Final

Fort Richardson Operable Unit E Armored Vehicle Maintenance Area Groundwater Monitoring Report December 2008

Prepared for

United States Army, Alaska, Directorate of Public Works

Under Contract to

U.S. Army Corps of Engineers Contract No. W911KB-08-D-0005, Task Order 001

December 2010

Geotechnical & Environmental Consultants

5430 Fairbanks Street Ste. 3 Anchorage, Alaska 99518 (907) 561-2120

Contents

	tion breviations	Page iii
Exe	cutive Summary	ES-1
1.	Introduction	1-1
	1.1 Project Overview	1 - 1
	1.2 Site Location and Description	1-1
	1.3 Geology and Hydrogeology	1-2
	1.4 Previous Site Investigations and Site History	1-2
2.	Groundwater Quality Monitoring Program	2-1
	2.1 Regulatory Requirements	2-1
	2.2 Monitoring Locations	2-1
	2.3 Monitoring Frequency	2-2
	2.4 Groundwater Monitoring Parameters	2-2
3.	Field Activities	3-1
	3.1 Groundwater Elevations	3-1
	3.2 Groundwater Sample Collection	3-1
	3.3 Quality Assurance and Quality Control	3-2
	3.4 Investigation-Derived Waste Handling and Disposal	3-2
4.	Results	4-1
	4.1 Analytical Methods	4-1
	4.2 Analytical Results	4-1
	4.2.1 Volatile Organic Compounds	4-1
	4.2.2 Biodegradation Parameters	4-2
	4.2.3 Dissolved Aluminum and Arsenic	4-4
	4.3 Analysis of Trends	4-4
	4.3.1 PCE	4-4
	4.3.2 Other Detected VOCs	4-7
	4.3.3 Dissolved Aluminum	4-7
	4.3.4 Dissolved Arsenic	4-8
	4.3.5 Biodegradation Parameters	4-8
5.	Conclusions	5-1
6.	References	6-1

Appendices

- A Field Data Collection Forms A1 – Water Sampling Logs A2 – Field Log
- B Chemical Data Quality Review
 - B1 Data Quality Evaluation Report
 - B2 Validated Analytical Results
 - B3 ADEC Laboratory Data Review Checklists
 - B4 Sample Receipts and Chain-of-Custody Forms (Raw Data Packages electronic file only)
 - B5 COELT (electronic file only)

Figures

1-1	Location Map, OUE AVMA	
	Site Locations Map, OUE AVMA	
	Conceptual Cross-Sectional Model of the AVMA Site	
	Groundwater Monitoring Locations and Results	
	PCE Concentration Trends for Wells within the Extent	
	of Contamination	

Tables

1-1	Timeline of Past Activities at OUE AVMA	1-9
2-1	OUE Maximum Contaminant Levels	2-2
2-2	Groundwater Quality Monitoring Parameters	2-5
3-1	Monitoring Well Information Summary and December 2008	
	Groundwater Conditions	
4-1	Contaminants that Exceed MCLs and Their Locations at the AVMA,	
	December 2008	4-4

Abbreviations

AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
ARAR	applicable or relevant and appropriate requirement
AVMA	Armored Vehicle Maintenance Area
°C	degrees Celsius
CFR	Code of Federal Regulations
COC	chemical of concern
CRREL	Cold Regions Research and Engineering Laboratory
DCE	dichloroethene
DPW	U.S. Army Directorate of Public Works
EPA	U.S. Environmental Protection Agency
J	estimated quantity
MCL	maximum contaminant level
mg/L	milligrams per liter
M-K	Mann-Kendall
MS	matrix spike
MSD	matrix spike duplicate
MSL	mean sea level
µg/L	micrograms per liter
OUE	Operable Unit E
PCE	tetrachloroethene
POL	petroleum, oil, and lubricant
RI	remedial investigation
ROD	Record of Decision
TCE	trichloroethene
USACE	U.S. Army Corps of Engineers
VC	vinyl chloride
VOC	volatile organic compound

This report presents the results of the December 2008 groundwater monitoring event conducted at the Armored Vehicle Maintenance Area (AVMA) of Operable Unit E (OUE), Fort Richardson, Alaska, and a brief summary of historical data trends. The December 2008 monitoring task was completed by Shannon & Wilson for the U.S. Army Directorate of Public Works (DPW) under contract to the U.S. Army Corps of Engineers (USACE) in accordance with the scope of work for Contract W911KB-08-D-0005, Task Order 001.

Ten wells were sampled between December 2 and 5, 2008 at the AVMA, including six wells within the extent of contamination, three downgradient wells, and one cross-gradient background well. Samples were analyzed for volatile organic compounds (VOCs), aluminum, arsenic, and several natural attenuation parameters including iron, manganese, sulfate, methane, and total nitrate/nitrite.

Based on historical and current data, through the December 2008 monitoring event, the following conclusions can be made:

- Tetrachloroethene (PCE) is the chemical of concern (COC) at the AVMA and was detected in five of the six wells within the known extent of contamination at concentrations above the maximum contaminant level (MCL) documented in the OUE Record of Decision (ROD). The extent of PCE contaminated groundwater appears to be stable and contained; samples from the three downgradient wells continue to have trace or non-detect results. The one site well that showed a statistically significant trend (increasing) in the PCE-affected area is well AP-4342. No other trends are apparent from the historical monitoring data.
- The results of biodegradation parameters and the absence of PCE breakdown products continue to suggest that biodegradation of PCE may be limited at the AVMA and that the primary mechanism of natural attenuation at the site continues to be dilution. Monitoring of natural attenuation parameters is required by the ROD. However, for sites where biodegradation is not playing a key role in the attenuation process, monitoring and evaluation of biodegradation parameters provide little value toward the understanding of the site contaminant conditions.

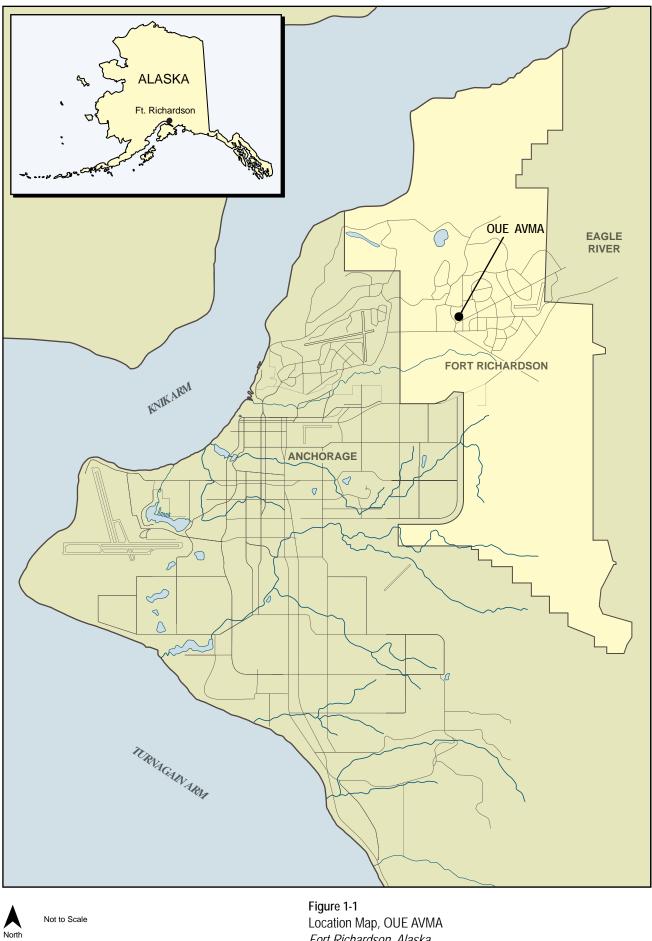
1.1 Project Overview

This report presents the results of the December 2008 groundwater monitoring event conducted at the Armored Vehicle Maintenance Area (AVMA) of Operable Unit E (OUE), Fort Richardson, Alaska (Figure 1-1) and a brief summary of historical data. The purpose of this report is to present the results of groundwater monitoring at the AVMA, completed under the Fort Richardson Groundwater Monitoring Program. The Groundwater Monitoring Program is part of the selected remedy required by the OUE Record of Decision (ROD), which was signed in September 2005. This December 2008 monitoring task was completed by Shannon & Wilson for the U.S. Army Directorate of Public Works (DPW) under contract to the U.S. Army Corps of Engineers (USACE) in accordance with the scope of work for Contract W911KB-08-D-0005, Task Order 001.

