

December 19, 2011

Mr. Stephen Wilson
Director, Safety, Security, Quality & Environmental Stewardship
Crowley Maritime Corporation
1102 SW Massachusetts Street
Seattle, WA 98134-1030

Via e-mail: Stephen.Wilson@crowley.com

Re: Groundwater Monitoring Report; Nenana Header Area (ADEC File No. 110.38.010) and Rail Line Site (ADEC File No. 110.38.011); Nenana, Alaska

Dear Mr. Wilson:

OASIS Environmental, Inc. (OASIS) is submitting this letter report to Crowley Maritime Corporation (Crowley) to document the results of groundwater monitoring activities conducted at the Nenana Header Area and Rail Line Site located in Nenana, Alaska (Figures 1 and 2, Attachment 1). The Crowley Nenana sites are located at approximately 64.564688° north latitude and -149.100866° west longitude, on the south shore of the Tanana River. Nenana is located approximately 55 road miles south of Fairbanks, Alaska. Groundwater monitoring activities were conducted to further evaluate the nature and extent of impact to groundwater, and evaluate seasonal changes to groundwater elevation and gradient.

OASIS performed groundwater monitoring activities on September 27 and September 28, 2011. Monitoring activities included gauging and sampling each of the five permanent wells and six temporary wells located at the site. The well house well was also sampled (Figure 2). All groundwater samples were sent to ESC Lab Sciences, Inc. (ESC), an Alaska Department of Environmental Conservation (ADEC)-approved offsite laboratory, located in Mount (Mt.) Juliet, Tennessee (TN).

PROJECT SCOPE AND OBJECTIVES

The scope work for the groundwater monitoring work reported herein was to gather additional information regarding the nature of petroleum hydrocarbon impact to groundwater at the site including the possible impact by leaded fuels, and evaluate concentration trend. Past sampling of groundwater did not include sampling for lead and lead associated contaminant. Secondarily, information regarding groundwater elevation and flow direction was desired. The following tasks were listed in the work plan to be performed to meet the objectives:

- Collect groundwater samples from monitoring wells MW-1 through MW-5 and temporary well points TP-1 through TP-6;
- Collect a groundwater sample from the Well House well;
- Locate a second well alleged to be present at the site and sample this well;

825 W. 8th Ave., Anchorage, AK 99501 Phone: (907) 258-4880 Fax: (907) 258-4033

- Collect groundwater samples for known contaminants of concern including gasoline-range organics (GRO), diesel-range organics (DRO), and benzene, toluene, ethylbenzene, total xylenes (BTEX), at all monitoring wells, temporary well points, and pre-existing site wells;
- Evaluate for the presence of fuel related contaminants which include total lead; ethylene dibromide (EDB; a.k.a. 1,2-dibromoethane); ethylene dichloride (EDC; a.k.a. 1,2-dichloroethane [1,2-DCA]); naphthalene; methyl tert-butyl ether (MTBE), and lead, at all monitoring wells, temporary well points, and pre-existing site wells;
- Gather groundwater elevation information to determine the groundwater flow direction and calculate groundwater gradient; and,
- Prepare a report detailing the analytical results as compared to relevant ADEC groundwater cleanup criteria.

SITE BACKGROUND

In September and October 2010, OASIS conducted initial groundwater characterization activities at the Nenana Header and Nenana Rail sites. Characterization work included the installation of temporary groundwater sampling points, five permanent groundwater-monitoring wells, and subsurface soil sampling at co-located soil borings.

Based on the findings from the fall 2010 initial characterization work, additional characterization activities were conducted in May 2011 to define the extent of impact at both sites as a whole. The additional site characterization activities performed in May 2011 included the installation of 26 soil borings (SBs) by direct-push and co-located temporary groundwater sample locations. At each of the 26 SBs, two subsurface soil samples were collected after screening the soil cores with a photo-ionization detector (PID). Groundwater samples were collected at 20 locations using a reusable direct-push sampler with retractable screen. At six locations, pre-packed PVC temporary wells were installed and sampled. Permanent groundwater monitoring wells installed in the fall of 2010 were also sampled. Based on analytical results from the fall 2010 and spring 2011 characterization work, the majority of impact to soil has been defined:

- Impact to soil at the Header Area at concentrations above ADEC Method Two soil cleanup levels (SCLs) has been defined in the vicinity of the header manifold. Impact at the Header Area includes benzene, GRO, and DRO in concentrations exceeding associated ADEC Method Two SCLs.
- At the Rail Line site, located along the north and northwest side of the Middle Tank Farm, soil is impacted with GRO, DRO, BTEX, naphthalene, 1-methylnaphalene, and 2-methylnapthalene at concentrations exceeding associated ADEC Method Two SCLs. Soil located outside of the immediate vicinity of the Rail Line is impacted with benzene above the ADEC Method Two SCL at various depths. Soil south and west of the Rail Line and Middle Tank Farm has not been impacted.

Impact to groundwater has also been defined; impact extends from east of the Header Area, along the Tanana River, and from the Rail Line area and north towards the Tanana River. Groundwater is impacted with benzene in the Header Area in a narrow area running along the Tanana River. Groundwater is also

impacted by GRO and DRO at concentrations above ADEC Table C groundwater cleanup levels (GCLs) in the immediate vicinity of the header manifold, at the former storage tank location, and along piping between the header and Middle Tank Farm. Groundwater between the Rail Line and the Tanana River is impacted with GRO, DRO, and BTEX above ADEC Table C GCLs. Groundwater is not impacted southeast, south, and west of the Rail Line and Middle Tank Farm. Analytical results for a groundwater sample collected from the Well House well, formerly used by Crowley Petroleum Distribution for non-potable purposes, located south of the Middle Tank Farm and east of the former Lower Tank Farm, did not indicate impact.

FIELD ACTIVITIES

OASIS conducted groundwater monitoring activities between September 27 and 28, 2011. Fieldwork was performed by OASIS in accordance with the ADEC-approved work plan (OASIS 2011). To evaluate and establish dissolved-phase hydrocarbon plume trends, groundwater samples were scheduled to be collected from each of the five monitoring wells (MW-1 through MW-5), and each of six temporary well points (TP-1 through TP-5). However, groundwater was not collected at two locations for the following reasons:

- TP-1 was not sampled as no water was present; the total depth of TP-1 is 10 feet bgs, which may be too shallow at this location.
- TP-3 was not sampled due to being damaged by a lawn mower or similar grass cutting equipment.

Table 1 (Attachment 2) presents a summary of samples collected and analysis conducted for each well location. Field activities were documented in a bound logbook, with sampling information recorded on separate well sampling data sheets. All field documents are provided in Attachment 3. A photographic log is provided as Attachment 4.

As part of the field effort, OASIS interviewed Crowley's Nenana personnel regarding the use of groundwater available from the Well House well and the location of any additional wells that may be at the site. Crowley personnel stated only one well remains at the site; the Well House well. The temporary camps (located on the western boundary of the site) haul water from the city. The water is stored in large plastic tanks. OASIS has included photographs of the water storage tanks in the photographic log provide as Attachment 4.

Groundwater Elevation and Flow Direction

Prior to sampling, all wells were gauged for depth-to-water (DTW). No indication of separate-phase hydrocarbons was encountered during this or past sampling events at the site during gauging. DTW and groundwater elevation data are provided in Table 2 (Attachment 3) for the September 2011 monitoring event.

Groundwater appears to flow from the south to the north, with a lesser gradient from the east to the west. Previous groundwater elevation data is proved in Table 3. Similar to fall 2010, groundwater was found to be about 9 to 11 feet bgs. Spring groundwater elevation, recorded in May 2011, was about 2 feet

shallower, at about 8 feet bgs across the site, than the elevation found during the fall. Inferred groundwater contours are depicted on Figure 3, Attachment 1.

Sampling and Analytical Methods

After gauging each well and temporary well point for DTW, OASIS purged each well following the United States Environmental Protection Agency (USEPA) low-flow technique using a peristaltic pump and YSI® Model 556 water quality meter with flow-through cell. The water quality meter was used to establish successive readings for dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, temperature, and conductivity. Monitoring wells were purged at a rate between 0.1 and 0.5 liters per minute. While purging, water quality parameters were monitored and recorded every 3 to 5 minutes until pH was stable within 0.1 pH units, temperature was stable within 0.2 degrees Celsius (C°), and conductivity was stable within 3%. Once stability was achieved, sample collection was initiated.

Water Quality

Field collected water quality parameters and observations of odor and color for each well are summarized in Table 4, Attachment 2. ORP values were low or negative, indicating a reducing environment. DO was similarly very low, indicating an oxygen deficient regime. The pH was within normal range for potential natural attenuation to occur. Conductivity was consistent across the site.

Groundwater Sampling

Upon stabilization, the flow-through cell was disconnected from the flow-line and samples were collected directly from the flow-line using dedicated tubing. Samples were labeled with the proper analytical method and pre-assigned alpha-numeric sample identification number and placed in a cooler on ice.

Quality Control samples were collected or prepared to assess potential errors introduced during sample collection, handling, and analyses. As part of the field quality assurance/quality control (QA/QC) program, field duplicate and trip blank samples were collected as well as extra volumes for matrix spike/matrix spike duplicate (MS/MSD) procedures. Duplicate samples were collected from wells with historical or assumed high contaminant concentrations. One duplicate sample was collected for every ten primary samples. MS/MSD samples were collected from wells with documented or assumed low levels of contaminants. MS/MSD samples were collected at a rate of one per every 20 primary samples. Samples were kept chilled between 2°C and 6°C until field activities were completed. Samples were then delivered to FexEx® via the field team to be shipped overnight to ESC laboratory in Mt. Juliet, TN for analysis.

OASIS collected a total of ten project groundwater samples, one duplicate sample, and one MS/MSD volume. Additionally, five volatiles trip blanks accompanied the samples from the project laboratory, to the field, and back to the project laboratory.

All groundwater samples were submitted for the following analysis:

- GRO by Alaska (AK) Method 101 (AK 101);
- BTEX, MTBE, EDB, EDC, and naphthalene by USEPA Solid Waste Method (SW) 8260B;

- Low-level EDB by USEPA SW8011;
- DRO and residual-range organics (RRO) by AK 102/103; and,
- Lead by USEPA SW6020B.

All samples were shipped, under chain-of-custody procedures, to ESC. Analytical Table 5 (Attachment 2) presents a summary of the samples collected and laboratory analysis requested for this monitoring event.

ANALYTICAL RESULTS

Table 5 (Attachment 2) presents a summary of the analytical results in comparison to the ADEC 18AAC75 Table C GCLs. Analytical results are also presented in Figure 4 (Attachment 1). For comparison to historical trends, Table 6 presents analytical concentration trends. Analytical data results with ADEC Checklists and Quality Assurance Report (QAR) are provided in Attachment 4.

Similar to previous analytical results, impact to groundwater in the vicinity of the Header Area, as defined by MW-1, MW-2, MW-3, MW4, and TP-2, indicates a narrow benzene plume in concentrations above ADEC GCLs beginning west of MW-1 and east to MW-4 and extending east of TP-2. In addition to benzene, DRO was detected above the ADEC Table C GCLs at three locations along the river edge: MW-3, MW-4, and TP-2. The only location where GRO was detected above the ADEC Table C GCLs was at MW-4. Naphthalene, EDB, EDC, MTBE, and lead were either non-detect, or detected below ADEC Table C groundwater cleanup levels GCLs in all groundwater samples collected from the header area. Analytical results for samples collected from MW-2, located south of the header area, did not indicate impact for any contaminant of concern at a concentration above ADEC Table C groundwater cleanup level GCLs. Although TP-1 was dry, MW-1 appears to not have a benzene impact as previously found in the fall of 2010, indicating the upper limit of benzene impact may lie west of MW-1.

Four sample locations, MW-5, TP-4, TP-5, and TP-6 aid in defining the impact to groundwater at the Rail Line site. At MW-5 and TP-5 (directly adjacent to the rail line), GRO, DRO, benzene, toluene, ethylbenzene, naphthalene, EDC, EDB, and lead were detected at concentrations above ADEC Table C GCLs. At MW-5, located approximately 80 feet west of the Rail Line and 30 feet south of the Tanana River, benzene, GRO, and EDC were detected above the ADEC Table C GCLs. The western boundary of the impact to groundwater was defined by analytical results from previous sampling events and locations. Analytical results for samples collected from TP-4, located south of the Rail Line area, and TP-6 located east of the Rail Line area, did not indicate impact for any contaminant of concern at a concentration above ADEC Table C GCLs.

OASIS collected one sample from Well House well located south of the former Middle Tank Farm and east of the former Lower Tank Farm. All results were reported as not detected above the method detection limits with the exception of DRO and lead. DRO was detected at 0.048 mg/L and lead was detected at 0.0052 milligrams per liter (mg/L), both below the ADEC Table C GCLs DRO of 1.5 mg/L and lead at 0.015 mg/L.

CONCEPTUAL SITE MODEL

An updated ADEC conceptual site model (CSM) scoping form and graphic are included in Attachment 6.

Analytical evidence from current and past sampling events indicate that surface soil (0–2 feet bgs), subsurface soil (2 to 15 feet bgs), and groundwater at the site are impacted by petroleum hydrocarbons at concentrations that exceed ADEC cleanup criteria. Surface water and sediment are also potentially impacted media; however, no hydrocarbon impact was observed during the initial characterization.

Human health exposure routes may include ingestion, absorption, inhalation, and direct contact.

Possible receptors include current commercial or industrial workers; site visitors, trespassers, or recreational users; construction workers; and farmers or subsistence harvesters.

CONCLUSIONS

Groundwater impact at the header area is defined. It is possible benzene impact seasonally extends to the east of MW-1. The temporary pre-packed well, TP-1, was found to be dry during this sampling event; the depth of the well screen may be installed too shallow to intersect groundwater.

Groundwater at the Rail Line is impacted with GRO, DRO, BTEX, naphthalene, EDC, EDB, and lead in TP-5, which is located in the immediate vicinity of the Rail Line source area. Moving downgradient from the Rail Line towards the Tanana River, lighter hydrocarbons (benzene, GRO, and EDC) were reported in concentrations above cleanup levels, indicating migration in this direction. One clean groundwater sample exist between the Tanana and the Rail Line (TW-2) collected during the Initial Characterization conducted in September 2010; the figure depicting this location in relation to MW-5 and the Tanana River is included as Attachment 6. In this area, the river shore is a beach front; the steel bulk wall ends east of the Rail Line site.

OASIS thanks you for the opportunity to assist Crowley with this project. Please contact me at (907) 258-4880 if you have any question regarding this report.

Sincerely,

OASIS Environmental, Inc., an ERM Company

Ashley Hansen

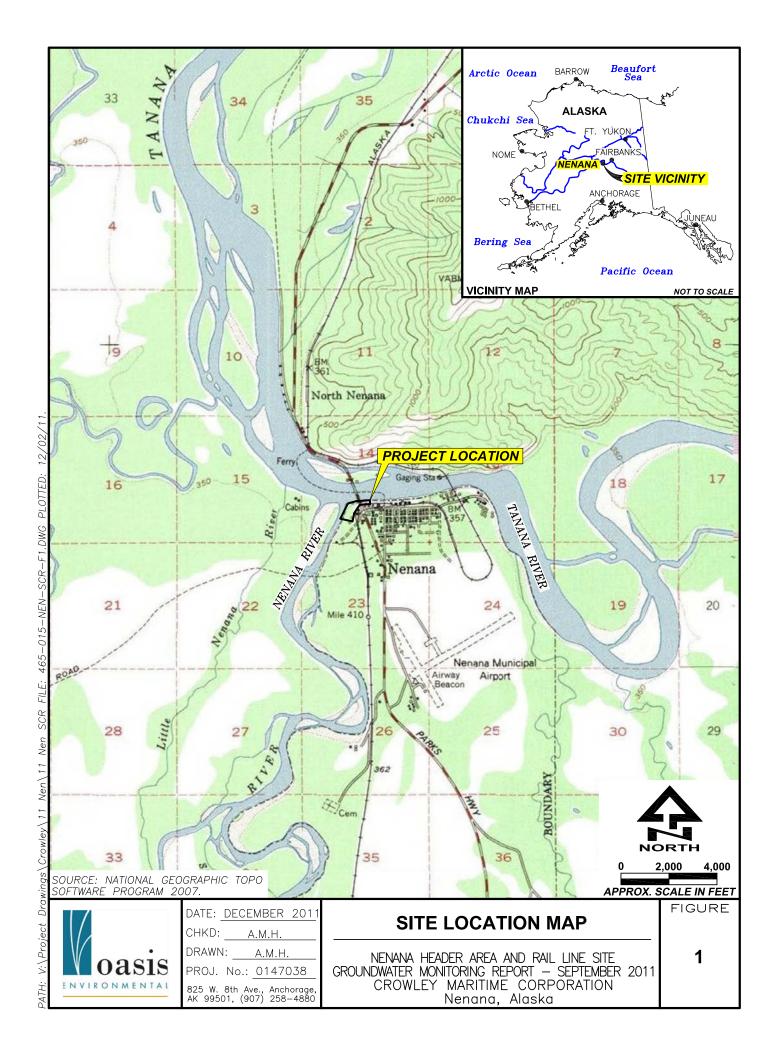
Environmental Scientist

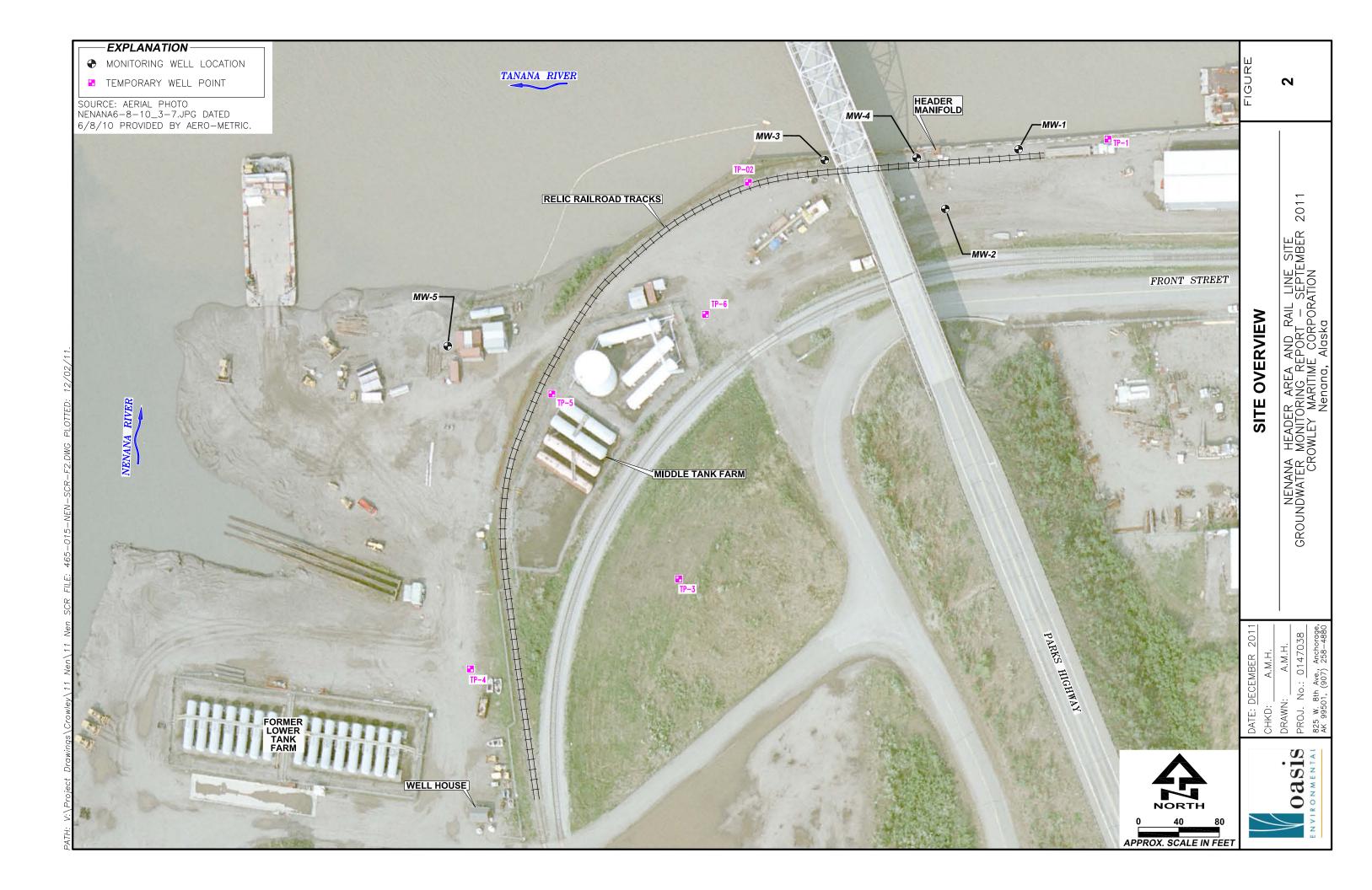
Ashley m. Hansen

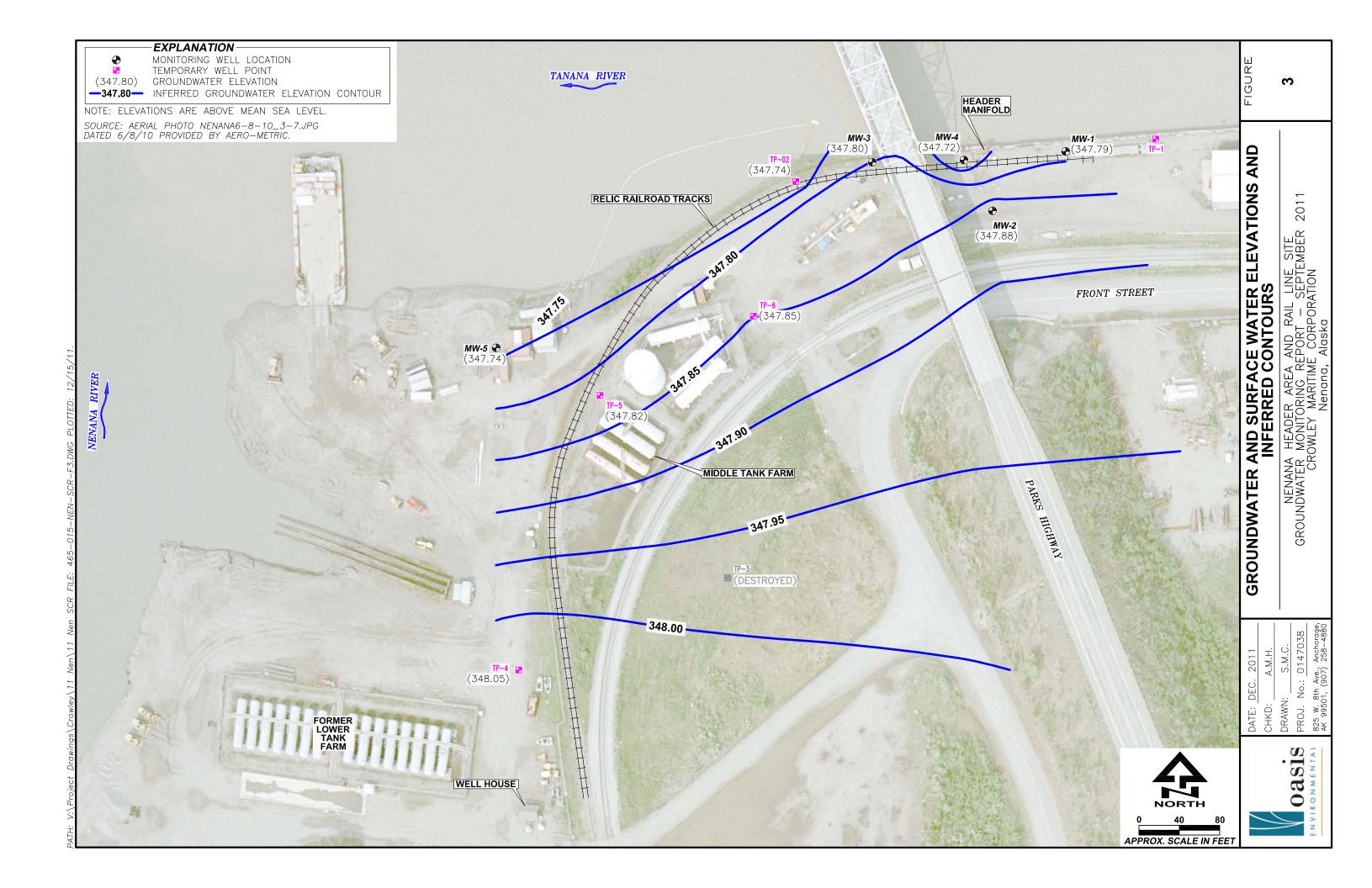
Daniel Frank
Project Manager

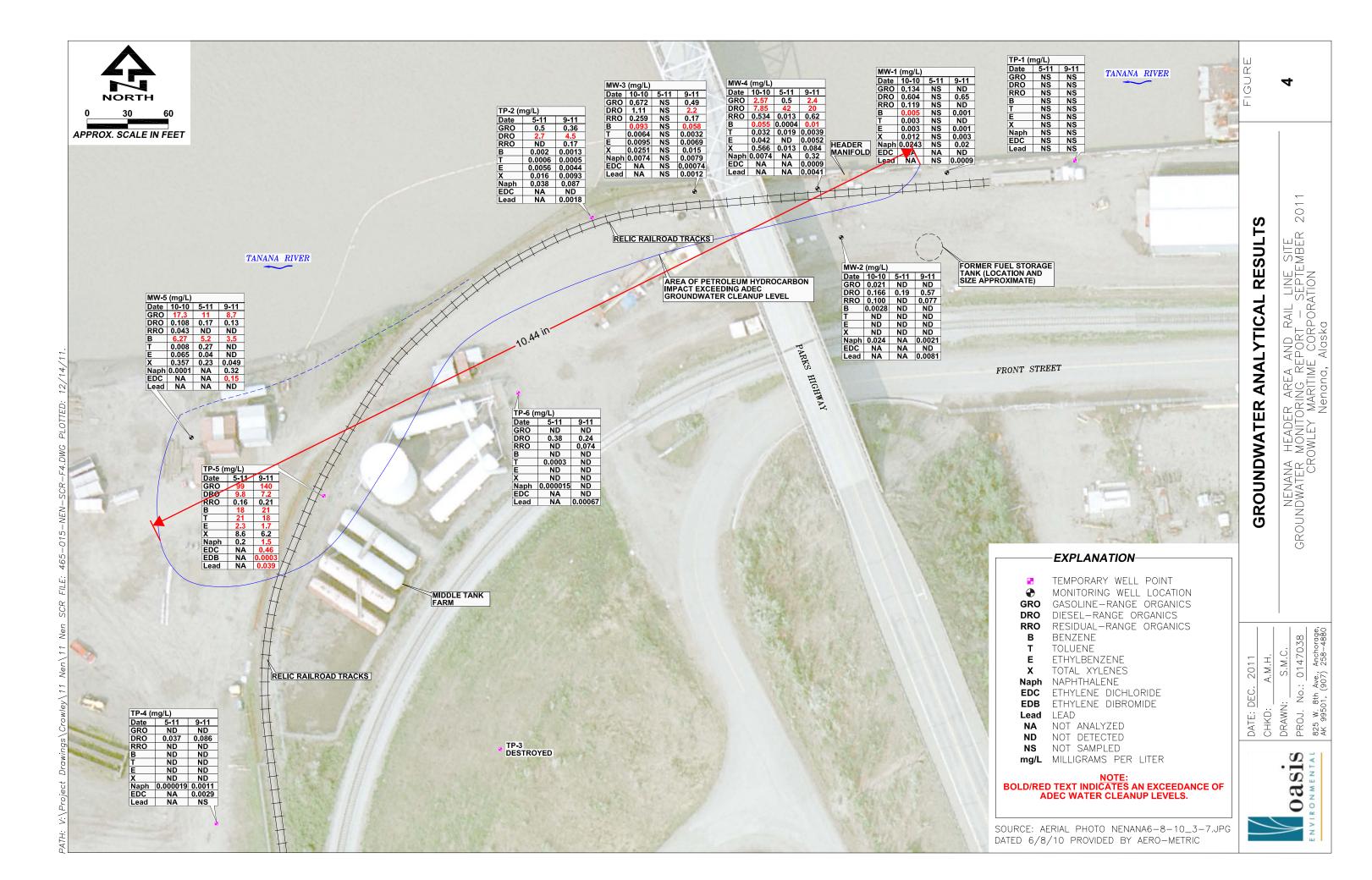
Attachments:

- 1. Figures
- 2. Tables
- 3. Field Notes
- 4. Photographic Log
- 5. Quality Assurance Memorandum, ADEC Checklists, Laboratory Analytical Reports
- 6. Conceptual Site Model


REFERENCES


OASIS Environmental, Inc. (OASIS), 2011. Letter. Groundwater Monitoring Work Plan. September 21.


