

PACIFIC AIR FORCES REGIONAL SUPPORT CENTER

JOINT BASE ELMENDORF-RICHARDSON, ALASKA

WEST NOME TANK FARM

PROJECT SUMMARY REPORT

NOME, ALASKA

FINAL JANUARY 2017

PACIFIC AIR FORCES REGIONAL SUPPORT CENTER

JOINT BASE ELMENDORF-RICHARDSON, ALASKA

WEST NOME TANK FARM

PROJECT SUMMARY REPORT

NOME, ALASKA

FINAL JANUARY 2017

<u>SEC</u>	TIO	N		<u>PAGE</u>
ACF	RONY	MS A	ND ABBREVIATIONS	iii
EXE	CUT	IVE SU	JMMARY	ES-1
1.0	INT	RODU	CTION	1-1
	1.1	PROJ	ECT OBJECTIVES AND REPORT ORGANIZATION	1-1
	1.2	PROJ	ECT ACTION LEVELS	1-2
2.0	WO	RK PL	AN DEVIATIONS	2-1
	2.1	WEL	L DECOMMISSIONING	2-1
	2.2	WEL	L INSTALLATION	2-1
	2.3	SAM	PLE LOCATIONS	2-2
	2.4	SEDI	MENT SAMPLE ANALYSIS	2-2
3.0	REN	IEDIA	L ACTIONS	3-1
	3.1	SITE	PREPARATION	3-1
	3.2	PUM	PHOUSE ABATEMENT AND DEMOLITION	3-1
	3.3	WEL	L DECOMISSIONING	3-2
	3.4	DRIL	LING AND WELL INSTALLATION AND DEVELOPMENT	3-3
	3.5	REM	EDIAL DESIGN SAMPLING	3-4
		3.5.1	Soil Sampling	3-4
		3.5.2	Groundwater Sampling	3-6
		3.5.3	Pore Water and Sediment Sampling	3-7
	3.6	CAP	CONSTRUCTION	3-10
	3.7	SURV	/EY	3-11
	3.8	WAS	TE MANAGEMENT	3-11
4.0	SUN	/MAR	Y AND RECOMMENDATIONS	4-1
5.0	REF	EREN	CES	5-1

TABLE OF CONTENTS

TABLES

Table 3-1	Soil Sample Exceedances	3-5
Table 3-2	Groundwater Sample Exceedances	3-7
Table 3-3	Pore Water Sample Exceedances	3-8
Table 3-4	Sediment Sample Exceedances	3-9

TABLE OF CONTENTS (Continued)

SECTION

PAGE

APPENDICES

Appendix A Figures

Appendix B Photograph Log

Appendix C Data Quality Assessment

Appendix D Field Documentation

Appendix E Survey Data

Appendix F Notifications and Permits

Appendix G Waste Documentation and Disposal Certificates

Appendix H Project Communications

Appendix I Responses to Comments

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
ACM	asbestos-containing material
ADEC	Alaska Department of Environmental Conservation
AFCEC	U.S. Air Force Civil Engineer Center
bgs	below ground surface
BSNC	Bering Straits Native Corporation
BTEX	benzene, toluene, ethylbenzene, and xylenes
CCC	criterion continuous concentration
CMC	criterion maximum concentration
DRO	diesel-range organics
EPA	U.S. Environmental Protection Agency
FRAE	focused remedial alternative evaluation
GCI	General Communication, Inc.
GPS	global positioning system
GRO	gasoline-range organics
Jacobs	Jacobs Engineering Group Inc.
LBP	lead-based paint
LUC	land-use control
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
NOAA	National Oceanic and Atmospheric Administration
PAH	polycyclic aromatic hydrocarbon
PAL	project action level
PEL	probable effects level
POL	petroleum, oil, and lubricants
SOP	standard operating procedure
SQuiRT	screening quick reference tables
TAH	total aromatic hydrocarbon
TAqH	total aqueous hydrocarbon
TEL	threshold effects level
U.S.	United States
USAF	U.S. Air Force
WNTF	West Nome Tank Farm

(intentionally blank)

EXECUTIVE SUMMARY

This Project Summary Report was prepared by Eagle Eye Electric and its prime subcontractor, Jacobs Engineering Group, Inc. (Jacobs), under U.S. Air Force Civil Engineer Center (AFCEC) Contract FA8903-15-C-0020. This report details the remedial design activities conducted at the former West Nome Tank Farm (WNTF) site in Nome, Alaska, in 2015 and 2016. The fieldwork, conducted over two field seasons, included the following activities:

- Site preparation and fence construction
- Pumphouse abatement and demolition
- Monitoring well decommissioning
- Cap construction
- Soil boring drilling
- Monitoring well installation and development
- Soil, groundwater, sediment, and pore water sample collection
- Survey
- Waste management

The remedial design fieldwork was conducted in accordance with the *Remedial Design Work Plan* (U.S. Air Force [USAF] 2015) and *West Nome Tank Farm Well Decommissioning, Well Installation, and Sample Collection Work Plan* (USAF 2016). As part of this site work, the site was prepared, graded, and a fence was erected in 2015. To continue site preparation activities in 2016, the former pumphouse was abated and demolished, and 30 wells were decommissioned within the cap construction footprint.

As part of the remedial design sampling activities, 10 soil borings were drilled east of the location of the soil cap to investigate previous diesel-range organics (DRO) exceedances. Two soil samples were collected from each boring and analytical results were compared to the Alaska Department of Environmental Conservation (ADEC) Method Two cleanup levels as defined in Title 18 of the Alaska Administrative Code, Section 75 (ADEC 2016b), project cleanup levels determined by the *Remedial Design Work Plan* (USAF 2015), and *Well*

Decommissioning, Well Installation, and Sample Collection Work Plan (USAF 2016). Concentrations of DRO exceeded the ADEC cleanup level in nine soil samples collected from six borings (maximum of 42,000 milligrams per kilogram [mg/kg]) and concentrations of 1-methylnaphthalene and naphthalene exceeded the ADEC cleanup levels in two soil samples collected from one boring (maximum detections of 89 mg/kg and 38 mg/kg, respectively).

Two new monitoring wells, W-36 and W-37, were installed, developed, and sampled; these new monitoring wells will be included in the long-term monitoring program. Samples collected from both monitoring wells contained concentrations of DRO that exceeded the ADEC Method Two Table C groundwater cleanup level (1.5 milligrams per liter [mg/L]) with concentrations of 1.7 mg/L at Monitoring Well W-36 and 3.3 mg/L at Monitoring Well W-37. The polycyclic aromatic hydrocarbon (PAH) dibenzo(a,h)anthracene also exceeded the ADEC Method Two Table C groundwater cleanup level (0.000034 mg/L) with a concentration of 0.000093 mg/L at Monitoring Well W-36.

Collocated pore water and sediment samples were collected from six locations near the banks of the Snake River to assess the potential impact of contamination from the WNTF along the Snake River. Concentrations of PAHs in sediment samples collected from four locations and pore water from two of those locations exceeded National Oceanic and Atmospheric Administration screening quick reference table standards (Buchman 2008).

Positions of the newly installed monitoring wells, maintained monitoring wells, soil borings, and sample locations were recorded using a sub-meter accuracy global positioning system. Monitoring well casing elevations were recorded using optical-level-loop surveying methods.

Following completion of site work in 2016, all of the waste generated during the 2015 and 2016 site activities were consolidated and shipped offsite for disposal.

1.0 INTRODUCTION

This Project Summary Report summarizes the field activities and analytical results from the site work conducted in 2015 and 2016 at the former West Nome Tank Farm (WNTF) site located in Nome, Alaska. Site work was conducted by Eagle Eye Electric and its teaming partner, Jacobs Engineering Group Inc. (Jacobs), under U.S. (United States) Air Force Civil Engineer Center (AFCEC) Contract No. FA8903-15-C-0020.

Site work was designed based on a Focused Remedial Alternative Evaluation (FRAE) conducted by Arcadis, Inc., on behalf of Chevron, in 2012. The FRAE determined the most appropriate method to achieve the remedial action objectives for petroleum contamination at WNTF (Arcadis 2012). Using the FRAE as the basis, a remedial design work plan was prepared in 2015 that outlined the design approach and execution for: capping petroleum-contaminated soil; collecting analytical samples from site soil, groundwater, surface water, and sediment; and installing and maintaining land-use controls (LUCs) at the site (U.S. Air Force [USAF] 2015). The activities outlined in the work plan were to be conducted in stages:

- Stage I Site preparation, cap installation, remedial design sampling, and monitoring well installation
- Stage II Ongoing monitoring of groundwater wells and LUC inspections

Implementation of Stage I, stockpile fence removal, perimeter fence installation, and site preparation were started in the fall of 2015. In June 2016, pumphouse demolition, monitoring well decommissioning, monitoring well installation, remedial design sampling, and cap construction activities were completed.

1.1 PROJECT OBJECTIVES AND REPORT ORGANIZATION

Project objectives were outlined in the *Remedial Design Work Plan* (USAF 2015) and the *West Nome Tank Farm Well Decommissioning, Well Installation, and Sample Collection Work Plan* (USAF 2016), and include the following:

• Decommission of monitoring wells

- Installation and development of two new monitoring wells
- Remedial design sampling
- Installation of soil cap
- Management of all waste generated during the field activities

Figures A-1 and A-2 present the former WNTF site location and conditions at the conclusion of the 2016 field effort.

This report is organized as follows:

- Section 1.0 introduces the objectives for the fieldwork.
- Section 2.0 presents the deviations from the work plans.
- Section 3.0 discusses the activities and presents the analytical results from soil, groundwater, sediment, and pore water samples.
- Section 4.0 summarizes the activities and presents the recommendations for future actions.
- Section 5.0 lists the references cited throughout this report.
- Appendices A through I present the field and post-field documentation used to compile this report.

1.2 PROJECT ACTION LEVELS

Investigative and long-term monitoring activities conducted between 1983 and 2014 indicate that the historical storage and distribution of petroleum, oil, and lubricants (POL) at WNTF has contaminated subsurface soil and shallow groundwater with petroleum hydrocarbons. Chemicals of concern include diesel-range organics (DRO) in soil, DRO and benzene in groundwater, and total aromatic hydrocarbons (TAH) and total aqueous aromatic hydrocarbons (TAqH) in the surface water of the Snake River estuary.

In 2012, the USAF requested a Groundwater Use Determination (350 Determination) under Title 18, Alaska Administrative Code, Part 75.350 (18 AAC 75.350) for the site (Alaska Department of Environmental Conservation [ADEC] 2012) specifying that the shallow aquifer underlying the WNTF is not a suitable source for drinking water. ADEC approved the 350 Determination and confirmed the underlying aquifer of the WNTF and downgradient properties were not suitable for drinking water. The 350 Determination eliminated the migration-to-groundwater soil cleanup levels at the WNTF (i.e., the USAF property).

All sample results were compared to the project action levels (PALs) presented in the work plan (USAF 2016). As all soil samples collected were off USAF property, soil sample results were compared to the ADEC Method Two under 40-inch human health cleanup levels (ADEC 2016b). Groundwater results were compared to groundwater cleanup levels in 18 AAC 75, Table C (ADEC 2016b), and TAH and TAqH values were compared with surface water quality standards in 18 AAC 70 (ADEC 2016a).

Sediment and pore water samples were collected to assess the potential impact of contamination along the Snake River. Sediment sample results were compared to the National Oceanic and Atmospheric Administration (NOAA) screening quick reference tables (SQuiRT) freshwater threshold effects levels (TELs) (Buchman 2008). Pore water samples were compared to the NOAA SQuiRT freshwater levels most conservative of criteria continuous concentration (CCC) and criteria maximum concentration (CMC) values (Buchman 2008).

(intentionally blank)

2.0 WORK PLAN DEVIATIONS

This section describes the deviations from the *Remedial Design Work Plan* (USAF 2015) and the *West Nome Tank Farm Well Decommissioning, Well Installation, and Sample Collection Work Plan* (USAF 2016) that occurred during the fieldwork. Deviations from these plans were minor and did not materially affect project goals.

2.1 WELL DECOMMISSIONING

Originally, 21 monitoring wells were identified for decommissioning in the work plans (USAF 2015, 2016). The field crew was unable to locate Monitoring Well W-2, most likely due to a previous identification and labeling error. Monitoring Well W-2R was successfully located and decommissioned. It is assumed that W-2R replaced W-2 in the past. Another of the original 21 monitoring wells, W-10, was heavily damaged and was not further decommissioned (refer to the photograph log in Appendix B). The material was removed from this monitoring well, but a well decommissioning form was not completed. An additional 10 monitoring wells were located and decommissioned, as they would have interfered with cap construction. A total of 30 monitoring wells were removed and decommissioned as part of the field effort.

2.2 WELL INSTALLATION

There were several changes to the installation plan for the two new monitoring wells involving location and well completion.

When clearing the area for drilling, Alaska Digline was contacted. The field crew was notified that both AlaskaTel and General Communication, Inc. (GCI) had utilities in the location originally designated for Monitoring Well W-36. AlaskaTel cleared activities in the area. The planned location for Monitoring Well W-36 was next to several large satellite dishes, and GCI indicated the equipment used microwaves. After further discussion, GCI recommended the well location be moved for safety reasons. Monitoring Well W-36 was relocated to a nearby location adjacent to a residential deck. This location was close to the originally planned site and fulfilled the same purpose as the original site. The location of Monitoring Well W-37 was

slightly adjusted for property access purposes. Both locations were communicated with ADEC on 1 June 2015 and ADEC provided its concurrence with the revised location via email on the same date (refer to the email communication in Appendix H).

The work plan stated that 5-foot screens would be installed in the new monitoring wells (USAF 2016). Upon further review, it was determined that 5-foot screens were not specifically necessary and were likely a typographical error in the work plan. A 10-foot prepack was used to complete the monitoring wells. This screened length is more appropriate due to tidal influence of water levels in wells.

2.3 SAMPLE LOCATIONS

After initial observation of the site, it was determined that some of the proposed locations for sample locations and soil borings needed relocation due to potential buried utilities in the area. After initial screening, utility locates were performed to reconfirm the need to move sample locations. Soil Boring SB02 was relocated due to conflict with a sewer line, Soil Boring SB04 was relocated for property access purposes, and Pore Water Sample SP04 was relocated closer to the shoreline.

2.4 SEDIMENT SAMPLE ANALYSIS

Sediment samples were collected on 21 June 2016 for analysis of gasoline-range organics (GRO); DRO; benzene, toluene, ethylbenzene, and xylenes (BTEX); and polycyclic aromatic hydrocarbon (PAHs). The analytical laboratory did not run GRO analysis from this batch of samples, so sediment samples were re-collected on 26 August 2016 and submitted for GRO analysis. Global positioning system (GPS) survey coordinates were used to relocate the locations of the samples collected in June; the GRO sediment samples were collected from the same locations. This deviation does not affect the quality of the data.

3.0 REMEDIAL ACTIONS

This section describes the remedial design activities conducted at the WNTF in 2015 and 2016. Prior to mobilization, AFCEC received signed rights-of-entry for access to remedial design sample locations.

3.1 SITE PREPARATION

Site preparation activities were initiated in the fall of 2015 to prepare the site for the cap construction. The fence surrounding the prior stockpile was removed, the fencing right of way was cleared of brush, and a new fence was erected around the cap footprint. In 2016, additional site preparation activities included a site walk and inspection, materials inventory, equipment inspections, and notification of homeowners of the drilling and well installation activities to occur in the area. Alaska Digline was notified on 17 June 2016 that subsurface work would be conducted at the site. Alaska Digline informed the field crew that both AlaskaTel and GCI had utilities in the area (Section 2.2).

3.2 PUMPHOUSE ABATEMENT AND DEMOLITION

In the fall of 2015, Central Environmental, Inc. removed pipes and gaskets coated with suspected lead-based paint (LBP) and asbestos-containing material (ACM) identified in the roofing material as described in the *West Nome Tank Farm Fuel Pump House Hazardous Building Materials Survey* (USAF 2011). A sample of the suspected LBP was collected and submitted to White Laboratories for toxicity characteristic leaching procedure analysis for lead. The results were less than the reporting limit, and the gaskets and piping were transported to the Nome Municipal Landfill for disposal. The ACM was also bagged and disposed of in the Nome Municipal Landfill, which is operating under Permit No. SW2A012-20. Waste disposal information is included in Appendix G.

In 2016, Tumet Industries, LLC demolished the pumphouse. Materials were transported to the Nome Municipal Landfill for disposal. Following removal of the pumphouse and other components, including exposed piping and headers, the site was graded and compacted in

preparation for the cap. No residual fuels were observed in the piping or headers prior to removal.

3.3 WELL DECOMISSIONING

A preliminary site assessment was conducted on 15 June 2016. A total of 21 monitoring wells were identified in the work plans to be decommissioned. Also, 10 additional monitoring wells were located within the proposed cap footprint. As these additional monitoring wells would have hindered cap construction and were no longer needed, they were also decommissioned. One of the monitoring wells identified in the work plans, W-2, could not be located and was therefore not decommissioned. It is suspected that the "W-2" specified in the work plan was actually Monitoring Well W-2R, which was found and decommissioned. Monitoring Well W-10 was so damaged that decommissioning could not fully be completed (refer to the photograph log in Appendix B). The following monitoring wells identified in the work plans were decommissioned:

ML-1C	ML-6C	W-4R	W-25	W-31
ML-2C	ML-7C	W-5R	W-26	W-32
ML-3C	ML-8C	W-10	W-27	W-33
ML-4C	W-2R	W-16R2	W-29	W-34

The 10 additional monitoring wells also located in the cap footprint and decommissioned were as follows:

AI-1	BV-1	CMW-35	MW-6R	W-28
AI-2	BV-2	ML-5C	W-24	W-30

Completed well decommissioning forms are included in Appendix D.

3.4 DRILLING AND WELL INSTALLATION AND DEVELOPMENT

Drilling and well installation occurred on 18 and 19 June 2016. Soil borings were advanced to either 10 or 15 feet below ground surface (bgs). Groundwater was encountered (between 6.2 to 14.5 feet bgs) at all locations during drilling activities. Groundwater depth varied based on tidal influence and ground elevation for each boring. A total of 10 soil borings were completed and two soil samples were collected from each boring. Two of the borings were completed as Monitoring Wells W-36 and W-37. Completed boring logs are included in Appendix D.

Installation of two characterization wells was conducted after completion of decommissioning activities. Two lots were identified for the location of these wells, but the location proposed for Monitoring Well W-36 in the work plan was directly in front of several microwave satellite dishes. After contacting the utilities owner and receiving USAF and ADEC approval, the location of W-36 was moved. The two monitoring wells (W-36 and W-37) were installed on Lots 6 and 1, respectively (Figure A-2).

Monitoring well installation and development were conducted in accordance with the standard operating procedures (SOPs) in the work plan (USAF 2016). Wells were constructed of 2-inch Schedule-40 polyvinyl chloride piping with 10-foot pre-packed screens. The work plan specified 5-foot pre-packed screens across the water table; however, 10-foot pre-packed screens were used because the 5-foot screens were determined to be unnecessary and likely a typographical error in the 2016 work plan. The annular seal was set using a cement-bentonite grout. The wells have flush-mount completions. Completed well installation forms are included in Appendix D.

Monitoring Well W-36 was completed on 18 June and developed on 20 June, and Monitoring Well W-37 was completed on 19 June and developed on 21 June; both wells were sampled on 22 June, per ADEC's *Monitoring Well Guidance* (ADEC 2013). Water parameters were collected for temperature, conductivity, dissolved oxygen, pH, oxidation-reduction potential, and turbidity. Completed well development forms are included in Appendix D.

3.5 REMEDIAL DESIGN SAMPLING

Soil, groundwater, sediment, and pore water sampling were conducted to characterize materials downgradient of the WNTF proposed cap area.

3.5.1 Soil Sampling

Jacobs, along with Discovery Drilling, advanced and sampled 10 soil borings (refer to Figure A-2 for boring locations). Two samples were collected from each soil boring: one from the inferred smear zone, based on the core log, and one from within the vadose zone, based on the highest photoionization detector reading, or from observed odor or staining. When no evidence of contamination was observed, the finest-grained material was sampled. Soil samples were analyzed for DRO (AK102), BTEX (SW8260), and PAHs (SW8270C SIM).

Monitoring Well W-17R: Four soil borings, SB01 through SB04, were advanced near Monitoring Well W-17R, located adjacent to Lot 4, to delineate petroleum-contaminated soil. These step-out borings were located approximately 15 feet in each of the cardinal directions (north, south, east, and west) from the 2008 soil boring location, 08B-17R-05. Soil Boring SB02 had to be relocated due to the presence of utility lines and was located approximately 12 feet southwest of Monitoring Well W-17R.

Lot 5: Four soil borings, SB05 through SB08, were advanced near 2010 Soil Boring SB10-03 to delineate the extent of petroleum-contaminated soil. The step-out borings were located approximately 15 feet in each of the cardinal directions (north, south, east, and west) from Soil Boring SB10-03.

Monitoring Wells W-36 and W-37: One soil boring was advanced in each of these locations prior to well installation.

3.5.1.1 Soil Sample Results and Exceedances

Nine soil samples contained concentrations of DRO that exceeded the ADEC Method Two ingestion cleanup level, and two soil samples contained concentrations of 1-methylnaphthalene and naphthalene that exceeded the ADEC Method Two human health cleanup levels. Soil sample exceedances are presented in Table 3-1.

Soil Boring ID	Sample ID	Analyte	PAL ¹ (mg/kg)	ADEC Method Two Cleanup Levels ² (mg/kg)	Results (mg/kg)
CD01	16WNTF-SB01-06-SO	DRO	10,250	10,250	19,000
3001	16WNTF-SB01-08-SO	DRO	10,250	10,250	14,000
		DRO	10,250	10,250	33,000
	16WNTF-SB02-06-SO	1-Methylnaphthalene	280	68	81
0000		Naphthalene	28	29	36
5B02		DRO	10,250	10,250	42,000
	16WNTF-SB02-08-SO	1-Methylnaphthalene	280	68	89
		Naphthalene	28	29	38
0000	16WNTF-SB03-06-SO	DRO	10,250	10,250	11,000
3003	16WNTF-SB03-08-SO	DRO	10,250	10,250	13,000
SB04	16WNTF-SB04-06-SO	DRO	10,250	10,250	18,000
SB05	16WNTF-SB05-10-SO	DRO	10,250	10,250	14,000
SB07	16WNTF-SB07-10-SO	DRO	10,250	10,250	18,000

Table 3-1 Soil Sample Exceedances

Notes:

WNTF Well Decommissioning, Well Installation, and Sample Collection Work Plan (USAF 2016)

² ADEC Method Two Soil Cleanup Levels, Tables B1 and B2, under 40-inch zone (ADEC 2016b)

The last two numbers in the sample ID reflect the sample depth in feet bgs.

For definitions, refer to the Acronyms and Abbreviations section.

DRO concentrations in the 2016 borings adjacent to Lot 4 ranged from 8,000 to 42,000 milligrams per kilogram (mg/kg). DRO exceedances were present in all soil borings and were present at both 6 and 8 feet bgs in Soil Borings SB01, SB02, and SB03, while Soil Boring SB04 only had a sample exceedance at 6 feet bgs. DRO at 8 feet bgs in Soil Boring SB04 was below the cleanup level, at 9,800 mg/kg. Exceedances of

1-methylnaphthalane and naphthalene were also measured in Soil Boring SB02 at 6 and 8 feet bgs.

DRO concentration in the soil borings completed in Lot 5 ranged from 430 to 18,000 mg/kg. Exceedances were observed in Soil Borings SB05 and SB07 at 10 feet bgs.

Fuel staining was present in the soil boring at Monitoring Well W-36 (Photograph No. 7 in Appendix B); however, DRO concentrations at Monitoring Well W-36 were 6.6 and 190 mg/kg in the soil boring samples while DRO concentrations at Monitoring Well W-37 were 89 and 910 mg/kg in the soil boring samples. All of these concentrations were below the ADEC Method Two cleanup level of 10,250 mg/kg (ADEC 2016b).

3.5.2 Groundwater Sampling

Two monitoring wells (W-36 and W-37) were installed on Lots 6 and 1, respectively (Figure A-2). After installation and development, each new well was sampled. Groundwater samples were analyzed for DRO (AK102), BTEX (SW8260), and PAHs (SW8270C SIM).

3.5.2.1 Groundwater Sample Results and Exceedances

Groundwater from both wells contained concentrations of DRO that exceeded the ADEC Method Two Table C cleanup level in the primary and duplicate samples. Dibenzo(a,h)anthracene also exceeded the ADEC Method Two Table C cleanup level at Monitoring Well W-36 in the duplicate sample only. Groundwater sample exceedances are presented in Table 3-2.

Monitoring Well ID	Sample ID	Analyte	PAL ¹ (mg/L)	ADEC Table C Cleanup Levels ² (mg/L)	Results (mg/L)
W-36		DRO	1.5	1.5	1.7 JL-
	16WNTF-MW36-GW-9	Dibenzo(a,h)anthracene	0.00012	0.000034	0.000093
W-37	16WNTF-MW37-GW	DRO	1.5	1.5	3.3 JL-

Table 3-2 Groundwater Sample Exceedances

Notes:

¹ WNTF Well Decommissioning, Well Installation, and Sample Collection Work Plan (USAF 2016).

² ADEC Groundwater Cleanup Levels, Table C (ADEC 2016b)

JL- = The result was an estimated value because the analyte failed recovery criteria in the laboratory control sample or laboratory control sample duplicate, or both; results were biased low because the recovery was less than the lower control limit.

For definitions, refer to the Acronyms and Abbreviations section.

The new wells were added to the monitoring network for incorporation into the long-term monitoring program.

3.5.3 Pore Water and Sediment Sampling

Pore water and sediment samples were collected to assess the potential impact of contamination from WNTF along the Snake River. In accordance with the SOP in the work plan (USAF 2016), pore water samples were obtained by using pore water probes that were installed with a slide hammer to 2 feet bgs during falling tide. Pore water samples were collected in general accordance with U.S. Environmental Protection Agency (EPA) technical manual *Methods for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analyses* (EPA 2001) as outlined in JE-SOP-8100 *Pore Water Sampling*. In accordance with the SOP in the work plan (USAF 2016), collocated sediment samples were obtained using a hand shovel from the littoral zone during low tide. Sediment samples were collected in general accordance with *California Field Sampling Guidance Document #1215*; *Sediment Sampling* (EPA 1999) as outlined in JE-SOP-5300 *Sediment Sampling*.

Pore water and sediment samples were collected from the bank of the Snake River on the centerline of Lots 1, 2, 3, 4, 5, and 6 (Figure A-2). Pore water samples were collected prior to

sediment samples and one collocated sediment sample was collected at each of the six pore water sample locations. Pore water samples were analyzed for DRO (AK102), BTEX (SW8260), and PAHs (SW8270C SIM). Sediment samples were analyzed for GRO (AK101), DRO (AK102), BTEX (SW8260), and PAHs (SW8270C SIM).

3.5.3.1 Pore Water Results and Exceedances

Pore water from two locations contained concentrations of PAHs that exceeded the NOAA SQuiRT standards. Pore water sample standard exceedances are presented in Table 3-3. Calculated TAH and TAqH concentrations did not exceed cleanup levels in any of the pore water samples.

Sample Location ID	Sample ID	Analyte	PAL ¹ (mg/L)	Results (mg/L)
SD01	16\//NTE_SP01_P\//	Benzo(a)pyrene	0.000014	0.000023
5P01	1000017-3601-600	Fluoranthene	0.00004	0.000065
8002		Benzo(a)pyrene	0.000014	0.000018 J
3503	10001017-3903-900	Fluoranthene	0.00004	0.000041

Table 3-3Pore Water Sample Exceedances

Notes:

¹ Surface water criteria from NOAA SQuiRT freshwater, most conservative of CCC and CMC values (Buchman 2008).

J = The analyte was positively identified; however, the associated result was less than the limit of quantitation but greater than or equal to the detection limit.

For definitions, refer to the Acronyms and Abbreviations section.

3.5.3.2 Sediment Sample Results and Exceedances

Sediment from four locations (SP01, SP02, SP03, and SP04) contained concentrations of PAHs that exceeded the NOAA SQuiRT TELs. Sediment from just one location (SP03) contained concentrations of PAHs that exceeded the NOAA SQuiRT probable effects levels (PELs). The TELs are lower-threshold values, which suggest that contaminant concentrations below these levels have a low probability of being toxic. Comparison to higher toxicity thresholds, such as PELs, identifies compounds that are more probably present at elevated, toxic levels (Buchman 2008).

Sediment sample exceedances of TELs are presented in Table 3-4. Sample results that also exceeded PELs are bolded.

Sample Location ID	Sample ID	Analyte	NOAA SQuiRT TEL ¹ (mg/kg)	NOAA SQuiRT PEL ² (mg/kg)	Results (mg/kg)
0004		Phenanthrene	0.0419	0.515	0.084
5001	16WNTF-SP01-SD	Pyrene	0.053	0.875	0.066
		Acenaphthene	0.00671	0.0889	0.042
		Anthracene	0.0469	0.245	0.082
		Benzo(a)anthracene	0.0317	0.385	0.14
		Benzo(a)pyrene	0.0319	0.782	0.14
SD02		Chrysene	0.0571	0.862	0.17
3502	1000017-3202-30	Dibenzo(a,h)anthracene	0.00622	0.135	0.023
		Fluoranthene	0.111	2.355	0.28
		Fluorene	0.0212	0.144	0.057
		Phenanthrene	0.0419	0.515	0.51
		Pyrene	0.053	0.875	0.38
		Acenaphthene	0.00671	0.0889	0.069 JD
SP01 SP02 SP02 SP03	/ / E	Acenaphthylene	0.00587	0.128	0.0079
		Anthracene	0.0469	0.245	0.087 JD
		Benzo(a)anthracene	0.0317	0.385	0.2 JD
		Benzo(a)pyrene	0.0319	0.782	0.21 JD
		Chrysene	0.0571	QuiRT TEL ¹ NOAA SQuiRT PEL ² (mg/kg) F 0.0419 0.515 (f) 0.0419 0.515 (f) 0.053 0.875 (f) 0.0671 0.0889 (f) 0.0469 0.245 (f) 0.0317 0.385 (f) 0.052 0.135 (f) 0.052 0.135 (f) 0.0622 0.135 (f) 0.0111 2.355 (f) 0.0212 0.144 (f) 0.0469 0.245 (f) 0.053 0.875 (f) 0.0587 0.128 (f) 0.0469 0.245 (f) 0.0317 0.385 (f) 0.0319 0.782 (f) 0.0622 0.135 (f) 0.0319 0.782 (f) 0.0319 0.782 (f) 0.0419 0.515 (f) 0.0419 0.515 (f)	0.3 JD
	10/0111-3503-30	Dibenzo(a,h)anthracene	0.00622	0.135	0.035 JD
		Imple IDAnalyteSQuiRT TEL1 (mg/kg)NOA SQUIRT PEL2 (mg/kg)Res (mg/kg)F-SP01-SDPhenanthrene0.04190.5150.0Pyrene0.0530.8750.0Pyrene0.006710.08890.0Acenaphthene0.006710.08890.0Anthracene0.04690.2450.0Benzo(a)anthracene0.03170.3850.0Benzo(a)anthracene0.03190.7820.0Chrysene0.05710.86620.0Dibenzo(a,h)anthracene0.006220.1350.0Fluoranthene0.1112.3550.0Fluoranthene0.01190.5150.0Pyrene0.0530.8750.0Acenaphthylene0.006710.08890.06Acenaphthylene0.006710.08890.02Acenaphthylene0.005870.1280.02Acenaphthylene0.03170.3850.2Benzo(a)anthracene0.03170.3850.2Benzo(a)pyrene0.03190.7820.2Chrysene0.05710.86220.135Dibenzo(a,h)anthracene0.006720.1440.0Pyrene0.0330.8750.6Benzo(a)pyrene0.03170.3850.5Benzo(a)pyrene0.03170.3850.5Benzo(a,h)anthracene0.006710.08890.1Anthracene0.03170.3850.5Benzo(a)pyrene0.03170.3850.5	0.5 JD		
	N Sample ID Analyte Statt 1 (mg/kg) PEL2 (mg/kg) 16WNTF-SP01-SD Phenanthrene 0.0419 0.515 Pyrene 0.053 0.875 Accenaphthene 0.00671 0.0889 Anthracene 0.0469 0.245 Benzo(a)anthracene 0.0317 0.385 Benzo(a)anthracene 0.00571 0.862 Chrysene 0.0571 0.862 Dibenzo(a,h)anthracene 0.0017 0.385 Benzo(a)pyrene 0.00522 0.135 Fluoranthene 0.111 2.355 Fluoranthene 0.0111 2.355 Fluoranthene 0.00537 0.128 Accenaphthene 0.00671 0.0889 Accenaphthene 0.00587 0.128 Anthracene 0.0319 0.782 Benzo(a)anthracene 0.0319 0.782 Chrysene 0.0571 0.862 Dibenzo(a,h)anthracene 0.00519 0.782 Benzo(a)pyrene 0.0319 0.782	0.081 JD			
		Naphthalene	IEL (mg/kg) (mg/kg) (mg/kg) 0.0419 0.515 0.0 0.053 0.875 0.0 0.00671 0.0889 0.0 0.0469 0.245 0.0 acene 0.0317 0.385 0.0 acene 0.0317 0.385 0.0 0.0571 0.862 0.0 nthracene 0.00622 0.135 0.0 0.0212 0.144 0.0 0.0419 0.515 0.0 0.0469 0.245 0.06 0.053 0.875 0.0 0.0419 0.515 0.0 0.053 0.875 0.0 0.0469 0.245 0.08 acene 0.0317 0.385 0.2 0.0469 0.245 0.08 acene 0.0317 0.385 0.2 0.0571 0.862 0.3 nthracene 0.00622 0.135 0.03 0.0111 2.355	0.057	
SP03		Phenanthrene	0.0419	k_1 PEL2 (mg/kg)(m kg 0.51504190.5150530.87506710.088904690.24503170.38503190.78205710.86206220.1350112.35502120.14404690.24509530.87509530.87509570.128095870.128095870.128095870.128095870.128095870.128095870.128096220.13509190.78209190.78209190.782092120.144093190.782094690.24509170.385092120.135093170.385094690.245092120.135093190.782094690.245094690.245095710.862095710.862095710.862095710.862095710.862095710.862095710.38509571 <t< td=""><td>0.96 JD</td></t<>	0.96 JD
		Pyrene	0.053	0.875	0.65 JD
		Acenaphthene	0.00671	0.0889	0.15 JD
		Anthracene	0.0469	0.245	0.32 JD
		Benzo(a)anthracene	0.0317	0.385	0.5 JD
		Benzo(a)pyrene	0.0319	0.782	0.43 JD
SP02	16WNTF-SP03-SD-9	Benzo(g,h,i)perylene	0.17	0.17	0.22 JD
		Chrysene	0.0571	0.862	0.56 JD
		Dibenzo(a,h)anthracene	0.00622	0.135	0.088 JD
		Fluoranthene	0.111	2.355	1.1 JD
		Fluorene	0.0212	0.144	0.18 JD

Table 3-4 Sediment Sample Exceedances

Sample Location ID	Sample ID	Analyte	NOAA SQuiRT TEL ¹ (mg/kg)	NOAA SQuiRT PEL ² (mg/kg)	Results (mg/kg)
		Indeno(1,2,3-cd)pyrene	0.2	0.2	0.26 JD
		Naphthalene	0.0346	0.391	0.039
		Phenanthrene	0.0419	0.515	1.6 JD
		Pyrene	0.053	0.875	1.1 JD
SP04	16WNTF-SP04-SD	Phenanthrene	0.0419	0.515	0.053

 Table 3-4

 Sediment Sample Exceedances (Continued)

Notes:

¹Sediment criteria from NOAA SQuiRT freshwater TEL (Buchman 2008).

² Sediment criteria from NOAA SQuiRT freshwater PEL (Buchman 2008).

Bold indicates an exceedance of the NOAA SQuiRT freshwater PEL (Buchman 2008).

JD = The result was qualified because the relative percent difference between the primary sample and the field duplicate sample exceeded 50 percent for soil/sediment and/or the relative percent difference between the matrix spike and matrix

spike duplicate exceeded the quality control criteria.

For definitions, refer to the Acronyms and Abbreviations section.

3.6 CAP CONSTRUCTION

Cap construction activities proceeded as described in the *Remedial Design Work Plan* (USAF 2015). Following the demolition of the pumphouse and its components, the site was graded to blend into the surrounding terrain using a dozer and compactor. Permeable geotextile fabric was laid down initially in the middle of the site and then additional material was rolled out as material was added, working towards the outside perimeter of the cap. The geotextile fabric was overlapped a minimum of 2 feet to ensure coverage after soil placement. Material was placed in 6-inch lifts, graded, and compacted with a vibratory roller. A water truck sprayed water on the material during construction to achieve maximum compression. The soil cap installation consisted of the following:

- Approximately 7,497 cubic yards of silty sand mixture to approximately 22 inches thickness
- Approximately 2,484 cubic yards of 2-inch minus gravel to approximately 6 inches thickness

Following construction of the cap, the fence was repaired and locked.

3.7 SURVEY

Prior to beginning work, proposed monitoring wells, soil boring, sediment, and pore water sample locations were survey-located using a sub-meter accuracy GPS. Positions of monitoring wells, soil borings, samples, and other relevant site features were recorded using sub-meter horizontal accuracy GPS following procedures detailed in JE-SOP-1001 *Differential GPS Surveying*.

The newly installed monitoring wells, W-36 and W-37, were surveyed by Edge Surveying who recorded the elevation of the tops of monitoring well casings using optical-level-loop surveying methods in accordance with ADEC's *Monitoring Well Guidance* (ADEC 2013) and procedures. As detailed in JE-SOP-1010 *Differential Level Loop Surveying*, Monitoring Wells W-7R, W-20, and W-21 tops of casings were also surveyed to acquire updated elevations following trimming or repair from frost-jacking. Edge Surveying also located the perimeter for the cap footprint and shot in the elevation to support cap construction activities. Survey data are presented in Appendix E.

3.8 WASTE MANAGEMENT

Soil cuttings, investigation-derived waste, and decommissioned well components were disposed of as POL-contaminated waste according to procedures identified in JE-SOP-2100 *Waste Management*. Soil cuttings and sampling waste from well installation were containerized in two Super Sacks and shipped to an approved landfill. Approximately 100 gallons of groundwater extracted during well installation, development, and sampling were containerized in 55-gallon drums and accepted by National Response Corporation Alaska, LLC for treatment. Analytical samples collected from soil and groundwater were used to characterize waste and confirm treatment and disposal activities. Nonhazardous waste manifests and certificates of disposal are presented in Appendix G.

(intentionally blank)

4.0 SUMMARY AND RECOMMENDATIONS

Between 15 June and 27 August 2016, the following project objectives were completed at WNTF:

- Decommission of 30 monitoring wells
- Installation and development of two monitoring wells
- Remedial design sampling
- Installation of soil cap
- Removal or treatment of all waste generated as part of the field activities

Following decommission activities, 10 soil borings were drilled east of the location of the soil cap to investigate previous DRO exceedances. Soil samples were collected from each boring and two soil boring locations were used to install monitoring wells. Soil and groundwater samples were collected to assess potential DRO contamination. Sediment and pore water sampling were conducted to assess the potential impact of contamination along the Snake River. Contamination was observed in soil, groundwater, sediment, and pore water samples. Nine soil samples exhibited DRO exceedances (up to 42,000 mg/kg) and two soil samples exhibited 1-methylnaphthalene and naphthalene exceedances (up to 89 mg/kg and 38 mg/kg, respectively) of the ADEC Method Two cleanup levels. Both wells exhibited DRO exceedances of the Method Two Table C cleanup level, with DRO levels of 1.7 mg/L at Monitoring Well W-36 and 3.3 mg/L at Monitoring Well W-37. Monitoring Well W-36 also exhibited a dibenzo(a,h)anthracene exceedance of 0.000093 mg/L in the duplicate sample. Sediment from four locations and pore water from two of those locations exhibited PAH exceedances of the NOAA SQuiRT standards.

Based on the sampling results from the 2016 field effort, adding Monitoring Wells W-36 and W-37 to the long-term monitoring schedule for continued monitoring of DRO is recommended.

Sediment and surface water data were collected along the Snake River for information purposes only. Although concentrations of contaminants from 2009 and 2016 indicated that fuel contamination in sediments is present upstream, cross-gradient, and downstream of the

site, no further investigation of sediment contamination in the vicinity of presumed groundwater discharge from the WNTF is recommended. The concentrations of contaminants detected in river sediments could be a reflection of the maritime use of the estuary and harbor along with onshore industrial activities fuel. Making a definitive determination of the source of contaminations, if possible, would require a more comprehensive estuary-wide investigation.

5.0 **REFERENCES**

- ADEC (Alaska Department of Environmental Conservation). 2012 (February). Groundwater Use Determination for the Former West Nome Tank Farm, Nome, Alaska.
- ADEC. 2013 (September). Monitoring Well Guidance.
- ADEC. 2016a (February). Water Quality Standards. 18 AAC 70.
- ADEC. 2016b (November). Oil and Other Hazardous Pollution Control Regulations Discharge Reporting, Cleanup, and Disposal of Oil and Other Hazardous Substances. 18 AAC 75.
- Arcadis (Arcadis, Inc.). 2012 (October). Focused Remedial Alternatives Evaluation. Former West Nome Tank Farm, Nome, Alaska. Prepared for Chevron Environmental Management Company, U.S. Air Force, and Crowley Marine Services Inc.
- Buchman, M. 2008. *Screening Quick Reference Tables*. NOAA OR&R Report 08-1. Seattle, Washington: National Oceanic and Atmospheric Administration, Office of Response and Restoration Division.
- EPA (U.S. Environmental Protection Agency). 1999. *California Field Sampling Guidance Document* #1215; Sediment Sampling, Region 9 Laboratory. Richmond, California.
- EPA. 2001. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual (EPA-823-B-01-002). Office of Water (4305).
- USAF (U.S. Air Force). 2009 (August). 2009 Site Characterization Report. West Nome Tank Farm, Nome, Alaska. Prepared for USAF 611th CES/CEVR by Jacobs Engineering Group Inc.
- USAF. 2011 (January). West Nome Tank Farm Fuel Pump House Hazardous Building Materials Survey. Prepared by Jacobs Engineering Group Inc.
- USAF. 2015 (April). *Remedial Design Work Plan. West Nome Tank Farm, Nome, Alaska.* Prepared by Jacobs Engineering Group Inc.
- USAF. 2016 (March). West Nome Tank Farm Well Decommissioning, Well Installation, and Sample Collection Work Plan. Nome, Alaska. Prepared by Jacobs Engineering Group Inc.

(intentionally blank)

APPENDIX A Figures

P:\Nome\MXD\BSNC\SampleSummaryReport\Fg_1_WNTF_LocationVicinity.mxd_eggerikt

Monitoring Well ID	Sample ID	Analyte	Project Action Level (mg/L)	Groundwater Exceedances (mg/L)
MM/26	16WNTF-MW36-GW-9	DRO	1.5	1.7 JL-
1010030		Dibenzo(a,h)anthracene	0.000034	0.000093
MW37	16WNTF-MW37-GW	DRO	1.5	3.3 JL-

Note: JL- = The result was an estimated value because the analyte failed recovery criteria in the laboratory control sample or laboratory control sample duplicate, or both; results were biased low because the recovery was less than the lower control limit.

Soil Boring ID	Sample ID	Analyte	Project Action Level (mg/kg)	Soil Exceedances (mg/kg)	Sample Depth (feet bgs)	11
SB01	16WNTF-SB01-06-SO	DRO	10,250	19,000	6	9
	16WNTF-SB01-08-SO	DRO	10,250	14,000	8	
SB02		DRO	10,250	33,000		
	16WNTF-SB02-06-SO	1-Methylnaphthalene	68	81	6	
		Naphthalene	29	36		
		DRO	10,250	42,000		
	16WNTF-SB02-08-SO	1-Methylnaphthalene	68	89	8	1
		Naphthalene	29	38		-
SB03	16WNTF-SB03-06-SO	DRO	10,250	11,000	6	2
3503	16WNTF-SB03-08-SO	DRO	10,250	13,000	8	2
SB04	16WNTF-SB04-06-SO	DRO	10,250	18,000	6	17
SB05	16WNTF-SB05-10-SO	DRO	10,250	14,000	10	6
SB07	16WNTF-SB07-10-SO	DRO	10,250	18,000	10	1

SB-

SB-SB

SB-

Ø

-p

1

Sample Loc ID	Sample ID	Analyte	NOAA SQuiRT Threshold Effects Level ¹ (mg/kg)	NOAA SQuiRT Probable Effects Level ² (mg/kg)	Sediment Exceedances (mg/kg)
SP01	16WNTF-SP01-SD	Phenanthrene	0.0419	0.515	0.084
5901		Pyrene	0.053	0.875	0.066
		Acenaphthene	0.00671	0.0889	0.042
		Anthracene	0.0469	0.245	0.082
		Benzo(a)anthracene	0.0317	0.385	0.14
		Benzo(a)pyrene	0.0319	0.782	0.14
0000		Chrysene	0.0571	0.862	0.17
5P02	16WN1F-5P02-5D	Dibenzo(a,h)anthracene	0.00622	0.135	0.023
		Fluoranthene	0.111	2.355	0.28
		Fluorene	0.0212	0.144	0.057
		Phenanthrene	0.0419	0.515	0.51
		Pyrene	0.053	0.875	0.38
	16WNTF-SP03-SD	Acenaphthene	0.00671	0.0889	0.069 JD
		Acenaphthylene	0.00587	0.128	0.0079
		Anthracene	0.0469	0.245	0.087 JD
		Benzo(a)anthracene	0.0317	0.385	0.2 JD
		Benzo(a)pyrene	0.0319	0.782	0.21 JD
		Chrysene	0.0571	0.862	0.3 JD
		Dibenzo(a h)anthracene	0.00622	0.135	0.035 JD
		Fluoranthene	0 111	2 355	0.5.1D
		Fluorene	0.0212	0 144	0.081.JD
		Naphthalene	0.0346	0.391	0.057
		Phenanthrene	0.0419	0.515	0.96 JD
		Pyrene	0.053	0.875	0.65 JD
SP03		Acenaphthene	0.00671	0.0889	0.15 JD
		Anthracene	0.0469	0.245	0.32 JD
	16WNTF-SP03-SD-9	Benzo(a)anthracene	0.0317	0.385	0.5 JD
		Benzo(a)pyrene	0.0319	0.782	0.43 JD
		Benzo(a,h,i)pervlene	0.17	0.17	0.22 JD
		Chrysene	0.0571	0.862	0.56 JD
		Dibenzo(a,b)anthracene	0.00622	0.135	0.088.ID
		Fluoranthene	0 111	2 355	11.JD
		Fluorene	0.0212	0 144	0.18.ID
		Indeno(1.2.3-cd)pyrepe	0.02.12	0.144	0.26.ID
		Nanhthalene	0.0346	0.391	0.039
		Phenanthrene	0.0419	0.515	16 0
		Pyropo	0.0413	0.875	11 0
		i yielle	0.000	0.075	1.100

SB-05

2

P

SB

02 SB-0

2 Sediment criteria from NOAA SQuiRT freshwater PEL (Buchman 2008).

Bold indicates an exceedance of the NOAA SQuiRT freshwater PEL (Buchman 2008).

JD = The result was qualified because the relative percent difference (RPD) between the primary sample and the field duplicate

sample exceeded 50 percent for soil/sediment and/or the RPD between the MS and MSD exceeded the QC criteria.

Sample Loc ID	Sample ID	Analyte	Project Action Level (mg/L)	Pore Water Exceedances (mg/L)
SP01	16WNTE-SP01-PW	Benzo(a)pyrene	0.000014	0.000023
0101		Fluoranthene	0.00004	0.000065
SP03	16WNTE-SP03-PW	Benzo(a)pyrene	0.000014	0.000018 J
61 65		Fluoranthene	0.00004	0.000041

Note:

J = The analyte was positively identified; however, the associated result was less than the limit of

APPENDIX B Photograph Log
PHOTOGRAPH LOG TABLE OF CONTENTS

hoto Number	Page
hoto No. 1 – 2 October 2015 Installation of fencing at the site. Looking southwest	.B-1
hoto No. 2 – 2 October 2015 New signage posted at the site. Looking west	.B-1
hoto No. 3 – 15 June 2016 Northern group of monitoring wells decommissioned in support of cap construction project. Looking southeast	.B-2
hoto No. 4 – 16 June 2016 Monitoring well decommissioning in progress, pulling riser after knocking bottom of well out. Looking south.	.B-2
hoto No. 5 – 16 June 2016 Discovery pouring Bentonite chips down hole left from decommissioned well.	.B-3
hoto No. 6 – 17 June 2016 Monitoring well W-10 destroyed during previous construction activities. Casing was placed with waste from other decommissioned wells. Looking east	.B-3
hoto No. 7 – 18 June 2016 Soil recovered from W-36. Note fuel staining present in soil	.B-4
hoto No. 8 – 18 June 2016 Hollow-stem augers used during installation of W-36; well was relocated due to microwave dish shown in background. Looking north.	.B-4
hoto No. 9 – 18 June 2016 W-36 completed as flush-mount monitoring well. Looking north.	.B-5
hoto No. 10 – 19 June 2016 Drilling step-out borings (B01 – B04) around W-17R. Looking north.	.B-5
hoto No. 11 – 19 June 2016 Installing monitoring well W-37. Looking east	.B-6
hoto No. 12 – 21 June 2016 Pore water sampling at location SP05. Pore water probes were installed with a slide hammer to 2 feet below ground surface during falling tide. Looking southwest	.B-6
hoto No. 13 – 21 June 2016 Sediment samples were obtained by shovel from the littoral zone during low tide.	.B-7
hoto No. 14 – 20 June 2016 Stainless steel drive point used to obtain pore water samples.	.B-7
hoto No. 15 – 26 June 2016 Demolition of the old pumphouse. Looking northeast	.B-8
hoto No. 16 – 20 June 2016 Demolition material being loaded for transport to the landfill. Looking northeast.	.B-8
hoto No. 17 – 26 June 2016 Site preparation and compaction of cap footprint. Looking south.	.B-9
hoto No. 18 – 30 June 2016 Delivery of silty-sand base on top of geotextile liner. Looking south.	.B-9

PHOTOGRAPH LOG TABLE OF CONTENTS (Continued)

Photo Number	Page
Photo No. 19 – 14 July 2016 Watering cap for compaction. Looking east	B-10
Photo No. 20 – 14 July 2016 Addition of two-inch minus gravel layer. Looking southeast.	B- 10
Photo No. 21 – 14 July 2016 Spreading and compaction of top layer of cap. Looking east	B- 11
Photo No. 22 – 19 July 2016 Reinstallation of fencing. Looking southeast.	B- 11

Photo No. 1 – 2 October 2015 Installation of fencing at the site. Looking southwest.

Photo No. 2 – 2 October 2015 New signage posted at the site. Looking west.

Photo No. 3 – 15 June 2016 Northern group of monitoring wells decommissioned in support of cap construction project. Looking southeast.

Photo No. 4 – 16 June 2016 Monitoring well decommissioning in progress, pulling riser after knocking bottom of well out. Looking south.

Photo No. 5 – 16 June 2016 Discovery pouring Bentonite chips down hole left from decommissioned well.

Photo No. 6 – 17 June 2016
Monitoring well W-10 destroyed during previous construction activities. Casing was placed with waste from other decommissioned wells. Looking east.

Photograph Log B-3

Photo No. 7 – 18 June 2016 Soil recovered from W-36. Note fuel staining present in soil.

Photo No. 8 – 18 June 2016 Hollow-stem augers used during installation of W-36; well was relocated due to microwave dish shown in background. Looking north.

Photo No. 9 – 18 June 2016 W-36 completed as flush-mount monitoring well. Looking north.

Photo No. 10 – 19 June 2016 Drilling step-out borings (B01 – B04) around W-17R. Looking north.

Photo No. 11 – 19 June 2016 Installing monitoring well W-37. Looking east.

Photo No. 12 – 21 June 2016
Pore water sampling at location SP05. Pore water probes were installed with a slide hammer to 2 feet below ground surface during falling tide. Looking southwest.

Photo No. 13 – 21 June 2016 Sediment samples were obtained by shovel from the littoral zone during low tide.

