

November 22, 2019

Ms. Janine Boyette Response and Remediation SME Alyeska Pipeline Service Company P.O. BOX 196660 Anchorage, AK 99519-6660

Re: RGV-35A Well Installation, Revision 1

Dear Ms. Boyette,

At the request of Alyeska Pipeline Service Company (Alyeska), SLR International Corporation (SLR) has prepared this letter report presenting groundwater well installation and sampling at Remote Gate Valve (RGV)-35A on the Trans Alaska Pipeline System (TAPS). The well installations were completed in response to a request for additional groundwater characterization from the Alaska Department of Environmental Conservation (ADEC). The installation, sampling, and analytical results for the monitoring wells are summarized in this document.

SITE BACKGROUND

Several crude oil release investigations have been conducted at RGV-35A, most recently a heavy sheen was discovered on water within the corrugated metal pipe surrounding the valve in August 2018 during excavation of the vertical bypass risers. An investigation was conducted at the site from late August to early September, 2018, including removal of crude-stained soil from around the valve below the static water table. The investigation also included installation by hand of nine shallow borings completed as groundwater sampling points to depths of 2.5 to 6 feet (ft) below ground surface (bgs). All shallow groundwater analytical results were below cleanup levels for petroleum hydrocarbons. Exceedances in soil were limited to a small area of crude-stained soil in the southwest edge of the valve excavation at a depth of approximately 6 to 8 ft bgs (SLR, 2019). The depth of crude staining in the excavation was below the collection depth of soil and groundwater samples from around the valve.

SITE SETTING AND LITHOLOGY

The valve is located on a large gravel pad at milepost 194 of the TAPS (Figure 1). The gravel pad at the valve slopes gently east-southeast towards a wooded area. The pad is composed of 4 to 5 ft of compacted fill material overlaying native alluvial deposits from the Dietrich river channel. The pad fill material has a high silt content as evidence by pooled rainwater and poor well recharge rates for shallow groundwater sampling points (SLR, 2019). The nearest surface water is located in a wooded area, approximately 150 ft east of the valve. A dry channel of the Dietrich River subject to seasonal flows runs approximately 130 ft west of the valve.

WELL INSTALLATION AND SAMPLING

Three monitoring wells (MW-191, MW-192, and MW-193) were installed in borings near the valve and pipeline to evaluate potential groundwater impacts from historical crude releases from the valve and to determine the depth and flow direction of the groundwater table (Figure 2). The wells were installed in a triangular arrangement, approximately 50 ft north, east, and west of the valve to aid in the determination of groundwater flow direction. Well installation, development, and sampling were conducted in accordance with ADEC's *Monitoring Well Guidance* and *Field Sampling Guidance* (ADEC, 2013 and 2017b). Field activities were documented in the photograph log, field logbook, and boring and well construction logs included as Attachments 1, 2, and 3, respectively. The position and elevation of the monitoring wells was collected by Alyeska's survey contractor and is included as Attachment 4.

Soil Borings and Sampling

Soil borings for well installation were drilled to 11.6 to 13.5 feet below ground surface using a track-mounted GeoProbe[®] direct-push drill rig. Soil from each boring was collected in 5-foot drive intervals with an MC5 sampler lined with a 2-inch diameter polyethylene Macro-Core[®] liner. Each recovered soil core was opened immediately upon retrieval for screening and sampling. Soil lithology was classified consistent with Standard Practice for Description and Identification of Soil (ASTM International, 2017) as general guidance. Borings were logged continuously from the surface to total depth and observations recorded on boring logs.

Cores from each boring were screened for signs of petroleum hydrocarbon contamination using a photoionization detector (PID) and the heated headspace method (ADEC, 2017b). Two soil analytical samples were collected from boring MW-191 including "upper" sample collected from the vadose zone soil interval with the highest in situ PID screening value at 3 ft bgs, and a "lower" sample collected from the interval immediately above the observed saturated zone at 5 ft bgs. For borings MW-192 and MW-193, only lower samples were collected from immediately above the apparent water table at 3.5 and 3.75 ft bgs, respectively. No upper sample was collected for MW-192 and MW-193 because no indications of hydrocarbon impacts were identified based on PID screening along all recovered soil intervals to the full depth of the borings. Soil boring sample intervals and PID results are summarized in Table 1.

Soil samples were collected for analysis of gasoline and diesel range organics (GRO and DRO), residual range organics (RRO), petroleum volatile organic compounds (PVOCs), and polynuclear aromatic hydrocarbons (PAH) by ADEC-approved soil analytical methods. One duplicate soil sample was collected for sampling quality control.

Well Installation, Development, and Sampling

Monitoring Wells were installed in completed borings and consisted of 1-inch polyvinyl chloride (PVC) blank riser pipe and 5 ft long, 0.010-inch slot PVC well screens with a 10/20 Colorado sand pack extending upward from the bottom of each well to one foot above the well screen. The screens were set at depths of 12.5 to 13.4 ft bgs to span the approximate depths of crude impacted soil observed in the valve excavation in order to characterize the potential lateral spread of hydrocarbons. The annular space from the sandpack upwards to the flush-mount steel monument was sealed with hydrated bentonite. The monuments were buried approximately 6-inches below the ground surface.

Monitoring wells were developed by surging using a Waterra[®] foot valve, followed by pumping with a peristaltic pump until clear water was produced. The wells were allowed to rest overnight before sampling.

Monitoring wells were sampled by standard low-flow sampling methodology in accordance with ADEC's *Field Sampling Guidance* (ADEC, 2017b). Groundwater samples collected were submitted to SGS North America, Inc (SGS) in Fairbanks, Alaska for analysis of GRO, DRO, RRO, PVOCs, and PAH by ADEC-approved groundwater analytical methods. One duplicate groundwater sample was collected for sampling quality control.

Analytical Methods

Soil and groundwater samples were submitted to SGS North America, Inc. (SGS) of Anchorage, Alaska, an ADEC-accredited laboratory. Samples were analyzed for petroleum hydrocarbons by the following soil and groundwater analytical methods:

- **GRO**: Alaska Method 101;
- DRO and RRO: Alaska Method 102/103;
- VOCs (petroleum hydrocarbon list): US Environmental Protection Agency (USEPA) Method 8260D; and
- **PAHs**: USEPA Method SW8270D-SIM (selective ion monitoring).

Waste Disposition and Treatment

Wastes generated was limited to soil cuttings and well development and sampling purge water. A 4-inch auger was utilized to reduce the volume of soil cuttings generated. Soil cuttings were drummed, transported to Pump Station 5, and later disposed of as clean soil based on analytical results. Monitoring well purge water was free of sheen and was treated by a two-stage sediment and granulated activated carbon filtration system prior to discharge to the pad surface.

FINDINGS

Findings of the investigation including groundwater flow direction and analytical results for soil and groundwater are summarized below. Analytical results for soil and groundwater are presented in Tables 2 and 3, respectively and groundwater flow direction is shown on Figure 2.

Groundwater Flow Direction

Groundwater flow direction was evaluated using groundwater elevations measured in the three new wells, collected the day after installation to allow for stabilization. Elevations from the wells suggest a southwest flow towards the Dietrich river, with a moderate gradient of 0.0043 to 0.0066 ft per ft. Approximated groundwater flow contours and direction are shown on Figure 2.

Soil Analytical Results

Soil sample analytical results indicate that the historical crude oil release has not impacted shallow soils in borings MW-191, MW-192, and MW-193 which are located approximately 50 ft upgradient, downgradient, and cross-gradient, respectively. All soil analyte concentrations were non-detect or near the laboratory limit of detection, and well below the most stringent soil cleanup criteria as listed in Title 18 of the Alaska Administrative Code (AAC), Chapter 75 (18 AAC 75), *Oil and Other Hazardous Substances Pollution Control* (ADEC, 2018). These findings of no hydrocarbon impacts are consistent with analytical results for shallow

groundwater samples collected from nine wells and well points installed around the valve during the 2018 investigation (SLR, 2019). Cleanup levels and sample results are shown on Table 2.

Groundwater Analytical Results

Groundwater analytical results show no impacts from the historical crude leak or sheen at the valve. All analytical results were non-detect and below groundwater cleanup levels as presented in Table C of 18 AAC 75, (ADEC, 2018). Non-detect results for groundwater indicate that soils in the well screen interval are not impacted by potential lateral movement of hydrocarbons from crude remaining near the valve at depths of 6 to 8 ft bgs. Groundwater cleanup levels and analytical results are shown on Table 3.

Data Quality

All data were deemed useable, including qualified data, in accordance with ADEC guidance (ADEC, 2017a). A laboratory data quality assurance review (QAR) is included as Attachment 5.

CONCLUSIONS

Impacts to environmental media resulting from historical leaks at RGV-35A leak appear limited to the immediate vicinity of the valve identified during the prior investigation in 2018. Soil and groundwater sample results from the monitoring well installation described in this report do not indicate downgradient, lateral migration of petroleum hydrocarbons in shallow soils or the in underlying aquifer at depths corresponding to remaining crude-impacted soil near the valve.

Sincerely, SLR International Corporation

Muryte the

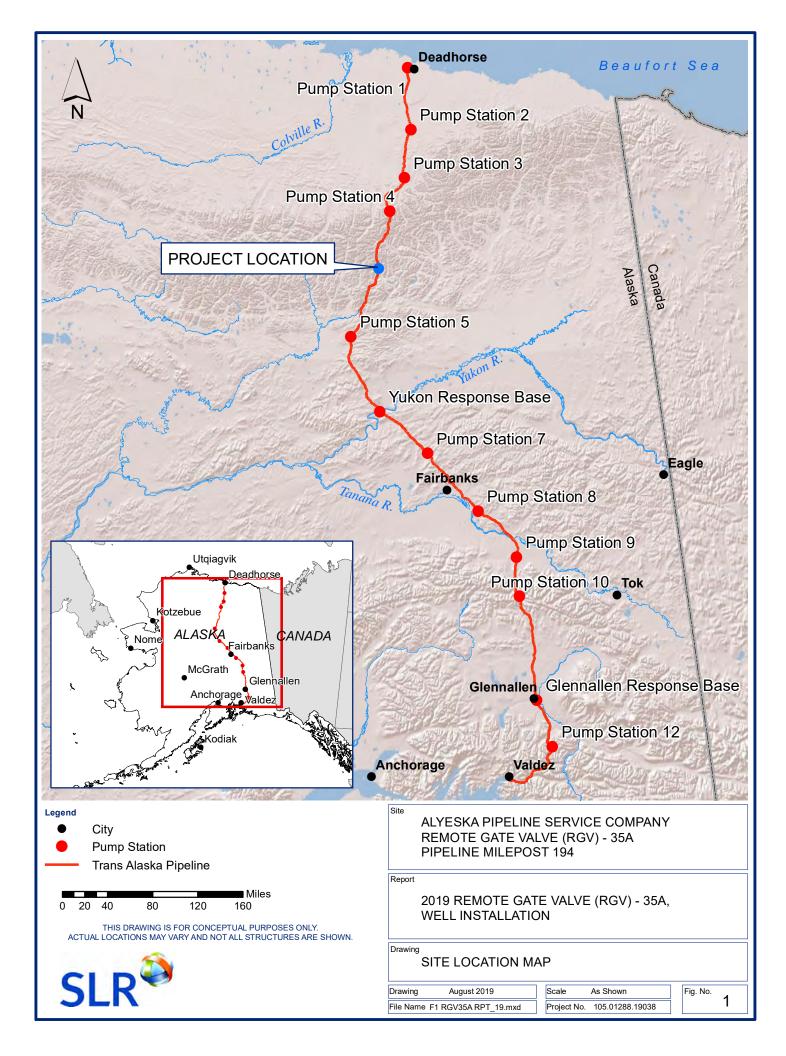
Christophe Venot Senior Scientist

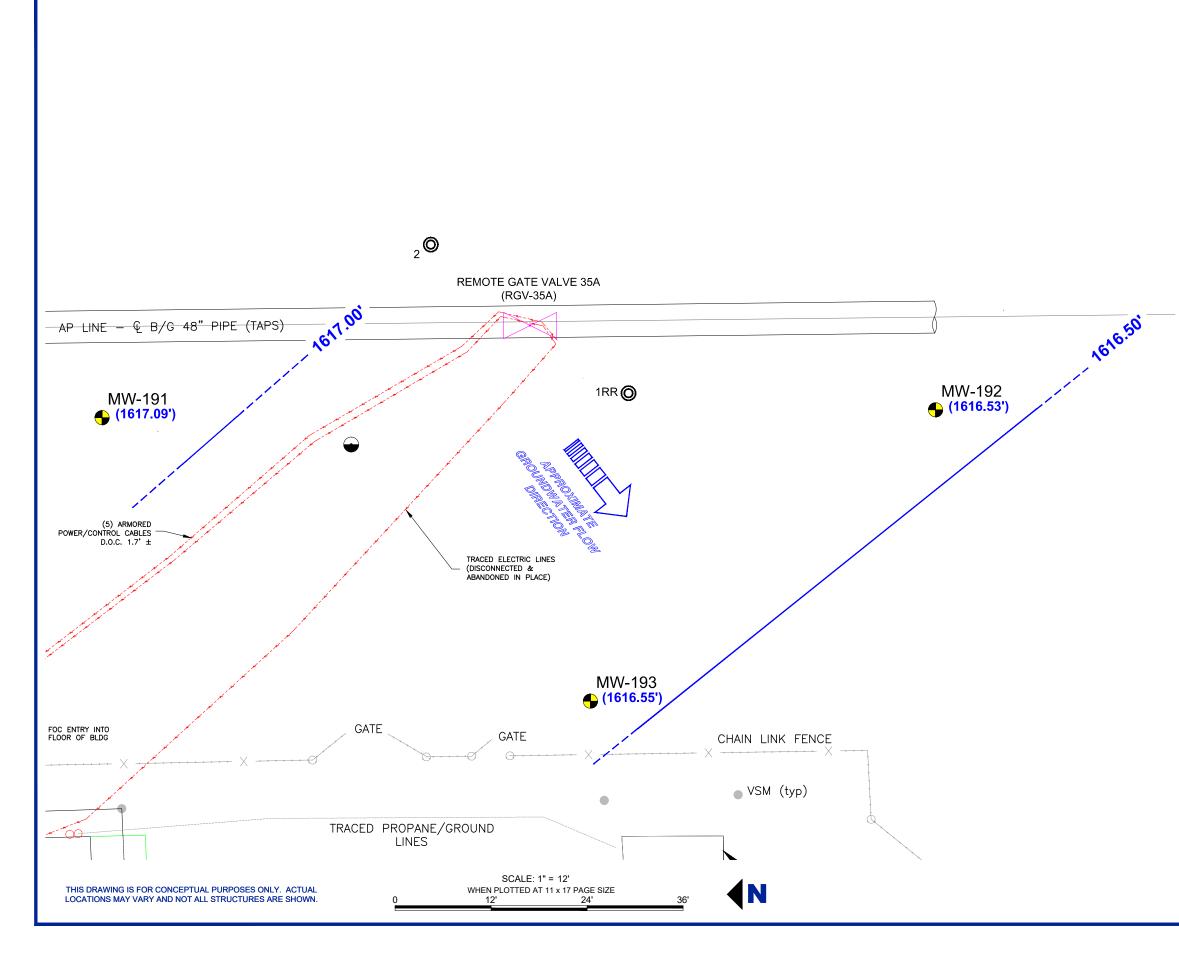
Satt CRne

Scott Rose Principal Scientist

Enc Figure 1 – Site Location
Figure 2 – Monitoring Well Locations
Table 1 – Soil Screening Values
Table 2 – Soil Confirmation Sample Analytical Results
Attachment 1 – Photograph Log
Attachment 2 – Field Notebook
Attachment 3 – Field Forms
Attachment 4 – Survey Data
Attachment 5 – Laboratory Data Quality Assurance Review

REFERENCES:


Alaska Department of Environmental Conservation (ADEC), 2013. Monitoring Well Guidance. September.


ADEC, 2017a. Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. Technical Memorandum. March.

ADEC, 2017b. Field Sampling Guidance. August.

- ADEC, 2018. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control. As amended through October 27.
- ASTM D2488-17, Standard Practice for Description and Identification of Soils (Visual-Manual Procedures), ASTM International, West Conshohocken, PA, 2017, www.astm.org

SLR International Corporation (SLR), 2019. RGV-35A Sheen Investigation

DRAWING IS BASE	D ON ALYESKA PIPELINE SERVICE COMPANY DRAWING NO. 194A0613, RGV35A OIL SPILL
	D ON ALYESKA PIPELINE SERVICE COMPANY DRAWING NO. 194A0613, RGV35A OIL SPILL ILT TOPO, SHEET 1 OF 1, DWG DATE: 6/27/13
LEGEND	
	MONITORING WELL LOCATION
,	
	MONITORING WELL LOCATION Soil gas probe
(THERMISTOR
1617.00'-	GROUNDWATER CONTOUR AND ELEVATION
1017.00-	(FEET ABOVE SEA LEVEL)
NOTE	=.
NOTE	
	nd groundwater analytical results for MW-191, MW-192, and MW-193
were	below all applicable cleanup levels for site contaminants of potential
conce	ern. Refer to Tables 2 and 3 for complete analytical results.
0.1	
Site	
	ESKA PIPELINE SERVICE COMPANY
II REM	1OTE GATE VALVE (RGV) - 35A PIPELINE
	EPOST 194
Report	
0040	
2019	9 REMOTE GATE VALVE (RGV) - 35A
WEI	LL INSTALLATION REPORT
Drawing	
	NITORING WELL LOCATIONS
Date Septemb	
	F2 RGV-35A RPT_19 Project No. 105.01288.19038 Z
1.1	
	SLR*

Table 1: Well and Boring SummaryRGV-35A Well Installation

	Analytica	I Sample	PID Heated	Depth to	Depth to Water		
Boring ID	Name	Interval (ft bgs)	Headspace Screening Value (ppm)	Boring ¹ (ft bgs)	Well ² (ft bgs)	PVC Casing ³ (ft bgs)	Well Screen Interval (ft bgs)
	MW191-1	1.0	10.4				
MW-191	MW191-3	3.0	9.0	≤ 3.75	2.96	0.852	8.45 - 13.45
	MW191-5	5.0	8.2				
MW-192	MW192-3.5	3.5	0.0	3.5	3.01	0.720	7.61 - 12.61
MW-193	MW193-3.75	3.75	0.0	4-5	4.12	0.975	6.63 - 11.63

Notes and Abbreviations

¹ As estimated from soil cores during drilling

² Adjusted for depth PVC casing below pad using surveyed depth

³ Calculated from site survey data included as report Attachment 4

ft bgs feet below ground surface

PID photoionization detector

ppm parts per million

 \leq less than or equal to

Table 2: Soil Sample Analytical Results RGV-35A Well Installation

Compound in milligrams per kilogram						Sample Location ^C			
(mg/kg)	18 AAC 75.341, Tables B1 and B2 Under 40 Zone ^A	18 AAC 75.341, Tables B1 and B2 Migration to Groundwater ^B	Primary: MW191-1 29-Jul-19 1199584002 Conc. ^D	Duplicate: MW199-1 29-Jul-19 1199584005 Conc. ^D	MW191-3 29-Jul-19 1199584003 Conc.^D	MW191-5 29-Jul-19 1199584004 Conc.^D	MW192-3.5 29-Jul-19 1199584001 Conc.^D	MW193-3.75 29-Jul-19 1199584006 Conc.^D	TB-1 29-Jul-19 1199584007 Conc . ^D
Fuels (AK101, 102, and 10	03)								
Gasoline Range Organics	1400	300	[1.08] UB	[1.08] ND	[1.15] UB	[1.05] UB	[1.18] UB	[1.17] ND	0.766 J
Diesel Range Organics	10250	250	[10.7] ND	[10.8] ND	[10.7] ND	[11.3] ND	[10.7] ND	[11.2] ND	
Residual Range Organics	10000	11000	9.04 J	15.9 J	6.82 J	7.97 J	11.7 J	37.7	
Petroleum Volatile Organ	ic Compounds (SW8260								
1,2,4-Trimethylbenzene	43	0.61	[0.0216] ND	[0.0215] ND	[0.0229] ND	[0.0209] ND	[0.0234] ND	[0.0234] ND	[0.0251] ND
1,2-Dibromoethane	0.42	0.00024	[0.000433] ND	[0.00043] ND	[0.00046] ND	[0.000419] ND	[0.000469] ND	[0.000467] ND	[0.0005] ND
1,2-Dichloroethane	5.5	0.0055	[0.000865] ND	[0.00086] ND	[0.00092] ND	[0.00084] ND	[0.00094] ND	[0.000935] ND	[0.001] ND
1,3,5-Trimethylbenzene	37	0.66	[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
Benzene	11	0.022	[0.0054] ND	[0.0054] ND	[0.00575] ND	[0.00525] ND	[0.00585] ND	[0.00585] ND	[0.0063] ND
Ethylbenzene	49	0.13	[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
Isopropylbenzene									
(Cumene)	54	5.6	[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
Methyl-t-butyl ether	670	0.4	[0.0433] ND	[0.043] ND	[0.046] ND	[0.0419] ND	[0.0469] ND	[0.0467] ND	[0.05] ND
Naphthalene	29	0.038	[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
n-Butylbenzene	20	23	[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
o-Xylene			[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
P & M -Xylene			[0.0216] ND	[0.0215] ND	[0.0229] ND	[0.0209] ND	[0.0234] ND	[0.0234] ND	[0.0251] ND
sec-Butylbenzene	28	42	[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
tert-Butylbenzene	36	11	[0.0108] ND	[0.0108] ND	[0.0115] ND	[0.0105] ND	[0.0118] ND	[0.0117] ND	[0.0126] ND
Toluene	200	6.7	[0.0108] UB	[0.0108] UB	[0.0115] UB	[0.0105] ND	[0.0118] UB	[0.0117] ND	0.00922 J
Xylenes (total)	57	1.5	[0.0216] ND	[0.0215] ND	[0.0229] ND	[0.0209] ND	[0.0234] ND	[0.0234] ND	[0.0251] ND
PAH SIM (SW8270D)	1000	07							-
Acenaphthene	4600	37	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Acenaphthylene	2300	18	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
	23000	390	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Benzo(a)Anthracene	14 1.5	0.7 1.9	[0.0134] ND [0.0134] ND	[0.0134] ND [0.0134] ND	[0.0134] ND [0.0134] ND	[0.0141] ND [0.0141] ND	[0.0134] ND [0.0134] ND	[0.014] ND	
Benzo[a]pyrene Benzo[b]Fluoranthene	1.5	20	[0.0134] ND [0.0134] ND	[0.0134] ND [0.0134] ND	[0.0134] ND [0.0134] ND	[0.0141] ND [0.0141] ND	[0.0134] ND [0.0134] ND	[0.014] ND [0.014] ND	
Benzo[g,h,i]perylene	2300	15000	[0.0134] ND [0.0134] ND	[0.0134] ND [0.0134] ND	[0.0134] ND [0.0134] ND	[0.0141] ND	[0.0134] ND [0.0134] ND	[0.014] ND	
Benzo[k]fluoranthene	150	190	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Chrvsene	150	600	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Dibenzo[a,h]anthracene	1.5	6.3	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Fluoranthene	3100	590	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Fluorene	3100	36	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Indeno[1,2,3-c,d] pyrene	15	65	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Naphthalene	29	0.038	[0.0107] ND	[0.0108] ND	[0.0108] ND	[0.0112] ND	[0.0107] ND	[0.014] ND	
Phenanthrene	2300	39	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Pvrene	2300	87	[0.0134] ND	[0.0134] ND	[0.0134] ND	[0.0141] ND	[0.0134] ND	[0.014] ND	
Percent Solids (SM21 254		<i>.</i> ,							
Total Solids		[92.2	92	92.9	87.7	93.1	89.3	

Notes: 3.6

0.237

Α В

С

D

Е

BOLD values indicate an exceedance of Method Two cleanup levels for the Under 40 Inch Zone.^A

BOLD and yellow highlighted values indicate an exceedance of Method Two cleanup levels for Migration to Groundwater.^B

[0.00362] Green values indicate undetectable results with LODs above applicable ADEC screening criteria.

ADEC Method Two cleanup levels for the Under 40 Inch Zone, lowest of ingestion or inhalation, 18 AAC 75.341, Tables B1 and B2 (October 27, 2018).

ADEC Method Two cleanup levels Migration to Groundwater for the Under 40 Inch Zone, 18 AAC 75.341, Tables B1 and B2 (October 27, 2018).

The field sample identification number, date collected, and laboratory sample identification number are provided.

For detected results, the sample result is listed in mg/kg in this column. If an analyte was not detected, then the LOD is shown in [].

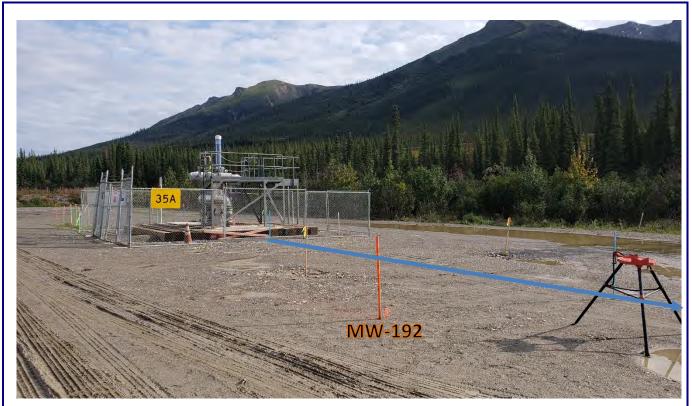
Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.

Data Flags: Abbreviations Not applicable or screening criteria does not exist for this compound LOQ limit of quantitation [x.xx] ND The number in brackets is the LOD. AAC Alaska Administrative Code mg/kg milligrams per kilogram Estimated value below the LOQ, but above the DL. .1 ADEC Alaska Department of Environmental Conservation PAH polycyclic aromatic hydrocarbons SIM UB AK Alaska selective ion monitoring DL detection limit SM Standard Methods LOD limit of detection

A UB flag indicates non-detect due to an associated blank contamination. Blank detection is greater than sample detection or both the blank and sample detection were below the LOD. The

greater of the sample detection or LOD was reported in brackets and qualified as non-detect.