This report contains historical data collected at OUE since 2002 for wells included in the December 2008 monitoring event and describes the sampling effort conducted by Shannon & Wilson between December 2 and 5, 2008. Although some groundwater sampling occurred before 2002, the data were not readily available for inclusion in this report. Older data are included in the Fort Richardson Administrative Record and are available from the information repositories at the UAA/APU Consortium Library and the DPW Environmental Resource Department on Fort Richardson. The data presented are compared to cleanup level goals established by the ROD.

1.2 Site Location and Description

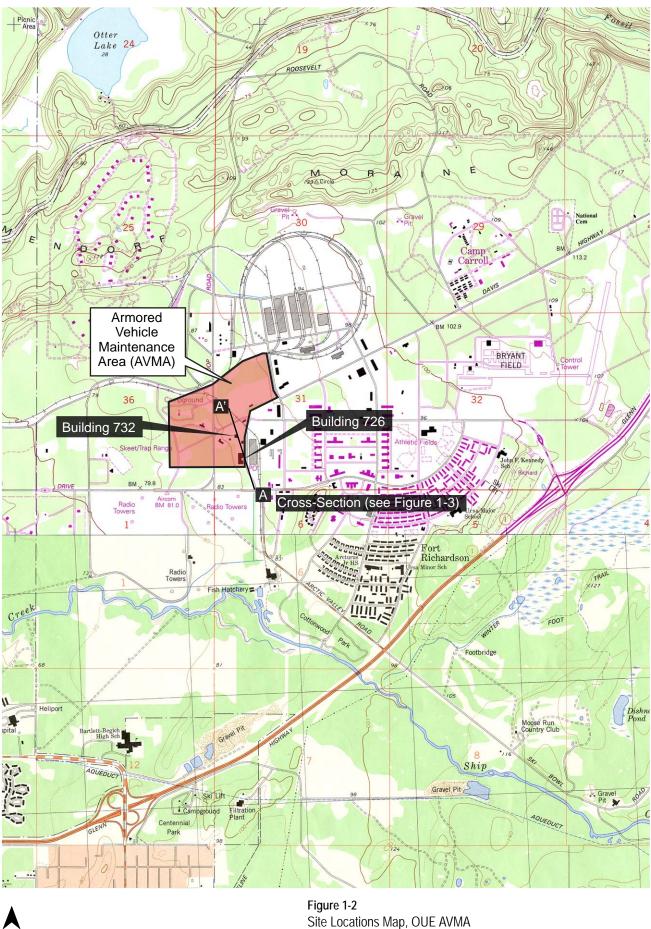
Fort Richardson occupies approximately 61,500 acres of land slightly northeast of Anchorage, Alaska (Figure 1-1). This report focuses on the AVMA of OUE, which is located in the western region of the cantonment area of Fort Richardson where an area with soil and groundwater affected by tetrachloroethene (PCE) exists (Figures 1-2 and 1-3). The AVMA was originally identified as a potential source area from historical aerial photographs, which indicated areas of buried debris, drainage ditches near the former vehicle wash area, and other identified ditches; however, data collected during the 2002 remedial investigation (RI) (CH2M HILL, 2004) indicated that these areas were not the source area for the contaminated groundwater in the vicinity of the site. A single main source of groundwater contamination has not been identified. Data collected during the OUE RI strongly suggests that PCE contamination in groundwater at the AVMA likely resulted from vehicle maintenance and laundry operations conducted at Buildings 732 and 726, respectively. Historical data show that PCE was used at the laundry facility and low levels of PCE were detected in soils at the Building 726 site during the Operable Unit E remedial investigation (RI) (ENSR, 1998).


1.3 Geology and Hydrogeology

Fort Richardson is located within the Cook Inlet-Susitna Lowland Section of the Coastal Trough physiographic province of Alaska. The majority of Fort Richardson lies less than 500 feet above mean sea level (MSL), with local relief varying between 50 feet MSL and 250 feet MSL. The geology of Fort Richardson is primarily the result of past glacial events and consists of the Elmendorf moraine, alluvial fans, and glacial outwash deposits. The hydrogeology of Fort Richardson, although extremely variable across the installation, is composed of three primary aquifer systems-a shallow perched (unconfined) system, a locally semi-confined system, and a deeper confined system. The upper confining unit tapers out near the Davis Highway where the shallow perched and locally semi-confined aquifers merge (Figure 1-3). Shallow perched groundwater of limited volume and extent exists in localized areas beneath the AVMA site.

The 10 wells monitored during the December 2008 monitoring event are screened within either the shallow perched system or downgradient of the confluence of the perched and locally semi-confined systems, where the locally semi-confined system becomes unconfined.

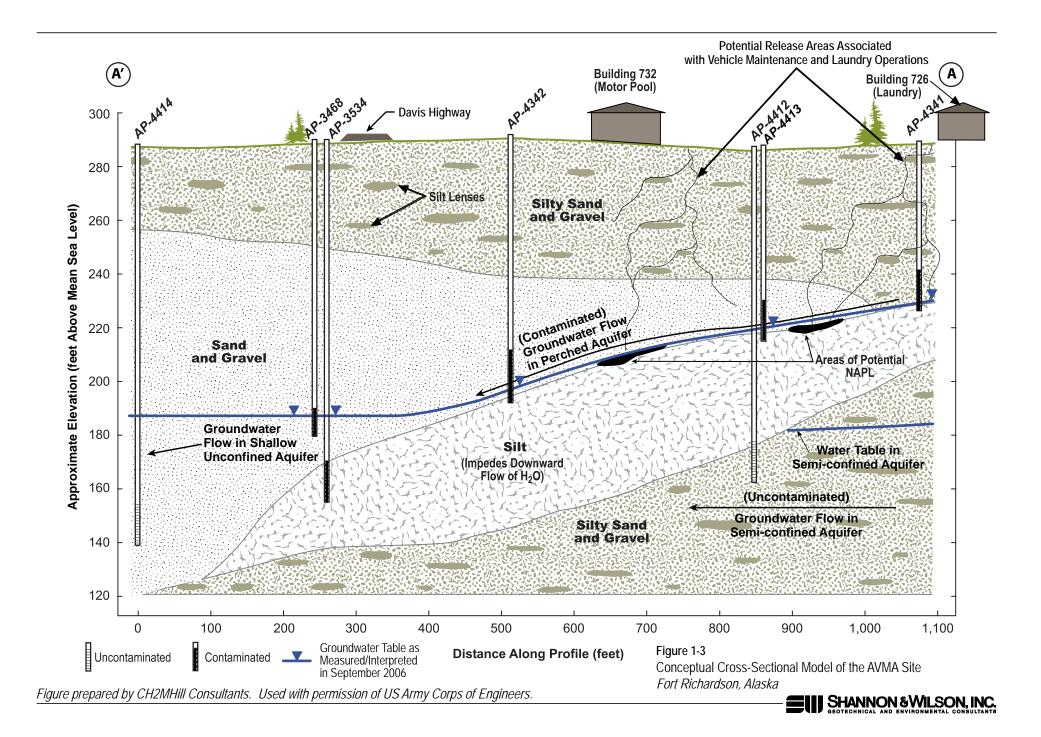
1.4 Previous Site Investigations and Site History


Since the 1950s, many investigations and activities have been conducted at the OUE AVMA. These events are summarized in Table 1-1.

Location Map, OUE AVMA Fort Richardson, Alaska

SHANNON & WILSON, INC.

FIGURE 1-1 (BACK)



Site Locations Map, OUE AVMA Fort Richardson, Alaska

North

SHANNON & WILSON, INC.