ATTACHMENT 1


Figures

- Page Intentionally Left Blank -

ATTACHMENT 2

Tables

- Page Intentionally Left Blank -

GROUNDWATER SAMPLE COLLECTION SUMMARY

NENANA HEADER AREA AND RAIL LINE SITE GROUNDWATER MONITORING REPORT - September 2011 CROWLEY MARITIME CORPORATION

NENANA, ALASKA

		te	D					Labor	atory Analyses		
Well ID	Sample No. (11-NEN-)	Duplicate	MS/MSD	Sample Date	Sample Time	GRO (AK 101)	DRO (AK 102)	RRO (AK 103)	BTEX, MTBE, EDC & Naph (EPA 8260B)	EDB & DBCP (EPA 8011)	Lead (EPA 6020B)
Permanent Gro	oundwater Monitoring	g Wells									
MW-1	MW1-02-GW			09/27/11	1340	✓	✓	✓	✓	✓	✓
MW-2	MW2-02-GW			09/27/11	1345	✓	✓	✓	✓	✓	✓
MW-3	MW3-02-GW			09/27/11	1530	✓	✓	✓	✓	✓	✓
	MW4-02-GW			09/27/11	1545	✓	✓	✓	✓	✓	✓
MW-4	MW20-02-GW	✓		09/27/11	2200	✓	✓	✓	✓	✓	✓
MW-5	MW5-02-GW			09/28/11	1800	✓	✓	✓	✓	✓	✓
Temporary Pre-	-Packed Well Points										L
TP-1					No sample	collected, v	vell dry				
TP-2	TP2-02-GW			09/28/11	1115	✓	√	✓	✓	✓	✓
TP-3					No sam	ple collecte	ed, well desto	ryed			-
TP-4	TP4-02-GW			09/28/11	1715	✓	✓	✓	✓	✓	✓
TP-5	TP5-02-GW			09/28/11	1530	✓	✓	✓	✓	✓	✓
TP-6	TP6-01-GW		✓	09/28/11	1110	✓	✓	✓	✓	✓	✓
Well House						-		•	•		•
Well House	MW6-02-GW			09/27/11	1120	✓	✓	✓	✓	✓	✓
Trip Blanks											
	L539126-07			09/27/11		✓			✓		
	L539126-08			09/27/11		✓			✓		
	L539126-14			09/28/11		✓			✓		
	L539126-15			09/28/11		✓			✓		
	L539126-16			09/28/11		✓			✓		

Key:

AK = Alaska

BTEX = Benzene, toluene, ethylbenzene, xylenes

DBCP = Dibromochloropropane

DRO = Diesel-range organics

EDB = Ethylene dibromide

EDC = Ethylene dichloride

EPA = United States Environmental Protection Agency

GRO = Gasoline-range organics

MS/MSD = Matrix spike/matrix duplicate spike

MTBE = Methyl tertiary butyl ether

Naph = Naphthalene

RRO = Residual-range organics

MONITORING WELL CONSTRUCTION DETAILS AND GROUNDWATER ELEVATIONS NENANA HEADER AREA AND RAIL LINE SITE GROUNDWATER MONITORING REPORT- September 2011 CROWLEY MARITIME CORPORATION NENANA, ALASKA

			Well Cons	struction Detail	s		Belo	w MP		Groundwater
Well ID	Installaton Date	Casing Diamete r (inches)	Depth to Top of Screen (bgs)	Depth to Bottom of Screen (bgs)	Measuring Point Elevation ³	Guage Date	Depth to Product	Depth to Water	Groundwater Elevation	Elevation within Screening Interval?
MW-1	10/3/2010	2	3.30	13.30	358.11	9/27/2011		10.32	347.79	Yes
MW-2	10/3/2010	2	3.20	13.20	356.83	9/27/2011		8.95	347.88	Yes
MW-3	10/3/2010	2	3.20	13.20	357.65	9/27/2011		9.85	347.80	Yes
MW-4	10/3/2010	2	3.80	13.80	358.09	9/27/2011		10.37	347.72	Yes
MW-5	10/3/2010	2	2.20	10.20	356.40	9/28/2011		8.66	347.74	Yes
TP-1	5/23/2011	1	4.50	9.50	359.00	9/27/2011		-		
TP-2	5/23/2011	1	8.70	13.70	360.09	9/28/2011		12.35	347.74	Yes
TP-3	5/23/2011	1	6.00	11.00	357.87	9/28/2011				
TP-4	5/23/2011	1	7.80	12.80	356.30	9/28/2011		8.25	348.05	Yes
TP-5	5/23/2011	1	7.15	12.15	359.71	9/28/2011		11.89	347.82	Yes
TP-6	5/24/2011	1	7.70	12.70	360.06	9/28/2011		12.21	347.85	Yes

Notes:

All measurements are in units of feet.

Key:

-- = None measured

bgs = Below ground surface

BTOC = Below top of casing, a.k.a. below measuring point (MP)

DTW = Depth to water

MW = Monitoring well

TP = Temporary sample point (Pre-Packed)

¹ Survey conducted by Design Alaska Inc. on May 26, 2011.

² Alaska State Plane Zone 4, NAD83. Coordinates are differentially corrected from an OPUS solution, US Survey feet.

³ NAVD88. Elevations are based upon COE brass cap monumnet NFPS-1, 1991.

TABLE 3 GROUNDWATER ELEVATION DATA

NENANA HEADER AREA AND RAIL LINE SITE GROUNDWATER MONITORING REPORT- September 2011 CROWLEY MARITIME CORPORATION NENANA, ALASKA

Well ID	MP Elevation (feet MSL)	Gauge Date	Depth to Product (feet BTOC)	Depth to Water (feet BTOC)	Water Elevation (feet MSL)
Permanen	t Wells				
		10/3/2010		10.26	347.85
MW-1	358.11	5/23/2011		8.24	349.87
		9/27/2011		10.32	347.79
		10/3/2010		9.00	347.83
MW-2	356.83	5/23/2011		7.30	349.53
		9/27/2011		8.95	347.88
		10/3/2010		9.90	347.75
MW-3	357.65	5/23/2011		Frozen	
		9/27/2011		9.85	347.80
		10/3/2010		10.34	347.75
MW-4	358.09	5/23/2011		8.65	349.44
		9/27/2011		10.37	347.72
		10/3/2010		7.00	349.40
MW-5	356.40	5/23/2011		7.40	349.00
		9/28/2011		8.66	347.74
Temporary	Well Points				
TP-1	250.00	5/23/2011		Frozen	
IP-I	359.00	9/27/2011		Dry	
TP-2	360.09	5/23/2011		10.77	349.32
17-2	360.09	9/28/2011		12.35	347.74
TP-3	257.07	5/23/2011		8.00	349.87
IP-3	357.87	9/28/2011		Destroyed	
TD 4	250.20	5/23/2011		6.50	349.80
TP-4	356.30	9/28/2011		8.25	348.05
TD 5	250.74	5/23/2011		10.00	349.71
TP-5	359.71	9/28/2011		11.89	347.82
TD 6	200.00	5/24/2011		10.43	349.63
TP-6	360.06	9/28/2011		12.21	347.85

Key:

-- = Not present

BTOC = Below top of casing, a.k.a. below

NA = Not available

NM = Not monitored

MP = Measuring point (a.k.a. PVC Elevation/top of casing)

MSL = Mean seal level

Oasis ENVIRONMENTAL Page 1 of 1 12/14/2011

FIELD-COLLECTED GROUNDWATER QUALITY PARAMETERS NENANA HEADER AREA AND RAIL LINE SITE GROUNDWATER MONITORING REPORT - September 2011 CROWLEY MARITIME CORPORATION NENANA, ALASKA

Well	Purge/Sample Date	Color	Odor	pН	Temperature (°C)	Conductivity (mS/cm)	DO (mg/L)	ORP (mV)
MW-1	9/27/2011	clear	none noted	6.19	8.47	0.805	0.33	-65.2
MW-2	9/27/2011	clear	none noted	6.47	4.65	0.885	0.30	57.1
MW-3	9/27/2011	clear	medium hydrocarbon	6.81	7.69	0.929	0.42	-106.7
MW-4	9/27/2011	clear	medium hydrocarbon	6.23	9.24	0.874	0.32	-41.5
MW-5	9/28/2011	clear	none noted	6.93	5.39	0.781	0.24	-42.3
TP-1	9/27/2011			No	water			
TP-2	9/28/2011	amber	none noted	6.67	6.87	0.895	0.48	59.9
TP-3	9/28/2011			Des	storyed			
TP-4	9/28/2011	clear	medium hydrocarbon	6.52	7.06	0.511	1.24	14.8
TP-5	9/28/2011	grey	medium hydrocarbon	7.15	6.68	1.025	0.65	-155.0
TP-6	9/28/2011	clear	none noted	6.10	6.10	0.928	0.22	-17.8

Key:

°C = Degrees Celsius mV = Millivolts
DO = Dissolved oxygen MW = Monitoring well

mS/cm =Millisiemens per centimeter ORP = Oxidation-reduction potential

mg/L = Milligrams per liter TP = Temporary well point

Page 1 of 1 12/14/2011

GROUNDWATER ANALYTICAL RESULTS SUMMARY

NENANA HEADER AREA AND RAIL LINE SITE GROUNDWATER MONITORING REPORT - September 2011 CROWLEY MARITIME CORPORATION NENANA, ALASKA

Location:	ADEC Groundwater	MW-1	MW-2	MW-3	MV	N-4	MW-5	Well House	TP-2	TP-4	TP-5	TP-6
Sample ID (11-NEN-):	Cleanup Levels ⁽¹⁾	MW1-02-GW	MW2-02-GW	MW3-02-GW	MW4-02-GW	MW20-02-GW	MW5-02-GW	MW6-02-GW	TP2-02-GW	TP4-02-GW	TP5-02-GW	TP6-02-GW
Sample Date:	(mg/L)	9/27/11	9/27/11	9/27/11	9/27/11	9/27/11	9/28/11	9/27/11	9/28/11	9/28/11	9/28/11	9/28/11
ADEC Fuels (AK101, AK102,	AK103; mg/L)											
Gasoline Range Organics	2.2	ND (0.1)	ND (0.1)	0.49	<u>2.4</u>	1.4	<u>8.7</u>	ND (0.1)	0.36	ND (0.1)	<u>140</u>	ND (0.1)
Diesel Range Organics	1.5	0.65J	0.57J	<u>2.2</u> J	<u>20</u> J	<u>20</u> J	0.13J	0.048J	<u>4.5J</u>	0.086J	<u>7.2</u> J	0.24J
Residual Range Organics	1.1	ND (0.2)	0.077J	0.17J	0.58	0.62	ND (0.2)	ND (0.2)	0.17J	ND (0.2)	0.21	0.074J
Organics (EPA Method 8260E	3; mg/L)											
Benzene	0.005	0.001	ND (0.001)	<u>0.058</u>	<u>0.011</u>	<u>0.010</u>	<u>3.5</u>	ND (0.001)	0.0013	ND (0.001)	<u>21</u>	ND (0.001)
Toluene	1.0	ND (0.005)	ND (0.005)	0.0032J	0.0043J	0.0039J	ND (0.005)	ND (0.005)	0.0005J	ND (0.005)	<u>18</u>	ND (0.005)
Ethylbenzene	0.7	0.001	ND (0.001)	0.0069	0.0058	0.0053	ND (0.001)	ND (0.001)	0.0044	ND (0.001)	<u>1.7</u>	ND (0.001)
Total Xylenes	10	0.0032	ND (0.003)	0.015	0.09	0.084	0.049J	ND (0.003)	0.0093	ND (0.003)	6.2	ND (0.003)
Methyl tert-butyl ether	0.47	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)				
Naphthalene	0.73	0.02	0.0021J	0.0079	0.32	0.3	ND (0.005)	ND (0.005)	0.087	0.0011J	<u>1.5</u> J	ND (0.005)
1,2-Dichloroethane (EDC)	0.005	ND (0.001)	ND (0.001)	0.00074J	0.0009J	0.00085J	<u>0.15</u>	ND (0.001)	ND (0.001)	ND (0.001)	<u>0.46</u> J	ND (0.001)
1,2-Dibromoethane (EDB)	0.00005	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)				
Low-level EDB (EPA Method	8011; mg/L)											
EDB	0.00005	ND (0.00001)	ND (0.00001)	ND (0.00001)	ND (0.00001)	ND (0.00001)	<u>0.0003</u>	ND (0.00001)				
Lead (EPA Method 6020; mg/	L)											
Total Lead	0.015	0.0009J	0.0081J	0.0012	0.0041	0.0039	ND (0.001)	0.0052	0.0018	0.0029	<u>0.039</u>	0.00067J

Location:	ADEC Groundwater	Trip Blank				
Sample ID (11-NEN-):	Cleanup	L539126-07	L539126-08	L539126-14	L539126-15	L539126-16
Sample Date:	Levels ⁽¹⁾ (mg/L)	9/27/11	9/27/11	9/28/11	9/28/11	9/28/11
ADEC Fuels (AK101, AK102,	AK103; mg/L)					
Gasoline Range Organics	2.2	ND (0.1)				
Diesel Range Organics	1.5		-	-		-
Residual Range Organics	1.1					
Organics (EPA Method 8260E	3; mg/L)					
Benzene	0.005	ND (0.001)				
Toluene	1.0	ND (0.005)				
Ethylbenzene	0.7	ND (0.001)				
Total Xylenes	10	ND (0.003)				
Methyl tert-butyl ether	0.47	ND (0.001)				
Naphthalene	0.73	ND (0.005)				
1,2-Dichloroethane (EDC)	0.005	ND (0.001)				
1,2-Dibromoethane (EDB)	0.00005	ND (0.001)				
Low-level EDB (EPA Method	8011; mg/L)					
EDB	0.00005					
Lead (EPA Method 6020; mg/	L)	_				
Total Lead	0.015					

Notes: Results above ADEC cleanup values are underlined & bolded.

⁽¹⁾ 18 AAC 75.345, Table C

Key:

-- = Not applicable

ADEC = Alaska Department of Environmental Conservation

AK = Alaska

EDB = ethylene dibromide, a.k.a. 1,2-dibromoethane

EDC = ethylene dichloride, a.k.a. 1,2-dichloroethane (1,2-DCA)

J = Estimated Value

mg/L = Milligrams per liter

ND = Not detected at the associated reported detection limit

GROUNDWATER CONCENTRATION TRENDS

NENANA HEADER AREA AND RAIL LINE SITE GROUNDWATER MONITORING REPORT - September 2011 CROWLEY MARITIME CORPORATION NENANA, ALASKA

Well ID	Sample No.	Sample Date	Duplicate	GRO (mg/L)	DRO (mg/L)	RRO (mg/L)		ВТЕ	X (mg/L)	
		Date	Da	(1119/12)	(mg/L)	(mg/L)	Benzene	Toluene	Ethylbenzene	Total Xylenes
	ADEC Groundwate	r Cleanup Leve	el ⁽¹⁾ :	2.2	1.5	1.1	0.005	1	0.7	10
	10-NEN-101-GW	10/4/2010		0.134	0.604	0.119	0.00511	0.00305J	0.00345J	0.01169J
MW-1		5/27/2011					Frozen, N	ot Sampled		
	11-NEN-MW1-02-GW	9/27/2011		ND (0.1)	0.65J	ND (0.2)	0.001	ND (0.005)	0.001	0.0032
	10-NEN-102-GW	10/4/2010		0.0208 J	0.166 J	0.0999 J	0.0028	ND (0.0007)	ND (0.0007)	ND (0.0007)
NAVA / O	11-NEN-MW2-01-GW	5/27/2011		ND (0.1)	0.19 J	ND (0.2)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
MW-2	11-NEN-MW21-01-GW	5/27/2011	✓	ND (0.1)	0.18 J	ND (0.2)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
	11-NEN-MW2-02-GW	9/27/2011		ND (0.1)	0.57J	ND (0.2)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
	10-NEN-104-GW	10/4/2010		0.672	1.11	0.259	0.0927	0.00644	0.00951	0.02507
	10-NEN-105-GW	10/4/2010	✓	0.770	1.07	0.304	<u>0.0882</u>	0.00753	0.0124	0.03104
MW-3		5/27/2011					Frozen, N	ot Sampled		
	11-NEN-MW3-02-GW	9/24/2011		0.49	2.2J	0.17J	0.058	0.0032J	0.0069	0.015
	10-NEN-103-GW	10/4/2010		<u>2.57</u>	<u>7.85</u>	0.534 J	<u>0.0545</u>	0.0319	0.0416	0.566
	11-NEN-MW4-01-GW	5/27/2011		0.5	<u>42</u> JS	0.013 J	0.00035 J	0.019 J	ND (0.001)	0.013 J
MW-4	11-NEN-MW4-02-GW	9/27/2011		<u>2.4</u>	<u>20J</u>	0.58	<u>0.011</u>	0.0043J	0.0058	0.09
	11-NEN-MW20-02-GW	9/27/2011	✓	1.4	<u>20J</u>	0.62	<u>0.010</u>	0.0039J	0.0052	0.084
	10-NEN-106-GW	10/4/2010		<u>17.3</u>	0.108 J	0.0425 J	6.27	0.00807	0.0654	0.35667
MW-5	11-NEN-MW5-01-GW	5/27/2011		<u>11</u>	0.17	ND (0.2)	<u>5.2</u>	0.27 J	0.04	0.23
	11-NEN-MW5-02-GW	9/28/2011		<u>8.7</u>	0.13J	ND (0.2)	<u>3.5</u>	ND (0.005)	ND (0.001)	0.049J
TD 4		5/27/2011					Frozen, N	ot Sampled		
TP-1		9/28/2011					No Water,	Not Sampled		
	11-NEN-TP2-01-GW	5/27/2011		0.5	2.7	ND (0.2)	0.0015	0.00063J	0.0056	0.016
TP-2	11-NEN-TP2-02-GW	9/28/2011		0.36	4.5J	0.17J	0.0013	0.0005J	0.0044	0.0093
	11-NEN-TP3-01-GW	5/27/2011		ND (0.1)	0.08J	ND (0.2)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
TP-3		9/28/2011		, ,		` '	Well Destorye	d, Not Sampled		
	11-NEN-TP4-01-GW	5/27/2011		ND (0.1)	0.037J	ND (0.2)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
TP-4	11-NEN-TP4-02-GW	9/28/2011		ND (0.1)	0.086J	ND (0.2)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
	11-NEN-TP5-01-GW	5/27/2011		99	9.8	0.16J	<u>18</u>	<u>21</u>	2.3	8.6
TP-5	11-NEN-TP20-01-GW	5/27/2011	✓	100	<u>10</u>	0.15J	<u>18</u>	<u>21</u>	2.4	9
	11-NEN-TP5-02-GW	9/28/2011		140	<u>7.2J</u>	0.21	<u>21</u>	<u>18</u>	1.7	6.2
TD C	11-NEN-TP6-01-GW	5/27/2011		ND (0.1)	0.38J	ND (0.2)	ND (0.001)	0.00034J	ND (0.001)	ND (0.003)
TP-6	11-NEN-TP6-02-GW	9/28/2011		ND (0.1)	0.24J	0.074J	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)

Notes: Results above ADEC Cleanup Values are underlined & bold.

⁽¹⁾ 18 AAC 75.345

Key:

-- = Not analyzed/Not applicable

ADEC = Alaska Department of Environmental Conservation

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRO = Diesel-range organics

GRO = Gasoline range organics

J = Estimated value

mg/L = Milligrams per liter

ND - Not detected above RDL.

RDL = Reported detection limit.
RRO = Residual-range organics

12/14/2011 Page 1 of 1

ATTACHMENT 3

Field Forms Field Notes Photolog - Page Intentionally Left Blank -

						741 5		_				
	Low	<u>/-Flow</u>	Ground	dwater Sam	pling	g with N					<u>neet</u>	
l								Well ID:	m			
Project #:	46	65-01	15					Date:		27//	/	
Project Name:							– Str	art Time:		15		
Site:	112	and a	- 4n	ea			_	nd Time:		30		
Field Team:	4.17	anse	- h									
Sample ID:	11-11	GAJ- N	null-	02-GW	Time:	1340	orimary	dup	split	ms/msc	1	
Sample ID:	4	21 -			Time:	.0.10	primary		split	ms/msc		
Sample ID:					Time:		primary		split	ms/msc		
ŀ	امدد	Oline	- 10 - 4h - al		-		- ' '	•	Per;			
Purgi	ng and	Sampling	j Metnoa	(e.g. peristalti			mersible): e Purged:		- 20	/		
		_					-		0.25	4		
Weather Condi	tions:	42.7	, Shn	ny , 3-3	5 m	Ph U	sind.					
Danth to Top of									# PTOC		10 22	
Depth to Top of Depth to Oil/Wa							Total De		ft BTOC):		13.25	-
* Note: Same as		•	1100).				TULAI DE	spur (it o	100).		13.60	
Criteria for S			fore									
Parameter	Marie	Parame	Working	- Pance		Stability (Critoria	Notes				
Temperature	-		>0.00 °C			± 0.2° C	ofiteria	Mores				
pH			0-14	'		± 0.2 C		1				_
Conductivity			0-999 m	S/m		± 3%		+				
ORP			± 1999 m			1070						
Dissolved Oxyg	en		0-19.99		$\overline{}$	± 10%						-
Turbidity			0-800 N1					<u> </u>				
Sensory Obs	servati	ions										
Color:			mber, Ta	an, Brown, Gre	ev. Mil	kv White,	Other:				-	
Odor:				um, High, Very				Chemic	al ?, Unkı	nown		
Turbidity:				um, High, Very				-	-			
Instrument () Dserv											
	T								I		Water	
Flowrate		Temp	'	Conduct'ity	Cor	nduct'ity	DO	ORP			Level	Draw-
(ml/min)	Time		pН	(Ms/cm)		μs/cm)	(mg/L)		Color	Odor	(ft BTOC)	down
135	1316	9.19	5.82	1.026		15	0.55		Clear	N	10.32	
- 11	13/9		5.68	0.949		57	0.39	-22.4	6.	61	10.32	
и	1322		5.83	0.880		04	0.30		**	**	10.32	_
- 11		8.50	5.92	0.853		84	0.37		11	11	10.32	_
- 40		8.49	6.09	0.822		63	0.37	33.0	61	"1	10 32	~
	1334	8.47	6.19	0.805	_55	<u></u>	0.33	-65.2	4	"	10.32	_
ļ	1		 	 	\vdash		-	-		· ·	 	
	+ + +		+	 	$\vdash \vdash$		 	-				
	+		+	 			-	 			-	
	 			 	$\vdash \!$		+	 			1	-
			+	 	$\overline{}$		†	 			+	
	نـــــــــــــــــــــــــــــــــــــ							<u> </u>				<u> </u>
Notes: Drawdown s	chould be i	less than 0.7	र feet while s	eamoling Minimal	drawdov	wn shall be a	chieved and r	measured	hy numpina	at a low ra	ete (annmyimatel)	40 1 to 0.5
liter/minute) and cor												/ 0.1 10 0.0
		Bottles										
Analyses	Col	llected	Commer	nts:								
BIGGINTBE/GO	23	40 ml W	ed itel									
610	3 40	mi vo 4	HCI									
EDBIOSCP	3-40		NATH	ia								
DOURRO	2-1-1	LHU										
istad	500 n	nl HN	92 1	<u></u>						<u> </u>		
	11 /	Tues	41	<i>i</i>					0	1		
Signed:	18	wy	110					Date:		27/	///	_
		•						Date:		-		,
Signed/reviewer												

