

global environmental solutions

2019 Water Monitoring Report Pump Station 1 Former Gasoline Tank Area

SLR Ref: 105.01288.19008

ADEC File Number: 330.38.019

December 2019

2019 Water Monitoring Report Pump Station 1 Former Gasoline Tank Area

Prepared for:

ALYESKA PIPELINE SERVICE COMPANY

PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

This document has been prepared by SLR International Corporation. The material and data in this report were prepared under the supervision and direction of the undersigned.

Chieffine the

Christophe Venot

l'En

Carl Benson Principal Scientist

Reviewed and approved by:

CONTENTS

		Si	
1		DUCTION	
	1.1 1.2	Project Background Physical Setting 1.2.1 Geology 1.2.2 Hydrogeology	2 2 2
	1.3 1.4	Previous Site Investigations	3
		 1.4.1 Groundwater Monitoring Well Installations	4 4 5
	1.5 1.6	Surface Water Investigations Project Objectives	
2	REGU		
	2.1 2.2	Groundwater	
3	FIELD	ACTIVITIES	9
	3.1 3.2 3.3	Monitoring Well Repairs Monitoring Well Elevation Survey Groundwater Monitoring Monitoring 3.3.1 Procedures 3.3.2 Well Gauging 3.3.3 Low-Flow Sampling Methodology 3.3.4 Analytical Methods	9 9 9 0
	3.4	Surface Water Sampling 1 3.4.1 Procedures 1 3.4.2 Analytical Methods 1	1 2
	3.5 3.6 3.7 3.8 3.9 3.10	Sample Handling, Documentation, and Chain of Custody	2 3 3 3
4	RESU	LTS1	
	4.1 4.2 4.3	Monitoring Well Integrity 1 Groundwater Elevations 1 Analytical Data Quality 1	5

CONTENTS (CONTINUED)

4.4	Groun	dwater Analytical Results	16
		GRO Plume	
	4.4.2	DRO Plume	16
	4.4.3	BTEX Plume	17
	4.4.4	Petroleum Volatile Organic Compounds	
4.5	Surfac	e Water Analytical Results	18
CON	CLUSIO	NS AND RECOMMENDATIONS	19
REFE	ERENCE	S	20

FIGURES

5

6

Figure 1	Site Location Map
Figure 2	Site Vicinity Map
Figure 3	Water Sampling Analytical Results

TABLES

- Table 1
 Monitoring Well Groundwater Levels
- Table 2Groundwater Analytical Results
- Table 3Groundwater Petroleum VOCs
- Table 4Surface Water Analytical Results

APPENDICES

- Appendix A Photograph Log
- Appendix B Field Notebook
- Appendix C Field Forms
- Appendix D SLR Quality Assurance Review, ADEC Laboratory Data Review Checklists, and Laboratory Analytical Results
- Appendix E Historical Groundwater Analytical Results

ACRONYMS

1,2,4-TMB	1,2,4-trimethylbenzene
1,3,5-TMB	1,3,5-trimethylbenzene
±	plus or minus
°C	degrees Celsius
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
Alyeska	Alyeska Pipeline Service Company
AS	air sparging
AST	aboveground storage tank
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
COC	chain of custody
су	cubic yards
DO	dissolved oxygen
DRO	diesel range organics
ft	feet
FGTA	Former Gasoline Tank Area
GRO	gasoline range organics
LOD	Limit of detection
LOQ	Limit of Quantification
mg/L	milligrams per liter
MNA	monitored natural attenuation
ND	Non-detect
ORP	oxidation-reduction potential
PAH	polynuclear aromatic hydrocarbons
PVC	polyvinyl chloride
PVOC	petroleum volatile organic compound
PS01	Pump Station 1
QA	quality assurance
QAR	quality assurance review
QC	quality control
redox	reduction-oxidation

ACRONYMS (CONTINUED)

SGS	SGS North America, Inc.
-----	-------------------------

- SLR SLR International Corporation
- SVE soil vapor extraction

TAH total aromatic hydrocarbons

- TAqH total aqueous hydrocarbons
- USEPA U.S. Environmental Protection Agency
- VOC volatile organic compound

SLR International Corporation (SLR) conducted groundwater and surface water sampling at the Pump Station 1 (PS01) Former Gasoline Tank Area (FGTA) (Site) in 2019 on behalf of Alyeska Pipeline Service Company (Alyeska). This sampling event was completed to evaluate the migration of dissolved petroleum hydrocarbons in suprapermafrost groundwater and to assess potential impacts to surface water adjacent to the site. In addition to water sampling, site activities also included completion of monitoring well repairs and elevation survey.

The groundwater analytical results indicate the presence of three distinct plumes: gasoline range organic compounds (GRO), diesel range organic compounds (DRO), and a combined plume of benzene, toluene, ethylbenzene, and xylenes (BTEX). The plumes are defined by contaminant concentrations exceeding the Alaska Department of Environmental Conservation (ADEC) groundwater cleanup levels implemented in 2018.

The number of cleanup level exceedances is the lowest since implementation of the latest cleanup levels as indicated by an evaluation of GRO, DRO, and BTEX plumes. The GRO, DRO, and BTEX plumes show an overall decrease in size, with generally lower exceedance concentrations at upgradient, plume edge, and downgradient wells. Recent data continues to indicate that the GRO, DRO, and BTEX plumes are decoupled from the historic FGTA source area and the GRO and BTEX plume may be slowly migrating towards the east.

Concentrations of petroleum volatile organic compounds (PVOCs) 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, and naphthalene exceeded cleanup levels in samples collected from 4 out of 17 monitoring wells, including MW-8, MW-9, MW-15, and MW-19. New PVOC exceedances were limited to naphthalene in MW-19. Well MW-9, in the center of the BTEX plume, is the well most affected by PVOCs as indicated by the highest analyte concentrations.

Surface water TAH and TAqH concentrations are below Alaska Water Quality Standards with DRO and BTEX plumes extending to the pad edge. These results are consistent with historical results, indicating that off-pad migration of contaminants to surface water is not occurring.

SLR and Alyeska recommend continued groundwater and surface water monitoring at the PS01 FGTA Site in 2020. Annual monitoring will continue to include sampling for PVOCs at all wells. A revised 2020-2021 multi-year work plan will be submitted to ADEC for review and approval prior to conducting Site work.

SLR International Corporation (SLR) completed groundwater and surface water sampling at the Pump Station 1 (PS01) Former Gasoline Tank Area (FGTA) (Site) in 2019 on behalf of Alyeska Pipeline Service Company (Alyeska). A total of 17 groundwater monitoring wells (wells) and three surface water sampling locations were sampled.

1.1 PROJECT BACKGROUND

The PS01 FGTA Site has been the subject of multiple investigation, remediation, and monitoring activities following the documented release of 112 gallons of gasoline from an aboveground storage tank (AST) in 1992. The release was documented as Alyeska Spill Number 1992348.

The Site's physical setting, previous Site investigations, and the objectives of the work presented in this report are summarized in the following sections.

1.2 PHYSICAL SETTING

PS01 is located approximately 4.5 miles south of Prudhoe Bay and approximately 6 miles west of Deadhorse, Alaska (Figure 1). PS01 receives crude oil from the North Slope oil-producing fields and pumps it into the 800-mile Trans Alaska Pipeline System. Elevations of the local terrain surrounding the PS01 gravel pad range from 25 to 32 feet (ft) above mean sea level. The FGTA Site is located in the northeast corner of PS01 within the gravel containment area for the pump station tank farm (Figure 2).

1.2.1 GEOLOGY

The terrain in the vicinity of PS01 is characterized by typical North Slope tundra vegetation and permafrost features. The pump station is constructed over a former shallow lake bed, on a pad of sandy gravel fill 3 to 10.5 ft in depth. Native soils underneath the gravel pad include 2 to 4 inches of organic soil, followed by permanently frozen sandy silt. Prudhoe Bay is a region of continuous permafrost, extending as far as 2,000 ft below ground surface (bgs).

1.2.2 HYDROGEOLOGY

Groundwater conditions on the North Slope are controlled by the occurrence of permafrost and seasonal meltwater. The North Slope tundra environment is predominantly saturated with surface water during the summer and becomes ice-rich frozen ground at the onset of winter. Summer thawing creates a heterogeneous layer of suprapermafrost groundwater perched above the undulating frozen horizon, or active layer, in the silt. The active layer progresses to its maximum thickness and extent by September. The seasonal suprapermafrost water is referred to as "groundwater" in this document; however, it is not subject to the same regulatory criteria as conventional groundwater. While groundwater cleanup levels do not apply to suprapermafrost groundwater, they are used as guidelines to discuss the magnitude of hydrocarbon contamination.

The direction of groundwater flow through the pad is generally to the northeast from the former AST source area.

1.3 PREVIOUS SITE INVESTIGATIONS

Ongoing field activities since 1993 have included monitoring well installation, remediation with a soil vapor extraction (SVE) and air sparging system (AS), excavation of contaminated soil, and monitoring of groundwater and surface water.

In 1993, a subsurface investigation was performed to assess the impact from minor leaks and spills associated with the former fuel island at PS01 in conjunction with the release from the former ASTs. The investigation, which was performed during the decommissioning of the fuel island, included the collection of soil, groundwater, and surface water samples. Analytical results indicated that soil beneath the former fuel island was impacted with gasoline range organics (GRO), diesel range organics (DRO), and benzene, though a subsurface liner limited the impact to soil to a depth of 2 ft bgs in this area. At the same time, soil, groundwater, and surface water were found to be impacted by GRO and benzene near the former ASTs (EMCON, 1994).

Subsequent investigation and remediation activities included the following:

- 1996-1999, Soil Vapor Extraction and Air Sparging: Installation of the SVE/AS system by Alyeska personnel was completed to reduce hydrocarbon impact to soil at the Site. The SVE/AS system operated during the summer months in 1997 and 1998, removing approximately 50 pounds of total petroleum hydrocarbons including gasoline range hydrocarbons and benzene (EMCON, 1998). The horizontal piping of the system became submerged by suprapermafrost groundwater in 1999, preventing the use of the SVE portion of the system. Alyeska concluded that operating the unit solely as an AS system would be the most effective remedial strategy (EMCON, 1999).
- **2000, Soil Excavation:** 150 cubic yards (cy) of petroleum-contaminated soil was removed from above the water table in the vicinity of the FGTA in June 2000 (IT Alaska, Inc., 2000).
- 2000-2005, Air Sparge and Impermeable Liner: The SVE/AS system was operated solely in AS mode during the summer months from 2000 through 2005. An impermeable liner was also installed at the base of the excavation to increase the area of influence of the AS system by eliminating vertical airflow to the ground surface and preventing infiltration of surface water through the remaining contaminated soil (IT Alaska Inc., 2000; SLR, 2005).
- **2008, Soil Excavation:** 150 cy of petroleum-impacted soil was removed from the former gasoline AST release area. Soil samples collected from the excavation floor indicated that petroleum hydrocarbon impacts including benzene exceeding Alaska Department of Environmental Conservation (ADEC) soil cleanup levels remained in the source area at the FGTA (SLR, 2009).

1.4 GROUNDWATER AND SURFACE WATER INVESTIGATIONS

Groundwater and surface water monitoring have been conducted since 1994 to assess contaminant impacts to suprapermafrost groundwater within and surface water surrounding the FGTA pad area. Groundwater monitoring has included the investigation of contaminant impacts near Tank 117 resulting from historical Therminol[®] 44 and petroleum hydrocarbon releases. Additionally, surface water monitoring has been used to assess off-pad migration of groundwater contaminants. Groundwater and surface water investigations, annual monitoring, and the installation and maintenance of monitoring wells are described in the following sections.

1.4.1 GROUNDWATER MONITORING WELL INSTALLATIONS

The 1993 subsurface investigation of the fuel island release led to the initial installation of 10 wells within the FGTA in 1994 (EMCON, 1995). Additional wells were installed from 1999 through 2015 to define the dissolved hydrocarbon plume (SLR, 2004, 2007, 2010, 2013, and 2016); the most recent installations, including wells MW-4R, MW-7R, MW-16R, MW-17R, MW-22, and MW-23, were installed in 2015. The location of past and current wells is shown on Figure 3.

1.4.2 GROUNDWATER MONITORING RESULTS

Groundwater monitoring results have been used to evaluate the migration of the dissolved hydrocarbon plume source area and concentrations of plume constituents over time. The groundwater monitoring results show the migration of petroleum hydrocarbons exceeding ADEC cleanup levels including GRO and benzene from the source area in a north-northeast direction. An area of DRO cleanup level exceedances has also been identified near Tank 117, as described in Section 1.4.3. The migration of groundwater contaminant plumes is apparent from trends during the following periods:

- 1994-1998: Petroleum hydrocarbon concentrations for the original 10 wells were greatest near the source area following removal of contaminated soil and during initial SVE system operation. The GRO plume was centered on the source area (wells MW-2, MW-6, and MW-10), whereas a DRO plume was more prevalent near upgradient wells MW-1 and MW-6. Benzene detections and exceedances were limited to downgradient wells MW-5, MW-8, and MW-9. Exceedances of toluene, ethylbenzenes, and/or xylenes were reported for well MW-10 only (EMCON, 1999).
- 1999-2000: The continued northeast migration of GRO, DRO, and benzene contaminant plumes was determined and the presence of a DRO plume near Tank 117 became evident with the installation of additional monitoring wells. Concentrations of GRO and DRO increased in downgradient wells while beginning to decrease in source area wells including MW-10. A second area of DRO was identified to the east of Tank 117 near well MW-14 but not extending northwards to wells MW-12 and MW-13. Concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) decreased for source area wells except well MW-10 and benzene concentrations exceeding cleanup levels increased in downgradient wells.

- **2001-2007:** Installation of additional wells aided in further delineation of contaminant plumes to the northeast of the source area and Tank 117. Concentrations of GRO, DRO, and benzene continued to decline within the source area while increasing in downgradient wells. Results from new wells along north and east pad edges indicated that off-pad contaminant migration was not occurring (SLR, 2008).
- 2007-2014: Concentrations of dissolved GRO, DRO, and BTEX constituents decreased in source area wells while increasing in mid-plume (formerly downgradient) wells which peaked from 2007 to 2009. A subsequent increase was observed in concentrations of these contaminants at now downgradient wells including MW-18 and MW-19. These trends are consistent with the downgradient migration of the contaminant plume in the apparent direction of groundwater flow (SLR, 2015).
- 2015: Concentrations of GRO, DRO, benzene and/or toluene exceeded cleanup levels in seven of 11 sampled monitoring wells with source area exceedances limited to DRO in well MW-3. Mid-plume exceedances included GRO, benzene, and toluene. DRO exceeding the cleanup level was reported in well MW-17 downgradient of Tank 117 (SLR, 2016).
- 2016-2018: Groundwater monitoring analytical results indicated the presence of distinct GRO, DRO, and BTEX plume areas as defined by exceedances for years 2016 (eight wells), 2017 (nine wells), and 2018 (six wells). GRO and BTEX plumes were decoupled from the historic FGTA source area and migration of the BTEX plume towards the pad's east edge was observed (SLR, 2017a, 2018a, and 2019). Sampling for 16 petroleum hydrocarbon volatile organic compounds (PVOCs; includes BTEX) was implemented for all wells in 2018; six wells had exceedances for 3 PVOCs other than BTEX. No surface water impacts were identified including sampling location SW-3 added in 2017 to evaluate pad-edge impacts.

Overall, monitoring results indicate that the source areas for DRO, GRO, and benzene plumes have been eliminated and that the groundwater plumes are attenuating while slowly migrating generally downgradient from the source location towards the northeastern edge of the pad.

1.4.3 TANK 117 THERMINOL CONTAMINATION ASSESSMENT

A plume of DRO exceeding cleanup levels was identified following installation of additional wells beginning in 1999. Historically, water samples collected from monitoring wells MW-14 and MW-15 near Tank 117 have exhibited relatively high concentrations of DRO. The source of the elevated DRO concentrations downgradient of the tank is likely the result of degrading Therminol contamination associated with a release near Tank 117 identified during a 1992 Site assessment (SLR, 2004). Sample analysis and interpretation of the chromatograms identified degradation of the principal component of Therminol 44, associated with a probable release from a leaking flange or pipe (America North/EMCON, 1992).

1.4.4 MONITORED NATURAL ATTENUATION

The potential for monitored natural attenuation (MNA) within groundwater at the FGTA Site has been evaluated since 2007 using field measurements and laboratory analyses. Nitrate, ferrous

iron, and sulfate can be used as terminal electron acceptors during anaerobic respiration (breakdown) of petroleum hydrocarbons under sufficiently chemically-reducing reduction-oxidation (redox) groundwater conditions.

A review of MNA data collected to date was completed in 2011 to assess the feasibility of natural attenuation processes as a supplemental remedial option for contaminated soil and suprapermafrost groundwater. The redox potential for each sampled well was given one of three classifications based on dissolved oxygen (DO), oxidation reduction potential (ORP), ferrous iron, and sulfate concentrations. Key findings from the 2011 evaluation and additional data gathered during the 2012 through 2016 seasons are presented in the 2016 report (SLR, 2016).

Overall, MNA performance monitoring results indicates variable, but generally favorable anoxic to anaerobic groundwater redox conditions in the mid-plume area. A limited extent of natural attenuation is evidenced by chemically-reducing conditions and the partial depletion of terminal electron acceptors.

1.5 SURFACE WATER INVESTIGATIONS

Surface water monitoring was initiated in 2003 to monitor surface water quality adjacent to the pad edge downgradient of the contamination source and mid-plume areas. Surface water samples collected adjacent to the pad between 2003 and 2005 did not contain detectable concentrations of BTEX or polynuclear aromatic hydrocarbons (PAH) compounds. A limited number of detections of benzene, toluene, and PAH congener naphthalene were reported for sample location SW-1 from 2006 through 2015 with most values reported as low, estimated concentrations of benzene, toluene, and naphthalene were reported for sample location SW-2 in 2014 and 2015. Analyte detections in surface water sampling location SW-3 added in 2017 were limited to naphthalene at a concentration near the LOQ. All calculated total aromatic hydrocarbon (TAH) and total aqueous hydrocarbon (TAqH) values for these locations have been below ADEC surface water quality criteria (SLR, 2017a).

1.6 PROJECT OBJECTIVES

Suprapermafrost groundwater and surface water monitoring activities were completed at the PS01 FGTA Site in 2019 to meet the following project objectives:

- Repair of damaged wells to allow for continued sampling;
- Well elevation survey to provide current well elevations for determination of groundwater flow direction;
- Collection of groundwater samples and well elevations to monitor direction of flow and extent of the dissolved petroleum hydrocarbon plumes; and
- Collection of surface water samples from established locations to determine if impacted groundwater is migrating from the pad edge to the adjacent surface water bodies.

The applicable regulatory criteria for groundwater and surface water are described in the following sections.

2.1 GROUNDWATER

Groundwater cleanup levels for contaminated sites are specified in Title 18 of the Alaska Administrative Code (AAC), Chapter 75, *Oil and Other Hazardous Substances Pollution Control* Regulations as amended through October 27, 2018 (ADEC, 2018b). While groundwater cleanup levels presented in 18 AAC 75.345, Table C do not apply to suprapermafrost groundwater, they are used as guidelines to discuss the magnitude of hydrocarbon contamination. The cleanup levels for hydrocarbon constituents historically monitored in groundwater are as follows:

- GRO, 2.2 milligrams per liter (mg/L);
- DRO, 1.5 mg/L;
- RRO, 1.1 mg/L; and,
- BTEX constituents:
 - Benzene, 0.0046 mg/L;
 - Toluene, 1.1 mg/L;
 - Ethylbenzene, 0.015 mg/L;
 - o&p-Xylenes, 0.19 mg/L (as total xylenes); and
 - m-Xylenes, 0.19 mg/L (as total xylenes).

Cleanup levels for the 10 remaining PVOCs other than the BTEX constituents include:

- 1,2-Dibromoethane, 0.000075 mg/L;
- 1,2-Dichloroethane, 0.017 mg/L;
- 1,2,4-Trimethylbenzene (1,2,4-TMB), 0.056 mg/L;
- 1,3,5-Trimethylbenzene (1,3,5-TMB), 0.06 mg/L;
- Isopropylbenzene (cumene), 0.45 mg/L;
- Methyl-t-butyl ether, 0.14 mg/L;
- Naphthalene; 0.0017 mg/L;
- n-Butylbenzene, 1.0 mg/L;
- sec-Butylbenzene, 2.0 mg/L; and
- tert-Butylbenzene, 0.69 mg/L.

Analyte concentrations for 2016 and onwards were evaluated against October 27, 2018 groundwater cleanup levels in units of mg/L for consistency with historical data. Historical data collected prior to 2016 was not reevaluated with respect to the recent cleanup levels.

2.2 SURFACE WATER

Alaska surface water criteria are outlined in 18 AAC 70, *Water Quality Standards*, amended as of April 6, 2018 (ADEC, 2018a), which identifies standards for water use classes and subclasses. For fresh water, these classes are as follows:

- (A) Water supply
 - (i) Drinking, culinary, and food processing
 - (ii) Agriculture, including irrigation and stock watering
 - (iii) Aquaculture
 - (iv) Industrial
- (B) Water recreation
 - (i) Contact recreation
 - (ii) Secondary recreation
- (C) Growth and propagation of fish, shellfish, other aquatic life, and wildlife

Without reclassifying a water body, it is appropriate to apply the most stringent water quality criteria to the water body. The fresh water uses with the most stringent water quality criteria are (A)(iii) water supply: aquaculture, and (C) growth and propagation of fish, shellfish, other aquatic life, and wildlife. The appropriate surface water hydrocarbon criteria are:

- TAH, 0.010 mg/L; and
- TAqH, 0.015 mg/L.

Field activities in 2019 were completed in two mobilizations. Wells were inspected, repaired, and surveyed on July 18, then SLR staff completed groundwater sampling from August 13 to 16. The groundwater monitoring event included well gauging and sampling, and collection of offpad surface water samples. All field activities were completed in accordance with Alyeska operating procedures and the ADEC-approved 2017 to 2019 Work Plan (SLR, 2017b) and 2018 Work Plan Addendum (SLR, 2018b), unless otherwise specified in Section 3.5. The locations of monitoring wells sampled in 2019 are shown on Figure 3. Site activities were documented in the Photograph Log, a bound Field Notebook, and on field forms included as Appendices A, B, and C respectively.

3.1 MONITORING WELL REPAIRS

Monitoring wells were assessed and repairs were conducted on July 18 and 19. Wells were inspected for damage caused by frost-jacking, vehicles, or activities such as pad grading and plowing. Damage to stick-up and flush-mount monuments, inner and outer well polyvinyl chloride (PVC) casings, and bentonite seals were repaired when possible. Specific repairs completed are detailed in Section 4.1.

3.2 MONITORING WELL ELEVATION SURVEY

All monitoring wells were surveyed on July 19, 2019 by Alyeska's survey contractor. Survey of most wells was completed following repairs as noted in Section 4.1. All well casing elevations were surveyed to the nearest 0.01 ft and the survey included wells installed in 2015, which previously had unknown elevations.

3.3 GROUNDWATER MONITORING

Groundwater samples were collected from 17 monitoring wells including MW-2, MW-3, MW-4R, MW-7R, MW-8, MW-9, MW-12, MW-13, MW-14R, MW-15, MW-16R, MW-17R, MW-18, MW-19, MW-20, MW-22, and MW-23, as shown on Figure 3. Duplicate samples designated MW-98 and MW-99 were collected from monitoring wells MW-18 and MW-9, respectively. Groundwater sampling was conducted consistent with the ADEC *Field Sampling Guidance* (ADEC, 2017). All sampling data were recorded on Groundwater Sampling Forms included in Appendix C.

3.3.1 PROCEDURES

Low-flow sampling techniques were used to collect groundwater samples from monitoring wells in accordance with procedures described in the Work Plan. Water quality parameters and other sampling information were documented in the Field Notebook and on Groundwater Sampling Forms included in Appendices B and C, respectively. All groundwater samples were collected using a peristaltic pump discharging directly into laboratory-supplied sample containers appropriate for the required analyses. Peristaltic pumps are preferred for groundwater sampling at this Site because of shallow monitoring well depths, the thin water columns in wells, and to maintain consistency with historical data.

3.3.2 WELL GAUGING

The depth to groundwater in each well was gauged prior to collection of groundwater samples. Well depths and groundwater elevations are shown in Table 1. When required for low-flow or conventional sampling methods, the volume of water within a well casing (well volume) was calculated using the total casing depth obtained from 1) the well log, 2) field forms from the last sampling event, or 3) by direct measurement. The first two options were used when possible to avoid disturbance of sediments at the bottom of a well. All measurements were made to the nearest 0.01 ft using an electronic water level indicator. The water level indicator was decontaminated between wells as described in Section 3.9. Survey elevation data was collected as part of the sampling effort in 2019 and will be used to calculate approximate groundwater elevations for subsequent years.

3.3.3 LOW-FLOW SAMPLING METHODOLOGY

The low-flow sampling method was used for all wells and consisted of purging wells at a sufficiently low rate to maintain a drawdown of the water column less than 0.33 ft. within the well casing. Well purging was conducted by using a peristaltic pump with an adjustable flow rate; the flow rate was monitored and adjusted so drawdown did not exceed 0.33 ft.

Water quality parameters were measured at regular intervals during purging and were recorded on Groundwater Sampling Forms. Purging was considered complete once water quality parameters had stabilized and drawdown of less than 0.33 ft was maintained. Readings were considered stable when three successive discrete measurements, collected three to five minutes apart, were within the criteria below for three parameters (four if temperature was used):

- Temperature (in degrees Celsius [°C]), plus or minus (±) 3 percent (minimum of ± 0.2 °C);
- pH, ± 0.1 standard units;
- Specific conductance, ± 3 percent microsiemens per centimeter;
- ORP, ± 10 millivolts; and
- DO, ± 10 percent.

Sample collection occurred once parameters had stabilized in three successive discrete measurements or after a minimum of three well volumes had been removed.

3.3.4 ANALYTICAL METHODS

Groundwater samples were collected directly into laboratory-supplied containers with the volatile sample collected first followed by the non-volatile samples. The samples were placed into a chilled cooler as soon as possible after collection, and were maintained at a temperature near 4°C. The samples were submitted to SGS North America, Inc. (SGS) in Anchorage, Alaska under proper chain of custody (COC) procedures.

Groundwater samples were analyzed by the following methods:

- GRO by Alaska Method AK101; and
- DRO by Alaska Method AK102.

Additionally, a list of 16 PVOCs was added beginning in 2018 at the request of ADEC to evaluate for the presence of petroleum hydrocarbon VOCs in suprapermafrost groundwater at the Site. The list of 16 PVOCs evaluated by U.S. Environmental Protection Agency (USEPA) Method SW8260C includes:

- 1,2,4-TMB;
- 1,3,5-TMB;
- 1,2-Dibromoethane;
- 1,2-Dichloroethane;
- Benzene;
- Ethylbenzene;
- Isopropylbenzene (Cumene);
- Methyl-t-butyl ether;
- Naphthalene;
- n-Butylbenzene;
- sec-Butylbenzene;
- tert-Butylbenzene;
- Toluene;
- o-Xylene (as total xylenes);
- p- & m-Xylene (as total xylenes); and
- Total xylenes.

3.4 SURFACE WATER SAMPLING

Surface water samples were collected from sampling locations FGTA-SW-1 (SW-1), FGTA-SW-2 (SW-2), and FGTA-SW-3 (SW-3) to the east of the PS01 tank farm (Figure 3). A duplicate sample was collected from sample location FGTA SW-1 and was designated SW-99.

All surface water sampling data were recorded on Surface Water Sampling Forms (Appendix C).

3.4.1 PROCEDURES

Surface water samples were collected in accordance with ADEC's *Field Sampling Guidance* (ADEC, 2017). Each sample was collected by placing a laboratory cleaned, non-preserved, amber bottle below the water surface, opening the cap, filling the bottle, re-capping the bottle, and bringing it above the water surface. Water from the non-preserved bottle was transferred into preserved volatile organic analysis vials, and the non-preserved bottle was then topped off. Water quality parameters including temperature, DO, ORP, pH, and specific conductance were recorded for each surface water sampling location using a YSI[®] multimeter.

3.4.2 ANALYTICAL METHODS

Concentrations of TAH and TAqH for surface water were analyzed by methods consistent with ADEC regulations, as specified in Note 7 of the table included in 18 AAC 70.020(b), and modified by the ADEC Contaminated Sites Program as follows:

- BTEX using USEPA Method 8021B; and,
- PAHs using USEPA Method 8270D with selective ion monitoring for the 16 PAHs listed by USEPA Method 610.

The results of these analyses were used to calculate TAH and TAqH values using the methodology described below.

- TAH: The value for each surface water sample was calculated by summing detected concentrations of BTEX compounds. For compounds that were not detected (ND), the limit of detection (LOD) was used in place of the non-detect (ND) value in the summation. If BTEX compounds were not detected, the result was presented as ND at or above the sum of the LODs for all BTEX compounds.
- TAqH: The value for each surface water sample was calculated by summing the calculated TAH value (or the LOD of the TAH value if it was ND) and the detected concentrations of PAHs. For PAH compounds that were ND, the LOD was used in place of the ND value in the summation. When neither BTEX nor PAH compounds were detected, the TAqH value for each sample was presented as ND at the sum of the LODs for all BTEX and PAH compounds.

Total xylenes were calculated using the sum of p- and m-xylenes and o-xylene, or by the summation of LOD values for p- and m-xylenes and o-xylene in place of any ND values.

3.5 SAMPLE HANDLING, DOCUMENTATION, AND CHAIN OF CUSTODY

Groundwater and surface water samples were collected directly into laboratory-supplied containers appropriate for the required analyses. The samples were labeled and placed into a pre-chilled cooler with gel ice as soon as possible following collection. Sample and cooler

temperatures were maintained at approximately $4^{\circ}C \pm 2^{\circ}C$ throughout transport to the laboratory. Samples were handled and transported in a manner that maintained sample integrity and did not exceed specified holding times. Each sample and any accompanying trip blank(s) were documented on the project COC form.

All samples were shipped directly to SGS in Anchorage, Alaska under proper COC procedures. SGS Anchorage is an ADEC-approved laboratory. Samples were analyzed within the respective laboratory hold times for each requested analysis.

3.6 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance (QA)/quality control (QC) procedures were maintained throughout the sampling activities. QA procedures included the analysis of field duplicates and trip blanks, and a laboratory data QA review (QAR) by qualified SLR staff. The QAR included the completion of an ADEC Laboratory Data Review Checklist for each analytical report. QC procedures included adherence to appropriate sample collection methodology as described in the Work Plan. Any discrepancies associated with the samples collected from the Site are identified in the QAR and summarized in Section 4.3. The QAR and the completed ADEC Laboratory Data Review Checklists are presented in Appendix D.

3.7 WORK PLAN DEVIATIONS

No work plan deviations were noted for the sampling activities conducted in 2019.

3.8 INSTRUMENT CALIBRATION

Water quality instruments were calibrated according to manufacturer specifications prior to use and periodically during sampling if instrument drift was suspected. At a minimum, field instruments were calibrated daily prior to use. Instrument calibrations were documented on Water Quality Parameter Calibration Logs included in Appendix C.

3.9 SAMPLING EQUIPMENT DECONTAMINATION

All non-disposable or dedicated sampling equipment that contacted potentially contaminated groundwater or surface water was decontaminated consistent with the *Field Sampling Guidance* (ADEC, 2017). Sampling equipment was decontaminated using a stiff brush and a solution of a non-ionic detergent (e.g., Alconox[®] or Liquinox[®]) followed by two clean water and a single distilled water rinse.

3.10 WASTE MANAGEMENT

Purge water and decontamination water generated during the sampling activities were placed into an appropriately-labeled 55-gallon drum in the PS01 waste accumulation area. The Alyeska waste single point of contact, or their designee, was notified of the location and date of waste transfers.

Disposable sampling materials were disposed of as non-oily waste using a clear garbage bag and placed in the appropriate receptacle at PS01. No hazardous waste was generated during the 2019 field effort.

This section describes monitoring well integrity issues, the results of groundwater and surface water analyses, and key findings from the QAR. Monitoring activities were completed on August 16, 2019 and were documented in the Field Notebook and Field Forms included as Appendices B and C, respectively. Groundwater and surface water sampling results are presented in Tables 2 to 4. The QAR, completed ADEC Laboratory Data Review Checklist, and laboratory analytical report are included as Appendix D.

4.1 MONITORING WELL INTEGRITY

Historically, common causes of damage to wells have included frost jacking, vehicle traffic, and normal operations or on-Site construction activities. All wells were useable in 2019; however multiple wells required repairs including:

- **MW-4R and MW-16R:** The inner 2-inch diameter PVC casings were trimmed to address damage resulting from frost jacking during the previous freeze-thaw cycle;
- MW 16R, MW-22, and MW-17R: The well monuments were raised by 1to 2 inches bgs, and additional bentonite seal was added to address repeated frost-jacking of the 2-inch inner PVC casings.

All wells were surveyed following repairs completed in July. Surveyed top of casing elevations were adjusted for any additional repairs completed in August 2019.

4.2 GROUNDWATER ELEVATIONS

Groundwater elevations were calculated for all wells using top of casing elevations and gauged depths to groundwater measured prior to sampling. Groundwater depths were gauged to the nearest 0.01 ft for all wells. In general, groundwater flow at the FGTA Site trends towards the east and northeast edge of the pad. The site-wide average groundwater elevation was the highest measured though 2015. The water levels and calculated elevations for existing wells dating back to 1994 are shown in Table 1 and the general groundwater flow direction is shown on Figure 3.

4.3 ANALYTICAL DATA QUALITY

The data were deemed acceptable for use with minor issues noted in the QAR regarding receipt of samples, laboratory method blanks, reporting limits, and field duplicates. Qualified results are outlined below and presented in detail in SLR's QAR (Appendix D).

• Laboratory Method Blanks: DRO was detected at concentrations below the LOQ for three method blanks. Associated detected results within five times that of the blank were considered impacted and were usable as qualified.

• Field Duplicates: The relative percent difference for some PVOC analytes in the parent/duplicate sample pair MW-18/MW-98 exceeded the allowable limit. All affected results were flagged as estimated quantities and data was considered usable as qualified.

4.4 GROUNDWATER ANALYTICAL RESULTS

Groundwater monitoring analytical results indicate the presence of distinct GRO, DRO, and BTEX plume areas based on exceedances of groundwater cleanup levels. A much smaller extent of exceedances is evident for PVOCs other than BTEX. In general, the GRO and BTEX plumes originated from the FGTA and have migrated to east-northeast while generally reducing in size, as evaluated against the more stringent ADEC cleanup levels implemented in 2016 and promulgated through the 2018 regulations (ADEC, 2018b). The western extent of DRO, GRO, and BTEX plumes reduced slightly as indicated by lower analyte concentrations in wells MW-8 and MW-15.

The GRO, DRO, and BTEX contaminant plumes and PVOC exceedances are discussed individually in the following sections. Analytical results for analytes sampled in 2019 are shown in Table 2. Historical results for decommissioned wells are shown in Appendix E. Groundwater analyte cleanup level exceedances and approximate GRO, DRO, and BTEX plume areas are shown on Figure 3.

4.4.1 GRO PLUME

The extent of the GRO plume exceeding the 2.2 mg/L cleanup level decreased slightly with concentrations remaining high near the plume center. The approximated plume extent is based on exceedances in wells MW-8, MW-9, and MW-19 as follows:

- **Upgradient well**: The concentration in upgradient well MW-8 decreased to 4.05 mg/L from 4.46 mg/L in 2018, and remains well below the historical maximum of 23 mg/L in 2014.
- **Plume center well**: Exceedance concentrations increased in well MW-9 to 24.8 mg/L from 15.2 mg/L in 2018, but remains below the recent high of 30.8 mg/L in 2016.
- **Downgradient well:** The concentration in MW-9 fell slightly to 17.4 mg/L from 18.5 mg/L in 2018.

4.4.2 DRO PLUME

The DRO plume shows continued reduction in extent with declining concentrations in wells MW-15 and MW-17R where DRO is above 1.5 mg/L cleanup level. The assessment of the DRO plume is based on the following findings:

• **Upgradient wells**: Well MW-15 showed a substantial decrease in exceedance concentrations to 5.76 mg/L from 48.8 mg/L in 2018. The current value is well below the historic high of 784 mg/L in 2004.

• **Downgradient wells**: The exceedance concentration of 2.06 mg/L in well MW-17R on the pad edge shows a continued decline from the recent high of 2.9 mg/L in 2017.

The DRO plume has continued to shrink and migrate eastward to the pad edge near MW-17R from Tank 117 and the historic Therminol spill area.

4.4.3 BTEX PLUME

Exceedances of BTEX constituents were detected in 6 of the 17 monitoring wells. The extent of the BTEX plume decreased as indicated by the overall decline of exceedance concentrations in wells except MW-9. The BTEX plume is largely defined by benzene and ethylbenzene with lesser exceedances of cleanup levels for toluene and xylenes. The plume extent is based on exceedance concentrations of one or more of the four constituent compounds as described below.

- **Benzene:** The plume area is primarily defined by the 0.0046 mg/L cleanup level which was exceeded in upgradient, mid-plume, plume-edge, and downgradient wells as follows: well MW-8, mid plume wells MW-9 and MW-19, plume-edge wells MW-15 and MW-18, and downgradient well MW-23.
 - **Upgradient:** Well MW-8 remained relatively unchanged at 1.08 mg/L.
 - Mid-plume: Exceedance concentrations increased for benzene in well MW-9, but decreased for MW-15, MW-18, MW-19 to respective values of 0.0253, 0.00836, and 2.34 mg/L.
 - **Downgradient:** The exceedance concentration decreased in pad-edge well MW-23 from 0.0521 to 0.0375 mg/L.
- **Toluene:** Toluene was detected in MW-8 at a concentration of 1.15 mg/L which was within the historical concentration range for this well.
- Ethylbenzene: Exceedances of the 0.015 mg/L cleanup level were detected in upgradient well MW-8 and mid-plume wells MW-9 and MW-19. Concentrations increased to historic highs of 1.700 and 1.18 mg/L for MW-9 and MW-19, respectively. Previous exceedances in 2018 included plume edge well MW-8. Concentrations remained below cleanup levels in upgradient well MW-20 and downgradient well MW-23 which had prior exceedances in 2017.
- **Xylenes:** Exceedances of the 0.19 mg/L total xylene cleanup level were reported only for mid-plume wells MW-9 with a historic high of 8.46 mg/L and MW-19 with a value of 5.27 mg/L.

Overall, concentrations within the BTEX plume show an overall decrease from 2018 in all wells except center well MW-9 which had increases for all but toluene, and upgradient well MW-8 which had a toluene exceedance. The BTEX plume extends to the pad edge near MW-23.

4.4.4 PETROLEUM VOLATILE ORGANIC COMPOUNDS

Four of 17 wells had exceedances of PVOCs excluding BTEX constituents. PVOC sampling initially included only MW-9 and MW-14R in 2017 and was expanded to include all wells in 2018. Exceedances included the following PVOCs:

- 1,2,4-TMB: Exceedances of the 0.056 mg/L cleanup level were detected in wells MW-9 and MW-19 with respective concentrations of 0.600 and 0.0984 mg/L. Concentrations in well MW-9 have increased each year from 0.148 mg/L in 2017. The concentration also increased for MW-19 from 0.0716 mg/L in 2018.
- **1,3,5-TMB:** Exceedances of the 0.06 mg/L cleanup level remain limited to MW-9 with a concentration of 0.183 mg/L, marking a second year above the cleanup level.
- **Naphthalene:** Naphthalene was detected above the cleanup level of 0.0017 mg/L in wells MW-8, MW-9, MW-15, and MW-19. New exceedances were limited to well MW-19 which increased to 0.00232 mg/L. Concentrations decreased by over half for MW-8 and MW-15. Non-detect values above cleanup levels in 2018 for MW-9 and MW-19 are considered cleanup level exceedances.

Results indicate that MW-9 had both the most numerous exceedances and highest concentrations of PVOCs. This correlates with BTEX exceedances and high concentrations for MW-9 as described in the previous section.

4.5 SURFACE WATER ANALYTICAL RESULTS

No impacts to surface water were indicated by results of analytical samples collected in 2019 from sample locations SW-1, SW-2, or SW-3. This result is consistent with previous surface water results. Analyte detections were limited to benzene and total xylenes in SW-1 and benzene in SW-2, with all concentrations near the LOD. No detections were reported for sample location SW-3, downgradient of benzene groundwater exceedances in pad-edge well MW-23.

All PAH compounds were reported as ND and prior detections are limited to low-concentrations that did not result in exceedances of Alaska *Water Quality Standards* (ADEC, 2018a) for calculated TAH and TAqH values. Surface water analytical results including TAH and TAqH values are presented in Table 4 and sample locations are shown on Figure 3.

The surface water sample locations were selected to provide monitoring points downgradient of petroleum hydrocarbon impacts in the FGTA pad. As such, location SW-1 may be adjusted in 2020 to provide coverage of the pad-edge exceedances at MW-17R. Locations SW-1 and SW-2 may currently be cross-gradient from the DRO exceedance in well MW-17R.

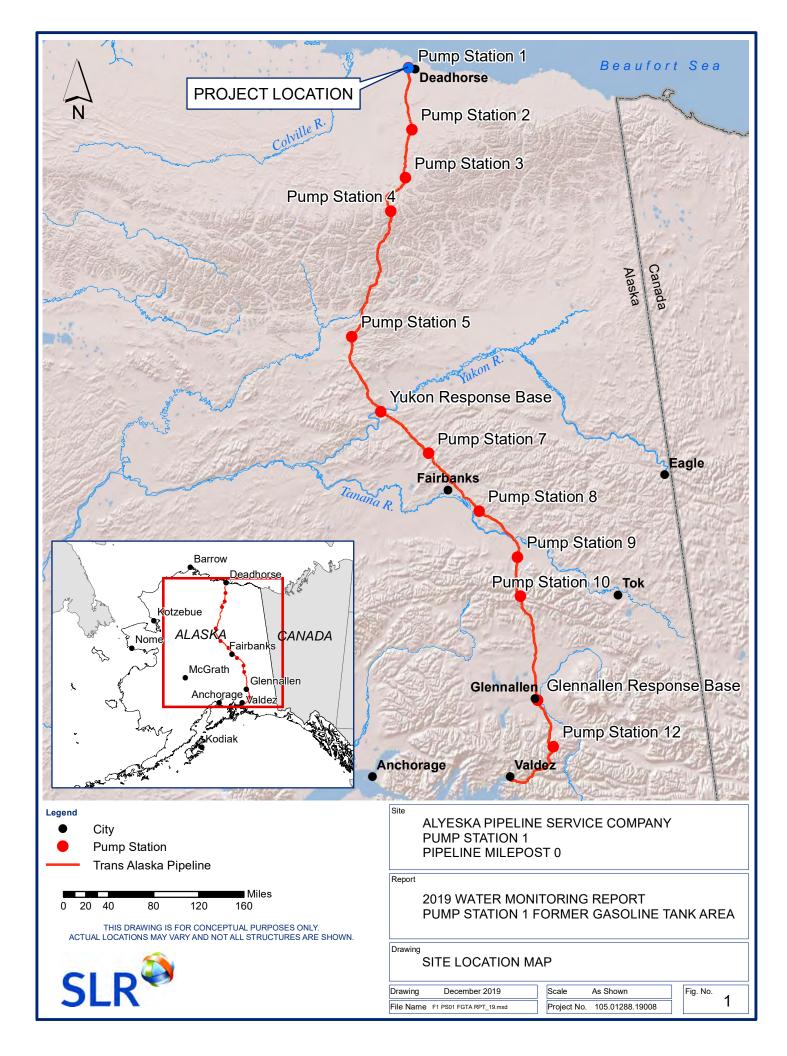
5 CONCLUSIONS AND RECOMMENDATIONS

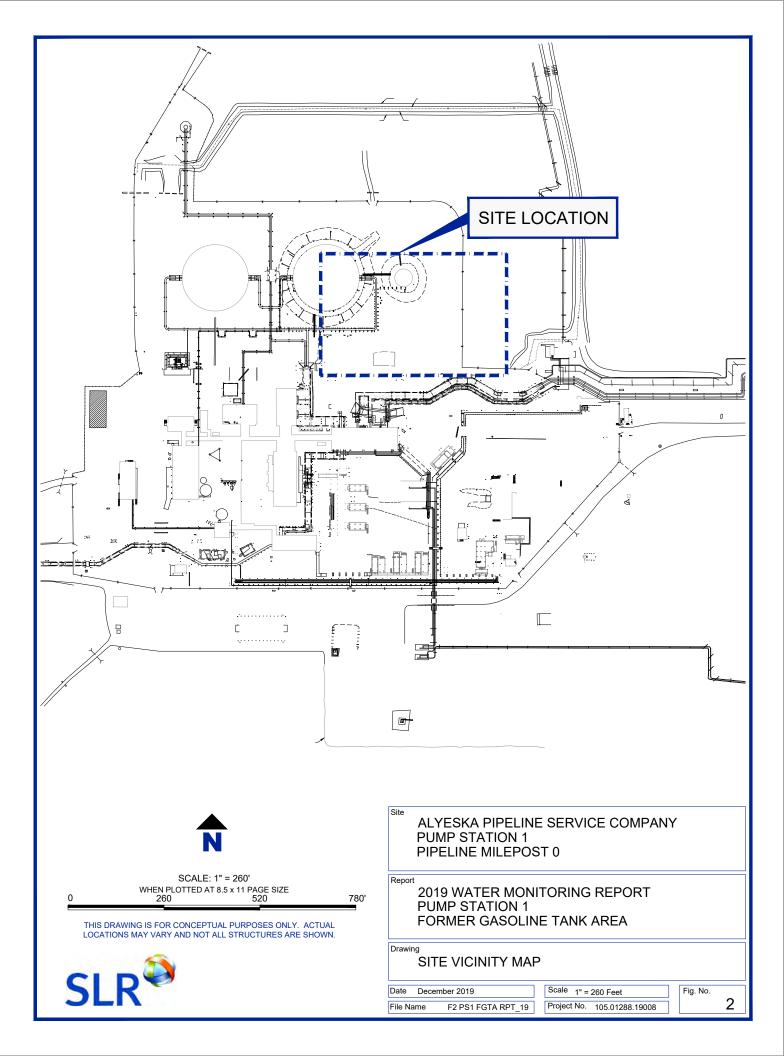
Groundwater and surface water sampling results from 2019 indicate declining groundwater impacts as compared to 2018, and that contaminant impacts along the pad edges are not impacting nearby surface water bodies.