Photo No. 14 – 20 June 2016 Stainless steel drive point used to obtain pore water samples.

Photo No. 15 – 26 June 2016 Demolition of the old pumphouse. Looking northeast.

Photo No. 16 – 20 June 2016 Demolition material being loaded for transport to the landfill. Looking northeast.

Photo No. 17 – 26 June 2016 Site preparation and compaction of cap footprint. Looking south.

Photo No. 18 – 30 June 2016 Delivery of silty-sand base on top of geotextile liner. Looking south.

Photo No. 19 – 14 July 2016 Watering cap for compaction. Looking east.

Photo No. 20 – 14 July 2016 Addition of two-inch minus gravel layer. Looking southeast.

Photo No. 21 – 14 July 2016 Spreading and compaction of top layer of cap. Looking east.

Photo No. 22 – 19 July 2016 Reinstallation of fencing. Looking southeast.

APPENDIX C Data Quality Assessment

PACIFIC AIR FORCES REGIONAL SUPPORT CENTER

JOINT BASE ELMENDORF-RICHARDSON, ALASKA

WEST NOME TANK FARM

PROJECT SUMMARY REPORT

APPENDIX C DATA QUALITY ASSESSMENT

NOME, ALASKA

FINAL JANUARY 2017

<u>SEC</u>	TIO	N	<u>PA</u>	GE
ACF	RONY	MS ANI	D ABBREVIATIONS	C-iii
1.0	INT	RODUC	ГІОЛС	-1-1
	1.1	QUALI	TY CONTROL CRITERIAC	-1-2
	1.2	DATA	QUALITY SUMMARYC	-1-3
		1.2.1	Sample Handling/PreservationC	-1-4
		1.2.2	Method Blank and Trip Blank ContaminationC	-1-4
		1.2.3	Laboratory Control Sample Accuracy and PrecisionC	-1-5
		1.2.4	Matrix Spike Accuracy and PrecisionC	-1-5
		1.2.5	Field Duplicate PrecisionC	-1-6
	1.3	CONCI	LUSIONC	-1-7
2.0	REF	ERENCE	ESC	-2-1

TABLE OF CONTENTS

TABLE

Table C-1	Field Quality Control Sample Quantities	C-1	-1

ATTACHMENTS

Attachment C-1	Sample Summary Table and Analytical Data Tables
Attachment C-2	Qualified Sample Results Tables
Attachment C-3	ADEC Laboratory Data Review Checklists
Attachment C-4	Laboratory Deliverables

(intentionally blank)

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
ADEC	Alaska Department of Environmental Conservation
ALS	ALS Environmental
BTEX	benzene, toluene, ethylbenzene, and xylenes
DL	detection limit
DoD	U.S. Department of Defense
DQA	data quality assessment
DQO	data quality objective
DRO	diesel-range organics
EPA	U.S. Environmental Protection Agency
FD	field duplicate
GRO	gasoline-range organics
Jacobs	Jacobs Engineering Group Inc.
LCL	lower control limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
MS	matrix spike
MSD	matrix spike duplicate
PAH	polycyclic aromatic hydrocarbon
PAL	project action limit
QC	quality control
QSM	Quality Systems Manual
RPD	relative percent difference
SIM	selective ion monitoring
USAF	U.S. Air Force

(intentionally blank)

1.0 INTRODUCTION

The following data quality assessment (DQA) and Alaska Department of Environmental Conservation (ADEC) laboratory data review checklists (Attachment C-3) assess the overall quality and usability of data from the 2016 remedial design report for the former West Nome Tank Farm Site at Nome, Alaska.

Samples were collected in June and August 2016. ALS Environmental (ALS) of Kelso, Washington provided analytical services. The samples types, grouped by matrix, are summarized in Table C-1.

Method	Variable	Primary Samples	Field Duplicate Samples	MS/MSD Samples ¹								
	So	oil Samples	-	-								
AK102	DRO	20	2	1								
SW8260C	BTEX	20	2	1								
SW8270SIM	PAH	20	2	1								
Sediment Samples												
AK101	GRO	6	1	1								
AK102	DRO	6	1	1								
SW8260C	BTEX	6	1	1								
SW8270SIM	PAH	6	1	1								
	Ground	dwater Samples										
AK102	DRO	2	1	1								
SW8260C	BTEX	2	1	1								
SW8270SIM	PAH	2	1	1								
	Pore V	Vater Samples										
AK102	DRO	6	1	1								
SW8260C	BTEX	6	1	1								
SW8270SIM	PAH	6	1	1								

Table C-1Field Quality Control Sample Quantities

Notes:

¹ An MS/MSD pair is counted as one sample.

For definitions, refer to the Acronyms and Abbreviations section.

The attachments to this DQA contain the sample summary table and analytical data tables (Attachment C-1), tables of sample results that did not meet the project data quality objectives (DQOs) (Attachment C-2), ADEC laboratory data review checklists (Attachment C-3), and laboratory deliverables (Attachment C-4).

1.1 QUALITY CONTROL CRITERIA

Jacobs Engineering Group Inc. (Jacobs) performed this DQA and completed ADEC laboratory data review checklists for records associated with the analytical data, as per the *West Nome Tank Farm Remedial Design Well Decommissioning, Well Installation and Sample Collection Work Plan* (U.S. Air Force [USAF] 2016). Data quality was evaluated against the following requirements: U.S. Department of Defense (DoD) Quality Systems Manual (QSM), version 5.0 (DoD 2013); ADEC and U.S. Environmental Protection Agency (EPA) analytical methods (ADEC 2009, 2014; EPA 2014); and laboratory limits.

The Jacobs project chemist performed a completeness check of the hardcopy and electronic data to verify that data packages and electronic files included all of the requested information. All analytical data were reviewed, including the chain-of-custody and sample receipt records, laboratory case narratives, and laboratory data. Analytical data were reviewed for methodology, sample holding times, laboratory blanks, limits of quantitation (LOQs), limits of detection (LODs), detection limits (DLs), surrogate recoveries, laboratory control sample (LCS) and LCS duplicate (LCSD) recoveries, matrix spike (MS) and MS duplicate (MSD) recoveries, and precision. Other quality control (QC) parameters (initial calibration, continuing calibration, tuning, internal standards, interference check solutions, post-digestion spikes, and serial dilutions) were reviewed on a limited basis. These QC parameters met acceptance criteria; any sample results outside QC parameters are listed in Section 1.2 or in the associated ADEC laboratory data review checklist (Attachment C-3). Analytical DQOs were considered met when the quality of the sample data met precision, accuracy, representativeness, completeness, comparability, and sensitivity requirements. The overall quality of the data was acceptable as qualified. Flagged data are considered usable but estimated.

No formal trend or bias analysis was conducted during the DQA. The data validation for this project focused on identifying exceedances of laboratory QC goals. While reviewing QC parameters, no significant bias or trend was noted.

The following data qualifiers are applicable to the report:

- J The analyte was positively identified; however, the associated result was less than the LOQ but greater than or equal to the DL.
- B The analyte was detected in the method blank or the trip blank above the DL, and the concentration in the sample did not exceed the blank concentration by a factor of 5.
- JL- The result was an estimated value because the analyte failed recovery criteria in the LCS or LCSD sample, or both; results were biased low because the recovery was less than the lower control limit (LCL). The qualifier was applied to all sample results in the associated laboratory batch.
- JD The result was qualified because the relative percent difference (RPD) between the primary sample and the field duplicate (FD) sample exceeded 30 percent for water, 50 percent for soil/sediment and/or the RPD between the MS and MSD exceeded the QC criteria. The qualifier was applied to the sample and FD, the parent sample for MS/MSD.

Qualification was not required in the following circumstances:

- Surrogate or MS/MSD recoveries were outside QC limits, and the sample was diluted by a factor of 5 or greater.
- MS/MSD recoveries were outside QC limits, and the spiked concentration was less than that of the parent sample.
- An analyte was detected in the method blank, but there was no detection in the sample.
- MS or LCS recoveries exceeded upper control limits (UCLs), and there was no detection in the sample(s).

1.2 DATA QUALITY SUMMARY

In general, the overall quality of project data was acceptable. All analytical results were 100 percent complete (no results were rejected), and for all parameters the completeness goal of 95 percent was met. Complete details of the evaluation and associated samples are provided in the ADEC laboratory review checklists (Attachment C-3). The tables in

Attachment C-2 include analytical results that did not meet project DQOs and required qualification.

The following anomalies were identified during the data review process as follows:

- Sample handling/preservation
- Method blank and trip blank contamination
- LCS accuracy and precision
- MS accuracy and precision
- FD precision

Sections 1.2.1 through 1.2.5 describe anomalies and their effects on data quality and usability.

1.2.1 Sample Handling/Preservation

Nine coolers were shipped to ALS over the course of the 2016 field effort. Sample temperatures of 4 ± 2 degrees Celsius (°C) were considered acceptable. Several coolers were received at the laboratory with a sample temperature below 2°C. The laboratory did not identify any frozen samples in any of the coolers received below the acceptable temperature range and no results were qualified.

1.2.2 Method Blank and Trip Blank Contamination

The work plan (USAF 2016) specified that method blank and trip blank contamination would be evaluated to one-half of the LOQ; however, all method blanks and trip blanks were evaluated to the DL. Sample results that were within five times of the concentration detected in the method blank and/or trip blank were qualified B. Results that were qualified B may be false positives or biased high.

The following analytes were detected above the DL in method blanks or trip blanks that resulted in the qualification of sample results:

• AK102: diesel-range organics (DRO)

- SW8260B: toluene
- SW8270SIM: acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzofuran, fluoranthene fluorene, indeno(1,2,3-cd)pyrene, naphthalene and pyrene

Data usability was minimally affected because all results that were qualified B were less than the project action limits, specified in Worksheet #15 in the work plan (USAF 2016).

Table C-2-1 (Attachment C-2) summarizes the sample results that were qualified due to method blank contamination and Table C-2-2 (Attachment C-2) summarizes the sample results that were qualified due to trip blank contamination. These tables also provide concentrations that were detected in the associated blanks.

1.2.3 Laboratory Control Sample Accuracy and Precision

The DRO LCS recovery for water batch KWG1605351 was less than the LCL of 75 percent at 69 percent recovery. The LCSD recovery was within criteria at 81 percent. DRO results for the samples associated with this extraction batch were qualified JL- and are considered biased low. The data quality for the groundwater samples, 16WNTF-MW36-GW, 16WNTF-MW36-GW-9, and 16WNTF-MW37-GW was minimally affected because the DRO results were greater than the project action limit (PAL) at 1.5 milligrams per liter. The remaining pore water samples were all significantly less than the PALs.

Table C-2-3 (Attachment C-2) provides a summary of the LCS and/or LCSD recovery outliers and the affected sample results.

The LCS/LCSD RPD was acceptable for all methods.

1.2.4 Matrix Spike Accuracy and Precision

MS/MSDs were collected to evaluate the accuracy and precision of matrix and/or laboratory procedures. Table C-1 provides a summary of the MS/MSD quantities, summarized by analytical method. The MS/MSD recoveries and RPDs for several analytes and analyses were

outside of the QC criteria. Sample results with MS/MSD recoveries that were outside of QC criteria were qualified as estimated except in the following cases: nondetect samples with high recoveries, samples where the spiked concentration was less than that of the parent sample, or samples with a dilution factor of 5 or greater. All MS/MSD recoveries were considered acceptable for this project.

Sample 16WNTF-SB08-06-SO MS/MSD RPD was outside of QC criteria (greater than 20 percent RPD) for 2-methylnaphthalene at 22 percent RPD. The sample result was flagged JD to indicate an estimated result due to MS/MSD precision outliers. The impact was minimal since the qualified parent sample result was detected below the PAL.

Table C-2-4 (Attachment C-2) provides a summary of the MS/MSD RPD outliers and the affected sample results.

1.2.5 Field Duplicate Precision

FDs were collected to evaluate the precision of matrix and/or laboratory procedures. Table C-1 provides a summary of the FD quantities, summarized by analytical method.

The frequency criterion of at least one FD per 10 primary samples was met for this project. FD precision was evaluated against the recommended RPD limit of 50 percent for soil and 30 percent for water, as stated in the ADEC laboratory data review checklists (ADEC 2009). RPD values for sample pair results, where one was nondetect and the other was detected, were calculated using the DL value for the nondetect result. Results were qualified as estimated (JD) in several samples, due to high FD RPD values. The high RPD values can likely be attributed to the sample matrix. The higher value between the sample and the FD will be used for reporting. Data usability was minimally affected because all results that were qualified JD were less than the PAL, with the exception of the sediment sample/duplicate 16WNTF-SP03-SD/16WNTF-SP03-SD-9 for polycyclic aromatic hydrocarbons (PAHs).

Table C-2-5 (Attachment C-2) provides a summary of sample results that were qualified JD, due to high FD RPD values.

1.3 CONCLUSION

In general, the overall quality of project data was acceptable. The completeness goal of 95 percent for all parameters was met; no sample results were rejected. All reported data were considered usable for this project; limitations are discussed in this DQA and ADEC laboratory data review checklists (Attachment C-3). The qualifications applied during data validation did not adversely affect data usability.

(intentionally blank)

2.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 2009 (March). *Environmental Laboratory Data and Quality Assurance Requirements; Technical Memorandum*. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2014 (August). *Underground Storage Tanks Procedures Manual*. Division of Spill Prevention and Response. Contaminated Sites Program.
- DoD (U.S. Department of Defense). 2013 (July). Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.0.
- EPA (U.S. Environmental Protection Agency) 2014 (July). *Test Methods for Evaluating Solid Waste*. SW846, Third Edition, Update V.
- USAF (U.S. Air Force). 2016 (March). West Nome Tank Farm Remedial Design Well Decommissioning, Well Installation and Sample Collection Work Plan at Nome, Alaska. Final. Prepared by Jacobs Engineering Group Inc.

(intentionally blank)

ATTACHMENT C-1

Sample Summary Table and Analytical Data Tables

Included with document PDF on CD

Table C-1-1West Nome Tank Farm Sample Summary

COC SampleID	Location ID	Collection Date	Collection Time	Sampler	Qty	Container Type	Container Vol	Preservative	Matrix	Analytical Method Requested	QC Type	ТАТ	Notes	COC Number	Cooler Name	Cooler Date	Lab	SDG	Start Depth (feet)	End Depth (feet)
16WNTF-SB08-06-SO	SB08	18-Jun-16	1101	LA/CE	2	Amber Jar	4 oz	4C, MeOH	SO	SW8260	MS/MSD	30	BTEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	6.00	8.00
16WNTF-SB08-06-SO	SB08	18-Jun-16	1101	LA/CE	2	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM	MS/MSD	30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	6.00	8.00
16WNTF-SB08-12-SO	SB08	18-Jun-16	1108	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	12.00	14.00
16WNTF-SB08-12-SO	SB08	18-Jun-16	1108	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	12.00	14.00
16WNTF-SB08-12-SO-9	SB08	18-Jun-16	1108	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260	DUP	30	BTEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	12.00	14.00
16WNTF-SB08-12-SO-9	SB08	18-Jun-16	1108	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM	DUP	30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	12.00	14.00
16WNTF-SB07-08-SO	SB07	18-Jun-16	1208	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BIEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	8.00	10.00
16WNTE-SB07-08-SO	SB07	18-Jun-16	1208	LAVCE	1	Amber Jar	8 0Z	4C	50	AK102, SW82705IW		30	DRU, PAH	2016WINTF01	Fort Knox	22-Jun-16	ALS	K1606009	10.00	12.00
16WNTE-SB07-10-SO	SB07	10-Jun-16	1211	LAVCE	1	Amber Jar	4 0Z	40, WEOH	30 SO	AK102 SW/9270SIM		30		2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	10.00	12.00
16WNTE-SB06-06-SO	SB06	18- Jun-16	12/1	LA/CE	1	Amber Jar	4 07	4C MeOH	50	SW8260		30	BTEY	2016WNTE01	Fort Knox	22-Jun-16	ALS	K1606998	6.00	8.00
16WNTF-SB06-06-SO	SB06	18-Jun-16	1242	LA/CE	1	Amber Jar	8 07	40, 100011	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	6.00	8.00
16WNTF-SB06-08-SO	SB06	18-Jun-16	1245	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	8.00	10.00
16WNTF-SB06-08-SO	SB06	18-Jun-16	1245	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	8.00	10.00
16WNTF-SB05-08-SO	SB05	18-Jun-16	1317	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	8.00	10.00
16WNTF-SB05-08-SO	SB05	18-Jun-16	1317	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	8.00	10.00
16WNTF-SB05-10-SO	SB05	18-Jun-16	1321	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	10.00	12.00
16WNTF-SB05-10-SO	SB05	18-Jun-16	1321	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	10.00	12.00
16WNTF-MW36-12-SO	MW 36	18-Jun-16	1613	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	12.00	14.00
16WNTF-MW36-12-SO	MW36	18-Jun-16	1613	LA/CE	1	Amber Jar	8 oz	40	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	12.00	14.00
16WNTF-MW36-14-SO	MW36	18-Jun-16	1617	LA/CE	1	Amber Jar	4 0Z	4C, MeOH	50	SW8260		30	BIEX	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606009	14.00	15.00
16WNTE-TR01-SO	TR01SO	10-Jun-16	0000	LAVCE	1	Amber Jar	0 0Z	40 40 MaOH	30 SO	SW/9260	тр	30	DRO, PAR	2016WNTF01	Fort Knox	22-Jun-16	ALS	K1606998	0.00	0.00
16WNTE-SB04-06-SO	SB04	19- Jun-16	1029	LA/CE	1	Amber Jar	4 02	4C, MeOH	50	SW8260	TD	30	BTEX	2016WNTE02	Pogo	22-Jun-16	ALS	K1606999	6.00	8.00
16WNTF-SB04-06-SO	SB04	19-Jun-16	1029	LA/CE	1	Amber Jar	8 07	40, 100011	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	6.00	8.00
16WNTF-SB04-08-SO	SB04	19-Jun-16	1033	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB04-08-SO	SB04	19-Jun-16	1033	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB04-08-SO-9	SB04	19-Jun-16	1033	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260	DUP	30	BTEX	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB04-08-SO-9	SB04	19-Jun-16	1033	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM	DUP	30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB03-06-SO	SB03	19-Jun-16	1059	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	6.00	8.00
16WNTF-SB03-06-SO	SB03	19-Jun-16	1059	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	6.00	8.00
16WNTF-SB03-08-SO	SB03	19-Jun-16	1103	LA/CE	1	Amber Jar	4 oz	4C, MeOH	50	SW8260		30	BIEX	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB03-08-SO	SB03	19-Jun-16	1103	LAVCE	1	Amber Jar	8 0Z	40	50	AK102, SW82705IW		30	DRU, PAH	2016W/NTF02	Pogo	22-Jun-16	ALS	K1606000	6.00	8.00
16WNTE-SB02-06-SO	SB02	19-Jun-16	1129	LA/CE	1	Amber Jar	4 02 8 07	40, MeOIT	- <u>50</u>	AK102_SW8270SIM		30	DRO PAH	2016WNTE02	Pogo	22-Jun-16	ALS	K1606999	6.00	8.00
16WNTF-SB02-08-SO	SB02	19-Jun-16	1132	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB02-08-SO	SB02	19-Jun-16	1132	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB01-06-SO	SB01	19-Jun-16	1152	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	6.00	8.00
16WNTF-SB01-06-SO	SB01	19-Jun-16	1152	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	6.00	8.00
16WNTF-SB01-08-SO	SB01	19-Jun-16	1156	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260		30	BTEX	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-SB01-08-SO	SB01	19-Jun-16	1156	LA/CE	1	Amber Jar	8 oz	4C	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	8.00	10.00
16WNTF-MW37-00-SO	MW/37	19-Jun-16	1417	LAVCE	1	Amber Jar	4 0Z	4C, MeOH	50	5W8200		30		2016WNTF02 2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	0.00	2.00
16WNTE-MW37-00-SO	MW/37	19-Jun-16	1417	LA/CE	1	Amber Jar	4 07	4C MeOH	50	SW8260		30	BTEY	2016WNTE02	Pogo	22-Jun-16	ALS	K1606999	4.00	6.00
16WNTF-MW37-04-SO	MW37	19-Jun-16	1410	LA/CE	1	Amber Jar	4 02 8 02	40, 110011	SO	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999	4.00	6.00
16WNTF-SP02-PW	SP02	20-Jun-16	1018	LA/CE	9	VOA Vial	40 mL	4C, HCI	PW	SW8260	MS/MSD	30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-SP02-PW	SP02	20-Jun-16	1018	LA/CE	6	Amber	1 L	4C, HCI	PW	AK102	MS/MSD	30	DRO	2016WNTF03	Cortez	22-Jun-16	ALS	K1606928		
16WNTF-SP02-PW	SP02	20-Jun-16	1018	LA/CE	6	Amber	1 L	4C	PW	SW8270SIM	MS/MSD	30	PAH	2016WNTF04	Kensington	22-Jun-16	ALS	K1606928		
16WNTF-SP04-PW	SP04	21-Jun-16	0856	LA/CE	3	VOA Vial	40 mL	4C, HCI	PW	SW8260		30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-SP04-PW	SP04	21-Jun-16	0856	LA/CE	2	Amber	1 L	4C, HCI	PW	AK102		30	DRO	2016WNTF03	Cortez	22-Jun-16	ALS	K1606928		
16WNTF-SP04-PW	SP04	21-Jun-16	0856	LA/CE	2	Amber	1 L	4C	PW	SW8270SIM	DUD	30	PAH	2016WNTF04	Kensington	22-Jun-16	ALS	K1606928		
16WNTE-SP04-PW-9	SP04	21-JUN-16	0000	LA/CE	3	Ambor	40 ML		PW PW	SW8260		30		2016WNTE02	Cortoz	22-JUN-16	ALS	K1606029		
16WNTF-SP04-PW-9	SP04	21-Jun-16	0856	LA/CE	2	Amber	11	40,1101	PW/	SW8270SIM	DUP	30	РАН	2016WNTE04	Kensington	22-Jun-16	ALS	K1606928		
16WNTF-SP05-PW	SP05	21-Jun-16	0940	LA/CE	3	VOA Vial	40 mL	4C, HCI	PW	SW8260	50.	30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-SP05-PW	SP05	21-Jun-16	0940	LA/CE	2	Amber	1 L	4C, HCI	PW	AK102		30	DRO	2016WNTF05	Rock Creek	22-Jun-16	ALS	K1606928		
16WNTF-SP05-PW	SP05	21-Jun-16	0940	LA/CE	2	Amber	1 L	4C	PW	SW8270SIM		30	PAH	2016WNTF05	Rock Creek	22-Jun-16	ALS	K1606928		
16WNTF-SP06-PW	SP06	21-Jun-16	1023	LA/CE	3	VOA Vial	40 mL	4C, HCI	PW	SW8260		30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-SP06-PW	SP06	21-Jun-16	1023	LA/CE	2	Amber	1 L	4C, HCI	PW	AK102		30	DRO	2016WNTF05	Rock Creek	22-Jun-16	ALS	K1606928		
16WNTE SP06-PW	SP06	21-Jun-16	1023	LA/CE	2	Amber	1 L	40	PW	SW8270SIM		30	PAH	2016WN1F05	Kock Creek	22-Jun-16	ALS	K1606928		
16WNTF-SP03-PW	SP03	21-Jun-16	1617	LA/CE	3	Ambor	40 ML		PW PW	SW8260		30	DIEA DRO Limited Volume	2016WNTE06	Veladero	22-JUN-16	ALS	K1606029		
10WINTI - OF 00-FW	5F 03	∠1-Juli-10	1017	LAUGE	<u> </u>	AIIIDei	16	40, 110	F V V	ANTUZ		30	PAH Limited Volume	2010001011-00	VEIAUEIU	22-Jun-10	AL3	11000320		
16WNTF-SP03-PW	SP03	21-Jun-16	1617	LA/CE	2	Amber	1 L	4C	PW	SW8270SIM		30	Use full bottle first.	2016WNTF05	Rock Creek	22-Jun-16	ALS	K1606928		
16WNTF-SP01-PW	SP01	21-Jun-16	1617	LA/CE	3	VOA Vial	40 mL	4C, HCI	PW	SW8260		30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-SP01-PW	SP01	21-Jun-16	1617	LA/CE	1	Amber	1 L	4C, HCI	PW	AK102		30	DRO, Limited Volume	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-SP01-PW	SP01	21-Jun-16	1617	LA/CE	1	Amber	1 L	4C	PW	SW8270SIM		30	PAH, Limited Volume	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNIF-SP01-SD	SP01	21-Jun-16	1732	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SD	SW8260, AK101		30	BIEX, GRO	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTE SP01-SD	SP01	21-Jun-16	1/32	LA/CE	1	Amber Jar	8 0Z	4C	SD	AK102, SW8270SIM		30	DKU, PAH	2016WNTF02	Pugo Baga	22-JUN-16	ALS	K1606000		
IOWINTE-SPUZ-SD	3PU2	∠1-Jun-16	1032	LAVUE	1	Amper Jar	4 0Z	4C, IVIEOH	50	3118200, AN 101		30	DIEA, GRU	2010WN1F02	Pogo	∠2-Jun-16	ALS	V1000988		

Table C-1-1West Nome Tank Farm Sample Summary

COC SampleID	Location ID	Collection Date	Collection Time	Sampler	Qty	Container Type	Container Vol	Preservative	Matrix	Analytical Method Requested	QC Type	ТАТ	Notes	COC Number	Cooler Name	Cooler Date	Lab	SDG	Start Depth (feet)	End Depth (feet)
16WNTF-SP02-SD	SP02	21-Jun-16	1632	LA/CE	1	Amber Jar	8 oz	4C	SD	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP03-SD	SP03	21-Jun-16	1647	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SD	SW8260, AK101		30	BTEX, GRO	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP03-SD	SP03	21-Jun-16	1647	LA/CE	1	Amber Jar	8 oz	4C	SD	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		1
16WNTF-SP03-SD-9	SP03	21-Jun-16	1647	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SD	SW8260, AK101	DUP	30	BTEX, GRO	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP03-SD-9	SP03	21-Jun-16	1647	LA/CE	1	Amber Jar	8 oz	4C	SD	AK102, SW8270SIM	DUP	30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP04-SD	SP04	21-Jun-16	1601	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SD	SW8260, AK101		30	BTEX, GRO	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP04-SD	SP04	21-Jun-16	1601	LA/CE	1	Amber Jar	8 oz	4C	SD	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP05-SD	SP05	21-Jun-16	1551	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SD	SW8260, AK101		30	BTEX, GRO	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP05-SD	SP05	21-Jun-16	1551	LA/CE	1	Amber Jar	8 oz	4C	SD	AK102, SW8270SIM		30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP06-SD	SP06	21-Jun-16	1541	LA/CE	2	Amber Jar	4 oz	4C, MeOH	SD	SW8260, AK101	MS/MSD	30	BTEX, GRO	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-SP06-SD	SP06	21-Jun-16	1541	LA/CE	2	Amber Jar	8 oz	4C	SD	AK102, SW8270SIM	MS/MSD	30	DRO, PAH	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-MW36-GW	MW36	22-Jun-16	1003	LA/CE	9	VOA Vial	40 mL	4C, HCI	GW	SW8260	MS/MSD	30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-MW36-GW	MW36	22-Jun-16	1003	LA/CE	4	Amber	1 L	4C, HCI	GW	AK102	MS/MSD	30	DRO, Limited Volume	2016WNTF07	Nixon Fork	22-Jun-16	ALS	K1606928		
16WNTF-MW36-GW	MW 36	22-Jun-16	1003	LA/CE	6	Amber	1 L	4C	GW	SW8270SIM	MS/MSD	30	PAH	2016WNTF08	Kalgoorlie	22-Jun-16	ALS	K1606928		
16WNTF-MW36-GW-9	MW36	22-Jun-16	1003	LA/CE	3	VOA Vial	40 mL	4C, HCI	GW	SW8260	DUP	30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-MW36-GW-9	MW36	22-Jun-16	1003	LA/CE	2	Amber	1 L	4C, HCI	GW	AK102	DUP	30	DRO	2016WNTF07	Nixon Fork	22-Jun-16	ALS	K1606928		
16WNTF-MW36-GW-9	MW 36	22-Jun-16	1003	LA/CE	2	Amber	1 L	4C	GW	SW8270SIM	DUP	30	PAH	2016WNTF08	Kalgoorlie	22-Jun-16	ALS	K1606928		
16WNTF-MW37-GW	MW37	22-Jun-16	1656	LA/CE	3	VOA Vial	40 mL	4C, HCI	GW	SW8260		30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-MW37-GW	MW 37	22-Jun-16	1656	LA/CE	2	Amber	1 L	4C, HCI	GW	AK102		30	DRO	2016WNTF07	Nixon Fork	22-Jun-16	ALS	K1606928		
16WNTF-MW37-GW	MW 37	22-Jun-16	1656	LA/CE	2	Amber	1 L	4C	GW	SW8270SIM		30	PAH	2016WNTF08	Kalgoorlie	22-Jun-16	ALS	K1606928		
16WNTF-TB02-SO	TB02SO	19-Jun-16	0900	LA/CE	1	Amber Jar	4 oz	4C, MeOH	SO	SW8260, AK101	TB	30	BTEX, GRO	2016WNTF02	Pogo	22-Jun-16	ALS	K1606999		
16WNTF-TB03-GW	TB03W	20-Jun-16	0900	LA/CE	3	VOA Vial	40 mL	4C, HCI	GW	SW8260	TB	30	BTEX	2016WNTF06	Veladero	22-Jun-16	ALS	K1606928		
16WNTF-SP01-SD	SP01	26-Aug-16	1317	BR/CE	1	Amber Jar	4 oz	4C, MeOH	SD	AK101		3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP01-SD	SP01	26-Aug-16	1317	BR/CE	1	Amber Jar	2 oz	4C	SD	160.3		3	Percent Moisture	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP02-SD	SP02	26-Aug-16	1323	BR/CE	1	Amber Jar	4 oz	4C, MeOH	SD	AK101		3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP02-SD	SP02	26-Aug-16	1323	BR/CE	1	Amber Jar	2 oz	4C	SD	160.3		3	Percent Moisture	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP02-SD-9	SP02	26-Aug-16	1323	BR/CE	1	Amber Jar	4 oz	4C, MeOH	SD	AK101		3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP02-SD-9	SP02	26-Aug-16	1323	BR/CE	1	Amber Jar	2 oz	4C	SD	160.3		3	Percent Moisture	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP03-SD	SP03	26-Aug-16	1331	BR/CE	2	Amber Jar	4 oz	4C, MeOH	SD	AK101	MS/MSD	3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP03-SD	SP03	26-Aug-16	1331	BR/CE	2	Amber Jar	2 oz	4C	SD	160.3	MS/MSD	3	Percent Moisture	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP04-SD	SP04	26-Aug-16	1340	BR/CE	1	Amber Jar	4 oz	4C, MeOH	SD	AK101		3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP04-SD	SP04	26-Aug-16	1340	BR/CE	1	Amber Jar	2 oz	4C	SD	160.3		3	Percent Moisture	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP05-SD	SP05	26-Aug-16	1346	BR/CE	1	Amber Jar	4 oz	4C, MeOH	SD	AK101		3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP05-SD	SP05	26-Aug-16	1346	BR/CE	1	Amber Jar	2 oz	4C	SD	160.3		3	Percent Moisture	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP06-SD	SP06	26-Aug-16	1352	BR/CE	1	Amber Jar	4 oz	4C, MeOH	SD	AK101		3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-SP06-SD	SP06	26-Aug-16	1352	BR/CE	1	Amber Jar	2 oz	4C	SD	160.3		3	Percent Moisture	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		
16WNTF-TB03-SO	TB03S	26-Aug-16	1000	BR/CE	1	Amber Jar	4 oz	4C, MeOH	SD	AK101		3	GRO	2016WNTF09	Muruntau	26-Aug-16	ALS	K1610186		

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	MW36 16WNTF-MW36-12-SO K160699810 K1606998 6/18/2016 SO ALGK Primary	MW36 16WNTF-MW36-14-SO K160699811 K1606998 6/18/2016 SO ALGK Primary	MW37 16WNTF-MW37-00-SO K160699910 K1606999 6/19/2016 SO ALGK Primary	MW37 16WNTF-MW37-04-SO K160699911 K1606999 6/19/2016 SO ALGK Primary
Method	Analyte	Units	Project Action Limit ¹				
E160.3M	Total Solids	PERCENT	-	95	83.2	93	87
AK101	Gasoline Range Organics (C6-C10)	mg/kg	1400*	-	-	-	-
AK102	Diesel Range Organics (C10-C25)	mg/kg	10250*	6.6 [21] J, B	190 [24]	910 [22]	89 [23]
SW8260C	Benzene	mg/kg	0.27*	ND [0.056]	ND [0.049]	ND [0.028]	ND [0.035]
SW8260C	Ethylbenzene	mg/kg	49	ND [0.056]	ND [0.049]	ND [0.028]	ND [0.035]
SW8260C	o-Xylene	mg/kg	57	ND [0.056]	ND [0.049]	ND [0.028]	ND [0.035]
SW8260C	Toluene	mg/kg		ND [0.056]	ND [0.049]	ND [0.028]	ND [0.035]
SW8260C	Xylene, Isomers m & p	mg/kg	57	ND [0.056]	ND [0.049]	ND [0.028]	ND [0.035]
8270SIM	1-Methylnaphthalene	mg/kg	68	0.046 [0.0035]	0.016 [0.004]	0.011 [0.0035]	0.0061 [0.0038]
8270SIM	2-Methylnaphthalene	mg/kg	310	0.11 [0.0035]	0.0061 [0.004]	0.018 [0.0035]	0.0092 [0.0038]
8270SIM	Acenaphthene	mg/kg	4600	ND [0.0035]	0.001 [0.004] J	0.0045 [0.0035]	ND [0.0038]
8270SIM	Acenaphthylene	mg/kg	2300	0.0009 [0.0035] J, B	ND [0.004]	0.003 [0.0035] J	ND [0.0038]
8270SIM	Anthracene	mg/kg	23000	ND [0.0035]	0.001 [0.004] J, B	0.01 [0.0035]	0.0009 [0.0038] J
8270SIM	Benzo(a)anthracene	mg/kg	2	0.0014 [0.0035] J, B	0.0029 [0.004] J, B	0.023 [0.0035]	0.002 [0.0038] J
8270SIM	Benzo(a)pyrene	mg/kg	0.2	0.0025 [0.0035] J, B	0.014 [0.004]	0.025 [0.0035]	0.0017 [0.0038] J
8270SIM	Benzo(b)fluoranthene	mg/kg	2	0.003 [0.0035] J, B	0.0049 [0.004] B	0.044 [0.0035]	0.002 [0.0038] J
8270SIM	Benzo(g,h,i)perylene	mg/kg	2300	0.0014 [0.0035] J, B	0.0023 [0.004] J, B	0.017 [0.0035]	0.0018 [0.0038] J
8270SIM	Benzo(k)fluoranthene	mg/kg	20	0.00089 [0.0035] J	0.0013 [0.004] J	0.014 [0.0035]	ND [0.0038]
8270SIM	Chrysene	mg/kg	200	0.0016 [0.0035] J, B	0.0044 [0.004] B	0.035 [0.0035]	0.0025 [0.0038] J
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.2	ND [0.0035]	ND [0.004]	0.0053 [0.0035]	ND [0.0038]
8270SIM	Dibenzofuran	mg/kg	95	0.00086 [0.0035] J, B	0.0012 [0.004] J, B	-	-
8270SIM	Fluoranthene	mg/kg	3100	0.0029 [0.0035] J, B	0.0073 [0.004]	0.039 [0.0035]	0.003 [0.0038] J
8270SIM	Fluorene	mg/kg	3100	0.001 [0.0035] J, B	0.0023 [0.004] J, B	0.01 [0.0035]	0.001 [0.0038] J
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	2	0.0017 [0.0035] J	0.0025 [0.004] J	0.018 [0.0035]	0.0014 [0.0038] J
8270SIM	Naphthalene	mg/kg	29	0.082 [0.0035]	0.0027 [0.004] J, B	0.018 [0.0035]	0.0053 [0.0038]
8270SIM	Phenanthrene	mg/kg	2300	0.003 [0.0035] J	0.0068 [0.004]	0.047 [0.0035]	0.0052 [0.0038]
8270SIM	Pyrene	mg/kg	2300	0.0035 [0.0035] B	0.008 [0.004]	0.11 [0.0035]	0.0052 [0.0038]

Notes:

¹ 18 AAC 75 Table B1. Method Two, Over 40-inch zone human health (ADEC

2016).

* Criteria from WNTF QAPP (USAF 2016)

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SD = sediment

SO = soil

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

		_	Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	SB01 16WNTF-SB01-06-SO K160699908 K1606999 6/19/2016 SO ALGK Primary	SB01 16WNTF-SB01-08-SO K160699909 K1606999 6/19/2016 SO ALGK Primary	SB02 16WNTF-SB02-06-SO K160699906 K1606999 6/19/2016 SO ALGK Primary	SB02 16WNTF-SB02-08-SO K160699907 K1606999 6/19/2016 SO ALGK Primary
Method	Analyte	Units	Project Action Limit ¹				
E160.3M	Total Solids	PERCENT	-	78.6	82.5	80.5	71.9
AK101	Gasoline Range Organics (C6-C10)	mg/kg	1400*	-	-	-	-
AK102	Diesel Range Organics (C10-C25)	mg/kg	10250*	19000 [50]	14000 [48]	33000 [49]	42000 [55]
SW8260C	Benzene	mg/kg	0.27*	ND [0.049]	ND [0.039]	ND [0.038]	ND [0.053]
SW8260C	Ethylbenzene	mg/kg	49	0.21 [0.13]	0.14 [0.098]	1.1 [0.038]	2.3 [0.11]
SW8260C	o-Xylene	mg/kg	57	0.056 [0.13] J	0.035 [0.098] J	0.044 [0.038]	0.071 [0.11] J
SW8260C	Toluene	mg/kg		ND [0.049]	ND [0.039]	ND [0.038]	0.0063 [0.053] J
SW8260C	Xylene, Isomers m & p	mg/kg	57	0.71 [0.13]	0.42 [0.098]	3.5 [0.038]	7.5 [0.11]
8270SIM	1-Methylnaphthalene	mg/kg	68	40 [0.21]	36 [0.2]	81 [1.1]	89 [1.2]
8270SIM	2-Methylnaphthalene	mg/kg	310	50 [0.21]	37 [0.2]	120 [1.1]	130 [1.2]
8270SIM	Acenaphthene	mg/kg	4600	0.98 [0.21]	1 [0.2]	2.1 [1.1]	2.3 [1.2]
8270SIM	Acenaphthylene	mg/kg	2300	ND [0.45]	ND [0.55]	ND [1.2]	ND [1.5]
8270SIM	Anthracene	mg/kg	23000	0.52 [0.021]	0.41 [0.02]	0.98 [1.1] J	1.2 [1.2]
8270SIM	Benzo(a)anthracene	mg/kg	2	0.017 [0.021] J	0.02 [0.02]	0.015 [0.021] J	0.014 [0.023] J
8270SIM	Benzo(a)pyrene	mg/kg	0.2	0.012 [0.021] J	0.014 [0.02] J	0.0078 [0.021] J	0.0065 [0.023] J
8270SIM	Benzo(b)fluoranthene	mg/kg	2	0.013 [0.021] J	0.012 [0.02] J	0.013 [0.021] J	0.0091 [0.023] J
8270SIM	Benzo(g,h,i)perylene	mg/kg	2300	0.007 [0.021] J	0.0059 [0.02] J	0.0067 [0.021] J	0.0043 [0.023] J
8270SIM	Benzo(k)fluoranthene	mg/kg	20	ND [0.021]	ND [0.02]	ND [0.021]	ND [0.023]
8270SIM	Chrysene	mg/kg	200	0.024 [0.021]	0.027 [0.02]	0.04 [0.021]	0.023 [0.023]
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.2	ND [0.021]	ND [0.02]	ND [0.021]	ND [0.023]
8270SIM	Dibenzofuran	mg/kg	95	-	-	-	-
8270SIM	Fluoranthene	mg/kg	3100	0.067 [0.021]	0.055 [0.02]	ND [1.1]	ND [1.2]
8270SIM	Fluorene	mg/kg	3100	3.8 [0.21]	3.2 [0.2]	7.4 [1.1]	7.3 [1.2]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	2	0.0054 [0.021] J	0.0056 [0.02] J	0.0058 [0.021] J	ND [0.023]
8270SIM	Naphthalene	mg/kg	29	10 [0.21]	7.6 [0.2]	36 [1.1]	38 [1.2]
8270SIM	Phenanthrene	mg/kg	2300	1.9 [0.021]	2.2 [0.02]	5 [1.1]	5.1 [1.2]
8270SIM	Pyrene	mg/kg	2300	0.077 [0.021]	0.09 [0.02]	0.14 [0.021]	0.15 [0.023]

Notes:

¹ 18 AAC 75 Table B1. Method Two, Over 40-inch zone human health (ADEC

2016).

* Criteria from WNTF QAPP (USAF 2016)

- = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SD = sediment

SO = soil

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	SB03 16WNTF-SB03-06-SO K160699904 K1606999 6/19/2016 SO ALGK Primary	SB03 16WNTF-SB03-08-SO K160699905 K1606999 6/19/2016 SO ALGK Primary	SB04 16WNTF-SB04-06-SO K160699901 K1606999 6/19/2016 SO ALGK Primary	SB04 16WNTF-SB04-08-SO K160699902 K1606999 6/19/2016 SO ALGK Primary
Method	Analyte	Units	Project Action Limit ¹				
E160.3M	Total Solids	PERCENT	-	79.3	80.5	75.3	79.5
AK101	Gasoline Range Organics (C6-C10)	mg/kg	1400*	-	-	-	-
AK102	Diesel Range Organics (C10-C25)	mg/kg	10250*	11000 [51]	13000 [50]	18000 [52]	9800 [50]
SW8260C	Benzene	mg/kg	0.27*	ND [0.042]	ND [0.065]	ND [0.075]	ND [0.095]
SW8260C	Ethylbenzene	mg/kg	49	0.044 [0.11] J	0.8 [0.13]	0.6 [0.19]	1.4 [0.24]
SW8260C	o-Xylene	mg/kg	57	0.017 [0.11] J	0.028 [0.13] J	0.2 [0.19]	0.061 [0.24] J
SW8260C	Toluene	mg/kg		ND [0.042]	ND [0.065]	ND [0.075]	ND [0.095]
SW8260C	Xylene, Isomers m & p	mg/kg	57	0.31 [0.11]	1.9 [0.13]	2.6 [0.19]	4.6 [0.24]
8270SIM	1-Methylnaphthalene	mg/kg	68	31 [0.21]	25 [0.21]	47 [1.1]	23 [0.21]
8270SIM	2-Methylnaphthalene	mg/kg	310	37 [0.21]	35 [0.21]	66 [1.1]	33 [0.21]
8270SIM	Acenaphthene	mg/kg	4600	0.86 [0.21]	0.76 [0.21]	1.3 [1.1]	0.71 [0.21]
8270SIM	Acenaphthylene	mg/kg	2300	ND [0.44]	ND [0.44]	ND [1.3]	ND [0.43]
8270SIM	Anthracene	mg/kg	23000	0.27 [0.021]	0.37 [0.021]	0.55 [0.022]	0.28 [0.021]
8270SIM	Benzo(a)anthracene	mg/kg	2	0.011 [0.021] J	0.0079 [0.021] J	0.014 [0.022] J	0.007 [0.021] J
8270SIM	Benzo(a)pyrene	mg/kg	0.2	0.0055 [0.021] J	ND [0.021]	0.0087 [0.022] J	ND [0.021]
8270SIM	Benzo(b)fluoranthene	mg/kg	2	0.0093 [0.021] J	0.0049 [0.021] J	0.0094 [0.022] J	ND [0.021]
8270SIM	Benzo(g,h,i)perylene	mg/kg	2300	0.0046 [0.021] J	ND [0.021]	0.0055 [0.022] J	ND [0.021]
8270SIM	Benzo(k)fluoranthene	mg/kg	20	ND [0.021]	ND [0.021]	ND [0.022]	ND [0.021]
8270SIM	Chrysene	mg/kg	200	0.022 [0.021]	0.0083 [0.021] J	0.014 [0.022] J	0.0062 [0.021] J
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.2	ND [0.021]	ND [0.021]	ND [0.022]	ND [0.021]
8270SIM	Dibenzofuran	mg/kg	95	-	-	-	-
8270SIM	Fluoranthene	mg/kg	3100	0.048 [0.021]	0.03 [0.021]	0.052 [0.022]	0.027 [0.021]
8270SIM	Fluorene	mg/kg	3100	2.7 [0.21]	1.9 [0.21]	3.8 [1.1]	1.9 [0.21]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	2	0.0045 [0.021] J	ND [0.021]	0.0049 [0.022] J	ND [0.021]
8270SIM	Naphthalene	mg/kg	29	6.4 [0.21]	11 [0.21]	13 [1.1]	8.2 [0.21]
8270SIM	Phenanthrene	mg/kg	2300	1.8 [0.021]	1.4 [0.021]	2.5 [0.022]	1.4 [0.021]
8270SIM	Pyrene	mg/kg	2300	0.06 [0.021]	0.054 [0.021]	0.084 [0.022]	0.042 [0.021]

Notes:

¹ 18 AAC 75 Table B1. Method Two, Over 40-inch zone human health (ADEC

2016).

* Criteria from WNTF QAPP (USAF 2016)

- = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SD = sediment

SO = soil

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC				SB04 16WNTF-SB04-08-SO-9 K160699903 K1606999 6/19/2016 SO ALGK Duplicate	SB05 16WNTF-SB05-08-SO K160699808 K1606998 6/18/2016 SO ALGK Primary	SB05 16WNTF-SB05-10-SO K160699809 K1606998 6/18/2016 SO ALGK Primary	SB06 16WNTF-SB06-06-SO K160699806 K1606998 6/18/2016 SO ALGK Primary
Method	Analyte	Units	Project Action Limit ¹				
E160.3M	Total Solids	PERCENT	-	79.2	96.1	82.3	97.4
AK101	Gasoline Range Organics (C6-C10)	mg/kg	1400*	-	-	-	-
AK102	Diesel Range Organics (C10-C25)	mg/kg	10250*	8000 [50]	3100 [21]	14000 [48]	5800 [21]
SW8260C	Benzene	mg/kg	0.27*	ND [0.076]	ND [0.03]	ND [0.057]	ND [0.041]
SW8260C	Ethylbenzene	mg/kg	49	2 [0.38]	ND [0.074]	ND [0.15]	ND [0.041]
SW8260C	o-Xylene	mg/kg	57	0.083 [0.38] J	ND [0.074]	ND [0.15]	ND [0.041]
SW8260C	Toluene	mg/kg		ND [0.076]	ND [0.03]	ND [0.057]	ND [0.041]
SW8260C	Xylene, Isomers m & p	mg/kg	57	6 [0.38]	ND [0.074]	0.045 [0.15] J	0.017 [0.041] J
8270SIM	1-Methylnaphthalene	mg/kg	68	25 [0.21]	0.74 [0.017]	15 [0.099]	2 [0.017]
8270SIM	2-Methylnaphthalene	mg/kg	310	36 [0.21]	0.088 [0.017]	10 [0.099]	0.37 [0.017]
8270SIM	Acenaphthene	mg/kg	4600	0.77 [0.21]	ND [0.017]	0.39 [0.02]	0.19 [0.017]
8270SIM	Acenaphthylene	mg/kg	2300	ND [0.45]	0.098 [0.017]	0.27 [0.02]	0.1 [0.017]
8270SIM	Anthracene	mg/kg	23000	0.28 [0.021]	0.012 [0.0034]	0.48 [0.004]	ND [0.017]
8270SIM	Benzo(a)anthracene	mg/kg	2	0.0063 [0.021] J	0.02 [0.0034]	0.022 [0.004]	0.0064 [0.0034]
8270SIM	Benzo(a)pyrene	mg/kg	0.2	ND [0.021]	0.02 [0.0034]	0.019 [0.004]	0.0051 [0.0034] B
8270SIM	Benzo(b)fluoranthene	mg/kg	2	ND [0.021]	0.024 [0.0034]	0.027 [0.004]	0.0073 [0.0034]
8270SIM	Benzo(g,h,i)perylene	mg/kg	2300	ND [0.021]	0.017 [0.0034]	0.01 [0.004]	0.0011 [0.0034] J, B
8270SIM	Benzo(k)fluoranthene	mg/kg	20	ND [0.021]	0.0096 [0.0034]	0.0087 [0.004]	0.002 [0.0034] J
8270SIM	Chrysene	mg/kg	200	0.0072 [0.021] J	0.029 [0.0034]	0.045 [0.004]	0.0088 [0.0034]
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.2	ND [0.021]	0.0026 [0.0034] J	0.0023 [0.004] J	ND [0.0034]
8270SIM	Dibenzofuran	mg/kg	95	-	0.09 [0.017]	0.49 [0.02]	0.084 [0.017]
8270SIM	Fluoranthene	mg/kg	3100	0.027 [0.021]	0.058 [0.0034]	0.09 [0.004]	0.044 [0.017]
8270SIM	Fluorene	mg/kg	3100	2.1 [0.21]	0.066 [0.017]	1.5 [0.02]	0.26 [0.017]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	2	ND [0.021]	0.018 [0.0034]	0.01 [0.004]	0.0013 [0.0034] J
8270SIM	Naphthalene	mg/kg	29	8.8 [0.21]	0.16 [0.017]	2.1 [0.02]	0.43 [0.017]
8270SIM	Phenanthrene	mg/kg	2300	1.5 [0.021]	0.1 [0.0034]	1.3 [0.004]	0.14 [0.017]
8270SIM	Pyrene	mg/kg	2300	0.048 [0.021]	0.064 [0.0034]	0.12 [0.004]	0.055 [0.0034]

Notes:

¹ 18 AAC 75 Table B1. Method Two, Over 40-inch zone human health (ADEC

2016).

* Criteria from WNTF QAPP (USAF 2016)

- = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SD = sediment

SO = soil

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control
Table C-1-2 WNTF Soil Results

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	SB06 16WNTF-SB06-08-SO K160699807 K1606998 6/18/2016 SO ALGK Primary	SB07 16WNTF-SB07-08-SO K160699804 K1606998 6/18/2016 SO ALGK Primary	SB07 16WNTF-SB07-10-SO K160699805 K1606998 6/18/2016 SO ALGK Primary	SB08 16WNTF-SB08-06-SO K160699801 K1606998 6/18/2016 SO ALGK Primary
Method	Analyte	Units	Project Action Limit ¹				
E160.3M	Total Solids	PERCENT	-	91.1	95.6	81.7	92.9
AK101	Gasoline Range Organics (C6-C10)	mg/kg	1400*	-	-	-	-
AK102	Diesel Range Organics (C10-C25)	mg/kg	10250*	5000 [43]	820 [21]	18000 [49]	430 [22]
SW8260C	Benzene	mg/kg	0.27*	ND [0.034]	ND [0.05]	ND [0.079]	ND [0.046]
SW8260C	Ethylbenzene	mg/kg	49	0.015 [0.085] J	0.006 [0.05] J	1.4 [0.2]	0.0072 [0.046] J
SW8260C	o-Xylene	mg/kg	57	ND [0.085]	ND [0.05]	0.059 [0.2] J	ND [0.046]
SW8260C	Toluene	mg/kg		ND [0.034]	ND [0.05]	0.017 [0.079] J, B	0.0063 [0.046] J, B
SW8260C	Xylene, Isomers m & p	mg/kg	57	0.056 [0.085] J	0.016 [0.05] J	6.2 [0.2]	ND [0.046]
8270SIM	1-Methylnaphthalene	mg/kg	68	12 [0.089]	0.03 [0.017]	45 [0.4]	0.77 [0.0036]
8270SIM	2-Methylnaphthalene	mg/kg	310	6.5 [0.018]	0.027 [0.017]	64 [0.4]	0.51 [0.0036] JD
8270SIM	Acenaphthene	mg/kg	4600	0.37 [0.018]	ND [0.017]	1.3 [0.4]	0.022 [0.0036]
8270SIM	Acenaphthylene	mg/kg	2300	0.29 [0.018]	0.013 [0.017] J	ND [1.1]	ND [0.024]
8270SIM	Anthracene	mg/kg	23000	ND [0.018]	ND [0.017]	0.32 [0.02]	0.0062 [0.0036]
8270SIM	Benzo(a)anthracene	mg/kg	2	0.0081 [0.018] J	0.0022 [0.0034] J, B	0.026 [0.02]	0.0068 [0.0036]
8270SIM	Benzo(a)pyrene	mg/kg	0.2	0.0034 [0.0036] J, B	0.0014 [0.0034] J, B	0.022 [0.004]	0.0089 [0.0036]
8270SIM	Benzo(b)fluoranthene	mg/kg	2	0.006 [0.0036]	0.0022 [0.0034] J, B	0.023 [0.004]	0.0071 [0.0036]
8270SIM	Benzo(g,h,i)perylene	mg/kg	2300	0.0016 [0.0036] J, B	0.00095 [0.0034] J, B	0.0099 [0.004]	0.0053 [0.0036] B
8270SIM	Benzo(k)fluoranthene	mg/kg	20	0.0017 [0.0036] J	ND [0.0034]	0.0083 [0.004]	0.0031 [0.0036] J
8270SIM	Chrysene	mg/kg	200	0.015 [0.018] J	0.0027 [0.0034] J, B	0.046 [0.02]	0.0091 [0.0036]
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.2	ND [0.0036]	ND [0.0034]	0.0025 [0.004] J	0.0013 [0.0036] J
8270SIM	Dibenzofuran	mg/kg	95	0.35 [0.018]	0.018 [0.017]	1.4 [0.4]	0.039 [0.0036]
8270SIM	Fluoranthene	mg/kg	3100	0.046 [0.018]	0.0094 [0.017] J	0.12 [0.02]	0.015 [0.0036]
8270SIM	Fluorene	mg/kg	3100	0.96 [0.018]	ND [0.017]	2.8 [0.4]	0.11 [0.0036]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	2	0.0015 [0.0036] J	ND [0.0034]	0.0097 [0.004]	0.0043 [0.0036]
8270SIM	Naphthalene	mg/kg	29	1.3 [0.018]	0.024 [0.017]	16 [0.4]	0.054 [0.0036]
8270SIM	Phenanthrene	mg/kg	2300	0.78 [0.018]	ND [0.017]	2.1 [0.02]	0.084 [0.0036]
8270SIM	Pyrene	mg/kg	2300	0.038 [0.018]	0.0096 [0.0034]	0.1 [0.02]	0.019 [0.0036]

Notes:

¹ 18 AAC 75 Table B1. Method Two, Over 40-inch zone human health (ADEC

2016).

