEC, 2018), as appropriate.

Groundwater data quality is discussed in Section 2. Applicable data quality indicators are discussed for each method under separate subheadings. Data which did not meet acceptance criteria have been described and the associated samples and data quality implications or qualifications are summarized. All cited documents within the CDQR are listed in Section 3.

# 1.1 Analytical Methods and Data Quality Objectives

The analytical methods and associated DQOs used for this review were established in the Postwide UFP-QAPP (FES, 2016). The data quality objectives (DQOs) represent the minimum acceptable QC limits and goals for analytical measurements and are used as comparison criteria during data quality review to determine both the quality and usability of the analytical data. Table B-1 on the following page summarizes the analytical methods employed, and the associated DQO goals for groundwater samples.

| Parameter <sup>1</sup>                    | Preparation<br>Method | Analytical<br>Method | Limit of<br>Detection<br>(µg/L)  | Accuracy<br>(%)                  | Precision<br>(%RPD) | Completeness<br>(%) |
|-------------------------------------------|-----------------------|----------------------|----------------------------------|----------------------------------|---------------------|---------------------|
| Gasoline Range<br>Organics (GRO)          | SW5030B               | AK101                | 50                               | 60-120                           | 20                  | 90                  |
| Diesel Range Organics<br>(DRO)            | SW3520C               | AK102                | 300                              | 75-125                           | 20                  | 90                  |
| Benzene                                   |                       |                      | 0.200                            | 79-120                           | 20                  | 90                  |
| Tetrachloroethene                         |                       |                      | 0.500                            | 74-129                           | 20                  | 90                  |
| Trichloroethene                           | CWEDZOR               | CMB2COC              | 0.500                            | 79-123                           | 20                  | 90                  |
| cis-1,2-Dichloroethene                    | SW5030B               | SW8260C              | 0.500                            | 78-123                           | 20                  | 90                  |
| 1,1-Dichloroethene                        |                       |                      | 0.500                            | 71-131                           | 20                  | 90                  |
| Vinyl Chloride                            |                       |                      | 0.075                            | 58-137                           | 20                  | 90                  |
| Semivolatile Organic<br>Compounds (SVOCs) | SW3520C               | SW8270D              | Analyte<br>Specific <sup>1</sup> | Analyte<br>Specific <sup>1</sup> | 20                  | 90                  |
| Dissolved Iron                            | SW3010A               | SW6020A              | 250                              | 87-118                           | 20                  | 90                  |
| Sulfate                                   | 300.0                 | 300.0                | 100                              | 90-110                           | 15                  | 90                  |

Table B-1. Groundwater Analytical Methods and Data Quality Objectives

<sup>1</sup> The full suites of VOCs and SVOCs were analyzed, but only OU2 ROD analytes, GRO, DRO, and natural attenuation parameters are shown. Limits for all analytes are presented in the 2019 Work Plan (FES, 2019) and associated laboratory reports.

 $\mu g/L$  – micrograms per liter; RPD – relative percent difference

The six DQOs used for this review were accuracy, precision, representativeness, comparability, sensitivity, and completeness.

- *Accuracy* measures the correctness, or the closeness, between the true value and the quantity detected. It is measured by calculating the percent recovery of known concentrations of spiked compounds that were introduced into the appropriate sample matrix. Surrogate, LCS, and MS sample recoveries were used to measure accuracy for this project. LCS and surrogate recovery criteria are defined in the QSM.
- Precision measures the reproducibility of repetitive measurements. It is measured by
  calculating the relative percent difference (RPD) between duplicate samples. Laboratory
  duplicate samples, field duplicate samples, MS and matrix spike duplicate sample (MSD) pairs,
  and LCS and laboratory control sample duplicate (LCSD) pairs were used to measure precision
  for this project. LCS/LCSD precision criteria are defined in the QSM and field duplicate
  precision criteria are defined in the ADEC Laboratory Data Review Checklist (water: ≤30%).
- *Representativeness* describes the degree to which data accurately and precisely represents site characteristics. This is addressed in more detail in the following section(s).
- *Comparability* describes whether two data sets can be considered equivalent with respect to the project goal. This is addressed in more detail in the following section(s).

- *Sensitivity* describes the lowest concentration that the analytical method can reliably quantitate, and is evaluated by verifying that the detected results and/or LODs meet the project-specific cleanup levels and/or screening levels.
- *Completeness* describes the amount of valid data obtained from the sampling event(s). It is calculated as the percentage of valid measurements compared to the total number of measurements. The completeness goal for this project was set at 90 percent.

In addition to these criteria for the six DQOs described above, sample collection and handling procedures and blank samples were reviewed to ensure overall data quality. Sample collection forms were reviewed to verify that representative samples were collected and samples were without headspace (if applicable). Sample handling was reviewed to assess parameters such as chain-of-custody (COC) documentation, the use of appropriate sample containers and preservatives, shipment cooler temperature, and method-specified sample holding times. Blank samples were analyzed to detect potential field or laboratory cross-contamination. Each of these parameters contributes to the general representativeness and comparability of the project data. The combination of evaluations of the above-mentioned parameters will lead to a determination of the overall project data completeness.

## 1.2 Data Qualifiers

Table B-2 below outlines general flagging criteria used for this project, listed in increasing severity, to indicate QC deficiencies. Data are qualified pursuant to findings determined in the review of project data.

| Qualifier | Definition                                                                                                                                                                                                                                                     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND        | The analyte was analyzed for, but not detected.                                                                                                                                                                                                                |
| J         | The analyte is considered an estimated value. The analyte may be estimated due to its quantitation level ( $\geq$ DL and <loq), a="" and="" bias="" deviation="" is="" it="" may="" or="" qc="" signify="" td="" that="" the="" there="" unknown.<=""></loq),> |
| J+        | The analyte is considered an estimated value with a high-bias due to a QC deviation.                                                                                                                                                                           |
| J-        | The analyte is considered an estimated value with a low-bias due to a QC deviation.                                                                                                                                                                            |
| В         | The analyte is detected in an associated blank. Result is less than 5x or 10x (for the common lab contaminants) the concentration. Therefore, the result may be high-biased.                                                                                   |
| R         | Analyte result is rejected because of deficiencies in meeting QC criteria and may not be used for decision making.                                                                                                                                             |

## Table B-2. Data Qualifier Definitions

## **1.3 Summary of Groundwater Samples**

Groundwater samples were collected from monitoring wells at the OU2 DRMO Yard. A total of 12 groundwater samples (including 1 field duplicate) were collected. In addition, MS/MSD samples were submitted for every analysis (minimum of one per 20 samples), one trip blank sample

accompanied the cooler containing samples for volatile analysis, and one equipment blank sample was collected to assess the potential for cross-contamination of the submersible pump. Samples were analyzed by one or more of the methods presented in Table B-1.

All project and quality control samples were analyzed by SGS North America, Inc. (SGS) of Anchorage, Alaska. The laboratory is validated by the State of Alaska through the Contaminated Sites Program for all methods employed, with the exception of sulfate by United States Environmental Protection Agency (EPA) Method 300.0 (method 300.0 is not listed as a Contaminated Sites analysis). In addition, the laboratory is Environmental Laboratory Accreditation Program (ELAP) certified for all methods.

Samples were shipped in one sample data group (SDG) and assigned the SGS report number 1194497. A sample summary table (Table A-1) and analytical results table (Table A-2) are included in Appendix A. Groundwater sample data quality is discussed in Section 2.

This section presents the findings of the data quality review and the resulting data qualifications for groundwater samples. In general, findings that did not result in data qualification are not discussed in this review. See the associated ADEC Laboratory Data Review Checklists for more elaborate data quality review descriptions.

# 2.1 Sample Collection

All monitoring wells were purged and sampled with submersible pumps, per the UFP-QAPP, with the exception of the well bulleted below. Groundwater sampling activities were recorded on the groundwater sample forms provided in Appendix C. Groundwater sample forms were reviewed to ensure that well drawdown and groundwater parameters met the stabilization criteria identified in the ADEC Field Sampling Guidance (ADEC, 2019b) and the UFP-QAPP (FES, 2016), that low-flow sampling criteria was employed (Puls and Barcelona, 1996), and that all groundwater levels were within the screened intervals at the time of sampling.

Groundwater sample forms indicate all samples met stabilization criteria. Additional noteworthy observations are listed below.

- The Water Supply Well (WSW) was sampled at a raw water tap located upstream of the building water treatment system after purging the well for approximately 30 minutes, per standard protocol. The well is purged for 30 minutes to obtain a representative sample of the aquifer. Given the design of the water system, the well is sampled with a dedicated high-flow, non-variable speed submersible pump and the water level cannot be measured.
- No free product was measured and sheen was not observed on purge water from any well. Fuel odor was noted on purge water from wells AP-7560 and AP-10446MW; and strong fuel odor and black staining on dedicated pump tubing was noted in well AP-8916.

An equipment blank sample was collected to evaluate the potential for submersible pump crosscontamination. Equipment blank results are further discussed in Section 2.3.

# 2.2 Sample Handling

The evaluation of proper sample handling procedures include verification of the following: correct COC documentation, appropriate sample containers and preservatives, sample analyses performed within method-specified holding times, and cooler temperatures maintained within the ADEC-recommended temperature range (0 to 6 degrees Celsius [°C]). No discrepancies were noted upon receipt at the laboratory.

## 2.3 Blanks

Method blanks, trip blanks, and equipment blanks were utilized to detect potential crosscontamination of project samples. Method blanks detect laboratory cross-contamination, trip blanks assess shipment and storage cross-contamination, and equipment blanks evaluate the potential for cross-contamination associated with wells that were sampled with non-dedicated submersible pumps. The following blank contaminations were noted.

## Method Blanks

Method blank samples were analyzed in every batch. No method blank contamination was noted.

## <u>Trip Blanks</u>

Trip blank samples were shipped in the cooler containing samples for volatile analyses. No trip blank contamination was noted.

## Equipment Blanks

One equipment blank sample was collected to evaluate the potential for submersible pump crosscontamination. The results of the equipment blank sample were compared against results of all project samples collected at the DRMO Yard, with the exception of the WSW. The WSW was sampled with a dedicated high-flow, non-variable speed submersible pump (as discussed in Section 2.1). Toluene was detected at a concentration below the LOQ; however, toluene was not detected in the associated samples and no data were qualified.

# 2.4 Laboratory Control Samples

The LCS/LCSD samples were prepared by adding spike compounds to blank samples in order to assess laboratory extraction and instrumentation performance. The performance of a LCS sample is a requirement for every QC batch to evaluate recovery accuracy. In addition, a LCSD is required for all Alaska fuel methods to evaluate batch precision. For QC batches that do not contain a LCSD, precision is evaluated by performing a sample duplicate, which is further discussed in Section 2.5.

All LCS and/or LCSD samples were performed, as required. The accuracy of analyte recoveries for LCS samples, and precision of the LCS/LCSD sample pair (when applicable), was evaluated. No LCS and/or LCSD accuracy or precision discrepancies requiring qualifications were noted.

# 2.5 Matrix Spike Samples and Sample Duplicates

MS samples were prepared by adding spike compounds to project samples in order to assess potential matrix interference. Only MS samples prepared from project samples were assessed for impact to project data quality. The performance of a MS sample analysis is a requirement in every QC batch, at a minimum frequency of 1 for every 20 samples, to evaluate recovery accuracy; and precision of each QC batch is evaluated by performing either a MSD sample analysis or a sample duplicate analysis and calculating the RPD. Two exceptions to this requirement at the OU2 DRMO site are SVOC and GRO analyses performed on samples collected only at the Water Supply Well (WSW). The WSW is also sampled by a different entity under the Drink Water Program, during which all QC criteria (including MS/MSD samples) are met. The sample results from this sampling event are used as supplemental data and the collection of QC samples is not required, as detailed in the approved Work Plan (FES, 2019). All QC batches have met these criteria, except for the aforementioned SVOC and GRO batches and the VOC batch listed below.

• VOC: batch VXX34654

Although potential sample matrix interference cannot be examined in the above listed QC batches, acceptable LCS recoveries indicate that the analytical batches were operating within the control criteria. Precision in these batches also was evaluated from the analysis of an LCSD sample.

The accuracy of the analyte recoveries, and the precision of the MS/MSD or laboratory duplicate pairs, was evaluated (when analyzed). The MS/MSD recovery and/or RPD exceedances that resulted in data qualification are summarized below.

• The sulfate MS and MSD prepared from sample 19FWOU208WG did not meet the lower control limit (84%/83% vs. 90%). Sulfate was detected in the parent sample and associated field duplicate sample. The sulfate result in samples 19FWOU208WG and 19FWOU209WG was qualified as estimated with a low bias (J-) due to low MS/MSD recovery. Impact to the project is negligible as the recovery failure was not significant (up to 7% low) and the affected analyte is not an environmental contaminant.

## 2.6 Surrogate Recovery

Surrogate compounds were added to project samples by the laboratory prior to analysis, in accordance with method requirements. Surrogate recoveries were then calculated as percentages and reported by the laboratory as a measure of analytical extraction efficiency. All surrogate recoveries were recovered within acceptance limits and no data qualification was required.

# 2.7 Field Duplicates

One field duplicate sample was collected and submitted to the laboratory as a blind sample during groundwater sampling operations at the OU2 site. Field duplicate samples were collected at a minimum frequency of 10 percent for each analytical method, with the exception for GRO and SVOC. GRO and SVOC samples were only collected from the Water Supply Well (WSW) at the DRMO Yard. Field duplicates are not collected for these analyses, per the UFP-QAPP, as the data from the WSW are used for informational purposes only (the WSW is also sampled by a different entity under the Drinking Water Program, during which all QC criteria are met).

Field duplicate results for all detected analytes, contaminants of concern (detected and not detected), and natural attenuation parameters are shown in Table B-3. In the case where a result was non-detect, the LOD was used for RPD calculation purposes. The non-detect results are

identified with the LOD value followed by "U". If both results of the field duplicate pair were less than the LOQ (i.e., J-flagged or non-detect), the RPD was calculated but the comparison criterion is not applicable, per the UFP-QAPP.

All (applicable) results for field duplicate sample pair 19FWOU208WG/19FWOU209WG were comparable (RPD  $\leq$  30%) with the exception of DRO (35%); identified in grey shading in Table B-3. Consequently, the DRO results of the field duplicate pair were qualified as estimates (J) due to imprecision. Impact to the project is negligible as the RPD exceedance was marginal (5% high) and both affected results were more than two orders of magnitude less than the ADEC cleanup level.

| Analyte                  | Method | Units | Primary<br>19FWOU208WG<br>(AP-7560) | Field Duplicate<br>19FWOU2096WG<br>(AP-7070) | RPD,<br>% | Comparable<br>Criteria Met? |
|--------------------------|--------|-------|-------------------------------------|----------------------------------------------|-----------|-----------------------------|
| 1,1-Dichloroethene       | 8260C  | µg/L  | 0.500U                              | 0.500U                                       | 0         | Not applicable              |
| Benzene                  | 8260C  | µg/L  | 0.200U                              | 0.200U                                       | 0         | Not applicable              |
| cis-1,2-Dichloroethene   | 8260C  | µg/L  | 1.14                                | 1.17                                         | 3         | Not applicable              |
| Tetrachloroethene        | 8260C  | µg/L  | 1.65                                | 1.72                                         | 4         | Yes                         |
| Trichloroethene          | 8260C  | µg/L  | 2.70                                | 2.76                                         | 2         | Yes                         |
| Vinyl chloride           | 8260C  | µg/L  | 0.0750U                             | 0.0750U                                      | 0         | Not applicable              |
| Naphthalene              | 8260C  | µg/L  | 0.530J                              | 0.570J                                       | 7         | Not applicable              |
| trans-1,2-Dichloroethene | 8260C  | µg/L  | 1.56                                | 1.64                                         | 5         | Yes                         |
| Dissolved Iron           | 6020A  | µg/L  | 8570                                | 8880                                         | 4         | Yes                         |
| Sulfate                  | 300.0  | µg/L  | 21200                               | 20500                                        | 3         | Yes                         |
| DRO                      | AK102  | mg/L  | 2.73                                | 1.91                                         | 35        | No                          |

 Table B-3. Groundwater Field Duplicate Sample Results Evaluation

# 2.8 Additional Quality Control Discrepancies

Additional QC samples and procedures not discussed in the preceding sections of this CDQR are evaluated if deviations are noted by the laboratory in the case narratives. Additional QC samples/procedures may include, but are not limited to, instrument tuning, initial calibration verification (ICV) samples, continuing calibration verification (CCV) samples, and internal standards. A QC discrepancy noted by the laboratory is discussed below.

• The CCV in VOC analysis batch VXX34654 reported recovery of 2-hexanone (131%) above the upper control limit (120%). The analyte result in associated sample 19FWOU205WG was non-detect. Since the result was biased high, no data were qualified.

# 2.9 Analytical Sensitivity

Several project data analytes were reported above the DL but below the LOQ and were thus qualified as estimates due to the unknown accuracy of the analytical method at those

concentrations. These data qualifications are not reported again in this CDQR, but they are noted with a "J" in the associated results table in Appendix A.

Analytical sensitivity was evaluated to verify that LODs met the applicable ROD remedial goal or ADEC cleanup level for non-detect results, as appropriate. 1,2,3-Trichloropropane in all samples analyzed by 8260C, and several SVOC analytes in the WSW sample analyzed by 8270C, did not meet applicable ADEC groundwater cleanup levels listed in 18 AAC 75.345. These analytes may not be detected, if present, at the respective cleanup levels. Impact to the project is not significant as the analytes are not OU2 contaminants of concern. Moreover, the data obtained from the WSW sample associated with this sampling program are used for informational purposes only. The WSW is also sampled by a different entity under the Drinking Water Program.

All analytes that are non-detect with LODs elevated above cleanup levels are identified with gray shading in the results table (Table A-2) presented in Appendix A of the Annual Monitoring Report.

#### 2.10 Summary of Qualified Results

Overall, the review process deemed the groundwater project data acceptable for use. Several results were qualified as estimates; however, data quality impact is minor and no data were rejected pursuant to FES's data quality review.

Table B-4 below summarizes the qualified 2019 groundwater results associated with the sampling events at the OU2 DRMO Yard, including the associated sample numbers, analytes, and the reason for qualification.

| SDG     | Sample Numbers | Analytes | Qualification | Explanation                          |
|---------|----------------|----------|---------------|--------------------------------------|
|         | 19FWOU208WG    | DRO      | J             | Field duplicate<br>imprecision       |
| 1194497 | 19FWOU209WG    | Sulfate  | J-            | Low biased MS and/or<br>MSD recovery |

Table B-4. Summary of Groundwater Data Qualifications

#### 2.11 Completeness

Completeness scores were calculated for each analytical method employed for the project. Scores were obtained by assigning points to 14 different data quality categories during the review process. A maximum of 10 points was awarded for each category; points were based on the number of samples successfully meeting data quality objectives for that category. Points were subtracted when failure to meet DQOs resulted in data qualification or data rejection. The scores were then summed to determine the total points for a method, and completeness scores were determined as follows: (total points received)/(total points possible) x 100.

A breakdown of the points received for each category and method is shown in Table B-5 below. All OU2 site data quality categories met the completeness criteria of 90 percent established in the QAPP for the sampling events. No data were rejected pursuant to the data quality review, and all data may be used, as qualified, for the purposes of the 2019 OU2 Annual Monitoring Report.

| Data Quality Category           | Points<br>GRO | Points<br>DRO | Points<br>VOC | Points<br>SVOC | Points<br>Fe | Points<br>Sulfate |
|---------------------------------|---------------|---------------|---------------|----------------|--------------|-------------------|
| Sample Collection               | 10            | 10            | 10            | 10             | 10           | 10                |
| COC Documentation               | 10            | 10            | 10            | 10             | 10           | 10                |
| Sample Containers/ Preservation | 10            | 10            | 10            | 10             | 10           | 10                |
| Cooler Temperature              | 10            | 10            | 10            | 10             | 10           | 10                |
| Holding Times                   | 10            | 10            | 10            | 10             | 10           | 10                |
| Method Blanks                   | 10            | 10            | 10            | 10             | 10           | 10                |
| Trip Blanks                     | 10            | NA            | 10            | NA             | NA           | NA                |
| Equipment Blank                 | NA            | 10            | 10            | NA             | 10           | 10                |
| LCS/LCSD Recovery & RPD         | 10            | 10            | 10            | 10             | 10           | 10                |
| MS/MSD Recovery & RPD           | NR            | 10            | 10            | NR             | 10           | 5                 |
| Surrogate Recovery              | 10            | 10            | 10            | 10             | NA           | NA                |
| Field Duplicate                 | NR            | 5             | 10            | NR             | 10           | 10                |
| CCV, Internal Stds, other       | 10            | 10            | 10            | 10             | 10           | 10                |
| Sensitivity (DL/LOD)            | 10            | 10            | 10            | 10             | 10           | 10                |
| Total Points Received           | 110           | 125           | 140           | 100            | 120          | 115               |
| Total Points Possible           | 110           | 130           | 140           | 100            | 120          | 120               |
| Percent Completeness            | 100           | 96            | 100           | 100            | 100          | 96                |

 Table B-5. Completeness Scores for Groundwater Samples

NA – not applicable; NR – not required per UFP-QAPP

- Alaska Department of Environmental Conservation (ADEC), 2019a. *Technical Memorandum Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data.* October.
- ADEC, 2019b. Field Sampling Guidance. October.
- ADEC, 2018. *18 AAC 75, Oil and Other Hazardous Substances Pollution Control*. As amended through October 27, 2018.
- Department of Defense (DoD), 2017. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1.
- Fairbanks Environmental Services (FES), 2019. *Final 2019 CERCLA Sites Work Plan Operable Units 1 through 6.* July.
- FES, 2016. *Final Postwide Uniform Federal Policy for Quality Assurance Project Plans, Fort Wainwright, Alaska.* August.
- Puls, R.W. and M. J. Barcelona, 1996. *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.* EPA/540/S-95/504. April.