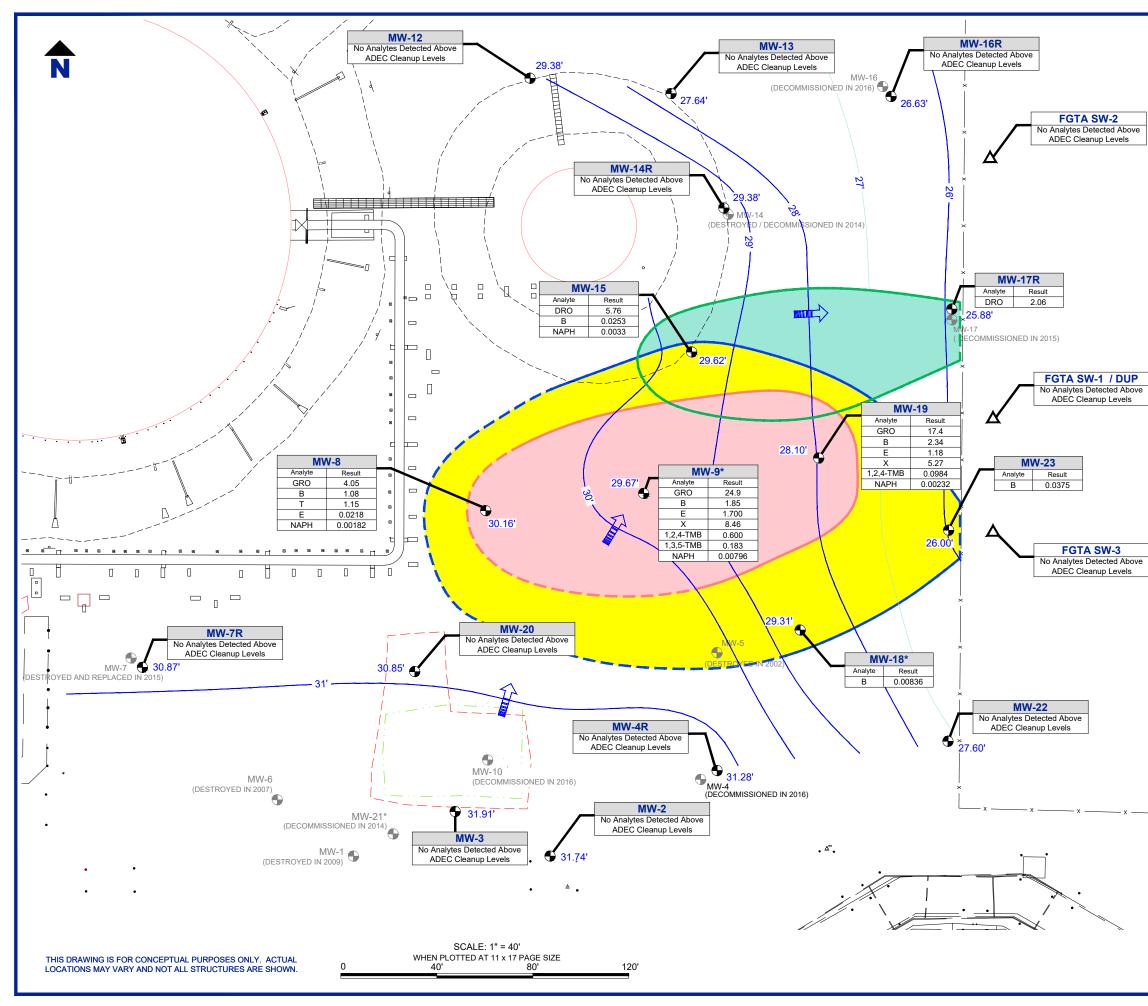
The extent of cleanup level exceedances is the lowest since implementation of the latest ADEC cleanup levels as indicated by an evaluation of GRO, DRO, and BTEX plumes. The GRO, DRO, and BTEX plumes show an overall decrease in size, with generally lower exceedance concentrations at upgradient, plume edge, and downgradient wells. Historical and recent data continue to indicate that the GRO, DRO, and BTEX plumes are decoupled from the historic FGTA source area and the GRO and BTEX plume may be slowly migrating towards the east.

Concentrations of PVOCs 1,2,4-TMB, 1,3,5-TMB, and naphthalene exceeded cleanup levels in 4 out of 17 monitoring wells. New PVOC exceedances were limited to naphthalene in MW-19. The area of highest PVOC impacts coincides with the center of the BTEX plume.

Surface water TAH and TAqH concentrations are below Alaska *Water Quality Standards* with DRO and BTEX plumes extending to the pad edge. These results are consistent with historical results, indicating off-pad migration of contaminants to surface water is not occurring.


SLR and Alyeska recommend continued groundwater and surface water monitoring at the PS01 FGTA Site in 2020. Annual monitoring will continue to include sampling for PVOCs at all wells. A revised 2020-2021 multi-year work plan will be submitted to ADEC for review and approval prior to conducting Site work.


- Alaska Department of Environmental Conservation (ADEC), 2017. Field Sampling Guidance. August.
- ADEC, 2018a. Alaska Administrative Code (18 AAC 70), Water Quality Standards. Amended as of April 6.
- ADEC, 2018b. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control. As amended through October 27.
- America North/EMCON, Inc., 1992. Pump Station #1, Tank #117 Therminol Release Site Assessment Report. Prepared for the Alyeska Pipeline Service Company. September.
- EMCON Alaska, Inc. (EMCON), 1994. Pump Station 1 Former Gasoline Tank Area Contamination Assessment (Alyeska Spill No. 1992348) and Fuel Island Investigation Report. January.
- EMCON, 1995. Pump Station 1 Former Gasoline Tank Area Supplemental Contamination Assessment (Alyeska Spill No. 1992348). March.
- EMCON, 1998. Pump Station 1 Former Gasoline Tank Area Remedial Action Status Report, 1998 Soil Vapor Extraction and Air Sparging Project. December.
- EMCON, 1999. Pump Station 1 Former Gasoline Tank Area Remedial Action Status Report, 1999 Soil Vapor Extraction and Air Sparging Project (Alyeska Spill No. 1992348). December.
- IT Alaska, Inc. (IT), 2000. 2000 Contaminated Soil Excavation and Ground Water Monitoring Report, Pump Station 1 Former Gasoline Tank Area (Alyeska Spill Number 1992348). December.
- SLR Alaska (SLR), 2004. 2003 Former Gasoline Tank Area Groundwater Monitoring Report, Pump Station 1, Trans Alaska Pipeline System. February.
- SLR, 2005. Pump Station 1 Former Gasoline Tank Area 2004 Ground Water Monitoring and Remediation Report. March.
- SLR, 2007. Pump Station 1 Former Gasoline Tank Area 2006 Ground Water Monitoring and Remediation Report. March.
- SLR International Corp (SLR), 2008. Pump Station 1 Former Gasoline Tank Area 2006 Ground Water Monitoring and Remediation Report. February.
- SLR, 2009. Pump Station 1 Former Gasoline Tank Area 2008 Ground Water Monitoring and Remediation Report. March.


- SLR, 2010. Pump Station 1 Former Gasoline Tank Area 2009 Remediation and Ground Water Monitoring Report. March.
- SLR International Corporation (SLR) 2013. Pump Station 1 Former Gasoline Tank Area 2012 Water Monitoring Report. February.
- SLR, 2015. Pump Station 1 Former Gasoline Tank Area 2015 Water Monitoring Work Plan. May.
- SLR, 2016. Pump Station 1 Former Gasoline Tank Area 2015 Water Monitoring Report. March.
- SLR, 2017a. Pump Station 1 Former Gasoline Tank Area 2016 Water Monitoring Report. March.
- SLR, 2017b. Water Monitoring Work Plan, Pump Station 1 Former Gasoline Tank Area. May.
- SLR, 2018a. 2017 Water Monitoring Report, Pump Station 1 Former Gasoline Tank Area. March.
- SLR, 2018b. Addendum to Water Monitoring Work Plan, Pump Station 1 Former Gasoline Tank Area. May 25.
- SLR, 2019. 2018 Water Monitoring Report, Pump Station 1 Former Gasoline Tank Area. February.

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Vicinity Map
- Figure 3 Water Sampling Analytical Results

SHEET DRAWING D-31-L21 SH		/ICE COMPANY PUMP STATION 05/29/2007	1 AS-BUILT DATABASE
LEGEND			
•	MONITORIN	IG WELL LOCATION	
•	MONITORIN	IG WELL NOT INCLUDED IN	2016 SAMPLING
Ā	PROGRAM SURFACE V	WATER SAMPLE LOCATION	
x	FENCE		
	ELEVATED	TANK SOIL MOUND CONTO	OUR
	EDGE OF L	INER	
	EDGE OF E	XCAVATION	
27'	GROUNDW	ATER ELEVATION CONTOL	JR (FEET)
		GROUNDWATER FLOW DIR	. ,
		IATED EXTENT OF <u>DRO</u> CO /E ADEC CLEANUP LEVEL	NTAMINATION
		IATED EXTENT OF GRO CO /E ADEC CLEANUP LEVEL	NTAMINATION
		IATED EXTENT OF BTEX CO /E ADEC CLEANUP LEVELS	
SAMPLING RESULTS ABBREVIATIONS:	GUIDELINES		
AAC ALASKA ADMINIS	TRATIVE CODE		
ADEC ALASKA DEPARTM DRO DIESEL RANGE OI		MENTAL CONSERVATION	
GRO GASOLINE RANGE RRO RESIDUAL RANGE			
1,2,4-TMB 1,2,4-TRIMETHYLE 1,3,5-TMB 1,3,5-TRIMETHYLE	BENZENE		
B BENZENE T TOLUENE			
E ETHYLBENZENE X XYLENES			
NAPH NAPHTHALENE DUP DUPLICATE SAMP	LE		
	ROMATIC HYDROCA	ARBONS	
VOCs VOLATILE ORGAN			
NOTES: 1. ALL WELLS WERE SAMPL		UST 13 AND 15, 2019.	
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SAM	.ED BETWEEN AUG	UST 13 AND 15, 2019. FROM MONITORING WELLS WE OLEUM HYDROCARBON VOCS.	RE ANALYZED FOR GRO,
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA	ED BETWEEN AUG IPLES COLLECTED TUENTS,AND PETR MPLES WERE ANAI	FROM MONITORING WELLS WE OLEUM HYDROCARBON VOCs. LYZED FOR BTEX AND PAHs.	RE ANALYZED FOR GRO,
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW	ED BETWEEN AUG IPLES COLLECTED TUENTS,AND PETR IMPLES WERE ANAI IN IN MILLIGRAMS F	FROM MONITORING WELLS WE OLEUM HYDROCARBON VOCs. LYZED FOR BTEX AND PAHs.	
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	ED BETWEEN AUG IPLES COLLECTED TUENTS, AND PETR IMPLES WERE ANAI (N IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L).	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	ED BETWEEN AUG IPLES COLLECTED TUENTS, AND PETR IMPLES WERE ANAI (N IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	ED BETWEEN AUG MPLES COLLECTED TUENTS, AND PETR MPLES WERE ANAI NI IN ILLIGRAMS F HE HIGHER OF THE CEED THE 2018 AD AZARDOUS SUBSTA	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI INCES POLLUTION CONTROL L	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	ED BETWEEN AUG MPLES COLLECTED TUENTS, AND PETR MPLES WERE ANAI NI IN ILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI AZARDOUS SUBSTA	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP L INCES POLLUTION CONTROL, T/ Cleanup Level (mg/L)	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI NI NI MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI ADADUS SUBSTA Analyte GRO DRO B	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP L INNCES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI NI NI MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI ADADUS SUBSTA Analyte GRO DRO B E	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP L INNCES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI NI NI MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI Analyte GRO DRO B E X	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP L INNCES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI NI NI MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI ADADUS SUBSTA Analyte GRO DRO B E	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP L INNCES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SAMPL 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI NI NI MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI Analyte GRO DRO B E X 1.2.4-TMB	FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PER LITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP L INNCES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPL 2. ALL GROUNDWATER SA DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI NI NI MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI Analyte GRO DRO B E X 1,2,4-TMB 1,3,5-TMB	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06	VALUES ARE SHOWN. EVELS AS PRESENTED IN
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; TI 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI Analyte GRO DRO B E X 1,2,4-TMB 1,3,5-TMB NAPH PIPELINE	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06	VALUES ARE SHOWN. EVELS AS PRESENTED IN ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; TI 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALYESKA I PUMP STA	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI CEED THE 2018 ADI Analyte GRO DRO B E X 1,2,4-TMB 1,3,5-TMB NAPH PIPELINE TION 1	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/	VALUES ARE SHOWN. EVELS AS PRESENTED IN ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; TI 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI CEED THE 2018 ADI GRO DRO B E X 1,2,4-TMB 1,3,5-TMB NAPH PIPELINE TION 1	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/	VALUES ARE SHOWN. EVELS AS PRESENTED IN ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAMPI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALLYESKA I PUMP STA PIPELINE N	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI CEED THE 2018 ADI GRO DRO B E X 1,2,4-TMB 1,3,5-TMB NAPH PIPELINE TION 1	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/	VALUES ARE SHOWN. EVELS AS PRESENTED IN ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALYESKA I PUMP STA PIPELINE N Report	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI NI NI MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI ZARDOUS SUBSTA Analyte GRO DRO B E X 1.2.4-TMB 1.3.5-TMB NAPH PIPELINE TION 1 MILEPOST	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/	VALUES ARE SHOWN. EVELS AS PRESENTED IN 1 ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALYESKA I PUMP STA PIPELINE N Report 2019 WATE PUMP STA	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI ZARDOUS SUBSTA Analyte GRO DRO B E X 1,2,4-TMB 1,3,5-TMB NAPH PIPELINE TION 1 MILEPOST ER MONIT TION 1	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/ 0 ORING REPORT	VALUES ARE SHOWN. EVELS AS PRESENTED IN 1 ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALYESKA I PUMP STA PIPELINE N Report 2019 WATE PUMP STA	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI ZARDOUS SUBSTA Analyte GRO DRO B E X 1,2,4-TMB 1,3,5-TMB NAPH PIPELINE TION 1 MILEPOST ER MONIT TION 1	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/	VALUES ARE SHOWN. EVELS AS PRESENTED IN 1 ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAMPI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALLYESKA I PUMP STA PIPELINE N Report 2019 WATE PUMP STA FORMER C	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI ZARDOUS SUBSTA Analyte GRO DRO B E X 1,2,4-TMB 1,3,5-TMB NAPH PIPELINE TION 1 MILEPOST ER MONIT TION 1	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/ 0 ORING REPORT	VALUES ARE SHOWN. EVELS AS PRESENTED IN ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; TI 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ AAC 75, OIL AND H/ Site ALYESKA I PUMP STA PIPELINE N Report 2019 WATE PUMP STA FORMER G	LED BETWEEN AUG MPLES COLLECTED TUENTS AND PETR MPLES WERE ANAI IN IM MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADI CEED THE 2018 ADI TO N DRO B E X 1.2.4-TMB 1.3.5-TMB NAPH PIPELINE TION 1 MILEPOST ER MONIT TION 1 SASOLINE	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI NICES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/ 0 ORING REPORT	VALUES ARE SHOWN. EVELS AS PRESENTED IN ABLE C (ADEC, 2018b).
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAM DRO, BTEX CONSTI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; TI 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ AAC 75, OIL AND H/ Site ALYESKA I PUMP STA PIPELINE N Report 2019 WATE PUMP STA FORMER G	LED BETWEEN AUG APLES COLLECTED TUENTS AND PETR MPLES WERE ANAI MIN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADD CEED	FROM MONITORING WELLS WE FROM MONITORING WELLS WE COLEUM HYDROCARBON VOCS. LYZED FOR BTEX AND PAHS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI COLEANUP LIVNCES POLLUTION CONTROL, T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.0017 SERVICE COMP/ O ORING REPORT TANK AREA	VALUES ARE SHOWN. EVELS AS PRESENTED IN ABLE C (ADEC, 2018b). ANY SULTS
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAMPI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALLYESKA I PUMP STA PIPELINE N Report 2019 WATE PUMP STA FORMER C Drawing WATER SA	LED BETWEEN AUG APLES COLLECTED TUENTS AND PETR MPLES VERRE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADD CED THE 2018	FROM MONITORING WELLS WE FROM MONITORING WELLS WE INTER MAND PAHS. PERLITER (mg/L). PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP L NNCES POLLUTION CONTROL. T/ Cleanup Level (mg/L) 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.006 0.0017 SERVICE COMP/ 0 ORING REPORT TANK AREA	VALUES ARE SHOWN. EVELS AS PRESENTED IN 1 ABLE C (ADEC, 2018b). ANY ANY
NOTES: 1. ALL WELLS WERE SAMPI 2. ALL GROUNDWATER SAMPI 3. ALL SURFACE WATER SA 4. ALL RESULTS ARE SHOW 5. * DUPLICATE SAMPLE; T 6. DETECTIONS SHOWN EX AAC 75, OIL AND H/ Site ALLYESKA I PUMP STA PIPELINE N Report 2019 WATER PUMP STA FORMER G Drawing WATER SA	LED BETWEEN AUG APLES COLLECTED TUENTS AND PETR MPLES VERRE ANAI IN IN MILLIGRAMS F HE HIGHER OF THE CEED THE 2018 ADD CED THE 2018	FROM MONITORING WELLS WE FROM MONITORING WELLS WE FOLLUM HYDROCARBON VOCS. PARENT / DUPLICATE SAMPLE EC GROUNDWATER CLEANUP LI 2.2 1.5 1.1 0.0046 0.019 0.056 0.06 0.06 0.0017 SERVICE COMP/ CORING REPORT TANK AREA ANALYTICAL RES Scale 1" = 40'	VALUES ARE SHOWN. EVELS AS PRESENTED IN A ABLE C (ADEC, 2018b).

TABLES

- Table 1
 Monitoring Well Groundwater Levels
- Table 2Groundwater Analytical Results
- Table 3
 Surface Water Analytical Results
- Table 4Groundwater Petroleum VOCs

Monitoring Well ^A	Date	Depth to Water from Top of Casing (feet)	Sounding Depth of Well from Top of Casing (feet)	Surveyed Top of PVC Casing Elevation (feet above MSL) ^B	Elevation of Water (feet above MSL) ^C	Analytical Sample Collected
	9/4/1994	6.23				Yes
	8/23/1996	7.35				Yes
	8/26/1997	6.03				Yes
	8/26/1998	7.30				Yes
	8/25/1999	6.82				Yes
	8/23/2000	7.10	9.65			Yes
	8/11/2001	7.10	8.85			Yes
	8/17/2002	6.13	9.42			Yes
	7/29/2009	ontinued 2003-2008	8.04			Vee
MW-2	8/2/2010	7.44 7.26	<u>8.04</u> 8.04			Yes Yes
	8/9/2011	Dry	0.04 			No
	8/4/2012	7.50	9.23	36.66	29.16	Yes
	8/4/2013	6.18	9.85	36.66	30.48	Yes
	8/21/2014	6.79	9.60	36.66	29.87	Yes
	8/25/2015	5.75	9.60	36.66	30.91	Yes
	8/10/2016	6.92	9.60	36.66	29.74	Yes
	8/16/2017	5.10	9.60	36.66	31.56	Yes
	7/28/2018	5.92	9.60	36.66	30.74	Yes
	8/16/2019	5.05	9.78	36.785	31.74	Yes
	9/4/1994	5.61				Yes
	8/23/1996	Dry				No
	8/26/1997	5.30				Yes
	8/26/1998	6.82				No
	8/25/1999	6.14				Yes
	8/23/2000	6.24	6.80			Yes
	8/7/2001	6.80	6.84			Yes
	8/17/2002	5.30	6.80			Yes
	9/6/2003	6.33	6.73			Yes
	8/26/2004	6.23	6.73			Yes
	7/22/2005	6.24	6.39			Yes
	9/6/2006	6.22	6.61			Yes
MW-3	9/8/2007	Dry	6.79			No
	7/31/2008	6.68	6.78			No
	7/29/2009	Dry	6.85			No
	8/2/2010 8/9/2011	6.78 Dry	6.85			No No
	8/4/2012	6.52	6.77			Yes
	8/4/2012	5.18	6.77			Yes
	8/21/2014	5.99	6.78			Yes
	8/25/2015	4.95	6.75			Yes
	8/10/2016	5.96	6.64			Yes
	8/15/2017	3.99	6.64			Yes
	7/27/2018	4.75	6.64			Yes
	8/16/2019	4.13	6.80	36.035	31.91	Yes
	11/16/2015	Replacement well MW-4R in	stalled 2015			
	7/26/2016	3.50	6.61			No, development only
MW-4R	8/10/2016	3.30	7.12			Yes
10100-413	8/16/2017	1.27	7.12			Yes
	7/28/2018	2.04	7.12			Yes
	8/16/2019	0.95	3.99	32.225	31.28	Yes
		Replacement well MW-7R in		1		
	7/25-7/26-16		6.50			No, developed only
MW-7R	8/11/2016	1.04	5.35			Yes
	8/16/2017 7/28/2018	0.20	5.35			Yes
	8/16/2019	0.20 0.19	<u>5.35</u> 4.85	31.060	30.870	Yes Yes
	9/4/1994	2.23	4.85	31.060	30.870	Yes
	8/23/1996	2.23				Yes
	8/26/1997	2.43				Yes
	8/26/1998	2.72				Yes
	8/25/1999	2.57				Yes
	8/23/2000	2.58	4.00			Yes
	8/11/2001	2.44	4.00			Yes
	8/17/2002	2.25	4.00			Yes
	9/6/2003	2.64	4.00			Yes
	8/26/2004	2.89	4.00			Yes
MW-8	7/22/2005	3.18	3.98			Yes
11114-0	9/5/2006	2.80	3.92			Yes
	9/8/2007	1.10	1.32-1.42			Yes
	8/1/2008	0.45	1.38			Yes
	7/29/2009	0.80	1.39			Yes
	8/2/2010	0.65	1.39			Yes
	8/9/2011	0.50	0.88			Yes
	8/4/2012	TOC	0.9	30.06	30.06	Yes
	8/4/2013	0.32	2.05	30.06	29.74	Yes
	8/22/2014	1.08	1.92	30.06	28.98	Yes
	8/25/2015	0.20	2.18	30.06	29.86	Yes
	8/11/2016	0.92	2.18	30.06	29.14	Yes

Monitoring Well ^A	Date	Depth to Water from Top of Casing (feet)	Sounding Depth of Well from Top of Casing (feet)	Surveyed Top of PVC Casing Elevation (feet above MSL) ^B	Elevation of Water (feet above MSL) ^C	Analytical Sample Collected
MW-8	8/15/2017	0.00	2.18	30.06	30.06	Yes
Continued	7/27/2018	0.00	2.18	30.06	30.06	Yes
Continued	8/16/2019	0.14	1.97	30.295	30.16	Yes
	9/4/1994	1.92				Yes
	8/23/1996	2.77				Yes
	8/26/1997	1.93				Yes
	8/26/1998 8/25/1999	2.58 2.22				Yes Yes
	8/23/2000	2.80	4.75			Yes
	8/11/2001	2.00	4.80			Yes
	8/16/2002	1.80	4.77			Yes
	9/6/2003	2.47	4.80			Yes
	8/26/2004	3.00	4.80			Yes
	7/22/2005	3.57	4.77			Yes
	9/5/2006	2.63	4.75			Yes
MW-9	9/7/2007	1.27	2.69			Yes
	8/2/2008	0.59	2.70			Yes
	7/29/2009	1.39	2.69			Yes
	8/2/2010	1.22	2.69			Yes
	8/9/2011	0.80	2.45			Yes
	8/3/2012 8/4/2013	0.50 0.85	<u>2.46</u> 3.94	29.96 29.96	<u>29.46</u> 29.11	Yes Yes
	8/22/2013	1.78	3.72	29.96	29.11	Yes
	8/25/2015	0.80	4.00	29.96	29.16	Yes
	8/10/2016	1.60	3.72	29.96	28.36	Yes
	8/15/2017	0.00	3.72	29.96	29.96	Yes
	7/28/2018	0.50	3.72	29.86	29.46	Yes
	8/16/2019	0.30	3.80	29.970	29.67	Yes
	8/26/1999	3.93				Yes
	8/23/2000	4.25	7.30			Yes
	8/11/2001	3.80	7.28			Yes
	8/16/2002	3.50	7.35			Yes
		continued 2003-2005	7.00	1		Vee
	9/6/2006	4.08 continued 2007-2008	7.20			Yes
	7/30/2009	5.79	7.30			Yes
	8/1/2010	5.23	7.30			Yes
MW-12	8/9/2011	4.44	7.32			Yes
	8/5/2012	4.15	7.25	32.29	28.14	Yes
	8/3/2013	3.75	7.24	32.29	28.54	Yes
	8/22/2014	4.40	7.33	32.29	27.89	Yes
	8/25/2015	3.49	7.15	32.29	28.8	Yes
	8/11/2016	4.48	7.12	32.29	27.81	Yes
	8/15/2017	3.47	7.12	32.29	28.82	Yes
	7/27/2018	3.83	7.12	32.29	28.46	Yes
	8/16/2019	3.34	7.28	32.720	29.38	Yes
	8/26/1999	4.12				Yes
	8/23/2000	5.00 4.62	7.25			Yes
	8/11/2001 8/16/2002	4.62	7.20 7.20			Yes Yes
		continued 2003-2005	1.20			103
	9/6/2006	4.30	7.00			Yes
		ontinued 2007-2008	1.00			100
	7/30/2009	6.28	7.11			No
MW-13	8/1/2010	6.40	7.11			No
10100-15	8/8/2011	5.18	7.12			Yes
	8/5/2012	5.72	7.05	32.15	26.43	No
	8/3/2013	4.40	7.00	32.15	27.75	Yes
	8/22/2014	5.40	7.10	32.15	26.75	Yes
	8/25/2015	3.32	7.08	32.15	28.83	Yes
	8/11/2016	4.91	6.95	32.15	27.24	Yes
	8/15/2017 7/28/2018	<u>3.67</u> 5.10	<u>6.95</u> 6.95	32.15 32.15	<u>28.48</u> 27.05	Yes Yes
	8/16/2019	4.76	6.80	32.15	27.05	Yes
	7/25/2016	2.43	5.80			No, developed only
	8/11/2016	2.22	5.32			Yes
MW-14R	8/15/2017	0.00	5.32			Yes
	7/27/2018	1.63	5.32			Yes
	8/16/2019	0.00	5.87	29.375	29.38	Yes
	8/11/2001	3.48	6.95			Yes
	8/16/2002	3.08	6.92			Yes
	9/6/2003	3.73	7.10			Yes
NA4 15	8/26/2004	4.13	7.10			Yes
MW-15	7/22/2005	4.88	6.97			Yes
	9/5/2006	3.88	7.00			Yes
	9/6/2007	4.72	7.00			Yes
	8/2/2008	3.61	6.98			Yes

Monitoring Well ^A	Date	Depth to Water from Top of Casing (feet)	Sounding Depth of Well from Top of Casing (feet)	Surveyed Top of PVC Casing Elevation (feet above MSL) ^B	Elevation of Water (feet above MSL) ^c	Analytical Sample Collected
	8/1/2010	4.29	7.00			Yes
	8/8/2011	3.6	6.85			Yes
	8/5/2012	3.52	6.84	31.23	27.71	Yes
	8/3/2013	2.45	6.86	31.23	28.78	Yes
MW-15	8/21/2014	3.46	6.72	31.23	27.77	Yes
Continued	8/25/2015	2.38	6.85	31.23	28.85	Yes
	8/11/2016	3.34	6.81	31.23	27.89	Yes
	8/15/2017	1.77	6.81	31.23	29.46	Yes
	7/28/2018	2.83	6.81	31.23	28.40	Yes
	8/16/2019	2.01	6.81	31.625	29.62	Yes
	Replacement	well MW-16R installed in 201	5			
	7/25/2016	1.92	4.89			No, developed only
MW-16R	8/10/2016	1.59	5.39			Yes
	8/15/2017	0.03	5.39			Yes
	7/28/2018	1.34	5.39			Yes
	8/16/2019	0.56	4.18	27.185	26.63	Yes
	11/15/2015	Replacement well MW-17R i	nstalled 2015	•		
	7/24/2016	1.43	5.00			No, developed only
NA4 4	8/10/2016	1.30	5.00			Yes
MW-17R	8/15/2017	0.70	5.00			Yes
	7/28/2018	1.30	5.00			Yes
	8/16/2019	1.34	4.19	27.220	25.88	Yes
	9/6/2003	1.81	3.96			Yes
	8/26/2003	1.93	3.96			Yes
	7/22/2004	2.26	3.90			Yes
	9/6/2006	1.64	3.94			Yes
	9/8/2007	2.35	3.82			
						Yes
	8/2/2008	2.30	3.81			Yes
	7/29/2009	2.60	3.80			Yes
NAVA / 40	8/1/2010	2.40	3.80			Yes
MW-18	8/8/2011	1.79	3.84			Yes
	8/4/2012	2.15	3.80	30.06	27.91	Yes
	8/4/2013	1.87	4.72	30.06	28.19	Yes
	8/22/2014	2.53	4.50	30.06	27.53	Yes
	8/25/2015	1.42	4.60	30.06	28.64	Yes
	8/10/2016	2.57	4.60	30.06	27.49	Yes
	8/15/2017	0.50	4.60	30.06	29.56	Yes
	7/27/2018	1.86	4.60	30.06	28.20	Yes
	8/16/2019	0.83	4.38	30.140	29.31	Yes
	9/6/2003	1.07	2.70			Yes
	8/26/2004	1.42	2.70			Yes
	7/22/2005	1.66	2.63			Yes
	9/6/2006	0.96	2.60			Yes
	9/6/2007	1.67	2.62			Yes
	8/2/2008	1.67	2.59			Yes
	7/30/2009	2.24	2.67			Yes
	8/1/2010	1.86	2.67			Yes
MW-19	8/9/2011	1.54	2.54			Yes
	8/4/2012	1.44	2.37	28.59	27.15	Yes
	8/4/2013	1.04	3.04	28.59	27.55	Yes
	8/22/2014	1.66	2.90	28.59	26.93	Yes
	8/25/2015	0.82	3.00	28.59	27.77	Yes
	8/10/2016	1.76	3.00	28.59	26.83	Yes
	8/15/2017	0.00	3.00	28.59	28.59	Yes
	7/28/2018	1.23	3.00	28.59	27.36	Yes
	8/16/2019	0.52	2.92	28.615	28.10	Yes
	9/3/2009	1.17	2.39			Yes
	8/2/2010	2.06	2.39			No
	8/9/2011	1.81	2.39			No
	8/3/2012	1.01		31.58	30.47	Yes
			2.35			
MM 20	8/4/2013	1.18	3.49	31.58	30.4	Yes
MW-20	8/22/2014	2.30	3.34	31.58	29.28	Yes
	8/25/2015	1.10	3.47	31.58	30.48	Yes
	8/11/2016	1.86	3.47	31.58	29.72	Yes
	8/15/2017	0.60	3.47	31.58	30.98	Yes
	7/28/2018	0.30	3.47	31.49	31.28	Yes
	8/16/2019	0.78	3.05	31.625	30.85	Yes
	11/16/2015	Well Installation				
	7/25/2016	3.82	6.00			No, developed only
	8/10/2016	3.60	5.09			Yes
MW-22	8/15/2017	2.72	5.09			Yes
	7/28/2018	3.37	4.95			Yes

Monitoring Well ^A	Date	Depth to Water from Top of Casing (feet)	Sounding Depth of Well from Top of Casing (feet)	Surveyed Top of PVC Casing Elevation (feet above MSL) ^B	Elevation of Water (feet above MSL) ^C	Analytical Sample Collected
	11/16/2015	Well Installation				
	7/25/2016	2.83	5.80			No, developed only
MW-23	8/10/2016	2.73	4.51			Yes
10100-23	8/15/2017	2.32	4.51			Yes
	7/28/2018	2.80	4.51			Yes
	8/16/2019	2.54	5.24	28.540	26.00	Yes

Notes and Abbreviations

^A Wells that were destroyed or decommissioned prior to 2015 are not presented on this table.

^B Survey in 2019 included all existing wells. Previous survey data collected in 2012 was utilized for sampling events between 2012 and 2018.

C Groundwater elevations from 2012 to 2018 should be considered as approximated values due to repeat well frost-jacking since the last elevation survey in 2012.

-- Data not found or otherwise not available due to lack of current elevation survey.

MSL mean sea level

PVC polyvinyl chloride

TOC top of casing

(All results in mg/L)

			AK 101	AK102	AK 103	BTE	EX - USEPA Meth	nod 8021B/SW82	60B ^A
Monitoring Well	Sample Designation	Date Sampled	Gasoline Range Organics	Diesel Range Organics	Residual Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes
	roundwater Cle		2.2	1.5	1.1	0.005	1.0	0.7	10.0
2018 ADEC G	roundwater Cle		2.2	1.5	1.1	0.0046	1.1	0.015	0.19
	MW-2	9/4/1994	ND	11.4		ND	ND	ND	ND
	MW-2	8/23/1996	ND	14		ND	ND	0.0017	ND
	MW-2	8/26/1997	ND			ND	ND	ND	ND
	MW-2 MW-2	8/26/1998 8/25/1999	ND ND	6.19 0.53	 ND	ND ND	ND 0.0043	ND ND	ND 0.0032
	MW-2	8/23/2000	ND	2.21	ND ND	ND	0.0043 ND	ND	0.0032 ND
	MW-2	8/11/2001	ND [0.0900]	0.548	ND [1.05]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-2	8/17/2002	ND [0.0900]	0.553	ND [1.05]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
		0/11/2002			ling discontinue		ND [0.002]	112 [0.002]	11D [0.002]
	MW-2	7/29/2009	ND [0.1]	ND [0.8]		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
MW-2	MW-2	8/2/2010	ND [0.1]	0.678 J		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-27 ^E	8/2/2010	ND [0.1]	0.561 J		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	N/A ^D	8/9/2011		•					
	MW-2	8/4/2012	ND [0.062]	0.436 J		ND [0.003]	ND [0.00062]	ND [0.00062]	ND [0.002]
	MW-2	8/4/2013	ND [0.062]	0.256 J	ND [0.312]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]
	MW-2	8/21/2014	ND [0.05]	0.735		ND [0.00025]	0.00297 B	ND [0.0005]	ND [0.001]
	MW-2	8/25/2015	ND [0.05]	0.378 J		0.00031 J	0.00032 J	ND [0.0005]	ND [0.0005]
	MW-2	8/10/2016	ND [0.1]	ND [0.588]		ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.002]
	MW-2	8/16/2017	ND [0.05]	0.295 J		ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-2	7/28/2018	ND [0.05]	0.569 J		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-2	8/16/2019	ND [0.05]	0.321 J,B		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-3	9/4/1994	2.14	10.8		0.102	0.54	0.059	0.406
	MW-3 MW-3	8/23/1996 8/26/1997	1.12			0.013	0.042	0.063	0.43
	N/A ^D	8/26/1997 8/26/1998	1.12			0.013	0.042	0.063	0.43
	MW-3	8/25/1999	0.18	2.1	0.6	0.0038	0.0069	0.0078	0.042
	MW-3	8/23/2000	0.137	1.53	0.0	0.00256	0.0009	0.0078	0.042
	MW-3	8/7/2001	ND [0.0900]	2.16	ND [1.01]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-3	8/17/2002	0.141	1.80	ND [1.00]	0.00178	ND [0.002]	0.0024	0.0497
	MW-3	9/6/2003	ND [0.0900]	2.02	0.685	ND [0.0005]	ND [0.002]	0.00297	0.03649
	MW-3	8/26/2004	0.141	1.98		0.00725	0.00112	0.00936	0.0635
MW-3	MW-3	7/22/2005	ND [0.0900]	0.560		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-3	9/6/2006	0.137	2.47		0.00453	ND [0.001]	0.00872	0.0587
	N/A ^D			29/2009, 8/2/2010, 8	/11/2011				
	MW-3	8/4/2012	ND [0.062]	1.86		ND [0.003]	ND [0.00062]	ND [0.00062]	ND [0.002]
	MW-3	8/4/2013	ND [0.062]	0.759	ND [0.312]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]
	MW-3	8/21/2014	ND [0.05]	2.52		0.00017 J	0.00199 B	ND [0.0005]	ND [0.0015]
	MW-3	8/25/2015	ND [0.05]	4.34		0.00167 B	0.00046 J	ND [0.0005]	ND [0.0015]
	MW-3	8/10/2016	ND [0.1]	1.1		0.00048 J	ND [0.001]	ND [0.001]	ND [0.002]
	MW-3	8/15/2017	ND [0.05]	0.355 J		0.00019 J	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-3	7/28/2018	ND [0.05]	1.14 B		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-3	8/16/2019	ND [0.05]	0.487 J,B		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-4	9/4/1994	ND	0.3		ND	ND	ND	ND
	MW-4	8/23/1996	ND	1.7		ND	0.0011	ND	ND
	MW-4	8/26/1997	ND			ND	ND	ND	ND
	MW-4	8/26/1998	ND	0.318		ND	ND	ND	ND
	MW-4	8/25/1999	ND	1.3	0.47	0.0014	0.0053	ND	0.0037
	MW-4 MW-4	8/23/2000 8/11/2001	ND ND [0.0900]	0.988	0.878	0.000912 ND [0.0005]	ND ND [0.002]	ND ND [0.002]	ND ND [0.002]
	MW-4	8/17/2002	ND [0.0900]	0.719	ND [1.09]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-4	9/6/2003	ND [0.0900]	1.07	ND [0.500]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-4	8/26/2004	ND [0.0900]	1.14	ND [0.300]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
MW-4	MW-4	7/22/2005	ND [0.0900]	0.529		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-4	9/6/2006	ND [0.100]	1.24	ND	0.000516	ND [0.002]	ND [0.002]	ND [0.002]
	N/A ^D					Well not sampled]	·)
	MW-4	8/2/2008	ND [0.100]	0.32 J		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-4	9/3/2009	ND [0.1]	ND [0.833]		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-23 ^E	9/3/2009	ND [0.1]	ND [0.8]		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	N/A ^D		2011, 8/4/2012, 8/4/						
	MW-4	8/4/2013	ND [0.062]	0.379 J	0.161 J		ND [0.00062]	ND [0.00062]	ND [0.00186]
	N/A ^D					mpling not conduct			
	MW-4	8/26/2015	ND [0.05]	ND [0.288]		0.00032 J	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-4R	8/10/2016	ND [0.1]	ND [0.688]		0.00029 J	ND [0.001]	ND [0.001]	ND [0.002]
MW-4R	MW-4R	8/16/2017	ND [0.05]	ND [0.313]		ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-4R	7/28/2018	ND [0.05]	0.466 J		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-4R	8/16/2019	0.0314 J	[0.278] UB		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-7	9/4/1994	ND 0.2	0.2		ND 0.027	ND	ND	ND
	MW-7	8/23/1996	0.2	0.5			0.043	0.0056	0.026
	MW-7	8/26/1997	ND			ND	ND	ND ND	ND ND
MW-7	MW-7	8/26/1998	ND	0.117		ND	ND	ND	ND
	MW-7 MW-7	8/25/1999 8/23/2000	ND ND	0.82	0.3	ND	ND	ND ND	ND
		0/23/2000	ע ווע	0.571	ND	ND	ND	ND	ND
	MW-7	8/7/2001	ND [0.0900]	0.559	ND [1.01]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]

PS01 2019 FGTA Report

(All results in mg/L)

			AK 101	AK102	AK 103	BTE	X - USEPA Meth	od 8021B/SW82	60B ^A
Monitoring Well	Sample Designation	Date Sampled	Gasoline Range	Diesel Range Organics	Residual Range	Benzene	Toluene	Ethylbenzene	Total Xylenes
			Organics	,	Organics				
	roundwater Cle		2.2	1.5	1.1	0.005	1.0	0.7	10.0
018 ADEC G	roundwater Cle	anup Levels ^c	2.2	1.5	1.1	0.0046	1.1	0.015	0.19
					ling discontinued				
	MW-7 MW-7	7/28/2009	ND [0.1]	ND [0.714]		ND [0.0005]	ND [0.002] ND [0.002]	ND [0.002]	ND [0.002]
MW-7	MW-7	8/2/2010 8/8/2011	ND [0.1] ND [0.1]	0.63 J 0.606		ND [0.0005]	ND [0.002]	ND [0.002] ND [0.002]	ND [0.002] ND [0.002]
Continued	MW-7	8/5/2012	ND [0.1]	0.387 J		ND [0.0005] 0.00015 J	ND [0.0002]	ND [0.002]	ND [0.002]
Continued	MW-7	8/4/2013	ND [0.062] ND [0.062]	0.298 J	 ND [0.278]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.002] ND [0.00186]
	MW-7	8/22/2014	ND [0.05]	0.230 3	ND [0.270]	ND [0.00025]	0.00106 B	ND [0.0002]	ND [0.001]
		0/22/2014			destroyed; decor	nmissioned in 2015			112 [0.001]
	MW-7R	8/11/2016	ND [0.1]	ND [0.641]		ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.002]
MW-7R	MW-7R	8/16/2017	ND [0.05]	0.294 J		0.00033 J	0.0005 J	ND [0.0005]	ND [0.001]
	MW-7R	7/28/2018	ND [0.05]	0.62 J		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-7R	8/16/2019	ND [0.05]	[0.278] UB		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-8	9/4/1994	0.182	0.4		0.0094	0.027	0.013	0.062
	MW-8	8/23/1996	ND	0.6		0.0046	0.0082	0.003	0.015
	MW-8	8/26/1997	0.172			0.0038	0.0091	0.011	0.055
	MW-8	8/26/1998	0.716	0.404		0.023	0.061	0.039	0.205
	MW-11 ^E MW-8	8/27/1998 8/25/1999	0.709 ND	0.494 0.29	 1.3	0.023	0.059 0.0031	0.041 0.0039	0.199 0.0197
	MVV-8 MW-8	8/25/1999 8/23/2000	1.03	1.87	1.3	0.0039	0.0031	0.0039	0.0197
	MW-8	8/11/2001	0.784	1.65	ND [0.990]	0.0346	0.0704	0.0456	0.2234
	MW-16 ^E	8/11/2001	1.27	1.47	ND [0.990]	0.0478	0.105	0.0928	0.444
	MW-8	8/17/2002	2.05	1.59	ND [1.03]	0.115	0.111	0.103	0.495
	MW-8	9/6/2003	1.9	1.65	0.602	0.473	0.143	0.103	0.517
	MW-8	8/26/2004	4.89	2.60		0.977	0.251	0.168	0.875
	MW-8	7/22/2005	4.15	1.76		1.250	0.224	0.132	0.687
	FGTA-Dup-1 ^E	7/22/2005	4.88	2.75		1.340	0.272	0.143	0.745
MW-8	MW-8	9/5/2006	14.3	2.53	0.0000669	6.96	1.79	0.227	1.17
10100-0	MW-8	9/8/2007	5.57			2.1	0.222	0.0686	0.246
	MW-8	8/1/2008	5.22	1.18		2.68	0.528	0.0637	0.361
	MW-20 ^E	8/1/2008	5.94	1.29		2.91	0.619	0.076	0.42
	MW-8	7/29/2009	2.08	0.439 J		0.61	0.212	0.047	0.2333
-	MW-8	8/2/2010	4.72	1.27		2.21	0.450	0.060	0.274
	MW-8	8/9/2011	3.48	1.36		1.54	0.304	0.0197 J	0.0761
	MW-8	8/4/2012	4.34	0.793		1.56	0.690	0.031	0.1358
	MW-24 ^E MW-8	8/4/2012 8/4/2013	4.91	0.265 J	 ND [0.326]	1.68 0.0459	0.840	0.0037 0.00038 J	0.1625
	MW-8	8/22/2013	23.0	1.27	ND [0.320]	3.19	8.16	0.159	0.752
	MW-8	8/25/2015	5.33	0.56 J		0.994	2.04	0.0141	0.0609
	MW-8	8/11/2016	10.7	0.46 J		1.26	3.7	0.10	0.463
	MW-8	8/16/2017	2.02	0.407 J		0.355	0.61	0.01	0.0555
	MW-8	7/28/2018	4.46	0.676 B		1.11	0.343	1.46	0.146
	MW-8	8/16/2019	4.05	0.58 B		1.08	1.15	0.0218	0.0872
	MW-9	9/4/1994	0.07	0.2		0.0388	ND	ND	ND
	MW-9	8/23/1996	0.14	0.3		0.052	0.0011	ND	ND
	MW-9	8/26/1997	0.099			0.04	ND	ND	0.0015
	MW-9	8/26/1998	1.16	0.34		0.4	0.001	ND	0.003
	MW-9	8/25/1999	3.4	0.58	ND	1.5	0.099	0.012	0.067
	MW-9	8/23/2000	8.64	0.976	ND	4.29	ND	ND	ND
	MW-16 ^E	8/23/2000	9.8	1.02	ND 14 001	4.25	ND	ND	ND
	MW-9	8/11/2001	13.9	0.849	ND [1.00]	6.86	0.188	0.0196	0.2661
	MW-17 ^E MW-9	8/11/2001 8/16/2002	15.2 48.5	0.787	ND [1.00] ND [1.00]	7.32	0.603	0.0241 0.254	0.0884
	MW-20 ^E	8/16/2002	48.5	1.77	ND [1.00] ND [1.00]	17	4.59	0.254	1.377
	MW-20 MW-9	9/6/2003	27.9	1.48	ND [1.00]	9.12	3.95	0.204	5.04
	MW-9	8/26/2004	27.2	0.71	ND [0.300]	3.69	0.0638	0.405	2.72
	MW-9	7/22/2005	23.6	1.17		6.84	0.446	0.685	5.260
	MW-9	9/5/2006	27.1	2.85		9.36	0.833	0.835	8.22
MW-9	MW-9	9/7/2007	12.6	3.53		1.69	1.19	0.297	2.69
10100-9	MW-9	8/2/2008	27.3	1.07		3.75	4.84	0.608	4.95
	MW-21 ^E	8/2/2008	29.6	1.56		4.27	4.98	0.629	5.18
	MW-9	7/29/2009	53	2.62		6.67	10.4	1.17	8.46
	MW-23 ^E	7/29/2009	62.1	2.39		7.91	12.3	1.44	10.39
	MW-9	8/2/2010	56.3	2.45		8.7	14.2	1.38	9.01
	MW-9	8/9/2011	23.7	2.98		4.47	5.02	0.572	3.48
	MW-9	8/3/2012	14.0	1.86		3.91	0.851	0.350	2.226
	MW-9	8/4/2013	4.16 J	0.467 J	ND [0.312]	1.09 J	0.253 J	0.0756 J	0.494
	MW-98 ^E	8/4/2013	5.8 J	0.492 J	0.176 J	1.59 J	0.394 J	0.113 J	0.728
	MW-9	8/22/2014 8/22/2014	40.5	1.86 2.09		6.46 6.58	10.2	0.705 0.732	4.31
	MW-98 ^E MW-9	8/22/2014 8/25/2015	40.7	2.09		2.87	2.27	0.732	4.46
	MW-98 ^E	8/25/2015	14.4	1.12		2.66	1.94	0.562	3.35
	MW-98	8/10/2016	30.8	1.12		3.96	5.18	1.50	<u> </u>
	MW-9	8/15/2017	14.5	0.637 MN		2.24 QH	2.92	0.803	4.29
	MW-99 ^E	8/15/2017	14.8	1.09 MN		1.81	2.36	0.672	3.64

PS01 2019 FGTA Report

(All results in mg/L)