Table 3: Groundwater Sample Analytical Results RGV-35A Well Installation


				Sample Location ^B		
Compound in	18 AAC 75, Table C,	Primary:	Duplicate:	MW-192	MW-193	TB-2
milligrams per liter	,	MW-191	MW-199	30-Jul-19	30-Jul-19	30-Jul-19
(mg/L)	Groundwater	30-Jul-19	30-Jul-19	1199584010	1199584009	1199584012
	Cleanup Levels ^A	1199584008	1199584011			
		Conc. ^c	Conc. ^c	Conc. ^c	Conc. ^c	Conc. ^c
Fuels (AK101, 102, and 103)			-	-		-
Gasoline Range Organics	2.2	[0.05] ND	0.046 J	[0.05] ND	[0.05] ND	[0.05] ND
Diesel Range Organics	1.5	[0.288] ND	[0.3] ND	[0.294] ND	[0.288] ND	
Residual Range Organics	1.1	[0.24] ND	[0.25] ND	[0.245] ND	[0.24] ND	
Petroleum Volatile Organic						
1,2,4-Trimethylbenzene	0.056	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
1,2-Dibromoethane	0.000075	[0.0000375] ND	[0.0000375] ND	[0.0000375] ND	[0.0000375] ND	[0.0000375] ND
1,2-Dichloroethane	0.0017	[0.00025] ND	[0.00025] ND	[0.00025] ND	[0.00025] ND	[0.00025] ND
1,3,5-Trimethylbenzene	0.06	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
Benzene	0.0046	[0.0002] ND	[0.0002] ND	[0.0002] ND	[0.0002] ND	[0.0002] ND
Ethylbenzene	0.015	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
Isopropylbenzene (Cumene)	0.45	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
Methyl-t-butyl ether	0.14	[0.005] ND	[0.005] ND	[0.005] ND	[0.005] ND	[0.005] ND
Naphthalene	0.0017	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
n-Butylbenzene	1	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
o-Xylene		[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
P & M -Xylene		[0.001] ND	[0.001] ND	[0.001] ND	[0.001] ND	[0.001] ND
sec-Butylbenzene	2	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
tert-Butylbenzene	0.69	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
Toluene	1.1	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND	[0.0005] ND
Xylenes (total) ^D	0.19	[0.001] ND	[0.001] ND	[0.001] ND	[0.001] ND	[0.001] ND
PAH SIM (SW8270D LV)	-		-	-	-	-
Acenaphthene	0.53	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Acenaphthylene	0.26	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Anthracene	0.043	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Benzo(a)Anthracene	0.0003	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Benzo[a]pyrene	0.00025	[0.0000098] ND	[0.0000098] ND	[0.0000096] ND	[0.00000945] ND	
Benzo[b]Fluoranthene	0.0025	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Benzo[g,h,i]perylene	0.00026	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Benzo[k]fluoranthene	0.0008	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Chrysene	0.002	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Dibenzo[a,h]anthracene	0.00025	[0.0000098] ND	[0.0000098] ND	[0.0000096] ND	[0.00000945] ND	
Fluoranthene	0.26	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Fluorene	0.29	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Indeno[1,2,3-c,d] pyrene	0.00019	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Naphthalene	0.0017	[0.000049] ND	[0.000049] ND	[0.0000481] ND	[0.0000471] ND	
Phenanthrene	0.17	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Pyrene	0.12	[0.0000245] ND	[0.0000245] ND	[0.000024] ND	[0.0000236] ND	
Notes:						
0.015	BOLD and values	indicate an exceed	ance of ADEC 18 A	AC 75 Table C Gro	undwater criteria ^A	
A			C, Groundwater Cle			
В					on number are provi	hed
D C	Communication of the second					

Sample result for detected values are listed in mg/L in this column. The LOD is shown for non-detect results. Total values are the summation of detected compounds only. The highest LOD was listed for ND analytes.

D Data Flags:

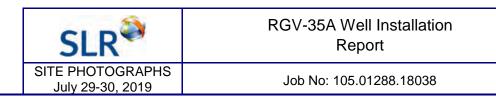
С

Dala Liays.			
[x.xx] ND	The number in brackets is the LOD.		
J	Estimated value below the LOQ, but above the DL.		
Abbreviations:			
	Not applicable or screening criteria does not exist for this	LOQ	limit of quantitation
AAC	Alaska Administrative Code	LV	low volume
ADEC	Alaska Department of Environmental Conservation	SIM	selective ion monitoring
DL	detection limit	mg/L	milligrams per liter
LOD	limit of detection	-	- •

Photograph 1: Monitoring well (MW) MW-192 location and pipeline flow direction (blue), view looking to pipeline north.

Photograph 2:

MW-191 (left) and MW-193 (right) locations and pipeline flow direction (blue), view looking to pipeline south.



Photograph 3: MW-192 soil cores retrieved for soil logging and classification.

Photograph 4: Closeup of alluvial gravel from MW-191.

SITE PHOTOGRAPHS July 29-30, 2019

Job No: 105.01288.18038

Report

105-21288.19038 REV-354 Well Enstell 7/29/19 . 3 260-354 Well Installation 7/28/19 C. VENOT, R. COURSEY-WITLETS (SLR) 0600 - CV + RCW depart for Collect 0700 - Meet drillers, tailyot Sareny Meeting 0725 - Deport for RGU-75A. OBID- C.V. Depart for ANC. Ainport 0851 - Complete PID Calibration 1050 - Arrive in Forburly 1100 - RCW met et airport, tailyate Snew, mudig. 0952 - Survey amouns on sile 0930 - PrCM Jason Green on Site discuss 1100-1245 - prepare equipment & loud truck. 107. begin drilling MW-192, collect Soil With MC7 () Macrolane Sampler. 1250 - Depart for psos w/ Drillers. 1800 - Arrive at PSCS, Drillers depart for DTW 15 Pt, Collect Soil Sample above P Coldfoot Comp. Water at 3.5 ft, no oper sample due 1800-1930 - break for dinner 1930-2015 - Project RMeilsuplanning. to 0.0 P=0 in att entire care. 1208 - Collect Sample MW-192-3.5 Ears of Day GRO, PUOL, DRO, PAH 1210 - Set Well at 13ft bys, Schen 8-13Ft in cleaner alluvial gravers. Auger Necessary to keep hole from Collapsing 1310 - Setup on MW-191. 1320- Commence MUS-192 development Using Quater Surge value. Faitral water CUENOT 7/20/19 is very silty. Fgal pumper. 1410 - pumpon MW-192 W Penishaltz at Full Speck (vision / min), weter clearing. 7 gol pumpers. 1420 - MW-141 - 5-10F1 Sample stuck : 1 ME7 1425- Collect Sample Mw191-1/Mw199-1 @ "1445"

C. VENOT, R. COURSEY-WILLIES 105.01298.19036 RGV-35A Well installation 7/27/19 REV-35.4 Wen installation 7/29/19 immediately above the water table. 1436 - MW-192 Swelpmint completes 15 gal pimper. Dtw=4.36-1.53=3.83 ft, water 1620- begin development of MW192 Using Quater Seveloper value Igal purges; is very clear. Very Silty water, 1443- Step-over for MW-191, Driv to SF+ 1635 - Switch to pensiteltic pump for by with anger, no samples. MW-192 development. Dtw=3.28 + bys 1500 - Collect Sumple muli91-3 above water table - not sure how close to saturated Sail 1650 - Set MW-193 Wall With 2' PVC 1506 - collect Sample MW 191-5 belies inster because drillers Short on 1 puc. 0.010"- Slot table to attempt to bound potential soil ft if the suggested by pro values. Scheen for all Wells. 3- E- 12994 Water table 5- E- 2.311- K Water 13.75 1700-1750 - Surge MW-193 -/ waterra developer, pump 15 gallons and. 1750-1810 - Crish development with for all three wells. ZX penistelle pomps, 5 gillow pomper. Water clear Screens were intelled Ec-notive allimie laposits Within this interval. 1820 - Clean up and depart site. of Carrie Sediment. 1905 - Arrive in Coldfoot, break for cinner. 2100-2130 - daily Wrap-up email 1600- Start Mw193. hold - collect Simple Millig 3-3,75 above water. ENS & DA Jutivates Sectments estimates between 4-5Ft. Native Soils at SFL, will drill bleft to CVENOT Set Well in allovial gravels, 7/29/19 Note- 2nd Soll Sample not Collected, no pto Values share O oppos, therefore samples only Rete in the Rain

6 C. VENOT, R. Coursey-Willit's, 125-01289, 19038 ROU-354 WELL ENSTALIATION CIVENUT, R. CONSEY-WELLES 7/3/114 REV-354 Well Sampling 7/30/14 0600 - Depart ColdFast for RGV-35A 0700 - At office, Check Samples (Soil + water), Sample MW-199 has 2x HCl, due to to Annuessary transfer from 0705 - Annue at site, tailyate Saferty meeting w/ drillers. 0800 - Liter computer Water and Hil proserves bottle to new Hill preserved bottle, Notes this on Coc and discharge to pat. No pre-filter water had any sheen. bottle lubel. 0825 - Start Mw-191 Sampling purge. 1000 - Ship field equipment and drop 0850 - Sample MW-191 For 5RO, PUDL, Sampley at SGS 1140-12 50 - Return Flight, travel to home. DRO, PRO, PAH. 0420 - gauge MW-10, DTW - 4.71Ft. END FIFISphork. 0930 - Sample MW-193 1025 - Sample MW-192 with dup MW- 199 at "1100" Civent) 1054 - closeout permit al Jason Greene 1100-1150 - Cleanup Site, le-bury wells and Mark Winhsker Flags. Take swing-the Musinments. 7/31/19 1150 - Deport for pso5. 1340 - Arnive at \$505, leave Soil drum in Soil drom loading area, label drom as "Non-hazardos" in/Apric labols. 1400 - Depust for Furbanks 1915 - Arrive in Fairbanks, unload equipment. 1950 - Endor day. CULLU 7/30/19 Rete in the Rain.

	Wate	r Parame	ter Meter	Calibratic	on Log	51	R	
3.0/19	 Identification #:	Time: 07	20	Calibration By:	CVIR	<u>cw</u>		
Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration	Reading	Calibration	

Meter Manufa

Date:

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.00	CUL/10540	3/14/21	5/30/19	6.89	7.13	± 0.10
pH	4.00					10.000	4.09	± 0.10
	10.00	10,19	CC568774	7/3/19	716/20	10.20	10.22	± 0.10
Sp Cond (mS/cm)	1.413		CC17956	7/10/19	12/115/19	1.790	1,420	± 10%
ORP (mV)	240	240mV	1600	719119	5/2022	243.2	240.0	
DO*	717.241	1007. 14	-	-	-	9.8 Mg/L	10.40%	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

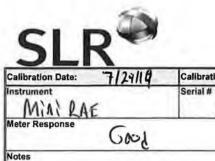
* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Date: Meter Manu	facturer and I	- Identification #:	ime:		Calibration By:			
Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	1.4.1.1.1.1						±0.10
pH	4.00	1					1	±0.10
	10.00	·						± 0.10
Sp Cond (mS/cm)	1.413							± 10%
ORP (mV)	240							
DO*				1				± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

Time:

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table


Date: Meter Manufacturer and Identification #: Calibration By:

Calibration Reading PreCalibration Parameter True Value Lot# Standard Date Opened **Expiration Date** After Acceptance Reading Calibration Criteria 7.00 ± 0.10 pH 4.00 ±0.10 10.00 ±0.10 Sp Cond 1.413 ± 10% (mS/cm) ORP 240 (mV) DO* ± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

terd: 9.8°C

PID Calibration Log

Calibration Date: 7/29/19	Calibration Time: UP51	Calibration By:			
Instrument	Serial #	Zero Gas	Span Gas 1	Calibration with	
Miai RAE	110-014198	ambient air	isobutylene (100 ppm)	Acceptable Range?	
Meter Response		O for	97.1 112	no	
Notes					

	Calibration By:					
Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range?			
	ambient air	isobutylene (100 ppm)				
			yes			
			no			
	Serial #	2010 385	Zero Gas Span Gas 1			

Calibration Date:	Calibration Time:	Calibration By:					
Instrument	Serial #	Zero Gas	Span Gas 1	Calibration with			
	1 m	ambient air	isobutylene (100 ppm)	Acceptable Range?			
Meter Response			2	yes			
				по			

Calibration Date:	Calibration Time:	Calibration By:					
Instrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range?			
		ambient air	isobutylene (100 ppm)				
Meter Response				yes			
	4			no			

Calibration Date:	Calibration Time:	Calibration By:						
Instrument	Serial #	Zero Gas	Span Gas 1	Calibration with				
		ambient air	isobutylene (100 ppm)	Acceptable Range?				
Meter Response			-	yes				
				no				

Calibration Date:	Calibration Time:	Calibration By:			
Instrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range yes	
		ambient air	isobutylene (100 ppm)		
Meter Response					
				no	

Calibration Date:	Calibration Time:	Calibration By:						
Instrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range				
		ambient air	isobutylene (100 ppm)					
Meter Response			1	yes				
				no				

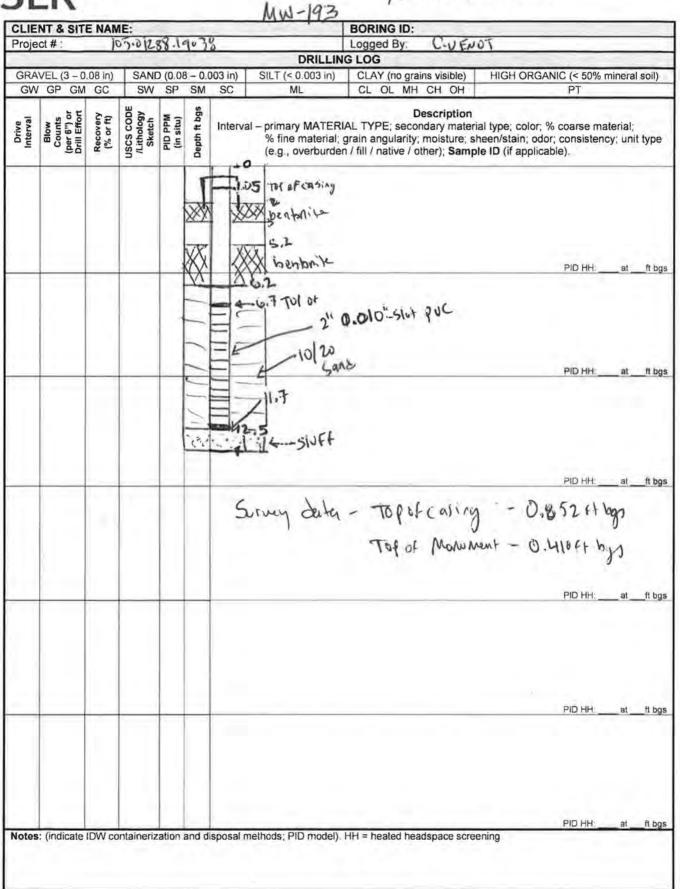
$\frac{Wery}{MA}$ FION SKETCH $\frac{12}{12} P_{12}$ $\frac{12}{12} P_{12}$ $\frac{12}{12} MW - 192$ $\frac{13}{12} MW - 192$ $\frac{13} $
IGH ORGANIC (< 50% mineral soil) PT PE: color; % coarse material; //stain; odor; consistency; unit type 0 (if applicable). FUT, ang.ter init 4 St, damp to Marit
IGH ORGANIC (< 50% mineral soil) PT PE; color; % coarse material; //stain; odor; consistency; unit type 0 (if applicable). FUT, ang.ter init 4 St, damp to Marit
IGH ORGANIC (< 50% mineral soil) PT pe; color; % coarse material; //stain; odor; consistency; unit type 0 (if applicable). FLT, angutar initia 54, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
PT pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). FLT, angular inits St, damp to Marit
pe; color; % coarse material; /stain; odor; consistency; unit type) (if applicable). TLT, angutar inits St, damp to Marit
Vistain; odor; consistency; unit type (if applicable). ILT, angutar inits St, damp to Mart +
se, damp to Morit
, M. dense, dang
, M. dense, dang
PID HH: at ft bgs
mple It
A L
2
h sitt granell are
(Cur envil)
(Fiver gravels) PID HH: at It bgs
norm an noga //=
ZE
ie m. Sanz, wet m. dense.
ace S! It, conse, duet PID HH:atft bgs
PID HH:atft bgs
PID HH: at ft bgs

SLR*

Boring Log / Wen Construction

	NT & SIT						BORING ID:		141		-	
Proje	ct # : 1	05-01	288.1	9036		1-754	Logged By: C.V EMIT					
	Date/Tim		71211	90	1360		Drilling Contractor: Discoury					
Com	pletion Da	ite/Tim	_	129/19			Driller's Name (License (1/2)) Gury					
		1		EHOLE			1	ĻC	DCATION SK	ETCH		
00	ther:	1	1.1			iry (mud/air) 🗌 Son	c					
Rig (I	Make/Mod	del): (Seupe	obe	78220	r	1.0					
Samp	oling Meth	nod:		MCT			100					
Borel	nole diam	eter (ir	1.):	4.2	5/3.23	5	× 1=	4				
Borel	nole Total	Depth	(ft bgs)				1 RSU	+				
Wate	r Level (ft	bgs);			Date/Tir	me:	9 -7.A	F				
				ELL DE			a tota	1				
Ye	es, Perma	nent (fYES,	Yes, T complete	emporary a well lo	 Yes, Extraction 9) 	MW-141		4 A.	-14:2		
Well			w-14		D. 1. /T							
vvate	r Level in	well (f	t bgs):	-	Date/Time		100	3 Mu	/-(1)		-	-
0.04		0011	1	10.00	0.000	DRILLIN	the second s		11011055			
	VEL (3 - 0 GP GM		-	- 80.0)		SILT (< 0.003 in)	CLAY (no grai		HIGH ORG	ANIC (< 50%)	mineral	soil)
GW	GP GM	GC	SW	SP SI	M SC	ML	CL OL MH	CH OH		PT		-
Drive	Blow Counts (per 6") or Drill Effort	Recovery (% or ft)	USCS CODE /Lithology Sketch	PID PPM (in situ) Denth A hos	Interv	al – primary MATERI, % fine material; g (e.g., overburder	AL TYPE; secor rain angularity;	moisture; s	heen/stain; oc	lor; consisten		t type
5		3	5m1 12 ML 12 112	ANNAN		3 brown/sray Sand; gro dense/hard	damp (bp	trace is	with (biths	raulus are	ang)	Á er: A bo
5-10		35	ML	31100	5-10	NO recently. 5 - Same and Wet, hare, - Gray Screy S SAMPLE M.	step-over	avenue 5 Alect.	ann. Stut wit	h frace	5978	
5			223	MIL		13 - Same						
-				=	Ξ							
				-	-							
13					1							
					-					PID HH:	at	ft bg
					he	utes heatspan	e (PM)					
					110	Ft = Inn						
					1.6	Ft = 10.4 Ft = 9.0						
					5-0	Ft = Q.2			1+1			
						0.0				PID HH:	at	H b
											al	10.11

Page 1 of 2


1 2 0 000

- oft	NT & SIT	ENAN		PSC 1	RGV-	35A		BORING ID: Logged By:	M	W 192	-		-
				100	-	D	RILLING						
GR/	VEL (3 - 0	.08 in)	SANE	0 (0.08 -	0.003 in)	SILT (< 0.	003 in)	CLAY (no grains		HIGH ORG	ANIC (< 50% n	nineral s	ioil)
GW	GP GM	GC	SW	SP S	M SC	ML		CL OL MH (CH OH		PT		-
Drive	Blow Counts (per 6") or Drill Effort	Recovery (% or ft)	USCS CODE · /Lithology Sketch	PID PPM (in situ)		% fine m	naterial; g	Des L TYPE; second rain angularity; m / fill / native / oth	ioisture; sl	neen/stain; oo	dor; consistend		type
			1 × 2° ° ° 5) ×	1×13 - 67 ×1	0 b: 0 b: 0 b: 0 b: 0 5: 0 5: 0 5:	ubaite whatte whatte whatte whatte baite 654	t Costay				PID HH:	_at	<u>ft b</u>
			111		77	.54					PID HH:	_at	ft bg
			1 10	02.06	904	13.0 Sh		: tol bl	of Ce of N	ivy is	PID HH: 0.722 F1 - (5 0.4)	at + byp 03.ff	-
											PID HH:	at	ft bg
											Piblin.		
											PID HH:	_at	ft bg

CLIE	NT & SIT	and the second second	and the second second				BORING ID: MWH43
Proje			1288,1				Logged By: CUENT
	Date/Tim				000		Drilling Contractor: Discovery
Com	pletion Da	ite/Tim		12919	1650	(c	Driller's Name (License [y/n]):
		71101			DETAIL		LOCATION SKETCH
00	ther:					tary (mud/air) 🗌 Sor	
	Make/Mod				1-8220	1	-
	oling Meth			167	1 - 1 - 4		- Jackter
	nole diam				13.254		- IN ->R
	nole Total		(ft bgs)	0	12		- Find
vate	r Level (ft	Dgs):	18/		Date/T	ime:	MWIAZ MWIAI
Came	eleted ee	Mall. T		ELL DE	and the second second		
	es, Perma					ry 🗌 Yes, Extractio	5h
Well			-143	Joinpier	e a wenn	og)	• NW-143
	r Level in			-	Date/Tin	no [.]	- XXX K X X
vale	Loverin	wen (i	uga).	-	Date/ III	DRILLIN	NG LOG
GRA	VEL (3 - 0	.08 in)	SAN	0.08-	0.003 in)	SILT (< 0.003 in)	CLAY (no grains visible) HIGH ORGANIC (< 50% mineral soil)
_	GP GM		SW		SM SC	ML	CL OL MH CH OH PT
OLI CO GO Drive	Blow Counts (per 6") or Drill Effort	3.7544 3.7544	SM CP			% fine material; (e.g., overburde 3 Gray/brun 11h tous Sans Fill), Jense/h 3.75 gray Sol 2.75 gray Sol 2.75 gray Sol 2.1- gray So	Andy GRAVEL With silf, loose, wit; why gravely pid HH: at how andy GRAVEL With silf, loose, wit; when your to sub nounces, and generally elongated,
0			SP 1	0.01	GI		M-i SAMP with trace fire graves,
-		nc		DE	Ξ	loux, to	appret.
10	1	12		E	Sio.	4-12.5- 50	ney GRAVEL With Silt gas, Flocse,
1.F	12		GP			13.1 60.	
						wer, bruch	the schangeling to anyther, generally elongated.
					1	1.0 - Cubbl	PID HH:at It by
					n	enter handspe	are e 3:75 ft = 0.0 pm.
							PID HH: at ft bg

Boring Log / Well Construction

SLR*

Groundwater Sampling Form

Site/Client Na	me: AQ	sc	RGV -3	SA	Well I	D:	MW-1	19)]
Project # :	105-	01288.1			Samp	le ID:	Mw-	191			
Sampled By:		VENOT			Samp	le Time: .	0850	, Sample	e Date: 7	132/19	
Weather Condi		SUNAY		°F	Duplic	ate ID:				and and the second s	1
Sampling Method					MS/M	SD 🗌 Ye	s 🗱 No	Trip Blank	Required:	Yes 🗌 No	1
	~			Well II	formation		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 13.7		1.6
Well Type: DPe	ermanent 🔲	Temporary		Well Diameter	in.	and the second sec	nterval: 📲		GS to	BGS_II BGS	Call
Well Condition:	Good 🗆 F	air 🗋 Poor (i	f fair or pool	r explain in Notes)	and the second	Stickup [Yes 🕅 N	lo; If yes, 	t abov	e ground	-0,4
				Gauging/Pur	and the state of the local division of the l						1 84
Depth to Water (I		2.11					th (ft. BTOC				
Total Depth (ft B Depth to Product		12.40)			Start Time (End Time (0823			
Product Thicknes		-			the second se	urge Time		20			1
LOW FLOW:				f Screen Depth)					wn or water tabl	e is below top of	1
Min. purge volume Well Diameter			al) = volume o 041 gal/ft	and the second se	//t) X Water co .163 gal/ft	olumn thickne	4" - 0.653) X # of casing gal/ft		=gal 469 gal/ft	
				Water Qua	lity Paramet	ers					1
(Achleve sta	able parameters	for 3 consecu	tive reading, 4	parameters if practi	cal [each read	ling taken af	ter pumping a	minimum of 1	flow through cel	l volume])	
Time (24-hr)	Flow Rate Multer/ minute)	Purge Volume	Temp (°C) (± 3 %)	Specific Conductance (µS/cm ^c) (± 3%)	DO (mg/L) (± 10%)	pH (± 0.1)	ORP (mV) (± 10mV)	Turbidity (NTU) (± 10%, or <5 NTU)	DTW (ft BTOC)	Drawdown (ft) (Maxft)	
0825	150	n	8.85	574	-	7.42	242.9	Low	2.09	0.02	1
		1.0	8 00	430	1.57	6.07			and the second s		
0831	7.50	1.52					2:04	Low	2.04	0.02	1
0836	250	2350L	7-41	646	0.44	6.72	230.1	how	2.04	0.02	
0040	250		7.88	646	0.41	6.11	107.6	Low	2.04	0.02	
0043	250		7.84	645	0.42	7.08	135.6	Low	2.09	0.02	
0446	250		7.01	645	0.40	7.12	106.0	non	2.10	0.01	
0649	250		7.02	644	0,41	7.16	74.2	None	2./0	001	
Parameter Sta	ble (Chack an	plicable)	1		-						
		Contract of the second	V	/	V	·V	X				
Sample Color:	Clea	r		Sample Odor:	non	-	Shee	m: M	m		
	Anal	yses			al Sampling Applicable	1	-	Comm	ents		
600											
PUDC											
Devija	NU		~ ~				_				
Notes: # Ta	q of d		asing i M is	5 .0.857 0.418 F		"r *	ć				
Equipment: Pum	Type P	nichiltie			() pe/Length)	12Pt 1	PETE-11	Bailer Type	-		
Water Level Meter				Multi-Parame			4515	50			
Turbidity Meter (M	the second second						F	iter Lot # -			
		a contration			(market)	Sa.		+ GAC			
Purge Water Han	dling: 🛄 Dis	charged to s	urface []Co	Intainerized ATr	eated (how?	1_30	Simm	10/10			

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Page 1 of _____

Groundwater Sampling Form

Site/Client Nan	ne: Afsi	1 AGN-	ろうA		Well	Well ID: MW-192						
Project # :	103.012	881191	38		Samp	le ID:	MW-19					
Sampled By:	C.V	ENUT			Samp	le Time:	1025	Sample	Date: 7/	30/19		
Weather Condit	ions: S	inny	260°F		Duplic	Duplicate ID: MW-119 (100						
Sampling Method					MS/M	MS/MSD Yes No Trip Blank Required: Yes No						
2722/2	~			Well In	formation	0.00		-54	12.5			
Well Type: X Per	rmanent 🔲 T	emporary		Well Diameter	in.	Screen I	nterval: 🔓	RT ft BC	S to 1.69			
Well Condition:	Good G Fa	air 🗌 Poor (if fair or poor	explain in Notes)		Stickup 🗌 Yes 🗹 No; If yes, 55 ft above ground						
			and la	Gauging/Pur								
Depth to Water (ft Total Depth (ft B)		2.29	11 24			/Pump Dep Start Time	oth (ft. BTOC	0959	_			
Depth to Product		2	11.29			End Time (1023				
Product Thickness		~	-			urge Time		24				
LOW FLOW: N	screen, then use default value of 0.3 ft.;						; if screen inte	rval is not know	vn or water tab	le is below top of		
Min. purge volume Well Diameter	if required: pu	irge volume (g			l/ft) X Water c .163 gal/ft	olumn thickn	ess(ft 4" - 0.653) X # of casing v gal/ft		=gal 469 gal/ft		
(Ashious sta		for 2 concore	the reading	Water Qual			ter sumples s	minimum of d	anu through ag	Linkows		
Time	Flow	Purge	Temp	parameters if practi Specific	DO	pH	ORP	Turbidity	DTW	Drawdown		
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	pri	(mV)	(NTU)	(ft BTOC)	(ft)		
	(liter/ minute)	(gal)	(± 3 %)	(μS/cm ^c) (± 3%)	(± 10%)	(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)		
1000	2.50	n	8. 21		2.14	7.18	137.6	100	2.33			
1003	1	U	1.39	647	1.02	7.00		las		0.04		
1				674		7.54	0 11		2.33	0.04		
1006			7.20	638	0,70	736	9:4	1000	2.40			
1003	-		7.15	637	0.57	1.1.1	-16.3	none	2.40	D.11		
1016			1.07	637	0.48	7.38	-54-3	None	2.40	0.11		
1020	1	V	7.04	636	6.42	7.39	-2083	none	2.40	0.4		
1023	-	32	7.05	636	0.41	7.42	-302.1	None	2.40	0.4		
	-		-	-	-	1	-					
		1			1		1.1.2.1	1.22.1	1000	10.5		
Parameter Stab	le (Check ap	plicable)	1	/		1	v			1		
Sample Color:				Sample Odor:	0.0	-						
	No	N.			al Sampling		e Sheen: Nonc					
	Analy	ses			Applicable			Comme	ents			
PAN												
bes ly	200					1.						
6	ei phr											
	Joi			· · · · · ·		_						
Notes: MON	whent	depth	15	0. 403 Fr	has b	user on	Survey	mensive	ments			
100	of no	5				100.00						
lor	ur (a)	2 13	0.720	o ft hgp.				\$				
Equipment: Pump	Туре	enistifi	L	Tubing (Ty	pe/Length)	1400	IFTE-IME	_ Bailer Type				
Nater Level Meter	10 10	1		Multi-Parame	eter Meter (M	Aake/SN#)_	45555	6				
Furbidity Meter (Ma	ake/SN#)	_			1200	-	Fi	Iter Lot #				
Purge Water Hand	lling: 🗆 Disc	harged to s	urface CCo		eated (how?	, sedin	ment +	GAL f	iter.			
a second second		OC= Below						age 1 of \				