FIGURE 1-2 (BACK)

FIGURE 1-3 (BACK)

TABLE 1-1

Year	Organization/Company	Activity
1950-1966 ^a	Fort Richardson Army Post	Low-level armored vehicle maintenance, oil and other waste material disposal
1990	USACE	Underground storage tank remediation sampling program
1993	Harding Lawson Assoc.	Site assessment at UST location
1994	ENSR	Field investigation
1996	Ecology and Environment Inc.	Background data analysis, soil borings, and groundwater sampling
2000	CRREL	Geophysical investigation
2001	CRREL	Historic aerial photography analysis and geophysical investigation
2001	USACE	Monitoring well installation, soil borings, groundwater sampling
2002-2003	CH2M HILL	Remedial Investigation and Risk Assessment
2003	CH2M HILL	Annual Groundwater Monitoring
2004	CH2M HILL	Feasibility Study
2004-2005	Satori Group Inc.	Annual Groundwater Monitoring
2005	CH2M HILL, Army, ADEC, EPA	Record of Decision signed
2006-2007	CH2M Hill	Semiannual Groundwater Monitoring
2008	Shannon & Wilson	Annual Groundwater Monitoring

Timeline of Past Activities at OUE AVMA

^aIt is undetermined when the facility was no longer used as a maintenance area Source: *Preliminary Site Characterization Report* (CH2M HILL, 2003)

ADEC = Alaska Department of Environmental Conservation CRREL = Cold Regions Research and Engineering Laboratory EPA = U.S. Environmental Protection Agency

USACE = U.S. Army Corps of Engineers

SECTION 2 Groundwater Quality Monitoring Program

According to the selected remedy presented in the ROD for the AVMA of OUE (CH2M HILL, 2005), natural attenuation, institutional controls, and groundwater monitoring are the most appropriate and feasible actions for addressing the PCE-affected groundwater at the site. The role of groundwater monitoring is to evaluate the effectiveness of natural attenuation as the appropriate method for reducing contaminant concentrations to levels less than cleanup goals. The current groundwater monitoring schedule, established by the ROD, includes annual monitoring for 4 years (through 2009), with a subsequent reduction in frequency if contaminant levels are declining. Regular monitoring allows detection of trends that could trigger changes to the remediation process for the site or support site closure. Two specific trend benchmarks were established by the ROD:

- Monitoring will be discontinued when at least three subsequent sampling events indicate that chemical of concern (COC) concentrations have consistently dropped below maximum contaminant levels (MCLs).
- If monitoring results for any two consecutive sampling events indicate that contaminant levels are increasing, the U.S. Environmental Protection Agency (EPA), Alaska Department of Environmental Conservation (ADEC), and U.S. Army will reevaluate the remedy.

2.1 Regulatory Requirements

The ROD established Federal Safe Drinking Water Act (Title 40, Parts 141 and 143, of the *Code of Federal Regulations* [CFR]) and Alaska Drinking Water Regulations ([Title 18, Chapter 80, of the *Alaska Administrative Code* [AAC]) as the sources for applicable or relevant and appropriate requirements (ARARs) for MCLs at OUE. In addition, the ROD identified one COC, PCE, which was detected in OUE groundwater at levels that pose a potential excessive lifetime cancer risk. Table 2-1 includes the COC and other analytes that have been historically detected in samples from one or more wells at concentrations greater than their MCLs. Complete analytical results are available in Appendix B.

2.2 Monitoring Locations

Ten wells were sampled in or near the AVMA during the December 2008 monitoring event. Well locations are provided in Figure 2-1 and include six wells within the area of PCE contamination, three downgradient wells, and one cross-gradient well for background.

TABLE 2-1	
OUE Maximum Contaminant Levels	S

	Cleanup Levels (µg/L)		
Analyte	EPA 40 CFR 141/143	ADEC 18 AAC 80	
Chemical of Concern			
Tetrachloroethene (PCE)	5	5	
Other Detected Analytes			
Aluminum	50-200	NA	
Arsenic	10	10	

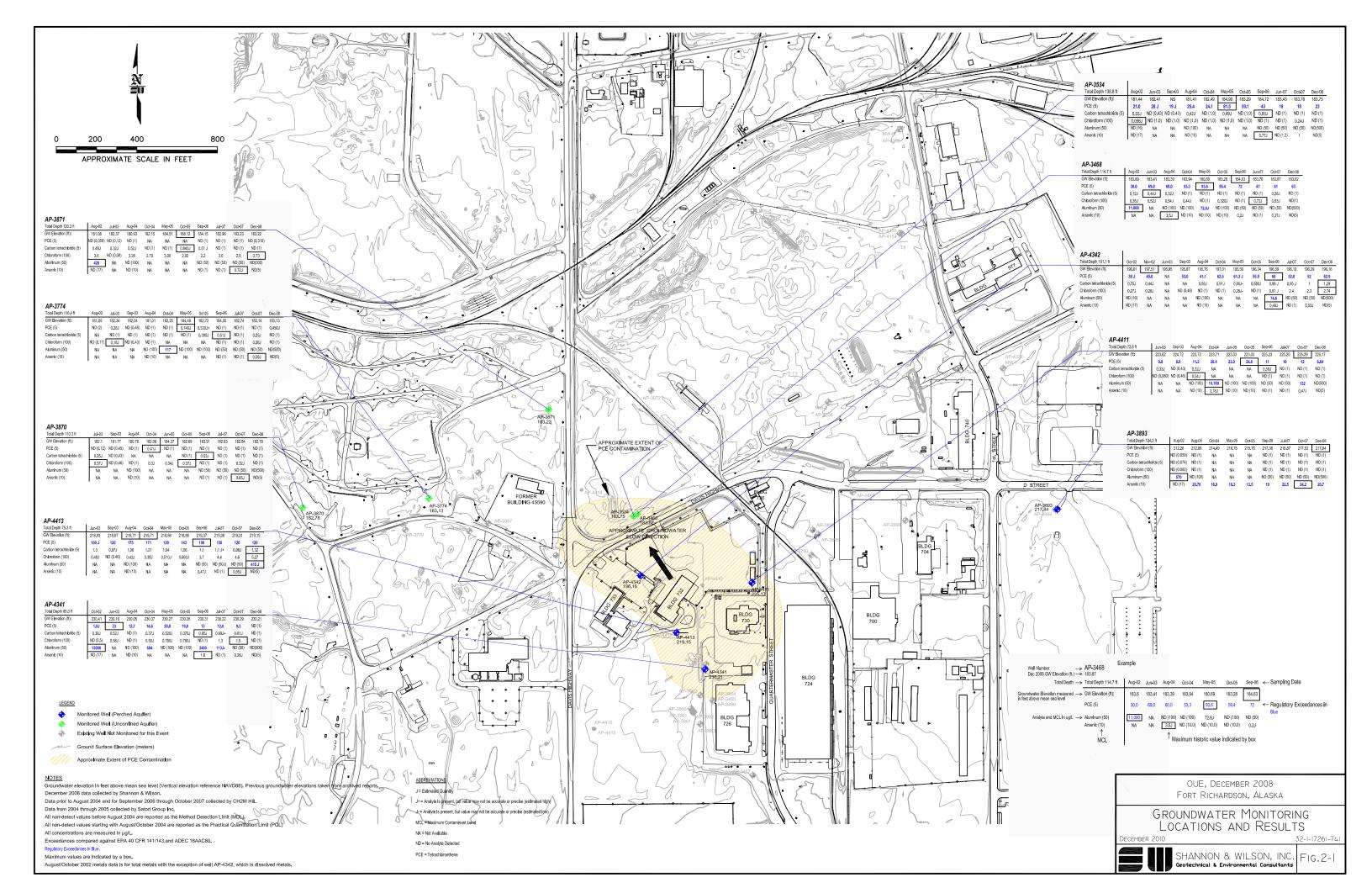
AAC = Alaska Administrative Code

ADEC = Alaska Department of Environmental Conservation

CFR = Code of Federal Regulations

EPA = U.S. Environmental Protection Agency

µg/L = micrograms per liter


NA = not applicable

2.3 Monitoring Frequency

Well sampling is required annually by the ROD, but is currently being conducted twice per year per Contract W911KB-08-D-0005, Task Order 001, typically in the spring and fall. Depending on weather conditions, site accessibility, and other site activities, sampling dates may differ from year to year.

2.4 Groundwater Monitoring Parameters

Currently, volatile organic compound (VOC) concentrations in groundwater are being monitored for comparison to the ARAR MCLs listed in Table 2-1. In addition, under the current scope of work, groundwater also was evaluated for arsenic, aluminum, and a number of parameters that are indicators of biodegradation, which is a component of the natural attenuation process. The OUE monitoring parameters are identified in Table 2-2. December 2008 groundwater sampling forms and analytical data tables are included in Appendices A and B, respectively.