* Criteria from WNTF QAPP (USAF 2016)

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SD = sediment

SO = soil

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Table C-1-2 WNTF Soil Results

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory	SB08 16WNTF-SB08-12-SO K160699802 K1606998 6/18/2016 SO ALGK	SB08 16WNTF-SB08-12-SO-9 K160699803 K1606998 6/18/2016 SO ALGK	TB01 16WNTF-TB01-SO K160699812 K1606998 6/18/2016 SO ALGK	TB02 16WNTF-TB02-SO K160699919 K1606999 6/19/2016 SO ALGK	TB03S 16WNTF-TB03-SO K161018608 K1610186 8/26/2016 SO ALGK
Method	Analyte	Units	QA/QC Project Action Limit ¹	Primary	Duplicate	Trip Blank	Trip Blank	Trip Blank
E160.3M	Total Solids	PERCENT	-	62.5	66.2	-	-	-
AK101	Gasoline Range Organics (C6-C10)	mg/kg	1400*	-	-	-	-	ND [20]
AK102	Diesel Range Organics (C10-C25)	mg/kg	10250*	510 [32] JD	1100 [30] JD	-	-	-
SW8260C	Benzene	mg/kg	0.27*	ND [0.092]	ND [0.12]	ND [0.05]	ND [0.05]	-
SW8260C	Ethylbenzene	mg/kg	49	0.026 [0.092] J	0.028 [0.12] J	ND [0.05]	ND [0.05]	-
SW8260C	o-Xylene	mg/kg	57	ND [0.092]	ND [0.12]	ND [0.05]	ND [0.05]	-
SW8260C	Toluene	mg/kg		ND [0.092]	0.021 [0.12] J, B	0.027 [0.05] J	ND [0.05]	-
SW8260C	Xylene, Isomers m & p	mg/kg	57	0.064 [0.092] J	0.076 [0.12] J	ND [0.05]	ND [0.05]	-
8270SIM	1-Methylnaphthalene	mg/kg	68	2.5 [0.026]	2.8 [0.025]	-	-	-
8270SIM	2-Methylnaphthalene	mg/kg	310	2.1 [0.026]	2.7 [0.025]	-	-	-
8270SIM	Acenaphthene	mg/kg	4600	0.058 [0.0052]	0.064 [0.0049]	-	-	-
8270SIM	Acenaphthylene	mg/kg	2300	0.03 [0.0052]	ND [0.023]	-	-	-
8270SIM	Anthracene	mg/kg	23000	0.008 [0.0052]	0.0097 [0.0049]	-	-	-
8270SIM	Benzo(a)anthracene	mg/kg	2	0.0034 [0.0052] J, B	0.0045 [0.0049] J, B	-	-	-
8270SIM	Benzo(a)pyrene	mg/kg	0.2	0.015 [0.0052]	0.019 [0.0049]	-	-	-
8270SIM	Benzo(b)fluoranthene	mg/kg	2	0.0045 [0.0052] J, B	0.0042 [0.0049] J, B	-	-	-
8270SIM	Benzo(g,h,i)perylene	mg/kg	2300	0.0033 [0.0052] J, B	0.0022 [0.0049] J, B	-	-	-
8270SIM	Benzo(k)fluoranthene	mg/kg	20	0.0016 [0.0052] J	0.0017 [0.0049] J	-	-	-
8270SIM	Chrysene	mg/kg	200	0.0049 [0.0052] J, B	0.0057 [0.0049]	-	-	-
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.2	ND [0.0052]	ND [0.0049]	-	-	-
8270SIM	Dibenzofuran	mg/kg	95	0.039 [0.0052]	0.038 [0.0049]	-	-	-
8270SIM	Fluoranthene	mg/kg	3100	0.014 [0.0052]	0.017 [0.0049]	-	-	-
8270SIM	Fluorene	mg/kg	3100	0.12 [0.0052]	0.12 [0.0049]	-	-	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	2	0.0029 [0.0052] J	0.0025 [0.0049] J	-	-	-
8270SIM	Naphthalene	mg/kg	29	0.26 [0.0052]	0.27 [0.0049]	-	-	-
8270SIM	Phenanthrene	mg/kg	2300	0.029 [0.0052]	0.021 [0.0049]	-	-	-
8270SIM	Pyrene	mg/kg	2300	0.0093 [0.0052] JD	0.016 [0.0049] JD	-	-	-

Notes:

¹ 18 AAC 75 Table B1. Method Two, Over 40-inch zone human health (ADEC

2016).

* Criteria from WNTF QAPP (USAF 2016)

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SD = sediment

SO = soil

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Table C-1-3 WNTF Groundwater Results

Location I Sample I Lab Sample I SD Collection Dat Matri Laborator QA/Q Method Analyte Units Project			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	MW36 16WNTF-MW36-GW K160692808 K1606928 6/22/2016 WG ALGK Primary	MW36 16WNTF-MW36-GW-9 K160692809 K1606928 6/22/2016 WG ALGK Duplicate	MW37 16WNTF-MW37-GW K160692810 K1606928 6/22/2016 WG ALGK Primary	TB03W 16WNTF-TB03-GW K160692811 K1606928 6/20/2016 WG ALGK Trip Blank
Method Analyte Units Proje			Project Action Limit ¹				
AK102	Diesel Range Organics (C10-C25)	mg/L	1.5	1.7 [0.78] JL-	1.7 [0.83] JL-	3.3 [0.77] JL-	-
SW8260C	Benzene	mg/L	0.0046	0.00052 [0.0005]	0.00051 [0.0005]	0.0012 [0.0005]	ND [0.0005]
SW8260C	Ethylbenzene	mg/L	0.015	0.00032 [0.0005] J	0.00029 [0.0005] J	0.0011 [0.0005]	ND [0.0005]
SW8260C	o-Xylene	mg/L	0.19	0.00021 [0.0005] J	0.0002 [0.0005] J	ND [0.0005]	ND [0.0005]
SW8260C	Toluene	mg/L	1.1	0.00011 [0.0005] J	0.00012 [0.0005] J	ND [0.0005]	ND [0.0005]
SW8260C	Xylene, Isomers m & p	mg/L	0.19	0.00011 [0.0005] J, JD	ND [0.0005] JD	0.00012 [0.0005] J	ND [0.0005]
8270SIM	1-Methylnaphthalene	mg/L	0.011	0.00019 [0.00002]	0.00018 [0.00002]	0.003 [0.00002]	-
8270SIM	2-Methylnaphthalene	mg/L	0.036	0.00017 [0.00002]	0.00016 [0.00002]	0.00017 [0.00002]	-
8270SIM	Acenaphthene	mg/L	0.53	0.000029 [0.00002] JD	ND [0.00002] JD	0.000054 [0.00002]	-
8270SIM	Acenaphthylene	mg/L	0.26	ND [0.00002]	ND [0.00002]	0.00002 [0.00002]	-
8270SIM	Anthracene	mg/L	0.043	0.000052 [0.00002]	0.000049 [0.00002]	ND [0.00002]	-
8270SIM	Benzo(a)anthracene	mg/L	0.00012	ND [0.00002]	ND [0.00002]	ND [0.00002]	-
8270SIM	Benzo(a)pyrene	mg/L	0.000034	ND [0.00002]	ND [0.00002]	ND [0.00002]	-
8270SIM	Benzo(b)fluoranthene	mg/L	0.00034	ND [0.00002]	ND [0.00002]	ND [0.00002]	-
8270SIM	Benzo(g,h,i)perylene	mg/L	0.00026	ND [0.00002]	ND [0.00002]	ND [0.00002]	-
8270SIM	Benzo(k)fluoranthene	mg/L	0.0008	ND [0.00002]	ND [0.0002]	ND [0.00002]	-
8270SIM	Chrysene	mg/L	0.002	ND [0.00002]	ND [0.00002]	ND [0.00002]	-
8270SIM	Dibenzo(a,h)anthracene	mg/L	0.000034	0.000089 [0.00002]	0.000093 [0.00002]	ND [0.00002]	-
8270SIM	Dibenzofuran	mg/L	0.0079	0.000038 [0.00002]	0.000039 [0.00002]	0.000062 [0.00002]	-
8270SIM	Fluoranthene	mg/L	0.26	ND [0.00002]	ND [0.00002]	ND [0.00002]	-
8270SIM	Fluorene	mg/L	0.29	0.000047 [0.00002] JD	0.000031 [0.00002] JD	0.00002 [0.00002]	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	0.00019	ND [0.00002]	ND [0.00002]	ND [0.00002]	-
8270SIM	Naphthalene	mg/L	0.0017	0.00029 [0.00002]	0.00034 [0.00002]	0.00078 [0.00002]	-
8270SIM	Phenanthrene	mg/L	0.17	0.000082 [0.00002] JD	0.000041 [0.00002] JD	ND [0.00002]	-
8270SIM	Pyrene	mg/L	0.12	ND [0.00002]	ND [0.00002]	ND [0.00002]	-

Notes:

1 18 AAC 75 Table C. Groundwater Human Health Cleanup Level (ADEC 2016)

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/L = milligrams per liter

ND = nondetect

SDG = sample delivery group

WG = groundwater

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Table C-1-4 WNTF Porewater Results

		_	Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	SP01 16WNTF-SP01-PW K160692807 K1606928 6/21/2016 WP ALGK Primary	SP02 16WNTF-SP02-PW K160692801 K1606928 6/20/2016 WP ALGK Primary	SP03 16WNTF-SP03-PW K160692806 K1606928 6/21/2016 WP ALGK Primary	SP04 16WNTF-SP04-PW K160692802 K1606928 6/21/2016 WP ALGK Primary	SP04 16WNTF-SP04-PW-9 K160692803 K1606928 6/21/2016 WP ALGK Duplicate
Method	Analyte	Units	Project Action Limit ¹					
AK102	Diesel Range Organics (C10-C25)	mg/L	-	0.056 [0.02] J, JL-, B	0.1 [0.02] J, JL-	0.059 [0.02] J, JL-, B	0.24 [0.02] J, JL-	0.23 [0.02] J, JL-
SW8260C	Benzene	mg/L	0.046	ND [0.0001]				
SW8260C	Ethylbenzene	mg/L	0.0073	ND [0.0001]				
SW8260C	o-Xylene	mg/L	0.013	ND [0.0002]				
SW8260C	Toluene	mg/L	0.0098	0.00006 [0.0001] J	ND [0.0001]	ND [0.0001]	0.00006 [0.0001] J, JD	ND [0.0001] JD
SW8260C	Xylene, Isomers m & p	mg/L	0.013	ND [0.0002]				
8270SIM	1-Methylnaphthalene	mg/L	0.0021	0.0000076 [0.0000051] J	ND [0.000005]	0.000005 [0.000005] J	ND [0.000005]	ND [0.000005]
8270SIM	2-Methylnaphthalene	mg/L	0.33	0.000006 [0.0000051] J	0.0000039 [0.000005] J	0.0000054 [0.000005] J	ND [0.000005]	ND [0.000005]
8270SIM	Acenaphthene	mg/L	0.0058	0.0000046 [0.0000051] J	ND [0.000005]	0.0000067 [0.000005] J	ND [0.000005]	ND [0.000005]
8270SIM	Acenaphthylene	mg/L	4.84	0.0000076 [0.0000051] J	0.0000036 [0.000005] J	0.0000054 [0.000005] J	0.0000049 [0.000005] J	0.0000055 [0.000005] J
8270SIM	Anthracene	mg/L	0.000012	0.000007 [0.0000051] J	ND [0.000005]	0.0000095 [0.000005] J	ND [0.000005]	ND [0.000005]
8270SIM	Benzo(a)anthracene	mg/L	0.000027	0.000026 [0.0000051]	ND [0.000005]	0.000021 [0.000005] B	ND [0.00005]	ND [0.00005]
8270SIM	Benzo(a)pyrene	mg/L	0.000014	0.000023 [0.0000051]	ND [0.000005]	0.000018 [0.000005] J	ND [0.000005]	ND [0.000005]
8270SIM	Benzo(b)fluoranthene	mg/L	0.00907	0.000049 [0.0000051]	ND [0.000005]	0.000022 [0.000005]	ND [0.00005]	ND [0.00005]
8270SIM	Benzo(g,h,i)perylene	mg/L	0.00764	0.000017 [0.0000051] J, B	ND [0.000005]	0.000011 [0.000005] J, B	ND [0.00005]	ND [0.000005]
8270SIM	Benzo(k)fluoranthene	mg/L	-	0.000018 [0.0000051] J	ND [0.000005]	0.0000063 [0.000005] J	ND [0.00005]	ND [0.00005]
8270SIM	Chrysene	mg/L	-	0.000053 [0.0000051]	ND [0.000005]	0.000025 [0.000005]	ND [0.000005]	ND [0.000005]
8270SIM	Dibenzo(a,h)anthracene	mg/L	-	ND [0.0000051]	ND [0.000005]	ND [0.000005]	ND [0.000005]	ND [0.000005]
8270SIM	Dibenzofuran	mg/L	0.0037	ND [0.0000051]	ND [0.000005]	ND [0.000005]	ND [0.000005]	ND [0.000005]
8270SIM	Fluoranthene	mg/L	0.00004	0.000065 [0.000021]	ND [0.00002]	0.000041 [0.00002]	ND [0.00002]	ND [0.00002]
8270SIM	Fluorene	mg/L	0.0039	0.0000042 [0.0000051] J	ND [0.000005]	0.0000066 [0.000005] J	ND [0.000005]	ND [0.000005]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	0.00431	0.000015 [0.0000051] J, B	ND [0.000005]	0.0000089 [0.000005] J, B	ND [0.00005]	ND [0.00005]
8270SIM	Naphthalene	mg/L	0.0011	0.00001 [0.0000051] J	ND [0.000005]	0.0000073 [0.000005] J	ND [0.00005]	ND [0.000005]
8270SIM	Phenanthrene	mg/L	0.0036	0.000032 [0.0000051]	ND [0.000005]	0.000056 [0.000005]	ND [0.000005]	ND [0.000005]
8270SIM	Pyrene	mg/L	-	0.000077 [0.000011]	ND [0.00001]	0.000053 [0.00001]	ND [0.00001]	ND [0.00001]
SW8260C	TAH ²	mg/L	0.01	0.00066	0.0007	0.0007	0.00066	0.0007
SW8260C/ SW8270SIM	TAqH ²	mg/L	0.015	0.0010922	0.0008125	0.0010181	0.0007749	0.0008155

Notes:

¹ Surface water criteria from NOAA SQuiRT Freshwater NOAA, most conservative of CCC and CMC values (Buchman 2008).

² Total aromatic hydrocarbons (TAH) is the sum of the SW8260 BTEX concentrations. Total aqueous hydrocarbons (TAqH) is the sum of the SW8260 BTEX and 8270 SIM PAH concentrations. If the analyte was ND, the LOD was used for the analyte concentration.

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/L = milligrams per liter

ND = nondetect

SDG = sample delivery group

W = water

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Table C-1-4 WNTF Porewater Results

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	SP05 16WNTF-SP05-PW K160692804 K1606928 6/21/2016 WP ALGK Primary	SP06 16WNTF-SP06-PW K160692805 K1606928 6/21/2016 WP ALGK Primary
Method	Analyte	Units	Project Action Limit ¹		
AK102	Diesel Range Organics (C10-C25)	mg/L	-	0.15 [0.02] J, JL-	0.05 [0.02] J, JL-, B
SW8260C	Benzene	mg/L	0.046	ND [0.0001]	ND [0.0001]
SW8260C	Ethylbenzene	mg/L	0.0073	ND [0.0001]	ND [0.0001]
SW8260C	o-Xylene	mg/L	0.013	ND [0.0002]	ND [0.0002]
SW8260C	Toluene	mg/L	0.0098	ND [0.0001]	ND [0.0001]
SW8260C	Xylene, Isomers m & p	mg/L	0.013	ND [0.0002]	ND [0.0002]
8270SIM	1-Methylnaphthalene	mg/L	0.0021	ND [0.000005]	ND [0.00005]
8270SIM	2-Methylnaphthalene	mg/L	0.33	ND [0.000005]	0.0000036 [0.000005] J
8270SIM	Acenaphthene	mg/L	0.0058	ND [0.00005]	ND [0.00005]
8270SIM	Acenaphthylene	mg/L	4.84	0.0000037 [0.000005] J	0.0000035 [0.000005] J
8270SIM	Anthracene	mg/L	0.000012	ND [0.00005]	0.0000057 [0.000005] J
8270SIM	Benzo(a)anthracene	mg/L	0.000027	ND [0.000005]	0.0000067 [0.000005] J, B
8270SIM	Benzo(a)pyrene	mg/L	0.000014	ND [0.000005]	0.0000048 [0.000005] J
8270SIM	Benzo(b)fluoranthene	mg/L	0.00907	ND [0.000005]	0.0000082 [0.000005] J
8270SIM	Benzo(g,h,i)perylene	mg/L	0.00764	ND [0.000005]	ND [0.00005]
8270SIM	Benzo(k)fluoranthene	mg/L	-	ND [0.00005]	ND [0.00005]
8270SIM	Chrysene	mg/L	-	ND [0.000005]	0.0000078 [0.000005] J
8270SIM	Dibenzo(a,h)anthracene	mg/L	-	ND [0.00005]	ND [0.00005]
8270SIM	Dibenzofuran	mg/L	0.0037	ND [0.00005]	ND [0.00005]
8270SIM	Fluoranthene	mg/L	0.00004	ND [0.00002]	0.000022 [0.00002]
8270SIM	Fluorene	mg/L	0.0039	ND [0.00005]	ND [0.00005]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	0.00431	ND [0.000005]	ND [0.00005]
8270SIM	Naphthalene	mg/L	0.0011	ND [0.000005]	0.0000043 [0.000005] J
8270SIM	Phenanthrene	mg/L	0.0036	ND [0.000005]	0.0000054 [0.000005] J
8270SIM	Pyrene	mg/L	-	ND [0.00001]	0.00002 [0.00001]
SW8260C	TAH ²	mg/L	0.01	0.0007	0.0007
SW8260C/ SW8270SIM	TAqH ²	mg/L	0.015	0.0008137	0.000832

Notes:

¹ Surface water criteria from NOAA SQuiRT Freshwater NOAA, most conservative of CCC and CMC values (Buchman 2008).

² Total aromatic hydrocarbons (TAH) is the sum of the SW8260 BTEX concentrations. Total aqueous hydrocarbons (TAqH) is the sum of the SW8260 BTEX and 8270 SIM PAH concentrations. If the analyte was ND, the LOD was used for the analyte concentration.

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/L = milligrams per liter

ND = nondetect

SDG = sample delivery group

W = water

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Table C-1-5 WNTF Sediment Results

			Location ID Sample ID	SP01 16WNTF-SP01-SD	SP01 16WNTF-SP01-SD	SP02 16WNTF-SP02-SD	SP02 16WNTF-SP02-SD	SP02 16WNTF-SP02-SD-9
			Lab Sample ID	K160699912	K161018601	K160699913	K161018602	K161018607
			SDG	K1606999	K1610186	K1606999	K1610186	K1610186
			Collection Date	6/21/2016	8/26/2016	6/21/2016	8/26/2016	8/26/2016
			Matrix	SE	SO	SE	SO	SO
			Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary	Primary	Duplicate
			Project					
Method	Analyte	Units	Action Limit ¹					
E160.3M	Total Solids	PERCENT	-	85.8	85.4	85.9	84.1	81.2
AK101	Gasoline Range Organics (C6-C10)	mg/kg	-	-	ND [2.5]	-	ND [2.5]	ND [2.5]
AK102	Diesel Range Organics (C10-C25)	mg/kg	-	41 [3.9]	-	23 [3.8]	-	-
SW8260C	Benzene	mg/kg	-	ND [0.01]	-	ND [0.01]	-	-
SW8260C	Ethylbenzene	mg/kg	-	ND [0.01]	-	ND [0.01]	-	-
SW8260C	o-Xylene	mg/kg	-	ND [0.02]	-	ND [0.02]	-	-
SW8260C	Toluene	mg/kg	-	ND [0.01]	-	ND [0.01]	-	-
SW8260C	Xylene, Isomers m & p	mg/kg	-	ND [0.02]	-	ND [0.02]	-	-
8270SIM	1-Methylnaphthalene	mg/kg	-	0.009 [0.001]	-	0.049 [0.001]	-	-
8270SIM	2-Methylnaphthalene	mg/kg	-	0.011 [0.001]	-	0.056 [0.001]	-	-
8270SIM	Acenaphthene	mg/kg	0.00671	0.0061 [0.001]	-	0.042 [0.001]	-	-
8270SIM	Acenaphthylene	mg/kg	0.00587	0.0018 [0.001] J	-	0.0047 [0.001]	-	-
8270SIM	Anthracene	mg/kg	0.0469	0.015 [0.001]	-	0.082 [0.001]	-	-
8270SIM	Benzo(a)anthracene	mg/kg	0.0317	0.022 [0.001]	-	0.14 [0.001]	-	-
8270SIM	Benzo(a)pyrene	mg/kg	0.0319	0.021 [0.001]	-	0.14 [0.001]	-	-
8270SIM	Benzo(b)fluoranthene	mg/kg	-	0.018 [0.001]	-	0.13 [0.001]	-	-
8270SIM	Benzo(g,h,i)perylene	mg/kg	0.17	0.011 [0.001]	-	0.073 [0.001]	-	-
8270SIM	Benzo(k)fluoranthene	mg/kg	0.24	0.0065 [0.001]	-	0.044 [0.001]	-	-
8270SIM	Chrysene	mg/kg	0.0571	0.028 [0.001]	-	0.17 [0.001]	-	-
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.00622	0.0031 [0.001] J	-	0.023 [0.001]	-	-
8270SIM	Fluoranthene	mg/kg	0.111	0.046 [0.001]	-	0.28 [0.001]	-	-
8270SIM	Fluorene	mg/kg	0.0212	0.0082 [0.001]	-	0.057 [0.001]	-	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	0.2	0.01 [0.001]	-	0.073 [0.001]	-	-
8270SIM	Naphthalene	mg/kg	0.0346	0.0061 [0.001]	-	0.026 [0.001]	-	-
8270SIM	Phenanthrene	mg/kg	0.0419	0.084 [0.002]	-	0.51 [0.002]	-	-
8270SIM	Pyrene	mg/kg	0.053	0.066 [0.001]	-	0.38 [0.001]	-	-

Notes:

¹ Sediment criteria from NOAA SQuiRT Freshwater NOAA TEL (Buchman 2008).

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SE = sediment

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Table C-1-5 WNTF Sediment Results

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	SP03 16WNTF-SP03-SD K161018603 K1610186 8/26/2016 SO ALGK Primary	SP03 16WNTF-SP03-SD K160699914 K1606999 6/21/2016 SE ALGK Primary	SP03 16WNTF-SP03-SD-9 K160699915 K1606999 6/21/2016 SE ALGK Duplicate	SP04 16WNTF-SP04-SD K160699916 K1606999 6/21/2016 SE ALGK Primary	SP04 16WNTF-SP04-SD K161018604 K1610186 8/26/2016 SE ALGK Primary
Method	Analyte	Units	Action Limit ¹					
E160.3M	Total Solids	PERCENT	-	78.4	89.2	89.1	82.7	80
AK101	Gasoline Range Organics (C6-C10)	mg/kg	-	ND [2.5]	-	-	-	ND [2.5]
AK102	Diesel Range Organics (C10-C25)	mg/kg	-	-	30 [3.7]	33 [3.7]	16 [4] J, B	-
SW8260C	Benzene	mg/kg	-	-	ND [0.01]	ND [0.01]	ND [0.01]	-
SW8260C	Ethylbenzene	mg/kg	-	-	ND [0.01]	ND [0.01]	ND [0.01]	-
SW8260C	o-Xylene	mg/kg	-	-	ND [0.02]	ND [0.02]	ND [0.02]	-
SW8260C	Toluene	mg/kg	-	-	ND [0.01]	ND [0.01]	ND [0.01]	-
SW8260C	Xylene, Isomers m & p	mg/kg	-	-	ND [0.02]	ND [0.02]	ND [0.02]	-
8270SIM	1-Methylnaphthalene	mg/kg	-	-	0.089 [0.001]	0.07 [0.001]	0.0048 [0.001]	-
8270SIM	2-Methylnaphthalene	mg/kg	-	-	0.1 [0.001]	0.079 [0.001]	0.0052 [0.001]	-
8270SIM	Acenaphthene	mg/kg	0.00671	-	0.069 [0.001] JD	0.15 [0.001] JD	0.0045 [0.001]	-
8270SIM	Acenaphthylene	mg/kg	0.00587	-	0.0079 [0.001]	0.0055 [0.001]	0.0012 [0.001] J	-
8270SIM	Anthracene	mg/kg	0.0469	-	0.087 [0.001] JD	0.32 [0.001] JD	0.011 [0.001]	-
8270SIM	Benzo(a)anthracene	mg/kg	0.0317	-	0.2 [0.001] JD	0.5 [0.001] JD	0.021 [0.001]	-
8270SIM	Benzo(a)pyrene	mg/kg	0.0319	-	0.21 [0.001] JD	0.43 [0.001] JD	0.022 [0.001]	-
8270SIM	Benzo(b)fluoranthene	mg/kg	-	-	0.21 [0.001] JD	0.49 [0.001] JD	0.022 [0.001]	-
8270SIM	Benzo(g,h,i)perylene	mg/kg	0.17	-	0.11 [0.001] JD	0.22 [0.001] JD	0.012 [0.001]	-
8270SIM	Benzo(k)fluoranthene	mg/kg	0.24	-	0.072 [0.001] JD	0.17 [0.001] JD	0.0074 [0.001]	-
8270SIM	Chrysene	mg/kg	0.0571	-	0.3 [0.001] JD	0.56 [0.001] JD	0.026 [0.001]	-
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.00622	-	0.035 [0.001] JD	0.088 [0.001] JD	0.0035 [0.001] J	-
8270SIM	Fluoranthene	mg/kg	0.111	-	0.5 [0.001] JD	1.1 [0.001] JD	0.042 [0.001]	-
8270SIM	Fluorene	mg/kg	0.0212	-	0.081 [0.001] JD	0.18 [0.001] JD	0.005 [0.001]	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	0.2	-	0.12 [0.001] JD	0.26 [0.001] JD	0.012 [0.001]	-
8270SIM	Naphthalene	mg/kg	0.0346	-	0.057 [0.001]	0.039 [0.001]	0.0034 [0.001] J	-
8270SIM	Phenanthrene	mg/kg	0.0419	-	0.96 [0.002] JD	1.6 [0.004] JD	0.053 [0.002]	-
8270SIM	Pyrene	mg/kg	0.053	-	0.65 [0.001] JD	1.1 [0.001] JD	0.051 [0.001]	-

Notes:

¹ Sediment criteria from NOAA SQuiRT Freshwater NOAA TEL (Buchman 2008).

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SE = sediment

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

Table C-1-5 WNTF Sediment Results

			Location ID Sample ID Lab Sample ID SDG Collection Date Matrix Laboratory QA/QC	SP05 16WNTF-SP05-SD K160699917 K1606999 6/21/2016 SE ALGK Primary	SP05 16WNTF-SP05-SD K161018605 K1610186 8/26/2016 SE ALGK Primary	SP06 16WNTF-SP06-SD K160699918 K1606999 6/21/2016 SE ALGK Primary	SP06 16WNTF-SP06-SD K161018606 K1610186 8/26/2016 SE ALGK Primary
Method	Analyte	Units	Project Action Limit ¹				
E160.3M	Total Solids	PERCENT	-	81.1	78.4	86.9	79.6
AK101	Gasoline Range Organics (C6-C10)	mg/kg	-	-	ND [2.5]	-	ND [2.5]
AK102	Diesel Range Organics (C10-C25)	mg/kg	-	13 [4.1] J, B	-	8.4 [3.8] J, B	-
SW8260C	Benzene	mg/kg	-	ND [0.01]	-	ND [0.01]	-
SW8260C	Ethylbenzene	mg/kg	-	ND [0.01]	-	ND [0.01]	-
SW8260C	o-Xylene	mg/kg	-	ND [0.02]	-	ND [0.02]	-
SW8260C	Toluene	mg/kg	-	ND [0.01]	-	ND [0.01]	-
SW8260C	Xylene, Isomers m & p	mg/kg	-	ND [0.02]	-	ND [0.02]	-
8270SIM	1-Methylnaphthalene	mg/kg	-	0.018 [0.001]	-	0.007 [0.001]	-
8270SIM	2-Methylnaphthalene	mg/kg	-	0.023 [0.001]	-	0.0097 [0.001]	-
8270SIM	Acenaphthene	mg/kg	0.00671	0.0026 [0.001] J	-	ND [0.001]	-
8270SIM	Acenaphthylene	mg/kg	0.00587	0.00066 [0.001] J	-	ND [0.001]	-
8270SIM	Anthracene	mg/kg	0.0469	0.0045 [0.001]	-	ND [0.001]	-
8270SIM	Benzo(a)anthracene	mg/kg	0.0317	0.014 [0.001]	-	0.0017 [0.001] J	-
8270SIM	Benzo(a)pyrene	mg/kg	0.0319	0.015 [0.001]	-	0.0018 [0.001] J	-
8270SIM	Benzo(b)fluoranthene	mg/kg	-	0.016 [0.001]	-	0.0027 [0.001] J	-
8270SIM	Benzo(g,h,i)perylene	mg/kg	0.17	0.0087 [0.001]	-	0.0023 [0.001] J	-
8270SIM	Benzo(k)fluoranthene	mg/kg	0.24	0.0059 [0.001]	-	0.00097 [0.001] J	-
8270SIM	Chrysene	mg/kg	0.0571	0.018 [0.001]	-	0.0016 [0.001] J	-
8270SIM	Dibenzo(a,h)anthracene	mg/kg	0.00622	0.0028 [0.001] J	-	ND [0.001]	-
8270SIM	Fluoranthene	mg/kg	0.111	0.028 [0.001]	-	0.0028 [0.001] J	-
8270SIM	Fluorene	mg/kg	0.0212	0.0034 [0.001] J	-	0.00064 [0.001] J	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/kg	0.2	0.0087 [0.001]	-	0.0016 [0.001] J	-
8270SIM	Naphthalene	mg/kg	0.0346	0.0072 [0.001]	-	0.003 [0.001] J	-
8270SIM	Phenanthrene	mg/kg	0.0419	0.029 [0.002]	-	0.0024 [0.002] J	-
8270SIM	Pyrene	mg/kg	0.053	0.033 [0.001]	-	0.0031 [0.001] J	-

Notes:

¹ Sediment criteria from NOAA SQuiRT Freshwater NOAA TEL (Buchman 2008).

– = not analyzed

[] = limit of detection

Bold = The result exceeds the project action limit.

mg/kg = milligrams per kilogram

ND = nondetect

SDG = sample delivery group

SE = sediment

ALGK = ALS Environmental of Kelso, WA.

QA/QC = quality assurance / quality control

ATTACHMENT C-2

Qualified Sample Results Tables

Included with document PDF on CD

Table C-2-1Results Qualified B Due to Method Blank Contamination

SDG	Sample ID	Lab Sample ID	Method	Analyte	Result	LOD	LOQ	Units	Lab Lot Number	Qualifier
-	Method Blank	KWG16052335	AK102	Diesel Range Organics (C10-C25)	3.2	3.3	20	mg/kg	KWG1605233	-
K1606998	16WNTF-MW36-12-SO	K160699810	AK102	Diesel Range Organics (C10-C25)	6.6	3.5	21	mg/kg	KWG1605233	J, B
-	Method Blank	KWG16052515	AK102	Diesel Range Organics (C10-C25)	3.6	3.3	20	mg/kg	KWG1605251	-
K1606999	16WNTF-SP04-SD	K160699916	AK102	Diesel Range Organics (C10-C25)	16	4	24	mg/kg	KWG1605251	J, B
K1606999	16WNTF-SP05-SD	K160699917	AK102	Diesel Range Organics (C10-C25)	13	4.1	25	mg/kg	KWG1605251	J, B
K1606999	16WNTF-SP06-SD	K160699918	AK102	Diesel Range Organics (C10-C25)	8.4	3.8	23	mg/kg	KWG1605251	J, B
-	Method Blank	KWG16053517	AK102	Diesel Range Organics (C10-C25)	0.013	0.02	0.76	mg/L	KWG1605351	-
K1606928	16WNTF-SP06-PW	K160692805	AK102	Diesel Range Organics (C10-C25)	0.05	0.02	0.8	mg/L	KWG1605351	J, JL-, B
K1606928	16WNTF-SP03-PW	K160692806	AK102	Diesel Range Organics (C10-C25)	0.059	0.02	0.77	mg/L	KWG1605351	J, JL-, B
K1606928	16WNTF-SP01-PW	K160692807	AK102	Diesel Range Organics (C10-C25)	0.056	0.02	0.8	mg/L	KWG1605351	J, JL-, B
-	Method Blank	KWG16051835	8270SIM	Acenaphthylene	0.00061	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Acenaphthylene	0.0009	0.001	0.0035	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Anthracene	0.00063	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Anthracene	0.001	0.001	0.004	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Benzo(a)anthracene	0.0012	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-SB08-12-SO	K160699802	8270SIM	Benzo(a)anthracene	0.0034	0.0011	0.0052	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB08-12-SO-9	K160699803	8270SIM	Benzo(a)anthracene	0.0045	0.001	0.0049	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB07-08-SO	K160699804	8270SIM	Benzo(a)anthracene	0.0022	0.001	0.0034	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Benzo(a)anthracene	0.0014	0.001	0.0035	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Benzo(a)anthracene	0.0029	0.001	0.004	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Benzo(a)pyrene	0.0011	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-SB07-08-SO	K160699804	8270SIM	Benzo(a)pyrene	0.0014	0.001	0.0034	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB06-06-SO	K160699806	8270SIM	Benzo(a)pyrene	0.0051	0.001	0.0034	mg/kg	KWG1605183	В
K1606998	16WNTF-SB06-08-SO	K160699807	8270SIM	Benzo(a)pyrene	0.0034	0.001	0.0036	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Benzo(a)pyrene	0.0025	0.001	0.0035	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Benzo(b)fluoranthene	0.00099	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-SB08-12-SO	K160699802	8270SIM	Benzo(b)fluoranthene	0.0045	0.0011	0.0052	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB08-12-SO-9	K160699803	8270SIM	Benzo(b)fluoranthene	0.0042	0.001	0.0049	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB07-08-SO	K160699804	8270SIM	Benzo(b)fluoranthene	0.0022	0.001	0.0034	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Benzo(b)fluoranthene	0.003	0.001	0.0035	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Benzo(b)fluoranthene	0.0049	0.001	0.004	mg/kg	KWG1605183	В
-	Method Blank	KWG16051835	8270SIM	Benzo(g,h,i)perylene	0.0011	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-SB08-06-SO	K160699801	8270SIM	Benzo(g,h,i)perylene	0.0053	0.001	0.0036	mg/kg	KWG1605183	В
K1606998	16WNTF-SB08-12-SO	K160699802	8270SIM	Benzo(g,h,i)perylene	0.0033	0.0011	0.0052	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB08-12-SO-9	K160699803	8270SIM	Benzo(g,h,i)perylene	0.0022	0.001	0.0049	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB07-08-SO	K160699804	8270SIM	Benzo(g,h,i)perylene	0.00095	0.001	0.0034	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB06-06-SO	K160699806	8270SIM	Benzo(g,h,i)perylene	0.0011	0.001	0.0034	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB06-08-SO	K160699807	8270SIM	Benzo(g,h,i)perylene	0.0016	0.001	0.0036	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Benzo(g,h,i)perylene	0.0014	0.001	0.0035	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Benzo(g,h,i)perylene	0.0023	0.001	0.004	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Chrysene	0.001	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-SB08-12-SO	K160699802	8270SIM	Chrysene	0.0049	0.0011	0.0052	mg/kg	KWG1605183	J, B
K1606998	16WNTF-SB07-08-SO	K160699804	8270SIM	Chrysene	0.0027	0.001	0.0034	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Chrysene	0.0016	0.001	0.0035	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Chrysene	0.0044	0.001	0.004	mg/kg	KWG1605183	В
-	Method Blank	KWG16051835	8270SIM	Dibenzofuran	0.00071	0.001	0.0025	mg/kg	KWG1605183	-

Table C-2-1 **Results Qualified B Due to Method Blank Contamination**

SDG	Sample ID	Lab Sample ID	Method	Analyte	Result	LOD	LOQ	Units	Lab Lot Number	Qualifier
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Dibenzofuran	0.00086	0.001	0.0035	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Dibenzofuran	0.0012	0.001	0.004	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Fluoranthene	0.0011	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Fluoranthene	0.0029	0.001	0.0035	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Fluorene	0.00063	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Fluorene	0.001	0.001	0.0035	mg/kg	KWG1605183	J, B
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Fluorene	0.0023	0.001	0.004	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Naphthalene	0.001	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-MW36-14-SO	K160699811	8270SIM	Naphthalene	0.0027	0.001	0.004	mg/kg	KWG1605183	J, B
-	Method Blank	KWG16051835	8270SIM	Pyrene	0.001	0.001	0.0025	mg/kg	KWG1605183	-
K1606998	16WNTF-MW36-12-SO	K160699810	8270SIM	Pyrene	0.0035	0.001	0.0035	mg/kg	KWG1605183	В
-	Method Blank	KWG16051897	8270SIM	Benzo(a)anthracene	0.0000045	0.000005	0.000019	mg/L	KWG1605189	-
K1606928	16WNTF-SP06-PW	K160692805	8270SIM	Benzo(a)anthracene	0.0000067	0.000005	0.00002	mg/L	KWG1605189	J, B
K1606928	16WNTF-SP03-PW	K160692806	8270SIM	Benzo(a)anthracene	0.000021	0.000005	0.000019	mg/L	KWG1605189	В
-	Method Blank	KWG16051897	8270SIM	Benzo(g,h,i)perylene	0.000007	0.000005	0.000019	mg/L	KWG1605189	-
K1606928	16WNTF-SP03-PW	K160692806	8270SIM	Benzo(g,h,i)perylene	0.000011	0.000005	0.000019	mg/L	KWG1605189	J, B
K1606928	16WNTF-SP01-PW	K160692807	8270SIM	Benzo(g,h,i)perylene	0.000017	0.0000051	0.000021	mg/L	KWG1605189	J, B
-	Method Blank	KWG16051897	8270SIM	Indeno(1,2,3-cd)pyrene	0.0000049	0.000005	0.000019	mg/L	KWG1605189	-
K1606928	16WNTF-SP03-PW	K160692806	8270SIM	Indeno(1,2,3-cd)pyrene	0.0000089	0.000005	0.000019	mg/L	KWG1605189	J, B
K1606928	16WNTF-SP01-PW	K160692807	8270SIM	Indeno(1,2,3-cd)pyrene	0.000015	0.0000051	0.000021	mg/L	KWG1605189	J, B

LOD = limit of detection

LOQ = limit of quantitation

mg/kg = milligrams per kilogram mg/L = milligrams per liter

SDG = sample delivery group

Table C-2-2Results Qualified B Due to Trip Blank Contamination

SDG	Sample ID	Lab Sample ID	Method	Analyte	Result	LOD	LOQ	Units	CoC Number	Qualifier
K1606998	16WNTF-TB01-SO (Trip Blank)	K160699812	SW8260C	Toluene	0.027	0.01	0.05	mg/kg	2016WNTF01	J
K1606998	16WNTF-SB08-06-SO	K160699801	SW8260C	Toluene	0.0063	0.01	0.046	mg/kg	2016WNTF01	J, B
K1606998	16WNTF-SB08-12-SO-9	K160699803	SW8260C	Toluene	0.021	0.023	0.12	mg/kg	2016WNTF01	J, B
K1606998	16WNTF-SB07-10-SO	K160699805	SW8260C	Toluene	0.017	0.016	0.079	mg/kg	2016WNTF01	J, B

CoC = chain-of-custody

LOD = limit of detection

LOQ = limit of quantitation

mg/kg = milligrams per kilogram

SDG = sample delivery group

 Table C-2-3

 Results Qualified JL- due to LCS Recovery Outliers

SDG	Sample ID	Lab Sample ID	Method	Analyte	Result	LOD	LOQ	Recovery (%)	LCL	UCL	Units	Lab Lot Number	Qualifier
-	LCS	KWG16053515	AK102	Diesel Range Organics (C10-C25)	1.11	0.02	0.8	69	75	125	mg/L	KWG1605351	-
-	LCSD	KWG16053516	AK102	Diesel Range Organics (C10-C25)	1.29	0.02	0.8	81	75	125	mg/L	KWG1605351	-
K1606928	16WNTF-SP02-PW	K160692801	AK102	Diesel Range Organics (C10-C25)	0.1	0.02	0.78	-	-	-	mg/L	KWG1605351	J, JL-
K1606928	16WNTF-SP04-PW	K160692802	AK102	Diesel Range Organics (C10-C25)	0.24	0.02	0.77	-	-	-	mg/L	KWG1605351	J, JL-
K1606928	16WNTF-SP04-PW-9	K160692803	AK102	Diesel Range Organics (C10-C25)	0.23	0.02	0.78	-	-	-	mg/L	KWG1605351	J, JL-
K1606928	16WNTF-SP05-PW	K160692804	AK102	Diesel Range Organics (C10-C25)	0.15	0.02	0.77	-	-	-	mg/L	KWG1605351	J, JL-
K1606928	16WNTF-SP06-PW	K160692805	AK102	Diesel Range Organics (C10-C25)	0.05	0.02	0.8	-	-	-	mg/L	KWG1605351	J, JL-
K1606928	16WNTF-SP03-PW	K160692806	AK102	Diesel Range Organics (C10-C25)	0.059	0.02	0.77	-	-	-	mg/L	KWG1605351	J, JL-
K1606928	16WNTF-SP01-PW	K160692807	AK102	Diesel Range Organics (C10-C25)	0.056	0.02	0.8	-	-	-	mg/L	KWG1605351	J, JL-
K1606928	16WNTF-MW36-GW	K160692808	AK102	Diesel Range Organics (C10-C25)	1.7	0.02	0.78	-	-	-	mg/L	KWG1605351	JL-
K1606928	16WNTF-MW36-GW-9	K160692809	AK102	Diesel Range Organics (C10-C25)	1.7	0.021	0.83	-	-	-	mg/L	KWG1605351	JL-
K1606928	16WNTF-MW37-GW	K160692810	AK102	Diesel Range Organics (C10-C25)	3.3	0.02	0.77	-	-	-	mg/L	KWG1605351	JL-

LCL = lower control limit

LCS/LCSD = laboratory control sample/laboratory control sample duplicate

LOD = limit of detection

LOQ = limit of quantitation

mg/L = milligrams per liter

ND = nondetect

SDG = sample delivery group

UCL = upper control limit

 Table C-2-4

 Results Qualified JD due to MS/MSD RPD Outliers

SDG	Sample ID	Lab Sample ID	Method	Analyte	Parent Sample Result	MS Result	MSD Result	RPD (%)	Units	Lab Lot Number	Qualifier
K1606998	16WNTF-SB08-06-SO	K160699801	8270SIM	2-Methylnaphthalene	0.51	0.647	0.804	22	mg/kg	KWG1605183	JD

mg/kg = milligrams per kilogram

MS/MSD = matrix spike/matrix spike duplicate

RPD = relative percent difference

SDG = sample delivery group

 Table C-2-5

 Results Qualified JD Due to Sample/Field Duplicate RPD Outliers

Sample ID	Lab Sample ID	Duplicate Sample ID	Duplicate Lab Sample ID	Method	Analyte	Result	Duplicate Result	Units	RPD (%)
16WNTF-MW36-GW	K160692808	16WNTF-MW36-GW-9	K160692809	8270SIM	Fluorene	0.000047	0.000031	mg/L	41
16WNTF-MW36-GW	K160692808	16WNTF-MW36-GW-9	K160692809	SW8260C	Xylene, Isomers m & p	0.00011	0.0002	mg/L	58
16WNTF-MW36-GW	K160692808	16WNTF-MW36-GW-9	K160692809	8270SIM	Phenanthrene	0.000082	0.000041	mg/L	67
16WNTF-MW36-GW	K160692808	16WNTF-MW36-GW-9	K160692809	8270SIM	Acenaphthene	0.000029	0.000005	mg/L	141
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Acenaphthene	0.069	0.15	mg/kg	74
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Anthracene	0.087	0.32	mg/kg	114
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Benzo(a)anthracene	0.2	0.5	mg/kg	86
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Benzo(a)pyrene	0.21	0.43	mg/kg	69
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Benzo(b)fluoranthene	0.21	0.49	mg/kg	80
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Benzo(g,h,i)perylene	0.11	0.22	mg/kg	67
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Benzo(k)fluoranthene	0.072	0.17	mg/kg	81
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Chrysene	0.3	0.56	mg/kg	60
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Dibenzo(a,h)anthracene	0.035	0.088	mg/kg	86
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Fluoranthene	0.5	1.1	mg/kg	75
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Fluorene	0.081	0.18	mg/kg	76
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Indeno(1,2,3-cd)pyrene	0.12	0.26	mg/kg	74
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Phenanthrene	0.96	1.6	mg/kg	50
16WNTF-SP03-SD	K160699914	16WNTF-SP03-SD-9	K160699915	8270SIM	Pyrene	0.65	1.1	mg/kg	51
16WNTF-SB08-12-SO	K160699802	16WNTF-SB08-12-SO-9	K160699803	8270SIM	Pyrene	0.0093	0.016	mg/kg	53
16WNTF-SB08-12-SO	K160699802	16WNTF-SB08-12-SO-9	K160699803	AK102	Diesel Range Organics (C10-C25)	510	1100	mg/kg	73
16WNTF-SP04-PW	K160692802	16WNTF-SP04-PW-9	K160692803	SW8260C	Toluene	0.00006	0.0001	mg/L	50

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

RPD = relative percent difference

Italics - The LOD was used in place of the ND sample result in the RPD calculation.

ATTACHMENT C-3 ADEC Laboratory Data Review Checklists

Included with document PDF on CD

Laboratory Data Review Checklist

Completed by: Candace Ede								
Title:	Chemist		Date:	09-07-2016				
CS Report Name:	West Nome Tank Farm Repo	ort	Report Date:	September 2016				
Consultant Firm:	Jacobs Engineering Group Ir	nc.						
Laboratory Name:	ALS	Laboratory	Report Number:	K1606928				
ADEC File Number:	400.38.002	ADEC Haz	ard ID:	575				
1. Laboratory a. Did an ADEC CS-approved laboratory receive and perform all of the submitted sample analyses? ✓ Yes No NA (Please explain.) Comments:								
0. If the samples were transferred to another network faboratory of sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? □ Yes □ No ☑ NA (Please explain.) Comments: All samples were analyzed by ALS Environmental of Kelso, WA.								
 <u>Chain of Custody (CoC)</u> a. CoC information completed, signed, and dated (including released/received by)? 								
Ves 🗆	No 🗖 NA (Please explain.)		Comments:					
b. Correct Anal ✓ Yes	lyses requested? No 🔲 NA (Please explain.)		Comments:					
3. <u>Laboratory Sample</u> a. Sample/cool □ Yes ☑ 1	e Receipt Documentation er temperature documented an No INA (Please explain.)	id within rang	the at receipt $(4^\circ \pm 2)^\circ$ Comments:	° C)?				
The sample/cool Cooler Veladero Cooler Cortez: 4 Cooler Kensignt Cooler Rock Cre Cooler Kalgoorl Cooler Nixon Fo	ler temperature was: b: 2.5° C /1.3° C l.2° C /1.2° C ton: 3.0° C /2.4° C teek: 1.5° C /1.6° C ie: 2.6° C /4.5° C brk: 1.5° C /4.6° C							

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

	volume emornated Sorvents, etc.).	
Г	Yes No NA (Please explain.)	Comments:
(c. Sample condition documented – broken, leaking ✓ Yes □ No □ NA (Please explain.) 	(Methanol), zero headspace (VOC vials)? Comments:
	 d. If there were any discrepancies, were they docum containers/preservation, sample temperature outs samples, etc.? 	nented? For example, incorrect sample ide of acceptable range, insufficient or missing
	Samples 16WNTF-SP03-PW, 16WNTF-SP01-PW, as sample volume.	nd 16WNTF-MW36-GW were submitted with limited
(e. Data quality or usability affected? (Please explain	n.) Comments:
	The cooler that was received with temperatures below 2 quality and usability was not affected.	2° C had no indication of frozen samples and the data
4. <u>(</u>	Case Narrative a. Present and understandable? ✓ Yes □ No □ NA (Please explain.)	Comments:
1	 b. Discrepancies, errors or QC failures identified by ✓ Yes □ No □ NA (Please explain.) 	the lab? Comments:
(QC failures are discussed in the relevant sections of	this checklist.
(c. Were all corrective actions documented? □ Yes □ No ▼ NA (Please explain.) 	Comments:
(d. What is the effect on data quality/usability accord	ding to the case narrative? Comments:
r	The data quality and usability were not affected.	
<u>San</u>	nples Results	l on COC?
, 	✓ Yes □ No □ NA (Please explain.)	Comments:
L 1	b. All applicable holding times met?	
	Ves 🗆 No 🗖 NA (Please explain.)	Comments:

	c. /	All soils		ted on a	dry weight basis?		Commenter
[• Tes		5 L N	A (Please explain.)		
l	d. A	Are the r project?	eporte	ed PQLs	less than the Cleanup	Level or the	minimum required detection level for the
	E	✓ Yes	🗆 No	o 🗖 N	A (Please explain.)		Comments:
[All I	LODs w	ere re	ported l	ess than the respective	cleanup leve	el for this project.
	e. I	Data qua	lity or	usabili	ty affected?		Comments:
[The	data qua	lity an	d usabil	ity were not affected.		
6. <u>Q(</u>	<u>C San</u> a. N i	nples Method . One	Blank metho	d blank	reported per matrix, an	alysis and 2	0 samples?
,			Yes	🗆 No	🗆 NA (Please explain.)	Comments:
	i AK1	i. All n $\boxed{102 - DI}$	nethod Yes \overline{RO} we	l blank i No is detect	esults less than PQL? NA (Please explain.) ed in the method blank) for batch K	Comments: WG1605351 at 0.013 mg/L.
	Swa the r	nethod l	1 - Bei blank i	nzo(a)ai	nthracene, Benzo(g,h,1) n KWG1605189.	perylene and	a Indeno(1,2,3-cd)pyrene were detected in
	i	ii. If ab	ove P(QL, wha	t samples are affected?		Comments:
	16W	NTF-S	P06-P	W, 16W	NTF-SP03-PW, 16WN	TF-SP01-P	W
	i	v. Do tl	ie affe	ected sat	nple(s) have data flags	and if so, ar	e the data flags clearly defined?
ī	Dog	lta for a	Yes	tad sor	I NA (Please explain.) ha mathad l	Comments:
l	Nest V	7. Data	qualit	y or usa	bility affected? (please	explain)	Comments:
	Resu mini	ults qual imally a	ified H	B are co d since a	nsidered estimated and Il results were below A	biased high DEC screer	. The data quality for these samples was ning criteria.
	b. I i	Laborato . Orga per A	ory Co nics – AK me	ntrol Sa One L0 thods, I	mple/Duplicate (LCS/I CS/LCSD reported per 1 CS required per SW84	LCSD) matrix, anal <u>(</u> 6)	ysis and 20 samples? (LCS/LCSD required
_			Yes	🗆 No	NA (Please explain.)	Comments:

An LCS/LCSD and MS/MSD (DoD QSM required) was analyzed for all methods.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Ves No	MA (Please explain.)	Comments:
There were no inorganics	submitted with this SDG.	