Groundwater Sampling Form

105.01 C.V	289.19	038		Samp	le ID:	AAA.	2-147			
C.V.	C			Sample ID: MW -143						
	1001			Samp	le Time:	01	Sample	Date:	7/3-119	
ons: Da	st Clov	27, 1	out	Duplicate ID:						
Low Flo	w 🗌 Other_	1.		MS/MSD I Yes X No Trip Blank Required: X Yes No						
manent 🔲 1	Temporary	I.								
Good G F	air 🗌 Poor (i	f fair or poor				Yes XN	o; If yes, 🛨	05 ft abo	ve ground	
DTOOL	245		Gauging/Pur				21	~~~~	1251	
	and the second se	DUS						-		
		0.01			and the second second second			_		
(ft)	-						11		245	
			Screen Depth)	X 0.25	=(ft);	if screen inte	rval is not knov	vn or water tab	le is below top of	
and the second se					olumn thickne				= gal	
- gal/ft	1"-0.0	041 gal/ft			-	4" - 0.653	gal/ft	6"-1.	469 gal/ft	
le parameters	for 3 consecu	tive reading, 4				er pumping a	minimum of 1 f	low through ce	II volume])	
Flow Rate (liter/	Purge Volume	Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)	
minute)	L	(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	≪ 51\TU)		(Maxft)	
2.70	1.0	7.67	657	0.51	7.4B		Low	3.13	0.01	
1	1.75	7.55	657	0.41	7.48	80.8	lun	3.17	0.01	
	1	7.50	657	0.39	144	702	law	3.13	0.01	
		7.50	656			63.4	La	313	0.41	
	V								CGI	
4	145			and the second sec					DIUI	
	fasy	1.1	1				1			
				-						
					-					
e (Check ap	plicable)	V	V	1	V	X	/	V		
Clear	-		Sample Odor:	No	in.	Shee	n: Ac	ne	-	
		-	Analytica				110			
Analy	yses		Check	Applicable	0		Comme	nts		
					-					
	-									
nes										
1411										
ment e	water	from	Survey in-1	0.66FF						
1.			- 1 .							
or U	ing i	,0,	1 19 11		410					
Type D	enichalt	14	Tubing (Tv	pe/Length)	14" PFTE	E-Linoz	Bailer Type	_		
	11.0	1					-		h.	
ke/SN#)						-	ter Lot #			
			tainerized DTr			tels	edman	- 1 1 VA	5	
	manent [] 1 Good [] F BTOC): OC): ft. BTOC) (ft) ax Draw Dow reen, then use f required: pi -gal/ft] De parameters Flow Rate ((iter/ minute) 2.50 1 1 1 1 1 1 1 1 1 1 1 1 1	BTOC): 3 14 OC): 7 ft. BTOC) 7 ft. BTOC) 7 (ft) 3 ax Draw Down = (Tubing D reen, then use default value f required: purge volume (g -gal/ft 1"-0.1 ole parameters for 3 consecu Flow Purge Volume (iter/ minute) 1 2.70 1.0 1.15	manent \Box Temporary $\Box Good \Box$ Fair \Box Poor (if fair or poor BTOC): 3 14 OC): 70.65 ft. BTOC)	Well II manent Temporary Well Diameter Good Fair Poor (if fair or poor explain in Notes) Gauging/Pur BTOC): J OC): IO.UT ft. BTOC)	Well Information manent Temporary Well Diameter 2 in. Good Fair Poor (if fair or poor explain in Notes) Gauging/Purging Inform BTOC): 14 Tubing Purge OC): 10.05 Purge Purge C): 10.05 Purge Purge (if) Total P X0.25 Purge reen, then use default value of 0.3 t.; Tredured: purge volume (gal) = volume of water/ft(gal/ft) X Water colorations (gal/ft) X Water colorations regal/ft 1"-0.041 gal/ft 2"-0.163 gal/ft Water Caulity Parameters If equired: purge expression (gal/ft) X Water colorations (mg/L) (gal/ft) 1"-0.041 gal/ft 2"-0.163 gal/ft Water Caulity Parameters Mater Caulity Parameters for a consecutive reading, 4 parameters if practical [each reading, 14 parameters if practical [each reading, 14 parameters DOC Rate Volume (f'C) Conductance DOC (ifter Volume (gal/ft) (gal/ft) Doc Doc I 1.5	Well Information manent □ Temporary Well Diameter 2 in. Screen In Good □ Fair □ Poor (if fair or poor explain in Notes) Stickup □ Gauging/Purging Information BTOC): June 100 getter OC): / D.U.S Purge Start Time (a Auge End Time (a CO: Purge End Time (a Total Purge Time (a CO: Purge End Time (a Total Purge Time (a CO: Purge End Time (a Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= Colspan="2" Value of 0.3 ft; Total Purge Fill Total Purge Colspan="2" Value of 0.3 ft; Total Purge Time (a Value of 0.3 ft; Value Colspan="2" Purge colspan="2" Value of 0.3 ft; Value Colspan="2" Value Purge Colspan="2" Purge	Well Information manent □ Temporary Well Diameter 2 in. Screen Interval: © Good □ Fair □ Poor (if fair or poor explain in Notes) Stickup □ Yes Ø N Gauging/Purging Information BTOC): 1 W Gauging/Purging Information Tubing/Pump Depth (ft. BTOC) GO: 1 D.W Purge Start Time (24-hr) C G(ft) Total Purge Time (inin) xoza xoza Yoza Yoza	Well Information manent □ Temporary Well Diameter 2_ in. Screen Interval: 5.65 ft BC Good □ Fair □ Poor (if fair or poor explain in Notes) Stickup □ Yes [v] No; if yes, 1 Gauging/Purging Information Stickup □ Yes [v] No; if yes, 1 BTOC): 3 14 Tubing/Purging Information BtoC): 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /	Well Information Screen Intervat: 5.65 th B&C J&E@ Gauging/Purging Information Gauging/Purging Information Tubing/Purging Information Tubing/Purging Information Tubing/Purging Information Tubing/Purge Start Time (24-hr) O Q M Total Purge Start Time (24-hr) O Q M Total Purge Time (min) Total Purge Time (min) Total Purge Time (min) Well Diameter	

Area	WELL	ТҮРЕ	NORTHING	EASTING	N. EDGE 2" PVC ELEV.	TOP CASING ELEV.	TOP GRAVEL PAD ELEV.
	MW-191	Flushmount	5043697.396	1665393.894	1620.048	1620.482	1620.900
RGV-35A GRAVEL PAD	MW-192	Flushmount	5043593.200	1665394.875	1619.539	1619.856	1620.259
	MW-193	Flushmount	5043636.337	1665358.473	1620.663	1620.978	1621.638
	RE	MONITOR WELLS WE	KS 235-143, Pg.46-4	48 & FILE 2351434	3.csv		

REPORT

LABORATORY DATA QUALITY ASSURANCE REVIEW

RGV-35A WELL INSTALLATION SAMPLING SUPPORT

RGV-35A ALYESKA PIPELINE SERVICE COMPANY

September 2019

Prepared by: Francesca Risse Reviewed by: Christophe Venot

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

SLR Project Number 105.01288.19038

ACRONYMS AND ABBREVIATIONS

%	percent
AAC	Alaska Administrative Code
AK	Alaska
ADEC	Alaska Department of Environmental Conservation
°C	degrees Celsius
CCV	continuing calibration verification
COC	chain of custody
DL	detection limit
DRO	diesel range organics
EDD	electronic data deliverable
USEPA	United States Environmental Protection Agency
GRO	gasoline range organics
ID	identifier
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
LV	low volume
mg/kg	milligrams per kilogram
MS	matrix spike
MSD	matrix spike duplicate
NA	not applicable
ND	not detected
NFG	National Functional Guidelines
PAH	polynuclear aromatic hydrocarbons
PARCCS	precision, accuracy, representativeness, comparability, completeness, and sensitivity
PVOC	petroleum volatile organic compounds
QA	quality assurance
QAR	quality assurance review
QC	quality control
RGV-35A	remote gate valve 35A
RPD	relative percent difference
RRO	residual range organics
SDG	sample delivery group
SGS	SGS North America, Inc.
SIM	selective ion monitoring
SLR	SLR International Corporation

Introduction

This report summarizes a review of analytical data for groundwater and soil samples collected on July 29, 2019 and July 30, 2019 in support of well installation at the Remote Gate Valve (RGV)-35A site. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc. (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (UST-005) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, matrices, analytical methods, and analytes.

SDG	Matrix	Date Collected	Date Received by Laboratory	Temperature Blank	Analytical Method	Analyte
					AK101	GRO
1100504	Soil	07/29/2019		Fairbanks	AK102	DRO
			Fairbanks 07/31/2019	Cooler 1: 0.1°C	AK103	RRO
				Cooler 2: 0.2°C	SW8260C	PVOC
					SW8270D	PAH SIM
1199584	Groundwater	07/30/2019	Anabanasa	Anchorage	AK101	GRO
			Anchorage	Cooler 1: 1.8°C	AK102	DRO
			08/01/2019	Cooler 2: 3.4°C	AK103	RRO
					SW8260C	PVOC
					SW8270D LV	PAH SIM

Table 1	Sample Receipt and Matrix Summary
---------	-----------------------------------

Acronyms:	
°C – degrees Celsius	AK – Alaska
DRO – diesel range organics	GRO – gasoline range organics
LV – low volume	PAH – polynuclear aromatic hydrocarbons
PVOC – petroleum volatile organic compounds	RRO – residual range organics
SDG – sample delivery group	SIM – selective ion monitoring
SDG – sample delivery group	Silvi – selective ion monitoring

The laboratory final report was provided as a Level II deliverable and included documentation of the delivery group chain of custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) for the report was also provided. The laboratory report is provided as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The select laboratory maintains an internal QA program and standard operating procedures.

The analytical data was reviewed for consistency with any project specific requirements, *ADEC Technical Memorandum, Environmental Laboratory Data and Quality Assurance* (ADEC, 2017) requirements, *National Functional Guidelines for Superfund Organic Methods Data Review* (NFG, United States Environmental Protection Agency [USEPA], 2017), analytical method criteria and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG and was included as Attachment 1 to this Quality Assurance Review (QAR). A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

RGV-35A Well Installation Sampling

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, method blanks, etc.); were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify any Continuing Calibration Verification (CCV) recoveries or other calibration related criteria as being outside applicable acceptance limits;
- Reviewing the case narrative for any discussion of any internal standard recoveries outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable and was reviewed only from the case narrative;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Sample (LCS), Laboratory Control Sample Duplicate (LCSD), Matrix Spike (MS), and Matrix Spike Duplicate (MSD) recoveries were within acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSD, and MS/MSD; and
- Providing an overall assessment of laboratory data quality and qualifying sample results as necessary.

Data Qualifications

As part of this QAR, qualifiers (i.e. flags) were applied to data as determined necessary based on specified criteria, or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2,3}	Definition
U	U	ND	The analyte was analyzed for, but was not detected (ND) above the detection limit (DL).
J	LΝ	٢	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the DL. This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria (e.g., LCS recovery, surrogate spike recovery) failed or matrix effect. Where applicable, a "+" or "-" was appended to indicate a high bias, or a low bias respectively.
	IJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection was greater than the sample detection and the result is likely a false positive or both the blank detection and sample detection were below the limit of detection (LOD). The greater of the sample detection or LOD was reported in brackets.

Table 2Data Qualifiers

Notes:

1 - Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

2 - Only flags in **bold** were applicable and appended to data for this project.

3- For historical purposes, ND was used in place of "U."

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

RGV-35A Well Installation Sampling

Data Packages

The data packages were checked for transcription errors, omissions, or other anomalies. Issues noted with regards to the data packages are noted below.

The COC noted that for the receipt of samples in Anchorage, cooler identifier (ID) 1 had a temperature of 3.4°C, and cooler ID 2 was 1.8°C. However, the sample receipt form noted that cooler ID 1 was 1.8°C, and 2 was 3.4°C. Per email conversation with SGS, the sample receipt form was correct; cooler ID 1 was 1.8°C, and 2 was 3.4°C. Both temperatures were within acceptable criteria, and no samples were impacted.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of the samples.

Preservation (Chemical and Temperature)

Samples were appropriately preserved and were submitted to SGS. Issues noted with regard to sample preservation are noted below.

- For samples MW-192 and MW-199, the sample receipt form noted that their secondary containers for the analysis of PAH were preserved with HCl. Per email conversation with SGS, these containers were not used for analysis. No data were impacted.
- For sample MW-199, the COC noted that one of two containers for the analysis of DRO/RRO had twice as much HCl as required for preservation. Presumably, this container was not used for analysis. No data were impacted.

Holding Times

All sample analysis was conducted within holding time criteria.

Laboratory Method Blanks

Analytes detected in method blanks at or above the LOD are noted in Table 3. Affected results associated with the method blank detection that were less than or equal to five times that of the blank, were qualified as shown in the table. Associated results of ND were considered unaffected and were not listed in the table. Since a high bias was indicated and all impacted results were well below the applicable ADEC criteria of 300 milligrams per kilogram (mg/kg) for GRO, data were considered minimally impacted. Laboratory method blanks were analyzed at the appropriate frequencies and all data were usable as qualified.

Table 3 Method Blank Detection and Affected Samples

Sample ID	Matrix	Batch	Method (Analyte)	Lab Result with Flag (mg/kg) ¹	LOD (mg/kg)	Reported Result with Flag (mg/kg) ¹
Method Blank	Soil	VXX34595	AK101 (GRO)	0.91 J	1.25	NA
MW191-1				0.719 J	1.08	[1.08] UB
MW191-3				0.712 J	1.15	[1.15] UB
MW191-5				0.681 J	1.05	[1.05] UB
MW192-3.5				0.762 J	1.18	[1.18] UB

Notes:

1 – Per NFG and SLR guidelines where blank detection is greater than the sample detection or both the blank detection and sample detection were below the LOD, the greater of the sample detection or LOD was reported in brackets and qualified as non-detect. A UB flag indicates non-detect due to this associated blank contamination.

Acronyms:

NA – not applicable

Trip Blanks

Trip blanks were analyzed at the appropriate frequencies for all appropriate volatile analyses (GRO by AK 101 and PVOC by SW8260C). Trip blank with detections are noted in Table 4. Associated sample results of ND or greater than five times that of the blank (ten-fold for common laboratory contaminants) were considered unaffected and were not presented in the table. Associated detected results less than five times the blank detections were qualified as shown in the table. Since a high bias was indicated, and all affected results were below the applicable ADEC cleanup levels of 300 mg/kg for GRO and 6.7 mg/kg for toluene, data usability was minimally impacted and all data were usable as qualified.

Sample ID	Matrix	Method (Analyte)	Lab Result with Flag (mg/kg) ¹	LOD (mg/kg)	Reported Result with Flag (mg/kg) ¹
TB-1	Soil	AK101 (GRO)	0.766 J	1.25	0.766 J
MW191-1			0.719 J	1.08	[1.08] UB
MW191-3			0.712 J	1.15	[1.15] UB
MW191-5			0.681 J	1.05	[1.05] UB
MW192-3.5			0.762 J	1.18	[1.18] UB
TB-1	Soil	SW8260C (Toluene)	0.00922 J	0.0126	0.00922 J
MW191-1			0.00693 J	0.0108	[0.0108] UB
MW191-3			0.00735 J	0.0115	[0.0115] UB
MW192-3.5			0.00809 J	0.0118	[0.0118] UB
MW199-1			0.00703 J	0.0108	[0.0108] UB

Table 4 Trip Blank Detections and Affected Samples

Notes:

1 – Per NFG and SLR guidelines where blank detection is greater than the sample detection or both the blank detection and sample detection were below the LOD, the greater of the sample detection or LOD was reported in brackets and qualified as non-detect. A UB flag indicates non-detect due to this associated blank contamination.

Reporting Limits

Results of ND were reported at the LOD and all LODs were at or below applicable cleanup levels, except as noted below. LODs for groundwater samples were compared to 18 Alaska Administrative Code (AAC) 75, *Oil and Other Hazardous Substances Pollution Control,* section 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2018). LODs for soil samples were compared to 18 AAC 75, section 75.341 Tables B1 and B2, *Method Two Soil Cleanup Levels for the Under 40 Inch Zone and Migration to Groundwater* (ADEC, 2018).

 For 1,2-dibromoethane by Method SW8260C, the LODs did not meet the ADEC Migration to Groundwater cleanup level. All samples for this report were reported at the LOD as ND and it was considered unnecessary to re-evaluate 1,2-dibromoethane by Method SW8260C SIM because all detections and LODS for 1,2-dibromoethane by Method SW8260C SIM were below ADEC Migration to Groundwater criteria for the 2018 site investigation (SLR, 2018). All data were usable without qualification.

Continuous Calibration Verifications

All CCV recoveries were within acceptable limits as reviewed in the EDDs except as noted below, and CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDDs, not in the case narratives.

• For methyl-t-butyl ether by Method SW8260C, the opening CCV for batch VMS 19262 recovered at 134 percent (%), over the limit of 120%. Since a high bias was indicated, and all associated results were ND, data usability was not impacted. All data were usable without qualification.

Internal Standards

No internal standards were noted in the case narratives as outside of acceptance limits. Internal standard performance criteria were considered met.

Surrogate Recovery Results

All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits. Surrogate analysis was performed at the required frequencies.

Laboratory Control Samples and Laboratory Control Duplicate Samples

All LCS and LCSD recoveries and RPDs were within analytical method and SGS percent recovery acceptance limits except as noted below. LCS and LCSDs were analyzed at the appropriate frequencies.

• For methyl-t-butyl ether by Method SW8260C, the LCS for batch VXX 34565 recovered at 134%, over the limit of 124%. Since a high bias was indicated, and all associated results were ND, data usability was not impacted. All data were usable without qualification.

Matrix Spike and Matrix Spike Duplicate Samples

MS/MSD percent recoveries outside of acceptable limits are noted below. All impacted results were ND values with LODs well below applicable ADEC cleanup levels. MS and MSDs were analyzed at the appropriate frequencies and data usability was not impacted.

• For PAH by Method SW8270D, several analytes for the MS and MSD in batch XXX41912 recovered over the acceptable limits. The associated LCS recovery for all analytes were within acceptable limits, establishing batch accuracy, and all associated sample results were ND. For these reasons, and because a high bias was indicated, only the parent sample was recommended for qualification. However, the parent sample was non-project specific. All data were usable without qualification.

Field Duplicates

The frequency of field duplicates satisfied the requirement of one per 10 samples or less per matrix and analyte for groundwater and soil samples. The field duplicate sample frequency is presented in Table 5 and parent sample/field duplicate pairs are presented in Table 6. Field duplicates were submitted blind to the laboratory. Field duplicate evaluation is summarized as follows:

- All parent sample/field duplicate RPDs were within ADEC recommended limits of 30% for water and 50% for soil samples.
- Samples with both results below the LOQ (J flagged or ND) were considered acceptable without qualification.

Matrix	Analytical Method	Analyte	Number of Primary Samples	Number of Field Duplicates
	AK101	GRO	5	1
	AK102	DRO 5		1
Soil	AK103	RRO	5	1
	SW8260C	PVOC	5	1
	SW8270D	PAH SIM	5	1
	AK101	GRO	4	1
Groundwater	AK102	DRO 4		1
	AK103	RRO 4		1
	SW8260C	PVOC	4	1
	SW8270D LV	PAH SIM	4	1

Table 5Field Duplicate Frequency, Methods, and Analytes

Table 6Field Duplicate Identification

Sample Type	Parent Sample ID	Duplicate Sample ID	All RPDs acceptable (Y/N)
Soil	MW191-1	MW199-1	Y
Groundwater	MW-191	MW-199	Y

Laboratory Duplicate Samples

Laboratory duplicates were analyzed for percent solids by Method SM 21 2540G and all duplicate RPDs were within acceptable limits.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met.
- Accuracy: Accuracy goals were met, except as noted in the Data Packages, Sample Receipt, CCV, LCS/LCSD, and MS/MSD sections.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations in accordance with applicable requirements and guidance documents.
- Comparability: Comparability goals were met. SGS laboratory provided analytical support for all methods.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis because no data were rejected.
- Sensitivity: Sensitivity goals were met, except as noted in the Laboratory Method Blanks, Trip Blanks, and Reporting Limits sections.

This data were considered of good quality and acceptable for use with the noted limitations and qualifications in this QAR. No data were rejected.

References

- ADEC, 2017. Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. Technical Memorandum. March.
- ADEC, 2018. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. As amended October 27.
- USEPA, 2017. National Functional Guidelines for Superfund Organic Methods Data Review. January.

SLR International Corporation (SLR), 2018. RGV 35A Environmental Investigation Report. February.

Attachments

Attachment 1 – ADEC Laboratory Data Review Checklist Attachment 2 – Laboratory Deliverable

Attachment 1

ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed by:
Francesca Risse
Title:
Staff Engineer
Date:
August 22, 2019
CS Report Name:
RGV-35A Well Installation
Report Date:
August 15, 2019
Consultant Firm:
SLR International Corporation
Laboratory Name:
SGS North America, Inc.
Laboratory Report Number:
1199584
ADEC File Number:
Not applicable
Hazard Identification Number:
Not applicable

1. Laboratory

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
 (•) Yes
 (•) No
 (•) Comments:

SGS North America, Inc. (SGS) received and performed all analyses on the samples. SGS maintains ADEC CS approval Number UST-005.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

• Yes O No Comments:

No other laboratory was used.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?

Yes	🔿 No	Comments:
-----	------	-----------

b. Correct analyses requested?

• • Y	(es 👘 🗋	No	Comments:
-------	---------	----	-----------

3. <u>Laboratory Sample Receipt Documentation</u>

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

- b. Sample preservation acceptable acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

For samples MW-192 and MW-199, the sample receipt form noted that their secondary containers for the analysis of PAH were preserved with HCl. Per email conversation with SGS, these containers were not used for analysis.

For sample MW-199, the COC noted that one of two containers for the analysis of DRO/RRO had twice as much HCl as required for preservation. Presumably, this container was not used for analysis.

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

 d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

♥ Yes
 ♥ No
 Comments:
 Sample preservation discrepancies were noted.
 The COC noted that for the receipt of samples in Anchorage, cooler ID 1 had a temperature of 3.4°C, and cooler ID 2 was 1.8°C. However, the sample receipt form noted that cooler ID 1 was 1.8°C, and 2 was 3.4°C. Per email conversation with SGS, the sample receipt form was correct; cooler ID 1 was 1.8°C, and 2 was 3.4°C. Both temperatures were within acceptable criteria.

	e. Data	a quality	or usability	affected?
		-	-	Comments:
	No im	ipact.		
4. <u>(</u>	Case Narra	<u>tive</u>		
	a. Pres	sent and	understandal	ole?
		Yes	🔿 No	Comments:
	b. Disc	crepanci	es, errors or	QC failures identified by the lab?
		Yes	© No	Comments:
	c. Wei	re all co	rrective actio	ns documented?
		Yes	🔿 No	Comments:
	Not a	pplicable	e, no actions	needed.
	d. Wha	at is the	effect on dat	a quality/usability according to the case narrative? Comments:
	No im	npact.		
5. <u>8</u>	Samples Re	esults		
	a. Cor	rect anal	lyses perform	ned/reported as requested on COC?
		Yes	🔿 No	Comments:
	b. All	applicat	ble holding ti	mes met?
		• Yes	© No	Comments:

c. All soils reported on a dry weight basis?

• Yes • No Comments:

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

○ Yes ● No Comments:

For 1,2-dibromoethane by Method SW8260C, the LODs did not meet the ADEC Migration to Groundwater cleanup level. All samples for this report were reported at the LOD as ND and it was considered unnecessary to re-evaluate 1,2-dibromoethane by Method SW8260C SIM because all detections and LODS for 1,2-dibromoethane by Method SW8260C SIM were below ADEC Migration to Groundwater criteria for the 2018 site investigation (SLR, 2018). All data were usable without qualification.

e. Data quality or usability affected?

Comments:

Data usability not affected.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?
 - Yes O No Comments:
 - ii. All method blank results less than limit of quantitation (LOQ)?
 - Yes No Comments:

There was one soil method blank detection between the DL and LOD for GRO.

iii. If above LOQ, what samples are affected? Comments:

No detections were above the LOQ. For the GRO blank detection between the DL and LOD, samples that were affected were MW191-1, MW191-3, MW191-5, and MW192-3.5.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes O No Comments:

The associated sample detections that were less than the blank detection and/or the LOD, or where both the blank and sample detections were less than the LOD, were qualified with "UB" to as non-detect with an associated blank contamination.

v. Data quality or usability affected?

Comments:

All data were usable as qualified.N

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
- Yes No Comments:
- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes No Comments:

Not applicable, no metals or inorganics.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

○ Yes ● No Comments:

For methyl-t-butyl ether by Method SW8260C, the LCS for batch VXX 34565 recovered at 134%, over the limit of 124%.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- Yes O No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

For the %R exceedance, no samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

Since a high bias was indicated for the %R, and all associated results were non-detect, data usability was not impacted. All data were usable without qualification.

vii. Data quality or usability affected?

Comments:

No impact.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
 - Yes No Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes	🔿 No	Comments:
-----	------	-----------

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

Not applicable.

iv. Data quality or usability affected?

Comments:

No impact.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and cooler?
 - Yes No Comments:
 - ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 - Yes No Comments:

Yes.

- iii. All results less than LOQ?
- Yes No Comments:

There was one trip blank detection for GRO and one for toluene between the DL and LOD.

iv. If above LOQ, what samples are affected? Comments:

For the GRO detection between the DL and LOD, affected samples were MW191-1, MW191-3, MW191-5, and MW192-3.5.

For the toluene detection between the DL and LOD, affected samples were MW191-1, MW191-3, MW192-3.5, and MW199-1.

The associated sample detections that were less than the blank detection and/or the LOD, or where both the blank and sample detections were less than the LOD, were qualified with "UB" to as non-detect with an associated blank contamination.

v. Data quality or usability affected?

Comments:

All data usable as qualified.

e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples?
- Yes No Comments:
- ii. Submitted blind to lab?
- Yes No Comments:
- iii. Precision All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

• Yes • No Comments:

iv. Data quality or usability affected?

Comments:

No impact.

- f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)
 - Yes No Not Applicable
 - i. All results less than LOQ?
 - Yes O No Comments:

Not applicable.

ii. If above LOQ, what samples are affected?

Comments:

Not applicable.

iii. Data quality or usability affected?

No impact.

Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

• Yes O No Comments:

Attachment 2

Laboratory Deliverable

(Data packages)

Laboratory Report of Analysis

To: Alyeska Pipeline Srv Co. 4601 Business Park Blvd K42 Anchorage, AK 99503 (907)222-1112

Report Number: **1199584**

Client Project: 105.01288.19038 RGV-35A

Dear Scott Rose,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 08/15/2019 1:57:17PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Alyeska Pipeline Srv Co. SGS Project: 1199584 Project Name/Site: 105.01288.19038 RGV-35A Project Contact: Scott Rose

Refer to sample receipt form for information on sample condition.

LCS for HBN 1797362 [VXX/34565 (1523100) LCS

8260C - LCS recoveries for methyl-t-butyl ether does not meet QC criteria. This analyte was not detected above the LOQ in the associated samples.