	Lov	v-Flow	Ground	dwater San	pling with	Minimal	Drawo	down V	Vorksh	eet	
							Well ID:	MW:	2		
Project # :	46	5-01	15				Date:	9/2	7/11		
Project Name:	Ne	25-01 maha				— St	art Time:				
Site:	140			.			nd Time:				
Field Team:	50	wisti	ahsir	1			ia 111110.		2		
Sample ID:		VEN-M			Time: 1345	primar	dup	split	ms/msd		
Sample ID:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Time:	primary	•	split	ms/msd		
Sample ID:					Time:	primary	dup	split	ms/msd		
Purgi	ing and			(e.g. peristalt	Total Volu	bmersible): ne Purged:	Peri 3 a	al .			
Weather Condi	itions:	_50°	Sunnu	with ligh	et wind		0				
Depth to Top of	F Droduo			0		Donth to	Motor (ft BTOC)		e ac	
Depth to Oil/Wa						Total De			•	13.18	
* Note: Same as			<i>3100)</i> .			TOTAL DE	ט זון וווק	100).		19.16	
Criteria for	<u> </u>		tore								
Parameter	Jiabie	. arailit		g Range	Stabilit	Criteria	Notes				
Temperature			>0.00 °C		± 0.2° C	Cilleila	140162				
pH			0-14		± 0.1						
Conductivity			0-999 m	S/m	± 3%		 			10100-01	
ORP		-	± 1999 r		10%		<u> </u>				
Dissolved Oxyg	ien.		0-19.99		± 10%					# - 2 - 2 -	
Turbidity	,		0-800 N								
Sensory Ob	servat	ions	10 000	<u> </u>							
Color:	501 Vat		mher T	an, Brown, Gr	ov Milky White	Other:					
Odor:				um, High, Ver			Chemic	al 2 Unk	nown		
Turbidity:				um, High, Ver			Oncino	ai ., Oilki	1101111		
Instrument (Obsen				<u> </u>	,					
moti dimone	1		I			T ·	T	T		Water	
El				Condition	Conduct'ity		000			1	
i riowrate		Temp		I Conduct ity	i Conductity	' I DO	I UKP			ı Levei :	Draw-
Flowrate (ml/min)	Time	Temp °C	Ha	Conduct'ity (Ms/cm)			ORP (mV)	Color	Odor	Level (ft BTOC)	Draw- down
(ml/min)	Time	°c ˙	pH	(Ms/cm)	(µs/cm)	(mg/L)	(mV)	Color	Odor	(ft BTOC)	Draw- down
(ml/min) 3@0	1322	°C 5.78	6.36	(Ms/cm) 944	(μs/cm) 5 ૧ (σ	(mg/L)	(mV)	Color	Odor No	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 3@0 3w0	1322	°C 5.38 4.43	6.36	(Ms/cm) 964 907	(μs/cm) 59(e 538	(mg/L) 0.85 0.39	(mV) 42 50.9	Clear	no	(ft BTOC)	down
(ml/min) 340 340 360	1322 1327 1331	°C 5.78 4.93 4.99	6.36	(Ms/cm) 947 907 885	(μs/cm) 596 598 546	(mg/L) 0.55 0.35 0.25	(mV) 42 50.9 53.9	Clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 3&0 3&0 3&0 3&0	1322 1327 1331 1330	°C 5.78 4.93 4.99 4.33	6.36	(Ms/cm) 947 907 \$55	(µs/cm) 59(e 598 546 531	(mg/L) 0.85 0.35 0.25 0.31	(mV) 42 50.9 53.9 55.5	Clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 340 340 360 360 340	1322 1327 1331 1330 1339	°C 5.78 4.93 4.99 4.33 4.52	6.36 6.41 6.42 6.43 6.44	(Ms/cm) 947 907 \$15 \$15	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31	(mV) 42 50.9 53.9 55.5 57.4	Clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 340 340 360 360 340 340	1322 1321 1331 1330 1399	°C 5.78 4.93 4.99 4.33 4.52	6.36	(Ms/cm) 947 907 \$15 \$15	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31 0.28	(mV) 42 50.9 53.9 55.5 57.4 53.4	clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 340 340 360 360 340	1322 1321 1331 1339 1399	°C 5.78 4.93 4.99 4.33 4.52	6.36 6.41 6.42 6.43 6.44	(Ms/cm) 947 907 \$55	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31 0.28	(mV) 42 50.9 53.9 55.5 57.4	clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 3&0 3&0 3&0 3&0 340 340	1322 1321 1331 1330 1399	°C 5.78 4.93 4.99 4.33 4.52	6.36	(Ms/cm) 947 907 \$15 \$15	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31 0.28	(mV) 42 50.9 53.9 55.5 57.4 53.4	clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 3&0 3&0 3&0 3&0 340 340	1322 1321 1331 1330 1399	°C 5.78 4.93 4.99 4.33 4.52	6.36	(Ms/cm) 947 907 \$15 \$15	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31 0.28	(mV) 42 50.9 53.9 55.5 57.4 53.4	clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 3&0 3&0 3&0 3&0 340 340	1322 1321 1331 1330 1399	°C 5.78 4.93 4.99 4.33 4.52	6.36	(Ms/cm) 947 907 \$15 \$15	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31 0.28	(mV) 42 50.9 53.9 55.5 57.4 53.4	clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 340 340 360 360 340 340	1322 1321 1331 1330 1399	°C 5.78 4.93 4.99 4.33 4.52	6.36	(Ms/cm) 947 907 \$15 \$15	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31 0.28	(mV) 42 50.9 53.9 55.5 57.4 53.4	clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 340 340 360 360 340 340	1322 1321 1331 1330 1399	°C 5.78 4.93 4.99 4.33 4.52	6.36	(Ms/cm) 947 907 \$15 \$15	(µs/cm) 59(e 538 546 531 840 543	(mg/L) 0.55 0.35 0.25 0.31 0.28	(mV) 42 50.9 53.9 55.5 57.4 53.4	clear	no	(ft BTOC) ଷ୍ଟି.ସ୍ୱର୍ଗ	down
(ml/min) 340 340 340 340 340 340 340	1322 1321 1331 1334 1399 1342 1345	°C 5.78 4.93 4.99 4.33 4.52 4.52 4.65	6.36 6.41 6.42 6.48 6.44 6.44	(Ms/cm) 947 907 \$45 \$48 840 892	(µs/cm) 59(e 538 546 531 840543 546 541	(mg/L) 0.55 0.35 0.25 0.31 0.28 0.30	(mV) 42 50.9 53.1 55.5 57.4 53.1	Clear	no «	(ft BTOC) %.45 1.45	down
(ml/min) 340 340 360 360 340 340	1322 1321 1331 1334 1399 1342 1345	°C 5.78 4.93 4.93 4.52 7.58 4.65	6.36 6.41 6.42 6.48 6.44 6.44 6.44 6.44 6.44 6.44 6.44	(Ms/cm) 9/41 9/07 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(µs/cm) 59(e 538 546 531 840 543 546 541	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30	(mV) 42 50.9 55.1 55.5 57.4 57.1	C(no «	(ft BTOC) 8.45 1-45	down
(ml/min) 3(2) 3(2) 3(3) 3(4) 3(1) 3(1) 3(2) 3(2) 3(3) 3(3) 3(4) 3(4)	1322 1321 1331 1334 1342 1342 1345	°C 5.78 4.93 4.93 4.52 7.58 4.65	6.36 6.41 6.42 6.48 6.44 6.44 6.44 6.44 6.44 6.44 6.44	(Ms/cm) 9/41 9/07 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(µs/cm) 59(e 538 546 531 840 543 546 541	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30	(mV) 42 50.9 55.1 55.5 57.4 57.1	C(no «	(ft BTOC) 8.45 1-45	down
(ml/min) 3(2) 3(4) 3(5) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.52 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 546 531 840543 546 541 drawdown shall be t site's hydrogeolog	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30 achieved and by may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(2) 3(3) 3(4) 3(1) 3(1) 3(2) 3(2) 3(3) 3(3) 3(4) 3(4)	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 546 531 840543 546 541 drawdown shall be t site's hydrogeolog	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30 achieved and by may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(4) 3(5) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 546 531 840543 546 541 drawdown shall be t site's hydrogeolog	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30 achieved and by may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(4) 3(5) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 546 531 840543 546 541 drawdown shall be t site's hydrogeolog	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30 achieved and by may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(4) 3(5) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 546 531 840543 546 541 drawdown shall be t site's hydrogeolog	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30 achieved and by may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(4) 3(5) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 546 531 840543 546 541 drawdown shall be t site's hydrogeolog	(mg/L) 0.55 0.35 0.35 0.31 0.28 0.30 0.30 achieved and by may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(4) 3(5) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 9/41 9/07 \$45 \$48 990 992 \$45	(µs/cm) 59(e 598 546 531 840543 546 541 drawdown shall be t site's hydrogeolog	(mg/L) 0.55 0.35 0.28 0.30 0.30 achieved and sy may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(4) 3(5) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7) 3(7	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 545 545 531 840543 545 54((mg/L) 0.55 0.35 0.28 0.30 0.30 achieved and sy may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1 57.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down
(ml/min) 3(2) 3(2) 3(3) 3(4) 3(1) 3(1) 4(1) Notes: Drawdown liter/minute) and co	1322 1321 1331 1334 1399 1342 1345 should be ntinually m	°C 5.78 4.93 4.93 4.57 7.58 4.65	6.36 6.41 6.45 6.44 6.44 6.44 6.44 6.44 Comme	(Ms/cm) 967 967 \$55 \$88 \$90 \$92 \$55	(µs/cm) 59(e 598 545 545 531 840543 545 54((mg/L) 0.55 0.35 0.28 0.30 0.30 achieved and sy may make it	(mV) 42 50.9 53.1 55.5 57.4 53.1	by pumping achieve this	no «	(ft BTOC) 8.45 1.45 te (approximately on.	down

	Low	/-Flow	Ground	lwater Sam	pling with N	Inimal	Drawo	lown V	Vorkst	neet	
					.,			MW-			
Project #:	46	5-018	_					9/2			
Project Name:						–		150			
Site:	- 12	eade	× 41	200							
Field Team:		Han					iu Tillie.	f61:	2		
Sample ID:	II- AI	FALLE	3613-	47-6-W	Time: 1530	primary	5 dup	split	ms/msd	1	
Sample ID:	<u>H- 10</u>	G 70 - 11	7003		Time:	primary	dup	split	ms/msd		
Sample ID:					Time:	primary	•	split	ms/msd		
	ng and	Sampling	Method		c, bladder, subi	– mersible):	P	eri			
					Total Volum	e Purgea:		25 1	<u>u</u>		
Weather Condi	tions:	43°F	Sur	1ny, 3-	5 mpn w	ind					
Depth to Top of				_	•		Water (ft BTOC):		9.85	
Depth to Oil/Wa				-		Total De				13.05	
* Note: Same as			,,,,,,			rotal BC	par (it D	100).		13.08	
Criteria for S			ters								
Parameter			Working	Range	Stability (Criteria	Notes				
Temperature			>0.00 °C		± 0.2° C						27%
рН			0-14		± 0.1						
Conductivity			0-999 m	S/m	± 3%						
ORP			± 1999 n								
Dissolved Oxyg	en		0-19.99		± 10%						
Turbidity			0-800 N	<u>ru</u>							
Sensory Ob											
Color:					ey, Milky White,		. .				
Odor:		None,	W Mediu	ım, High, Ver	y Strong, H2S,	ruel Like	Chemic	al ?, Unki	nown		
Turbidity:			W Medi	High, Ver	y Turbid, Heavy	Silts					
Instrument (Observ	ations	1			1	T		<u> </u>	Water	
Flowrate		Temp		Conduct'ity	Conduct'ity	DO	ORP			Level	Draw-
(ml/min)	Time	°C	pH	(Ms/cm)	(μs/cm)	(mg/L)	(mV)	Color	Odor	(ft BTOC)	down
190	1510	-	-	(100,011)	(<u> </u>	\g/ =/	-	Clear	Y	7.90	0.05
"(1512	8.22	6.76	0.933	634	0.87	-113.2	11	44	9.90	_
	1515	8.23	6.82	0.93/	632	0.86		11	61	9.90	
	1518	7.87	6.79	0.93/	627	0.46			10	l e	
	1521	7.85	6.81	0.926	623	0.43	-1025	16	le	- 11	
	1524	7.69	681	6.97.9	622	6.42	-106.7	"	"		
			<u> </u>			 				ļ	ļ
			<u> </u>			ļ	<u> </u>	ļ			ļ
						-	ļ				
	 		-		· · · · · · · · · · · · · · · · · · ·		<u> </u>			 	-
			<u>. </u>			<u> </u>				l	<u> </u>
Notes Desudence	should be I	than 0 3	foot ubilo a	annine Minimal	d			h	at a la	to (annuncionatal)	.044-05
					drawdown shall be ad t site's hydrogeology						y 0.1 to 0.5
		Bottles				, , , , , , , , , ,					
Analyses		lected	Comme	nts:							
PRO	3 W/	1 40ml	Hel		SILAR	1+ SI	1460	in	64	CKL+	
BIENNIBEIEC	EDB	3 VOA 4	ON HE	/	8117			101			
EDB/DBCP	3 40	mi voa	Nathi								
Lead	500 m	11 POLY	HNOZ	_							
		,,,,	,,,,,								
	ر ما	1	1/_					01-	- / -		
Signed:		w	tra				Date:	9/2	7/11		_
Signed/reviewe	r						Date:				

	Lau	. Elaur	Craun	durate Con	a m li m	ar sociale M	line in a l	Duester	January M	Vandra la		
	LOV	v-riow	Ground	dwater San	ıpıın	g with iv		•			eet	· .
İ								Well ID:	MM	4		
Project #:								Date:	9/2	7/11		
Project Name:	114	nana					- Sta	art Time:	$\overline{}$	000		
Site:		MI OUNG					_	nd Time:		45		
Field Team:	C /1	unstra	14 5 0 10				- "	iu iiiie.	10	43		
Sample ID:				2-GW	Time:	1545	primary	dup	split	ms/msd		
Sample ID:				02-GW		2200	primary	(db)	split	ms/msd		
Sample ID:	-11-1	(126/C) - W	NV Wo	02 000	Time:		_ primary		split			
,					•		-	_	•			
Purgi	ng and	Sampling	g Method	l (e.g. peristalt					PCI			
					To	tal Volume	Purged:		2,9	af		
Weather Condi	tions:	50 8	iunny	0.11.	d				J			-
weather Condi	uons.	70 8	TOTAL POLICE	eight W	na							
Depth to Top of	Produc	t (ft BTOC	C):				Depth to	Water (ft BTOC):		10.37	
Depth to Oil/Wa							Total De				13.58	
* Note: Same as		•	,				٧		•		10-00	
Criteria for S	Stable	Parame	ters			(
Parameter				g Range		Stability C	riteria	Notes				
Temperature			>0.00 °C			± 0.2° C	, ,	110103				
pH		•	0-14			± 0.1					·	
Conductivity			0-999 m	ıS/m		± 3%						
ORP			± 1999 r			1070						
Dissolved Oxyg	en		0-19.99			± 10%						
Turbidity			0-800 N								2402	
Sensory Obs	servat	ions										
Color:	301 Vat		mher T	an, Brown, Gr	ov Mi	lky White	Other:					
Odor:				um High, Ver				Chemic:	al 2 Hnkr	nown		
Turbidity:				um, High, Ver				Oncinio	ai :, Oliki	104411		
Instrument (hean		311, 111041	un, mgm, vor	, . u.b	id, Tiodry	O.II.O					
	Jusery		1				Т	1			Water	
	Jusei V	_		Conductity	Col	nduct'ity	DO	ORP			Water	Draw-
Flowrate		Temp	На	Conductity		nduct'ity	DO (mg/L)	ORP (mV)	Color	Odor	Level	Draw-
Flowrate (ml/min)	Time	Temp °C	pH	(Ms/cm)	(μs/cm)	(mg/L)	(mV)	Color	Odor	Level (ft BTOC)	down
Flowrate (ml/min)	Time	Temp °C <i>YAle</i>	4.33	(Ms/cm) (แo	770	μs/cm)	(mg/L)	(mV) - 20-3	clear	thel	Level (ft BTOC)	down -04
Flowrate (ml/min)	Time 516 520	Temp °C <i>YAle</i> 9.02	6.33	(Ms/cm)	770	μs/cm) 2 -	(mg/L) .44 .32	(mV) -223 -173	clear	the!	Level (ft BTOC) 니 네	down -04
Flowrate (ml/min) 2,000 1,40	Time 516 520 524	Temp °C ?A6 9.02 9.04	6.33	(Ms/cm) (((0) DL4 917	770 710 710	us/cm)	(mg/L) .44 .32 -43	(mV) -203 -173 -26	clear	thel	Level (ft BTOC) ([.4] U-4] U-4]	down -04
Flowrate (ml/min) 2,000 140 140	Time 5 6 520 524 528	Temp °C §A6 9.02 9.04 9.10	6.33 6.31 6.28 6.27	(Ms/cm) (40 (p) 4 217 249	170 -76 47 69	μs/cm) 0 4 9	(mg/L) .44 .32 .43	(mV) -20-3 -17-3 -26 -33	Clear N Y	the1	Level (ft BTOC) 니 네	down -04
Flowrate (ml/min) 2,00 1,40 1,40 1,40 1,40	Time 516 520 524 528 531	Temp °C §Alo 9.02 9.04 9.10 9.15	6.33 6.28 6.27 6.27	(Ms/cm) (U0 (DL4 917 949	170 -10 -10 -10 -10 -10 -10 -10 -10	μs/cm) Ο Ψ Θ Ο	(mg/L) .44 .32 .43 .40 .43	(mV) -20-3 -17-3 -26 -33 -37-7	Clear N Y	the1	Level (ft BTOC) ([.4] U-4] U-4]	down -04
Flowrate (ml/min) 2,000 140 140	Time 5 6 520 524 524 528 531 531	Temp °C YA6 9.02 9.04 9.10 9.15 9.17	6.33 6.28 6.28 6.27 6.27 6.24	(Ms/cm) (U0 1014 917 949 950	1770 -10 101 101 101 101 101	us/cm)	(mg/L) .44 .32 .43 .40 .43	(mV) -20-3 -17-3 -26 -33 -37-7 -34-4	Clear N Y	the1	Level (ft BTOC) 1[.4] 4-4] 11.41 (1.4)	down -04
Flowrate (ml/min) 2,00 1,40 1,40 1,40 (40	Time 516 520 524 524 528 531 536	Temp °C 9.02 9.02 9.10 9.15 9.22 9.45	6.33 6.31 6.28 6.27 6.24 6.24 6.26	(Ms/cm) (U0 1014 917 949 950 904	1770 -10 4-1 (2) 4-1 (2)	μs/cm) 0 4 9 0 8 8 8	(mg/L) .44 .32 .43 .40 .43	(mV) -20-3 -17-3 -26 -33 -37-7 -34-4 -34-8	Clear N Y	the1	Level (ft BTOC) ([.4] U-4] U-4]	down -04
Flowrate (ml/min) 2,00 1,40 1,40 1,40 (40	Time 5 6 1520 524 528 1531 5316 1542	Temp °C \$\frac{A}{4}\text{0} 9.02 9.04 9.10 9.15 9.12 9.15 9.14 9.16	6.33 6.31 6.28 6.27 6.27 6.24 6.26 6.24 6.23	(Ms/cm) (U0 1D14 917 949 950 906 898	170 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	μs/cm) 0 4 7 0 8 3 3 3 3 3	(mg/L) .44 .32 .43 .40 .43 .38 .44	(mV) -203 -173 -26 -33 -37.7 -34.4 -34.8 -38.1	Clear N Y	the1	Level (ft BTOC) 1[.4] 4-4] 11.41 (1.4)	down -04
Flowrate (ml/min) 2,00 1,40 1,40 1,40 (40	Time 516 1520 1520 1524 153 153 153 153 154 15	Temp °C YALO 9.02 9.04 9.10 9.15 9.22 9.45 9.45 9.45	6.33 6.31 6.28 6.27 6.27 6.24 6.24 6.24 6.23 6.23	(Ms/cm) (U0 1D14 917 949 920 906 899 899	17: -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	us/cm)	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33	(mV) -20-3 -173 -26 -33 -37-7 -34.4 -34.8 -38-1 -38.4	Clear N Y	the1	Level (ft BTOC) 1[.4] 4-4] 11.41 (1.4)	down -04
Flowrate (ml/min) 2,00 1,40 1,40 1,40 (40	Time 516 520 524 528 531 536 536 542 545 548	Temp °C YA6 9.02 9.04 9.10 9.15 9.15 9.15 9.16 9.16 1.16	6.33 6.31 6.28 6.28 6.27 6.29 6.29 6.20 6.20 6.23 6.23	(Ms/cm) (U0 1D14 917 949 950 906 899 899	170 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	us/cm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mg/L) -44 -32 -43 -40 -43 -38 -44 -33 -34	(mV) - 24-3 - 17-3 - 24 33 - 37-7 - 34-4 - 34-2 - 38-1 - 38-2	Clear N Y	the1	Level (ft BTOC) 1[.4] 4-4] 11.41 (1.4)	down -04
Flowrate (ml/min) 2,00 1,40 1,40 1,40 (40	Time 516 1520 1520 1524 153 153 153 153 154 15	Temp °C YALO 9.02 9.04 9.10 9.15 9.22 9.45 9.45 9.45	6.33 6.31 6.28 6.27 6.27 6.24 6.24 6.24 6.23 6.23	(Ms/cm) (U0 1D14 917 949 920 906 899 899	17: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10	us/cm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33	(mV) -20-3 -173 -26 -33 -37-7 -34.4 -34.8 -38-1 -38.4	Clear N Y	the1	Level (ft BTOC) 1[.4] 4-4] 11.41 (1.4)	down -04
Flowrate (ml/min) 2,00 1,40 1,40 1,40 (40	Time 516 520 524 528 531 536 536 542 545 548	Temp °C YA6 9.02 9.04 9.10 9.15 9.15 9.15 9.16 9.16 1.16	6.33 6.31 6.28 6.28 6.27 6.29 6.29 6.20 6.20 6.23 6.23	(Ms/cm) (U0 1D14 917 949 950 906 899 899	17: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10	us/cm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mg/L) -44 -32 -43 -40 -43 -38 -44 -33 -34	(mV) - 24-3 - 17-3 - 24 33 - 37-7 - 34-4 - 34-2 - 38-1 - 38-2	Clear N Y	the1	Level (ft BTOC) 1[.4] 4-4] 11.41 (1.4)	down -04
Flowrate (ml/min) 200 140 140 140 140	Time 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	Temp °C 9.02 9.02 9.04 9.10 9.45 9.22 9.45 9.26 9.26 9.26 9.26	6.33 6.31 6.28 6.28 6.24 6.24 6.24 6.24 6.23 6.23 6.24	(Ms/cm) (U0 LD14 911 949 920 906 898 898	17: 17: 18: 18: 18: 18: 18: 18: 18: 18: 18: 18	pus/cm)	(mg/L) .44 .32 .43 .40 .43 .38 .44 .23 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 4/5	Clear N Y	+w1	Level (ft BTOC) 1[.4] 4-4/ 11.4/ 4-4/	down
Flowrate (ml/min) 2,000 1,40 1,40 1,40 1,40 1,40 1,40 1,40	Time 5 6 1520 1520 1521 1531 1542 1542 1545 1545 1545 1545 1555 1545 1555 1545 1555 1545 1555 1545 1555 1545 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155	Temp °C Y/46 9.02 9.04 9.10 9.45 9.22 9.45 9.45 9.46 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.23 6.23 6.23 6.23	(Ms/cm) (((0 1014 911 949 920 906 817 839 839	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 200 140 140 140 140	Time 5 0 520 524 531 531 532 542 545 545 555	Temp °C Y/46 9.02 9.04 9.10 9.45 9.22 9.45 9.45 9.46 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.23 6.23 6.23 6.23	(Ms/cm) (((0 1014 911 949 920 906 817 839 839	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,000 1,40 1,40 1,40 1,40 1,40 1,40 1,40	Time 5	Temp °C YALO 9.02 9.04 9.10 9.45 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.30 9.26 9.30 9.30 9.30 9.26 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.23 6.23 6.23 6.23	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 140 140 140 140 140 Notes: Drawdown s liter/minute) and cor	Time 5	Temp °C 9.02 9.04 9.10 1.15 9.22 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 140 140 140 140 140 Notes: Drawdown s liter/minute) and cor	Time 5	Temp °C 9.02 9.04 9.10 1.15 9.22 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 140 140 140 140 140 145 Notes: Drawdown s liter/minute) and cor Analyses (2)00	Time 516 520 524 531 532 532 542 545 555 600 # of Col	Temp °C 9.02 9.04 9.10 1.15 9.22 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 140 140 140 140 145 Notes: Drawdown s liter/minute) and cor Analyses (200 200 200 200 200 200 200 200 200 20	Time 5	Temp °C 9.02 9.04 9.10 1.15 9.22 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 1,10 1,10 1,10 1,10 1,10 1,10 1,10	Time 516 520 524 531 532 532 542 545 555 600 # of Col	Temp °C 9.02 9.04 9.10 1.15 9.22 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	at a low rat	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 140 140 140 140 145 Notes: Drawdown s liter/minute) and cor Analyses (200 200 200 200 200 200 200 200 200 20	Time 5	Temp °C 9.02 9.04 9.10 1.15 9.22 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	u u u u u u u u u u u u u u u u u u u	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 1,10 1,10 1,10 1,10 1,10 1,10 1,10	Time 5 0 1520 1520 1524 1525 1525 1545 1545 1545 1545 1545 1551 1565 156	Temp °C YAle 9.02 9.04 9.10 9.15 9.22 9.45 9.45 9.24 ess than 0.3 leasuring was Bottles lected	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - 24-3 - 17-3 - 24-3 - 37-7 - 34-4 - 34-8 - 38-1 - 39-6 difficult to a	Y v	u u u u u u u u u u u u u u u u u u u	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down
Flowrate (ml/min) 2,00 1,10 1,10 1,10 1,10 1,10 1,10 1,10	Time 5 0 1520 1520 1524 1525 1525 1545 1545 1545 1545 1545 1551 1565 156	Temp °C 9.02 9.04 9.10 1.15 9.22 9.45 9.45 9.45 9.46 9.30 9.26 9.20 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26 9.30 9.26	6.33 6.31 6.27 6.27 6.27 6.24 6.26 6.26 6.27 6.27 6.27 6.27 6.27 6.23 6.27 6.27	(Ms/cm) (((0	() 17: -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	wn shall be ac	(mg/L) .44 .32 .43 .40 .43 .38 .44 .33 .34 .33	(mV) - ZA-3 - 17-3 - 26 - 33 - 37-7 - 34-4 - 34-8 - 38-1 - 38-6 - 41-5	Y v	u u u u u u u u u u u u u u u u u u u	Level (ft BTOC) I[.4] II.4] II.4] II.4]	down

[8]	Lov	v-Flow (Ground	lwater Sam	pling with N	linimal	Draw	lown V	Vorkst	neet	31
	1916				*		Well ID:	MW	1-5		
Project #:	44	65-01	5-1-	4	250/M 14 M					9/28/11	/
Project Name:	Ne	wa 00	1	7	550% (A 1)	– Sta		165		11- 51 11	13
Site:	Ra.	line	-			- Ei	nd Time:	1810	-		
Field Team:		lance					2	70.70			
Sample ID:	11- N	EN-	mws-	02-GW	Time: 1800	primary	dup	split	ms/msd		
Sample ID:					Time:	primary	dup	split	ms/msd		
Sample ID:					Time:	primary	dup	split	ms/msd	I	
Purgi	ng and	Sampling	Method	(e.g. peristalti	c, bladder, sub Total Volum	nersible): e Purged:		mr	:		
Weather Condi	tions:	4200	over	cost	3-5 mp	<u>'h</u>					
Depth to Top of	Produc	t (ft BTOC):			Depth to	Water (ft BTOC)	:	8.66	5
			TOC):			Total De	pth (ft B	TOC):		12 -	30
* Note: Same as	depth to	water		,	5221						
Criteria for S	Stable	Parame Parame									
Parameter			Working		Stability (Criteria	Notes				
Temperature			>0.00 °C	,	± 0.2° C		ļ				
pH			0-14	0/	± 0.1		<u> </u>				
Conductivity ORP			0-999 m		± 3%		 				
Dissolved Oxyg	on		± 1999 n 0-19.99		± 10%		<u> </u>				
Turbidity	CII		0-19.99 0-800 N		11076		<u> </u>				
Sensory Obs	servat	ions	10 000 11		· · · · · · · · · · · · · · · · · ·		<u> </u>				
Color:	301 741		mber Ta	n Brown Gre	ey, Milky White,	Other:					
Odor:					y Strong, H2S,		Chemic	al ?. Unkı	nown		
Turbidity:					y Turbid, Heavy			, c			
Instrument (Observ	/ations									
										Water	
Flowrate	l_	Temp		Conduct'ity	Conduct'ity	DO	ORP	l <u>.</u> .	١	Level	Draw-
(ml/min)	Time	°C	pH	(Ms/cm)	(µs/cm)	(mg/L)	(mV)	Color	Odor	(ft BTOC)	down
275	1712	5.76	6.9/	0.844	<u> 533</u>	0.54		Clear	N	8.70	0.04
		5.61	6.90	0.812	<u>524</u>	6.47	-38.9	10	66	8.70	
		5.49	6.90	0.801	503		-38.7		(1	8.70	_
		5.25		0. 24/3	526	6.32	-37.2	11	60	8.70	_
		5.33		6.209	505	0.26	-454	41	8.6	8.70	-
-		5.59		0.795	497		-43.9	60	66	8.20	
	1733	5.39	6.93	0.781	488	0.24	-47.3	М	M	6.39	_
	ļ								ļ		
	-					ļ	ļ				
	-					<u> </u>	-	ļ	<u> </u>		
	<u> </u>	L	<u> </u>				<u> </u>	<u> </u>		<u> </u>	L
					drawdown shall be a						y 0.1 to 0.5
	# of	Bottles									
Analyses	Col	llected	Comme	nts:	nion in the						
960	3 40	ny you	461				78.7		30040		33%
080 1660	216	Amber	BCI								
1300	1.90	mi poly	H-WO3								
MER MT88/GOL											
2501-0-5	13 40 M	H VOT I	4	2°							
6DE/DECP	3 40 M	in Nort	Wath	0	1940			(54)		- 12 - Kill	
696/086P Signed:	3 40	minor	Wathi				Date:	9/	28/1	/	•