FIGURE 2-1 BACK

Purging Parameters ^a	Equipment
Water level	Water-level indicator
Conductivity	Calibrated YSI 556 field meter
Temperature	Calibrated YSI 556 field meter
Dissolved oxygen	Calibrated YSI 556 field meter
рН	Calibrated YSI 556 field meter
Oxidation Reduction Potential (ORP)	Calibrated YSI 556 field meter
Turbidity	Calibrated Hach Turbidimeter
Parameters	Analytical Method
Volatile organic compounds	SW8260
Sulfate	EPA 300.0
Nitrate/nitrite	SW9056
Light gases (methane)	RSK 175
Dissolved metals (aluminum, arsenic, iron, and manganese)	SW6020

TABLE 2-2 Groundwater Quality Monitoring Parameters

^aAnalyzed in the field at the time of sample collection

Field Activities

3.1 Groundwater Elevations

Table 3-1 provides the depths to water, groundwater elevations, and the aquifers sampled. Measurements were taken on December 2, 2008. As discussed in Section 1.3, the ten wells sampled during the December 2008 monitoring event were screened within either the shallow perched system or downgradient of the confluence of the perched and locally semiconfined systems where the locally semi-confined system becomes unconfined (Figure 1-3).

Monitoring Well	Total Well Depth (ft) ^{a, b}	Top of Casing Elevation (ft) ^C	Depth to Water (ft) ^a	Groundwater Elevation (feet above mean sea level) ^C	Aquifer Sampled
AP-3468	114.7	293.38	109.56	183.82	Shallow, unconfined
AP-3534	138.8	293.05	109.30	183.75	Shallow, unconfined
AP-3774	116.4	289.46	106.33	183.13	Shallow, unconfined
AP-3870	110.3	281.92	99.14	182.78	Shallow, unconfined
AP-3871	120.3	293.46	110.24	183.22	Shallow, unconfined
AP-3893	124.2	307.49	89.65	217.84	Perched
AP-4341	68.0	294.23	64.02	230.21	Perched
AP-4342	101.1	293.36	97.20	196.16	Perched
AP-4411	72.8	292.82	67.65	225.17	Perched
AP-4413	75.3	291.36	72.21	219.15	Perched

TABLE 3-1

Monitoring Well Information Summary and December 2008 Groundwater Conditions

^aAll depths are provided in feet below top of casing.

^bTotal well depths were measured during the December 2008 water level survey of OUE wells.

^CTop of casing elevations used in groundwater elevation calculation from 2003 well survey except AP-3870, which has been back-calculated from the *Fort Richardson Operable Unit E Armored Vehicle Maintenance Area Spring 2007 Groundwater Monitoring Report* (CH2M HILL, 2007a).

3.2 Groundwater Sample Collection

Groundwater samples were collected using low-flow techniques in accordance with procedures outlined in the CH2M HILL *Quality Assurance Program Plan* (2002), *Supplemental Quality Assurance Project Plan for Fort Richardson Groundwater Sampling at Operable Unit B, Operable Unit E, and Building 762* (CH2M HILL 2007c), *Sampling and Analysis Plan for*

Groundwater Monitoring at Fort Richardson Operable Unit B, Operable Unit E, and Building 762 (CH2M HILL, 2007b), and Sampling and Analysis Plan Technical Memorandum, Groundwater Monitoring Fort Richardson, Alaska (Shannon & Wilson, 2008) whenever possible. During this sampling event, eight of the ten wells were sampled using the low-flow method. Depth to water stability could not be achieved for Wells AP-4341 and AP-4411 during purging; therefore, these wells were purged dry three times. Wells AP-4341 and AP-4411 were allowed to recharge to at least 80 percent of pre-purge volume between purge cycles and prior to sampling.

3.3 Quality Assurance and Quality Control

Four types of quality assurance samples were collected to ensure data quality: trip blanks, equipment blanks, field duplicates, and matrix spike (MS)/matrix spike duplicate (MSD). For this sampling event, one field duplicate, one MS/MSD sample set, four equipment blanks and trip blanks were submitted to the laboratory for analysis. The analytical Data Quality Evaluation Report and ADEC Laboratory Data Review Checklists are included in Appendix B.

3.4 Investigation-Derived Waste Handling and Disposal

All water generated from well purging and equipment decontamination was collected in a 55-gallon drum and transported to the environmental staging facility located at the petroleum, oil, and lubricants (POL)/dewatering facility near the corner of Warehouse Street and Loop Road for treatment and disposal.

section 4 **Results**

This section discusses the analytical results for each analysis completed.

4.1 Analytical Methods

The parameters listed in Table 2-2 are divided into the following categories for discussion:

- VOCs
- Dissolved metals (aluminum and arsenic)
- Biodegradation parameters
 - Dissolved oxygen
 - Sulfate
 - Nitrate/nitrite
 - Methane
 - Dissolved metals (iron and manganese)

Figure 2-1 presents historical results for the COCs included in Table 2-1 for groundwater underlying the AVMA. Groundwater elevations and concentrations of carbon tetrachloride and chloroform are also included in Figure 2-1. The following subsections summarize the analytical results for each category of analysis. Complete validated analytical laboratory results are provided in Appendix B-2, and raw analytical data packages have been included electronically.

4.2 Analytical Results

4.2.1 Volatile Organic Compounds

VOCs detected during sampling of the 10 wells in December 2008 are as follows:

• PCE was detected in samples from six wells (AP-3468, AP-3534, AP-3774, AP-4342, AP-4411, and AP-4413) with concentrations ranging from 0.450 J micrograms per liter (μ g/L) in AP-3774 to 120 μ g/L in AP-4413 (Figure 2-1). Each PCE detection was above the MCL (except AP-3774) and occurred in wells that have histories of PCE contamination. Three of these wells (AP-4342, AP-4411, and AP-4413) are screened across the perched aquifer, directly below the AVMA. Three wells (AP-3468, AP-3534, an d AP-3774) are screened downgradient from these three wells, at the confluence, or downgradient, of the perched aquifer system and the locally semi-confined system (Figure 1-3). PCE was not detected in two of the wells located downgradient of the extent of contamination, AP-3870 and AP-3871; the cross-gradient well, AP-3893; or AP-4341. Well AP-4341 is located in the estimated PCE contamination plume and has had detections of PCE during each of the previous nine sampling events conducted at the site.

- Biodegradation of PCE in groundwater sometimes occurs naturally by the process of reductive dechlorination and produces intermediate daughter products including trichloroethene (TCE), 1,1-dichloroethene (DCE), cis- and trans-dichloroethene (cis-DCE/trans-DCE), and vinyl chloride (VC). None of these PCE degradation daughter products were detected in the wells sampled during the December 2008 sampling event.
- Carbon tetrachloride was detected in two wells (AP-4342 and AP-4413) at concentrations of 1.29 μ g/L and 1.32 μ g/L, respectively. Both tetrachloride concentrations detected were below the MCL of 5 μ g/L and occurred in wells that have histories of carbon tetrachloride detections. Both of these wells are screened across the perched aquifer, directly below the AVMA.
- Chloroform was detected in three of the ten on-site wells, with concentrations ranging from 2.74 μ g/L (AP-4342) to 5.27 μ g/L (AP-4413); all below the ADEC MCL in 18 AAC 75 of 100 μ g/L.
- Acetone was detected at a concentration of 3.94 J μ g/L in the sample from Well AP-4411, which is less than the ADEC MCL in 18 AAC 75 of 33,000 μ g/L.

4.2.2 Biodegradation Parameters

The evaluation of geochemical parameters provides a brief look at indicators of biodegradation of chlorinated compounds (such as PCE) to determine whether they provide weight-of-evidence support for the existence of possible biodegradation pathways at the AVMA. These pathways could be an effective route of natural attenuation for PCE under certain biochemical conditions, namely anaerobic environments in the presence of petroleum products. During the 2002-2003 RI (CH2M HILL, 2004), petroleum compounds, including diesel-range organics, residual-range organics, and gasoline-range organics, were detected sporadically at low levels within the extent of contamination. These compounds are no longer monitored at the AVMA.

The following evaluation is based on a comparison of geochemical concentrations within the extent of contamination, which includes wellsAP-3468, AP-3534, AP-4341, AP-4342, AP-4411, and AP-4413, and with the cross-gradient background well AP-3893. Relative to background conditions, dissolved oxygen, nitrate, and sulfate concentrations are expected to be lower; dissolved iron, dissolved manganese, and methane are expected to be higher, within the extent of contamination if biodegradation is occurring. The following sections provide an evaluation of the geochemical results.