Completed By:

Checklist: Laura Soeten; Validator: Christina Rink-Ashdown (reviewed and revised by Vanessa Ritchie (FES Senior Chemist)

Title:

Executive Administrator, Senior Chemist

Date:

09/18/2019

CS Report Name:

Fort Wainwright Operable Unit 2

Report Date:

09/03/2019

Consultant Firm:

Fairbanks Environmental Services

Laboratory Name:

SGS North America

Laboratory Report Number:

1194497

ADEC File Number:

108.38.069.01

Hazard Identification Number:

1122

#### 1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

• Yes O No Comments:

Yes; however, EPA Method 300.0 is not listed as a CS analysis.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

○ Yes • No Comments:

Not applicable, samples were not transferred to another laboratory.

### 2. Chain of Custody (CoC)

a. CoC information completed, signed, and dated (including released/received by)?

|    | Yes         | 🔿 No              | Comments: |  |
|----|-------------|-------------------|-----------|--|
|    |             |                   |           |  |
| b. | Correct Ana | alyses requested? |           |  |

• Yes • No Comments:

### 3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

| Yes | 🗘 No | Comments: |
|-----|------|-----------|
|     |      |           |
|     |      |           |

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

|    | Yes        | O No       | Comments:                                                         |  |
|----|------------|------------|-------------------------------------------------------------------|--|
|    |            |            |                                                                   |  |
| c. | Sample con | dition doc | umented - broken, leaking (Methanol), zero headspace (VOC vials)? |  |
|    | Yes        | O No       | Comments:                                                         |  |

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

| • Yes                    | ) No                        | Comments:                                                 |
|--------------------------|-----------------------------|-----------------------------------------------------------|
| No discrepancies         | were noted.                 |                                                           |
| e. Data quality of       | r usability affected?       |                                                           |
|                          |                             | Comments:                                                 |
| No data quality or       | usability was affected by   | y the sample receipt findings or documentation.           |
| Case Narrative           |                             |                                                           |
| a. Present and u         | nderstandable?              |                                                           |
| Yes                      | O No                        | Comments:                                                 |
| b. Discrepancies         | s, errors, or QC failures i | dentified by the lab?                                     |
| Yes                      | 🗘 No                        | Comments:                                                 |
| The case narrativ<br>7a. | e described CCV and MS      | S/MSD recovery discrepancies discussed in sections 6c and |
| c. Were all corre        | ective actions documente    | od?                                                       |
| • Yes                    | O No                        | Comments:                                                 |
|                          |                             |                                                           |

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Case narrative does not discuss effect on data quality, it only discusses discrepancies. Any notable data quality issues mentioned in the case narrative are discussed above in 4b or elsewhere within this ADEC checklist.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

• Yes O No Comments:

b. All applicable holding times met?

• Yes • No Comments:

c. All soils reported on a dry weight basis?

No soil samples were included in this work order.

- d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
  - Yes No Comments:

Analytical sensitivity was evaluated to verify that LODs met the applicable ROD remedial goal or ADEC cleanup level for non-detect results, as appropriate. 1,2,3-Trichloropropane in all samples analyzed by 8260C did not meet the applicable ADEC groundwater cleanup level listed in 18 AAC 75.345. This analyte may not be detected, if present, at the respective cleanup level. Impact to the project is negligible as the analyte is not a site contaminant of concern.

In addition, twenty-four SVOC compounds in sample 19FWOU206WG collected from the Water Supply Well (WSW) did not meet the ADEC cleanup level. Impact to the project is negligible as the analytes are not site contaminants of concern. Moreover, the data obtained from the WSW associated with this sampling program are used for informational purposes only. The WSW is also sampled by a different entity under the Drinking Water Program.

All analytes that are non-detect with LODs elevated above cleanup levels are identified with gray shading in the results table (Table A-2) presented in the Annual Monitoring Report.

e. Data quality or usability affected?

○ Yes 
<sup>●</sup> No Comments:

See discussion in 5d above.

#### 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

• Yes • No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No Comments:

No detected results were reported.

iii. If above LOQ, what samples are affected?

Comments:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

v. Data quality or usability affected?

Comments:

No data quality or usability was affected by the method blanks.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
  - Yes ⊙ No Comments:

LCS/LCSD and MS/MSD samples were analyzed in every batch as required, with the exception that VOC batch VXX34654, SVOC batch XXX41985, and GRO batch VXX34631 did not contain a project specific MS/MSD sample. Although matrix interference cannot be evaluated in these batches, batch accuracy and precision can be evaluated through the LCS/LCSD samples. The VOC batch only contained sample 19FWOU205WG. The SVOC and GRO batches contained results for WSW (19FWOU206WG) and the data obtained from this sampling program is for information purposes only. The WSW is also sampled by a different entity under the Drinking Water Program, during which all QC criteria are met.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes No Comments:

LCS was analyzed in every batch as required. Although a sample duplicate was not performed for the dissolved iron and sulfate analyses, a MS/MSD was performed to evaluate the precision.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
- Yes ⊙ No Comments:

The sulfate MS/MSD prepared from sample 19FWOU208WG did not meet the lower control limit (84%/83% vs. 90%). Sulfate was detected in the parent sample and associated field duplicate sample. The sulfate result in samples 19FWOU208WG and 19FWOU209WG were qualified as estimated with a low bias (J-) due to low MS/MSD recovery. Impact to the project is negligible as the recovery failure was not significant (up to 7% low) and the affected analyte is not an environmental contaminant.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

| Yes | 🔿 No | Comments: |
|-----|------|-----------|
|     |      |           |

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

See 6biii above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes • No

Comments:

See 6biii above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

See 6biii above.

c. Surrogates – Organics Only

- i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
- Yes O No Comments:
- Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- Yes No Comments:

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

No surrogate failures were reported.

iv. Data quality or usability affected?

Comments:

Neither data quality nor usability was affected by surrogates.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

- Yes No Comments:
  - ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

• Yes • No Comments:

Trip blank sample 19FWOU2TB01WQ for VOC and GRO analyses was included in cooler 80101.

iii. All results less than LOQ?

• Yes • No Comments:

No VOC or GRO target analytes were detected in the trip blank sample.

iv. If above LOQ, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Neither data quality nor usability was affected by the trip blank sample.

- e. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes O No Comments:

One groundwater field duplicate was collected for the eleven primary samples associated with this work order.

ii. Submitted blind to lab?

Yes O No

Comments:

Sample 19FWOU209WG was a field duplicate of 19FWOU208WG.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)  $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ 

RPD (%) = Absolute value of:

Where  $R_1 =$  Sample Concentration  $R_2$  = Field Duplicate Concentration

O Yes O No

Comments:

All detected analytes and contaminants of concern (detected and not detected) are shown in the tables below. In the case where a result was non-detect, the LOD was used for RPD calculation purposes. The non-detect results are identified with the LOD value followed by "U". In the event that both results are less than the LOQ (i.e., J-flagged or non-detect), the RPD was calculated but the comparison criterion is not applicable, per the Postwide UFP-QAPP.

All (applicable) results for field duplicate sample pair 19FWOU208WG/19FWOU209WG were comparable (RPD  $\leq$  30%) with the exception of DRO (35%) (identified in grey shading in the table below). Consequently, the DRO results of the field duplicate pair were qualified as estimates (J) due to imprecision. Impact to the project is negligible as the RPD exceedance was marginal (5% high) and both affected results were more than two orders of magnitude less than the ADEC cleanup level.

| Analyte                  | Method | Units | Primary<br>19FWOU208WG<br>(AP-7560) | Field Duplicate<br>19FWOU2096WG<br>(AP-7070) | RPD,<br>% | Comparable<br>Criteria Met? |
|--------------------------|--------|-------|-------------------------------------|----------------------------------------------|-----------|-----------------------------|
| 1,1-Dichloroethene       | 8260C  | µg/L  | 0.500U                              | 0.500U                                       | 0         | Not applicable              |
| Benzene                  | 8260C  | µg/L  | 0.200U                              | 0.200U                                       | 0         | Not applicable              |
| cis-1,2-Dichloroethene   | 8260C  | µg/L  | 1.14                                | 1.17                                         | 3         | Not applicable              |
| Tetrachloroethene        | 8260C  | µg/L  | 1.65                                | 1.72                                         | 4         | Yes                         |
| Trichloroethene          | 8260C  | µg/L  | 2.70                                | 2.76                                         | 2         | Yes                         |
| Vinyl chloride           | 8260C  | µg/L  | 0.0750U                             | 0.0750U                                      | 0         | Not applicable              |
| Naphthalene              | 8260C  | µg/L  | 0.530J                              | 0.570J                                       | 7         | Not applicable              |
| trans-1,2-Dichloroethene | 8260C  | µg/L  | 1.56                                | 1.64                                         | 5         | Yes                         |
| Dissolved Iron           | 6020A  | µg/L  | 8570                                | 8880                                         | 4         | Yes                         |
| Sulfate                  | 300.0  | µg/L  | 21200                               | 20500                                        | 3         | Yes                         |
| DRO                      | AK102  | mg/L  | 2.73                                | 1.91                                         | 35        | No                          |

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments.

See 6eiii above.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

• Yes ○ No ○ Not Applicable

Equipment blank sample 19FWOU2EB01WQ was included in this work order to assess the potential for cross-contamination of the submersible pump. All wells in this SDG except 19FWOU206WG from location WSW were sampled with a submersible pump, per the UFP-QAPP.

- i. All results less than LOQ?

No VOC target analytes were detected above the LOQ; however, toluene (0.750  $\mu$ g/L) was detected at a concentration below the LOQ. Toluene was not detected in the associated samples and no data were qualified.

No dissolved iron, sulfate, or DRO target analytes were detected in the equipment blank sample.

ii. If above LOQ, what samples are affected?

Comments:

See 6fi above.

iii. Data quality or usability affected?

Comments:

Neither data quality nor usability was affected by the equipment blank sample.

#### 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

• Yes O No

Comments:

The calibration verification (CCV) in VOC analysis batch VXX34654 reported recovery of 2hexanone (131%) above the upper control limit (120%). The analyte result in associated sample 19FWOU205WG was non-detect. Since the result was biased high, no data were qualified.

## **APPENDIX C**

FIELD FORMS

## Table C-1 - 2019 OU2 Groundwater Sample Field Measurements

|                     |                   |             |                |               |                                            |                                                        |                                 | Fie          | ld Measuremen           | ts           |      |          |                    |                                          |
|---------------------|-------------------|-------------|----------------|---------------|--------------------------------------------|--------------------------------------------------------|---------------------------------|--------------|-------------------------|--------------|------|----------|--------------------|------------------------------------------|
| Well ID             | Sample ID         | Sample Date | Sample<br>Time | Pump Type     | Water<br>Depth <sup>1</sup><br>(feet btoc) | Water Table<br>Within Well<br>Screen Interval<br>(Y/N) | Drawdown <sup>2</sup><br>(feet) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН   | ORP (mV) | Turbidity<br>(NTU) | Well<br>Stabilized <sup>3</sup><br>(Y/N) |
| Operable Unit 2 - D | ORMO4 3-Party     |             |                |               |                                            |                                                        |                                 |              |                         |              |      |          |                    |                                          |
| AP-10445MW          | 19FWOU210WG       | 8/7/2019    | 1200           | Submersible   | 12.65                                      | Y                                                      | 0.01                            | 9.29         | 0.881                   | 0.59         | 6.68 | 43.8     | 5.16               | Y                                        |
| AP-10446MW          | 19FWOU212WG       | 8/7/2019    | 1305           | Submersible   | 11.86                                      | Y                                                      | 0.00                            | 5.90         | 0.439                   | 0.60         | 7.20 | -87.1    | 11.40              | Y                                        |
| AP-8916             | 19FWOU207WG       | 8/7/2019    | 1050           | Submersible   | 11.12                                      | Y                                                      | 0.01                            | 6.27         | 0.519                   | 0.66         | 6.90 | -98.1    | 2.36               | Y                                        |
| Operable Unit 2 - D | ORMO1 3-Party     |             |                |               |                                            |                                                        |                                 |              |                         |              |      | -        | -                  |                                          |
| AP-8914R            | 19FWOU205WG       | 8/6/2019    | 1500           | Submersible   | 10.80                                      | Y                                                      | 0.00                            | 9.2          | 0.356                   | 0.30         | 6.20 | -14.9    | 4.10               | Y                                        |
| AP-7559             | 19FWOU211WG       | 8/7/2019    | 1300           | Submersible   | 10.54                                      | Y                                                      | 0.00                            | 9.82         | 0.405                   | 0.49         | 6.59 | 178.0    | 3.43               | Y                                        |
| AP-7560             | 19FWOU208WG       | 8/7/2019    | 1125           | Submersible   | 10.07                                      | Y                                                      | 0.00                            | 7.92         | 0.400                   | 0.46         | 6.19 | 108.6    | 2.77               | Y                                        |
| AP-10015R           | 19FWOU203WG       | 8/6/2019    | 1245           | Submersible   | 12.83                                      | Y                                                      | 0.00                            | 8.90         | 0.393                   | 0.52         | 6.32 | 57.7     | 5.85               | Y                                        |
| AP-10016R           | 19FWOU204WG       | 8/6/2019    | 1355           | Submersible   | 12.92                                      | Y                                                      | 0.00                            | 10.50        | 0.372                   | 0.38         | 6.35 | 100.0    | 4.93               | Y                                        |
| AP-10017R           | 19FWOU201WG       | 8/6/2019    | 1030           | Submersible   | 12.52                                      | Y                                                      | 0.00                            | 10.38        | 0.363                   | 0.53         | 6.19 | 218.2    | 5.72               | Y                                        |
| AP-10018R           | 19FWOU202WG       | 8/6/2019    | 1140           | Submersible   | 12.34                                      | Y                                                      | 0.00                            | 9.23         | 0.384                   | 0.35         | 6.48 | 26.5     | 4.31               | Y                                        |
| Operable Unit 2 - V | Vater Supply Well |             |                |               |                                            | · · · · · · · · · · · · · · · · · · ·                  |                                 |              |                         |              |      |          |                    |                                          |
| WSW <sup>4</sup>    | 19FWOU206WG       | 8/7/2019    | 1015           | Raw Water Tap | NA                                         | NA                                                     | NA                              | NA           | NA                      | NA           | NA   | NA       | NA                 | NA                                       |

#### Notes:

<sup>1</sup> Water depth shown was measured on the date shown prior to removing purge water

<sup>2</sup> Drawdown measured during the last three readings.

<sup>3</sup> Stabilization parameters described in ADEC Field Sampling Guidance (ADEC, 2017b). Impact to data quality is discussed in the CDQR.

<sup>4</sup> Parameters were not measured as the sample was collected from a spigot inside the pump building

#### Acronyms

bgs - below ground surface btoc - below top of casing °C - degree Celsius CDQR - Chemical Data Qualification Report DO - dissolved oxygen mg/L - milligrams per liter mS/cm - milliSiemens per centimeter mV - millivolts NA - not applicable NTU - nephelometric turbidity units ORP - oxidation reduction potential WSW - Water Supply Well

| GROUNDWAT                                                    | ER SAMPLE            | FURM                                       | 0                          | OU2 Ft. Wainwright, Alaska           |                     |                      |                            |                             |  |
|--------------------------------------------------------------|----------------------|--------------------------------------------|----------------------------|--------------------------------------|---------------------|----------------------|----------------------------|-----------------------------|--|
| Project #: -                                                 | 90                   | 11-17                                      | a 1 1                      | Site Location:                       | DRMO1 DRM           |                      |                            |                             |  |
| Date: -                                                      | 3/6/1                | 9                                          |                            | Probe/Well #:                        | AP                  | -NOITR               |                            | _                           |  |
| Time: _                                                      | 1030                 |                                            |                            | Sample ID:                           | 19FWOU2 O           | WG                   |                            |                             |  |
| Sampler:                                                     | AS                   |                                            |                            |                                      | INT                 |                      |                            |                             |  |
| Weather:                                                     | Mostly [1            | ordy                                       |                            | Outside Temperature:                 | 60 F                |                      |                            |                             |  |
| QA/QC Sample ID/1                                            | Time/LOCID:          | ~                                          |                            | 1111-001-1                           | Sm                  | ellelip              | MS/MSD Performed           | Yes/ 10                     |  |
| Purge Method:                                                | Peristallic Pump     | Submersible Bladde                         |                            | Sample Method:                       | Peristaltic Pum     | p / Submersible      | / Hydrasleeve / Bladde     | er / Other                  |  |
| Equipment Used fo                                            | or Sampling:         | YSI#                                       | Turbidity Meter #:         | 4                                    | Water Level:        |                      |                            |                             |  |
| Free Product Obse                                            | rved in Probe/We     | II? Yes/IO                                 | If Yes, Depth to Produc    | ct:                                  |                     | Dedic                | sted reflon-1              | ind tub.                    |  |
| Column of Water in                                           | Probe/Well           |                                            |                            | Sampling Depth                       |                     |                      |                            |                             |  |
| Total Depth in Probe                                         | e/Well (feet btoc):  | 20.33                                      |                            | Well Screened Across                 |                     |                      |                            |                             |  |
| Depth to Water from                                          | TOC (feet):          | - 12.52                                    |                            | Depth tubing / pump inta             | ake set* approx.    | 14.5                 | eet below top of casing    | 0                           |  |
| Column of Water in I                                         | Probe/Well (feet):   | = 7.8                                      | 1                          | *Tubing/pump intake must             | be set approximate  | ly 2 feet below the  | water table for wells scre | eened across                |  |
| Circle: Gallons per f<br>Volume of Water in                  |                      | 64) of 2" (X 0.163))of<br>ng (gal):        | 4" (X 0.65)<br>1.27        | the water table, or in the mi        | iddle of the screen | ed interval for well | s screened below the wate  | er table                    |  |
|                                                              |                      | 03 to 0.15 GPM unti<br>eld well using a no |                            | r 3 casing volumes have              | e been removed      | I. If well draws     | down below tubing o        | r pump intake,              |  |
| stop purging and s                                           | ample as a low-y     |                                            | 1                          | least 3 of the 5 para                | meters below        | must stabiliz        | e                          |                             |  |
|                                                              |                      | 10                                         | 1                          | ±10%                                 | /                   | /                    | ±10%                       | <0.33 feet<br>after initial |  |
| Field Parameters:                                            |                      | ±3%<br>(or ±0.2°C max)                     | ±3%                        | ±10%<br>(<1mg/L, ±0.2 mg/L)          | ±0.1 units          | ±10 mV               | ±10%<br>(<10NTU, ±1NTU)    | drawdown                    |  |
| Water Removed (gal)                                          | Time Purged<br>(min) | Temperature<br>(°C)                        | Conductivity<br>(mS/cm)    | Dissolved O <sub>2</sub><br>(mg/L)   | рН                  | Potential<br>(mV)    | Turbidity<br>(NTU)         | Water Level<br>(ft)         |  |
| 1.5                                                          | 15                   | 10.56                                      | 0.368                      | 0.75                                 | 6.20                | 224.4                | 17.36                      | 12,56                       |  |
| 2.0                                                          | 20                   | 10.50                                      | 0.367                      | 0.67                                 | 6.24                | 200.5                | 15,13                      | 12.56                       |  |
| 2.5                                                          | 25                   | 10.46                                      | 0.365                      | 0.62                                 | 6.36                | 219.4                | 10.99                      | 12.56                       |  |
| 3.0                                                          | 30                   | 10.40                                      | 0,363                      | 0.56                                 | 6.17                | 219.0                | 8.26                       | 12.56                       |  |
| 3.5                                                          | 35                   | 10.38                                      | 0.363                      | 0.53                                 | 6.19                | 218.2                | 5,72                       | 12.56                       |  |
| 3.7                                                          |                      | 10. 50                                     | 0.003                      | 0.07                                 |                     |                      | 5,16                       | 10.00                       |  |
|                                                              |                      |                                            |                            |                                      |                     |                      | 1                          |                             |  |
| (*************************************                       |                      |                                            |                            |                                      | -                   |                      | 11 1                       | -                           |  |
|                                                              |                      |                                            | 1                          |                                      |                     |                      | RE                         |                             |  |
|                                                              |                      |                                            |                            |                                      | 100 C               |                      | 1 -                        | 11 a                        |  |
|                                                              |                      |                                            |                            | 1                                    |                     | 1.000                | -                          | 11                          |  |
|                                                              |                      |                                            |                            |                                      |                     |                      | 1                          | 1                           |  |
|                                                              |                      |                                            |                            |                                      |                     |                      |                            |                             |  |
| (                                                            |                      |                                            | 4.1 1                      |                                      |                     |                      |                            |                             |  |
| Did groundwater p<br>Did drawdown stat<br>Was flowrate betwe | oilize? Yes / No     | 5                                          | , why not?<br>no, why not? |                                      |                     |                      |                            |                             |  |
| Water Color:<br>Well Condition:<br>Sheen: Yes / 🈡            |                      | Yellow<br>Labeled w<br>Odor: Yes / 😡       | Orange<br>ith LOC ID:(͡)/N | Brown/<br>Comments<br>Notes/Comments |                     | Other:               |                            |                             |  |
| Laboratory Analys                                            | es (Circle):         | VOC SVOC, GRO                              | DRO Dissovled Iron, Su     | ulfate                               |                     |                      |                            |                             |  |
| pH checked of sam                                            | ples: Y/N            | Approxima                                  | ate volume added (mL):     | HCI = HNQ                            |                     |                      |                            |                             |  |
| Purge Water                                                  |                      |                                            |                            |                                      |                     |                      |                            |                             |  |
| Gallons generated:_                                          | 4.0                  | Containerized and                          | disposed as IDW Yes)       | No                                   | If No, why not?     |                      |                            |                             |  |
| Disposal method*: P                                          | OL Water CERC        | LA Waste                                   | * Purge water stored in    | the DERA Building for ch             | aracterization pri  | or to disposal       |                            |                             |  |
| Sampler's Initials:                                          | AS                   |                                            |                            |                                      |                     |                      |                            |                             |  |
|                                                              |                      |                                            |                            |                                      |                     |                      |                            |                             |  |