1194207013MS (1522899) MS

8270D SIM - PAH MS recovery for several analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

1194207013MSD (1522900) MSD

8270D SIM - PAH MSD recovery for several analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 08/15/2019 1:57:18PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Report of Manual Integrations					
Laboratory ID	<u>Client Sample ID</u>	Analytical Batch	<u>Analyte</u>	Reason	
8270D SIM (PAH)				
1194207013	LABREFQC	XMS11608	Benzo[k]fluoranthene	RP	
Manu	al Integration Reason Code Descriptions				
Code	Description				
0	Original Chromatogram				
M SS	Modified Chromatogram Skimmed surrogate				
BLG	Closed baseline gap				
RP	Reassign peak name				
PIR IT	Pattern integration required Included tail				
SP	Split peak				
RSP	Removed split peak				
FPS	Forced peak start/stop				
BLC PNF	Baseline correction Peak not found by software				
	-				
All DRO/RRO analysis are integrated per SOP.					
Print Date: 08/15/2	010 1.57.10PM				

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification, and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i	nclude a result for "Total Solids" have already been adjusted for moisture content.
All DRO/RRO analyses are	e integrated per SOP.
-	

Print Date: 08/15/2019 1:57:20PM

Note:

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample	Summary
--------	---------

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW192-3.5	1199584001	07/29/2019	08/01/2019	Soil/Solid (dry weight)
MW191-1	1199584002	07/29/2019	08/01/2019	Soil/Solid (dry weight)
MW191-3	1199584003	07/29/2019	08/01/2019	Soil/Solid (dry weight)
MW191-5	1199584004	07/29/2019	08/01/2019	Soil/Solid (dry weight)
MW199-1	1199584005	07/29/2019	08/01/2019	Soil/Solid (dry weight)
MW193-3.75	1199584006	07/29/2019	08/01/2019	Soil/Solid (dry weight)
TB-1	1199584007	07/29/2019	08/01/2019	Soil/Solid (dry weight)
MW-191	1199584008	07/30/2019	08/01/2019	Water (Surface, Eff., Ground)
MW-193	1199584009	07/30/2019	08/01/2019	Water (Surface, Eff., Ground)
MW-192	1199584010	07/30/2019	08/01/2019	Water (Surface, Eff., Ground)
MW-199	1199584011	07/30/2019	08/01/2019	Water (Surface, Eff., Ground)
TB-2	1199584012	07/30/2019	08/01/2019	Water (Surface, Eff., Ground)

<u>Method</u>

8270D SIM LV (PAH)
8270D SIM (PAH)
AK102
AK103
AK102
AK103
AK101
AK101
SM21 2540G
SW8260C
SW8260C

Method Description

8270 PAH SIM GC/MS Liq/Liq ext. LV 8270 PAH SIM Semi-Volatiles GC/MS Diesel/Residual Range Organics Diesel/Residual Range Organics DRO/RRO Low Volume Water DRO/RRO Low Volume Water Gasoline Range Organics (S) Gasoline Range Organics (W) Percent Solids SM2540G VOC 8260 (S) Field Extracted Volatile Organic Compounds (W) FULL

Print Date: 08/15/2019 1:57:20PM

Detectable Results Summary

Client Sample ID: MW192-3.5			
Lab Sample ID: 1199584001	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	11.7J	mg/Kg
Volatile Fuels	Gasoline Range Organics	0.762J	mg/Kg
Volatile GC/MS- Petroleum VOC Group	Toluene	8.09J	ug/Kg
Client Sample ID: MW191-1			
Lab Sample ID: 1199584002	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	9.04J	mg/Kg
Volatile Fuels	Gasoline Range Organics	0.719J	mg/Kg
Volatile GC/MS- Petroleum VOC Group	Toluene	6.93J	ug/Kg
Client Sample ID: MW191-3			
Lab Sample ID: 1199584003	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	6.82J	mg/Kg
Volatile Fuels	Gasoline Range Organics	0.712J	mg/Kg
Volatile GC/MS- Petroleum VOC Group	Toluene	7.35J	ug/Kg
Client Sample ID: MW191-5			
Lab Sample ID: 1199584004	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	7.97J	mg/Kg
Volatile Fuels	Gasoline Range Organics	0.681J	mg/Kg
Client Sample ID: MW199-1			
Lab Sample ID: 1199584005	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	15.9J	mg/Kg
Volatile GC/MS- Petroleum VOC Group	Toluene	7.03J	ug/Kg
Client Sample ID: MW193-3.75			
Lab Sample ID: 1199584006	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	37.7	mg/Kg
Client Sample ID: TB-1			
Lab Sample ID: 1199584007	Parameter	Result	Units
Volatile Fuels	Gasoline Range Organics	0.766J	mg/Kg
Volatile GC/MS- Petroleum VOC Group	Toluene	9.22J	ug/Kg
Client Sample ID: MW-199			
Lab Sample ID: 1199584011	Parameter	Result	Units
Volatile Fuels	Gasoline Range Organics	0.0460J	mg/L
			-

Print Date: 08/15/2019 1:57:21PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW192-3.5

Client Sample ID: **MW192-3.5** Client Project ID: **105.01288.19038 RGV-35A** Lab Sample ID: 1199584001 Lab Project ID: 1199584 Collection Date: 07/29/19 12:08 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):93.1 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Acenaphthylene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Anthracene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Benzo(a)Anthracene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Benzo[a]pyrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Benzo[b]Fluoranthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Benzo[g,h,i]perylene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Benzo[k]fluoranthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Chrysene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Dibenzo[a,h]anthracene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Fluoranthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Fluorene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Indeno[1,2,3-c,d] pyrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Naphthalene	10.7 U	21.3	5.34	ug/Kg	1		08/06/19 19:06
Phenanthrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Pyrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:06
Surrogates							
2-Methylnaphthalene-d10 (surr)	78.8	58-103		%	1		08/06/19 19:06
Fluoranthene-d10 (surr)	78.8	54-113		%	1		08/06/19 19:06

Batch Information

Analytical Batch: XMS11608 Analytical Method: 8270D SIM (PAH) Analyst: DSD Analytical Date/Time: 08/06/19 19:06 Container ID: 1199584001-A Prep Batch: XXX41912 Prep Method: SW3550C Prep Date/Time: 08/02/19 09:43 Prep Initial Wt./Vol.: 22.639 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

J flagging is activated

Client Sample ID: MW192-3.5 Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584001 Lab Project ID: 1199584		eceived Da atrix: Soil/S olids (%):93				
3		_				
<u>Result Qual</u> 10.7 U	<u>LOQ/CL</u> 21.3	<u>DL</u> 6.60	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/06/19 09:3
83.2	50-150		%	1		08/06/19 09:3
	F F F	Prep Methoo Prep Date/Ti Prep Initial V	I: SW3550C me: 08/05/1 Vt./Vol.: 30.2			
<u>Result Qual</u> 11.7 J	<u>LOQ/CL</u> 21.3	<u>DL</u> 6.60	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/06/19 09:3
95.6	50-150		%	1		08/06/19 09:3
	F F F	Prep Methoo Prep Date/Ti Prep Initial V	I: SW3550C me: 08/05/1 Vt./Vol.: 30.2	9 08:59		
	Result Qual 10.7 U 83.2 Result Qual 11.7 J	FV-35A River Markowski Markows	FV-35A Received Date Matrix: Soil/S Solids (%):93 Location: Result Qual LOQ/CL DL 10.7 U 21.3 6.60 83.2 50-150 Prep Batch: Prep Method Prep Date/Ti Prep Initial V Result Qual LOQ/CL DL 11.7 J 21.3 6.60 95.6 50-150 Prep Batch: Prep Method Prep Date/Ti Prep Initial V 95.6 50-150 Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract Prep Method Prep Date/Ti Prep Initial V 95.6 50-150 Prep Batch: Prep Method Prep Date/Ti Prep Initial V	FV-35A Received Date: 08/01/1 Matrix: Soil/Solid (dry was Solids (%):93.1 Location: Result Qual LOQ/CL DL 10.7 U 21.3 6.60 mg/Kg 83.2 50-150 % Prep Batch: XXX41930 Prep Method: SW3550C Prep Date/Time: 08/05/1 Prep Initial Wt./Vol.: 30.2 Prep Extract Vol: 5 mL 95.6 50-150 % Prep Batch: XXX41930 Prep Date/Time: 08/05/1 Prep Date/Time: 08/05/1 Prep Date/Time: 08/05/1 Prep Extract Vol: 5 mL	Matrix: Soil/Solid (dry weight) Solids (%):93.1 Location: Result Qual 10.7 U LOQ/CL 21.3 DL 6.60 Units mg/Kg DE 1 83.2 50-150 % 1 Prep Batch: XXX41930 Prep Method: SW3550C Prep Date/Time: 08/05/19 08:59 Prep Initial Wt./vol.: 30.269 g Prep Extract Vol: 5 mL Result Qual 11.7 J LOQ/CL 21.3 DL 6.60 Units mg/Kg DE 1 95.6 50-150 % 1 Prep Batch: XXX41930 Prep Method: SW3550C Prep Date/Time: 08/05/19 08:59 Prep Method: SW3550C Prep Date/Time: 08/05/19 08:59 Prep Initial Wt./vol.: 30.269 g	Image: System in the system is a second constraint of the system is a second constrease of the system is a second constraint of

CCC

Results of MW192-3.5	ł						
Client Sample ID: MW192-3.5 Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584001 Lab Project ID: 1199584		Collection Date: 07/29/19 12:0 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):93.1 Location:			9 09:30		
Results by Volatile Fuels			_				
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.762 J	2.35	0.704	mg/Kg	1		08/07/19 01:19
Surrogates							
4-Bromofluorobenzene (surr)	87.3	50-150		%	1		08/07/19 01:19
Batch Information							
Analytical Batch: VFC14867		I	Prep Batch:	VXX34595			
Analytical Method: AK101 Analyst: NRB				: SW5035A me: 07/29/1			
Analytical Date/Time: 08/07/19 01:19				/t./Vol.: 67.9			
Container ID: 1199584001-B				Vol: 29.687	-		

Print Date: 08/15/2019 1:57:22PM

000

J flagging is activated

Results of MW192-3.5

Client Sample ID: **MW192-3.5** Client Project ID: **105.01288.19038 RGV-35A** Lab Sample ID: 1199584001 Lab Project ID: 1199584 Collection Date: 07/29/19 12:08 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):93.1 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,2,4-Trimethylbenzene	23.4 U	46.9	14.1	ug/Kg	1		08/05/19 07:58
1,2-Dibromoethane	0.469 U	0.938	0.291	ug/Kg	1		08/05/19 07:58
1,2-Dichloroethane	0.940 U	1.88	0.582	ug/Kg	1		08/05/19 07:58
1,3,5-Trimethylbenzene	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
Benzene	5.85 U	11.7	3.66	ug/Kg	1		08/05/19 07:58
Ethylbenzene	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
Isopropylbenzene (Cumene)	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
Methyl-t-butyl ether	46.9 U	93.8	29.1	ug/Kg	1		08/05/19 07:58
Naphthalene	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
n-Butylbenzene	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
o-Xylene	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
P & M -Xylene	23.4 U	46.9	14.1	ug/Kg	1		08/05/19 07:58
sec-Butylbenzene	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
tert-Butylbenzene	11.8 U	23.5	7.32	ug/Kg	1		08/05/19 07:58
Toluene	8.09 J	23.5	7.32	ug/Kg	1		08/05/19 07:58
Xylenes (total)	35.2 U	70.4	21.4	ug/Kg	1		08/05/19 07:58
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.5	71-136		%	1		08/05/19 07:58
4-Bromofluorobenzene (surr)	95.6	55-151		%	1		08/05/19 07:58
Toluene-d8 (surr)	99.5	85-116		%	1		08/05/19 07:58

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/05/19 07:58 Container ID: 1199584001-B Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 07/29/19 12:08 Prep Initial Wt./Vol.: 67.975 g Prep Extract Vol: 29.6873 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW191-1

Client Sample ID: **MW191-1** Client Project ID: **105.01288.19038 RGV-35A** Lab Sample ID: 1199584002 Lab Project ID: 1199584 Collection Date: 07/29/19 14:25 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):92.2 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Acenaphthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Acenaphthylene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Anthracene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Benzo(a)Anthracene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Benzo[a]pyrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Benzo[b]Fluoranthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Benzo[g,h,i]perylene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Benzo[k]fluoranthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Chrysene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Dibenzo[a,h]anthracene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Fluoranthene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Fluorene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Indeno[1,2,3-c,d] pyrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Naphthalene	10.7 U	21.4	5.34	ug/Kg	1		08/06/19 19:27
Phenanthrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Pyrene	13.4 U	26.7	6.67	ug/Kg	1		08/06/19 19:27
Surrogates							
2-Methylnaphthalene-d10 (surr)	76.1	58-103		%	1		08/06/19 19:27
Fluoranthene-d10 (surr)	77.1	54-113		%	1		08/06/19 19:27

Batch Information

Analytical Batch: XMS11608 Analytical Method: 8270D SIM (PAH) Analyst: DSD Analytical Date/Time: 08/06/19 19:27 Container ID: 1199584002-A Prep Batch: XXX41912 Prep Method: SW3550C Prep Date/Time: 08/02/19 09:43 Prep Initial Wt./Vol.: 22.847 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW191-1							
Client Sample ID: MW191-1 Client Project ID: 105.01288.19038 RC .ab Sample ID: 1199584002 .ab Project ID: 1199584	R M S	ollection Da eceived Da latrix: Soil/s olids (%):92 ocation:					
Results by Semivolatile Organic Fuels	3					Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyze
Diesel Range Organics	10.7 U	21.4	6.65	mg/Kg	1		08/06/19 09:4
Irrogates	01.2	E0 1E0		0/	1		08/06/19 09:4
a Androstane (surr)	81.3	50-150		%	1		08/06/19 09:4
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/06/19 09:46 Container ID: 1199584002-A		F	Prep Date/Ti	l: SW3550C me: 08/05/1 Vt./Vol.: 30.3			
Parameter Residual Range Organics	<u>Result Qual</u> 9.04 J	<u>LOQ/CL</u> 21.4	<u>DL</u> 6.65	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/06/19 09:4
urrogates							
n-Triacontane-d62 (surr)	93.2	50-150		%	1		08/06/19 09:4
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/06/19 09:46 Container ID: 1199584002-A		F	Prep Date/Ti	I: SW3550C me: 08/05/1 Vt./Vol.: 30.3			

COC

Results of MW191-1	b						
Client Sample ID: MW191-1 Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584002 Lab Project ID: 1199584		R M Se	eceived Da	ate: 07/29/ [,] te: 08/01/1 Solid (dry we 2.2	9 09:30		
Results by Volatile Fuels			_				
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.719 J	2.16	0.649	mg/Kg	1		08/07/19 01:3
Surrogates							
4-Bromofluorobenzene (surr)	93.7	50-150		%	1		08/07/19 01:3
Batch Information							
Analytical Batch: VFC14867		F	Prep Batch:	VXX34595			
Analytical Method: AK101				: SW5035A			
Analyst: NRB Analytical Date/Time: 08/07/19 01:37				me: 07/29/1 /t./Vol.: 77.7			
Container ID: 1199584002-B				Vol: 31.033			

Print Date: 08/15/2019 1:57:22PM

000

J flagging is activated

Results of MW191-1

Client Sample ID: MW191-1
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584002
Lab Project ID: 1199584

Collection Date: 07/29/19 14:25 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):92.2 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	21.6 U	43.3	13.0	ug/Kg	1		08/05/19 08:13
1,2-Dibromoethane	0.433 U	0.866	0.268	ug/Kg	1		08/05/19 08:13
1,2-Dichloroethane	0.865 U	1.73	0.537	ug/Kg	1		08/05/19 08:13
1,3,5-Trimethylbenzene	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
Benzene	5.40 U	10.8	3.38	ug/Kg	1		08/05/19 08:13
Ethylbenzene	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
Isopropylbenzene (Cumene)	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
Methyl-t-butyl ether	43.3 U	86.6	26.8	ug/Kg	1		08/05/19 08:13
Naphthalene	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
n-Butylbenzene	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
o-Xylene	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
P & M -Xylene	21.6 U	43.3	13.0	ug/Kg	1		08/05/19 08:13
sec-Butylbenzene	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
tert-Butylbenzene	10.8 U	21.6	6.75	ug/Kg	1		08/05/19 08:13
Toluene	6.93 J	21.6	6.75	ug/Kg	1		08/05/19 08:13
Xylenes (total)	32.5 U	64.9	19.7	ug/Kg	1		08/05/19 08:13
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.1	71-136		%	1		08/05/19 08:13
4-Bromofluorobenzene (surr)	108	55-151		%	1		08/05/19 08:13
Toluene-d8 (surr)	100	85-116		%	1		08/05/19 08:13

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/05/19 08:13 Container ID: 1199584002-B Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 07/29/19 14:25 Prep Initial Wt./Vol.: 77.733 g Prep Extract Vol: 31.0331 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW191-3

Client Sample ID: **MW191-3** Client Project ID: **105.01288.19038 RGV-35A** Lab Sample ID: 1199584003 Lab Project ID: 1199584 Collection Date: 07/29/19 15:00 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):92.9 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Acenaphthylene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Anthracene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Benzo(a)Anthracene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Benzo[a]pyrene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Benzo[b]Fluoranthene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Benzo[g,h,i]perylene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Benzo[k]fluoranthene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Chrysene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Dibenzo[a,h]anthracene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Fluoranthene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Fluorene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Indeno[1,2,3-c,d] pyrene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Naphthalene	10.8 U	21.5	5.37	ug/Kg	1		08/06/19 12:45
Phenanthrene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Pyrene	13.4 U	26.9	6.72	ug/Kg	1		08/06/19 12:45
Surrogates							
2-Methylnaphthalene-d10 (surr)	75.6	58-103		%	1		08/06/19 12:45
Fluoranthene-d10 (surr)	70.4	54-113		%	1		08/06/19 12:45

Batch Information

Analytical Batch: XMS11606 Analytical Method: 8270D SIM (PAH) Analyst: DSD Analytical Date/Time: 08/06/19 12:45 Container ID: 1199584003-A Prep Batch: XXX41916 Prep Method: SW3550C Prep Date/Time: 08/02/19 15:51 Prep Initial Wt./Vol.: 22.539 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW191-3							
Client Sample ID: MW191-3 Client Project ID: 105.01288.19038 R Lab Sample ID: 1199584003 Lab Project ID: 1199584	R M S	Collection Da Received Da Matrix: Soil/S Colids (%):9. ocation:					
Results by Semivolatile Organic Fuel	S						
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyze
Diesel Range Organics	10.7 U	21.4	6.65	mg/Kg	1		08/06/19 09:5
urrogates	80.6	50-150		%	1		08/06/19 09:5
5a Androstane (surr)	00.0	50-150		70	I		00/00/19 09.5
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/06/19 09:55 Container ID: 1199584003-A			Prep Date/T	d: SW3550C ime: 08/05/1 Vt./Vol.: 30.1	9 08:59		
Parameter Residual Range Organics	<u>Result Qual</u> 6.82 J	<u>LOQ/CL</u> 21.4	<u>DL</u> 6.65	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/06/19 09:5
urrogates n-Triacontane-d62 (surr)	92.7	50-150		%	1		08/06/19 09:5
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/06/19 09:55 Container ID: 1199584003-A			Prep Date/T	1: SW3550C ime: 08/05/1 Vt./Vol.: 30.1	9 08:59		

CO

Results of MW191-3							
Client Sample ID: MW191-3 Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584003 Lab Project ID: 1199584		R M S	ollection Da eceived Da atrix: Soil/S blids (%):92 pocation:				
Results by Volatile Fuels			_				
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
Gasoline Range Organics	0.712 J	2.30	0.689	mg/Kg	1		08/07/19 01:5
Surrogates							
4-Bromofluorobenzene (surr)	88.2	50-150		%	1		08/07/19 01:5
Batch Information							
Analytical Batch: VFC14867 Analytical Method: AK101 Analyst: NRB		F	Prep Date/Ti	: SW5035A me: 07/29/1			
Analytical Date/Time: 08/07/19 01:55 Container ID: 1199584003-B				/t./Vol.: 70.2 Vol: 29.9904			

Print Date: 08/15/2019 1:57:22PM

000

Results of MW191-3

Client Sample ID: MW191-3
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584003
Lab Project ID: 1199584

Collection Date: 07/29/19 15:00 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):92.9 Location:

Results by Volatile GC/MS- Petroleum VOC Group

Posult Qual		וח	Linite	DE		Date Analyzed
					LIIIIIIS	
						08/05/19 08:29
0.460 U	0.919	0.285	ug/Kg	1		08/05/19 08:29
0.920 U	1.84	0.570	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
5.75 U	11.5	3.58	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
46.0 U	91.9	28.5	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
22.9 U	45.9	13.8	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
11.5 U	23.0	7.17	ug/Kg	1		08/05/19 08:29
7.35 J	23.0	7.17	ug/Kg	1		08/05/19 08:29
34.5 U	68.9	20.9	ug/Kg	1		08/05/19 08:29
97.5	71-136		%	1		08/05/19 08:29
97.4	55-151		%	1		08/05/19 08:29
98.9	85-116		%	1		08/05/19 08:29
	11.5 U 5.75 U 11.5 U 11.5 U 46.0 U 11.5 U 11.5 U 11.5 U 22.9 U 11.5 U 22.9 U 11.5 U 7.35 J 34.5 U 97.5 97.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.9 U 45.9 13.8 0.460 U 0.919 0.285 0.920 U 1.84 0.570 11.5 U 23.0 7.17 5.75 U 11.5 3.58 11.5 U 23.0 7.17 34.5 U 68.9 20.9 97.5 $71-136$ 97.4 $55-151$	22.9 U 45.9 13.8 ug/Kg 0.460 U 0.919 0.285 ug/Kg 0.920 U 1.84 0.570 ug/Kg 11.5 U 23.0 7.17 ug/Kg 5.75 U 11.5 3.58 ug/Kg 11.5 U 23.0 7.17 ug/Kg 11.5 U 23.0 7.17 ug/Kg 11.5 U 23.0 7.17 ug/Kg 46.0 U 91.9 28.5 ug/Kg 11.5 U 23.0 7.17 ug/Kg 34.5 U 68.9 20.9 ug/Kg 97.5 $71-136$ % 97.4 $55-151$ %	$22.9 \cup$ 45.9 13.8 ug/Kg 1 $0.460 \cup$ 0.919 0.285 ug/Kg 1 $0.920 \cup$ 1.84 0.570 ug/Kg 1 $11.5 \cup$ 23.0 7.17 ug/Kg 1 $5.75 \cup$ 11.5 3.58 ug/Kg 1 $11.5 \cup$ 23.0 7.17 ug/Kg 1 $34.5 \cup$ 68.9 20.9 ug/Kg 1 97.5 $71-136$ $\%$ 1 97.4 $55-151$ $\%$ 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/05/19 08:29 Container ID: 1199584003-B Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 07/29/19 15:00 Prep Initial Wt./Vol.: 70.27 g Prep Extract Vol: 29.9904 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW191-5

Client Sample ID: **MW191-5** Client Project ID: **105.01288.19038 RGV-35A** Lab Sample ID: 1199584004 Lab Project ID: 1199584 Collection Date: 07/29/19 15:06 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):87.7 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Acenaphthene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Acenaphthylene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Anthracene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Benzo(a)Anthracene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Benzo[a]pyrene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Benzo[b]Fluoranthene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Benzo[g,h,i]perylene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Benzo[k]fluoranthene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Chrysene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Dibenzo[a,h]anthracene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Fluoranthene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Fluorene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Indeno[1,2,3-c,d] pyrene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Naphthalene	11.2 U	22.4	5.61	ug/Kg	1		08/06/19 13:05
Phenanthrene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Pyrene	14.1 U	28.1	7.02	ug/Kg	1		08/06/19 13:05
Surrogates							
2-Methylnaphthalene-d10 (surr)	76.6	58-103		%	1		08/06/19 13:05
Fluoranthene-d10 (surr)	73.4	54-113		%	1		08/06/19 13:05

Batch Information

Analytical Batch: XMS11606 Analytical Method: 8270D SIM (PAH) Analyst: DSD Analytical Date/Time: 08/06/19 13:05 Container ID: 1199584004-A Prep Batch: XXX41916 Prep Method: SW3550C Prep Date/Time: 08/02/19 15:51 Prep Initial Wt./Vol.: 22.844 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Diesel Range Organics urrogates	-35A <u>Result Qual</u> 11.3 U	R M S	eceived Da latrix: Soil/S olids (%):87 ocation: <u>DL</u>	ate: 07/29/1 te: 08/01/1 Solid (dry we 7.7 <u>Units</u>	9 09:30	Allowable Limits	
Parameter Diesel Range Organics urrogates				<u>Units</u>	DF		
Diesel Range Organics urrogates				<u>Units</u>	<u>DF</u>		
			6.97	mg/Kg	1	Linits	Date Analyze 08/06/19 10:0
5a Androstane (surr)	81.8	50-150		%	1		08/06/19 10:0
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/06/19 10:05 Container ID: 1199584004-A		F		: SW3550C me: 08/05/19 /t./Vol.: 30.3			
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 7.97 J	<u>LOQ/CL</u> 22.5	<u>DL</u> 6.97	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/06/19 10:0
urrogates n-Triacontane-d62 (surr)	92.3	50-150		%	1		08/06/19 10:0
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/06/19 10:05 Container ID: 1199584004-A		F		: SW3550C me: 08/05/19 /t./Vol.: 30.3			

coc

Results of MW191-5							
Client Sample ID: MW191-5 Client Project ID: 105.01288.19038 RG Lab Sample ID: 1199584004 Lab Project ID: 1199584	R M S	eceived Da atrix: Soil/S	llection Date: 07/29/19 15:06 ceived Date: 08/01/19 09:30 trix: Soil/Solid (dry weight) ids (%):87.7 cation:				
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result</u> Qual 0.681 J	<u>LOQ/CL</u> 2.10	<u>DL</u> 0.629	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/07/19 02:3
Surrogates							
4-Bromofluorobenzene (surr)	97.3	50-150		%	1		08/07/19 02:3
Batch Information							
Analytical Batch: VFC14867 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 02:30 Container ID: 1199584004-B		F	Prep Date/Ti Prep Initial W	VXX34595 : SW5035A me: 07/29/1 /t./Vol.: 101. Vol: 37.494			

Print Date: 08/15/2019 1:57:22PM

000

J flagging is activated

Results of MW191-5

Client Sample ID: MW191-5
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584004
Lab Project ID: 1199584

Collection Date: 07/29/19 15:06 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):87.7 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,2,4-Trimethylbenzene	20.9 U	41.9	12.6	ug/Kg	1		08/05/19 08:44
1,2-Dibromoethane	0.419 U	0.838	0.260	ug/Kg	1		08/05/19 08:44
1,2-Dichloroethane	0.840 U	1.68	0.520	ug/Kg	1		08/05/19 08:44
1,3,5-Trimethylbenzene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
Benzene	5.25 U	10.5	3.27	ug/Kg	1		08/05/19 08:44
Ethylbenzene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
Isopropylbenzene (Cumene)	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
Methyl-t-butyl ether	41.9 U	83.8	26.0	ug/Kg	1		08/05/19 08:44
Naphthalene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
n-Butylbenzene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
o-Xylene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
P & M -Xylene	20.9 U	41.9	12.6	ug/Kg	1		08/05/19 08:44
sec-Butylbenzene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
tert-Butylbenzene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
Toluene	10.5 U	21.0	6.54	ug/Kg	1		08/05/19 08:44
Xylenes (total)	31.4 U	62.9	19.1	ug/Kg	1		08/05/19 08:44
Surrogates							
1,2-Dichloroethane-D4 (surr)	98.2	71-136		%	1		08/05/19 08:44
4-Bromofluorobenzene (surr)	116	55-151		%	1		08/05/19 08:44
Toluene-d8 (surr)	99.7	85-116		%	1		08/05/19 08:44

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/05/19 08:44 Container ID: 1199584004-B Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 07/29/19 15:06 Prep Initial Wt./Vol.: 101.963 g Prep Extract Vol: 37.4948 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW199-1