Dissolved Oxygen

Dissolved oxygen is the most energetically favorable electron acceptor for biodegradation and is used strictly under aerobic conditions. However, for PCE biodegradation to occur anaerobic conditions must exist and a less energetically favorable electron acceptor must be utilized (i.e. nitrate/nitrate, dissolved iron, or manganese). Dissolved oxygen is detrimental to the strictly anaerobic bacteria that are responsible for reductive dechlorination of longerchain chlorinated compounds such as PCE; thus, anaerobic or anoxic conditions (dissolved oxygen concentrations less than 2 milligrams per liter [mg/L]) are required for PCE biodegradation. The presence of petroleum hydrocarbons also benefits this process. The lowest detected dissolved oxygen concentration detected in an AVMA monitoring well was 1.27 mg/L, which was recorded in background well AP-3893. Dissolved oxygen concentrations within the area of contaminated groundwater ranged from 6.88 to 11.39 mg/L, which indicates that the plume is aerobic.

Complete dissolved oxygen results are included on the Water Sampling Logs in Appendix A.

Total Nitrate/Nitrite

Following dissolved oxygen, nitrate is the second most energetically favorable electron acceptor and can be utilized by facultative anaerobic bacteria. Standard laboratory analysis for nitrate includes analysis of the total nitrate and nitrite due to the short reaction life of nitrite which chemically converts to nitrate rapidly under natural conditions. As a result, nitrite concentrations are typically very low or non-detect in groundwater.

Conditions at the AVMA are currently aerobic; as a result, evidence of denitrification in nitrate levels was not expected. Nitrate was detected in all wells but one (AP-3893) at concentrations ranging from 0.75 to 3.22 mg/L. Nitrate was not detected in background well AP-3893. Nitrite was not detected in the samples. Because the ratios of nitrate vs. nitrite are necessary to determine if denitrification is taking place, these results do not provide support that nitrate/nitrite play a key role in in-situ biodegradation at this site.

Dissolved Iron and Manganese

Sample AP-4413 had a dissolved iron concentration of 684 J μ g/L during the December 2008 AVMA sampling event. Each of the remaining project samples did not have detections of dissolved iron. There is no clear pattern of iron being used as an electron acceptor evident at the site.

Dissolved manganese was detected in each of the plume wells (with the exception of Well AP-3534) at concentrations between 2.37 μ g/L and 26.3 μ g/L and in non-plume wells at concentrations between 1.86 J μ g/L and 6.92 μ g/L. Background well AP-3893 had the highest concentration at the site of 42.3 μ g/L.

These results indicate that biodegradation is not occurring through the anaerobic iron and manganese reduction pathways.

Sulfate

Sulfate was detected in all 10 wells, and concentrations ranged from 21 mg/L to an estimated 39 mg/L. The concentration in background well AP-3893 was the lowest at the site. In general, sulfate concentrations across the area of contaminated groundwater ranged from 23 to a 29 mg/L. These results indicate that sulfate is not being utilized as an electron acceptor for in-situ biodegradation within the area of contaminated groundwater.

Methane

Methane was not detected in any wells during the December 2008 AVMA sampling event. This finding strongly indicates that the anaerobic biodegradation pathway of methanogenesis is not occurring.

4.2.3 Dissolved Aluminum and Arsenic

Dissolved aluminum and arsenic were detected as follows:

- Aluminum was detected in one well (AP-4413) at a concentration of 415 J μ g/L.
- Arsenic was only detected in background well AP-3893 at a concentration of 20.7 μg/L.

Table 4-1 summarizes the contaminants found in OUE groundwater that exceed MCLs.

ΤA	BL	Ε	4-1

Contaminants that Exceed MCLs and	Thoir Locations at the	AV/MA Octobor 2007
CONtaminants that EACEEU MOLS and		AVIVIA, OCIUDEI 2007

Contaminant	Cleanup Level ^a (µg/L)	Exceedance Locations
PCE	5	AP-3468 (63.3 μg/L), AP-3534 (22.8 μg/L), AP-4342 (62.9 μg/L), AP-4411 (6.6 μg/L), AP-4413 (120 μg/L)
Aluminum	50	AP-4413 (415 J μg/L)
Arsenic ^b	10	AP-3893 (20.7 μg/L)

^aCleanup levels from 18 AAC 80 and 40 CFR 141/143.

^bArsenic levels are believed to be attributable to natural sources.

µg/L = micrograms per liter

4.3 Analysis of Trends

4.3.1 PCE

To examine trends in PCE concentrations I n wells within the approximate extent of PCE contamination (Figure 2-1), past results are presented graphically for individual wells AP-3468, AP-3534, AP-4341, AP-4342, AP-4411, and AP-4413 in Figure 4-1.

Available historic data for these six wells includes 6 to 7 years of results. To date, PCE concentrations have tended to oscillate within two standard deviations of the mean for each well, with very few exceptions. Overall increasing or decreasing trends are not definitively apparent. Individual well concentrations throughout the area have varied by anywhere from less than 1 to more than 90 μ g/L between events. The most recent results appear to fall within the normal range of variability. One exception is that for the first time PCE was not detected in the sample from AP-4341. Definitive trends in PCE concentrations at the AVMA may become apparent over time as monitoring continues and more data are collected.

A Mann-Kendall (M-K) statistical analysis was performed to help statistically identify PCE concentration trends at the AVMA in wells within the extent of contamination. M-K analysis is designed to indicate whether an increasing or decreasing trend is present, and to give a percentage that represents the statistical confidence interval of the increase or decrease. A confidence interval of 90 percent or above is considered a "significant" indication that a trend exists; however, it does not indicate the magnitude of the increase or decrease.

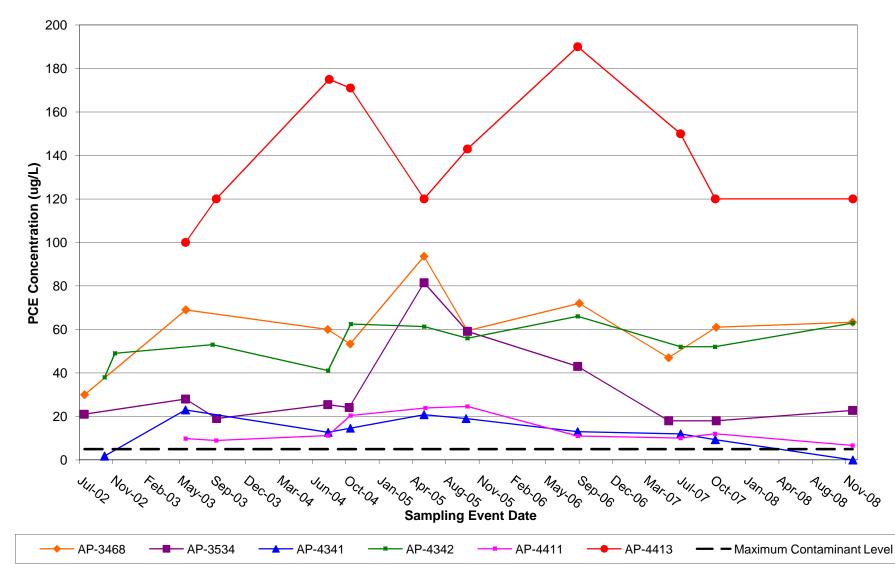


Figure 4-1: PCE Concentration Trends for Wells within the Extent of Contamination

FIGURE 4-1 BACK

According to the M-K analysis, an increasing PCE concentration trend exists at well AP-4342. None of the results for the five other wells within the extent of contamination show a significant trend for PCE. The October 2007 (CH2M Hill, 2007d) report presented that well AP-4342 did not show a statistically significant increasing trend in PCE concentration; however, with additional datum from the December 2008 sampling event, a statistically significant increase in PCE concentration is present in well AP-4342.

The use of a "seasonal" version of the M-K analysis was also considered. This version of M-K analysis is useful in identifying trends when seasonal variations (often related to fluctuations in groundwater levels) are affecting concentrations. At the AVMA, however, groundwater elevations are not highly variable and do not show strong seasonal variations. In addition, sampling has not been conducted on a consistent seasonal schedule, which makes sorting results into "seasons" difficult. As a result, the use of a seasonal M-K analysis was determined to not be useful at this site.