| GROUNDWAT                                                                                                       | TER SAMPLE           | FORM                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OU2                             |                      |                                         | Ft. Wainwi                   | ight, Alask   |
|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-----------------------------------------|------------------------------|---------------|
| Project #:                                                                                                      | 90                   | 11-17                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Site Location:                  | DRMO1 DRM            | 04 / WSW                                |                              |               |
| Date:                                                                                                           | 8/6/14               | 9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Probe/Well #:                   | AP-100 18 R          |                                         |                              |               |
| Time:                                                                                                           | 1140                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample ID:                      | 19FWOU2              |                                         |                              |               |
| Sampler:                                                                                                        | A                    | 5                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A second second                 |                      |                                         |                              |               |
| Weather:                                                                                                        |                      | ordy                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outside Temperature:            | 65'F                 |                                         |                              |               |
| QA/QC Sample ID/                                                                                                |                      | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | outside remperature.            |                      | il sta                                  | MS/MSD Performed             | Varia         |
|                                                                                                                 |                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 213 X (112 - 4)               |                      | nall clip                               | And a local second second    | ~             |
| 1949 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - |                      | Submersible / Bladde   | And the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Method:                  |                      |                                         | Hydrasleeve / Bladde         | er / Other    |
| Equipment Used fo                                                                                               |                      | YSI#                   | Turbiany motor m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | Water Level:         |                                         | 1                            |               |
| Free Product Obse                                                                                               |                      | II? Yes No             | If Yes, Depth to Prode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                      | Dedicate                                | d tellion-tu                 | ing           |
| Column of Water in                                                                                              | a manufacture of     | 0 0 70                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampling Depth                  |                      | 4.27.2                                  |                              |               |
| Total Depth in Probe                                                                                            |                      | 20.39                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well Screened Across            |                      |                                         |                              |               |
| Depth to Water from TOC (feet):                                                                                 |                      | - 12.34                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth tubing / pump into        |                      |                                         | eet below top of casing      |               |
| Column of Water in                                                                                              |                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *Tubing/pump intake must        | be set approximate   | ly 2 feet below th                      | e water table for wells scre | ened across   |
|                                                                                                                 |                      | 64) of 2" (X 0.163) of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the water table, or in the mi   | iddle of the screene | ed interval for well                    | s screened below the wat     | er table      |
| Volume of Water in                                                                                              | 1 Probe/Well Casir   | ng (gal):              | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                        |                      |                                         |                              |               |
| Micropurge well/pr                                                                                              | robe at a rate of 0. | 03 to 0.15 GPM unti    | il parameters stabilize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or 3 casing volumes have        | e been removed       | . If well draws                         | down below tubing o          | r pump intake |
| stop purging and s                                                                                              | sample as a low-y    | ield well using a no-  | -purge technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                      |                                         |                              |               |
| Parallel Annual I                                                                                               |                      | 1                      | At least 3 of the 5 para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | meters below         | must stabili                            | ze                           | <0.33 feet    |
|                                                                                                                 |                      | ±3%                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ±10%                            | 1                    |                                         | ±10%                         | after initial |
| Field Parameters:                                                                                               |                      | (or ±0.2°C max)        | ±3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (<1mg/L, ±0.2 mg/L)             | ±0.1 units           | ±10 mV                                  | (<10NTU, ±1NTU)              | drawdown      |
| Water Removed                                                                                                   | Time Purged          | Temperature            | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolved O <sub>2</sub>        | pН                   | Potential                               | Turbidity                    | Water Level   |
| (gai)                                                                                                           | (min)                | (°C)                   | (mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (mg/L)                          |                      | (mV)                                    | (NTU)                        | (ft)          |
| 1,5                                                                                                             | 15                   | 9.16                   | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.58                            | 6.24                 | 149,8                                   | 7.58                         | 12,40         |
| 2.0                                                                                                             | 20                   | 9.20                   | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.54                            | 6.42                 | 1262                                    | 6.69                         | 12.45         |
| 2.5                                                                                                             | 25                   | 9.21                   | 0.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.38                            | 6.40                 | 101.9                                   | 4.82                         | 12,45         |
| 3.0                                                                                                             | 30                   | 9.18                   | 0.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.33                            | 6.44                 | 73.5                                    | 3,41                         | 1245          |
| 3,5                                                                                                             | 35                   | 4.20                   | 0.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34                            | 6.47                 | 45.1                                    | 4,25                         | 12.45         |
| 4.0                                                                                                             | 40                   | 9,23                   | 0.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,35                            | 6.48                 | 2615                                    | 4.31                         | 12.45         |
|                                                                                                                 | 1.1.1.1.1.1          | No. The Torice         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                      |                                         |                              |               |
| ·                                                                                                               |                      | 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 1                    |                                         | 1                            | -             |
|                                                                                                                 |                      |                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | /                    | 100.000.000                             | 1                            | 1             |
| Y                                                                                                               |                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | /                    | 1                                       | AR                           | e             |
| 5                                                                                                               |                      | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                               |                      | 1                                       | 1/                           |               |
|                                                                                                                 |                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                      |                                         | /                            | /             |
| ) <i>[</i>                                                                                                      | · · · · ·            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                      |                                         | 1.                           | 1.            |
| 1                                                                                                               |                      | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                      |                                         |                              | 1             |
| Did groundwater o                                                                                               | arameters stabiliz   | re? (Yes) No If no     | , why not?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                      |                                         |                              |               |
| Did drawdown stal                                                                                               | 6                    | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                      |                                         |                              |               |
| Was flowrate betw                                                                                               | <u> </u>             | 0                      | no, why not?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |                                         |                              |               |
| Water Color:                                                                                                    | (Clear)              | Yellow                 | Orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Brown/                          | Black (Sand/Silt)    | Other:                                  |                              |               |
| Well Condition:                                                                                                 | Lock                 |                        | th LOC ID VIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comments                        |                      |                                         |                              |               |
| Sheen: Yes / No                                                                                                 |                      | Odor: Yes /            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes/Comments                  |                      |                                         |                              |               |
|                                                                                                                 |                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | -                    |                                         |                              |               |
| Laboratory Analys                                                                                               | es (Circle):         | NOC SVOC GPO           | DRO, Dissovled Iron, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sulfate                         |                      |                                         |                              |               |
| pH checked of san                                                                                               | 0                    | -                      | ate volume added (mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CALL AND A STREET OF A STREET A |                      | 10 C |                              |               |
|                                                                                                                 |                      | - Philometer           | and the second place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                      | -                                       |                              |               |
|                                                                                                                 | 4.5                  | Containantized and     | disposed as IDW? (es)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No                              | If No why parts      |                                         |                              |               |
| Purge Water                                                                                                     |                      | Containenzed and       | and the second sec |                                 | If No, why not?      |                                         |                              |               |
| Purge Water<br>Gallons generated:                                                                               |                      | A MALENT               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | moniter neurophine   | or to disposal                          |                              |               |
| Purge Water                                                                                                     | POL Water ACERC      | LA Waste               | * Purge water stored in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n the DERA Building for ch      | aracterization pri-  | on to motional                          |                              |               |

| GROUNDWA                                             | TER SAMPL                   | E FORM                  |                       | OU2                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ft. Wainwi                  | right, Alaska             |
|------------------------------------------------------|-----------------------------|-------------------------|-----------------------|-------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| Project #:                                           | 90                          | 011-17                  |                       | Site Location:                | DRMO1/DRM          | and the second se |                             |                           |
| Date:                                                | 8/61                        | 19                      |                       | Probe/Well #:                 | AP-1               | 10015R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                           |
| Time:                                                | 124                         | 5                       |                       | Sample ID:                    | 19FWOU2 D          | 3 WG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |
| Sampler:                                             | AS                          |                         |                       |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| Weather:                                             | P. C.                       | ordy                    |                       | Outside Temperature:          | 70 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| QA/QC Sample ID                                      | VTime/LOCID:                |                         |                       |                               | Small              | elip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS/MSD Performed            | Yes/                      |
| Purge Method:                                        | Peristaltic Pump /          | Submersible Bladder     |                       | Sample Method:                | Peristaltic Purr   | p / Submersible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hydrasleeve / Bladde        | er / Other                |
| Equipment Used                                       |                             | ~                       | Turbidity Meter #:    | 4                             | Water Level:_      | Kick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |
| Free Product Obs                                     | served in Probe/W           | ell? Yes/No             | If Yes, Depth to Prod | luct:                         |                    | Decli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cated, teflon               | -lind to                  |
| Column of Water                                      | in Probe/Well               | 7                       |                       | Sampling Depth                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | _                         |
| Total Depth in Pro                                   | be/Well (feet bloc):        |                         |                       | Well Screened Across          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| Depth to Water fro                                   | m TOC (feet):               | . 12.83                 |                       | Depth tubing / pump inta      | ike set* approx.   | 14.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet below top of casing    | 0                         |
|                                                      | n Probe/Well (feet):        |                         |                       | *Tubing/pump Intake must      | be set approximate | ely 2 feet below th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e water table for wells scr | eened across              |
| Circle: Gallons pe                                   | r foot of 1.25" (X 0.       | 064) of 2" (X 0.163) pr |                       | the water table, or in the mi | ddle of the screen | ed interval for wel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is screened below the wat   | er table                  |
| Volume of Water in                                   | n 1 Probe/Well Cas          | ing (gal):              | 1.22                  |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| Micropurge well/                                     | probe at a rate of 0        | 0.03 to 0.15 GPM until  | parameters stabilize  | or 3 casing volumes have      | e been removed     | i. If well draws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | down below tubing o         | r pump intake.            |
|                                                      |                             | vield well using a no-p |                       |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | , , ,                     |
|                                                      |                             |                         | A                     | t least 3 of the 5 para       | meters below       | must stabili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | <0.33 feet                |
| Field Parameters:                                    |                             | ±3%<br>(or ±0.2°C max)  | ±3%                   | ±10% /<br>(<1mg/L, ±0.2 mg/L) | ±0.1 units ±10 mV  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ±10%<br>(<10NTU, ±1NTU)     | after initial<br>drawdown |
| Water Removed                                        | Time Purged                 | Temperature             | Conductivity          | Dissolved O <sub>2</sub>      | pН                 | Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Turbidity                   | Water Level               |
| (gal)                                                | (min)                       | (°C)                    | (mS/cm)               | (mg/L)                        |                    | (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (NTU)                       | (ft)                      |
| 1.5                                                  | 15                          | 8:95                    | 0,394                 | D.68                          | 6.22               | 107.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.29                       | 12.87                     |
| 2.0                                                  | 20                          | 8.72                    | 0.393                 | 0,54                          | 6.22               | 95.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.30                        | 12.87                     |
| 2.5                                                  | 25                          | 8.92                    | 0.393                 | 0.54                          | 6.25               | 78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.68                        | 12.57                     |
| 3.0                                                  | 30                          | 8,95                    | 0.393                 | 0.50                          | 6.30               | 66.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.65                        | 12.87                     |
| 3.5                                                  | 35                          | 8,90                    | 0,393                 | 0,52                          | 6.32               | 57.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.85                        | 12.87                     |
|                                                      |                             |                         |                       |                               | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                           |                           |
|                                                      | /                           |                         |                       |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A a                         | /                         |
| 6                                                    |                             |                         |                       |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                          |                           |
| 2                                                    | A second second             | 1                       | A DESCRIPTION OF      |                               |                    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | >                         |
|                                                      |                             | 1                       |                       |                               | ~                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                           |                           |
|                                                      |                             |                         | 1                     |                               | 1000               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| _                                                    |                             |                         |                       |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| -                                                    |                             |                         |                       | 1                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                           |                           |
| Did annunduntar                                      | I and the state of the bill | ize? Yes / No If no,    |                       |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| 2                                                    | abilize? Yes / No           | <u> </u>                | why not?              |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
|                                                      | ween 0.03 and 0.1           | 0                       | o, why not?           |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| Water Color:                                         | Clear )                     | Yellow                  |                       | Provent                       | Jinek (Cand/Cill)  | Olher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                           |
|                                                      | -                           |                         | Orange                |                               | Black (Sand/Silt)  | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           |                           |
| Well Condition:                                      | Lock(Y)/N                   |                         | LOC ID VIN            | Comments                      | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| Sheen: Yes / No)                                     |                             | Odor: Yes / No          |                       | Notes/Comments:               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
|                                                      |                             |                         |                       | Cultata                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | _                         |
| Laboratory Analy                                     | 0                           |                         | DRO, Dissovled Iron,  | TANK IN THE TAXABLE           | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| nH checked of                                        | inpres. 1/W                 | Approximat              | e volume added (mL    | , nor nNQ                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| pH checked of sa                                     |                             |                         |                       |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |
| pH checked of sa<br>Purge Water<br>Gallons generated | 40                          | danta da cos            | isposed as IDW Yes    |                               | If No, why not?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                           |

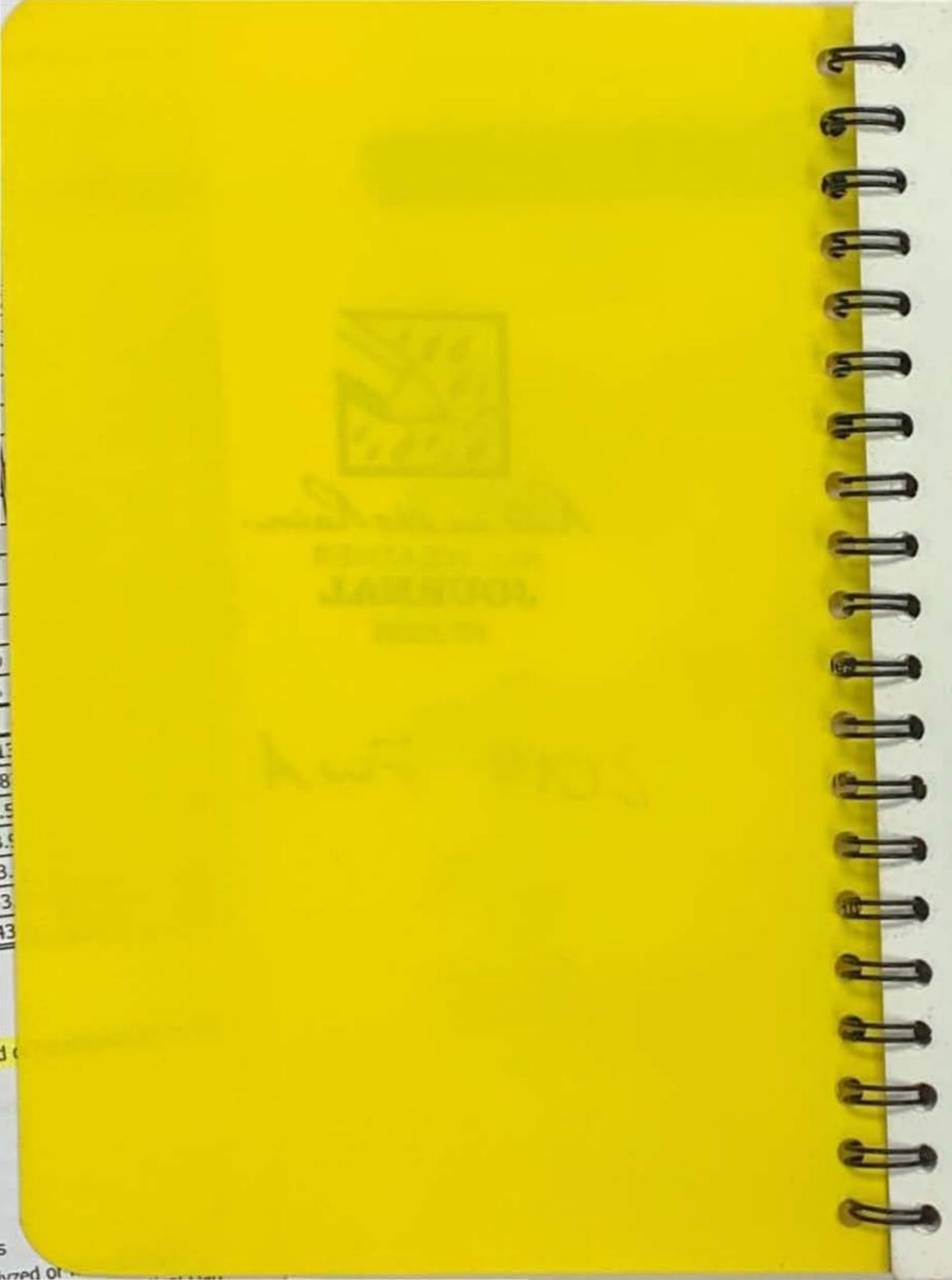
| GROUNDWAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FER SAMPLE        | FORM                                            |                                                                                                                  | OU2                                       |                                          |                      | Ft. Wainwi                | right, Alaska             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|----------------------|---------------------------|---------------------------|
| Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                | 11-17                                           |                                                                                                                  | Site Location:                            | DRMO1 DRM                                | 104 / WSW            |                           |                           |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8/6               | 119                                             |                                                                                                                  | Probe/Well #:                             |                                          | OOI6R                |                           |                           |
| lime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                | 55                                              |                                                                                                                  | Sample ID:                                | 19FWOU2                                  | Y WG                 |                           |                           |
| Sampler:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AS                | S                                               |                                                                                                                  |                                           |                                          |                      |                           |                           |
| Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ch                | ively                                           |                                                                                                                  | Outside Temperature:                      | 70 5                                     |                      |                           |                           |
| QA/QC Sample ID/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time/LOCID: ~     | _^                                              |                                                                                                                  |                                           | Sincell                                  | elip                 | MS/MSD Performed          | 7 Yes/No                  |
| Purge Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peristaltic Pump  | Submersible / Bladder                           |                                                                                                                  | Sample Method:                            | Peristaltic Purr                         | p Submersible        | Hydrasleeve / Bladde      | er / Other                |
| Equipment Used fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or Sampling:      | YSI#                                            | Turbidity Meter #:                                                                                               | 14                                        | Water Level:_                            |                      |                           |                           |
| Free Product Obse<br>Column of Water in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | II? Yes/No                                      | f Yes, Depth to Prod                                                                                             | uct:<br>Sampling Depth                    |                                          | Decline. H           | rd <i>titlen</i> hm       | d tobig                   |
| Total Depth in Prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the bas shows     | 20.32                                           |                                                                                                                  | Well Screened Across                      | Below water                              | table                |                           |                           |
| Depth to Water from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 12,92                                           |                                                                                                                  | Depth tubing / pump int                   |                                          | 14 G                 | feet below top of casing  |                           |
| Column of Water in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 7.40                                            |                                                                                                                  | *Tubing/pump intake must                  |                                          |                      |                           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 64) of 2" (X 0.163) or 4                        |                                                                                                                  | the water table, or in the m              | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | CALL NUMBER          |                           |                           |
| /olume of Water in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | $\sim$                                          | 1-21                                                                                                             | are water lable, or in the m              | NAME OF THE SCIEGO                       | ed interval for well | is acreened below the wat |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                                               | and the second | -                                         | _                                        | _                    |                           | -                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | .03 to 0.15 GPM until<br>ield well using a no-p |                                                                                                                  | or 3 casing volumes hav                   | e been removed                           | I. If well draws     | down below tubing o       | er pump intake,           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                 | A                                                                                                                | t least 3 of the 5 para                   | meters below                             | must stabiliz        | ze                        | <0.33 feet                |
| ield Parameters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | ±3%<br>(or ±0.2°C max)                          | ±3%                                                                                                              | ±10% //////////////////////////////////// | ±0.1 units                               | ±10 mV               | ±10%<br>(<10NTU, ±1NTU)   | after initial<br>drawdown |
| Water Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time Purged       | Temperature                                     | Conductivity                                                                                                     | Dissolved O <sub>2</sub>                  | pH                                       | Potential            | Turbidity                 | Water Level               |
| (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (min)             | (°C)                                            | (mS/cm)                                                                                                          | (mg/L)                                    |                                          | (mV)                 | (NTU)                     | (ft)                      |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                | 11.32                                           | 0,378                                                                                                            | 0.39                                      | 6.25                                     | 120,3                | 19.44                     | 12.93                     |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                | 10,93                                           | 0.377                                                                                                            | 0.41                                      | 6.32                                     | 115.0                | 1292                      | 12.43                     |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                | 10,65                                           | 0,375                                                                                                            | 0.41                                      | 6.36                                     | 107.1                | 8.72                      | 12.93                     |
| 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                | 10.52                                           | 0.374                                                                                                            | 0.38                                      | 6.34                                     | 103.5                | 6.62                      | 12.93                     |
| 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                | 10.50                                           | 0.372                                                                                                            | 0.38                                      | 6.35                                     | 100.0                | 4.931                     | 12.93                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.        |                                                                                                                  |                                           |                                          |                      | 1                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                 |                                                 | 1                                                                                                                | · · · · · · · · · · · · · · · · · · ·     |                                          |                      | - /1-                     | /                         |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                 | /                                                                                                                |                                           |                                          |                      | 11                        |                           |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                 |                                                                                                                  |                                           |                                          | 1.1.1.1              | 1/0                       | 7                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                 | /                                                                                                                | 1                                         |                                          | /                    | V                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1                                               |                                                                                                                  |                                           |                                          | /                    |                           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                 |                                                                                                                  |                                           |                                          |                      | 1                         |                           |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1                                               |                                                                                                                  | 1                                         | 1                                        |                      |                           |                           |
| 1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                 |                                                                                                                  |                                           | /                                        | 27.21                |                           |                           |
| Did groundwater n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | arameters stabili | ver Yes No If no. v                             | why not?                                                                                                         | 1                                         |                                          |                      |                           |                           |
| Did drawdown stal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | $\sim$                                          |                                                                                                                  |                                           |                                          |                      |                           |                           |
| Nas flowrate betw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~                 |                                                 | o, why not?                                                                                                      |                                           |                                          |                      |                           |                           |
| Vater Color:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Clear             | Yellow                                          | Orange                                                                                                           | Brown                                     | Black (Sand/Silt)                        | Other:               | Fritial put               | a arguer 1                |
| Well Condition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lock(Y) N         |                                                 | LOCID                                                                                                            | Comments                                  |                                          | 14 11 41             | 10                        |                           |
| Sheen: Yes /No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U.                | Odor: Yes No                                    |                                                                                                                  | Notes/Comments                            |                                          |                      |                           |                           |
| and a state of the |                   |                                                 |                                                                                                                  | Hotos/oominginta                          | -                                        |                      |                           |                           |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es (Circle):      | TOC SVOC, GRO, I                                | DRO Dissovled Imp                                                                                                | Sulfate                                   |                                          |                      |                           | 1.1                       |
| aboratory Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | toursiel.         |                                                 |                                                                                                                  |                                           |                                          |                      |                           |                           |
| aboratory Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ples: YON         | Approximate                                     | e volume added (ml                                                                                               | : HCI = HNO                               |                                          |                      |                           |                           |
| aboratory Analys<br>oH checked of san                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nples: YN         | Approximate                                     | e volume added (mL                                                                                               | : HCI = HNQ                               |                                          |                      |                           |                           |