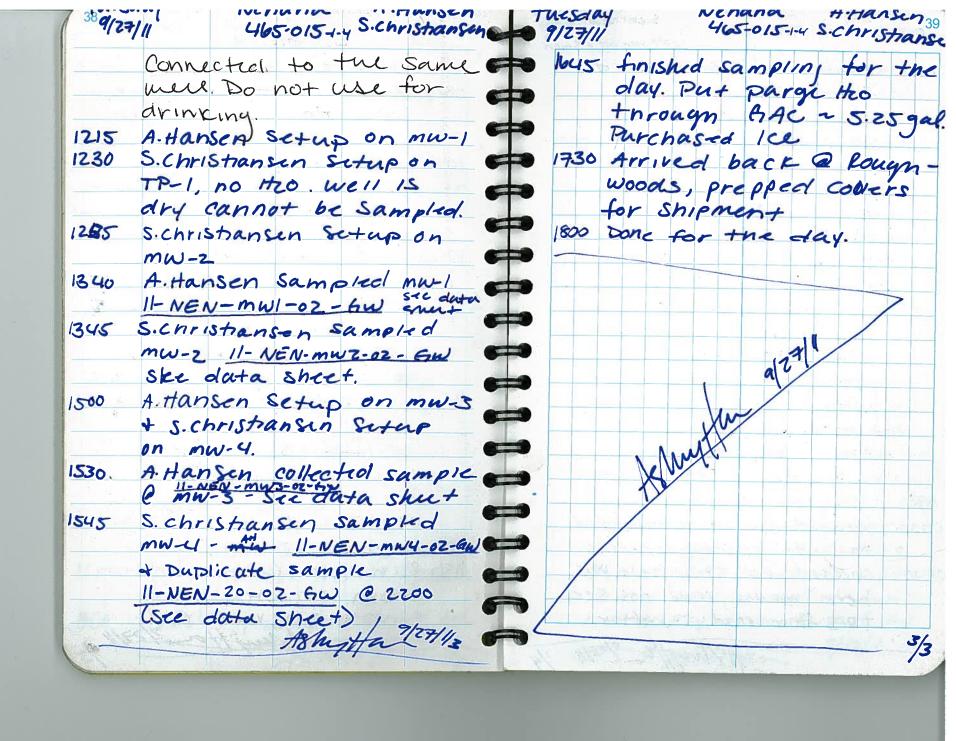
		· Classe i	C	huster Com	-11-	a souldle M	::	Description	Jane 14	Vanlaala	4	
	LOW	/-FIOW	Ground	dwater Sam	piin	g with M					eet	
			A	_				Well ID:				
Project # :		nana	465-1	0/5			_	Date:	9/27	10		
Project Name:	Ne	nana	*				Sta	art Time:	1230			
Site:					_ Er	nd Time:	1245	•				
Field Team:	5. CI	vinition	sen	i								
Sample ID:	11-N	EN-TF	PI-02-GWTime:				rimary		split	ms/msd		
Sample ID: Sample ID:					Γime: Γime:		primary	•	split	ms/msd		
•							primary		•	ms/msd		
Purgi	ng and	Sampling	Method	(e.g. peristaltic		dder, subm tal Volume						
Weather Condit	tions:											
Depth to Top of							Depth to	Water (ft BTOC):			
Depth to Oil/Wa		•	STOC):				Total De	pth (ft B	TOC):		10.0	
* Note: Same as d												
Criteria for S	Stable	<u>Parame</u>										
Parameter			Working	Range		Stability C	riteria	Notes				
Temperature			>0.00 °C	<u> </u>		± 0.2° C						
pH Conductivity			0-14	C/		± 0.1						
ORP			0-999 m			± 3%						
Dissolved Oxyge	en		± 1999 mV 0-19.99 mg/L			± 10%						
Turbidity	<u> </u>		0-800 NTU			1 1070						
Sensory Obs	servati	ons						1				
Turbidity: Instrument C			w, Medi	um, High, Very	Turb	id, Heavy	Silts					
											Water	
Flowrate (ml/min)	Time	Temp °C	рН	Conduct'ity (Ms/cm)		nduct'ity µs/cm)	DO (mg/L)	ORP (mV)	Color	Odor	Level (ft BTOC)	Draw- down
		*					1	l .				
	1			l			 					
			l									
	tinually m	easuring wa										0.1 to 0.5
liter/minute) and con	tinually m	easuring wa Bottles	ter levels in	the well. Note that								v 0.1 to 0.5
liter/minute) and con	tinually m	easuring wa		the well. Note that								0.1 to 0.5
liter/minute) and con	tinually m	easuring wa Bottles	comme	the well. Note that s	site's h	ydrogeology n						0.1 to 0.5
liter/minute) and con	tinually m	easuring wa Bottles	comme	the well. Note that	site's h	ydrogeology n						v 0.1 to 0.5
liter/minute) and con	tinually m	easuring wa Bottles	comme	the well. Note that s	site's h	ydrogeology n						v 0.1 to 0.5
liter/minute) and con	tinually m	easuring wa Bottles	comme	the well. Note that s	site's h	ydrogeology n						0.1 to 0.5
Notes: Drawdown si liter/minute) and con	# of Coli	easuring wa Bottles lected	Comme	the well. Note that s	site's h	ydrogeology n						v 0.1 to 0.5
iter/minute) and con	# of Coli	easuring wa Bottles	Comme	the well. Note that s	site's h	ydrogeology n		difficult to a		specification		0.1 to 0.5

	Lov	v-Flow (Ground	dwater Sam	pling with M	/linimal	Drawd	down V	Vorksh	eet	
_								TP			_
Project # :								9/2			
Project Name:	Nen	484				– Sta		1015	_		
Site:	*****	Pa. 00						1200			
Field Team:	2.2	hristia	nsen					10			
Sample ID:	11.	- NEN-	TP2 -07	2 -GW	Time: ///8	orimary	dup	split	ms/msd		
Sample ID:					Time:	primary	dup	split	ms/msd		
Sample ID:					Time:	_ primary	dup	split	ms/msd		
Purgi	ng and	Sampling	Method	(e.g. peristalti	c, bladder, sub	mersible):	ner	ri			
_			,	(0-1-	Total Volum	e Purged:	1-5	gal	ans		
Weather Condit	tione:	450	cloudy	,				0			
Depth to Top of								ft BTOC)	:	12.35	
Depth to Oil/Wa		•	sTOC):			Total De	pth (ft B	TOC):		15	
* Note: Same as o	•		4								
Criteria for S	<u>stable</u>	Parame		3	los-bilis-	14 · 1 · -	181-43-				
Parameter Tomporaturo			Working >0.00 °C		Stability (Criteria	Notes				
Temperature pH			0-14	,	± 0.2° C ± 0.1		 			7.50	
Conductivity			0-999 m	S/m	± 3%						
ORP			± 1999 n		- 1 3 %					1000 (1000)	
Dissolved Oxyge	en		0-19.99		± 10%						
Turbidity			0-800 N							0.0000000000000000000000000000000000000	
Sensory Obs	servat	ions	_		•						
Color:			mber, Ta	an, Brown, Gre	ey, Milky White,	Other:					
Odor:		None, Lo	ow, Mediu	um, High, Very	Strong, H2S,	Fuel Like,	Chemica	al ?, Unkı	nown		
Turbidity:			w, Medi	um, High, Very	/Turbid, Heavy	Silts					
Instrument C) Dserv	/ations									
	T										
I ,		<u>_</u>								Water	
Flowrate		Temp		Conduct'ity	Conduct'ity	DO (maril)	ORP			Level	Draw-
(ml/min)	Time	°C	pH	(Ms/cm)	(μs/cm)	(mg/L)	(mV)	Color	Odor		Draw- down
(ml/min) 40	1024	°C	662	(Ms/cm)	(μs/cm) 678	(mg/L)	(mV) -ಏ ಕ	Color Lucila	Odor	Level	
(ml/min) 10 100	1024	°C 7.30 7.15	6.64	(Ms/cm) 1.025 /-002	(µs/cm) 478 46/	(mg/L)	(mV) -50 & -55. \$			Level	
(ml/min) 100 100	1034	°C 1.30 7.15 7.11	6.64	(Ms/cm) 1.025 /-002 .464	(μs/cm) 678 66/ 634	(mg/L) .85 .49	(mV) -508 -55.8 -51.4			Level	
(ml/min) '30 100	1034 1034 1039	°C 7.30 7.15 7.11	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /-002 .464	(μs/cm) 678 46/ 634 622	(mg/L) .85 .49 .34	(mV) -508 -55.8 -52.4 -52.9			Level	
(ml/min) 100 100 100 (10	1024 1039 1034 1039	°C 1.30 7.15 7.11 7.11 7.08	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /.002 .464 .444	(µs/cm) 678 66/ 634 622	(mg/L) . \$0 . 49 . 34 . 28 . 30	(mV) -508 -55.8 -52.9 -52.9			Level	
(ml/min) 100 100	1024 1039 1034 1039	°C 7.30 7.15 7.11	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /-002 .464	(µs/cm) 478 46/ 434 422 412 577	(mg/L) .85 .49 .34	(mV) -508 -55.8 -52.9 -52.9 -57.5			Level	
(ml/min) 100 100 100 (10	1024 1039 1034 1039	°C 1.30 7.15 7.11 7.11 7.08	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /.002 .464 .444	(µs/cm) 678 66/ 634 622 612 597	(mg/L) . \$0 . 49 . 34 . 28 . 30	(mV) -508 -55.8 -52.9 -52.9			Level	
(ml/min) 100 100 100 100	1034 1034 1034 1043 1047 1047	°C 1.30 7.15 7.11 7.11 7.08	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /.002 .969 .944 .931 .909	(µs/cm) 678 66/ 634 627 627 584	(mg/L) - \$5 - 49 - 34 - 28 - 30 - 3(- 30	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.5			Level	
(ml/min) 100 100 100 100	1034 1034 1034 1043 1047 1047	°C 1.30 7.15 7.11 7.11 7.08	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /.002 .969 .944 .931 .909	(µs/cm) 678 66/ 634 627 627 584	(mg/L) - \$5 - 49 - 34 - 28 - 30 - 3(- 30	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.5			Level	
(ml/min) 100 100 100 100	1034 1034 1034 1043 1047 1047	°C 1.30 7.15 7.11 7.11 7.08	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /.002 .969 .944 .931 .909	(µs/cm) 678 66/ 634 627 627 584	(mg/L) - \$5 - 49 - 34 - 28 - 30 - 3(- 30	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.5			Level	
(ml/min) 100 100 100 100	1034 1034 1034 1043 1047 1047	°C 1.30 7.15 7.11 7.11 7.08	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /.002 .969 .944 .931 .909	(µs/cm) 678 66/ 634 627 627 584	(mg/L) - \$5 - 49 - 34 - 28 - 30 - 3(- 30	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.5			Level	
(ml/min) 100 100 100 100	1034 1034 1034 1043 1047 1047	°C 1.30 7.15 7.11 7.11 7.08	6.62 6.64 6.64 6.65	(Ms/cm) 1.025 /.002 .969 .944 .931 .909	(µs/cm) 678 66/ 634 627 627 584	(mg/L) - \$5 - 49 - 34 - 28 - 30 - 3(- 30	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.5			Level	
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s	1024 103 9 1034 1039 1043 1041 1040 (050	°C 1.30 7.15 7.11 7.08 6.97 9.81	6.62 6.64 6.64 6.65 6.67 6.61 6.62	(Ms/cm) 1.025 /.002 .499 .991 .991 .996	(µs/cm) 478 46/ 437 422 422 527 584 675	(mg/L) - \$0 - 49 - 34 - 30 - 30 - 49	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.6 59.9	by pumping	at a low rat	Level (ft BTOC)	down
(ml/min) 100 100 100 (10	1034 1039 1039 1043 1041 1040 1050	°C 1.30 7.15 7.11 7.11 7.08 6.97 9.81	6.62 6.64 6.64 6.65 6.67 6.61 6.62	(Ms/cm) 1.025 /.002 .499 .991 .991 .996	(µs/cm) 478 46/ 437 422 422 527 584 675	(mg/L) - \$0 - 49 - 34 - 30 - 30 - 49	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.6 59.9	by pumping	at a low rat	Level (ft BTOC)	down
(ml/min) 100 100 100 100 100 100 100 100 100 1	1034 1039 1039 1043 1041 1050 (053 should be nationally in # of	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	b.62 b.64 b.65 b.67 c.61 c.62 c.62	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 422 527 584 675	(mg/L) - \$0 - 49 - 34 - 30 - 30 - 49	(mV) -508 -55.8 -52.9 -52.9 -57.5 -57.6 59.9	by pumping	at a low rat	Level (ft BTOC)	down
(ml/min) 100 100 100 100 100 100 Notes: Drawdown s liter/minute) and con	1034 1039 1039 1043 1041 1050 1053	°C 1.30 7.15 7.11 7.11 7.08 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 42 597 584 475 drawdown shall be ac site's hydrogeology	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -508 -55.5 -52.9 -52.9 -57.5 -57.9 59.9	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s liter/minute) and con	1024 1029 1034 1039 1043 1041 1050 (053 should be ntinually m	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 42 597 584 475 drawdown shall be ac site's hydrogeology	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -508 -55.5 -52.9 -52.9 -57.5 -57.9 59.9	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s liter/minute) and con	1034 1039 1039 1043 1041 1050 1053 should be entinually me of Col	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 42 597 584 475 drawdown shall be ac site's hydrogeology	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -508 -55.5 -52.9 -52.9 -57.5 -57.9 59.9	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s liter/minute) and cond Analyses STEX GRD EDB 1580	1024 1029 1039 1043 1043 1041 1050 (053 should be natinually m	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 422 527 584 675	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -508 -55.5 -52.9 -52.9 -57.5 -57.6 59.9	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s liter/minute) and con Analyses BIEX GRD EDB 1580 DRS	1034 1039 1039 1043 1041 1050 1053 should be entinually me of Col	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 42 597 584 475 drawdown shall be ac site's hydrogeology	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -508 -55.5 -52.9 -52.9 -57.5 -57.6 59.9	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s liter/minute) and cond Analyses BIEX GRD EDB 1800	1024 1029 1039 1043 1043 1041 1050 (053 should be natinually m	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 42 597 584 475 drawdown shall be ac site's hydrogeology	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -508 -55.5 -52.9 -52.9 -57.5 -57.6 59.9	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s liter/minute) and con Analyses BIEX GRD EDB 1580 DRS	1024 1029 1039 1043 1043 1041 1050 (053 should be natinually m	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 42 597 584 475 drawdown shall be ac site's hydrogeology	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -508 -55.5 -52.9 -52.9 -57.5 -57.6 59.9	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down
(ml/min) 10 100 100 100 100 100 Notes: Drawdown s liter/minute) and con Analyses STEX GRO COBINGO Voca	1024 1029 1034 1034 1043 1047 1053 1047 1053 1047 1053 1047 1053	°C 1.30 7.15 7.11 7.01 1.09 6.97 9.81	by 12 by 14 by 14 by 15 by 17 by 16 by 17 by 16 by 18	(Ms/cm) 1.025 /.002 .499 .991 .991 .996 sampling. Minimal of the well. Note that	(µs/cm) 478 46/ 437 422 42 597 584 475 drawdown shall be ac site's hydrogeology	(mg/L) - \$0 - 49 - 30 - 30 - 49 chieved and may make it	(mV) -608 -55.8 -52.9 -5	by pumping achieve this	at a low rate specification	Level (ft BTOC) e (approximately	down 0.1 to 0.5

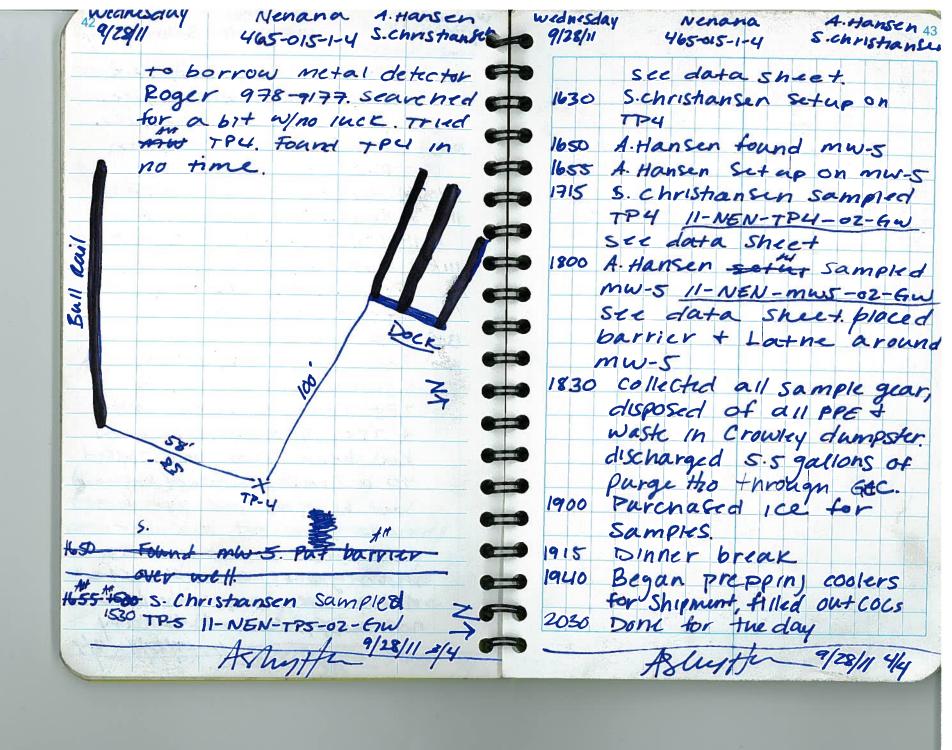
	Low	/-Flow	Ground	water San	nling wit	h Minimal	Drawe	lown V	Vorket	neet .		
-	LUT	/-I IUW .	Ground	IWalei Jaii	ibinia mir	II Willian				IGEL		
l <u></u>	1/	, T-	. ,,	i (1		Well ID: <u>TP4</u> , Date: <u>9/28///</u>						
Project #:	7	<u>105-7</u> noma	<u> 3/5-1</u>	7-7			Date:	9/2	8/11			
Project Name:	Ne	nana				St	art Time:	163	<u> </u>			
Site:					•	E	nd Time:	174	5			
Field Team:	عببك	MR	Trans	en			` .					
Sample ID:		NEN-T	<u> </u>	2-GW		75 primary		split	ms/msd			
Sample ID:					Time:	primary	•	split	ms/msd			
Sample ID:					Time:	primary		split	ms/msd			
Purgi	ing and	Sampling	Method	(e.g. peristalt	ic, bladder, s	ubmersible)	: [-	221				
l	-	-	•	,	, Total Vol	ume Purged	::	200	Q			
Weather Condi	Hone:	(7) (O	ain	my/dow	de							
				109/0101)							
Depth to Top of						Depth to	Water (ft BTOC)	:	8.25 12.93		
Depth to Oil/Wa		,	3TOC):			Total De	epth (ft B	TOC):		12 93		
* Note: Same as												
Criteria for S	Stable	<u>Parame</u>										
Parameter			Working			ity Criteria	Notes					
Temperature			>0.00 °C	}	± 0.2°	С						
pН			0-14		± 0.1							
Conductivity			0-999 m		± 3%		↓					
ORP			± 1999 n		400/		↓					
Dissolved Oxyg	jen		0-19.99		± 10%		├					
Turbidity	45		0-800 N	10	<u>. </u>		<u> </u>					
Sensory Ob					5 4111 1 441	011						
Color:	,			an, Brown, Gr			Observato	LO Univ				
Odor:				um, High, Ver			Chemic	al ?, Unki	nown			
Turbidity: Instrument (2haan		W, Medic	um, High, Ver	y rurbia, me	avy Sits						
instrument (Juser	ations		1								
										l Water		
Flowrate		Temp		Conduct'ity	Conduct'i	tv DO	ORP			Water Level	Draw-	
Flowrate (ml/min)	Time	Temp °C	Hq	Conduct'ity (Ms/cm)	Conduct'i (μs/cm)	- 1	ORP (mV)	Color	Odor	Level	Draw- down	
		°c ˙	pH	(Ms/cm)	(μs/cm)	(mg/L)	(mV)	Color	Odor			
(mļ/min)	1642		6.52			(mg/L)	(mV)	Color	Odor	Level		
(mļ/min)		°C 7.44	6.52 6.57	(Ms/cm)	(μs/cm) 34/	(mg/L)	(mV)	Color	Odor	Level		
(mļ/min)	1642	°C 7.44 7.33 7.29	6.52	(Ms/cm) ,5/3 ,5/2	(μs/cm) 34/ 339	(mg/L) €€€30 /1.45	(mV) 2 -1.3 0.4 14.5 16.3	Color	Odor	Level		
(mļ/min)	1642 1045 1649 1653	°C 7.44 7.33 7.29	6.52 6.57 6.50 6.54 6.54	(Ms/cm) ,5/3 ,5/2 ,5//	(µs/cm) 34/ 334 338 337 336	(mg/L) (mg/L) (i.e.5) (mV) -1.3 0.4 /4.5 /6.3 21.5	Color	Odor	Level			
(mļ/min)	1642 1045 1649 1653 1657	7.44 7.33 7.29 7.14 7.09	6.52 6.57 6.54 6.54 6.53	(Ms/cm) .5/3 .5/2 .5// .572 .5//	(µs/cm) 34/ 334 338 337 336 336	(mg/L) 4323 1.45 1.58 1.42 1.34 1.26	(mV) -1.3 0.4 14.5 16.3 21.5	Color	Odor	Level		
(mļ/min)	1642 1045 1649 1653 1657	7.44 7.33 7.29 7.14 7.09	6.52 6.57 6.54 6.54 6.53	(Ms/cm) .5/3 .5/2 .5// .57a .5// .570	(µs/cm) 34/ 339 338 337 336 336 336	(mg/L) (mg/L) (.45 1.58 1.42 1.34 1.26 1.28	(mV) 2 -1.3 0.4 14.5 16.3 21.5 16.2	Color	Odor	Level		
(mļ/min)	1642 1045 1649 1653 1657	°C 7.44 7.33 7.29 7.14 7.09	6.52 6.57 6.54 6.54 6.53	(Ms/cm) .5/3 .5/2 .5// .572 .5//	(µs/cm) 34/ 334 338 337 336 336	(mg/L) 4323 1.45 1.58 1.42 1.34 1.26	(mV) -1.3 0.4 14.5 16.3 21.5	Color	Odor	Level		
(mļ/min)	1642 1045 1649 1653 1657	7.44 7.33 7.29 7.14 7.09	6.52 6.57 6.54 6.54 6.53	(Ms/cm) .5/3 .5/2 .5// .57a .5// .570	(µs/cm) 34/ 339 338 337 336 336 336	(mg/L) (mg/L) (.45 1.58 1.42 1.34 1.26 1.28	(mV) 2 -1.3 0.4 14.5 16.3 21.5 16.2	Color	Odor	Level		
(mļ/min)	1642 1045 1649 1653 1657	7.44 7.33 7.29 7.14 7.09	6.52 6.57 6.54 6.54 6.53	(Ms/cm) .5/3 .5/2 .5// .57a .5// .570	(µs/cm) 34/ 339 338 337 336 336 336	(mg/L) (mg/L) (.45 1.58 1.42 1.34 1.26 1.28	(mV) 2 -1.3 0.4 14.5 16.3 21.5 16.2	Color	Odor	Level		
(mļ/min)	1642 1045 1649 1653 1657	7.44 7.33 7.29 7.14 7.09	6.52 6.57 6.54 6.54 6.53	(Ms/cm) .5/3 .5/2 .5// .57a .5// .570	(µs/cm) 34/ 339 338 337 336 336 336	(mg/L) (mg/L) (.45 1.58 1.42 1.34 1.26 1.28	(mV) 2 -1.3 0.4 14.5 16.3 21.5 16.2	Color	Odor	Level		
(mļ/min)	1642 1045 1649 1653 1657	7.44 7.33 7.29 7.14 7.09	6.52 6.57 6.54 6.54 6.53	(Ms/cm) .5/3 .5/2 .5// .57a .5// .570	(µs/cm) 34/ 339 338 337 336 336 336	(mg/L) (mg/L) (.45 1.58 1.42 1.34 1.26 1.28	(mV) 2 -1.3 0.4 14.5 16.3 21.5 16.2	Color	Odor	Level		
(ml/min)	1642 1645 1646 1653 1657 1701 1704 1708	°C 7.44 7.33 7.29 7.14 7.10 7.10 7.09 7.06	6.52 6.57 6.54 6.54 6.53 6.53 6.53	(Ms/cm) .5/3 .5/2 .5/1 .572 .571 .570 .570 .570	(µs/cm) 34/ 339 338 337 336 336 336 336	(mg/L) 1.65 1.65 1.72 1.30 1.20 1.24	(mV) -1.3 -1.4 -1.45 -16.3 -21.5 -16.2 -17.0 -17.8			Level (ft BTOC)	down	
(ml/min) /40 Notes: Drawdown s	(642 1645 1649 1653 1657 1704 1708	°C 7.44 7.33 7.29 7.14 7.09 7.10 7.09 7.06	6.52 6.57 6.54 6.54 6.53 6.53 6.52	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0	(µs/cm) 34/ 339 338 337 336 336 336 336	(mg/L) 1. 45 1. 45 1. 42 1. 30 1. 26 1. 24 be achieved and	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
(ml/min)	1642 1645 1646 1653 1657 1704 1708	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.54 6.53 6.53 6.52	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0	(µs/cm) 34/ 339 338 337 336 336 336 336	(mg/L) 1. 45 1. 45 1. 42 1. 30 1. 26 1. 24 be achieved and	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and con	(642 1645 1645 1653 1657 1704 1708	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.53 6.53 6.52	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 339 338 337 336 336 336 336	(mg/L) 1. 45 1. 45 1. 42 1. 30 1. 26 1. 24 be achieved and	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
(ml/min) /40 Notes: Drawdown s	(6/2 10/4 10/5 10/4 1/708	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while ster levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and con	(642 1645 1645 1653 1657 1704 1708	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while ster levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and con	(642 1645 1645 1657 1704 1708 1709	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while ster levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and con	(642 1645 1645 1653 1657 1704 1708	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while ster levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and con	(642 1045 1046 1053 1708	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while ster levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and con	(642 1045 1045 1045 1045 1708	°C 7	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while sater levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and colored Analyses CHRO BIEX EDR DRO Lead	(642 1045 1045 1045 1045 1708	°C 7	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while sater levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) 2 -1.3 0.4 14.5 16.3 21.5 16.2 17.0 14.8	by pumping	at a low ra	Level (ft BTOC)	down	
Notes: Drawdown sliter/minute) and con	(642 1045 1045 1045 1045 1708	°C 7. 44 7. 33 7. 29 7. 14 7. 10 7. 10 7. 10 7. 10 7. 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.52 6.57 6.54 6.53 6.53 6.52 8 feet while sater levels in	(Ms/cm) .5/3 .5/2 .5/2 .5/4 .5/3 .5/0 .5/0 .5/0 .5/1	(µs/cm) 34/ 334 338 337 336 336 336 336 tdrawdown shall t site's hydrogeo	(mg/L) 1. 45 1. 45 1. 42 1. 26 1. 24 be achieved and logy may make it	(mV) -1.3 -1.4 -1.5 -16.3 -21.5 -16.2 -17.0 -14.8	by pumping	at a low ra	Level (ft BTOC)	down	

	Lov	v-Flow	Groun	dwater Sam	pling with N	/linimal	Drawo	lown V	Vorkst	neet	
							Well ID:	TP5			
Project #:							Date:	9/28	3/11		
Project Name:	Ne	nauna	_				art Time:	150	6		
Site:	~ (: 10 1010	1- 100			_	nd Time:	160	<u> </u>		
Field Team: Sample ID:	5.	INVIS	Day	ieh	Time: /530	primary	dup	split	ms/msd	ı	
Sample ID:	11-10	IEIV IF.	5-02		Time: 1530	primary		split split	ms/msd		
Sample ID:					Time:	_ primary		, split			
Purgi	ing and	Sampling) Method	l (e.g. peristalti	ic, bladder, sub Total Volum	mersible) e Purged	per	nul			
Weather Condi	itions:	50	° Sur	my/clou	dy			ர—` ———			
Depth to Top of	F Produc			- 		Denth to	o Water (1	# BTOC)		11.89	
Depth to Oil/Wa							epth (ft B		•	14.94	
* Note: Same as		•								1161-7-	
Criteria for S	Stable	Parame									
Parameter				g Range	Stability	Criteria	Notes				
Temperature			>0.00 °(C	± 0.2° C						
pH			0-14		± 0.1		 				
Conductivity ORP			0-999 m ± 1999 i		± 3%		┼				
Dissolved Oxyg	ıen		0-19.99		± 10%		+				
Turbidity	1011		0-800 N	ITU	1.0%		+			<u>,</u>	
Sensory Ob	servat	ions	1								
Color:		Clear, A	mber J	an, Brown Gre	ey, Milky White,	Other:					
Odor:					Strong, H2S,		Chemica	al ?, Unk	nown		
Turbidity:			ow, Médi	ium, High, Ver	y Turbid, Heavy	/ Silts					
Instrument (Obser	vations	_	· 					·	Water	- 3
Flowrate		Temp		Conduct'ity	Conduct'ity	DO	ORP	ĺ		Level	Draw-
(ml/min)	Time		pН	(Ms/cm)	(μs/cm)	(mg/L)	1	Color	Odor	(ft BTOC)	down
	1503	7.44	7.21	1.003	(201	.46	-50.5		tree		İ
180	1507	7.04	7.07	1.019	1069	:23	-140				
140	1511	6.87	7.15	1.028	671	158	-1463		ļ		
140 140	1515 1518	6.71	7.18	1.024	666	.66	-1521		ļ	 	
130		6.63	7.18	1.024	665	.66	-1543		├──	 	
7-20		6.68	7.15	1.025	666	1.65	-155		 	 	
	1	4700	111.0	1.00,3		1	1,00		†		
_											
									Ļ		
	<u> </u>	<u></u>	<u></u>						<u> </u>	L	<u></u>
5 /											
					drawdown shall be a t site's hydrogeology						y 0.1 to 0.5
The state of the state of		Bottles	T T	Total Italia	. Site 5 Hydrogeology	may make it	dilliodic to e	ionicve and	эрсопоац	J11.	
Analyses		llected	Comme	ents:							
	i										
	<u> </u>]								
]								
	ļ		4								
	1	<u> </u>	1/1/							· · · · · · · · · · · · · · · · · · ·	
Signed:		uah	1 Ju	note			Date:	9/6	28//1		
	1		7								
Signed/reviewe	()						Date:	/	· /		