Samples from the three downgradient wells (AP-3774, AP-3870, and AP-3871) and crossgradient well AP-3893 have historically produced PCE results ranging from non-detect to occasional low-level concentrations that are less than the MCL of 5 μ g/L. Except for the concentration detected in well AP-3774 (0.450 J μ g/L), PCE was not detected in the 3 downgradient and 1 cross-gradient wells. These data suggest that the extent of contamination continues to remain relatively unchanged.

4.3.2 Other Detected VOCs

VOC breakdown products (TCE, DCE, cis-DCE, trans-DCE, and VC) of PCE biodegradation were not detected, indicating that these compounds do not exist in the AVMA wells within the extent of PCE contamination. This continued trend suggests that biodegradation is not occurring through reductive dechlorination pathways.

The other detected VOCs, including carbon tetrachloride and chloroform, continue to exist in AVMA wells both within and outside the extent of PCE contamination. These analytes are frequently detected at concentrations less than established MCLs and tend to fluctuate between non-detect and several μ g/L (see Figure 2-1). These compounds are not breakdown products of PCE and appear to exist at the site independently from PCE contamination. Chloroform is a daughter product of anaerobic carbon tetrachloride degradation, which suggests that anaerobic degradation of carbon tetrachloride may be occurring on site. No significant increasing or decreasing trends are evident for these compounds.

4.3.3 Dissolved Aluminum

Available historical aluminum results are shown in Figure 2-1. Historical aluminum levels at OUE have sporadically exceeded the MCL of 50 μ g/L at 8 of the 10 wells. Results from the December 2008 sampling event included one estimated exceedance at well AP-4413. Dramatic differences in concentrations often exist from year to year within individual wells. For example, overall results from well AP-4411 have ranged from non-detect to 15,100 μ g/L. These differences in observed results may be the outcome of some of the earlier sampling results being reported as total metals results; whereas more recent results (2004 to the present) have been reported as only dissolved metals. The aluminum concentrations in the AVMA wells is currently considered to be representative of background levels.

4.3.4 Dissolved Arsenic

Arsenic levels are also believed to be the result of natural background levels in the area. These detections continue to remain less than the MCL ($10 \mu g/L$) within the area of PCE contamination. The highest levels of arsenic are consistently found in cross-gradient well AP-3893, where they range from 13.5 $\mu g/L$ to 24.2 $\mu g/L$, which may indicate that these concentrations represent background levels.

4.3.5 Biodegradation Parameters

Natural attenuation parameter results for dissolved oxygen, iron, methane, sulfate, and nitrate/nitrite were similar to previous results (CH2M HILL, 2006; CH2M HILL, 2007a, CH2M HILL 2007d). It has been determined that the concentrations of these parameters, along with the lack of PCE daughter products and historically low presence of petroleum products, suggest that biodegradation is not a major component of natural attenuation at the site. The primary natural attenuation pathway for PCE at the AVMA is considered to be dilution.

SECTION 5 Conclusions

Conclusions based on historical and current data through the December 2008 monitoring event are as follows:

- PCE is the only established COC for OUE AVMA. The area of the extent of PCE contamination appears to be stable and contained; samples from the three downgradient wells continue to have non-detect or trace results. No significant increasing or decreasing trends in the PCE-affected area are statistically apparent from the historical monitoring data, except well AP-4342, which has shown a concentration increase with the addition of the December 2008 datum. For the first time PCE was not detected in the sample from AP-4341, which is located within the groundwater contamination plume.
- The results of biodegradation parameters and the near-absence of PCE breakdown products continue to suggest that biodegradation of PCE may be limited at the AVMA and that the primary mechanism of natural attenuation at the site continues to be dilution. For sites where biodegradation is not playing a key role in the attenuation process, monitoring and evaluation of biodegradation parameters provides very little value towards the understanding of the site contaminant conditions. Detected concentrations of other VOCs (such as chloroform), which are considered to be independent of the PCE contamination, continue to exist at low levels (below MCLs) and do not demonstrate increasing or decreasing trends.
- Results of dissolved aluminum at well AP-4413 exceeded MCLs in December 2008. The source of aluminum, which is detected sporadically in some of the OUE AVMA wells, is currently believed to be natural (background).
- Arsenic levels in groundwater at the AVMA remain below MCLs within the area of PCE-affected groundwater and are believed to be associated with natural sources. The only MCL exceedance for arsenic continues to be from cross-gradient well AP-3893.

References

CH2M HILL. 2008. Fort Richardson Operable Unit E, Armored Vehicle Maintenance Area, Groundwater Monitoring Report, October 2007.

CH2M HILL. 2007a. Fort Richardson Operable Unit E, Armored Vehicle Maintenance Area, Spring 2007 Groundwater Monitoring Report.

CH2M HILL. 2007b. Sampling and Analysis Plan for Groundwater Monitoring at Fort Richardson *Operable Unit B, Operable Unit E, and Building 762.*

CH2M HILL. 2007c. Supplemental Quality Assurance Project Plan for Fort Richardson Groundwater Sampling at Operable Unit B, Operable Unit E, and Building 762.

CH2M HILL. 2007d. Fort Richardson Operable Unit E, Armored Vehicle Maintenance Area, October 2007 Groundwater Monitoring Report.

CH2M HILL. 2005, August. Final Record of Decision, Operable Unit E, Fort Richardson, Anchorage, Alaska.

CH2M HILL. 2004, April. Remedial Investigation Report, Operable Unit E, Fort Richardson, Alaska.

CH2M HILL. 2003. Preliminary Site Characterization Report.

CH2M HILL. 2002. Quality Assurance Program Plan, Fort Richardson, Anchorage, Alaska.

ENSR. 1998. *Final RI/FS Operable Unit D, Fort Richardson, Alaska.* Vol. Ia, Ecological Risk Assessment.

Shannon & Wilson, Inc. 2008. Sampling and Analysis Plan Technical Memorandum, Groundwater Monitoring, Fort Richardson, Alaska

State of Alaska Department of Environmental Conservation, 2006, 18 AAC 80, Drinking Water.

United States Environmental Protection Agency, 2001, 40 CFR Part 141, National Primary Drinking Water Regulations.

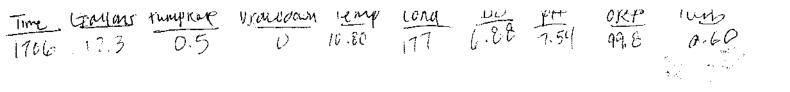
United States Environmental Protection Agency, 2001, 40 CFR Part 142, National Secondary Drinking Water Regulations.