			AK 101	AK102	AK 103	BTE	EX - USEPA Meth	od 8021B/SW82	60B ^A
Monitoring Well	Sample Designation	Date Sampled	Gasoline Range Organics	Diesel Range Organics	Residual Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes
	roundwater Cle	•	2.2	1.5	1.1	0.005	1.0	0.7	10.0
2018 ADEC G	roundwater Cle		2.2	1.5	1.1	0.0046	1.1	0.015	0.19
	MW-9	7/28/2018	15.2	1.48		1.40	0.932	0.820	5.05
MW-9	MW-99 ^E	7/28/2018	15.0	1.25 B		1.51	0.992	0.913	5.37
Continued	MW-9 MW-99 ^E	8/16/2019 8/16/2019	24.9 22.8	1.38 1.35		1.85 1.77	0.647	1.700 1.700	8.46 8.45
	MW-12	8/26/1999	ND	0.32	0.85	ND	0.0022	ND	ND
	MW-12	8/23/2000	ND	0.318	0.656	ND	ND	ND	ND
	MW-12	8/11/2001	ND [0.0900]	0.645	ND [0.990]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-12	8/16/2002	ND [0.0900]	ND [0.495]	ND [0.990]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-12	9/6/2006	ND [0.100]	ND [0.330]	oling discontinued oling discontinued	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
	MW-12	7/30/2009	ND [0.1]	ND [0.714]		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
MW-12	MW-12	8/1/2010	ND [0.1]	ND [0.769]		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
10100-12	MW-12	8/9/2011	ND [0.1]	0.304 J		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-12	8/5/2012	ND [0.062]	0.343 J		ND [0.003]	ND [0.00062]	ND [0.00062]	ND [0.002]
	MW-12 MW-12	8/3/2013	ND [0.062]	0.355 J 0.335 J	ND [0.312]	ND [0.0003] 0.00089	ND [0.00062] 0.00241 B	ND [0.00062] ND [0.0005]	ND [0.00186]
	MW-12 MW-12	8/22/2014 8/25/2015	ND [0.05] ND [0.05]	0.335 J ND [0.306]		0.00089 0.00032 J	0.00241 B	ND [0.0005] ND [0.0005]	ND [0.001] ND [0.0015]
	MW-12	8/11/2016	ND [0.03]	ND [0.6]		ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.002]
	MW-12	8/15/2017	0.0355 J	0.194 J		ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-12	7/28/2018	ND [0.05]	0.306 J		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-12	8/16/2019	ND [0.05]	[0.294] UB		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-13	8/26/1999 8/25/1999	ND ND	0.58 0.65	0.53 0.52	ND ND	ND 0.0012	ND 0.0011	ND 0.0065
	<u>MW-16^E</u> MW-13	8/23/2000	ND	0.853	0.52	ND	0.0012 ND	0.0011 ND	0.0065 ND
	MW-13	8/11/2001	ND [0.0900]	ND [0.556]	ND [1.11]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-13	8/16/2002	ND [0.0900]	ND [0.515]	ND [1.03]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-13	9/6/2006	ND [0.100]	ND [0.324]	oling discontinued	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
		7/20/2000 0/4	/2010	Samp	oling discontinued	d in 2007			
MW-13	N/A ^D MW-13	7/30/2009, 8/1 8/8/2011	ND [0.1]	0.193 J		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
10100-15	N/A ^D	8/5/2012	ND [0.1]	0.193 3		ND [0.0003]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-13	8/3/2013	ND [0.062]	ND [0.376]	ND [0.312]	0.0002 J	ND [0.00062]	ND [0.00062]	ND [0.00186]
	MW-13	8/22/2014	ND [0.05]	ND [0.306]		0.00118	0.00357 B	ND [0.0005]	0.00097 J
	MW-99 ^E	8/22/2014	0.0323 J	ND [0.319]		0.00107	0.00606 B,J	ND [0.0005]	ND [0.001]
	MW-13	8/25/2015	ND [0.05]	0.265 J		0.00031 J	0.00036 J	ND [0.0005]	ND [0.0015]
	MW-13 MW-13	8/11/2016 8/15/2017	ND [0.1]	ND [0.658] ND [0.308]		ND [0.0005] ND [0.00025]	ND [0.001] ND [0.0005]	ND [0.001] ND [0.0005]	ND [0.002] ND [0.001]
	MW-13	7/28/2018	ND [0.05] ND [0.05]	ND [0.305]		ND [0.00023]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-13	8/16/2019	ND [0.05]	[0.278] UB		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-14	8/26/1999	ND	16	ND	ND	ND	ND	ND
	MW-14	8/23/2000	ND	1.53	0.689	ND	ND	ND	ND
	MW-14	8/11/2001	ND [0.0900]	26.9	ND [1.98]	ND [0.0005]	0.000304	ND [0.002]	0.0049
	MW-14 MW-14	8/16/2002 9/6/2003	ND [0.0900] ND [0.0900]	0.682	ND [1.00] ND [0.510]	ND [0.0005] ND [0.0005]	ND [0.002] ND [0.002]	ND [0.002] ND [0.002]	ND [0.002] ND [0.002]
	MW-14	8/26/2003	ND [0.0900]	4.48	ND [0.510] 	ND [0.0005]	ND [0.002]	0.00291	0.0106
	MW-14	7/22/2005	ND [0.0900]	10.5		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
MW-14	MW-14	9/5/2006	ND [0.100]	3.5		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
10100-14	MW-14	9/6/2007	0.338	44.3		ND [0.0005]	ND [0.002]	ND [0.002]	0.00573
	MW-14	8/2/2008	0.0172 J	0.449		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
	N/A ^D MW-14	7/30/2009, 8/1 8/8/2011	0.325	53.4		0.00021 J	ND [0.002]	0.141	0.01515 J
	MW-14	8/5/2012	0.248	64.5		0.0005	0.00114	ND [0.00062]	0.00332 J
	MW-14	8/3/2013	0.224 J	33.3	0.185 J	0.00033 J	0.0014 J	0.00038 J	0.00647 J
	MW-99 ^E	8/3/2013	0.12 B,J	32.1	0.266 J	0.0002 J	0.00079 J	ND [0.00062]	0.00365 J
					destroyed; decon	nmissioned in 2014			
	MW-14R	8/11/2016	0.0917 J	106		0.0004 J	0.00169	0.00551	0.00287 J
MW-14R	MW-14R MW-14R	8/15/2017 7/28/2018	0.0335 J ND [0.05]	7.32 0.571 J		ND [0.00025] ND [0.0002]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	0.00041 J ND [0.0015]
	MW-14R MW-14R	8/16/2019	ND [0.05]	[0.283] UB		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0015] ND [0.001]
	MW-15	8/11/2001	0.865	284	ND [21.1]	0.00368	0.0711	0.0221	0.1491
	MW-15	8/16/2002	2.11	327	ND [50.0]	0.00421	0.0472	0.0384	0.263
	MW-15	9/6/2003	1.8	380	ND [26.3]	0.00694	0.0988	0.047	0.248
	MW-15 ^E	9/6/2003	1.54	364	ND [25.0]	0.00438	0.0523	0.0349	0.188
	MW-15 MW-15	8/26/2004 7/22/2005	3.07 2.81	784 460		0.00595 0.00597	0.0601 0.0485	0.0329 0.0310	0.2238 0.2341
MW-15	FGTA-Dup-2 ^E	7/22/2005	2.81	368		ND [0.0005]	0.0485	0.0310	0.260
	MW-15	9/5/2006	1.22	225		0.00224	0.029	0.0334	0.720
	MW-15	9/6/2007	2.59	438		0.00546	0.0432	0.0185	0.190
	Dup-1 ^E	9/6/2007	2.51	509		0.00467	0.0393	0.0169	0.174
	MW-15	8/2/2008	0.042 J	2.44		ND [0.0004]	ND [0.001]	ND [0.001]	0.00189 J
	MW-15	7/30/2009	2.07	277		0.0105	0.0699	0.0347	0.244
	MW-15	8/1/2010	1.35	331		0.00456	0.0504	0.0235	0.1955

(All results in mg/L)

			AK 101	AK102	AK 103	BTE	X - USEPA Meth	od 8021B/SW82	60B ^A
Monitoring Well	Sample Designation	Date Sampled	Gasoline Range Organics	Diesel Range Organics	Residual Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes
	roundwater Cle		2.2	1.5	1.1	0.005	1.0	0.7	10.0
2018 ADEC G	roundwater Cle		2.2	1.5	1.1	0.0046	1.1	0.015	0.19
	<u>MW-24^E</u> MW-15	8/1/2010 8/8/2011	1.31 0.988	275 131		0.0047 0.00393	0.0501 0.0568	0.0241 0.0259	0.1911 0.1872
	MW-13	8/8/2011	1.06	288		0.00393	0.0574	0.0259	0.1918
	MW-15	8/5/2012	0.881	200		0.00460	0.0479	0.0252	0.1601
MW-15	MW-15	8/3/2013	1.09	102	0.37 J	0.00932	0.0619	0.0415	0.242
Continued	MW-15	8/21/2014	0.75	120		0.00726	0.0451 B	0.0396	0.246
Continuou	MW-15	8/25/2015	0.371	69.0		0.00795	0.0329	0.0174	0.1134
	MW-15	8/11/2016	0.7	126		0.0151	0.0837	0.0399	0.263
	MW-15 MW-15	8/16/2017 7/28/2018	0.374 0.632	14.3 48.8		0.0213 0.0748	0.0373 0.0277	0.0195 0.0696	0.119 0.182
	MW-15	8/16/2019	0.287	5.76		0.0253	0.0346	0.0113	0.0724
	MW-16	8/17/2002	ND [0.0900]	1.55	ND [1.00]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-16	9/6/2003	0.255	ND [0.297]	ND [0.495]		0.0362	0.00664	0.02593
	MW-16	8/26/2004	ND [0.0900]	0.995		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
	MW-16	7/22/2005	ND [0.0900]	ND [0.323]		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-16	9/6/2006	ND [0.100]	ND [0.311]		ND [0.0004]	ND [0.001]	ND [0.001] ND [0.001]	ND [0.001]
MW-16	FGTA-Dup-4 ^E MW-16	9/6/2006 9/7/2007	ND [0.100] ND [0.100]	ND [0.317]		ND [0.0004] 0.00143	ND [0.001] 0.00689	ND [0.001] ND [0.002]	ND [0.001] 0.00728
	MW-16	8/3/2008	ND [0.100]	0.233 J		ND [0.0004]	ND [0.001]	ND [0.002]	ND [0.00200]
	N/A ^D		/2010, 8/9/2011, 8/4				[,]	_ [:::001]	[3111-00]
	MW-16	8/4/2013	ND [0.062]	0.245 J	ND [0.312]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]
	N/A		mpling not conducte						
	MW-16	8/26/2015	ND [0.05]	0.315 J		0.00036 J	0.0004 J	ND [0.0005]	ND [0.0015]
	MW-16R MW-16R	8/10/2016 8/15/2017	ND [0.1] ND [0.05]	ND [0.615] 0.198 J		ND [0.0005] ND [0.00025]	ND [0.001] ND [0.0005]	ND [0.001] ND [0.0005]	ND [0.002] ND [0.001]
MW-16R	MW-16R	7/28/2018	ND [0.05]	0.198 J 0.873 B		ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-16R	8/16/2019	ND [0.05]	0.359 J,B		0.00025 J	ND [0.0005]	ND [0.0005]	ND [0.001]
	MW-17	8/17/2002	ND [0.0900]	1.00	ND [0.990]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-17	9/6/2003	0.0995	0.43	ND [0.500]	ND [0.0005]	0.0203	0.00326	0.01448
	MW-17	8/26/2004	ND [0.0900]	1.91		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
	MW-17 MW-17	7/22/2005 9/6/2006	ND [0.0900]	0.872		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-17	9/7/2007	ND [0.100] ND [0.100]	ND [0.321] 0.519		ND [0.0004] ND [0.0005]	ND [0.001] 0.00374	ND [0.001] ND [0.00200]	ND [0.001] 0.00281
MW-17	MW-17	8/2/2008	0.0518 J	0.465		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
	MW-17	7/30/2009	ND [0.1]	0.418 J		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	N/A ^D	8/1/2010, 8/9/2							
	MW-17	8/4/2013	0.0362 J	1.04	ND [0.312]	0.00065	ND [0.00062]	ND [0.00062]	0.00217 J
	N/A		npling not conducte			0.00110	0.00040		0.00140
	MW-17 MW-17R	8/26/2015 8/10/2016	ND [0.05] ND [0.1]	3.14 0.542 J		0.00116 B 0.00138	0.00049 J 0.00038 J	ND [0.0005] 0.00045 J	0.00143 0.00225 J
	MW-17R	8/15/2017	ND [0.05]	2.9		0.000150 J	ND [0.0005]	ND [0.0005]	0.000220 J
MW-17R	MW-17R	7/28/2018	ND [0.05]	2.37		0.0011	0.00087	ND [0.0005]	0.00401
	MW-17R	8/16/2019	0.0454 J	2.06		0.00268	0.00146	0.00133	0.00972
	MW-18	9/6/2003	0.137	1.20	0.583	ND [0.0005]	0.0176	0.00225	0.01056
	MW-18	8/26/2004	ND [0.0900]	1.61		0.00078	ND [0.001]	ND [0.001]	ND [0.001]
	MW-18 MW-18	7/22/2005 9/6/2006	0.0917 0.124	0.600		0.00086	ND [0.002] ND [0.001]	ND [0.002] ND [0.001]	ND [0.002] ND [0.001]
	FGTA-Dup-3 ^E	9/6/2006		0.001		0.0006	ND [0.001]	ND [0.001]	ND [0.001]
	MW-18	9/8/2007	ND [0.100]	1.54		0.00138	0.00265	ND [0.00200]	0.00226
	MW-18	8/2/2008	0.0446 J	0.442		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.001]
	MW-18	7/29/2009	ND [0.1]	0.848		0.00087	ND [0.002]	ND [0.002]	ND [0.002]
	MW-18	8/1/2010	0.0492 J	0.679 J		0.0012	ND [0.002]	ND [0.002] ND [0.002]	ND [0.002]
	MW-18 MW-18	8/8/2011 8/4/2012	0.0762 J 0.699	0.724 0.894		0.00399	0.00062 J 0.00055 J	ND [0.002]	ND [0.002] 0.360 J
MW-18	MW-18	8/4/2013	2.29	0.519 J	ND [0.312]	0.405	0.225	0.0148	0.0702
-	MW-18	8/22/2014	2.2	0.675		0.487	0.033 B	0.102	0.2959
	MW-18	8/25/2015	0.756	0.555 J		0.145	0.0055	0.0437	0.06982
	MW-99 ^E	8/25/2015	0.776	0.499 J		0.15	0.00548	0.0453	0.07259
	MW-18	8/10/2016	0.803 QH	ND [0.6]		0.157	0.00386	0.0465	0.05628 MN
	MW-98 ^E MW-18	8/10/2016 8/15/2017	0.772 QH 0.161	0.207 J 0.243 J		0.150 0.0233	0.0038 0.00099 J	0.0454 0.00815	0.04925 MN 0.00827 J
	MW-98 ^E	8/15/2017	0.101	0.243 J 0.208 J		0.0233 0.0289 B	0.00099 J	0.00815	0.001095 J
	MW-18	7/28/2018	0.208	[0.228] UB		0.329	0.00951	0.00087 J	
	MW-98 ^E	7/28/2018	0.197	ND [0.3]		0.342	0.00987	0.001 J	0.00915
	MW-18	8/16/2019	0.0804 J	0.503 J,B		0.00688	0.00041 J	0.002	0.00232 J
	MW-98 ^E	8/16/2019	0.106	[0.278] UB		0.00836	0.00059 J	0.003	0.00324
	MW-19	9/6/2003 8/26/2004	0.753	0.41	ND [0.500]	0.434	0.0109 0.00147	0.00284	0.01053 0.00188
	MW-19 FGTA-Dup-1 ^E	8/26/2004	2.61	0.82		0.121	0.00147	0.00105 ND [0.001]	0.00188
MA4 40	MW-19	7/22/2005	1.48	0.659		0.724	ND [0.002]	ND [0.002]	ND [0.002]
MW-19	MW-19	9/6/2006	1.78	0.509		0.262	0.00118	ND [0.001]	ND [0.001]
	MW-19	9/6/2007	1.32	0.734		1.06	ND [0.001]	ND [0.001]	ND [0.001]
	MW-19	8/2/2008	1.44	0.399		0.656	ND [0.001]	0.00095 J	
	MW-19	7/30/2009	2.27	ND [0.816]		1.38	0.0393	0.0327	0.496

(All results in mg/L)

			AK 101	AK102	AK 103	BT	EX - USEPA Meth	nod 8021B/SW82	60B ^A
Monitoring Well	Sample Designation	Date Sampled	Gasoline Range Organics	Diesel Range Organics	Residual Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes
2015 ADEC G	roundwater Cle	anup Levels ^B	2.2	1.5	1.1	0.005	1.0	0.7	10.0
2018 ADEC G	roundwater Clea	anup Levels ^c	2.2	1.5	1.1	0.0046	1.1	0.015	0.19
	MW-19	8/1/2010	3.6	1.29		1.67	0.00162 J	0.032	0.0492
	MW-19	8/9/2011	9.2	1.44		4.21	ND [0.02]	0.249	0.912
	MW-19	8/4/2012	14.4	1.06		3.84	0.468	0.514	2.930
	MW-22 ^E	8/4/2012	13.9	1.23		3.78	0.444	0.474	2.720
MW-19	MW-19 MW-19	8/4/2013 8/22/2014	19.2 22.8	0.805	0.662	4.97 5.56	0.409	0.341	<u>1.806</u> 4.06
Continued	MW-19	8/25/2014	13.8	1.42		3.93	0.0265 J	0.615	3.38
	MW-19	8/10/2016	13.9	0.955		3.18	0.00855	0.764	4.55
	MW-19	8/15/2017	9.59	0.739		2.54 Q			3.18
	MW-19	7/28/2018	18.5	1.52		2.93	1.16	0.0152 J	6.39
	MW-19	8/16/2019	17.4	0.851 B		2.34	0.00399	1.18	5.27
	FGTA MW-20	9/3/2009	5.03	0.33 J		0.0932	1.34	0.165	1.093
	N/A ^D	8/2/2010, 8/9/2		a 400 k		0.0400		0.000050	
	MW-20 MW-20	8/3/2012 8/4/2013	0.0436 J 0.0382 J	0.468 J 0.333 J	 ND [0.34]	0.0103	ND [0.00062] ND [0.00062]	0.000350 ND [0.00062]	ND [0.002] ND [0.00186]
	MW-20	8/22/2013	0.0382 J 0.0476 J	ND [0.334]	ND [0.34]	0.00714	0.00218 B	0.00349	0.00166 J
MW-20	MW-20	8/25/2015	ND [0.05]	0.382 J		0.00383	0.000210 D	ND [0.0005]	ND [0.0015]
	MW-20	8/11/2016	ND [0.1]	ND [0.625]		0.0025	ND [0.001]	ND [0.001]	ND [0.002]
	MW-99 ^E	8/11/2016	ND [0.1]	ND [0.615]		0.00311	ND [0.001]	ND [0.001]	ND [0.002]
	MW-20	8/16/2017	0.087 J	0.264 J		0.00251 B		0.0187	0.00157 J
	MW-20	7/28/2018	ND [0.05]	0.401 J		0.00308	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-20	8/16/2019	ND [0.05]	0.317 J,B		0.00254	ND [0.0005]	0.00046 J	ND [0.001]
	MW-22	8/10/2016	ND [0.1]	0.5 J	ring Well Installe	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.002]
MW-22	MW-22	8/15/2017	ND [0.1]	0.5 J		0.00018 J		ND [0.0005]	ND [0.002]
	MW-22	7/28/2018	ND [0.05]	0.892 B		ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-22	8/16/2019	ND [0.05]	0.83 B		0.00018 J	ND [0.0005]	ND [0.0005]	ND [0.001]
				Monito	ring Well Installe	ed in 2015			
	MW-23	8/10/2016	0.0444 J	0.266 J		0.0107	ND [0.001]	ND [0.001]	ND [0.002]
MW-23	MW-23	8/15/2017	0.221	0.306 J		0.0505	ND [0.0005]	0.025	0.0218
	MW-23 MW-23	7/28/2018 8/16/2019	0.115 0.181	0.65 B 0.436 J,B		0.0521	0.00241 ND [0.0005]	ND [0.0005] 0.0079	0.00456
	10100-23	8/16/2019	0.181	0.436 3,5		0.0375	ND [0.0005]	0.0079	0.0153
Notes:	1			P		Abbreviations			
1.5 1.5)15 cleanup levels; 8 cleanup levels; se				t analyzed aska Administrative	Codo	
1.5				JSEPA Method SW8	021 Sample		aska Department of		servation
A				SW8260B. Full pet			aska Method		Joi Tulloll
				18 are shown on Tab		BTEX be	nzene, toluene, ethy	Ibenzene, and xyler	nes
в	Sample results p	prior to 2015 were	compared with ADE	EC 2015 cleanup lev	els	LOQ lin	nit of quantitation	-	
	(18 AAC 75), as	revised on June 17	7, 2015				lligrams per liter		
				ared with ADEC 201			t applicable		
С				2018. Concentration	units of mg/L		t detected at or abov		ction]
_		sistency with histor				USEPA U.	S. Environmental Pr	otection Agency	
D			construction, obstru	ctions, or well dama	ge				
	Duplicate of pree		aivon on the limit o	f quantitation or pro-	ation				
ND [0.062]	guantitation limit		given as the limit o	f quantitation or prac	Jucal				
Data Flags:									
B	Estimated value	with potential high	bias due to an ass	ociated blank contar	mination	o Es	timated value due to	a quality control fa	ilure. An "H,"
J	Estimated value	below the LOQ (20	015 and later)				," or "N," indicates hi		n bias.
М	Estimated value	due to matrix. An "	'H," "L," or "N" indic	ates high, low, or ur	ıknown bias.	UB No	on-detect. Associate	d blank detection.	

Table 3 - Groundwater PVOC Results Pump Station 1 Former Gasoline Tank Area (F

									Petro	leum VOCs - USEF	A Method SW82600	A						
Monitoring Well	Sample Designation	Date Sampled	1,2,4-Trimethyl benzene	1,2-Dibromo ethane ^B	1,2-Dichloro ethane ^B	1,3,5-Trimethyl benzene	Benzene	Ethyl benzene	Isopropyl benzene (cumene)	Methyl-t-butyl ether	Naphthalene	n-Butyl benzene	o-Xylene	P & M -Xylene	sec-Butyl benzene	tert-Butyl benzene	Toluene	Xylenes (total) ^D
2018 ADEC	C Groundwater Level ^C	Cleanup	0.056	0.000075	0.0017	0.06	0.0046	0.015	0.45	0.14	0.0017	1			2	0.69	1.1	0.19
MW-2	MW-2	7/28/2018	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-2	8/16/2019	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]
MW-3	MW-3 MW-3	7/28/2018 8/16/2019	ND [0.0005] ND [0.0005]	ND [0.0000375] ND [0.0000375]	ND [0.00025] ND [0.00025]	ND [0.0005] ND [0.0005]	ND [0.0002] ND [0.0002]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.005] ND [0.005]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.001] ND [0.001]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.0015] ND [0.001]
	MW-4R	7/28/2019	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
MW-4	MW-4R	8/16/2019	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]
MW-7	MW-7R	7/28/2018	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
IVIVV-7	MW-7R	8/16/2019	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]
MW-8	MW-8	7/28/2018	0.00685	ND [0.0000375]	0.00015 J	0.00233	1.11	0.0343	0.00161	ND [0.005]	0.00341	ND [0.0005]	0.0716	0.0749	ND [0.0005]	ND [0.0005]	1.46	0.146
	MW-8	8/16/2019	0.00381	ND [0.0000375]	ND [0.00025]	0.00129	1.08	0.0218	0.00092 J	ND [0.005]	0.00182	ND [0.0005]	0.0454	0.0418	ND [0.0005]	ND [0.0005]	1.15	0.0872
	MW-9	8/15/2017	0.144			0.04	2.1	0.748	0.0254	ND [0.25]	0.00183	ND [0.025]	1.55	2.84	ND [0.25]	ND [0.25]	2.81	4.39
	MW-99 ^E MW-9	8/15/2017 7/28/2018	0.148			0.0409	2.2 1.4	0.816	0.0261 0.047 J J	ND [0.25]	0.00178 ND [0.025]	0.0155	1.63 1.57	3.02 3.48	ND [0.25] ND [0.025]	ND [0.25] ND [0.025]	3.09 0.82	4.65
MW-9	MW-99 ^E	7/28/2018	0.266	ND [0.00188] ND [0.00188]	ND [0.0125] ND [0.0125]	0.076	1.4	0.932	0.047 J J	ND [0.25] ND [0.25]	ND [0.025]	ND [0.025] ND [0.025]	1.57	3.48	ND [0.025] ND [0.025]	ND [0.025]	0.913	5.05 5.37
	MW-9	8/16/2019	0.523	ND [0.000375]	ND [0.0025]	0.183	1.85	1.7	0.106	ND [0.005]	0.00796	ND [0.0005]	2.58	5.88	ND [0.0005]	0.0008 J	0.647	8.46
	MW-99 ^E	8/16/2019	0.600	ND [0.00075]	ND [0.005]	0.18	1.00	1.7	0.0966	ND [0.005]	0.00773	ND [0.0005]	2.62	5.83	ND [0.0005]	ND [0.0005]	0.622	8.45
	MW-12	7/28/2018	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
MW-12	MW-12	8/16/2019	ND [0.0005] UJ	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005] UJ	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ
MW-13	MW-13	7/28/2018	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
10100-10	MW-13	8/16/2019	ND [0.0005] UJ	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005] UJ	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ
	MW-14R	8/15/2017	ND [0.0005]			ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	0.00031 J	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
MW-14	MW-14R	7/28/2018	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
	MW-14R	8/16/2019	ND [0.0005] UJ	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005] UJ	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ
MW-15	MW-15 MW-15	7/28/2018 8/16/2019	0.0238 0.0105 Q	ND [0.0000375] ND [0.0000375]	ND [0.00025] ND [0.00025]	0.00952	0.0784	0.0277 0.0113 Q	0.00427 0.00187	ND [0.005] ND [0.005]	0.00865	ND [0.0005] ND [0.0005]	0.0719 0.0284	0.11 0.0441 Q	0.00067 . ND [0.0005]	ND [0.0005] ND [0.0005]	0.0696	0.182 0.0724 Q
	MW-16R	7/28/2018	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
MW-16R	MW-16R	8/16/2019	ND [0.0005] UJ	ND [0.0000375]	ND [0.00025]	ND [0.0005]	0.00025 J	ND [0.0005] UJ	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ
	MW-17R	7/28/2018	0.00054 J	ND [0.0000375]	ND [0.00025] J	0.00038 J	0.0011	0.00087 J	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	0.00235	0.00166 J	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.00401
MW-17	MW-17R	8/16/2019	0.00078 J,Q	ND [0.0000375]	ND [0.00025]	0.00059 J	0.00268	0.00133 Q	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	0.00525	0.00447 Q	ND [0.0005]	ND [0.0005]	0.00146	0.00972 Q
	MW-18	7/28/2018	0.0154	ND [0.0000375]	ND [0.00025]	0.00633	0.0329	0.00951	0.00311	ND [0.005]	ND [0.0005]	ND [0.0005]	0.00049 J	0.00843	ND [0.0005]	ND [0.0005]	0.00087 J	0.00892
MW-18	MW-98 ^E	7/28/2018	0.0148	ND [0.0000375]	ND [0.00025]	0.00613	0.0342	0.00987	0.00326	ND [0.005]	ND [0.0005]	ND [0.0005]	0.00042 J	0.00873	ND [0.0005]	ND [0.0005]	0.00095 J	0.00915
	MW-18	8/16/2019	0.00343 Q	ND [0.0000375]	ND [0.00025]	0.00145	0.00688	0.0023 Q	0.00063 J	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.00232 Q	ND [0.0005]	ND [0.0005]	0.00041 J	0.00232 J,Q
	MW-98 ^E	8/16/2019	0.00476 Q	ND [0.0000375]	ND [0.00025]	0.00197	0.00836	0.00326 Q	0.00088 J	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.00324 Q	ND [0.0005]	ND [0.0005]	0.00059 J	0.00324 Q
MW-19	MW-19 MW-19	7/28/2018	0.0716	ND [0.00075] ND [0.0000375]	ND [0.005] ND [0.00025]	0.0206	2.93	1.16	0.0166 J	ND [0.1]	ND [0.01]	ND [0.01]	2.02	4.38 3.85 Q	ND [0.01]	ND [0.01]	0.0152 J	6.39 5.27 Q
┣────┥	MW-19 MW-20	8/16/2019 7/28/2018	0.0984 Q ND [0.0005]	ND [0.0000375]	ND [0.00025]	0.0263 ND [0.0005]	2.34 0.00308	1.18 Q ND [0.0005]	0.0275 ND [0.0005]	ND [0.005] ND [0.005]	0.00232 ND [0.0005]	ND [0.0005] ND [0.0005]	1.42 ND [0.0005]	3.85 Q ND [0.001]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	0.00399 ND [0.0005]	5.27 Q ND [0.0015]
MW-20	MW-20	8/16/2019	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	0.00308	0.00046 J	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0013]
	MW-22	7/28/2018	ND [0.0005]	ND [0.0000375]	ND [0.00025]	ND [0.0005]	ND [0.00234	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0015]
MW-22	MW-22	8/16/2019	ND [0.0005] UJ	ND [0.0000375]	ND [0.00025]	ND [0.0005]	0.00018 J	ND [0.0005] UJ	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001] UJ
1000	MW-23	7/28/2018	0.00056 J	ND [0.0000375]	ND [0.00025] J	0.00035 J	0.0521	0.00241	0.00033 J	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.00456	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.00456
MW-23	MW-23	8/16/2019	0.00774 Q	ND [0.0000375]	ND [0.00025]	0.00564	0.0375	0.0079 Q	0.00259	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.0153 Q	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.0153 Q
<u>, </u>											Data Flanc						· ·	

Notes

в

1.5 Results in **bold** exceed ADEC 2018 cleanup levels; see Note^C below

[0.000375] Shading indicates non-detect results with LODs above the applicable ADEC cleanup level.

The field sample identification number and date collected are provided. BTEX congeners are also reported on Report Table 2A.

Analytes 1,2-dibromoethane and 1,2-dichloroethane were substituted for n-propylbenzene and styrene beginning in 2018 at the request of ADEC. Prior results for n-propylbenzene and styrene (MW-18 only) were below ADEC 2018 (18 AAC 75), as revised October 1 (SLR, 2018a).

С Sample results were compared with ADEC 2018 cleanup levels (18 AAC 75), as amended through October 27, 2018.

D Total values were the summation of detected compounds only. If compounds were ND, then the highest LOD was listed.

Е Duplicate of preceding sample.

ND [X.XX] The maximum concentration of a detected analyte is shown. The highest LOD is shown in [brackets] for ND analytes.

Abbreviations

	not applicable or screening criteria does not exist for this compound
--	---

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

BTEX benzene, toluene, ethylbenzene, and xylenes

DL detection limit

LOD limit of detection LOQ limit of quantitation

mg/L milligram per liter

Data Flags

J Estimated value below the LOQ

ND Nondetect; the limit of detection is presented in brackets to the right

Q Estimated value due to one or more QC exceedances

- UJ Estimated LOD due to one or more QC exceedances
- PVOC petroleum volatile organic compound USEPA U.S. Environmental Protection Agency
- VOC volatile organic compound

Table 4 - Surface Water Analytical Results Pump Station 1 Former Gasoline Tank Area (All results in mg/L)

				BTEX - USEPA	Method 8021B			PAH SIM - USEP	A Method 8270D ^B		
Sample Location	Sample Identification	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total Aromatic Hydrocarbons ^A	Naphthalene	Total Polynuclear Aromatic Hydrocarbons	Total Aqueous Hydrocarbons ^c	
ADEC Su	rface Water Qual	ity Criteria ^D	N/A	N/A	N/A	N/A	0.010	0.73	N/A	0.015	
	FGTA SW-1	9/6/2003	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0059]	ND [0.0005]	ND [0.0041]	ND [0.00100]	
	FGTA SW-1	8/26/2004	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.00062]	ND[0.004309]	ND [0.0097909]	
	FGTA SW-DUP ^E	8/26/2004	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0059]	ND [0.00062]	ND[0.004309]	ND [0.010209]	
	FGTA-SW-1	7/22/2005	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.001]	ND[0.0054]	ND[0.0108]	
	FGTA-SW-1	9/6/2006	ND [0.0004]	0.00103	ND [0.001]	ND [0.003]	0.00543	ND [0.000109]	ND [0.0009235]	0.00654	
	SW-1	9/8/2007	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.000104]	ND [0.0008855]	ND[0.006286]	
	DUP-1 ^E	9/8/2007	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.000105]	ND [0.0008871]	ND [0.006287]	
	FGTA-SW-1	8/1/2008	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.000103]	ND [0.0008755]	ND [0.006276]	
	FGTA SW-1	7/30/2009	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.00085]	ND[0.00735]	
	FGTA SW-1	7/29/2010	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.00085]	ND[0.00735]	
	FGTA SW-1	8/10/2011	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.0095]	ND [0.0075]	
	FGTA SW-5 ^E	8/10/2011	0.00028 J	ND [0.002]	ND [0.002]	ND [0.002]	0.00628 J	ND [0.0001]	ND [0.0095]	0.00728 J	
	FGTA SS-1	8/5/2012	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	ND [0.0034]	ND [0.000062]	ND [0.000512]	ND [0.003912]	
SW-1	FGTA SS-3 ^E	8/5/2012	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	ND [0.0034]	0.0000744 J	0.0005244 J	0.00392 J	
	SW-1	8/3/2013	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	ND [0.0034]	ND [0.000067]	ND [0.000553]	ND [0.003953]	
	SW-99 ^E	8/3/2013	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	ND [0.0034]	ND [0.000067]	ND [0.000553]	ND [0.003953]	
	SW-1	8/22/2014	ND [0.00025]	0.00143 B	ND [0.0005]	ND [0.0015]	0.00368 B	ND [0.000052] J-	0.000444 J-	0.004124 B,J-	
	SW-99 ^E	8/22/2014	ND [0.00025]	0.00259 B	ND [0.0005]	ND [0.0015]	0.00484 B	ND [0.0000525] J-	0.000446 J-	0.005286 B,J-	
	SW-1	8/25/2015	0.00036 J	0.00123 QN	ND [0.0005]	ND [0.0005]	0.00359 QN	ND [0.0000481]	0.0004081	0.003998 QN	
	SW-99 ^E	8/25/2015	0.0004 J	0.00243 QN	ND [0.0005]	ND [0.0005]	0.00483 QN	ND [0.0000505]	0.0004285	0.005259 QN	
	SW-1	8/11/2016	ND [0.00025]	0.00259 B	ND [0.0005]	ND [0.0005]	0.00484	ND [0.0000471]	ND [0.0003493]	0.005189	
	SW-1	8/16/2017	0.00231	ND [0.0005]	ND [0.0005]	ND [0.0015]	0.00481	0.0000321 J	0.0003762 J	0.005186 J	
	SW-99 ^E	8/16/2017	0.00224	ND [0.0005]	ND [0.0005]	ND [0.0015]	0.00474	0.0000467 J	0.0003779 J	0.005118 J	
	SW-1	8/29/2018	0.00044 J	ND [0.0005]	ND [0.0005]	ND [0.0015]	0.00294 J	ND [0.000051]	ND [0.0004014]	0.003341 J	
	SW-99 ^E	8/29/2018	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]	ND [0.000051]	ND [0.0004014]	ND [0.003151]	
	SW-1	8/16/2019	0.00301	ND [0.0005]	ND [0.0005]	0.000373 J	0.004383 J	ND [0.0000471]	ND [0.0003728]	0.005756	
	SW-99 ^E	8/16/2019	0.00307	ND [0.0005]	ND [0.0005]	0.000354 J	0.004424 J	ND [0.0000481]	ND [0.0003793]	0.005803	
	FGTA SW-2	9/6/2003	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0059]	ND [0.0005]	ND [0.0041]	ND [0.00100]	
	FGTA SW-2	8/26/2004	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.00062]	ND[0.004309]	ND [0.0097909]	
	FGTA-SW-2	7/22/2005	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.001]	ND[0.0054]	ND[0.0108]	
	FGTA-SW-DUP ^E	7/22/2005	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.001]	ND[0.0054]	ND[0.0108]	
	FGTA-SW-2	9/6/2006	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.000104]	ND[0.0008855]	ND[0.006286]	
	DUP-5 ^E	9/6/2006	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.000109]	ND [0.0009235]	ND[0.006324]	
	SW-2	9/8/2007	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.0001]	ND [0.00085]	ND[0.00625]	
SW-2	FGTA-SW-2	8/1/2008	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.000104]	ND [0.0008855]	ND[0.006286]	
	FGTA-SW-3 ^E	8/1/2008	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND [0.0054]	ND [0.000103]	ND [0.0008755]	ND [0.006276]	
	FGTA-SW-2	7/30/2009	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.00085]	ND[0.00735]	
	FGTA-SW-3 ^E	7/30/2009	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.00085]	ND[0.00735]	
	FGTA SW-2	7/29/2010	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.00085]	ND[0.00735]	
	FGTA SW-5 ^E	7/29/2010	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.00085]	ND[0.00735]	
	FGTA SW-2	8/10/2011	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND[0.0065]	ND [0.0001]	ND [0.0095]	ND [0.0075]	
	FGTA SS-2	8/5/2012	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	ND [0.0034]	ND [0.000062]	ND [0.000512]	ND [0.003912]	
	SW-2	8/3/2013	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	ND [0.0034]	ND [0.000067]	ND [0.000553]	ND [0.003953]	

Table 4 - Surface Water Analytical Results Pump Station 1 Former Gasoline Tank Area (All results in mg/L)

				BTEX - USEPA	Method 8021B			PAH SIM - USEP	A Method 8270D ^B	
Sample Location	Sample Identification	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total Aromatic Hydrocarbons ^A	Naphthalene	Total Polynuclear Aromatic Hydrocarbons	Total Aqueous Hydrocarbons ^c
ADEC Su	rface Water Qual	ity Criteria ^D	N/A	N/A	N/A	N/A	0.010	0.73	N/A	0.015
	SW-2	8/22/2014	ND [0.00025]	0.00373 B	ND [0.0005]	ND [0.0015]	0.00598 B	ND [0.0000263] J-	0.000447 J-	0.006427 B,J-
	SW-2	8/25/2015	0.00035 J	0.00041 J	ND [0.0005]	0.00134	0.0026 J	ND [0.0000447]	0.0003792	0.0029792 J
SW-2	SW-2	8/11/2016	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]	ND [0.0000463]	ND [0.0003664]	ND [0.003116]
Continued	SW-5 ^E	8/11/2016	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]	ND [0.0000463]	ND [0.0003664]	ND [0.003116]
Continuou	SW-2	8/16/2017	0.00023 J	ND [0.0005]	ND [0.0005]	ND [0.0015]	0.00273 J	ND [0.000049]	0.000392 J	0.003122 J
	SW-2	8/29/2018	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]	ND [0.000051]	ND [0.0004014]	ND [0.003151]
	SW-2	8/16/2019	0.00177	ND [0.0005]	ND [0.0005]	ND [0.0015]	0.00427	ND [0.0000481]	ND [0.0003793]	0.004649
	SW-3	8/16/2017	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]	0.000211	0.0006542 J, B	0.003404 J, B
SW-3	SW-3	8/29/2018	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]	ND [0.00005]	ND [0.000395]	ND [0.003145]
	SW-3	8/16/2019	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]	ND [0.0000463]	ND [0.0003664]	ND [0.0031164]

Notes:

в

С

- 0.015 BOLD indicates exceedance of ADEC Surface Water Quality criteria. А
 - Total aromatic hydrocarbons is the sum of all BTEX compounds. PAHs not presented in this table were not detected in surface water samples. Historical methods used for analysis of PAHs include:
 - 2003 to 2005: USEPA Method 610
 - 2006 to 2007: USEPA Method 625M
 - 2008 to 2019: USEPA Method 8270D SIM
- Total aqueous hydrocarbons is the sum of all BTEX and all PAH compounds. Surface water data compared to 2018 ADEC surface water criteria (18 AAC 70), amended as D of April 6, 2018.
- Е Duplicate of preceding sample.
- ND [x.xx] The number in brackets is the limit of quantitation or the practical quantitation limit for samples collected prior to 2012.
- ND [x.xx] The limit of detection was used in place of ND values for TAH and TAgH calculations.

Abbreviations:

- ADEC Alaska Department of Environmental Conservation
- BTEX benzene, toluene, ethylbenzene, xylenes
- milligram per liter mg/L
- Not applicable N/A
- PAH polynuclear aromatic hydrocarbon
- SIM selective ion monitoring
- USEPA U.S. Environmental Protection Agency

Data Flags:

- В Estimated value with potential high bias
- J estimated value
- Jestimated value with potential low bias
- ND [x.xx] not detected [Limit of Detection]
- QN Estimated value with unknown bias

APPENDIX A

PHOTOGRAPH LOG

2019 Water Monitoring Report Pump Station 1 Former Gasoline Tank Area

ALYESKA PIPELINE SERVICE COMPANY PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

December 2019

Monitoring well MW-22: The monument was raised to approximately ten inches below the ground surface (bgs). Bentonite was added in the area surrounding the monument. The bentonite was hydrated to prevent surface water from infiltrating the well monument. (July 18, 2019).

Photo 2:

Monitoring Well MW-16R: The two-inch monitoring well casing (covered with an orange expandable cap) was cut down prior to sampling. Slits in the four inch well casing are visible above the gravel in the monument. (August 16, 2019).

Pump Station 1 Former Gasoline Tank Area 2019 Water Monitoring and Remediation Report Deadhorse, Alaska

Job No: 105.01288.19008

Monitoring Well MW-12: A sharpie mark from the 2018 sampling event indicates approximately 0.15 feet of frost-jacking of the outer four-inch PVC stickup. The date of the upper sharpie mark is unknown.

Photo 3:

Pump Station 1 Former Gasoline Tank Area 2019 Water Monitoring and Remediation Report Deadhorse, Alaska

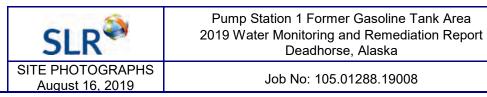

Job No: 105.01288.19008

Photo 4: Monitoring Well MW-4R: The frost-jacked two-inch PVC well casing was cut down following sample collection.

Photo 5: Monitoring Well MW-17R: Water parameter collection prior to sampling, photograph facing east.

Photo 6: Monitoring Well MW-7R: A trench was created to direct ponded surface water away from the monitoring well during sampling, photograph facing north.

Photo 7: Monitoring Well MW-18: Well exposed in gravel pad, photograph facing south.

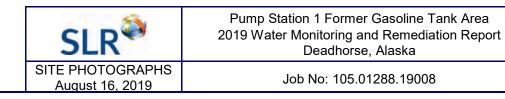


Photo 8: Surface water sample location SW-3 sample collection.

Pump Station 1 Former Gasoline Tank Area 2019 Water Monitoring and Remediation Report Deadhorse, Alaska

Job No: 105.01288.19008

APPENDIX B

FIELD NOTEBOOK

2019 Water Monitoring Report Pump Station 1 Former Gasoline Tank Area

ALYESKA PIPELINE SERVICE COMPANY PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

December 2019

C. JENNI, ETYLER, R. CORSEY-WILLIAS NASSF.Smmy 39 Cuenot Well Sampling 105-01288. 400 \$/16/19 Flith URM Repair/schiey 7/18/19 FGTA contrued From Equipment Shop product / Calibrate YSE 0715-Obtain work permit Westpad 0800-0900 -Enter task form, Selly on wells. Sample Mul-22 0457->0956. Sample MW-18 4/ DUP MW-98 C "/700" 1352 - int down MW-4R 2" AL asing NO.15FF 1044 -1430- Raise MW-22 MONUMENT to ~10" bys Sample MW-23 1049 -Sample MW-19 and add bentonite for surface seal. 1450- Raise MW-23 Monment to N2" logs 1125-Sample MU-17P Sample MW-15 and add bents. to For Surface Seal. 1120-1515 - Raise MW-17 Re Monument to O" logs 1209 Sample MW-142 Sample MW-16R (fush) and add bent mile for surface sent 1212 -Sample 1520 - cut down MW-16R 2" puc by NO. 12Ft. 1318-1540 - All wells exposed. No repairs to wells 1246 MW-13 Sample MW-12 not lister above. 1301 Sample More to Eq. Shop project 1312 Sample Sw-3 1329-Sumple SW-7 W/DUP SW-99 e "150" END 1337 - Sample SW-2 MW-9 u/ DUP MW-99 R 1730" 1401 - Sample CUENT Mus-8 1456 -MUL-LIR ist 2' Arc boon h. O. 1/Fr Sample Sample MW-Z 7/18/19 1545 -Sumple Mh-20 1555-1630 Sample MW-3 Sample MM .72 Rite in the Rain

40 CUEANT, E.TYLER, R.C.W. 105-01288.1900E FGTA Water Sampling E/16/19 1700- Cleanup FGTA SHE 41 1714 - closent permits, return rabio 1720-1750 - dung pige water in drum in has waste currex, record drum 205 P11-14190813-02, P11-190814-01, p11-190816-01 1750 - 1020 - Chang equipment, puch for shipping 1020 - - Chien Samples, complete coc, # Ce Samples. 1915 - Depart for hotel. End F Ong C. VENOT 8/16/19 Rite in the Rain.