	Low	/-Flow (Ground	lwater San	pling with	Minimal	Draw	down V	Vorksh	neet	
							Well ID:	TP	-6		
Project #:	46	5-01	5-14	4			Date:	9/21	211		
Project Name:		hane				– Sta		1010			
Site:	HYA	der	An	ea				/253			
	1.40	ansa	n		_		7-5-5				
Sample ID:	II-NE	N-TF	6-02	-60	primary	dup	split (ms/msd			
Sample ID:					Time:	primary	dup	split	ms/msd		
Sample ID:					Time:	primary	dup	split	ms/msd		
Purgi	ng and	Sampling	Method	(e.g. peristalti	ic, bladder, sub Total Volun			eri	st-	29al	
Weather Condit	tions: 👅	30°F	, ove	reast,	0-3 mpr	2		J =		<i>J</i>	
Depth to Top of							Water (ft BTOC):		12.2	/
Depth to Oil/Wa			TOC):			Total De				15.00	>
* Note: Same as o	epth to v	vater					•	•			
Criteria for S	Stable	Parame	ters								
Parameter			Working	g Range	Stability	Criteria	Notes		_		
Temperature			>0.00 °C	,	± 0.2° C]				
pН			0-14		± 0.1						
Conductivity			0-999 m		± 3%						
ORP			± 1999 n								
Dissolved Oxyg	en		0-19.99		± 10%						
Turbidity			0-800 N	TU					2.755	222	
Sensory Obs											
Color:					ey, Milky White,						
Odor:					y Strong, H2S,		Chemic	al ?, Unkr	nown		
Turbidity:			w, Medit	ım, High, Ver	y Turbid, Heav	y Silts		-			
Instrument C	bserv						T				
C 14 -		8.2	0.1		- 3.4	10%				Water	_
Flowrate		Temp		Conduct'ity	Conduct'ity	DO	ORP			Level	Draw-
(ml/min)	Time	°C	pH 5.91	(Ms/cm) 0 ·953	(μs/cm)	(mg/L)	(mV)	Color	Odor	(ft BTOC)	down
180	1034	6.52	4.95	0.943	618	0.48	4.4	Hbm	N		
	1040			0.935	604	0.47	18.3	ckar	N		_
	1043	24	5.10	0.931	600	6.30	21.5	4.	44		_
	IALIA	23	5.25	0. 9.30	599	0.26	5.8	4.	**		_
	1049	6.2.1	5.49	0.931	574	0.30	-5.0	4	44		
	1052	6.16	5.59	4 930	595	A 32	-6.3	**	41		
	1055	6.19	5.34	0.729	C95	0.28	-9.3	**	44	_	
	1058	6.14	5.86	0.929	C99	10.28	-12.0	44	66		_
	1601	6.14	5.95	0.929	594	1. 25	-8./	41	46	-	
	1104	6.16	6.01	6.928	5-94	0.25	-12.0	11		_	_
	1107	6-10	6.10	0.928	514	5.22	-17.8	11	**		
Notes: Drawdown s liter/minute) and con	tinually m	easuring wa									/ 0.1 to 0.5
		Bottles									1000 TOPACHE TH
Analyses	Col	lected	Comme				- 17				
815× MT 86/	39:1	MA Ha		could	not me	Bishir	~ (drow	Jdo	un up	11/2
EN/EDB				PHYMIN	not me	10 TH	ر ما	Jater	KLE	1 mete	<i>-</i> L
940	9-40	A Hel			nat i	Sthol	J	26/100	cmu	Il deal	4040
SDB/DBCP	9-10		damio		710 1	7/11")	41		37779	-1 41W	
Deoletto	6.71	her hel	10.5	WELL O	+112	SAM	L t	me			
Had 3-	500 m	l poly	H 1003	_							
Signed:	+51	MH	n		<u></u>		Date:		28/11		
Signed/reviewer		•					Date:	•	-		


estate

Header Area & Bail Line Area Site Nenana, Alaska



Additional Site
Characterization
465-015

Rail lime 514e 4165-015-1-4 5 Christians 0700 Departed Aux for FAI
0820 Arrived Ave FAI, PICKED og30 Departed for Menana. 1030 Arrived in Nenana, called Endil, no answer 16ft message, conduction tailgate safety meeting 1040 Tarked to crowing personuel; statided only one well onsite, The temporary camps hau 1 water from the city + store in big balk tanks. 1120 sampled well wouse well 11-NEN-MW6-OZ-RW BTEX / MBTE/ EBB/EDC + Na Ph LOW-LEVEL EBD/ DBCP GRO DRO/RRO Lead 150 Ran Into Keith Horton from crowley, sand SINK + Spicket, are

9/28	8/11	465-01	15-1-4	27°F, overeast, o-3mpn	4/78/11 UGS AIS LU S Charles 4
0800	Calibr	rated	YSIS	rented	Further Inspection, TP-3
		TTT		1 SA 18 AN CONTRACTOR	
V. C.	serial:	# 04612	2880		anoto) did not some
LIT.	SID	Initia!	Final	OOR?	proto). did not sample.
	7H 7.0	7.00	7.00	N	1000 Schristansen setup on TP-2.
		4.05			
	12000	10.10			1116 A Hansen sounded To
	nd. 1.413 05/6			N	11-NEN-TPG-02-AW MS/MSD
	27 790mV			N	III 5 s. christiansen sampled
	00% DO			H	TP-2 11-NEN-TPR-62-9W
	Serial	# 1111	00451		(See dut a sheet)
			The second second	00 R 7	BOU TOOK KINCH
	7H 4.0				DOU TOOK TOUTED
	PH4.0			N	HO PETOL / 10 8/10.
	PH 10.0			M	TPC Thed to locate mus-
	d 1.483 05/cm			N	+ TPU Gravel sile by mu-5
	EP 240 mV			N	+ TP4. Gravel pile by mw-5
	10'/. PO				1100 DEEN SPITAROUT, IAINE
	Paid 1		t e		Sand he spreadout are free
				onducted	Said he spreadout pile first,
-17	tailga-	te sa	fety /		made save not to cover
40	Checkee	t out	TP-3.	The state of the s	Jell. Sata Someone Else
	been	mowed	COUNT	I not coo	
	TP-3 fn				not be east frage to City
/at			4		not happy trave # to City
		71	Suy	Ha 75/11 1/4	Astra Her 4/28/11 , 5/4

PHOTOGRAPH 1: VIEW FORM LEFT TO RIGHT, LARGE PLASTIC WATER STORAGE BIN, CONNEX WHERE WATER BIN IS STORED, TEMPORARY CAMP, LOOKING NORTHWEST (SEPT 2011)

PHOTOGRAPH 2: VIEW INSIDE WATER BIN STORAGE CONNEX (SEPT 2011)

PHOTOGRAPH 3: VIEW OF THE "WELL HOUE" AND OUTSIDE SPIGOT (RIGHT SIDE OF PHOTO), LOOKING NORTH (SEPT 2011)

PHOTOGRAPH 4: VIEW OF SINK INSIDE "WELL HOUSE" (SEPT 2011)

PHOTOGRAPH 5: VIEW OF WATER AND BENTONITE INSIDE THE MONUMENT OF MW-2 (SEPT 2011)

PHOTOGRAPH 6: VIEW OF TP-3 DESTORYED BY MOWER (SEPT 2011)

PHOTOGRAPH 7: VIEW OF PREVIOUS GRAVEL STOCKPILE LOCATION AND MW-5, LOOKING NORTH (SEPT 2011)

PHOTOGRAPH 8: VIEW OF GRAVEL STOCKPILE LOCATION AND MW-5, LOOKING NORTH (SEPT 2010)

ATTACHMENT 4

Analytical Results QAR ADEC Checklist - Page Intentionally Left Blank -

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

For: OASIS Environmental - Anchorage, AK

Project: Nenana October 13, 2011

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Trace Metals by Method 6020

Laboratory Control Sample

Samples L539126-04, -10, -01, -03, -05, -06, -02, and -09 were analyzed in analytical batch WG558953. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Samples L539126-11, -12, and -13 were analyzed in analytical batch WG559101. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG558953 sample duplicate analysis was performed on sample L539126-09. The relative percent difference exceeded the method limits for Lead.

For analytical batch WG559101 sample duplicate analysis was performed on sample L539282-06. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG558953 matrix spike/matrix spike duplicate analysis was performed on sample L539126-09. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG559101 matrix spike/matrix spike duplicate analysis was performed on sample L539282-06. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Method AK101

Laboratory Control Sample

Samples L539126-09, -05, -06, -10, -15, -03, -12, -02, -08, -07, -13, -14, -11, -16, -04, and -01 were analyzed in analytical batch WG558366. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG558366 matrix spike/matrix spike duplicate analysis was performed on sample L539096-20. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG558366 matrix spike/matrix spike duplicate analysis was performed on sample L539126-09. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd

Quality Control Summary SDG: L539126

For: OASIS Environmental - Anchorage, AK

Project: Nenana October 13, 2011

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Volatile Organic Compounds by Method 8260B

Laboratory Control Sample

Samples L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, and -12 were analyzed in analytical batch WG558436. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Samples L539126-05, -10, and -06 were analyzed in analytical batch WG558845. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG558436 matrix spike/matrix spike duplicate analysis was performed on sample L539126-09. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG558845 matrix spike/matrix spike duplicate analysis was performed on sample L539407-02. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Method 504/8011

Laboratory Control Sample

Samples L539126-02, -05, -03, -04, and -01 were analyzed in analytical batch WG558585. The laboratory control sample associated with these samples had all target compounds within method limits on column one. On column two, Ethylene Dibromide and 1,2-Dibromo-3-Chloropropane were below laboratory control limits.

Samples L539126-12, -06, -09, -11, -10, and -13 were analyzed in analytical batch WG558955. The laboratory control sample associated with these samples had all target compounds within method limits on column one. On column two, 1,2-Dibromo-3-Chloropropane was below laboratory control limits.

Matrix Spike

For analytical batch WG558585 matrix spike analysis was performed on sample L539022-03. The matrix spike recoveries were below laboratory control limits for Ethylene Dibromide and 1,2-Dibromo-3-Chloropropane on column two. The spike recoveries for the remaining target compounds were within limits.

For analytical batch WG558955 matrix spike analysis was performed on sample L539126-09. The matrix spike recoveries were above laboratory control limits for Ethylene Dibromide on column one. The matrix spike recovery was below laboratory control limits for 1,2-Dibromo-3-Chloropropane on column two. The spike recoveries for the remaining target compounds were within limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

For: OASIS Environmental - Anchorage, AK

Project: Nenana October 13, 2011

AK102 / AK103

Laboratory Control Sample

Samples L539126-02, -04, -05, -10, -12, -13, -01, -03, -06, -09, and -11 were analyzed in analytical batch WG558681. The laboratory control sample associated with these samples was below method control limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG558681, matrix spike/matrix spike duplicate analysis was performed on sample L539126-09. The spike recoveries were below the laboratory control limits. The relative percent difference was within control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Dan Frank
OASIS Environmental - Anchorage, AK
825 W. 8th Ave.
Anchorage, AK 99501

Report Summary

Wednesday October 12, 2011

Report Number: L539126 Samples Received: 09/30/11 Client Project: 465-015-1-4

Description: Nenana

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Mark W. Beasley , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

465-015-1-4

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK

825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-01

Date Received September 30, 2011

: Description Nenana

Site ID :

Sample ID 11-NEN-MW6-02-GW

Project # :

Collected By AH/SC Collection Date : 09/27/11 11:20

RDL Units Qualifier Method Date Parameter Result MDL Dil. Lead 5.2 0.24 1.0 ug/l 6020 10/09/11 1 TPHGAK C6 to C10 U 41. 100 ug/l AK101 10/01/11 1 Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) 109. % Rec. AK101 10/01/11 0.18 8260B 10/04/11 Benzene TT 1.0 ug/l 1 10/04/11 10/04/11 Toluene TT 0.16 5.0 ug/l 8260B 1 Ethylbenzene 0.27 ug/l 8260B IJ 1.0 1 Total Xylenes
Methyl tert-butyl ether U 0.86 uq/l 8260B 10/04/11 3.0 1 0.27 1.0 ug/l 8260B 10/04/11 U Naphthalene 0.69 5.0 ug/l 8260B 10/04/11 1 1,2-Dichloroethane ug/l U 0.26 1.0 8260B 10/04/11 1 1,2-Dibromoethane U 0.44 1.0 ug/1 8260B 10/04/11 1 Surrogate Recovery 104. % Rec. 8260B Toluene-d8 10/04/11 1 Dibromofluoromethane 8260B 10/04/11 % Rec. 103. 1 107. 10/04/11 a,a,a-Trifluorotoluene 8260B % Rec. 1 4-Bromofluorobenzene 8260B 10/04/11 103. % Rec. AK102 DRO C10-C25 48. 22. 800 ug/l JJ4 AK102/1 10/06/11 AK103 RRO C25-C36 IJ 66. 200 ug/l AK102/1 10/04/11 1 Surrogate Recovery 77.4 AK102/1 10/06/11 o-Terphenyl % Rec. 1 AK102/1 10/04/11 n-Triacontane d62 82.1 % Rec. 1 Ethylene Dibromide 0.0037 0.010 8011 10/04/11 ug/l ug/l 1,2-Dibromo-3-Chloropropane IJ 0.0030 0.020 8011 10/04/11 1

U = ND (Not Detected)

RDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-01 (AK102/103) - per e-mail & TSR add J4

Page 2 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Est. 1970

Tax I.D. 62-0814289

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

Date Received : September 30, 2011

Nenana

Site ID :

ESC Sample # : L539126-02

Project #: 465-015-1-4

Sample ID 11-NEN-MW1-02-GW

Collected By : AH/SC Collection Date : 09/27/11 13:40

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	0.90	0.24	1.0	ug/l	J	6020	10/09/11	1
TPHGAK C6 to C10	U	41.	100	ug/l		AK101	10/01/11	1
Surrogate Recovery-%				_				
a,a,a-Trifluorotoluene(FID)	108.			% Rec.		AK101	10/01/11	1
Benzene	1.0	0.18	1.0	ug/l		8260B	10/04/11	1
Toluene	U	0.16	5.0	ug/l		8260B	10/04/11	1
Ethylbenzene	1.0	0.27	1.0	ug/l		8260B	10/04/11	1
Total Xylenes	3.2	0.86	3.0	ug/l		8260B	10/04/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/04/11	1
Naphthalene	20.	0.69	5.0	ug/l		8260B	10/04/11	1
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/04/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/04/11	1
Surrogate Recovery				3.				
Toluene-d8	102.			% Rec.		8260B	10/04/11	1
Dibromofluoromethane	104.			% Rec.		8260B	10/04/11	1
a,a,a-Trifluorotoluene	105.			% Rec.		8260B	10/04/11	1
4-Bromofluorobenzene	105.			% Rec.		8260B	10/04/11	1
AK102 DRO C10-C25	650	22.	800	ug/l	Ј Ј4	AK102/1	10/06/11	1
AK103 RRO C25-C36	U	66.	200	ug/l		AK102/1	10/04/11	1
Surrogate Recovery	•			5, -			,,	_
o-Terphenyl	71.7			% Rec.		AK102/1	10/06/11	1
n-Triacontane d62	71.6			% Rec.			10/04/11	
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/04/11	1
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/04/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-02 (AK102/103) - per e-mail & TSR add J4

Page 3 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L539126-03

Date Received : September 30, 2011

Nenana

Site ID :

October 12, 2011

Sample ID 11-NEN-MW2-02-GW

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/27/11 13:45

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	0.81	0.24	1.0	ug/l	J	6020	10/05/11	1
TPHGAK C6 to C10	U	41.	100	ug/l		AK101	10/01/11	1
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	108.			% Rec.		AK101	10/01/11	1
Benzene	U	0.18	1.0	ug/l		8260B	10/04/11	1
Toluene	Ū	0.16	5.0	ug/l		8260B	10/04/11	
Ethylbenzene	Ū	0.27	1.0	ug/l		8260B	10/04/11	
Total Xylenes	Ū	0.86	3.0	ug/l		8260B	10/04/11	
Methyl tert-butyl ether	Ū	0.27	1.0	ug/l		8260B	10/04/11	
Naphthalene	2.1	0.69	5.0	ug/l	J	8260B	10/04/11	1
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/04/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/04/11	1
Surrogate Recovery								
Toluene-d8	101.			% Rec.		8260B	10/04/11	
Dibromofluoromethane	104.			% Rec.		8260B	10/04/11	
a,a,a-Trifluorotoluene	106.			% Rec.		8260B	10/04/11	
4-Bromofluorobenzene	104.			% Rec.		8260B	10/04/11	1
AK102 DRO C10-C25	570	22.	800	ug/l	JJ4	AK102/1	10/06/11	1
AK103 RRO C25-C36	77.	66.	200	ug/l	J	AK102/1	10/04/11	1
Surrogate Recovery								
o-Terphenyl	68.5			% Rec.		- ,	10/06/11	
n-Triacontane d62	81.0			% Rec.		AK102/1	10/04/11	1
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/04/11	1
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/04/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-03 (AK102/103) - per e-mail & TSR add J4

Page 4 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

Date Received : September 30, 2011

Nenana

Site ID :

ESC Sample # : L539126-04

Sample ID 11-NEN-MW3-02-GW

Collected By : AH/SC Collection Date : 09/27/11 15:30

Project #: 465-015-1-4

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	1.2	0.24	1.0	ug/l		6020	10/05/11	1
TPHGAK C6 to C10	490	41.	100	ug/l		AK101	10/01/11	1
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	104.			% Rec.		AK101	10/01/11	1
Benzene	58.	0.18	1.0	ug/l		8260B	10/04/11	1
Toluene	3.2	0.16	5.0	ug/l	J	8260B	10/04/11	1
Ethylbenzene	6.9	0.27	1.0	ug/l		8260B	10/04/11	1
Total Xylenes	15.	0.86	3.0	ug/l		8260B	10/04/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/04/11	
Naphthalene	7.9	0.69	5.0	ug/l		8260B	10/04/11	
1,2-Dichloroethane	0.74	0.26	1.0	ug/l	J	8260B	10/04/11	
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/04/11	1
Surrogate Recovery								
Toluene-d8	101.			% Rec.		8260B	10/04/11	1
Dibromofluoromethane	105.			% Rec.		8260B	10/04/11	1
a,a,a-Trifluorotoluene	105.			% Rec.		8260B	10/04/11	1
4-Bromofluorobenzene	108.			% Rec.		8260B	10/04/11	1
AK102 DRO C10-C25	2200	22.	800	ug/l	Ј4	AK102/1	10/07/11	1
AK103 RRO C25-C36	170	66.	200	ug/l	J	AK102/1	10/04/11	1
Surrogate Recovery o-Terphenyl	63.7			% Rec.		ΔK102/1	10/07/11	1
n-Triacontane d62	71.4			% Rec.			10/04/11	
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/04/11	1
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/04/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-04 (AK102/103) - per e-mail & TSR add J4

Page 5 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

Sample ID

ESC Sample # : L539126-05

Project #: 465-015-1-4

October 12, 2011

Date Received : September 30, 2011

Nenana

Site ID : 11-NEN-MW4-02-GW

Collected By : AH/SC Collection Date : 09/27/11 15:45

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	4.1	0.24	1.0	ug/l		6020	10/05/11	1
TPHGAK C6 to C10	2400	41.	100	ug/l		AK101	10/01/11	1
Surrogate Recovery-%								
a,a,a-Trifluorotoluene(FID)	115.			% Rec.		AK101	10/01/11	1
Benzene	11.	0.18	1.0	ug/l		8260B	10/04/11	1
Toluene	4.3	0.16	5.0	ug/l	J	8260B	10/04/11	1
Ethylbenzene	5.8	0.27	1.0	ug/l		8260B	10/04/11	1
Total Xylenes	90.	0.86	3.0	ug/l		8260B	10/04/11	1 1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/04/11	1
Naphthalene	320	6.9	50.	ug/l		8260B	10/04/11	10
1,2-Dichloroethane	0.90	0.26	1.0	ug/l	J	8260B	10/04/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/04/11	1
Surrogate Recovery				3.				
Toluene-d8	103.			% Rec.		8260B	10/04/11	1
Dibromofluoromethane	101.			% Rec.		8260B	10/04/11	1
a,a,a-Trifluorotoluene	106.			% Rec.		8260B	10/04/11	
4-Bromofluorobenzene	114.			% Rec.		8260B	10/04/11	
AK102 DRO C10-C25	20000	450	16000	ug/l	Ј4	AK102/1	10/07/11	20
AK103 RRO C25-C36	580	66.	200	ug/l		AK102/1	10/04/11	1
Surrogate Recovery				5, -			,,-,-	_
o-Terphenyl	0.00			% Rec.	J7	AK102/1	10/07/11	20
n-Triacontane d62	56.4			% Rec.			10/04/11	
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/04/11	1
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/04/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-05 (AK102/103) - per e-mail & TSR add J4

Page 6 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-06

Date Received : September 30, 2011

Nenana

Site ID :

Sample ID 11-NEN-20-02-GW

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/27/11 22:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	3.9	0.24	1.0	ug/l		6020	10/05/11	1
TPHGAK C6 to C10	1400	41.	100	ug/l		AK101	10/01/11	1
Surrogate Recovery-%								
a,a,a-Trifluorotoluene(FID)	113.			% Rec.		AK101	10/01/11	1
Benzene	10.	0.18	1.0	ug/l		8260B	10/04/11	1
Toluene	3.9	0.16	5.0	ug/l	J	8260B	10/04/11	1
Ethylbenzene	5.3	0.27	1.0	ug/l		8260B	10/04/11	1
Total Xylenes	84.	0.86	3.0	ug/l		8260B	10/04/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/04/11	1
Naphthalene	300	6.9	50.	ug/l		8260B	10/04/11	10
1,2-Dichloroethane	0.85	0.26	1.0	ug/l	J	8260B	10/04/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/04/11	1
Surrogate Recovery				_				
Toluene-d8	102.			% Rec.		8260B	10/04/11	1
Dibromofluoromethane	102.			% Rec.		8260B	10/04/11	1
a,a,a-Trifluorotoluene	103.			% Rec.		8260B	10/04/11	1
4-Bromofluorobenzene	110.			% Rec.		8260B	10/04/11	1
AK102 DRO C10-C25	20000	450	16000	ug/l	Ј4	AK102/1	10/07/11	20
AK103 RRO C25-C36	620	66.	200	ug/l		AK102/1	10/04/11	1
Surrogate Recovery				5,				
o-Terphenyl	0.00			% Rec.	J7	AK102/1	10/07/11	20
n-Triacontane d62	67.1			% Rec.		AK102/1	10/04/11	1
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/05/11	1
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/05/11	

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-06 (AK102/103) - per e-mail & TSR add J4

Page 7 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-07

September 30, 2011

Date Received : Nenana

Site ID :

Sample ID TRIP BLANK

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/27/11 18:30

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10 Surrogate Recovery-%	U	41.	100	ug/l		AK101	10/01/11	1
a,a,a-Trifluorotoluene(FID)	108.			% Rec.		AK101	10/01/11	1
Benzene	U	0.18	1.0	ug/l		8260B	10/03/11	1
Toluene	U	0.16	5.0	ug/l		8260B	10/03/11	1
Ethylbenzene	U	0.27	1.0	ug/l		8260B	10/03/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	10/03/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/03/11	1
Naphthalene	U	0.69	5.0	ug/l		8260B	10/03/11	1
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/03/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/03/11	1
Surrogate Recovery				J .				
Toluene-d8	102.			% Rec.		8260B	10/03/11	1
Dibromofluoromethane	103.			% Rec.		8260B	10/03/11	1
a,a,a-Trifluorotoluene	106.			% Rec.		8260B	10/03/11	1
4-Bromofluorobenzene	104.			% Rec.		8260B	10/03/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 10/11/11 09:10 Revised: 10/12/11 16:44

Page 8 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L539126-08

Date Received : September 30, 2011

Nenana

Site ID :

October 12, 2011

Sample ID TRIP BLANK

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/27/11 18:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10 Surrogate Recovery-%	U	41.	100	ug/l		AK101	10/01/11	1
a,a,a-Trifluorotoluene(FID)	108.			% Rec.		AK101	10/01/11	1
Benzene	Ū	0.18	1.0	ug/l		8260B	10/03/11	1
Toluene	U	0.16	5.0	ug/l		8260B	10/03/11	1
Ethylbenzene	U	0.27	1.0	ug/l		8260B	10/03/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	10/03/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/03/11	1
Naphthalene	U	0.69	5.0	ug/l		8260B	10/03/11	1
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/03/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/03/11	1
Surrogate Recovery				J .				
Toluene-d8	102.			% Rec.		8260B	10/03/11	1
Dibromofluoromethane	104.			% Rec.		8260B	10/03/11	1
a,a,a-Trifluorotoluene	105.			% Rec.		8260B	10/03/11	1
4-Bromofluorobenzene	104.			% Rec.		8260B	10/03/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 10/11/11 09:10 Revised: 10/12/11 16:44

Page 9 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Est. 1970

Tax I.D. 62-0814289

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-09

Date Received : September 30, 2011

Nenana

Site ID :

Sample ID 11-NEN-TP6-02-GW

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/28/11 11:10

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	0.67	0.24	1.0	ug/l	JP1	6020	10/05/11	1
TPHGAK C6 to C10	U	41.	100	ug/l		AK101	10/01/11	1
<pre>Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)</pre>	108.			% Rec.		AK101	10/01/11	1
Benzene	Ū	0.18	1.0	ug/l		8260B	10/03/11	1
Toluene	Ū	0.16	5.0	ug/l		8260B	10/03/11	
Ethylbenzene	Ū	0.27	1.0	ug/l		8260B	10/03/11	
Total Xylenes	U	0.86	3.0	ug/l		8260B	10/03/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/03/11	1
Naphthalene	U	0.69	5.0	ug/l		8260B	10/03/11	1
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/03/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/03/11	1
Surrogate Recovery								
Toluene-d8	101.			% Rec.		8260B	10/03/11	1
Dibromofluoromethane	106.			% Rec.		8260B	10/03/11	1
a,a,a-Trifluorotoluene	104.			% Rec.		8260B	10/03/11	1
4-Bromofluorobenzene	103.			% Rec.		8260B	10/03/11	1
AK102 DRO C10-C25	240	22.	800	ug/l	JJ 4 J6	AK102/1	10/06/11	1
AK103 RRO C25-C36	74.	66.	200	ug/l	J	AK102/1	10/04/11	1
Surrogate Recovery								_
o-Terphenyl	75.0			% Rec.		- ,	10/06/11	
n-Triacontane d62	86.5			% Rec.		AK102/1	10/04/11	1
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/05/11	1
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/05/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-09 (AK102/103) - per e-mail & TSR add J4

Page 10 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank
OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L539126-10

October 12, 2011

Date Received : September 30, 2011

Nenana

Site ID :

Sample ID 11-NEN-TP2-02-GW

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/28/11 11:15

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	1.8	0.24	1.0	ug/l		6020	10/05/11	1
TPHGAK C6 to C10	360	41.	100	ug/l		AK101	10/01/11	1
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	111.			% Rec.		AK101	10/01/11	1
Benzene	1.3	0.18	1.0	ug/l		8260B	10/04/11	1
Toluene	0.50	0.16	5.0	ug/l	J	8260B	10/04/11	1
Ethylbenzene	4.4	0.27	1.0	ug/l		8260B	10/04/11	
Total Xylenes	9.3	0.86	3.0	ug/l		8260B	10/04/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/04/11	
Naphthalene	87.	0.69	5.0	ug/l		8260B	10/04/11	
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/04/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/04/11	1
Surrogate Recovery								
Toluene-d8	102.			% Rec.		8260B	10/04/11	1
Dibromofluoromethane	100.			% Rec.		8260B	10/04/11	1
a,a,a-Trifluorotoluene	103.			% Rec.		8260B	10/04/11	1
4-Bromofluorobenzene	106.			% Rec.		8260B	10/04/11	1
AK102 DRO C10-C25	4500	22.	800	ug/l	Ј4	AK102/1	10/07/11	1
AK103 RRO C25-C36	170	66.	200	ug/l	J	AK102/1	10/04/11	1
Surrogate Recovery	68.1			0 5		3 7 7 1 0 0 / 1	10/08/11	1
o-Terphenyl	67.1			% Rec.		- ,	10/07/11	
n-Triacontane d62	75.4			% Rec.		AK102/1	10/04/11	1
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/05/11	
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/05/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-10 (AK102/103) - per e-mail & TSR add J4