Client Sample ID: MW199-1
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584005
Lab Project ID: 1199584

Collection Date: 07/29/19 14:45 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):92.0 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Acenaphthene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Acenaphthylene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Anthracene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Benzo(a)Anthracene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Benzo[a]pyrene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Benzo[b]Fluoranthene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Benzo[g,h,i]perylene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Benzo[k]fluoranthene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Chrysene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Dibenzo[a,h]anthracene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Fluoranthene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Fluorene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Indeno[1,2,3-c,d] pyrene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Naphthalene	10.8 U	21.6	5.39	ug/Kg	1		08/06/19 13:26
Phenanthrene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Pyrene	13.4 U	26.9	6.74	ug/Kg	1		08/06/19 13:26
Surrogates							
2-Methylnaphthalene-d10 (surr)	77.8	58-103		%	1		08/06/19 13:26
Fluoranthene-d10 (surr)	73.2	54-113		%	1		08/06/19 13:26

Batch Information

Analytical Batch: XMS11606 Analytical Method: 8270D SIM (PAH) Analyst: DSD Analytical Date/Time: 08/06/19 13:26 Container ID: 1199584005-A Prep Batch: XXX41916 Prep Method: SW3550C Prep Date/Time: 08/02/19 15:51 Prep Initial Wt./Vol.: 22.698 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

J flagging is activated

Results of MW199-1							
Client Sample ID: MW199-1 Client Project ID: 105.01288.19038 RG Lab Sample ID: 1199584005 Lab Project ID: 1199584	iV-35A	R M Se	eceived Da	ate: 07/29/1 ate: 08/01/1 Solid (dry we 2.0	9 09:30		
Results by Semivolatile Organic Fuels	;						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 10.8 U	<u>LOQ/CL</u> 21.5	<u>DL</u> 6.66	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/06/19 10:1
urrogates							
5a Androstane (surr)	78.4	50-150		%	1		08/06/19 10:1
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/06/19 10:14 Container ID: 1199584005-A		F F F	Prep Date/T	I: SW3550C me: 08/05/19 Vt./Vol.: 30.3			
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 15.9 J	<u>LOQ/CL</u> 21.5	<u>DL</u> 6.66	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/06/19 10:*
urrogates n-Triacontane-d62 (surr)	89.1	50-150		%	1		08/06/19 10:1
Batch Information Analytical Batch: XFC15214 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/06/19 10:14 Container ID: 1199584005-A		F F F	Prep Date/T	I: SW3550C me: 08/05/19 Vt./Vol.: 30.3			

COC

Results of MW199-1							
Client Sample ID: MW199-1 Client Project ID: 105.01288.19038 RC Lab Sample ID: 1199584005 Lab Project ID: 1199584	GV-35A	Collection Date: 07/29/19 14:45 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):92.0 Location:					
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 1.08 U	<u>LOQ/CL</u> 2.15	<u>DL</u> 0.645	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/07/19 02:4
urrogates							
4-Bromofluorobenzene (surr)	94.6	50-150		%	1		08/07/19 02:4
Batch Information							
Analytical Batch: VFC14867 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 02:48 Container ID: 1199584005-B		I	Prep Date/Ti Prep Initial W	VXX34595 : SW5035A me: 07/29/1 /t./Vol.: 79.2 Vol: 31.373	79 g		

Print Date: 08/15/2019 1:57:22PM

000

J flagging is activated

Client Sample ID: MW199-1
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584005
Lab Project ID: 1199584

Collection Date: 07/29/19 14:45 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):92.0 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits <u>D</u>	Date Analyzed
1,2,4-Trimethylbenzene	21.5 U	43.0	12.9	ug/Kg	1	0	8/05/19 09:00
1,2-Dibromoethane	0.430 U	0.861	0.267	ug/Kg	1	0	8/05/19 09:00
1,2-Dichloroethane	0.860 U	1.72	0.534	ug/Kg	1	0	8/05/19 09:00
1,3,5-Trimethylbenzene	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
Benzene	5.40 U	10.8	3.36	ug/Kg	1	0	8/05/19 09:00
Ethylbenzene	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
Isopropylbenzene (Cumene)	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
Methyl-t-butyl ether	43.0 U	86.1	26.7	ug/Kg	1	0	8/05/19 09:00
Naphthalene	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
n-Butylbenzene	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
o-Xylene	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
P & M -Xylene	21.5 U	43.0	12.9	ug/Kg	1	0	8/05/19 09:00
sec-Butylbenzene	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
tert-Butylbenzene	10.8 U	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
Toluene	7.03 J	21.5	6.71	ug/Kg	1	0	8/05/19 09:00
Xylenes (total)	32.3 U	64.5	19.6	ug/Kg	1	0	8/05/19 09:00
Surrogates							
1,2-Dichloroethane-D4 (surr)	98.7	71-136		%	1	0	8/05/19 09:00
4-Bromofluorobenzene (surr)	110	55-151		%	1	0	8/05/19 09:00
Toluene-d8 (surr)	101	85-116		%	1	0	8/05/19 09:00

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/05/19 09:00 Container ID: 1199584005-B Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 07/29/19 14:45 Prep Initial Wt./Vol.: 79.279 g Prep Extract Vol: 31.3735 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW193-3.75

Client Sample ID: **MW193-3.75** Client Project ID: **105.01288.19038 RGV-35A** Lab Sample ID: 1199584006 Lab Project ID: 1199584 Collection Date: 07/29/19 16:16 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):89.3 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Acenaphthylene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Anthracene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Benzo(a)Anthracene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Benzo[a]pyrene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Benzo[b]Fluoranthene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Benzo[g,h,i]perylene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Benzo[k]fluoranthene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Chrysene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Dibenzo[a,h]anthracene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Fluoranthene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Fluorene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Indeno[1,2,3-c,d] pyrene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Naphthalene	11.2 U	22.4	5.60	ug/Kg	1		08/06/19 14:27
Phenanthrene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Pyrene	14.0 U	28.0	7.00	ug/Kg	1		08/06/19 14:27
Surrogates							
2-Methylnaphthalene-d10 (surr)	72.1	58-103		%	1		08/06/19 14:27
Fluoranthene-d10 (surr)	65.4	54-113		%	1		08/06/19 14:27

Batch Information

Analytical Batch: XMS11606 Analytical Method: 8270D SIM (PAH) Analyst: DSD Analytical Date/Time: 08/06/19 14:27 Container ID: 1199584006-A Prep Batch: XXX41916 Prep Method: SW3550C Prep Date/Time: 08/02/19 15:51 Prep Initial Wt./Vol.: 22.515 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW193-3.75			N III				
Client Sample ID: MW193-3.75 Client Project ID: 105.01288.19038 R Lab Sample ID: 1199584006 Lab Project ID: 1199584	GV-35A	F N S	Received Da	ate: 07/29/ [,] ate: 08/01/1 Solid (dry wo 9.3	9 09:30		
Results by Semivolatile Organic Fue	ls						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 11.2 U	<u>LOQ/CL</u> 22.3	<u>DL</u> 6.93	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/06/19 10::
urrogates 5a Androstane (surr)	77.9	50-150		%	1		08/06/19 10::
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/06/19 10:24 Container ID: 1199584006-A			Prep Date/T	d: SW3550C ime: 08/05/1 Vt./Vol.: 30.0	9 08:59		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 37.7	<u>LOQ/CL</u> 22.3	<u>DL</u> 6.93	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/06/19 10::
urrogates				5 5			
n-Triacontane-d62 (surr)	87.2	50-150		%	1		08/06/19 10:
Batch Information							
Analytical Batch: XFC15214 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/06/19 10:24 Container ID: 1199584006-A			Prep Date/T	d: SW3550C ime: 08/05/1 Vt./Vol.: 30.0	9 08:59		

Results of MW193-3.75							
Client Sample ID: MW193-3.75 Client Project ID: 105.01288.19038 RC Lab Sample ID: 1199584006 Lab Project ID: 1199584	GV-35A	R M S	ollection Da eceived Da atrix: Soil/S olids (%):89 ocation:				
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 1.17 U	<u>LOQ/CL</u> 2.34	<u>DL</u> 0.701	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/07/19 03:0
urrogates							
4-Bromofluorobenzene (surr)	61.3	50-150		%	1		08/07/19 03:0
Batch Information							
Analytical Batch: VFC14867 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 03:05 Container ID: 1199584006-B		F	Prep Method Prep Date/Ti Prep Initial V	ep Batch: VXX34595 ep Method: SW5035A ep Date/Time: 07/29/19 16:16 ep Initial Wt./Vol.: 80.743 g ep Extract Vol: 33.6643 mL			

000

J flagging is activated

Results of MW193-3.75

Client Sample ID: **MW193-3.75** Client Project ID: **105.01288.19038 RGV-35A** Lab Sample ID: 1199584006 Lab Project ID: 1199584 Collection Date: 07/29/19 16:16 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%):89.3 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	23.4 U	46.7	14.0	ug/Kg	1		08/05/19 09:15
1,2-Dibromoethane	0.467 U	0.934	0.290	ug/Kg	1		08/05/19 09:15
1,2-Dichloroethane	0.935 U	1.87	0.579	ug/Kg	1		08/05/19 09:15
1,3,5-Trimethylbenzene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
Benzene	5.85 U	11.7	3.64	ug/Kg	1		08/05/19 09:15
Ethylbenzene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
Isopropylbenzene (Cumene)	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
Methyl-t-butyl ether	46.7 U	93.4	29.0	ug/Kg	1		08/05/19 09:15
Naphthalene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
n-Butylbenzene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
o-Xylene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
P & M -Xylene	23.4 U	46.7	14.0	ug/Kg	1		08/05/19 09:15
sec-Butylbenzene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
tert-Butylbenzene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
Toluene	11.7 U	23.4	7.29	ug/Kg	1		08/05/19 09:15
Xylenes (total)	35.0 U	70.1	21.3	ug/Kg	1		08/05/19 09:15
Surrogates							
1,2-Dichloroethane-D4 (surr)	91	71-136		%	1		08/05/19 09:15
4-Bromofluorobenzene (surr)	74.8	55-151		%	1		08/05/19 09:15
Toluene-d8 (surr)	99.9	85-116		%	1		08/05/19 09:15

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/05/19 09:15 Container ID: 1199584006-B Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 07/29/19 16:16 Prep Initial Wt./Vol.: 80.743 g Prep Extract Vol: 33.6643 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of TB-1							
Client Sample ID: TB-1 Client Project ID: 105.01288.19038 RG Lab Sample ID: 1199584007 Lab Project ID: 1199584	SV-35A	Collection Date: 07/29/19 12:00 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%): Location:					
Results by Volatile Fuels			_				
Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyze
Gasoline Range Organics	0.766 J	2.51	0.753	mg/Kg	1		08/06/19 22:5
urrogates							
4-Bromofluorobenzene (surr)	92.5	50-150		%	1		08/06/19 22:5
Batch Information							
Analytical Batch: VFC14867		I	Prep Batch:	VXX34595			
Analytical Method: AK101				: SW5035A			
Analyst: NRB Analytical Date/Time: 08/06/19 22:57				me: 07/29/1			
Container ID: 1199584007-A				/t./Vol.: 49.7 Vol: 25 mL			

Print Date: 08/15/2019 1:57:22PM

000

Results of TB-1

Client Sample ID: TB-1
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584007
Lab Project ID: 1199584

Collection Date: 07/29/19 12:00 Received Date: 08/01/19 09:30 Matrix: Soil/Solid (dry weight) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

_						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	25.1 U	50.2	15.1	ug/Kg	1		08/05/19 05:54
1,2-Dibromoethane	0.500 U	1.00	0.311	ug/Kg	1		08/05/19 05:54
1,2-Dichloroethane	1.00 U	2.01	0.623	ug/Kg	1		08/05/19 05:54
1,3,5-Trimethylbenzene	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
Benzene	6.30 U	12.6	3.92	ug/Kg	1		08/05/19 05:54
Ethylbenzene	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
Isopropylbenzene (Cumene)	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
Methyl-t-butyl ether	50.0 U	100	31.1	ug/Kg	1		08/05/19 05:54
Naphthalene	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
n-Butylbenzene	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
o-Xylene	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
P & M -Xylene	25.1 U	50.2	15.1	ug/Kg	1		08/05/19 05:54
sec-Butylbenzene	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
tert-Butylbenzene	12.6 U	25.1	7.84	ug/Kg	1		08/05/19 05:54
Toluene	9.22 J	25.1	7.84	ug/Kg	1		08/06/19 03:20
Xylenes (total)	37.6 U	75.3	22.9	ug/Kg	1		08/05/19 05:54
Surrogates							
1,2-Dichloroethane-D4 (surr)	98.6	71-136		%	1		08/05/19 05:54
4-Bromofluorobenzene (surr)	102	55-151		%	1		08/05/19 05:54
Toluene-d8 (surr)	99.6	85-116		%	1		08/05/19 05:54

Batch Information

Analytical Batch: VMS19274 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/06/19 03:20 Container ID: 1199584007-A

Analytical Batch: VMS19273 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 08/05/19 05:54 Container ID: 1199584007-A Prep Batch: VXX34599 Prep Method: SW5035A Prep Date/Time: 07/29/19 12:00 Prep Initial Wt./Vol.: 49.77 g Prep Extract Vol: 25 mL

Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 07/29/19 12:00 Prep Initial Wt./Vol.: 49.77 g Prep Extract Vol: 25 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: MW-191 Client Project ID: 105.01288.190 Lab Sample ID: 1199584008 Lab Project ID: 1199584	938 RGV-35A	R M S	ollection Da eceived Dat atrix: Water olids (%): ocation:	e: 08/01/	19 09:30	
- Results by Polynuclear Aromat i	cs GC/MS		_			
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allo</u> L
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1	
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1	
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	

·				0		
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1	08/05/19 16:11
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1	08/05/19 16:11
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Naphthalene	0.0490 U	0.0980	0.0304	ug/L	1	08/05/19 16:11
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1	08/05/19 16:11
Surrogates						
2-Methylnaphthalene-d10 (surr)	77.7	47-106		%	1	08/05/19 16:11
Fluoranthene-d10 (surr)	78.5	24-116		%	1	08/05/19 16:11

Batch Information

Analytical Batch: XMS11603 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/05/19 16:11 Container ID: 1199584008-C

Prep Batch: XXX41921 Prep Method: SW3520C Prep Date/Time: 08/03/19 08:49 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Allowable

<u>Limits</u>

Date Analyzed

08/05/19 16:11

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

J flagging is activated

Client Sample ID: MW-191 Client Project ID: 105.01288.19038 R							
ab Sample ID: 1199584008 ab Project ID: 1199584	C R M S La						
Results by Semivolatile Organic Fue	ls		_				
Parameter Diesel Range Organics	<u>Result Qual</u> 0.288 U	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/14/19 14:1
urrogates							
5a Androstane (surr)	70.6	50-150		%	1		08/14/19 14:1
Batch Information							
Analytical Batch: XFC15239 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/14/19 14:18 Container ID: 1199584008-A		F F	Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 08/12/1 /t./Vol.: 260	9 13:31		
Parameter Residual Range Organics	<u>Result Qual</u> 0.240 U	<u>LOQ/CL</u> 0.481	<u>DL</u> 0.144	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyze 08/14/19 14:1
u rrogates n-Triacontane-d62 (surr)	85.7	50-150		%	1		08/14/19 14:1
Batch Information							
Analytical Batch: XFC15239 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/14/19 14:18 Container ID: 1199584008-A		F F	Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract	: SW3520C me: 08/12/1 /t./Vol.: 260	9 13:31		

CCC

Results of MW-191 Client Sample ID: MW-191 Client Project ID: 105.01288.19038 R Lab Sample ID: 1199584008 Lab Project ID: 1199584	Collection Date: 07/30/19 08:50 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzec</u> 08/07/19 17:56
urrogates 4-Bromofluorobenzene (surr)	85	50-150		%	1		08/07/19 17:5
Batch Information Analytical Batch: VFC14869 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 17:56 Container ID: 1199584008-F			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 08/07/ <i>*</i> /t./Vol.: 5 m	19 06:00		

Print Date: 08/15/2019 1:57:22PM

Client Sample ID: MW-191 Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584008 Lab Project ID: 1199584		R M S	eceived D	0ate: 07/30/ ate: 08/01/ er (Surface,	19 09:30	
Results by Volatile GC/MS- I	Petroleum VOC Group					
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allo</u>

DL Units DF Date Analyzed Limits 1,2,4-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 08/02/19 21:53 1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 08/02/19 21:53 1,3,5-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 Benzene 0.200 U 0.400 0.120 ug/L 1 08/02/19 21:53 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 Isopropylbenzene (Cumene) 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 Methyl-t-butyl ether 5.00 U 10.0 3.10 ug/L 1 08/02/19 21:53 Naphthalene 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 0.500 U n-Butylbenzene 1.00 0.310 ug/L 1 08/02/19 21:53 0.500 U 1.00 08/02/19 21:53 o-Xylene 0.310 ug/L 1 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 08/02/19 21:53 sec-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 Toluene 0.500 U 1.00 0.310 ug/L 1 08/02/19 21:53 1.50 U 3.00 1.00 1 08/02/19 21:53 Xylenes (total) ug/L Surrogates 99.2 1,2-Dichloroethane-D4 (surr) 81-118 % 1 08/02/19 21:53 4-Bromofluorobenzene (surr) 97.2 85-114 % 08/02/19 21:53 1 Toluene-d8 (surr) 100 89-112 % 1 08/02/19 21:53

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/02/19 21:53 Container ID: 1199584008-H

Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 08/02/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Allowable

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: MW-193
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584009
Lab Project ID: 1199584

Collection Date: 07/30/19 09:30 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Acenaphthylene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Benzo(a)Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Benzo[a]pyrene	0.00945 U	0.0189	0.00585	ug/L	1		08/05/19 16:32
Benzo[b]Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Benzo[g,h,i]perylene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Benzo[k]fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Chrysene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Dibenzo[a,h]anthracene	0.00945 U	0.0189	0.00585	ug/L	1		08/05/19 16:32
Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Fluorene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Indeno[1,2,3-c,d] pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Naphthalene	0.0471 U	0.0943	0.0292	ug/L	1		08/05/19 16:32
Phenanthrene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/05/19 16:32
Surrogates							
2-Methylnaphthalene-d10 (surr)	63.9	47-106		%	1		08/05/19 16:32
Fluoranthene-d10 (surr)	66	24-116		%	1		08/05/19 16:32

Batch Information

Analytical Batch: XMS11603 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/05/19 16:32 Container ID: 1199584009-C Prep Batch: XXX41921 Prep Method: SW3520C Prep Date/Time: 08/03/19 08:49 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Print Date: 08/15/2019 1:57:22PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-193							
Client Sample ID: MW-193 Client Project ID: 105.01288.19038 RG Lab Sample ID: 1199584009 Lab Project ID: 1199584	Collection Date: 07/30/19 09:30 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fuels	;		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.288 U	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/14/19 14:2
urrogates							
5a Androstane (surr)	68.3	50-150		%	1		08/14/19 14:2
Batch Information							
Analytical Batch: XFC15239 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/14/19 14:29 Container ID: 1199584009-A		F F	Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 08/12/1 /t./Vol.: 260	9 13:31		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.240 U	<u>LOQ/CL</u> 0.481	<u>DL</u> 0.144	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyze 08/14/19 14:2
urrogates n-Triacontane-d62 (surr)	86.4	50-150		%	1		08/14/19 14:2
Batch Information							
Analytical Batch: XFC15239 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/14/19 14:29 Container ID: 1199584009-A		F F	Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract	: SW3520C me: 08/12/1 /t./Vol.: 260	9 13:31		

CCC

esults of MW-193	Results of MW-193							
Client Sample ID: MW-193 Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584009 Lab Project ID: 1199584			Collection Date: 07/30/19 09:30 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
esults by Volatile Fuels			_					
a <u>rameter</u> asoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/07/19 18:1	
rogates								
Bromofluorobenzene (surr)	86.3	50-150		%	1		08/07/19 18:1	
atch Information								
Analytical Batch: VFC14869 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 18:1 Container ID: 1199584009-F	5		Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 08/07/ [,] ′t./Vol.: 5 m	19 06:00			

-

Client Sample ID: MW-193
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584009
Lab Project ID: 1199584

Collection Date: 07/30/19 09:30 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

					55	Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/02/19 22:08
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/02/19 22:08
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
Benzene	0.200 U	0.400	0.120	ug/L	1		08/02/19 22:08
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/02/19 22:08
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/02/19 22:08
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
Toluene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:08
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/02/19 22:08
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/02/19 22:08
4-Bromofluorobenzene (surr)	100	85-114		%	1		08/02/19 22:08
Toluene-d8 (surr)	101	89-112		%	1		08/02/19 22:08

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/02/19 22:08 Container ID: 1199584009-H Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 08/02/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

J flagging is activated

Client Sample ID: MW-192
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584010
Lab Project ID: 1199584

Collection Date: 07/30/19 10:25 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		08/05/19 16:52
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		08/05/19 16:52
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		08/05/19 16:52
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/05/19 16:52
Surrogates							
2-Methylnaphthalene-d10 (surr)	74	47-106		%	1		08/05/19 16:52
Fluoranthene-d10 (surr)	76.1	24-116		%	1		08/05/19 16:52

Batch Information

Analytical Batch: XMS11603 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/05/19 16:52 Container ID: 1199584010-C Prep Batch: XXX41921 Prep Method: SW3520C Prep Date/Time: 08/03/19 08:49 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 08/15/2019 1:57:22PM

J flagging is activated

Results of MW-192 Client Sample ID: MW-192 Client Project ID: 105.01288.19038 RG Lab Sample ID: 1199584010 Lab Project ID: 1199584	W-35A	R M Se	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 08/01/1	19 09:30		
Results by Semivolatile Organic Fuels	;]				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.294 U	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/14/19 14:3
urrogates							
5a Androstane (surr)	67.3	50-150		%	1		08/14/19 14:3
Batch Information							
Analytical Batch: XFC15239 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/14/19 14:39 Container ID: 1199584010-A		F F F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/12/1 /t./Vol.: 255	9 13:31		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.245 U	<u>LOQ/CL</u> 0.490	<u>DL</u> 0.147	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/14/19 14:3
urrogates n-Triacontane-d62 (surr)	87.5	50-150		%	1		08/14/19 14:3
Batch Information							
Analytical Batch: XFC15239 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/14/19 14:39 Container ID: 1199584010-A		F F F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/12/1 /t./Vol.: 255	9 13:31		
Container ID: 1199584010-A			Prep Extract	Vol: 1 mL			

CCC

Parameter Result Qual LOQ/CL DL Units DF Limits Date Anal Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19	Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584010 Lab Project ID: 1199584 Results by Volatile Fuels Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyz Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 18 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information Analytical Batch: VFC14869 Analytical Method: AK101 Analyst: NRB Prep Date/Time: 08/07/19 06:00	Client Project ID: 105.01288.19038 RGV-35A Lab Sample ID: 1199584010 Lab Project ID: 1199584 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Results by Volatile Fuels Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyz Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 18 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information Analytical Batch: VFC14869 Analytical Method: AK101 Analytical Method: AK101 Analytical Method: AK101 Analytical Date/Time: 08/07/19 18:33 Prep Date/Time: 08/07/19 06:00 Prep Initial Wt./Vol.: 5 mL	Results of MW-192						
Parameter Result Qual LOQ/CL DL Units DF Limits Date Analytical Batch: Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 Batch Information Prep Batch: VXX34606 VXX34606 Prep Method: SW5030B Analytical Method: AK101 Prep Date/Time: 08/07/19 06:00 08/07/19 06:00	Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 18 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information	Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 18 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information	Client Project ID: 105.01288.19038 RC Lab Sample ID: 1199584010	SV-35A	F N S	Received Dat Matrix: Water Solids (%):	te: 08/01/	19 09:30	
Parameter Result Qual LOQ/CL DL Units DF Limits Date Analytical Batch: Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 Surrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 Batch Information Prep Batch: VXX34606 Prep Method: SW5030B Analytical Method: AK101 Prep Date/Time: 08/07/19 06:00	Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 18 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information Prep Batch: VXX34606 VXX34606 VXX34606 VXX34606 Analytical Batch: VFC14869 Prep Method: SW5030B Prep Date/Time: 08/07/19 06:00 Prep Date/Time: 08/07/19 06:00 Analytical Date/Time: 08/07/19 18:33 Prep Initial Wt./vol.: 5 mL Prep Initial Wt./vol.: 5 mL	Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/07/19 18 urrogates 4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information Prep Batch: VXX34606 VXX34606 Prep Method: SW5030B Analytical Method: AK101 Prep Date/Time: 08/07/19 18:33 Prep Initial Wt./Vol.: 5 mL	Results by Volatile Fuels			_			
4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 Batch Information Analytical Batch: VFC14869 Prep Batch: VXX34606 Analytical Method: AK101 Prep Method: SW5030B Analyst: NRB Prep Date/Time: 08/07/19 06:00	4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information Analytical Batch: VFC14869 Prep Batch: VXX34606 Analytical Method: AK101 Prep Method: SW5030B Analytical Date/Time: 08/07/19 18:33 Prep Initial Wt./Vol.: 5 mL	4-Bromofluorobenzene (surr) 82.9 50-150 % 1 08/07/19 18 Batch Information Analytical Batch: VFC14869 Prep Batch: VXX34606 Analytical Method: AK101 Prep Method: SW5030B Analytical Date/Time: 08/07/19 18:33 Prep Initial Wt./Vol.: 5 mL							<u>Date Analyze</u> 08/07/19 18:3
Batch Information Analytical Batch: VFC14869 Analytical Method: AK101 Prep Method: SW5030B Analyst: NRB Prep Date/Time: 08/07/19 06:00	Batch Information Analytical Batch: VFC14869 Prep Batch: VXX34606 Analytical Method: AK101 Prep Method: SW5030B Analyst: NRB Prep Date/Time: 08/07/19 06:00 Analytical Date/Time: 08/07/19 18:33 Prep Initial Wt./Vol.: 5 mL	Batch Information Analytical Batch: VFC14869 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 18:33 Prep Date/Time: 08/07/19 18:33 Prep Initial Wt./Vol.: 5 mL	-						
Container ID: 1199584010-F Prep Extract Vol: 5 mL			Analytical Batch: VFC14869 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 18:33			Prep Method: Prep Date/Tir Prep Initial W	SW5030E me: 08/07/ t./Vol.: 5 m	19 06:00	

Print Date: 08/15/2019 1:57:22PM

-

Client Sample ID: MW-192
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584010
Lab Project ID: 1199584

Collection Date: 07/30/19 10:25 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
	0.500 U	<u>1.00</u>	0.310		1	LIIIIIIS	08/02/19 22:23
1,2,4-Trimethylbenzene				ug/L	-		
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/02/19 22:23
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/02/19 22:23
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
Benzene	0.200 U	0.400	0.120	ug/L	1		08/02/19 22:23
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/02/19 22:23
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/02/19 22:23
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
Toluene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:23
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/02/19 22:23
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		08/02/19 22:23
4-Bromofluorobenzene (surr)	98.3	85-114		%	1		08/02/19 22:23
Toluene-d8 (surr)	99.8	89-112		%	1		08/02/19 22:23

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/02/19 22:23 Container ID: 1199584010-H Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 08/02/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

44 of 91

Client Sample ID: MW-199
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584011
Lab Project ID: 1199584

Collection Date: 07/30/19 11:00 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		08/05/19 17:13
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		08/05/19 17:13
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Naphthalene	0.0490 U	0.0980	0.0304	ug/L	1		08/05/19 17:13
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		08/05/19 17:13
Surrogates							
2-Methylnaphthalene-d10 (surr)	73.1	47-106		%	1		08/05/19 17:13
Fluoranthene-d10 (surr)	73.5	24-116		%	1		08/05/19 17:13

Batch Information

Analytical Batch: XMS11603 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/05/19 17:13 Container ID: 1199584011-C Prep Batch: XXX41921 Prep Method: SW3520C Prep Date/Time: 08/03/19 08:49 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 08/15/2019 1:57:22PM