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Tyes No NA (Please explain.)

Comments:

AK102 - The 16WNTF-MW36-GW MSD recovery was outside of QC criteria (biased low, 72%) for DRO in batch KWG1605351. The LCS recovery was outside of QC criteria (biased low, 69%) for DRO in batch KWG1605351.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

✓ Yes □ No □ NA (Please explain.)

Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

AK102 - 16WNTF-SP02-PW, 16WNTF-SP04-PW, 16WNTF-SP04-PW-9, 16WNTF-SP05-PW, 16WNTF-SP06-PW, 16WNTF-SP03-PW, 16WNTF-SP01-PW, 16WNTF-MW36-GW, 16WNTF-MW36-GW-9, 16WNTF-MW37-GW

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

🗹 Yes 🔲 No 🔲 NA (Please explain.)

Comments:

AK102 – All DRO results (associated with batch KWG1605351) were qualified "JL-"due to low LCS recovery. Sample 16WNTF-MW36-GW was not qualified due to low MSD recovery because the sample concentration was greater than the spike amount.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Results qualified JL- are considered estimated and biased low. The data quality was minimally affected for samples 16WNTF-MW36-GW, 16WNTF-MW36-GW-9 and 16WNTF-MW37-GW because the results were greater than the cleanup criteria at 1.5 mg/L. The remaining samples qualified JL- are less than the cleanup level with the highest result of 0.24 mg/L (JL-).

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

🗹 Yes 🔲 No 🔲 NA (Please explain.)

Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

		Yes	🗹 No	🗆 NA (Please explai	n.)
--	--	-----	------	--------	---------------	-----

Comments:

SW8260 – The Toluene-d8 surrogate recovery for samples 16WNTF-SP02-PW, 16WNTF-SP06-PW, 16WNTF-SP01-PW and 16WNTF-TB03-GW was outside of QC criteria (biased high).

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

SW8260 – All associated sample results were non-detect; therefore no flag is required for a surrogate recovery with a high bias.

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

Comments:

Comments:

The data quality and usability were not affected.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

M Yes I NO I NA (Please explain.)	
-----------------------------------	--

One water trip blank 16WNTF-TB03-GW was submitted in cooler "Veladero".

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes INO NA (Please explain.)

iii. All results less than PQL?

🗹 Yes 🔲 No 🔲 NA (Please explain.)

All results were non-detect for trip blank 16WNTF-TB03-GW.

iv. If above PQL, what samples are affected?

Comments:

NA

v. Data quality or usability affected? (Please explain.)

Comments:

The data quality and usability were not affected.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

🗹 Yes 🛛 No 🖾 NA (Please explain.)

Comments:

Two field duplicates were submitted with eight primary samples.

ii. Submitted blind to lab?

✓ Yes □ No □ NA (Please explain.)

Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2)

x 100

 $((R_1+R_2)/2)$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

 \Box Yes $\overline{\lor}$ No \Box NA (Please explain.) Comments:

The water field duplicates were evaluated using the RPD limit of 30%. When one result was ND and the other was detected the LOD was used in place of the ND result. The following analyte had a RPD greater than 30% in sample/duplicate 16WNTF-MW36-GW/ 16WNTF-MW36-GW-9: Fluorene (41%), Xylene, Isomers m & p (58%), Phenanthrene (67%), Acenaphthene (141%).

The following analytes had a RPD greater than 30% in sample/duplicate 16WNTF-SP04-PW/ 16WNTF-SP04-PW-9: Toluene (50%).

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality was minimally affected. The sample/duplicate results with RPDs greater than 30% were qualified JD. The higher or detected value will be used for reporting purposes. The results were all well below the respective ADEC cleanup levels.

f. Decontamination or Equipment Blank (If not used explain why).

🗖 Yes 🔲 No 🔽 NA (Please explain.)	Comments:						
There were no equipment blanks reported for this project.							
i. All results less than PQL?							
Tyes No VA (Please explain.)	Comments:						
NA							
ii. If above PQL, what samples are affected?							
	Comments:						
NA							
iii. Data quality or usability affected? (Please explain.)	Comments:						

The data quality and usability were not affected.

7. <u>Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific, etc.)</u>

a. Defined and appropriate?

Ves 🔽 No 🖾 NA (Please explain.)

Comments:

Qualifiers applied are defined in the Data Quality Assessment appendix of the report.

Laboratory Data Review Checklist

Com	pleted by:									
Title:		Chemist		Date:	09-08-2016					
CS R	eport Name:	West Nome Tank Farm Repo	ort	Report Date:	September 2016					
Cons	ultant Firm:	Jacobs Engineering Group In	10.							
Laboratory Name:		ALS Laborator		y Report Number:	K1606998					
ADEC File Number:		400.38.002	ADEC Hazard ID:		575					
1. <u>L</u>	I. Laboratory a. Did an ADEC CS-approved laboratory receive and perform all of the submitted sample analyses? Image: Ves Image: No Image: No Image: NA (Please explain.) Comments:									
	 b. If the <u>samples</u> were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? □ Yes □ No ▼ NA (Please explain.) Comments: 									
2. <u>C</u>	All samples were analyzed by ALS Environmental of Kelso, WA.									
	a. CoC informa ✓ Yes	ation completed, signed, and d No INA (Please explain.)	ated (includi	ng released/received Comments:	l by)?					
	b. Correct Ana ▼ Yes □	lyses requested? No 🔲 NA (Please explain.)		Comments:						
3. <u>L</u>	aboratory Sampl a. Sample/cool ✓ Yes □	e Receipt Documentation er temperature documented an No NA (Please explain.)	d within rang	ge at receipt $(4^\circ \pm 2^\circ)$ Comments:	° C)?					
	The sample/coo	ler temperature was:								
	Cooler Fort Kno	ox: 3.9° C /3.9° C								
	b. Sample pres Volatile Chl	ervation acceptable – acidified orinated Solvents, etc.)?	l waters, Met	hanol preserved VC	C soil (GRO, BTEX,					
	Ves	No 🔲 NA (Please explain.)		Comments:						

C	Sample condition	documented – broke	en, leaking (Me	ethanol), zero h	eadspace (VOC vials)?
v .	Sumple condition	documented broke	in, realing (mi	c_{11}	

	C.	Sample			ig (Wethanoi), zero neadspace (VOC Viais).		
		Ves Yes	🗆 No	□ NA (Please explain.)	Comments:		
	 d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient of samples, etc.? 						
		Yes	L No	NA (Please explain.)	Comments:		
	Th	ere were	no discre	pancies noted on the cooler rece	eipt form.		
	e.	Data qu	ality or u	sability affected? (Please expla	ain.) Comments:		
	Th	e data qu	ality and	usability were not affected.			
4.	<u>Ca</u> a.	<mark>ise Narra</mark> Present ⊽ Yes	ative and unde □ No	rstandable? 「NA (Please explain.)	Comments:		
 b. Discrepancies, errors or QC failures identified by the lab? ✓ Yes □ No □ NA (Please explain.) Comments: QC failures are discussed in the relevant sections of this checklist. SW8260: The internal standard recovery of Chlorobenzene-d5 (analyzed on 6/27/16) in samples 16WNTF-SB07-10-SO and 16WNTF-SB06-08-SO, 16WNTF-SB05-08-SO, and 16WNTF-SB05-10 SO was outside control criteria because of suspected matrix interference. The results quantified usin 							
	 (re-analyzed on 7/01/16). SW8270SIM: The internal standard recoveries of Naphthalene-d8, Acenapathene-d10 and Phenanthrene-d10 (analyzed on 7/7/16) in numerous samples were outside control criteria because of matrix interferences. These samples were reanalyzed and reported at dilution for the compounds associate with the internal standard in question. The results quantified using this internal standard are reported from a dilution analysis with acceptable internal standard recovery (re-analyzed on 7/7/16 and 7/9/16). 						
ī	c.	Were al	l correcti	ve actions documented?	Comments:		
	Th	ere were	no corre	ctive actions documented.			
	d.	What is	the effec	t on data quality/usability acco	ording to the case narrative? Comments:		
	Th	e data qu	ality and	usability were not affected.			
Sa	mpl	les Resul	lts				

a. Correct analyses performed/reported as requested on COC?

5.

	165	INO	NA (Please explain.)	Comments:
L				
b. Al	l appli	cable ho	olding times met?	
•	Yes	🗖 No	NA (Please explain.)	Comments:
c. Al	l soils	reported	l on a dry weight basis?	
•	Yes	□ No	NA (Please explain.)	Comments:
d. Ar	the roject?	reported	PQLs less than the Cleanup Lev	rel or the minimum required detection level for the
V	Yes	🗖 No	□ NA (Please explain.)	Comments:
All LO	DDs w	ere repo	rted less than the respective clea	nup level for this project.
e. Da	ata qua	llity or u	sability affected?	Comments:
The da	ata qua	lity and	usability were not affected.	
ii.	All n			
	1 111 11	nethod b	lank results less than PQL?	
		nethod b Yes 🔽	lank results less than PQL? No 🔲 NA (Please explain.)	Comments:
AK10	2 - DI	rethod b Yes RO was	lank results less than PQL? No INA (Please explain.) detected in the method blank for	Comments: batch KWG1605233 at 3.2 mg/kg.
AK10 SW82 Methy Benzo Fluore	2 – DI 270SIN vlnaph o(a)pyr ene, Na	nethod b Yes RO was I – The thalene, rene, Ben aphthale	lank results less than PQL? No NA (Please explain.) detected in the method blank for method blank for batch KWG16 2-Methylnaphthalene, Acenapht nzo(b)fluoranthene, Benzo(g,h,i) ne and Pyrene.	Comments: batch KWG1605233 at 3.2 mg/kg. 05183 had detections for the following analytes: 1 thylene, Anthracene, Benzo(a)anthracene, perylene, Chrysene, Dibenzofuran, Fluoranthene,
AK10 SW82 Methy Benzo Fluore	2 - DI 270SIN 270S	Nethod b Yes RO was A – The thalene, rene, Ber aphthale ove PQI	Alank results less than PQL? No NA (Please explain.) detected in the method blank for method blank for batch KWG16 2-Methylnaphthalene, Acenapht nzo(b)fluoranthene, Benzo(g,h,i) ne and Pyrene.	Comments: batch KWG1605233 at 3.2 mg/kg. 05183 had detections for the following analytes: 1 thylene, Anthracene, Benzo(a)anthracene,)perylene, Chrysene, Dibenzofuran, Fluoranthene,
AK10 SW82 Methy Benzo Fluore iii.	2 - DI 2 - DI 270SIN 70SIN 70(a)pyr p(a)pyr pressor (a) pyr 270SIN 270SIN 70SIN	nethod b Yes RO was A – The thalene, rene, Ber aphthale ove PQI	Alank results less than PQL? No NA (Please explain.) detected in the method blank for method blank for batch KWG16 2-Methylnaphthalene, Acenapht nzo(b)fluoranthene, Benzo(g,h,i) ne and Pyrene.	Comments: batch KWG1605233 at 3.2 mg/kg. 05183 had detections for the following analytes: 1 hylene, Anthracene, Benzo(a)anthracene, perylene, Chrysene, Dibenzofuran, Fluoranthene, Comments: <u>VNTE-SB08-12-SO-9_16WNTE-SB07-08-SO</u>
AK10 SW82 Methy Benzc Fluore iii. 16WN 16WN	$\frac{1}{2 - DI}$ $\frac{2}{2 - DI}$	nethod b Yes RO was A – The thalene, rene, Ben aphthale ove PQI B08-06 B06-06	lank results less than PQL? No NA (Please explain.) detected in the method blank for method blank for batch KWG16 2-Methylnaphthalene, Acenapht nzo(b)fluoranthene, Benzo(g,h,i) ne and Pyrene. , what samples are affected? SO, 16WNTF-SB08-12-SO, 16W SO, 16WNTF-SB06-08-SO, 16W	Comments: : batch KWG1605233 at 3.2 mg/kg. :05183 had detections for the following analytes: 1 thylene, Anthracene, Benzo(a)anthracene,)perylene, Chrysene, Dibenzofuran, Fluoranthene, Comments: VNTF-SB08-12-SO-9, 16WNTF-SB07-08-SO, VNTF-MW36-12-SO, 16WNTF-MW36-14-SO
AK10 SW82 Methy Benzc Fluore iii. 16WN 16WN	2 – DI 270SIN 27	nethod b Yes RO was I – The thalene, rene, Ben aphthale ove PQI B08-06- B06-06- me affect	lank results less than PQL? No NA (Please explain.) detected in the method blank for method blank for batch KWG16 2-Methylnaphthalene, Acenapht nzo(b)fluoranthene, Benzo(g,h,i) ne and Pyrene. ., what samples are affected? SO, 16WNTF-SB08-12-SO, 16W SO, 16WNTF-SB06-08-SO, 16W ed sample(s) have data flags and	Comments: : batch KWG1605233 at 3.2 mg/kg. :05183 had detections for the following analytes: 1 thylene, Anthracene, Benzo(a)anthracene,)perylene, Chrysene, Dibenzofuran, Fluoranthene, Comments: VNTF-SB08-12-SO-9, 16WNTF-SB07-08-SO, VNTF-MW36-12-SO, 16WNTF-MW36-14-SO l if so, are the data flags clearly defined?
AK10 SW82 Methy Benzc Fluore iii. 16WN 16WN iv.	$\frac{1}{2} - DI$ $\frac{2}{70SIN}$ $\frac{2}{70SIN}$ $\frac{2}{70SIN}$ $\frac{2}{70SIN}$ $\frac{2}{70SIN}$ $\frac{2}{70SIN}$ $\frac{2}{70SIN}$ $\frac{2}{70SIN}$	nethod b Yes RO was A – The thalene, rene, Ber aphthale ove PQI B08-06- B06-06- me affect Yes	 Iank results less than PQL? No NA (Please explain.) Idetected in the method blank for method blank for batch KWG16 2-Methylnaphthalene, Acenaphthic Acenaphthic (b)fluoranthene, Benzo(g,h,i) ne and Pyrene. 2, what samples are affected? SO, 16WNTF-SB08-12-SO, 16W 	Comments: batch KWG1605233 at 3.2 mg/kg. 05183 had detections for the following analytes: 1 thylene, Anthracene, Benzo(a)anthracene,)perylene, Chrysene, Dibenzofuran, Fluoranthene, Comments: WNTF-SB08-12-SO-9, 16WNTF-SB07-08-SO, WNTF-MW36-12-SO, 16WNTF-MW36-14-SO l if so, are the data flags clearly defined? Comments:

v. Data quality or usability affected? (please explain)

Comments:

Results qualified B are considered estimated and biased high. The data quality for these samples was minimally affected since all results were below ADEC screening criteria.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

 \checkmark Yes \square No \square NA (Please explain.)Comments:

An LCS/LCSD and MS/MSD (DoD QSM required) was analyzed for all methods.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \square Yes \square No \square NA (Please explain.) Comments:

There were no inorganics submitted with this SDG.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

 \square Yes \blacksquare No \square NA (Please explain.) Comments:

SW8270SIM - The 16WNTF-SB08-06-SO MS recovery for 1-Methylnaphthalene was outside of QC criteria (biased low, 38%) in batch KWG1605183.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

□ Yes I No □ NA (Please explain.)

Comments:

SW8270SIM – The 16WNTF-SB08-06-SO MS/MSD RPDs for 2-methylnaphthalene was greater than 20% at 22%.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

16WNTF-SB08-06-SO

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

🗖 Yes 🛛 No 🗖 NA (Please explain.)

Comments:

AK102 – Sample 16WNTF-SB08-06-SO was not qualified due to low MS recovery because the sample concentration was greater than the spike amount for 1-methylnaphthalene. The 16WNTF-SB08-06-SO results for 2-methylnaphthalene was flagged JD due to MS/MSD RPDs greater than criteria.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality was minimally affected. All qualified results are significantly less than the ADEC cleanup criteria.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

SW8260 – The 4-bromofluorobenzene surrogate recovery for 16WNTF-SB07-10-SO was outside of QC criteria (biased low, 70%).

SW8270SIM - The fluorene-d10 surrogate recovery for samples 16WNTF-SB07-10-SO. 16WNTF-SB06-06-SO, and 16WNTF-SB06-08-SO was outside of QC criteria (biased high).

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

□ Yes □ No □ NA (Please explain.) Comments:

SW8260: For sample 16WNTF-SB07-10-SO results were not qualified because only one surrogate was outside of QC criteria. The other three surrogates were in control.

SW8270SIM – All associated sample results were analyzed at a dilution factor of five or greater; therefore no flag is required for surrogate recovery outliers.

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

The data quality and usability were not affected.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes No NA (Please explain.)

Comments:

One soil trip blank 16WNTF-TB01-SO was submitted in cooler "Fort Knox".

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

 \blacksquare Yes \square No \square NA (Please explain.) Comments:

iii. All results less than PQL?

🔽 Yes 🔲 No 🔲 NA (Please explain.)

SW8260 - Toluene was detected in the trip blank, 16WNTF-TB01-SO, at 0.027 mg/kg.

iv. If above PQL, what samples are affected?

Comments:

Comments:

Sample results within five times the method blank contamination:16WNTF-SB08-06-SO, 16WNTF-SB08-12-SO-9, 16WNTF-SB07-10-SO

v. Data quality or usability affected? (Please explain.)
Toluene results for the associated samples were qualified B are considered estimated and biased high. The data quality for these samples was minimally affected since all results were below ADEC screening criteria.
e. Field Duplicatei. One field duplicate submitted per matrix, analysis and 10 project samples?
YesNoNA (Please explain.)Comments:
One field duplicates were submitted with 10 primary samples.
ii. Submitted blind to lab?
✓ Yes ☐ No ☐ NA (Please explain.) Comments:
Sample ID/ Duplicate ID: 16WNTF-SB08-12-SO/ 16WNTF-SB08-12-SO-9.
iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R_1-R_2) (R_1-R_2) x 100 $((R_1+R_2)/2)$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
$R_2 = Field Duplicate Concentration$
□ Yes I No □ NA (Please explain.) Comments:
The soil field duplicates were evaluated using the RPD limit of 50%. When one result was ND and the other was detected the LOD was used in place of the ND result. The following analyte had a RPD greater than 50% in sample/duplicate 16WNTF-SB08-12-SO/ 16WNTF-SB08-12-SO-9: Pyrene (53%), DRO (73%).
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
The data quality was minimally affected. The sample/duplicate results with RPDs greater than 50% were qualified JD. The higher or detected value will be used for reporting purposes. The results were all well below the respective ADEC cleanup levels.
f. Decontamination or Equipment Blank (If not used explain why).
\Box Yes \Box No $\overline{\square}$ NA (Please explain.) Comments:
There were no equipment blanks reported for this project.
i All results less than POI ?
\square Yes \square No \square NA (Please explain.) Comments:
NA
11. If above PQL, what samples are affected? Comments:

iii. Data quality or usability affected? (Please explain.)

Comments:

The data quality and usability were not affected.

7. <u>Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific, etc.)</u>

a. Defined and appropriate?

✓ Yes ☐ No ☐ NA (Please explain.)

Comments:

Qualifiers applied are defined in the Data Quality Assessment appendix of the report.

Laboratory Data Review Checklist

Comp	oleted by:	Can	Candace Ede					
Title:		Che	mist		Date:	09-07-2016		
CS R	eport Name:	Wes	st Nome Tank Farm Repo	ort	Report Date:	September 2016		
Consi	ultant Firm:	Jaco	Jacobs Engineering Group Inc.					
Labo	ratory Name:	ALS	5	Laboratory Report Number:		K1606999		
ADE	C File Number	r: 400.	.38.002	ADEC Haz	ard ID:	575		
 Laboratory Did an ADEC ✓ Yes N 		DEC CS-a	CCS-approved laboratory receive and <u>perform</u> all of the submitted of the		ted sample analyses?			
	b. If the <u>samp</u> laboratory □ Yes Γ	ples were , was the No	were transferred to another "network" laboratory or sub-contracted to an alternate as the laboratory performing the analyses ADEC CS approved? No R (Please explain.) Comments:					
	All samples	were ana	e analyzed by ALS Environmental of Kelso, WA.					
2. <u>C</u>	hain of Custor a. CoC info	<u>ly (CoC)</u> rmation o) completed, signed, and da	ated (includii	ng released/received	l by)?		
	Ves Ves	🗖 No	No \square NA (Please explain.) Comments					
	b. Correct A ▼ Yes	analyses : No	requested? NA (Please explain.)		Comments:			
3. <u>Laboratory Sampl</u> a. Sample/cool		nple Rec	e Receipt Documentation ler temperature documented and within range at rec		ge at receipt $(4^\circ \pm 2)$	° C)?		
Yes L		la NO	na (Please explain.)		Comments:			
The sample/cool		cooler ter	nperature was:					
	Cooler Pogo:	: 2.7° C /	3.3° C					
	b. Sample p Volatile (reservati Chlorinat	on acceptable – acidified ed Solvents, etc.)?	waters, Met	hanol preserved VC	C soil (GRO, BTEX,		
	Ves	🗖 No	🗖 NA (Please explain.)		Comments:			

Version 2.7

	a 1 11.1	1 / 1	1 1	1 1 .	$\Delta f (1 = 1)$	1 1	$(\mathbf{VOC} \cdot 1)$
с.	Sample condition	documented -	- broken,	leaking	(Methanol),	, zero neads	pace (VOC viais)?

C.	✓ Yes		\square NA (Please explain.)	Comments:
d.	If there containe samples	were any ers/preser , etc.?	discrepancies, were they docu vation, sample temperature ou	umented? For example, incorrect sample utside of acceptable range, insufficient or missing
	Ves Yes	🗖 No	NA (Please explain.)	Comments:
Th an	ere were alysis) for	no discre	pancies noted on the cooler reco nent samples. These samples w	eipt form. The lab did not analyze for AK101 (GRO //ere re-collected and analyzed with SDG K1610186.
e.	Data qu	ality or u	sability affected? (Please expl	ain.) Comments:
Th	e data qua	ality and	usability were not affected.	
<u>Са</u> а.	ase Narra Present	a <u>tive</u> and unde	rstandable?	
	Ves Yes	🗆 No	NA (Please explain.)	Comments:
b.	Discrepa Yes	ancies, ei D No	rors or QC failures identified	by the lab? Comments:
QQ	C failures	are discu	ussed in the relevant sections of	of this checklist.
SV 16 wa int an	W8260: T WNTF-S as outside ternal star alyzed or	The intern B04-06- control o ndard are 6/30/16	al standard recovery of Chloro SO, 16WNTF-SB04-08-SO, 1 criteria because of suspected n reported from a dilution analy).	obenzene-d5 (analyzed on 6/27/16) in samples 6WNTF-SB04-08-SO-9, and 16WNTF-SB03-06-SO natrix interference. The results quantified using this ysis with acceptable internal standard recovery (re-
SV Ph ma ass rep	W8270SI alenanthrea atrix inter sociate way	M:The ir ne-d10 (a ferences ith the in om a dilut	aternal standard recoveries of I analyzed on 7/15/16) in numer These samples were reanalyz ternal standard in question. The tion analysis with acceptable in	Naphthalene-d8, Acenapathene-d10 and rous samples were outside control criteria because of zed and reported at dilution for the compounds ne results quantified using this internal standard are internal standard recovery (re-analyzed on 7/16/16).
c.	Were al	l correcti	ve actions documented?	
	T Yes	🗖 No	✓ NA (Please explain.)	Comments:
Th	nere were	no corre	ctive actions documented.	
d.	What is	the effec	t on data quality/usability acco	ording to the case narrative? Comments:
Th	e data qua	ality and	usability were not affected.	

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

V	Yes	🗖 No	🗖 NA (Please explain.)	Comments:
b 4	ll appli	cable h	alding times met?	
U. A.	II appin		$\prod_{i=1}^{n} NA (Dlagge explain)$	Commenter
V	res	I NO	NA (Please explain.)	Comments:
c. A	ll soils :	reporte	d on a dry weight basis?	
V	Yes	🗆 No	T NA (Please explain.)	Comments:
d. A	re the re	eported	PQLs less than the Cleanup	Level or the minimum required detection level for the
	Yes	🗖 No	NA (Please explain.)	Comments:
All L	ODs we	ere repo	orted less than the respective	cleanup level for this project.
e D	ata ana	lity or 1	usability affected?	
C. D	ata qua	nty Of t		Comments:
The d	ata qual	lity and	usability were not affected	
		Yes [No NA (Please explain.) Comments:
ii.	All m	ethod b	blank results less than PQL?	
		Yes	🛙 No 🛛 NA (Please explain.) Comments:
AK1(D2 - DR	RO was	detected in the method blank	x for batch KWG1605251 at 3.6 mg/kg.
iii	i. If abo	ove PQ	, what samples are affected	Comments:
16W1	NTF-SF	04-SD	, 16WNTF-SP05-SD, 16WN	TF-SP06-SD
iv	. Do th	e affec	ted sample(s) have data flags	and if so, are the data flags clearly defined?
		Yes [No 🔲 NA (Please explain.) Comments:
Resul	lts for a	ssociate	ed samples within five times	the method blank contamination were qualified B.
v.	Data	quality	or usability affected? (please	e explain) Comments:
Resul minin	lts quali nally af	fied B	are considered estimated and since all results were below A	biased high. The data quality for these samples was ADEC screening criteria.
b. La i.	aborato Orgai per A	ry Cont nics – C K metł	rol Sample/Duplicate (LCS/ One LCS/LCSD reported per ods, LCS required per SW84	LCSD) matrix, analysis and 20 samples? (LCS/LCSD require 46)

🗹 Yes 🔲 No	□ NA (Please explain.)
------------	------------------------

Comments:

An LCS/LCSE	and MS/MS	SD (DoD QSM required)	was analyzed for all methods.				
ii. Metals/ samples	ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?						
🗆 Ye	s 🔲 No	✓ NA (Please explain.)	Comments:				
There were no	inorganics s	ubmitted with this SDG.					
iii. Accura project 75%-12	cy – All perc specified DQ 25%, AK103	ent recoveries (%R) repor Os, if applicable. (AK Pe 60%-120%; all other ana	ted and within method or laboratory limits? And etroleum methods: AK101 60%-120%, AK102 lyses see the laboratory QC pages)				
∨ Ye	s 🔲 No	NA (Please explain.)	Comments:				
iv. Precisio limits? and or s laborate	on – All relat And project sample/samp ory QC pages	ive percent differences (R specified DQOs, if applic le duplicate. (AK Petroleu s)	PD) reported and less than method or laboratory able. RPD reported from LCS/LCSD, MS/MSD, im methods 20%; all other analyses see the				
∨ Ye	s 🔲 No	NA (Please explain.)	Comments:				
v. If %R o	or RPD is out	side of acceptable limits,	what samples are affected? Comments:				
vi. Do the	affected sam	ple(s) have data flags? If	so, are the data flags clearly defined?				
🗆 Ye	s 🔲 No	✓ NA (Please explain.)	Comments:				
NA							
vii. Data qu	ality or usab	ility affected? (Use comm	nent box to explain.) Comments:				
The data qualit	y and usabili	ty were not affected.					
 c. Surrogates i. Are sur ☑ Ye 	– Organics C rogate recove s 🔲 No	Only eries reported for organic NA (Please explain.)	analyses – field, QC and laboratory samples? Comments:				
ii. Accura project see the □ Ye	cy – All perc specified DQ laboratory re s ♥ No	ent recoveries (%R) report Os, if applicable. (AK Per port pages) NA (Please explain.)	ted and within method or laboratory limits? And etroleum methods 50-150 %R; all other analyses Comments:				
SW8270SIM - SB04-08-SO, SB02-06-SO, outside of QC	The fluorend 16WNTF-SH 16WNTF-SH criteria (biase	e-d10 surrogate recovery 1 804-08-SO-9, 16WNTF-5 802-08-SO, 16WNTF-SE ed low).	for samples 16WNTF-SB04-06-SO, 16WNTF- SB03-06-SO, 16WNTF-SB03-08-SO, 16WNTF- 801-06-SO, and 16WNTF-SB01-08-SO was				

iii.	Do the sample results	with failed surroga	te recoveries	have data	flags? If so,	are the	data flags
	clearly defined?						

clearly defined?	
🗆 Yes 🛛 Vo 🗖 NA (Please explain.)	Comments:
SW8270SIM – All associated sample results were analyzed at a no flag is required for surrogate recovery outliers.	a dilution factor of five or greater; therefore
iv. Data quality or usability affected? (Use the comment	box to explain.) Comments:
The data quality and usability were not affected.	
 d. Trip blank – Volatile analyses only (GRO, BTEX, Volati <u>Water and Soil</u> i. One trip blank reported per matrix, analysis and for e (If not, enter explanation below.) 	le Chlorinated Solvents, etc.): ach cooler containing volatile samples?
Ves 🗆 No 🗖 NA (Please explain.)	Comments:
One soil trip blank 16WNTF-TB02-SO was submitted in coole	r "Pogo".
ii. Is the cooler used to transport the trip blank and VOA (If not, a comment explaining why must be entered be	a samples clearly indicated on the COC? elow)
Ves 🗆 No 🗖 NA (Please explain.)	Comments:
iii. All results less than PQL?	
Ves 🗆 No 🗖 NA (Please explain.)	Comments:
All results were non-detect for trip blank 16WNTF-TB02-SO.	
iv. If above PQL, what samples are affected?	Comments:
NA	
v. Data quality or usability affected? (Please explain.)	Comments:
The data quality and usability were not affected.	
 e. Field Duplicate i. One field duplicate submitted per matrix, analysis and 	d 10 project samples?
Ves 🗆 No 🗖 NA (Please explain.)	Comments:
Two field duplicates were submitted with 16 primary samples.	
ii. Submitted blind to lab?	
Yes No NA (Please explain.)	Comments:
Sample ID/ Duplicate ID: 16WNTF-SB04-08-SO/ 16WNTF	-SB04-08-SO-9 and 16WNTF-SP03-SD/

16WNTF-SP03-SD-9.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (

 (R_1-R_2) x 100

 $((R_1+R_2)/2)$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

 \Box Yes \blacksquare No \Box NA (Please explain.) Comments:

The soil field duplicates were evaluated using the RPD limit of 50%. When one result was ND and the other was detected the LOD was used in place of the ND result. The following analyte had a RPD greater than 50% in sample/duplicate 16WNTF-SP03-SD/ 16WNTF-SP03-SD-9: Acenaphthene (74%), Anthracene (114%), Benzo(a)anthracene (86%), Benzo(a)pyrene (69%), Benzo(b)fluoranthene (80%), Benzo(g,h,i)perylene (67%), Benzo(k)fluoranthene (81%), Chrysene (60%), Dibenzo(a,h)anthracene (86%), Fluoranthene (75%), Fluorene (76%), Indeno(1,2,3-cd)pyrene (74%), Phenanthrene (50%) and Pyrene (51%).

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality was minimally affected. The sample/duplicate results with RPDs greater than 50% were qualified JD. The higher or detected value will be used for reporting purposes. The results were all well below the respective ADEC cleanup levels.

f. Decontamination or Equipment Blank (If not used explain why).

iii. Data quality or usability affected? (Please explain.)

The data quality and usability were not affected.

7. <u>Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific, etc.)</u>

- a. Defined and appropriate?
 - 🗹 Yes 🔲 No 🔲 NA (Please explain.)

Comments:

Comments:

Qualifiers applied are defined in the Data Quality Assessment appendix of the report.

Laboratory Data Review Checklist

Completed by:	Candace Ede				
Title:	Chemist	Date:	09-08-2016		
CS Report Name:	West Nome Tank Farm Repo	ort Report Date:	September 2016		
Consultant Firm:	Jacobs Engineering Group In	nc.			
Laboratory Name:	ALS	Laboratory Report Number	K1610186		
ADEC File Number:	400.38.002	ADEC Hazard ID:	575		
a. Did an ADE	CCS-approved laboratory receive and <u>perform</u> all of the submitte No INA (Please explain.) Comments:		nitted sample analyses?		
b. If the <u>sample</u> laboratory, v	as the laboratory performing the laboratory performing the laboratory performing the No I I NA (Please explain.)	network" laboratory or sub-com he analyses ADEC CS approve Comments: ental of Kelso, WA.	d?		
a. CoC inform ✓ Yes	(CoC) ation completed, signed, and dated (including released/receive No NA (Please explain.) Comments:		ed by)?		
b. Correct Ana ✓ Yes	alyses requested? No 🔲 NA (Please explain.)	Comments:			
a. Sample/coo ✓ Yes The sample/coo	le Receipt Documentation ler temperature documented an No INA (Please explain.) oler temperature was:	ad within range at receipt $(4^{\circ} \pm Comments:$	2° C)?		
Cooler Murunt	au: 0.1° C /-0.7° C	l waters, Methanol preserved V	OC soil (GRO, BTEX.		
Volatile Ch ▼ Yes □	lorinated Solvents, etc.)? No INA (Please explain.)	Comments:	× -7 7		
	c.	Sample of Ves	condition	n documented – broken, leaking (Meth	nanol), zero headspace (VOC vials)? Comments:
------------	--	--------------------------------------	--------------------------------	--	--
	d.	If there y containe samples,	were any rs/preser etc.?	discrepancies, were they documented vation, sample temperature outside of \Box NA (Please explain)	? For example, incorrect sample acceptable range, insufficient or missing
	Th	e sample 1	temperati	ures below acceptable range were noted	on the sample receipt form.
		<u>, sumpre (</u>			
	e.	Data qua	lity or u	sability affected? (Please explain.)	Comments:
	Th no	e data qua note of fr	lity and ozen sam	usability were not affected. The samples pples.	s were received in good condition and there was
4.	<u>Ca</u> a.	i <mark>se Narra</mark> Present a	tive and unde	erstandable?	
		Ves Yes	🗖 No	□ NA (Please explain.)	Comments:
	b. Discrepancies, errors or QC failures identified by the lab?				
		M Yes	II No	NA (Please explain.)	Comments:
	QC	failures	are discu	issed in the relevant sections of this ch	necklist.
	c.	Were all	correcti	ve actions documented?	
		TYes	🗖 No	✓ NA (Please explain.)	Comments:
	Th	ere were	no corre	ctive actions documented.	
	d.	What is	the effec	t on data quality/usability according to	the case narrative? Comments:
	Th	e data qua	lity and	usability were not affected.	
C -			ha		
<u>58</u>	a.	Correct a	analyses	performed/reported as requested on C	OC?
		✓ Yes	No	\square NA (Please explain.)	Comments:
	b.	All appli	icable ho	olding times met?	
		Ves Yes	🗖 No	NA (Please explain.)	Comments:
	c.	All soils	reported	l on a dry weight basis?	
		Ves	□ No	□ NA (Please explain.)	Comments:
				· • •	

5.

d. Ar	the reported	ed PQL	s less than the Cleanup Leve	el or the minimum required detection level
	Yes 🔲 N	0 🗆 N	A (Please explain.)	Comments:
All LO	ODs were re	ported l	ess than the respective clea	nup level for this project.
e. Da	ata quality o	r usabili	tv affected?	
				Comments:
The da	ata quality ar	nd usabi	ity were not affected.	
۲ Samı	aloc			
<u>- sam</u> a. M	ethod Blank			
i.	One metho	od blank	reported per matrix, analys	sis and 20 samples?
	Ves Yes	🗖 No	🗖 NA (Please explain.)	Comments:
ii.	All method	d blank	results less than POL?	
	Ves	🗖 No	□ NA (Please explain.)	Comments:
All re	sults were no	on-dete	ct in the method blank.	
	If above D	OI wh	at complex are affected?	
111.		QL, WI	at samples are affected?	Comments:
NA				
iv.	Do the affe	ected sa	mple(s) have data flags and	if so, are the data flags clearly defined?
	Tes Yes	🗖 No	NA (Please explain.)	Comments:
3.7.4				

The data quality and usability were not affected.

b.	Laboratory	Control	Sample/	Duplicate	(LCS/LC	CSD)
	2		1	1	\	

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

🗹 Yes 🔲 No 🔲 NA (Please explain.)

Comments:

An LCS/LCSD and MS/MSD (DoD QSM required) was analyzed for all methods.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

YesNoNA (Please explain.)Comments:There were no inorganics submitted with this SDG.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

 \checkmark Yes \square No \square NA (Please explain.)Comments:

iv.	Precision – All relative percent differences (RPD) reported and less than method or laboratory
	limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD,
	and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the
	laboratory QC pages)

 \blacksquare Yes \square No \square NA (Please explain.)

Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

NA	

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

🗖 Yes 🔲 No 📝 NA (Please explain.)

NA

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Comments:

Comments:

The data quality and usability were not affected.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
 - Ves 🗆 No 🗖 NA (Please explain.)
 - ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes No NA (Please explain.)

Comments:

- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
 - 🗖 Yes 🔲 No 🔽 NA (Please explain.)

Comments:

NA

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

The data quality and usability were not affected.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - \blacksquare Yes \square No \square NA (Please explain.) Comments:

One soil trip blank 16WNTF-TB03-SO was submitted in cooler "Muruntau".

ii. Is the cooler used to transport the trip blank a (If not, a comment explaining why must be e	and VOA samples clearly indicated on the COC? entered below)
✓ Yes □ No □ NA (Please explain.)	Comments:
iii. All results less than PQL? ✓ Yes □ No □ NA (Please explain.)	Comments:
All results were non-detect in the trip blank.	
iv. If above PQL, what samples are affected?	Comments:
NA	
v. Data quality or usability affected? (Please ex	cplain.) Comments:
The data quality and usability were not affected.	
 e. Field Duplicate i. One field duplicate submitted per matrix, and ✓ Yes □ No □ NA (Please explain.) 	alysis and 10 project samples? Comments:
One field duplicates were submitted with six primary s	samples.
ii. Submitted blind to lab? ✓ Yes □ No □ NA (Please explain.)	Comments:
Sample ID/ Duplicate ID: 16WNTF-SP02-SD/ 16W	/NTF-SP02-SD-9.
 iii. Precision – All relative percent differences (I (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: 	RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$ In Concentration
where $R_1 = \text{Samp}$ $R_2 = \text{Field}$	Duplicate Concentration
✓ Yes □ No □ NA (Please explain.)	Comments:
iv. Data quality or usability affected? (Use the c	comment box to explain why or why not.) Comments:
The data quality and usability were not affected.	
f. Decontamination or Equipment Blank (If not use	ed explain why).

Tyes No NA (Please explain.)

Comments:

There were no equipment blanks reported for this project.

i. All results less than PQL?	
🗖 Yes 🗖 No 🔽 NA (Please explain.)	Comments:
NA	
ii. If above PQL, what samples are affected?	
	Comments:
NA	
iii. Data quality or usability affected? (Please explain.)	
	Comments:
The data quality and usability were not affected.	
Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific,	etc.)
a. Defined and appropriate?	
Ves No NA (Please explain.)	Comments:
Qualifiers applied are defined in the Data Quality Assessme	nt appendix of the report.

7.

ATTACHMENT C-4

Laboratory Deliverables

Provided electronically on CD

APPENDIX D Field Documentation

per diene on expense report - Mondays

> All programs > VPN client > VPN client > connect BSNC

- hard hat etc. ? Yes - vest & Yes - safety glasses- Yes

NomE 2:30 P.M. 6/18/16 AK Too 2 Discovery Darren 7 barry & Candice - Jacobs Pavid Sander 5 - TITLE II (COTR) NORTHWIND CONTRACTOR FROM DRO - lower limit 10,250 ppm USAF Diesel Range Organics

Sunday 6/19

PAM - MUSTER POINT - Safety Inceting To develop montoring wells THURS - demo on pump house; Tumet-initial Fri Twee 23-27 - surveyor will shoot in cap(pad) perimeter - grade site & elev. Mon. 27 - Also GPS 2 NEW MONITORING Wells Annon Burmeister - 907 460 8229

-geo textile tabric BSPS-for a couple laborers - box of stap ks to pin down fabric

password & BSNC - frontstreet office in Nome Igate comb. 9.7-2.3 for Airtorce office - 110 Front Str 33+! - Larry Amskold - Jacobs Engineering field screening - potential contaminated soil placed in bagger; after \$ 10 min. PiD instrument used to get PPM of DRO Samples - soil collected & put in aless containers & sent to lab for precise lab analysis.

> June 20 Monday Ak Marine Lines * 577073 voyage # WIGOGN - booking # for Stortextile fabric - 40 RD > - START HAVLING IN Sand (22") for cap -6" of 2"minus over sand - 40 ROLLS. > left Seattle on June 10 12.5 × 360' - bet 2 laborers' from BSDC - well do an inferco billing - they do a reg time sheet I we will handle inferhally -It is DB wace, BSDC keeps the tringe it they are Prip full time employee up benefits. Monday May also need a laborer Inove warter Sample But this 10 / 11 12 13 14 15 16 0800 - Safety meeting -6 pore Had sampling -Tous Wed - Develop 2 wells; hand drive pipe @ - 0845 Lerry Robensin Micholai BSNC Elec Bensin Work Geotec BSDC W/BSI bera/1 Jell 34.0593 Hde line (6) & sample H2O & sectiment by -24 ALS. - sample 2 wells Wind energy Works 23'd 29 2 5 de du massifill 0800 guy W/BSNC 16 Fabric 2245 0900 lumet thdustries NE CKR. 20 from fire hydrant Kim n Cal - Cal Foreman for Stampede -> 00 1 62 15 Bench mark) # 15 7323-5 M(S) AARON & ken Bendz - #5. to Supt for Haron WEDNESDAY city of Nome - get key to Monofill Ext. fill permit is in Front Cover of 3 ring binder

Nome Energency # 907.443.5262 Tuesday 6/21 115 - Nick to Airport 1125 Lall Kes B. 907.351.8702 0800 - satety meeting w/ facolos & Davie Sandals to get Jitt's # w/ Stampede - will do 5 pore water Samples & remaining Ats V Call Jeff (907.434.0593) - set-up 2 side dump trucks for 0800 on the 23 & 24th, to remove demoid building former Pump House - to start about 15 min after high fide Then; develop 2nd monstoring well (1030 - middle of 3rd porewater sample 1040 - With Dan, Larry, Murch Burneister ofter survey, Timal grade prep. before for Larry & deron & get 23 laborers from BSDC ready for 10 2 lays labor. -One fabric is set - start having some (*) Make sure the spec. matches what laron has (250) 1500 1300 - 1430 - & SITE, observe well development surge - pump the well to the bottom with 1" plastic hose w/small filter on end; -Truck Yard - met Cal (Stampede) \$ geff Button (Stampede) 1600 to get all sediments of the walls & floor of well. purge - after surging, siphoning out 5-105 Turnet are fuel there a own equip. when on site ; we will fuel D-9 when it is pusting up sand at dieder #6 - sand it for fill & cite (WNTF) West None Tank Farm 3 fall ayeles of sung/purge to develop 1700 - cont. developing well. END of Day 1835 - STOP, Well developed ... End day 51/2 HRS. TO DEVELOP Jason Wy House in MO - Q-call him Kitchun problem Dan into Nome @ 1930 Tuesday 6/21 1/22 0715 - Brkfit Dan - Progress Report - Day Activities

Shur T

45 Low clouds 8-10 mph WED. June 22 443.6587-I nome juist V- PIC of fince for Att in Mondill V- To city offices; by for Mondill on Center crick rd. - p. op kig tomorrow 10 & 8:30 a.m. 907. Augusta Soli Annon Stick Shan Hendeling 21 252 443.6302 Gottine 987.304.5545 cell 1 in 1252 0500-Safety ming. w/ Jacobs & Month Wind for Davild Sunders 0845 - vie w/observe barge - conveyor belt rock being loadel. Da Arrive 18th Ø. 75% 88 # 63 1900 - pice for the fence 1930 - 1000 observe Jacoles sampling & monitoring well behind (east lide) of Sun M T W TR F 19 28 DRILL DE-MOB SAMPLE DRILL 23 25 24 21 22 1030 - City Hall - arrowge for access to more fill on Ctr. Ck. rd. MOR 0)A JACOBS - FONISH SELY DEMO - POMP grade house 26 27 NEED TO CHECK ON FABRIC of AARON B. (250). Fabric needed on the 29th pt (wednesday) 28 29 30 2 DAY + Alay tabric? SUNCY 267 site grade 2-5.5. 5 7 6 4 FABRIC Shaunstad metal batector ON BARGE 10 will (907)364.1642. 443-5254 1300-1930 - emails, reports 1500 - Tu met Intustries - Geo-textile fabrie on hand is WINFAB 315W -315 - Tensile strength Or R.b. BSDC -2/laborers for Tues. + Wed --Larry Pederson spec is ssoor equivalent Kim & Cal -sheepa - 28th 1600 - OBSERVE FINAL SAMPE FROM #-37 - Mike Christian - Monday 2 Hights into Nome-To St. Lawrence on Tires. 1800- LOAD REF, OWITH LARRY (JALOBS) White Envering - Maring?

48 partly sunny THURS. June 23 Friday 6/24 46° CALM/DR122LE mostly calm 6700 - Safety motor - S. Young - EEE Brian Balmer Tumet 100-Safety mily. S. You Belmer Tumet Kris Erickson Equip. on Site David Sanders - N. Wind USAF Kris Erickson -Tunt David Sanders - USAF · Cat 345 C Exc. · Lat 583 comp. -Nick Vick e-mail safety mtg. sheet · Cat DG DOZER 1 0830 - leave site w/1st load (side dump) · Yes for avernight stay · found monument, but not other one .. surveyous locating 5 wells for Jacobs 0845 - dump 1st load & monotill 30 ; 0900 - leave site 2nd load 21 (0908 - dump load 2 0921 - have site load 3 - See Bob on Monday -to remind about fobric Swite 204 - BSDC 19 (0932 - return to site 10940 - leave site load 4 20 0951 - return to site - Fabric - John Handelin - Nome joint Util. Toby S - 443-63305 yloop leave give load 5 1011 - return to site #6 20 19 (1032 - return to site 1140 - & SITE; observe site grading -1039 - leave site load #7 192 \$ 11600 PER DIEM 282" 4M. Iuc. 19 (1050 - return to site 1058-leave site load #8 Asg. 2"minus 10 cy 180" × 267 = 48,060" = 18" cy for 2"-2670 cy × 18 = 48,060 2" minus 48,160 19 1110 - Roturn 71117 - have site load \$9 22 (1130 - Roturn 1139 - leave site load \$10 22 1151 - Refurh 1204 - leave site load # 11 - finish Demo 2015 2015 7323-5 Monument 1430 - OBSERVE & SITE . Met Lucas Stotts-Harbor-- making sure heavy equip , not master in way a south und. 2613 14nn-17nn Dl. & Marrad

Cloudy 50. SAT 6/25 Sunny 50° Sun 6/26 0700 -Safety mity BRIAN BALMAY 100 - Job site KRIS Erickson SINNY - 0730- pull up bold with exterator, bendower \$ bury 1130 - airport - p. up surveyors - job site - review work plans 0800-To Jim West rock operation on isve land 0900-08SERVE EQUIP. FINISH GRADINE SITE 0930-Call Jott Setton touch base on starting to have silt band on wed on Thur - he does have loader for operation - Turnet (DG) yill spread sand when dropped by side dump Monday 6/27 CLDY. 46" - Edge Survey 0800 - Safety meeting - Mitte MacDonald Mc Mike will be in on Sunday flight C 11:30. I will pick up - to allora Hotel JEnty/Epite por 13:17 31/53 Borgh IS- July 3 1200-1300 - 25 rolls geo-tech to site Bis for the nour P(270-) Nick for & both and test Nick K A-A; really C33 mounts DIFECT T.V - 800.531.5000

CLICKSAFETY: Syoung-esciname 4600-password 675 coordinates 14 (plastic d'pvc) 1915 - Ken, miler, I discuss can construction 0920 kin wants to start hauling togerrow 1100 - Jeff Sutton 5, 1350 - met goff Sutton - Look & sand 1/3 - 4 DAINERS Hop 1480 - C GITE - OBSERVE survey crew Ho CALL OFFICE : RE - Elit wordination for LTM wells put in by gardes Tues. Wed. - 4 trucks for us THURS - Fri-try to find 5th driver, So we can have 2 side dumps here, But, 1545 - Request 2 trucks moved by Turnet will need loader & beach where sand is because their lander will be at their site loading big rock for KNIK 1800 - LEAVE SITE - TO ALAPORT P.JP CHRISTIAN KNIK has 27 more trips to make @ 5 days /trip = 27×5=135 days = NOV. 15 = NO CHANCE NU BAN SECTION (PITCHERS MOUND) & HR Ceril (SIM) 251 0465 Sporns 1900 - OFF SITE Tadalities Appin 8 hrs Presher 1983 first HCS save 43 deaths save 475 2 M hosp. / amp. / gre lose w/m 24 the form 300 N prevent 585 Save 32.2M 5DS-16 sections Buranty 20541 hothine Tillouses Timponer Cjab welned MSDS -> NOW KNOWN as 6HS- Stobally Hermonized System to report sonline Flep Month April 3 mo if most be posted Danger & Dauger is for most succe hayoud 15 is most common work related The Threshold Limit, Values

6/29, 49° PRTLY. OLDY. 0700 - Safety meeting 110 = Trucks running Kenny Harry - BSDC Roland Kandall-BSDC 1300 - & SITE - observe trucks hauling Kris Erickson - Tumet Brian Dalmer - Tumet 1400 - Mike & Christian to Ryan Aur-arrange to fly earge loads to Gambell - still too weathered in (400 clg.) to get sheysa David Smders - North Wind 5- Young - EEE 0708-1st laad hits the ground 0709-AT SITE - OBSERVE, help Laborers W/1st 1500 - Mike uf they w/ Sharp a @ 4:15 \$ Ryden work largo drill @ 4:30 soll of Deo fabric 1600-geff 5 - NO HAVL tomorrow on Da Friday Kenny u/Tumet - NOT HAPPY 1930 - VEAVE SITE - to camp, check status of 1630 - @ SITE - callet truck hand involues Sherpa 1000- C SITE - 0 BSERVE; go out to pit C dudge le- a dozer pushing hand down & a 1700 - End of Day @ WNTY loader filling Sede dumpt - just 1830 - Take Christian back to airport - Scherpa 3 trucks merching ; a 4th pulled up lo 1015 - 4 trucks runny now as of 1015 ... erines & says no more trips (dg @200-400) AND they are going back to ANCHARAGE -WTF - these guys ne out h TO DAY HAVE 1930 Clamp End of Day content 14 Northwind, Stewart Williford - 417.631.9376 meet & 10-10:30-29 + 30+27+31=117 117 Trips = 1989cy MARSH 22 sandsith 59. AREA Groocy lotAL RUNNING TOTALS Tak3 Tak4 day lot. Tot. LY 1 At TAK 2 Ines28 24 25 28 28 1785 1185 hed 29 29 31 1989 30 27 3774 217 7/2 30 29 29 10+11 1853 5627 71-

20 Coloringo THUR. 6/30 8-315h Woods Late - Doloses PK. Dallas Pass -0745 - PHONE W/NICK; yo date on yesterday -0800-phrestian to Ryan-make arroyof-ments to cargo final load to Janbell. -0830 - Christian to Bering Sea for his Ridgeway - Ouray Peadre River 20 M W. of Float Pagona Springs Fri - camp-Sat flight - 0 200 -Bick to Rgan - confirm were all - - Cellgeff - Firm Sat. ? YESTam. Cell Ken - Yes Sat 0700 Call Rot - laborers 1 Duy 443. 52.54 - Kenny 434 - 2701 - Roland 434 - 2730 RE- 5 ROLLS GEO FARKIE 443-6330 FRIDAY 7/1 Sumy 50°-116 x 75 = 870 Personal -Expense Report sent 6/18 - 7/1 per-drem # 1,595 DRONESE ZPaynolis Benefitz Fisher 49 Bank all :

22 SAT July 2 Sunny 50° ISwyh Wind : 469° 110- ESITE OBSERVE OFF SITER 1100 0700-Safety mitig Stewart, Williford North Wind 1714 - Last Joad 36+29+29 + 10+11 = 109 -Roland Randall-BSDC = 1853 cy = 5627 TOTAL for 3 days Ishin. Brian Balmer-Tumet 1800 End of Ducy Bris, Erickson Tumet Young - EEE 0703 - 15+ load - hits the ground 0720- P. up pilots for Shipa 0730 @ SITE OBSERVE 0950 - Sherpa - OUT OF NOME 907) 242. 944/ St. Lawrence Island 1052 2-56 ger butteto -Gold streak (907) 382.0146 - AWB for Gold Streak lift asine = 1110 - Stangelde, pulls 2 trucht Vmstg. 1127 - spoke of Ed, VP of Stompeche tric called him (2 0830 this a.m. - stated 1180 a 2nd barge would be in @ 1730 today - They while keep 3 trucks menning for us today thin paul 6 side dumps to barge Somelin De Sunday & Monday The 4th Should get back to us, NO problem on Tuesday & then hopefully all week. driver 10 trips To + 11 geff Iltrips 1200 @ SITE OBSERVE 1300 - 1336 Airport set Gold Streak for Sambell 1400 - 1430 OSITE - then Mike Helms - wanthe to see if Sherpa would make it back

0700 - Safety introg. Brian Balmer 5-7 nepte kris Erjekson Stumet ON SITE late - Kenny Harry BSDC INF. Roland Rondall, BSDE Stewart Williford - N.Whid EST. FINGH 2" to Morrow @ 6pm 2. Bacres DAY Totals 1st load 5705 S. Young EEE Sand -2"____ 21+23+23+21+22 8+8+9+9+8+6 0830 - To Vim West pit; chuck out 2 minus Dimension 100' x 50' x 20'= 3,300 - 3,500 cy =110 ×17 =48×17 0900. ON SITE 0915 - To Ak Marine Morthland - looking for 40 rolls ges-testele fabric - delivered to barge live on 6/19 = 29% complete 0900-ON SITE 1870 cy 7497 Tutal cy send 31/2 HRS -Pooking # 577073 2100-2800cy Hoyage # W 1606N mike Dunsmore; AIH Wed -= THRS = 1600 3 6 trucks - inder Staugude Ventures - Inter Change agreement guly 28th - mulit have CAN back 5++mcks 34 x5 = 170 cy/hr 2400 1859 cy/= 10.94R. 170 cy/hr 7 : 6 o'clack 0930 - To camp le-mail 1000 - ON SITE 100 - ON SITE 1100 - light rain 1250 - lest 300-400 cy to go (Estimate) 1400 - BITCHERS MOUND' 6 GANGER + 1704 = 10204 1503 - SAND COMPLETE 1503 - SAND COMPLETE 1900 - Last load 2' - for Long il invoices 1515-TO J. West pit wEd & 3 Tinche 155 - gim loading first few trucks antil loader from barge 6 arrives 1535 150 LAAD of 2" minus hits the cap. 1 imms of 2" lead. 26 1/2 min. 13.3/4 3/2 - EST for 2 TRIPS/HE. X GTRUCKS

0700 - Safety meeting 16 PRTLY. CLPY. 46° Brian -to sunshine 58" kuis 8-10 mgh (507 713 0656) Senny 6715 - 1st Truck Der Sartt-Noon 10 0720 - 850C - 2 Laborers show up & For laborers 0730 - To N. Land to get 40 rolls of all febru. - Don't open, until 0800. ; Save them The truction to come back @ 0800 & get rollo to Turnet. 5745- P- up Mike take samples to NAC for shipping back to ANC. 0815-@ SITE-OBSERVE -Santa Claus asys - Mike to camp -Paul FUDLA OTTE DE SITE 1000-1705 . End of day 1045 - Back to camp - take White to AK Acilino 1235 - OFF SITE / ON SITE 1330 1335 : 7844 cy -Total Silly Sand per contract 2674 cy -2" - per contract SIZE OF CAP 115, 500 SF 270 loaksfor 1400 DISCUSSION W/ Don 1500 closing IN on 6 coverage of 2 -Dasy (dunch for Stanguda) had 18 loads @ 1500. I had estimated 2/HR so anticipated the would have 16. Pace has picked up. RE estimate and conclude we are around 2400 cy, I am pavere 4 5 loads placed in middle to increase clown slightly. figured Il more loads to but 2600 - CALLEV

Cont yound to Jay Hawk heliopter

a get Jeffs (Stampsde Joreman) attention of inform this we are at full coverage-STOP trucks 1 1515.