| GROUNDWA                                 | IER SAMPLI            | FORM                                          |                                       | 0U2                           |                    | _                   | Ft. Wainw                   | right, Alas            |
|------------------------------------------|-----------------------|-----------------------------------------------|---------------------------------------|-------------------------------|--------------------|---------------------|-----------------------------|------------------------|
| Project #:                               |                       | 11-17                                         | · · · · · · · · · · · · · · · · · · · | Site Location:                | DRMO1 DRM          |                     |                             |                        |
| Date:                                    | 8/6/19                | 1                                             |                                       | Probe/Well #:                 | AP-                | 8914R               |                             |                        |
| Time:                                    | 1500                  | 1                                             | in the second                         | Sample ID:                    | ن 19FWOU2          | 5 WG                |                             |                        |
| Sampler:                                 | AS                    | 6 . · · · · · · · · ·                         |                                       |                               |                    |                     |                             |                        |
| Weather:                                 | P. (1.                | arily                                         | 2. S. 1                               | Outside Temperature:          | TU'F               |                     |                             |                        |
| QA/QC Sample ID/                         | Time/LOCID:           |                                               |                                       |                               | Sm                 | all chp             | MS/MSD Performed            | 7 Yes/No               |
| Purge Method:                            | Peristaltic Pump      | Submersible) Bladde                           | ť.                                    | Sample Method:                | Peristaltic Pur    | np /Submersible     | Hydrasleeve / Bladd         | er / Other             |
| Equipment Used for                       | or Sampling:          | YSI#_62_                                      | Turbidity Meter #:                    | 4                             | Water Level:_      |                     |                             |                        |
| Free Product Obse                        | erved in Probe/We     | all? Yes No                                   | If Yes, Depth to Prod                 | uct:                          | Dec                | lice had the        | flan lind 1                 | up ing                 |
| Column of Water in                       | n Probe/Well          | and the second                                | A                                     | Sampling Depth                |                    |                     |                             |                        |
| Total Depth in Prob                      | e/Well (feet btoc):   | 18.16                                         |                                       | Well Screened Across          | Below water        | table               |                             |                        |
| Depth to Water from                      | TOC (feet):           | - 10,80                                       |                                       | Depth tubing / pump inta      | ake set* approx.   | 12.80               | feet below top of casing    | )                      |
| Column of Water in                       | Probe/Well (feet):    | = 7.36                                        | 1                                     | *Tubing/pump intake must I    | be set approximat  | ely 2 feet below th | e water table for wells scr | eened across           |
| Circle: Gallons per                      | foot of 1.25" (X 0.0  | 64) oc 2" (X 0.163))or                        | 4" (X 0.65)                           | the water table, or in the mi | ddle of the screen | ed interval for we  | is screened below the wat   | er table               |
| Volume of Water in                       | 1 Probe/Well Casi     | ng (gal):                                     | 1.20                                  |                               |                    |                     |                             |                        |
|                                          |                       |                                               |                                       |                               |                    |                     |                             |                        |
|                                          |                       | .03 to 0.15 GPM unti<br>ield well using a no- |                                       | or 3 casing volumes have      | e been remove      | d. If well draws    | s down below tubing o       | or pump inta           |
|                                          |                       |                                               | A                                     | t least 3 of the 5 para       | meters below       | must stabili        | ze                          | 1.57                   |
|                                          |                       |                                               | 1                                     | ±10%                          | /                  |                     |                             | <0.33 fee              |
| Field Parameters:                        |                       | ±3%<br>(or ±0.2°C max)                        | ±3%                                   | ±10%<br>(<1mg/L, ±0.2 mg/L)   | ±0.1 units         | ±10 mV              | ±10%<br>(<10NTU, ±1NTU)     | after initi<br>drawdow |
| Water Removed                            | Time Purged           | Temperature                                   | Conductivity                          | Dissolved O <sub>2</sub>      | pН                 | Potential           | Turbidity                   | Water Lev              |
| (gal)                                    | (min)                 | (°C)                                          | (mS/cm)                               | (mg/L)                        |                    | (mV)                | (NTU)                       | (ft)                   |
| 1.5                                      | 15                    | 9.25                                          | 0.350                                 | 0,37                          | 6.03               | 76.7.               | 20.89                       | 10.90                  |
| 2.0                                      | 20                    | 9.23                                          | 0.351                                 | 0.34                          | 5.90               | 58.5                | 11.86                       | 10,90                  |
| 2.5                                      | 7.5                   | 9.20                                          | @,352                                 | 0.39                          | 6.07               | 37.4                | 7.38                        | 10.90                  |
| 3.0                                      | 30                    | 9.15                                          | 0.354                                 | 0.30                          | 6.12               | 13.6                | 5.79                        | 10.90                  |
| 3.5                                      | 35                    | 9.18                                          | 0.354                                 | 0.30                          | 6.15               | -3.8                | 5.09                        | 10.90                  |
| 4.0                                      | 40                    | 9.20                                          | 0.356                                 | 0.30                          | 6.20               | -14.9               | 4.10                        | 10,90                  |
| 1                                        |                       |                                               |                                       |                               |                    |                     | - are                       | 10,10                  |
|                                          | /                     |                                               |                                       |                               |                    | 1                   | 1                           |                        |
| 1                                        |                       |                                               |                                       | 1                             |                    | 1                   | 11                          |                        |
|                                          |                       | 1                                             |                                       | 1                             | 200.000            | /                   |                             |                        |
|                                          |                       |                                               | 1                                     | 1                             |                    | VIX                 | ×                           | 1                      |
|                                          |                       |                                               |                                       |                               | - /                | 1/                  | -                           |                        |
|                                          |                       |                                               |                                       |                               |                    |                     | 1                           |                        |
|                                          |                       |                                               |                                       |                               |                    |                     |                             |                        |
| Did groundwater p                        | aramators stabili     | ze (Yes) No If no.                            | why not?                              |                               |                    |                     |                             |                        |
|                                          | 6                     | U                                             | wity hot?                             |                               |                    |                     |                             |                        |
| Did drawdown stal                        | $\cup$                | -                                             | 1. The second                         |                               |                    |                     |                             |                        |
| Was flowrate betw                        |                       | 0                                             | no, why not?                          |                               | 2010 - 100 - 1     |                     |                             | _                      |
| Water Color:                             | Clear                 | Yellow                                        | Orange                                | Brown/E                       | Black (Sand/Silt)  | Other;              |                             |                        |
| Well Condition:                          | Lock Y/N              | Labeled w                                     | th LOC ID ()/N                        | Comments:                     |                    |                     |                             |                        |
| Sheen: Yes / No)                         |                       | Odor: Yes / No                                |                                       | Notes/Comments:               |                    | _                   |                             |                        |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 1.1.7.1178            | 0                                             | -                                     |                               |                    |                     |                             |                        |
| Laboratory Analys                        | 0                     | 0                                             | DRO Dissovled Iron, S                 |                               | 1.12-              |                     |                             |                        |
| pH checked of san                        | nples: Y/N)           | Approxima                                     | te volume added (mL)                  | : HCI = HNQ                   |                    |                     |                             | -                      |
|                                          | 1414                  |                                               | 6                                     |                               |                    |                     |                             |                        |
| Purge Water                              | 46                    |                                               | all and an arrite to be               | la la                         | If No, why not?    | 2                   |                             |                        |
| Gallons generated:                       | 4.5                   | Containerized and                             | disposed as IDVV Yes                  | NO                            | in no, mily nor    |                     |                             |                        |
|                                          | 4.5<br>POL Water CERC |                                               |                                       | the DERA Building for cha     |                    |                     |                             |                        |

| GROUNDWAT                                                                                                                              | ER SAMPLE                                      | FORM                                                                                | 0                                                     | U2                                                             |                    |                                         | Ft. Wainwr                   | ight, Alas             |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|--------------------|-----------------------------------------|------------------------------|------------------------|
| Project #:                                                                                                                             | 90                                             | 11-17                                                                               |                                                       | Site Location:                                                 | DRMO1 / DRM        | ADA I (NSW)                             |                              |                        |
| Date:                                                                                                                                  | 8/7                                            | 119                                                                                 |                                                       | Probe/Well #:                                                  | wsu                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                              |                        |
| Time:                                                                                                                                  | 1015                                           |                                                                                     |                                                       | Sample ID:                                                     | 19FWOU2            | 6 WG                                    |                              |                        |
| Sampler:                                                                                                                               | AS                                             |                                                                                     |                                                       |                                                                | -                  |                                         |                              |                        |
| Weather:                                                                                                                               | Cloud                                          | Y                                                                                   |                                                       | Outside Temperature:                                           | 60°F               |                                         |                              |                        |
| QA/QC Sample ID/                                                                                                                       | Time/LOCID:                                    | -                                                                                   |                                                       |                                                                |                    |                                         | MS/MSD Performed             | Yell No                |
| Purge Method:                                                                                                                          | Peristattic Pump / {                           | Submersible / Bladde                                                                | Drain water this                                      | Sample Method:                                                 | Peristaltic Pur    | p / Submersible                         | / Hydrasleeve / Bladde       | other >                |
| Equipment Used for                                                                                                                     | 7.7.5.7.5.7                                    | YSI# NA                                                                             | Turbidity Meter #:                                    | NIA                                                            | Water Level:       |                                         |                              |                        |
| Free Product Obse                                                                                                                      | rved in Probe/We                               | II? Yes/No)                                                                         | If Yes, Depth to Produ                                | st: -                                                          |                    |                                         |                              |                        |
| Column of Water in                                                                                                                     |                                                | -                                                                                   |                                                       | Sampling Depth                                                 | -                  |                                         |                              |                        |
| Total Depth in Probe                                                                                                                   | Well (feet bloc):                              | 1                                                                                   | . 1                                                   | Well Screened Across                                           | / Below water      | table                                   |                              |                        |
| Depth to Water from                                                                                                                    | TOC (feet):                                    | - /                                                                                 | 1A                                                    | Depth tubing / pump inta                                       | ake set" approx.   | -                                       | eet below top of casing      |                        |
| Column of Water in                                                                                                                     | Probe/Well (feet):                             | - 10                                                                                | /1                                                    | *Tubing/pump intake must                                       | be set approximati | ely 2 feet below the                    | e water table for wells scre | ened across            |
| Circle: Gallons per                                                                                                                    | loot of 1.25" (X 0.0                           | 64) or 2" (X 0.163) o                                                               | r 4" (X 0.65)                                         | the water table, or in the mi                                  | ddle of the screen | ed interval for well                    | s screened below the wat     | er table               |
| Volume of Water in                                                                                                                     | 1 Probe/Well Casir                             | io (oal):                                                                           |                                                       |                                                                |                    |                                         |                              |                        |
|                                                                                                                                        | 1                                              |                                                                                     |                                                       |                                                                |                    |                                         |                              |                        |
| Micropurge well/pr<br>stop purging and s                                                                                               |                                                |                                                                                     | I parameters stabilize o                              | r 3 casing volumes have                                        | e been removed     | d. If well draws                        | down below tubing o          | r pump inte            |
| otop parging and a                                                                                                                     | umpic us a tom-yr                              |                                                                                     | 1                                                     | loast 2 of the 5 para                                          | motor bolou        | , must stabili                          |                              |                        |
| 1.500                                                                                                                                  |                                                |                                                                                     | AL                                                    | least 3 of the 5 para                                          | meters below       | r must stabiliz                         |                              | <0.33 fee              |
| Field Parameters:                                                                                                                      |                                                | ±3%<br>(or ±0.2°C max)                                                              | ±3%                                                   | ±10%<br>(<1mg/L, ±0.2 mg/L)                                    | ±0.1 units         | ±10 mV                                  | ±10%<br>(<10NTU, ±1NTU)      | after initi<br>drawdow |
| Water Removed                                                                                                                          | Time Purged                                    | Temperature                                                                         | Conductivity                                          | Dissolved O <sub>2</sub>                                       | pH                 | Potential                               | Turbidity                    | Water Let              |
| (gal)                                                                                                                                  | (min)                                          | (°C)                                                                                | (mS/cm)                                               | (mg/L)                                                         |                    | (mV)                                    | (NTU)                        | (ft)                   |
|                                                                                                                                        |                                                |                                                                                     |                                                       |                                                                |                    |                                         | 10.007                       | 1.4                    |
| _                                                                                                                                      |                                                |                                                                                     | F. 5. 7 1.                                            | 1 -                                                            | ~                  |                                         | 1                            |                        |
|                                                                                                                                        | Pu                                             | ISP 1                                                                               | 1500 -                                                | DC C                                                           | On                 | 1. 111                                  | LAS                          |                        |
| 1                                                                                                                                      |                                                | 0 0                                                                                 | i d                                                   | 1                                                              |                    | line                                    |                              |                        |
|                                                                                                                                        | 17                                             | 140 +                                                                               | loor are                                              | in Usir                                                        | 5 90               | roun                                    | hose.                        |                        |
| 5                                                                                                                                      |                                                | Then                                                                                | Coller                                                | Sam                                                            | hle                | 12 2 2 1                                |                              |                        |
| · · · · · · · · · · · · · · · · · · ·                                                                                                  |                                                | Inan                                                                                | L COULE O                                             | UN                                                             | P.C.               |                                         |                              |                        |
|                                                                                                                                        |                                                |                                                                                     | 11                                                    |                                                                | 1                  |                                         | 1                            |                        |
|                                                                                                                                        |                                                | 6000                                                                                | Le call                                               | eited d                                                        | recth              | 1 fri                                   | M                            |                        |
|                                                                                                                                        |                                                | Dawl                                                                                | for con                                               | L'ALLA IN                                                      | 1                  | 1 1.10                                  |                              |                        |
|                                                                                                                                        | 10                                             | icot -                                                                              | not Cu                                                | in thro                                                        | uch                | hose                                    |                              |                        |
|                                                                                                                                        | 51                                             | 1901                                                                                | LIVE IV                                               | 1 1 1 1 1 0                                                    | -30                | 1000                                    |                              |                        |
|                                                                                                                                        |                                                |                                                                                     |                                                       |                                                                | 1                  |                                         |                              |                        |
|                                                                                                                                        | ×                                              |                                                                                     |                                                       |                                                                |                    | -                                       |                              | -                      |
|                                                                                                                                        |                                                | I DE LET LET                                                                        | Carlos a                                              | NA                                                             | -                  |                                         |                              |                        |
|                                                                                                                                        | arameters stabiliz                             |                                                                                     | , why not?                                            | 100                                                            |                    |                                         |                              |                        |
|                                                                                                                                        |                                                | If no, why not?                                                                     | NA                                                    |                                                                |                    |                                         |                              |                        |
| Did groundwater p<br>Did drawdown stat                                                                                                 | bilize? Yes / No                               |                                                                                     |                                                       |                                                                |                    |                                         |                              |                        |
| Did drawdown stat<br>Was flowrate betwe                                                                                                | billze? Yes / No<br>een 0.03 and 0.15          |                                                                                     | no, why not?                                          | NA                                                             |                    |                                         |                              |                        |
| Did drawdown stat                                                                                                                      | billze? Yes / No<br>een 0.03 and 0.15<br>Clear |                                                                                     | no, why not?<br>Orange                                | 1                                                              | Black (Sand/Silt)  | ) Other;                                |                              |                        |
| Did drawdown stat<br>Was flowrate betwo<br>Water Color:                                                                                | billze? Yes / No<br>een 0.03 and 0.15          | GPM? Yes/No If<br>Yellow                                                            |                                                       | 1                                                              |                    | ) Other;                                |                              |                        |
| Did drawdown stat<br>Was flowrate betwe<br>Water Color:<br>Well Condition:                                                             | billze? Yes / No<br>een 0.03 and 0.15<br>Clear | GPM? Yes/No If<br>Yellow                                                            | Orange                                                | Brown/I                                                        |                    | ) Other;                                |                              |                        |
| Did drawdown stat<br>Was flowrate betwe<br>Water Color:<br>Well Condition:                                                             | billze? Yes / No<br>een 0.03 and 0.15<br>Clear | GPM? Yes/No If<br>Yellow<br>Labeled w                                               | Orange                                                | Brown/I<br>Comments:                                           |                    | ) Other,                                |                              |                        |
| Did drawdown stat<br>Was flowrate betw<br>Water Color:<br>Well Condition:<br>Sheen: Yes (No)<br>Laboratory Analys                      | een 0.03 and 0.15<br>Clear<br>Lock: Y/N        | GPM? Yes/No If<br>Yellow<br>Labeled w<br>Odor: Yes / 00                             | Orange                                                | Brown/<br>Comments:<br>Notes/Comments:                         |                    | ) Other;                                |                              |                        |
| Did drawdown stat<br>Was flowrate betw<br>Water Color:<br>Well Condition:<br>Sheen: Yes (No)<br>Laboratory Analys                      | een 0.03 and 0.15<br>Clear<br>Lock: Y/N        | GPM? Yes/No If<br>Yellow<br>Labeled w<br>Odor: Yes / 60                             | Orange<br>Ith LOC ID: Y / N                           | Brown/l<br>Comments:<br>Notes/Comments:                        |                    | ) Other:                                |                              |                        |
| Did drawdown stat<br>Was flowrate betw<br>Water Color:<br>Well Condition:<br>Sheen: Yes (No)<br>Laboratory Analys                      | een 0.03 and 0.15<br>Clear<br>Lock: Y/N        | GPM? Yes/No If<br>Yellow<br>Labeled w<br>Odor: Yes / 60                             | Orange<br>hth LOC ID: Y / N<br>DRO Dissovled Iron, Su | Brown/l<br>Comments:<br>Notes/Comments:                        |                    | -                                       |                              |                        |
| Did drawdown stat<br>Was flowrate betw<br>Water Color:<br>Well Condition:<br>Sheen: Yes //No<br>Laboratory Analys<br>pH checked of sam | een 0.03 and 0.15<br>Clear<br>Lock: Y/N        | GPM? Yes/No If<br>Yellow<br>Labeled w<br>Odor: Yes / 60<br>VOC SVOC GRO<br>Approxim | Orange<br>hth LOC ID: Y / N<br>DRO Dissovled Iron, Su | Brown/l<br>Comments:<br>Notes/Comments:<br>Ilfate<br>HCI = HNQ |                    | -                                       | No purse<br>Conjected        | 644                    |