APPENDIX C

FIELD FORMS

2019 Water Monitoring Report Pump Station 1 Former Gasoline Tank Area

ALYESKA PIPELINE SERVICE COMPANY PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

December 2019

Date: <u>8/</u> Neter Manu		Wate	r Paramete Time:70 { 05 B24	-	Calibratic		SLF Ider	? ~
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.01	CC61059	8/13/19	3/19/21	7.00	7.01	± 0,10
рН	4.00	4,00	(1565653	8/13/19	6/18/20	3.94	4,00	± 0,10
	10.00	10.06	WY 2.	7130/18	2/2020	10,03	10,06	± 0,10
Sp Cond (mS/cm)	1 413	1,413	CC17956	8/13/19	12/15/19	1383	1413	± 10%
ORP (mV)	240	240	1600	9/12/17	5/2022	237,6	239.9	
DO*		1.000		1		95:3	101.3	± 2%

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.01	CC61059	8/13/19	3/19/21	7,05	7.01	± 0_10
рН	4,00	4.00	CC565653	8/13/19	6/18/20	3.99	4.90	± 0 10
	10,00	19.06	WYZ	7/30/18	2/2020	10.14	10.07	±010
Sp Cond (mS/cm)	1.413	1.413	CC17956	8/13/19	12/15/19	1398	1413	± 10%
ORP (mV)	240	240	1600	9/12/17	5/2022	236.1	240.0	
DO*						110,5	101.2	± 2%

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Date: _____ Time: _____ Calibration By: _____

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criterla
Y	7_00							± 0,10
рН	4.00							± 0,10
	10.00							± 0.10
Sp Cond (mS/cm)	1.413			1				± 10%
ORP (mV)	240							
DO*								± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Site/Client Nam	ne: APSC PS0	1 Former G	asoline Tan	k Area (FGTA)	Well I	D: MW- 4	R			
roject # : 105.0	1288.19008				Sampl	e ID: MIL	V-4R	2		
Sampled By: 1	IN UNALL	-LVIII.15			Sampl	e Time: 14	156	Samp	le Date: 8	116. /2019
Weather Condit			~408		Duplic	ate ID: 100	nt		_	
Sampling Metho					MS/M	SD 🗌 Yes	X No	Trip Blank	Required: x	Yes 🗌 No
			1		formation					6 8 8 8
Well Type: X Pe			f fair as acc	Well Diameter					BGS to	
well Condition:	Kg Good □ F		if fair or pool	r explain in Notes) Gauging/Pur			Tes Dan	o; ir yes,	ft abo	ve ground
Depth to Water	(ft BTOC):	.95		Gaugingri un		Pump Depth	(ft. BTOC	:~2.5		
Total Depth (ft I			2 3.99			Start Time (2		-		
Depth to Produce						End Time (24				
Product Thickne		n = (Tubing I default value	Depth – Top o	of Screen Depth)		urge Time (r =(ft); i			own or water tat	ble is below top of
Min. purge volum	e if required: p	urge volume (g	al) = volume	of water/ft(gal						=gal
Well Diamete	er - gal/ft	1" - 0.	041 gal/ft		.163 gal/ft		4' - 0.653	gal/ft	6' - 1.	469 gal/ft
(Achieve s	table parameters	for 3 consecu	tive reading, 4	Water Qual 4 parameters if practic			r pumping a	minimum of	1 flow through ce	ell volume])
Time (24-hr)	Flow Rate (m/L	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)	ORP (mV)	pН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)
	minute)	1	(± 3%)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(L/M/H)	1.16	(Max_ft)
1429	500	3	4.65	140	10.14	30.8	8.13	4	1.05	Dio
1432	500	1,20	4.7)	139	10 05	341.1	8.22	4	1.05	0.10
1435	300	2.10	4.70	143	9.99	3069	0,20	-11		011
1438	300	3.0	4.72	153	9.64	43.9	8.39	14	1.05	0.16
1441	300	3.9	4.68	158	9.97	45.6	8.46	H	1.05	0.16
144	300	4.8	4.64	165	01.64	46.7	8.50	H	1.07	0.12
1447	1700	5.7	4.66	167	934	48.6	8.53	H	1.15	02
1450	400	6.9	4.64	169	9.22	\$50.3	2.55	H	1.15	0.20
14.53	460	8.1	4.62	170	9.17	51.8	8.58	17	1.15	0.20
				-						
Parameter Stab	le (Check appli	icable)	~	V	V	V	V			
Sample Color:	110			Sample Odor:	1 inte		Shor	en: Nive		
Sample Color.	orin		_	THE R. P. LEWIS CO., LANSING MICH.	al Sampling		Silee	I. JUNE		
		Ana	lyses	Analytic	arsampling			Field	Tests	
GRO/BTEX - 3x H	CL Amber 40 m	L VOA	-			Ferrous	iron (Fe2+)			
DRO - 2x HCL Am	ber Glass 250 r	nL bottle								
Petroleum VOCs	- 3x HCL Ambe	r 40 mL VOA				2				
Notes: 8 bottles	Doll Imp Type	Ft SFTE GeoTech Pe	ristaltic	Tubing (1 Tubing (1 Multi-Param N/A		and the second se	YSI 556_	07110		
A DOBLO PADADA	andling: 🗌 Di			ontainerized A Ti					gel of	

1---

Site/Client Nam	e: APSC PS0	1 Former G	asoline Tan	k Area (FGTA)	Well I	D: MW- 2				
Project # : 105.0	1288.19008	10.00			Sampl	e ID: MU	V-2			
Sampled By: R	in the	ale talell	4			e Time: 15		Samp	le Date: 8	116/2019
Weather Condition						ate ID: A			0	
Sampling Method			DINAS	2	_	SD -Yes		Trin Plank	Required: x	Voc 🗖 No
Sampling Wethou				Wall In	formation	SU [] Tes		пр Банк	Required. x	
Well Type: X Per	manent 🗆 T	emporary	1	Well Diameter		Screen Inte	erval:	ft E	GS to	ft BGS
				explain in Notes)			the state of the s		85 ft abo	ve ground
				Gauging/Pur						
Depth to Water (and a second house the second	Pump Depth	the second s			
Total Depth (ft B					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Start Time (2	and the second se	The second s		
Depth to Product Product Thickness						End Time (24 urge Time (n				
LOW FLOW:				Screen Depth)					own or water tal	ble is below top o
Min. purge volume	and the second sec	and some international second second second	and a substance for the part of the local			olumn thicknes		X # of casing		gal
Well Diameter	r – gal/ft	1" - 0.	041 gal/ft	2"-0.	163 gal/ft		4' - 0.653	gal/ft	6' - 1	.469 gal/ft
(Achieve st	able parameter	for 3 consecu	tive reading A	Water Qual parameters if practic	ity Paramet	ers ling taken afte	numping a	minimum of	t flow through ce	(femulov li
Time	Flow	Purge	Temp	Specific	DO	ORP	pumping a	Turbidity	DTW	Drawdown
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	(mV)	pri	(qualitativ	(ft BTOC)	(ft)
	(m/L minute)	L (934)	(± 3 %)	(µS/cm ^c) (± 3%)	(± 10%)	(± 10mV)	(± 0.1)	e) (L/M/H)	1.4	(Maxft)
1517	350	0:35	4.05	328	12.58	87.5		L	5.19	6.14
1520	350	1.4	3.69	343	12.20	1.1	7.35	L	7.20	0.15
1523	250	2.45	3.48	356	11.91	25.9	7.7)	L	5.21	0.16
1526	350	3.5	3.31	365	11.73	87,3	7.66	6	5.22	0.17
1524			3.22	372		87.7		ĩ	5.22	0.17
	370	4.55								0.17
1532		6.65	5.23	376		68.0		L	5.22	0.13
1535	350	6.63	3.16	380	11.43	28-6	7.50	L	5.22	0.15
	-	-								
	-									
						1				
Parameter Stable	e (Check appl	icable)	~	~	~	5	5	-		
Sample Color:	A and			Sample Odor:	Not		Shee	en: Anot	N	
	of the first	-	- 10-	The second s	al Sampling	1	- Carrier	1000	9	
		Ana	yses	Analytic				Field	Tests	
GRO/BTEX - 3x HO	CL Amber 40 m	LVOA				Ferrous	iron (Fe2+)			
DRO - 2x HCL Am	ber Glass 250 i	nL bottle								
Petroleum VOCs -	- 3x HCL Ambe	r 40 mL VOA								
	1.1.1.1.1									
Notes: 8 bottles Equipment: Pur Water Level Meter	mp Type	GeoTech Pe		Tubing (1	ype/Length)1/4" (Make/SN#)	DD PFTE-L	INED HDPI	E	
Turbidity Meter (I				N/A	in the set of			er Lot #	N/A	
	the second se	scharged to s	surface DCo	intainerized NT	reated (how	APSC HA				
	9		23	op of Casing, NA =					gel of	

Site/Client Nam	e: APSC PS0	1 Former G	asoline Tan	k Area (FGTA)	Well II): MW- 3				
roject # : 105.0	1288.19008				Sample	eID: Mu	1-3			
Sampled By:	624584.	will is			Sample	e Time: 16	4016	Samp	le Date: 8	116 /2019
Weather Condition			~4vF		Duplica	ate ID: ~	WE -			1.00
Sampling Metho					MS/MS	SD 🗌 Yes	No No	Trip Blank	Required: x	Yes 🗌 No
				Well In	formation					
Well Type: X Per	rmanent 🗌 T	emporary		Well Diameter	2 in.	Screen Inte			BGS to	ft BGS
Well Condition:	Good D F	air 🗌 Poor (if fair or poor	explain in Notes)			Yes IN	o; If yes, <u>L.</u>	15ft abo	ove ground
Depth to Water (A DTOOL ()	12		Gauging/Purg		ation Pump Depth	(A DTOC		-	
Total Depth (ft E						Start Time (2				
Depth to Produc						End Time (24				
Product Thicknes						urge Time (n		3		
	Max Draw Dow screen, then use			f Screen Depth)	X 0.25 =	=(ft); i	f screen inte	erval is not kn	own or water ta	ble is below top of
And the state of t	when successful the second state in the same inter-	the second se	when the same interval as in the same	of water/ft (gal/	ft) X Water co 163 gal/ft		s(ft) 4' - 0.653) X # of casing	the state of the s	= gal
Well Diamete	- gaint	1"-0.	041 gaint	Water Qual			4 - 0.055	gain	0-1	.469 gal/ft
(Achieve st	table parameters	s for 3 consecu	tive reading, 4	parameters if practic			r pumping a	minimum of	1 flow through c	ell volume])
Time (24-hr)	Flow Rate (m/L	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm°)	DO (mg/L)	ORP (mV)	pН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)
	minute)	0.1	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1) 7.48	(L/M/H)	13.01	(Maxft)
1616		0.4	377	6412	3.84			and the second s	4.26	0.13
1613	400	1.6	4.11	597	5.95	90.7		L	4.28	0.15
	uus	2.5						1	4).28	
1619	400	3.0	4.45	534		88.9		L	4.28	0.15
1612	400	Nor	4:45	533	7.06	89.0	7.43	L	4.28	0.15
	_		-							
			-				-			
										-
			-							-
	-									
	_					-	-			
		1	~	-	~		/	-		
Parameter Stable	e (Check appl	icable)	1	(ñ -			
Sample Color:	SLIGHT TA	NIGEAR	- 14	Sample Odor:	NONE	-	Shee	en: Nort	-	
				Analytica	al Sampling	1				
			lyses					102030	Tests	
GRO/BTEX - 3x HO		1247 25°2				Ferrous	Iron (F.e2+)			
DRO - 2x HCL Am Petroleum VOCs -	a el l'en apar se su	and the state								
Felfoleuni voca -	- 3X HOL AMDE	1 40 IIIL YOA								
Notes: 8 bottles 4235 Iquipment: Pur Water Level Meter	np Type	GeoTech Per	ristaltic	Tubing (T		1/4" (//ake/SN#)				
Turbidity Meter (I		a balle of the		N/A				er Lot #	N/A	
and the second se	the second second second second second	scharged to s	surface CC	Intainerized A Tr	eated (how?	APSC HA				
				on of Casing NA =	10 10 CAD	IC			gelof 1	

Site/Client Nan	ne: APSC PS0	1 Former G	asoline Tar	k Area (FGTA)	Well II	D: MW- 15	5			
roject # : 105.0	01288.19008				Sampl	e ID: ML	1-15			
Sampled By: N	in in a Constant	-WITIS	A1		Sampl	e Time: 11	26	Samp	le Date: &	1 16,12019
Weather Condit	ions: A ACTLY	110104	iller.	NYOF	Duplic	ate ID: No				
Sampling Metho	od: K Low Flo	w D Other		E.		SD 🗌 Yes		Trip Blank	Required: x	Yes 🗌 No
		-		Well In	formation		_			
Well Type: X Pe	ermanent 🗌 T	emporary		Well Diameter	the second s	Screen Inte	erval:	ft E	BGS to	ft BGS
Well Condition:	Good D F	air 🗌 Poor (if fair or poo	r explain in Notes)					36 ft abo	
				Gauging/Purg						
Depth to Water					and the second se	Pump Depth				
Total Depth (ft Depth to Produc			_			Start Time (2 End Time (24			_	
Product Thickne						urge Time (n				
LOW FLOW:				of Screen Depth)	-			rval is not kn	own or water ta	ble is below top of
Min. purge volum Well Diamete		urge volume (g 1" – 0.		of water/ft(gal/ 2" - 0.	(ft) X Water co 163 gal/ft		s(ft) 4' – 0.653 g			= gal .469 gal/ft
				Water Qual						
				4 parameters if practic						
Time (24-hr)	Flow Rate (m/L minute)	Purge Volume (gat	Temp	Specific Conductance (µS/cm ^o)	DO (mg/L) (± 10%)	ORP (mV) (± 10mV)	pH (± 0.1)	Turbidity (qualitativ e) (L/M/H)	DTW (ft BTOC)	Drawdown (ft) (Maxft)
101	100	0.2	(±3%) 7.16	(± 3%) 598	217	24.5	7201	and the second se	2.13	0,1.2
	100	0.5	6.78	535	2.13	34.6	7.09		2.16	0:15
1114			6.50	and the second sec	2.09	the second se	7.25		and the second se	
1117	OUL	0.8	6.49	509		38.1	7.00		2.17	0.16
1120	iud	1.1		498	1.99	37.4	7.22	1	2.18	0.17
1123	34	0.4	6.35	497	1.93	33.3	7.00	- L	2.18	0.17
	-						-			
		-	-							
							-			-
	-	-				-				
	-					-				
	-	-	-							-
Parameter Stab	lo (Chock appl	leable)		~	L	V	2			
		icable)			15					
Sample Color:	CLEAR	_	_	Sample Odor:	NONE		Shee	n: wink		
				Analytic	al Sampling					
			lyses			-		A Meree	Tests	
GRO/BTEX - 3x H	COC O LOIP OG PA CI				_	Ferrous	iron (Fe2+)	-		
DRO - 2x HCL An Petroleum VOCs								-		
Feature in vocs	- 3X HOL AIIDE	1 40 ML VOA								
Notes: 8 bottle	1500			67.5						- 1
quipment: Pu Water Level Me	terSLR /	GeoTech Pe PLP WL #		Multi-Paramo)1/4" (Make/SN#)	YSI 556	05B246	52 AE	
		cohormed to .	Surface Ello		onted (have					
Water Level Me Turbidity Meter Purge Water Ha	terSLR_/ (Make/SN#)	Scharged to	surface 🖾 C	Multi-Paramo N/A	eter Meter (I	Make/SN#)	YSI 556 Filte	058246 or Lot # NEX		

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Project # : 105.01288.19008 Sample ID: MW - 14 / Sampled By: C ULVO + Sample Time: / 200 Sample Date: Ø / 16/2019 Weather Conditions: User Duplicate ID: Duplicate ID: Sample Method: C Low Flow Other MS/MSD Yes (No Trip Blank Required: x Yes (No Well Type: X Permanent Temporary Well Diameter _ 2 in. Screen Interval:ft BGS toft BGS Well Condition: Good Fair Poor (if fair or poor explain in Notes) Stickup Yes (No; If yes,ft above ground Gauging/Purging Information Depth to Water (ft BTOC): O.00 Tubing/Pump Depth (ft. BTOC): ~4,0' Purge Start Time (24-hr) Yes (A right) Yes (A right) Product (ft. BTOC): Yes (ft) Yes (ft) Yes (ft) Product Thickness (ft) Total Purge Time (min) Zei Yes (ft)	Site/Client Nam	e: APSC PSC	1 Former Ga	asoline Tan	k Area (FGTA)	Well I	D: MW-IN	L	100			
Sampled By: C. U.LANO + Sample Time: 1200 Sample Date: 1 / Lo.2019 Weather Conditions: Link Flow Durplicate ID: WMMSD Yes Q.No. Trip Blank Required: x Yes No. Weather Conditions: Link Flow Developed Parse Im. Screen Interval # BGS to # BGS to <t< td=""><td>Project # : 105.0</td><td>1288.19008</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>142</td><td></td><td></td></t<>	Project # : 105.0	1288.19008						-	142			
Weather Conditions Liff Cluster Duplicate ID: Sampling Method: Drow Other MSIMSD [] Yes [] No Trip Blank Required: x Yes [] No Well Type: X Permanent [] Temporary Well Diameter	Sampled By:	Cal	INO +			Sampl	e Time:			e Date: 🕅	/16/2019	
Sampling Method: Dur Weil Montanian MS/MSD □ Yes W No Trip Blank Required: x Yes □ No Weil Type: X Permanent: □ Temporary Weil Montanian If BGS to				N		-		1400			10.000	
Well Information Well Diameter 2				an l	-	-		E VINO	Trip Dlook	Doguirod: w	Ves 🗖 Na	
Well Direct X Permanent Temporary Well Director Stockup Yes It BGS to It BGS Well Condition Cood Fair Poor (if fair or poor explain in Notes) Stockup Yes It along It along It along It along It along Tubing Pump Depth (II: BTOC):	Samping Metho			1	Well In		SD [] Tes	XINO	пр Банк	Required. x	res 🗋 No	
Well Condition Good Fair Poor (if fair or poor explain in Notes) Stickup Vest Note Notes It above ground Depth to Water (ft BTOC): 0,00 TubingPump Depth (ft BTOC): -0,10 TubingPump Depth (ft BTOC): -0,10 Total Depth to Poduct (ft BTOC): -0,00 TubingPump Depth (ft BTOC): -0,01 -0,01 Product Thickness (ft)	Well Type: X Pe	rmanent 🗌 T	emporary				Screen Inte	erval:	ft B	GS to	ft BGS	
Gauging/Purging Information Total Depth (ft BTOC): 0,00 Tubing/Purging Information Purge Start Time (24-hr) (14/5 Purge Time (11/6) Nata Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 =							Stickup	Yes N			ve ground	
Total Depth (ft BTOC) Style Purge Start Time (24-hr) (1/4)5 Depth to Product (ft, BTOC) Purge End Time (24-hr) (1/4)5 Purge End Time (24-hr) (1/4)5 Depth to Product (ft, BTOC) Total Purge Time (min) 24 Down F. OW Max Draw Down = (1/4)ing Depth - Top of Screen Depth) X 0.25 =		1			Gauging/Purg		ation	- A.				
Depth to Poduct (ft. BTOC) Purge End Time (24-hr) (L 04) Product Thickness (ft) ==== Total Purge Time (min) 24 DVR LOW: Max Draw Down = (Tubing Depth - Top of Screen Depth) X 25 =												
Product Thickness (f) Total Purgo Trme (min) 24 LOW FLOW: Max Daw Down (10kmg Depth - Tot of Screen Depth) X 0.25 =(10; if screen interval is not known or water table is below top of screen, then use default value of 0.3.8. X 0.25 =(10; if screen interval is not known or water table is below top of screen, then use default value of 0.3.8. Weit Diameter - gaint 1 - 0.041 gaint 2 - 0.163 gaint 4 - 0.053 gaint 6 - 1.469 gaint Veit Diameter - gaint 1 - 0.041 gaint 2 - 0.163 gaint 4 - 0.053 gaint 6 - 1.469 gaint Veit Diameter - gaint 1 - 0.041 gaint 2 - 0.163 gaint 4 - 0.053 gaint 6 - 1.469 gaint Veit Diameter - gaint 1 - 0.041 gaint 2 - 0.163 gaint 6 - 0.053 gaint 6 - 1.469 gaint Veit Diameter - gaint 1 - 0.041 gaint 2 - 0.163 gaint 6 - 0.053 gaint 6 - 0.053 gaint 6 - 0.053 gaint 11 St 600 D 6 -0.149 gainteries for 3 consecutive reading sken after pumping a minimum of 1 flow through cell volume [0] 11 M 600 D 6 -0.149 Y 1 1 - 0.24 0 - 2.0 2.20 2.20 2.20 2.20 2.20 2.20 <		the second se	the second se						-			
LOW FLOW: Max Drew Down = (Tubing Depth - Top of Screen Depth) X 0.25 =(1); if screen interval is not known ar water table is below top of screen, then use definitivative of 0.3 n. Weil Diameter - galft 11 - 0.041 gal/ft 22 - 0.163 gal/ft 4' - 0.653 gal/ft 6' - 1.469 gal/ft Weil Diameter - galft 11 - 0.041 gal/ft 22' - 0.163 gal/ft 4' - 0.653 gal/ft 6' - 1.469 gal/ft Weil Diameter - gal/ft 1' - 0.041 gal/ft 2' - 0.163 gal/ft 4' - 0.653 gal/ft 6' - 1.469 gal/ft Weil Diameter - gal/ft 1' - 0.041 gal/ft 2' - 0.163 gal/ft 4' - 0.653 gal/ft 6' - 1.469 gal/ft Weil Diameter - gal/ft 1' - 0.041 gal/ft 2' - 0.163 gal/ft 4' - 0.653 gal/ft 6' - 1.469 gal/ft Weil Diameter - gal/ft Flow Purge Temp Specific (mgl)												
Min. purge volume (if required purge volume (ga)) = volume of water/ft(qu/ft, X Water column hickness(ft, X # of casing volumes) =	LOW FLOW:	Max Draw Dov			Screen Depth)					own or water tab	le is below top of	
Water Quality Parameters (Achieve stable parameters for 3 consecutive reading. 4 parameters if practical (such reading taken after pumping a minimum of 1 flow through cell volume)) Time Flow Purge Temp Specific Conductance (mgL) (mV) PH Turbicity (BTCC) (MAMER) (24-hr) Rate Volume) Of Conductance (mgL) (mV) PH Turbicity (BTCC) (MAMER) (1400) O (RMP PH Turbicity (BTCC) (MAMER) (1400) O (100) OR P H Turbicity (BTCC) (MAMER) (1400) O (100) OR P H Turbicity (BTCC) (MAMER) (1400) O (100) OR P H Turbicity (METCC) Davadown (MAMER) (1400) O (100) O (200) O (200) <th col<="" td=""><td></td><td></td><td></td><td></td><td>f water/ft (gal/</td><td>ft) X Water co</td><td>lumn thicknes</td><td>s(ft)</td><td>X # of casing</td><td>volumes</td><td>= gai</td></th>	<td></td> <td></td> <td></td> <td></td> <td>f water/ft (gal/</td> <td>ft) X Water co</td> <td>lumn thicknes</td> <td>s(ft)</td> <td>X # of casing</td> <td>volumes</td> <td>= gai</td>					f water/ft (gal/	ft) X Water co	lumn thicknes	s(ft)	X # of casing	volumes	= gai
(Achieve stable parameters for 2 consecutive reading, 4 parameters if precise if each reading taken after pumping a minimum of 11 flow through cell volume)) Time Flow Purge Temp (24.m) Rate Volume Temp (24.m) Purge						163 gal/ft		4' - 0.653	gai/ft	6' - 1.	469 gal/ft	
Time Flow Purge Temp Specific DO ORP pH Turbidity DTW Drawdown (24-br) minute (gai) (ca35) (c	An anti-											
(24-hr) Rate (m) Volume (gal) (°C) (± 3 %) Conductance- (mgL) (mV) (± 10%) (qualitativ (± 0.1) (ft BTOC) (ft) 1145 6.00 0 6.43 4.13 1.68 22.47 7.23 0.16 0.16 0.10 1145 6.00 3 6 6.44 24.4 7.47 7.94 0.20 0.20 1154 6.00 5.44 2.43 8.71 73.6 7.94 0.12 0.23 0.23 1157 5.00 2.453 8.71 73.6 7.94 0.12 0.26 0.26 1200 5.00 7.97 5.91 2.90 8.30 7.94 0.12 0.26 0.26 1201 5.00 7.9 5.61 2.76 8.46 82.9 7.77 0 0.26 0.25 1202 5.00 7.9 5.61 2.76 8.46 82.9 7.77 0 0.26 0.25 1204 5.00 1.44 6.94 2.76 8.46 7.74 0 0.28 2.25 <		C. C		Constant of Constant		or denominant						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Rate	Volume		Conductance -			рн	(qualitativ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
If 1 Way 3.6 G.44 $2\frac{9}{2}$ 8.44 W_{-4} 7.94 L 0.23 0.20 11 54 (way 5.41 2.83 8.71 73.6 7.94 L 0.23 0.53 11 57 SD0 2.83 5.91 2.80 8.71 73.6 7.94 L 0.246 0.25 1200 5.00 2.83 8.71 73.6 7.84 1.82 L 0.246 0.25 1300 5.00 2.80 2.30 78.4 1.82 L 0.246 0.26 1001 500 9.44 5.70 2.78 0.40 7.77 L 0.26 0.40 1201 500 1.4 6.44 27.6 8.44 82.9 7.77 L 0.28 0.28 3arameter Stable (Check applicable) V V V V V V Sample Color: Clair Sample Odor: Sheen: Monthe Sheen: Monthe Monthe Sample Color: Clair Sample Odor: Sheen: Monthe			(94)	(± 3 %)		(± 10%)					(Maxft)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1145	600	D	6.43	431	9.08	22.9	7.23	L	0.10	0.10	
1154 (abs) 3.4 3.62 2.83 8.71 73.6 7.84 L 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 <th< td=""><td>1151</td><td>600</td><td>3.6</td><td>6.49</td><td>207</td><td>8.94</td><td></td><td>7.84</td><td>L</td><td>170</td><td>0.20</td></th<>	1151	600	3.6	6.49	207	8.94		7.84	L	170	0.20	
In ST DD Description Sell ZEO 9.30 78.4 78.4 Description Description <thdescription< th=""> Description<td></td><td>loas</td><td></td><td></td><td></td><td>8.71</td><td>73.6</td><td></td><td></td><td></td><td></td></thdescription<>		loas				8.71	73.6					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	the second se							the second se	L			
$\frac{1203}{1204} = \frac{500}{11.4} = \frac{11.4}{1.4} = 1$			1				and the second					
IZUL	0						the second se	and the second se		and the second se		
Parameter Stable (Check applicable) V V Parameter Stable (Check applicable) V V Sample Color: Clift Sample Odor: Sample Color: Clift Sample Odor: Analyses Fleid Tests SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous Iron (Fe2+) =											and the local division of the local division	
Sample Color: Lew Sample Odor: Sheen: Non Tc. Analytical Sampling Field Tests SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe2+) =	1006	500	11.9	0.01	2/0	6.90	0.241	7.70		0,00		
Sample Color: Sample Odor: Sheen: Non Tc. Analytical Sampling Analytical Sampling SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous Iron (Fe2+) =												
Sample Color: Sample Odor: Sheen: Non Tc. Analytical Sampling Analytical Sampling SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous Iron (Fe2+) =												
Sample Color: Sample Odor: Sheen: Non Tc. Analytical Sampling Analytical Sampling SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous Iron (Fe2+) =		-										
Sample Color: Sample Odor: Sheen: Nonte. Analytical Sampling Analytical Sampling Analytical Sampling SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe2+) =	Parameter Stable	e (Check appl	icable)	1	V	1	1	V				
Analytical Sampling Analytical Sampling Field Tests GRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe2+) =	Sample Color:	-1200-	**************************************	1	Samela Odor:	-	V		. 1	1	ł.	
Analyses Field Tests SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe2+) =	Sample Color.	Cui	_	_		1.Compliant		Shee	m. 1000	116		
GRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe2+) =			Anal	VSes	Analytica	ii Sampling	1	_	Field	Tests		
DRO - 2x HCL Amber Glass 250 mL bottle Petroleum VOCs - 3x HCL Amber 40 mL VOA Notes: 8 bottles total each well highthat	GRO/BTEX - 3x H	CL Amber 40 m		1000			Ferrous	iron (Fe2+)	C CPACE			
Notes: 8 bottles total each well high flow fak to KUP With from Durflowing inner 2 " fui Calling. Equipment: Pump TypeGeoTech PeristalticTubing (Type/Length)1/4" OD PFTE-LINED HDPE Nater Level Meter <u>SLR PUP #2</u> Multi-Parameter Meter (Make/SN#)_YSI 556Q5B 2462 <u>AE</u> Furbidity Meter (Make/SN#)N/A									-			
high from Sak to Kup With from Durflowing Inners" PUT CUSING. Equipment: Pump TypeGeoTech PeristalticTubing (Type/Length)1/4" OD PFTE-LINED HDPE Nater Level Meter <u>SLR PUP #2</u> Multi-Parameter Meter (Make/SN#)_YSI 556Q5B2462 <u>AE</u> Furbidity Meter (Make/SN#)N/A	Petroleum VOCs -	- 3x HCL Ambe	r 40 mL VOA		-				_			
high from Sak to Kup With from Durflowing Inners" PUT CUSING. Equipment: Pump TypeGeoTech PeristalticTubing (Type/Length)1/4" OD PFTE-LINED HDPE Nater Level Meter <u>SLR PUP #2</u> Multi-Parameter Meter (Make/SN#)_YSI 556Q5B2462 <u>AE</u> Furbidity Meter (Make/SN#)N/A												
	Equipment: Pu Water Level Meter	mp Type er_SLR_PL	hi) fu GeoTech Per	h fw. Cùs.in istaltic). Tubing (T	ype/Length)	1/4" (DD PFTE-L	INED HOPE	-	erz"	
Purge Water Handling: Discharged to surface Scontainerized Scontainerized (how?)_APSC HAZMAT CONEX	and the second se	and the second sec				-	Then Pro			_N/A		
BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable Page 1 of						ALC: CONTRACT OF A		ZMAT CON				

Site/Client Name	APSC PSO	1 Former Ga	soline Tanl	Area (FGTA)	Well II	D: MW-]	TR			
roject # : 105.01	288.19008				Sampl	eID: A	1W-17R	-		
Sampled By: E	Van Ty				Sampl	e Time:	125	Sampl	e Date: 8 /	16 /2019
Weather Conditio	ns: ~ 56	F, SUANY			Duplic	ate ID: -				
Sampling Method						SD 🗌 Yes	No	Trip Blank	Required: x Y	es 🗌 No
Well Type: X Perr	nanent 🗌 Te	emporary	E.	Well In Well Diameter	2 in.	Screen Int	erval:	ft B	GS to	ft BGS
Well Condition:	and the second second			and the second se					ft above	
			-	Gauging/Pur						
Depth to Water (fi		1.34			and the second data was a second data w	Pump Depth				
Total Depth (ft B Depth to Product	the second se	1019				Start Time (2 End Time (24		174		
Product Thicknes						urge Time (r		30		
LOW FLOW: N	lax Draw Dow	n = (Tubing D default value o		Screen Depth)					own or water table	e is below top of
Min. purge volume Well Diameter		urge volume (ga 1" – 0.0			/ft) X Water co 163 gal/ft	the state of the s	s(ft) 4' - 0.653) X # of casing gal/ft	and a second design of the second design of the	= gal 69 gal/ft
				Water Qual parameters if practi	ity Paramet	ers				
Time	Flow	Purge	Temp	Specific	DO	ORP	pumping a	Turbidity	DTW	Drawdown
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	(mV)		(qualitativ	(ft BTOC)	(ft)
	(m/L minute)	(gai) C	(± 3 %)	(µS/cm ^c) (± 3%)	(± 10%)	(± 10mV)	(± 0.1)	e) (L/M/H)		(Maxft)
1059	320	1.74	10.15	435	2.00	37.9	7.00	Ĺ	1.41	0.07
1102	320	7.7L	615	450	0,50	17.7	684	Lo	-1-4914	0.100
1105	320	2,71	(15	459	0.41	12.1	682	1 6	1.41	0.07
1108	320	4.71	670	411	0.34	5.4	6.84	L	1.41	0.07
101	320	511	177	466	0.28	12	6.85%	Ĩ	1.43	0.09
	320	121	6.01	469	0,00	1.5	6.90	STI	1,43	0.09
1114	0	6.76	1211		0.20	-10.0		1		0.09
1118	320	2110	6.27	469	017	-13.3	6.92	L	143	
1121	300	4.16	6.25	470	0.17	~16.7	6.93	L	1.44	0.10
1124	300	10,12	6.30	468	0.14	-20.1	6,95	5	1.43	0,09
Parameter Stable	(Check appli	cable)	1	./		1	V			
			V	V	0 0	1	<u> </u>			-
Sample Color:	Clear	-		Sample Odor:	al Sampling	rese	Shee	en: None	!	
		Analy	yses	Analytic	ar camping	1		Field	Tests	
GRO/BTEX - 3x HC	L Amber 40 m	L VOA				Eerrous	iron (Ea2+)			
DRO - 2x HCL Amb	er Glass 250 n	nL bottle								
Petroleum VOCs –	3x HCL Amber	40 mL VOA								
Notes: 8 bottles	total each we	ell								
quipment: Pur					ype/Length)					
	1 5 0/0- I	ndicitor	60100	Multi-Param	eter Meter (M	/lake/SN#)	YSI 556	otto	10212	
Water Level Mete Turbidity Meter (N		the with		N/A	ere. merer p			er Lot #	N/A	

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Site/Client Name:	APSC PS01	Former Ga	soline Tank	Area (FGTA)	Well II	D: MW- j	6R	12-1-1		
Project # : 105.012		1			Sampl	eID: M	W-16	R	in the second second	
Sampled By: Eu	an Ty	ler			Sampl	e Time: 🥇	212	Samp	le Date: 8	1 6/2019
Weather Condition		Portly C	budy		Duplic	ate ID:				
Sampling Method:			100.9		MS/MS	SD 🗌 Yes	No No	Trip Blank	Required: x	Yes 🗌 No
	~			Well In	formation		K			
Well Type: X Perm	anent 🗌 Te	emporary	1	Nell Diameter	2 in.	Screen Inte	erval:	ft E	BGS to	ft BGS
Well Condition:	Good 🗌 Fa	air 🗌 Poor (if	fair or poor	explain in Notes)	Acres 1.	Stickup	Yes XN	o; If yes,	ft abo	ve ground
	DTOOL O			Gauging/Pur	ging Inform	ation	16 DT00	0	10 00	12
Depth to Water (ft Total Depth (ft BT		.18				Pump Depth Start Time (2			12.87	1:6
Depth to Product (End Time (24				
Product Thickness						urge Time (n				
SC	reen, then use	default value of	f 0.3 ft.;	Screen Depth)			1. and 1. i. i.	con a nave		ble is below top of
Min. purge volume i Well Diameter -		irge volume (ga 1" - 0.0			/ft) X Water co 163 gal/ft			X # of casing gal/ft		=gal .469 gal/ft
vven Diameter -	gaint	1 - 0.0	41 gaint	Water Qual			4 - 0.000	yanı	0-1	405 gawit
(Achieve stat	le parameters	for 3 consecuti	ve reading, 4	parameters if practic			r pumping a	minimum of	1 flow through ce	ell volume])
Time (24-hr)	Flow Rate (m/L	Purge Volume	Temp (°C)	Specific Conductance (µS/cm ^e)	DO (mg/L)	ORP (mV)	рН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)
NUT	minute)	0.36	(±3%)	(± 3%)	(± 10%)	(± 10mV)	(±0.1)	(L/M/H)	070	(Maxft)
1146	160		4.02	1046	1.80	65,0	6.83	L	0.70	0.14
1149	160	0.8L	and the second se	1039	0.85	the second se	6.82	L	8.75	0.19
1152	and the second sec	1. 7.	4.41	1028	0.50	49.0	6.83	Ļ	0.76	0.20
1155	150	1.7L	4.51	1018	0,44	42.1	6.85	L	0.76	0.20
1158	150	2.26	4,60	1006	0:36	361	6,87	L	0.76	0.20
1201	150	2.66	4,64	991	0,31	32,4	6.88	Ĺ	0.74	0,18
12.05	150	3.26	4.68	974	0,29	27.2	688	L	0.77	0.21
1710	150	4.01	4,69	986	0.24	23,5	691	L	0.79	0.23
10										
Parameter Stable	Check appli	cable)	1	1		V	1.			-
Sample Color: 5	1.11 .		V	Sample Odor:	1/0		Shee	NI	000	
Sample Color. 3	light \	rellow	_				Offec	1. 11	one	
		Analy	Ses	Analytic	al Sampling	-		Field	Tests	
GRO/BTEX - 3x HCL	Amber 40 mi				_	Ferrous	iron (Fe2+)		0.18 M	
DRO - 2x HCL Ambe	er Glass 250 m	L bottle	-						-	
Petroleum VOCs - 3	x HCL Amber	40 mL VOA		-						
Notes: 8 bottles t	otal each w									
Equipment: Pum Water Level Meter Turbidity Meter (Ma	p TypeC 	SeoTech Peri Indicada	2093			//ake/SN#)	YSI 556 Filte	r Lot #	= 	

1.0%

Site/Client Nan	ne: APSC PS0	1 Former G	asoline Tan	k Area (FGTA)	Well I	D: MW- + 8	3			
roject # : 105.0					Sampl	e ID: MW-	13			
Sampled By:	Manage	4 in All	is		Samp	e Time: 00	56	Samp	le Date: 8	11 /2019
Weather Condit				rf -	Duplic	ate ID: M	W-99		0, 17	üð
Sampling Metho						SD 🗌 Yes	-		Required: x	
					formation					
Well Type: X Pe	ermanent 🗌 T	emporary		Well Diameter	2 in.	Screen Inte	erval:	ft I	BGS to	ft BGS
Well Condition:	Good G F	air 🗌 Poor (if fair or poor	explain in Notes)			Yes 📈 N	o; If yes,	ft abo	ove ground
		12 01		Gauging/Pur						
Depth to Water Total Depth (ft.			-			/Pump Depth Start Time (2		and the second sec		
Depth to Produc			_	_		End Time (24				
Product Thickne						urge Time (n				
LOW FLOW:	Max Draw Dow screen, then use	n = (Tubing e default value	Depth – Top o of 0.3 ft.;	f Screen Depth)					own or water ta	ble is below top o
Min. purge volum Well Diamete			gal) = volume o .041 gal/ft		/ft) X Water co 163 gal/ft	olumn thicknes	s <u>(ft</u>) 4' – 0.653) X # of casin gal/ft		gal .469 gal/ft
			and games	Water Qual						
(Achieve s	stable parameters	s for 3 consecu	utive reading, 4	parameters if practic			r pumping a	minimum of	1 flow through c	ell volume])
Time (24-hr)	Flow Rate (m/L	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)	ORP (mV)	pН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)
	minute)	16	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(L/M/H)	1.11	(Maxft)
60131	200	-Ö	7.01	281	11.44	188:0	7.80			0,27
0934	150	1.15	6.57	272	10.97	193.3	7.80		1.24	041
6938	175	1.95	6.43	281	10.14	197,7	7.74	m	1.27	0.44
0942	300	3,95	6.45	258	9:51	198.6	7.70		1010	026
0945	350	4.9	6.39	330	8.48	203,4		M	1.13	03
0448	350	5.95	6.34	340	8.18	203.6	7.56	m/L	1.15	0.32
UNS1	-550	7.00	635	361	7.31	207.3	7.50	m/L	1017	0.34
0954	350	8.1	6.32	368	7.13	2080	7.491	mll	1.17	0.34
						1				-
	-		-							
Parameter Stab	le (Check appl	icable)	~		12.0	L	~	-		
Sample Color:	it bacin	,	10	Sample Odor:	NUM	0	Shee	n: Non	E	
	or nous			1	al Sampling	1	1.00	,		
		Ana	lyses					Field	Tests	
GRO/BTEX - 3x H	ICL Amber 40 m	L VOA				Ferrous	iron (F02+)	-		
DRO - 2x HCL An	nber Glass 250 r	mL bottle				-				
Petroleum VOCs	- 3x HCL Ambe	r 40 mL VOA	à			_				
Notes: 8 bottle 3 Vd.5 = 0 1 v.luw = 0 = 1 quipment: Pu Water Level Me	21462 21462 212 ump Type ter <u>cuft x</u> e	GeoTech Pe	ristallic_ Trol/cabe	Tubing (1	Type/Length)1/4" (Make/SN#)	YSI 556_	0582	HGEAE	
	andling: 🗌 Di		A COLUMN A PROVIDE AND	N/A ontainerized X Ti op of Casing, NA =	1	A			_N/A	

Site/Client Name:	APSC PS0	1 Former G	asoline Tar	k Area (FGTA)	Well I	D: MW- 10	1			
Project # : 105.012	88.19008				Samp	e ID: mu	2-19			
Sampled By: My	n Guba	with	-		Samp	e Time: 10	49	Samp	le Date: 8	116/2019
Weather Condition			· ~	408	Duplic	ate ID:	_			
Sampling Method-	1-1-1					SD 🗌 Yes		Trip Blank	Required: x	Yes 🗌 No
	-		-		formation	1				
Well Type: X Perm				Well Diameter					BGS to	
Well Condition:	Good LI F	air 🗋 Poor (it fair or poo				Yes X N	o; If yes,	ft abo	ve ground
Depth to Water (ft I	BTOC) (1	52.		Gauging/Pur		Ation /Pump Depth	ft BTOC	1 25	-	
Total Depth (ft BT)						Start Time (2				
Depth to Product (f					the second se	End Time (24	and the second se			
Product Thickness	(ft)				Total P	urge Time (n	nin) Z3	1		
		n = (Tubing I default value		f Screen Depth)	X 0 25	=(ft); i	f screen inte	erval is not kn	own or water tal	ble is below top of
Min. purge volume if										
Well Diameter -	gaint	1" - 0.	041 gai/it		163 gai/ft	1	4 - 0.000	gaint	0-1	.469 gal/ft
(Achieve stab	le parameters	for 3 consecu	tive reading,	Water Qual parameters if practic			r pumping a	minimum of	1 flow through ce	ell volume])
Time (24-hr)	Flow Rate (m/L	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm ^e)	DO (mg/L)	ORP (mV)	pН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)
	minute)		(± 3 %)	(± 3%)	(± 10%)	(± 10mV)		(L/M/H)		(Maxft)
1028	200	0.4	7,55	451	5.80	221,2	7.36	Ĺ	0.76	.14
1031	225	1.05	7.12	517	2:17	219,01	7.07	L	0.05	.33
1034	200	1.45	6.43	639	1.99	LIS.7	7.04	L	0.39	37
1038	250	2.05	6.95	653	1.67	723.0	6.44	L	0.43	.41
10:10:041	250	3.4	676	658	1.69	103.4	6.05	L	6.04	42
1044	230	4.15	6.76	67.5	1.48	and the second	and the second se		0.97	145
1047	250	4.90	6.80	635	1.42	1	4.97	L	0.99	0.49
										o. J
		-								
		-			-		-			
B and Built (0									-
Parameter Stable (Check appli	cable)	2							
Sample Color: ()	EAR		-	Sample Odor:	NONE		Shee	en: Non	E	
				Analytic	al Sampling	1			_	
		Ana	lyses					* cerce	Tests	
GRO/BTEX - 3x HCL			_		_	Forrous	iron (Fe2+)	Ruid-		
DRO - 2x HCL Ambe	Cancer of the						_			
Petroleum VOCs - 3)	K HCL Ambe	40 mL VOA								
Notes: 8 bottles to 3 June = 2 1. Agul		ell								
Equipment: Pump SUR Water Level Meter_ Turbidity Meter (Ma	mpar		ristaltic	Tubing (T Multi-Parame N/A	Type/Length eter Meter (I)1/4" (Make/SN#)	YSI 556_	INED HDPI 05824 ar Lot #	62 AE	
Purge Water Hand		charged to			reated (how					
				on of Casing NA =		the second se			rel of 1	

Site/Client Name:	APSC PS01	Former Ga	soline Tank	Area (FGTA)	Well ID	: MW- 2	0			
roject # : 105.012	288.19008				Sample	e ID: M	N-20)		
Sampled By: Fi	in Tu	ler			Sample	e Time: 15	55	Samp	le Date: 8	16/2019
Weather Condition		F. Clau	du.		Duplica	1	-			10
Sampling Method:			Y			D TYes	(No	Trip Blank	Required: x	Yes 🗆 No
	A			Well In	formation		7		Condector 2	
Well Type: X Perm	nanent 🗌 Te	mporary	1	Well Diameter	2 in.	Screen Inte	rval:	ft B	GS to	ft BGS
Well Condition:	Good 🗌 Fa	ir 🗌 Poor (i	f fair or poor	explain in Notes)		Stickup	Yes X No	; If yes,	ft abov	e ground
E		-		Gauging/Purg				1.01		
Depth to Water (ft Total Depth (ft BT		05	-	_	and the second se	Pump Depth Start Time (24	the second s	the second se		_
Depth to Product (-	_		and Time (24			-	_
Product Thickness						urge Time (m	10	8		
	ax Draw Down			Screen Depth)	X 0.25 =	=(ft); if	screen inter	val is not kn	own or water tab	le is below top o
Min. purge volume i Well Diameter -	if required: pu	rge volume (g			/ft) X Water co 163 gal/ft	lumn thickness	(ft) - 0.653 g	X # of casing gal/ft	and the second design of the s	= gal 469 gal/ft
(Achieve stat	nle parameters	for 3 consecut	tive reading 4	Water Quali parameters if practic			numning a	minimum of t	I flow through cel	(volume)
Time	Flow	Purge	Temp	Specific	DO	ORP	pumping a	Turbidity	DTW	Drawdown
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	(mV)	Pri	(qualitativ	(ft BTOC)	(ft)
	(m/L minute)	(pen)	(± 3 %)	(μS/cm ^c) (± 3%)	(± 10%)	(± 10mV)	(± 0.1)	e) (L/M/H)	1.1.1.1	(Maxft)
1530	125	0.81	6.48	869	8.70	116.5	7.29	L	0.81	Q.03
1535	125	1.46	6.43	904	5.58	118.1	7.79	L	0,79	0.01
1538	175	1.86	6.31	937	2.58	121,0	7.25	I	0.79	0.01
) 1542	175	2.5L	6.35	927	2.05	121.8	7,24	T	0,80	0.02
1546	175	3.21	6.18	941	1.61	123.0	7,24	T	0.82	9.04
1549	175	371	2.08	945	1.60	1241	7.23	F	0.32	0.04
1552	175	4.36	611	945	1.59	124.7	1 72	Y	0,83	0.05
1220	175	10 36	Gell	195	1.91	1011 4	7, 53	-	0.01	0.05
				-	-					-
	1						-			-
	1		,							100
Parameter Stable	(Check applic	able)		1	1		1			
Sample Color:	lear			Sample Odor:	None		Shee	n: NON	in	
1		Anal		Analytica	al Sampling	-	_	Field	Tanta	
CROURTEX 2+ HCI	Ambar 40 ml	di second	yses					0.000	Tests	
GRO/BTEX - 3x HCL DRO - 2x HCL Ambe			-			Perrous	ron (Fe2+)-		_	
Petroleum VOCs - 3		A STREET, STRE			_	-		_		
Notes: 8 bottles t	otal each we	n								
quipment: Pum	n Type G	eoTech Per	istaltic	Tubing /T	voell enoth)	1/4" O				
Water Level Meter	A	0.0	WL 2	Multi-Parame					H62 AE	
Turbidity Meter (Ma				N/A				r Lot #	N/A	
	and the second sec	charged to s	urface 🕅 Co	ntainerized X Tr	eated (how?)_APSC HAZ				