1530 - We get 3 zone trusche ones that were loaded & headed to site.

1600 - To Stangede the collect involagroup

1645 - 104 Total Trips x 17cy = 1768 cy

+ 8 16 cy yesterday × # 20" 24 # 51,680 2

Jim West - W-9 - c-mail

CTOD Safety mtag. Brian Belmar 46° calm Kris Erickson Don Scott - N. Wind S. Young complete final dressing t comparing 0830 - Ken B. CSITE - meets Don Scott 0845 - To Northland - Tumot will p-up bes fabric 36 from Tumet & USED - We got 40 barged in - All to Tumet - We got 40 barged in - All to Tumet - All stored @ Tumet \$ 0900 - CSITE - Finishing Grading & compartion 1300 - Done by Civit -Jim West W-9 AAA Force Co- Arrive 12th 7:50 AM -> Cable locates - 270 W. Poler Bear Ave N Little Diomede 907. 686.3051 joint wilities & Warren in R w. king Pl 3rel St

Friday 7/8 CLOUDY 500 0815 @ SIFE - let Jacobs Know - 2 drums Don Scott - 90 days 71 bag (509) 713-0656 90 days 1000 - Satelite & port - meanest intersection for cable locates 907.686.3051 - NO - little Diomede Toby - Nome Joint Utilifies Vok power, water, & sewer Vok Non-hazaldous I 1100 - To Monofill - very small aut of tresh from site 1130 - replace I 'posted' sign need a rock bar; don't think the first one is going to withstand much wind

Unalaktoot Crew - Quin Reuben - Genze Wood Zarry chanoff

A Larson Heating, air, & Plumbing, 10am 10K 30K OSHA - continue >40 K - 1910.120 (h) - monitorns 50K " . " (5) - handling dreims & couldiners " (K) - Decontamination & other topics ", " (0) - new technologies (1) - Emer. Response & Hag. Waste site (P) - Contain Ope C RCRA 1976 TSP-treatment, Storage, & Disposal (2) Ener. Reporre to Hoy. Substance TIRST REPONDER - initiate energ. Response SHR Destand material that can enquel or composit tops of invarially converging writte or loy eloping floor town sequence - notify authorities of release defensive Permit - I list authorizing entry Noise MAX 18/40 TO PASS (70%) 8546A - 8 HRS HAZNAT TECH. - 34 HR. - more aggressive - stop Therebase HARMAT SPECIAL PST 24 NR. - support HAZMAT tech ; but Soil Analysis & Classification greater understanding 1910. 120 (9) Emer. Response program 55% \$ 160=139min. 39/40 Final OSHA Respirator Projection Standard 1910-134 2 MAIN TYPES · AIR PURIFYING (APR) · ATMosphere Supplying -for IDLH environs APF-Assigned Protection Factor; >#, >protection, MAPR- Powered air Pur. Resp. Can be loose of tight Elastomeric - unbler or silicone SCBA-alf contained breath app - Highest face Title Classification (first part) N-not resistant to oil R - somewhat reissant P - strongly resistant to orl 95- 39. of petticles removed 00 9907

INT. RATE 2,6% 200k home 1Syr Tot, Pd. Tor, INT, Pd down pmt MRG. PMTI 288 K 1600 98K 20k 270 K 1501 90K 253K 1408 83.4K 232K 1290 72,2K 12-11 217.9K 68K GOK 1155 207.9K 67.9K Constaction CFR Title 29 FOR Parts 1926 Subpart AA 2- Confined Speces-A prevente over 8 asserious mprice annually Permit Required - In more I has a potential to have hazerbour atmosphere

Air force Radar Station 10A600 Voyager Pro - short wave radio Q's for Nick Q's for Nick = fire ext., safety (1staid kit) - Conex = pull survey stakes ? yes 1536 fence complete 1600 - To Nome Cary offices - monofill kep - lost trip - refuse - survey states, fince puts tops Tuesday 7/12 50 Foggy -1630 - Discovery Drilling - drilling attachment, teel trailer, AWB# 027-17025621 0800 - Roger Channing - AAA Fence clay 907.244.1412 S:50 am Mike Brish James Anderson AAA 1030 Safety mituz. Don Scott - N. Wind S. yours - EEE Kethleen & Ralph - Dean Vost - 19616. halibut OBSERVE -1/14 - THURSDAY (- AB-SOTBANT PHOS TO 2 - FABRIC PINS (1 1/4 BOX) BACK IN Anchorage Office B.S.D.L. - ISH ALD KIT SKEEPE SITE FORNOW TOOL ROOM - FIRE EKT. SKEEPE SITE FORNOW - Wells Forgo - SD card - Thumh drive - fishing license 1. STRING & LINE - layout every 10" 2-START DRIVING POSTS @ 1105 - PPE for Unalakleet, - MOB 25th 1/2 × base = OT Jennifer = PPE, house keeping Expectations for the company t this job 5 678 - Deltek for all Employees in Unalaktest, 4 gives Guinn Christian -George Samaybe 2 diff codes Larry Lepending on tarks = Peace on Enrth - lite EEE same as last yr. SITE ORIEENTATION + WHAT IF'S-A- SALETY - DRY RUN - WHAT IF'S /2 day gloves, glasses hearing aid, THARD WATS corps spec. 210' × 80' - tootprint em-385, geo febric bottom of a m -Site arity -REVIEW - SSP-site Apply plan 1110 - DESERVE Wate alan

TTT Environmental Instruments and Supplies (907) 770-9041 www.tttenviro.com

X Egg & Eyo Electric al-FCD-JO7 -050K 6302 - 1404 - 000 9 50014 WNT Kite in the Kain . ALL-WEATHER FIELD BOOK Nº 350 Field Observations 6/15/16-8/27/16 L Amskald C Ede msay -----

	CONTENTS	
PAGE	REFERENCE	DATE

ALL-WEATHER **FIELD BOOK**

JACOBS ENGINEERING

Numa LARRY AMSKOND	
CANDAGE EDE	
Address 4300 B STREET, SU	A TE 640
ANGHARANS, AR 94503	
Phone 907-563-3322/90	7-200-0962
Project With Now Than	5 Filten

Rite in the Rain — A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen, *Rite in the Rain* ensures that your notes survive the rigors of the field, regardless of the conditions.

Specifications for this book:

Page	e Pattern	Cover Options	
Left Page	Right Page	Polydura Cover	Fabrikoid Cover
Columnar	1/4" Grid	Item No. 350	Item No 350F

RiteintheRain.com

Made in the USA US Pat No. 6,863,940

		6/15/16	050×6302
		EALLE EVE E	ECTRIC USAF
		6/15/16	
		1130 1000 000	- Causar diane
			- Conte
		T FICKED UP ROW	C VEHICLO
		an most al Disco	reary 197 LANTA
· · · · · · · · · · · · · · · · · · ·		SITE, THEY WIL	L
		STA CIME SUPPL	rs_ appacent re_
		6	4 # 2 S
	1	Cap GALLEO N. K.	HLARNA (COT) HO
		INDICATES LA	LING MORT AT
		SITT ON UL	16 more about them
		TALLEAT	
		1500 LA+ CE PER	Former Please
		The second second	
			Careero and Souther
		CLOSTER	
		THERE ARE 17	WELLS IN NURTHERE
		LUSTER	
		-	
			6

OSOKE 302 6/14/16 OSDK6802 G/14/16 WATE USAF/EEE 3 WATE USAF/EEE 2 N IN FREEFRENT THERE ARE 29 LORES VOTOR AN SLEE LAREY AMSKO-2 LOUGHSUS 21 20 LORD PAYON CANDACE EDE MICHE Renderinghand STEPPED BY CLINE EMORENCY RESPONSE DARREN IS ON THE BACKSIDE. TU. (NORTON SUSUE MOSPITAL) GUS + 70'S PARTEY GARNEY qui mor NOT LORIE LN TOWN. MoziEito LEVEL D EMERGENCY DISPATCH 907-443 5262 OBJECTIVES - PETRIM AND SAFETT MODEL PROLEEDED TO LEDRAG'S HOUSE TO SITTE Anche, water too commission CALCAR COULORS AND INDENTION EQUIPMENT ON SITE MATCHIALS THAT HAVE MADE IT TO SITE. · GOPROBE 6712 DT 0800 PHONE LAL W/ Nork Maday RELAFDING ADDITIONAL LOCALS. END OF DAY 4 AUTHORIZED TO DECUMPLESIAN which that and in the rout man MTA Will despected of 15x40 + USAK CUR 0815 TAILLATE => Alegan AN= Sarry Ince (the - Trues) (🕈

6/14/12		OSPAC & SUE
05.00	1000	Lunger
4)		
0950	BECAN DECOMMISSIONINE	weres in
	SUDAHORD CLUSTER	
	HIS MINING FOR LICH	TO DECOMMENT
4	DECOMPOSIONISC DETAILS	ARC PARTHON
	4. SOPARATE SHEET	
1:50	LA Premon up summe	165 5-0 000 044MAL
	Leastres	
//30	Barnens For 2- har	hich det "
	both location For Friday	free
1400	BELAN DECOMISSION	Name Cruston
1600	MET TOBY From NUS	AF JUNT UTIVITY
	LA HE INDICATES THAT	BOY 15 1-
	CONFLICT W/ SEWER	C LING. ADVISOD
	TO STAT SUTA .	e out governent.
1630	DROLLED FRINGE FRONZER	AT BSNG WARHOND
17-30	FINISHED ON SITE	
	LOLAN CE ORNEROD	OFF LEL WE -
	PREPRO FUR SULL	SAARUMA

6/16/16		USURUSOZ	
USAF/E	ee	CATE	(
ofictio was	- DEC	A	a sam
	-		
SOUTHERN CO	USTER :		1
w.24 6) UNLAGE	mro	
W-24 M	46	1-28 (ar	F SCOTE
W-30 - 5	jure, m+ to	at Y	
W-3.1	6 4-2	1- 1 L-50	W 10
6-32	Eu.	er der hor	$D_{i} = \frac{1}{2} \Phi e_{i}$
W-33			
W-34	TR W-	2 + W-10 Ad	
		Port MIL CN	I- FORG
NORTHERN CL	USTER:		
In-scope	cut.f.	score	
MUIL	mu-S	c .	
ML-2C	A I - 2	<u> </u>	
- ML-3C	80-2		
- ML. 64	Cmu-3	55	
ML 70			
ML- BC			
- W - 25			
- W- 26			
W-27			
mu-4e			

OSTICG S. Z 6/17/16 WNTE 050K6862 C/17/16 USAF/EEE UNTE USAF/EET were building signidic LARKY AMSKULD LOOLOWIST (SALUBS 47 us chan, Charlester M- scoper when 5 CANDALE 105 CHEMIST Break - Est-or-Acover NICIL KUHLMANN PRAJET MONALON - EEE +W-SR 1 BRILER ZDISCOVERY · 4 - 4 10 DECOMMASIUME DARKER (" Serre) 4-16KZ HAVEPER ナリー DAVID SANUCHS TIPLE I UNDESIMAT - NORTHWAY W-ZK · W-10 -WEATHER - 60's light min ALASKA BILLING HAS BOOM NOTIFIED PPE- - mudified level D 44 GCI TALASERTOL MANE 47141+1+3 - IN THE MEETAL OBJECTIVES - O COMPLETY DECOMMISSIONING AK DIGLING = 2016251027 MUM, WHICH WELLS IN SUPPLIET OF ERG CAP CONSTRUCTION COMPLASERTOL CALLOW NO CONFLICTS (2) DIL PERMIT FOR GROIND 5. 04 661 CENET #4TIONS La smerou by CKI. No courrenters un Los managed out of ANCHORNES SATURATE DISNOS NEAR EFFT W-36 ARE MICHOWNES. THEY WOULD OFFICE PREFER WE STAY AMAT 3 SOIL BORINGS CENDING DIG as pishes may cause us to rear PERMIT PROCESS Wagen! a

OSDK 6 SOL 0/17/16 WNTO 613 3 USAF/EET A. 17-INSTRUCTED DISCOVERY OF BE ON CAREY AMERAD SITE G/18 @ 0800, Communication COMPAGE est 84AN TO N. McKon, N. Kihlme + MICK KUNGANN TITLE IL ROTRESETTATIVE. PARRIVA τv LA + CE MARKOD BORING AND WERE DAVID SANDERS LOCATIONS. LA SPOKE TO HOME OWNERS AT LET 6. GUFORMED THOM LE WILL BE DRUCK IN AREA 6/18 AM LA THEY APPRISED WELL INSTRUCTION ON PROPORTY PRESIDENT DIDN'T COMMY BOAT ACCESS. THEY WERE ALSO CONCERNED ABOUT. WALL BOING SELURE (CHILDREN ON SATE). S REVIEWED RATIONALE FOR WELL INSTALLATIONS W-37 IS Not The LOCATED IN AN AREA W POTENTIALLY WILL TRAFFIC. 40 JECTIVES OFFE

050×6302 USAF/EEE Georgest Jacos Sharport construction providen - EEE DRILLON & DISCOUNTY Her Pore TITLE A REP - MORTHER - D WEATHER : 40's light frie PPE. Her & protection, south plasson, high - U.S. had but star bus past appropriate geno Equipment and STT · LEVERIER GALZET - Minikar Mist 910 754 Pio CALIDINA TIUN FREN AIR - DU YFM Worrs ISOLAGE = 100.0 ppm 6 som sacres Z MONTONING WELLS

USDKG3a 6/19/16 050×6302 6/10/16 user/our (T USAF/EEE DATE WNTF MUSED + MACHORPHE - 15' BAS SAMPLE ID: NOWNER - BPH - PH-30 4 DISCULVEY BOLAN AULONING. CA - 2 AND A 1 AT IND OF SAMPLE FOR MAT PRASPAT AT 15' BES. Speakings To Zer BES C. Spin Conservation - S' wares reserve on tenier. - GHANG TO DUDY ORSING THE AMACYSES : DRU (AN INF.)] BOA AMAGE PAN (Sou BR 74 asin) AU CHUILIGANTS BIEN (SU BEQU) } The Amper of Mell 1600 measures waren con in casine 16 59 - 182 - 14.77 SAMPLE INFORMED WITH BE DUNY - FUTER ON LOLLING SNEETS AND TABULATER AT END IGIS OF DAY, WORN PRAN 1-DCATES WE WE INSTALL S SCREENS. -> We end sample same print and is care to note. We and enstrace. MILHEST FOR CH. FINIST - GHAMMED MATTERIAL 10 PREMICE AT THIS EDCATION AND THE TERCATIONE IN THERE WAR 5605- 5608 HOT 1030-1330 STECIAIC REPASEN LIFT WASTAGED S' Stranger M. 04 = 10+ " 6-060-003 1630 Bohan work instrate and 1830 OFF SPTE SAME promport mp - mm

-09			
SAMPLE SUMMACT		18	WASTE SWIMMEN
SAMPLE ID TARE	WT TIME 126,79 1101	NOTES	6/18/16 16WNTE-55001
1604TF - 5000-06-30	126.48 1101 126.48 1108	MS/MSD	BUS-08, MWS6
160074 - 5808 - 12-509 160076 - 5807 - 68 - 50	126.45 1108	DUPHCATE	16 WAITE - DROCI
16WNTE- 5807-10-50 16WNTE- 5806-06-50	126.68 1211 126.42 1242		alighe in gaths Togar
16007F- 5806-08-50 160007F- 5805-08-50	126,82 1275		Weilly 20 gilling duckyment M. 36
1600078-5805-10-50 1600078-MW36-12-50	126.84 1321 126.55 1613		G/21/16 53 galling TOTAL
160NTE-MW34 -17-50	126.44 1617		16WNTE - 55002
10 PRIMARY A	u samples 2	Set	42 47 Arill CH173 + 1200
1 DUPLICATE A 1 M3/M5D	1402 W/	Meat	Glaily 164 MTE- DKm Z
		_	

050K6302 OSDKGBOR 6/19/16 6/14/16 USAF/ COZ WUTE USA E/REE WATE (15 Genuiss Jotacoss 1430 4-37 CAUPLETED EARLY AMSKUD CANDACE EDET SAMOLON WASTE GENORITOR - 4 galles also CHUSTRUCT - Marson & EBE NOCK KULGEMANN SITV Masser Server Young DRELLOR Discourse 1/2 DAMERY J Am source HOZPM TV. TITLE IT ROTHORNY - NURTHLING Suc 3gnoces PAVID SANDAG B OR Argon (DRO PAR.) Yoz Amon - 1 Acor (arm) worman: 50's MARRY CLUGH SAMPLE 10 PE - MODIPION LOWE D 7000 41 77 100 HUGGS 164WATE - 5804 - 06 - 50 126.63 1029 5604-08-50 126.88 OBOTERNE : DRIVE KER TWING Y Som BUTT 1033 500--08-509 126.64 1033 elego 24 Art worthe of the skike. NON Forme 5003-06 126 91 1059 Um-5003-00 126.67 1103 5802-46 1129 126.61 LOWCATED SECT DEE NO CONFLICT W/ 5002 -08 126-17 1132 SENER 5801-06 127,00 1152 126.36 5801 - 08 1154 1320 BROW BRIGHT MW 37 BURNE 126.70 1417 MW37 - 40 CONATEX 8 6.2' 645 MW37-04 1400 126-44 TALLET SCLEDNER IF THEM 3- 13 bys I shiet of and asservate kight + DENSIPICE SEAL 1.2.

65026552 OSDK6302 USAF/EEE O. Lette watt G/20/16 WATE 1:342/000 LARDY ANDRES LORIGENST ? JALIOS 0950 - WSTAND FLAST MORTH SAM PLUN CAMBAGO BE SAMPSEH-AICH KUIHLMANN CONSTRUCTION MATHING & ELV 47 AFFEUTED FIG Lower an The 2.1 RITE MANAM SOMAY YOUNG Bas Scelerence internet 1. 1. TIRE OF - NURPHERE DAVID SANDERS WEATHER = 60's EVERY WIND IN APTER NOUN STAINCESS MIELE OTLD TIN LEZTH TETALS 1.2. CAJECTORS PERCONNEL SUDIMET SAMPLING Anaple Tuster 14104 SOT 64 0-6 Deveur Hous Porewater Parameters EQUIPMENT: 1012 Start Purging (SPØ2) and Pid 100pm isobotylene = 100.5 ppm Turbidity 218.8 NTU, 9.37 Nr YSI - SIN= ØGHIZZ JAK °C , 9.52 °C 9.68 Temp Conductivity 1237 us/cm 1226 them CALISMITISN 6.33 mg)2, 7.10 mg/2 DO pH 4.01 = 4.017.30 pH Units 7.44. PHL 7.00 = 7.00 oH 1449 mV, 164. 6pm ORP pH 10:01 = 10.01 Cond 1.413 /cm= 1.413 /cmc 1018 Start Sampling Sample 10: 16WNTF=SPOR-PW 240 mV = 240.1 mV ORP 100% = 100-1% P0 at type: ASMSD

OSDK6302 OSOKEBOR BIZOLIO WNTE IN 100 6/21/16 WNIF USA F/EEE USAF/EEE Sample Bottle Analysis LODLOGST J JACOSS LARRY AMSKOND for Poreviater Sampling CAJACE EDE SAMPLER) 3x 40mL VOAS, HC1 SW8260 BTEX TITLE & Ker - MURANOO DAVID SANDERS 2+1 L amber, HOI AKIOZ DRO 2×16 amber, upres. 53827054 PAH 1054 Finished Sampling wearnes: 40's light rain culon 1112 Start purging SPØ1 Slow producing tidal probe. Hocharia @ 10 An FIG MADIE 1000 LOUDE D. Turbidity 635.4 NTU CHILLTING - TURNAR SAMPLING Need to re-install proble 4 WILLIAM MW-37 at next low tide. The ward Sounders Samerin 15 and the set 1300 Set-up to develop (MW-36) 5704 cz 6/21/10 1306 Start Purging well of -See Bround water Development Re Incated sport to east closer to sharp line, need to survey in Form for details. 847 Start purging 5POST CE 428/16 1835 Finished developing (Stability) SP\$4 * Initial observation : black fines w/ lots of rediment. END OF DAY

6/21/16 OSDK6302 6/21/16 WNTE 15014 6302 SA= SEE WUTT-/GEE 21 (30) Water Parameters 1st Reading 12nd ending Units Set-up at SPØ6 1015 Turbidity 12.33 NTU 16.69 00 8.55 8.26 Temp " 159. 45 MS/cm Water Parameters Conductivity 1520 Reading Units 7.Hoch MAMall ist Reading 7.43 DO Turbidity PH 0.19 6.97 7.17 pttunits 2.0 NTU 8.47 ORP 8.30 PC. 151,3 140.6 Temp m MEL 5464 5350 Cond 8.79 0.26 0856 Start Sampling DC Mg/1 -> Sample ID: HowHTP SPOR PW PH 7.30 7.40 PHUNITS 205.5 ORP Duplicate ID . Hower 500 3 PW9 200.5 mV Sample Name CORRECTION -> Sample ID: 16WNTE-SPOG-PW 1023 Start Sampling Duplicate 10: 16 WNTE-SP\$4-PW-91 1055 Finished Sampling 0935 Start purging [SFØ5] 1 1st Reading] and Rea and Reading Units 1110 Set-up at Well Tuw-37 4.93 Turbidity 0.15 NTU for well development 8.26 . 90 Temp 8.31 us/cm 3659 Cond 3160 3.47 1124 Start Purging 8.25 mall 00 * see Wall Development PH 7.08 7.08 PHUMIT-r Data Sheet for Details 221.0 ORP 237.0 mU 0945 Finished Sampling. COCOOL BREAK ; Thanks Sonny
OSOK630Z 6/21/16 OSDK6302 6/21/16 WNTE USAF/EGE USAF/EEG WHTE 1540 Sediment Sampling at SP\$6, SPOS & SP\$4 Water Parameter 3 Por 5PP Reading Units 1610 start Purging [5903] Turbidity 20.10 NTU ٥C 9,52 Temp Water Parameters us/cm 4561 Cond mg/L and Reading St Reading Units 10.73 DO pH Units Turbidity 61.19 47.77 NTU ,88 PH MU Temp 9.60 9.41 00 ORP 2254 2414 MS/cm Cond DO 10.42 10.67 mag/L All Water Samples were PH 7.97 7.88 collected for the follow: -19 oHunits ORP analyses: 1.1 26.5 mV 3× 40mL JOA, HC1 SUBRUOBTEX 1617 Start Sampling 2× 1 Lamber, HCI AKIO2 DRO -> Sample ID: [16 WATE-SP\$3-PW] 1 Lamber, unpres SW82705IN PAH sediment samples : Tame Poor Producing well. Only filled 1782 126.51 14WNTE-SPØ1-3D 1/2 DRO Bottle (Limited Volume) for Lab 126.31 1632 - SPØ2-SD 1647 126.08 -SPØ3-SD 125.99 1708 Start Purging 5PØIL DUP) -SP\$3-SD-9 1647 126.6 - SPØ4-SD 1601 1710 Start Sampling 1551 -SPOS-SD 124.53 125.85 -> Sample ID: FIGWNTE-SPOI-PW) - SP\$6-5D 1541 126.53 Limited Volume for DRO (W) and 1541 -5PP6-5P PAH (IL) Note for lab.

050K6302 6/23/16 WATE BONC/EEE/USA (1)) 27 GROUNDERTER SAMELVEL / ANAMYSES: LAREY AMSKULD CEULDAIST 3 JALES Her Her CANDALE EDE - 50me-52 2,22 AMEGE - AR KE (Down) 2×12 AMBOR = SW 4274 (PAN) WEARANCE HOLE CHART RANGE 3× 40 ml WA, - 5W DZGA (STORY) PPE = 400m B, STAR 70+3, TASA actioner ~~ 4 d v and up some a nigh vis, had het. cofferly glasses UBJORTAJED - DEMOBILI BATON ~ meer morner service - SURVEY \$13 - CREATED RUNLY LIST FUR Betweenerger Activiries 1950 Sint DEMISSINGATION RETURNET GOMPLOTE . 4-7R - NUMAINTONANCE MORALIES La SERVICEN up CILL Again ADDAS KEFLERTIE

WATE 050X 6302 PB) 618516 STICKS Personnel: Brad Romson Lj-20 ELMPRESSION PLUG LOCKED Conduce Ede 1- MONUMENT reeps 1950 Arrive at Anchorge Marcine-T CAP Airport to depart to Nome, AK. [137-400] Combi COMPRESSION PLUG 130 Arrive in Nome. DIS FROT ID PUC 5 5" 00 1200 TOOK MY Kap to Aurova Im to pick up rental 11-21 truck. PUL needs to be got dom forther Vehicle inspection 1215 9" MONUMENT CAP new 6" compession phy Check-in at Beorge's 1230 "625 RUASKA ROOMS" 1300 Scout out site. Found COMEX AK Air Cargo Brizzlies and Morgan's (Generator)

8725/16 WATE 05046902 8/26/10 31 Re-fueled Generator. 500 Rerschnel: Brad Ramsby Stored in Connex. Strapped proms to pullets. Sandace Edgo 1530 Purchased ice from Tailgate and SPA Review 0900 Norton sound seafood. for waste Loadbut Well 1600 Tried Oap Replacement, Meet shane O'Neill from Determined measurement 1000 NRCC at site. was merrecorded in Q-Trucking is No-Shaw. punt logbock incorrecting on 28. Q-Trucking gave share Boom ""Lift and permission -7 0.55' VS, 5,5" - WRING Called Nell and requested cap with new dimensions. to operate :630 Waiting for GPS file Moved two Supersacks 1030 and two drums to NAC. Via Shane's Truck Sit-Rep. End of Day-1730 Finished worste Loadout. 1100 Signed final paperbook AT NAC 5PA for well-Maintence. 1130

(B) WNTF OSDK6302	WARP OFOX6302
82610	8 26 16 (33)
1135 Cut PVC from Frost-Jacked Well W-al with drill and PUC saw bit.	1400 Finished Sediment Sampling. Packed & Shipped cooler Via NAC.
1200 Returned Generator to Morgan's.	1930 Lunch Break 1530 Return to site to begin
1215 On-site to Survey has SPA for sediment Sampling.	AT OF 30 7 OF FOR O MUI-30 AS LAWICH PT. VSING LEXA LSIO RECLEGEN & BARLOSE STAFF PONT ID BS ARV FS ELEV
1230 Begin Survey and sediment collection Gue Law VIVA UND SUPPLEMENT FROM SINE 2016 COMPLES AN UTM 3N VESSEY	MW-26 35.7 TSI 2.949 38.549 TPI (WA) 2.081 31.468
Sample ID Date/Time Analysis/Jars	TS2 6.489 37.957
16WNTF-SPØI-SD 8/26 1317 AKIOI, 160.3	17 (Liver) W20 9-616 31.34 753 4.137 37.498
- 16WNTF-SP02-50-9 [DUP 1323	W21 Luel) 1.203 36.275
16WNTF-SPØ4-SD 1340 16WNTF-SPØ4-SD 1340 16WNTF-SPØ5-SD 1346+352	154 1.200 37.575 192 (well) w-20 4.230 33.345 155 4.732 38.077
16WNTE-SPECISDA 1352 4	TP:1 (act) 6,610 31,467 TS6 6,980 38,447
* AKIOI: 4 oz Tare WashL 160.3: 2 oz amber Meott (BFB)	MN-320 2,345 35.702

BRONE (PORTSMA, CAST-DANCE EDE (JES) WNTE OSDK6302 2,24 640 FINSKED LOOPING GOD CLOSURE @ P. ODZ FE PURPLET - NEW LOCANS CARS ON WELLS W-20 AND W-RI AND SKENRE OFF TO GRAZINS TO FIND LOCKS PPE- LAUGE D THAT WILL FIT IN W-36 EWST. WE + OVC, HIGH +50F, WINDS SH @ 10-15 Placed locks on Alush mount OCNL DRAZELE 1700 Achvines - 1100+ BRIAGH & tomugane Wells W-362 W-37. Compination : 10911 SIGHTSGETTIG, ACTER, LIGHTON, TRUEF, FREEGERE 1930- GOLDERENT SUDE PLET DE BEENDE 1730 Sit-Rep & End of Day 7 15710- AN KIDE INTRA- KARS AND LACK 1600- complete, por some the TOUD, SIGHTSLEEING 1940- ATT ATRADET FOR THE 1915 - DROF TRUCK BACK C AUROCA 2030 - WEIELTS TOPP -> ANC 2145 - LATUR OF ANC COD C 27

Well ID, Date, Location					
YACI IQ	Yiel Owner	Project Number	Date of Weats		
ML-2	USAF	\$50K4302	06/16/16		
Site Name	security (e.g., city, state)	Getorachical	Coordinates		
West Nome	None, AK		east/long		
Tank tarm			øystern, units.		

Rationale, Contractors				
Reason for Decommissioning	Decommissioners Oversight	Driting Subcontractor		
Cap Construction	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322 Flets uses. <u>Laving Am Skold</u>	Discovery Drilling		

Well Dimensions

Type of Construction	String	Total Depth As	Total Dasin Kers	Cepih to Water
Flush Mount	na	i <u>seriese</u> i		16.30

Decommissioning Details

Remove monument. Anock out bottom. Puit Riser. Backfill with bentanite.	Riser Fill in	Decontrastories he broke at 4'. n place w/ be	ntonite.
Qty of Sand	Type of Sand	Qty of Bentonite	Type of Bentonite
		1/3 Bag	3/8" Chips

Waste Generated	Waste Disposition
4' Riser	

15.52

Well Decommissioning Report

and the second sec	Ration 🗮 Caroacers	
Reason for Decommissioning	Decommissioning Oversight	Online Subcontractor
Cap Construction	Jacobs Engineering 4300 B SI, Suite 600 Anchorage, AK 99503 907-563-3322	Discovery Drilling
<u>eitea</u>		

Flush Mount

Decommissioning Details					
1	20172010	<u>K</u>			
pottom Riser	pulled up in	one 10' piece.			
Poll out riser. Backfill with Dentonite chips.					
Type of Sard	Concel Benjanta 1/2 Roco	Type of Bernonse 3/e ¹¹ o billios			
	ips.	ips. Type of Sand '13 Roo			

Waste Generated	Waste Disposition
10' Riser.	

Rationale, Contractors				
Reason for Decommissioning	Decomprissioning Oversight	Junio Statestation		
CAP CONSTRUCTION	Jacobs Engineering 4300 B SL SUAR-600 Anchorage AK 99602 907-560-3322			
	- ed Lsad	-		

Well Dimensions

<u>Tre 7 Orst.cor</u>	<u>5:04.0</u>	<u>Tota Centi As</u>	<u>Intel Depoi As-s</u>	Dectrito Alsagr
	:1.8955	<u>Builtatiatori</u>	<u>Chines</u>	Sciences
FLUSH MOUNT	MA			15-56

Decommissioning Details

Decompositions Process	2	Decommission of h	23
ENERT OUT TWE	& KISER BROK	LE OD 4' BLS	
fore Riser	LA BACKER	in up BENTUNITE	CHIPS
BALASSIC AL BENN			
613			
Qty of Sand	Tige of Sang	On of Seriority	100 J 60 2000
		13 Bag	318 CA.PS

Waste Generated	Waste Disposition
4 RISER	

	well ID, Date, Location	l	
Well ID	Well Owner	Provid Number	<u>228 of Aim</u>
ML-S	USAF	OSOK6302	06/16/16
Site Name	Location (e.g., city, state)	Secongorica C	artinaes
west Nome	Nowo AV		ess! / org
Tank Farm	NOTICE, TIM		% ' :Tan
			2 26

MALLER D. C. .

Rationale, Contractors		
Reason for Occommissioning	Decommissiona Onersight	Driling Supportractor
Cap Construction	Jacobs Engreening 4300 S.S. S. or 600 Antropage 45 99603 907-583-3322 Facture: Larry Amskold	Drilling

Well Dimensions

<u>inte d'Construction</u>	<u>2.00.5</u> 	Total Depit As BAC Total	123 Dept 14-3	Cepto tr Astar
Flush Mount	nla	1		

Decommissioning Details

Decommissioning Procedur	9	Seconnectaring ho	嶅
Knock out Both	om. Blockag	e at 7.90'. Re	moved blockage
Pullout riser	with r	ods.	
Backfill with Bentonite o	hips.		
			1.11.11.1
Qty of Sand	Type of Sand	13 Bag	3/8" chips

Waste Handling

Waste Generated Waste Disposition 10' Riser

Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor
Cap Construction	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322	Discovery Drilling
	Field Lead: Larry Anskold	

Well Dimensions

100 Carlor	3045	<u>[34][est]45-5</u>	Jer Lite
Flush Mount	Nla	<u></u>	15.10

Occommissioning Procedu	06	<u>Learnesonre vo</u>	K
norte aut he	tteas		
	D		
will out riser	&		
screen.			
Qty of Sand	Type of Sand	Oty of Sectonic	1ype of Benfonde
		11.	3/-0
		Ma Baa	

Waste Generated	Waste Disposition
10' Riser	
5' Screen	

	Well ID, Date, Location	1	
Well ID	Well Owner	Project Number	Date of Work
ML-7	USAF	050K6302	06/16/16
Site Name	Location (e.g., city, state)	Geographical C	Coordinates
west Nome	Name Ak		east / long
Janle Form	Nonce, ne		north / lat
TOTAL TRAFT			system, units

	Rationale, Commercial	and the second
Reason for Decommissioning	Decommissioning Oversion	Dolling Subcontractor
l'ap construction	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK, 99503 907-563-3322 Fiolal car July 1 y A MSK.c.	Discovery Drilling
	Wel Dimensions	
GET DE LA		
Flush Ment	n.h.	15.15

2e Ue	<u></u>	
TTOMI.		
er.		
	Ur.	ۍ. ا

Waste Generated Waste Disposition 10' Riser

Well Decommissioning Report

		Ration - Contractors	and the second states of the
	Reason for Decommissioning	Decommosioning Oversight	Drilling Subcontractor
ωp	Construction	Jacobs Engineering 43D0 B St. Svite 600 Anchorage: AK 99503 907-563-3322	Discovery
		FORLERS: LOURAL AMSKOLD	0

<u>'æ:25ar</u>	<u>2014</u> 1323	ing been to Ball ingen	<u>1 20 193</u>	
Flush Mount	n.a			13.69

	Decomm	ssoning letails	
Decommissioning Procedure Knock out bottom.		<u>lerr son k</u>	2
full out riser & Screen.			
Qty of Sand	Type of Sand	13 Bag	Two of Bertonte 3/8" Chips

Waste Generated	Waste Disposition
14 ¹ K 380	
S' Serier	

Well Decommissioning Report

weilib, Eate, Location						
O BHY	Well Owner	Protect Number	Date of Work			
W-2R	USAF	ØSOK 03Ø2	06/17/16			
Bite Name	Location (e.e., sity, state)	Geographical	Coordinatos			
West Nome	Nome AK		on st / long			
Tank Form	100/1122 / 114		dystern, units			

Rationale, Contractors

Research for Decompletionica	Decommissioning Oversight	Drilling Subcontractor
Cap Construction	Jacobs Engineering 4300 6 St, Suite 600 Anchorage, AK 89503 907-563-3322 Field Lead: LANY AMSKOID	Discovery Drilling

Well Dimensions

Type of Construction	<u>Stockup</u>	Totel Dooth As	Total Ocoth As is	Cooth to Water
	(filmos)	Built (it bloc)	(IT. htop)	(fl. bloc)
Flush Mount	nla			6.30

Decommissioning Details

Decommissioning Procedure		Decomplationing Nati	
Remove Monument.	Riser br	oke at 51.	
knock out bottom, withrods.	Fill in p	lace with be	ntonite.
Pullout riser.			
Backfill with			
bentonite chips.			
Otv of Send	Type of Send	Qty of Bentonito	Yypa of Bantonika
	_	V3 Bag	3/8" chips

Waste Generated	Weste Discoston	
5' Riser		

	Well ID, Date, Locatio	n	
₩₩₩₽₽ W-YR	USAF	Protect Number \$50K 63\$	06/17/16
Site Name	Location (e.g., city, state)	Giecomotical Coordinatee	
west Nome Tank Form	Nome, AK		

Stateon for Departmentoning	Deportmissioning Oversight	Drilling Subcontractor
ap Construction	Jacobe Engineering 4300 B St, Suite 600 Anchorage, AK, 90503 907-563-3322 Field Laad: Laury, Amsteald	Discovery Drilling

Well Dimensions

Type of Construction Flush れっしんす	8100000 (1.809) ~/~	Total Death As Bud (Tiptoc)	Total Dooth As-is (ft Moc)	Depth 10 Winter (11 bioc)

Decommissioning Details

Remove Monument Remove Monument Knock out botton with rods. Pullout riser. Backfill with Bentonite chi	ps. Well came	Decomptioning N 2 out in one pi ve-pack.	SNAA Q C Q
Oty of Send	Type of Sand	Ote of Bentookie	J/8 11 chips
Linesta Commenta	Wasto	Handling	CE 6/17/14

AAMERICA COMPANY	Weste Disposition
101 Ricor	
10 1013 201	
2×51 Dru-Druck	
THE POCOC	

Well Decommissioning Report

	wention, betwy cocation		
Wellip	Well Ownor	Project Number	Date of Work
W-5R	USAF	\$50K6392	06/17/16
Site Marrie	Location (e.g., city, state)	Geographical C	continetes
west Nome			wint " long
Tank form	Nome, AK		north - Lat
THE FROM			tystem, units

Well ID, Oate, Location

Rationale, Contractors

Reason for Decommissioning	Detterminatorino Oversight	Online Subcontractor
Cap Construction	Jacoba Engineenng 4300 B SL Suita 600 Anchoraga, AK 98503 507-583-3322 Field Lead: Larry Aniskold	Discovery Drilling
	<u> </u>	

Well Dimensions

Ivee of Construction	Stickup	Total Dooth As	Yotal Dooth As-fa	Dettin to Water
	(ft. nop)	Built (ft bloc)	(fi bloc)	(ft bloc)
Flush Mount	Na			ė.§ 7

Decommissioning Details

Remove monomeni Knock out botto with rods. Pullout riser. Backfill with bentonite.	t. Riser b M Fill in pl bentoni	roke at 5°. ace with te chips.	105
Otv of Send	Type of Sand	V3 Bag	J/8" chips

Waste Generaled	Waste Discontion	
S' Riser		

	Well ID, Date, Location		
Mai <u>D</u>	Yel Owner		Date of Hote
W-16R2	USAF	1 1 1	
Sie Mane		Geographical	Coostinality.
west Nome		-	sec brg
Taul Face	Nome, AK		
I TONG FORM	-		

Rationale, Contractors

Research Decompanying	Certain Appoint Design!	Colling Subcontractor
Cap Construction	Jacobs Engneening 4300-9 St. State 600 Anchorage, MK 99902 907-963-3322	Discovery Orithing
	For a Lirvy Amskold	(I

Well Ownensions

Flush Mount	Saint Jacki MA	Teta Deph As Build Macy	<u>- 331 Dealt As 8</u> (11.200)	<u>Dept to Amy</u> <u>Albosi</u>
	_			

Decommissioning Details

Removed Monum Removed blockow and knocked botton with ro Pull out riser. Backfill with bentonite chip	ent. Dierha Be Bedrage Ast Rister Backeff	Decommissioning Not $a \neq 1$ $a \neq 5$ $a \Rightarrow 5$	es 222/1.
<u>Obv. of Sand</u>	Type of Sand	Qty of Bentonite	Type of Bentonite 3/5 ¹¹ chips

Waste Generated	Waste Disposition	
4' Riser		

Well Decommissioning Report

Well ID, Date, Location					
Well (D	Well-Oener,	Project Number Date of Work			
n/a W-25	USAF	050K6302 06/16/16			
Sile Name	Locason (e.g., city, state)	Geographical Coordinates			
West None Tank Farm	Nome, AK	east / long north / tai system, units			

Rationale, Contractors					
Decommission no Oversight	Dniing Subconiration				
Jacobs Engineering 4300 B St. Suite 600 Anchorage AK 99503 907-563-3322 Field Lead <u>Larry Amskold</u>	Discovery Drilling				
	tionale, Contractors				

Well Dimensions

	The disconstruction	Sites:	<u>Tota Dectri As</u> Built - Moss	Trai Dept. As-is (1.1800)	<u>)est to nater</u> <u>totos</u>
F	lushMount	Ala.			15.49

Decommissioning Details

Decommissioning Procedure		Oecommissioning Note	5		
Knock out Bottom.	Riser b	roke at 31.			
Poil Riser,	Backfi	Backfill in place.			
Backfill with Bentonite.	well in between ML-4 and ML-5				
Qty of Sand	Type of Sand	Sty of Benjante 1/3 Bag	Iver of Bantante 3/5" chips		
		0			

Waste Generated	Waste Disposition
31 riser	

Well ID, Date, Location					
Well ID	Well Owner	Project Number	Date of Work		
W-26	USAF	050K6302	06/16/16		
Site Name	Location (e.g., city, state)	Geographical (Coordinates		
west Nome	None Air		east / long		
Tank Farm			system, units		

Rationale, Contractors					
Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor			
Cap Construction.	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322 Field Lead: Larry Amskold	Discovery Drilling			

Well Dimensions

Type of Construction	Stickup	Total Depth As	Total Depth As-Is	Depth to Water
	(ft ags)	Built (ft btoc)	(ft btoc)	(ft btoc)
Flush Mount	nla			15.85

Decommissioning Details

Decommissioning Procedure knock out bottom with rods. Pullout riser. Backfill with Bentonite chips.	Unlabeled Riser be Fill with	Decommissioning N d well south a east oke @ 2 ¹ . c Bentonite a	oles of ML-5. chips in place.
Qty of Sand	Type of Sand	<u>Atv of Bentonite</u> 1/3 Bag	Type of Bentonite 3/8" chips

Waste Handling

Waste Generated Waste Disposition a ' Riser,

		well iD, Date, Location	1	
	Well ID	Well Owner	Project Number	Date of Work
NA	W-27	USAF	050K6362	6/16/16
	Site Name	Location (e.g., city, state)	Geographical (Coordinates
WN	TF	NOME, AK		east / iong
				north / lat
				system, units

Well ID, Date, Location

Rationale, Contractors				
Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor		
COUSE CONSTRUCTION	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322 Field Lead:	Discover		

Well Dimensions

Type of Construction	Stickup	Total Depth As	Total Depth As-Is	Depth to Water
	(ft ags)	Built (ft btoc)	(ft bloc)	(ft btoc)
FLUSH MOUNT	M/A			14.55

Decommissioning Details

Decommissioning Procedure	· · · · · · · · · · · · · · · · · · ·		Decommis	sioning No	tes	
Unable to pull riser. Knocked out bottom.	FLUSH PUMPHI	MOUNT DUSE	SW 0E	5 W	CULUER OF	
Qty of Sand	Type of Sand		Qty of Bento 1/3 Ba	<u>inite</u>	Type of Ber 3/8 ¹¹ ch	itonite ips

Waste Generated	Waste Disposition
1' riser	

Well Decommissioning Report

Well ID, Date, Location				
Well ID	Well Owner	Project Number	Date of Work	
W-29	USAF	95 DK 6302	6/16/16	
Site Name	Location (e.g., city, state)	Geographical C	oordinates	
West Nome	None, AK		east / long	
Tank Earon			north / lat	
I and I avin			system, units	

Rationale, Contractors		
Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor
Cap Construction	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322 Field Lead: Larry Anskold	Discovery Drilling

Well Dimensions

Type of Construction	Stickup	Total Depth As	Total Depth As-Is	Depth to Water
	(ft ags)	Built (ft btoc)	(ft btoc)	(ft btoc)
Flush Mount	nla			10.96

Decommissioning Details

Decommissioning Procedur	e	Decommissioning Notes		
Knock out botton Puil Riser.	r. Tubing R	emoved.		
Qty of Sand	Type of Sand	<u>Atv of Bentonite</u> 1/3 Bag	Type of Bentonite 3/8" Chips	

Waste Generated	Waste Disposition
10' Riser	

	Wentib, Bate, Ecoation		
Well ID	Well Owner	Project Number	Date of Work
6-31	USAF	05016502	6/16/16
Site Name	Location (e.g., city, state)	Geographical C	Coordinates
WEST NOME	NOME, AK		east / long
TANK FARM		<u> </u>	north / lat
			system, units

Well ID, Date, Location

Rationale, Contractors			
	Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor
CAP	CONSTRUCTION	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322	DISCOVERY
		Field Lead: L. AMSKOLD	

Well Dimensions

Type of Construction	<u>Stickup</u>	Total Depth As	Total Depth As-Is	Depth to Water
	(ft ags)	Built (ft btoc)	(ft btoc)	(ft btoc)
FLUSH MONT	M/A			14.03

Decommissioning Details

	o TO RECORDE	C C C C C C C C C C C C C C C C C C C	™)
Qty of Sand Type	e of Sand	Aty of Bentonite	Type of Bentonite

Waste Generated	Waste Disposition
10' Riser	

aven ib, bate, cocation					
Well ID	Well Owner	Project Number	Date of Work		
W-32	USAF	050K6302	6/16/16		
Site Name	Location (e.o., city, state)	Geographical	Coordinates		
WEST HONE TANK	NOME, AK	· · · · · · · · · · · · · · · · · · ·	east / long		
-Alm			system, units		

Well ID, Date, Location

Rationale, Contractors				
	Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor	
CAP	CONSTRUCTION	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322	DISCUERT	
Field Lead: LAREY AMSKOD				

Well Dimensions

Type of Construction	Stickup	Total Depth As	Total Depth As-is	Depth to Water
	(ft ags)	Built (ft btoc)	(ft bloc)	(ft btoc)
FLUSH MODAT	N/A		18,85	10.85

Decommissioning Details

Decommissioning Procedure		Decommissioning Not	les	
ATTEM/RO TO KNOCK				
· SULLET RISER				
· BALLFILLO UL BENTONITE				
Qtv of Sand	Type of Sand	Qtv of Bentonite	Type of Bentonite	
MA		13 00 646	310" CHIPS	

Waste Generated	Waste Disposition
lo' Lister	
TUBING	

well iD, Date, Location				
Welt ID	Well Owner	Project Number	Date of Work	
6-33	USAF	050166302	6/16/16	
Site Name	Location (e.g., city, state)	Geographical	Coordinates	
WBT NONE TANK FACM	Mone, AK		east / long north / iat	
			system, units	

Well ID, Date, Location

Rationale, Contractors			
Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor	
CAP CONSTRUCTION	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322	Discovery	
	Fleid Leau:		

Well Dimensions

Type of Construction	Stickup	Total Depth As	Total Depth As-Is	Depth to Water
-				(ft bloc)
FLUSH MOUNT	MA			16.75

Decommissioning Details

Decommissioning Procedure	2	Decommissioning Notes	
	FUEL (REDENT MEASURE TD.	IN ADJALENT WELL	, DO NOT
Oty of Sand	Type of Sand	Oty of Bentonite	Type of Bentonite
ALL Y DOILD		1/3 BAC	3/3" CHIPS

Waste Generated	Waste Disposition
1" KISER PUC	

Well ID, Date, Location				
Well ID	Well Owner	Project Number	Date of Work	
W-34	USAF	05012 630 Z	6/16/16	
Site Name	Location (e.g., city, state)	Geographical	Coordinates	
INTE	NONE, AK		east / long	
2001-			north / lat	
			system, units	

Rationale, Contractors			
Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor	
LAP CONSTRUCT ON	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322 Field Lead:	DISCOVERY	

Well Dimensions

Type of Construction	<u>Stickup</u>	Total Depth As	Total Depth As-Is	Depth to Water
	(ft ags)	Built (ft btoc)	(ft bloc)	(ft btoc)
FLUSH MOUNT	NIA			10.83

Decommissioning Details

Decommissioning Procedure	Decommissioning Notes	
KNOLK OUT BOTTOM	CONTAMINATED WELL. NO TO.	
PULL RISER		
Oty of Sand	Type of Sand Oty of Bentonite Type of Bentonite	
	1/3 BAL 3/8" CHIPS	

Waste	Generated	Waste Disposition	
10" FISHT			

	Well ID, Date, Location	1	
Well ID	Well Owner	Project Number	Date of Work
AI-1	USAF	Ø50K63Ø2	04/17/16
Site Name	Location (e.g., city, state)	Geographical C	cordinates
West Nome	Nome, AK	- <u>18</u> 	east / long
lank Farm		3	system, units

Rationale, Contractors

Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor
Cap Construction	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322	
	Field Lead: Larry AMSkold	

Well Dimensions

Type of Construction	<u>Stickup</u>	Total Depth As	<u>Total Depth As-is</u>	Depth to Water
Flush Mount	(ft.ags)	Built (ft btoc)	(ft bloc)	(ft bloc)
				10.40

Decommissioning Details

Remove mount Remove mount Knock out botton rods. Pull out riser Backfill with Bentonite.	ent. Riser Nw/ Fill in	Decommissioning No broke @ 71. place w/ B.	entonite chips.
<u>Qty of Sand</u>	Type of Sand	Qtv of Bentonite	Ivpe of Bentonite 3/8" chips

Waste Generated	Waste Disposition
7' Riser	

Rat	ionale, Contractors	
Reason for Decommissioning	Decommissioning Oversight	Drilling Subcontractor
Cap Construction	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322 Field Lead:	Discovery Drilling

Well Dimensions

Type of Construction PVC	<u>Stickup</u>	Total Depth As	Total Depth As-Is	Depth to Water
	(ft ags)	Built (ft btoc)	(ft btoc)	(ft btoc)
Flush Mount, Standless				14.92

Decommissioning Details

Decommissioning Procedure Knock out bottom Pull out Riser.		<u>Decommissioning No</u>	ites
Qty of Sand	Type of Sand	<u>Otv of Bentonite</u> V3 Bag	Type of Bentonite 3/8" chips

Waste Generated	Waste Disposition
201 Riser	

.