Page 11 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank
OASIS Environmental - Anchorage, AK

825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-11

Project #: 465-015-1-4

Date Received : September : Nenana September 30, 2011

Site ID : Sample ID : 11-NEN-TP5-02-GW

Collected By : AH/SC Collection Date : 09/28/11 15:30

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	39.	0.24	1.0	ug/l		6020	10/07/11	1
TPHGAK C6 to C10	140000	4100	10000	ug/l		AK101	10/01/11	100
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	105.			% Rec.		AK101	10/01/11	100
Benzene	21000	89.	500	ug/l		8260B	10/04/11	500
Toluene	18000	82.	2500	ug/l		8260B	10/04/11	500
Ethylbenzene	1700	140	500	ug/l		8260B	10/04/11	500
Total Xylenes	6200	430	1500	ug/l		8260B	10/04/11	500
Methyl tert-butyl ether	U	130	500	ug/l	_	8260B	10/04/11	500
Naphthalene	1500	350	2500	ug/l	J	8260B	10/04/11	500
1,2-Dichloroethane	460	130	500	ug/l	J	8260B	10/04/11	500
1,2-Dibromoethane	U	220	500	ug/l		8260B	10/04/11	500
Surrogate Recovery								
Toluene-d8	102.			% Rec.		8260B	10/04/11	500
Dibromofluoromethane	103.			% Rec.		8260B	10/04/11	500
a,a,a-Trifluorotoluene	104.			% Rec.		8260B	10/04/11	
4-Bromofluorobenzene	107.			% Rec.		8260B	10/04/11	500
AK102 DRO C10-C25	7200	22.	800	ug/l	Ј4	AK102/1	10/07/11	1
AK103 RRO C25-C36	210	66.	200	ug/l		- ,	10/04/11	1
Surrogate Recovery				5/ =			,,	_
o-Terphenyl	73.9			% Rec.		AK102/1	10/07/11	1
n-Triacontane d62	72.5			% Rec.			10/04/11	1
	0						, , , ,	=
Ethylene Dibromide	0.30	0.0037	0.010	uq/l		8011	10/05/11	1
1,2-Dibromo-3-Chloropropane	Ū	0.0030	0.020	ug/l		8011	10/05/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-11 (AK102/103) - per e-mail & TSR add J4

Page 12 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

Date Received : September 30, 2011

Nenana

Site ID :

Sample ID 11-NEN-TP4-02-GW

Project #: 465-015-1-4

ESC Sample # : L539126-12

Collected By : AH/SC Collection Date : 09/28/11 17:15

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	2.9	0.24	1.0	ug/l		6020	10/07/11	1
TPHGAK C6 to C10	U	41.	100	ug/l		AK101	10/02/11	1
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	109.			% Rec.		AK101	10/02/11	1
Benzene	U	0.18	1.0	ug/l		8260B	10/04/11	1
Toluene	U	0.16	5.0	ug/l		8260B	10/04/11	1
Ethylbenzene	U	0.27	1.0	ug/l		8260B	10/04/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	10/04/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/04/11	1
Naphthalene	1.1	0.69	5.0	ug/l	J	8260B	10/04/11	
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/04/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/04/11	1
Surrogate Recovery								
Toluene-d8	102.			% Rec.		8260B	10/04/11	1
Dibromofluoromethane	101.			% Rec.		8260B	10/04/11	1
a,a,a-Trifluorotoluene	104.			% Rec.		8260B	10/04/11	1
4-Bromofluorobenzene	106.			% Rec.		8260B	10/04/11	1
AK102 DRO C10-C25	86.	22.	800	ug/l	Ј Ј4	AK102/1	10/07/11	1
AK103 RRO C25-C36	U	66.	200	ug/l		AK102/1	10/04/11	1
Surrogate Recovery	77.3			0 D		377100/1	10/07/11	1
o-Terphenyl	77.3			% Rec.		- ,	10/07/11	
n-Triacontane d62	73.9			% Rec.		AKIU2/I	10/04/11	1
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/05/11	
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/05/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-12 (AK102/103) - per e-mail & TSR add J4

Page 13 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-13

Date Received : September 30, 2011

Nenana

Site ID :

Sample ID 11-NEN-MW5-02-GW

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/28/11 18:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	U	0.24	1.0	ug/l		6020	10/07/11	1
TPHGAK C6 to C10	8700	200	500	ug/l		AK101	10/02/11	5
Surrogate Recovery-%								
a,a,a-Trifluorotoluene(FID)	98.0			% Rec.		AK101	10/02/11	5
Benzene	3500	8.9	50.	ug/l		8260B	10/04/11	50
Toluene	U	8.2	250	ug/l		8260B	10/04/11	
Ethylbenzene	U	14.	50.	ug/l		8260B	10/04/11	50
Total Xylenes	49.	43.	150	ug/l	J	8260B	10/04/11	
Methyl tert-butyl ether	U	13.	50.	ug/l		8260B	10/04/11	
Naphthalene	U	35.	250	ug/l		8260B	10/04/11	
1,2-Dichloroethane	150	13.	50.	ug/l		8260B	10/04/11	
1,2-Dibromoethane	U	22.	50.	ug/l		8260B	10/04/11	50
Surrogate Recovery								
Toluene-d8	102.			% Rec.		8260B	10/04/11	
Dibromofluoromethane	105.			% Rec.		8260B	10/04/11	50
a,a,a-Trifluorotoluene	104.			% Rec.		8260B	10/04/11	
4-Bromofluorobenzene	104.			% Rec.		8260B	10/04/11	50
AK102 DRO C10-C25	130	22.	800	ug/l	JJ4	AK102/1	10/07/11	1
AK103 RRO C25-C36	U	66.	200	ug/l		AK102/1	10/04/11	
Surrogate Recovery				3.				
o-Terphenyl	75.3			% Rec.		AK102/1	10/07/11	1
n-Triacontane d62	69.3			% Rec.		AK102/1	10/04/11	1
Ethylene Dibromide	U	0.0037	0.010	ug/l		8011	10/05/11	1
1,2-Dibromo-3-Chloropropane	U	0.0030	0.020	ug/l		8011	10/05/11	1

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/11/11 09:10 Revised: 10/12/11 16:44 L539126-13 (AK102/103) - per e-mail & TSR add J4

Page 14 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

ESC Sample # : L539126-14

Date Received : September 30, 2011

Nenana

Site ID :

October 12, 2011

Sample ID TRIP BLANK

Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/28/11 20:30

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10 Surrogate Recovery-%	U	41.	100	ug/l		AK101	10/01/11	1
a,a,a-Trifluorotoluene(FID)	108.			% Rec.		AK101	10/01/11	1
Benzene	U	0.18	1.0	ug/l		8260B	10/03/11	1
Toluene	U	0.16	5.0	ug/l		8260B	10/03/11	1
Ethylbenzene	U	0.27	1.0	ug/l		8260B	10/03/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	10/03/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/03/11	1
Naphthalene	U	0.69	5.0	ug/l		8260B	10/03/11	1
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/03/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/03/11	1
Surrogate Recovery				J .				
Toluene-d8	102.			% Rec.		8260B	10/03/11	1
Dibromofluoromethane	102.			% Rec.		8260B	10/03/11	1
a,a,a-Trifluorotoluene	105.			% Rec.		8260B	10/03/11	1
4-Bromofluorobenzene	103.			% Rec.		8260B	10/03/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 10/11/11 09:10 Revised: 10/12/11 16:44

Page 15 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK

825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-15

Date Received September 30, 2011

: Description Nenana

Site ID : Project # :

465-015-1-4

TRIP BLANK Sample ID

Collected By AH/SC

Collection Date : 09/28/11 20:00

Units RDL Qualifier Method Date Parameter Result MDL Dil. TPHGAK C6 to C10 IJ 41. 100 uq/l AK101 10/01/11 1 Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) 108. % Rec. AK101 10/01/11 1 U 0.18 1.0 ug/l 8260B 10/03/11 0.16 Toluene U 5.0 ug/l 8260B 10/03/11 Ethylbenzene U 1.0 ug/l 8260B 10/03/11 1 10/03/11 10/03/11 Total Xylenes Methyl tert-butyl ether U 0.86 3.0 ug/l 8260B 1 IJ 0.27 1.0 ug/l 8260B 1 Naphthalene U 0.69 5.0 ug/l 8260B 10/03/11 1 1,2-Dichloroethane 0.26 1.0 ug/l 8260B 10/03/11 U 1,2-Dibromoethane U 0.44 ug/l 8260B 10/03/11 1 Surrogate Recovery 101. Toluene-d8 % Rec. 8260B 10/03/11 Dibromofluoromethane 105. % Rec. 8260B 10/03/11 1 a,a,a-Trifluorotoluene 104. % Rec. 8260B 10/03/11 1 4-Bromofluorobenzene 8260B 10/03/11 104. % Rec.

U = ND (Not Detected)

RDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 10/11/11 09:10 Revised: 10/12/11 16:44

Page 16 of 25

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Dan Frank OASIS Environmental - Anchorage, AK 825 W. 8th Ave. Anchorage, AK 99501

October 12, 2011

ESC Sample # : L539126-16

Date Received : September 30, 2011

Nenana

Site ID :

Sample ID TRIP BLANK Project #: 465-015-1-4

Collected By : AH/SC Collection Date : 09/28/11 21:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TPHGAK C6 to C10	U	41.	100	ug/l		AK101	10/01/11	1
Surrogate Recovery-%								
a,a,a-Trifluorotoluene(FID)	108.			% Rec.		AK101	10/01/11	1
Benzene	U	0.18	1.0	ug/l		8260B	10/03/11	1
Toluene	U	0.16	5.0	ug/l		8260B	10/03/11	1
Ethylbenzene	U	0.27	1.0	ug/l		8260B	10/03/11	1
Total Xylenes	U	0.86	3.0	ug/l		8260B	10/03/11	1
Methyl tert-butyl ether	U	0.27	1.0	ug/l		8260B	10/03/11	1
Naphthalene	U	0.69	5.0	ug/l		8260B	10/03/11	1
1,2-Dichloroethane	U	0.26	1.0	ug/l		8260B	10/03/11	1
1,2-Dibromoethane	U	0.44	1.0	ug/l		8260B	10/03/11	1
Surrogate Recovery				_				
Toluene-d8	101.			% Rec.		8260B	10/03/11	1
Dibromofluoromethane	105.			% Rec.		8260B	10/03/11	1
a,a,a-Trifluorotoluene	104.			% Rec.		8260B	10/03/11	1
4-Bromofluorobenzene	101.			% Rec.		8260B	10/03/11	1

U = ND (Not Detected)

MDL = Reported Detection Limit = LOQ = PQL = EQL MDL = Minimum Detection Limit = LOD = SQL(TRRP)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 10/11/11 09:10 Revised: 10/12/11 16:44

Page 17 of 25

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
					-
L539126-01	WG558681	SAMP	AK102 DRO C10-C25	R1884992	JJ4
L539126-02	WG558953	SAMP	Lead	R1888212	J
	WG558681	SAMP	AK102 DRO C10-C25	R1884992	JJ4
L539126-03	WG558953	SAMP	Lead	R1888212	J
	WG558681	SAMP	AK102 DRO C10-C25	R1884992	JJ4
	WG558681	SAMP	AK103 RRO C25-C36	R1884992	J
	WG558436	SAMP	Naphthalene	R1883273	J
L539126-04	WG558681	SAMP	AK102 DRO C10-C25	R1884992	J4
	WG558681	SAMP	AK103 RRO C25-C36	R1884992	J
	WG558436	SAMP	Toluene	R1883273	J
	WG558436	SAMP	1,2-Dichloroethane	R1883273	J
L539126-05	WG558681	SAMP	AK102 DRO C10-C25	R1884992	J4
	WG558681	SAMP	o-Terphenyl	R1884992	J7
	WG558436	SAMP	Toluene	R1883273	J
	WG558436	SAMP	1,2-Dichloroethane	R1883273	J
L539126-06	WG558681	SAMP	AK102 DRO C10-C25	R1884992	J4
	WG558681	SAMP	o-Terphenyl	R1884992	J7
	WG558436	SAMP	Toluene	R1883273	J
	WG558436	SAMP	1,2-Dichloroethane	R1883273	J
L539126-09	WG558953	SAMP	Lead	R1888212	JP1
	WG558681	SAMP	AK102 DRO C10-C25	R1884992	JJ 4 J6
	WG558681	SAMP	AK103 RRO C25-C36	R1884992	J
L539126-10	WG558681	SAMP	AK102 DRO C10-C25	R1884992	J4
	WG558681	SAMP	AK103 RRO C25-C36	R1884992	J
	WG558436	SAMP	Toluene	R1883273	J
L539126-11	WG558681	SAMP	AK102 DRO C10-C25	R1884992	J4
	WG558436	SAMP	Naphthalene	R1883273	J
	WG558436	SAMP	1,2-Dichloroethane	R1883273	J
L539126-12	WG558681	SAMP	AK102 DRO C10-C25	R1884992	JJ4
	WG558436	SAMP	Naphthalene	R1883273	J
L539126-13	WG558681	SAMP	AK102 DRO C10-C25	R1884992	JJ4
	WG558436	SAMP	Total Xylenes	R1883273	J

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low
J7	Surrogate recovery limits cannot be evaluated; surrogates were diluted out
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Summary of Remarks For Samples Printed 10/12/11 at 16:44:51

TSR Signing Reports: 358 R5 - Desired TAT

Need cooler receipt form on all samples. All samples get QC2MODCN. Analyze ALL Trip Blanks received even if not listed on COC.

Sample: L539126-01 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Shipping = \$150 x 5 coolers = \$750 Sample: L539126-02 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-03 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-04 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-05 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-06 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-07 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 run AK101 and V8260BTEXMED from 1 Trip Blank Sample: L539126-08 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 run AK101 and V8260BTEXMED from 1 Trip Blank Sample: L539126-09 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 MS/MSD sample Sample: L539126-10 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-11 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-12 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-13 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 Sample: L539126-14 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 run AK101 and V8260BTEXMED from 1 Trip Blank Sample: L539126-15 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 run AK101 and V8260BTEXMED from 1 Trip Blank Sample: L539126-16 Account: OASISAAK Received: 09/30/11 09:00 Due Date: 10/07/11 00:00 RPT Date: 10/11/11 09:10 run AK101 and V8260BTEXMED from 1 Trip Blank

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Trace Metals by Method 6020

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558953

Analysis Date: 10/6/2011 Analyst: 338

Instrument ID: ICPMS3 Extraction Date: 10/5/2011

Sample Numbers: L539126-04, -10, -01, -03, -05, -06, -02, -09

Method Blank

Analyte	CAS	PQL	Qualifiers
Lead	7439-92-1	< 0.00100	_

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Lead	0.0567	0.0512	90.3	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Trace Metals by Method 6020

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG559101

Analysis Date: 10/6/2011 Analyst: 338

Instrument ID: ICPMS4 Extraction Date: 10/5/2011

Sample Numbers: L539126-11, -12, -13

Method Blank

Analyte	CAS	PQL	Qualifiers
Lead	7439-92-1	< 0.00100	_

Laboratory Control Sample (LCS)

	True		Recovery	Control	0 11.5
Analyte	Value	Found	%	Limits	Qualifiers
Lead	0.0567	0.0527	92.9	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Trace Metals by Method 6020

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558953

Analysis Date: 10/6/2011 Analyst: 338

Instrument ID: ICPMS3 Extraction Date: 10/5/2011

Sample Numbers: L539126-04, -10, -01, -03, -05, -06, -02, -09

Sample Duplicate

L539126-09

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Lead	0.00095	0.0006	35	20	P1

Matrix Spike/Matrix Spike Duplicate

L539126-09 Spike % Control % Rec % Control **RPD** % Value Sample MS Rec MSD Qualifier RPD Limits Qual Rec Limits Analyte Lead 0.0567 0.00067 0.0502 87.4 0.0512 89.1 75-125 2.0 20

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Trace Metals by Method 6020

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG559101

Analysis Date: 10/6/2011 Analyst: 338

Instrument ID: ICPMS4 Extraction Date: 10/5/2011

Sample Numbers: L539126-11, -12, -13

Sample Duplicate

L539282-06

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Lead	0.00000	0.0000			_

Matrix Spike/Matrix Spike Duplicate

L539282-06 Spike % Control % Rec % Control **RPD** % Value Sample MS Rec MSD Limits Qualifier RPD Limits Qual Rec Analyte Lead 0.0567 0.00000 0.0518 91.4 0.0510 89.9 75-125 1.6 20

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126 OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558366

Analysis Date: 10/1/2011 Analyst: 366

Instrument ID: VOCGC5

Sample Numbers: L539126-09, -05, -06, -10, -15, -03, -12, -02, -08, -07, -13, -14, -11, -16, -04, -01

Method Blank

Analyte	CAS	PQL	Qualifiers
TPHGAK C6 to C10		< 0.100	_

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPHGAK C6 to C10	5.50	6.46	118	60 - 120	_

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
TPHGAK C6 to C10	5.50	6.61	120	60 - 120	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126 OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558366

Analysis Date: 10/1/2011 Analyst: 366

Instrument ID: VOCGC5

Sample Numbers: L539126-09, -05, -06, -10, -15, -03, -12, -02, -08, -07, -13, -14, -11, -16, -04, -01

Surrogate Summary

Laboratory	a,a,a-Trifluorot	oluene - FID	a,a,a-Trifluorotoluene - PID		
Sample ID	ppb	% Rec	ppb	% Rec	
LCS WG558366	223	111	227	113	
LCSD WG558366	223	112	226	113	
MS WG558366	223	112	227	114	
MSD WG558366	223	112	229	114	
MS WG558366	224	112	228	114	
MSD WG558366	224	112	228	114	
Blank WG558366	214	107	218	109	
L539126-07	215	108	220	110	
L539126-08	216	108	219	110	
L539126-14	216	108	219	110	
L539126-15	216	108	219	110	
L539126-16	216	108	220	110	
L539126-09	216	108	220	110	
L539126-01	218	109	221	111	
L539126-02	216	108	219	110	
L539126-03	216	108	220	110	
L539126-04	208	104	221	111	
L539126-05	229	115	231	116	
L539126-06	226	113	227	113	
L539126-10	221	111	227	114	
L539126-11	210	105	247 *	124	
L539126-12	217	109	223	111	
L539126-13	196	97.9	296 *	148	

a,a,a-Trifluorotoluene (FID) 200 ppb Limits - 62 - 128 a,a,a-Trifluorotoluene (PID) 200 ppb Limits - 55 - 122

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558366

Analysis Date: 10/1/2011 Analyst: 366

Instrument ID: VOCGC5

Sample Numbers: L539126-09, -05, -06, -10, -15, -03, -12, -02, -08, -07, -13, -14, -11, -16, -04, -01

Laboratory Control Sample/Laboratory Control Sample Duplicate

	•	_	%	•	%	Control	_	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
TPHGAK C6 to C10	5.50	6.46	118	6.61	120	60-120		2.2	20	

Matrix Spike/Matrix Spike Duplicate

	Spike		1	233903 %	70 20	%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
TPHGAK C6 to C10	5.50	0.0000	6.62	120	6.55	119	58-122		1.2	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126 OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558366

Analysis Date: 10/1/2011 Analyst: 366

Instrument ID: VOCGC5

Sample Numbers: L539126-09, -05, -06, -10, -15, -03, -12, -02, -08, -07, -13, -14, -11, -16, -04, -01

Internal Standard Response and Retention Time Summary

	Internal Standard	Response and Retent	tion Time Summar	'y		
FileID:1001_0)3.D	Date: 10/1/2011	Ti	me:12:27 PM		
		IS - FID		IS - PID		
	Response	RT	Response	RT		
12 Hour Std	3758978	5.96	8027779	5.96		
Upper Limit	7517956	6.46	16055558	6.46		
Lower Limit	1879489	5.46	4013889.5	5.46		
Sample ID	Response	RT	Response	RT		
Blank WG558366	3536327	5.96	8744555	5.96		
L539126-01	3499298	5.96	8663931	5.96		
L539126-02	3532555	5.96	8683512	5.96		
L539126-03	3501223	5.96	8568001	5.96		
L539126-07	3575955	5.95	9031626	5.95		
L539126-08	3545176	5.96	8911548	5.96		
L539126-09	3424400	5.96	8409789	5.96		
L539126-14	3506983	5.96	8680382	5.96		
L539126-15	3537168	5.96	8715681	5.96		
L539126-16	3483136	5.96	8558604	5.96		
LCS WG558366	3776007	5.95	8237444	5.95		
LCSD WG558366	3725102	5.96	8108142	5.96		
MS WG558366	3825873	5.95	8385573	5.95		
MS WG558366	3748679	5.96	8176660	5.96		
MSD WG558366	3735442	5.96	8154089	5.96		
MSD WG558366	3751696	5.96	8215322	5.96		

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126 OASIS Environmental - Anchorage, AK

Test: Method AK101

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558366

Analysis Date: 10/1/2011 Analyst: 366

Instrument ID: VOCGC5

Sample Numbers: L539126-09, -05, -06, -10, -15, -03, -12, -02, -08, -07, -13, -14, -11, -16, -04, -01

Internal Standard Response and Retention Time Summary

]	Internal Standard	Response and Retent	tion Time Summa	ry		
FileID:1001_24	4.D	Date: 10/1/2011	T	Time:9:10 PM IS - PID		
		IS - FID				
	Response	RT	Response	RT		
12 Hour Std	3711014	5.96	7944062	5.96		
Upper Limit	7422028	6.46	15888124	6.46		
Lower Limit	1855507	5.46	3972031	5.46		
Sample ID	Response	RT	Response	RT		
L539126-04	3644255	5.96	8489913	5.96		
L539126-05	3214432	5.96	7771382	5.96		
L539126-06	3351057	5.96	8131515	5.96		
L539126-10	3366506	5.96	8081549	5.96		
L539126-11	3651062	5.96	7740948	5.96		
L539126-12	3476743	5.96	8462467	5.96		
L539126-13	3904506	5.96	6393758	5.96		

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558436

Analysis Date: 10/3/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, -12

Method Blank

Analyte	CAS	PQL	Qualifiers
Methyl tert-butyl ether	1634-04-4	< 0.0010	
Benzene	71-43-2	< 0.0010	
1,2-Dichloroethane	107-06-2	< 0.0010	
Toluene	108-88-3	< 0.0050	
1,2-Dibromoethane	106-93-4	< 0.0010	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	
Naphthalene	91-20-3	< 0.0050	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558845

Analysis Date: 10/4/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-05, -10, -06

Method Blank

Analyte	CAS	PQL	Qualifiers
Naphthalene	91-20-3	< 0.0050	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Naphthalene	0.0250	0.0246	98.5	70 - 134	Quantiers

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Naphthalene	0.0250	0.0242	96.7	70 - 134	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558436

Analysis Date: 10/3/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, -12

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Methyl tert-butyl ether	0.0250	0.0262	105	67 - 127	
Benzene	0.0250	0.0225	90.1	72 - 119	
1,2-Dichloroethane	0.0250	0.0249	99.7	69 - 128	
Toluene	0.0250	0.0233	93.1	75 - 114	
1,2-Dibromoethane	0.0250	0.0245	98.1	78 - 124	
Ethylbenzene	0.0250	0.0257	103	77 - 124	
m&p-Xylene	0.0500	0.0518	104	76 - 123	
o-Xylene	0.0250	0.0262	105	77 - 125	
Naphthalene	0.0250	0.0235	94.1	70 - 134	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558436

Analysis Date: 10/3/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, -12

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Methyl tert-butyl ether	0.0250	0.0268	107	67 - 127	
Benzene	0.0250	0.0226	90.4	72 - 119	
1,2-Dichloroethane	0.0250	0.0249	99.6	69 - 128	
Toluene	0.0250	0.0229	91.5	75 - 114	
1,2-Dibromoethane	0.0250	0.0252	101	78 - 124	
Ethylbenzene	0.0250	0.0253	101	77 - 124	
m&p-Xylene	0.0500	0.0515	103	76 - 123	
o-Xylene	0.0250	0.0263	105	77 - 125	
Naphthalene	0.0250	0.0246	98.4	70 - 134	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558436

Analysis Date: 10/3/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, -12

Surrogate Summary

Laboratory	Dibromo	Dibromofluoromethane		Dibromofluoromethane Toluene-d8 4-B		4-Bromo	-Bromofluorobenzene		Alternate Surrogate a,a,a-Trifluorotoluene	
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec		
LCS WG558436	40.2	100	41.7	104	41.8	104	42.2	105		
LCSD WG558436	40.3	101	41.3	103	41.7	104	42.4	106		
MS WG558436	40.9	102	41.2	103	42.3	106	42.0	105		
MSD WG558436	39.7	99.4	41.3	103	41.8	104	42.9	107		
Blank WG558436	41.0	103	40.6	102	41.4	104	42.2	106		
L539126-07	41.0	103	40.8	102	41.7	104	42.4	106		
L539126-08	41.5	104	40.6	102	41.7	104	42.1	105		
L539126-14	41.0	102	40.9	102	41.3	103	41.9	105		
L539126-15	41.8	105	40.3	101	41.5	104	41.7	104		
L539126-16	42.1	105	40.2	101	40.6	101	41.7	104		
L539126-09	42.4	106	40.5	101	41.3	103	41.6	104		
L539126-01	41.4	103	41.5	104	41.3	103	42.8	107		
L539126-02	41.8	104	40.9	102	42.1	105	42.2	105		
L539126-03	41.7	104	40.5	101	41.6	104	42.4	106		
L539126-04	42.0	105	40.3	101	43.3	108	42.0	105		
L539126-05	40.6	101	41.3	103	45.6	114	42.2	106		
L539126-06	40.7	102	40.7	102	44.1	110	41.0	103		
L539126-10	40.0	100	40.8	102	42.6	106	41.1	103		
L539126-11	41.3	103	40.8	102	42.6	107	41.5	104		
L539126-12	40.4	101	40.7	102	42.4	106	41.5	104		
L539126-13	42.1	105	40.7	102	41.7	104	41.7	104		
	Dibromot	fluoromethane		40 ppb	79 - 125					
	Toluene -			40 ppb	87 - 114					
	4 D			10 1	75 120					

Dibromofluoromethane	40 ppb	79 - 125
Toluene - d8	40 ppb	87 - 114
4-Bromofluorobenzene	40 ppb	75 - 128
	Alternate Surrogate	
a,a,a-Trifluorotoluene	40 ppb	84 - 114

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558845

Analysis Date: 10/4/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-05, -10, -06

Surrogate Summary

Laboratory	Dibromo	fluoromethane	То	luene-d8	4-Bromof	luorobenzene		ite Surrogate
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
LCS WG558845	39.7	99.2	41.3	103	43.0	107	41.9	105
LCSD WG558845	39.8	99.6	42.1	105	42.5	106	42.1	105
MS WG558845	40.4	101	41.2	103	41.7	104	41.0	102
MSD WG558845	40.0	100.0	40.9	102	41.6	104	41.6	104
Blank WG558845	41.7	104	40.9	102	42.4	106	42.4	106
L539126-05	40.9	102	40.5	101	44.2	111	41.8	104
L539126-06	40.5	101	41.0	102	44.3	111	42.8	107
L539126-10	40.4	101	40.3	101	43.7	109	41.5	104
	Dibromof	fluoromethane		40 ppb	79 - 125			
	Toluene -	d8		40 ppb	87 - 114			
	4-Bromof	fluorobenzene		40 ppb	75 - 128			
			Alterna	ite Surrogat	e			
	a,a,a-Trif	luorotoluene		40 ppb	84 - 114			