| Vestion:       CLUDIN;       Outside Temperature;       STOP         ANQC Sample IDITime/LOCID:       MSMSD Performed? Year @       MSMSD Performed? Year @         Augument Used for Sampling:       Y8 # 9       Turbidity Meter #:       Water Lovei:       Verify and the sample Method:       Peristatil: Pump / Submissible / Hydrasleeve / Bladder / Other         Augument Used for Sampling:       Y8 # 9       Turbidity Meter #:       Water Lovei:       Verify         Tree Product Observed in Probe/Well (reet bloc):       //6 + 4/4       Well Screened & cross / Below water table       Feet below top of casing         Outside Tim Probe/Well (reet) is:       //6 + 4/4       Well Screened & cross / Below water table       Feet below top of casing         Outside Tim Probe/Well (reet) is:       //6 + 4/4       Well Screened & cross / Below water table       Feet below top of casing         Outside Tim Probe/Well (reet) is:       //6 + 4/4       Well Screened & cross / Below water table       Feet below the water table         Column of Water in Probe/Well (reet) is:       //6 + 4/4       Well Screened & cross / Below water table       Feet below the water table for walls screened boow the water table         Column of Water in Probe/Well (reet) is:       //6 + 0000       //6 + 0000       Feet below the water table for walls screened boow the water table       Column of Water in Probe/Well (reet) is:       Column of Water in Probe/Well (reet) is: <td< th=""><th>GROUNDWA</th><th>TER SAMPLE</th><th>FORM</th><th>0</th><th>U2</th><th></th><th></th><th>Ft. Wainw</th><th>right, Alask</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUNDWA           | TER SAMPLE                            | FORM                                     | 0                     | U2                                                                                                             |                   |                 | Ft. Wainw               | right, Alask              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------------|---------------------------|
| ine:       1050       Sample ID:       10FVOL2 07 WG         iample:       CLOVDY       Outside Temperature:       52°F         Weather:       CLOVDY       Outside Temperature:       52°F         MACC Sample IDTIMULOCID:       MSIMSD Performed? Veal 0         Turbidity Meter #:       2       Water Level:       Veal         Gaugement Used for Sampling:       YSI #       10FVOL2 0       Weat Scienced 4 cross / 4 bit water Level:       Veal         Gaugement Used for Sampling:       YSI #       10FVOL2 0       Weat Scienced 4 cross / 4 bit water Level:       Veal         Gaugement Used for Sampling:       YSI #       10FVOL2 0       Weat Scienced 4 cross / 4 bit water Level:       Veal         Science of Water in Probat/Weil (test)       11/12       Depth Hubing / pump intake set* approx.       13       feet below top of crass         Licke:       Galoms per fool of 125° (k 0.006) or 2* (0.0130) or 4* (k 0.05)       Weat Scienced 4 bit water table       feet below the water table         Matter in 1Probat/Weil Crassing (an)       210%       10FVOL2 0       pump intake       10%       10W end frames down below tubing or pump intake         Iteld Parameters:       53%       (crass) 2 for 0 125° (k 0.004) or 2* (0.0130) or 4* (k 0.05)       10K       10W end frames down below tubing or pump intake         Iteld Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project #:         | 901                                   | 1-17                                     |                       | Site Location:                                                                                                 | DRMO1 / ORM       | 04 WSW          |                         | 1. 1. A                   |
| ampler: CLOVDY anather: CLOVDY Outside Temperature: 52°F MS/MSD Performed? Year (6) Urge Method: Peritablic Pump / Semensibly / Bladder Sample Method: Peritablic Pump / Semensibly / Bladder Turbidity Meter #: 2 Water Level: Value / Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ate:               | 8/7                                   | 119                                      |                       | Probe/Well #:                                                                                                  | AP-               | 891             | 5                       |                           |
| Autor       CLUDIN       Outside Temperature:       STOR         ACC Sample IDTIme/LOCID:       MSMSD Performed 7 Ver ()       MSMSD Performed 7 Ver ()         urge Method:       Peristatilic Pump / Subfigurable / Hydrasteeve / Bladder / Other         quipment Used for Sampling:       YS # 9       Turbidity Meter #:       Water Level:       V/2/         rese Product Observed in Probe/Welf 7 Ver ()       If Yes, Depth to Product:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ime:               | 10                                    | 50                                       |                       | Sample ID:                                                                                                     | 19FWOU2           | 7 wg            |                         |                           |
| MS/MSD Performed? Yes 0         MS/MSD Performed? Yes 0         Sample Method: Peristatic Pump / Suffergrade / Hydrasleeve / Bladder / Other         gaugement Used for Sampling: Ysl #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ampler:            | 'Ci                                   | 3                                        |                       |                                                                                                                |                   |                 |                         |                           |
| urge Method:       Peristalit: Pump / Submessible / Hydrasleeve / Bladder         guijment Used for Sampling:       YS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Veather:           | CLOVI                                 | 24                                       |                       | Outside Temperature                                                                                            | 570               | F               |                         | ~                         |
| Reproduct Observed in Probat/Weil? Yes/g       If Yes, Depth to Product::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A/QC Sample ID     | Time/LOCID:                           |                                          |                       |                                                                                                                |                   |                 | MS/MSD Performed        | ? Yes/ No                 |
| Reproduct Observed in Probat/Weil? Yes/g       If Yes, Depth to Product::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | urge Method:       | Peristaltic Pump / S                  | anomersible / Bladder                    | 1                     | Sample Method:                                                                                                 | Peristaltic Pum   | p / Submersible | / Hydrasleeve / Bladd   | er / Other                |
| If Yes, Depth to Product:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 1                                     |                                          |                       | 2                                                                                                              |                   | . / . /         |                         |                           |
| Sampling Depth         Sampling Depth         Otal Depth In Probe/Well (leet bloc):       [16 · 444         Vell Screened Across / Below water table         Depth tubing / pump intake set* approx.       [3] [set below top of casing         Column of Water in Probe/Well (leet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Carrow Land Court                     | 17 Yes/No)                               | and the state of the  | ct:                                                                                                            |                   |                 |                         |                           |
| otal Depth in Probe/Well (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                       |                                          |                       | a strand and the stand                                                                                         |                   |                 |                         |                           |
| "Ubing/jump intake must be set approximately 2 feet below the water table for wells screened across the water in 1 Probe/Well Casing (gal).         "Ubing/jump intake must be set approximately 2 feet below the water table for wells screened below table of the screened interval for wells screened below the water table for wells screened below the water table for wells screened below table of the screened interval for wells screened below table of the water table for wells screened below table of the screened interval for wells screened below table of the water table for wells screened below table of the screened interval for wells screened below table of table for wells screened table of table for wells screened below table of table for wells screened below table of table for wells screened table of table for wells screened table of table for wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | otal Depth in Prob | e/Well (feet btoc):                   | 16.                                      | 44                    | 0                                                                                                              | / Below water     | able            |                         |                           |
| "Ubing/jump intake must be set approximately 2 feet below the water table for wells screened across the water in 1 Probe/Well Casing (gal).         "Ubing/jump intake must be set approximately 2 feet below the water table for wells screened below table of the screened interval for wells screened below the water table for wells screened below the water table for wells screened below table of the screened interval for wells screened below table of the water table for wells screened below table of the screened interval for wells screened below table of the water table for wells screened below table of the screened interval for wells screened below table of table for wells screened table of table for wells screened below table of table for wells screened below table of table for wells screened table of table for wells screened table of table for wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 P 10 20 40 40   |                                       | - 11,                                    | 12                    | - · · · · · · · · · · · · · · · · · · ·                                                                        | 111 Mar 11        | 12              | eet below top of casing |                           |
| birde: Gallons per fool of 125° (X 0.04) or 2° (X 0.05)<br>rotume of Water in 1 ProbeWell Casing (gal)<br>be water table, or in the middle of the screened interval for wells screened below the water table<br>$0 \cdot 16$<br>the water table, or in the middle of the screened interval for wells screened below the water table<br>$0 \cdot 16$<br>the water table, or in the middle of the screened interval for wells screened below the water table<br>$0 \cdot 16$<br>the water table, or in the middle of the screened interval for wells screened below the water table<br>$0 \cdot 16$<br>the water table, or in the middle of the screened interval for wells screened below the water table<br>$0 \cdot 16$<br>top purging and sample as a low-yield well using a no-purge technique.<br>At least 3 of the 5 parameters below must stabilize<br>$10^{-1} \cdot 10^{-1} \cdot 1$ | 90.142.27          |                                       | - 3                                      | . 32                  |                                                                                                                |                   |                 |                         |                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                       |                                          | 4" (X 0.65)           |                                                                                                                |                   |                 |                         |                           |
| top purging and sample as a low-yield well using a no-purge technique.<br>$\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                       | N                                        | 051                   |                                                                                                                |                   |                 |                         |                           |
| top purging and sample as a low-yield well using a no-purge technique.<br>$\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                       |                                          |                       | -                                                                                                              |                   |                 |                         |                           |
| ieid Parameters:         (or ±0.2°C max)         ±10%         ±10%         ±10%         class feet atteninitial atteninitial feed feet atteninitial feet atteninitial feed feet atteninitial feet atteni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                       |                                          |                       | r 3 casing volumes hav                                                                                         | e been removed    | . If well draws | down below tubing o     | or pump intake            |
| ieid Parameters:         (or ±0.2°C max)         ±10%         ±10%         ±10%         class feet atteninitial atteninitial feed feet atteninitial feet atteninitial feed feet atteninitial feet atteni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                       | 1                                        | At                    | least 3 of the 5 para                                                                                          | meters below      | must stabiliz   | e .                     | 1                         |
| ield Parameters:         (or 10.2°C max)         ±3%         (<1mg/L, ±0.2 mg/L)         ±0.1 units         ±10 mV         (<10NTU, ±1NTU)         drawdown           Water Removed<br>(gal)         Time Purged<br>(min)         Temperature<br>(°C)         Conductivity         Dissolved 0 <sub>2</sub> pH         Potential<br>(mV)         Turbidity         Water Level<br>(nt)           1/.3         1/1         6.70         0.525         / r 0.5         6.78         -76.2         8.558         / / .29           1/.95         15         6.144         0.5222         0.858         4.844         -85.7         3.655         1/ .29           2.6         20         6.29         0.579         0.644         6.50         -9/.1         5.11         1/ .29           3.25         25         6.29         0.579         0.644         6.50         -9/.1         5.11         1/ .30           3.9         30         6.71         0.579         0.644         6.50         -9/.1         2.36         1/ .30           3.9         40.71         0.579         0.644         6.50         -9/.1         2.36         1/ .30           4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                          |                       |                                                                                                                |                   | Thuse stubiliz  | a financia a fi         | <0.33 feet                |
| Water Removed<br>(gal)         Time Purged<br>(min)         Temperature<br>(°C)         Conductivity<br>(mS/cm)         Dissolved 02<br>(mg/L)         pH         Potential<br>(mV)         Turbidity<br>(NTU)         Water Level<br>(ft)           1/3         1/1         6.70         0.525         1/1 0.5         6.78         7/6.2         8.58         1/1.24           1/95         1/5         6.144         0.5227         0.88         6.84         -88.7         3.65         1/1.29           2.6         20         6.322         0.520         0.70         6.588         9/1.1         5.11         1/1.29           3.25         25         6.29         0.579         0.64         6.90         -9/2.2         2.16         1/1.30           3.9         30         6.21         0.579         0.46         6.90         -9/2.2         2.16         1/1.30           3.9         30         6.23         0.579         0.46         6.90         -9/2.1         2.36         1/1.30           4.5         F.1N/M2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ield Parameters:   |                                       |                                          | ±3%                   |                                                                                                                | ±0.1 units        | ±10 mV          |                         | after initial<br>drawdown |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Removed      | Time Purged                           | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Conductivity          | Dissolved On                                                                                                   | pH                | Potential       | Turbidity               | Water Level               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a contract of  |                                       |                                          |                       |                                                                                                                | Pro-              |                 |                         |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                | 10                                    | 1                                        | DISZE                 |                                                                                                                | 6.78              | -76.2           | 8.18                    |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.90               | 15                                    | 6.14                                     | 0.577                 | 0.88                                                                                                           | 6.84              | - 55.7          | 3.65                    | 1. 4                      |
| 3.25 25 6.29 p.5/9 p.64 6.9p -962 2.16 11.30<br>3.9 30 6.27 0.5/9 0.66 6.50 -981 2.36 11.30<br>U.5 FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126                |                                       | 6.22                                     | 0 2                   | n 70                                                                                                           | 6.58              | - 9/1           | 511                     |                           |
| 3.9 30 6.27 05/9 0.66 6.50-981 2.36 11 30<br>U.5 FINAL<br>0.5 FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0                | 25                                    | 6.79                                     | n 510                 | 0/14                                                                                                           | 6.60              | - 9/7           | 7.11                    | 1                         |
| US FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                |                                       | 10.77                                    | Dela                  | 0.04                                                                                                           | 1.50              | -081            | 2.36                    | 11 2-                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.5               |                                       | 0.01                                     | - )//                 | 0.00                                                                                                           | 19.70             | 701             | - 10                    | 1.30                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47                 | FINNIC                                | 0                                        |                       |                                                                                                                |                   |                 |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                       |                                          | 1                     |                                                                                                                |                   | 1               |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | -                                     |                                          |                       |                                                                                                                |                   |                 |                         |                           |
| CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 1                                     | /                                        |                       |                                                                                                                |                   |                 |                         | -                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                       | <                                        |                       |                                                                                                                | -                 |                 |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                       | (B                                       | -                     | -                                                                                                              | -                 | -               |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                       | 00                                       | 1                     |                                                                                                                |                   |                 |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 1                                     |                                          |                       |                                                                                                                |                   |                 |                         |                           |
| Did groundwater parameters stabilize? Yes// No If no, why not?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                       | all w                                    | 1                     |                                                                                                                | +                 |                 |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | · · · · · · · · · · · · · · · · · · · | 0                                        | no why not?           | n17 (                                                                                                          | OM                |                 |                         |                           |
| Vid drawdown stabilize? Kes / No If no, why not?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 0                                     | ~                                        |                       |                                                                                                                | - 2 Sec. 10 0.0.1 | Other           |                         |                           |
| Vas flowrate between 0.03 and 0.15 GPM? Red No If no, why not? 0.13 U.D.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                       |                                          |                       | -1                                                                                                             |                   | Other.          |                         |                           |
| Vas flowrate between 0.03 and 0.15 GPM? (ed/No If no, why not? 0.13 (JPM)<br>Vater Color: Gear Yellow Orange Brown/Black (Sand/Silt) Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~                  | LUCK. OF N                            |                                          | STONAG F              |                                                                                                                | 1) 17             | 141 100         | - HIAI                  | NI                        |
| Vas flowrate between 0.03 and 0.15 GPM?     Geal No     If no, why not?     0.13     C.P.M       Vater Color:     Qear     Yellow     Orange     Brown/Black (Sand/Silt)     Other:       Vell Condition:     Lock:     DN     Labeled with LOC ID:     D/D N     FUEL     Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 010011, 103/100/   | THINE                                 |                                          | 74 - 00               | Notes/Comments                                                                                                 | - Ro 110          | M UF            | 10.50                   |                           |
| Vas flowrate between 0.03 and 0.15 GPM?     Feel/No     If no, why not?     0.13     0.00       Vater Color:     Gear     Yellow     Orange     Brown/Black (Sand/Silt)     Other:       Vell Condition:     Lock: DN     Labeled with LOC ID: S/N     FUEL Comments:       Sheen: Yes / NO     Odor reg     STR DNG     Notes/Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 2               |                                       | Vibra                                    | DPO Dissouled in a    | Ifala                                                                                                          |                   |                 |                         |                           |
| Vas flowrate between 0.03 and 0.15 GPM? (ediNo If no, why not?     0.13 (JPM)       Vater Color:     Qear     Yellow     Orange       Vater Color:     Qear     Yellow     Orange       Vell Condition:     Lock: DN     Labeled with LOC ID: D/N       Vell Condition:     Lock: DN     Labeled with LOC ID: D/N       Scheen:     Yes / NO     Odor reg / No       Odor reg / No     STR DNG       IS     STAINED       BLACK     POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 3               | 0                                     | -                                        |                       | The second s | = et              |                 |                         |                           |
| Vas flowrate between 0.03 and 0.15 GPM? (ref/No     If no, why not?     0.13     0.00       Vater Color:     Qear     Yellow     Orange     Brown/Black (Sand/Silt)     Other:       Vell Condition:     Lock: DN     Labeled with LOC ID: S/N     FUEL comments:       Sheen: Yes / No     Odor; Ge3 / No     STRDNG     Notes/Comments:       If STRDNG     Doc STRDNG     Notes/Comments:       Approx     Doc SVDC, GRO, DRO, Dissovled Iron, Sulfate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laboratory Analys  |                                       | Approxima                                | te volume added (mL): | HNC                                                                                                            |                   |                 |                         |                           |
| Vas flowrate between 0.03 and 0.15 GPM? (ref/No       If no, why not?       0.13       0.001         Vater Color:       Gear       Yellow       Orange       Brown/Black (Sand/Silt)       Other:         Vater Color:       Lock: ØN       Labeled with LOC ID: ØN       FUEL Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratory Analys  | inples. [ 1/14                        |                                          |                       |                                                                                                                |                   |                 |                         |                           |
| Vas flowrate between 0.03 and 0.15 GPM?     Yell/No     If no, why not?     0.13     0.001       Vater Color:     Gear     Yellow     Orange     Brown/Black (Sand/Silt)     Other:       Vell Condition:     Lock: DN     Labeled with LOC ID: D/N     FUEL Comments:       Sheen: Yes / No     Odor, Gea / No     STR D/N F     Notes/Comments:       Sheen: Yes / No     Odor, Gea / No     STR D/N F     Notes/Comments:       Staboratory Analyses (Circle):     Voc SVOC, GRO, DRO, Dissovled Iron, Sulfate)       Aboratory Analyses (Circle):     Approximate volume added (mL): HCI =     HNQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratory Analys  | LLE                                   |                                          |                       |                                                                                                                |                   |                 |                         |                           |

| GROUNDWA'                    | TER SAMPL         | E FORM                                          | E F C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OU2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                       | Ft. Wainwi              | right, Alask              |
|------------------------------|-------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-------------------------|---------------------------|
| Project #:                   | 90                | 011-17                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DRMO / DRM                            | MO4 / WSW             |                         |                           |
| Date:                        | 8/7               | +/19                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe/Well #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 4P. 7560              |                         |                           |
| Time:                        | 117               | 25                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19FWOU2                               | _                     |                         |                           |
| Sampler:                     | A                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second s |                                       |                       |                         |                           |
| Weather:                     |                   | Cloudy                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Outside Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65 F                                  |                       |                         |                           |
| QA/QC Sample ID/             |                   |                                                 | na WG / 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-7070 / 1135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | mall clip             | MS/MSD Performed        | Yest No                   |
| Purge Method:                | Peristaltic Pump  | Submersible Bladde                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                     | -                     | / Hydrasleeve / Bladde  | 0                         |
| Equipment Used for           |                   | YSI# D                                          | A DESCRIPTION ADDRESS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water Level:                          |                       | / Hydrasieeve / Bladde  | er / Otrier               |
| Free Product Obse            |                   |                                                 | If Yes, Depth to Prod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | teflon-line             | Lulie                     |
| Column of Water in           |                   |                                                 | in root papertier root                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampling Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                    | Ya                    | 111000-1010             | . Tobis                   |
| Total Depth in Prob          | Sec. I. T. T.     | 20.02                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Well Screenen Across                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Below water                           | table                 |                         |                           |
| Depth to Water from          |                   | 10.07                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth tubing / pump inta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                                     | 121                   | eet below top of casing |                           |
| Column of Water in           |                   | = 9,9.                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *Tubing/pump intake must b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 2 1 1 1 1 1 1 1 1 1   |                         |                           |
|                              |                   | 064) or 2" (X 0.163) pr                         | An other states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the water table, or in the mk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                       |                         |                           |
| Volume of Water in           |                   | $\sim$                                          | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | iou interrui for tren |                         | DI KADID                  |
| volume of vvaler in          | TT TODE/Weij Cas  | ing (gai).                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                       |                         | -                         |
| Contraction Terrority of the |                   | 0.03 to 0.15 GPM unti<br>yield well using a no- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or 3 casing volumes have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | been remove                           | d. If well draws      | down below tubing o     | or pump intake            |
| stop parging and s           | sample as a low-y | yield well using a no-                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - to Z kato                           |                       |                         |                           |
|                              |                   | 1.5                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | It least 3 of the 5 parar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | v must stadiliz       | e                       | <0.33 feet                |
| Field Parameters:            |                   | ±3%<br>(or ±0.2°C max)                          | ±3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ±10%<br>(<1mg/L, ±0.2 mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±0.1 units                            | ±10 mV                | ±10%<br>(<10NTU, ±1NTU) | after initial<br>drawdown |
| Water Removed                | Time Purged       | Temperature                                     | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dissolved O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH                                    | Potential             | Turbidity               | Water Level               |
| (gal)                        | (min)             | (°C)                                            | (mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.1                                  | (mV)                  | (NTU)                   | (ft)                      |
| 1.5                          | 15                | 7.99                                            | 0.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.68                                  | 184.4                 | 1                       | 10.08                     |
| 2.0                          | 20                | 2.92                                            | 0.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,90                                  | 161.2                 | 4.48                    | 1008                      |
| 2.5                          | 25                | 7.90                                            | 0.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.96                                  | 147.6                 | 4.03                    | 10.05                     |
| 3.0                          | 30                | 7.90                                            | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.09                                  | 130.7                 |                         |                           |
| 3.5                          | 35                | 7.91                                            | 0.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · | 118.2                 | 3.74                    | 10.08                     |
|                              | 40                | 7.92                                            | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.16                                  | 108.6                 | 2.77                    | 10-08                     |
| 4.0                          | 70                | F.16                                            | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.11                                  | 100.0                 | 4. 17                   | 10.08                     |
|                              |                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | 1                       |                           |
|                              |                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 2                     | 1                       |                           |
|                              |                   | × ×                                             | h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 175                   | 5                       |                           |
|                              |                   |                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1 V                   | -                       |                           |
| -                            |                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | 1                       | -                         |
|                              |                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                         |                           |
|                              |                   | -                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     |                       |                         |                           |
|                              |                   | 0                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -                     |                         |                           |
| Did groundwater p            | 0                 | $\mathcal{O}$                                   | why not?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                       |                         |                           |
| Did drawdown sta             | bilize? Yes) No   | If no, why not?                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                         |                           |
| Was flowrate betw            | een 0.03 and 0.15 | 5 GPM? Yes/No If                                | no, why not?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                         |                           |
| Water Color:                 | Clear             | Yellow                                          | Orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Brown/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lack (Sand/Silt                       | ) Other:              | Initial Pri             | St Olar                   |
| Well Condition:              | Lock N/N          | Labeled wi                                      | th LOC ID: Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                     |                       |                         |                           |
| Sheen: Yes / No)             |                   | Odor: Yes / No                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Notes/Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                         |                           |
| 0                            |                   | ~                                               | Eve-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                         |                           |
|                              | es (Circle):      | VOC/SVOC. GRO.                                  | DRO, Dissovled Iron,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sulfate )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                     |                       |                         | _                         |
| Laboratory Analys            | ~ ~               |                                                 | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - /                                   |                       |                         |                           |
|                              | nples: Ø/N        | Approxima                                       | te volume added (mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): HCI = HNQ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                       |                         |                           |