Medic Medic Project Maraber BV-1 USAF State Same Sate Same Location (r. 1. cite, project) Second state; Diversity Maraber Location (r. 1. cite, project) Second state;	
BV-1 USAF 50 CG-342 00 <u>Ste tarme</u> <u>Location (r.s. obs. ptate;</u> <u>Second tion Coordination</u>	Date of Hert
<u>Site tare</u> <u>Location (r. s. mits. ptate;</u> <u>Geographics Coordin</u>	5 I7/IG
wast blog A. I	i des
	sections i
Tank Farm Nome, HK	off all

Well Dimensions

Type of Construction	Stature <u>Stature</u>	Total Deph As-a	Depth is Water
	Et age: Suil Filters	(1 jack)	3 time)
Flush Mount	nla		15.82

Decommissioning Details

Remove menuneu Remove menuneu Knock out botter with rods.	s t. Riserri n	Certonics in one	ees 10' piece.
Pull out riser, Backfill with bentonite.			
City of Sans	Type of Sand	Uty of Bentonite	The discounts

Waste Generated	Waste Osnosijon
10' Riser	

Well Decommissioning Report

	Well ID, Date, Location		
Well ID	Well Owner	Project Number	Date of Work
BV-2	USAF	050K6302	06/16/16
Site Name	Location (e.g., city, state)	Geographical C	oordinates
west Nome	Alana Air		east / 📭
Tank Farm	worke, M		north / 🜌
			system .mes

	Rationale, Contra	ictors .		
Reason for Decommissioning	Decommissi	oning Oversight	Dhilma Sab	coresder
Cap Construction	Jacobs I 4300 8 5 Androrag 907-5	Engiweening 5: Suite 600 e. Avl: 99503 63-3322	Discove Drillin	<u>م</u> بر
	Feid Leac. Lâu	Ty Amstord		
	Well Ormensio	ns		
<u>"ned Castrigor</u>	<u>Storie</u> *:acs	<u>na lest (;</u> Sul "az	<u>[33]est 44-6</u> 13x	<u>)est c ###</u> *!tr:
Flush Mount	5.24			15.18

c > 2s

Decommissioning Details

Knock out both	Tom. Riser E Chipit	proke in hole t in place.	2.υ
Qty of Sand	Type of Sand	Qty of Bentonite 1/3 Bag	Type of Bentonite 3/8" chips

Waste Generated	Waste Disposition
l'riser.	

and a second	Rationale, Contractors	and the second
Reason for Decommissioning	Cecommissioning Oversight	Driffing Succentracion
Cap Construction	Jacobs Engineering 4300 B SI, Suite 600 Anchorage, AX, 99503 907-563-3322 Feed Lead: <u>Louring</u> AM, Sicold	Discovery Dritting

Well Dimensions

Type of Construction	<u>Stokup</u> (ft.aas)	Total Depth As 61 (5 bloc)	<u>Total Depin As-IS</u> 35,560	<u>Jest E Ager</u> 1203
Stickup	<i>Q</i> .40		13.68	13.68
		-	CE 6/10	

Decommissioning Details

Decommissionene Procedure	;	Occommissioning Note	5
Puil Riser	Chain bro	ke when poiling ou	touter casing
Knock out bottom.	punpl	Well directly + louse entropice zeress	southern wall. ours ce ofile.
Qty of Sand	Type of Sand	Ctrat Benjamie 1/3 Bag	3/3" chips

Waste Generated	Waste Disposition
10' Riser	

Well Decommissioning Report

	Web ID, Date, Location	1	
MellC	Hiel Cuner	Project Number	Calle of Mark
MW-6R	USAF	\$SDKUZ\$A	001712
<u>Site kare</u>	27401 * 5. 20 Sat	Georgeorgean	Continues:
West Nome			
Taule Frence	Nome, AK		to the direction
: mucrara			Lipsien units

	Rationale, Contractors	15
Resor to Departmentority	Decomplication (pg. Overlagh)	Diling Streetator
Cap Construction	.actors.Engineering 4300 II St. Suite 900 Anchorage AK 28533 200-5533222 Fest .ac. LAVAY Amskeeld	Drilling

Well Dimensions

Tige of Constructor	Stickup	Total Geogra As Built of March	Total Depth An-Is (R bloc)	int pikster <u>Ibes</u>
Stick-up	5.64	5-10-10		17.67

Decommissioning Details

Decommissioning Procedure		Decommissioning Notes			
Rimo el monument and ostar ossing. Kreck suttoitan in ith Rods. Fuil Riser. Backfill sith Bentanite.	Rijer	removed in	ane to ⁱ piece.		
Ohr of Sand	Type of Sand	Uty of Bentonite	Type of Bentonite		

ī	Waste Generated	Waste Disposition
:	10 Riser	

	Réason for Decommissioning	Decommissioning Oversight	Oriling Subcentracies
CAP	CONSTRUCTION	Jacobs Engineering 4300 B St. Suite 600 Anchorage, AK 99503 907-563-3322	
		Fig'd Lead	

Well Dimensions

Insp. of Construction	Slickup	Total Daolh As	Total Depth As-Is	Oroth to Water
SILKUP		Brear (ar Bloc)	(<u>R bioc)</u>	
	1.22			13.20

Decommissioning Details

Receptulation in Proceedure		Decommissioning Notes	
QLY OF SADD	Type of Sand	Gay of Bankabie	Type of Bentowie

	· ·		
	Waste Generaled	Waste Disposition	
ļ –			

	Weil ID, Date, Location					
ſ	₩e#1D	Wall Owner	Project Number	Date of Work		
l	🌤 W-28	USAF	050K6302	6/16/16		
[5.le Name	Location Io.c., City, state)	<u>Geographical (</u>	Coordinates		
	LINTE	Nome, AIC		east / long		
				system, units		

Well ID, Date, Location

_	Ra	tionale, Contractors	
	Reason for Deconumissioning	Dnilina Subconfractor	
CAR	CONSTRUCTION	Jacobs Engineering 4300 B St, Suite 600 Anchorage, AK 99503 907-563-3322	DISCOVERY
	<u> </u>	Field Lead	

Well Dimensions

Type of Construction	Stokup	Total Cervin As	Total Death As-is	Dopin to Water
STAINLEY	(7 ₅		11,69	LIS MORES

Decommissioning Details

Decommissioning Procedure	Decommissioning Notes			
	WELL C	ILLAPSED SAUD	TO SUZFACE	2
Oly of Send	Type of Sand	Qivels	amenito	True of Bentanity
			Þ	0

Wasto Generated	Waste Disposition
4x3' STAINLESS KISER	
2×3' STAINLESS SLEEPEN	

Well Decommissioning Report

	Well ID, Date, Locatio	n	
<u>68 3</u>	: <u>Well Owner</u>	Pract Number	Date of North
U-30	USAF	USTK 6302	6/16/16
Stenare	L022001 (2 5 1274 1582)	Stonarca	Coordinales
UNTE	Nome, AK		east'ong
		!	TOT . TOT
			systemisiz

Rationale, Contractors			
	Reason for Decommissioning	Decommissioning Oversight	Critico Succession
CAP	CONSTRUCTION	Jacobs Engreening 4300 B SL Suite 500 Anchorage AC 35602 907-563-3322 Earliest L. Amstrouw	Discarry

Well Dimensions

ſ	Type of Construction	<u>30005</u> [1.655]	<u>1 da Deph As</u> <u>Buit 5 dae</u>	<u></u>	Deseti to Water Children
ļ	FLUSH MOUNT	\$ 14	I	995	414

Decommissioning Details

Barrssonne Poedre Knockoutbotteme Puil Riser.	BLOUKANO Ly Koss B	Decent assound that AT 9.45 RALE MIRWLY	5
Qty of Sand	Type of Sand	<u>Qtv of Bentonite</u> 1/3 Bag	Type of Bentonite 3/8" Chip 5

Waste Generated	Waste Disposition						
10' Riser							
DRIL	LER 2	Hi.	a	(DATE 6/19/16 PAGE OF
---------------	----------	--------	------------	---------------------	----------	-------------	---
EQUIPM		Fr	f por	te	ji S	= 7	
GEOLO	GIST						PLUNGE
EAST	ING				N	ORTH	NG SYSTEM UNITS ELEVATION, UNITS, DATUM
Core, Time	Aoisture	roduct	Jepth (ft)	JSCS, Boundaries	iD (ppm)	sample Int.	Description (lithology color USCS sample ID)
1115			0]			G' Pile A3 Planner - Anceleter
					2.9		
			7				4 BARK WAY RUSL JANDY FILLY CRASED SILTY STO
		[14				
			1	Sin	3.0		
			ч				
					15.0		
952							
		l	6	1		2	16WUTF- SBOI-06-SA LATER 1-52
					5.اكما	8	
				SM		3	
			•			3	16WNTE- 5601-08-50 LA/CE 1156
					619		· · · · · · · · · · · · · · · · · · ·
	·		10 -	-		3	
				End	-		
			-		-		
	;						
						-	
-							
			1				
			-				
						- T	· · · · · · · · · · · · · · · · · · ·
						+	
			1		- ·	_	
\rightarrow		-				_	
			1				
-			-				
		·					
ŀ	ł		-	1	-	-	

->	 = ∂	150	lov i	Tey.	DIE	141.0	4						DATE	61	19/16		331	-
ED ERE		LEO	1800	BE	671	2 27	4	pre	-5 A	nacr	cier	70	02100	-				
351.03	s_(AM	24	AA	ns Ko-	0									P	LUNGE		
967	9G	_			_ <	F-16 _				SYSTEM				_ ELEVA	ION, UNITS I	DATUM		
Con Tre	a so	page.	Dept 12	SCS. Surceres	50(00)	Shoe M					(lithology,	Descri color, U	ption SCS, sam	ple ID)				
1045	-		0		Г		6 m	AS	84-	w.		396,5-C	ander					
					24													
						-		_			_	_		-	-	_		-
			2		-		-											
				SW	378.5								_					-
															-	<u> </u>		
			4							-						-		
					207.4	-												
146					[1	Ej4								_			
ł		1. j.	6.				1											
				0.0-	513		Sic		SAN	5	214	a ner ter ga	10		C bride			
· ·				SM														_
			8		┝	- <u>-</u>	160	UNTE	- 560	02.00	6 . 50	<u>0</u>	CAL	4 '	- 11Z	4		
ł –	-	<u> </u>	-	1	1990		160		- 280	12.5 2	- <u>-</u>	4	0.4.76			-		
	-			-			_									-		
		ŀ	10	-		14	_		_		_	_	_			_		_
1 .	• •		-	Eur									_					_
				1														
					-	1					_							_
							_								_			
	·		-		ł			,										
	1	L		1					_			_	_					_
			-	-									-	-				
			-		-								1					
			1		-													
L				-	-	1			_	-		_						_
·- —	4.				ł													-
				1														
_																_		
			-	-											_			

ì

E	QUIPME	NT				_	_	
G	EOLOGI	ST 🚬	7.÷4	~	20	skoz	_	PLUNGE
_	EASTI	NG		11		N		ING SYSTEM, UNITS ELEVATION, UNITS, DATUM
	Core, Time	Moisture	Product	Depth (ft)	USCS, Boundaries	PID (ppm)	Sample Int	Description (lithology, color, USCS, sample ID)
(p	0							4' FILL DRT MODION LANT, ST-ATT PUPE ODDA
F	+					0.6		
-				1				· · · · · · · · · · · · · · · · · · ·
·								
Ľ					sw	Ø.9-		
				4 -		-		
ŀ						208.5		
4	3							1.6' were were upon cost Fin
F	1			6.			ş	45 DTS 541050 ON SBOY
		<u>_</u>				411.3	100	
1-		_			512		2	Let our cost fill Side and Cole Avery
				E	1		ş	parties and a start start contract
-		ŀ				<u> </u>	3	SANT PUED ARM ST COMOP
				1			ş	LAND GUERUNETS CONST
ł		ł			Fag			1000000-5803-56-50 44/CE 1121
1					v .		• •	IGNATA- SECS- CO- SO GALLE ASC
	_							
-				1		-		
1_	_							
-								
-								
F	1			1				
ŀ				-	(1)		-	
F					1.3		·	
-				1				
F		· - · - •		11	2.14			

THEFT CONTRACTOR JACOBS LOCATION: SBUT PROJECT WNTE DATE. 6/19/14 DRILLER DISCURS DRILLING PAGE CF EQUIPMENT & EVEROUSE 6712 IT W/ MCS MACRICURS TUBLING GEOLOGIST LARRY AMSKON PLUNGE NOILIG EASTING ELEVATION, UNITS, DATUM SYSTEM, UNITS USCS, Boundaries Sample Int. PID (ppm) Core, Time Depth (ft) Moisture Product Description (lithology, color, USCS, sample ID) MENNE BRINISH WRAT FUL AS DESCRIBED 643 4.6 Premasur. - FUEL ODOR 3.6 REWALDD. 7. 8.4 600 54 1234 I' FILL AS PEEVIN 1000 6 40 O.S' PORLY LEADED DARK LANT Sarh 77 CORRES >> MEDIUN > For 446.4 8 21 POULLY LENDED, SATURATED DARK LET SL CLMEY SAND, THESE GILT, THEE CHANGE. 534 is some initial antitute mitanit / 1 16WNTF-5804-06-50 LA/CE 1029 E SH 16WMTE-5004-04-50 (4/CE 1033 16 WAFE - SB64 - 08 - 50 - 9 LA/CE 1033 DURLICATE G \SHARED\Training\SOPs\1000s Invstgtn\JE SOP 1100 Drilling\Attachment 3\CoreLog.cdr12ft

LOCATION IACORS WEST NUME TANK FARM DATE 6/18/16 A= DECKORY DRILLING PAGE OF / GEOPEUBE G712 DT W/ MACROCORE (mcs) TROLINE ETTE LARRAY A. TSOUT 2.066 SYSTEM UNITS ELEV D 16 DE 1157-14G Sample 'AL uiscs. Bomtares Ê (udd) [24 Cepel 11 Product Description ŝ (Mhology, color, USCS, sample (D) 3.4' wow - Gene LAMMY-SAME FILL AS 1275 19.2 DESCRIPT CREWINSONY <u>لينک</u> 2 າລ 4 51 7.0 3' medium groupish brown, poundy growel as descerband providesby 2 rel SAR (365 ৬ চেশ L 31.7 8 2 ' abrue. De yes notest , Fiel alor. material us .00. 16WATE-5805.08-30 64/65 313 12452 W/ MECH (AmBER) IN BUZ (AMBER) 10 305 0.3' 50.00 AS ALONE an (1192 5.Z1 (LASTIC GILTT CLAM AS DESCRIPTED MATTICISETY LO DK LOUT, FUR-STANDO AND FUR OLDE 12 GWATE - SBOS- 10-SO CA CE 1321 IF You Amore of more 1+ bur Amberto lt -G \SHARED\Training\SOPs\1000s Invstgtn\JE SOP 1100 Dnlling\Attachment 3\CoreLog.cdrl9ft

JACOBS PROJECT CORE LOG DRILLING DATE 6/18/16 DRILLER PAGE OF EQUIPMENT LEOPELBE G712 DT W/ MCS MACROCULE RULING - ARMY A GEOLOGIST PLUNGE EASTING NORTHING ____ SYSTEM UNITS ____ ELEVATION, UNITS, DATUM Time USCS, Boundaries Ξ. PID (ppm) Depth (ft) Moisture Sample I Product Core, Description (lithology, color, USCS, sample ID) 3.1' RELOVERT نغژا 7.0 DAMP WER GROOD FILL AS DECHIPED PARINELY 5 Ξ 6.4 4 2.4' DAMP PORCY LOODS SAND FRAM LOND AS SHELPIERS PLEVIANCE 70. ---1210 SP 6 16 WUTE - 5806 - 66-50 40/00 1242 INHER ANDER of MUCH SWELES 507.0 IT BIT AMOM AKIEL SUBLASIA \$ 0.9 DALK LEVE FUR SADIENT PARTY Lange SAW UM WANCE 522 1 ML 0.9' found where five samathic Ditak wary public 25 EOH CLAHES SILT 16 WIF- SB66-CE-20 -4/CF 1243 I- Mot AMAN W Mech Letis Ander G Methins Deframely/DUMENTODE Investge/All Incol 1100 Desleg/Alter Preserve Actional represented

	EQUIPME GEOLOG	IST	Ant	1	Am	stui	1	
[EAST	NG	bing	(i) H	C.S., Indanes			NG SYSTEM UNITS ELEVATION UNITS, DATUM
ļ	8	£	문	0	98		3	(lithology, color, USCS, sample ID)
	HI2 			7_		1.6		ANDER GUBANES AS INVERIANT AVENUAR (FILL)
					5.s	41		Squa MADION 7 CLANSE > FINE
				¥ -	14	23		Lo Front Stationer and obox 6.6 - 7.3' bys
	1130			Ŀ.	su		•	2.8' Pooler want SAND, LETTE WANT DACE SAT
				8 -		584		SAND COMERT - MARINA LANG OF BASE grant - 6-25" proche subaryun - or subanded.
					\$P	346.8		2.3' PORCH LANDED SAVE AS MOULE
	11-10			(TI	-	312.		EVEL DIDE PODELY LAAVED PLASTIC OWATH SULT SOME FINE SAND DECAYING OWATIC
		ΨY		۲Z -	ML	271.0		164477 - 5607.00-50 LA/LE 1200
				14				160074- 5007-10-50 14/05 1211
			-	lie -	83			
	·					· · · · · · · · · · · · · · · · · · ·		
7							-	

JACOBS CORE LOG LOCATION: SBOR PROJECT WEST NOME TANK FARM DATE 6/18/16 DRILLER DISCOVER DRILLING PAGE OF EQUIPMENT LEOPROBE 612 DT WITH MCS TODLING GEOLOGIST LARRY AMSKOUD PLUNGE EASTING NORTHING SYSTEM UNITS ELEVATION, UNITS, DATUM USCS, Boundaries Sample Int. Core, Time (mqq) Ci'q Depth (ft) Moisture Product Description (lithology, color, USCS, sample ID) age ser light born, well griled 3.8 Kourton sad with grand, sine is H. Ms other 54 411 0950 SAND FIRE'S belin 2 cause greed ~ 0.5° sie souther the commo ζ, all they light gog polarized partie Fromthe 4.0 2." damp, party gold, pruly and pay a making it's to again & myelar rach Frynts ٦ 3.8 2' reding your agryish box peoply guded 10.15 same il grint. Some dick guy string 6 SP 3" PIERry clanged save up shy with brown DALK EARY FUEL STAMPS AND FIEL ODDE & 7,5' 8 22.3 10 25 ight guyin the same where where sume sume sume 1025 12.4 L'S' then sold price inter pristic compt 2 SUS LIME put colors say METALET 59. FOR STADIO AND FRAN FRANK ri L 14:2415 - SB02 - C6-50 101 22/25 # W.S/+SD EWATE-SBOL- 12-SC GOH 11.28 11/10 NEWLER-Shee-12-Song up that & Dut G\SHARED\Training\SOPs\1000s Invstgtn\JE SOP 1100 Drilling\Attachment 3\CoreLog.cdrl8ft

PROJECT WEST MONE TANK FARM DATE 46/13/16 LOCATION: MW 36 CORE LOG PAGE / OF / DRILLER DISCOVERY DRILLING EQUIPMENT GEOPROBE 6712 DT W/ MC5 MACROLONE TO0-104 GEO OGIST LARIN AMSKULD PLUNGE SYSTEM, UNITS ELEVATION UNITS, DATUM EASTING NORTHING USCS, Boundaries Sample Int. Time PID (ppm) Depth (ft) Moisture Product Description Core, (lithology color, USCS, sample ID) 3.6' Was GRADED GRAVENT SAND AS 1515 DERIBED PREVIOUSLY 4.4 FILL 2 3.7 500 4 17 1.46 534 MATCHEAL AS ADME 6 GREISH BRANK PODRLY LEADED MUST SAND 57 LITTLE CAME, TRACE WOWLY DOWNS THACK SILT SAND MAILA > COMER > FURS 8 CANOL SUBRED DEN OT SUBALUM NO.54 SP 3.5 Ê. 1.7' pane were anose bear better been son 155 57 Sins Some Lova of 325 more SERS MOUNT COMER >FINE IĽ. I' we want setting (from) 624 5.5 Manpuler As Ables \$ 5.15 Faller ican war Sans CENESES MET. 10 THE NE 2.9 De' Many LENY POSTIC CLAS WAT & SHAMME V -1615 CALLE 16WATE - MW36- 12-50 EPI I WATE - MUSS - TTO 147 L*icr G \SHARED\Training\SOPs\1000s Invstgtn\JE SOP 1100 Drilling\Attachment 3\CoreLog.cdrl8tt

	_	1. = 0.			(1.2 -	and mit manual training
942		u e or	K(B)	e A	6712 2	of which macelline froction
2,064	ע_ ק	Artu	-	4	SIGULD	PLUNGE
ENSTR	G	_	- T		HQFT.	SYSTEM UNITS ELEVATION UNITS DATUM
Coe, Toe	Moisure	Froduct	Depth K	USCS, Gordaries	P.D. (port	Description (lithology, color, USCS, sample ID)
30	-		0			3 LELENDLY
1	l		-			2' whice convert SAUB mark Sect
			2			WAT, SAME COMPLY MANNED F.N.C.
_				Sw	eit-	CAMEL - 13 SUB K- 40 TS SUB-AMALE
					3	1 ATTING BEFORE LANT STUTE OWN SENS THE
			4			5420
			-		6.4	MERIN PLASTICITY.
45			1			2.2 DARK LEAVISH FROM SION SAND of CONT
			6 -	St:	10	THAT DECAMES, SEND LAMEL, PARY LAND, WAST
	1	- 44 -		5M	5.6	SAND FINE ST MANN > COSNE
	-		1	┣─		
		· · ·	8 -		-	C.S. Saparato Project Casto Start molecular Company
				s۴	4.2	
				1		BERA U.L. DALL LAND STANING, FAMT
			10	-		(Val open,
				EM		
			-			16WNTF- MW37-00-50 1417 60/00.
		-		1		10WUTF-MW37-04-50 1410 L4/CE
				1		
	1					
				1		
		· · —	-			
		1	1			
		·				· · · · · · · · · · · · · · · · · · ·
			-			
	<u> </u>					
			•			
	ł					
	· ·	-		1	-	
	+	-	-			
	1					
				1		
	:	•		1	1 1	

JA	COBS	PROJECT	1857	NONE	TANK	Farm	WELL ID	MW 36
3-A-S	DISCOVING	DRILLING					DATE(S) INSTALLED	6/16/12
\$3,2455	Loopmase	GAIZ DT	w1	Arhees	8.25" OD	4.25" 10		1.1
GEOLOGIST	CARPY	AM 1000	-				BOREHOLE ID	MW 36
EASTING		NORTHING			SYSTEM UNITS UTN	1 6N meters	ELEVATION UNITS DATUM	NAVD88

n<u>eult</u> Size._____ Manufacturer _____

Concrete eround Vault Type ______ Manufacturer ______

<u>Well Rister</u> Size: Zanch Sch 40, ASTM F480 Nuch threads Material: PVC Wanufacturer

<u>Well Serven</u> Size: 0.020-Inch slotted, 2-Inch Sch 40, ASTM F450 flash Inreads Material: PVC Manufacturer

End Çap

Handonike (sodium) Sizo, 3:8-inch chips, 50 to bag Manufacturer THE Flam APL V 4

Sand Size: 53-lb bag Manufacturer: Colorado Silca

 Sand Util	ization for 1	00% Open	Hole (No Co	#####			
Borehole	Diameter	Sand Volume (2-Inch Well)					
nne.	Feet	ნადარ	Bags ¹ 11 b	5/839			
	6.34	4.45	4.0				

4.5	0.38	0.18	1.9	5.7
÷	0.50	0.35	38	2.9
÷	067	0.65	7.1	1.5

문문 그는 - 이 See Englished on a portion in all built contracted og : og byk. Henne 이 같은 그들다.

Other Notes inter we with a first of the second of the se

G ISHARED TransingISOPs - in progressUE SOPS/1000s InvstgrhUE-SOP-1200 WellinsHatt1 WellConstrForms Generic cdirFlush WI Tbl 2013.07.26

at sat i	JAC	COBS	PROJECT	w	TF			WELL ID	632
S.	Flush Mount	Water Table Screen	DRum			_		DATE(S) INSTALLED	19/16
1.	EQUIPMENT	LED FROM	6712	01	U	LURS	8,25" 02	4.25" 10	
	GEOLOGIST							BIREHIL	W37
	EASTING		NORTHING			SYSTEM U	NITS UTM 6N meters	ELEVATION UNITS DAT_M	NAVD88

2013 07 26

Generic.cdr/Flush_\YtrTbl

OFTINS

WellConstri

INAU1

wogressUE SOPS\1000s InvstgtnUE-SOP+1200 Well

ŝ

G \SHARED Traning\SOPs

<u>Vinuti</u>	
Size:	
Manufacture:	

<u>Concrete pround Vault</u> Type:_____ Manufacture:

<u>Well Riser</u> Size 2-and: Sch 40 ASTAI F480 flush Preada Nateral PVC Nan,dacurer.

Well Screen Size: 0 023-rich slotted, 2-rich Sch 43, ASTM F460 fush meads Material: PVC

Manufactures

End Care

Bentantia Isodium) Size 3-8-inch ch.ps SC b bag Nanufacture: 1:00 processor

Sand Size: 👾 👔 , 504b ba Mandact war, Colorado

GATE.	- UP		
Vana	dacturen	Colorado Silica	

\$and L?	Sand Diffication for 100% Open Hole (No Collapse)											
Borehol	e Diameter	Sand Volume (Zench Well)										
Inches	Feet	Bags/ft	Bays 111	h/∂ag								
6,5	0.38	D %B	1.9	5.7								
6	0.50	D 75	30 ;	29								
B	0.57	0.65	1 21 1	1.5								

Aleta. 30 lo baç = 5 504 % prosé en a periode, el 6 4 constantión; la a tuña entacy el 95 3 los %

Unarter d' 6.2' 635 Unarter d' 6.2' 635 Grinster scene range 3-13 in moon to stie Grinste better fre 4501 A-7 Bentum the A-7 Bentum the

Well D	evelopmenti	Data Sheet							-	ACC	DBS	
1.1	Site Name				Event			We		Proeci	Number	
West	Nene To	strare	64	Divid.	ispo.	r.t		Milli	35	0508	(ራ ው እ	
	Weather Condition	75	<u>E</u>	D Readings	of Tela VC)Cs (pom	:	Qa	122	Develop	er miliats	
Sam	1. andy	H3*F	Arbert 🔒	Breaten	9200e 3	<u>a</u> :://e	54.	<u>i 00/au</u>	្រាំក្រ	<u>ا</u> شا	CE	
1.1.1	0 8			Well Inf	formati	on						
Wel Wal	era 'Sae (in)	Onling Water Ad	ded log:	As-Burt TD	of Casing	17U 6	orehole	Demeter(n)!	Gallons per	inear loo	<u>i icelifu</u>	
eres	3512	0		3)		(fiter pack porosity = 0.3)					
Depth to P	hoduct:#170C!	Depth to OW II	17301	Incal TD c	d Casho f	U 2	Product,	Thickness (U) a	and Volume	leaver	<u>d (mL)</u>	
Rembak	one internet	13.13			<u> </u>		The Re-	D of services	M44	And On all	744 B	
Min Purge	Voi = 2 * Added v	Hater + 3 * By	Max Purge	Vol. = 2 Ac	wheel Walter	- 10 ° B	γ γ	Dia casarg - I	Desite and the		gavi	
90 - 16	-91 n-15-16	hi-0-898	galT: = 3	37 sal ("	3 786 Liga	ar (8.7	5 10					
Man Purne	Woi = 2 - 0	(a + 1)	37.al=)1.12 ca	01 3.7651	aa - 3	1 15					
Has Surge	Vil = 2 1 ()	(a) + 101 3	37	33.68	N (* J 765	i Littal = 1	21.5					
and and			Wel	l Purgin	ginfor	matio	n					
\$7	at, Time	Frish Tr	1	Final TD :	Cashall		-	Eaveneri	Used for Pu	geng		
12	01.	1670		12	4	(Pr S.d	mersibi	e pump		1775. 221 - 12	-he d	
13	00	1033	Cal	Share	Demand	Dev Dev	Sale	atria Materia	O rea W		a chi haravit	
Certific	Brown	None Ma	ruel	Yile	Yes	61	ALANIN .		1/	JE USIN		
Other	or of the second	Faint St	ong	No	No	Ha	ch Turta	cirrele)	10.	C.	(mote)	
Purging re	ster (state)	Nax Vol Pur	QE WRITE AT	es. Treshid	Stored)	Doher N	990		1 Cons	A seatont	(a.u.i)	
	0.0	adhb		Altracia bit	Parmer In	Dimension	-			1		
Tate	(Laton of Line	1111	*35	e 126	-13 m/.	+01	T	+10 # 1	- 10% - 11	No No	ales Level	
(191,401)	Danne Trail	Tenperature	Cardua	hity .	DO DO	31		OR9	Tursidiay	1	Hart branc)-	
ant	20 120	(20)	(150)	1	19/1.1		5	(Virt)	(STU)	10		
17111	DIU SHOW	B.OUsed	wate	ura ro	OF VO	uve	10	remose	seam	ent	-	
1396	4-	T and	WEI	Shaw:	rgs.	Tub	ing	w/ too	t val	ve		
		CO	ged	twice	- Ha	oked	4	> peri	- pom	P		
405	3.0 6.0	Per	Pures	P. St	cant	+0	SU	ge, wi	thou	rge		
1415	0.5 6.5		block	e att	ach	nen	t.	4	1.2	-		
1437	2.5 8:0	Peri-	Pump								-	
1440		Sural	#	2 -								
1505	2.5 10.3	S Peri-	PUNE	0		-			-	3	48	
1510		Sora	0 #	3 -	-				10000			
1536	2.5 12.1	0 800	-PU	no			-	1000		-		
540		Sure	1. # 4				-		1	-		
11015	2.5 150	5 Par	Pus	D			-			-		
1020		S.V.	10 11		-	-					_	
1.28	0 0 17 4	E Facial	PC T	Hunt		VCT			ONL	F	3 49	
17.0	2 0 10	C 4 00	and	1115	10	1. 7		41.61	150	6 .	2 6 1	
1710	0.01010	S 273 GI	010	412	0	6.0	-	10.11	1371		1.21	
115	0.00 20	a a	0161	01.		4.00	2 M	9.9	111.3		1531	
1120	0.00 00,0	×. 01.	254	139 13	24	6.0	17	315	183.		5.51	
125	0.35 20.2	5 0.64	260		14	6.3	4	3:4	133.	213		
1730	0, 35 20.5	2.77	260	91 0.	42	6.4	CM	-3.0	133,	813	3.51	

Suggested Notation

"-----" = not measured "** = stable "+" = rising "-" = falling "*" = all parameters stable

Additional observations on back

							1		Lin	
1. 1	Site	Name			220		<u>A</u>			baa (
we:	it No	neT	ank tar	n well	Develo	pment	Mu)36	02	DK 1203
	-								-01	eren erens
				-		-	150/a	0/16	L	AICE
	Mail			Ac	ceptable Range to	Demonstrate Stab	ility			
ime	Callon	or Liters)	±10°C	± 3%	± 10% or 0 2 mg/L	± 0.2	± 10 mV	± 10% or ±1	NTU	Water Level
rl.mm)	Change	Total	Temperature	Conductivity	DO	рН	ORP	Turbidit	ty	(leet bloc)
1.2.0			(°C)	(µS/cm)	(mg/L)	(std units)	(mV)		1	13.31
00	0.00	20775	0.70	<u>xwx</u> 1	0 70	6.90	La C	-00		12 51
<u>140</u>	0.005	<u> 41.0</u>	$\alpha \cdot n$	alles	0.78	6.91	1.5	4.00	-	10.01
IHS	0.25	<u>as</u>	<u><u><u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u>	Xell	0.73	6	-13.3	TYPE.	5	1201
150	0.25	a1 <u>.50</u>	5.88	2613	0.63	6.502	-15, 4	75-	- 1	13:01
155	6.25	21.75	<u>a.99</u>	<u>265</u> 2	0.64	6.5+	-18-0	-7.	43	13/21
ЮÇ.	0.25	8a.0	a.93	2647	0.59	6.55	-19.1	44.9	77	13.51
305	0.25	29.25	3.01	2643	0.54	6.54	-19.9	3	37	13:51
110	0.25	2.58	89.16	2631	0.49	10-55	-21.	$\partial \omega$.	10	13.51
215	0.25	22.7	3. Ho	2636	0.49	10.55	-220	17.	75	13-5-
200	0.25	230	3 36	21045	0.45	10.57	· 23.6	1.5	0	13:51
020	0.55	23.5	3.54	Dialon		664	-25 7	8.10	5	13.51
$\frac{1}{20}$	A 35	07 C	1 20	DL90	AUC	4.75	- 20 7	70	žo	125
100	0,040	0.2.25	72 70	2695	0,40		- 20 5	7.5	<u>.</u>	12.51
600	0.00	82. P	<u></u>	0000	0.91	₩ •17	- 0×0.04	1.0		10.01
		Ļ		·	_	· ·			-	
	<u> </u>									
								_		
_		L						1		
	[L						
	1									
		1								
			1							
								-		
	· ·							<u> </u>		
	1		<u> </u>	+·				10000		
		• •			· · · · · · · · · · · · · · · · · · ·	—·				·
			· · · ·	1						
	4 —								_	
								4.		
		L	L							-
						-				
	1						-			1.

Well Development Data Sheet

JACOBS

	-					_									
	10	Site Marce				Even							relact Number		
	1.05-	NO.N	i is	L M	-0	(* i	$c_{i,i}$	-00	ner	+	U.L.	37 05	26:300		
	26	Weather	Condition	Si il	E	10.8 <u>2</u>	adanda i	(Total V	QCs :	(F16)	1 2	de De	velope Inizialis		
	\$ 24	4.1	1:5	::	Anber	-2	Breatrin	1.20me 🗧	3.	AN	3 21	12 L	ALE		
		9.	2.0	· · · · · · · · · · · · · · · · · · ·		We	all Inf	ormat	іоп		1 A A				
	Well Walk	erial / Sze	ini 🛛	niñng Water Ad	ded Igal:	<u>A\$-6</u>	Suit TD	of Casing	UČU	Borehole Dameterini - Galors per linear fool (03/8)					
	9VC7	2 5512		0			i	3		45103	62 57055 Ifiler tack	Si (270 898) Doresily = 0.1)	107734		
	Cect to P	roouduli T	1001	Dept t Ch :	100	50	a Ta	f Castig	2	Product T	hourses this	and Wourse Rec	overed (mL)		
	1	one		ં 5.૯૧		-		٦			A 2	_			
	Borehole V	ol (BV) w	ale: Lable	well = ("D of p	asing - de	cr. i o •		gavit, su	bneg	ed well = iTD) ol casong —l	Depth Top Filter	Pack "gal":		
	Wr Purge	2	Addec Wi	ater + 3 * 8v	Mar Purg	e hol :	= 21 Ad	dec Wate	r + :0	NG T					
	3N = (0_1-	5.09	to van=	d91 = 10	-10	gal (3 785 Lig	al = <u>k</u>	<u>114</u> U					
	Wirt Purge	Val. = 2 *	Q	gal + 1 1 🦉	gal ±	4-	76	(* 3 785	ulgai =	- <u>Sie</u> L	1				
	Via Purge	AR = 5.	0	gal + 18* 🖉	. 6 ga		F . 5	al (* 3.78	5 L/ga	-250	1)				
	É u	a Taux	-	For all Tax	We	II PL	irgin	g Info	rimat	tion	En ann ant	Land for Duran	-		
	24	ar, ung		<u></u>	Ę	14		1.7550 L		sprake put	TOW SUIDE	iock	2		
	113	14		i 505	5		10	.52	٤	submensible	DUTP (40	Trafoc	+ JOJE		
	1	Casor	-	202		2	1991	Purges	2ne	Sell/	Ilon Meters	Puralman	Sec. File		
	(Dear) Oo	udy Brow		None Ma	derale	1	ies -	Ye	\$	VS: LLOE LA	Her	1			
	Other		-	(an) a	Tong	0	6	- (NI		-ach Turbid	meler)	(during s	sablezation;		
	Purging rea	ached (S	aciety)k	Sax Vibi Pur	ge valet ø	ras 1	real	Stored	Other	Hole					
	-	1 de		1		Ac	ceptable	Range bo	Ceno	estralu Slatvik	α.				
	Ten	(Salda)	or den)	31214	1 17		1 234	Jantos		- 6.1	± 10 mV	- 12% at t' MTU	WaterLevel		
	(Helleri)	Channe	Tetal	Teraperiture	Cordus	ivity		20		рн	ORP	Turbidity	THE SECT		
	1139	4.0		(°C)	U.S.C.	re)	1	19/11	(Ph	duces)	(ŦV)	(UTA)			
	1100	1.0	1.0	runge	wi	Wa	10	ra.	00	TVP	ive -				
				Jur	10 #	EL.	-	0	-		1. <u>2</u> . 1.		1		
	138	0.15	1.75	FUIGE	W	Wad	err	a fo	ot	VOLUR			10.00		
	1215	3.0	4.75	Perr	PUM	NP.		-					1 70		
	1220	-	-	SUL	40 #	E'Z	-	_							
	12:0	τ.5	7:35		9			0.1		5	2				
	12.50	-		A SURE	1 4	5	15	rite	. \	nr / 1					
	1195	-		7 200.		-D	1-		()	-			16.15		
	1220	25	9:45	1 1	1	P	15		-	-					
*	13.20	20	ceuta	HILL STREET	1111	-	1.3	- 2.5]	1	10	2.4	1.00	10 02		
Fill 3rd -	19xu	der De	Mot into	1751.54	110	5	1.3	10	0	30 -	2-0	1-354	10.03		
S-324 Pours	1425	0.0	13.25	1.10	117	6	1-	35	6	.48 -	37.5	1-16	10.10		
	1430	0.5	1 - 18	1-12	119.	J.].	43	6.	55 -	45=6	0:87	10-18		
	1435	0.5	14.25	1.01	110			42	6	.60 -	53.3	0.08	10.31		
	1440	0.5	14.75	1-03	ji 4 a	1	1.	45	6	· 24.	6.0	0.97	10.45		
	1445	0.5	15.25	1:03	114	5	1.	WQ.	6	.68 .	-64-4	0.00	10.55		
	1450	0.5	1575	1.06	115	8	1	41	10	.71 -	19.10	0.30	10.50		
	11	05	11. 30	1.00	110	3	1	30	6	74.	75 3	110 0	96.01		
	1400	36	1.75	1.00		0.	1	50 V	1	741	737.7	1010	12 55		
	1000	6.5	I W W	LAL	1111	3		11/	10	51	70:1	0-11	10:030		
Street 7	1309	0.2	1,00	1.04 .	: 112.	1.	11-1	29	0		13.3	10.000	10.90		
PUG	Signates	"NOCERO"													
	·?= n		ed Mine	Sable 11 = 13	ing 💎 a	aling	- = 3	are	25 2	ż≼		kittoria tosari	1 1 1 200 C		
1	1420	r es	t M.O	He d Al	210	4-6	. H	r H	20,	Filled	34 2	-gal by	alt.		
		Terri	Vala	me 3	14.5	ি মুন	րվեր	as Q	, I 4	- 3 0.		*			
1			5 D 2	പ്പി	5.15	- 3] n /	1	11c		Sec. 1.	1			
	10+00	TŲA	J. 1	N C I	J. U. J	- :	AUG	- Ac	պո	r.) , I	rsa chi	ea Mar	x why		

Well Development Data Sheet

JACOBS

	Site	Name			Event		<u>361</u>	<u>014</u> 9	23	
-			-				3	<u>28</u>	<u>Dev</u>	<u>sizon jagos</u>
-	Voli	ıme		A	cceptable Range to I	Demonstrate Stab	bility			
Time (HH mm)	(Gallons	or Liters)	±10°C	± 3%	± 10% or 0.2 mol	± 0.2	± 10 mV	# 10% or	±1 NTU	Water Level (feet btoc)
	Change	Total	Temperature (°C)	Conductivity	DO (mo/L)	pH (std units)	ORP (mV)	Turbi	dity U	
				, in the second s	1					
					· · · · ·					
					<u>╃</u> ──── ŀ	· _		-		
		· ·							-	
	-				<u> </u>					
	<u> </u>									
									_	
					<u> </u>					
]		1					
				· —	1					
	·í —·									
			<u>⊢</u> —		1 1			<u> </u>		
									41	·· —
	╉────					·				
		<u> </u>								
				 .	-4			-		
	L	┢						_		
		L.								_
	ł									-
	Τ —									
			<u> </u>							
		<u> </u>	1	<u> </u>				1		
		1	1		-		-·	-		
			+; —	┿─- ──				+ ·		
	-		· · ·					-	-	
	+					· ·		_		
			· · · ·							
	1				· · · ·			_		
							.			
]							
	1 -	T						1		

JACOBS

Clou	Non	e Tar	K Farm	1.1	1111	5					
Clou	MARCE		in the second	v	76/14	San	up liv	9	MW-	36 0	SDK630
CICJ		Conditions		2	C Read	ines of the	ctal VOC	1120T			Sampler Incais
<u>We</u> ll	dy,	40'5	F	Angen []	Ба	erring 2:	ne () + ()	n Well <u>4 9</u>	00/2	216	LACE
0.2	0		700 Sint a #		Well	Infor	matio	n L Carina	Semandal 1	Column confe	a fastere #
2	116.0		LUC SRED	LINE:	06		131313	Lasno	Jerser nu	Calors per in	
Goog	-9- P	oor e	USh M	Vint	(9	55	1,10	104: 12:00 FS	a) 411653	6.1 465
Degette	2-30.0	2		Q	139.7	1 21		27.0.0	Thickness To	and Volume Pa	SEVERE IN
n Istorie v	NTE 31	el casing	volumes; = (pr	eno.s'st	র ঠরচের হারের চ	of casing	/ 111 a) 1 il - 156	 cfitc ⊫ateri(N 300 400 1/2	r logs of filter s	actioneros
IEL IEL TOTAL	elors ber l 8% el	inear looi Iao Punge	of casing • Skine = :	.al :e	- 13.	59	0.163	3	1 2a - 1	755 Logal = 6	.14
				We		gingl	nform	ation		and the second s	photo in the second sec
Star	t Time		Frist Tim	•	Dept	of Tubin	9.1.1996	1	Eaviorners	Used for Pura	ns.
0913	5	-	00	3		15		Safer	Retailer	Pur) Scom	ersible Purno
Dece Co	de Rom		Same Mart	100	<u>548</u> Ver	<u>-</u>	Nor	ſ	Mitter Jte	5 1600 1902	
One:	A 0.04		Fant St	org	(N2		4ia	C	S MAR Helle	(Hich Tur	bidmelor)
Purgingines	ched Sa	ability (Me	R 10 P.49	i je nator n	as: Tre	ause 🔄		er 401z			
	194	-		-	-	Acceptai	the Rung	e to Demons	trate Stability		4
26- stat:	[Salons	a (ma)	:42 °C	:13	1	: ES y I.S. Ficher: S	TORE)	:01	1.00	10% at 2%	L Domestower < :
	Carge	"pipi	Torspecture (°C)	Cont.d	telli t)	DO (rsgill	8	the lot	089 (415)	Turbisty (NT)	Witter Level (level blac)
0918	0.0	0.0	High	U To	orbi	dw	sedi	ment			13.7
0923	0.8	0.8		3	-		-			30.54	13 7
0933	0.2	1.0	HOOL	. VO	V	SI	-				13.7
0938	8.6	1.8	2.64	254	5	2.11		0.13	10.3	218.9	13.75
0943	8.0	3.6	2.67	258	7	1.5	7	6.18	-5.2	74 35	13.78
0948	8.0	4 4	2.85	26	04	1.2	0+	6.22-	-12.5	- SU 8-	1371
0953	8.0	5.2	314	261	81	1.1		la 2104	-194.	142.05	13 7
8200	0.8	6.0	312	26	221	1.11	0 4	6 28	22.1	236	12.75
1003	0.8	6.8	3 14	21	38	1.0		628	-24.1	31.51	12 70
10013	0+0	0.0	5101	~0	00			0-0		1	0.18
				-							
— ·-											
	-			Samel		llectio	n Info	rmation	1.1.1		
Star	t Time	1	Finish Time / I	Date	Depth	of Tubing	(ft btoc)		Equipment L	Jsed for Sampl	ing
10	103	-	_	-		15		C	eristaltic Pump	Submersible	e Pump
SAMPLE I): 16WA	JTF-MI	N36-GW	-9	oc 🔿	Sind (MS	imsà)	Ferrous I	ron (Fe ²⁺) (mg/L	_) =	
-	Container	/Preserval	tive	Ana	alysis Re	equested			Not	es	-
3× 40	mL V	OA, H	CI	3	m 89	60			ST DO	C A	
ax	Lam	ber,	HC		HIC IC	2205	n u		DA	LH	
241	c an	Uber	1 outres	· J	in Ba	xius			e r		

Suggested Notation:

"----" = not measured " = stable "+" = rising "-" = falling "*" = all parameters stable

Page 1

JACOBS

	<u>Site Name</u>				<u>Event</u>		We	ell ID Pro	roject Number	
								ate Sa	mpler Initials	
	101				Acceptable R	ange to Demons	strate Stability			
Time (HH:mm)	(Gallons	or Liters)	±02°C	± 3%	± 10% or 0 2 mg/L whichever is organized	±01	± 10 mV	± 10% or ±1 NTU	Drawdown < 0.3	
(in Linnity	Change	Total	Temperature (°C)	Conductively (juli/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	Water Level (feet btoc)	
				14						
		· ·				·				
								· · ·		
_									; 	
								-		
							1			
_										
_										
	•									
								-		
		•-• ·			·			· /		
		-						+		
·										

JACOBS

Sinh	ane			1	iver:			26	9.0	Project Number
WLS= NINE	-	M	Sa	mp	-ng			j.h	-31 3	53Cu 723
WesterC	orófors		PDR	235 TE 0	I Total VC	Cs (com)	à 1	E	2	Sampler Initials
Elevaly,	50 5	=F	where 3.6	-	ime 🔍	Ref 1	1.27	1113	415	LA LE
9.		_	1	ell Infi	ormati	on			,	1000
Well integrity		TOC STOLE (acsi 1	tiel Casir	c Nateria	2 3	karna De	anger'ni.	Gallors per lin	er tosant.
Good Fair Po	or	Flash	12.25	60	55		110.04	1 2.63	D 413853	11469
Depth In Product 11	1	Cash bigh ?	2321 23	e Cach 7	2:50 13	K Pi	the P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and volume R	expendent."
NGNE.	2	2.45	in a state de	R.) > 1fn	alı		F. 2	the of the sec	
l] "i∢ galors par li	near loor	d casing •		\$7	291-i-i	Jets, P. is	an a	206 49:	a nit oi mis ta	ax,sone jac
HOW WORK MA	a >uge	Voure = (🚮	51 5	- 33- 11	2.06	3	15	R 1984-1	785 Liga = 1	2.2.
			Well P	urging	g Infor	mation				
Sart Time		Einiah Time		10 TO		95:		Ealerter	USS: & 253	ΞŶ.
Life H	-	1644		hear	Brost	Do B	laler	Varsiacia	A TEP Subm	ersible Pump
Coury Bran		ATE Vers	Tate	Yes	ines.	~1	-	TET VS	a sound so the	
the		Fart Sta	ns	(8)	40		(2)	A ABN.	Hart Tur	(lateral)
ary reached Sa		A Pag	e 11372° 1135	"realed(Store() (the hos	×			
1 1.4	14			Accep	stable Ra	nge to Dear	ionști il	in Statutity		
Tine Gabre ?	3	102 12	±2%	1013	Tensta	: 31		±1055	=176 or et S	
Crarge	* yis'	"monstare"	Conduction		DX	pH /m		ORP .	Totide	Weter Love
- IN R.O	2.0	tania	UD V	ST		(SE 0105)	-	(E1)	(1:0)	740
14 2.0	4.0	Plat	IU 22	2	83	10.15	7 1	00	14.03	150
9 8 0	40	3.26	130/4		105	10 71		331	19.10	1.20
12415	75	3.84	12<3	T	17	6.0	7 -	421	7.31-	6.00
129 125	8 7-	11.1.2	1200	10	00	6.0	1	828	11 21	0.00
621 120	0.12	1.700	1241	10.	10	2.79	1	04.0	9.00	0.080
1.00	10.0	4.12	1200	00	00	0.48	Jul .	76.4	a.0	6.10
054 1.05	11.05	10/1	aas	Ue	68-	6.4	5	100.3	a.ds	6.10
674 25	12.50	4.66	122	0	644	6.4	14-	-104.4	1.56	6.70
644 1.25	13.75	4.5d	1217	0.	65	6.96	- ~	106.5	1.82	16.70
									1.000	
i								_		
	1									·
			Sample (Collect	ion In	formati	on		1.000	

	Jani	ple collection mon	mauon
Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1056	1712	7.0	(Peristaltic Purpe) Submersible Pump
SAMPLE ID: 16WNTF	- MW37-GW	QC. Dop MS4M6D	Ferrous Iron (Fe ²⁺) (mg/L) =
Container/Prese	rvative A	Analysis Requested	Notes
3x 40 mL VOA, 1	+c1	BWS260	BTEX
2x 12 ambe	r. HCl	AKIOZ	DRO
Rx IL amb	er, unpres	SW827 OSIM	PAH

Suggested Notation:

"----" = not measured " = stable "+" = rising "-" = falling "* = all parameters stable