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Weather Conditions: 44° Cloudy Duplicate ID: Sampling Method: Low Flow Other MS/MSD Yes No Trip Blank Required: x Yes No Well Information Well Information MS/MSD Yes No; If yes,ft BGS toft BGS Well Condition: Good Fair Poor (if fair or poor explain in Notes) Stickup Yes No; If yes,ft above ground Gauging/Purging Information Gauging/Purging Information Tubing/Pump Depth (ft. BTOC); Ft above ground Depth to Water (ft BTOC): 9 Purge Start Time (24-hr) 6 9 Product (ft. BTOC): 9 Purge End Time (24-hr) 6 9 Out Thickness (ft) Total Purge Time (min) 16 9 9 Ow FLOW: Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 =	Site/Client Nam	e: APSC PS0	1 Former G	asoline Tan	k Area (FGTA)	Well II	: MW- 7	R				
Weather Conditions 14 P / L Clowed Duplicate ID: Sampling Method Low Flow Other MS/MSD Yes No. Trip Blank Required: X Yes No. Well Tryper X Permanent Temporary Well Diameter	Project # : 105.0	1288.19008	14.75	1-1-1		Sampl	e ID: M	W-FR		2.40%	1000	
Weather Conditions 14 P / L Clowed Duplicate ID: Sampling Method Low Flow Other MS/MSD Yes No. Trip Blank Required: X Yes No. Well Tryper X Permanent Temporary Well Diameter	Sampled By:	EVAN	Tyler	WAN CA	RAT-WILLS	Sampl	e Time: 1/	46	Samp	le Date: 8	/ 16/2019	
Sampling Method: Low Flow Other		ons: 440					10	10	_			
Well Information Well Information It BGS to		1		NOY				MNO	Trin Blank	Pequired: x		
Well Diameter 2 in Screen Interval: # BGS to # BGS to the BGS to t	Sampling Metho	u. La Low Hic			Well Inf			Alino	Пр Балк	Required. A		
Gauging/Purging information Depth to Water (IL BTOC): 0.19 Tobing/Purge End Time (24-hr) 1.645 Purge Start Time (24-hr) 1.645 Purge End Time (24-hr) 1.645 Orduld Thickness (1):	Well Type: X Pe	rmanent 🔲 T	emporary		the state of the s	the later was a second s	Screen Int	erval:	ft E	BGS to	ft BGS	
Depth to Water (fL BTOC): Deft Tubing/Pump Depth (fL BTOC): Depth to Product (fL BTOC): 0.5 Purge Start Time (24-hr) 645 Depth to Product (fL BTOC): 0.5 Purge Start Time (24-hr) 645 Total Purge Time (04-hr) 5.0 0.5 0.5 0.5 Porte Start Time (24-hr) 5.0 0.5 0.5 0.5 0.5 In. purge volume of medical value of 0.3.1: 1 - 0.041 gaint 2 - 0.165 gaint 4 - 0.655 gaint 6 - 1.459 gaint Veril Diameter - gaint 1 - 0.041 gaint 2' - 0.165 gaint 4 - 0.655 gaint 6 - 1.459 gaint Veril Diameter - gaint 1 - 0.041 gaint 2' - 0.165 gaint 4 - 0.653 gaint 6 - 1.459 gaint Veril Diameter - gaint 1 - 0.041 gaint 2' - 0.163 gaint 4 - 0.653 gaint 6 - 1.459 gaint Veril Diameter - gaint 1 - 0.041 gaint 2' - 0.163 gaint 4 - 0.653 gaint 6 - 1.459 gaint (24-n) Ride Volume Vering Parmeters 1 Gaint 1 Gaint (14-14) 1 Gaint (24-n) Rold Sign (14-14) 2.14 (23-13) 1 Gaint <td>Well Condition: [</td> <td>Good F</td> <td>air 🗌 Poor (</td> <td>if fair or poor</td> <td>explain in Notes)</td> <td></td> <td>Stickup</td> <td>Yes N</td> <td>o; If yes,</td> <td>ft abov</td> <td>e ground</td>	Well Condition: [Good F	air 🗌 Poor (if fair or poor	explain in Notes)		Stickup	Yes N	o; If yes,	ft abov	e ground	
Drad Depth (fr. BTOC): 1, 1, 1 Purge Start Time (24-hr) 1645 Product Thickness (ft) Total Purge Time (min) X 0.25 (min) 1645 OWH Down = (Tubing Depth - Top of Screen Depth) X 0.25 (min) (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 (min) (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 (min) (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 (min) (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 (min) (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 (min) (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth) Y 0.25 (min) (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth) Y 0 Water Column thickness (ft) X # of caling volumes = 0 Max Draw Down = (Tubing Depth - Top of Screen Depth - Top of S		- P*			Gauging/Purg	ing Inform	ation	13				
Depth of Product (ft. BTOC)												
Product Thickness (f)	the second s								619			
OW FLOW: Max Dava Down - ("Lubing Depth - Top of Sceen Depth) X 0.25 =									295			
Well Diameter - gal/t 1"-0.041 gal/t 2"-0.163 gal/t 4"-0.653 gal/t 6'-1.469 gal/t Water Quality Parameters (Achieve stable parameters for 3 consecutive reading. 4 parameters fractical (each reading taken after pumping a minimum of 1 flow through cell volume) Time Flow Purge Temp Specific DO ORP PH Cubicity DTW Gravedown (1 flow through cell volume) Time Rate Volume (each reading taken after pumping a minimum of 1 flow through cell volume) (1 flow through cell volume) (24-hn) Rate Volume (each reading taken after pumping a minimum of 1 flow through cell volume) (flow through cell volume) (24-hn) Rate (each reading taken after pumping a minimum of 1 flow through cell volume) (flow through cell volume) (24-hn) Rate (each reading taken after pumping a minimum of 1 flow through cell volume) (flow through cell volume) (24-hn) Rate (each reading taken after pumping a minimum of 1 flow through cell volume) (flow through cell volume) (24-hn) (20-12, 1, 2, 3, 5, 1, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3,	LOW FLOW:	Max Draw Dow			f Screen Depth)				rval is not kn	own or water tab	le is below top of	
Water Quality Parameters (Achieve stable parameters for 3 consecutive reading, 4 parameters a functional (achi reading laken after pumping a minimum of 1 flow though cell volume)) Time Flow Purge Term Conductance (mg/L) (m/L) (100) Purge PH Turbidity DTW Drewdown (100) (24-In) Rate Volump Term Conductance (mg/L) (100) PH Turbidity DTW (100) DTW OWN (100) (24-In) (24-In) PH Turbidity DTW (24-In) (24												
(Acheve stable parameters 07 aconsecutive reading 4 parameters 17 practical (sech reading taken after pumping a "uniform of 16 whough cell volume) Time Flow Purge Temp Specific (m) PH PH <td< td=""><td>Well Diamete</td><td>r-gal/ft</td><td>1° – 0.</td><td>041 gal/ft</td><td>and the second s</td><td>1 2 4 C 4 C 7</td><td></td><td>4' - 0.653</td><td>gal/ft</td><td>6'-1.4</td><td>469 gal/ft</td></td<>	Well Diamete	r-gal/ft	1° – 0.	041 gal/ft	and the second s	1 2 4 C 4 C 7		4' - 0.653	gal/ft	6'-1.4	469 gal/ft	
Time Flow Purge Temp Specific DO ORP pH Turbidity DTW Drawdown (24.m) Rate W/Ump (*3) (*3) (*3) (*100) (*110) (*100) (*110) (*110) (*110) (*100) (*110) (*100) (*110) (*100) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110) (*110)	(Achieve sl	table parameters	s for 3 consecu	itive reading, 4				r pumping a	minimum of	1 flow through cel	ll volume])	
(24-hr) Rate minute Volume (±3.%) (**) Conductance (±3.%) (mg/L) (±10%) (**)						_			_		Drawdown	
minute: 1/2 (± 3%) (± 3%) (± 10%)	(24-hr)		Volume		and the second se	(mg/L)	(mV)		and the second se	(ft BTOC)	(ft)	
1623 200 0.8L 6.13 209 11.84 103.1 8.44 14 0.21 0.02 1626 200 1.4L 6.14 212 9.27 110.5 8.36 14 0.21 0.02 1636 200 2.2L 6.19 2.19 6.33 112.1 8.36 14 0.25 0.02 1635 260 4.2L 6.14 2.95 5.30 115.9 8.25 14 0.30 0.11 1645 260 6.0L 6.10 25.6 5.130 115.9 8.18 10.30 0.11 1645 260 6.0L 6.10 25.6 5.03 115.8 8.18 10.30 0.11 1645 260 6.0L 6.10 25.6 5.03 115.8 8.18 10.30 0.11 3ample Color: 5.30 115.8 8.18 10.30 0.11 14 0.30 0.11 3ample Color: 5.40.1 25.6 5.03 115.8 8.18 10.30 11 10.30 11 <td></td> <td></td> <td>(9an) L</td> <td>(± 3 %)</td> <td></td> <td>(± 10%)</td> <td>(± 10mV)</td> <td>(± 0.1)</td> <td></td> <td>1.2.7.1</td> <td>(Maxft)</td>			(9an) L	(± 3 %)		(± 10%)	(± 10mV)	(± 0.1)		1.2.7.1	(Maxft)	
1626 200 1.41 6.17 212 9.27 10.5 8.36 10.21 0.20 0.02 1630 200 2.21 6.19 2.19 6.83 112.1 8.31 10.20 0.02 1635 260 3.51 6.16 230 5.67 113.7 8.28 10.20 0.02 1638 260 4.21 7.7 240*250 5.30 115.0 8.20 H 0.30 0.11 1645 260 5.31 6.14 255 5.17 115.5 8.20 H 0.30 0.11 1645 260 6.01 256 5:03 115.8 8.18 H 0.30 0.11 1645 260 6.01 256 5:03 115.8 8.18 H 0.30 0.11 5ample Color: 5400 V V V Sample Color: Sample Color: Material Sampling Analytical Sampling NA Analytical Sampling Analytical Sampling Ferreus iren (Ea24)= Sample Color: Sample Color: Sample	1673	200	0.86		209	11,84	108,1	8.44	H	0.21		
200 2.2L 6.19 2.19 6.38 112.1 8.31 1 0.20 0.02 16.35 260 3.5L 6.16 230 5.67 113.7 8.28 H 0.25 0.06 16.35 260 4.2L 1.7 240 5.30 115.9 8.75 H 0.30 0.11 1642 260 5.34 6.14 255 5.17 115.5 8.20 H 0.30 0.11 1645 260 6.0L 6.10 256 5:03 115.8 \$.18 H 0.30 0.11 1645 260 6.0L 6.10 256 5:03 115.8 \$.18 H 0.30 0.11 Sample Odor: www. Analysical Sampling Analysical Sampling Scott Clamber 40 mL VOA Secont Clamber 40 mL VOA Parents rise (Es24) = Parents rise (Es24) = OPEC Context rise (Type/Length) 1/4" OD PFTE-LINED HDPE <td c<="" td=""><td>1276</td><td>000</td><td></td><td>GIT</td><td>212</td><td>9.27</td><td>110,5</td><td>9.36</td><td>LÍ</td><td>0.21</td><td>0.02</td></td>	<td>1276</td> <td>000</td> <td></td> <td>GIT</td> <td>212</td> <td>9.27</td> <td>110,5</td> <td>9.36</td> <td>LÍ</td> <td>0.21</td> <td>0.02</td>	1276	000		GIT	212	9.27	110,5	9.36	LÍ	0.21	0.02
240 3:5L 6,16 230 5,67 13,7 8,28 0,25 0,06 16,38 260 4,2L 6,17 240*250 5,30 115,9 8,25 FI 0,30 0,11 16,45 260 5,34 6,14 255 5,17 115,9 8,20 H 0,30 0,11 16,45 260 6,04 6,10 25.6 5,93 1/5:8 5,18 H 0,30 0,11 16,45 260 6,04 6,10 25.6 5,93 1/5:8 5,18 H 0,30 0,11 16,45 260 6,04 6,10 25.6 5,93 1/5:8 5,18 H 0,30 0,11 16,45 260 6,04 6,10 25.6 5,93 1/5:8 5,18 H 0,30 0,11 3rample Color: & Malyses Sample Odor: Malyses Sheen: A.c.M Sheen: A.c.M 3rangle Color: & Malyses Sample Odor: Malyses Sheen: A.c.M Sheen: A.c.M 3rangle Color:	1620			6,19	219	6.99	and the second second	8.31	FI		and the second se	
16.35 260 4.24 6.17 240 3:0 5:30 115.0 5:25 41 0.30 0.11 1645 260 5:34 6.14 255 5:17 115:5 8.20 H 0.30 0.11 1645 260 6:04 6:10 256 5:03 115:8 5:18 H 0.30 0.11 1645 260 6:04 6:10 256 5:03 115:8 5:18 H 0.30 0.11 1645 260 6:04 6:10 256 5:03 115:8 5:18 H 0.30 0.11 1645 260 6:04 6:10 256 5:03 115:8 5:18 H 0.30 0.11 Parameter Stable (Check applicable) ✓ </td <td>1234</td> <td></td> <td></td> <td></td> <td>220</td> <td></td> <td></td> <td></td> <td>FI</td> <td></td> <td>0</td>	1234				220				FI		0	
1642 260 5.34 6.14 255 5.14 115.5 8.20 H 0.30 0.11 1645 260 6.04 6.10 256 5:03 115.8 8.18 H 0.30 0.11 Parameter Stable (Check applicable) ✓ ✓ ✓ ✓ ✓ ✓ Parameter Stable (Check applicable) ✓ ✓ ✓ ✓ ✓ ✓ Sample Color: Bays Sample Odor: MMA Sheen: A.M. Mathematical Sampling Analyses Field Tests Servers iren (Ee24) =	1932			017	SHART	5.30			EI -	0.20	011	
1645 260 6.0 L 6.10 256 5:03 1/5:8 5,18 H 0.90 0.11 Parameter Stable (Check applicable) ✓	10,50		Yell	6. T	250	5130	11514		1	and the second se	0.11	
Parameter Stable (Check applicable) ✓ ✓ ✓ ✓ Parameter Stable (Check applicable) ✓ ✓ ✓ ✓ Sample Color: Malyses Sample Odor: ✓ ✓ ✓ Sample Color: Malyses Field Tests ✓ ✓ ✓ SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe22) = ✓ ✓ ✓ ✓ SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe22) = ✓ ✓ ✓ ✓ Notes: 8 bottles total each well ✓	1672			6,14	and the second	7,1T			n_			
Sample Color: ∱ ℓℓψ) Sample Odor: MM, Sheen: AM Analytical Sampling Analytical Sampling Field Tests Field Tests For our iron (Fe2±) =	1645	260	6.0C	6,10	256	5:05	1/2:0	8.15	Н	0.90	0.11	
Sample Color: ∱ ℓℓψ) Sample Odor: MM, Sheen: AM Analytical Sampling Analytical Sampling Field Tests Field Tests For our iron (Fe2±) =				-								
Sample Color: ∱ ℓℓψ) Sample Odor: MM, Sheen: AM Analytical Sampling Analytical Sampling Field Tests Field Tests For our iron (Fe2±) =		_		-								
Sample Color: ∱ ℓℓψ) Sample Odor: MM, Sheen: AM Analytical Sampling Analytical Sampling Field Tests Field Tests For our iron (Fe2±) =								1				
Sample Color: ∱ ℓℓψ) Sample Odor: MM, Sheen: AM Analytical Sampling Analytical Sampling Field Tests Field Tests For our iron (Fe2±) =							,					
Analytical Sampling Field Tests SRO/BTEX - 3x HCL Amber 40 mL VOA SRO/BTEX - 3x HCL Amber 40 mL VOA Ferreus iren (Fe2±) =	Parameter Stabl	e (Check appl	icable)	1		\checkmark	V	V				
Analyses Field Tests SRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iron (Fe2±) =	Sample Color:	BRand			Sample Odor:	NON		Shee	en: rent			
BRO/BTEX - 3x HCL Amber 40 mL VOA Ferrous iren (Fe2±) = DRO - 2x HCL Amber Glass 250 mL bottle Petroleum VOCs - 3x HCL Amber 40 mL VOA Petroleum VOCs - 3x HCL Amber 40 mL VOA Petroleum VOCs - 3x HCL Amber 40 mL VOA Notes: 8 bottles total each well Image: State in the image					Analytica	I Sampling	1					
DRO - 2x HCL Amber Glass 250 mL bottle Petroleum VOCs - 3x HCL Amber 40 mL VOA Notes: 8 bottles total each well Notes: 8 bottles total each well Equipment: Pump Type GeoTech Peristaltic Tubing (Type/Length)1/4" OD PFTE-LINED HDPE Nater Level Meter Multi-Parameter Meter (Make/SN#) YSI 556 58246.2 AE Furbidity Meter (Make/SN#) N/A Filter Lot # N/A Purge Water Handling: Discharged to surface @Containerized [] Treated (how?) APSC HAZMAT CONDX>			Ana	lyses					Field	Tests		
Petroleum VOCs - 3x HCL Amber 40 mL VOA Notes: 8 bottles total each well Equipment: Pump Type GeoTech Peristaltic Tubing (Type/Length)1/4" OD PFTE-LINED HDPE Nater Level Meter SLR_PLP_WC_H2 Multi-Parameter Meter (Make/SN#)_YSI 556 SB246.2_AE Furbidity Meter (Make/SN#) N/A Filter Lot # N/A Purge Water Handling: Discharged to surface @Containerized & Treated (how?) (APSC HAZMAT CONDX>		Africa Countrider Court and	10.000				Ferrous	iren (Fe2+)	ē			
Notes: 8 bottles total each well Equipment: Pump Type GeoTech Peristaltic Vater Level Meter SCR PLP WC Multi-Parameter Meter (Make/SN#) YSI 556 OSB2462 AE Furbidity Meter (Make/SN#) N/A Purge Water Handling: Discharged to surface												
Equipment: Pump Type GeoTech Peristaltic Tubing (Type/Length) 1/4" OD PFTE-LINED HDPE Water Level Meter SLR PLP WC #2 Multi-Parameter Meter (Make/SN#) YSI 556 0582462 AE Furbidity Meter (Make/SN#) N/A	Petroleum VOCs -	- 3x HCL Ambe	er 40 mL VOA				-					
Water Level Meter SLR PLP WL#12 Multi-Parameter Meter (Make/SN#)_YSI 556 Q5B246.2 AE Furbidity Meter (Make/SN#) N/A Filter Lot #	Notes: 8 bottles	s total each w	ell						¢			
Purge Water Handling: Discharged to surface Containerized Treated (how?) APSC HAZMAT CONBX	Water Level Met	er SLR F			Multi-Parame		A	YSI 556_	Q582	2462 AU	1	
							(100 million			_N/A		
		and the second sec					1. Contract (1. Co	ZMAT CO				

Site/Client Nam	e: APSC PSC	1 Former Ga	asoline Tanl	k Area (FGTA)	Well	D: MW- 2	2						
roject # : 105.0	1288.19008				Samp	le ID: M	W-22						
Sampled By: E	=Van Tul	er			Samp	le Time: (957	Samp	le Date: 8	1/6/2019			
Weather Condition					Duplic	ate ID: -	1		0				
Sampling Method: 🙀 Low Flow 🔲 Other						MS/MSD Yes V No Trip Blank Required: x Yes No							
	7			Well In	formation		A						
Well Type: X Per	rmanent 🔲 T	emporary		Well Diameter	and the second se	Screen Int	erval:	ft E	BGS to	ft BGS			
Well Condition:	Good D F	air 🗌 Poor (i	f fair or poor	explain in Notes)		Stickup	Yes N	lo; If yes,	ft abo	we ground			
		- 11		Gauging/Pur									
Depth to Water (2.61				/Pump Dept							
Total Depth (ft E Depth to Product		3.56			the second se	Start Time (2 End Time (2)							
Product Thicknes						urge Time (r		31	-				
LOW FLOW:				Screen Depth)				erval is not kn	own or water ta	ble is below top of			
				of water/ft(gal						gal			
Well Diamete	r – gal/ft	1" - 0.0	041 gal/ft		.163 gal/ft		4' - 0.653	gal/ft	6'-1	.469 gal/ft			
(Achieve st	able parameter	s for 3 consecu	tive reading 4	Water Qual parameters if practic			r numning a	minimum of	1 flow through c	eli volumel)			
Time	Flow	Purge	Temp	Specific	DO	ORP	punping a	Turbidity	DTW	Drawdown			
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	(mV)	pri	(qualitativ	(ft BTOC)	(ft)			
	(m/L minute)	(gat) L	(± 3 %)	(µS/cm°) (± 3%)	(± 10%)	(± 10mV)	(± 0.1)	e) (L/M/H)		(Maxft)			
@933	175	1.26	4.09	786	3.57	107.7	6.91	L	2.61	0.0			
0936	175	1 71	4.03	290	3.25	102.1	6.91		2.62	0.01			
0939	175	2 21	3.85	796	2.89	83.3	6.91	L	2.64	0,03			
		2.62	3,83	the second s	251	74.9	6.91		2.65				
0942	175			798				L		0.04			
0945	175	3.16	3.84	797	2.06	70,0	6.91	L	2.65	0,04			
0948	175	3.66	3.91	+47	1,92	63,7	6.91	L	2.66	0.05			
9951	175	HOL	3.94	797	1.46	62,7	6.91		2,67	Q106			
0954	175	4.56	3,98	796	1.62	62.0	6.92	L	2,69	0.08			
	2												
Parameter Stable	Check appl	icable)	./	1		1	1						
	and the second second	icaule)	V			v		100	-				
Sample Color: (clear			Sample Odor:	NONE		Shee	en: NON	ę				
				Analytic	al Sampling	1	_		Sec.				
			yses						Tests				
GRO/BTEX - 3x HO	anteries de la sur					Ferrous	iron (Ee2+)	-					
DRO - 2x HCL Am		10000	_			_							
Petroleum VOCs -	- JX HCL AMDE	ar 40 mL VOA											
Notes: 8 bottles	total each w	rell											
quipment: Pur	mp Type	GeoTech Per	istaltic	Tubing (1	ype/Length)	1/4" (OD PFTE-L	INED HDP	E				
Water Level Meter Turbidity Meter (I	er Slope	Indicator	20953	Multi-Paramo		And the second second second	YSI 556_	976100					
		echaraed to a	unface the	Intainerized T	reated (heur	ADSC HA		NEX					
				an af Cosing NA	valeu (now	1the ac un			an Lof I				

Site/Client Name	APSC PS0	1 Former Ga	asoline Tan	k Area (FGTA)	Well I	D: MW- 2	3						
Project # : 105.01288.19008						Sample ID: MW -23							
Sampled By: Ev	50 Tu	Nor			Samp		044		le Date: 8	1 6/2019			
Weather Conditions: JHOF, SUNNY Sampling Method: X Low Flow □ Other						ate ID: ~	* 1 1	-	0				
						SD 🗌 Yes	No	Trip Blank	Required: x	Yes 🗌 No			
			1		formation								
Well Type: X Pern				Well Diameter		Screen Int			BGS to	ft BGS			
Well Condition:	Good D F	air 🗌 Poor (i	f fair or poor	explain in Notes)		and the second second	Yes XN	o; If yes,	ft abo	ve ground			
Depth to Water (ft	BTOC): 2	,54		Gauging/Purg		Ation /Pump Depti	ft. BTOC	1: ~4.51					
Total Depth (ft BT						Start Time (2		17					
Depth to Product	(ft. BTOC) -				Purge	End Time (24	4-hr) 04	11					
Product Thickness						urge Time (r							
		n = (Tubing D e default value		f Screen Depth)	X 0.25	=(ft); i	f screen inte	erval is not kn	own or water tal	ble is below top of			
Min. purge volume						olumn thicknes				= gal			
Well Diameter	- gal/ft	1" - 0.0	041 gal/ft		163 gal/ft		4' - 0.653	gal/ft	6'-1	.469 gal/ft			
(Achieve sta	ble parameters	for 3 consecu	tive reading, 4	Water Quali parameters if practic			r pumping a	minimum of	1 flow through ce	all volume])			
Time (24-hr)	Flow Rate (m/L	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)	ORP (mV)	рН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)			
	minute)	1	(± 3 %)	(+ 3%)	(± 10%)	(± 10mV)	(± 0.1)	(L/M/H)	D.C.O.	(Maxft)			
1020	225	0.7L	3.68	10121062		54.2	675	L	2.59	0,05			
1023	150	1.2L	4.18	437	1.11	42.8	6.77	4	2,60	0.06			
1026	150	1.64	4.36	901	0,76	37.1	6.82	Ļ	2.61	0.97			
10 29	150	TOL	4.53	875	0.69	35.0	6.85	L	2.61	0.07			
1032	150	2.5L	4.69	857	0,66	34.7	6.86	L	2.62	0.08			
1235	150	2.96	4.68	837	0.67	3417 34,9	687	L	2,62	0.08			
1038	150	3.4L	4.73	822	0:68		6.88	L	2,64	0.10			
1041	150	3.8L	4.71	808	0,70	35.9	6,89	L	2.65	0,11			
									1				
Parameter Stable	(Check appli	cable)						1	P				
Sample Color: (slear			Sample Odor:	None	5 - C	Shee	en: Non	e				
				Analytica	I Sampling								
			yses		_				Tests	_			
GRO/BTEX - 3x HCI						-Ferrous	iron (Fo2+)						
DRO - 2x HCL Amb	an service and service				_	-		_					
Felioleum vocs -	DX HCL AINDE	40 IIIL VOA				-		_					
Notes: 8 bottles t Equipment: Pum Water Level Meter	р Туре(BeoTech Per)1/4" (005/3				
Turbidity Meter (M Purge Water Han	ake/SN#)			Multi-Parame N/A ontainerized M Tre			Filte	er Lot #	_N/A				

Site/Client Name	: APSC PS0	1 Former G	asoline Tar	ik Area (FGTA)	Well I	D: MW- 1 3	>			- 11
roject # : 105.01	1288.19008	10.00			Sampl	e ID: Mh	1-13			
Sampled By: L.	Game	white				e Time: 12		Samp	le Date: 8	1 16,12019
Weather Conditio			11462	walk		ate ID: -				
Sampling Method			and the second se			SD [] Yes	ANO	Trin Blank	Required: x	
Sampling Method	EUWIN	WELOWEL_	2.09	Well in	formation		2110	пр Банк	required. A	
Well Type: X Per	manent 🗆 T	emporary		Well Diameter	and the second se	Screen Inte	erval:	ft E	BGS to	ft BGS
Well Condition:	Good D F	air 🗌 Poor (i	f fair or poo	r explain in Notes)		Stickup 🔀	Yes 🗌 No	o; If yes, 1	. of ft abo	ove ground
			1000	Gauging/Pur						
Depth to Water (f						Pump Depth				
Total Depth (ft B						Start Time (2				
Depth to Product Product Thickness						End Time (24 urge Time (n		12		
LOW FLOW:				of Screen Depth)				rval is not kn	own or water ta	ble is below top of
Min. purge volume	if required p	urge volume (g	al) = volume	of water/ft_ib} (gal						= <u> </u> gai
Well Diameter	- gal/ft	1" - 0,	041 gal/ft	2"-0.	163 gal/ft		4' - 0.653	gal/ft	6'-1	.469 gal/ft
(Ashieve at	ble poremeters	lar 2 anna ann	this reading	Water Qual				minimum of	1 flow through a	
(Achieve sta				4 parameters if praction Specific	DO	ORP	pumping a		DTW	Drawdown
(24-hr)	Flow Rate (m/L	Purge Volume	Temp (°C)	Conductance (µS/cm ^c)	(mg/L)	(mV)		Turbidity (qualitativ e) (L/M/H)	(ft BTOC)	(ft)
1224	minute) 400	0.0	(±3%) (~03	(± 3%) 352	(± 10%)	(± 10mV)	(±0.1) 7.73	M	3.34	(Maxft)
		-			7.72	985	7.70	in	5.33	0.57
1226	400	1.6	5.66	390	6,80	and the second se	7.69	m	and the second sec	
1229	300	2,5	5,70			98.7			5.31	0.55
1232	150	2.8	3.53	412	6.38	1023	767	m	5,14	8.38
1235	100	3.1	5.56	2116	614	102.0	7.4	M	5.03	0.27
1241	200	4.3	5.45	423	5.92	1041.6	9.61	m	X NM	NM
RZ-					1.000		1.4.1			
	1.1		1							
	1			1						
Parameter Stable	(Check appli	cable)	1			1				
			1	Louis Oder		-	0.0	n:NONE		
Sample Color:	UL-4T -IJCA	rospn.	TAN	Sample Odor:	121	-	Snee	m:Novy	_	
		Anal	yses	Analytic	al Sampling			Field	Tests	
GRO/BTEX - 3x HO	Amber 40 m		y303			Forrous	iron (Fe2+)	L COLOR		
DRO - 2x HCL Ami	GYNCLES IN EM					renoga	mentice.)	-		
Petroleum VOCs -			-			-				
Notes: 8 bottles Builty = 3.8		ell								
Water Level Meter Turbidity Meter (M	ar <mark>SLR PLP (1)</mark> Make/SN#)	2.42		Tubing (T Multi-Param N/A ontainerized 🗹 T	eter Meter (M	Make/SN#)	YSI 556	TLot #	e	AB

Site/Client Nam	e: APSC PS0	1 Former G	asoline Tan	k Area (FGTA)	Well I	D: MW-8	1						
Project # : 105.01288.19008						Sample ID:MW -8							
Sampled By:	OUNETEN	3115			Samp	le Time: 10	502	Samp	le Date: &	1/6/2019			
Weather Conditi			NUN		Duplic	ate ID:							
Sampling Metho					SD TYes'	No	Trip Blank	Required: x	Yes 🗌 No				
		-	Well In	formation	-								
Well Type: X Pe				Well Diameter		Screen Inte			3GS to	ft BGS			
Well Condition:	Good F	air 🗌 Poor (if fair or poor	explain in Notes)			Yes XN	o; If yes,	ft abo	ve ground			
Depth to Water (A BTOCH	141/6	intech)	Gauging/Pur	ging Inform	Pump Depth	A BTOC	in It					
Total Depth (ft E		191	(nech)	CHE LINEX		Start Time (2							
Depth to Produc		* 1 7				End Time (24							
Product Thickne	ess (ft)				Total F	urge Time (n		0					
	Max Draw Dow screen, then use			f Screen Depth)	X 0.25	=(ft); if	f screen inte	rval is not kn	own or water tal	ble is below top of			
Min. purge volum						olumn thicknes	s(ft)	X # of casin	g volumes	= gal			
Well Diamete	er - gal/ft	1" - 0.	041 gal/ft	-	163 gal/ft		4' - 0.653	gal/ft	6'-1	.469 gal/ft			
(Achieve s	table parameters	for 3 consecu	tive reading, 4	Water Qual parameters if practic			pumping a	minimum of	1 flow through ce	ell volume])			
Time	Flow	Purge	Temp	Specific	DO	ORP	pH	Turbidity	DTW	Drawdown			
(24-hr)	Rate (m/L	Volume	(°C)	Conductance (µS/cm ^c)	(mg/L)	(mV)		(qualitativ e)	(ft BTOC)	(ft)			
	minute)	·-(9ai)	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(L/M/H)		(Maxft)			
1424	275	0.86	6.97	728	8,0	130,7	7.50	L	0.24	0.10			
1427	275	1.6L	6.70	800	6.62	130.1	7.47	L	0,24	Q.10			
1432	275	2.96	6.59	877	3:70	128.6	7.747	1	0.20	0.06			
1435	275	3.66	646	914	2,89	1763	7.42	1	0.19	0.05			
1438	275	\$ 4.31	6.25	932	2,11	1224	7.43	T	0.16	50.0			
1	Inchal		The second se		6/11	COM	145	U	0.16	0			
1-110 50	witched &	TO ALL		mg 39	100	10.7	7.11	r	0,20	0.04			
194+	300	121	6.18	938	1,92	107.1	741	L	and the second se	0.06			
1450	and the second s	6.26	6.18	the second se	1.60	104,7	Trac	ç	0.22				
1453	300	7.10	0.15	934	1.36	99.6	7.43		25:0	0.06			
1458	300	8.66	6.17	928	0,95	41.8	1,44	L	0.23	0.07			
1501	300	9,52	6.17	923	0, 71	89.9	7,45	L	0,23	9.07			
									-				
Parameter Stabl	le (Check appli	cable)	V	1		~	V						
Sample Color:	Clear		-	Sample Odor:	NOVE		Shee	n: No	0	1			
Sample Solori	CICAI			and the second second	al Sampling	T		14.01	1~	-			
		Ana	lyses	Analytic	ar oumphing			Field	Tests				
GRO/BTEX - 3x H	CL Amber 40 m	L VOA				- Ferrous	iron (Fe2+)	-					
DRO - 2x HCL Am	ber Glass 250 m	nL bottle											
Petroleum VOCs -	- 3x HCL Ambe	r 40 mL VOA											
Notes: 8 bottles	s total each w	ell bocause	gester	ch pump c p and solution	ould n't	purge	fast at 10	ensug) 140	h due to	bod			
Da Hery.	Switched	to all	XUS FUL	1.00									
Equipment: Pu	mp Type	GeoTech Pe	ristaltic	Tubing (T	ype/Length)1/4" (DD PFTE-L	INED HDP	E	_			
Water Level Met	ter SLR PI	lf wi	#2	Multi-Param	eter Meter (Make/SN#)	YSI 556_	0582	462 AE				
Turbidity Meter (and the second	_		N/A_			Filte	r Lot #	_N/A				
Purge Water Ha	andling: 🗌 Dis	scharged to s	surface QCo	ontainerized 🕅 Tr	eated (how	?)_APSC HA	ZMAT CO	NEX					
Construction of the second sec		1011/14 0 0101/0741		op of Casing, NA =			ZMAT COL		ige 1 of				

Site/Client Name	e: APSC PS01	Former G	asoline Tank	Area (FGTA)	Well	D: MW- 9		_		
Project # : 105.01	1288.19008				Samp	le ID:	MWg			
Sampled By:	CUEN	ot			Samp	le Time: [tin	Sampl	e Date: 🖌	16 /2019
Weather Conditio		, WINN	٨		Duplic	ate ID:	MW-49	DI	730	
Sampling Method			1			SD 🗌 Yes			Required: x	es 🗆 No
Camping Method	Le Low How			Well In	formation		AINO	пр ыык	rtequired. x i	
Well Type: X Per	manent 🗌 Te	mporary		Well Diameter		Screen Inte	erval:	ft B	GS to	ft BGS
Well Condition:	Good G Fa	ir 🗌 Poor (i	f fair or poor	explain in Notes)		Stickup	Yes No	; If yes,	ft abov	e ground
				Gauging/Purg			2			
Depth to Water (f		0.30				/Pump Depth				
Total Depth (ft B		1.90				Start Time (2		331		
Depth to Product Product Thickness						End Time (24 Purge Time (n		400-7	9	
		n = (Tubing D	Depth - Top of	Screen Depth)		The local division of			own or water tabl	e is below top of
	screen, then use			F				¥ #		
Min. purge volume Well Diameter		rge volume (g 1" – 0.			ft) X Water of 163 gal/ft	olumn thicknes	s(ft) 4' – 0.653 g	X # of casing al/ft		= gal 169 gal/ft
	340.10	1 91		Water Qual						
(Achieve sta	able parameters	for 3 consecu	tive reading, 4	parameters if practic			pumping a	minimum of 1	flow through cell	volume])
Time (24-hr)	Flow Rate (m/L	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm ^e)	DO (mg/L)	ORP (mV)	pН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)
25.75	minute)	1	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	7.36	(L/M/H)	AUT	(Maxft)
1333	350	0	6.17	1271	11.00	96.4	100	L	0.45	0.15
1339	300		5.03	1,247	1-26	64.0	6.92	L	0.48	010
1342			5-85	1,228	0.54	454,5	4.41	L	0.40	0.18
1244	ł		5.89	1,140	0.46	44.0	6.91	L	Diye	0,19
1350	1		5.75	1,141	0.37	33.1	6.91	L	0.40	0.1e
1354			5.78	1,134	0.34	27.0	6.92	L	0.48	Ole
1357			5.73	1,170	0.35	25.0	6.93	L	0.48	010
ition	4		5.69	1,125	0.35	23,6	6.93	1	0.45	0.18
19-2						-				
		1								
Parameter Stable	e (Check applic	cable)	1	/	v	~	V		V	V
Sample Color:	linh	+ yello	No.1	Sample Odor:			Shee	n: 1	one	
	-11.	- grous	<u>vo</u>	Analytic	al Sampling		1			
		Ana	lyses					Field	Tests	
GRO/BTEX - 3x HO DRO - 2x HCL Am						Ferrous	iron (Fe2+) :			_
Petroleum VOCs -	X COLOS LAND ROLLOS	the second second	-							
		2.02.00.02.0								
Notes: 8 bottles Equipment: Pur	mp TypeG	SeoTech Pe		Tubing (T						
Water Level Meter Turbidity Meter (I	Make/SN#)	Indition	10	N/A			Filte	r Lot #	N/A	
The second s				intainerized 🕅 Tr			ZMAT COM	NEX		
BGS =	Below Ground	Surface, BTG	OC= Below To	op of Casing, NA =	Not Applica	ble		Pa	gelof	

Site/Client Name:	APSC PS0	1 Former G	asoline Tank	Area (FGTA)	Well I	D: MW-]-	2						
³ roject # : 105,01288,19008						e ID: N	W-1	2					
Sampled By: EVAN TUPE						Sample Time: [30] Sample Date: 3 / [6/2019							
Weather Conditions	V		Duplic	10	_								
Sampling Method:	-	101000	1			SD [] Yes	No	Trip Blank	Required: x Y				
	Arentin		-	Well In	formation		And	The Blank	riequired: x i				
Well Type: X Perma	anent 🗆 Te	emporary	1	Well Diameter		Screen Inte	erval:	ft E	BGS to	ft BGS			
Well Condition:	Good 🛛 Fa	air 🗌 Poor (i	f fair or poor	explain in Notes)		Stickup	Yes N	o; If yes, 🤰	AG ft abov	e ground			
				Gauging/Purg	ing Inform	ation			1				
Depth to Water (ft E		011	000		and the second se	Pump Depth		4.6					
Total Depth (ft BTC		STET	7.28			Start Time (2		ST					
Depth to Product (f Product Thickness				End Time (24 urge Time (m		50							
LOW FLOW: Ma	x Draw Dow	n = (Tubing D default value		Screen Depth)	X 0.25			rval is not kn	own or water table	e is below top of			
Min. purge volume if Well Diameter -	required: pu	urge volume (g		and the second se	ft) X Water co 163 gal/ft	and the second se	4' - 0.653		provide the state of the state	= <u>1, 9</u> gal · 69 gal/ft			
				Water Quali					0 114				
(Achieve stab)	le parameters	for 3 consecu	tive reading, 4	parameters if practic			pumping a	minimum of	1 flow through cell	volume])			
Time (24-hr)	Flow Rate (m/L	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm°)	DO (mg/L)	ORP (mV)	pН	Turbidity (qualitativ e)	DTW (ft BTOC)	Drawdown (ft)			
1000	minute)	02	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(L/M/H)	2 5 2	(Maxft)			
1239	150	0.31	-6.06	466	1.24	77.3	+:39	NUL	3.52	P.18			
1242	150	0.7L	6.01	458	1.36	50.1	7:32	MIL	3.60	Q.26			
1246	150	1.40	6.00	449	1,26	47.0	7.33	M/L	3.60	0.26			
1249	150	1.8L	5.95	445	1.11	46.0	7.33	MIL	3.61	0.24			
1252	150	2.36	5.96	442	1,01	44.6	7,32	ML	3.61	0.27			
1255	159	2.71	5.89	440	0,95	44.3	7.32	MI	3.61	0.27			
1258	150	376	5 97	439	0.97	44.1	7.31	MI	3,60	076			
1030	1-	JIL	1.15		2.11	114	7151	/ 11 -	2.04	2.20			
-													
Parameter Stable (Check appli	cable)	1	1			1						
	1		V	V		V			0				
Sample Color: []	addy 1	White		Sample Odor:	None		Shee	n: NON	e				
	1			Analytica	al Sampling								
	and the	Anal	yses			1		Field	Tests				
GRO/BTEX - 3x HCL	and the second second second		V,			-Ferrous	ron (Ee2+)						
DRO - 2x HCL Amber	0, FURE 5075 510		V		_	-							
Petroleum VOCs – 3	x HCL Amber	40 mL VOA	V			-							
Notes: 8 bottles to	otal each we	ell			-	1							
Invigende Dur	ТуреС	GeoTech Per		Tubing (T				INED HDPE	_				
Equipment: Pump	P*1.3	Tolem											
Water Level Meter_	2002	-1)dia	10: 204	53 Multi-Parame	ter Meter (N	/lake/SN#)	YSI 556	UTLA	10513				
		-मार्व त्या	10: 204	N/AN/A	ter Meter (N	/lake/SN#)	and the second sec	r Lot #	_N/A				

Surface Water Sampling Form

Client / Site M	Name: APSC / PS01		Loc	ation ID:	SW-3			
Project # : 10!	5,01288.1902 0		Sam	ple ID: 5h	1-3			
Sampled By:	FIAN WASKE-WIL	16	Sam	ple Time: 13 i	B	Sample Date	8 1/6/2019	
Weather Cond	ditions: WELCOST, BLE	25 ~ 401	F Dup	licate ID: No	NE			
	1	100 C	MS/	MSD 🗌 Yes 🔀	No T	rip Blank Require	d: 🔽 Yes 🗌 No	
			Location Inf					
	Bank (ft): 2.5 Dep				Rapid	Slow	Stagnant Pool	
Co-Located S	ediment Sample: 🔲 Yes 🛛	No GPS Co	ordinates: No	rthing		Easting ~	N	
			Sheen	lest .				
No Sheen	Sheen Observed: POI	-fluid rainbow / I	Biogenic-plate	y / other				
		N	Vater Quality	Parameters				
Temp (°C)	Specific Conductance (µS/cm ^c)	DO		()	mV)	Color	Odor	
9.00	700	8.04	7.24	119.	8	CELAR	NONE	
			Analytical S					
Analyses	Number/Type of Bottle	Preserva	ative/	Analyses	Num		Preservative/ Comments	
BTEX	3x - 40 mL VOA	HCI						
PAH SIM	2x - 250 mL Amber			-				
Sulfate	1x - 125 mL poly	Eq. Shop only						
	e collection method): 250 mL							
Equipment Us	ed: Pump Type	N/A	(Type/L	ength)		N/A		
Multi-Paramete	er Meter (Make/SN#) YSI 556	0582462	Alt	Turbio	dity Meter	(Make/SN#)	N/A	
GPS (Type/Un	it Number) N/A		FI	ter Lot #	IN/A			
Client / Site Name: APSC / PS01			the second se	Location ID: SW-1				
	5.01288.19000		Sam	Sample ID: SW -1				
Sampled By: 1	EVON TYLE + BIRN	S Sam	Sample Time: 1329 Sample Date: 8 /16/2019					
Weather Conditions: 1 Messi Sales ~ 408				Duplicate ID: 50-99 0, 1530				

	0.0000000000000000000000000000000000000		MS/MSD	Yes 🖌	No T	rip Blank Require	ed: 🗹 Yes 🗌 No
		L	ocation Informa	tion			
		oth of Water (ft): 0		from Bank	(ft): 1.	5	
Co-Located S	Sediment Sample: 🗌 Yes 🛛	No GPS Coord	dinates: Northing	- 1		Easting -	al and
			Sheen Test				
No Sheen	Sheen Observed: PO	L-fluid rainbow / Bio	genic-platey / ot	her			
		Wat	er Quality Para	neters			
Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)	pH	(1	nV)	Color	Odor
4086	542	4.03	7.47	102.	7	CIERAF	NONE
1000		A	nalytical Samp	ling			
Analyses	Number/Type of Bottle	Preservative Comments		Analyses N		ber/Type of Bottle	Preservative/ Comments
BTEX	3x – 40 mL VOA	HCI		_	10.000	· · · · · · · · · · · · · · · · · · ·	
PAH SIM	2x - 250 mL Amber		Verse in the second				
Sulfate (EQ Shop only)	1x - 125 mL poly	Eq. Shop only					
					-		
	te collection method): 250 mL						
		N/A	(Type/Length)		N/A	
Multi-Paramete	er Meter (Make/SN#) <u>YSI 55</u>	6 Q5B2462	AE	Turbic	lity Meter	(Make/SN#)	N/A
	nit Number) N//		Filter L	at #	N/A		
GPS (Type/Un	III Number) <u>IN/</u>	4	Filter L	DI #	IN/A		

Surface Water Sampling Form

Client / Site I	Name: APSC / PS01		Loca	tion ID:	SW- 2	-		
Project #: 10	5.01288.1900 8		Sam	Sample ID: SU-2				
Sampled By:	Evan Tyler + Ryan	Coursey Willi.	S Sam	Sample Time: 1337 Sample Date: & /16/2019				
Weather Con	Weather Conditions: OVE2CAST, BLEEZE ~407			cate ID: Mon	1.			
		MS/M	ASD 🗌 Yes 🗵	No T	rip Blank Requi	red: K Yes 🗌 No		
		1	Location Info	rmation				
Distance from	Bank (ft): Dep	th of Water (ft):	Flow	ing Water:	Rapid	Slow	A Stagnant Pool	
	ediment Sample: 🗌 Yes 🛛		rdinates: Nor	the second se		Easting		
			Sheen T	est				
No Sheen	Sheen Observed: POL	-fluid rainbow / Bi	ogenic-platey	/ other				
		Wa	ter Quality F	arameters				
Temp (°C)	Specific Conductance (µS/cmº)	DO (mg/L)	рН		DRP mV)	Color	Odor	
9.13	567	10 16	7.75	110	3	quese	NONE	
			Analytical S		-	1 51 675		
Analyses	Number/Type of Bottle	Preservati	ive/	Analyses	Num	ber/Type of Bottle	Preservative/ Comments	
BTEX	3x - 40 mL VOA	HCI						
PAH SIM	2x - 250 mL Amber							
Sulfate	1x - 125 mL poly	Eq. Shop only			-			
	e collection method): 250 mL							
Equipment Us	sed: Pump Type	N/A	(Type/Le	ngth)		N/A		
Multi-Paramete	er Meter (Make/SN#) YSI 556	0582462 A	E	Turbic	dity Meter	(Make/SN#)	N/A	
	it Number) N/A			er Lot #	N/A	1		
Gra (Typeron			F10	CI LUI #	INA			

Client / Site I	Name: APSC / PS01		Location	ID:	SW-				
Project #: 10	5.01288.190		Sample II	Sample ID:					
Sampled By:			Sample T	Sample Time: Sample Date: / / 2019					
Weather Cond	ditions:		Duplicate	ID:					
			MS/MSD	Yes 🗌	No Tri	p Blank Require	ed: 🗌 Yes 🗌 No		
		L	ocation Informa	lion	-				
Distance from	Bank (ft): De	Distance	rom Bank	(ft):	TOGNAN	IT WATEL POR			
Co-Located S	ediment Sample: D Yes	No GPS Coor	dinates. Northing			Easting			
			Sheen Test						
No Sheen	Sheen Observed: PC	L-fluid rainbow / Bio	genic-platey / oth	er					
		Wat	er Quality Paran	neters					
Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)	pН	1	nRP mV)	Color	Odor		
			nalytical Sampl	ing					
Analyses	Number/Type of Bottle	Preservative	- I An	alyses		er/Type of lottle	Preservative/ Comments		
BTEX	3x - 40 mL VOA	HCI							
PAH SIM	2x - 250 mL Amber								
Sulfate (EQ Shop only)	1x - 125 mL poly	Eq. Shop only							
	1.			_					
	e collection method): 250 ml		dip						
Equipment Us	sed: Pump Type	N/A	(Type/Length)			N/A			
Multi-Paramete	er Meter (Make/SN#) YSI 5	56		Turbic	tity Meter (Make/SN#)	N/A		
GPS (Type/Un	it Number)N/	A	Filter Lo	t #	N/A				

APPENDIX D

SLR QUALITY ASSURANCE REVIEW, ADEC LABORATORY DATA REVIEW CHECKLISTS, AND LABORATORY ANALYTICAL RESULTS

2019 Water Monitoring Report Pump Station 1 Former Gasoline Tank Area

ALYESKA PIPELINE SERVICE COMPANY PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

December 2019

REPORT

LABORATORY DATA QUALITY ASSURANCE REVIEW

WATER MONITORING PUMP STATION 1 FORMER GASOLINE TANK AREA

ALYESKA PIPELINE SERVICE COMPANY

November 2019

Prepared by: Francesca Risse Reviewed by: Christophe Venot

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

SLR Project Number: 105.01288.19008 ADEC File Number: 330.38.019 Hazard ID: 1741

Water Monitoring PS01 FGTA

November 2019

ACRONYMS AND ABBREVIATIONS

AKAlaskaADECAlaska Department of Environmental ConservationBTEXbenzene, toluene, ethylbenzene, and xylenes°Cdegrees CelsiusCCVcontinuing calibration verificationCOCchain of custodyDLdetection limitDROdiesel range organicsEDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSlaboratory control sample duplicateLODlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spikeNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSpercision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPSO1pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality assurance reviewQCresidual range organicsSDSsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	AAC	Alaska Administrative Code
BTEXbenzene, toluene, ethylbenzene, and xylenes°Cdegrees Celsius°Ccontinuing calibration verificationCCVcontinuing calibration verificationCOCchain of custodyDLdetection limitDROdiesel range organicsEDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsLDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLDQlimit of detectionLQQlimit of quantitationLVlow volumemg/Lmiligrams per literMSmatrix spikeMSDmatrix spikeNSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assurance reviewQCquality assurance reviewQCquality assurance reviewRDCsample deliver groupSGSSGS North America, Inc.SIMSelective ion monitoringSIRSLR International Corporation	-	
BTEXbenzene, toluene, ethylbenzene, and xylenes°Cdegrees Celsius°Ccontinuing calibration verificationCCVcontinuing calibration verificationCOCchain of custodyDLdetection limitDROdiesel range organicsEDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsLDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLDQlimit of detectionLQQlimit of quantitationLVlow volumemg/Lmiligrams per literMSmatrix spikeMSDmatrix spikeNSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assurance reviewQCquality assurance reviewQCquality assurance reviewRDCsample deliver groupSGSSGS North America, Inc.SIMSelective ion monitoringSIRSLR International Corporation	ADEC	Alaska Department of Environmental Conservation
°Cdegrees CelsiusCCVcontinuing calibration verificationCOCchain of custodyDLdetection limitDROdiesel range organicsEDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSlaboratory control sample duplicateLOQlimit of detectionLOQlimit of detectionLOQmint of quantitationLVlow volumemg/Lmilligrams per literMSDmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPSO1pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality controlRPDrelative percent differenceRROresidual range organicsSDGSGS North America, Inc.SIMSLR International Corporation		•
CCVcontinuing calibration verificationCOCchain of custodyDLdetection limitDROdiesel range organicsEDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSDlaboratory control sampleLCSDlaboratory control sample duplicateLOQlimit of detectionLOQlimit of duantitationLVlow volumemg/Lmilligrams per literMSmatrix spikeNSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPSO1pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	°C	
COCchain of custodyDLdetection limitDROdiesel range organicsEDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLOQlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPSO1pump station 1PVOCquality assuranceQARquality assurance reviewQCquality assurance reviewQCquality controlRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR international Corporation	CCV	-
DROdiesel range organicsEDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of detectionLVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCperloleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRRDrelative percent differenceRROresidual range organicsSDGSoS North America, Inc.SIMsLertwe ion monitoringSLRSLR International Corporation	COC	-
EDDelectronic data deliverableFGTAformer gasoline tank areaGROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assuranceQARquality controlRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR international Corporation	DL	detection limit
FGTAformer gasoline tank areaGROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spike duplicateNSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assuranceQARquality controlRPDrelative percent differenceRROresidual range organicsSDGSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	DRO	diesel range organics
GROgasoline range organicsIDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality controlRPDrelative percent differenceRROresidual range organicsSDGSample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	EDD	electronic data deliverable
IDidentifierLCSlaboratory control sampleLCSDlaboratory control sample duplicateLCDlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality controlRPDrelative percent differenceRROresidual range organicsSDGSoft North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	FGTA	former gasoline tank area
LCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assuranceQARquality assuranceQCquality controlRPDresidual range organicsSDGsample delivery groupSDGSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	GRO	gasoline range organics
LCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assuranceQCquality assurance reviewQCquality assurance reviewQCrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	ID	identifier
LODlimit of detectionLOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	LCS	laboratory control sample
LOQlimit of quantitationLVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assuranceQCquality controlRPDrelative percent differenceRROresidual range organicsSDGSGS North America, Inc.SIMSLR International Corporation	LCSD	laboratory control sample duplicate
LVlow volumemg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	LOD	limit of detection
mg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	LOQ	limit of quantitation
MSmatrix spikeMSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGSample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	LV	low volume
MSDmatrix spike duplicateNAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	mg/L	milligrams per liter
NAnot applicableNFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	MS	matrix spike
NFGNational Functional Guidelines for Superfund Organic Methods Data ReviewPAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	MSD	matrix spike duplicate
PAHpolynuclear aromatic hydrocarbonsPARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	NA	not applicable
PARCCSprecision, accuracy, representativeness, comparability, completeness, and sensitivityPDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	NFG	National Functional Guidelines for Superfund Organic Methods Data Review
PDFportable data formatPS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	PAH	polynuclear aromatic hydrocarbons
PS01pump station 1PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	PARCCS	precision, accuracy, representativeness, comparability, completeness, and sensitivity
PVOCpetroleum volatile organic compoundQAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	PDF	portable data format
QAquality assuranceQARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	PS01	pump station 1
QARquality assurance reviewQCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	PVOC	petroleum volatile organic compound
QCquality controlRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	QA	quality assurance
RPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	QAR	quality assurance review
RROresidual range organicsSDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	QC	quality control
SDGsample delivery groupSGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	RPD	relative percent difference
SGSSGS North America, Inc.SIMselective ion monitoringSLRSLR International Corporation	RRO	residual range organics
SIMselective ion monitoringSLRSLR International Corporation	SDG	sample delivery group
SLR SLR International Corporation	SGS	SGS North America, Inc.
· ·	SIM	-
	SLR	
USEPA United States Environmental Protection Agency	USEPA	United States Environmental Protection Agency

Introduction

This report summarizes a review of analytical data for groundwater and surface water samples collected on August 16, 2019 at the Pump Station 1 (PS01) Former Gas Tank Area (FGTA). Samples were collected by SLR International Corporation (SLR). SGS North America, Inc. (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number 17-021 for analytical methods of interest, as applicable. Table 1 provides a summary of the sample receipt information and matrices. Table 2 provides a summary of matrices, analytical methods, and analytes.