| GROUNDWAT            | ER SAMPLE                             | FORM                                         | 0                                             | U2                                 |                   |                   | Ft. Wainw               | right, Alaska               |
|----------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------|-------------------|-------------------|-------------------------|-----------------------------|
| Project #:           | 90                                    | 11-17                                        | J. T                                          | Site Location:                     | DRMO1/DRM         | NON / WSW         |                         |                             |
| Date:                | 8/7                                   | 119                                          |                                               | Probe/Well #:                      | AD.               | -1040             | 15 MW                   |                             |
| Time:                | 120                                   | 50                                           |                                               | Sample ID:                         | 19FWOU2           | wg wg             |                         |                             |
| Sampler:             | LB                                    |                                              |                                               |                                    | 1                 | 0                 |                         |                             |
| Weather:             | cioi                                  | 104                                          |                                               | Outside Temperature:               | 5901              | E                 |                         |                             |
| QA/QC Sample ID/1    |                                       |                                              | ·                                             |                                    |                   |                   | MS/MSD Performed        | ? Yes No                    |
| Purge Method:        | Peristaltic Pump / \$                 | ubmersible / Bladde                          | ,                                             | Sample Method:                     | Peristaltic Pun   | np / Submersible  | / Hydrasleeve / Bladd   | er / Other                  |
| Equipment Used fo    | or Sampling:                          | YSI # 9                                      | Turbidity Meter #:                            | 2                                  | Water Level:_     | Vel.              |                         | _                           |
| Free Product Obse    | rved in Probe/We                      | II? Yes/No                                   | If Yes, Depth to Produc                       | st:                                |                   |                   |                         |                             |
| Column of Water in   | Probe/Well                            | -                                            |                                               | Sampling Depth                     |                   |                   |                         |                             |
| Total Depth in Probe | Well (feet btoc):                     | 20.                                          | 30                                            | Well Screened Across               | Below water       | table             |                         |                             |
| Depth to Water from  | TOC (feet):                           | . 12.                                        | 65                                            | Depth tubing / pump inta           | ake set* approx.  | 14.6              | eet below top of casing | a                           |
| Column of Water in I | Probe/Well (feet):                    | - 7.                                         | 65                                            | *Tubing/pump intake must           | be set approximat |                   |                         |                             |
|                      |                                       | 64) or 2" (X p.163) or                       | 4" (X 0.65)                                   | the water table, or in the m       |                   |                   |                         |                             |
| Volume of Water in 1 |                                       | ~                                            | 1.24                                          |                                    |                   |                   |                         |                             |
|                      |                                       | 0 (3-1)                                      |                                               |                                    |                   |                   |                         |                             |
|                      |                                       | 03 to 0.15 GPM unti<br>ield well using a no- | I parameters stabilize or<br>purge technique. | r 3 casing volumes hav             | e been remove     | d. If well draws  | down below tubing o     | or pump intake              |
|                      |                                       |                                              | Ati                                           | least 3 of the 5 para              | meters belov      | v must stabiliz   | e                       | 1.000                       |
|                      |                                       | ±3%                                          |                                               | ±10%                               |                   |                   | ±10%                    | <0.33 feet<br>after initial |
| Field Parameters:    |                                       | (or ±0.2°C max)                              | ±3%                                           | (<1mg/L, ±0.2 mg/L)                | ±0.1 units        | ±10 mV            | (<10NTU, ±1NTU)         | drawdown                    |
| Water Removed (gal)  | Time Purged<br>(min)                  | Temperature<br>(°C)                          | Conductivity<br>(mS/cm)                       | Dissolved O <sub>2</sub><br>(mg/L) | рН                | Potential<br>(mV) | Turbidity<br>(NTU)      | Water Level<br>(ft)         |
| 1.3                  | 10                                    | 9.10                                         | 0.901                                         | 0.25                               | 6.67              | 70.2              | 3698                    | 12.79                       |
| 1.95                 | 15                                    | 9.29                                         | 1.895                                         | 0.69                               | 6.67              | 100.1             | 28.65                   | 12.70                       |
| 7.6                  | 20                                    | 9.25                                         | 0.885                                         | 10.72                              | 6.68              | 55.6              | 10.10                   | 12.75                       |
| 3.25                 | 25                                    | 930                                          | 0.880                                         | 0,71                               | 11.68             | 47.4              | 6.65                    | 12.79                       |
| 3.9                  | 30                                    | 932                                          | 0.821                                         | 0.62                               | 6.1.8             | 44.4              | 5.00                    | 12 80                       |
| 4.55                 | 35                                    | 9,29                                         | 0881                                          | 0.59                               | 4.68              | 43.8              | 5.16                    | 12.8                        |
|                      |                                       | /                                            |                                               |                                    |                   |                   |                         |                             |
|                      |                                       | -                                            | 5                                             |                                    | -                 |                   |                         |                             |
|                      |                                       | /                                            |                                               |                                    | 1                 |                   |                         |                             |
|                      |                                       | <                                            |                                               |                                    |                   |                   |                         | -                           |
|                      |                                       | 172                                          |                                               |                                    |                   | -                 |                         | -                           |
|                      |                                       | - 42                                         |                                               | 1.1                                |                   |                   |                         |                             |
| E                    |                                       |                                              |                                               |                                    |                   |                   |                         | -                           |
| Did constants of     |                                       | Que ve                                       |                                               |                                    |                   |                   |                         | L                           |
|                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | e? Yes / No If no,                           | why hot?                                      |                                    |                   |                   |                         |                             |
| Did drawdown stat    | $\sim$                                |                                              |                                               |                                    |                   |                   |                         |                             |
| Was flowrate betwe   | 0                                     |                                              | no, why not?                                  | -                                  |                   |                   | A. die                  | true                        |
| Water Color:         | Clear                                 | Yellow                                       | Orange                                        |                                    | Black (Sand/Silt  | ) Other:          | Dita                    | TINI                        |
| Well Condition:      | Lock Y/N                              |                                              | th LOC ID: 10 N                               | Comments                           |                   |                   | CPHOT                   | 0                           |
| Sheen: Yes / No      |                                       | Odor: Yes / Mo                               |                                               | Notes/Comments                     | ·                 |                   |                         |                             |
| Laboratory Analys    | es (Circle):                          | . VOO SVOC GRO                               | PRO Dissovled Iron, Su                        | lifate                             |                   |                   |                         |                             |
| pH checked of sam    |                                       | 0                                            | te volume added (mL):                         |                                    | - 0               |                   |                         |                             |
| Purge Water          |                                       | - a provide                                  |                                               |                                    |                   |                   |                         |                             |
| Gallons generated:   | 4.55                                  | Containerized and                            | disposed as IDW? Yes) N                       | do.                                | If No, why not    | 2                 |                         |                             |
| Disposal method*: P  |                                       | 0                                            | 0                                             | he DERA Building for ch            |                   |                   |                         |                             |
|                      | 13                                    | L'I Traste                                   | , unge water stored in t                      | are being for ch                   | a actenzation pr  | ion to disposal   |                         |                             |
| Sampler's Initials:  | <u></u>                               |                                              |                                               |                                    |                   |                   |                         |                             |

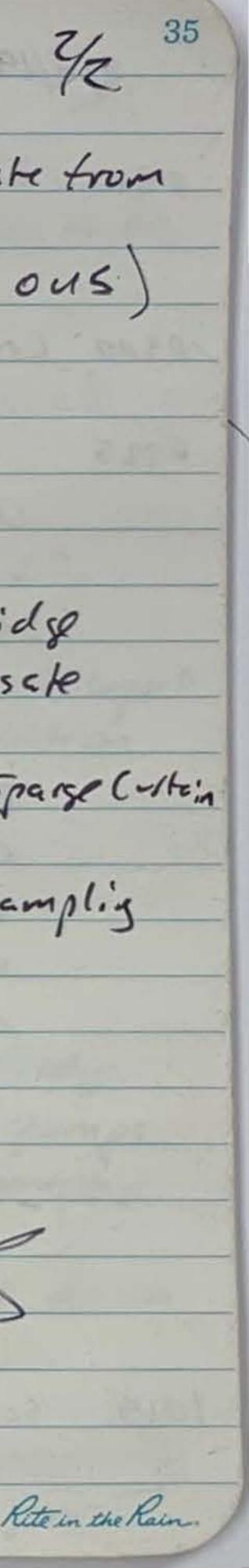
|                                         | TER SAMPLE       | FORM                                           |                                   | 0U2                           |                   |                              | Ft. Wainw               | right, Alaska                         |  |
|-----------------------------------------|------------------|------------------------------------------------|-----------------------------------|-------------------------------|-------------------|------------------------------|-------------------------|---------------------------------------|--|
| Project #:                              |                  | 11-17                                          |                                   | Site Location:                | ORMOT) DRM        | 104 / WSW                    |                         |                                       |  |
| Date:                                   | 8/7              | 119                                            |                                   | Probe/Well #:                 | AP-7559           |                              |                         |                                       |  |
| Time:                                   | 1                | 300                                            |                                   | Sample ID:                    | 19FWOU2 11 WG     |                              |                         |                                       |  |
| Sampler:                                | AS               |                                                |                                   |                               |                   |                              |                         |                                       |  |
| Weather:                                | Mostly           | loudy                                          |                                   | Outside Temperature:          | 70.0              |                              |                         |                                       |  |
| QA/QC Sample ID/                        | Time/LOCID:      | ~ '                                            | <u></u>                           |                               |                   | d clip                       | MS/MSD Performed        | ? Yes/ 10                             |  |
| Purge Method:                           | Peristaltic Pump | Submersibley Bladder                           |                                   | Sample Method:                |                   |                              | Hydrasleeve / Bladd     | er / Other                            |  |
| Equipment Used fo                       | or Sampling:     | YSI#                                           | Turbidity Meter #:                | Y                             | Water Level:_     | Keck                         |                         |                                       |  |
| Free Product Obse<br>Column of Water in |                  | II? Yes No                                     | If Yes, Depth to Produ            | Sampling Depth                |                   | Sed                          | includ tetl             | on line                               |  |
| Total Depth in Prob                     | and the second   | 1.0.0                                          | 1                                 | Well Screened Across          | / Below water     | table                        |                         |                                       |  |
| Depth to Water from                     |                  | 10.54                                          |                                   | Depth tubing / pump inta      |                   |                              | eet below lop of casing | 1                                     |  |
| Column of Water in                      |                  | 0.11                                           |                                   | *Tubing/pump intake must l    |                   |                              |                         |                                       |  |
|                                         |                  | 64) of 2" (X 0.163) or                         |                                   | the water table, or in the mi | 1. 7. 1           |                              |                         |                                       |  |
| Volume of Water in                      |                  |                                                | 1,54                              |                               |                   | and the second second second |                         |                                       |  |
|                                         |                  |                                                |                                   |                               |                   |                              |                         | -                                     |  |
|                                         |                  | 03 to 0.15 GPM until<br>ield well using a no-p |                                   | or 3 casing volumes have      | e been removed    | I. If well draws             | down below tubing o     | or pump intake                        |  |
|                                         |                  |                                                | A                                 | t least 3 of the 5 para       | meters below      | must stabiliz                | e                       | -0.22 (                               |  |
|                                         |                  | ±3%                                            | 1                                 | ±10%                          | 1                 | 1                            | ±10%                    | <0.33 feet<br>after initial           |  |
| Field Parameters:                       |                  | (or ±0.2°C max)                                | ±3%                               | (<1mg/L, ±0.2 mg/L)           | ±0.1 units        | ±10 mV                       | (<10NTU, ±1NTU)         | drawdown                              |  |
| Water Removed                           | Time Purged      | Temperature                                    | Conductivity                      | Dissolved O <sub>2</sub>      | рН                | Potential                    | Turbidity               | Water Level                           |  |
| (gal)                                   | (min)            | (°C)                                           | (mS/cm)                           | (mg/L)                        |                   | (mV)                         | (NTU)                   | (ft)                                  |  |
| 1.5                                     | 15               | 9.85                                           | 0,406                             | 0.50                          | 6.49              | 184,9                        | 6.91                    | 10.58                                 |  |
| 2.0                                     | 20               | 9.83                                           | 0.407                             | 0.53                          | 6.58              | 179.4                        | 5.88                    | 10,53                                 |  |
| 2,5                                     | 25               | 9.84                                           | 0,405                             | 0,53                          | 6.55              | 130.1                        | 5.66                    | 10.58                                 |  |
| 3.0                                     | 30               | 9.80                                           | 0,406                             | 0.49                          | 6.56              | 180.1                        | 3147                    | 10.58                                 |  |
| 3.5                                     | 35               | 9.82                                           | 0.405                             | 0.49                          | 6.59              | 1780                         | 3,43                    | 10.58                                 |  |
|                                         |                  |                                                |                                   |                               |                   |                              |                         | · · · · · · · · · · · · · · · · · · · |  |
|                                         |                  |                                                |                                   | 1 k                           |                   |                              | ·                       | · · _ · _ ·                           |  |
|                                         | /                |                                                |                                   |                               |                   |                              | 1                       |                                       |  |
|                                         | _(               |                                                |                                   |                               |                   |                              | 11                      |                                       |  |
|                                         |                  |                                                | 1                                 | /                             |                   | 1                            | L                       |                                       |  |
|                                         |                  |                                                |                                   |                               |                   | //                           |                         |                                       |  |
|                                         |                  |                                                |                                   |                               | -                 | ~ 1                          |                         |                                       |  |
|                                         |                  |                                                |                                   |                               | 1                 |                              | 1                       |                                       |  |
|                                         |                  |                                                |                                   |                               | 1                 |                              |                         |                                       |  |
| Did groundwater p<br>Did drawdown stat  | bilize? Yes / No | 0                                              | why not?<br>o, why not?<br>Orange | Brown/E                       | Black (Sand/Silt) | Other:                       |                         |                                       |  |
| Was flowrate betw<br>Water Color:       | ()               | Labeled with                                   | LOCID                             | Comments:                     | _                 |                              |                         |                                       |  |
|                                         | Lock Y N         |                                                | -                                 | Notes/Comments:               | 1                 |                              |                         |                                       |  |
| Water Color:                            | Lock             | Odor: Yes / No                                 |                                   |                               |                   |                              |                         |                                       |  |
| Water Color:<br>Well Condition:         | Lock VN          | Odor: Yes / No                                 |                                   |                               |                   |                              |                         |                                       |  |
| Water Color:<br>Well Condition:         | U                | ~                                              | DRO Dissovled Iron, S             |                               |                   |                              |                         |                                       |  |

| GROUNDWAT                                  | ER SAMPLE                                                                                                       | FORM                                         | 0                                         | U2                            |                    |                       | Ft. Wainw                             | right, Alaska               |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------|--------------------|-----------------------|---------------------------------------|-----------------------------|
| Project #:                                 | 90                                                                                                              | 11-17                                        |                                           | Site Location:                | DRMO1 HORN         | D4/WSW                |                                       |                             |
| Date:                                      | 8/2                                                                                                             | 119                                          |                                           | Probe/Well #:                 | AP-                |                       | 6 mw                                  |                             |
| Time:                                      | 1-                                                                                                              | 205                                          |                                           | Sample ID:                    | 19FWOU2            | Transaction of the    |                                       |                             |
| Sampler:                                   | 61                                                                                                              | 3                                            |                                           |                               |                    |                       |                                       |                             |
| Weather:                                   | 1.LOL                                                                                                           | DY                                           |                                           | Outside Temperature:          | 590                | F                     |                                       |                             |
| QA/QC Sample ID/                           | that a second second                                                                                            | P7                                           |                                           | entries (online transfer      |                    |                       | MS/MSD Performed                      | 2 Yest NG                   |
|                                            |                                                                                                                 |                                              |                                           |                               | CHECK TONE IN      | -                     | A A A A A A A A A A A A A A A A A A A | 0                           |
|                                            |                                                                                                                 | YSI # 9                                      |                                           | Sample Method:                | Automotion - Are   | np / Submersible      | / Hydrasleeve / Bladd                 | er / Other                  |
| Equipment Used fo                          |                                                                                                                 |                                              | Turbidity Meter #:                        | <u> </u>                      | Water Level:_      | yer                   |                                       |                             |
| Free Product Obse                          |                                                                                                                 | Il? Yes/No                                   | If Yes, Depth to Produc                   | STATE TRACK                   |                    |                       |                                       |                             |
| Column of Water in<br>Total Depth in Probe | and the second second                                                                                           | 20                                           | 29                                        | Sampling Depth                | V. Delaurunter     | table.                | _                                     |                             |
|                                            |                                                                                                                 |                                              | 86                                        | Well Screened Across          |                    | and the second second | eet below top of casing               |                             |
| Depth to Water from                        |                                                                                                                 |                                              | 53                                        | Depth tubing / pump inta      |                    |                       |                                       |                             |
| Column of Water in                         | a state of the local state of the                                                                               | =                                            |                                           | "Tubing/pump intake must t    |                    |                       |                                       |                             |
| Volume of Water in                         |                                                                                                                 | 64) or 2"(X 0.163) or<br>ng (gal):           | 1-35                                      | the water table, or in the mi | ddie of the screen | ed interval for wells | screened below the wat                | er table                    |
|                                            |                                                                                                                 | 03 to 0.15 GPM unti<br>ield well using a no- |                                           | r 3 casing volumes have       | e been removed     | d. If well draws      | down below tubing o                   | or pump intake,             |
|                                            | 100                                                                                                             | 12.01                                        | At                                        | least 3 of the 5 parai        | meters below       | must stabiliz         | е                                     | F. S.J.                     |
| and the second second                      |                                                                                                                 | ±3%                                          |                                           | ±10%                          |                    |                       | ±10%                                  | <0.33 feet<br>after initial |
| Field Parameters:                          |                                                                                                                 | (or ±0.2°C max)                              | ±3%                                       | (<1mg/L, ±0.2 mg/L)           | ±0.1 units         | ±10 mV                | (<10NTU, ±1NTU)                       | drawdown                    |
| Water Removed                              | Time Purged                                                                                                     | Temperature                                  | Conductivity                              | Dissolved O <sub>2</sub>      | pH                 | Potential             | Turbidity                             | Water Level                 |
| (gal)                                      | (min)                                                                                                           | (°C)                                         | (mS/cm)                                   | (mg/L)                        | 1.1                | (mV)                  | (NTU)                                 | (ft)                        |
| 1.5                                        | 10                                                                                                              | 6.10                                         | 0.435                                     | 0.97                          | 7.15               | -70.1                 | 68.55                                 | 11.50                       |
| 2.25                                       | 15                                                                                                              | 1. 0k                                        | 0 438                                     | 0 90                          | 714                | -87.5                 | 55.76                                 | 11. 29                      |
| 3                                          | 20                                                                                                              | 10.03                                        | 1.479                                     | 1 45                          | 118                | - 4-1                 | 70.61                                 | 11.85                       |
| 3.75                                       | 25                                                                                                              | 5.98                                         | 1.428                                     | 0.62                          | 1710               | -88.0                 | 1211                                  | 11 69                       |
| 4.5                                        | 30                                                                                                              | 5.90                                         | 0.429                                     | 0,60                          | 7.20               | -87.1                 | 11 110                                | 11.55                       |
| 4,75                                       | 50                                                                                                              | NIAL                                         | 0 721                                     | 0.00                          | 1.00               | 2 /1                  | 11.40                                 | <i>aria</i> i               |
| 4113                                       | - r '                                                                                                           | 11-                                          |                                           |                               |                    |                       |                                       |                             |
|                                            |                                                                                                                 |                                              |                                           |                               |                    |                       |                                       |                             |
|                                            | $\leq$                                                                                                          |                                              |                                           |                               |                    |                       |                                       |                             |
|                                            |                                                                                                                 | 0                                            |                                           |                               |                    |                       |                                       |                             |
|                                            | /                                                                                                               | r                                            |                                           |                               | -                  |                       | ·                                     | 1. X                        |
|                                            | ~                                                                                                               |                                              |                                           |                               |                    |                       |                                       |                             |
|                                            | 45                                                                                                              | -                                            |                                           |                               | -                  |                       |                                       |                             |
|                                            |                                                                                                                 |                                              |                                           |                               |                    |                       | -                                     |                             |
|                                            |                                                                                                                 | 1                                            |                                           |                               |                    |                       |                                       |                             |
|                                            |                                                                                                                 | e? Yes / No If no,                           | why not?                                  |                               |                    |                       |                                       |                             |
| Did drawdown stat                          |                                                                                                                 |                                              | in an |                               |                    |                       |                                       |                             |
| Was flowrate betwe                         |                                                                                                                 |                                              | no, why not?                              |                               |                    |                       |                                       |                             |
| Water Color:                               | Clean                                                                                                           | Yellow                                       | Openge                                    | Brown/E                       | Black (Sand/Silt)  | Other:                |                                       |                             |
| Well Condition:                            | Lock Y/N                                                                                                        | 0                                            | th LOC ID YIN                             | Comments:                     |                    |                       |                                       |                             |
| Sheen: Yes / NO                            |                                                                                                                 | Odor Yes / No                                |                                           | Notes/Comments:               | 5                  |                       |                                       |                             |
| Laboratory Analys                          | es (Circle):                                                                                                    | VOC SVOC. GRO.                               | DRO Dissovled Iron, Su                    | iffate                        |                    |                       |                                       |                             |
| pH checked of sam                          | ~                                                                                                               | 9                                            | te volume added (mL):                     | 2.1                           | - ()               |                       |                                       |                             |
|                                            |                                                                                                                 |                                              |                                           |                               | -                  |                       |                                       |                             |
| Purge Water                                | the second se |                                              |                                           |                               |                    |                       |                                       |                             |