Appendix A Field Data Collection Forms

Appendix A1 Water Sampling Logs

e geter				- 17:	
		HTRW Ta	sk Order 001, Contra	ct W911KB-08-	D-0005
	WATER SA	MPLING LOG			л. •
Shannon & Wilson, Inc.		hardson, Alaska Weat	Orveasi	~25"F	(12/4/00)
Job No: 32-1- 17102	Location: Fort Ric	hardson. Alaska Weat	her: DIECAST	10°F (12	12/025
Site: <u>OUE</u> ,	Well No.: AP - 3	396-3			<u> </u>
Date: 12/4(00	Time Started: 191	the Time	Completed: 19	50 <u> </u>	
ł	WELL INSPECTI	ON OBSERVATIO	NS		
Pad Condition (cracked, heaved,	subsided): Coul				
Casing Condition (bent, dented,					_
Well Identification (labeled with			2		_
Well locking cap and lock prese Field Screening with PID: (it:Yes 년 No CI Notes	<u> Cap Crieke</u> e	1		-
Field Screening with FID:	INITIAL GROUND	WATED I EVEL D			
Time of Depth Measurement:	11:45	_ Date of Depth Measure		08	
Measuring Point (MP): Top of I		rotective Casing / Other:	(
Diameter of Casing:	2" Think	Well Screen Interval:	unkni	wr	
Total Depth of Well Below MP:	114.72'	Product Thickness, if n	oted: <u>none</u>		
Depth-to-Water (DTW) Below I	AP: 109 561/100	1.42			
Water Column in Well: Gallons per foot:	0.16 0.16	2 (Total Depth of Well B	clow MP - DTW B	elow MP)	
Gallons in Well:	0.04/0.85	- (Water Column in Well	x Gallons per foot	ì	
		_	n cuniche per 1000	,	
12/11/20		NG DATA	IA.	13	
Date Purged:	$\underline{\qquad \text{Time Started: } \underline{34}}$		Completed: 1/ ()		
Gallons Purged:	-3,4	(Gallons in Well x 4) Depth of Pump Placeme	nt 112.20		
Maximum Drawdown:	109.75	Pump Rate:	238.7	CHZ	
Well Purged Dry:	Yes I No K	(If yes, use Well Purged	l Dry Log)		
Time: Gallons: Pump Rate (gal/min):	Drawdown Temp:	Sp. Cond.: DO: (mS/cm) (mg/I	•	ORP: (mV)	Turb: (ntu)
1823 0.5 0.17	.0.5 7.90	571 9.44	+ 1.05	69.7	700
1825 0.1 C.IT	0.26 7.78	571 9.2	6 1.03	76.7	525
1828 0.51 0.22	0.21 7.76	<u>511 6.9</u>	6 7.02	79.3	394
1832 11 0.22	0.20 1.01	510 9.9	10 <u>7.00</u>	<u> 73:3</u>	270
1835 1.3 0.11	0.20 8.20	570 8.7	<u>E</u> <u>1.01</u>	73.4	186
18:39 1.5 0.22	0.20 8:48	571 8,9	3 7.00	12.5	1401
1843 1.7 0.22	0 20 8 54	574 3.9	2 7.02	<u>439</u>	113
IN MAD	<u>SAMPL</u>	ING DATA	,		
Odor: NONE	ando it	Color: Si-turbid			-
	DAMA-11	Time / Date: $\frac{1918}{j}$	12/4/00		-
QC Sample Designation: Evacuation Method: Grundfor S	hmersible Pump / Other	Time / Date:	· · · · · · · · · · · · · · · · · · ·		-
Sampling Method: Grundfos Sul		······			
Remarks: <u>NTW = 109.4</u>		4/08			
Ned to Ada 3	the 3, feet of he	p m			
Sampling Personnel:		cethainas			
	ELL CASING VOLUMES JLAR SPACE VOLUME (G				
	LANDING VOLUME (O		₩VII U.Z.J		
	.1 1				

i.


TIME	Gallons	Primplat	Vinceivan	leingo	Cond	<u>ilo</u>	PH C	FP TL	is bidity
9:48	29	0.22	0.20	9 11	579			61.4	\$4.8
(451	2.1	022	0-20	9-27	573				62.3
1654	23	0.22	02	9.20	578			57.1	-
1034			0.20	9.21	573	8.87	7.00	59.5	41.4
1857	2.5	0,22		877		583	7.07	54.9	39-1
1905	- 2.1	0 26	0 20	3.94			7-04		215
1900	8 29	024	0.26		, i	-			22.8
1912		0,26	0,20	8.4	3 517	0,96	1.0.0	1. 16.1	2-

32-1-17261 December 4,2008 Well AP-3468-0LE

			sk Order 001, Contrac		
	WATER S	AMPLING LOG chardson, Alaska Wea 3534 Time		0-45	- 112/4/02)
Shannon & Wilson, Inc.		<u></u>	(vericust		
Job No: $32-1-\frac{1716}{2}$	Location: Fort Ri	chardson Alaska Wea	ther ONPICAST	~0°7 (17	2/2/00
Site: (VE	Well No.: $1/2^{-2}$	<u>Cilatusoli, Alaska</u> wea ふくふし			<u> </u>
Date: 12/14/08	Time Started:	Z- Time	Completed:	47	
			· · · · · · · · · · · · · · · · · · ·	-+ /	_
	WELL INSPECT	ION OBSERVATIO	<u>NS</u>		
Pad Condition (cracked, heaved, s					
Casing Condition (bent, dented, p					
Well Identification (labeled with v	well numbers): <u>les</u>				
Well locking cap and lock present	: Yes 🖬 No 🖾 Note	s: No rap X	- .		
Field Screening with PID:					
	-	WATER LEVEL D.		~	
Time of Depth Measurement:	11.40	Date of Depth Measure	ment: $\frac{12}{2}$	/ 5	
Measuring Point (MP): Top of P Diameter of Casing:	2."	Well Screen Interval:	ununa	<u></u>	
Total Depth of Well Below MP:	138 751	wen screen interval. Product Thickness, if n			
Depth-to-Water (DTW) Below M		11000001 1110Kilcos, 11 ii	<u>1474</u>	·	. <u></u>
Water Column in Well;	24.45	— (Total Depth of Well B	elow MP - DTW Be	low MP)	
Gallons per foot:	0.16			,	
Gallons in Well:	4.71	(Water Column in Wel	l x Gallons per foot)		
	PURG	ING DATA			
Date Purged: 2/4/09:			Completed: [72]	5	
Four Well Volumes:	/8.84	(Gallons in Well x 4)	Completed. 1 1.		
Gallons Purged:	12.3	Depth of Pump Placem	ent: 153.7	5	
Maximum Drawdown:	169.63	Pump Rate:		0	
Well Purged Dry:	Yes D No 🕅	(If yes, use Well Purge	d Dry Log)		
Time: Gallons: Pump Rate _ (gal /min):	Drawdown Temp: (feet): (°C)	: Sp. Cond.: DO (mS/cm) (mg/		ORP: (mV)	Turb: (atu)
1309 15 05	0 k.11		5 11.74	-38.0	132
1320 2.7 05	5 9.62	349 418	9 1306	-74 3	334/
$\frac{1320}{1003}$ $\frac{2.7}{3.9}$ $\frac{0.5}{0.5}$	5.56	248 53	5 7.35	202.5	526
<u>1611</u> 5.1 0.5	0 7.4	7 348 4.9	35 5.99	151.8	3,28
1619 6.3 0.5	0 9.74	7 350 4.5	7 7.46	141.1	1.28
1627 7.5 0.5	<u> </u>	<u>340 8.5</u>	6 7.54	125,7	1.43
1631 0.7 0.5	<u> </u>	<u> </u>	<u>5 <u>1.52</u></u>	120,3	0.76
The start of the	< 10 72 S AMD	LING DATA	5 7.53	164.0	071 1-93
1657 h 1 05	$O = \frac{5}{5}$	178	indars.		1-03
Odor: <u>NCLU</u>	CAULD-(1)		Icrless		
Sample Designation: (1) Fr	CAWA-10	Time / Date:7 [29]	12/4/00		
Evacuation Method: Grundfos Su		$\frac{1}{100}$ Time 7 Date: $\frac{1}{100}$	<u> </u>		
Sampling Method: Grundfos Sub					
		of their me laco	1. or in the	Jointon / June	
Remarks: 114 probe -readi mistograf to plant for	NYS WHE MAUSIN	-d 6) 1667 3 1	is if muck to i	WI MAT	
Sampling Personnet:	Cordiuns + 100 1	how Is a start of the	from the for	<u>y</u>	
W	ELL CASING VOLUMES	S (GAL/FT): 2" = 0.16 4	l" = 0.65		
ANNU	LAR SPACE VOLUME (GAL/FT): 4" casing and 2	" well = 0.23		
× Placed n	ew coup on w	Ul 12/4/00.			
		t τ τi κ.Ω			

in a with a set.

· · ·..

32-1-17261 12/4/08 Well AP-3534 - OVE

e. .