Diesel Range Organics 0.300 U 0.600 0.180 mg/L 1 08/14. Surrogates 5a Androstane (surr) 71.4 50-150 % 1 08/14. Batch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 08/14. Analytical Batch: XFC15239 Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 08/14/19 14:50 Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Container ID: 1199584011-A Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date/ Surrogates 0.250 U 0.500 0.150 mg/L 1 08/14. Surrogates n-Triacontane-d62 (surr) 86.3 50-150 % 1 08/14. Batch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 08/14. Analytical Method: AK103 Prep Batch: XXX41984 Prep Method: SW3520C	lient Project ID: 105.01288.19038 RGV-35A ab Sample ID: 1199584011 ab Project ID: 1199584 arameter <u>Result Qual</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DE</u> <u>Limits</u> <u>Date Analyze</u> iesel Range Organics 0.300 U 0.600 0.180 mg/L 1 08/14/19 14:5 rrogates a Androstane (surr) 71.4 50-150 % 1 08/14/19 14:5 Analytical Method: AK102 Analytical Date/Time: 08/14/19 14:50 Container ID: 1199584011-A Prep Initial WL/VoL: 250 mL Prep Date/Time: 08/12/19 13:31 Analytical Batch: XFC15239 Analytical Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 Analytical Batch: Stresses arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DE Limits Date Analyze</u> esidual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DE Limits Date Analyze</u> esidual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DE Limits Date Analyze</u> esidual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DE Limits Date Analyze</u> arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF Limits Date Analyze</u> arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF Units</u> <u>Date Analyze</u> arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF Units</u> <u>Date Analyze</u> arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF Units</u> <u>Date Analyze</u> arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF Units</u> <u>Date Analyze</u> arameter Result Qual <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF Units</u> <u>Date Analyze</u> arameter Result Qual <u>Prep Batch: XXX41984</u>	Results of MW-199						
Parameter Result Qual LOQ/CL DL Units DF Limits Date / Diesel Range Organics 0.300 U 0.600 0.180 mg/L 1 08/14. Surrogates 5a Androstane (surr) 71.4 50-150 % 1 08/14. Batch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 08/14. Analytical Date/Time: 08/14/19 Prep Method: SW3520C Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/14/19 Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/14/19 Prep Date/Time: 08/12/19 13:31 Prep Extract Vol: 1 mL Prep Extract Vol: 1 Prep Extract Vol: 1 mL 08/14. Surrogates 0.250 U 0.500 0.150 mg/L 1 08/14. Surrogates n-Triacontane-d62 (surr) 86.3 50-150 % 1 08/14. Batch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 08/14. Analytical Batch: XFC15239 Prep Method: SW3520C 9/2 U 0.500 0.500 0.500	Allowable Limits Date Analyze 0.300 U O.600 O.180 mg/L 1 Date Analyze 08/14/19 14:5 rrogates a Androstane (surr) 71.4 50-150 % 1 08/14/19 14:5 atch Information 71.4 50-150 % 1 08/14/19 14:5 Analytical Batch: XFC15239 Analytical Method: AK102 Analytical Date/Time: 08/14/19 14:50 Prep Batch: XXX41984 Prep Date/Time: 08/12/19 13:31 Prep Initial Wt.Vol.: 250 mL Prep Date/Time: 08/12/19 13:31 Prep Initial Wt.Vol.: 250 mL arameter esidual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/19 14:5 Analytical Batch: XFC15239 Analytical Method: AK103 Analytical Batch: XFC15239 Analytical Method: AK103 Analytical Batch: XFC15239 Analytical Method: AK103 Analytical Date/Time: 08/14/19 14:50 Prep Batch: XXX41984 Prep Batch: XXX41984 Prep Method: SW3520C Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/12/19 13:31	Client Project ID: 105.01288.19038 RG Lab Sample ID: 1199584011	iV-35A	R M S	eceived Da latrix: Wate olids (%):	te: 08/01/1	19 09:30	
ParameterResult QualLOQ/CLDLUnitsDFLimitsDate /Diesel Range Organics0.300 U0.6000.180mg/L108/14.Surrogates5a Androstane (surr)71.450-150%108/14.Batch InformationAnalytical Batch: XFC15239 Analytical Date/Time: 08/14/19 14:50 Container ID: 1199584011-APrep Batch: XXX41984 Prep Method: SW3520C Prep Date/Time: 08/12/19 13:31 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mLParameterResult Qual 0.250 ULOQ/CL 0.500DL 0.150Units mg/LDE Limits Date/LParametersResult Qual 0.250 ULOQ/CL 0.500DL 0.150Units mg/LDE Limits D8/14.Batch Information Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Method: AK103Prep Batch: XXX41984 Prep Method: SW3520C	arameter Result Qual LOQ/CL DL Units DE Limits Date Analyze lesel Range Organics 0.300 U 0.600 0.180 mg/L 1 08/14/19 14:5 rrogates a Androstane (surr) 71.4 50-150 % 1 08/14/19 14:5 atch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Method: SW3520C Analytical Method: AK102 Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/14/19 14:50 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL Date Analyze arameter Result Qual LOQ/CL DL Units DE Limits Date Analyze esidual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 triacontane-d62 (surr) 86.3 50-150 % 1 08/14/19 14:5 Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Date/Time: 08/12/19 13:31 Prep Method: SW3520C Analytical Method: AK103 Prep Method: SW3520C Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/14/19 14:50 P	Results by Semivolatile Organic Fuels	5					
5a Androstane (surr) 71.4 50-150 % 1 08/14/ Batch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Method: SW3520C Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/14/19 14:50 Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Parameter Result Qual LOQ/CL DL Units DF Limits Date // Residual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14. Surrogates n-Triacontane-d62 (surr) 86.3 50-150 % 1 08/14. Batch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Method: SW3520C	a Androstane (surr) 71.4 50-150 % 1 08/14/19 14:5 atch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Method: SW3520C Analytical Method: AK102 Prep Method: SW3520C Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/14/19 14:50 Prep Date/Time: 08/12/19 13:31 Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL arameter Result Qual LOQ/CL DL Units DF Limits Date Analyze esidual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/19 14:5 Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Method: SW3520C 08/14/19 14:5 Analytical Batch: XFC15239 Prep Method: SW3520C Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 08/14/19 14:50 Prep Method: SW3520C Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 08/14/19 14:50 Prep Method: SW3520C Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 08/14/19 14:50 Prep Initial Wt.Vol.:							<u>Date Analyze</u> 08/14/19 14:5
Batch Information Analytical Batch: XFC15239 Analytical Method: AK102 Analytical Method: AK102 Analytical Date/Time: 08/14/19 14:50 Container ID: 1199584011-A Parameter Result Qual LOQ/CL DL Units Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date / Mainter 08/14/19 Surrogates 0.250 U n-Triacontane-d62 (surr) 86.3 Surrogates 1 Mailytical Batch: XFC15239 Prep Batch: XXX41984 Analytical Batch: XFC15239 Prep Method: SW3520C	atch Information Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Date/Time: 08/14/19 14:50 Container ID: 1199584011-A Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 14:50 Prep Extract Vol: 1 mL arameter Result Qual LOQ/CL 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 Prep Batch: XXX41984 Triacontane-d62 (surr) 86.3 50-150 % Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Method: AK103 Analytical Date/Time: 08/14/19 14:50	Surrogates						
Analytical Batch: XFC15239 Prep Batch: XXX41984 Analytical Method: AK102 Prep Method: SW3520C Analyst: VDL Prep Date/Time: 08/12/19 13:31 Analytical Date/Time: 08/14/19 14:50 Prep Initial Wt./Vol.: 250 mL Container ID: 1199584011-A Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DE Limits Date // Residual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/ Surrogates n-Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/ Batch Information Prep Batch: XXX41984 Prep Method: SW3520C Prep Method: SW3520C	Analytical Batch: XFC15239 Prep Batch: XXX41984 Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 08/14/19 14:50 Prep Date/Time: 08/12/19 13:31 Container ID: 1199584011-A Prep Initial Wt./Vol.: 250 mL arameter Result Qual LOQ/CL DL Units DF Limits Date Analyze esidual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/19 14:5 rrogates Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/19 14:5 atch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Method: SW3520C Prep Method: SW3520C Analytical Method: AK103 Prep Method: SW3520C Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 08/14/19 14:50 Prep Date/Time: 08/12/19 13:31 Prep Date/Time: 08/12/19 13:31	5a Androstane (surr)	71.4	50-150		%	1	08/14/19 14:5
Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 08/14/19 14:50 Prep Date/Time: 08/12/19 13:31 Container ID: 1199584011-A Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date / Residual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/ Surrogates n-Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/ Batch Information Analytical Batch: XFC15239 Prep Batch: XXX41984 Prep Method: SW3520C	Analytical Method: AK102 Analytical Method: AK102 Analytical Date/Time: 08/14/19 14:50 Container ID: 1199584011-A Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL Analytical Range Organics 0.250 U 0.500 0.150 0.150 mg/L 1 08/14/19 14:50 Analytical Batch: XFC15239 Analytical Batch: XFC15239 Analytical Method: AK103 Analytical Batch: XFC15239 Analytical Method: AK103 Analytical Date/Time: 08/14/19 14:50 Analytical Date/Time: 08/14/19 14:50 Analytical Date/Time: 08/14/19 14:50 Analytical Date/Time: 08/14/19 14:50 Prep Initial Wt./Vol.: 250 mL	Batch Information						
Parameter Result Qual LOQ/CL DL Units DF Limits Date // Residual Range Organics 0.250 U 0.500 0.150 mg/L 1 08/14/ Surrogates n-Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/ Batch Information Analytical Batch: XFC15239 Analytical Method: AK103 Prep Batch: XXX41984 Prep Method: SW3520C Prep Method: SW3520C	arameterResult QualLOQ/CLDLUnitsDFLimitsDate Analyzeesidual Range Organics0.250 U0.5000.150mg/L108/14/19 14:5rrogatesTriacontane-d62 (surr)86.350-150%108/14/19 14:5atch InformationAnalytical Batch: XFC15239Prep Batch: XXX41984Analytical Method: AK103Prep Method: SW3520CAnalytic VDLPrep Date/Time:08/12/19 13:31Analytical Date/Time:08/14/19 14:50Prep Initial Wt./Vol.:	Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/14/19 14:50		1	Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 08/12/1 /t./Vol.: 250	9 13:31	
n-Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/ Batch Information Analytical Batch: XFC15239 Analytical Method: AK103 Prep Method: SW3520C	Triacontane-d62 (surr) 86.3 50-150 % 1 08/14/19 14:50 atch Information	Residual Range Organics						Date Analyze 08/14/19 14:5
Analytical Batch: XFC15239Prep Batch: XXX41984Analytical Method: AK103Prep Method: SW3520C	Analytical Batch: XFC15239Prep Batch: XXX41984Analytical Method: AK103Prep Method: SW3520CAnalyst: VDLPrep Date/Time: 08/12/19 13:31Analytical Date/Time: 08/14/19 14:50Prep Initial Wt./Vol.: 250 mL	-	86.3	50-150		%	1	08/14/19 14:5
Analytical Method: AK103 Prep Method: SW3520C	Analytical Method: AK103Prep Method: SW3520CAnalyst: VDLPrep Date/Time: 08/12/19 13:31Analytical Date/Time: 08/14/19 14:50Prep Initial Wt./Vol.: 250 mL	Batch Information						
Analytical Date/Time: 08/14/19 14:50 Prep Initial Wt./Vol.: 250 mL		Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/14/19 14:50		F	Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 08/12/1 /t./Vol.: 250	9 13:31	

coc

Results of MW-199							
Client Sample ID: MW-199 Client Project ID: 105.01288.19038 R(Lab Sample ID: 1199584011 Lab Project ID: 1199584	GV-35A	R M S	ollection Da eceived Dat latrix: Water olids (%): ocation:	te: 08/01/	19 09:30		
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0460 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/07/19 18:5
urrogates							
I-Bromofluorobenzene (surr)	87.2	50-150		%	1		08/07/19 18:5
Batch Information							
Analytical Batch: VFC14869 Analytical Method: AK101 Analyst: NRB			Prep Batch: Prep Method: Prep Date/Tir	SW5030E ne: 08/07/	9 06:00		
Analytical Date/Time: 08/07/19 18:51 Container ID: 1199584011-F			Prep Initial W Prep Extract V		IL		

-

Client Sample ID: MW-199
Client Project ID: 105.01288.19038 RGV-35A
Lab Sample ID: 1199584011
Lab Project ID: 1199584

Collection Date: 07/30/19 11:00 Received Date: 08/01/19 09:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/02/19 22:37
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/02/19 22:37
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
Benzene	0.200 U	0.400	0.120	ug/L	1		08/02/19 22:37
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/02/19 22:37
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/02/19 22:37
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
Toluene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:37
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/02/19 22:37
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		08/02/19 22:37
4-Bromofluorobenzene (surr)	96.7	85-114		%	1		08/02/19 22:37
Toluene-d8 (surr)	102	89-112		%	1		08/02/19 22:37

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/02/19 22:37 Container ID: 1199584011-H Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 08/02/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

48 of 91

Results of TB-2 Client Sample ID: TB-2 Client Project ID: 105.01288.19038 I ab Sample ID: 1199584012 ab Project ID: 1199584	RGV-35A	R M S	ollection Da eceived Dat latrix: Water olids (%):	te: 08/01/ [.]	19 09:30		
Results by Volatile Fuels Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	DF 1	<u>Allowable</u> Limits	Date Analyzec 08/07/19 14:02
irrogates		0.100	0.0010				
-Bromofluorobenzene (surr)	83.2	50-150		%	1		08/07/19 14:02
Batch Information							
Analytical Batch: VFC14869 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/07/19 14:02 Container ID: 1199584012-B		1	Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 08/07/1 /t./Vol.: 5 m	19 06:00		

Print Date: 08/15/2019 1:57:22PM

Results of TB-2

Client Sample ID: TB-2

Client Project ID: 105.01288.190 Lab Sample ID: 1199584012 Lab Project ID: 1199584	38 RGV-35A	M S	eceived Dat latrix: Water olids (%): ocation:				
Results by Volatile GC/MS- Petro	oleum VOC Group						
		1.00/01	51		55	Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/02/19 22:52
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/02/19 22:52
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
Benzene	0.200 U	0.400	0.120	ug/L	1		08/02/19 22:52
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/02/19 22:52
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/02/19 22:52
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
Toluene	0.500 U	1.00	0.310	ug/L	1		08/02/19 22:52
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/02/19 22:52
urrogates							
1,2-Dichloroethane-D4 (surr)	99.8	81-118		%	1		08/02/19 22:52
4-Bromofluorobenzene (surr)	97.1	85-114		%	1		08/02/19 22:52
Toluene-d8 (surr)	100	89-112		%	1		08/02/19 22:52

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/02/19 22:52 Container ID: 1199584012-D

Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 08/02/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:22PM

J flagging is activated

Collection Date: 07/30/19 08:00 Received Date: 08/01/19 09:30 Matrix: Water (Surface Eff. Ground)

SGS	
and the second se	

Method Blank					
	Blank ID: MB for HBN 1797310 [SPT/10842] Blank Lab ID: 1522874		: Soil/Solid (d	ry weight)	
QC for Samples:					
1199584001, 119958400	2, 1199584003, 1199584004, 119	9584005, 1199584006			
		L			
Results by SM21 2540					
<u>Parameter</u> Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information					
Analytical Batch: SPT Analytical Method: SI Instrument: Analyst: MER Analytical Date/Time:	F10842 M21 2540G 8/2/2019 12:59:00AM				

Print Date: 08/15/2019 1:57:25PM

-

Duplicate Sample Summary Original Sample ID: 1194221001 Duplicate Sample ID: 1522876 QC for Samples:					
		Analysis Date: 08/02/2019 00:59 Matrix: Soil/Solid (dry weight)			
Results by SM21 2540G					
NAME_	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Fotal Solids	91.0	90.5	%	0.56	(< 15)

Print Date: 08/15/2019 1:57:26PM

SGS North America Inc.

SGS	
the second of the second se	

Duplicate Sample Summ	arv				
Original Sample ID: 1199556001 Duplicate Sample ID: 1522877 QC for Samples:			Analysis Date: Matrix: Soil/So	08/02/2019 00:59 lid (dry weight)	
1199584001, 1199584002	2, 1199584003, 11995	584004, 1199584005,	1199584006		
Results by SM21 2540G					
NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Solids	94.8	94.3	%	0.48	(< 15)
Batch Information Analytical Batch: SPT1084 Analytical Method: SM212 Instrument: Analyst: MER					

Print Date: 08/15/2019 1:57:26PM

SGS	
the second of the second se	

Duplicate Sample Summ	ary					
Original Sample ID: 1199 Duplicate Sample ID: 152	Original Sample ID: 1199586001		Analysis Date: 08/02/2019 00:59 Matrix: Soil/Solid (dry weight)			
QC for Samples:						
1199584001, 1199584002	2. 1199584003. 11995	584004, 1199584005,	1199584006			
	,,,	, ,				
Results by SM21 2540G						
	Original	Duplicato	Lipito			
NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	<u>RPD (%)</u>	RPD CL	
Total Solids	90.3	90.1	%	0.17	(< 15)	
Batch Information						
Analytical Batch: SPT1084 Analytical Method: SM21 : Instrument: Analyst: MER						

Print Date: 08/15/2019 1:57:26PM

Method Blank

Blank ID: MB for HBN 1797362 [VXX/34565] Blank Lab ID: 1523099 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1199584008, 1199584009, 1199584010, 1199584011, 1199584012

Parameter	Results	LOQ/CL	<u>DL</u>	Units
I,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
,2-Dichloroethane	0.250U	0.500	0.150	ug/L
,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
sopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
^o & M -Xylene	1.00U	2.00	0.620	ug/L
ec-Butylbenzene	0.500U	1.00	0.310	ug/L
ert-Butylbenzene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
(ylenes (total)	1.50U	3.00	1.00	ug/L
urrogates				
,2-Dichloroethane-D4 (surr)	107	81-118		%
-Bromofluorobenzene (surr)	95.6	85-114		%
Toluene-d8 (surr)	95.4	89-112		%

Batch Information

Analytical Batch: VMS19262	Prep Batch: VXX34565
Analytical Method: SW8260C	Prep Method: SW5030B
Instrument: VPA 780/5975 GC/MS	Prep Date/Time: 8/2/2019 6:00:00AM
Analyst: CMC	Prep Initial Wt./Vol.: 5 mL
Analytical Date/Time: 8/2/2019 2:31:00PM	Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:27PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Leaching Blank

Blank ID: LB for HBN 1797319 [TCLP/10176 Blank Lab ID: 1522933 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1199584008, 1199584009, 1199584010, 1199584011, 1199584012

Results by SW8260C

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	98.9	81-118		%
4-Bromofluorobenzene (surr)	99.1	85-114		%
Toluene-d8 (surr)	101	89-112		%

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Analytical Date/Time: 8/2/2019 8:24:00PM Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 8/2/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:27PM

SGS

Method Blank

Blank ID: SPW for HBN 1797317 [TCLP/1017 Blank Lab ID: 1522913 Matrix: Solid/Soil (Wet Weight)

QC for Samples:

1199584008, 1199584009, 1199584010, 1199584011, 1199584012

Results by SW8260C

Results	LOQ/CL	<u>DL</u>	<u>Units</u>
10.0U	20.0	6.00	ug/L
25.0U	50.0	15.5	ug/L
25.0U	50.0	15.5	ug/L
50.0U	100	31.0	ug/L
25.0U	50.0	15.5	ug/L
75.0U	150	50.0	ug/L
	10.0U 25.0U 25.0U 50.0U 25.0U	10.0U 20.0 25.0U 50.0 25.0U 50.0 50.0U 100 25.0U 50.0	10.0U20.06.0025.0U50.015.525.0U50.015.550.0U10031.025.0U50.015.5

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Analytical Date/Time: 8/2/2019 8:09:00PM Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 8/2/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:27PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199584 [VXX34565] Blank Spike Lab ID: 1523100 Date Analyzed: 08/02/2019 14:46 Spike Duplicate ID: LCSD for HBN 1199584 [VXX34565] Spike Duplicate Lab ID: 1523101 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199584008, 11

1199584008, 1199584009, 1199584010, 1199584011, 1199584012

Results	by	SW8260C

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	30	30.4	101	30	29.9	100	(79-124)	1.80	(< 20)
1,2-Dibromoethane	30	29.2	97	30	29.5	99	(77-121)	1.30	(< 20)
1,2-Dichloroethane	30	30.5	102	30	30.0	100	(73-128)	1.40	(< 20)
1,3,5-Trimethylbenzene	30	30.4	101	30	30.0	100	(75-124)	1.50	(< 20)
Benzene	30	28.0	93	30	27.6	92	(79-120)	1.50	(< 20)
Ethylbenzene	30	28.5	95	30	27.7	93	(79-121)	2.60	(< 20)
Isopropylbenzene (Cumene)	30	29.6	99	30	29.7	99	(72-131)	0.08	(< 20)
Methyl-t-butyl ether	45	60.2	134	* 45	55.4	123	(71-124)	8.40	(< 20)
Naphthalene	30	25.1	84	30	26.9	90	(61-128)	7.20	(< 20)
n-Butylbenzene	30	28.8	96	30	29.0	97	(75-128)	0.70	(< 20)
o-Xylene	30	27.9	93	30	27.6	92	(78-122)	1.10	(< 20)
P & M -Xylene	60	56.2	94	60	56.2	94	(80-121)	0.01	(< 20)
sec-Butylbenzene	30	29.5	98	30	29.2	97	(77-126)	1.20	(< 20)
tert-Butylbenzene	30	30.8	103	30	30.7	102	(78-124)	0.43	(< 20)
Toluene	30	26.8	89	30	26.4	88	(80-121)	1.70	(< 20)
Xylenes (total)	90	84.1	93	90	83.8	93	(79-121)	0.37	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	103	103	30	103	103	(81-118)	0.12	
4-Bromofluorobenzene (surr)	30	97	97	30	96	96	(85-114)	0.99	
Toluene-d8 (surr)	30	96.3	96	30	97.7	98	(89-112)	1.50	

Batch Information

Analytical Batch: VMS19262 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Prep Batch: VXX34565 Prep Method: SW5030B Prep Date/Time: 08/02/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:28PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

cec	
263	

Mathad Diank						
Method Blank						
Blank ID: MB for HBN 1797560 [VXX/34595] Blank Lab ID: 1523969		Matrix: Soil/Solid (dry weight)				
QC for Samples: 1199584001, 1199584002, 1199	9584003, 1199584004, 1 ⁻	199584005, 1199584006, 119958	4007			
		_				
Results by AK101						
Parameter	<u>Results</u>	LOQ/CL DL	Units			
Gasoline Range Organics	0.910J	2.50 0.750	mg/Kg			
Surrogates						
4-Bromofluorobenzene (surr)	93.5	50-150	%			
Batch Information						
Analytical Batch: VFC14867	7	Prep Batch: VXX				
Analytical Method: AK101		Prep Method: SV				
Instrument: Agilent 7890 PIE Analyst: NRB	JIFID	Prep Initial Wt./Vo	8/6/2019 6:00:00AM bl.: 50 g			
Analytical Date/Time: 8/6/20		Prep Extract Vol:				

Print Date: 08/15/2019 1:57:29PM

Blank Spike ID: LCS for HBN 1199584 [VXX34595] Blank Spike Lab ID: 1523970 Date Analyzed: 08/06/2019 21:45 Spike Duplicate ID: LCSD for HBN 1199584 [VXX34595] Spike Duplicate Lab ID: 1523971 Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584001, 1199584002, 1199584003, 1199584004, 1199584005, 1199584006, 1199584007

Results by AK101									
		Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	12.5	14.5	116	12.5	14.2	114	(60-120)	2.40	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	97.9	98	1.25	96.3	96	(50-150)	1.70	
Batch Information									
Analytical Batch: VFC14867				Pre	p Batch: V	XX34595			
Analytical Method: AK101				Pre	p Method:	SW5035A			
Instrument: Agilent 7890 PID/	FID			Pre	p Date/Tim	e: 08/06/201	9 06:00		
Analyst: NRB						·	g/Kg Extract		
				Dup	e Init Wt./\	/ol.: 12.5 mg	g/Kg Extract	Vol: 25 mL	

Print Date: 08/15/2019 1:57:30PM

Method Blank

Blank ID: MB for HBN 1797581 [VXX/34598] Blank Lab ID: 1524069 Matrix: Soil/Solid (dry weight)

QC for Samples:

1199584001, 1199584002, 1199584003, 1199584004, 1199584005, 1199584006, 1199584007

Results by SW8260C	ŀ				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
1,2,4-Trimethylbenzene	25.0U	50.0	15.0	ug/Kg	
1,2-Dibromoethane	0.500U	1.00	0.310	ug/Kg	
1,2-Dichloroethane	1.00U	2.00	0.620	ug/Kg	
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	ug/Kg	
Benzene	6.25U	12.5	3.90	ug/Kg	
Ethylbenzene	12.5U	25.0	7.80	ug/Kg	
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/Kg	
Methyl-t-butyl ether	50.0U	100	31.0	ug/Kg	
Naphthalene	12.5U	25.0	7.80	ug/Kg	
n-Butylbenzene	12.5U	25.0	7.80	ug/Kg	
o-Xylene	12.5U	25.0	7.80	ug/Kg	
P & M -Xylene	25.0U	50.0	15.0	ug/Kg	
sec-Butylbenzene	12.5U	25.0	7.80	ug/Kg	
tert-Butylbenzene	12.5U	25.0	7.80	ug/Kg	
Toluene	12.5U	25.0	7.80	ug/Kg	
Xylenes (total)	37.5U	75.0	22.8	ug/Kg	
Surrogates					
1,2-Dichloroethane-D4 (surr)	99.5	71-136		%	
4-Bromofluorobenzene (surr)	99.3	55-151		%	
Toluene-d8 (surr)	100	85-116		%	

Batch Information

Analytical Batch: VMS19273	Prep Batch: VXX34598
Analytical Method: SW8260C	Prep Method: SW5035A
Instrument: VRA Agilent GC/MS 7890B/5977A	Prep Date/Time: 8/4/2019 6:00:00AM
Analyst: NRO	Prep Initial Wt./Vol.: 50 g
Analytical Date/Time: 8/5/2019 3:50:00AM	Prep Extract Vol: 25 mL

Print Date: 08/15/2019 1:57:31PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1199584 [VXX34598] Blank Spike Lab ID: 1524070 Date Analyzed: 08/05/2019 04:06

Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584001, 1199584002, 1199584003, 1199584004, 1199584005, 1199584006, 1199584007

Results by SW8260C

	E	Blank Spike	(ug/Kg)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
1,2,4-Trimethylbenzene	750	746	100	(75-123)
1,2-Dibromoethane	750	724	97	(78-122)
1,2-Dichloroethane	750	671	89	(73-128)
1,3,5-Trimethylbenzene	750	774	103	(73-124)
Benzene	750	765	102	(77-121)
Ethylbenzene	750	749	100	(76-122)
Isopropylbenzene (Cumene)	750	805	107	(68-134)
Methyl-t-butyl ether	1130	1070	95	(73-125)
Naphthalene	750	820	109	(62-129)
n-Butylbenzene	750	678	90	(70-128)
o-Xylene	750	736	98	(77-123)
P & M -Xylene	1500	1440	96	(77-124)
sec-Butylbenzene	750	699	93	(73-126)
tert-Butylbenzene	750	768	102	(73-125)
Toluene	750	683	91	(77-121)
Xylenes (total)	2250	2170	97	(78-124)
Surrogates				
1,2-Dichloroethane-D4 (surr)	750	91.8	92	(71-136)
4-Bromofluorobenzene (surr)	750	93.7	94	(55-151)
Toluene-d8 (surr)	750	99.2	99	(85-116)

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Instrument: VRA Agilent GC/MS 7890B/5977A Analyst: NRO Prep Batch: VXX34598 Prep Method: SW5035A Prep Date/Time: 08/04/2019 06:00 Spike Init Wt./Vol.: 750 ug/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/15/2019 1:57:32PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Print Date: 08/15/2019 1:57:33PM

SGS North America Inc.