# Submersible Pump Equipment Blank

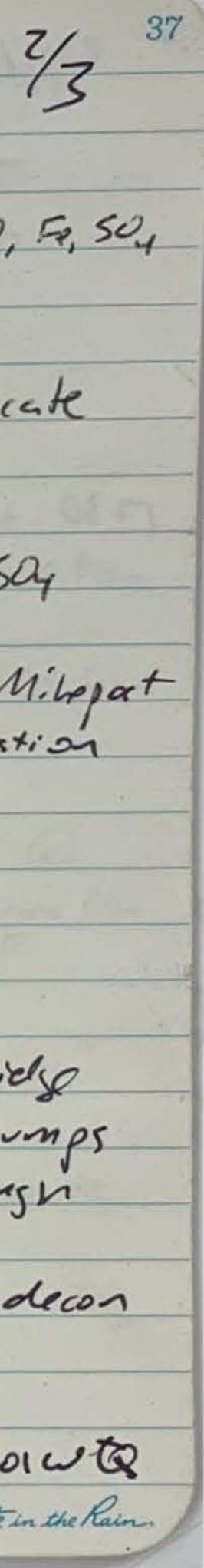
| Rinsate #:    | 1                        |         |
|---------------|--------------------------|---------|
| Sample ID:    | 19 FWOUZEBOI WQ          |         |
| Date:         | 8/7/19                   |         |
| Time:         | 1530                     |         |
| Analysis:     | VOC, DRO, Fe, SOy        |         |
| Well that the | e pump was last used on: | Ar-7560 |



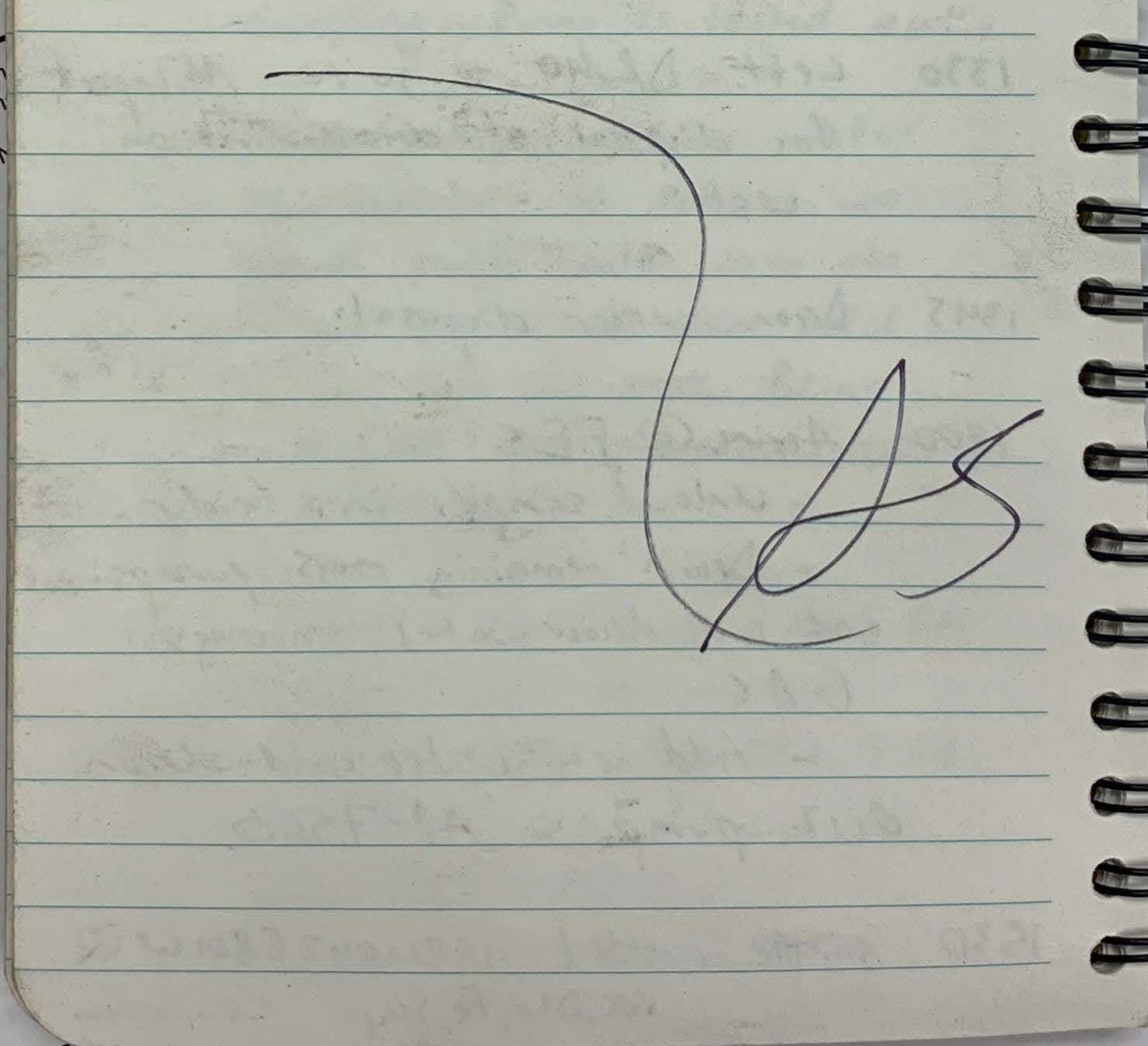



Name Aaron Swank Fairbanks Environmental Services Address 3538 International St Fairbanks, AK 99709 907-460-0484 Phone Email Projects




34 8/6/19 Cloudy, 60°F 0800 Arrive @ FES and prop for Sampling - OUZ DRMO 3-Party 0845 Left FES for FUA. Construction on the way to DR no 0930 Arrin @ DRMO AP-10017R Sample 19 FWOUZOIWG 1030 AP-10017R Vac, Sulfate, Iron 1140 Sample 19FWOUZOZUG AP-10018R VUC, SULFER, Iron 1245 Sample 19FW OUZO3 WG AP-10015R VOL, Sulfatt, inva Sample 19FWOUZOY WG 1355 AP-10016R Vor, sulfate, iron Sample 19FWOUZ05W6 1500 AP-MOON 8914. R - UDC, Sulfatt, iron 1515 left site and to rect Chris Bour @ ous

1/2 \$6/19 P. Cloudy, 70°F 1930 Pick up prop for rinsate from C. Boise (AP-10035MW - OUS) 1545 Left Ous 1600 Arrim @ FES. - Transfer samples to fridge - bein pomp for insche Rinsak #4 - OUS Sparge (-1/tim EBOYUQ 1635 - Drin props for sampling + MOITOW. End of Day 1730 And Designation




Cloudy, 60°F 36 8/7/19 0800 Arrive at FES and organize for Sampling @ Ouz today. 0900 Left FES for Fort Wainwright 0925 Arrive at WSW. Met Doyon utilities. They need to enersite the pump for pursing and Sampling. Pump is locked out. Called Brian Adams - DPU Environmental - to ensure we could purge mater into the floor drain and also add water to the tank. Brian approved this procedure for samplins. Starting tank level = 22.5 ft. Purge for 30-minutes Ending tank level = 22.7ft. 1015 Sample 19FWOUZO6WG - VOL, SVOL, GRO, DRO

\$/2/19 Cloudy, 60°F Sample 19PWOUZ08WG 1125. AP. 7560 VUC, DRO, 50, 50, MS/MSD Sample 19FWOUZ09WG 1135 AP.7070 Deplicate C PO Sample 19FWOUZILWG ·1300 AP-7559 VOC, Fr, SQ Left DRMO to go to Milipat for disposal of deronteminstion 1330 vater. 1345 Deron water disposal Arrine @ FES 1400 - Unload samples into tricky - Deron remaining ous jumps and run deron water through GAC -- Add we water and decon P Qui pimp - Al-7560 sample - sinsakl 19FLOUZEBOILD 1530 VOC, DRO, Fe, SOy Rite in the Rain.



38 8/7/19 P. Cloudy, 75°F 3/3 - Finish decontamination Maining OUZ pimps. ot - Clean up & Finish Sampling demob. End of Dey 1730



**APPENDIX D** 

PHOTO LOG



OU2 DRMO1—Groundwater sampling at AP-7560 (view W)

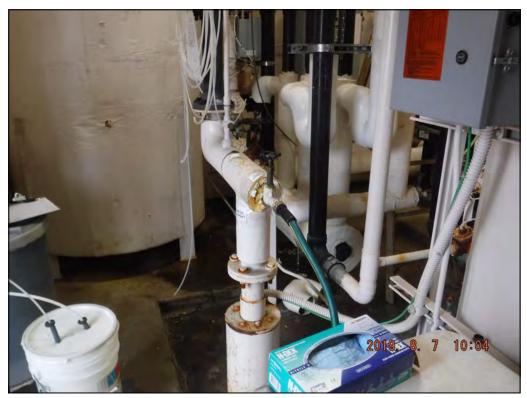


OU2 DRMO1 — Groundwater sampling at AP-10017R (view W)



OU2 DRMO4 — Groundwater sampling at AP-10445MW (view SE)




OU2 DRMO4 — Purge water from AP-10445MW (view N/A)



OU2 DRMO — Door at the Building 5009 Well House (view N)



OU2 DRMO — Pump lockout for the Water Supply Well (view N/A)



OU2 DRMO — Spigot for the WSW in the Building 5009 Well House (view N/A)



OU2 DRMO — Hose for purge water in the Building 5009 Well House (view N/A)



OU2 DRMO — Discharge of purge water into the floor drain at the Building 5009 Well House (view N/A)



OU2 DRMO — Pump controller for the WSW in the Building 5009 Well House (view N/A)



OU2 DRMO — Purge water prior to sampling of the WSW (view N/A)



OU2 DRMO — Sampling of the WSW (view N/A)



OU2 DRMO — Disposal of decontamination water at the DRMO yard (view SE)

**APPENDIX E** 

LTMO ANALYSIS RESULTS

MAROS Summary 1—DRMO1 Statistical Trend Analysis Summary

# MAROS Statistical Trend Analysis Summary

Project: OU2 DRMO 2019

Location: Fort Wainwright

User Name: FES State: Alaska

Time Period: 10/1/2010 to 8/7/2019 Consolidation Period: No Time Consolidation Consolidation Type: Median Duplicate Consolidation: Average ND Values: 1/2 Detection Limit J Flag Values : Actual Value

| Well             | Source/<br>Tail | Number<br>of<br>Samples | Number<br>of<br>Detects | Average<br>Conc.<br>(mg/L) | Median<br>Conc.<br>(mg/L) | All<br>Samples<br>"ND" ? | Mann-<br>Kendall<br>Trend | Linear<br>Regression<br>Trend |
|------------------|-----------------|-------------------------|-------------------------|----------------------------|---------------------------|--------------------------|---------------------------|-------------------------------|
| TETRACHLOROETHY  | LENE(PCE)       | _                       |                         |                            |                           |                          |                           |                               |
| AP-10015         | τ               | 13                      | 10                      | 1.5E-03                    | 8.1E-04                   | No                       | PI                        | PI                            |
| AP-10016         | S               | 13                      | 12                      | 6.5E-03                    | 5.3E-03                   | No                       | NT                        | NT                            |
| AP-10017         | s               | 13                      | 12                      | 1.1E-03                    | 9.7E-04                   | No                       | NT                        | NT                            |
| AP-10018         | S               | 13                      | 12                      | 5.2E-03                    | 2.2E-03                   | No                       | D                         | D                             |
| AP-7559          | т               | 13                      | 11                      | 3.1E-03                    | 3.4E-03                   | No                       | NT                        | NT                            |
| AP-7560          | т               | 10                      | 9                       | 2.0E-03                    | 1.9E-03                   | No                       | S                         | NT                            |
| AP-8914          | s               | 13                      | 10                      | 2.7E-03                    | 5.7E-04                   | No                       | NT                        | PD                            |
| TRICHLOROETHYLEN | E (TCE)         |                         |                         |                            |                           |                          |                           |                               |
| AP-10015         | T               | 13                      | 13                      | 1.8E-03                    | 1.5E-03                   | No                       | S                         | 5                             |
| AP-10016         | S               | 13                      | 12                      | 1.1E-03                    | 1.2E-03                   | No                       | NT                        | NT                            |
| AP-10017         | S               | 13                      | 6                       | 2.7E-04                    | 2.5E-04                   | No                       | D                         | D                             |
| AP-10018         | S               | 13                      | 11                      | 2.9E-03                    | 3.1E-03                   | No                       | D                         | D                             |
| AP-7559          | т               | 13                      | 11                      | 5.0E-04                    | 5.1E-04                   | No                       | NT                        | S                             |
| AP-7560          | т               | 10                      | 8                       | 1.6E-03                    | 1.6E-03                   | No                       | NT                        | NT                            |
| AP-8914          | S               | 13                      | 11                      | 2.4E-03                    | 1.9E-03                   | No                       | S                         | NT                            |

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Version 2.2, 2006, AFCEE

Wednesday, October 02, 2019

MAROS Summary 2—DRMO1 Spatial Moment Analysis Summary

# MAROS Spatial Moment Analysis Summary

| Project:  | OU2 DRMO 2019   |
|-----------|-----------------|
| Location: | Fort Wainwright |

User Name: FES State: Alaska

|                | Oth Moment             | 1st M                  | oment (Cent            | er of Mass)             | 2nd Momen           | (Spread)            |                    |
|----------------|------------------------|------------------------|------------------------|-------------------------|---------------------|---------------------|--------------------|
| Effective Date | Estimated<br>Mass (Kg) | Xc (ft)                | Yc (ft)                | Source<br>Distance (ft) | Sigma XX<br>(sq ft) | Sigma YY<br>(sq ft) | Number of<br>Wells |
| TRACHLOROETHYL | ENE(PCE)               | _                      |                        |                         |                     |                     |                    |
| 10/11/2010     | 2.4E-03                | 1.394,837              | 3,954,941              | 102                     | 3,259               | 2.176               | 7                  |
| 2/23/2011      | 7.3E-04                | 1,394,880              | 3,954,914              | 53                      | 427                 | 864                 | 6                  |
| 6/1/2011       | 6.2E-04                | 1,394,882              | 3,954,912              | 50                      | 454                 | 906                 | 6                  |
| 9/20/2011      | 3.1E-03                | 1,394,810              | 3,954,958              | 133                     | 2,504               | 1,765               | 7                  |
| 5/30/2012      | 2.5E-04                | 1,394,880              | 3,954,911              | 51                      | 381                 | 962                 | 6                  |
| 8/31/2012      | 1.8E-03                | 1,394,798              | 3,954,962              | 145                     | 1,594               | 1,239               | 7                  |
| 8/27/2013      | 2.9E-04                | 1,394,807              | 3,954,963              | 139                     | 2,461               | 1,670               | 7                  |
| 10/9/2014      | 3.9E-03                | 1,394,804              | 3,954,964              | 142                     | 1,944               | 1,251               | 7                  |
| 8/24/2015      | 2.6E-03                | 1,394,797              | 3,954,970              | 161                     | 1,748               | 1,175               | 7                  |
| 9/14/2016      | 4.2E-03                | 1,394,811              | 3,954,958              | 132                     | 2,660               | 1,900               | 7                  |
| 8/9/2017       | 2.1E-03                | 1,394,801              | 3,954,967              | 146                     | 2,008               | 1,378               | 7                  |
| 8/16/2018      | 2.7E-03                | 1,394,799              | 3,954,968              | 149                     | 1,859               | 1,292               | 7                  |
| 8/7/2019       | 1.7E-03                | 1,394,798              | 3,954,968              | 149                     | 1,834               | 1,355               | 7                  |
| ICHLOROETHYLEN | E (TCE)                | 1.1                    |                        |                         |                     |                     |                    |
| 10/11/2010     | 1.8E-03                | 1,394,819              | 3,954,953              | 123                     | 2,770               | 1,819               | 7                  |
| 2/23/2011      | 3.2E-04                | 1,394,876              | 3,954,921              | 62                      | 327                 | 686                 | 6                  |
| 6/1/2011       | 5.2E-04                | 1,394,879              | 3,954,915              | 54                      | 341                 | 760                 | 6                  |
| 9/20/2011      | 1.8E-03                | 1.394,816              | 3,954,956              | 127                     | 2,694               | 1,740               | 7                  |
| 5/30/2012      | 4.7E-04                | 1,394,882              | 3,954,910              | 49                      | 372                 | 812                 | 6                  |
| 8/31/2012      | 2.1E-03                | 1.394,819              | 3,954,953              | 123                     | 2,752               | 1.814               | 7                  |
| 8/27/2013      | 5.6E-04                | 1,394,804              | 3,954,965              | 143                     | 2,185               | 1,451               | 7                  |
| 10/9/2014      | 1.5E-03                | 1,394,828              | 3,954,946              | 113                     | 2,793               | 1,838               | 7                  |
| 8/24/2015      | 1.3E-03                | 1,394,804              | 3,954,961              | 140                     | 2,157               | 1,560               | 7                  |
| Diff ( DOLD    | 1.9E-03                | 1,394,810              | 3,954,958              | 133                     | 2,484               | 1.748               | 7                  |
| 9/14/2016      |                        |                        |                        |                         |                     | 1 770               | -                  |
| 8/9/2017       | 9.6E-04                | 1,394,810              | 3,954,957              | 133                     | 2,518               | 1.772               | 7                  |
|                | 9.6E-04<br>9.7E-04     | 1,394,810<br>1,394,799 | 3,954,957<br>3,954,968 | 133<br>149              | 2,518               | 1,772               | 7                  |