Table 1 Sample Receipt and Matrix Summary

SDG	Date Collected	Date Received by Laboratory	Temperature Blank	Matrix
1194733	08/16/2019	08/19/2019	1.0°C	Surface Water and Groundwater

Acronyms:

°C – degrees Celsius

SDG – sample delivery group

Table 2Matrix, Method, and Analyte Summary

Matrix	Method	Analyte
	SW8260C	PVOCs ¹
Groundwater	AK101	GRO
	AK102	DRO
Surface water	SW8021B	BTEX
Surface water	SW8270D LV	PAH SIM

Note:

1 – PVOC analytes are: benzene, toluene, ethylbenzene, total xylenes (m,p –xylene and o-xylene), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene (cumene), 1,2-dibromoethane (EDB), 1,2-dichloroethane (DCA), methyl-t-butyl ether, naphthalene, n-butylbenzene, sec-butylbenzene, and tert-butylbenzene.

Acronyms:

AK – Alaska

BTEX – benzene, toluene, ethylbenzene, and xylenes

DRO – diesel range organics

GRO – gasoline range organics

LV – low volume

PAH – polynuclear aromatic hydrocarbons PVOC – petroleum volatile organic compound

SIM – selective ion monitoring

The laboratory final report was provided as a Level II deliverable and included documentation of the delivery group chain of custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) for the report was also provided. The portable data format (PDF) laboratory report is provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The select laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project specific requirements, the ADEC Technical Memorandum *Environmental Laboratory Data and Quality Assurance* (ADEC, 2017) requirements, United States Environmental Protection Agency (USEPA) *National Functional Guidelines for Superfund Organic Methods Data Review* (NFG, 2017), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG, and was included as Attachment 1 to this Quality Assurance Review (QAR). A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e. g., field blanks, equipment blanks, trip blanks, method blanks, etc.); were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify any Continuing Calibration Verification (CCV) recoveries or other calibration related criteria as being outside applicable acceptance limits;
- Reviewing the case narrative for any discussion of any internal standard recoveries outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable and was reviewed only from the case narrative;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS), and Laboratory Control Sample Duplicates (LCSD) recoveries were within acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples and LCS/LCSDs; and
- Providing an overall assessment of laboratory data quality and qualifying sample results as necessary.

Data Qualifications

As part of the quality assurance review, qualifiers (i.e. data flags) were applied to data as determined necessary based on specified criteria, or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 3 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2,3}	Definition
U	U	ND	The analyte was analyzed for, but was not detected above the detection limit (DL).
J	NJ	J	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the DL. This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria (e.g., LCS recovery, surrogate spike recovery) failed or matrix effect. Where applicable, a "+" or "-" was appended to indicate a high bias, or a low bias respectively.
	UJ	IJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection was greater than the sample detection or both the blank detection and sample detection were below the limit of detection (LOD), and the result is likely a false positive. The greater of the sample detection or LOD was reported as non-detect in brackets.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Notes:

1 – Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

2 – Only flags in **bold** were applicable and appended to data for this project.

3 – For historical purposes, ND was used in place of "U."

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. Any issues with regards to the data package are noted below.

• The case narrative noted two residual range organics (RRO) detections in method blanks between the LOD and LOQ. RRO was not a target analyte, therefore data was not impacted.

Sample Receipt

The sample receipt documentation was checked for anomalies. Issues regarding the receipt of samples were limited to that noted below.

• The sample receipt form noted the following: "Container for 14R labeled mw-19 identifying per collection time." The comment was clarified per conversation with SGS as follows. Laboratory personnel noticed that one container was missing for sample MW-14R, and there was one extra container for sample MW-19. They found that the extra container labeled MW-19 had the collection time for MW-14R written on the container label. Since each sample had a unique collection time, they concluded that this was meant to be the missing container for MW-14R and logged it in as the secondary container for MW-14R. Since the container matched collection time and was presumably not used for analysis being the secondary container, no samples or data were considered impacted.

Preservation (Chemical and Temperature)

No issues were noted in regard to sample preservation. Samples were appropriately preserved and were submitted to SGS.

Holding Times

All sample analyses were conducted within holding time criteria.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. All method blanks with detections and the affected results are listed in Table 4 below. Associated sample results of non-detect or greater than five times that of the blank detection were considered unaffected and were not shown in Table 4. Affected data were qualified as noted in the table. Since a high bias was indicated and all affected results were below the applicable ADEC cleanup level of 1.5 milligrams per liter (mg/L) for DRO, data usability was not impacted. All data were usable as qualified.

Table 4 Method Blank Detections and Affected Results

Sample ID	Batch	Method (Analyte)	Lab Result and Flag (mg/L)	LOD (mg/L)	Reported Result and Flag ¹ (mg/L)
Method Blank		AK102	0.445 J	0.3	NA
MW-18	XXX42077	AK102 (DRO)	0.503 J	0.278	0.503 J,B
MW-22		(DRO)	0.83	0.294	0.83 B
Method Blank			0.231 J	0.3	NA
MW-8			0.58	0.283	0.58 B
MW-12			0.272 J	0.294	[0.294] UB
MW-13	XXX42097	AK102 (DRO)	0.268 J	0.278	[0.278] UB
MW-14R			0.277 J	0.283	[0.283] UB
MW-16R			0.359 J	0.288	0.359 J,B
MW-19			0.851	0.278	0.851 B
MW-23			0.436 J	0.288	0.436 J,B
Method Blank			0.238 J	0.3	NA
MW-2	-		0.321 J	0.278	0.321 J,B
MW-3	-	41/100	0.487 J	0.283	0.487 J,B
MW-4R	XXX42115	AK102	0.22 J	0.278	[0.278] UB
MW-7R		(DRO)	0.252 J	0.278	[0.278] UB
MW-20			0.317 J	0.294	0.317 J,B
MW-98			0.254 J	0.278	[0.278] UB

Notes:

1 – A UB flag indicates non-detect due to an associated blank contamination, and the original result was likely a false positive. Per NFG and SLR guidelines where blank detection is greater than the sample detection or both the blank detection and sample detection were below the LOD, the greater of the sample detection or LOD was reported in brackets and qualified as non-detect.

Acronyms:

ID – identifier NA – not applicable

Trip Blanks

Analytes were not detected in any trip blanks at or above the LOD or DL. Trip blanks were submitted and analyzed at the appropriate frequencies for volatile methods (GRO by AK101, BTEX by SW8021B, and PVOCs by SW8260C).

Reporting Limits

Non-detect sample results with LODs not meeting applicable cleanup levels were limited to those noted below. In all instances, analytes not meeting project cleanup levels were due to necessary dilutions due to high target analyte concentration; therefore, data usability was considered not impacted. LODS greater than cleanup levels are summarized as follows:

Results for 1,2-dibromoethane and 1,2-dichloroethane by Method SW8260C in sample MW-99 were non-detect and were reported at LODs greater than applicable cleanup levels due to a necessary 20-fold dilution. For 1,2-dibromoethane, the LOD was 0.00075 mg/L and the cleanup level was 0.00075 mg/L. For 1,2-dichloroethane, the LOD was 0.005 mg/L and the cleanup level was 0.0017 mg/L. Data usability was not impacted since the dilution was necessary due to high target analyte concentration. All data were usable without qualification.

Groundwater sample LODs were compared to Table C, Groundwater Cleanup Levels contained in Title 18 of the Alaska Administrative Code (AAC) Chapter 75, Oil and Other Hazardous Substances Pollution Control, section 75.345 (ADEC, 2018b). Surface water samples LODs were compared to values in Water Quality Standards, 18 AAC 70, (ADEC, 2018a). ADEC 18 AAC 70 references Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances (ADEC, 2008). Water Monitoring PS01 FGTA November 2019

Continuing Calibration Verifications

All CCV recoveries were within acceptable limits. CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative.

Internal Standards

Internal standard performance criteria were considered met. No internal standards were noted in the case narrative as outside of acceptance limits.

Surrogate Recovery Results

All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits. Surrogate analysis was performed at the required frequencies.

Laboratory Control Samples and Laboratory Control Duplicate Samples

All LCS and LCSD recoveries and RPDs were within analytical method and SGS percent recovery acceptance limits. LCS and LCSDs were analyzed at the appropriate frequencies.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Samples

No MS or MSD samples were analyzed in association with these samples.

Field Duplicates

The field duplicate sample frequency is presented in Table 5 and parent sample and field duplicate pairs are presented in Table 6. Field duplicate RPDs that exceeded the ADEC required 30% for waters are listed in Table 7 and discussed below. Samples with both results below the LOQ (J flagged or non-detect) were considered acceptable without qualification. The frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

The MW-18/MW-98 parent sample/field duplicate pair was associated an RPD exceedance as qualified as shown in Table 7. Impacted analytes for all chronologically associated field samples were qualified "Q" for detected results and "UJ" for non-detect results. Laboratory precision was established by an LCS/LCSD pair with RPDs within acceptable limits and only one sample exceeded any ADEC cleanup levels, thus the impact to data was considered minimal. Sample MW-19 had several PVOC analytes exceed ADEC cleanup levels, therefore those results associated with the RPD exceedance should be considered an exceedance of ADEC criteria. Chronologically associated samples are listed in the Table 7 footnotes. All data were usable as qualified.

Matrix	Analytical Method	Analyte	Number of Primary Samples	Number of Field Duplicates
	AK101	GRO	17	2
Groundwater	AK102	DRO	17	2
	SW8260C	PVOCs	17	2
Surface water	SW8021B	BTEX	3	1
Surface water	SW8270D LV	PAH SIM	3	1

Table 5	Field Duplicate Frequency, Methods, and Analytes

Table 6Field Duplicate Identification

Sample Type	Parent Sample ID	Duplicate Sample ID	All RPDs acceptable (Y/N)
Groundwater	MW-18	MW-98	Ν
Groundwater	MW-9	MW-99	Y
Surface water	SW-1	SW-99	Y

Table 7 Field Duplicate RPD Exceedances

Matrix Method (Analyte)		Specific Analyte	Parent Sample ID MW-18 ¹	Field Duplicate ID MW-98 ¹	RPD	Flag
(Analyte	(Analyte)		Result (mg/L)	Result (mg/L)		
Groundwater SW8260C (PVOCs)	1,2,4-Trimethylbenzene	0.00343	0.00476	32.5%	Q	
	1,3,5-Trimethylbenzene ²	0.00145	0.00197	30.4% ²	NA ²	
	Ethylbenzene	0.0023	0.00326	34.5%	Q	
	P & M -Xylene	0.00232	0.00324	33.1%	Q	
		Xylenes (total)	0.00232 J	0.00324	33.1%	J, Q

Notes:

1 – Samples chronologically associated with this parent sample/field duplicate pair for all listed analytes were MW-22, MW-23, MW-19, MW-17R, MW-15, MW-14R, MW-16R, MW-13, and MW-12. Samples were qualified "Q" for detected results and "UJ" for non-detect results.

2 – RPD of 30.4% was considered to be within the 30% criteria due to rounding and qualification was not necessary.

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the Field Duplicates section.
- Accuracy: Accuracy goals were met
- Representativeness: Representativeness goals were met. The samples were collected from usual locations in accordance with applicable requirements and guidance documents.
- Comparability: Comparability goals were met. SGS laboratory provided analytical support for all methods.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis because no data were rejected.
- Sensitivity: Sensitivity goals were met, except as noted in the Data Packages, Laboratory Method Blanks, and Reporting Limits sections.

This data were considered of good quality and acceptable for use with the noted qualifications in this QAR. No data were rejected.

References

- ADEC, 2008. Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances. December.
- ADEC, 2017. Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. Technical Memorandum. March.

ADEC, 2018a. 18 AAC 70, Water Quality Standards. Amended as of April 6.

- ADEC, 2018b. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. As amended through October 27.
- USEPA, 2017. National Functional Guidelines for Superfund Organic Methods Data Review (NFG). January.

Attachments

Attachment 1 – ADEC Laboratory Data Review Checklist Attachment 2 – Laboratory Deliverables

Attachment 1

ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed By:

Francesca Risse

Title:

Staff Engineer

Date:

December 19, 2019

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1194733

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

ADEC File Number:

330.38.019

Hazard Identification Number:

1741

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

2.

3.

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:
Samples were received and analyzed at SGS' Anchorage Laboratory. SGS maintains a current ADEC Contaminated Sites approval number (17-021) for analytical methods of interest, as applicable.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
All analyses were conducted at SGS, Anchorage.
Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
Yes \boxtimes No \square N/A \square Comments:
b. Correct analyses requested?
Yes \boxtimes No \square N/A \square Comments:
Laboratory Sample Receipt Documentation
a. Sample/cooler temperature documented and within range at receipt $(0^{\circ} \text{ to } 6^{\circ} \text{ C})$?
Yes \boxtimes No \square N/A \square Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form noted: "Container for 14R labeled mw-19 identifying per collection time." The comment was clarified per conversation with SGS as follows. Laboratory personnel noticed that one container was missing for sample MW-14R, and there was one extra container for sample MW-19. They found that the extra container labeled MW-19 had the collection time for MW-14R written on the container label. Since each sample had a unique collection time, they concluded that this was meant to be the missing container for MW-14R and logged it in as the secondary container for MW-14R.

e. Data quality or usability affected?

Comments:

Since the container matched collection time and was presumably not used for analysis being the secondary container, no samples or data were considered impacted.

- 4. <u>Case Narrative</u>
 - a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The case narrative noted two RRO detections in method blanks between the LOD and LOQ. RRO was not a target analyte, therefore data was not impacted.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

No corrective actions were performed.

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

d. What is the effect on data quality/usability according to the case narrative?

Comments:	
comments.	

No impact.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:	
--	--

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

No soils samples were analyzed.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \boxtimes N/A \square Comments:

LODs for non-detect results were compared to applicable cleanup levels for the site. For groundwater samples, LODs were compared to 18 AAC 75, Oil and Other Hazardous Substances Pollution Control, section 75. 345 Table C, Groundwater Cleanup Levels. For surface water samples, LODs were compared to 18 AAC 70, Water Quality Standards. ADEC 18 AAC 70 references Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances.

For groundwater sample MW-99, two analytes (1,2-dibromoethane and 1,2-dichloroethane) had nondetect results with LODs above ADEC 18 AAC 75, Table C cleanup levels due to necessary dilution, due to high target analyte concentration.

e. Data quality or usability affected?

Because the dilutions were necessary due to high target analyte concentration, data quality or usability was considered not affected.

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \square No \boxtimes N/A \square Comments:

DRO was detected in three method blanks between the DL and LOQ.

iii. If above LOQ or project specified objectives, what samples are affected?

Comments:

No analytes were detected above the LOQ.

Samples affected by the three DRO detections between the DL and LOQ were:

1 – for MB for batch XXX42077, affected samples were MW-18 and MW-22.

2 – for MB for batch XXX42097, affected samples were MW-8, MW-12, MW-13, MW-14R, MW-16R, MW-19, and MW-23.

3 – for MB for batch XXX42077, affected samples were MW-2, MW-3, MW-4R, MW-7R, MW-20, and MW-98.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments:

The associated sample detections that were less than the blank detection and/or the LOD, or where both the blank and sample detections were less than the LOD, were qualified with "UB" as non-detect. The associated detections that were greater than both the blank detection and LOD were qualified with "B" to indicate blank detection.

v. Data quality or usability affected?

Comments:

In all cases a high bias was indicated, and impacted results were below the applicable cleanup level of 1.5 mg/L for DRO; therefore, data usability was not impacted. All data were usable as qualified.

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \boxtimes N/A \square Comments:

No metals or inorganics were analyzed for this workorder.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No impact.

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \square Comments:

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \square Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \square Comments:

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes⊠	No□	N/A	Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

All surrogates were acceptable.

iv. Data quality or usability affected?

Comments:

No impact.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A

v. Data quality or usability affected?

Comments:

No impact.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

MW-98 was a duplicate of MW-18 MW-99 was a duplicate of MW-9 SW-99 was a duplicate of SW-1

> iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \boxtimes N/A \square Comments:

Parent sample/field duplicate pair MW-18/MW-98 had RPDs for four analytes (1,2,4trimethylbenzene, ethylbenzene, P & M -xylene, and total xylenes) exceeding the 30% for waters criteria.

For 1,3,5-trimethylbenzene, MW-18/MW-98 had an RPD of 30.4% and was considered within criteria due to rounding.

Laboratory Report Date:

September 5, 2019

CS Site Name:

Alyeska PS 01 Former Gas Tank Area

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Impacted analytes for all chronologically associated field samples were qualified "Q" for detected results to indicate an estimated value, and "UJ" for non-detect results to indicate an estimated reporting limit. In all cases, laboratory precision was established by an LCS/LCSD pair with RPDs within acceptable limits, thus the impact to data was considered minimal. All data were usable as qualified.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Dedicated or disposable equipment was used for the collection of all samples.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

Dedicated or disposable equipment was used for the collection of all samples.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A

iii. Data quality or usability affected?

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \boxtimes No \square N/A \square Comments:

Attachment 2 Laboratory Deliverable

(Data package)

Laboratory Report of Analysis

To: Alyeska Pipeline Srv Co. 4601 Business Park Blvd K42 Anchorage, AK 99503 (907)222-1112

Report Number: **1194733**

Client Project: 105.01288.19008 PS01 Fmr GT

Dear Scott Rose,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc		⁷ Justin Nelson 2019.09.05
	SGS North America Inc. Environmental Services – Alaska Division Project Manager	15:48:30 -08'00'
Justin Nelson Project Manager	Date	
Justin.Nelson@sgs.com		

Print Date: 09/05/2019 2:10:42PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Alyeska Pipeline Srv Co. SGS Project: 1194733 Project Name/Site: 105.01288.19008 PS01 Fmr GT Project Contact: Scott Rose

Refer to sample receipt form for information on sample condition.

MB for HBN 1798284 [XXX/42077] (1526966) MB

AK102/103 - DRO/RRO is detect in the MB greater than one half the LOQ, but less than the LOQ.

MB for HBN 1798508 [XXX/42115] (1527923) MB

AK102/103 - RRO is detect in the MB greater than one half the LOQ, but less than the LOQ.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/05/2019 2:10:43PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification, and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
-	nclude a result for "Total Solids" have already been adjusted for moisture content.
All DRO/RRO analyses are	integrated per SOP.

Print Date: 09/05/2019 2:10:45PM

Note:

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

	:	Sample Summary		
Client Sample ID	Lab Sample ID	Collected	Received	Matrix
MW-18	1194733001	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-22	1194733002	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-23	1194733003	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-19	1194733004	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-17R	1194733005	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-15	1194733006	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-16R	1194733007	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-14R	1194733008	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-13	1194733009	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-12	1194733010	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-9	1194733011	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-8	1194733012	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-4R	1194733013	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-2	1194733014	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-20	1194733015	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-3	1194733016	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-7R	1194733017	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-98	1194733018	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
MW-99	1194733019	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
SW-1	1194733020	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
SW-2	1194733021	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
SW-3	1194733022	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
SW-99	1194733023	08/16/2019	08/19/2019	Water (Surface, Eff., Ground)
FGTA TB-1	1194733024	08/02/2019	08/19/2019	Water (Surface, Eff., Ground)
FGTA TB-2	1194733025	08/02/2019	08/19/2019	Water (Surface, Eff., Ground)
FGTA TB-3	1194733026	08/02/2019	08/19/2019	Water (Surface, Eff., Ground)

<u>Method</u>

8270D SIM LV (PAH) SW8021B AK102 AK101 SW8260C Method Description 8270 PAH SIM GC/MS Liq/Liq ext. LV BTEX 8021 DRO Low Volume (W) Gasoline Range Organics (W) Volatile Organic Compounds (W) FULL

Print Date: 09/05/2019 2:10:47PM

Client Sample ID: MW-18			
Lab Sample ID: 1194733001	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.503J	mg/L
Volatile Fuels	Gasoline Range Organics	0.0804J	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	3.43	ug/L
	1,3,5-Trimethylbenzene	1.45	ug/L
	Benzene	6.88	ug/L
	Ethylbenzene	2.30	ug/L
	Isopropylbenzene (Cumene)	0.630J	ug/L
	P & M -Xylene	2.32	ug/L
	Toluene	0.410J	ug/L
	Xylenes (total)	2.32J	ug/L
Client Sample ID: MW-22			
Lab Sample ID: 1194733002	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.830	mg/L
Volatile GC/MS- Petroleum VOC Group	Benzene	0.180J	ug/L
Client Sample ID: MW-23			
Lab Sample ID: 1194733003	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.436J	mg/L
Volatile Fuels	Gasoline Range Organics	0.181	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	7.74	ug/L
	1,3,5-Trimethylbenzene	5.64	ug/L
	Benzene	37.5	ug/L
	Ethylbenzene	7.90	ug/L
	Isopropylbenzene (Cumene)	2.59	ug/L
	P & M -Xylene	15.3	ug/L
	Xylenes (total)	15.3	ug/L
Client Sample ID: MW-19			
Lab Sample ID: 1194733004	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.851	mg/L
Volatile Fuels	Gasoline Range Organics	17.4	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	98.4	ug/L
	1,3,5-Trimethylbenzene	26.3	ug/L
	Benzene	2340	ug/L
	Ethylbenzene	1180	ug/L
	Isopropylbenzene (Cumene)	27.5	ug/L
	Naphthalene	2.32	ug/L
	o-Xylene	1420	ug/L
	P & M -Xylene	3850	ug/L
	Toluene	3.99	ug/L
	Xylenes (total)	5270	ug/L

Print Date: 09/05/2019 2:10:48PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-17R			
Lab Sample ID: 1194733005	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	2.06	mg/L
Volatile Fuels	Gasoline Range Organics	0.0454J	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	0.780J	ug/L
	1,3,5-Trimethylbenzene	0.590J	ug/L
	Benzene	2.68	ug/L
	Ethylbenzene	1.33	ug/L
	o-Xylene	5.25	ug/L
	P & M -Xylene	4.47	ug/L
	Toluene	1.46	ug/L
	Xylenes (total)	9.72	ug/L
Client Sample ID: MW-15			
Lab Sample ID: 1194733006	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	5.76	mg/L
Volatile Fuels	Gasoline Range Organics	0.287	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	10.5	ug/L
	1,3,5-Trimethylbenzene	4.21	ug/L
	Benzene	25.3	ug/L
	Ethylbenzene	11.3	ug/L
	Isopropylbenzene (Cumene)	1.87	ug/L
	Naphthalene	3.30	ug/L
	o-Xylene	28.4	ug/L
	P & M -Xylene	44.1	ug/L
	Toluene	34.6	ug/L
	Xylenes (total)	72.4	ug/L
Client Sample ID: MW-16R			
Lab Sample ID: 1194733007	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.359J	mg/L
Volatile GC/MS- Petroleum VOC Group	Benzene	0.250J	ug/L
Client Sample ID: MW-14R			
Lab Sample ID: 1194733008	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.277J	mg/L
	6 6		0
Client Sample ID: MW-13		D 1	
Lab Sample ID: 1194733009	Parameter Disast Dance Organiza	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.268J	mg/L
Client Sample ID: MW-12			
Lab Sample ID: 1194733010	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.272J	mg/L

Print Date: 09/05/2019 2:10:48PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-9			
Lab Sample ID: 1194733011	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1.38	mg/L
Volatile Fuels	Gasoline Range Organics	24.9	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	523	ug/L
	1,3,5-Trimethylbenzene	183	ug/L
	Benzene	1850	ug/L
	Ethylbenzene	1700	ug/L
	Isopropylbenzene (Cumene)	106	ug/L
	Naphthalene	7.96	ug/L
	o-Xylene	2580	ug/L
	P & M -Xylene	5880	ug/L
	tert-Butylbenzene	0.800J	ug/L
	Toluene	647	ug/L
	Xylenes (total)	8460	ug/L
Client Sample ID: MW-8			
Lab Sample ID: 1194733012	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.580	mg/L
Volatile Fuels	Gasoline Range Organics	4.05	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	3.81	ug/L
	1,3,5-Trimethylbenzene	1.29	ug/L
	Benzene	1080	ug/L
	Ethylbenzene	21.8	ug/L
	Isopropylbenzene (Cumene)	0.920J	ug/L
	Naphthalene	1.82	ug/L
	o-Xylene	45.4	ug/L
	P & M -Xylene	41.8	ug/L
	Toluene	1150	ug/L
	Xylenes (total)	87.2	ug/L
Client Sample ID: MW 4P			0
Client Sample ID: MW-4R Lab Sample ID: 1194733013	Deservation	Desult	1.1-34-
	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 0.220J	<u>Units</u> mg/L
Semivolatile Organic Fuels	Gasoline Range Organics	0.0314J	mg/L
Volatile Fuels	Gasoline Range Organics	0.03143	liig/∟
Client Sample ID: MW-2			
Lab Sample ID: 1194733014	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.321J	mg/L
Client Sample ID: MW-20			
Lab Sample ID: 1194733015	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.317J	mg/L
Volatile GC/MS- Petroleum VOC Group	Benzene	2.54	ug/L
······································	Ethylbenzene	0.460J	ug/L
Client Sample ID: MW 2	-		-
Client Sample ID: MW-3 Lab Sample ID: 1194733016	Devenuetor	D!4	Linita
Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 0.487J	<u>Units</u> mg/L
Semivolatile Organic Fuels	Dieser Kange Organics	0.4075	mg/L

Print Date: 09/05/2019 2:10:48PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-7R Lab Sample ID: 1194733017	Descussion	Decut	1.1-24-
•	Parameter Discol Bango Organico	<u>Result</u> 0.252J	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.2525	mg/L
Client Sample ID: MW-98			
Lab Sample ID: 1194733018	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.254J	mg/L
Volatile Fuels	Gasoline Range Organics	0.106	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	4.76	ug/L
	1,3,5-Trimethylbenzene	1.97	ug/L
	Benzene	8.36	ug/L
	Ethylbenzene	3.26	ug/L
	Isopropylbenzene (Cumene)	0.880J	ug/L
	P & M -Xylene	3.24	ug/L
	Toluene	0.590J	ug/L
	Xylenes (total)	3.24	ug/L
Client Sample ID: MW-99			
Lab Sample ID: 1194733019	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1.35	mg/L
Volatile Fuels	Gasoline Range Organics	22.8	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	600	ug/L
	1,3,5-Trimethylbenzene	180	ug/L
	Benzene	1770	ug/L
	Ethylbenzene	1700	ug/L
	Isopropylbenzene (Cumene)	96.6	ug/L
	Naphthalene	7.73	ug/L
	o-Xylene	2620	ug/L
	P & M -Xylene	5830	ug/L
	Toluene	622	ug/L
	Xylenes (total)	8450	ug/L
Client Sample ID: SW-1			
Lab Sample ID: 1194733020	Devenuetor	Desult	l lucito
Volatile Fuels	<u>Parameter</u> Benzene	<u>Result</u> 3.01	<u>Units</u>
volatile rueis	o-Xylene	0.373J	ug/L ug/L
	0-Aylene	0.5755	ug/L
Client Sample ID: SW-2			
Lab Sample ID: 1194733021	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels	Benzene	1.77	ug/L
Client Sample ID: SW-99			
Lab Sample ID: 1194733023	Parameter	Result	Units
Volatile Fuels	Benzene	3.07	ug/L
	o-Xylene	0.354J	ug/L
	y		- 3

Print Date: 09/05/2019 2:10:48PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-18								
Client Sample ID: MW-18 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733001 Lab Project ID: 1194733		Collection Date: 08/16/19 09:56 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fuel	S		_					
<u>arameter</u> iesel Range Organics	<u>Result Qual</u> 0.503 J	<u>LOQ/CL</u> 0.556	<u>DL</u> 0.167	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed	
rrogates								
a Androstane (surr)	68.6	50-150		%	1		08/26/19 21:57	
atch Information								
Analytical Batch: XFC15276 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/26/19 21:57 Container ID: 1194733001-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 08/23/1 /t./Vol.: 270	9 08:39			

Print Date: 09/05/2019 2:10:49PM

-

J flagging is activated

Results of MW-18 Client Sample ID: MW-18 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733001 Lab Project ID: 1194733		Collection Date: 08/16/19 09:56 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0804 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/20/19 22:42
Gurrogates 4-Bromofluorobenzene (surr)	83.3	50-150		%	1		08/20/19 22:42
Batch Information Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/20/19 22:42 Container ID: 1194733001-A		F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 08/20/1 /t./Vol.: 5 m	9 06:00		

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Client Sample ID: MW-18 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733001 Lab Project ID: 1194733 Collection Date: 08/16/19 09:56 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
1,2,4-Trimethylbenzene	3.43	1.00	0.310	ug/L	1	08/27/19 15:40
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/27/19 15:40
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/27/19 15:40
1,3,5-Trimethylbenzene	1.45	1.00	0.310	ug/L	1	08/27/19 15:40
Benzene	6.88	0.400	0.120	ug/L	1	08/27/19 15:40
Ethylbenzene	2.30	1.00	0.310	ug/L	1	08/27/19 15:40
Isopropylbenzene (Cumene)	0.630 J	1.00	0.310	ug/L	1	08/27/19 15:40
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	08/27/19 15:40
Naphthalene	0.500 U	1.00	0.310	ug/L	1	08/27/19 15:40
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 15:40
o-Xylene	0.500 U	1.00	0.310	ug/L	1	08/27/19 15:40
P & M -Xylene	2.32	2.00	0.620	ug/L	1	08/27/19 15:40
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 15:40
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 15:40
Toluene	0.410 J	1.00	0.310	ug/L	1	08/27/19 15:40
Xylenes (total)	2.32 J	3.00	1.00	ug/L	1	08/27/19 15:40
Surrogates						
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1	08/27/19 15:40
4-Bromofluorobenzene (surr)	98.6	85-114		%	1	08/27/19 15:40
Toluene-d8 (surr)	101	89-112		%	1	08/27/19 15:40

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 15:40 Container ID: 1194733001-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

Results of MW-22 Client Sample ID: MW-22 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733002 Lab Project ID: 1194733	601 Fmr GT	R M S	collection Da deceived Da latrix: Wate olids (%): ocation:	te: 08/19/	19 13:20		
Results by Semivolatile Organic Fuel s <u>Parameter</u> Diesel Range Organics	s <u>Result Qual</u> 0.830	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analy</u> 08/26/19 22
Surrogates 5a Androstane (surr)	68	50-150		%	1		08/26/19 22
Analytical Batch: XFC15276 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/26/19 22:06 Container ID: 1194733002-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 08/23/ /t./Vol.: 255	C 19 08:39		

Results of MW-22 Client Sample ID: MW-22 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733002 Lab Project ID: 1194733	601 Fmr GT	R M Se	Collection Date: 08/16/19 09:57 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels <u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 08/20/19 22:5	
urrogates 4-Bromofluorobenzene (surr)	77.8	50-150		%	1		08/20/19 22:5	
Batch InformationAnalytical Batch: VFC14886Analytical Method: AK101Analyst: NRBAnalytical Date/Time: 08/20/19 22:59Container ID: 1194733002-A		F F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 08/20/1 ′t./Vol.: 5 m	9 06:00			

Client Sample ID: MW-22 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733002 Lab Project ID: 1194733 Collection Date: 08/16/19 09:57 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 16:10
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 16:10
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
Benzene	0.180 J	0.400	0.120	ug/L	1		08/27/19 16:10
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 16:10
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/27/19 16:10
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
Toluene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:10
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/27/19 16:10
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/27/19 16:10
4-Bromofluorobenzene (surr)	101	85-114		%	1		08/27/19 16:10
Toluene-d8 (surr)	103	89-112		%	1		08/27/19 16:10

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 16:10 Container ID: 1194733002-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-23) - III - etia - D		40.40.47		
Client Sample ID: MW-23 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733003 Lab Project ID: 1194733	01 Fmr GT	F M S	Collection Da Received Da Matrix: Wate Colids (%): ocation:	ite: 08/19/	19 13:20	-	
Results by Semivolatile Organic Fuels	;						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.436 J	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/27/19 19:1
urrogates							
5a Androstane (surr)	70.8	50-150		%	1		08/27/19 19:1
Batch Information							
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS			Prep Batch: Prep Method Prep Date/Ti	: SW35200 me: 08/24/*	9 07:39		
Analytical Date/Time: 08/27/19 19:11 Container ID: 1194733003-G			Prep Initial V Prep Extract		mL		

Results of MW-23							
Client Sample ID: MW-23 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733003 Lab Project ID: 1194733	01 Fmr GT	Collection Date: 08/16/19 10:44 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels			_			Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.181	0.100	0.0310	mg/L	1		08/20/19 23:17
Surrogates							
4-Bromofluorobenzene (surr)	96.8	50-150		%	1		08/20/19 23:1
Batch Information							
Analytical Batch: VFC14886 Analytical Method: AK101		F	Prep Batch: N Prep Method:	SW5030E			
Analyst: NRB Analytical Date/Time: 08/20/19 23:17			Prep Date/Tir Prep Initial W				
Container ID: 1194733003-A			Prep Extract				

Client Sample ID: MW-23 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733003 Lab Project ID: 1194733

Collection Date: 08/16/19 10:44 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Demonster		1.00/01		1.1 14	DE	Allowable	Data Analyzari
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	7.74	1.00	0.310	ug/L	1		08/27/19 16:25
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 16:25
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 16:25
1,3,5-Trimethylbenzene	5.64	1.00	0.310	ug/L	1		08/27/19 16:25
Benzene	37.5	0.400	0.120	ug/L	1		08/27/19 16:25
Ethylbenzene	7.90	1.00	0.310	ug/L	1		08/27/19 16:25
Isopropylbenzene (Cumene)	2.59	1.00	0.310	ug/L	1		08/27/19 16:25
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 16:25
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:25
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:25
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:25
P & M -Xylene	15.3	2.00	0.620	ug/L	1		08/27/19 16:25
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:25
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:25
Toluene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:25
Xylenes (total)	15.3	3.00	1.00	ug/L	1		08/27/19 16:25
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/27/19 16:25
4-Bromofluorobenzene (surr)	100	85-114		%	1		08/27/19 16:25
Toluene-d8 (surr)	102	89-112		%	1		08/27/19 16:25

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 16:25 Container ID: 1194733003-D

Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Results by Semivolatile Organic Fuels		Collection Date: 08/16/19 10:49 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Parameter Result Diesel Range Organics 0.851	<u>Qual LOQ/(</u> 0.556	<u>CL DL</u> 0.167	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 08/27/19 19:21	
urrogates 5a Androstane (surr) 70.2 Batch Information	50-150)	%	1		08/27/19 19:21	
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 19:21 Container ID: 1194733004-G		Prep Date/T	d: SW3520C ime: 08/24/1 Nt./Vol.: 270	19 07:39			

- Results of MW-19							
Client Sample ID: MW-19 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733004 Lab Project ID: 1194733		C F N S L	und)				
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 17.4	<u>LOQ/CL</u> 2.00	<u>DL</u> 0.620	<u>Units</u> mg/L	<u>DF</u> 20	<u>Allowable</u> <u>Limits</u>	Date Analyzec 08/22/19 07:4
Surrogates							
4-Bromofluorobenzene (surr)	92.6	50-150		%	20		08/22/19 07:4
Batch Information							
Analytical Batch: VFC14888 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/22/19 07:41 Container ID: 1194733004-E			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW5030B me: 08/21/1 /t./Vol.: 5 m	9 06:00		

J flagging is activated

Client Sample ID: MW-19 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733004 Lab Project ID: 1194733 Collection Date: 08/16/19 10:49 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,2,4-Trimethylbenzene	98.4	1.00	0.310	ug/L	1		08/27/19 16:41
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 16:41
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 16:41
1,3,5-Trimethylbenzene	26.3	1.00	0.310	ug/L	1		08/27/19 16:41
Benzene	2340	8.00	2.40	ug/L	20		08/28/19 23:19
Ethylbenzene	1180	20.0	6.20	ug/L	20		08/28/19 23:19
Isopropylbenzene (Cumene)	27.5	1.00	0.310	ug/L	1		08/27/19 16:41
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 16:41
Naphthalene	2.32	1.00	0.310	ug/L	1		08/27/19 16:41
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:41
o-Xylene	1420	20.0	6.20	ug/L	20		08/28/19 23:19
P & M -Xylene	3850	40.0	12.4	ug/L	20		08/28/19 23:19
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:41
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:41
Toluene	3.99	1.00	0.310	ug/L	1		08/27/19 16:41
Xylenes (total)	5270	60.0	20.0	ug/L	20		08/28/19 23:19
Surrogates							
1,2-Dichloroethane-D4 (surr)	94.6	81-118		%	1		08/27/19 16:41
4-Bromofluorobenzene (surr)	97.5	85-114		%	1		08/27/19 16:41
Toluene-d8 (surr)	102	89-112		%	1		08/27/19 16:41

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 16:41 Container ID: 1194733004-D

Analytical Batch: VMS19370 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/28/19 23:19 Container ID: 1194733004-B Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34757 Prep Method: SW5030B Prep Date/Time: 08/28/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group 20 of 106

Results of MW-17R Client Sample ID: MW-17R Client Project ID: 105.01288.19008 P Lab Sample ID: 1194733005 Lab Project ID: 1194733		C R M S Lo					
Results by Semivolatile Organic Fuel Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/27/19 19:3
urrogates							
5a Androstane (surr)	72.3	50-150		%	1		08/27/19 19:3
Batch Information							
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 19:31 Container ID: 1194733005-G		I	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/24/1 /t./Vol.: 260	9 07:39		

000

J flagging is activated

Results of MW-17R Client Sample ID: MW-17R Client Project ID: 105.01288.19008 PS	01 Fmr GT	R	Collection Date: 08/16/19 11:25 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground)						
_ab Sample ID: 1194733005 _ab Project ID: 1194733		S	latrix: Water olids (%): ocation:	r (Surrace,	Eπ., Gro	buna)			
Results by Volatile Fuels			-			Allowable			
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyze		
Gasoline Range Organics	0.0454 J	0.100	0.0310	mg/L	1		08/22/19 09:2		
irrogates									
I-Bromofluorobenzene (surr)	86.4	50-150		%	1		08/22/19 09:2		
Batch Information									
Analytical Batch: VFC14888			Prep Batch:						
Analytical Method: AK101 Analyst: NRB			Prep Method: Prep Date/Tir						
Analytical Date/Time: 08/22/19 09:28			Prep Initial W						
Container ID: 1194733005-E			Prep Extract	Vol: 5 mL					

000

Client Sample ID: MW-17R Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733005 Lab Project ID: 1194733 Collection Date: 08/16/19 11:25 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						A II a a la la	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.780 J	1.00	0.310	ug/L	1		08/28/19 23:04
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 16:56
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 16:56
1,3,5-Trimethylbenzene	0.590 J	1.00	0.310	ug/L	1		08/28/19 23:04
Benzene	2.68	0.400	0.120	ug/L	1		08/28/19 23:04
Ethylbenzene	1.33	1.00	0.310	ug/L	1		08/28/19 23:04
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/28/19 23:04
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 16:56
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:56
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:56
o-Xylene	5.25	1.00	0.310	ug/L	1		08/28/19 23:04
P & M -Xylene	4.47	2.00	0.620	ug/L	1		08/28/19 23:04
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:56
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 16:56
Toluene	1.46	1.00	0.310	ug/L	1		08/27/19 16:56
Xylenes (total)	9.72	3.00	1.00	ug/L	1		08/28/19 23:04
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		08/27/19 16:56
4-Bromofluorobenzene (surr)	98	85-114		%	1		08/27/19 16:56
Toluene-d8 (surr)	100	89-112		%	1		08/27/19 16:56

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 16:56 Container ID: 1194733005-D

Analytical Batch: VMS19370 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/28/19 23:04 Container ID: 1194733005-F Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34757 Prep Method: SW5030B Prep Date/Time: 08/28/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group 23 of 106

Results by Semivolatile Organic Fuels					
ParameterResult QualLODiesel Range Organics5.760.5	<u>Q/CL DL</u> 56 0.167	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/27/19 19:40
urrogates					
5a Androstane (surr)73.250-	-150	%	1		08/27/19 19:40
Batch Information					
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 19:40 Container ID: 1194733006-G	Prep Met Prep Date Prep Initia	ch: XXX42097 hod: SW3520C e/Time: 08/24/1 al Wt./Vol.: 270 act Vol: 1 mL	9 07:39		

-

J flagging is activated

Results of MW-15							
Client Sample ID: MW-15 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733006 Lab Project ID: 1194733	601 Fmr GT	R M S	ollection Da eceived Da latrix: Water olids (%): ocation:	te: 08/19/	19 13:20		
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.287	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/21/19 00:
urrogates							
4-Bromofluorobenzene (surr)	84.4	50-150		%	1		08/21/19 00:
Batch Information							
Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 00:10 Container ID: 1194733006-A		F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 08/20/ 't./Vol.: 5 m	19 06:00		

Client Sample ID: MW-15 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733006 Lab Project ID: 1194733 Collection Date: 08/16/19 11:26 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed	
1,2,4-Trimethylbenzene	10.5	1.00	0.310	ug/L	1	08/27/19 17:11	
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/27/19 17:11	
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/27/19 17:11	
1,3,5-Trimethylbenzene	4.21	1.00	0.310	ug/L	1	08/27/19 17:11	
Benzene	25.3	0.400	0.120	ug/L	1	08/27/19 17:11	
Ethylbenzene	11.3	1.00	0.310	ug/L	1	08/27/19 17:11	
Isopropylbenzene (Cumene)	1.87	1.00	0.310	ug/L	1	08/27/19 17:11	
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	08/27/19 17:11	
Naphthalene	3.30	1.00	0.310	ug/L	1	08/27/19 17:11	
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 17:11	
o-Xylene	28.4	1.00	0.310	ug/L	1	08/27/19 17:11	
P & M -Xylene	44.1	2.00	0.620	ug/L	1	08/27/19 17:11	
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 17:11	
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 17:11	
Toluene	34.6	1.00	0.310	ug/L	1	08/27/19 17:11	
Xylenes (total)	72.4	3.00	1.00	ug/L	1	08/27/19 17:11	
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1	08/27/19 17:11	
4-Bromofluorobenzene (surr)	100	85-114		%	1	08/27/19 17:11	
Toluene-d8 (surr)	103	89-112		%	1	08/27/19 17:11	

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 17:11 Container ID: 1194733006-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-16R							
Elient Sample ID: MW-16R Elient Project ID: 105.01288.19008 ab Sample ID: 1194733007 ab Project ID: 1194733	PS01 Fmr GT	R M S	Collection Date: 08/16/19 12:12 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:				
esults by Semivolatile Organic F	uels						
<u>arameter</u> iesel Range Organics	<u>Result Qual</u> 0.359 J	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 08/27/19 19:5
rrogates							
a Androstane (surr)	69.9	50-150		%	1		08/27/19 19:5
atch Information							
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 19:5 Container ID: 1194733007-G	0		Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 08/24/1 /t./Vol.: 260	9 07:39		

ient Sample ID: MW-16R ient Project ID: 105.01288.19008 ab Sample ID: 1194733007 ab Project ID: 1194733	PS01 Fmr GT	R M Se	ollection Da eceived Dat atrix: Water olids (%): ocation:	e: 08/19/	19 13:20		
esults by Volatile Fuels						Allewski	
arameter asoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed
rogates	0.0000 0	0.100	0.0310	mg/L	I		00/21/19 00:2
Bromofluorobenzene (surr)	80.9	50-150		%	1		08/21/19 00:2
atch Information							
Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 00:28 Container ID: 1194733007-A		F F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B ne: 08/20/1 t./Vol.: 5 m	9 06:00		

Client Sample ID: MW-16R Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733007 Lab Project ID: 1194733 Collection Date: 08/16/19 12:12 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 17:26
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 17:26
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
Benzene	0.250 J	0.400	0.120	ug/L	1		08/27/19 17:26
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 17:26
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/27/19 17:26
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
Toluene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:26
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/27/19 17:26
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/27/19 17:26
4-Bromofluorobenzene (surr)	102	85-114		%	1		08/27/19 17:26
Toluene-d8 (surr)	102	89-112		%	1		08/27/19 17:26

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 17:26 Container ID: 1194733007-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

J flagging is activated

lesults of MW-14R lient Sample ID: MW-14R lient Project ID: 105.01288.19008 F ab Sample ID: 1194733008 ab Project ID: 1194733	PS01 Fmr GT	F M	collection Da eceived Dat latrix: Water colids (%):	te: 08/19/	19 13:20		
		L	ocation:				
esults by Volatile Fuels arameter asoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyze 08/21/19 00:4
rrogates -Bromofluorobenzene (surr)	81.1	50-150		%	1		08/21/19 00:4
atch Information	01			,0	·		00/2 // 10 00.1
Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 00:46 Container ID: 1194733008-A			Prep Batch: ' Prep Method: Prep Date/Tir Prep Initial W Prep Extract '	: SW5030B me: 08/20/1 /t./Vol.: 5 m	9 06:00		

000

Client Sample ID: MW-14R Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733008 Lab Project ID: 1194733 Collection Date: 08/16/19 12:09 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	<u>1.00</u>	0.310	ug/L	1		08/27/19 17:42
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 17:42
1.2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 17:42
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
•				0	-		
Benzene	0.200 U	0.400	0.120	ug/L	1		08/27/19 17:42
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 17:42
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/27/19 17:42
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
Toluene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:42
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/27/19 17:42
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		08/27/19 17:42
4-Bromofluorobenzene (surr)	99.8	85-114		%	1		08/27/19 17:42
Toluene-d8 (surr)	101	89-112		%	1		08/27/19 17:42

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 17:42 Container ID: 1194733008-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group 32 of 106

	R N S L	Collection Da Received Da Matrix: Wate Solids (%): ocation:	ite: 08/19/ [,] r (Surface,	19 13:20	und)	
Parameter <u>Result Qual I</u> Diesel Range Organics 0.268 J (DL	11-34-			
Diesel Range Organics 0.268 J		DL	11			
Diesel Range Organics 0.268 J			<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
rrogates).556	0.167	mg/L	1		08/27/19 20:0
nogates						
a Androstane (surr) 69	50-150		%	1		08/27/19 20:0
atch Information						
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 20:09 Container ID: 1194733009-G		Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 08/24/1 /t./Vol.: 270	19 07:39		