	Matrix.		w.c.
01, 1199584002, 1199584003, 1199	9584004, 119958400	5, 1199584006,	119
Matrix Spike (u	ıg/Kg) Spik	e Duplicate (ug/k	(g)

		Mat	пх эріке (і	ug/Kg)	Бріке	Duplicate	(ug/Kg)			
Parameter	Sample	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	18.3U	415	419	101	415	417	100	75-123	0.69	(< 20)
1,3,5-Trimethylbenzene	9.15U	415	432	104	415	428	103	73-124	0.93	(< 20)
Benzene	4.57U	415	420	101	415	427	103	77-121	1.60	(< 20)
Ethylbenzene	9.15U	415	406	98	415	414	100	76-122	1.80	(< 20)
Isopropylbenzene (Cumene)	9.15U	415	444	107	415	452	109	68-134	1.50	(< 20)
Methyl-t-butyl ether	36.5U	622	612	98	622	622	100	73-125	1.70	(< 20)
Naphthalene	41.7	415	539	120	415	540	120	62-129	0.14	(< 20)
n-Butylbenzene	9.15U	415	401	97	415	390	94	70-128	2.80	(< 20)
o-Xylene	6.19J	415	395	94	415	404	96	77-123	2.20	(< 20)
P & M -Xylene	18.3U	830	785	95	830	801	97	77-124	1.90	(< 20)
sec-Butylbenzene	9.15U	415	398	96	415	392	95	73-126	1.20	(< 20)
tert-Butylbenzene	9.15U	415	423	102	415	438	106	73-125	3.60	(< 20)
Toluene	9.15U	415	378	91	415	387	93	77-121	2.30	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		415	400	96	415	403	97	71-136	0.79	
4-Bromofluorobenzene (surr)		692	488	71	692	471	68	55-151	3.70	
Toluene-d8 (surr)		415	412	99	415	423	102	85-116	2.50	

Batch Information

Analytical Batch: VMS19273 Analytical Method: SW8260C Instrument: VRA Agilent GC/MS 7890B/5977A Analyst: NRO Analytical Date/Time: 8/5/2019 4:21:00AM

Prep Batch: VXX34598 Prep Method: Vol. Extraction SW8260 Field Extracted L Prep Date/Time: 8/4/2019 6:00:00AM Prep Initial Wt./Vol.: 98.47g Prep Extract Vol: 25.00mL

Matrix Spike Summary

Results by SW8260C

Original Sample ID: 1194207010 MS Sample ID: 1524071 MS MSD Sample ID: 1524072 MSD

Analysis Date: 08/05/2019 6:09 Analysis Date: 08/05/2019 4:21 Analysis Date: 08/05/2019 4:37 Matrix: Soil/Solid (dry weight)

QC for Samples: 119958400 584006, 1199584007

SGS

lank ID: MB for HBN 17975 lank Lab ID: 1524091 IC for Samples: 199584007			·		
Results by SW8260C					
<u>Parameter</u> Toluene	<u>Results</u> 12.5U	<u>LOQ/CL</u> 25.0	<u>DL</u> 7.80	<u>Units</u> ug/Kg	
Surrogates					
1,2-Dichloroethane-D4 (surr)	91.1	71-136		%	
4-Bromofluorobenzene (surr) Toluene-d8 (surr)	73.5 110	55-151 85-116		% %	
Analytical Batch: VMS19274 Analytical Batch: VMS19274 Analytical Method: SW82600 Instrument: VRA Agilent GC Analyst: NRO Analytical Date/Time: 8/5/20	C /MS 7890B/5977A	Prep Metho Prep Date/ Prep Initial	: VXX34599 od: SW5035A Time: 8/5/20 Wt./Vol.: 50 ct Vol: 25 mL	19 6:00:00AM g	

Print Date: 08/15/2019 1:57:34PM

SGS	
a set the set of the s	

Blank Spike Summary				
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1524092 Date Analyzed: 08/05/2019	2	[VXX3459	9]	Matrix: Soil/Solid (dry weight)
QC for Samples: 1199584	007			
Results by SW8260C				
		Blank Spike	(ug/Kg)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Toluene	750	687	92	(77-121)
Surrogates				
1,2-Dichloroethane-D4 (surr)	750	87.2	87	(71-136)
4-Bromofluorobenzene (surr)	750	89.4	89	(55-151)
Toluene-d8 (surr)	750	104	104	(85-116)
Batch Information				
Analytical Batch: VMS19274 Analytical Method: SW8260C Instrument: VRA Agilent GC/ Analyst: NRO		977A		Prep Batch: VXX34599 Prep Method: SW5035A Prep Date/Time: 08/05/2019 06:00 Spike Init Wt./Vol.: 750 ug/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/15/2019 1:57:35PM

-

Matrix Spike Summary

Original Sample ID: 1199587004 MS Sample ID: 1524093 MS MSD Sample ID: 1524094 MSD
 Analysis Date:
 08/06/2019
 3:35

 Analysis Date:
 08/06/2019
 1:16

 Analysis Date:
 08/06/2019
 1:32

 Matrix:
 Soil/Solid (dry weight)
 1:32

QC for Samples: 1199584007

Results by SW8260C										
		Mat	rix Spike (ι	ug/Kg)	Spike	e Duplicate	(ug/Kg)			
Parameter_	Sample	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Toluene	28.4U	1362	1239	91	1362	1252	92	77-121	0.88	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		1362	1153	85	1362	1183	87	71-136	2.50	
4-Bromofluorobenzene (surr)		2270	1632	72	2270	1620	72	55-151	0.92	
Toluene-d8 (surr)		1362	1423	105	1362	1411	103	85-116	1.00	

Batch Information

Analytical Batch: VMS19274 Analytical Method: SW8260C Instrument: VRA Agilent GC/MS 7890B/5977A Analyst: NRO Analytical Date/Time: 8/6/2019 1:16:01AM Prep Batch: VXX34599 Prep Method: Vol. Extraction SW8260 Field Extracted L Prep Date/Time: 8/5/2019 6:00:00AM Prep Initial Wt./Vol.: 33.82g Prep Extract Vol: 25.00mL

Print Date: 08/15/2019 1:57:37PM

SGS

Blank ID: MB for HBN 179763							
Blank Lab ID: 1524286	2 [VXX/34606]	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1199584008, 1199584009, 11995	584010, 1199584011, 119	9584012					
Results by AK101							
Parameter Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L			
Surrogates 4-Bromofluorobenzene (surr)	76	50-150		%			
Batch Information							
Analytical Batch: VFC14869 Analytical Method: AK101 Instrument: Agilent 7890 PID/ Analyst: NRB Analytical Date/Time: 8/7/2019		Prep Me Prep Da Prep Ini	tch: VXX34606 thod: SW5030B te/Time: 8/7/201 ial Wt./Vol.: 5 m tract Vol: 5 mL	9 6:00:00AM			

Print Date: 08/15/2019 1:57:38PM

Blank Spike ID: LCS for HBN 1199584 [VXX34606] Blank Spike Lab ID: 1524287 Date Analyzed: 08/07/2019 13:26 Spike Duplicate ID: LCSD for HBN 1199584 [VXX34606] Spike Duplicate Lab ID: 1524288 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199584008, 1199584009, 1199584010, 1199584011, 1199584012

	I	Blank Spike	e (mg/L)	S	pike Duplio	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.06	106	1.00	0.995	100	(60-120)	6.00	(< 20)
urrogates									
4-Bromofluorobenzene (surr)	0.0500	88.6	89	0.0500	89.8	90	(50-150)	1.40	
Batch Information Analytical Batch: VFC14869				Preg	Batch: V	XX34606			
Analytical Method: AK101				1	Method:				
Instrument: Agilent 7890 PID	/FID					e: 08/07/201			
Analyst: NRB							g/L Extract		
				000	e init vvt / v	or: 100 ma	a/L Extract V	01:5 ML	

Print Date: 08/15/2019 1:57:39PM

SGS

Method Blank

Blank ID: MB for HBN 1797313 [XXX/41912] Blank Lab ID: 1522897 Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584001, 1199584002

Results by 8270D SIM (PAH)

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Acenaphthene	12.5U	25.0	6.25	ug/Kg
Acenaphthylene	12.5U	25.0	6.25	ug/Kg
Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo(a)Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo[a]pyrene	12.5U	25.0	6.25	ug/Kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	ug/Kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	ug/Kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	ug/Kg
Chrysene	12.5U	25.0	6.25	ug/Kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	ug/Kg
Fluoranthene	12.5U	25.0	6.25	ug/Kg
Fluorene	12.5U	25.0	6.25	ug/Kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	ug/Kg
Naphthalene	10.0U	20.0	5.00	ug/Kg
Phenanthrene	12.5U	25.0	6.25	ug/Kg
Pyrene	12.5U	25.0	6.25	ug/Kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	83.1	58-103		%
Fluoranthene-d10 (surr)	82.9	54-113		%

Batch Information

Analytical Batch: XMS11608 Analytical Method: 8270D SIM (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Analytical Date/Time: 8/6/2019 11:35:00AM Prep Batch: XXX41912 Prep Method: SW3550C Prep Date/Time: 8/2/2019 9:43:27AM Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:40PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1199584 [XXX41912] Blank Spike Lab ID: 1522898 Date Analyzed: 08/06/2019 11:55

Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584001, 1199584002

Results by 8270D SIM (PAH)

	E	Blank Spike	(ug/Kg)	
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Acenaphthene	111	96.4	87	(44-111)
Acenaphthylene	111	105	95	(39-116)
Anthracene	111	99.4	90	(50-114)
Benzo(a)Anthracene	111	101	91	(54-122)
Benzo[a]pyrene	111	101	91	(50-125)
Benzo[b]Fluoranthene	111	102	92	(53-128)
Benzo[g,h,i]perylene	111	106	96	(49-127)
Benzo[k]fluoranthene	111	102	92	(56-123)
Chrysene	111	104	93	(57-118)
Dibenzo[a,h]anthracene	111	106	96	(50-129)
Fluoranthene	111	108	97	(55-119)
Fluorene	111	101	91	(47-114)
Indeno[1,2,3-c,d] pyrene	111	112	101	(49-130)
Naphthalene	111	101	91	(38-111)
Phenanthrene	111	98.0	88	(49-113)
Pyrene	111	112	101	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	111	80.8	81	(58-103)
Fluoranthene-d10 (surr)	111	83.5	84	(54-113)

Batch Information

Analytical Batch: XMS11608 Analytical Method: 8270D SIM (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Prep Batch: XXX41912 Prep Method: SW3550C Prep Date/Time: 08/02/2019 09:43 Spike Init Wt./Vol.: 111 ug/Kg Extract Vol: 5 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/15/2019 1:57:42PM

Matrix Spike Summary

Original Sample ID: 1194207013 MS Sample ID: 1522899 MS MSD Sample ID: 1522900 MSD

QC for Samples: 1199584001, 1199584002

Analysis Date: 08/06/2019 12:16 Analysis Date: 08/06/2019 12:36 Analysis Date: 08/06/2019 12:57 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)										
		Mat	rix Spike (ι	ug/Kg)	Spike	e Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Acenaphthene	65.5U	117	108J	92	117	107J	91	44-111	1.30	(< 20)
Acenaphthylene	65.5U	117	119J	102	117	116J	99	39-116	2.40	(< 20)
Anthracene	65.5U	117	140	119 *	117	132	113	50-114	5.40	(< 20)
Benzo(a)Anthracene	77.8J	117	211	114	117	211	114	54-122	0.01	(< 20)
Benzo[a]pyrene	114J	117	260	125	117	262	127 *	50-125	0.95	(< 20)
Benzo[b]Fluoranthene	191	117	352	138 *	117	353	139 *	53-128	0.24	(< 20)
Benzo[g,h,i]perylene	214	117	389	150 *	117	391	151 *	49-127	0.49	(< 20)
Benzo[k]fluoranthene	64.6J	117	204	119	117	206	121	56-123	0.86	(< 20)
Chrysene	105J	117	247	122 *	117	248	123 *	57-118	0.49	(< 20)
Dibenzo[a,h]anthracene	65.5U	117	149	127	117	148	127	50-129	0.53	(< 20)
Fluoranthene	107J	117	253	125 *	117	251	123 *	55-119	1.00	(< 20)
Fluorene	65.5U	117	133	114	117	129J	110	47-114	3.80	(< 20)
Indeno[1,2,3-c,d] pyrene	136	117	296	137 *	117	299	139 *	49-130	0.77	(< 20)
Naphthalene	52.5U	117	132	113 *	117	124	106	38-111	6.20	(< 20)
Phenanthrene	91.8J	117	228	116 *	117	219	109	49-113	4.00	(< 20)
Pyrene	89.4J	117	238	127 *	117	232	123 *	55-117	2.00	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		117	101	86	117	95.1	81	58-103	5.50	
Fluoranthene-d10 (surr)		117	103	88	117	100	86	54-113	2.80	

Batch Information

Analytical Batch: XMS11608 Analytical Method: 8270D SIM (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Analytical Date/Time: 8/6/2019 12:36:00PM Prep Batch: XXX41912 Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml Prep Date/Time: 8/2/2019 9:43:27AM Prep Initial Wt./Vol.: 22.76g Prep Extract Vol: 5.00mL

Print Date: 08/15/2019 1:57:43PM

SGS North America Inc.

Member of SGS Group

Method Blank

Blank ID: MB for HBN 1797342 [XXX/41916] Blank Lab ID: 1523023 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1199584003,\,1199584004,\,1199584005,\,1199584006$

Results by 8270D SIM (PAH)				
Parameter_	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Acenaphthene	12.5U	25.0	6.25	ug/Kg
Acenaphthylene	12.5U	25.0	6.25	ug/Kg
Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo(a)Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo[a]pyrene	12.5U	25.0	6.25	ug/Kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	ug/Kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	ug/Kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	ug/Kg
Chrysene	12.5U	25.0	6.25	ug/Kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	ug/Kg
Fluoranthene	12.5U	25.0	6.25	ug/Kg
Fluorene	12.5U	25.0	6.25	ug/Kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	ug/Kg
Naphthalene	10.0U	20.0	5.00	ug/Kg
Phenanthrene	12.5U	25.0	6.25	ug/Kg
Pyrene	12.5U	25.0	6.25	ug/Kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	84.9	58-103		%
Fluoranthene-d10 (surr)	82.8	54-113		%

Batch Information

Analytical Batch: XMS11606 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 8/6/2019 12:04:00PM Prep Batch: XXX41916 Prep Method: SW3550C Prep Date/Time: 8/2/2019 3:51:29PM Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:57:44PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1199584 [XXX41916] Blank Spike Lab ID: 1523024 Date Analyzed: 08/06/2019 12:24

Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584003, 1199584004, 1199584005, 1199584006

Results by 8270D SIM (PAH)

	E	Blank Spike	(ug/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	
Acenaphthene	111	97.5	88	
Acenaphthylene	111	101	91	
Anthracene	111	102	92	
Benzo(a)Anthracene	111	98.9	89	
Benzo[a]pyrene	111	97.7	88	
Benzo[b]Fluoranthene	111	103	92	
Benzo[g,h,i]perylene	111	98.4	89	
Benzo[k]fluoranthene	111	98.3	89	
Chrysene	111	100	90	
Dibenzo[a,h]anthracene	111	101	91	
Fluoranthene	111	97.9	88	
Fluorene	111	100	90	
Indeno[1,2,3-c,d] pyrene	111	106	95	
Naphthalene	111	97.6	88	
Phenanthrene	111	98.7	89	
Pyrene	111	102	92	
Surrogates				
2-Methylnaphthalene-d10 (surr)	111	79.9	80	
Fluoranthene-d10 (surr)	111	77.5	78	

Batch Information

Analytical Batch: XMS11606 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Prep Batch: XXX41916 Prep Method: SW3550C Prep Date/Time: 08/02/2019 15:51 Spike Init Wt./Vol.: 111 ug/Kg Extract Vol: 5 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/15/2019 1:57:46PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1199584005 MS Sample ID: 1523025 MS MSD Sample ID: 1523026 MSD Analysis Date: 08/06/2019 13:26 Analysis Date: 08/06/2019 13:46 Analysis Date: 08/06/2019 14:07 Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584003, 1199584004, 1199584005, 1199584006

		Mat	rix Spike (ι	ug/Kg)	Spike	Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CI
Acenaphthene	13.4U	120	103	86	121	106	88	44-111	3.20	(< 20)
Acenaphthylene	13.4U	120	106	89	121	111	92	39-116	3.80	(< 20)
Anthracene	13.4U	120	102	85	121	106	88	50-114	3.90	(< 20)
Benzo(a)Anthracene	13.4U	120	93.4	78	121	94.5	78	54-122	1.20	(< 20)
Benzo[a]pyrene	13.4U	120	87.5	73	121	86.8	72	50-125	0.67	(< 20)
Benzo[b]Fluoranthene	13.4U	120	93.4	78	121	92.5	77	53-128	0.97	(< 20)
Benzo[g,h,i]perylene	13.4U	120	78.2	65	121	75.4	63	49-127	3.50	(< 20)
Benzo[k]fluoranthene	13.4U	120	90.3	76	121	89.9	75	56-123	0.50	(< 20)
Chrysene	13.4U	120	94.0	79	121	95.9	80	57-118	1.90	(< 20)
Dibenzo[a,h]anthracene	13.4U	120	81.3	68	121	79.6	66	50-129	2.10	(< 20)
Fluoranthene	13.4U	120	97.8	82	121	98.6	82	55-119	0.69	(< 20)
Fluorene	13.4U	120	102	86	121	107	89	47-114	4.60	(< 20)
Indeno[1,2,3-c,d] pyrene	13.4U	120	82.8	69	121	81.1	67	49-130	2.10	(< 20)
Naphthalene	10.8U	120	105	88	121	111	92	38-111	5.10	(< 20)
Phenanthrene	13.4U	120	100	84	121	105	87	49-113	4.60	(< 20)
Pyrene	13.4U	120	100	84	121	102	85	55-117	1.80	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		120	90.5	76	121	95.5	79	58-103	5.40	
Fluoranthene-d10 (surr)		120	87.6	73	121	89.7	74	54-113	2.40	

Batch Information

Analytical Batch: XMS11606 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 8/6/2019 1:46:00PM Prep Batch: XXX41916 Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml Prep Date/Time: 8/2/2019 3:51:29PM Prep Initial Wt./Vol.: 22.72g Prep Extract Vol: 5.00mL

Print Date: 08/15/2019 1:57:47PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1797358 [XXX/41921] Blank Lab ID: 1523082 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199584008, 1199584009, 1199584010, 1199584011

Results by 8270D SIM LV (PAH)

L.				
Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	75.3	47-106		%
Fluoranthene-d10 (surr)	82.5	24-116		%

Batch Information

Analytical Batch: XMS11599 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 8/5/2019 11:01:00AM Prep Batch: XXX41921 Prep Method: SW3520C Prep Date/Time: 8/3/2019 8:49:51AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 08/15/2019 1:57:48PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1199584 [XXX41921] Blank Spike Lab ID: 1523083 Date Analyzed: 08/05/2019 11:21

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199

1199584008, 1199584009, 1199584010, 1199584011

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	
Acenaphthene	2	1.64	82	
Acenaphthylene	2	1.69	85	
Anthracene	2	1.71	86	
Benzo(a)Anthracene	2	1.64	82	
Benzo[a]pyrene	2	1.55	77	
Benzo[b]Fluoranthene	2	1.68	84	
Benzo[g,h,i]perylene	2	1.45	73	
Benzo[k]fluoranthene	2	1.59	79	
Chrysene	2	1.66	83	
Dibenzo[a,h]anthracene	2	1.37	69	
Fluoranthene	2	1.65	83	
Fluorene	2	1.69	84	
Indeno[1,2,3-c,d] pyrene	2	1.60	80	
Naphthalene	2	1.71	86	
Phenanthrene	2	1.65	82	
Pyrene	2	1.72	86	
Surrogates				
2-Methylnaphthalene-d10 (surr)	2	75.2	75	
Fluoranthene-d10 (surr)	2	78.3	78	

Batch Information

Analytical Batch: XMS11599 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Prep Batch: XXX41921 Prep Method: SW3520C Prep Date/Time: 08/03/2019 08:49 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/15/2019 1:57:49PM

Matrix Spike Summary

Original Sample ID: 1199588002 MS Sample ID: 1523084 MS MSD Sample ID: 1523085 MSD Analysis Date: 08/05/2019 12:02 Analysis Date: 08/05/2019 12:23 Analysis Date: 08/05/2019 12:43 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199584008, 1199584009, 1199584010, 1199584011

Results by 8270D SIM LV (PAH) Matrix Spike (ug/L) Spike Duplicate (ug/L) Parameter Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Acenaphthene 0.0240U 1.89 1.54 82 1.89 1.54 82 48-114 0.03 (< 20) Acenaphthylene 0.0240U 1.89 1.6 85 1.89 1.59 84 35-121 0.96 (< 20) 83 Anthracene 0.0240U 1.89 1.58 84 1.89 1.56 1.20 (< 20) 53-119 Benzo(a)Anthracene 0.0240U 1.89 1.51 80 1.89 1.45 77 59-120 4.00 (< 20) Benzo[a]pyrene 0.00960U 1.89 1.46 77 1.89 1.39 74 53-120 4.90 (< 20) Benzo[b]Fluoranthene 0.0240U 1 89 1.54 81 1.89 1.48 78 53-126 4.10 (< 20) Benzo[g,h,i]perylene 0.0240U 1.89 1.38 73 1.89 1.31 69 44-128 5.50 (< 20) Benzo[k]fluoranthene 0.0240U 1.89 1.48 78 1.89 1.42 75 54-125 4.30 (< 20) Chrysene 0.0240U 1.89 1.54 82 1.89 1.47 78 57-120 4.80 (< 20) Dibenzo[a,h]anthracene 0.00960U 1.89 1.27 67 1.89 1.23 65 44-131 3.80 (< 20) Fluoranthene 0.0240U 1.89 1.54 82 1.89 1.50 79 58-120 3.10 (< 20) Fluorene 1.58 84 1.89 1.56 83 0.96 0.0240U 1.89 50-118 (< 20) Indeno[1,2,3-c,d] pyrene 0.0240U 1.89 1.49 79 1.89 1.41 75 48-130 5.40 (< 20) Naphthalene 0.0481U 1.89 1.6 85 1.89 1.57 83 43-114 2.10 (< 20) Phenanthrene 0.0240U 1.89 1.53 81 1.89 1.50 80 53-115 2.00 (< 20) Pyrene 0.0240U 1.89 1.6 85 1.89 1.54 82 53-121 3.80 (< 20) Surrogates 2-Methylnaphthalene-d10 (surr) 1.89 1.42 75 1.89 1.41 75 47-106 0.79 Fluoranthene-d10 (surr) 1.89 1.46 78 1.89 1.44 76 24-116 1.90

Batch Information

Analytical Batch: XMS11599 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 8/5/2019 12:23:00PM Prep Batch: XXX41921 Prep Method: 3520 Liq/Liq Ext for 8270 PAH SIM LV Prep Date/Time: 8/3/2019 8:49:51AM Prep Initial Wt./Vol.: 265.00mL Prep Extract Vol: 1.00mL

Print Date: 08/15/2019 1:57:50PM

SGS North America Inc.

SGS

]			
797383 [XXX/41930]	Matrix	: Soil/Solid (d	ry weight)	
1199584003, 1199584004, 1	199584005, 1199584006			
<u>Results</u> 10.0U	<u>LOQ/CL</u> 20.0	<u>DL</u> 6.20	<u>Units</u> mg/Kg	
86.8	60-120		%	
5214 02 0B R	Prep Met Prep Dat Prep Initia	hod: SW3550	C 19 8:59:00AM	
	1199584003, 1199584004, 1 <u>Results</u> 10.0U 86.8 5214 02	1199584003, 1199584004, 1199584005, 1199584006 <u>Results</u> 10.0U 86.8 60-120 5214 02 02 R Prep Bat Prep Met Prep Dat	1199584003, 1199584004, 1199584005, 1199584006 Results LOQ/CL DL 10.0U 20.0 6.20 86.8 60-120 5214 Prep Batch: XXX41930 02 Prep Method: SW3550 08 R Prep Date/Time: 8/5/20	1199584003, 1199584004, 1199584005, 1199584006 Results LOQ/CL DL Units 10.0U 20.0 6.20 mg/Kg 86.8 60-120 % 5214 Prep Batch: XXX41930 % 5214 Prep Method: SW3550C 9:00AM 02 Prep Date/Time: 8/5/2019 8:59:00AM

Blank Spike ID: LCS for HBN 1199584 [XXX41930] Blank Spike Lab ID: 1523167 Date Analyzed: 08/06/2019 08:48 Spike Duplicate ID: LCSD for HBN 1199584 [XXX41930] Spike Duplicate Lab ID: 1523168 Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584001, 1199584002, 1199584003, 1199584004, 1199584005, 1199584006

	E	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	833	828	99	833	838	101	(75-125)	1.20	(< 20)
urrogates									
5a Androstane (surr)	16.7	89.2	89	16.7	92.2	92	(60-120)	3.40	
Batch Information				Due	- Detels W				
Analytical Batch: XFC15214 Analytical Method: AK102					o Batch: X o Method:				
Instrument: Agilent 7890B R						e: 08/05/201	19 08:59		
Analyst: VDL				Spil	ke Init Wt./\	/ol.: 833 mg	g/Kg Extract	Vol: 5 mL	
				Dup	e Init Wt./\	/ol.: 833 mg	/Kg Extract	Vol: 5 mL	

Print Date: 08/15/2019 1:57:52PM

SGS	

Method Blank Blank ID: MB for HBN 17973 Blank Lab ID: 1523166		_		
	383 [XXX/41930]	Matrix	c: Soil/Solid (d	ry weight)
QC for Samples: 1199584001, 1199584002, 119	99584003, 1199584004, 11	99584005, 1199584006		
Results by AK103)		
Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
Residual Range Organics	10.0U	20.0	6.20	mg/Kg
Surrogates				
n-Triacontane-d62 (surr)	99	60-120		%
atch Information				
Analytical Batch: XFC15214	4		tch: XXX41930	
Analytical Method: AK103	2		thod: SW3550	
Instrument: Agilent 7890B F Analyst: VDL	\prec		te/Time: 8/5/20 ial Wt./Vol.: 30	19 8:59:00AM
Analytical Date/Time: 8/6/20	019 8:39:00AM		tract Vol: 5 mL	9

Print Date: 08/15/2019 1:57:54PM

Blank Spike ID: LCS for HBN 1199584 [XXX41930] Blank Spike Lab ID: 1523167 Date Analyzed: 08/06/2019 08:48 Spike Duplicate ID: LCSD for HBN 1199584 [XXX41930] Spike Duplicate Lab ID: 1523168 Matrix: Soil/Solid (dry weight)

QC for Samples: 1199584001, 1199584002, 1199584003, 1199584004, 1199584005, 1199584006

E	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)						
Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL			
833	862	103	833	871	105	(60-120)	1.10	(< 20)			
16.7	95.1	95	16.7	99.5	100	(60-120)	4.50				
			Pre	n Batch: X	XX41930						
			Pre	p Date/Tim	e: 08/05/201	9 08:59					
			Spike Init Wt./Vol.: 833 mg/Kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 833 mg/Kg Extract Vol: 5 mL								
	<u>Spike</u> 833	<u>Spike</u> <u>Result</u> 833 862	833 862 103	Spike Result Rec (%) Spike 833 862 103 833 16.7 95.1 95 16.7 Pre Pre Spil	Spike Result Rec (%) Spike Result 833 862 103 833 871 16.7 95.1 95 16.7 99.5 Prep Batch: X Prep Method: Prep Date/Tim Spike Init Wt./N	Spike Result Rec (%) Spike Result Rec (%) 833 862 103 833 871 105 16.7 95.1 95 16.7 99.5 100 Prep Batch: XXX41930 Prep Method: SW3550C Prep Date/Time: 08/05/201 Spike Init Wt./Vol.: 833 mg	Spike Result Rec (%) Spike Result Rec (%) CL 833 862 103 833 871 105 (60-120) 16.7 95.1 95 16.7 99.5 100 (60-120) Prep Batch: XXX41930 Prep Method: SW3550C Prep Date/Time: 08/05/2019 08:59 Spike Init Wt./Vol.: 833 mg/Kg	Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 833 862 103 833 871 105 (60-120) 1.10 16.7 95.1 95 16.7 99.5 100 (60-120) 4.50 Prep Batch: XXX41930 Prep Method: SW3550C Prep Date/Time: 08/05/2019 08:59 Spike Init Wt./Vol.: 833 mg/Kg			