MAROS Version 2.2, 2006, AFCEE

Wednesday, October 02, 2019

### MAROS Summary 2 cont'd—DRMO1 Spatial Moment Analysis Summary

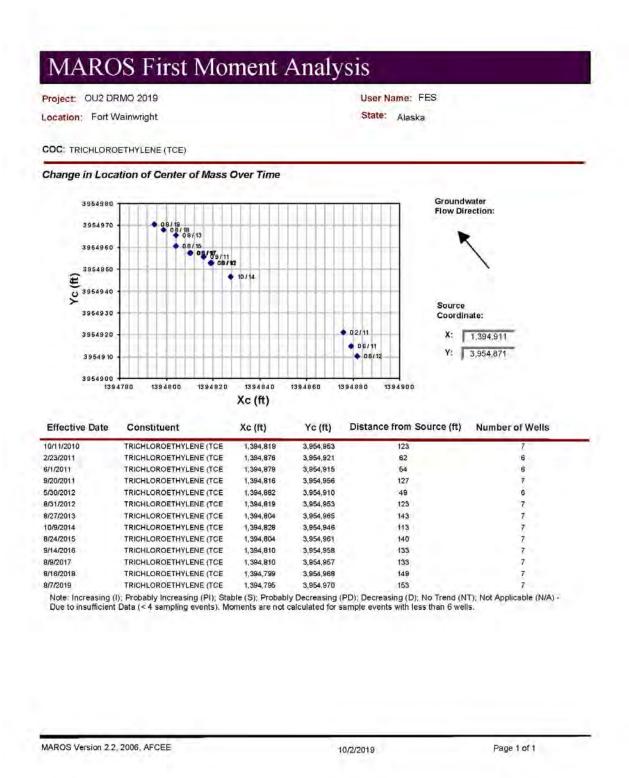
| Project: OU2 DRMO 2019    | User Name: FES |
|---------------------------|----------------|
| Location: Fort Wainwright | State: Alaska  |

| Moment Type     | Constituent              | Coefficient<br>of Variation | Mann-Kendall<br>S Statistic | Confidence<br>in Trend | Moment<br>Trend |
|-----------------|--------------------------|-----------------------------|-----------------------------|------------------------|-----------------|
| Zeroth Moment:  | Mass                     |                             |                             |                        |                 |
|                 | TETRACHLOROETHYLENE(PCE) | 0.64                        | 14                          | 78.2%                  | NT              |
|                 | TRICHLOROETHYLENE (TCE)  | 0.52                        | 10                          | 70.5%                  | NT              |
| 1st Moment: Dis | tance to Source          |                             |                             |                        |                 |
|                 | TETRACHLOROETHYLENE(PCE) | 0.34                        | 46                          | 99.8%                  | 1               |
|                 | TRICHLOROETHYLENE (TCE)  | 0.31                        | 42                          | 99.5%                  | 0.0             |
| 2nd Moment: Sig | gma XX                   |                             |                             |                        |                 |
|                 | TETRACHLOROETHYLENE(PCE) | 0.50                        | 6                           | 61.7%                  | NT              |
|                 | TRICHLOROETHYLENE (TCE)  | 0.49                        | o                           | 47.6%                  | S               |
| 2nd Moment: Sig | gma YY                   |                             |                             |                        |                 |
|                 | TETRACHLOROETHYLENE(PCE) | 0.29                        | 14                          | 78.2%                  | NT              |
|                 | TRICHLOROETHYLENE (TCE)  | 0.29                        | 8                           | 66.2%                  | NT              |

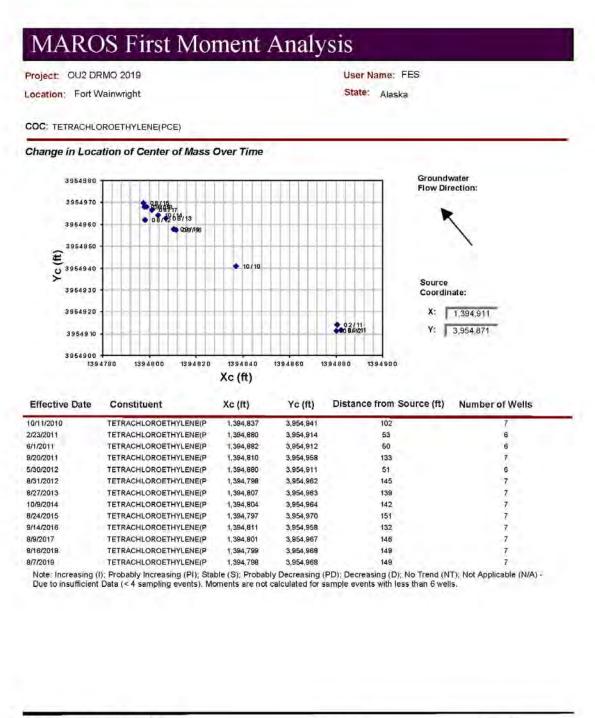
Note: The following assumptions were applied for the calculation of the Zeroth Moment:

Porosity: 0.25 Saturated Thickness: Uniform 10 ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events).


Note: The Sigma XX and Sigma YY components are estimated using the given field coordinate system and then rotated to align with the estimated groundwater flow direction. Moments are not calculated for sample events with less than 6 wells.

MAROS Version 2.2, 2006, AFCEE


Wednesday, October 02, 2019

Page 2 of 2

MAROS Summary 3 — DRMO1 First Moment Analysis Plot for TCE



MAROS Summary 4 — DRMO1 First Moment Analysis Plot for PCE



MAROS Version 2.2, 2006, AFCEE

10/2/2019

MAROS Summary 5 — DRMO1 Sampling Location Optimization Results

# MAROS Sampling Location Optimization Results

| Project:  | DU2 DRMO_2019   |  |
|-----------|-----------------|--|
| Location: | Fort Wainwright |  |

User Name: FES State: Alaska

Sampling Events Analyzed:

From Sample Event 36 to Sample Event 48 10/11/2010 8/7/2019

Parameters used:

| Constituent             | Inside SF | Hull SF | Area Ratio | Conc. Ratio |
|-------------------------|-----------|---------|------------|-------------|
| TETRACHLOROETHYLENE(PCE | 0.2       | 0.1     | 0.9        | 0.8         |
| TRICHLOROETHYLENE (TCE) | 0.2       | 0.1     | 0.9        | 0.8         |

| Well          | X (feet)    | Y (feet)   | Removable? | Average<br>Slope Factor* | Minimum<br>Slope Factor* | Maximum<br>Slope Factor* | Eliminated? |
|---------------|-------------|------------|------------|--------------------------|--------------------------|--------------------------|-------------|
| ETRACHLOROET  | HYLENE(PCE) |            |            |                          |                          |                          |             |
| AP-10015      | 1394860.00  | 3954905.50 |            | 0.358                    | 0.000                    | 0.752                    |             |
| AP-10016      | 1394881.00  | 3954866.00 |            | 0.361                    | 0.000                    | 0.576                    |             |
| AP-10017      | 1394939.13  | 3954849.50 |            | 0,301                    | 0.000                    | 0.595                    |             |
| AP-10018      | 1394914.75  | 3954897,25 |            | 0.203                    | 0.000                    | 0.452                    |             |
| AP-7559       | 1394820.13  | 3955011.25 |            | 0.350                    | 0.000                    | 0.737                    |             |
| AP-7560       | 1394632.88  | 3955071.25 |            | 0.171                    | 0.000                    | 0.492                    |             |
| AP-8914       | 1394907.00  | 3954874.75 |            | 0.302                    | 0.000                    | 0.778                    |             |
| RICHLOROETHYL | ENE (TCE)   |            |            |                          |                          |                          |             |
| AP-10015      | 1394860.00  | 3954905.50 |            | 0.145                    | 0.012                    | 0,465                    |             |
| AP-10016      | 1394881.00  | 3954866.00 |            | 0.172                    | 0.017                    | 0.432                    |             |
| AP-10017      | 1394939.13  | 3954849.50 |            | 0.494                    | 0.000                    | 0.735                    |             |
| AP-10018      | 1394914.75  | 3954897.25 |            | 0.195                    | 0.002                    | 0.630                    |             |
| AP-7559       | 1394820.13  | 3955011.25 |            | 0.355                    | 0.108                    | 0.474                    |             |
| AP-7560       | 1394632.88  | 3955071.25 |            | 0.261                    | 0.037                    | 0.526                    |             |
| AP-8914       | 1394907.00  | 3954874.75 |            | 0.241                    | 0.103                    | 0.487                    |             |

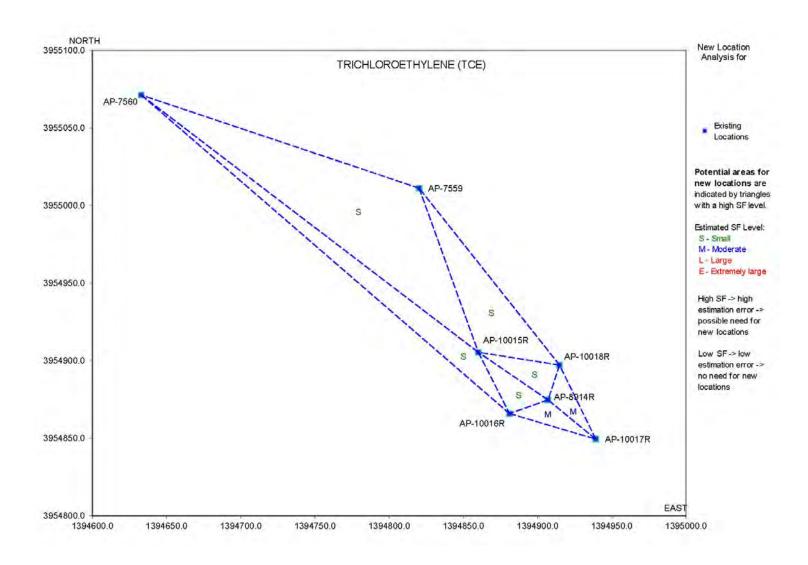
Note: The Slope Factor indicates the relative importance of a well in the monitoring network at a given sampling event; the larger the SF value of a well, the more important the well is and vice versa; the Average Slope Factor measures the overall well importance in the selected time period; the state coordinates system (i.e., X and Y refer to Easting and Northing respectively) or local coordinates systems may be used; wells that are NOT selected for analysis are not shown above. \* When the report is generated after running the Excel module, SF values will NOT be shown above.

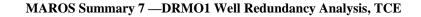
MAROS Version 2.2, 2006, AFCEE

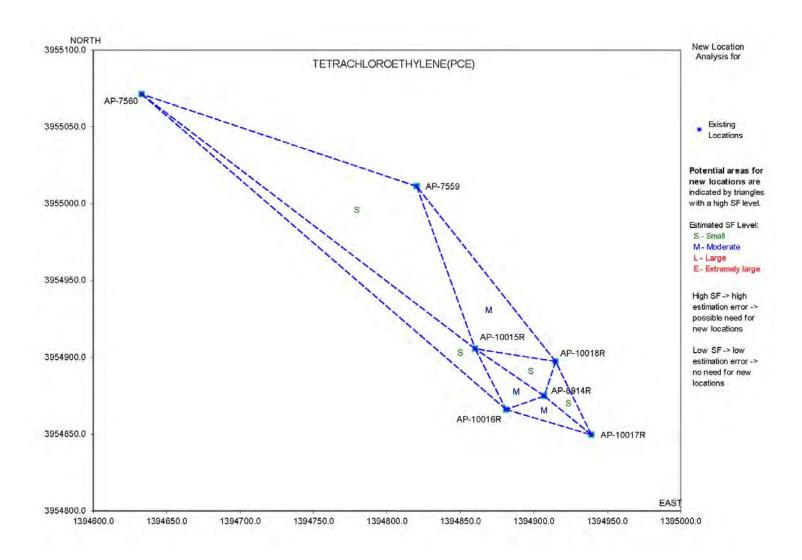
Tuesday, October 01, 2019

## MAROS Summary 6 — DRMO1 Sampling Location Optimization, All COCs

## MAROS Sampling Location Optimization


## Results by Considering All COCs


| Project: OU2 DRM    | O_2019       |                                 | User Name         | : FES                         |            |
|---------------------|--------------|---------------------------------|-------------------|-------------------------------|------------|
| Location: Fort Wain | nwright      |                                 | State: Ala        | ska                           |            |
| Sampling Events An  | alyzed: Fron | n Sample Event 36<br>10/11/2010 | to Samp<br>8/7/20 | le Event 48<br>019            |            |
| Well                | X (feet)     | Y (feet)                        | Number<br>of COCs | COC-Averaged<br>Slope Factor* | Abandoned? |
| AP-10015            | 1394860.00   | 3954905.50                      | 2                 | 0.251                         |            |
| AP-10016            | 1394881.00   | 3954866.00                      | 2                 | 0.266                         |            |
| AP-10017            | 1394939.13   | 3954849.50                      | 2                 | 0.397                         |            |
| AP-10018            | 1394914.75   | 3954897.25                      | 2                 | 0.199                         |            |
| AP-7559             | 1394820.13   | 3955011.25                      | 2                 | 0.352                         |            |
| AP-7560             | 1394632.88   | 3955071.25                      | 2                 | 0.216                         |            |
| AP-8914             | 1394907.00   | 3954874.75                      | 2                 | 0.272                         |            |


Note: the COC-Averaged Slope Factor is the value calculated by averaging those "Average Slope Factor" obtained earlier across COCs; to be conservative, a location is "abandoned" only when it is eliminated from all COCs; "abandoned" doesn't necessarily mean the abandon of well, it can mean that NO samples mean the value between the construction of the constructi

need to be collected for any COCs. \*When the report is generated after running the Excel module, SF values will NOT be shown above.

Tuesday, October 01, 2019







## MAROS Summary 8 — DRMO1 Well Redundancy Analysis, PCE

#### MAROS Summary 9 — DRMO1 Sampling Frequency Optimization

# MAROS Sampling Frequency Optimization Results

Sample Event 36

10/11/2010

Project: OU2 DRMO 2019

Location: Fort Wainwright

The Overall Number of Sampling Events: 13

From

"Recent Period" defined by events:

To Sample Event 48. 8/7/2019

User Name: FES

State: Alaska

"Rate of Change" parameters used:

| Constituent             | Cleanup Goal | Low Rate | Medium Rate | High Rate |
|-------------------------|--------------|----------|-------------|-----------|
| TETRACHLOROETHYLENE(PCB | 0.005        | 0.0025   | 0.005       | 0.01      |
| TRICHLOROETHYLENE (TCE) | 0.005        | 0.0025   | 0.005       | 0.01      |

| Well                     | Recommended<br>Sampling Frequency | Frequency Based<br>on Recent Data | Frequency Based<br>on Overall Data |
|--------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| TETRACHLOROETHYLENE(PCE) |                                   |                                   |                                    |
| AP-10015                 | Annual                            | Annual                            | Annual                             |
| AP-10016                 | Annual                            | Annual                            | Annual                             |
| AP-10017                 | Annual                            | Annual                            | Annual                             |
| AP-10018                 | Annual                            | Annual                            | Annual                             |
| AP-7559                  | Annual                            | Annual                            | Annual                             |
| AP-7560                  | Annual                            | Annual                            | Annual                             |
| AP-8914                  | Annual                            | Annual                            | Annual                             |
| TRICHLOROETHYLENE (TCE)  |                                   |                                   |                                    |
| AP-10015                 | Annual                            | Annual                            | Annual                             |
| AP-10016                 | Biennial                          | Annual                            | Annual                             |
| AP-10017                 | Biennial                          | Annual                            | Annual                             |
| AP-10018                 | Annual                            | Annual                            | Annual                             |
| AP-7559                  | Biennial                          | Annual                            | Annual                             |
| AP-7560                  | Annual                            | Annual                            | Annual                             |
| AP-8914                  | Annual                            | Annual                            | Annual                             |

Note: Sampling frequency is determined considering both recent and overall concentration trends. Sampling Frequency is the final recommendation; Frequency Based on Recent Data is the frequency determined using recent (short) period of monitoring data; Frequency Based on Overall Data is the frequency determined using overall (long) period of monitoring data. If the "recent period" is defined using a different series of sampling events, the results could be different.

MAROS Version 2.2, 2006, AFCEE

Wednesday, October 02, 2019

MAROS Summary 10 — DRMO4 Statistical Trend Analysis Summary

# MAROS Statistical Trend Analysis Summary

Project: OU2 DRMO\_2019

Location: Fort Wainwright

User Name: FES State: Alaska

Time Period: 10/1/2011 to 8/7/2019 Consolidation Period: No Time Consolidation Consolidation Type: Median Duplicate Consolidation: Average ND Values: 1/2 Detection Limit J Flag Values : Actual Value

Number All Number Average Median Mann-Linear of Samples Regression Trend Source/ of Conc. Kendall Conc. Well Samples Detects "ND" ? Tall (mg/L)(mg/L) Trend TETRACHLOROETHYLENE(PCE) AP-8916 s 10 3.1E-03 2.4E-03 No PD D 9 PO-5 10 S S 7 4.9E-03 5.2E-03 No S Probe B T 10 0 2.5E-04 2.5E-04 Yes ND ND TRICHLOROETHYLENE (TCE) AP-8916 6.3E-04 2.5E-04 NT S 10 3 No NT 10 2.7E-03 3.5E-03 PO-5 S 7 No S s Probe B 10 2.4E-04 2.5E-04 No NT NT т 1

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Version 2.2, 2006, AFCEE

Tuesday, October 01, 2019

**REVIEW COMMENTS AND RESPONSES** 

| EPA         |                                      |                                                                                                                                                                                                                                                            | <b>ction taken on comme</b><br>aron Swank – FES (12/                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |  |
|-------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Item<br>No. | Drawing Sheet<br>No.,<br>Spec. Para. | COMMENTS                                                                                                                                                                                                                                                   | REVIEW<br>CONFERENCE<br>A - comment accepted<br>W - comment<br>withdrawn<br>(if neither, explain) | CONTRACTOR RESPONSE                                                                                                                                                                                                                                                                                                                                                                                        | USAED/ADEC<br>RESPONSE<br>ACCEPTANCE<br>(A-AGREE)<br>(D-DISAGREE) |  |
| 1.          | Page ix                              | Typo; I think they mean details will be in the 2019<br>IC report. The 2018 IC report is nearly final in Nov<br>2019 "Further details regarding the IC inspection ar<br>presented in the 2018 IC inspection report<br>(anticipated in spring 2020).         |                                                                                                   | The typo was corrected.                                                                                                                                                                                                                                                                                                                                                                                    | Agree (via e-mail<br>12/12/19)                                    |  |
| 2.          | Figure 2-1                           | Add a GW flow direction arrow to figure 2-1                                                                                                                                                                                                                | А                                                                                                 | The groundwater flow direction arrow was added to Figure 2-1.                                                                                                                                                                                                                                                                                                                                              | Agree (via e-mail<br>12/12/19)                                    |  |
| 3.          | Page 2-4                             | Do we have the fill log from the water tank fill?                                                                                                                                                                                                          | A                                                                                                 | The 2019 fill log is available and will be<br>included as part of the 2019 Annual IC<br>Report. A copy of the log with information<br>through October 209 is included with these<br>RTCs.                                                                                                                                                                                                                  | Agree (via e-mail<br>12/12/19)                                    |  |
| 4.          | Figure 3-2                           | Is there a possibility that the new well AP-10446M is screened differently that the concentrations of PC and TCE dropped from 6.6/3.3 in 2017, the last sample from PO5, to ND in 2018 & 2019? What els might account for this reduction in concentration? | Έ                                                                                                 | Monitoring well AP-10446MW is a<br>conventional 2-inch PVC well with a 10-<br>foot pre-packed screen. The well that was<br>replaced (PO5) was a 0.5-inch slotted steel<br>probe with unknown screen construction.<br>The groundwater samples collected from<br>the replacement well are expected to be<br>more representative of the current aquifer<br>conditions than the previous groundwater<br>probe. | Agree (via e-mail<br>12/12/19)                                    |  |
| 5.          |                                      | End of Comments                                                                                                                                                                                                                                            |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |  |

Comments provided via e-mail

| REVIEW<br>COMMENTS                               |                                                                           | PROJECT: W911KB-16-D-0005<br>DOCUMENT: Draft 2019 OU2 Monitoring Report                                                                                                                                      |                                                            | Location: Fort Wainwright, Alaska                                                                 |                                                                                       |                                                                   |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| ALASKA DEPT. OF<br>ENVIRONMENTAL<br>CONSERVATION |                                                                           | DEVIEWED, Erico Dioleo                                                                                                                                                                                       | Action taken on comment by:<br>Aaron Swank – FES (12/6/19) |                                                                                                   |                                                                                       |                                                                   |
| Item<br>No.                                      | Drawing Sheet<br>No.,<br>Spec. Para.                                      | COMMENTS                                                                                                                                                                                                     |                                                            | REVIEW<br>CONFERENCE<br>A - comment accepted<br>W - comment<br>withdrawn<br>(if neither, explain) | CONTRACTOR RESPONSE                                                                   | USAED/ADEC<br>RESPONSE<br>ACCEPTANCE<br>(A-AGREE)<br>(D-DISAGREE) |
| 1.                                               | Appendix B:<br>CDQR and<br>ADEC<br>Laboratory<br>Data Review<br>Checklist | DEC has recently updated the Laboratory Data Review<br>Checklist, the most recent version is dated November<br>2019. For all future reports, please use the latest<br>Laboratory Data Review Checklist form. |                                                            | Noted                                                                                             | The new ADEC Laboratory Data Review<br>Checklist will be used for all future reports. | Agree.                                                            |
| 2.                                               |                                                                           | End of Comments                                                                                                                                                                                              |                                                            |                                                                                                   |                                                                                       |                                                                   |

Comments provided via e-mail