Results of MW-13 Client Sample ID: MW-13		-	ollection Da				
Client Project ID: 105.01288.19008 F .ab Sample ID: 1194733009 .ab Project ID: 1194733	PS01 Fmr GT	N S	eceived Dat latrix: Water olids (%): ocation:				
Results by Volatile Fuels							
P <u>arameter</u> Basoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/21/19 01:0
I rrogates I-Bromofluorobenzene (surr)	78.2	50-150		%	1		08/21/19 01:0
Batch Information Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 01:03 Container ID: 1194733009-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 08/20/1 /t./Vol.: 5 m	9 06:00		

Client Sample ID: MW-13 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733009 Lab Project ID: 1194733 Collection Date: 08/16/19 12:46 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

		1.00/01			55	Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 17:57
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 17:57
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
Benzene	0.200 U	0.400	0.120	ug/L	1		08/27/19 17:57
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 17:57
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/27/19 17:57
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
Toluene	0.500 U	1.00	0.310	ug/L	1		08/27/19 17:57
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/27/19 17:57
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		08/27/19 17:57
4-Bromofluorobenzene (surr)	98.8	85-114		%	1		08/27/19 17:57
Toluene-d8 (surr)	103	89-112		%	1		08/27/19 17:57

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 17:57 Container ID: 1194733009-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-12 Client Sample ID: MW-12 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733010 Lab Project ID: 1194733		R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	te: 08/19/	19 13:20	und)	
Results by Semivolatile Organic Fuels <u>Parameter</u> Diesel Range Organics	Result Qual 0.272 J	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/27/19 20: ²
urrogates 5a Androstane (surr)	72	50-150		%	1		08/27/19 20:1
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 20:19 Container ID: 1194733010-G		F	Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW35200 me: 08/24/ /t./Vol.: 255	19 07:39		

J flagging is activated

Results of MW-12 Client Sample ID: MW-12 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733010 Lab Project ID: 1194733	601 Fmr GT	R M S	ollection Da eceived Da atrix: Water olids (%): ocation:	te: 08/19/1	19 13:20		
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/21/19 01:21
Surrogates							
4-Bromofluorobenzene (surr)	79.3	50-150		%	1		08/21/19 01:21
Batch Information							
Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 01:21 Container ID: 1194733010-A		Prep Batch: VXX34686 Prep Method: SW5030B Prep Date/Time: 08/20/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

J flagging is activated

Client Sample ID: **MW-12** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733010 Lab Project ID: 1194733 Collection Date: 08/16/19 13:01 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/27/19 18:12
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/27/19 18:12
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
Benzene	0.200 U	0.400	0.120	ug/L	1	08/27/19 18:12
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	08/27/19 18:12
Naphthalene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
o-Xylene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	08/27/19 18:12
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
Toluene	0.500 U	1.00	0.310	ug/L	1	08/27/19 18:12
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	08/27/19 18:12
Surrogates						
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1	08/27/19 18:12
4-Bromofluorobenzene (surr)	100	85-114		%	1	08/27/19 18:12
Toluene-d8 (surr)	102	89-112		%	1	08/27/19 18:12

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 18:12 Container ID: 1194733010-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Results of MW-9 Client Sample ID: MW-9 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733011 Lab Project ID: 1194733		R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	ite: 08/19/	19 13:20		
Results by Semivolatile Organic Fuels Parameter Diesel Range Organics	s <u>Result Qual</u> 1.38	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
urrogates				-			
5a Androstane (surr)	71.6	50-150		%	1		08/27/19 20:29
Batch Information							
Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 20:29 Container ID: 1194733011-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract				

000

01 Fmr GT	R M S	eceived Da latrix: Wate olids (%):	ate: 08/19/	19 13:20		
		_			Allowable	
Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
24.9	5.00	1.55	mg/L	50		08/22/19 07:05
89.2	50-150		%	50		08/22/19 07:05
		Prep Methoo	d: SW5030B			
	<u>Result Qual</u> 24.9	01 Fmr GT R M S Lo 24.9 5.00 89.2 50-150	01 Fmr GT Received Da Matrix: Wate Solids (%): Location: Result Qual LOQ/CL DL 24.9 5.00 1.55 89.2 50-150 Prep Batch: Prep Method	01 Fmr GT Received Date: 08/19/* Matrix: Water (Surface, Solids (%): Location: Result Qual LOQ/CL DL Units 24.9 5.00 1.55 mg/L 89.2 50-150 % Prep Batch: VXX34697 Prep Method: SW5030B	01 Fmr GT Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Gro Solids (%): Location: Result Qual LOQ/CL DL Units DF 24.9 89.2 50-150 % 50	Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Result Qual LOQ/CL DL Units DF Limits 24.9 5.00 1.55 mg/L 50 89.2 50-150 % 50 Prep Batch: VXX34697 Prep Method: SW5030B

J flagging is activated

Client Sample ID: **MW-9** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733011 Lab Project ID: 1194733 Collection Date: 08/16/19 14:01 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits Date A	nalyzed
1,2,4-Trimethylbenzene	523	20.0	6.20	ug/L	20	08/28/	19 23:33
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/27/	19 18:28
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/27/	19 18:28
1,3,5-Trimethylbenzene	183	1.00	0.310	ug/L	1	08/27/	19 18:28
Benzene	1850	8.00	2.40	ug/L	20	08/28/	19 23:33
Ethylbenzene	1700	20.0	6.20	ug/L	20	08/28/	19 23:33
Isopropylbenzene (Cumene)	106	1.00	0.310	ug/L	1	08/27/	19 18:28
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	08/27/	19 18:28
Naphthalene	7.96	1.00	0.310	ug/L	1	08/27/	19 18:28
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/	19 18:28
o-Xylene	2580	20.0	6.20	ug/L	20	08/28/	19 23:33
P & M -Xylene	5880	40.0	12.4	ug/L	20	08/28/	19 23:33
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/27/	19 18:28
tert-Butylbenzene	0.800 J	1.00	0.310	ug/L	1	08/27/	19 18:28
Toluene	647	20.0	6.20	ug/L	20	08/28/	19 23:33
Xylenes (total)	8460	60.0	20.0	ug/L	20	08/28/	19 23:33
Surrogates							
1,2-Dichloroethane-D4 (surr)	92.5	81-118		%	1	08/27/	19 18:28
4-Bromofluorobenzene (surr)	101	85-114		%	1	08/27/	19 18:28
Toluene-d8 (surr)	104	89-112		%	1	08/27/	19 18:28

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 18:28 Container ID: 1194733011-D

Analytical Batch: VMS19370 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/28/19 23:33 Container ID: 1194733011-F Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34757 Prep Method: SW5030B Prep Date/Time: 08/28/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733012 Lab Project ID: 1194733 Results by Semivolatile Organic Fuels Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze Diesel Range Organics 0.580 0.566 0.170 mg/L 1 08/27/19 20: Surrogates	Results of MW-8						
ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzaDiesel Range Organics0.5800.5660.170mg/L108/27/19 20:Surrogates5a Androstane (surr)79.450-150%108/27/19 20:Batch InformationAnalytical Batch: XFC15285Analytical Method: AK102Analyst: CMSAnalytical Date/Time: 08/27/19 20:39Prep Initial Wt./Vol.: 265 mL	Lab Sample ID: 1194733012	01 Fmr GT	F M S	Received Da latrix: Wate solids (%):	ate: 08/19/	19 13:20	
ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzeDiesel Range Organics0.5800.5660.170mg/L108/27/19 20:Surrogates5a Androstane (surr)79.450-150%108/27/19 20:Batch InformationAnalytical Batch: XFC15285Prep Batch: XXX42097Analytical Method: AK102Prep Method: SW3520CAnalyst: CMSPrep Date/Time:08/27/19 20:39Analytical Date/Time:08/27/19 20:39	Results by Semivolatile Organic Fuels	5		_			
5a Androstane (surr) 79.4 50-150 % 1 08/27/19 20: Batch Information Analytical Batch: XFC15285 Prep Batch: XXX42097 Analytical Method: AK102 Prep Method: SW3520C Analyst: CMS Prep Date/Time: 08/24/19 07:39 Analytical Date/Time: 08/27/19 20:39 Prep Initial Wt./Vol.: 265 mL							Date Analyzed
Batch Information Analytical Batch: XFC15285 Analytical Method: AK102 Prep Method: SW3520C Analyst: CMS Analytical Date/Time: 08/27/19 20:39 Prep Date/Time: 08/27/19 20:39 Prep Initial Wt./Vol.: 265 mL	urrogates						
Analytical Batch: XFC15285Prep Batch: XXX42097Analytical Method: AK102Prep Method: SW3520CAnalyst: CMSPrep Date/Time: 08/24/19 07:39Analytical Date/Time: 08/27/19 20:39Prep Initial Wt./Vol.: 265 mL	5a Androstane (surr)	79.4	50-150		%	1	08/27/19 20:39
Analytical Method: AK102Prep Method: SW3520CAnalyst: CMSPrep Date/Time: 08/24/19 07:39Analytical Date/Time: 08/27/19 20:39Prep Initial Wt./Vol.: 265 mL	Batch Information						
	Analytical Batch: XFC15285 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 08/27/19 20:39			Prep Method Prep Date/Ti Prep Initial V	l: SW35200 me: 08/24/1 Vt./Vol.: 265	9 07:39	

-

Results of MW-8	h						
Client Sample ID: MW-8 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733012 Lab Project ID: 1194733	01 Fmr GT	R M S	eceived Da	ate: 08/16/ ite: 08/19/ [,] r (Surface,	19 13:20		
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result</u> Qual 4.05	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.155	<u>Units</u> mg/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Surrogates							
4-Bromofluorobenzene (surr)	87.1	50-150		%	5		08/22/19 09:1
Batch Information							
Analytical Batch: VFC14888 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/22/19 09:10 Container ID: 1194733012-E		Prep Batch: VXX34697 Prep Method: SW5030B Prep Date/Time: 08/21/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

000

J flagging is activated

Client Sample ID: MW-8 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733012 Lab Project ID: 1194733 Collection Date: 08/16/19 15:02 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,2,4-Trimethylbenzene	3.81	1.00	0.310	ug/L	1		08/28/19 23:48
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/27/19 18:43
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/27/19 18:43
1,3,5-Trimethylbenzene	1.29	1.00	0.310	ug/L	1		08/28/19 23:48
Benzene	1080	4.00	1.20	ug/L	10		08/29/19 00:18
Ethylbenzene	21.8	1.00	0.310	ug/L	1		08/28/19 23:48
Isopropylbenzene (Cumene)	0.920 J	1.00	0.310	ug/L	1		08/28/19 23:48
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/27/19 18:43
Naphthalene	1.82	1.00	0.310	ug/L	1		08/28/19 23:48
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 18:43
o-Xylene	45.4	1.00	0.310	ug/L	1		08/28/19 23:48
P & M -Xylene	41.8	2.00	0.620	ug/L	1		08/28/19 23:48
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 18:43
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/27/19 18:43
Toluene	1150	10.0	3.10	ug/L	10		08/29/19 00:18
Xylenes (total)	87.2	3.00	1.00	ug/L	1		08/28/19 23:48
Surrogates							
1,2-Dichloroethane-D4 (surr)	92.5	81-118		%	1		08/27/19 18:43
4-Bromofluorobenzene (surr)	97.5	85-114		%	1		08/27/19 18:43
Toluene-d8 (surr)	103	89-112		%	1		08/27/19 18:43

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Client Sample ID: **MW-8** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733012 Lab Project ID: 1194733

Results by Volatile GC/MS- Petroleum VOC Group

Batch Information

Analytical Batch: VMS19370 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/29/19 00:18 Container ID: 1194733012-F

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/27/19 18:43 Container ID: 1194733012-D

Analytical Batch: VMS19370 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/28/19 23:48 Container ID: 1194733012-F Collection Date: 08/16/19 15:02 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX34757 Prep Method: SW5030B Prep Date/Time: 08/28/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34757 Prep Method: SW5030B Prep Date/Time: 08/28/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

	ab Project ID: 1194733		M S	Aatrix: Wate Solids (%): ocation:		19 13:20 Eff., Grc	
ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzDiesel Range Organics0.220 J0.5560.167mg/L109/03/19 21urrogates5a Androstane (surr)82.750-150%109/03/19 21Batch InformationAnalytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 21:04Prep Batch: XXX42115 Prep Initial Wt./Vol.: 270 mL	esults by Semivolatile Organic Fu	els					
5a Androstane (surr) 82.7 50-150 % 1 09/03/19 21 Batch Information Image: State of the state of t							Date Analyzed
Batch Information Analytical Batch: XFC15297 Analytical Method: AK102 Prep Method: SW3520C Analyst: CMS Analytical Date/Time: 09/03/19 21:04 Prep Initial Wt./Vol.: 270 mL	-	00.7	50 450		0/	4	00/02/40 04:0/
	Analytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 21:04			Prep Method Prep Date/Ti Prep Initial W	: SW35200 me: 08/27/1 /t./Vol.: 270	9 09:36	

Results of MW-4R Client Sample ID: MW-4R Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733013 Lab Project ID: 1194733	601 Fmr GT	C R M S Lo					
Results by Volatile Fuels Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0314 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/21/19 02:15
urrogates 4-Bromofluorobenzene (surr)	77.1	50-150		%	1		08/21/19 02:15
Batch Information Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 02:15 Container ID: 1194733013-A		F F	Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B me: 08/20/1 t./Vol.: 5 m	9 06:00		

Results of MW-4R

Client Sample ID: MW-4R Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733013 Lab Project ID: 1194733 Collection Date: 08/16/19 14:56 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/26/19 21:00
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/26/19 21:00
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
Benzene	0.200 U	0.400	0.120	ug/L	1		08/26/19 21:00
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 21:00
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/26/19 21:00
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
Toluene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:00
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/26/19 21:00
Surrogates							
1,2-Dichloroethane-D4 (surr)	81.5	81-118		%	1		08/26/19 21:00
4-Bromofluorobenzene (surr)	99.5	85-114		%	1		08/26/19 21:00
Toluene-d8 (surr)	104	89-112		%	1		08/26/19 21:00

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 21:00 Container ID: 1194733013-D Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results by Semivolatile Organic Fuels		Collection Date: 08/16/19 15:45 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
					Allowabla			
arameter Result Qu iesel Range Organics 0.321 J	<u>al LOQ/CL</u> 0.556	<u>DL</u> 0.167	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed		
rrogates								
a Androstane (surr) 88.7	50-150		%	1		09/03/19 21:14		
Analytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 21:14 Container ID: 1194733014-G		Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW3520C me: 08/27/1 /t./Vol.: 270	9 09:36				

-

Results of MW-2 Client Sample ID: MW-2	ł	-	ollection Da				
Client Project ID: 105.01288.19008 Lab Sample ID: 1194733014 Lab Project ID: 1194733	PS01 Fmr GT	N S	eceived Dat latrix: Water olids (%): ocation:			und)	
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 08/21/19 02:3
urrogates							
I-Bromofluorobenzene (surr) Batch Information	79.1	50-150		%	1		08/21/19 02:3
Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 02:32 Container ID: 1194733014-A	2		Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030E me: 08/20/′ ′t./Vol.: 5 m	19 06:00		

J flagging is activated

Client Sample ID: MW-2 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733014 Lab Project ID: 1194733 Collection Date: 08/16/19 15:45 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/26/19 21:15
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/26/19 21:15
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
Benzene	0.200 U	0.400	0.120	ug/L	1		08/26/19 21:15
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 21:15
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/26/19 21:15
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
Toluene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:15
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/26/19 21:15
Surrogates							
1,2-Dichloroethane-D4 (surr)	82.2	81-118		%	1		08/26/19 21:15
4-Bromofluorobenzene (surr)	99.6	85-114		%	1		08/26/19 21:15
Toluene-d8 (surr)	105	89-112		%	1		08/26/19 21:15

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 21:15 Container ID: 1194733014-D Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-20 Client Sample ID: MW-20			collection Da				
Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733015 Lab Project ID: 1194733	01 Fmr GI	N	eceived Da latrix: Wate olids (%): ocation:				
Results by Semivolatile Organic Fuels	;						
Parameter Diesel Range Organics	<u>Result Qual</u> 0.317 J	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed
u rrogates 5a Androstane (surr)	80.5	50-150		%	1		09/03/19 21:25
Batch Information Analytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 21:25 Container ID: 1194733015-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 08/27/1 /t./Vol.: 255	9 09:36		

ient Sample ID: MW-20 ient Project ID: 105.01288.19008 PS01 Fn ib Sample ID: 1194733015 ib Project ID: 1194733 esults by Volatile Fuels	nr GT	R M S	eceived Dat latrix: Water olids (%):	te: 08/19/1	19 13:20			
			Collection Date: 08/16/19 15:55 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
	<u>sult Qual</u> 500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/21/19 02:50	
rogates								
Bromofluorobenzene (surr) 78	8.8	50-150		%	1		08/21/19 02:50	
atch Information								
Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/21/19 02:50 Container ID: 1194733015-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	: SW5030B me: 08/20/1 ′t./Vol.: 5 m	9 06:00			

Client Sample ID: **MW-20** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733015 Lab Project ID: 1194733 Collection Date: 08/16/19 15:55 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	<u>1.00</u>	0.310	ug/L	1		08/26/19 21:29
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/26/19 21:29
1.2-Dichloroethane	0.250 U	0.500	0.150	•			08/26/19 21:29
,				ug/L	1		
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
Benzene	2.54	0.400	0.120	ug/L	1		08/26/19 21:29
Ethylbenzene	0.460 J	1.00	0.310	ug/L	1		08/26/19 21:29
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 21:29
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/26/19 21:29
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
Toluene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:29
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/26/19 21:29
Surrogates							
1,2-Dichloroethane-D4 (surr)	82.9	81-118		%	1		08/26/19 21:29
4-Bromofluorobenzene (surr)	98.6	85-114		%	1		08/26/19 21:29
Toluene-d8 (surr)	106	89-112		%	1		08/26/19 21:29

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 21:29 Container ID: 1194733015-D Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-3 Client Sample ID: MW-3 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733016 Lab Project ID: 1194733		C R M S L					
Results by Semivolatile Organic Fuel Parameter Diesel Range Organics	s <u>Result Qual</u> 0.487 J	<u>LOQ/CL</u> 0.566	<u>DL</u> 0.170	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 09/03/19 21:35
urrogates 5a Androstane (surr)	81.9	50-150		%	1		09/03/19 21:35
Batch Information Analytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 21:35 Container ID: 1194733016-G		F F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/27/1 /t./Vol.: 265	9 09:36		

J flagging is activated

Results of MW-3 Client Sample ID: MW-3			collection Da				
Client Project ID: 105.01288.19008 PS .ab Sample ID: 1194733016 .ab Project ID: 1194733	601 Fmr GT	M S	eceived Dat latrix: Water olids (%): ocation:				
Results by Volatile Fuels							
P <u>arameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/21/19 03:0
irrogates							
-Bromofluorobenzene (surr)	76.9	50-150		%	1		08/21/19 03:0
Batch Information							
Analytical Batch: VFC14886			Prep Batch:				
Analytical Method: AK101 Analyst: NRB			Prep Method: Prep Date/Tir				
Analytical Date/Time: 08/21/19 03:08			Prep Initial W	't./Vol.: 5 m			
Container ID: 1194733016-A			Prep Extract '	Vol: 5 mL			

-

Client Sample ID: MW-3 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733016 Lab Project ID: 1194733 Collection Date: 08/16/19 16:30 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/26/19 21:44
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/26/19 21:44
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
Benzene	0.200 U	0.400	0.120	ug/L	1		08/26/19 21:44
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 21:44
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/26/19 21:44
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
Toluene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:44
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/26/19 21:44
Surrogates							
1,2-Dichloroethane-D4 (surr)	82.6	81-118		%	1		08/26/19 21:44
4-Bromofluorobenzene (surr)	98.3	85-114		%	1		08/26/19 21:44
Toluene-d8 (surr)	105	89-112		%	1		08/26/19 21:44

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 21:44 Container ID: 1194733016-D Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group 57 of 106

esults of MW-7R							
lient Sample ID: MW-7R lient Project ID: 105.01288.19008 F ab Sample ID: 1194733017 ab Project ID: 1194733	PS01 Fmr GT	C F M S L					
esults by Semivolatile Organic Fue	els						
<u>arameter</u> iesel Range Organics	<u>Result Qual</u> 0.252 J	<u>LOQ/CL</u> 0.556	<u>DL</u> 0.167	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 09/03/19 21:4
rrogates							
a Androstane (surr)	83.3	50-150		%	1		09/03/19 21:4
atch Information							
Analytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 21:45 Container ID: 1194733017-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 08/27/1/ /t./Vol.: 270	9 09:36		

000

Client Sample ID: MW-7R Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733017 Lab Project ID: 1194733 Results by Volatile Fuels		R M Se	Collection Date: 08/16/19 16:46 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels			_			Allowable		
arameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyze	
Casoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		08/21/19 03:4	
rrogates -Bromofluorobenzene (surr)	78	50-150		%	1		08/21/19 03:4	
Batch Information								
Analytical Batch: VFC14886 Analytical Method: AK101			Prep Batch: N Prep Method:					
Analyst: NRB		F	Prep Date/Tir	ne: 08/20/1	9 06:00			
Analytical Date/Time: 08/21/19 03:43 Container ID: 1194733017-A			Prep Initial W Prep Extract V		L			

Results of MW-7R

Client Sample ID: MW-7R Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733017 Lab Project ID: 1194733 Collection Date: 08/16/19 16:46 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
	0.500 U	<u>1.00</u>	0.310		1		08/26/19 21:59
1,2,4-Trimethylbenzene				ug/L	-		
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/26/19 21:59
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/26/19 21:59
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
Benzene	0.200 U	0.400	0.120	ug/L	1		08/26/19 21:59
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 21:59
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/26/19 21:59
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
Toluene	0.500 U	1.00	0.310	ug/L	1		08/26/19 21:59
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/26/19 21:59
Surrogates							
1,2-Dichloroethane-D4 (surr)	82.5	81-118		%	1		08/26/19 21:59
4-Bromofluorobenzene (surr)	97.9	85-114		%	1		08/26/19 21:59
Toluene-d8 (surr)	105	89-112		%	1		08/26/19 21:59

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 21:59 Container ID: 1194733017-D Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-98 Client Sample ID: MW-98 Client Project ID: 105.01288.19008 PS	01 Fmr GT	(F						
Lab Sample ID: 1194733018 Lab Project ID: 1194733		Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fuels	5		_					
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.254 J	<u>LOQ/CL</u> 0.556	<u>DL</u> 0.167	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 09/03/19 21:55	
Surrogates								
5a Androstane (surr)	79.9	50-150		%	1		09/03/19 21:55	
Batch Information Analytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 21:55 Container ID: 1194733018-G			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW35200 me: 08/27/1 /t./Vol.: 270	19 09:36			

Client Sample ID: MW-98 Client Project ID: 105.01288.19008 PS01 Fmr GT		-	ollection Da eceived Dat				
ab Sample ID: 1194733018 ab Project ID: 1194733		S	atrix: Water olids (%): ocation:	(Surface,	Eff., Gro	ound)	
Results by Volatile Fuels						Allawahla	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.106	0.100	0.0310	mg/L	1		08/21/19 04:0
urrogates 1-Bromofluorobenzene (surr)	80.8	50-150		%	1		08/21/19 04:0
Batch Information							
Analytical Batch: VFC14886		F	Prep Batch:	VXX34686			
Analytical Method: AK101		F	· Prep Method:	SW5030B			
Analyst: NRB Analytical Date/Time: 08/21/19 04:01			Prep Date/Tir Prep Initial W				
Container ID: 1194733018-A			Prep Extract		-		

Client Sample ID: MW-98 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733018 Lab Project ID: 1194733 Collection Date: 08/16/19 17:00 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
1,2,4-Trimethylbenzene	4.76	1.00	0.310	ug/L	1		08/26/19 22:14
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/26/19 22:14
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/26/19 22:14
1,3,5-Trimethylbenzene	1.97	1.00	0.310	ug/L	1		08/26/19 22:14
Benzene	8.36	0.400	0.120	ug/L	1		08/26/19 22:14
Ethylbenzene	3.26	1.00	0.310	ug/L	1		08/26/19 22:14
Isopropylbenzene (Cumene)	0.880 J	1.00	0.310	ug/L	1		08/26/19 22:14
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 22:14
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:14
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:14
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:14
P & M -Xylene	3.24	2.00	0.620	ug/L	1		08/26/19 22:14
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:14
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:14
Toluene	0.590 J	1.00	0.310	ug/L	1		08/26/19 22:14
Xylenes (total)	3.24	3.00	1.00	ug/L	1		08/26/19 22:14
Surrogates							
1,2-Dichloroethane-D4 (surr)	82.8	81-118		%	1		08/26/19 22:14
4-Bromofluorobenzene (surr)	98.9	85-114		%	1		08/26/19 22:14
Toluene-d8 (surr)	106	89-112		%	1		08/26/19 22:14

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 22:14 Container ID: 1194733018-D Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Results of MW-99 Client Sample ID: MW-99 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733019 Lab Project ID: 1194733	601 Fmr GT	S					
Results by Semivolatile Organic Fuel	s	L	ocation:				
Parameter Diesel Range Organics	Result Qual 1.35	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
u rrogates 5a Androstane (surr)	84.1	50-150		%	1		09/03/19 22:05
Batch Information Analytical Batch: XFC15297 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/03/19 22:05 Container ID: 1194733019-G			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW35200 me: 08/27/1 /t./Vol.: 250	9 09:36		

Results of MW-99							
Client Sample ID: MW-99 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733019 Lab Project ID: 1194733		Collection Date: 08/16/19 17:30 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels			_				
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyze
Gasoline Range Organics	22.8	5.00	1.55	mg/L	50		08/22/19 07:2
Surrogates							
4-Bromofluorobenzene (surr)	93.1	50-150		%	50		08/22/19 07:2
Batch Information							
Analytical Batch: VFC14888 Analytical Method: AK101 Analyst: NRB			Prep Method	VXX34697 d: SW5030B ime: 08/21/1			
Analytical Date/Time: 08/22/19 07:23				Vt./Vol.: 5 m			

000

Client Sample ID: MW-99 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733019 Lab Project ID: 1194733 Collection Date: 08/16/19 17:30 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,2,4-Trimethylbenzene	600	20.0	6.20	ug/L	20		08/28/19 00:03
1,2-Dibromoethane	0.750 U	1.50	0.360	ug/L	20		08/28/19 00:03
1,2-Dichloroethane	5.00 U	10.0	3.00	ug/L	20		08/28/19 00:03
1,3,5-Trimethylbenzene	180	1.00	0.310	ug/L	1		08/26/19 22:28
Benzene	1770	8.00	2.40	ug/L	20		08/28/19 00:03
Ethylbenzene	1700	20.0	6.20	ug/L	20		08/28/19 00:03
Isopropylbenzene (Cumene)	96.6	20.0	6.20	ug/L	20		08/28/19 00:03
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 22:28
Naphthalene	7.73	1.00	0.310	ug/L	1		08/26/19 22:28
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:28
o-Xylene	2620	20.0	6.20	ug/L	20		08/28/19 00:03
P & M -Xylene	5830	40.0	12.4	ug/L	20		08/28/19 00:03
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:28
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 22:28
Toluene	622	20.0	6.20	ug/L	20		08/28/19 00:03
Xylenes (total)	8450	60.0	20.0	ug/L	20		08/28/19 00:03
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.2	81-118		%	20		08/28/19 00:03
4-Bromofluorobenzene (surr)	102	85-114		%	1		08/26/19 22:28
Toluene-d8 (surr)	104	89-112		%	1		08/26/19 22:28

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/28/19 00:03 Container ID: 1194733019-D

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 22:28 Container ID: 1194733019-D Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **SW-1** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733020 Lab Project ID: 1194733 Collection Date: 08/16/19 13:29 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Acenaphthylene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Benzo(a)Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Benzo[a]pyrene	0.00945 U	0.0189	0.00585	ug/L	1		08/22/19 23:07
Benzo[b]Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Benzo[g,h,i]perylene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Benzo[k]fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Chrysene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Dibenzo[a,h]anthracene	0.00945 U	0.0189	0.00585	ug/L	1		08/22/19 23:07
Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Fluorene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Indeno[1,2,3-c,d] pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Naphthalene	0.0471 U	0.0943	0.0292	ug/L	1		08/22/19 23:07
Phenanthrene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/22/19 23:07
Surrogates							
2-Methylnaphthalene-d10 (surr)	65	47-106		%	1		08/22/19 23:07
Fluoranthene-d10 (surr)	57.2	24-116		%	1		08/22/19 23:07

Batch Information

Analytical Batch: XMS11655 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/22/19 23:07 Container ID: 1194733020-D Prep Batch: XXX42052 Prep Method: SW3520C Prep Date/Time: 08/20/19 08:55 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Print Date: 09/05/2019 2:10:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733020 Lab Project ID: 1194733	01 Fmr GT	M	eceived Da atrix: Wate olids (%): ocation:				
Results by Volatile Fuels]				
Deservator	Desult Out 1	1.00/01		1.1	DE	Allowable	Data Araba
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	3.01 0.500 U	0.500 1.00	0.150	ug/L	1		08/23/19 06:57 08/23/19 06:57
Ethylbenzene			0.310	ug/L	1		
o-Xylene	0.373 J 1.00 U	1.00 2.00	0.310 0.620	ug/L	1		08/23/19 06:57 08/23/19 06:57
P & M -Xylene Toluene	0.500 U	2.00 1.00	0.620	ug/L	1 1		08/23/19 06:57
Xylenes (total)	1.50 U	3.00	0.930	ug/L ug/L	1		08/23/19 00:57
Surrogates				- 5			
1,4-Difluorobenzene (surr)	97	77-115		%	1		08/23/19 06:57
Batch Information							
Analytical Batch: VFC14891 Analytical Method: SW8021B Analyst: NRB		F	Prep Batch: Prep Method Prep Date/Ti	: SW5030E me: 08/22/	9 06:00		
Analytical Date/Time: 08/23/19 06:57 Container ID: 1194733020-A			Prep Initial W Prep Extract		L		

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Client Sample ID: SW-2 Client Project ID: 105.01288.19008 PS01 Fmr GT Lab Sample ID: 1194733021 Lab Project ID: 1194733 Collection Date: 08/16/19 13:37 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		08/22/19 23:27
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		08/22/19 23:27
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		08/22/19 23:27
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/22/19 23:27
Surrogates							
2-Methylnaphthalene-d10 (surr)	59	47-106		%	1		08/22/19 23:27
Fluoranthene-d10 (surr)	53.3	24-116		%	1		08/22/19 23:27

Batch Information

Analytical Batch: XMS11655 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/22/19 23:27 Container ID: 1194733021-D Prep Batch: XXX42052 Prep Method: SW3520C Prep Date/Time: 08/20/19 08:55 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/05/2019 2:10:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

69 of 106

SG

Results of SW-2								
Client Sample ID: SW-2 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733021 Lab Project ID: 1194733	01 Fmr GT	Collection Date: 08/16/19 13:37 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels								
						<u>Allowable</u>		
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed	
Benzene	1.77	0.500	0.150	ug/L	1		08/23/19 07:15	
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/19 07:15	
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/23/19 07:15	
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/23/19 07:15	
Toluene	0.500 U	1.00	0.310	ug/L	1		08/23/19 07:15	
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		08/23/19 07:15	
Surrogates								
1,4-Difluorobenzene (surr)	96.7	77-115		%	1		08/23/19 07:15	
Batch Information								
Analytical Batch: VFC14891 Analytical Method: SW8021B			Prep Batch: Prep Method					
Analyst: NRB			Prep Date/Ti					
Analytical Date/Time: 08/23/19 07:15			Prep Initial W					
Container ID: 1194733021-A		F	Prep Extract	Vol: 5 mL				

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Client Sample ID: **SW-3** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733022 Lab Project ID: 1194733 Collection Date: 08/16/19 13:18 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		08/22/19 23:48
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		08/22/19 23:48
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		08/22/19 23:48
Phenanthrene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		08/22/19 23:48
Surrogates							
2-Methylnaphthalene-d10 (surr)	73.9	47-106		%	1		08/22/19 23:48
Fluoranthene-d10 (surr)	67.5	24-116		%	1		08/22/19 23:48

Batch Information

Analytical Batch: XMS11655 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/22/19 23:48 Container ID: 1194733022-D Prep Batch: XXX42052 Prep Method: SW3520C Prep Date/Time: 08/20/19 08:55 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 09/05/2019 2:10:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Depute by Veletile Evele		Lo	ocation:				
Results by Volatile Fuels			_				
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		08/23/19 07:33
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/19 07:33
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/23/19 07:33
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/23/19 07:33
Toluene	0.500 U	1.00	0.310	ug/L	1		08/23/19 07:33
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		08/23/19 07:33
urrogates							
1,4-Difluorobenzene (surr)	96.3	77-115		%	1		08/23/19 07:33
Batch Information							
Analytical Batch: VFC14891		F	Prep Batch:	VXX34705			
Analytical Method: SW8021B			Prep Method				
Analyst: NRB Analytical Date/Time: 08/23/19 07:33			Prep Date/Til Prep Initial W				
Container ID: 1194733022-A			Prep Extract		L		

Print Date: 09/05/2019 2:10:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **SW-99** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733023 Lab Project ID: 1194733 Collection Date: 08/16/19 15:30 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		08/23/19 00:09
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		08/23/19 00:09
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		08/23/19 00:09
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/23/19 00:09
Surrogates							
2-Methylnaphthalene-d10 (surr)	61.5	47-106		%	1		08/23/19 00:09
Fluoranthene-d10 (surr)	58.3	24-116		%	1		08/23/19 00:09

Batch Information

Analytical Batch: XMS11655 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 08/23/19 00:09 Container ID: 1194733023-D Prep Batch: XXX42052 Prep Method: SW3520C Prep Date/Time: 08/20/19 08:55 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/05/2019 2:10:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Client Sample ID: SW-99 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733023 Lab Project ID: 1194733	01 Fmr GT	Collection Date: 08/16/19 15:30 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels								
Parameter Benzene Ethylbenzene o-Xylene	<u>Result Qual</u> 3.07 0.500 U 0.354 J	<u>LOQ/CL</u> 0.500 1.00 1.00	<u>DL</u> 0.150 0.310 0.310	<u>Units</u> ug/L ug/L ug/L	<u>DF</u> 1 1	<u>Allowable</u> Limits	Date Analyzed 08/23/19 07:50 08/23/19 07:50 08/23/19 07:50	
P & M -Xylene Toluene Xylenes (total)	1.00 U 0.500 U 1.50 U	2.00 1.00 3.00	0.620 0.310 0.930	ug/L ug/L ug/L	1 1 1		08/23/19 07:50 08/23/19 07:50 08/23/19 07:50	
Surrogates 1,4-Difluorobenzene (surr)	97	77-115		%	1		08/23/19 07:50	
Batch Information Analytical Batch: VFC14891 Analytical Method: SW8021B Analyst: NRB Analytical Date/Time: 08/23/19 07:50 Container ID: 1194733023-A		F F F	Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW5030E me: 08/22/′ /t./Vol.: 5 m	9 06:00			

Print Date: 09/05/2019 2:10:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of FGTA TB-1

Client Sample ID: **FGTA TB-1** Client Project ID: **105.01288.19008 PS01 Fmr GT** Lab Sample ID: 1194733024 Lab Project ID: 1194733 Collection Date: 08/02/19 00:00 Received Date: 08/19/19 13:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/26/19 16:16
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/26/19 16:16
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
Benzene	0.200 U	0.400	0.120	ug/L	1		08/26/19 16:16
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/26/19 16:16
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/26/19 16:16
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
Toluene	0.500 U	1.00	0.310	ug/L	1		08/26/19 16:16
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/26/19 16:16
Surrogates							
1,2-Dichloroethane-D4 (surr)	93.4	81-118		%	1		08/26/19 16:16
4-Bromofluorobenzene (surr)	95.6	85-114		%	1		08/26/19 16:16
Toluene-d8 (surr)	103	89-112		%	1		08/26/19 16:16

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/26/19 16:16 Container ID: 1194733024-A Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group 75 of 106

Results of FGTA TB-2

SG

Results by Volatile Fuels		Lo	ocation:				
Paramatar	Popult Quel			Lipito		Allowable	Data Analyzad
<u>Parameter</u> Benzene	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed
thylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/19 05:1
-Xylene	0.500 U	1.00	0.310	ug/L	1		08/23/19 05:1
2 & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/23/19 05:1
oluene	0.500 U	1.00	0.310	ug/L	1		08/23/19 05:1 ²
(ylenes (total)	1.50 U	3.00	0.930	ug/L	1		08/23/19 05:1 <i>°</i>
irrogates							
,4-Difluorobenzene (surr)	96.9	77-115		%	1		08/23/19 05:1
Batch Information							
Analytical Batch: VFC14891			Prep Batch:				
Analytical Method: SW8021B Analyst: NRB			Prep Method Prep Date/Ti				
Analytical Date/Time: 08/23/19 05:11			Prep Initial W				
Container ID: 1194733025-A			Prep Extract				

Print Date: 09/05/2019 2:10:49PM

J flagging is activated

Results of FGTA TB-3							
Client Sample ID: FGTA TB-3 Client Project ID: 105.01288.19008 PS Lab Sample ID: 1194733026 Lab Project ID: 1194733	601 Fmr GT	C R M S La					
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzec 08/20/19 22:24
Surrogates							
4-Bromofluorobenzene (surr)	79.1	50-150		%	1		08/20/19 22:24
Batch Information							
Analytical Batch: VFC14886 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/20/19 22:24 Container ID: 1194733026-A		F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 08/20/ /t./Vol.: 5 m	19 06:00		

000

J flagging is activated

SGS

Method Blank

Blank ID: MB for HBN 1798241 [VXX/34686] Blank Lab ID: 1526779 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733001, 1194733002, 1194733003, 1194733006, 1194733007, 1194733008, 1194733009, 1194733010, 1194733013, 1194733014, 1194733015, 1194733016, 1194733017, 1194733018, 1194733026

Results by AK101

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L	
Surrogates					
1,4-Difluorobenzene (surr)	94.6	77-115		%	
4-Bromofluorobenzene (surr)	77.5	50-150		%	

Batch Information

Analytical Batch: VFC14886 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID Analyst: NRB Analytical Date/Time: 8/20/2019 10:06:00PM Prep Batch: VXX34686 Prep Method: SW5030B Prep Date/Time: 8/20/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:10:53PM

SGS	

Blank Spike Summary										
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1526780 Date Analyzed: 08/20/2019)	[VXX3468	6]	5] Spike Duplicate ID: LCSD for HBN 1194733 [VXX34686] Spike Duplicate Lab ID: 1526781 Matrix: Water (Surface, Eff., Ground)						
	010, 119473						008, 1194733 017, 1194733			
Results by AK101										
,		Blank Spike	e (mg/L)	S	pike Dupli					
Parameter	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Gasoline Range Organics	1.00	1.07	107	1.00	1.01	101	(60-120)	6.50	(< 20)	
urrogates										
4-Bromofluorobenzene (surr)	0.0500	84.3	84	0.0500	81.8	82	(50-150)	3.00		
Batch Information										
Analytical Batch: VFC14886 Analytical Method: AK101 Instrument: Agilent 7890A PII Analyst: NRB	D/FID			Prej Prej Spik	Date/Tim e Init Wt./\	SW5030B ie: 08/20/201 Vol.: 1.00 mg	9 06:00 g/L Extract \ g/L Extract V			

-

SGS

		7			
Method Blank					
Blank ID: MB for HBN 179830 Blank Lab ID: 1527038	00 [VXX/34697]	Matrix	: Water (Surfac	ce, Eff., Ground)	
QC for Samples: 1194733004, 1194733005, 1194	733011, 1194733012, 119	4733019			
Results by AK101					
<u>Parameter</u> Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
Surrogates					
1,4-Difluorobenzene (surr) 4-Bromofluorobenzene (surr)	95 85.7	77-115 50-150		% %	
	00.1			<i>,</i> ,,	
Batch Information					
Analytical Batch: VFC14888 Analytical Method: AK101 Instrument: Agilent 7890 PID Analyst: NRB Analytical Date/Time: 8/22/20		Prep Me Prep Da Prep Init	tch: VXX34697 thod: SW5030B te/Time: 8/21/20 ial Wt./Vol.: 5 m tract Vol: 5 mL	19 6:00:00AM	

Blank Spike Summary

Blank Spike ID: LCS for HBN 1194733 [VXX34697] Blank Spike Lab ID: 1527039 Date Analyzed: 08/22/2019 06:30 Spike Duplicate ID: LCSD for HBN 1194733 [VXX34697] Spike Duplicate Lab ID: 1527040 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733004, 1194733005, 1194733011, 1194733012, 1194733019

	I	Blank Spike	e (mg/L)	S	pike Duplio	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	0.970	97	1.00	0.988	99	(60-120)	1.90	(< 20)
urrogates									
4-Bromofluorobenzene (surr)	0.0500	92.3	92	0.0500	91.9	92	(50-150)	0.36	
Analytical Batch: VFC14888 Analytical Method: AK101					Batch: V Method:				
Instrument: Agilent 7890 PID/	FID					e: 08/21/201	9 06:00		
Analyst: NRB							g/L Extract	Vol: 5 mL	
				Dup	e Init Wt./\	/ol.: 1.00 mg	g/L Extract V	ol: 5 mL	

Print Date: 09/05/2019 2:10:58PM

SGS

Method Blank

Blank ID: MB for HBN 1798379 [VXX/34705] Blank Lab ID: 1527366 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733020, 1194733021, 1194733022, 1194733023, 1194733025

Parameter	Results	LOQ/CL	DL	<u>Units</u>	
Benzene	0.250U	0.500	0.150	ug/L	
Ethylbenzene	0.500U	1.00	0.310	ug/L	
o-Xylene	0.500U	1.00	0.310	ug/L	
P & M -Xylene	1.00U	2.00	0.620	ug/L	
Toluene	0.500U	1.00	0.310	ug/L	
Xylenes (total)	1.50U	3.00	0.930	ug/L	
Surrogates					
1,4-Difluorobenzene (surr)	97	77-115		%	
Analytical Date/Time: 8/23/2019 4:53:00AM		Prep Extract Vol: 5 mL			

Print Date: 09/05/2019 2:11:00PM

Blank Spike ID: LCS for HBN 1194733 [VXX34705] Blank Spike Lab ID: 1527367 Date Analyzed: 08/23/2019 04:18 Spike Duplicate ID: LCSD for HBN 1194733 [VXX34705] Spike Duplicate Lab ID: 1527368 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733020, 1194733021, 1194733022, 1194733023, 1194733025

Results by SW8021B									
		Blank Spike	e (ug/L)	Spike Duplicate (ug/L)					
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	105	105	100	103	103	(80-120)	2.00	(< 20)
Ethylbenzene	100	93.1	93	100	85.7	86	(75-125)	8.30	(< 20)
o-Xylene	100	92.5	93	100	82.6	83	(80-120)	11.20	(< 20)
P & M -Xylene	200	183	92	200	170	85	(75-130)	7.60	(< 20)
Toluene	100	97.9	98	100	91.4	91	(75-120)	6.90	(< 20)
Xylenes (total)	300	276	92	300	252	84	(79-121)	8.80	(< 20)
urrogates									
1,4-Difluorobenzene (surr)	50	103	103	50	102	102	(77-115)	1.70	
Batch Information									
Analytical Batch: VFC14891 Analytical Method: SW80211 Instrument: Agilent 7890A F Analyst: NRB	В			Pre Pre Spil	ke Init Wt./\	SW5030B e: 08/22/201 /ol.: 100 ug/	9 06:00 L Extract Vo L Extract Vo		

Print Date: 09/05/2019 2:11:01PM

Method Blank

Blank ID: MB for HBN 1798560 [VXX/34744] Blank Lab ID: 1528070 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733013, 1194733014, 1194733015, 1194733016, 1194733017, 1194733018, 1194733019, 1194733024

Results by SW8260C	esults by SW8260C				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L	
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L	
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
Benzene	0.200U	0.400	0.120	ug/L	
Ethylbenzene	0.500U	1.00	0.310	ug/L	
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L	
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L	
Naphthalene	0.500U	1.00	0.310	ug/L	
n-Butylbenzene	0.500U	1.00	0.310	ug/L	
o-Xylene	0.500U	1.00	0.310	ug/L	
P & M -Xylene	1.00U	2.00	0.620	ug/L	
sec-Butylbenzene	0.500U	1.00	0.310	ug/L	
tert-Butylbenzene	0.500U	1.00	0.310	ug/L	
Toluene	0.500U	1.00	0.310	ug/L	
Xylenes (total)	1.50U	3.00	1.00	ug/L	
Surrogates					
1,2-Dichloroethane-D4 (surr)	94	81-118		%	
4-Bromofluorobenzene (surr)	94.4	85-114		%	
Toluene-d8 (surr)	103	89-112		%	

Batch Information

Analytical Batch: VMS19358Prep Batch: VXX34744Analytical Method: SW8260CPrep Method: SW5030BInstrument: VPA 780/5975 GC/MSPrep Date/Time: 8/26/2019 6:00:00AMAnalyst: CMCPrep Initial Wt./Vol.: 5 mLAnalytical Date/Time: 8/26/2019 2:29:00PMPrep Extract Vol: 5 mL

Print Date: 09/05/2019 2:11:03PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1194733 [VXX34744] Blank Spike Lab ID: 1528071 Date Analyzed: 08/26/2019 14:44 Spike Duplicate ID: LCSD for HBN 1194733 [VXX34744] Spike Duplicate Lab ID: 1528072 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733013, 1194733014, 1194733015, 1194733016, 1194733017, 1194733018, 1194733019, 1194733024

	Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
30	29.8	99	30	29.3	98	(79-124)	1.90	(< 20)
30	32.2	107	30	32.0	107	(77-121)	0.72	(< 20)
30	27.5	92	30	27.4	91	(73-128)	0.36	(< 20)
30	29.3	98	30	29.4	98	(75-124)	0.10	(< 20)
30	30.0	100	30	29.8	100	(79-120)	0.57	(< 20)
30	30.8	103	30	30.1	100	(79-121)	2.20	(< 20)
30	32.2	107	30	31.9	106	(72-131)	1.10	(< 20)
45	44.3	99	45	44.5	99	(71-124)	0.36	(< 20)
30	28.9	96	30	30.4	101	(61-128)	5.00	(< 20)
30	30.0	100	30	29.6	99	(75-128)	1.40	(< 20)
30	29.7	99	30	29.7	99	(78-122)	0.00	(< 20)
60	62.1	103	60	62.5	104	(80-121)	0.72	(< 20)
30	30.7	102	30	30.6	102	(77-126)	0.20	(< 20)
30	30.1	100	30	31.1	104	(78-124)	3.10	(< 20)
30	30.1	100	30	28.9	96	(80-121)	4.00	(< 20)
90	91.8	102	90	92.2	102	(79-121)	0.49	(< 20)
30	88.3	88	30	88.6	89	(81-118)	0.38	
30	93.5	94	30	95.2	95	(85-114)	1.90	
30	103	103	30	101	101	(89-112)	2.10	
	Spike 30 30 30 30 30 30 45 30 30 30 30 30 30 30 30 30 30 30 30 30	SpikeResult3029.83032.23027.53029.33030.03030.33032.24544.33028.93030.03029.76062.13030.13030.13030.13088.33088.33088.33093.5	30 29.8 99 30 32.2 107 30 27.5 92 30 29.3 98 30 29.3 98 30 29.3 98 30 30.0 100 30 30.8 103 30 32.2 107 45 44.3 99 30 28.9 96 30 30.0 100 30 29.7 99 60 62.1 103 30 30.7 102 30 30.1 100 30 30.1 100 30 30.1 102 30 88.3 88 30 93.5 94	SpikeResultRec (%)Spike3029.899303032.2107303027.592303029.398303029.398303030.0100303030.0103303030.2103303032.2107304544.399453028.996303029.799306062.1103603030.1100303030.1100303030.1100303088.388303093.59430	SpikeResultRec (%)SpikeResult3029.8993029.33032.21073032.03027.5923027.43029.3983029.43029.3983029.43030.01003029.83030.01003029.83030.810330.13032.21073031.94544.3994544.53028.9963030.43030.01003029.63029.7993029.76062.11036062.53030.11003031.13030.11003028.99091.81029092.23088.3883088.63093.5943095.2	SpikeResultRec (%)SpikeResultRec (%)3029.8993029.3983032.21073032.01073027.5923027.4913029.3983029.4983030.01003029.81003030.01003029.81003030.810330.11003032.21073031.91064544.3994544.5993028.9963030.41013030.01003029.7996062.11036062.51043030.11003031.11043030.11003028.9969091.81029092.21023088.3883088.6893093.5943095.295	Spike Result Rec (%) Spike Result Rec (%) CL 30 29.8 99 30 29.3 98 (79-124) 30 32.2 107 30 32.0 107 (77-121) 30 27.5 92 30 27.4 91 (73-128) 30 29.3 98 30 29.4 98 (75-124) 30 29.3 98 30 29.8 100 (79-120) 30 30.0 100 30 29.8 100 (79-120) 30 30.8 103 30 30.1 100 (79-121) 30 32.2 107 30 31.9 106 (72-131) 45 44.3 99 45 44.5 99 (71-124) 30 28.9 96 30 30.4 101 (61-128) 30 30.0 100 30 29.7 99 (78-122)	SpikeResultRec (%)SpikeResultRec (%)CLRPD (%)3029.8993029.398(79-124)1.903032.21073032.0107(77-121)0.723027.5923027.491(73-128)0.363029.3983029.498(75-124)0.103030.01003029.8100(79-120)0.573030.81033030.1100(79-121)2.203032.21073031.9106(72-131)1.104544.3994544.599(71-124)0.363028.9963030.4101(61-128)5.003030.01003029.799(75-128)1.403029.7993029.799(77-126)0.203030.71023030.6102(77-126)0.203030.11003031.1104(78-124)3.103030.11003028.996(80-121)4.009091.81029092.2102(79-121)0.493088.3883088.689(81-118)0.383093.5943095.295(85-114)1.90