Print Date: 08/15/2019 1:57:55PM

SGS

Blank ID: MB for HBN 179 Blank Lab ID: 1524768	97748 [XXX/41984]	Matrix	: Water (Surfa	ce, Eff., Ground)
QC for Samples: 1199584008, 1199584009, 1	199584010, 1199584011			
Results by AK102	-			
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Diesel Range Organics	0.300U	0.600	0.180	mg/L
Surrogates				
5a Androstane (surr)	71.6	60-120		%
atch Information				
Analytical Batch: XFC15	239	Prep Bat	tch: XXX41984	
Analytical Method: AK10		1	thod: SW35200	
Instrument: Agilent 7890 Analyst: VDL	BF		te/Time: 8/12/20 ial Wt./Vol.: 250	019 1:31:24PM
Analytical Date/Time: 8/1	4/2019 1:38:00PM		ract Vol: 1 mL	

Print Date: 08/15/2019 1:57:57PM

Blank Spike ID: LCS for HBN 1199584 [XXX41984] Blank Spike Lab ID: 1524769 Date Analyzed: 08/14/2019 13:48 Spike Duplicate ID: LCSD for HBN 1199584 [XXX41984] Spike Duplicate Lab ID: 1524770 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199584008, 1199584009, 1199584010, 1199584011

		Blank Spike	e (mg/L)	S	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	17.5	88	20	19.9	99	(75-125)	12.60	(< 20)
Surrogates									
5a Androstane (surr)	0.4	84.5	85	0.4	94.9	95	(60-120)	11.50	
Batch Information									
Analytical Batch: XFC15239					p Batch: X				
Analytical Method: AK102					p Method:		0 42.24		
Instrument: Agilent 7890B F						e: 08/12/201	Extract Vo	l· 1 ml	
Analyst: VDL						0	Extract Vol		

Print Date: 08/15/2019 1:57:58PM

SGS

lethod Blank					
Blank ID: MB for HBN 179 Blank Lab ID: 1524768	7748 [XXX/41984]	Matrix	k: Water (Surfa	ce, Eff., Ground)	
QC for Samples: 199584008, 1199584009, 1	199584010, 1199584011				
Results by AK103					
Parameter	Results	LOQ/CL	DL	<u>Units</u>	
Residual Range Organics	0.250U	0.500	0.150	mg/L	
Surrogates					
n-Triacontane-d62 (surr)	86.5	60-120		%	
atch Information					
Analytical Batch: XFC152			tch: XXX41984	×	
Analytical Method: AK103 Instrument: Agilent 7890E			ethod: SW35200	;)19 1:31:24PM	
			tial Wt./Vol.: 250		
Analyst: VDL			tract Vol: 1 mL		

Print Date: 08/15/2019 1:57:59PM

Blank Spike ID: LCS for HBN 1199584 [XXX41984] Blank Spike Lab ID: 1524769 Date Analyzed: 08/14/2019 13:48 Spike Duplicate ID: LCSD for HBN 1199584 [XXX41984] Spike Duplicate Lab ID: 1524770 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199584008, 1199584009, 1199584010, 1199584011

Results by AK103										
		Blank Spike	e (mg/L)	ę	Spike Duplic	cate (mg/L)				
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Residual Range Organics	20	15.9	79	20	17.8	89	(60-120)	11.60	(< 20)	
Surrogates										
n-Triacontane-d62 (surr)	0.4	90.2	90	0.4	104	104	(60-120)	14.30		
Batch Information										
Analytical Batch: XFC15239				Pre	p Batch: X	XX41984				
Analytical Method: AK103				Pre	p Method:	SW3520C				
Instrument: Agilent 7890B F	ent 7890B F Prep Date/Time: 08/12/2019 13:31									
Analyst: VDL				Spi	ke Init Wt./\	/ol.: 20 mg/l	L Extract Vo	ol: 1 mL		
				Dup	pe Init Wt./V	/ol.: 20 mg/l	Extract Vol	: 1 mL		

Print Date: 08/15/2019 1:58:00PM

SGS North Ame a li CHAIN OF CUSTODY RE

Locations Nationwide Marylanc Alaska New York New Jersey North Carolina

West Virgina

Indiana

Kentucky

www.us.sgs.com

Γ	CLIENT:	SLR/Alyeska						uctio										
		-					Om	<u>nissio</u> I	ons m	<u>nay de</u>	elay t	he o	nset	of an	alysis	s		Page of
	CONTACT:	PH Christophe Venot	ONE #: 907	-264-6960		Sec	tion 3					Prese	rvative					
Section 1	PROJECT NAME:	Ргој 105.01288.19038 РИЗ КGV - 35 4 РЕБ				# C 0	Pres: Type:	MoOHY	B FB NOT	e MeOHA	B HB HON	e HCI		HCI	Hom	~		/
S	REPORTS T		IAIL:			N	Comp											
	С	hristophe Venot cve	not@slrcons	ulting.com			Grab		RRC				IRRC		2			
	INVOICE TO	: QU	OTE #:			Î	MI		DR0	X0C	AH		ORO	N N	HA ^c			
		SLR/Alyeska P.C). #:			N	(Multi- incre-	GRO	103 [C P	MIS	GRO	103	L S	SIM PAH LV			
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	R S	mental)	AK101 (AK102/103 DRO/RRO	SW8260C PVOC	8270D SIM PAH	AK101	AK102/103 DRO/RRO	SW8260C PVOC	8270D \$			REMARKS/ LOC ID
	() AB	MW142-3.5	7/29/14	12:08	S	2	G	X	×	X	X							
l	12/40	MW191-1	1	1425	1	2	i	×	×	×	X							
	(3)AB	MW191-3		1500		2		×	X	K	X							
Section 2	(4)48	MW 191-5		1506		2		X	X	ス	Х							
Ŭ,	(5)40	MW 199-1	x 199-1 1445					X	×	×	X							
ľ	40	MW 193-3,75						X	X	X	X							
	12A	TB-1	V	1200	₩	2	4											
			1				1											
		······································																
┢	D. P. Jak		Date	Time	Received B	x. 7			<u>.</u>	Sect	ion 4	DOD) Proje	ct? Ye	s No	Data D)elive	rable Requirements:
	Relinquish		7138/19			;/	//					-			Ŭ		eve	EL Z
		ghe Vent		09:53	Anto		0				ler ID:					cial Instru	uction	
5	Relinquishe	By. (2)	Date	Time	Received B	y:				Reque	ested i			-				13.
ction 5		100-	7-3/19	1406								~	STA	~Dv(v	40,	\mathbf{n}	1	11720
Secti	Relinquishe	ed By: (3)	Date	Time	Received B	y:				L						XLOF	يقل	:162313
^s				-							-	Temp E	Slank °(9)	C:		Chain	ofC	ustody Seak (Circle)
1	Relinquishe	ed Bv: (4)	Date	Time	Received Fe	or Labo	ratory By			1		or Am	biont [INTAC	:т в	BROKEN ABSENT
			8.1.19	69:30	Ann	1. 1	luna	MA	r				-					Sample Receipt Form
L			V		1 /// //// /	W (A	Jun	<u>~</u>	<u> </u>									
	[] 200 W.	Potter Drive Anchorage, AK 99 Jsiness Drive Wilmington, NC	518 Tel: (907	7) 562-2343 F	ax: (907) 561 Fax: (910) 35	-5301 i0-1557	AN	C:1	Fil	Shttp://	www.s	gs.com/	terms-a	and-con		TEM	لمے م	
	[] 5500 Bi	usiness Drive wilmington, NC	20403 101. (3	10/ 330- 1903	1 u.x. (010) 00					2;1.	8° D	ISS NZ	S-C	t" D2		083-Kit_Req	uest_ar	nd_COC_Templates6604n91 Revised 2013-03-24

SGS North Ame Inc. CHAIN OF CUSTODY RECORE

Locations Nationwide Jaska Marylanc Jew Jersey New York Jorth Carolina Indiana Vest Virgina Kentucky www.us.sgs.com

	CLIENT:	SLR/Alyeska		<u></u>				uctio										1 1
	CONTACT:	PH Christophe Venot	ONE #: 907	-264-6960		Sec	tion 3			<u>, .</u>			rvative				I	Page <u>1</u> of <u>2</u>
Section 1	PROJECT NAME:	60-354				# C 0	Pres: Type:	WeOH	B HB HOT	e HeOH	B HB NOT	e HCI		HCI	Non	\sim		
ľ	REFURISI		IAIL:			N	Comp		0				0 LV					
			not@slrcons OTE #:	ulting.com		T A	Grab Mi		D/RR	0	-		D/RR	с	۲ ۲			
			012 <i>#</i> .			I N	(Multi-	0	3 DR(PVO	I PAF	Q	3 DR(PVOC	SIM PAH LV			
	RESERVED for lab use	T T	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	incre- mental)	AK101 GRO	AK102/103 DRO/RRO	SW8260C PVOC	8270D SIM PAH	AK101 GRO	AK102/103 DRO/RRO	SW8260C	8270D SIN			REMARKS/ LOC ID
	QA-5	MW-191	7130119	0050	W	ID	6	X	X	X	Ň							
	9)A-5	MW-193	7/30/19	0930	Ŵ	ið	6	X	X	X	X							
	1074-5	MW - 192	7130/19	1025	Ŵ	10	ى ک	X	X	×	X							
o U	MA-5	MW - 199	7130/19	1100	W	10	6	X	X	X	ト							* One Dro has 2x Hel
Section	(T)A-F	TB-2	7130/19	0600	w	6	~	X	X									
	<u> </u>							 										
					·····													
							+											
┝	Relinquishe		Date	Time	Received By					Sect	ion 4	DOD	Projec	t? Yes	(No)	Data	 Delive	rable Requirements:
		(2157		Received By	./	//	\sim				1			$\mathbf{\mathcal{G}}$	1	تاريك	EL 2
	Relinquiste		T(30/ 19 Date	09:53 Time	Received By	\sum	\swarrow				er ID:	Irparol	und Tin	an and	or Spa	cial Instr		
5	Reiniquisite	u By. (2)	7210	Allert		•								•		X .H		
<u>čti</u>	Relipquishe		1-3/19 Date	Time	Received By		\rightarrow				UNC					Γ.N - A		-
se	Reinquisne	a By: (3)	Date	Time	Received by						Γ.	Temp B			10			ustody Seal: (Gircle)
/					D							c	<u>).</u> Z			Chai		H
	Relinquishe	а ву: (4)	Date	Time	Received Fo			1	MB			or Aml	oient []		INTA	CT I	BROKEN
			0111	09:30	1/4/4il	1h	<u>e l</u>	le	<u> </u>	(See	attach	ed San	ple Re	ceipt F	orm)	(See att	ached	Sample Receipt Form)
	[] 200 W .	Potter Drive Anchorage, AK 99	518 Tel: (907) 562-2343 Fa	ax: (907) 561-	5301	ANC :	IF,	[B	http://	www.sg	s.com/	terms-a	nd-con	ditions	Tanp	SI	80 058
	[] 5500 Bເ	isiness Drive Wilmington, NC 2	28405 161: (91	0) 350-1903	rax: (910) 35(0-100/	•	111	8 05	is 1	1,3,0	1° 5	257		F0	• 83-Kit_Rec	quest_ar	nd_COC_Pemplate1-Blank Revised 2013-03-24

SGS Workorder #: 1199584 Image: Solution of Custody / Image: Solution o	232	e-Samp	le Receip	t Form				
Online of Custody / Temperature Requirements Were Custody Seals intac? Note # & location Code companied samples? DD: Were samples received in COC corresponding coders? NA Temperature blank concentrative blank, the "coder top in the fullidity" (i.e., 0-6 °C after CF?)? Yes 1 1 If any the note to the mature blank, the "coder top permitted of colleged" will be concentrative blank, the "coder top in the in available. Yes Coder ID: 2 2 3 Add C Them. ID: ODD: Were samples collected <8 hours ago. or for samples where chilling is not required	303		1	199		■ ■■ ■ 1 1	9958	3 4
Were Custody Seals intact? Note # & location CCC accompanied samples? If front 1 back DOD: Were samples received in COC corresponding coolers? NA IMA[]**Exemption permitted if chilled & collected <8 hours ago, or for samples where chilling is not required Temperature blank compliant* (i.e., 0-6 °C after CF)? Yee Cooler ID: 1 11				_		-		
COC accompanied samples? Test DOD: Were samples received in COC corresponding coolers? NA Image: Stamples received without a temperature blank compliant (i.e., 0-6 °C after CP)? Yes Cooler ID: 1 G Them. ID: If samples nearised without a temperature blank, the "cooler temperature" will be commuted instead & "COLLER TEMP" will be noted to the right: "mether" or "child" via Cooler ID: 2 2.4 2.4 C Them. ID: If samples nearised without a temperature in right: "mether" or "child" via Cooler ID: Coole						ermitted if samp	ler hand carries/de	livers.
DOD: Were samples received in COC corresponding coders? NA Image: State of the sample section of	We			1 front 1	DACK			
NAM **Exemption permitted if chilled & collected <8 hours ago, or for samples where chilling is not required			· ·					
Temperature blank compliant* (i.e., 0-6 °C after CF)? 1	DOD: Were sampl			atad < 9 by	ours and ar for as	males where shi	lling is not required	1
If samples received without a temperature blank, the "cooler temperature" will be observed without a temperature blank, the "cooler temperature" will be observed without a temperature blank, the "cooler temperature" will be observed with respective of "childed" will be noted if neither is available. If somples received without a temperature blank, the "cooler temperature" will be observed with respective of the right. "ambient" or "childed" will be noted if neither is available. If cooler ID If cooler ID <t< td=""><td>Tomporatura k</td><th></th><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>	Tomporatura k				-			
If samples received without a temperature blank, the "cooler temperature" will be coolered instead & "COOLER TEMP" will be noted to the right. "ambient" or "chiled" will be noted in earlier is available. Cooler ID: Q T frem. ID: Cooler ID: Q T C Therm. ID: Cooler ID: Q T C Therm. ID: If <0°C, were samples collected <8 hours ago?	remperature t	hank compliant (i.e., 0-6 C alter						
counented instead & "COULER TEMP" will be noted to the right, "ambient" or "chilled" will Cooler ID Cooler ID<	If samples received without a tempe	rature blank, the "cooler temperature" will						_
Cooler ID: Cooler ID: <td>ocumented instead & "COOLER TEMP"</td> <th>will be noted to the right. "ambient" or "chi</th> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td>	ocumented instead & "COOLER TEMP"	will be noted to the right. "ambient" or "chi		_				_
"If >6°C, were samples collected <8 hours ago?	de noted if	neither is available.						
If <0°C, were sample containers ice free? NA Note: Identify containers received at non-compliant temperature . Use form FS-0029 if more space is needed. Holding Time / Documentation / Sample Condition Requirements Were samples received within holding time? Yes "Note: If times differ <1hr, record details & login per COC. "Note: If times differ <1hr, record details & login per COC. "Note: If times differ <1hr, record details & login per COC. "Note: If times differ <1hr, record details & login per COC. "Note: If times differ <1hr, record details & login per COC. "Note: If sample information on containers differs from COC, SGS will default to COC information Were analytical requests clear? (i.e., method is specified for analyses Were proper containers (type/mass/volume/preservative***)used? Were proper containers (type/mass/volume/preservative***)used? Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soit VOAs field extracted with MeOH+BEP? Yes Note to Client: An "No", answer above indicates non-compliance with standard procedures and may impact data quality.	* <i>lf</i> >6°C v	vere samples collected <8 hours			J.	œ	G menni. IL	<i>.</i>
Note: Identify containers received at non-compliant temperature . Use form FS-0029 if more space is needed. Holding Time / Documentation / Sample Condition Requirements Were samples received within holding time? Note: Refer to form F-083 "Sample Guide" for specific holding times. Do samples match COC** (i.e., sample IDs, dates/times collected)? Yes **Note: If times differ <1hr, record details & login per COC.								
Note: Identify containers received at non-compliant temperature . Use form FS-0029 if more space is needed. Holding Time / Documentation / Sample Condition Requirements Were samples received within holding time? Note: Refer to form F-083 "Sample Guide" for specific holding times. Were samples match COC** (i.e., sample IDs, dates/times collected)? Yes *Note: If times differ <1hr, record details & login per COC.	f <	0°C, were sample containers ice	free? N/A					
Use form FS-0029 if more space is needed. Holding Time / Documentation / Sample Condition Requirements Note: Refer to form F-083 "Sample Guide" for specific holding times. Were samples received within holding time? Yes *Note: If times differ <1hr, record details & login per COC.		, I						
Use form FS-0029 if more space is needed. Holding Time / Documentation / Sample Condition Requirements Note: Refer to form F-083 "Sample Guide" for specific holding times. Were samples received within holding time? Yes *Note: If times differ <1hr, record details & login per COC.	Note: Identify containers re	eceived at non-compliant temper	ature .					
Were samples received within holding time? Yes Do samples match COC** (i.e., sample IDs,dates/times collected)? Yes **Note: If times differ <1hr, record details & login per COC.								
Were samples received within holding time? Yes Do samples match COC** (i.e., sample IDs,dates/times collected)? Yes **Note: If times differ <1hr, record details & login per COC.								
Were samples received within holding time? Yes Do samples match COC** (i.e., sample IDs,dates/times collected)? Yes **Note: If times differ <1hr, record details & login per COC.								
Were samples received within holding time? Yes Do samples match COC** (i.e., sample IDs,dates/times collected)? Yes **Note: If times differ <1hr, record details & login per COC.								
Do samples match COC** (i.e., sample IDs, dates/times collected)? Yes **Note: If times differ <1hr, record details & login per COC. *Note: If sample information on containers differs from COC, SGS will default to COC information Were analytical requests clear? (i.e., method is specified for analyses Yes with multiple option for analysis (Ex: BTEX, Metals) Were proper containers (type/mass/volume/preservative***)used? Yes Were proper containers (type/mass/volume/preservative***)used? Yes Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Yes Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.				Note: Refe	e <mark>r to form F-083 "Sam</mark>	ple Guide" for spec	cific holding times.	
Note: If times differ <1hr, record details & login per COC. **Note: If sample information on containers differs from COC, SGS will default to COC information Were analytical requests clear? (i.e., method is specified for analyses with multiple option for analysis (Ex: BTEX, Metals) Were proper containers (type/mass/volume/preservative*)used? Yes Samples 10D and 11D are preserved with HCI. Volatile / LL-Hg Requirements Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	vvere	samples received within holding	time?					
Note: If times differ <1hr, record details & login per COC. **Note: If sample information on containers differs from COC, SGS will default to COC information Were analytical requests clear? (i.e., method is specified for analyses with multiple option for analysis (Ex: BTEX, Metals) Were proper containers (type/mass/volume/preservative*)used? Were proper containers (type/mass/volume/preservative***)used? Yes Samples 10D and 11D are preserved with HCI. Volatile / LL-Hg Requirements Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFP? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.								
Note: If times differ <1hr, record details & login per COC. **Note: If sample information on containers differs from COC, SGS will default to COC information Were analytical requests clear? (i.e., method is specified for analyses with multiple option for analysis (Ex: BTEX, Metals) Were proper containers (type/mass/volume/preservative*)used? Were proper containers (type/mass/volume/preservative***)used? Yes Samples 10D and 11D are preserved with HCI. Volatile / LL-Hg Requirements Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFP? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	Do samples match COC** (i e, sample IDs dates/times colle	cted)? Yes					
*Note: If sample information on containers differs from COC, SGS will default to COC information Were analytical requests clear? (i.e., method is specified for analyses Yes with multiple option for analysis (Ex: BTEX, Metals) Were proper containers (type/mass/volume/preservative***)used? Yes Were proper containers (type/mass/volume/preservative***)used? Yes Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	,							
Were analytical requests clear? (i.e., method is specified for analyses with multiple option for analysis (Ex: BTEX, Metals) Were proper containers (type/mass/volume/preservative***)used? Yes Were proper containers (type/mass/volume/preservative***)used? Yes Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Yes Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.		· · · ·						
with multiple option for analysis (Ex: BTEX, Metals) Were proper containers (type/mass/volume/preservative***)used? Yes Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	•							
Were proper containers (type/mass/volume/preservative***)used? Yes Samples 10D and 11D are preserved with HCI. Volatile / LL-Hg Requirements Vere Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Yes Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.								
Were proper containers (type/mass/volume/preservative***)used? Vers Samples 10D and 11D are preserved with HCI. Volatile / LL-Hg Requirements Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFB? Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.								
Volatile / LL-Hg Requirements Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Yes Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.					N/A ***Exemption	n permitted for m	etals (e.g,200.8/60	20A)
Volatile / LL-Hg Requirements Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Yes Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	Were proper containers (ty	pe/mass/volume/preservative***)	used? Yes					
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFB? Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.			<u>U</u>					
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? Were all soil VOAs field extracted with MeOH+BFB? Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.		Volatile / LL-Hg Requ	<u>uirements</u>					
Were all soil VOAs field extracted with MeOH+BFB? Yes Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	Were Trip Blanks (i.e.,	VOAs, LL-Hg) in cooler with sam	nples? Yes					
Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	Were all water VOA vials fre	e of headspace (i.e., bubbles ≤ 6	omm)? Yes					
	Were all soil	/OAs field extracted with MeOH+	BFB? Yes					
Additional notes (if applicable):	Note to Client: A	ny "No", answer above indicates nor	n-compliance	with stand	lard procedures ar	nd may impact d	ata quality.	
		Additiona	l notes (if a	pplicabl	e):			
			- (

e-Sample Receipt Form FBK

000	e-Sample	<u>e Receip</u>	t For	<u>n FBK</u>	· · · · · · · · · · · · · · · · · · ·					
262	SGS Workorder #:		11	995	84		119	9	584	
Review Cr	iteria	Condition	(Yes, No, I	N/A	Exc	eption	s Noted b	elo	w	
Chain of Custo	dy / Temperature Requi	irements		Y	es Exemption pe	-				/ers.
Were C	ustody Seals intact? Note # &	location 1	N/A							
	COC accompanied sa	amples?	(es							
DOD: Were samples re	ceived in COC corresponding of									
_	**Exemption permitted if	_					-		-	
Temperature blank	compliant* (i.e., 0-6 °C afte	í I			1			-	Therm. ID:	
If samples received without a temperature	blank the "cooler temperature" wil			oler ID:	2		_		Therm. ID:	
cumented instead & "COOLER TEMP" will b	e noted to the right. "ambient" or "ch		_	oler ID:					Therm. ID:	
be noted if neith	er is available.	-		oler ID:		(<u>D</u>	Ľ	Therm. ID:	
*If >6°C were	samples collected <8 hours							_		
lf <0°C.	were sample containers ice	e free?								
	·									
Note: Identify containers receiv	/ed at non-compliant tempe	erature .								
	FS-0029 if more space is n									
	ation / Sample Condition R			te: Refe	r to form F-083 "S	ample (Guide" for sp	ecif	ic holding ti	mes.
Do samples match COC** (i.e.,s			N/C							
**Note: If times differ <1hr,	• •									
Note: If sample information on containers di										
Were samples in good con	dition (no leaks/cracks/brea	akage)?	es							
Vere analytical requests clear? (i.e	e., method is specified for ar	nalyses								
with multiple opt	ion for analysis (Ex: BTEX,	Metals)	(es							
Were Trip Blanks (i.e., VO	As, LL-Hg) in cooler with sa									
Were all water VOA vials free of		· ·								
	s field extracted with MeOH									
	e, was RUSH/Short HT ema									
	No", answer above indicates no			standa	rd procedures and	l may in	npact data di	Jalit	v	
Note to Chent: Any 1		in compilat					.paor aata q		<i>.</i>	
Note to Cheft: Any T	Additiona	al notes (it app	icable	1.					
	Additiona	•	if app			721	3			
SGS Profile #	Additiona 1623	•	if app		162	231	.3			

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	- <u>Container</u>	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u>
		<u>Condition</u>			<u>Condition</u>
1199584001-A	No Preservative Required	ОК	1199584011-H	HCL to pH < 2	ОК
1199584001-A 1199584001-B	Methanol field pres. 4 C	OK	1199584011-H 1199584011-I	HCL to pH < 2	OK
1199584001-B 1199584002-A	No Preservative Required	OK	1199584011-I 1199584011-J	HCL to $pH < 2$	OK
1199584002-A 1199584002-B	Methanol field pres. 4 C	OK	1199584011-5 1199584012-A	HCL to $pH < 2$	OK
1199584002-В 1199584003-А	No Preservative Required	OK	1199584012-A 1199584012-B	HCL to $pH < 2$	OK
	Methanol field pres. 4 C			HCL to pH < 2	
1199584003-B	No Preservative Required	OK	1199584012-C	HCL to pH < 2	OK
1199584004-A	Methanol field pres. 4 C	OK	1199584012-D	HCL to $pH < 2$	OK
1199584004-B	No Preservative Required	OK	1199584012-E	HCL to $pH < 2$	OK
1199584005-A	Methanol field pres. 4 C	OK	1199584012-F		OK
1199584005-B	No Preservative Required	OK			
1199584006-A	Methanol field pres. 4 C	OK			
1199584006-B	Methanol field pres. 4 C	OK			
1199584007-A	HCL to pH < 2	OK			
1199584008-A	HCL to $pH < 2$	OK			
1199584008-B	No Preservative Required	OK			
1199584008-C	No Preservative Required	OK			
1199584008-D	HCL to $pH < 2$	OK			
1199584008-E 1199584008-F	HCL to $pH < 2$	OK			
	HCL to $pH < 2$	OK			
1199584008-G	HCL to pH < 2	OK			
1199584008-H	HCL to $pH < 2$	OK OK			
1199584008-I 1199584008-J	HCL to pH < 2	OK			
1199584008-J	HCL to $pH < 2$	OK			
	HCL to pH < 2	OK			
1199584009-В 1199584009-С	No Preservative Required	OK			
1199584009-C	No Preservative Required	OK			
1199584009-E	HCL to $pH < 2$	OK			
1199584009-E	HCL to $pH < 2$	OK			
1199584009-G	HCL to $pH < 2$	OK			
1199584009-H	HCL to $pH < 2$	OK			
1199584009-I	HCL to $pH < 2$	OK			
1199584009-J	HCL to $pH < 2$	OK			
1199584010-A	HCL to $pH < 2$	OK			
1199584010-B	HCL to $pH < 2$	OK			
1199584010-C	No Preservative Required	OK			
1199584010-D	HCL to pH < 2	OK			
1199584010-E	HCL to $pH < 2$	OK			
1199584010-F	HCL to $pH < 2$	OK			
1199584010-G	HCL to pH < 2	OK			
1199584010-H	HCL to $pH < 2$	OK			
1199584010-I	HCL to $pH < 2$	OK			
1199584010-J	HCL to $pH < 2$	OK			
1199584011-A	HCL to $pH < 2$	OK			
1199584011-B	HCL to $pH < 2$	OK			
1199584011-C	No Preservative Required	OK			
1199584011-D	HCL to pH < 2	OK			
1199584011-E	HCL to pH < 2	OK			
1199584011-F	HCL to $pH < 2$	OK			
1199584011-G	HCL to $pH < 2$	OK			<u> </u>
-					90 of 91

Container Id

<u>Preservative</u>

Container Condition Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.