Page 1

JACOBS

<u>Site Name</u>				Event		We	ell ID Pr	oject Number	
-			-				0		emplor Initials
	Volu	ume			Acceptable Ra	nge to Demons	trate Stability	,	Income co.o.
Time (HH mm)	(Gallons	or Liters)	± 0.2 °C	± 3%	± 10% or 0 2 mol whichever is proter	±01	± 10 mV	± 10% or ±1 NTL	ft
	Change	Total	Temperature (*C)	(Jul /cm)	00 (mi/L)	pH (std units)	(mV)	(NTU)	(feet bloc)
				90.04					
					-				
						· ·· ··			
						_	·		r
			1.2				-		
						-	_		
					····		 · ·		
						· ·-			· ·
			i				1		
					1200	1			

			C a	Project: 2016 F	Reme	edial [Design Sampling WNTF, Nome, Alaska		ID: WNTF	⁻ MW36
	JAC	UB		Client: USAF				Surfa	ace Elev. (m)	Elev. Datum NAVD 88
	BORING	& WELL LOO	G		Ea 1,7	asting 730,6 1	(m) Northing (m) 15.7 3,838,854.9		Projection (El UTM Zone 3N	llipsoid) (NAD83)
	Date Constructed: 18 Jun	2016		Driller: D	Disco	overy	Drilling	Geolo	gist: Larry Ams	kold
	Type of Hole: Soil Boring		Depth to (Groundwate	er: 1 :	3.2 ft I	ogs ()			
	Drill Rig: Geoprobe 6712	DT	Tooling: I	NC5 Macro	o Cor	e			Total Depth	: 20.0 ft
[Depth Construction (ft) Diagram	Construction Description	USCS Symbo	Lithology, I Samples	Rcvr (%)	PID (ppm)	Des	cription	·	
-	° -2	Concrete 10-20 sand (Colorado Silica) Medium bentonite chips	SW-			4.4	3.6' well graded gravelly sand as describe	ed previou	usly (fill). 1.4' mat	erial as above
_	·4	(Pure Gold) TOC = 0.50 ft bgs	SP			1.7		little grav	rel trace woody o	tehris trace silt
_	-10	10-20 sand (Colorado Silica)	55			5.7 3.5	well graded light greyish brown soand s medium=coarse	ounded to	rel, race woody ~ o subangular ~0. vel, gravel ~1" sul	5". 1.7' damp bangular, sand
_	12		•			5.7 6.2	~16WNTF-MW36-12-SO			
[MPLT.GDT 2016/10/05	14	2" Schedule 40 PVC, prepacked screen (0.010" slot, 20-40 sand, wrapped in stainless steel mesh). Two 5-ft sections.					~16WNTF-MW36-14-SO			
2016_PROJ.GPJ_DEV2014_	-18	Natural collapse								
BORING AND WELL LOG 2014 WNTI	-20	TD = 19.21 ft btoc								

				Project: 2016 F	Reme	edial [Design Sampling WNTF, Nome, Alaska		ID: WNTF	MW36
	JAC	OB	5	Client:				Surfa	ace Elev. (m)	Elev. Datum
	BORING	& WELL LO	G	UGAI	Ea	asting	(m) Northing (m)		Projection (Ell	lipsoid)
Date	Constructed: 19 Jun	2016		Driller: [1,1 Disco	730,44 overv	15.1 3,838,443.3 Drillina	Geolo	dist: Larry Ams	(NAD83) kold
Туре	of Hole: Soil Boring		Depth to (Groundwate	er: 6.	2 ft b	gs ()		<u></u>	
Drill F	Rig: GeoProbe 6712	DT	Tooling: I	MC5 Macro	ocore)			Total Depth:	: 13.0 ft
Depth (ft)	Construction Diagram	Construction Description	USCS Symbo	Lithology, I Samples	Rcvr (%)	PID (ppm)	Des	scription		
		Concrete Medium bentonite chips (Pure Gold) TOC = 0.50 ft bgs 10-20 sand (Colorado Silica) 2" Schedule 40 PVC, prepacked screen (0.010" slot, 20-40 sand, wrapped in stainless steel mesh). Two 5-ft sections.	SP-SM			5.1 5.6 4.2	 3' recovery, 2' well graded gravelly sand t gravel ~0.5" subrounded to subangular. fine sand, medium plasticity 16WNTF-MW37-00-SO 16WNTF-MW37-04-SO 2.0' dark greyish brown silty sand with low graded, wet, sand fine>>medium> coars 1.3' saturated, poorly graded sand mediul staining, faint fuel odor 	v trace org se m>coarse	wet sand coarse= im brownish grey ganics, some grav e> fine, bottom 0.4	medium> fine, silty clay, some vel, poorly t' dark grey
- - 10 - 12		Natural collapse TD = 12.18 ft btoc				4.2				
	Page 1 of 1									

IACOD	2	Project: ID: VNTF, Nome, Alaska VNTF \$						
JACOB		Client: USAF				Surfa	ce Elev. (m)	Elev. Datum NAVD 88
BORING & WELL LO	G		Ea: 1,73	sting (30,40	(m) Northing (m) 7.1 3,838,739.7		Projection (El UTM Zone 3N	lipsoid) (NAD83)
Date Constructed: 19 Jun 2016		Driller: D	isco	very I	Drilling	Geolog	gist: Larry Ams	kold
Type of Hole: Soil Boring	Depth to	Groundwate	r: 7.5	i ft bç	ıs ()			
Drill Rig: GeoProbe 6712 DT	Tooling:	MC5 Macro	core				Total Depth	10.0 ft
DepthConstructionConstruction(ft)DiagramDescription	USCS Symbo	Lithology, I Samples	Rcvr (%)(PID (ppm)	Des	scription		
-0		•••••• •••••• •••••			6' fill as previously described			
		· · · · · · · · · · · · · · · · · · ·		7.9				
				3.0				
-4				5.0				
-				15.6				
-6	SP-SN	1			√4' dark grey fuel, sandy poorly graded silt	y sand as	previously descr	bed
_	•			652	^L 16WNTF-SB01-06-SO			
-8	-							
-				607				
- 10								
-								
14								
- 16								
- 18								
20								
Page 1 of 1								

IACOD	2	Project: 2016 Rem	edial [Design Sampling WNTF, Nome, Alaska		ID: WNTF SB02		
JACOB		Client: USAF			Surfa	ce Elev. (m) Elev. Datum NAVD 88		
BORING & WELL LO	G	E 1,	asting 730,40	(m) Northing (m) 00.1 3,838,747.3	Projection (Ellipsoid) UTM Zone 3N (NAD83)			
Date Constructed: 19 Jun 2016		Driller: Disc	overy	Drilling	Geolog	ist: Larry Amskold		
Type of Hole: Soil Boring	Depth to	Groundwater: 7	.0 ft bạ	gs ()				
Drill Rig: GeoProbe 6712 DT	Tooling:	MC5 Macrocor	e	Total Depth: 10.0 ft				
DepthConstructionConstruction(ft)DiagramDescription	USCS Symbo	Lithology, Rcv ol Samples (%)	r PID (ppm)	Des	cription			
0			+	4' fill as previously described				
-			253					
-2		• • • • • • • • • • • • • • • • • • • •						
_			378					
			5/0					
-4								
-	SP-SN	A	207	1' fill, 4' dark grey fuel stained poorly grad	ed silty sa	ind		
-6				~				
	_		513	_				
-8				~16WNTF-SB02-08-SO				
-			600					
— 10			-					
-								
—12								
-								
<u>p</u> 14								
k − 16								
5 – 18 								
[≤] −20								
Page 1 of 1			1					

			S	Project: 2016 R	Remed	dial C	Design Sampling WNTF, Nome, Alaska	WNTF SB03			
		UB		Client: USAF				Surfa	Surface Elev. (m) Elev. Datum NAVD 88		
	BORING	& WELL LO	G		Eas 1,73	sting 30,40	Northing (m) 5.2 3,838,768.6		Projection (Ellipsoid) UTM Zone 3N (NAD83)		
Date (Constructed: 19 Jun	2016		Driller: D	iscov	ery	Drilling	Geolog	jist: Larry Amskold		
Туре	of Hole: Soil Boring		Depth to	Groundwate	r: 7.0	ft bç	js ()				
Drill R	ig: GeoProbe 6712	DT	Tooling:	NC5 Macrocore					Total Depth: 10.0 ft		
Depth (ft)	Construction Diagram	Construction Description	USCS Symbo	Lithology, I Samples	Rcvr (%) (PID ppm)	De	scription			
-0 - - -2 - -4			SP-SN			0.6 0.5 208	✓4' fill, dry, medium grey, slight fuel odor, 1 described on SB04, fuel odor	.6' wet, w	ell graded, medium grey fill as		
			<u> </u>			491	material, sand fine> medium>> coarse, 16WNTF-SB03-06-SO	gravel su	brounded ~0.5"		
						592	~16WNTF-SB03-08-SO				
— 12 -											
- 14											
16 											
- 18											
20											
	Page 1 of 1			_1I	1						

			2	Project 731b	Rvm	vdDal F	FvsDae Uamplo≩n WN2S, Nomv, Alaska		ID: WNTF	SB04	
		UB	5	Client: t UA	S			Surfa	ce Elev. (m)	Elev. Datum NAVF 88	
	BORING	& WELL LO	G		Ea 1,0	asting 643,5 1	(m) Northing (m) IT.8 4,848,6bT.4		Projection (Ellipsoid) t 2M Zoev 4N (NAF84)		
Date C	Constructed: 19 Jue	731b		Driller:	FDsio	ocvry	FrDillen	Geolog	gist: Larry Ams	kold	
Туре о	f Hole: UoDgorDen		Depth	to Groundwa	ter: b .	.T OF Pr	ns ()				
Drill Ri	g: BvoGroPv b617	F2	Toolin	g: MCT Mai	roi or	v			Total Depth:	: 13.3 Œ	
Depth (ft)	Construction Diagram	Construction Description	US Sy	SCS Lithology mbol Samples	/, Rcvr 3 (%)	PID (ppm)	Des	scription			
-2 -4 -6 -10 -12 -12 -14 -12 -14 -12 -14 -12 -12 -14 -12 -14 -18 -18				5P 5C		4.6 8.4 123 447 535	 3.6' recovered, medium brownish grey fill 3.6' recovered, medium brownish grey fill 3' poorly graded, saturated dark grey, cladegraded organic material throughout 16WNTF-SB04-06-SO 16WNTF-SB04-08-SO 16WNTF-SB04-08-SO 16WNTF-SB04-08-SO-9 (Duplicate) 	m>>coars yey sand,	e trace silt, trace g	ravel. Some	
	Ganv 1 o0 1										

IACOD	2	Project: 2016	Reme	edial [Design Sampling WNTF, Nome, Alaska		ID: WNTF SB05
JACOD		Client: USAF				Surfac	ce Elev. (m) Elev. Datum NAVD 88
BORING & WELL LO	G		Ea	asting	(m) Northing (m)		Projection (Ellipsoid) UTM Zone 3N (NAD83)
Date Constructed: 18 Jun 2016		Driller: I	Disco	overy	Drilling	Geolog	ist: Larry Amskold
Type of Hole: Soil Boring	Depth to	Groundwate	er: 1 '	1.5 ft k	ogs ()		
Drill Rig: GeoProbe 6712 DT	Tooling:	MC5 Macro	ocore)			Total Depth: 12.0 ft
DepthConstructionConstruction(ft)DiagramDescription	USCS Symbo	Elithology, Samples	Rcvr (%)	PID (ppm)	Desc	cription	
0						ibed prev	iously
-			•	19.2			
-2							
-				7.2	~ •		
-4	SP				3' medium greyish brown, poorly graded si 2' material as above, dark grey moist, fue	and with el odor	gravel as described previously,
-				7.0			
-6							
-				31.7			
-8						nher 1x8	oz Amher
_				600			
-10					0.8' same as above, 3.2' plastic silty clay a	s describ	ed previously, dark grey,
-	_			419	16WNTF-SB05-10-SO 1x 4oz Amber w/M	eO4 , 1x8	Boz Amber
	<u> </u>				-		
12							
-							
g - 14							
<u> </u> 16							
20							
Page 1 of 1	1	1	1				

				8	Project: 2016 Remedial Design Sampling WNTF, Nome, Alaska					ID: WNTF SB06	
		UD			Client: S USAF					ce Elev. (m) Elev. Datum NAVD 88	
E	BORING	& WELL LO	G			Ea	asting	(m) Northing (m)	Projection (Ellipsoid) UTM Zone 3N (NAD83)		
Date C	onstructed: 18 Jun	2016			Driller: I	Disco	overy	Drilling	Geolog	ist: Larry Amskold	
Type of	f Hole: Soil Boring		Dep	oth to G	Groundwate	er: 9.	5 ft bọ	gs ()			
Drill Riç	g: GeoProbe 6712	DT	Тоо	oling: N	IC5 Macro	ocore)			Total Depth: 10.0 ft	
Depth (ft)	Construction Diagram	Construction Description	5	USCS Symbol	Lithology, Samples	Rcvr (%)	PID (ppm)	Des	cription		
-0 -			+	SW	• • • • • • •				escribed p	reviously	
_							7.0				
-2											
-				SP			6.4	\sim 2 4' damp poorly graded sand with gravel	as descri	hed previously 0.8' dark grev	
-4				01				fuel saturated, poorly graded sand with	gravel	bou promotoly, oto dam groy	
_							70.1				
-6								16WNTF-SB06-06-SO 1x4oz Amber w/M	eo4, 1x8o	z Amber	
-							507				
8									aad 1v9a	- Amhor	
								~ 16WINTF-SB06-08-SO 1X40Z Amber W/W			
F _			V	ML			523	0.8' poorly graded, fuel saturated, dark gr	ey plastic	clayey silt	
— 10											
_											
-12											
-											
14											
GD//01/9											
102											
18 10											
24 2 2 2 2 2 2 2 2 0											
20											
	Page 1 of 1										

IACOP		Project: 2016 Re	emedial D	Design Sampling WNTF, Nome, Alaska		WNTF SB07				
JACOD	\mathbf{D}	Client: USAF			Surfac	Surface Elev. (m) Elev. Datum 35.80 NAVD 88				
BORING & WELL LC	G		Easting 1,730,61	(m) Northing (m) 5.7 3,838,854.9	Projection (Ellipsoid) UTM Zone 3N (NAD83)					
Date Constructed: 18 Jun 2016		Driller: Di	Driller: Discovery Drilling Geologist: Larry Amskold							
Type of Hole: Monitoring Well	Depth to	Groundwater	pundwater: 11.4 ft bgs ()							
Drill Rig: GeoProbe 6712 DT	Tooling:	MC5 Macroo	core		Total Depth: 15.0 ft					
DepthConstructionConstruction(ft)DiagramDescription	USCS Symbo	Lithology, R Samples (RCVI PID (%) (ppm)	Des	cription					
			1.6	Well graded brownish-grey well graded gr pulverized angular (fill) rock fragments, medium>coarse>fine, 2.2' material as pr bgs, 2.8' poor	ravelly sar gravel sub revious, fu	d, little silt trace cobbles as angular to subrounded, same el staining and odor 6.6-7.3'				
4 			2.3							
6 	SP		58.9	pooorly graded sand as above, poorly gra poorly graded plastic clayey silt some fir debris. Wet to saturated	ided dark i ne sand. D	grey fuel stained, fuel odor, ecaying organic matter and root				
- 10	ML		347	└16WNTF-SB07-08-SO ──16WNTF-SB07-010-SO						
	<u> </u>		271	_						
16 16										
Page 1 of 1										

IACOD	2	Project: 2016 Re	emedial	Design Sampling WNTF, Nome, Alaska		WNTF SB08		
JACOB	0	Client: USAF			Surfac	e Elev. (m) 2 8.10	Elev. Datum NAVD 88	
BORING & WELL LO	DG		Easting 1,730,4	(m) Northing (m) 45.1 3,838,443.3	Projection (Ellipsoid) UTM Zone 3N (NAD83)			
Date Constructed: 18 Jun 2016		Driller: Di	scovery	Drilling	Geologi	Geologist: Larry Amskold		
Type of Hole: Monitoring Well	Depth to	Groundwater:	: 12.5 ft	bgs ()				
Drill Rig: GeoProbe 6712 DT	Tooling:	MC5 Macroc	core			Total Depth	: 15.0 ft	
DepthConstructionConstruction(ft)DiagramDescription	USCS Symbo	Lithology, R Samples (RCVr PID (%) (ppm)	De	scription			
	SP		4.1	 0.8' dry, light brown, well graded sand wit medium> coarse, gravel ~0.5" subangu 0.6' dry light gray pulverized rock fragment 	h gravel, se lar to subro nts. 2.1, da	ome silt, no odo ounded. mo, poorly grad	r, sand finse>	
			4.0	sand gray to medium, ~1" subangular to to greyish brown poorly graded sand w graded sand w	o angular ro / gravel. Sc	ock fragments, 2 ome dark grey si	2' medium grey taining. 3' poorly	
			3.8					
- 6			46.4	~_16WNTF-SB08-06-SO				
- 8			22.3					
- 10 -			42.6					
-12				16WNTF-SB08-12-SO				
	- ML		352	[−] [∟] 16WNTF-SB08-12-SO (duplicate)				
Page 1 of 1								

APPENDIX E Survey Data

West Nome Tank Farm Survey Results

LocID	N_NAD83	E_NAD83	HtEll	QualXY	Description	DateTime	SrvyMthd	SrvyEquip	SrvyDtm	Vert_Prec	Horz_Prec
SP-03	3838647.29	1730590.37	—	0.10	SurfaceSoilPt	42542.33	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SB-04	3838765.32	1730415.84	—	0.10	Borehole	42542.34	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SB-01	3838739.73	1730407.11	—	0.10	Borehole	42542.34	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SB-03	3838768.64	1730405.22	—	0.10	Borehole	42542.34	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SB-02	3838747.28	1730400.09	—	0.10	Borehole	42542.34	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SP-04	3838737.64	1730627.65	—	0.10	Borehole	42542.34	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SP-06 (porewater)	3838862.18	1730649.69		0.10	SurfaceWaterPt	42542.61	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SP-06 (sediment)	3838860.55	1730652.60		0.10	SurfaceSoilPt	42542.61	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SP-05	3838737.51	1730627.83	—	0.10	SurfaceSoilPt	42542.62	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SP-04	3838646.25	1730591.10	—	0.10	SurfaceSoilPt	42542.63	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SP-03	3838557.22	1730535.76	—	0.10	SurfaceSoilPt	42542.63	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.11	0.10
SP-02	3838464.60	1730493.53	—	0.10	SurfaceSoilPt	42542.64	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.10	0.10
SP-01	3838295.50	1730393.66	_	0.22	SurfaceSoilPt	42542.68	PPCF-GPS	Trimble GeoXH 6000	NAD83	0.21	0.22
MW-R7	3839027.50	1730461.10	—	0.00	MonWell	42637.00		Trimble GeoXH 6000	NAD83		
MW-36	3838854.90	1730615.70	—	0.00	MonWell	42637.00		Trimble GeoXH 6000	NAD83		
MW-37	3838443.30	1730445.10	—	0.00	MonWell	42637.00		Trimble GeoXH 6000	NAD83		
MW-20	3839238.90	1730508.50	—	0.00	MonWell	42637.00		Trimble GeoXH 6000	NAD83		
MW-21	3839292.40	1730525.40		0.00	MonWell	42637.00		Trimble GeoXH 6000	NAD83		

A MBE COMPANY OFFERING A FULL RANGE OF LAND, CONSTRUCTION AND HYDROGRAPHIC SURVEYS AS WELL AS MACHINE CONTROL AND DESIGN SERVICES

8-24-16

Nick Kuhlmann Environmental & Construction Operations Manager Eagle Eye Electric, LLC A Bering Straits Company 4600 Debarr Road, Suite 200 | Anchorage, AK 99508

PROJECT: NOME TANK FARM MONITOR WELL COORDINATES

Mr. Kuhlmann:

Below are the coordinates of the monitor wells at the Nome tank farm. The locations were derived by GPS and are based on the control shown below.

If I can answer any questions please let me know.

Sincerely, Tony Wilson, PLS

1 on Wil

Edge Survey and Design

Nome Tank Farm Monitor Well Locations

Coordinates and Elevations based on NGS SACS point designated 8756-K

NAD 83 Meters North 1,170,493.8670 East 527,379.9500

3,840,195.2950 1,730,245.7190

Feet

US Survey

NAVD 88 Ortho Height 13.2' GPS observed

Nome Tank Farm Monitor Well Coordinates in US Survey Feet

ASPC AK ZONE 8

	Northing	Easting	Elevat of Gro at we	tion ound 11
201	3,838,443.3	1,730,445.1	28.1	MONITORING WELL W-37
202	3,838,854.9	1,730,615.7	35.7	MONITORING WELL W-36
203	3,839,027.5	1,730,461.1	28.8	MONITORING WELL W-7R
204	3,839,238.9	1,730,508.5	34.4	MONITORING WELL W-20
205	3,839,292.4	1,730,525.4	32.2	MONITORING WELL W-21

Note: The elevations are ground elevations at the well pipe.

Nome Tank Farm Monitor well locations

Edge Survey and Design 344-5990 FB 15-59	[Elevations ba	ased on CP 102 ele	evation 29.66		
Monitor well	Northing	Easting	Ground Elevation	Top PVC in w	ell Top Concrete around well	Top of Well cap
W-R7	3,839,027.50	1,730,461.10	28.8	28.74	28.88	No well cap present
W-36	3,838,854.90	1,730,615.70	35.8	35.30	35.72	35.78
W-37	3,838,443.30	1,730,445.10	28.1	27.77	28.07	28.14
W-20	3,839,238.90	1,730,508.50	34.4	At base of well casing, ca	using was locked and no key available.	Casing is at a slant
W-21	3,839,292.40	1,730,525.40	32.2	At base of well casing, ca	ising was locked and no key available.	Casing is at a slant

Sep-16

P. #00-#11

· 286	Nome TANK FARM	1956	6-27-16	155304
	ED water and	Course	Consection Consect	
	and the second s	Construction of the second	DP DP DP	C 01-7
			1 2 2 2 2	
		P P		
	+ 1	+2	+ 5	
	0~	9-	0 ⁻²	
	Tel =	EIB	Elenal Deates	
	SS		Street St.	
		c c	\$P	
	ġ.			
	C.		3- 2-	
	05			
	10	1 1 1	1 1	
		1	21 32	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		58	12 72	History Ha
				Here Hill
	40		14 60	
	6.44 St	245.24	0.50 \$1	
	Sheeks		Carrier and Solar and	
Later 111				

APPENDIX F Notifications and Permits

DAPR FEEDER

CITY OF NOME

Permit No. 6-01 T

Demolition Permit Application

ERKS DEPARTMENT NCO 5.10.010 Special definitions

"STRUCTURE" means anything artificially built up or composed of parts joined together in some definite manner which requires location on the ground or attachment to something located on the ground. Structures include building, radio, T.V. and cellular telephone towers, storage vens, connex vans, sheda, water, sewer or fuel tanks and permanent signs.

NCO 5.10.050 Permit regulred.

(a) No person may construct, improve, remodel, enlarge, alter, repair, move, demolish or change the occupancy of a building or structure, or creet, install, colorge, alter, repair, remove, convert or replace any electrical, gas, mechanical or plumbing system, boiler, furnace, water heater, breaker panel, oil tank, stationary propane tank, wood burning stove or fireplace or excavate or place fill on any property without first obtaining the required permits therefore.

(b) (2) A demolition permit is required for any demolition of any existing structure.

(c) Applications for any required permit shall be on a form prescribed by and filed with the building official, shall contain all information required by the building official, or required by NCO 11.50.020(b), and shall be signed by either the owner of the property or the structure, or by the owner's contractor responsible for accomplishing the work for which the permit is requested.

(d) The applicable fee shall be paid at the time any permit application is issued. The building official shall not begin to review any submitted application notil such time as the certification of compliance with tax and licensing provisions required by NCO 5.10.020 has been issued by the city clerk. (Ord. 0)-12-1 § 1 (part), 2001)

5.16.070 Permit standards.

(f) Demolition Permit. No application for a demolition permit shall be approved unless all of the following requirements to the extent applicable to the project are satisfied:

A demo	lition plan is submitted and approved	by the building offic	ial. (Ord. 01-12-	l § 1 (part), 2001)
Applicant:	Eagle Eye Electric, LLC (BSNC)	Dete:	4-4-16	

Malling Address: 4600 DeBarr Rd. Ste 200, ANC. AK Street Address: Phone 5: (907) 334-8300

Demotition Dubris From: USAF Tank Farm Site (West Nome Tank Farm), Port Road Industrial Park

Block #: 141 Lot #: Tax Lot #: 001. 481.9

Description of Debris and Waste Material:

Former West Nome Tank Farm Pump House structure. C&D waste.

Permissible Landfill Site:

The Applicant and Person Primarily Responsible further agree, represent and warrant that the entire demolition site shall be adequately protected, restricted and barricaded in the best public interests of health, safety and welfare, with visible and stable BARRIERS, flashing yellow WARNING LIGHTS in good working order, understandable large-print WARNING SIGNS, and such other precautionary equipment and measures as the City may require.

2395 A T 1992

-

Q-96-6-6 Fee Structure	Q-98-8-2 Fee Structure:
Pickup Track	Contractor/ProjectNegotiated with base rate of \$90-ton worden Structures
Flat Bed Truck	ed
Damp Track	red PERMIT FEE CHARGED;
Inert Debris Lar	ndfill/Salvage Yard Center Creek Road Site
Acceptable Wastes_	Unacceptable Wastes
 construction/demolition debris sorap metal tires white goods (w/ CFC removed) vehicles (w/fluids & battery remove scrap wood empty drums/tanks 	 hazardous wastes including: waste oil, greases, paints lead-acid batteries asbestos domestic refuse sewage sludge & honey buckets animal carcasses or by-products
BUILDING INSPECTOR	DATE OWNER DATE
CITY CLERK'S OFFICE	YES 47.16 NO
01-12-01 Revised 10/15/2009	Date Paid/Amount

C COLUMN THE PARTY OF	_	
DATE RECEIVED:	CITY OF NOME Permit	No.
2010	Excavation/Fill Permit FEE \$25.00	6-03E
CHYOFNOME		
o be excavated of lifed	I permit is required for any excavation or fill of land that materially	alters runoff from the proper
Check application type (✓): _	Excavation	
Applicant: Eagle eye Electric, L	LC (BSNC) Phone #: (907) 334-8	3300
erson Primarily Responsible:	Nick Kuhlmann- Operations Manager	
ocation of Excavation.	drive and one (model to the rank range) of thoad	
Block # : 14	Lot #: Tax Lot #:	01.481.491
Block # : Detailed Description of Excavation equipment being used, purpose of ocation of proposed activity.): An irawing. Access to city streets of naintained roads or state-owned n approved state driveway or ac	Lot #: Tax Lot #: on/Fill Activities (Include here or attach a plan indicating of excavation/fill, etc. Attach any plans, drawings or ske ny proposed driveway or access road shall be clearly de of ROWs must be approved by the City Engineer. Access ROWs must be approved by the AK Dot & PF Regional ccess road permit as a condition to City approval.	the dimensions, depth, tches showing the fined on the permit s to State of Alaska Engineer, and must have
Block # : Detailed Description of Excavatio quipment being used, purpose of pocation of proposed activity.): An rawing. Access to city streets of naintained roads or state-owned n approved state driveway or ac Land Cap Construction (see att	Lot #: Tax Lot #: on/Fill Activities (Include here or attach a plan indicating of excavation/fill, etc. Attach any plans, drawings or ske ny proposed driveway or access road shall be clearly de of ROWs must be approved by the City Engineer. Access I ROWs must be approved by the AK Dot & PF Regional access road permit as a condition to City approval.	the dimensions, depth tches showing the fined on the permit s to State of Alaska Engineer, and must hav
Block # : Detailed Description of Excavatio equipment being used, purpose of ocation of proposed activity.): An irawing. Access to city streets of naintained roads or state-owned n approved state driveway or ac Land Cap Construction (see att roller, trucks. Approximate	Lot #: Tax Lot #: on/Fill Activities (Include here or attach a plan indicating of excavation/fill, etc. Attach any plans, drawings or ske ny proposed driveway or access road shall be clearly de of ROWs must be approved by the City Engineer. Access ROWs must be approved by the AK Dot & PF Regional ccess road permit as a condition to City approval. tached drawings). Equipment to include, but not limited to, le ely 10,500 CY of material will be imported for cap construction	the dimensions, depth tches showing the fined on the permit s to State of Alaska Engineer, and must hav bader, dozer, excavator, on. SWPPP is under

CAUTION - NO EXCAVATION PERMIT SHALL BE ISSUED FOR A PERIOD IN EXCESS OF 72 HOURS. NO EXCAVATION PERMIT SHALL BE ISSUED WITHOUT REQUIRED INSURANCE (SEE NOTE 5).

- The Applicant and Person Primary Responsible hereby certify under oath that the above information is an accurate and complete description of all excavation activity to be performed by them on dedicated right of ways or property of the City of Nome.
- The Applicant and Person Primarily Responsible hereby represent and warrant that all excavation/fill activities will occur only as described above.
- 3) The Applicant and Person Primarily Responsible further agree, represent and warrant that the entire excavation site shall be adequately protected, restricted and barricaded in the best public interests of health, safety and welfare, with visible and stable BARRIERS, flashing yellow WARNING LIGHTS in good working order, understandable large-print WARNING SIGNS, and such other precautionary equipment and measures as the City may require.
- 4) The Applicant and Person Primarily Responsible further agree, represent and warrant that all dedicated right of ways and property of the City of Nome shall be fully and completely restored on or before the Completion date to the original condition, including but not limited to soil mixes, compaction and surfacing.
- 5) The Applicant and Person Primarily Responsible hereby represent and warrant that at all times during the excavation activities permitted pursuant to this Application, there shall remain in full force and effect general liability insurance covering any and all claims of injury or damage to any person or property caused by or resulting from the excavation/fill activities, in an amount no less than \$500,000 per person and \$1,000,000 per occurrence, naming the City of Nome as an additional insured party without right of subrogation. CURRENT BOND MUST BE ON FILE IN CLERK'S OFFICE.
- 6) The Applicant and Person Primarily Responsible hereby agree to hold harmless and indemnify the City of Nome from and against any and all costs, claims, damages and losses, including reasonable costs of defense, caused by or resulting from the acts or omissions of the Applicant, Person Primarily Responsible, their agents, partners, subcontractors, employees, guests or invitees, occurring during the course of or as a result of any and all excavation/fill activities on dedicated right of ways or property of the City of Nome.
- 7) This Permit shall not be assigned or transferred except pursuant to a new application completed accurately by the assignee and approved in writing by the City of Nome.
- 8) APPLICANT/CONTRACTOR MUST BE IN COMPLIANCE WITH NCO 5.10.020 (Tax Compliance Certification).

新秋 · · · 新秋

Application certified as accurate and complete this	4thday of, 20_16
Nick Kuhlmann	Nick Kuhlmann
B Signature of Applicant	Signature of Person Primarily Responsible
Signature of Clerk Attesting to Bond & Tax Compliance	PERMIT APPOVED this day of May_, 2016
STATE OF ALASKA SECOND JUDICIAL DISTRICT	Nathan Rover 5/3/16
	Public Works Director Date
SIGNED and swom before me this day of, 20	Authorized Signature for Nome Joint Utilities Date
Notary Public for Alaska	
My Commission Expires: seal	Receipt#:, Date paid:(\$25.00)

NOTIFICATION OF DEMOLITION AND RENOVATION

Operator Project #	Postmark		Date Received		Notification #			
I. Type of Notification (O=Original R=Revised C=Canceled) O								
II. FACILITY INFORMATION (Identif	fy owner, removal contra	actor, and o	ther operator)					
OWNER NAME: USAF								
Address: 2281 HUGHES AVE STE 183								
City: JBSA LACKLAND		State: Te	xas	zip: 78236				
Contact: ERIN M. FIANIGAN Tel: 210-395-3157								
REMOVAL CONTRACTOR: TUMET CONSTRUCTION								
Address: 602 W 2nd Ave								
City: Nome		State: Ala	aska	zip: 99762				
Contact: Aaron Burmeister				Tel: 907-387-06	30			
OTHER OPERATOR: Eagle Eye E	Electric, LLC							
Address: 4600 Debarr Road, St	te 200							
City: Anchorage		State: Ala	aska	Zip: 99508				
Contact: Nick Kuhlmann				Tel: 907-334-83	53			
III. TYPE OF OPERATION (D=Demo	O= Ordered Demo R=R	enovation E	E=Emer. Renovation	on) D				
IV. IS ASBESTOS PRESENT? (Yes/	_{'No)} NO							
V. FACILITY DESCRIPTION (Include	e building name, numbe	er and floor	or room number)					
Bldg. Name: West Nome Tank F	Farm Pump House							
Address: Block 141								
City: Nome		State: Ala	aska	County:				
Site Location: West Nome Tank	Farm							
Building Size: 400 SF		# of Floo	# of Floors: ¹ Age in Years: ³⁰⁺					
Present Use: Vacant		Prior Use	: Tank Farm Pu	'ump House				
VI. PROCEDURE, INCLUDING ANA	LYTICAL METHOD, IF A	PPROPRIA	FE, USED TO DET	ECT THE PRESENC	E OF ASBESTOS	MATERIAL:		
			Nonf	riable				
VII. APPROXIMATE AMOUNT OF A INCLUDING:	SBESTOS		Asbe Materi	estos ial Not	Indicate	Unit of		
1 Regulated ACM to be Per	moved To	Be –	To Be R	emoved	Measurem	ent Below		
2. Category I ACM Not Rem	oved Ren	noved	Category I	Category II	UN	ΙΙΤ		
3. Category II ACM Not Rem	loved							
Pipes					LnFt:	Ln M:		
Surface Area					SqFt:	Sq M:		
Vol RACM Off Facility Component					CuFt:	Cu M:		
VIII. SCHEDULED DATES ASBESTOS REMOVAL (MM/DD/YY) Start: Complete:								
IX. SCHEDULED DATES DEMO/RENOVATION (MM/DD/YY) Start: Complete:								

X. DESCRIPTION OF PLANNED DEMOLITION OR RENOVAT Mechanical demolition by use of hydraulic excavate	r <mark>ion work</mark> , or.	AND METHOD(S) TO BE USED:
XI. DESCRIPTION OF WORK PRACTICES AND ENGINEERIN DEMOLITION OR RENOVATION SITE:	NG CONTRO	LS TO BE USED	TO PREVENT EMISSIONS OF ASBESTOS AT THE
N/A			
XII. WASTE TRANSPORTER #1			
Name: Stampede Ventures, Inc.			
Address: 110 Front St., Ste. 300			
City: Nome	State: Alas	ska	zip: 99762
Contact Person: Dan Graham			Tel: 907-334-8376
WASTE TRANSPORTER #2			
Name:			
Address:			L
City:	State:		Zip:
Contact Person:			Tel:
XIII. WASTE DISPOSAL SITE			
Name: Nome Municipal Landfill			
Address: Center Creek Rd.			
City: Nome	State: Alas	ska	zip: 99762
Tel: (907) 443-6603			
XIV. IF DEMOLITION ORDERED BY A GOVERNMENT AGEN	ICY, PLEASE	E IDENTIFY THE	AGENCY BELOW:
Name:		Title:	
Authority:			
Date of Order (MM/DD/YY):		Date Ordered t	o Begin (MM/DD/YY):
XV. FOR EMERGENCY RENOVATIONS:			
Date and Hour of Emergency (MM/DD/YY):			
Description of the sudden unexpected event:			
Explanation of how the event caused unsafe conditions or	would cause	equipment dam	age or an unreasonable financial burden:
XVI. DESCRIPTION OF PROCEDURES TO BE FOLLOWED IN NONFRIABLE ASTESTOS MATERIAL BECOMES CRUMBLE	N THE EVEN ED, PULVERI	T THAT UNEXPI	ECTED ASBESTOS IS FOUND OR PREVIOUSLY CED TO POWDER:
N/A			
XVII. I CERTIFY THAT AN INDIVIDUAL TRAINED IN THE PROSITE DURING THE DEMOLITION OR RENOVATION, AND EXPERSON WILL BE AVAILABLE FOR INSPECTION DURING I	OVISIONS O /IDENCE TH NORMAL BU	F THIS REGULA AT THE REQUIR ISINESS HOURS	TION (40 CFR PART 61, SUBPART M) WILL BE ON- ED TRAINING HAS BEEN ACCOMPLISHED BY THIS
(Signature of Owner/Operator)			(Date)
XVIII. I CERTIFY THAT THE ABOVE INFORMATION IS CORF	RECT:		
Nick Kuhlmann	hlmann •Bering Straits Native •Imann@beringstraits. •08'00'	Corporation, com, c=US	06/09/16
(Signature of Owner/Operator)			(Date)

DATE RECEIVED:	CITY OF NOME	Permit No.
	Excavation/Fill Permit FEE \$25.00	
NCO 5.10.050 (b)(vi) an Excavation/Fill p to be excavated or filled.	permit is required for any excavation or fill of land the	at materially alters runoff from the property
Check application type (\checkmark):	Excavation X	Fill
Applicant: _Eagle eye Electric, LLC Person Primarily Responsible:N	C (BSNC) Phone #: lick Kuhlmann- Operations Manager	(907) 334-8300
Mailing Address: 4600 DeBarr Rd,	Ste 200, ANC , Street Address:	
Location of Excavation: USAF Tar Block # :	nk Farm Site (West Nome Tank Farm), Port Ro Lot #: Tax	ad : Lot #:
Detailed Description of Excavation equipment being used, purpose of location of proposed activity.): Any drawing. Access to city streets of maintained roads or state-owned R an approved state driveway or acc	/Fill Activities (Include here or attach a plar excavation/fill, etc. Attach any plans, draw y proposed driveway or access road shall be ROWs must be approved by the City Engine ROWs must be approved by the AK Dot & Pf ess road permit as a condition to City appro	n indicating the dimensions, depth, ings or sketches showing the e clearly defined on the permit eer. Access to State of Alaska F Regional Engineer, and must have oval.
Land Cap Construction (see atta	ched drawings). Equipment to include, but not	limited to, loader, dozer, excavator,
roller, trucks. Approximatel	y 10,500 CY of material will be imported for cap	construction. SWPPP is under
construction and current CE	SCL will be on site for inspections and re-inspe	ections.
CAUTION - NO EXCAVA	ATION PERMIT SHALL BE ISSUED FOR A PERIOD IN	EXCESS OF 72 HOURS.

- NO EXCAVATION PERMIT SHALL BE ISSUED WITHOUT REQUIRED INSURANCE (SEE NOTE 5).
- 1) The Applicant and Person Primary Responsible hereby certify under oath that the above information is an accurate and complete description of all excavation activity to be performed by them on dedicated right of ways or property of the City of Nome.
- 2) The Applicant and Person Primarily Responsible hereby represent and warrant that all excavation/fill activities will occur only as described above.
- 3) The Applicant and Person Primarily Responsible further agree, represent and warrant that the entire excavation site shall be adequately protected, restricted and barricaded in the best public interests of health, safety and welfare, with visible and stable BARRIERS, flashing yellow WARNING LIGHTS in good working order, understandable large-print WARNING SIGNS, and such other precautionary equipment and measures as the City may require.
- 4) The Applicant and Person Primarily Responsible further agree, represent and warrant that all dedicated right of ways and property of the City of Nome shall be fully and completely restored on or before the Completion date to the original condition, including but not limited to soil mixes, compaction and surfacing.
- 5) The Applicant and Person Primarily Responsible hereby represent and warrant that at all times during the excavation activities permitted pursuant to this Application, there shall remain in full force and effect general liability insurance covering any and all claims of injury or damage to any person or property caused by or resulting from the excavation/fill activities, in an amount no less than \$500,000 per person and \$1,000,000 per occurrence, naming the City of Nome as an additional insured party without right of subrogation. CURRENT BOND MUST BE ON FILE IN CLERK'S OFFICE.
- 6) The Applicant and Person Primarily Responsible hereby agree to hold harmless and indemnify the City of Nome from and against any and all costs, claims, damages and losses, including reasonable costs of defense, caused by or resulting from the acts or omissions of the Applicant, Person Primarily Responsible, their agents, partners, subcontractors, employees, guests or invitees, occurring during the course of or as a result of any and all excavation/fill activities on dedicated right of ways or property of the City of Nome.
- 7) This Permit shall not be assigned or transferred except pursuant to a new application completed accurately by the assignee and approved in writing by the City of Nome.

Application certified as accurate and complete this	4thday ofApril	, 20 _16
Nick Kuhlmann District Statistics Statistics Statistics	Nick Kuhlmann	lly signed by Mick Kuhlmann Nek Kuhlmann, co-Berng Strats Native Corporation, gle Syc - mail-inkuhlmannBerleingstrats.com, c=US 2016/abd/14523.4000
Signature of Applicant	Signature of Person Pri	marily Responsible
Signature of Clerk Attesting to Bond & Tax Compliance STATE OF ALASKA SECOND JUDICIAL DISTRICT	PERMIT APPOVED this	day of, 20
	Public Works Director	Date
SIGNED and sworn before me this day of, 20		
Notary Public for Alaska	Authorized Signature for Nom	e Joint Utilities Date
My Commission Expires: seal	Receipt#:, Date pa	aid: <mark>(\$25.00)</mark>

OPERATOR PLAN AUTHORIZATION/CERTIFICATION/DELEGATION

(To be signed by Responsible Corporate Officer)

I state that based on my review this SWPPP meets the minimum requirements of the Construction General Permit and that Eagle Eye Electric, LLC. (Eagle Eye) has day-to-day operational control of the project site. Eagle Eye is responsible for the maintenance and implementation of the SWPPP including inspections, documentation, and application of the Best Management Practices at the site. Eagle Eye will notify all subcontractors of the requirement of this SWPPP. Eagle Eye has operational control over the project specifications, including the ability to make changes to the project specifications.

I hereby designate Nick Kuhlmann SWPPP Administrator as my authorized representative. This designee is responsible for the overall operations of the site and will be responsible for the implementation of the Storm Water Pollution Prevention Plan, compliance with the Construction General Permit, selecting and implementing additional Best Management Practices as conditions warrant, and signing all inspection reports required.

I certify under penalty of law that this document and all attachments were prepared under direction of Eagle Eye in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Eagle Eve Electric, LL Signature

Signatore

Z DANJEL GRAHAM

6/14/2016 Date Porside T

TRES.

Department of Environmental Conservation

DIVISION OF WATER Wastewater Discharge Authorization Program

> 555 Cordova St Anchorage, Alaska 99501-2617 Main: 907.269.6285 Fax: 907.334.2415

Thank you for using the ADEC eNOI system. This Signature Page NOI must be signed by:

Dan Graham Eagle Eye Electric, LLC.

Please sign on the appropriate line in the Certification Information Section (Section VIII, page 3 of 5) of this Signature NOI.

In order to complete the certification of your electronic Notice of Intent (eNOI) application, submit all pages of this Signature Page NOI via mail, fax, or email to:

Attn: Storm Water Program Division of Water Alaska Department of Environmental Conservation 555 Cordova Street Anchorage, AK 99501 Fax Number: (907) 269-3487 Phone Number: (907) 269-8117 Email Address: DEC.Water.OPAHelp@alaska.gov

If you have any questions regarding this signature page or other questions concerning the eNOI System, please call ADEC at: (907) 269-8117.

Thank you for using the ADEC eNOI system.

Notice of Intent (NOI)

for Storm Water Discharges Associated with Construction Activity under an APDES Construction General Permit

Submission of this Notice of Intent (NOI) constitutes notice that the party identified in Section II of this form requests authorization to discharge pursuant to the APDES Construction General Permit (CGP, AKR100000). Submission of this NOI also constitutes notice that the party identified in Section II of this form meets the eligibility requirements of the CGP for the project identified in Section IV of this form. Permit authorization is required prior to commencement of construction activity until you are eligible to terminate coverage as detailed in the CGP. To obtain authorization, you must submit a complete and accurate NOI form. Refer to the instructions at the end of this form.

L. Single	I. Single/Multiple NOI Project											
Is this N	IOI for a pr	oject with a	single NOI	?						✓Yes	s 🗆	No
If "No," then your project has multiple NOIs, will the fee be paid with this NOI?												
	If "No," th	en enter the	name of t	he operator	paying the	fee:						
II. Oper	ator Infor	nation										
Organizati	on:			Name				Title				
Eagle Ey	ye Electric,	LLC.	Environtin	Nick Kuhln	tann	C-maile		Project	Mai	nager		
(907) 563-8316												
Mailing Ac	idress S	treet (PO Box): 4600	DEBARR	RD STE 200)							
	C	ity: ANCHORAG	ε			State:	к			Zip: 99508-3	3103	
{[]. Bi]]i	ng Contact	Information							_			
Organizati	on:			Name:				Title:				
Eagle Ey	e Electric, L	LC,	L Car (ant)	Nick Kuhlma	กก	Encolle		Project N	lana	iger		
(907) 56	3-8316		Fax (optic	лац:		cman.						
Mailing Ad	dress:	Street (PO Bo	x):			-						
Check	k if same as	4600	DEBARR F	RD STE 200		Low			_	7:		
Operator I	nformation	ANCHORAC	θE			AK 21p			2ip: 99508-3	21p: 99508-3103		
IV. Proj	ect / Site I	nformation										
Project	Name:				Estima	ted Sta	rt Date		Est	imated En	d Date:	
West N	lome Tanl	Farm			06/15	06/15/2016 07/31/2016						
Brief De	escription	of Project:			Estim	ated Ar	ea to be Di	sturbed (eare	st tenth acre)	3	
The pro	ject is loca	ted at the site	e of a form	er tank farm	. Known co	ntamin	ation from	the tank	farr	n exists at	t the site.	This project
will cons	struct a ca	o over top the	contamin	ation.								
									_			-
ls your	project / si	te less than c	one-acre, b	out part of a	common p	an of c	levelopme	ent?			🗆 Yes	🛛 No
lf	"Yes", provi	de the Permit	Authorizati	ion Number a	ind Num	ber:						
	name of th	e common pla	n of develo	pment:	Nam	2:						
Have st	orm water	discharges f	rom your p	project / site	been auth	orized	previously	by a DEC) pe	rmit?	🗌 Yes	🗹 No
If "Yes," provide the Permit Authorization Number for the previous DEC permit? Select												
If "	Yes," have y	ou updated y	our SWPPP	according to	the most rea	ently is	sued CGP?				🛛 Yes	🗆 No
Location Address:	Street: Port Roa	ad					Borough or Nome	similar gove	rnme	ent subdivisio	in:	
City: State Zip:												
	Nome						Alaska			99762		
	Latitude		Longitud	e	Determin	ed By:		Internet -	Goo	gle Maps		
	(decimal deg	ree, 5 places)	(decimal deg	gree, 5 places):	USGS T	opograp	ohic Map, s	cale:	_			
	64.50444		-165.4297 Dther: Google Earth									

(For Agency Use) Permit Authorization #: AKR10FJ72

V. SWPPP (Storm Water Pollution Prevention Plan)										
Has the SWPPP been prepared in advance of filing this NOI?										
For projects with 5 or more acres of disturbance, has a SWPPP been submitted to DEC? 🛛 🛛 Yes 🛛 🖉 No, < 5 acres										
Location of SWPPP for Viewing: 🛛 Address in Section II 🛛 🖉 Address in Section IV 🔹 Other										
If other: Street:										
City:	City: State Zip: AK									
SWPPP Contact Information	on (if different th	an that ir	Section	II)						
Organization: Name: Title:										
Eagle Eye Electric, LLC.		Nick K	uhlmai	nn		Project Ma	nager	_		
(907) 563-8316	Fax (option	onal):			Email:					
Mailing Address: Street (PO Box): 4600 DEBARR	RD STE	200							
Operator Information City: ANCH	ORAGE				State: AK		Zip: 995	508-310	3	
VI. Permanent Storm Wat	er Controls									
Will you construct a perma	anent storm wa	ater ma	nagem	ent contro	ol measure at th	e project site	e (Part 4	4.11)?	🗌 Yes	🛛 No
If "Yes", indicate the	type of measu	ire to b	e instal	lled:						
🗇 Pond	□ Oil/V	Vater/G	Grit Sep	arator	🗆 Propri	etary Storm	Water S	Sedime	entation I	Device
□ Other:					·	-				
VII. Discharge Information	1									
Does your project discharge i	nto a Municipal	Separat	e Storm	Sewer Sys	tem (MS4)?	🗌 Yes 🛛	Í No			
If yes, name of the MS4 (Operator:									
Receiving Water and Wetlan	ds Information:	{if addition	onal space	is needed fo	r this question, attach	separate sheet o	r annotate	e in Sectio	on XI.)	-
		Impaire (see)	d waters/	303d Listed v	vaters: er/wasar/Docs/impair	edwaters odf or				
		http://d	ec.alaska	.gov/water/w	gsar/map.html, and h	ttp://dec.alaska.s	cov/water	/tmdl/tm	dl index.htm	<u>n</u> .
		b. Are a	ny of	c. If you ar	nswered YES to question	on b, then answe	r the follo	wing thre	ee questions	chargo
		disch.	arges				ii. Are ti	he	consiste	nt with
 Identify the name(s) of waterbod which you discharge 	lies or wetlands to	direct	tly into				pollu	tant(s)	the assu	mptions
Hiter you about Be.		any s of a 3	egment 03d	i. What p	ollutant(s) are causing	the	impa	ng trie irment	of applic	able EPA
		Lister	Water,	impairn	nent?		prese	ent in	approve	d or
		Le. "Imo	airod"				your	aree7	establisł Maximu	ned Total m Daily
		Wate	r?						Load (TN	ADL(s))?
		Yes	No				Yes	No	Yes	No
Snake River			Ø							1
				1						
VIII. Treatment Chemicals										
Will you use control measures such as polymers, flocculants or other treatment chemicals at Yes Y No										
NOTE: If you are unsure i	at the filina of the N	OI, check	"No" and	then if you us	e treatment chemicals	file an NOI Modi	fication fo	rm indice	ating "Yes."	
If "Yes", indicate the fo	llowing polym	ers, flo	cculant	s, or Γ	Alum		Sypsum			
other treatment chemi	icals that will b	e used	at you	г Г	Polvacrylamide	(PAM) 🗆 P	olvalun	ninum	Chloride	
construction site:										

IX. Certification Info	ormation								
An Alaska Pollutant Disc	harge Eliminatio	n System	(APDES) permit application c	or report must be signation to the following link:	ned by an indiv	idual with the appropriate authority			
Corporate Executive O	fficer	For	a corporation, a president. se	cretary, treasurer. o	r vice-president	of the corporation in charge of a			
18 AAC 83.385 (a)	(1)(A)	prin	ncipal business function, or any other person who performs similar policy- or decision-making						
Corporate Operations	Manager	For	a corporation, the manager o	f one or more manu	facturing, produ	action, or operating facilities, if			
18 AAC 83.385 (a)	(1)(B)	(i) t	he manager is authorized to	make management	decisions that g	overn the operation of the			
	regulated facility, including having the explicit or implicit duty of making major capital investme								
		recommendations, and initiating and directing other comprehensive measures to assure long term							
		(ii) the manager can ensure that the necessary systems are established or actions taken to gather							
		c c	complete and accurate inform	ation for permit ap	olication require	ements; and			
		(iii) a	(iii) authority to sign documents has been assigned or delegated to the manager in accordance with corrocate procedures						
Sole Proprietor or Gen	eral Partner	Fora	a partnership or sole propriet	orship, the general j	partner or the p	roprietor respectively			
Public Agency, Chief E	ecutive Officer	Fora	a municipality, state, or other	public agency, the	chief executive	officer of the agency			
Public Agency, Senior I	(3)(A) Executive Officer	Fora	a municipality, state, or other	public agency, a ser	nior executive o	fficer having responsibility for the			
18 AAC 83.385 (a)	(3)(B)	over	all operations of a principal g	eographic unit or di	vision of the age	ency.			
1	*For Delegi In Example of w	sted Auth Sitten out	iority: the delegation must be borization delegation author	r made in writing an ity can be found on i	a submitted to t the Division of V	ne DEC. Vater website:			
′	http://dec.	.alaska.a	ov/Water/OASysHelp/attachi	ments/Delegation	uthorization Fe	arm.pdf			
Operations Manager		For a	a duly authorized representat	ive, an individual or	a position havin	ng responsibility for the overall			
(Delegated Author	ity)*	oper	ation of the regulated facility	or activity, includin	g the position o	f plant manager, operator of a well			
18 AAC 83.385 (b)	(2)(A)	ora	well field, superintendent or	position of equivale	nt responsibility	/.			
Environmental Manage	er itvl*	envi	ronmental matters for the co	ive, an individual or mpany.	position naving	overall responsibility for			
18 AAC 83.385 (b)	(2)(B)			inpony.					
I certify under penalty with a system designed inquiry of the person information submitte	of law that this d to assure that or persons who d is to the best	is docum at qualifi manag	nent and all attachments w ed personnel properly gat e the system, or those per powledge and belief, true	vere prepared und her and evaluate t sons directly response accurate, and roo	ler my directio he informatio onsible for gat	n or supervision in accordance n submitted. Based on my hering the information, the ware that there are significant			
penalties for submitti	ng false inform	ation, in	cluding the possibility of fi	ne and imprisonn	ient for knowi	ng violations.			
Organization:			Name:		Title				
Eagle Eye Elec	tric, LLC		Dan Graham Pre		Presid	ent			
Phone: (907) 563-83	16	Fax (opt	ional):	Email:					
Mailing Address:	Street (PO Box):								
Check if same as	4600	DEBAR	R RD STE 200						
Operator Information	City: ANCHORAGE			State: AK	Zip: 99508-3103				
150	HI			1 liula					
Signature	1n	-		Date	10				
A. NOI Preparer (Con	mplete if NOI wa	s prepare	a by someone other than the	certifier.)	Title				
Environmental M	anagement.	Inc.	Glenn Hasburgh		Environn	nental Scientist			
Phone:		Fax (opti	onal):	Email:					
(907) 272-933	36								
Mailing Address: Check if same as	Street (PO Box): 206 E FIREWE	ED LN S	STE 201						
Operator Information	City: ANCHORAGE			State: AK		Zip: 99503-2733			
XI. Document Attac	hments and s	Suppler	nental Information						
		- PP-N							
		_							

Attachment 1. Fill in as necessary	f more space is required for Receiving water and Wetlands Information	1.1

	b. Are an	y of your	c If you answered yes to question b, then answer the following three questions:						
 a. What is the name(s) of your receiving water(s) that receive storm water directly and/or through a MS4? If your receiving water is impaired, then identify the name of the impaired segment, if applicable, in parenthesis following the receiving water name. 	discharge into any s an "impai	s directly egment of red" water?	i. What pollutant(s) are causing the impairment?	ii. Are the p causing t impairme your disc	ollutant(s) he ent present in harge?	iii. Has the T complete pollutant the impa	MDL been ed for the :(s) causing irment?		
	Yes	No		Yes	No	Yes	No		
			NC .						