Batch Information

Analytical Batch: VMS19358 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Prep Batch: VXX34744 Prep Method: SW5030B Prep Date/Time: 08/26/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/05/2019 2:11:05PM

SGS

Method Blank

Blank ID: MB for HBN 1798617 [VXX/34750] Blank Lab ID: 1528311 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733001, 1194733002, 1194733003, 1194733004, 1194733005, 1194733006, 1194733007, 1194733008, 1194733009, 1194733010, 1194733011, 1194733012, 1194733019

Results by SW8260C

· · ·					
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L	
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L	
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
Benzene	0.200U	0.400	0.120	ug/L	
Ethylbenzene	0.500U	1.00	0.310	ug/L	
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L	
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L	
Naphthalene	0.500U	1.00	0.310	ug/L	
n-Butylbenzene	0.500U	1.00	0.310	ug/L	
o-Xylene	0.500U	1.00	0.310	ug/L	
P & M -Xylene	1.00U	2.00	0.620	ug/L	
sec-Butylbenzene	0.500U	1.00	0.310	ug/L	
tert-Butylbenzene	0.500U	1.00	0.310	ug/L	
Toluene	0.500U	1.00	0.310	ug/L	
Xylenes (total)	1.50U	3.00	1.00	ug/L	
Surrogates					
1,2-Dichloroethane-D4 (surr)	105	81-118		%	
4-Bromofluorobenzene (surr)	101	85-114		%	
Toluene-d8 (surr)	103	89-112		%	

Batch Information

Analytical Batch: VMS19365	Prep Batch: VXX34750
Analytical Method: SW8260C	Prep Method: SW5030B
Instrument: Agilent 7890-75MS	Prep Date/Time: 8/27/2019 6:00:00AM
Analyst: CMC	Prep Initial Wt./Vol.: 5 mL
Analytical Date/Time: 8/27/2019 1:10:00PM	Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:11:07PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1194733 [VXX34750] Blank Spike Lab ID: 1528312 Date Analyzed: 08/27/2019 13:25 Spike Duplicate ID: LCSD for HBN 1194733 [VXX34750] Spike Duplicate Lab ID: 1528313 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733001, 1194733002, 1194733003, 1194733004, 1194733005, 1194733006, 1194733007, 1194733008, 1194733009, 1194733010, 1194733011, 1194733012, 1194733019

Results by SW8260C

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	30	31.4	105	30	31.3	104	(79-124)	0.32	(< 20)
1,2-Dibromoethane	30	30.0	100	30	30.2	101	(77-121)	0.60	(< 20)
1,2-Dichloroethane	30	28.6	95	30	28.2	94	(73-128)	1.20	(< 20)
1,3,5-Trimethylbenzene	30	31.2	104	30	30.3	101	(75-124)	2.70	(< 20)
Benzene	30	28.1	94	30	27.6	92	(79-120)	1.60	(< 20)
Ethylbenzene	30	28.9	96	30	28.2	94	(79-121)	2.50	(< 20)
Isopropylbenzene (Cumene)	30	30.5	102	30	30.1	100	(72-131)	1.30	(< 20)
Methyl-t-butyl ether	45	42.0	93	45	42.7	95	(71-124)	1.80	(< 20)
Naphthalene	30	30.7	102	30	32.6	109	(61-128)	6.10	(< 20)
n-Butylbenzene	30	32.6	109	30	32.1	107	(75-128)	1.50	(< 20)
o-Xylene	30	28.1	94	30	28.0	93	(78-122)	0.61	(< 20)
P & M -Xylene	60	58.6	98	60	58.0	97	(80-121)	1.00	(< 20)
sec-Butylbenzene	30	31.7	106	30	31.5	105	(77-126)	0.57	(< 20)
tert-Butylbenzene	30	31.2	104	30	30.9	103	(78-124)	0.71	(< 20)
Toluene	30	27.6	92	30	27.4	91	(80-121)	0.73	(< 20)
Xylenes (total)	90	86.7	96	90	86.0	96	(79-121)	0.89	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	100	100	30	98.5	99	(81-118)	1.60	
4-Bromofluorobenzene (surr)	30	101	101	30	101	101	(85-114)	0.17	
Toluene-d8 (surr)	30	101	101	30	102	102	(89-112)	0.75	

Batch Information

Analytical Batch: VMS19365 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: CMC Prep Batch: VXX34750 Prep Method: SW5030B Prep Date/Time: 08/27/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/05/2019 2:11:08PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1798682 [VXX/34757] Blank Lab ID: 1528573 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733005, 1194733011, 1194733012

Results by SW8260C

Parameter	Results	LOQ/CL	DL
1,2,4-Trimethylbenzene	0.500U	1.00	0.310
1,3,5-Trimethylbenzene	0.500U	1.00	0.310
Benzene	0.200U	0.400	0.120
Ethylbenzene	0.500U	1.00	0.310
Isopropylbenzene (Cumene)	0.500U	1.00	0.310
Naphthalene	0.500U	1.00	0.310
o-Xylene	0.500U	1.00	0.310
P & M -Xylene	1.00U	2.00	0.620
Toluene	0.500U	1.00	0.310
Xylenes (total)	1.50U	3.00	1.00
Surrogates			
1,2-Dichloroethane-D4 (surr)	83.9	81-118	
4-Bromofluorobenzene (surr)	97.6	85-114	
Toluene-d8 (surr)	104	89-112	

Batch Information

Analytical Batch: VMS19370 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Analytical Date/Time: 8/28/2019 3:33:00PM Prep Batch: VXX34757 Prep Method: SW5030B Prep Date/Time: 8/28/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/05/2019 2:11:10PM

Blank Spike ID: LCS for HBN 1194733 [VXX34757] Blank Spike Lab ID: 1528574 Date Analyzed: 08/28/2019 15:48 Spike Duplicate ID: LCSD for HBN 1194733 [VXX34757] Spike Duplicate Lab ID: 1528575 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733004, 1194733005, 1194733011, 1194733012

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	30	28.7	96	30	28.9	96	(79-124)	0.83	(< 20)
1,3,5-Trimethylbenzene	30	29.0	97	30	28.7	96	(75-124)	1.10	(< 20)
Benzene	30	31.0	103	30	30.5	102	(79-120)	1.70	(< 20)
Ethylbenzene	30	30.4	101	30	30.1	100	(79-121)	1.20	(< 20)
Isopropylbenzene (Cumene)	30	31.0	103	30	30.8	103	(72-131)	0.42	(< 20)
Naphthalene	30	31.4	105	30	33.7	112	(61-128)	7.00	(< 20)
o-Xylene	30	29.2	97	30	28.8	96	(78-122)	1.40	(< 20)
P & M -Xylene	60	61.4	102	60	60.6	101	(80-121)	1.20	(< 20)
Toluene	30	30.3	101	30	29.9	100	(80-121)	1.20	(< 20)
Xylenes (total)	90	90.6	101	90	89.4	99	(79-121)	1.30	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	81.6	82	30	81	81	(81-118)	0.70	
4-Bromofluorobenzene (surr)	30	95.6	96	30	97.2	97	(85-114)	1.60	
Toluene-d8 (surr)	30	105	105	30	104	104	(89-112)	0.48	

Batch Information

Analytical Batch: VMS19370 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Prep Batch: VXX34757 Prep Method: SW5030B Prep Date/Time: 08/28/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/05/2019 2:11:12PM

Method Blank

Blank ID: MB for HBN 1798149 [XXX/42052] Blank Lab ID: 1526350 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733020, 1194733021, 1194733022, 1194733023

Results by 8270D SIM LV (PAH)

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	69.4	47-106		%
Fluoranthene-d10 (surr)	67.4	24-116		%

Batch Information

Analytical Batch: XMS11655 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 8/22/2019 9:03:00PM Prep Batch: XXX42052 Prep Method: SW3520C Prep Date/Time: 8/20/2019 8:55:19AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/05/2019 2:11:14PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1194733 [XXX42052] Blank Spike Lab ID: 1526351 Date Analyzed: 08/22/2019 21:24 Spike Duplicate ID: LCSD for HBN 1194733 [XXX42052] Spike Duplicate Lab ID: 1526352 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733020, 1194733021, 1194733022, 1194733023

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Acenaphthene	2	1.64	82	2	1.54	77	(48-114)	6.50	(< 20)
Acenaphthylene	2	1.69	84	2	1.59	79	(35-121)	6.20	(< 20)
Anthracene	2	1.50	75	2	1.43	72	(53-119)	5.10	(< 20)
Benzo(a)Anthracene	2	1.53	76	2	1.43	72	(59-120)	6.20	(< 20)
Benzo[a]pyrene	2	1.51	76	2	1.41	70	(53-120)	7.30	(< 20)
Benzo[b]Fluoranthene	2	1.63	81	2	1.52	76	(53-126)	6.80	(< 20)
Benzo[g,h,i]perylene	2	1.50	75	2	1.36	68	(44-128)	9.90	(< 20)
Benzo[k]fluoranthene	2	1.60	80	2	1.50	75	(54-125)	6.70	(< 20)
Chrysene	2	1.59	79	2	1.49	75	(57-120)	6.20	(< 20)
Dibenzo[a,h]anthracene	2	1.50	75	2	1.32	66	(44-131)	12.80	(< 20)
Fluoranthene	2	1.67	84	2	1.60	80	(58-120)	4.40	(< 20)
Fluorene	2	1.62	81	2	1.54	77	(50-118)	5.50	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.61	81	2	1.46	73	(48-130)	10.10	(< 20)
Naphthalene	2	1.77	88	2	1.66	83	(43-114)	6.20	(< 20)
Phenanthrene	2	1.47	73	2	1.38	69	(53-115)	6.40	(< 20)
Pyrene	2	1.70	85	2	1.63	81	(53-121)	4.20	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	73.5	74	2	72.7	73	(47-106)	1.10	
Fluoranthene-d10 (surr)	2	71.3	71	2	69.6	70	(24-116)	2.40	

Batch Information

Analytical Batch: XMS11655 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Prep Batch: XXX42052 Prep Method: SW3520C Prep Date/Time: 08/20/2019 08:55 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 09/05/2019 2:11:15PM

SGS

ank ID: MB for HBN 179 ank Lab ID: 1526966	8284 [XXX/42077]	Matrix: V	/ater (Surfac	ce, Eff., Ground)	
C for Samples: 94733001, 1194733002					
esults by AK102					
a <u>rameter</u> esel Range Organics	<u>Results</u> 0.445J	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	
rrogates Androstane (surr)	71.2	60-120		%	
ch Information					
Analytical Batch: XFC152 Analytical Method: AK102 Instrument: Agilent 7890E Analyst: CMS	2	Prep Metho Prep Date/7	XXX42077 d: SW3520C īme: 8/23/20 Wt./Vol.: 250	19 8:39:53AM	
Analytical Date/Time: 8/2	6/2019 6:11:00PM	Prep Extrac	t Vol: 1 mL		

Print Date: 09/05/2019 2:11:16PM

Blank Spike ID: LCS for HBN 1194733 [XXX42077] Blank Spike Lab ID: 1526967 Date Analyzed: 08/26/2019 18:21 Spike Duplicate ID: LCSD for HBN 1194733 [XXX42077] Spike Duplicate Lab ID: 1526968 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733001, 1194733002

Results by AK102			_						
		Blank Spike	e (mg/L)	5	Spike Duplic				
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	19.2	96	20	19.1	95	(75-125)	0.68	(< 20)
urrogates									
5a Androstane (surr)	0.4	84.6	85	0.4	86.4	86	(60-120)	2.10	
Batch Information Analytical Batch: XFC15276 Analytical Method: AK102 Instrument: Agilent 7890B F Analyst: CMS				Pre Pre Spil	ke Init Wt./\	SW3520C e: 08/23/201 /ol.: 20 mg/l	9 08:39 L Extract Vo		

Print Date: 09/05/2019 2:11:18PM

SGS

Method Blank

Blank ID: MB for HBN 1798406 [XXX/42097] Blank Lab ID: 1527482 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733003, 1194733004, 1194733005, 1194733006, 1194733007, 1194733008, 1194733009, 1194733010, 1194733011, 1194733012

Results by AK102

<u>Parameter</u> Diesel Range Organics	<u>Results</u> 0.231J	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	
Surrogates 5a Androstane (surr)	73.3	60-120		%	
Batch Information					
Analytical Batch: XFC1528 Analytical Method: AK102 Instrument: Agilent 7890B Analyst: CMS Analytical Date/Time: 8/27	F	Prep I Prep I Prep I	Batch: XXX42097 Method: SW3520 Date/Time: 8/24/2 Initial Wt./Vol.: 25 Extract Vol: 1 mL	C 2019 7:39:21AM	

Print Date: 09/05/2019 2:11:19PM

B	lank	Spike	Summary	
---	------	-------	---------	--

Blank Spike ID: LCS for HBN 1194733 [XXX42097] Blank Spike Lab ID: 1527483 Date Analyzed: 08/27/2019 18:52 Spike Duplicate ID: LCSD for HBN 1194733 [XXX42097] Spike Duplicate Lab ID: 1527484 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733003, 1194733004, 1194733005, 1194733006, 1194733007, 1194733008, 1194733009, 1194733010, 1194733011, 1194733012

Results by AK102									
		Blank Spike	e (mg/L)	Ś	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	19.8	99	20	19.0	95	(75-125)	3.90	(< 20)
Surrogates									
5a Androstane (surr)	0.4	84.3	84	0.4	83.5	84	(60-120)	0.92	
Batch Information									
Analytical Batch: XFC15285				Pre	p Batch: X	XX42097			
Analytical Method: AK102				Pre	p Method:	SW3520C			
Instrument: Agilent 7890B F				Pre	p Date/Tim	e: 08/24/201	9 07:39		
Analyst: CMS						0	L Extract Vo		
				Dup	pe Init Wt./V	/ol.: 20 mg/l	 Extract Vol 	: 1 mL	

Print Date: 09/05/2019 2:11:20PM

SGS	

Blank ID: MB for HBN 1798508 [XXX/42115] Blank Lab ID: 1527923 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1194733013, 1194733014, 1194733015, 1194733016, 1194733017, 1194733018, 1194733019

Results by AK102					
Parameter	Results	LO	Q/CL	<u>DL</u>	<u>Units</u>
Diesel Range Organics	0.238J	0.6	00	0.180	mg/L
Surrogates					
5a Androstane (surr)	86.7	60-	120		%
Batch Information Analytical Batch: XFC15297			Prep Bato	h: XXX42115	
Analytical Method: AK102 Instrument: Agilent 7890B R			Prep Date	nod: SW3520C e/Time: 8/27/2019	
Analyst: CMS Analytical Date/Time: 9/3/2019	6:01:00PM			al Wt./Vol.: 250 m act Vol: 1 mL	ιL

Print Date: 09/05/2019 2:11:21PM

Blank Spike ID: LCS for HBN 1194733 [XXX42115] Blank Spike Lab ID: 1527924 Date Analyzed: 09/03/2019 18:11 Spike Duplicate ID: LCSD for HBN 1194733 [XXX42115] Spike Duplicate Lab ID: 1527925 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1194733013, 1194733014, 1194733015, 1194733016, 1194733017, 1194733018, 1194733019

<u>Spike</u> 20 0.4	Blank Spike <u>Result</u> 20.9 96.7	<u>Rec (%)</u> 105 97	<u>Spike</u> 20	<u>Result</u> 21.9	cate (mg/L) <u>Rec (%)</u> 109	<u>CL</u> (75-125)	<u>RPD (%)</u> 4.50	<u>RPD CL</u> (< 20)
	20.9	105						
0.4	96.7	97						(=•)
0.4	96.7	97						
		01	0.4	104	104	(60-120)	7.60	
				p Batch: X				
				p Method:				
							l· 1 ml	
				Pre Spil	Prep Date/Tim Spike Init Wt./\	Prep Date/Time: 08/27/201 Spike Init Wt./Vol.: 20 mg/L	Prep Date/Time: 08/27/2019 09:36 Spike Init Wt./Vol.: 20 mg/L Extract Vo	

Print Date: 09/05/2019 2:11:23PM

												1	119	947	733	3		
CLIENT:	Alyeska Pipel	ine Se	rvice Co	ompany				5	SLR INT	FERNAT	IONAL				HAAP			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CONTACT:	Christophe venot	ONE N	10:	(907) 222	2-1112					bell St, S age, AK							1	of
PROJECT NAME:	APSC PS01 PW	DJECT/ SID/ RMIT#:		105.01288	3.19008	#	Preservat ive Used:	HCL	HCL	HCL		HCL						
REPORTS TO	O: Scott Rose E- Janine Boyette E-	MAIL:		srose@slrconsult .boyette@alyeska		C O	TYPE: C = COMP						16					
NVOICE TO:	AFGC	IOTE #). #:	t:			T A	G = GRAB		volume)	ocs			(SW SIM 8270D; , EPA 610)					
RESERVED for lab use	SAMPLE IDENTIFICATION		ATE	TIME	MATRIX/ MATRIX CODE	N E R S	Multi Incre- mental Soils	GRO (AK101)	DRO (AK102, iow volume)	Petroleum VOCs (SW 8260 C)		BTEX (EPA 8021B)	PAHs (SW SI PAHs, EPA 6			-		REMARKS/ LOC ID
DAH	MW-18	8//1	wll 9	0956	W	Ø	G	X	X	X		<u> </u>						
2 AH 3) AH 4) AH	MW - 22			0957		8		X	X	X								
3)44	MW-423		-	1044		8		X	X	X								MW-23 (2116114 C. Venit
4AH	MW-19			1049		B		X	X	X								
) A H) A H) A H	MW-17R			1/25		8		X	X	X								
)AH	MW-15			1126		8		X	X	X								
ZAH	MW-16R			12121		8		X	X	X								n (na 1944
DAH	MW-14R			1209		B		X	X	X							1	
5)14	MW-13			1246		8		X	X	X								
RAH	MW-12		_	1301		8		X	X	X								
1044	MW-9			1401		8		X	X	X								-
(1) A H	MW - 8		1502	1458		8		X	×	X								1502 (Bliving)
DAH	MW-4R			1450		8		×	X	X								
IVA H	MW-2			1545		8		X	X	X								
OZ H	MW -20		1	1555	Ŵ	\mathcal{S}	4	×	X	X								
	nquished By: (1)	Date	lia		Received B	/:				DOD P	roject?	YES)		Data D	eliverab	le Requirements:
Relinquished		ප්/් Date	<u>114</u>	1000 Time	Received B	<i>I</i> :					ID: sted Turi rd Turna			and-ors	•			Level II
Relinquished E	Зу: (3)	Date		Time	Received By	<i>I</i> :				I					. () (·	-	
Relinquished E	Зу: (4)	Date & l	a·19	Time 13.20	Received Fo	or Laborat	tory By:				Blank °C c attache	or Amb	ient []		<u>8</u>8 m)			iustody Seal: (Circle) BROKEN ABSENT I Sample Receipt Form)

													9473	3		\bigcirc
CLIENT:	Alyeska Pipeli	ne Service Co	ompany						ERNAT						. 2422	
CONTACT:	Christophe venot	ONE NO:	(907) 222	2-1112					bell St, S age, AK		-		na orna dona torna ((())) 		2	of
PROJECT NAME:	APSC PS01 PW	DJECT/ SID/ RMIT#:	105.01288	8.19008	# -	Preservat ive Used:	HCL	HCL	HCL		HCL					
REPORTS T	O: Scott Rose E-I Janine Boyette		srose@sirconsult .boyette@aiyeska		m O N	TYPE: C = COMP						-16				-
INVOICE TO	AFSC	OTE #:). #:			T A	G = GRAB MI =	~	volume)	ocs			IM 8270D				
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE	TIME	MATR MATR COD	E S	Multi Incre- mental Soils	GRO (AK101)	DRO (AK102, low volume)	Petroleum VOCs (SW 8260 C)		BTEX (EPA 8021B)	PAHs (SW SIM 8270D; PAHs, EPA 610)				REMARKS/ LOC ID
WAH	MW-3	8/16/19	1630	W		G	X	X	X							
V AH	MW-7R		1646		8		X	X	X							
US AH	MW -98		1700		8		X	X	X							
UA+	MW - 99		1730		8		X	X	X							
20 AE	SW-1		1329		5						X	X				
207E	5w-2		1337		5						X	X				
STAE	SW -3	×	1318		5						X	X				
2) AE	SW-99	8/16/19	1530		58	T					X	X				C. Jenie F Bliving
24 AC	FGTA TB-1	812119	and the second		3				X							
2) AC	FGTA TH-2	8/2/19	-		3	مسي					X					
26) AC	FOTA TO-3	2/2/19		•	3	کینیس ی	X									
	·															
	· · · · · · · · · · · · · · · · · · ·			1											1	
Collected/Rel	inquished By: (1)	Date	Time	Receive	l By:	I			DOD P	roject?	YES		`	Data [Deliveral	ble Requirements:
	phi ven	elieng	1000			\rightarrow			Cooler	ID:						Level II
Relinquished	Ву: (2)	Date	Time	Received	By:				Reques Standa				and-or Spec	cial Instru	ctions:	
Relinquished	By: (3)	Date	Time	Received	I By:				18 ¹							
	\leq								Temp E	Blank °C	× _4	0	DS8		hain of (Custody Seal: (Circle)
Relinquished	By: (4)		Time 13:20	Received	For Labora							pient [-	<4h		BROKEN ABSENT
L	·····	8.19.19	17.20	Jun!	A <u>II (<i>11</i> / 1</u>	uu	<u>~</u>		(See	attach	ed San	ipie Re	ceipt Form)	(See	attache	d Sample Receipt Form)

Citywide 8421 Flamingo Driv			ີ ເ
Date	<u></u>	119473	3
то > С. >			
Collect 🗇	Prepay Account	Advance C	harges 🗖
Job # うてく	PO# AS	2673 6	1234
	1-1/Soil		•
	DARIABS		·
			······································
Shipped Signature	- TU-F		
		Total Charge	
Received By:	the first of the second	10.00	6

SLR International Corp	Shipper's Account Number 27442441434	Air Waybill		
2700 Gambell St Ste 200	Customer's ID Number 9817	Issued By	ska.	T
Anchorage, AK 99503 JSA		그는 그 않던 바람이 바람이 다 가지 않는 것을 가지 않는 것을 다.	CARGO 8900 SEATTLE, WA 98168	1
Tel:		800-225-1	752 ALASKACARGO.COM	
SGS CT and ENVIRONM	Consignee's Account Number 27400215947	Also notify		
200 W Potter Drive		\mathbb{N}		
Anchorage, AK 99518 JSA				14 M
and a start of the start of the start of the	907-562-2343		Tel: 9817	
ssuing Carrier's Agent and City		Accounting Information SLR International Corp		$\langle \mathcal{A} \rangle$
		2700 Gambell St Ste 200 Anchorage, AK 99503		
Agent's IATA Code	Account No.	USA	∂	E,
Airport of Departure (Addr. of First Carrier) a	and Requested Routing	- SRN/0128819008	-4	
Prudhoe Bay/Deadhorse	Ta (Du	GoldStreak		alue For Customs
ANC Alaska Airlines	To / By	USD PX X X	NVD	NCV
Airport of Destination	Flight/Date Flight/Date AS 7015/19	Amount of Insurance		
Handling Information				
SUBJECT TO LOAD. PERISHABLE CARGO	NEED TO MOVE AS SOON AS O (NON - FOOD)	POSSIBLE		SCI
No of Pieces Weight Ib	ommodity tem No. Weight Char		Nature and Quantity of C (Incl. Dimensions or Vo	
7 258.0 L O	258.0	AS AGREED	WATER & SOIL SAM	IPLES
			[10] 中心是的时间并带导展视频和1000mm。 有效的中国并且并且成为多少的。 有效增加和公司并且并且成为多少的。 有效增加和公司并且并有的合约。	
		1194733		
			Dims: 24 x 14 x13 x 6	
			13 x 9 x9 x 1	
			PER GSX	
7 258.0		AS AGREED	Volume: 0.000	
Prepaid Weight Char AS AGREED	e na allante della de	0.32		
Valuation Cha				
Texas and the second				
			2014년 1월 2013년 1월 201 월 21일 월 2013년 1월 2013 월 21일 월 2	
	contains dangero	nat the particulars on the face hereof are cor ous goods, such part is properly describe to the applicable Dangerous Goods Reg	d by name and is in proper condition for	carriage
Total Other Charges	when the second second we want the second	nternational	Signature of Shipper of his Agent	
	Corp			-
· ···································	an and a second state of the second state of t	IPMENT DOES NOT CONTAIN	THIS SHIPMENT <u>DOES</u> CONTAIN DANGEROUS GOODS	
	DANGER	 A state of the sta	化乙烯甘油吗 医后颌神经神经炎 化乙二乙	
Total Prepaid AS AGREED	Total Collect			
AS AGREED	Total Collect 18 Aug 20	19 11.51 Prudhoe Bay		
AS AGREED	Total Collect		/Deadh Alaska Air Signature of Issuing Carrier 027-267	or its Agent
AS AGREED	Total Collect 18 Aug 20 Executed On (De		Signature of Issuing Carrier	or its Agent

e-Sample Receipt Form

000	e-Sam <u>p</u>	e-Sam <mark>ple Receipt Form</mark>				
202	SGS Workorder #:	1	194			<u>9</u> 4733
	ew Criteria	Condition (Yes,			eptions Not	
	Custody / Temperature Require			N/A Exemption pe	rmitted if samp	ler hand carries/delivers
١	Were Custody Seals intact? Note # & lo		1F 1B			
	COC accompanied sar					
DOD: Were sam	nples received in COC corresponding co					Warm in a star and an all
Tamananatur	**Exemption permitted if o		-	-		1.0 °C Therm. ID: D5
remperature	e blank compliant* (i.e., 0-6 °C after	r CF)? Yes	Cooler II		@	°C Therm. ID:
If samples received without a ten	nperature blank, the "cooler temperature" will t	be	Cooler II		@	°C Therm. ID:
ocumented instead & "COOLER TEN	IP" will be noted to the right. "ambient" or "chil		Cooler II		@	°C Therm. ID:
be noted	d if neither is available.		Cooler II		@	°C Therm. ID:
*lf >6°C	, were samples collected <8 hours	ago? N/A				9 1101111 12.
	,		U I			
lf	f <0°C, were sample containers ice	free? N/A				
			u I			
Note: Identify containers	s received at non-compliant tempera	ature .				
Us	e form FS-0029 if more space is ne	eded.				
	cumentation / Sample Condition Re ere samples received within holding		Note: Refe	<mark>r to form F-083 "Samp</mark>	le Guide" for spec	ific holding times.
we	se samples received within holding					
Do samples match COC*	* (i.e.,sample IDs,dates/times colled	cted)? Yes				
	r <1hr, record details & login per CC					
	ainers differs from COC, SGS will default to C					
Were analytical requests cle	ar? (i.e., method is specified for ana	alvses No	Containe	er for 14R labeled i	nw-19 identify	ing per collection time
	ple option for analysis (Ex: BTEX, N					
				***Exemption	permitted for m	etals (e.g,200.8/6020A)
Were proper containers ((type/mass/volume/preservative***)	used? Yes		***Exemption	permitted for m	ietals (e.g,200.8/6020A)
Were proper containers (used?		***Exemption	permitted for m	<mark>etals (e.g.200.8/6020A)</mark>
	(type/mass/volume/preservative***) Volatile / LL-Hg Requ	uirements		***Exemption	permitted for m	<mark>etals (e.g,200.8/6020A)</mark>
Were Trip Blanks (i.e	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam	uirements		***Exemption	permitted for m	<mark>etals (e.g.200.8/6020A)</mark>
Were Trip Blanks (i.e Were all water VOA vials f	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam free of headspace (i.e., bubbles ≤ 6	uirements pples? Yes Smm)? Yes		***Exemption	permitted for m	<mark>etals (e.g.200.8/6020A)</mark>
Were Trip Blanks (i.e Were all water VOA vials f	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam	uirements pples? Yes Smm)? Yes		***Exemption	permitted for m	letals (e.g,200.8/6020A)
Were Trip Blanks (i.e Were all water VOA vials f Were all so	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam free of headspace (i.e., bubbles ≤ 6	uirements nples? Yes Smm)? Yes -BFB? N/A	with stand		, 	
Were Trip Blanks (i.e Were all water VOA vials f Were all so	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam free of headspace (i.e., bubbles ≤ 6 bil VOAs field extracted with MeOH+ :: Any "No", answer above indicates non	uirements nples? Yes Smm)? Yes BFB? N/A n-compliance		lard procedures and	, 	
Were Trip Blanks (i.e Were all water VOA vials f Were all so	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam free of headspace (i.e., bubbles ≤ 6 bil VOAs field extracted with MeOH+ :: Any "No", answer above indicates non	uirements nples? Yes Smm)? Yes -BFB? N/A		lard procedures and	, 	
Were Trip Blanks (i.e Were all water VOA vials f Were all so	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam free of headspace (i.e., bubbles ≤ 6 bil VOAs field extracted with MeOH+ :: Any "No", answer above indicates non	uirements nples? Yes Smm)? Yes BFB? N/A n-compliance		lard procedures and	, 	
Were Trip Blanks (i.e Were all water VOA vials f Were all so	(type/mass/volume/preservative***) <u>Volatile / LL-Hg Requ</u> e., VOAs, LL-Hg) in cooler with sam free of headspace (i.e., bubbles ≤ 6 bil VOAs field extracted with MeOH+ :: Any "No", answer above indicates non	uirements nples? Yes Smm)? Yes BFB? N/A n-compliance		lard procedures and	, 	

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	Container Id	Preservative	<u>Container</u> Condition
1194733001-A	HCL to pH < 2	ОК			
1194733001-B	HCL to pH < 2	OK			
1194733001-C	HCL to pH < 2	OK			
1194733001-D	HCL to $pH < 2$	OK			
1194733001-E	HCL to $pH < 2$	OK			
1194733001-F	HCL to $pH < 2$	OK			
1194733001-G	HCL to $pH < 2$	OK			
1194733001-H	HCL to $pH < 2$	OK			
1194733002-A	HCL to pH < 2	OK			
1194733002-B	HCL to $pH < 2$	OK			
1194733002-C	HCL to $pH < 2$	OK			
1194733002-D	HCL to $pH < 2$	OK			
1194733002-E	HCL to $pH < 2$	OK			
1194733002-F	HCL to $pH < 2$	OK			
1194733002-G	HCL to $pH < 2$	OK			
1194733002-H	HCL to $pH < 2$	OK			
1194733003-A	HCL to $pH < 2$	OK			
1194733003-В	HCL to $pH < 2$	OK			
1194733003-C	HCL to pH < 2	OK			
1194733003-D	HCL to $pH < 2$	OK			
1194733003-E	HCL to $pH < 2$	OK			
1194733003-F	HCL to $pH < 2$	OK			
1194733003-G	HCL to $pH < 2$	OK			
1194733003-H	HCL to $pH < 2$	OK			
1194733004-A	HCL to $pH < 2$	OK			
1194733004-B	HCL to $pH < 2$	OK			
1194733004-C	HCL to $pH < 2$	OK			
1194733004-D	HCL to $pH < 2$	OK			
1194733004-E	HCL to $pH < 2$	OK			
1194733004-F	HCL to $pH < 2$	OK			
1194733004-G	HCL to $pH < 2$	OK			
1194733004-H	HCL to $pH < 2$	OK			
1194733005-A	HCL to $pH < 2$	OK			
1194733005-B	HCL to $pH < 2$	OK			
1194733005-C	HCL to $pH < 2$	OK			
1194733005-D	HCL to $pH < 2$	OK			
1194733005-E	HCL to $pH < 2$	OK			
1194733005-F	HCL to $pH < 2$	OK			
1194733005-G	HCL to $pH < 2$	OK			
1194733005-H	HCL to $pH < 2$	OK			
1194733006-A	HCL to $pH < 2$	OK			
1194733006-B	HCL to $pH < 2$	OK			
1194733006-C	HCL to $pH < 2$	OK			
1194733006-D	HCL to $pH < 2$	OK			
1194733006-E	HCL to $pH < 2$	OK			
1194733006-F	HCL to $pH < 2$	OK			
1194733006-G	HCL to $pH < 2$	OK			
1194733006-H	HCL to $pH < 2$	OK			
i, 00000 ii	•				

<u>Container Id</u>	Preservative	<u>Container</u> Condition
1194733007-A	HCL to $pH < 2$	ОК
1194733007-B	HCL to pH < 2	OK
1194733007-C	HCL to $pH < 2$	OK
1194733007-D	HCL to $pH < 2$	OK
1194733007-E	HCL to $pH < 2$	OK
1194733007-F	HCL to pH < 2	OK
1194733007-G	HCL to $pH < 2$	OK
1194733007-H	HCL to $pH < 2$	OK
1194733008-A	HCL to $pH < 2$	OK
1194733008-B	HCL to $pH < 2$	OK
1194733008-C	HCL to $pH < 2$	OK
1194733008-D	HCL to $pH < 2$	OK
1194733008-E	HCL to $pH < 2$	OK
1194733008-F	HCL to $pH < 2$	OK
1194733008-G	HCL to $pH < 2$	OK
1194733008-H	HCL to $pH < 2$	OK
1194733009-A	HCL to $pH < 2$	OK
1194733009-B	HCL to $pH < 2$	OK
1194733009-C	HCL to $pH < 2$	OK
1194733009-D	HCL to $pH < 2$	OK
1194733009-E	HCL to $pH < 2$	OK
1194733009-F	HCL to $pH < 2$	OK
1194733009-G	HCL to $pH < 2$	OK
1194733009-H	HCL to $pH < 2$	OK
1194733010-A	HCL to $pH < 2$	OK
1194733010-B	HCL to $pH < 2$	OK
1194733010-C	HCL to $pH < 2$	OK
1194733010-D	HCL to $pH < 2$	OK
1194733010-E	HCL to $pH < 2$	OK
1194733010-F	HCL to $pH < 2$	OK
1194733010-G	HCL to $pH < 2$	OK
1194733010-H	HCL to $pH < 2$	OK
1194733011-A	HCL to $pH < 2$	OK
1194733011-B	HCL to $pH < 2$	OK
1194733011-C	HCL to $pH < 2$	OK
1194733011-D	HCL to $pH < 2$	OK
1194733011-E	HCL to $pH < 2$	OK
1194733011-F	HCL to $pH < 2$	OK
1194733011-G	HCL to pH < 2	OK
1194733011-H	HCL to pH < 2	OK
1194733012-A	HCL to pH < 2	OK
1194733012-B	HCL to pH < 2	ОК
1194733012-C	HCL to pH < 2	ОК
1194733012-D	HCL to pH < 2	OK
1194733012-E	HCL to pH < 2	ОК
1194733012-F	HCL to pH < 2	ОК
1194733012-G	HCL to pH < 2	ОК
1194733012-Н	HCL to pH < 2	ОК
1194733013-A	HCL to $pH < 2$	OK
1194733013-B	HCL to pH < 2	OK
1194733013-C	HCL to pH < 2	OK
1194733013-D	HCL to $pH < 2$	OK
1194733013-E	HCL to $pH < 2$	OK
1194733013-F	HCL to $pH < 2$	OK
1194733013-G	HCL to $pH < 2$	OK

<u>Container Id</u>

<u>Container</u> <u>Condition</u>

Container Id	Preservative	Container Condition
1194733013-H	HCL to $pH < 2$	ОК
1194733014-A	HCL to $pH < 2$	OK
1194733014-B	HCL to $pH < 2$	OK
1194733014-C	HCL to $pH < 2$	OK
1194733014-D	HCL to $pH < 2$	OK
1194733014-E	HCL to $pH < 2$	OK
1194733014-F	HCL to $pH < 2$	OK
1194733014-G	HCL to $pH < 2$	OK
1194733014-H	HCL to $pH < 2$	OK
1194733015-A	HCL to $pH < 2$	OK
1194733015-B	HCL to $pH < 2$	OK
1194733015-C	HCL to pH < 2	OK
1194733015-D	HCL to $pH < 2$	OK
1194733015-E	HCL to $pH < 2$	OK
1194733015-F	HCL to pH < 2	OK
1194733015-G	HCL to pH < 2	OK
1194733015-H	HCL to pH < 2	OK
1194733016-A	HCL to $pH < 2$	OK
1194733016-B	HCL to $pH < 2$	ОК
1194733016-C	HCL to $pH < 2$	ОК
1194733016-D	HCL to pH < 2	ОК
1194733016-E	HCL to pH < 2	OK
1194733016-F	HCL to pH < 2	ОК
1194733016-G	HCL to $pH < 2$	ОК
1194733016-H	HCL to pH < 2	ОК
1194733017-A	HCL to $pH < 2$	OK
1194733017-В	HCL to $pH < 2$	ОК
1194733017-C	HCL to pH < 2	ОК
1194733017-D	HCL to pH < 2	ОК
1194733017-E	HCL to $pH < 2$	ОК
1194733017-F	HCL to $pH < 2$	OK
1194733017-G	HCL to pH < 2	ОК
1194733017-H	HCL to $pH < 2$	ОК
1194733018-A	HCL to $pH < 2$	ОК
1194733018-B	HCL to $pH < 2$	OK
1194733018-C	HCL to $pH < 2$	OK
1194733018-D	HCL to $pH < 2$	OK
1194733018-E	HCL to $pH < 2$	OK
1194733018-F	HCL to $pH < 2$	OK
1194733018-G	HCL to $pH < 2$	OK
1194733018-H	HCL to $pH < 2$	OK
1194733019-A	HCL to $pH < 2$	OK
1194733019-B	HCL to $pH < 2$	OK
1194733019-C	HCL to $pH < 2$	OK
1194733019-D	HCL to $pH < 2$	OK
1194733019-E	HCL to $pH < 2$	OK
1194733019-F	HCL to $pH < 2$	OK
1194733019-G	HCL to $pH < 2$	OK
1194733019-Н	HCL to $pH < 2$	OK
1194733020-A	HCL to $pH < 2$	OK
1194733020-В	HCL to $pH < 2$	OK
1194733020-C	HCL to pH < 2	OK
1194733020-D	No Preservative Required	OK
1194733020-E	No Preservative Required	OK
1194733021-A	HCL to $pH < 2$	OK

Container Id

<u>Container</u> <u>Condition</u>

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
		<u>condition</u>
1194733021-B	HCL to $pH < 2$	OK
1194733021-C	HCL to $pH < 2$	OK
1194733021-D	No Preservative Required	OK
1194733021-E	No Preservative Required	ОК
1194733022-A	HCL to $pH < 2$	ОК
1194733022-В	HCL to $pH < 2$	OK
1194733022-C	HCL to $pH < 2$	ОК
1194733022-D	No Preservative Required	ОК
1194733022-E	No Preservative Required	OK
1194733023-A	HCL to $pH < 2$	OK
1194733023-В	HCL to $pH < 2$	ОК
1194733023-C	HCL to $pH < 2$	OK
1194733023-D	No Preservative Required	OK
1194733023-E	No Preservative Required	ОК
1194733024-A	HCL to $pH < 2$	OK
1194733024-B	HCL to $pH < 2$	OK
1194733024-C	HCL to $pH < 2$	OK
1194733025-A	HCL to $pH < 2$	OK
1194733025-B	HCL to $pH < 2$	OK
1194733025-C	HCL to $pH < 2$	OK
1194733026-A	HCL to $pH < 2$	OK
1194733026-B	HCL to $pH < 2$	ОК
1194733026-C	HCL to $pH < 2$	ОК

Container Id

<u>Preservative</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

APPENDIX E

HISTORICAL GROUNDWATER ANALYTICAL RESULTS

2019 Water Monitoring Report Pump Station 1 Former Gasoline Tank Area

ALYESKA PIPELINE SERVICE COMPANY PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

December 2019

Appendix E - Historical Groundwater Analytical Results Pump Station 1 Former Gasoline Tank Area

(All results in mg/L)

Ionitoring Well	Sample Designation	Date Sampled	AK 101 Gasoline Range	AK102 Diesel Range Organics	AK 103 Residual Range	BT Benzene	EX - USEPA Met	hod 8021B/SW82 Ethylbenzene	60B Total Xylene
			Organics 2.2	1.5	Organics 1.1	0.005	1.0	0.7	10.0
009 ADEC G	roundwater Cle								
	MW-1	9/4/1994	0.22	23.9		0.001	0.017	0.002	0.013
	MW-1	8/23/1996	0.22	18		0.0013	0.0013	0.03	0.026
	MW-1	8/26/1997	ND			ND	0.0023	ND	0.0031
	MW-1	8/26/1998	0.051	7.61		ND	ND	ND	0.002
	MW-1	8/25/1999	ND	2.5	ND	ND	0.0015	ND	ND
	MW-1	8/23/2000	ND	4.25	0.753	ND	ND	ND	ND
	MW-1	8/7/2001	ND [0.0900]	1.9	1.11	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
MW-1	MW-1	8/17/2002	ND [0.0900]	1.72	1.14	ND [0.0005]	ND [0.002]	ND [0.002]	0.00203
101 0 0 - 1	MW-1	9/6/2003	ND [0.0900]	1.23	0.533	ND [0.0005]	ND [0.002]	ND [0.002]	0.00203
	MW-1	8/26/2004	ND [0.0900]	1.42		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]
	MW-1	7/22/2005	ND [0.0900]	0.309		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-1	9/6/2006	ND [0.100]	0.910		ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]
	N/A	9/6/2007, 7/30	/2008						
	MW-1	7/29/2009	ND [0.1]	ND [0.784]		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-22	7/29/2009	ND [0.1]	0.258 J		ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
			= [•]		decommissioned			[]	[]
	MW-5	9/4/1994	0.054	0.2		0.0232	0.001	ND	ND
	MW-5	8/23/1996	0.19	0.78		0.048	0.0016	ND	ND
	N/A ^B	8/26/1997	0.10	0.70		0.040	0.0010		ND
	MW-5	8/26/1998	ND			ND	ND	ND	ND
MW-5	MW-5	8/25/1999	ND	0.53	2.1	0.0032	ND	ND	ND
	MW-5	8/23/2000	ND	0.55	0.999	0.0032	ND	ND	ND
	MW-5	8/23/2000	ND [.0900]	1.89	0.999 ND [1.0]	0.00499	ND [0.002]	ND [0.002]	ND [0.002]
	C-VVIVI	8/11/2001	ND [.0900]		decommissioned		ND [0.002]	ND [0.002]	ND [0.002]
	MMA/ G	9/4/1994	ND		decommissioned		ND	ND	ND
	MW-6			1.8		ND	ND	ND	
	MW-6	8/23/1996	ND	43		ND	ND	0.0048	0.003
	MW-6	8/26/1997	ND			ND	ND	ND	ND
	MW-6	8/26/1998	ND	7.59		ND	ND	ND	ND
MW-6	MW-6	8/25/1999	ND	1.9	0.46	ND	0.0045	ND	0.0025
	MW-6	8/23/2000	ND	1.53	0.84	ND	ND	ND	ND
	MW-6	8/7/2001	ND [0.0900]	0.871	ND [1.00]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
	MW-6	8/17/2002	ND [0.0900]	0.754	ND [1.00]	0.000558	ND [0.002]	ND [0.002]	ND [0.002]
	MW-21 ^C	8/17/2002	ND [0.0900]	0.749	ND [1.00]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
					ling discontinue				
	MW-10	9/4/1994	340	7.7		80	73	6.6	46
	MW-13 ^C	9/3/1994	290	8.1		69	65	5.6	40
	MW-10	8/23/1996	300	15		60	56	3.3	20
	MW-10	8/26/1997	300			44	80	5	35.5
	MW-13 ^C	8/27/1997	280			36	61	4.5	34
	MW-10	8/26/1998	400	8.59		46	83	6.1	36
	MW-10	8/25/1999	290	18	ND	16	85	5.5	34
	MW-15 ^C	8/26/1999	340	22	ND	16	87	5.7	37
	MW-10	8/23/2000	283	14	0.796	16.2	75.7	4.81	26.93
	MW-15 ^C	8/23/2000	284	14.4	0.78	14.7	77.2	4.96	28.3
	MW-10	8/7/2001	249	15.1	ND [1.00]	13.4	82.6	5.81	33.5
	MW-10	8/17/2002	0.758	ND [0.575]	ND [1.15]	0.0245	0.145	0.00955	0.1274
MW-10	MW-10	9/6/2003	165	6.44	ND [0.500]	10.3	68.2	5.54	31.3
		9/6/2003	155	7.48	0.632	9.22	61.8	5.05	29.9
	FGTA-Dup-2 ^C MW-10	8/26/2003	193	11.7		2.24	65	4.91	29.9
				11.7		2.24			
	FGTA-Dup-2 ^C	8/26/2004	213				65.3	5.29	31.8
	MW-10	7/22/2005	189	10.9		2.210	53.4	5.65	41.10
	MW-10	9/6/2006	165	13.4	ND	11.7	70.3	6.06	39.90
	FGTA-Dup-1 ^C	9/6/2006	207	14.7	ND	1.9	63.1	6.17	44.40
	MW-10	9/6/2007	80.7	14		5.4	58.7	6.41	39.80
	MW-10	8/2/2008	75.5	6.4		0.626	16.5	2.56	20.31
	FGTA MW-10	9/2/2009	8.24	0.899		0.174	1.25	0.184	2.45
	N/A ^B	8/2/2010, 8/9/201	1, 8/4/2012, 8/4/20						
					l in 2015, decom	missioned in 2016			
	MW-11	9/4/1994	ND	0.5		0.0042	ND	ND	ND
	MW-12 ^C	9/4/1994	ND	0.6		0.0066	ND	ND	ND
M// 11	N/A ^C	8/25/1999	ND	1.7	0.59	0.01	ND	ND	ND
MW-11	N/A ^B	'8/23/2000, 8/7							
	MW-11	8/17/2002	ND [0.0900]	ND [0.500]	ND [1.00]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]
			[]		lina discontinue			[0.002]	[0.002]
					2				
MW-21	N/A ^B	7/30/2009. 8/2/20	10.8/6/2012.8/4/2	013, well decommise	sioned in 2014				
MW-21 Notes:	N/A ^B	7/30/2009, 8/2/20	10, 8/6/2012, 8/4/2	013, well decommise	sioned in 2014	Abbreviations			

Substances Pollution Control Regulations, as amended through October 9. в Well could not be sampled due to construction, obstructions, or well damage.

с Duplicate of preceding sample.

ND [0.062] Bracketed values prior to 2009 are given as the limit of quantitation or practical quantitation limit.

- ADEC Alaska Department of Environmental Conservation AK
 - Alaska Method
- N/A not applicable
- ND not detected at or above the [Limit of Detection]
- USEPA U.S. Environmental Protection Agency