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558436

Analysis Date: 10/3/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, -12

Matrix Spike/Matrix Spike Duplicate

L539126-09

	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Methyl tert-butyl ether	0.0250	0.0000	0.0265	106	0.0264	105	55-136		0.7	20	
Benzene	0.0250	0.0000	0.0237	94.6	0.0230	92.1	51-134		2.7	20	
1,2-Dichloroethane	0.0250	0.0000	0.0244	97.4	0.0241	96.5	59-135		0.9	20	
Toluene	0.0250	0.0000	0.0241	96.6	0.0237	94.6	61-126		2.0	20	
1,2-Dibromoethane	0.0250	0.0000	0.0252	101	0.0256	102	71-129		1.4	20	
Ethylbenzene	0.0250	0.0000	0.0276	111	0.0261	104	64-135		5.6	20	
m&p-Xylene	0.0500	0.0000	0.0552	110	0.0535	107	62-135		3.0	20	
o-Xylene	0.0250	0.0000	0.0278	111	0.0268	107	63-135		3.6	20	
Naphthalene	0.0250	0.0000	0.0243	97.2	0.0255	102	65-140		5.0	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558436

Analysis Date: 10/3/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, -12

Laboratory Control Sample/Laboratory Control Sample Duplicate

	-	_	%	-	%	Control	_	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Methyl tert-butyl ether	0.0250	0.0262	105	0.0268	107	67-127		1.9	20	
Benzene	0.0250	0.0225	90.1	0.0226	90.4	72-119		0.4	20	
1,2-Dichloroethane	0.0250	0.0249	99.7	0.0249	99.6	69-128		0.1	20	
Toluene	0.0250	0.0233	93.1	0.0229	91.5	75-114		1.7	20	
1,2-Dibromoethane	0.0250	0.0245	98.1	0.0252	101	78-124		2.9	20	
Ethylbenzene	0.0250	0.0257	103	0.0253	101	77-124		1.5	20	
m&p-Xylene	0.0500	0.0518	104	0.0515	103	76-123		0.6	20	
o-Xylene	0.0250	0.0262	105	0.0263	105	77-125		0.6	20	
Naphthalene	0.0250	0.0235	94.1	0.0246	98.4	70-134		4.5	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558845

Analysis Date: 10/4/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-05, -10, -06

Laboratory Control Sample/Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Naphthalene	0.0250	0.0246	98.5	0.0242	96.7	70-134		1.9	20	

Matrix Spike/Matrix Spike Duplicate

L539407-02

	Spike		_	%	0, 02	%	Control	% Rec	%	Control	RPD	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Naphthalene	0.0250	0.0010	0.0290	112	0.0296	114	65-140		2.0	20		_

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558436

Analysis Date: 10/3/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-01, -02, -03, -04, -05, -06, -07, -13, -14, -15, -16, -08, -10, -11, -09, -12

Internal Standard Response and Retention Time Summary

FileID:1003_24.D		Date: 10/3/2011			Time:5:55 PM				
	IS1		IS2		IS3		IS4		
	Response	RT	Response	RT	Response	RT	Response	RT	
12 Hour Std	237815	4.5	383507	4.84	55269	6.01	177888	8.39	
Upper Limit	475630	5	767014	5.34	110538	6.51	355776	8.89	
Lower Limit	118907.5	4	191753.5	4.34	27634.5	5.51	88944	7.89	
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT	
							T		
Blank WG558436	234909	4.5	382624	4.84	53374	6.01	170054	8.39	
L539126-01	227068	4.5	370209	4.84	52959	6.01	172262	8.39	
L539126-02	229113	4.5	373968	4.84	53185	6.01	175530	8.39	
L539126-03	229856	4.5	379364	4.84	52929	6.01	173657	8.39	
L539126-04	231941	4.5	384511	4.84	53239	6.01	177022	8.39	
L539126-05	241204	4.5	390729	4.84	57773	6.01	162190	8.39	
L539126-06	253975	4.5	421329	4.84	60401	6.01	169219	8.39	
L539126-07	232103	4.5	381046	4.84	52999	6.01	172298	8.39	
L539126-08	227400	4.5	371351	4.84	51683	6	166227	8.39	
L539126-09	229854	4.5	380133	4.84	53248	6.01	175434	8.39	
L539126-10	252215	4.5	419364	4.84	60015	6.01	193330	8.39	
L539126-11	245726	4.5	409847	4.84	56681	6.01	184552	8.39	
L539126-12	244682	4.5	408198	4.84	56127	6.01	181520	8.39	
L539126-13	237589	4.5	401375	4.84	55571	6.01	179008	8.39	
L539126-14	227330	4.5	369335	4.84	51469	6.01	170072	8.39	
L539126-15	225850	4.5	373459	4.84	51399	6	168676	8.39	
L539126-16	224438	4.5	373706	4.84	52986	6.01	167121	8.39	
LCS WG558436	241089	4.5	390762	4.84	56362	6	176027	8.39	
LCSD WG558436	244691	4.5	399131	4.84	57787	6	180168	8.39	
MS WG558436	245819	4.5	402490	4.84	56936	6	179376	8.39	
MSD WG558436	248657	4.5	400210	4.84	57740	6.01	180020	8.39	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Volatile Organic Compounds by Method 8260B

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558845

Analysis Date: 10/4/2011 Analyst: 74

Instrument ID: VOCMS30

Sample Numbers: L539126-05, -10, -06

Internal Standard Response and Retention Time Summary

FileID:1004_32.D		Date: 10/4/2011				Time:5:3	5:31 PM	
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	241952	4.5	391048	4.84	56006	6.01	176181	8.39
Upper Limit	483904	5	782096	5.34	112012	6.51	352362	8.89
Lower Limit	120976	4	195524	4.34	28003	5.51	88090.5	7.89
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG558845	223494	4.5	369037	4.84	51239	6.01	168717	8.39
L539126-05	229356	4.5	377678	4.84	51856	6.01	176148	8.39
L539126-06	235059	4.5	379351	4.84	52334	6.01	174259	8.39
L539126-10	235318	4.5	390660	4.84	54418	6	176778	8.39
LCS WG558845	241061	4.5	392342	4.84	55261	6.01	177732	8.39
LCSD WG558845	236346	4.5	378992	4.84	55041	6.01	174063	8.39
MS WG558845	237537	4.5	388966	4.84	57926	6.01	175620	8.39
MSD WG558845	238749	4.5	392788	4.84	58031	6.01	176257	8.39

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558681

Analysis Date: 10/6/2011 Analyst: 164

Instrument ID: SVGC16 Extraction Date: 10/4/2011

Sample Numbers: L539126-02, -04, -05, -10, -12, -13, -01, -03, -06, -09, -11

Method Blank

Analyte	CAS	PQL	Qualifiers
AK102 DRO C10-C25		< 0.800	_
AK103 RRO C25-C36		< 0.200	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
AK102 DRO C10-C25	1.50	0.980	65.3	75 - 125	J4
AK103 RRO C25-C36	1.50	1.04	69.0	60 - 120	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
AK102 DRO C10-C25	1.50	1.00	67.0	75 - 125	J4
AK103 RRO C25-C36	1.50	0.992	66.2	60 - 120	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558681

Analysis Date: 10/6/2011 Analyst: 164

Instrument ID: SVGC16 Extraction Date: 10/4/2011

Sample Numbers: L539126-02, -04, -05, -10, -12, -13, -01, -03, -06, -09, -11

Surrogate Summary

Laboratory	n-Triacon	n-Triacontane d62		nyl
Sample ID	ppm	% Rec	ppm	% Rec
Blank WG558681	0.0275	55.0	0.0181	90.3
LCS WG558681	0.0353	70.7		
LCSD WG558681	0.0480	96.1		
L539126-09	0.0432	86.5		
MS WG558681	0.0417	83.4		
MSD WG558681	0.0418	83.6		
L539126-01	0.0410	82.1		
L539126-02	0.0358	71.6		
L539126-03	0.0405	81.0		
L539126-04	0.0357	71.4		
L539126-05	0.0282	56.4		
L539126-06	0.0336	67.1		
L539126-10	0.0377	75.4		

n-Triacontane d62 True Value: 0.05ppm Limits: 50 - 150

o-Terphenyl True Value: 0.02ppm Limits: 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558681

Analysis Date: 10/6/2011 Analyst: 164

Instrument ID: SVGC16 Extraction Date: 10/4/2011

Sample Numbers: L539126-02, -04, -05, -10, -12, -13, -01, -03, -06, -09, -11

Surrogate Summary

Laboratory	atory n-Triacontane d62 o-Terphenyl				
Sample ID	ppm	% Rec	ppm	% Rec	
L539126-11	0.0362	72.5			
L539126-12	0.0369	73.9			
L539126-13	0.0347	69.3			
Blank WG558681			0.0141	70.4	
LCS WG558681			0.0165	82.3	
LCSD WG558681			0.0167	83.5	
L539126-09			0.0150	75.0	
MS WG558681			0.0154	76.8	
MSD WG558681			0.0154	77.2	
L539126-01			0.0155	77.4	
L539126-02			0.0143	71.7	
L539126-03			0.0137	68.5	
L539126-04			0.0127	63.7	

n-Triacontane d62 True Value: 0.05ppm Limits: 50 - 150 o-Terphenyl True Value: 0.02ppm Limits: 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126 OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558681

Analysis Date: 10/6/2011 Analyst: 164

Instrument ID: SVGC16 Extraction Date: 10/4/2011

Sample Numbers: L539126-02, -04, -05, -10, -12, -13, -01, -03, -06, -09, -11

Surrogate Summary

Laboratory	n-Triacor	n-Triacontane d62		o-Terphenyl	
Sample ID	ppm	% Rec	ppm	% Rec	
L539126-10	0.0134	67.1			
L539126-11	0.0148	73.9			
L539126-12	0.0155	77.3			
L539126-13	0.0151	75.3			
L539126-05 20x			0.000	0.0 J7	
L539126-06 20x			0.000	0.0 J7	

n-Triacontane d62 True Value: 0.05ppm Limits: 50 - 150 o-Terphenyl True Value: 0.02ppm Limits: 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: AK102 / AK103

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558681

Analysis Date: 10/6/2011 Analyst: 164

Instrument ID: SVGC16 Extraction Date: 10/4/2011

Sample Numbers: L539126-02, -04, -05, -10, -12, -13, -01, -03, -06, -09, -11

Laboratory Control Sample/Laboratory Control Sample Duplicate

	•	_	%	•	%	Control	_	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
AK102 DRO C10-C25	1.50	0.980	65.3	1.00	67.0	75-125	J4	2.5	20	_
AK103 RRO C25-C36	1.50	1.04	69.0	0.992	66.2	60-120		4.2	20	

Matrix Spike/Matrix Spike Duplicate

L539126-09 Spike % Control % Rec % Control **RPD** % Value Sample MS MSD Qualifier RPD Limits Qual Analyte Rec Rec Limits AK102 DRO C10-C25 1.50 0.240 1.07 55.3 1.11 57.7 75-125 J6 3.2 20

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558585

Analysis Date: 10/4/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/3/2011

Sample Numbers: L539126-02, -05, -03, -04, -01

Method Blank

Analyte	CAS	PQL	Qualifiers
Ethylene Dibromide	106-93-4	< 0.0000100	_
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.0000200	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558955

Analysis Date: 10/5/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/5/2011

Sample Numbers: L539126-12, -06, -09, -11, -10, -13

Method Blank

Analyte	CAS	PQL	Qualifiers
Ethylene Dibromide	106-93-4	< 0.0000100	_
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.0000200	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558585

Analysis Date: 10/4/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/3/2011

Sample Numbers: L539126-02, -05, -03, -04, -01

Laboratory Fortified Blank (LFB)

	True	Column	#1 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000248	99.2	70 - 130	
1,2-Dibromo-3-Chloropropane	0.000250	0.000253	101	70 - 130	

	True	Column	# 1 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000224	89.6	70 - 130	
1,2-Dibromo-3-Chloropropane	0.000250	0.000225	89.8	70 - 130	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558585

Analysis Date: 10/4/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/3/2011

Sample Numbers: L539126-02, -05, -03, -04, -01

Laboratory Fortified Blank (LFB)

	True	Column i	#2 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000141	56.5	70 - 130	J4
1,2-Dibromo-3-Chloropropane	0.000250	0.000099	39.9	70 - 130	J4

	True	Column	#2 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000129	51.7	70 - 130	J4
1,2-Dibromo-3-Chloropropane	0.000250	0.000076	30.7	70 - 130	J4

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558955

Analysis Date: 10/5/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/5/2011

Sample Numbers: L539126-12, -06, -09, -11, -10, -13

Laboratory Fortified Blank (LFB)

	True	Column	# 1 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000241	96.5	70 - 130	
1,2-Dibromo-3-Chloropropane	0.000250	0.000236	94.3	70 - 130	

	True	Column	# 1 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000225	90.1	70 - 130	
1,2-Dibromo-3-Chloropropane	0.000250	0.000240	95.9	70 - 130	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558955

Analysis Date: 10/5/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/5/2011

Sample Numbers: L539126-12, -06, -09, -11, -10, -13

Laboratory Fortified Blank (LFB)

	True	Column 7	#2 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000190	76.0	70 - 130	_
1,2-Dibromo-3-Chloropropane	0.000250	0.000139	55.4	70 - 130	J4

	True	Column i	#2 Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ethylene Dibromide	0.000250	0.000179	71.5	70 - 130	_
1,2-Dibromo-3-Chloropropane	0.000250	0.000142	56.9	70 - 130	J4

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558585

Analysis Date: 10/4/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/3/2011

Sample Numbers: L539126-02, -05, -03, -04, -01

Matrix Spike

L539022-03 Column #1

	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Ethylene Dibromide 1,2-Dibromo-3-	0.00010 (0.00010 (70-130 70-130				

Matrix Spike

L539022-03

	Spike		%		%	Control	% Rec	%	Control	RPD
Analyte	Value Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Ethylene Dibromide	0.00010 0.00000 (0.00006	65.9			70-130	J6			
1,2-Dibromo-3-	0.00010 0.00000 (0.00004	44.9			70-130	J6			

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558585

Analysis Date: 10/4/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/3/2011

Sample Numbers: L539126-02, -05, -03, -04, -01

Laboratory Control Sample/Laboratory Control Sample Duplicate

Column #1

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Ethylene Dibromide	0.00025	0.00024	99.2	0.00022	89.6	70-130		10	25	_
1,2-Dibromo-3-Chloropropane	0.00025	0.00025	101	0.00022	89.8	70-130		12	25	

Laboratory Control Sample/Laboratory Control Sample Duplicate

Column #2

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Ethylene Dibromide	0.00025	0.00014	56.5	0.00012	51.7	70-130	J4	8.8	25	
1,2-Dibromo-3-Chloropropane	0.00025	0.00009	39.9	0.00007	30.7	70-130	J4	26	25	J3

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No:465-015-1-4Matrix:Water - mg/LProject:NenanaEPA ID:TN00003Collection Date:9/27/2011Analytic Batch:WG558955

Analysis Date: 10/5/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/5/2011

Sample Numbers: L539126-12, -06, -09, -11, -10, -13

Matrix Spike

L539126-09 Column #1

	Spike		%		%	Control	% Rec	%	Control	RPD	
Analyte	Value Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Ethylene Dibromide 1,2-Dibromo-3-	0.00010 0.00000 (0.00010 0.00000 (_			70-130 70-130	J5				

Matrix Spike

L539126-09

	Spike	%		%	Control	% Rec	%	Control	RPD	
Analyte	Value Sample	MS Re	c MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Ethylene Dibromide	0.00010 0.00000 (0.00010 10	1		70-130					
1,2-Dibromo-3-	0.00010 0.00000 (0.00006 62	9		70-130	J6				

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L539126

OASIS Environmental - Anchorage, AK

Test: Method 504/8011

Project No: 465-015-1-4 Matrix: Water - mg/L
Project: Nenana EPA ID: TN00003
Collection Date: 9/27/2011 Analytic Batch: WG558955

Analysis Date: 10/5/2011 Analyst: 267

Instrument ID: SVGC10 Extraction Date: 10/5/2011

Sample Numbers: L539126-12, -06, -09, -11, -10, -13

Laboratory Control Sample/Laboratory Control Sample Duplicate

Column #1

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Ethylene Dibromide	0.00025	0.00024	96.5	0.00022	90.1	70-130		6.8	25	
1,2-Dibromo-3-Chloropropane	0.00025	0.00023	94.3	0.00024	95.9	70-130		1.7	25	

Laboratory Control Sample/Laboratory Control Sample Duplicate

Column #2

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Ethylene Dibromide	0.00025	0.00019	76.0	0.00017	71.5	70-130		6.2	25	
1,2-Dibromo-3-Chloropropane	0.00025			0.00014	= - 0	70-130	T 4	• •	25	

				Billing	informatio	on:			A	nalys	is/Con	<u>tainer</u>	Prese	rvativ	ę		Chain of Custody
OASIS Environmen	tal	-													G17	'2	Page 1 of 2
Anchorage, AK 825 W: 8th Ave.	1 3	₹₩Î ÷ Îï			counts I 5 W. 8th	Payable n Ave.											National States
Anchorage, AK 99501		•		An	chorage	e,AK 99501											7
											1				BK	L-A-B S-	G: I: E: N: G: E: 5
Report to: Dan Frank	•			Emai		Frank@oasi	isenviro.co	m; A		J-Blk	7	Ц			40mlAmb-HCI-BIk		ebanon Road iet, TN 37122
Project Description: Nenana					City/State Collected					р-Н(7	V		-HC	Amt		800) 767-5859
Phone: (907) 350-4897 FAX: (907) 258-4033 Collected by (print):	١,	t Project#	-1-2	1	OAS	roject# SISAAK-NE	ENANA		CI	Blank 40mlAmb-HCI-BIk	-Add HCl	INO3	Thio	40mlAmb-HCl	TB 40ml	1	615) 758-5858 615) 758-5859
A Hanson Schristians	h				P.O.#:				HΨ	nk	Ę	E-H	PZ-		<u> </u>		
Immediately Packed on Ice N Y	 	Same Day . Next Day Two Day	Lab MUS		00% 00% 50%	Date Resul STO TL Email? _N FAX? _N	LEN No X_Yes	No.	101 40mlAm	. Trip	AK102/103 1L-Amb-Add	500mlHDPE-HNO3	SV8011 40mlClr-NaThio	V8260BTEXMED	V8260BTEXMED-	Cooler #: 912	SAAK (lab use only) F74121/ P369204 LU MO CHEX 2nd Day
Sample ID	Com	p/Grab	Matrix*		Depth	Date	Time	Cntrs	AK101	AK101-	AK]	PBG	SV8	V82	V82	Remarks/Contamina	
11-NEN-MW6-02-GW	G	rab	GW		N4	9/27/11	1120	12	X		X	X	X	X			1539126-01
11-NEN-MW1-02-GW			GW			9127111	1340	112	X		X	X	X	X			-02
11-NEN-MW2-02-GW	14		GW			9/27/11	1345	12	X		X	X	X	X			-03
11-NEN-MW3-02-GW			GW			9/27/11	1530	12	X		X	X	X	X	-		- 04
11-NEN-MW4-02-61W			GW			7/27/11	1545	12	X		X	X	X	X		2.0	-05
11-NEN-20-02-GW			GW			9/27/1	2200	12	X		X/	X	Χ.	X			-06
TRIP BLANK			GW			9/27/11	1830	1X	X	X	X	X.	X	X	x		-07
TRIP BIANK			GW			9127/11	1800	1X	X	X	X	\overrightarrow{X}	X	X	X		-03
11-NEN-TP6-02-GW	1		GW		V	9/28/11	1110	12	X		X	X	X	X		MS/MSP	-09
*Matrix: SS - Soil GW - Groundwater WW -	Waste	eWater DN	V - Drinking	Water	OT - Othe	r		360						рŀ	H	Temp	
Remarks:										_				Flo	NI/	Other	
one trip blank in	1 6	aln	COL	ller	- fo	rat	otal	0+	رگ		_					Oulei	
Please anglyze	<i>u 1</i>	<u>/</u> .									50 50	36 ' 810	5819 53	14 -	204		
Relinquished by: (Signature) Relinquished by: (Signature)		Date:	/// //24 Tim	00		ved by: (Signatu ved by: (Signatu					Te	Fedi	×□Co	ourier Bott	les Received	Condition:	(lab use only)
Relinquished by. (Signature)		Date:	Tim	e.	Receive	d for lab by: (Sig	anature)					<u> </u>	-		160	COC Seal Intact:	Y N NA
						- Wal						te: 30	//	Time	5,400	pH Checked:	NCF; 59 of 61

Problem Committee Committe

٠.

			Billing informati	ion:			Ar	nalys	is/Cont	lainer.	Prese	rvativ	'e		Chain of Custody	
OASIS Environmen	ital -		A againsta	Dovable							San .				Page Zof Z	İ
Anchorage, AK 825 W. 8th Ave.			Accounts 825 W. 8													
Anchorage, AK 99501	the specification		Anchorag	e,AK 99501				:							FSC	
The second of th													Blk	L√A-B	B-C-1/E-N-C/E/S*	
Report to: Dan Frank	<i>y</i> •		Email:	Frank@oas	isenviro.co	om; A		:I-BIk	Ÿ			_	40mlAmb-HCI-Blk	I	065 Lebanon Road It. Juliet, TN 37122	
Project Description: Nenana		·	City/Sta Collecte					P-H($\frac{\Box}{\lambda}$	4		HC	Amk	I	one: (800) 767-5859	
Phone: (907) 350-4897 FAX: (907) 258-4033	Client Project #: 465-019	5-1-4		Project# SISAAK-NI	ENANA		31	Trip Blank 40mlAmb-HCl-Blk	Add Ho	NO3 1	Thio	mlAmb		i i	one: (615) 758-5858 Fax: (615) 758-5859	:
Collected by (print): HANSUN / S. C. NVISTIANS	Site/Facility ID#:		P.O.;	# :		, , ,	HC	nk 4	-qur	9-H	-Na	D 4(
Collected by (signature):	Rush? (Lab MUST	200%	<u> </u>	Its Needed		ılAml	ip Bla	1L-A	HDP	40mlClr-NaThio	XME	XME	Acctnum O	and the second of the second o	
Immediately Packed on Ice N Y	Two Day		50%	Email?N		No. of	AK101 40mlAmb HC	AK101- Tri	AK102/103 1L-Amb-Add HCl	3 500m1HDPE-HNO3	SV8011 40	8260BTEXMED 40mlAmb-HCl	V8260BTEXMED-TB	Cooler#: U	ogin T74121/ P3692 	5
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	AK	AK	AK	PBG	3AS	V82	V82	Remarks/Con	taminant Sample # (lab c	only)
11-NEN-TP2-02-6W	GRAS	GW	NA	9/28/11	1115	12	X		X	X	X	X			L539126 -	10
11-NEN-TPS-02-GW	ļ į	GW		9/28/11	1530	12	X		X	X	X	X				.11
11-NEN-TPS-02-GW 11-NEN-TPY-02-GW		GW		9/28/11	1715	12	X		X	X	X	X				12
1-NEN-MWS-0Z-GW	<u> </u>	GW		9/28///	1800	12	X		X	X	X	X				13
		. GW		, ,		12	X		X	X	X	X			and the particles	
AND THE PROPERTY OF THE PROPER		GW		-/		12	X		X	X	X	X			en en en en en en en en en en en en en e	
TRIP BLANK	<u> </u>	GW		9/28///	2030	1,5		X					X			14
TRIP BLANK		GW		9/28/11	2000	13		X					X			15
<u>tripbiank</u>	<u> </u>	EW	14	19/78/11	2100	<u> </u>		X					X	• • • • •		6
*Matrix: SS - Soil GW - Groundwater WW	- WasteWater D	W - Drinking V	Vater OT - Oth	ier								p]	н	Ter	mp	
Remarks:				0								FL	ow	Oti	her	
one trip blank	in ca	ch c	CODIE	-tor	atot	La1	OF	2	ر س م	,	- NO 14					
PHase analyze a	1/-								508 308	6 80	581° 581°	~ ^	706° 105 2	5 - 5,1651	814 7085	
Aelinovished by: (Signature)	Date: 9/19	/// Time	n)	eived by: (Signati					Sa	amples	return Ex 🗆 C	ed via	: LJ UF	S Condition:	(lab use only))
Relinquished by (Signature)	Date:	Time	Rece	eived by: (Signati	ure)				Te	79.	Ç.	Bot	tles Rece 16 O	COC Seal I		NA.
Relinquished by. (Signature)													•	pH Checked		

Cooler Receipt Form

Client: Off5/5 6 NO; 1617 Becarte 1 Cooler Received On: 4/30//1 and Opened On: 4/30//1 By: Kcvin List (40.8)	(L) all	4C.E
(Signature)	exul.	}
Temperature of cooler when opened: 3.4^{\sim} Degrees Celsius/ Was sufficient ice used: Yes \square No \square	ficient ice u	ised: Yes □ No □
What kind of packing material was used? Bubblewrap Peanuts □	Other	None
Were custody seals on outside of cooler and intact?	Yes	N _O
Were custody papers properly filled out (ink, signed, etc.)?	Þ	
Did you sign the custody papers in the appropriate place?	Ø	
Did all bottles arrive in good condition?	£	
Were all bottle labels complete? (#, date, signed, pres, etc)?	B	
Did all bottle labels and tags agree with custody papers?	\$	
Were correct bottles used for the analyses requested?	F	
Was sufficient amount of sample sent in each bottle?	A	
Were correct preservatives used?	P	
If applicable, was an observable VOA headspace present?		\ <u>\</u>
Non Conformance Generated:		

MEMORANDUM

Date: November 18, 2011

From: Melissa Pike, Associate Environmental Scientist/ Data Review, OASIS Environmental,

Inc., Anchorage, Alaska

To: Daniel Frank, Project Manager, OASIS Environmental, Inc., Anchorage, Alaska

Subject: Quality Assurance Review, September 2011 Groundwater Monitoring, Nenana

Header Area and Rail Line Site, Nenana, Alaska

Ref: OASIS Project Number 465-015 / 0147038

Laboratory quality assurance/quality control (QA/QC) data associated with the analysis of project samples has been reviewed to evaluate the usability of the analytical data generated during the September 2011 groundwater monitoring event at Crowley's Nenana Header Area and Rail Line Site in Nenana, Alaska (AK).

Water samples were shipped to ESC Lab Sciences (ESC) located in Mount. Juliet, Tennessee and reported in the following one sample delivery group (SDG), L539126. A total of two QC samples were submitted to the lab for analysis (including one duplicate sample and one trip blank). Field QC samples were collected at the acceptable frequency based on the number of samples per matrix collected. Samples were collected, reported, and shipped in general accordance with the Alaska Department of Environmental Conservation (ADEC)-approved work plan (OASIS 2011).

All data were reviewed in accordance with United States Environmental Protection Agency (USEPA) National Functional Guidelines for Organic Methods (USEPA 2008), analytical methodology and ADEC regulatory guidance documents (ADEC 2002; 2005; 2008; 2009; 2010). This data review focused on the following QC parameters and impact on data quality objectives (DQOs): usability: sample handling and chain-of-custody (CoC) documentation; holding time compliance; field QC (trip blanks, field duplicates); laboratory QC (method blanks, laboratory control samples (LCS) and LCS duplicates (LCSD), surrogates, matrix spikes (MS) and MS duplicates (MSD), method reporting limits; and completeness.

Samples were analyzed by the off-site laboratory using the following methods for the associated analytes:

- Benzene, ethylbenzene, toluene, and xylenes (BTEX); EPA Method SW8260B
- Gasoline-range organic compounds (GRO); AK Method 101
- Diesel-range organic compounds (DRO); AK102
- Residual-range organic compounds (RRO); AK103
- Lead; USEPA Method SW6020
- Ethylene Dibromide and 1,2-Dibromo-3-Chloropropane; EPA SW8011

Results that were detected at concentrations below the practical quantitation limit (PQLs) but above the method detection limits (MDLs) were flagged "J" and considered estimated. Results detected at concentrations below the MDL are considered not detected (ND).

825 W. 8th Ave., Anchorage, AK 99501 Phone: 907.258.4880 Fax: 907.258.4033 Some sample results are considered estimations due to minor QA/QC discrepancies; however, all sample results are considered usable for project objectives. The details of this review and qualification of the data are summarized in the following sections.