APPENDIX G Waste Documentation and Disposal Certificates

TIN CASE OF EMERGENCY CALL 1-800-899-4672 No. This is a

NON-HAZARDOUS WASTE MANIEE	S1
----------------------------	----

- CP	WASTE MANIFEST	CESC			Document No	101813		of
Sec. 18	345AF SAFCECAMARS 1047/2016 STREET, SUITE FER 4K 99506-2210	348 - ¹⁹ 10 - 1	NOME AS 29782	Rum				
	4. Generator's Phone ()			n an	*			;
67 - A IR	OTRUCKING Man		ARF800273804		B. Transporter	ponteria ID 1 Phone	436936	
1	NORTHERNAR CARGO, N		ARD003845526		O State Trans	porters ID (800) 4	78-333	O MARCO
	9 Designated Facility Name and Site Address		US EPA ID Number		E. State Facili	ty's ID		(j), (different formelle (different formelle) (different formelle)
	ANCHORAGE, AK 99501		AKR000004184	含成 (4) 後令氏	F. Facility's P	iona (907) 258-	-1558	
	11. WASTE DESCRIPTION	Reverse Contrates in the operation of the Reverse Service		Cc No.	ontainers Type	13. Total Quantity		14, Unit Wt./Vol.
		ATED BY D.O.T.			2, 1	M		P
O II Z I		ATED BY DOT			220			P
IRAT (-	
御	G. Additional Descriptions for Materials Listed Ab				H Handling C		Above	
i sel Electron	1) EA0301 OLY WATER		niny mini mininto (Magimittati	al en serie a serie a s	D4518	odes for vvastes listed Materia	YDOA6	•
Real of the	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN	ATED SOL AND DE	BRIS		D4518	odes for wastes listed	ADOVE	•
	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN	ATED SOL AND DE	BRIS		D4518	odes for Wastes Listed		
a way had may had	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged marked and labe of the Department of Transp	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal	re proj	D4518 perty class cording to	ified, describe	d, di la	flons
a lan lan k at kat kat	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged, marked and labe of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal tent are fully and accurately described subject to federal hazardous waste res	re prop lion ac and are in gulations.	D4518 perty class cording to all respects	ified, describe the applicable	d, Tegula	fions
Lad Lad Lad Lad Red Red Red	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged, marked and laber of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal pent are fully and accurately desoribed subject to federal hazardous waste res	re prop tion ac and are in gulations.	D4518 perty class cording to all respects	ified, describe the applicable	d. Tegula	fions
and had had here had had had	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged, marked and laber of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials Printed/Typed Name	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal pent are fully and accurately desorbed subject to federal hazardous waste results Signature	re proj lion ac and are in gulations.	D4518 perty class cording to all respects	ified, describe the applicable	d, regula	flions Date Day Year
	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged, marked and labe of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal nent are fully and accurately desoribed subject to federal hazardous waste reg Signature	re proj lion ac	D4518 perty class cording to all respects	ified, describe the applicable	d, regula	If Itons
	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged, marked and labe of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby a In proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt a Printed/Typed Name	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal ment are fully and accurately desoribed subject to federal hazardous waste res Signature	re prop tion ac	D4518	ified, describe the applicable	d, regula Month	ffions Date Day Year Date Day Year
	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged marked and labe of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials Printed/Typed Name 18. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal and a courtely desorbed subject to federal hazardous waste result Signature	re proj lion ac and are in gulations.	D4518	ified, describe the applicable	d, regula Month Month	If Icons Date Day Year Date Day Year Date Day Year Date Day Year
	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged, marked and labe of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 19. Disconsecular/online Content	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal subject to federal hazardous waste res Signature Signature	re proj lion ac and are in gulations.	D4518	ified, describe the applicable	d, regula Manth Manth	if ions Date Day Year Date Day Year Date Day Year Date Day Year
	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged, marked and labe of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials Printed/Typed Name 18. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 19. Discrepancy Indication Space	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal subject to federal hazardous waste res Signature Signature	re proj lion ac	D4518	ified, describe the applicable	d. regula Manth Manth	Ítions Date Day Year Date Day Year Date Day Year
HAN AN A	1) EA0301 OLY WATER 2) EA0710 POL CONTAMAIN 15. Special Handling Instructions and Additional II Shipper's Certification: This packaged marked and labe of the Department of Transp 16. GENERATOR'S CERTIFICATION: I hereby of In proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 19. Discrepancy Indication Space 20. Facility Owner or Operator: Certification of receipt	ATED SOL AND DE	BRIS boxe-named materials a condition for transportal and a courtely desorbed subject to federal hazardous waste re- Signature Signature	and are in gulations.	D4518	ified, describe the applicable	d, regula Month Month	frions

101813 (RF

ACCUMULATION START DATE: ____

Meniñest: 101813

MATERIAL NOT REGULATED BY D.O.T.

Profile # EA0710 Document # D4518 Manifest Line: 2

ACCUMULATION START DATE: ____

425 Outer Springer Loop Rd, Palmer, AK, 99645 Phone: (907) 258-1558, Fax: (907) 746-3651

PLEASE REMIT ACH PAYMENT TO: NRC Alaska, LLC **Bank of America Merrill Lynch** ABA 0210 0032 2 A/C# 483043670250 A/C Name: NRC Alaska, LLC

PLEASE REMIT CHECK PAYMENT TO: NRC Alaska, LLC P.O. Box 740027 Los Angeles, CA 90074-0027

Customer:	JACOBS ENGINEERING GROUP INC.	Invoice #:	644424
	4300 B ST STE 600	NRC Job #:	101813
		Customer PO#:	05DK6302-P15-0003
	Anchorage, AK, 99503	Reference #:	USAF - AFCEC/OLAR
		-	
Invoice Date:	20-SEP-16	Contact:	DERRICK, JILL
Job Description:	WASTE DISPOSAL.	Phone:	1-907-751-3365
		Fax:	
			JILL.DERRICK@JACOBS.CO
		E-Mail:	<u> </u>
		Terms:	30 NET
Job Location:	NOME TANK FARMS	Job Date (s):	08/03/16 - 08/23/16
	NOME, AK, 99762	Progress Billing:	No
		Final Billing:	Yes

Description(See Attached Details)	EXTENDED PRICE	
LABOR		2,558.50
MATERIALS		360.00
DISPOSAL - INTERNAL		1,225.00
OTHER NRC		2,776.63
TRANSPORTATION		130.00
LABOR		258.00
	INVOICE SUBTOTAL	7,308.13
THANK YOU FOR YOUR BUSINESS	SALES TAX	0.00
	INVOICE TOTAL	7,308.13
		Currency: USD

Email:

Direct Phone: For billing questions, please contact Amy Durgeloh at (907) 761-6677

FED ID #: 26-0025054

A 1.5% per month finance charge will be assessed for all past due involces to include the flat late fee amount.

09-22-16P12:50 RCVD

INVOICE DETAILS SHEET

JOB NO	101813	INVOICE NO	644424	Pege No	2/2
				·	

MATERIALS

ŧ

1.0

Date	Name/Item(e)	Description	Billing Code	UQM	Qty	Rate	Amount
20-AUG-10	AM/09000 MISC SUPPLIES	4 2.3 - TRUCK RENTAL - PER OAY		Esch	2	180.00	360.00

Sub Total

350.00

DISPOSAL - INTERNAL

WINT WATTLE ! II							
Oate	Name/item(a)	Description	Billing Code	LICM	letv "	Rate	Amount
26-AUG-16	AD-10035 WATER	3.2 - POL		PRUM 850	2	104.50	217.00
	WITH -5% SOLIDS	CONTAMINATED			-		
		WATER /					
<u> </u>		101013,1			i		
26-AUG-16	AD-42100 POL	3.1 - POL		Yard	2	504.00	1,005.00
	CONTAM SOLIDS	CONTAMINATED					
	1	SOIL AND				r – – – – – – – – – – – – – – – – – – –	
		06BR(97101613.					
l		13			1		

Sub Yolal

1,225.00

_

OTHER NRC

Date	Name/Item(a)	Description	Billing Code	NOM		Rale	Amount
26-AUG-16	AT-90214	2.2 - PREPARE &		Each	1	220.00	220.00
	TRANSPORTATION	SUBMIT			1 [·]		E EV-SV
		COMPLETS					
		MANIPES1					
		PACKAGE			•		
25-AUQ-16	AF-78000 SHIPPING	4.1.1 - 6/8		Each	1	1.027.21	1 027 71
	CHARGE	TRANSPORT		[.			
		NOMÉ TO					
		ANCHORAGE					
20-AUG-16	AF-75000 PBR OIEM	426 PER DIEM		Cech	1	282.00	282.00
26-AUG-16	AP-75002	A 2.7 - AIRFARE		flach	1	B17 53	B17 53
	YRAVEL-OPERATION						· · · · · · · · · · · · · · · · · · ·
	<u>AL</u> .						1
26-AUQ-16	ESIC FEE			Bach	1	429.69	420 6U

Sub Total

2,778,40

TRANSPORTATION

Date	Name/Item(s)	Description	filling Code	NOM	Qty	Rale	Amount
28-AUG-16	AT-90202	2,1 -		Loch	1	65.00	65 00
	TRANSPORTATION.	PHE-SHIPPING					
ľ		PREPARATION &	ļ				
		SUBMITTAL8				·	
28-400-16	AT-20202	2.3 - WA37E		Each	١	00.00	55.00
	TRANSPORTATION.	CONTAINER					
		MANAGEMENT &					
	1	TRACKING		F			

BUG TOLE

130.00

LABOR							
Date	Name/Item(=)	Description	Billing Code	NON	Qiy	Rute	Amount
03-AUQ-16				B ech	3	56 00	258.00
25-AUG-16	Bookhoul ONelli, Shene F	Over Time	HAZ-WASTE SPECIALIST	Hours	3.6	1 129.00	651 50
26-AU/Q+18	Bookhout ONell), Shane	Over Timp	HAZ WABTE SPECIALIST	Nours	7.5	129.00	451.50
26-AUG-18	Bookhoul Oniell, Stand	Negular Time	HAZ-WASTE SPECIALIST	Houre	ė.	96.00	688.00
28-AUG-16	Nookhoul ONeil, Shane	Over Trine	HAZ-WASTC SPECIALISY	Hours	<u>7.5</u>	129,00	967.50

Sub Tatel

2.816 50

Grand Total

7,305.13

*** IN CASE OF EMERSENCY CALL 1-800-899-4672 ***

NON-HAZARDOUS WASTE

NON-HAZARDOUS WASTE MANIFEST

101813 (78

Oren	VASTE MANIFEST	CES	2G	1270	Occurrent No.	101813	2. Page 1
00/	APPAPOECIOLAR	All States	USAF-AFCECIOL	AR	1		
	R, AK 99508-2200	348	NOME, AK 99782				-
Gin	near Pore ()			1	-		
	NRCZ	Alasta UCI	AKR UDCOCI ISU	1- 7	R. Transporter I	Tors ID (907) / 48573	88 36
	THERE ARE AREO, NO	1 CONTRACTOR NO.	ARECC5848529	1005	C. Baca Thingpo	nara 10" (800) 478-33	30
Seli	Site Address	10.	US EPA ID Number	-	E. Bala Facility's	-O	and the local division of the
202	OVIKING DRIVE		AKR00004184	2	J. Facility's Phon	• (907) 258-1558	1
w				1	THINK	11 TpgJ	14. Unit
1	MATERIAL NOT REGULA	TED BY O.O.T.		140.	-9724	Linerory	WS/Vdł.
-	Call	and the second second	Contracting of the	Z	2 01	800	E OF
2	MATERIAL NOT REGULA	ATED BY D.O.T.	At the second		205	1500	Contract of
2	5.216			2		3-000	
10.4 S				1			
2							
1	5						
E	0710 POL CONTAMAN	ATED SOL AND DE	BRIS		2.00		
EA	10710 POL CONTAMAIN	iated soil, and de	BRIS				
Spectra Star	ERATOR'S CERTIFICATION LINE	Normation Is to certify that the ai led, and are in proper critation	BRIS bove-named razieriaja condition for transports	are proj	party classifi conding (o th	ed, described, le applicable regul	glòrs
Span Sh Pa of OEN	ERATOR'S CERTIFICATION	Normation Is to certify that the a led, and are in proper critation	BRIS bove-named reateriais condition for transports		perty classifi conding (c th	ed, described, le applicable regul	gliòris
Spectra Spectr	ERATOR'S CERTIFICATION.	ATED SOIL AND DE	BRIS		perty classifi conding (c th	ed, described, le applicable regul	gtiòres uam nay Van
Spector Spector	ERATOR'S CERTIFICATION	ATED SOIL AND DE	BRIS		perty classific conding to the	ed, described, le applicable regul	
Spector DEN	POL CONTAMAIN The handless instructions and Additional in the paper's Certification: This ckaged, marked and labe the Department of Transpo- line Department	ATED SOL AND DE	BRIS		perty classifi conding to th	ed, described, te applicable regula Mivité &	stières uam Ray Yau ≥ 6 j Data Ray Yau
	ERATOR'S CERTIFICATION	ATED SOIL AND DE	BRIS		perty classific conding to th	ed, described; re applicable regula Munit & Munit 28	stiores uam Tay Yau ≥ 6 j Rata Ray Yau 2 j j Rata Ray Yau 2 j j Rata
	ERATOR'S CERTIFICATION	ATED SOL AND DE	BRIS		perty classific conding to th	ed, described; re applicable regula Mum 8 Mum 08 Man	tiòres Lan Lan Lay Lay Lay Lay Lay Lay Lay Lay
	POL CONTAMAN The Handley Instructions and Additional In Tripper's Certification: This chapped, marked and laber the Department of Transport Instruction for transport. The Control of Control of Control Control of Control of C	ATED SOL AND DE	BRIS		perty classific conding to th	ed, described; re applicable regula Munit B Munit D B	tiors
	POL CONTAMAN The Handley Instructions and Additional In Tipper's Certification: This chaged, marked and labe The Department of Transp ERATOR'S CERTIFICATION. The Department of Transp Department of Transp Departme	ATED SOIL AND DE			perty classific conding to the	ed, described, le applicable regula Munik BS Mank DS	tun≡ Ray Vau ≥ c j Data Ray Vau 2 c j Data Ray Vau 2 c j Data Ray Vau 2 c j C
	ERATOR'S CERTIFICATION	ATED SOL AND DE			perty classifi conding to the	ed, described, te applicable regula Munik B Mank Mank Mank	Cate

4

NON-HAZARDOUS WASTE

NON-HAZARDOUS WASTE MANIFEST

10/813 (RF

NON-HAZARDOUS WASTE MANIFEST	1. Generator's US ERCEST	ß		Manifest Document No.	101813	2 Page I	2
10471 20TH STREET, SUITE JBER, AK 99508-2200	348	USAF - AFCEC/OLA 100 PORT ROAD NOME, AK 99782	R	in the second second			
4. Generator's Phone ()	and a second	- Martin Martin	11	A	norm	aha	in
5 Transportent Opingany Name	AL. HC.	ANTEPACONINATION	100	A. State Trailispo	nter& 10 (907) 445	12 1 1 S	5-1
	Allisted and	AKK SPECCELI 151	5	B. Transporter 1	Phone	- AAAA	
Mandades addition and the and	La 0.	ANAEKSURAKARREZO		D Trabellador 2	Rines D (800) 478	-3330	-
Designated Frankly Name and Site Address	10.	US EPA ID Number	-	E. State Faating	D		
2020 VIKING DRIVE	this ac	AKROODDes/ida VI	n W	Piraclity Phar	2 (161) Ealth	8.1	-
11. WASTE DESCRIPTION			Co No	tainera Type	13. Total Duantity	N. UM WLA	al.
MATERIAL NOT REGUL	ATED BY D.O.Y.	ra andr, mrei an	Z	2-104	800	4	P
MATERIAL NOT REGUL	ATED BY D.O.Y.		S	2' OF	3001	2	P
2.		1					
d.						-	-
3. Additional Descriptions for Materials Listed Ab) EA0301 OLY WATER 2) EA0710 POL CONTAMAN	iove VATED SOL AND DEE	BRIS		H Handling Code	es for Wastes Listed Abo	ove	-
3. Additional Descriptions for Materials Listed At 41) EA0301 OLY WATER 2) EA0710 POL CONTAMAL 5. Special Handing Instructions and Additional I Singular Contractions	NATED SOL AND DEE	BRIS	e prop	H Handling Code 04518	ed, described,		
Additional Descriptions for Materials Listed At EA0301 OLY WATER EA0710 POL CONTAMAI Special Handing Instructions and Additional I Shipper's Cattlingation: This packaged, marked and labe the Department of Transp	ives VATED SOIL AND DEE	BRIS ove-named materials a condition for transportal	e prop on ac	H Handling Code 04518 enty classification to the	ed, described,	ove	
Additional Descriptions for Materials Listed At EA0301 OLY WATER EA0301 OLY WATER EA0301 POL CONTAMAI Special Handing Instructions and Additional I Shipper's Contineation: This packaged, marked and labe to Department of Transp Contained to Department of Transp ORNARE CONTRIDUCTION: I hereby of reviser dornwillon for Immaged. The medical	iove VATED SOIL AND DEE	BRIS		H Handling Code 04518	ed, described,	guiziona	
Additional Descriptions for Materials Listed At Additional Descriptions for Materials Listed At Additional OLY WATER EA0710 POL CONTAMAI Support Confidential Support Confidential Additional I Support Confidential Support Confidential Additional I Support Confidential Additional I Additional I Addi	information Is to cartify that the ab stad, and are in proper of contation	BRIS Brownemed materials a condition for transportal In are fully and accumely described a ubject to "ederat home coust with reg		H Handling Code	ed, described,		
Additional Descriptions for Materials Listed At Additional Descriptions for Materials Listed At Additional OLY WATER EA0710 POL CONTAMAIR Special Handing Instructions and Additional I Shippers Certification: This packaged, marked and labor Additional I benchment of Transp Additional I benchment of I benchment of Transp Additional I be	iove VATED SOIL AND DEE	BRIS Doe-named materials a condition for transportal int are fully and accumely described a ubject to "ederat homeous matering Signature Signature		H Handling Code	ed, described, applicable re	UIN UIN UIN UIN UIN UIN UIN UIN	
Additional Descriptions for Materials Listed At EAGO1 OLY WATER EAGO1 OLY WATER EAGO1 OLY WATER EAGO1 OLY WATER EAGO1 OLY WATER Special Handing Instructions and Additional I Shipper's Confidention: This peckaged, marked and labor Aof the Department of Transp and the Department of Transp Beaching Confidentiation of Transp in proper converted of Transp and the Department of Transp and the Dep	ATED SOIL AND DEE	Signiture Signiture		H Handling Code	ed, described, ad, described, aspplicable re	UIN WIN WIN WIN WIN WIN WIN WIN W	170
Additional Descriptions for Materials Listed At Additional Descriptions for Materials Listed At Additional Descriptions for Materials Listed At Additional OLY WATER E EA0710 POL CONTAMAL Special Handing Instructions and Additional I Shipper's Continention: This packaged, marked and labor of the Department of Transp additional Instructions and Additional I additional Instructions and Additional I additional Instructions and Additional I Shipper's Continention: This packaged, marked and labor of the Department of Transp additional Instructions and Additional I additional Instructions and Addition	iovs VATED SOIL AND DEE Information Is to certify that the ab ided, and are in proper of contailon Certify that the contents of this shipme is described on this manifest are not a	Signature		H Handling Code	ed, described, be applicable rs	UIN With Day Was UIN With Day 25 UAM Day 3 25 UAM Day 3 25 UAM	76
Additional Descriptions for Materials Listed At EA0301 OLY WATER EA0301 OLY WATER EA0301 POL CONTAMAL Special Handing Instructions and Additional I Shipper's Contineation: This packaged, marked and labor to Department of Transp and the Department of Transp Instruction for Instructions and Additional I Shipper's Contineation: The malanal Shipper's Contineation: The mal	ATED SOL AND DEE	Signifue Signifue		H Handling Code	ed, described, ad, described, applicable re An O	UIN UIN UIN UIN UIN UIN UIN UIN	76

Drum Tracking Log for Manifest Number 101813

Manifest 101813			Arrived 29-AUG-16				Gen USAF - AFCEC/OLAR			Tsdf NRC ALASKA LLC	
Document	ltem	Line	Profile	Туре	Size	Oil Fuel	Water	Antifreeze	Sludge	Solids	Location
D4518	1	1	EA0301	DM	55	0	55	0	0	0	PAD1: 458.98 P, 55.00 GAL
D4518	2	1	EA0301	DM	55	0	55	0	0	0	PAD1: 458.98 P, 55.00 GAL
D4518	3	2	EA0710	CF	250	0	0	0	0	89	PAD2: 742.71 P, 89.00 G
D4518	4	2	EA0710	CF	250	0	0	0	0	89	PAD2: 742.71 P, 89.00 G
	_	_		То	tals: 0		110	0 0		178	

CERTIFICATE OF DISPOSAL/RECYCLE

GENERATOR:	UŠAF - AFCEC/OLAR 103 port road Nome, ak 99762
DISPOSAL FACILITY:	NRC ALASKA LLC 2020 VIKING ORIVE ANCHORAGE, AK 99501

EPA ID NUMBER: CESQG MANUFEST/DOCUMENT #: 101813 DATE OF DISPOSAL/RECYCLE: AUG-29-2016

LINE	WASTE DESCRIPTION	CONTAINERS	TYPE	QUANTITY	UOM
1	OILY WATER	2	DM	800	
2	POL CONTAMAINATED SOIL AND DEBP/S	2	CF	1500	Р

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above described waste was managed in compliance with all applicable laws, regulations, permits and licenses on the date listed above.

PREPARED BY: PIR SEP 0 8 2016 Basley SIGNATURE: DATE:

425 Outer Springer Loop Road - Palmer, AK 99645 - (907) 258-1558 - Fax (907) 746-3651 - Toll Free (877) 375-5040

Table of Contents

West Nome Tank Farm CEI Job# 13794

- 1. CEI Manifest
- 2. Asbestos Waste Shipment Record
- 3. Lead TCLP
CENTRAL ENVIRONMENTAL, INC. 311 N. SITKA STREET, ANCHORAGE, ALASKA 99501 PHONE: (907) 561-0125 FAX: (907) 561-0170 DISPOSAL LOG AND WASTE SHIPMENT RECORD

2837

ę,	Facility / Project Name: West No	me.	zunk far	m	Project)	No.: 13799
	Facility Organization Name: 135 B.F.				-	
7	Operator Address: Some 05 0	bare			Phone N	ýs.
	Facility Owner Name:	passi en				
	Óperator Address:		_		Phone N	». <u>; </u>
Ĩ	Waste Disposal Site Name: Nome Mailing Address:	mur	i/cital:	ly wood fill	Phone N	m: \$1-304-350
	Physical Address: 3 mile been	n row	& Nome	AK 188	\$5	
ĺ	Governing Agencies: ADEC, Cen ADEC, 610 USEPA, Re IN CASE OF ER	tral Regio Universit gion 10, 1 MERGEN	 a601 C Str y Avenue, Fa 200 6th Avenu YCY OR SPI 	eet, Suite 1334, Anc rbanks, Alaska 9970 (e, Seattle, WA 981 LL CALL (907) 56)	horage, A))9-3643 01 -0125	¢ 99503
	Description of Materials:	Cont	ainers	Total Estimat	ed	Total Estimated
	(i.e., Asbestos, POL, Soils, Liquids)	No.	Type	Volume		Weight
i,	Ashestos 9NA 2212 III RQ	5	and in	140		40040
4	Asbairos YNA 2212	14	.bog.5	1 cyb		150 46
i	Special Handling Instructions or Addi	tional Ini	ormation:			
	Cabey Dresnet /Foren Name/Title (Print or Type)	nan	Signature	20	_	9-19-15 Date
2		ini na si	-	n N arris	-	
2	Transporter #1: Geknowledgement of r Company Name: Cer Destination: 3 to 14, beach 12	eccipt of m	aterials) 3 Address: A Ve	II N Sitka (heherage 14 bicle Description:	Pick	hone: 907-561-01.
2	Transporter #1: (Acknowledgement of r Company Name: CET Destination: 3 ton line beach 12 Casey Dreable / Foremen Name/Fille (Print or Type)	eccipt of m منبعاً	Address: A Ve	heherage AK	79401_1 Pick	lume: 907-561-01.
	Transporter #1: (Jeknowledgement of r Company Name: CET Destination: 3 pm like beach 12 Casey Dreshold / Foremen Name/Title (Print or Type) Transporter #2: (Acknowledgement of r	eccipt of m جنبط eccipt of m	aterials) 3 Address: A Ve Signature aterialso	hicle Description:	y 9401 p Pick	hone: $957 - 561 - 01$ $49^{2} - 9 - 19 - 15$ Date
	Transporter #1: Ceknowledgement of r Company Name: CEX Destination: 3 Philip Dearch 12 Casey Dreamer / Foreman Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name)	eccipt of m	Address: A Address: A Ve Signature aterials) Address:	II N Sitka (heherage Ak a hiele Description:	р 19401 р РКИ Р	hone: $957 \cdot 567 \cdot 01$ $957 \cdot 567 \cdot 01$ $957 \cdot 567 \cdot 01$ $97 \cdot 197 \cdot 15$ Date hone:
	Transporter #1: (Jeknowledgement of r Company Name: CET Destination: 3 to Use Dears 12 Casey Dreamer / Foreman Name/Title (Print or Type) Transporter #2: (Acknowledgement of a Company Name: Destination:	eccipt of m	aterials) Address: A Ve Signature aterials) Address: Ve	hicle Description:	р 19401_р РКИ Р	hone: <u>967 56 - 0).</u> 290 <u>- 9- 19- 13</u> Date hone:
	Transporter #1: (Jeknowledgement of r Company Name: C.C.T. Destination: 3 Pro Use, Dearch 12 Casey Dreable / Forement Name/Title (Print or Type) Transporter #2: (Acknowledgement of a Company Name; Destination: Name/Title (Print or Type)	eceipt of m محیط eceipt of m	aterials) Address: Ve Signature aterials) Address: Ve Signature	hicle Description:	р 19401_р РКИ Р	hone: 967 561 - 01 290 9-19-13 Date hone:
	Transporter #1: (Acknowledgement of r Company Name: C.C.T. Destination: 3 pm Use beach 12 Casey Dreable / Forement Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name) Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r	ecelpt of m ecelpt of m ecelpt of m	ateriais) Address: A Ve Signature ateriais) Address: Ve Signature ateriais)	hicle Description:	р 19401_р РКИ р	hone: <u>907-56-01</u> 240 <u>9-19-15</u> Date hone:
	Transporter #1: (Acknowledgement of r Company Name: C.C.T. Destination: 3 pm U.C. Search 12 Cosey Dreshet / Forement Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name: Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name:	eccipt of m scipt of m eccipt of m	aterials) Address: A Ve Signature aterials) Address: Ve Signature aterials) Address:	hicle Description:	рісля Рісля Рісля Р	hone: 967 56 - 01 149 Date hone: Date
	Transporter #1: (Acknowledgement of r Company Name: CET Destination: 3 pm Use beach 12 Casey Dreable / Forement Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name: Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name: Destination:	eceipt of m eceipt of m	ateriais) Address: A Ve Signature ateriais) Address: Ve Signature ateriais) Address: Ve	hicle Description:	12401 P PKK P	hone: <u>97 56 - 01</u> 292 <u>9-19-18</u> Date hone: Date
	Transporter #1: (Acknowledgement of r Company Name: C.C.T. Destination: 3 pm U.C. Search 12 Cosey Dreshell / Forement Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name: Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name: Destination: Name/Title (Print or Type)	eceipt of m eceipt of m eccipt of m	ateriais) Address: A Ve Signature ateriais) Address: Ve Signature ateriais) Address: Ve	hicle Description:	р 19401_Р Р[С.]4 Р	hone: 907 56 - 01 290 <u>9-19-15</u> Date hone: Date bone: Date
	Transporter #1: (Acknowledgement of r Company Name: C.C.T. Destination: 3 fm U.C. Seeth 12 Cosey Dreshee / Forement Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name: Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name: Destination: Name/Title (Print or Type) Landfill Discrepancy: (A list of all discreps Weigh Scale:	eccipt of m eccipt of m eccipt of m s eccipt of m s s nucles to be	aterials) Address: A Ve Signature aterials) Address: Ve Signature aterials) Address: Ve Signature Offen out by the We	hicle Description:	р 19401_Р РКИ Р	hone: 967-567-01 290 9-19-18 Date hone: Date bone: Date
	Transporter #1: (Acknowledgement of r Company Name: C.C.T. Destination: 3 pm (14, 1624) 12 Casey Dreshell / Sorement Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name) Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name: Destination: Name/Title (Print or Type) Landfill Discrepancy: (A list of all discrepa Weigh Scale: Clock Type of Weight	ecelpt of m second ecelpt of m s ecelpt of m s males to be tons	aterials) Address: A Signature aterials) Address: Ve Signature aterials) Ve Signature aterials) Ve Signature aterials) Ve Signature aterials) Ve	hicle Description:	29401_P P C.K P	hone: 967 567 - 01 99 9- 19-13 Date hone: Date bone: Date scale receipt
	Transporter #1: (Acknowledgement of r Company Name: CET Destination: 3 pm line, beach 12 Casey Dreable / Forement Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name; Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name; Destination: Name/Title (Print or Type) Landfill Discrepancy: (A list of all discrepancy Weigh Scale; Clock Type of Weight Waste Disposal Site (WDS) Certification Land fill Discrepancy to the operator/owner in them 2 and	ecclipt of m	ateriais) Address: A Ve Signature ateriais) Address: Ve Signature ateriais) Address: Ve Signature ateriais) Address: Ve Signature (illed out hy the We eptance: 1 ber ted in hem 10	hicle Description:	p p c p p p p p p p p p p p p p p p p p	hone: <u>907-567-01</u> <u>90 9-19-13</u> Date hone: Date bone: Date scale receipt s covered by flux record and y of this form and forward
	Transporter #1: (Leknowledgement of r Company Name: Destination: Dreather / Description Name/Title (Print or Type) Transporter #2: (Acknowledgement of r Company Name) Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name) Destination: Name/Title (Print or Type) Transporter #3: (Acknowledgement of r Company Name) Destination: Name/Title (Print or Type) Landfill Discrepancy: Name/Title (Print or Type) Landfill Discrepancy: Veigh Scale: Clock Type of Weight Waste Disposal Site (WDS) Certification I and in agreement with statements on this record, completed copy to the operator/owner in them 2 and GLeww Jawe S	ecclipt of m	aterials) Address: A Ve Signature aterials) Address: Ve Signature aterials) Address: Ve Signature offendies: Ve Signature ted in hem 10 Maccon	All N Sitka (bebologe Ak biele Description: hiele Description:	P P C P P P P P P P	thene: $967 \cdot 564 - 64$ $99 \cdot 9 - 19 - 13$ Date hone: Date hone: Date bone: Date scale receipt s covered by flux record and s of this form and forward 9 - 19 - 19

CITY OF NOME ASBESTOS WASTE SHIPMENT RECORD

1	1. Work Die Name & Mailing Addrass: West Nome Tank Farm			Dwinit's Name USAF	Dwner's Phone 210-395-8637			
	2 Operator's Name & Address:				Opening's Phone			
	Central Environmental Inc., 311 N.	Sitka Street, Ancl	horage, AK 99501		907 561-0125			
	3. Waster Discosal Site: CITY OF NOME NOME MUI NOME, ALASI TELE 907-148-	VICIPAL LANDFILL, MP KA 99762 6663 TAX 007-443-(Janie Bern Land	AMBORIZADIO AS# 15021001 espires 1600 hrs 09/30/15	Cantact Phone (907) 304-3223			
	4. Name & Address of Responsible Agency	EPA REGION 10, A 1200 Sixth Avenue 1-500-424-437	SBESTOS PROGRAM 2. Scattle, WA 98101 72		And a			
8	5. Description of Materials:	0.000.000.000		6. Containers	1. Total Quantity			
THE R P LEA	Reskets/PPI	Hooning Material Goskets/PPE						
	9. Special Handling psatuctions & Additiona	il information! Hand will	Celle.	1000				
	9. Operation's Certilipation: 1 HEREBY DEC DESCRIBED AD ARE IN ALL RES INTERNATIONA	SLARE THAT THE CON OVE BY PROPER SHIP PROFES IN PROPER OF CA DOVERNMENTAL	TENTS OF THIS CONSIGNME PHNG NAME & ARE GLASSIFI ONDITION FOR TRANSPORT REGULATIONS.	NT ARE FULLY AND ACC ED. PACKED, MARKED. BY HIGHWAY ACCORDI	DURATELY AND LABELED AND NO TO APPLICABLE			
	Printer/Owned Margan & 1966	C. C. Martines	1 Martin Lan		1.856			
	Casey Dresney /s	Toreman	CA	2	9-19-15			
Į.	10 Transporter 1 (Advince/ledgment of Rece	ript of Materials) Contrai	Envronmental, Inc., 311 N. Sa	an Simust. Anchorage, Alf	00601			
AN6204	Prended Typed Panie & Time Prender of Stand CE 31) N 5 HKG ALCO 11. Transporter 2 (Acknowledgment of Roce	I) for MAN Notes AK 9	9.5d signature	20	9-19-15			
٩,	Printer//Lucart Marrie & Title		1 Ginamura		Lowe			
	Address & Thlophone		SWIMWE		(JHR)			
0	12. Discrephnoine Noled.							
	15. Weste Disposal Site Oviner or Operator: I certify that I have incurved the astresion materials noted in Section 5 except as noted in Section 12, Discrepancies Advised Time: 2,440 Description Time: 2,445 Total time: 5							
	GLECH DOVES	Signaturo	0	Dete City L	andfill)neoice ar			

(available upon request)

363 INDUSTRIAL WAY ANCHORAGE, AK 99501 PH (907) 258-6661

/L Project #: LA-015099 Nent Project #: 13794)	Report #: 613789 Report By: R. Briggs Report Date: 09/29/2015			
ient: Central Environme 311 N Sitka St Anchorage AK 9950 Bitling Number: 245 VI: 72 Hour oject Name/Location: M	antal Inc.)1 580 San Yest Nome Tank Farr	Col Col Ana Ana Rec Rec	Cliens 09/19/2015 G. Caudill 09/29/2015 R. Bnggs 09/25/2015		
Client ID	WLSample	Ext Fid by Ph	Weight (g)	Est Fid Vol	(i) mg/i Leed
13794-TCLP-01	AL15-2435	1	100	2	<ત્ય
				00120	
Han Gra	t Caudill, Lab Ana	alysi		09/29	/2015 Ite /2015

	LA- 015099
CENTRAL ENVIRONMENTAŬ,	INC.
311 N Sitka Street, Anchorage, Alaska	a 9951
Phone: (907) 561-0125 Fax: (907) :	561-0178
CHAIN OF CUSTODY RECORD	PAGE / OF)
PROJECTNAME: West Nome tonk form	
PROJECT NUMBER: 13794	
CLIENT REQUESTS ANALYZED SAMPLES TO BE:	
PROPERLY SEALED CONTAINERS?	RETURNED TO CLIENT
SUFFICIENT SAMPLE QUANTITY?	DISPOSED
NO VISIBLE LEAKAGE TO CONTAMINATION?	ARCHIVED
FIELD SAMPLED ID. NO. LEGIBLE? >> "	
ESTIMATED COMPLETION DATE: T.A.T.	-
SAMPLES COLLECTED BY: Casey Dresnek DATE: 9-19	7-15 TIME: 3:00 PM
LAB DELIVERED TO: W.F.C.	
SAMPLES ARRIVED TO LAB BY CEL'S EXPEDITER	COURIER SERVICE
AIR EXPRESS I AR PICKED UP	LAB'S DROP BOX
	OTHER
CAMPLES SHOT BOX	LACOLT TIME LITT AL
SAMPLES SUBMITTED BT. Mile Mondage DATE.	AIRSTIS TREE 12 THE
SAMPLES RECEIVED BY: VO 2005 DATE:	JATTA HME. TAS TONK
COMMENTS: Z. HE T. A.T.	

FIELD SAMPLE ID=	LABI	A R	BRUK	ANALY515	FIELD SAMPLE DM	1.5.04	AIR	BUS.K	ANALYSIS
TOLA-OI			4	Lead Telf					-
1		-			-	-	-	-	-
	-		-		-	-	-	-	-
	-	-	-	-		-		-	-
1						-		1	-
							-		
	1	1							-
		-				-	-	-	-
	-	-	-			-	-	-	-
	-	-	-			-	-	-	-
	-	-	-			-	-	-	-
	-		-			-			-
		-				-		1	

LAB - CONFIRMATION OF RECEIPT OF SAMPLES MUST BE FAXED BACK TO 907-561-0178!!!! IMMEDIATELY

LA- 015099

Central Environmental, Inc. LBP Sample Profile Sheet

Building Name:	West Nome tank facm
Building No	NIA
Location	Dort Road Nome AK
Brief Description of LBP Abatement:	N/A
Date of Sample Collection	9-19-15
Sample ID No.	TELP of 13794 - TELP-01
Description of Waste Stream Sample.	Steel pipe with Lead containing Paint

Analysis To Be Performed Check Type of Sample

Composite Type Sample.	
------------------------	--

Waste Stream breakdown by Material Type and Percent of Wasto

Matenal Description	% of Waste	% of Waste	
Walls		Floors	
Wood		Wood	
Concrete		Concrete	1.1
CMU		CMU	
Steel		Steel	
Other		Other	-
Interior Wall Finishes		Floor Finishes	
Gypsumboard	1	Wood	-
Plaster		Ceramic Tile	
Wood Panel		VCT	
Metal		Concrete	
Exterior Wall Finishes		Paint	
Gypsumboard		Other Components	
Plaster		Boiler	
Wood Pagel		Ductwork	
Metal		Piping	
Celling		Furniture	
Wood		List any Non-Listed Items Here	-
Concrete		Stept O'DP W/ Level	100%
CMU	-	Can tribula Baint	100
Steel		1 contraction of the	
Other			
Ceiling Finish			
Gypsumboard			
Plaster			
Wood Panel	-		
Metal			
Teiro			
Window			
Doors	-		
Casino Material			
Tot	al Must Equal	100%	In Ch

383 INDUSTRIAL WAY ANCHORAGE, AN 99501 141 (907) 258-8861

Lead Air Analysis WL Project #: LA-015061 Report #: 613735 Report By: R Briggs Cilent Project #: 13794 Report Date: 09/25/2015 Client: Central Environmental Inc. Collected 8y: Client 311 N Sitka Collection Date: 09/19/2015 Anchorage, AK, 99501-1841 Analysis By: G. Caudell Analysis Date: 09/25/2015 TAT: 48 Hour Sample Count: 2 Received By: R Briggs Project Neme/Location: West Nome Tank Ferm Received Date: 09/24/2015 Reporting Limit Cillent ID WLSEmple Sample Type Result **Result Units** [ug/m3] 13794-PM-01 AL 15-2425 Porsonal 9 ug⁄V3 2 2 13794-EM-01 AL15-2425 ENV <Z ug/M3 Worker TWA Worker \$9N PPE ΥWA Sample Date Jared Menadelook 09/16/2015 Bools в GIBSSES Kerd Hat Tyyek Sont Cali 09/25/2015 Grant Caudill, Lab Analyst Date 09/25/2015 Date Preparation and analysis performed according to NIOSH Method 7C82 (M), analysis by flame atomic absorption spectroscopy. The reporting

Preparation and enalysis performed according to NIOSH Method 7G82 (M), analysis by frame atomic absorption apectroscopy. The reporting Imit is at least twice that of the Method Detection Limit (MDL). The WCL (defined as the minimum content: ation of an analysis that can be reported with 99% confidence to have a concentration greater than zero) is determined from statistical analysis of replicate samples in a given matrix containing the analyte, as defined in 40CFR Pan 136, Appendix B. Unless otherwise stated, all quality control samples were ecceptable. Modifications made to the previously referenced test methods are documented in WL, LLC's Standard Operating Procedures Manual. Field and 'atomatory blanks are used to assess possible contamination and sensitivity of analysis, and no blank correction is made. Supporting laboratory documentation is available upon request. Unless otherwise stated, samples are received in acceptable condition Results refate only to the items tested. WL, LLC Andorrago is a current proficient participant, and the APAT program (use) #102730) Test reports must not be reproduced without the approval of WL, LLC and are subject to WL, LLC General Terms and Conditions (evaluable upon request).

LA- 015081 CENTRAL ENVIRONMENTAL, INC.

311 N Sitka Street

Anchorage, AK 99501-1841

Phone (907) 561-0125

Fax (907) 561-0178

Standard Field Air Monitoring Data Sampling Sheet

Project Name: West Nome tonk form

Job Number:

794

Sample Data	Sample Number	Sample Type	Pump Number & Type	I and	Sampl Start Time	StopTime	Social Sample Same Informet	Sample Total Volume (L)	Sample By	Lab Sample #	
9-19-15	13794- Pm-01	Personal	LO- VOL-15-02	2.0	9:00Am	4:00pm			Casey Dresnek	-	
which be area - p	PE: Hard ha	ed Menade	Look. Demo	aid c	e cor	stainin.	g Lead	paint.	pick up	and a	clean
9-19-15	12794-	Fny'son the	LO-VOL - 15-03	3.0	9:00ton	2):oopn	1		Dresnek		11
out si	den are Regulat	a down	icited sou	th we	est of	Shaci	K				
-	1				÷						
-						[Γ.

LA- 015081 CENTRAL ENVIRONMENTAL,	INC.
311 N Sitka Street, Anchorage, Alaska	a 9951
Phone: (907) 561-0125 Fax: (907)	561-0178
CHAIN OF CUSTODY RECORD PROJECT NAME: West Nome tank from PROJECT NUMBER: 13794	PAGE / OF /
CLIENT REQUESTS ANALYZED SAMPLES TO BE: PROPERLY SEALED CONTAINERS? SUFFICIENT SAMPLE QUANTITY? NO VISIBLE LEAKAGE TO CONTAMINATION? FIELD SAMPLED ID. NO. LEGIBLE?	RETURNED TO CLIENT DISPOSED ARCHIVED
ESTIMATED COMPLETION DATE: 48 hu t.A.t SAMPLES COLLECTED BY: Casey Dresner, DATE: 9-18- LAB DELIVERED TO: W.E.C.	-9-19 TIME: 41.00 pm
SAMPLES ARRIVED TO LAB BY: CEI'S EXPEDITER AIR EXPRESS LAB PICKED UP CEI'S DROP BOX	COURIER SERVICE LAB'S DROP BOX OTHER
SAMPLES SUBMITTED BY: Casey Dresnek DATE: SAMPLES RECEIVED BY: DATE: DATE: COMMENTS:	7-24-15 TIME: 9/24/0 TIME:

FIELD SAMPLE ID#	LAIP	AIR	BU:.K	ANALYSIS	FIRLD SAMPLE ID:	LABT	AIR	BULK	ANALYSIS
Ex-ol		1		PEM	· · · · · · · · · · · · · · · · · · ·	- 1-		1	-
Pm-al		V		1 1 1	-	1	-	1	-
Em-03	-	1	-			-	+	-	-
FB-04	-	4		1		-	-	-	
FB-05	-	-	-	-		-	-	-	-
PM-01		V		FAA Lead					
em- od		10	-	1.	-	-	-	-	
		-	-	-	1			1	
						_		-	
	-	-	-			-	-	1	
				1					
				-				-	-

LAB - CONFIRMATION OF RECEIPT OF SAMPLES MUST BE FAXED BACK TO 907-561-0178!!!! IMMEDIATELY

APPENDIX H Project Communications

From:	Shepard, Dennis (DEC) <dennis.shepard@alaska.gov></dennis.shepard@alaska.gov>
Sent:	Wednesday, June 01, 2016 3:38 PM
То:	McKay, Neil
Cc:	AFCEC - Peyton, Charley; Nickolas Kuhlmann (nkuhlmann@beringstraits.com) (nkuhlmann@beringstraits.com); Amskold, Larry; Hadden, Sara
Subject:	RE: WNTF proposed sample locations update

All:

The Alaska Department of Environmental Conservation (DEC) has reviewed the proposed well /sampling location changes for B04, W-36 and W-37. These changes are acceptable and approved. A copy of the Figure A-2 has been saved to the project file.

If you have any questions, please do not hesitate to contact me at (907) 451-2180, or by email at <u>dennis.shepard@alaska.gov</u>

Sincerely, Dennis

Dennis Shepard

Environmental Program Specialist Contaminated Sites Program Spill Prevention and Response Division Alaska Department of Environmental Conservation

Phone: 907-451-2180

From: McKay, Neil [mailto:Neil.McKay@jacobs.com]
Sent: Wednesday, June 01, 2016 3:11 PM
To: Shepard, Dennis (DEC) <<u>dennis.shepard@alaska.gov</u>>
Cc: AFCEC - Peyton, Charley <<u>charley.peyton@us.af.mil</u>>; Nickolas Kuhlmann (<u>nkuhlmann@beringstraits.com</u>)
(<u>nkuhlmann@beringstraits.com</u>) <<u>nkuhlmann@beringstraits.com</u>>; Amskold, Larry <<u>Larry.Amskold@jacobs.com</u>>;
Hadden, Sara <<u>Sara.Hadden@jacobs.com</u>>
Subject: WNTF proposed sample locations update

Mr. Dennis Shepard,

Please find attached to this email an updated sample location figure for the West Nome Tank Farm Well Decommissioning, Well Installation, and Sample Collection Work Plan.

Three changes of nominal distance are proposed.

Proposed locations for B04 and W-37 have been moved for property access purposes.

The proposed location for W-36 has been moved for drill rig access considerations.

New locations are shown in Blue and White. Previous locations shown in the final work plan, are shown in grey on the attached updated figure.

Well Decommissioning, Well Installation, and Sample Collection Field work is scheduled for June 15-25, 2016.

Sincerely, Neil McKay

Neil McKay, R.G., P.G. JACOBS

Senior Geophysicist Phone: 907-751-3337 Mobile: 541-740-9578

Neil.McKay@jacobs.com

4300 B Street, Suite 600 Anchorage, Alaska 99503 www.jacobs.com

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

APPENDIX I Responses to Comments

REVIEW		PROJECT:West Nome Tank FarmDOCUMENT:Draft West Nome Tank Farm Summary Report December 2016LOCATION:Nome, AlaskaPROJECT NO.:400.38 002				
USAF/ADEC		Date: December 22, 2016 ADEC Reviewer: Joy Whitsel / Dennis Shepard	DATE: RESPONSES BY: Jacobs Engineering Group Inc. FOR: AFCEC, USAF DATE: 11 January 2017			
Item No.	Section, Page No.	ADEC COMMENTS	RESPONSIBLE PARTY RESPONSE A – Agree D- Disagree	REVIEWER ACCEPTANCE (A-Agree) (D-Disagree)		
1.	Sec 3.5.3.2, p 3-8	The statement regarding TELs should be clarified to state that <u>below</u> TELs, contaminants have a low probability of toxicity.	Agree. The statement will be revised as follows: "The TELs are lower-threshold values, which suggest that contaminant concentrations below these levels have a low probability of being toxic."	А		
2.	Table 3-4	It would be helpful if columns specifying both the TEL and PEL values were added, so that TEL exceedances may be judged in relation to the corresponding PEL. Same comment applies for the table in Fig A-4	Agree. Table 3-4 and Figure A-4 will be updated to include both the TEL and PEL values.	А		
3.	Sec 4.0	Please include a recommendation as a result of the NOAA SQuiRT exceedances for 4 of 6 sample locations.	Agree. The data collected in 2016 were for informational purposes only. The State does not currently have cleanup criteria for sediment. The comparison to NOAA SQuiRTs is for screening comparison only. The 2009 and 2016 sediment sampling events depict the widespread presence of fuel contaminants (DRO, naphthalene, and in 2016 other PAHs). These occurrences extend beyond the areas of suspected groundwater discharge from the WNTF and likely reflect inputs to the estuary from marine traffic and perhaps other industrial activities along the Snake River or in the Nome harbor. For example, some of the small boats and gold dredges that use the estuary are probably powered by two-cycle outboards, which discharge exhaust laden with incompletely combusted gasoline and lubricating oil directly into the water. Larger vessels have also released fuel in the area. In 2011, a towing vessel lost power and grounded on harbor-channel rocks, spilling up to 1,000 gallons of diesel. Heavy weather quickly dispersed the spill, but some of it was likely driven into the estuary. Additional sampling focusing on likely areas of groundwater discharge from the WNTF would	A		

REVIEW COMMENTS

DOCUMENT:

REVIEWER:

Item No.	Section, Page No.	ADEC COMMENTS	RESPONSIBLE PARTY RESPONSE A – Agree D- Disagree	REVIEWER ACCEPTANCE (A-Agree) (D-Disagree)
			not discern the contributions from the various potential sources. Based on this information, the following text & recommendation will be added to Section 4.0: "Sediment and surface water data were collected along the Snake	
			River for information purposes only. Although concentrations of contaminants from 2009 and 2016 indicated that fuel contamination in sediments is present upstream, cross-gradient, and downstream of the site, no further investigation of sediment contamination in the vicinity of presumed groundwater discharge from the WNTF is recommended. The concentrations of contaminants detected in river sediments could be a reflection of the maritime use of the estuary and harbor along with onshore industrial activities fuel. Making a definitive determination of the source of contaminations, if possible, would require a more comprehensive estuary-wide investigation."	
4.	General	The Remedial Design Work plan discusses the procedures for getting an easement on private property to allow for LUCs. Please include a discussion on the status of this; or refer to the appropriate report where this information can be found if it will not be discussed in this report.	The Air Force Real Estate section, 611 CES/CEI, is managing the negotiation of easements in accordance with the work plan. Further details will be provided separately by AFCEC.	А
5.		- End of comments -		