SAMPLE HANDLING AND CHAIN OF CUSTODY

Samples were hand delivered to FedEx in Fairbanks, AK for overnight air delivery to ESC from Nenana, AK. Five sample coolers were shipped and were delivered with custody seals in place, unbroken, and intact. CoC forms, laboratory sample receipt forms, and case narratives were reviewed to determine if sample handling impacted the integrity of the samples or the quality of the associated data. The sample cooler was received at the laboratory intact, with proper documentation, and at the specified temperature range of $4^{\circ}C \pm 2^{\circ}C$.

All samples were extracted, digested, and analyzed within the holding time criteria for the applicable analytical methods and in accordance with the work plan specifications.

FIELD QA/QC

Trip blanks that accompany the sample glassware from the ESC to the field and return to the laboratory with field samples are designed to monitor for possible contamination during collection of samples collected in the field and transport to the off-site laboratory. Collection and analysis of field duplicates also facilitates an evaluation of precision that takes into account potential variables associated with sampling procedures and laboratory analyses. For this project, trip blanks and field duplicates were submitted for analysis.

Trip Blanks

Five water trip blanks were submitted for GRO/BTEX analysis. Trip blank results were reported ND, below the PQL for all analytes.

Field Duplicates

Out of ten primary samples submitted, one field duplicate sample was collected – primary sample 11-NEN-MW4-02-GW with duplicate sample 11-NEN-MW20-02-GW. The frequency of field duplicate collection met the 10% frequency requirements specified in the work plan. Primary sample and duplicate relative percent differences (RPDs) were below ADEC established criteria of <30% between water sample results. Overall, there was adequate comparability of field duplicate results to meet project DQO.

LABORATORY QA/QC

Method Blanks

Method blanks were analyzed concurrent with an extraction batch of 20 or fewer primary samples or for each 12 hour period for SW8260B. Method blanks were analyzed at the required frequency and target analytes were ND in the blanks at concentrations above the PQLs.

Laboratory Control Samples/ Matrix Spikes

The percent recoveries (%R) and RPDs for MS/MSD and LCS/LSCD analytes were within required limits with one exception. The LCS/LCSD and MS/MSD DRO %R was below the quality assurance limits. The associated results were MW-1-02-GW, MW2-02-GW, MW3-02-GW, MW4-02-GW, MW20-02-GW, MW5-02-GW, MW6-02-GW, TP2-02-GW, TP4-02-GW, TP5-02-GW and TP6-02-GW. Results were qualified as estimated (J). All data is suitable for use.

Surrogates

System Monitoring Compounds (Surrogates) are specified for organic chromatographic analytical procedures. Surrogates are compounds similar to target analytes. These compounds are added to each sample prior to collection (soil volatile samples) or during sample preparation or extraction. Subsequently, surrogate recovery indicates overall method performance. All surrogates were within method or laboratory limits.

Method Detection Limits

The MDLs provided adequate sensitivity needed to meet project objectives and all PQLs were below ADEC cleanup levels in the project samples.

PRECISION AND ACCURACY

Precision criteria monitor analytical reproducibility. Accuracy criteria monitor agreement of measured results with "true values" established by spiking applicable samples with a known quantity of analyte or surrogate. Precision and accuracy were evaluated by comparing LCS/LCSDs, MS/MSDs and field duplicate pairs for this project. Field duplicates and MS/MSD samples were collected in accordance with Work Plan specifications. Field duplicate RPDs met applicable control limits. Recoveries and RPDs for all LCS/LSCD samples were within required limits, with the exception noted in previous sections. Data Quality Objectives of an overall 90% accuracy in QC samples were met.

COMPLETENESS

Data completeness is defined as the percentage of usable data (usable data divided by the total possible data). The overall project completeness goal is 100%:

% completeness = <u>number of valid (i.e., non-R flagged) results</u>

number of possible results

All requested analyses were performed in accordance with work plan specifications. No results were qualified as unusable (i.e., "R"). Completeness for this project is 100%.

REPRESENTATIVENESS

Data representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or environmental condition. The number and selection of samples were specified in the work plan and verified in the field to account accurately for site variations and sample matrices. The DQO for representativeness were met.

COMPARABILITY

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Data produced for this project followed applicable field sampling techniques and specific analytical methodology. The DQO for comparability was met.

DATA SUMMARY

All requested analyses were performed in accordance with work plan specifications with a few exceptions. None of the associated data is considered unusable (i.e., "R"). Completeness for this project is 100%. In general, the overall quality of the data is acceptable with a few qualifications. Overall, data quality meets DQOs established for this project and all sample results are usable for the purpose of this investigation.

REFERENCES:

- ADEC. 2002. Underground Storage Tanks Procedures Manual, November 7.
- ADEC. 2005. Draft Guidance on Developing Conceptual Site Models, March 24.
- ADEC. 2008. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control, October 9.
- ADEC. 2009. Technical Memorandum: Environmental Laboratory Data and Quality Assurance Requirements. March.
- ADEC. 2010. Laboratory Data Review Checklist. Version 2.7. January.
- OASIS Environmental, Inc. 2011. Groundwater Monitoring Work Plan; Nenana Header Area and Rail Line Site, Nenana, Alaska. September.
- USEPA. 2008. Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 540/R-94/012).

Laboratory Data Review Checklist

Completed by:	leted by: Melissa Pike				
Title:	Environmental Scientist		Date:	Nov 17, 2011	
CS Report Name:	*		Monitoring, Nenana , Nenana, Alaska	Report Date:	November 2011
Consultant Firm:	Consultant Firm: OASIS Environmental				
Laboratory Name:	aboratory Name: ESC Lab Sciences Laboratory Report N		Laboratory Report Nu	mber: L539126	
ADEC File Number:			ADEC RecKey Numb	per:	
1. <u>Laboratory</u>					
a. Did an	ADEC CS approve	ed laboratory r	receive and perform all of	f the submitted	sample analyses?
• Yes	○ No	O NA (Plea	ase explain.)	Comments:	
	-		er "network" laboratory o		d to an alternate
○ Yes	No	ONA (Pleas	se explain)	Comments:	
No samples we	re transferred or su	ibcontracted.			
2. Chain of Custody	(COC)				
a. COC infor	mation completed	, signed, and d	lated (including released/	received by)?	
• Yes	○ No	○NA (Pleas	se explain)	Comments:	
b. Correct ar	nalyses requested?				
• Yes	○ No	ONA (Ple	ase explain)	Comments:	
3. <u>Laboratory Samples</u>	e Receipt Docum	entation entation			
a. Sample/co	oler temperature d	locumented an	d within range at receipt	$(4^{\circ} \pm 2^{\circ} \text{ C})$?	
• Yes	○ No	○NA (Ple	ease explain)	Comments:	
Samples were r	Samples were received at 3.4°C.				

• Yes	○ No	ONA (Please explain)	Comments:
c. Sample con	dition docume	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	○ No	○ NA (Please explain)	Comments:
Samples arrived	in good conditi	on.	
	•	•	r example, incorrect sample contain nsufficient or missing samples, etc.
○ Yes	○ No	NA (Please explain)	Comments:
There were no dis	crepancies.		
e Data quality	y or usability at	ffected? (Please explain)	
c. Data quanty	of asability at	rected: (1 lease explain)	
			Comments:
Data quality and	usability are no	ot affected with respect to the labor	Comments:
Data quality and	usability are no	ot affected with respect to the labor	Comments: ratory sample receipt documentation
Data quality and ase Narrative	usability are no	ot affected with respect to the labor	
ase Narrative	usability are no	·	
ase Narrative	•	·	
ase Narrative a. Present and	understandable	e?	ratory sample receipt documentation
a. Present and • Yes	understandable	e?	ratory sample receipt documentation
a. Present and • Yes	understandable	e? ○ NA (Please explain)	ratory sample receipt documentation
a. Present and • Yes b. Discrepanc	understandable No ies, errors or Q No	e? ONA (Please explain) C failures identified by the lab?	catory sample receipt documentation Comments:
a. Present and • Yes b. Discrepance • Yes There are no disc	understandable No ies, errors or Q No erepancies, erro	e? ONA (Please explain) C failures identified by the lab? NA (Please explain) ors of QC failures.	catory sample receipt documentation Comments:
a. Present and • Yes b. Discrepance • Yes There are no disc	understandable No ies, errors or Q No	e? ONA (Please explain) C failures identified by the lab? NA (Please explain) ors of QC failures.	catory sample receipt documentation Comments:
a. Present and Yes b. Discrepanc Yes There are no discrepance c. Were all co	understandable No No ies, errors or Q No erepancies, errors rrective actions No	e? ONA (Please explain) C failures identified by the lab? NA (Please explain) ors of QC failures. documented? NA (Please explain)	Comments:
a. Present and • Yes b. Discrepance • Yes There are no discrepance c. Were all co • Yes	understandable No No ies, errors or Q No erepancies, errors rrective actions No	e? ONA (Please explain) C failures identified by the lab? NA (Please explain) ors of QC failures. documented? NA (Please explain)	Comments:

• Yes	○ No	○ NA (Please explain)	Comments:
b. All applica	ble holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rej	ported on a dry	weight basis?	
• Yes	○ No	○ NA (Please explain)	Comments:
d. Are the rep project?	orted PQLs les	ss than the Cleanup Level or the min	imum required detection level for t
• Yes	○ No	○ NA (Please explain)	Comments:
D 4 14	1 '1'	CC 4 10 (D1 1 1 1)	
e. Data qualit	y or usability a	affected? (Please explain)	Comments:
		iffected? (Please explain) t affected with respect to the reported	
	usability is no		
eata quality and C Samples a. Method Blan	usability is no		d sample results.
eata quality and C Samples a. Method Blan	usability is no	t affected with respect to the reported	d sample results.
eata quality and C Samples a. Method Blan i. One mo	usability is no nk ethod blank repes No	ported per matrix, analysis and 20 sar	d sample results. mples?
eata quality and C Samples a. Method Blan i. One mo	usability is no nk ethod blank repes O No	t affected with respect to the reported	d sample results. mples?

5. <u>Samples Results</u>

	○ Yes	○ No	ole(s) have data flags? If so, are the ⊙ NA (Please explain)	Comments:
lo sa	amples are a	bove the PQI		
	v. Data qu	ality or usabil	ity affected? (Please explain)	Comments:
Data	quality and	l usability is n	ot affected with respect to the repor	rted method blank results.
b.	Laboratory	Control Samp	ole/Duplicate (LCS/LCSD)	
	_		CSD reported per matrix, analysis equired per SW846)	and 20 samples? (LCS/LCSD required
	• Yes	○ No	○ NA (Please explain)	Comments:
	ii. Metals/samples?	Inorganics - C	One LCS and one sample duplicate	reported per matrix, analysis and 20
	• Yes	○ No	○ NA (Please explain)	Comments:
	project spe	ecified DQOs	ent recoveries (%R) reported and with applicable. (AK Petroleum methes-120%; all other analyses see the l	, in the second
	○ Yes	No	○ NA (Please explain)	Comments:
CS/	/LCSD and	MS/MSD DR	O %R was below the quality assura	ance limits.
	limits? An	d project spec	eified DQOs, if applicable. RPD rep	ted and less than method or laboratory borted from LCS/LCSD, MS/DMSD, a all other analyses see the laboratory Q
	• Yes	○ No	○ NA (Please explain)	Comments:
	v. If %R o	or RPD is outs	ide of acceptable limits, what samp	les are affected? Comments:

GW, TP2-02-GW, TP4-02-GW, TP5-02-GW and TP6-02-GW.

	• Yes	○ No	○ NA (Please explain)	Comments:
			ility affected? (Please explain)	Comments:
Data	quality and	l usability is s	omewhat affected. The associated re	esults are considered estimated (J).
c. S	Surrogates -	Organics On	ly	
:	i. Are surro	gate recoveri	es reported for organic analyses - fie	eld, QC and laboratory samples?
	• Yes	○ No	CNA (Please explain)	Comments:
	project spe	•	if applicable. (AK Petroleum metho	nin method or laboratory limits? And ods 50-150 %R; all other analyses see
	• Yes	○ No	○ NA (Please explain)	Comments:
	iii. Do the clearly defi	-	s with failed surrogate recoveries ha	eve data flags? If so, are the data flags Comments:
	iv. Data qu	ality or usabi	lity affected? (Use the comment box	to explain.). Comments:
1	quality and or details.	usability is af	fected with respect to the reported s	urrogate results. Refer to QAR for
<u>Soi</u>	1 i. One trip		d per matrix, analysis and for each of	Chlorinated Solvents, etc.): Water and cooler containing volatile samples?
(• Yes	○ No	○ NA (Please explain.)	Comments:
			ransport the trip blank and VOA sar plaining why must be entered below	mples clearly indicated on the COC?

iii. All resu	ılts less than F	PQL?	
• Yes	○ No	O NA (Please explain.)	Comments:
iv. If abov	ve PQL, what	samples are affected?	
			Comments:
NA. All results w	were <pql.< td=""><td></td><td></td></pql.<>		
v. Data qu	ality or usabil	ity affected? (Please explain.)	
1	Ž		Comments:
Data quality and	usability is no	ot affected with respect to the report	ted trip blank results.
e. Field Duplic	ate		
i. One field	d duplicate sub	omitted per matrix, analysis and 10 j	project samples?
• Yes	○ No	○NA (Please explain)	Comments:
primary sample	11-NEN-MW	4-02-GW with duplicate sample 11-	-NEN-MW20-02-GW
	ted blind to la		
• Yes	○ No	O NA (Please explain.)	Comments:
		ve percent differences (RPD) less the water, 50% soil)	nan specified DQOs?
	I	RPD (%) = Absolute Value of: (R_{1-})	
	1 = Sample Co 2 = Field Dupl		
• Yes	○ No	ONA (Please explain)	Comments:
iv. Data q	uality or usabi	lity affected? (Use the comment bo	x to explain why or why not.)
O Yes	No	ONA (Please explain)	Comments:
Data quality and	usability is no	ot affected with respect to the report	red field dunlicate results

Version 2.7 Page 6 of 7 01/10

1.	f. Decontamination or Equipment Blank (if applicable)					
	○ Yes	○ No	NA (Please explain)	Comments:		
All s	ampling equi	ipment was di	sposable.			
	i. All result	ts less than PQ				
	○ Yes	○ No	• NA (Please explain)	Comments:		
All sa	ampling equi	pment was dis	sposable.			
	ii. If above	PQL, what sa	mples are affected?	Comments:		
NA.						
	iii. Data qu	ality or usabil	ity affected? (Please explain.)	Comments:		
NA.	All sampling	equipment w	as disposable.			
		ualifiers (ACC	DE, AFCEE, Lab Specific, etc.)			
	○ Yes	○ No	NA (Please explain)	Comments:		
Ther	e were no ad	ditional data c	qualifiers.			

Reset Form

ATTACHMENT 5

CSM Form and Graphic

- Page Intentionally Left Blank -

Print Form

Human Health Conceptual Site Model Scoping Form

Site Name:	Crowley Marine Fuel Terminal, Heade	er Area/Rail Line Site, Nenana, Alaska				
File Number:	Fuel Header (110.38.010); Rail Line/Middle Tank Farm (110.38.011)					
rne Number:	ruel Header (110.38.010); Kall Lifle/Middle Tank Farm (110.38.011)					
Completed by:	OASIS Environmental, Inc.					
about which exposummary text abo	osure pathways should be further	the Alaska Department of Environmental Conservation (DEC) investigated during site characterization. From this information, ing exposure pathways should be submitted with the site in later reports.				
General Instruct	ions: Follow the italicized instri	uctions in each section below.				
1. General In Sources (check)	nformation: potential sources at the site)					
USTs		☐ Vehicles				
$\overline{\times}$ ASTs		☐ Landfills				
⊠ Dispensers/fu	el loading racks	☐ Transformers				
☐ Drums		∇ther: Underground pipelines				
Release Mechan	isms (check potential release me	chanisms at the site)				
⊠ Spills	•	☐ Direct discharge				
⊠ Leaks		☐ Burning				
		☐ Other:				
Impacted Media	(check potentially-impacted med	lia at the site)				
⊠ Surface soil (0	0-2 feet bgs*)	⊠ Groundwater				
⊠ Subsurface so	il (>2 feet bgs)	⊠ Surface water				
⊠ Air		☐ Biota				
⊠ Sediment		☐ Other:				
Recentors (check	k receptors that could be affected	by contamination at the site)				
Residents (ad	1	⊠ Site visitor				

⊠ Commercial or industrial worker

⊠ Subsistence harvester (i.e. gathers wild foods)

☐ Subsistence consumer (i.e. eats wild foods)

⊠ Trespasser

☐ Farmer

Other:

Recreational user

^{*} bgs - below ground surface

2.	Exposure Pathways: (The answers to the following quest exposure pathways at the site. Check each box where the	• • •	•			
a)	Direct Contact - 1. Incidental Soil Ingestion					
	Are contaminants present or potentially present in surface soil betw (Contamination at deeper depths may require evaluation on a site-s	the ground surface?				
	If the box is checked, label this pathway complete:	Complete				
	Comments:					
	Contaminants are present within 15 feet bgs (BTEX, GRO, DRO, naphthalene,	and methylnaphthalene)				
	2. Dermal Absorption of Contaminants from Soil					
	Are contaminants present or potentially present in surface soil betw (Contamination at deeper depths may require evaluation on a site s		the ground surface?			
	Can the soil contaminants permeate the skin (see Appendix B in the	e guidance document)?	\boxtimes			
	If both boxes are checked, label this pathway complete:	Complete				
	Comments:	1				
	Naphthalene was detected above ADEC SCL.					
b)	Ingestion - 1. Ingestion of Groundwater					
	Have contaminants been detected or are they expected to be detected or are contaminants expected to migrate to groundwater in the future.	$\overline{\times}$				
	Could the potentially affected groundwater be used as a current or source? Please note, only leave the box unchecked if DEC has determined water is not a currently or reasonably expected future source of drift to 18 AAC 75.350.					
	If both boxes are checked, label this pathway complete:					
	Comments:		1			
	Groundwater is not currently used for drinking water.					

2. Ingestion of Surface Water

c)

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?				
Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).				
If both boxes are checked, label this pathway complete:	Complete			
Comments:				
Surface water had not been sampled for TAH and TAqH.				
3. Ingestion of Wild and Farmed Foods				
Is the site in an area that is used or reasonably could be used for hun harvesting of wild or farmed foods?	ting, fishing, or	$\overline{\times}$		
Do the site contaminants have the potential to bioaccumulate (see Ajdocument)?	ppendix C in the guidance			
Are site contaminants located where they would have the potential to biota? (i.e. soil within the root zone for plants or burrowing depth for groundwater that could be connected to surface water, etc.)	<u> -</u>	$\overline{\times}$		
If all of the boxes are checked, label this pathway complete:	Incomplete			
Comments:				
Inhalation- 1. Inhalation of Outdoor Air				
Are contaminants present or potentially present in surface soil betwee ground surface? (Contamination at deeper depths may require evaluate evaluation)		$\overline{\times}$		
Are the contaminants in soil volatile (see Appendix D in the guida	nce document)?	$\overline{\times}$		
If both boxes are checked, label this pathway complete:	Complete			
Comments:				
BTEX, methylnaphthalene, GRO, DRO				

2. Inhalation of Indoor Air		
Are occupied buildings on the site or reasonably expected to be occupied to be in an area that could be affected by contaminant vapors? (where or vertical feet of petroleum contaminated soil or groundwater; with non-petroleum contaminted soil or groundwater; or subject to "prefer which promote easy airflow like utility conduits or rock fractures)	ithin 30 horizontal nin 100 feet of	
Are volatile compounds present in soil or groundwater (see Append document)?	ix D in the guidance	X
If both boxes are checked, label this pathway complete:	Incomplete	
Comments:		
No regularly occupied buildings within 30 feet of site.		

3.	Additional Exposure Pathways: (Although there are no definitive questions provide these exposure pathways should also be considered at each site. Use the guidelines provide determine if further evaluation of each pathway is warranted.)	
De	ermal Exposure to Contaminants in Groundwater and Surface Water	
	Dermal exposure to contaminants in groundwater and surface water may be a complete path Climate permits recreational use of waters for swimming. Climate permits exposure to groundwater during activities, such as construction. Groundwater or surface water is used for household purposes, such as bathing or cl Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be propathway.	eaning.
C	Check the box if further evaluation of this pathway is needed: omments:	$\overline{\mathbb{X}}$
sa is	roundwater is potentially used at one well for non-drinking purposes, such as hand washing. OASIS had mpled this well, not contaminants of concern are above ADEC groundwater cleanup levels. Surface water not expected to be a safe swimming water body due to the swift current. Groundwater is likely deeper an most construction activities.	
In	halation of Volatile Compounds in Tap Water	
	 Inhalation of volatile compounds in tap water may be a complete pathway if: The contaminated water is used for indoor household purposes such as showering, washing. The contaminants of concern are volatile (common volatile contaminants are listed guidance document.) 	
	Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be propathway.	otective of this
	Check the box if further evaluation of this pathway is needed:	X
C	omments:	1

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- O Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.
- O Chromium is present in soil that can be dispersed as dust particles of any size.

Generally, DEC direct contact soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because it is assumed most dust particles are incidentally ingested instead of inhaled to the lower lungs. The inhalation pathway only needs to be evaluated when very small dust particles are present (e.g., along a dirt roadway or where dusts are a nuisance). This is not true in the case of chromium. Site specific cleanup levels will need to be calculated in the event that inhalation of dust containing chromium is a complete pathway at a site.

Check the box if further evaluation of this pathway is needed:	
Comments:	
Direct Contact with Sediment	
This pathway involves people's hands being exposed to sediment, such as during some or industrial activity. People then incidentally ingest sediment from normal hand-to-me addition, dermal absorption of contaminants may be of concern if the the contaminants skin (see Appendix B in the guidance document). This type of exposure should be inveced in the community has identified subsistence or recreational activities that would resident, such as clam digging.	outh activities. In are able to permeate the stigated if:
Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed contact with sediment.	d to be protective of direct
Check the box if further evaluation of this pathway is needed:	×
Comments:	

• Other Comments (Provide other comments as necessary to support the information provided in this orm.)			

APPENDIX A

BIOACCUMULATIVE COMPOUNDS OF POTENTIAL CONCERN

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table B-1 of 18 AAC 75.341 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greather than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a $\log K_{ow}$ greater than 3.5 and inorganic compounds that are listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000).

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a \log Kow greater than 3.5 and inorganic compounds that are listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (Kow) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler, DEC recommends using a \log Kow greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS OF POTENTIAL CONCERN

A chemical is identified here as sufficiently volatile and toxic for further evaluation if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater, the molecular weight is less than 200 g/mole (EPA 2004a), and the vapor concentration of the pure component posed an incremental lifetime cancer risk greater than 10^{-6} or a non-cancer hazard quotient of 0.1, or other available scientific data indicates the chemical should be considered a volatile. Chemicals that are solid at typical soil temperatures and do not sublime are generally not considered volatile.

Acetone	Mercury (elemental)
Benzene	Methyl bromide (Bromomethane)
Bis(2-chloroethyl)ether	Methyl chloride (Chloromethane)
Bromodichloromethane	Methyl ethyl ketone (MEK)
Bromoform	Methyl isobutyl ketone (MIBK)
n-Butylbenzene	Methylene bromide
sec-Butylbenzene	Methylene chloride
tert-Buytlbenzene	1-Methylnaphthalene
Carbon disulfide	2-Methylnaphthalene
Carbon tetrachloride	Methyl tert-butyl ether (MTBE)
Chlorobenzene	Naphthalene
Chlorodibromomethane (Dibromochloromethane)	Nitrobenzene
Chloroethane	n-Nitrosodimethylamine
Chloroform	n-Propylbenzene
2-Chlorophenol	Styrene
1,2-Dichlorobenzene	1,1,2,2-Tetrachlorethane
1,3-Dichlorobenzene	Tetrachloroethylene (PCE)
1,4-Dichlorobenzene	Toluene

Dichlorodifluoromethane	1,2,4-Trichlorobenzene
1,1-Dichloroethane	1,1,1-Trichloroethane
1,2-Dichloroethane	1,1,2-Trichloroethane
1,1-Dichloroethylene	Trichloroethane
cis-1,2-Dichloroethylene	2,4,6-Trichlorophenol
trans-1,2-Dichloroethylene	1,2,3-Trichloropropane
1,2-Dichloropropane	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)
1,3-Dichloropropane	Trichlorofluoromethane (Freon-11)
Ethylbenzene	1,2,4-Trimethylbenzene
Ethylene dibromide (1,2-Dibromoethane)	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene
Ethylene dibromide (1,2-Dibromoethane)	1,3,5-Trimethylbenzene
Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene	1,3,5-Trimethylbenzene Vinyl acetate
Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene Hexachloro-1,3-butadiene	1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride (Chloroethene)
Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene Hexachloro-1,3-butadiene Hexachlorocyclopentadiene	1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride (Chloroethene) Xylenes (total)

Notes:

- 1. Bolded chemicals should be investigated as volatile compounds when petroleum is present. If fuel containing additives (e.g., 1,2-dichloroethane, ethylene dibromide, methyl *tert*-butyl ether) were spilled, these chemicals should also be investigated.
- 2. If a chemical is not on this list, and not in Tables B of 18 AAC 75.345, the chemical has not been evaluated for volatility. Contact the ADEC risk assessor to determine if the chemical is volatile.
- 3. At this time, ADEC does not require evaluation of petroleum ranges GRO, DRO, or RRO for the indoor air inhalation (vapor intrusion) pathway.

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Nenana Fuel Terminal, Header Area/Rail Line, Nenana, Alaska

Crowley Marine Services

Site:

<u>Instructions</u>: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land

Current & Future Receptors exposure pathway: Enter "C" for current receptors "F" for future receptors, "C/F" for both current and dentify the receptors potentially affected by each future receptors, or "I" for insignificant exposure. Revised, 10/01/2010 Other Subsistence consumers Farmers or subsistence harvesters C/F C/F C/F |C/F |C/F |C/F C/F C/F C/F Sile visitors, trespassers, or recreational users C/F C/F C/F C/F C/F C/F C/F C/F C/F |C/F |C/F C/F C/F C/F Commercial or industrial workers C/F F C/F Residents (Adults or children) use controls when describing pathways. Dermal Absorption of Contaminants in Surface Water Dermal Absorption of Contaminants in Groundwater ✓ Inhalation of Volatile Compounds in Tap Water Inhalation of Volatile Compounds in Tap Water Dermal Absorption of Contaminants from Soil The pathways identified in this column **must Exposure Pathway/Route** Check all pathways that could be complete. agree with Sections 2 and 3 of the Human Ingestion of Wild or Farmed Foods Health CSM Scoping Form ✓ Direct Contact with Sediment ✓ Ingestion of Surface Water Inhalation of Fugitive Dust Inhalation of Fugitive Dust ✓ Ingestion of Groundwater ✓ Inhalation of Outdoor Air ✓ Incidental Soil Ingestion Inhalation of Indoor Air **Exposure Media** media identified in (2). ✓ surface water ✓ groundwater Check all exposure sediment biota ල soil aj N $\overline{\ }$ > check biota check groundwater) check soil check surface water check groundwater check biota check surface wate check groundwate check sedimer For each medium identified in (1), follow the mechanisms. Check additional media under (1) if the media acts as a secondary source. **Transport Mechanisms** top arrow <u>and</u> check possible transport Completed By: OASIS Environmental, Inc. ✓ Resuspension, runoff, or erosion Uptake by plants or animals Uptake by plants or animals Uptake by plants or animals [Uptake by plants or animals [Uptake by plants or animals Flow to surface water body Direct release to subsurface soil Migration to groundwater Direct release to surface water Migration to groundwater Direct release to groundwater ✓ Migration to subsurface Direct release to surface soil Date Completed: November 2011 Direct release to sediment Runoff or erosion Flow to sediment | Volatilization | Sedimentation Volatilization Volatilization Volatilization Other (list): Other (list): Other (list): Other (list): Other (list): could be directly affected Check the media that > Subsurface (2-15 ft bgs) (0-2 ft bgs) Media Sediment by the release. Surface Surface Ground-Water water Soil $oxed{\sum}$ \geq

ATTACHMENT 6

September 2010 Figure 4

- Page Intentionally Left Blank -