		HTRW Task O	rder 001, Contract W911KB-08	8-D-0005
	WATER S	AMPLING LOG		12/2/2
Shannon & Wilson, Inc.			15°F overcast (Sam	pling -193/08)
Job No: <u>32-1-17162</u>	Location: Fort Ri	ichardson, Alaska Weather:	TF Correast OT	10-12/2/08)
Site: UUE	Well No.: $AP - 3^{\circ}$	774)
Date: $12/3/08$	_ Time Started:	Time Con	mpleted: 1150	<u> </u>
	WELL INSPECT	ION OBSERVATIONS		
Pad Condition (cracked, heaved,				
Casing Condition (bent, dented, J				
Well Identification (labeled with				
Well locking cap and lock presen	it: Yes 🗹 No 🗖 Note	es:		_
Field Screening with PID:). O ppin	· · · · · · · · · · · · · · · · · · ·		
	INITIAL GROUNI	WATER LEVEL DATA	Δ.,,	
Time of Depth Measurement:	020	Date of Depth Measuremen	12/2/08	
Measuring Point (MP): (Top of P	VC Casing / Top of Steel			
Diameter of Casing:	171 ·	Well Screen Interval:	unknown	
Total Depth of Well Below MP:	116.40	Product Thickness, if noted:	aone	······································
Depth-to-Water (DTW) Below M		_		
Water Column in Well:	$\frac{10.01}{0.16}$	(Total Depth of Well Below	MP - DTW Below MP)	
Gallons per foot: Gallons in Well:		-		
Ganotis III well:	1.61	(Water Column in Well x G	allons per foot)	
		ING DATA		
Date Purged: 19/3/08	_ Time Started:	Time Com	pleted: 1050	_
Four Well Volumes:	6.44	(Gallons in Well x 4)	SIN ILAN	
Gallons Purged:	4.0	Depth of Pump Placement:	111.40	-
Maximum Drawdown: Well Purged Dry:	106.66	Pump Rate:	0-3 240 K HZ	<u>-</u>
	Yes 🖸 No 🗆	(If yes, use Well Purged Dry	0.	
Time: Gallons: Pump Rate (gal/min):	Drawdown Temp: (feet): (*C)	Sp. Cond.: DO: (mS/cm) (mg/L)	pH: ORP: (S.U.) (mV)	Turb: (ntu)
1 <u>1015</u> <u>(5</u> 03	6 5.0		6.95 220.9	S C 4
$\overline{1022}$ $\overline{1}$ $\overline{122}$	0 1.08	0.491 5.91	7.02 131.1	73 2
調 1020 +モデリ.5 0.5	0 9.61	0,440 5,21	1.03 109.5	1.0.2
<u>1000 1.0</u>	0 10.56	0.491 0.97	1.04 .105.8	le 2. 2.
1033 23 03	<u> </u>	0.492 4.50	705 100.4	545
1036 2.9 0.3	0 11.15	3492- 4.44	7.5 12.9	<u></u>
10-10 3.3 0.5	<u>C. 11.02</u>	2:492 4.161	4.05 860	1.4 (c
10.114 3.12 0.3	0 1100	6.491 4.57	7.15 \$25	61.4
1046 415 22	0 <u>SAMPL</u> 1.00	<u>ING DATA</u> 4.52	-7,03 -79.9	55.6
Odor: Yone	-	$-$ color: $\underline{-}$		_
• • • • • •	ERCAWA-C4		2/3/08	
	<u>ene</u>	Time / Date:		_
Evacuation Method: Grundfos Sul				
Sampling Method: Grundfos Subn				
Remarks: Univers fle, J-3	WITH MIN MINAN	<u></u>	·	-
Sampling Personnel, Thanka	Surdlund - Lap	Phone		-
		$\frac{\text{Thomas}}{(\text{GAL/FT}): 2"=0.16 4"=0.16}$	<u> </u>	
ANNUI	LAR SPACE VOLUMES	GAL/FT): 2" = 0.16 4" = 0. GAL/FT): 4" casing and 2" well	.05 ≠ 0.23	
		,		

بالموافعة والمتحافظ الإسرائية فالمحمد والمعاملة والمعادية

WATER SAMPLING LOG

Job No: Site: Date:	<u>32-1-171621716</u> OUE 12/2/08		<u>Richardson, Alaska</u> Weath <u>3870</u> ち Time C	er: <u>-5 </u>	<u>s+_</u>
	<i>;</i>	WELL INSDEC			
Pad Con	dition (cracked, heaved,		<u>FION OBSERVATION</u>	<u>s</u>	
Casing C	Condition (bent, dented, p	aint condition: 300 d		· · · · · · · · · · · · · · · · · · ·	
Well Ide	ntification (labeled with	well numbers): $\mathcal{A} \in \mathcal{S}$			<u> </u>
Well loci	king cap and lock presen	t: Yes 🕅 No 🗆 No	tes: Blac de V DUMP PIES	ent-newillier	
Field Scr	eening with PID:				
		INITIAL GROUN	DWATER LEVEL DAT	ГА	
Time of I	Depth Measurement:	1905	Date of Depth Measurem		
Measurin	g Point (MP): Top of P	VC Casing / Top of Stee	Protective Casing / Other:		
Diameter	of Casing:		Well Screen Interval:	Unkneun	
	pth of Well Below MP: Water (DTW) Below M	110.25	Product Thickness, if note	xd: <u>]∂_</u>	
	blumn in Well:	P: 99.14			·,
Gallons p		$\underline{-0.16}$	(10tal Depth of Well Belo	w MP - DTW Below MP)	
Gallons in	n Well:		(Water Column in Well x	Gallons ner foot)	
		DUDA			
Date Purg	ad 12/2/08		SING DATA		
-	I Volumes:	- Time Started: ++	TS 1477 Time Co	mpleted:	-
Gallons P		71	(Gallons in Well x 4) Depth of Pump Placement:	INE belowing	
	Drawdown:	99,47%	Deput of Fump Placement: Pump Rate:	: <u>105 heloni мр</u> 225 8 нг	_
Well Purg	ed Dry:	Yes D No A	(If yes, use Well Purged D		-
Time: G	allons: Pump Rate	Drawdown Temp	Sp. Cond.: DO:	pH: ORP;	Turb:
1524 ((gal/min):	(feet): (°C)	(mS/cm) (mg/L) いちに い パ	(S.U.) (mV)	(ntu)
छिटा ह	· C C . Z	$\frac{1}{0}$ $\frac{1}{0}$	7 7 515 THO	10 13.	173
<u>1537</u>	2 012	0 6,2	- <u>0.515</u> <u>0.05</u>	$\frac{1}{7}$ $\frac{1}{167}$ $\frac{1}{17}$ $\frac{1}{17}$	126
1544 1	.7 0.2	0 9,26	0:516 6.12	1.70 645	-70.5
1001 2	1 0.2		0.523 5.94	7.22 6.2.1	65.6
155+ 2 1 AN A	.5 12	<u> (Z (4</u>	1 0523 5.65	7-21 4-3	5.07
1004 3	0 0.2	<u> </u>	0,523 5.63	7.22 64.2	42.0
1414 3	le (1)	(2+3) SAMPI	LING DATA CON	7-22 627	317
2 9dor: _4	S D 2-	12-3	1 (570 2 2	7:23 (2.1	5 - 3
Sample De		OAWA-01 12 24	Color: <u>777</u> <u>6.94</u> Time / Date:	17/2/2021	- 10
QC Sample	Designation:		Time / Date:	<u> Z./2./08</u>	_
Evacuation	Method: Grundfos Sub	mersible Pump / Other:			-
	lethod: Grundfos Submo	ersible Pump/ Other:		_	
Remarks: _	AC MULLION FOR	product - Arl	Professet at 105 b	eless il if	
Sampling P	ersonnel: Shayla	Sugal	1 -11		
1		L CASING VOLUMES	(GAL/FT): 2"=0.16 4"=(
X16 32 5	2 0 2 ANNUL	AR SPACE VOLUME (C	AL/FT): 4" casing and 2" we		2.0
Ili Active to The	112 150	0 12 18	0.57 SSV	1.22 2.0 1.22	19.1 19.1

	P Haas	Pump Rate	Manueling	Temp Spillend DD PH Like Turb
Inc	in CYD	0.7	A.	Temp Sp. C. r. nd DD pH UKP TWIND 12.14 0.523 5.44 7.21,62.4.16.2
10 44	ω^{-1}	<i>a</i>	-	10 10 15 3 541 7,22 530 1411
1650	6.4	214	ъ. 1	12.15° (525 5.40 7.72*49/2.3
1.57	7.1	O.Z	Õ	12.15 ()25 0 00

Well AP-3870 12/2/08-0UE 32-1-17261

10 C					•
		HTRW Task (Order 001, Contr	act W911KB-	08-D-0005
	WATER S.	AMPLING LOG	~	: /	
Shannon & Wilson, Inc.					12/3/08)
Job No: <u>32-1-17162</u>	Location: Fort Ri	chardson, Alaska Weather	: 50 FIDI	evenst	(12/2/199 N
Site: $\underline{0VE}$ Date: $\underline{12/3108}$	Well No.: <u>HP-2</u>				
1000. <u>12/3/100</u>	Time Started: 120	Time Co	mpleted:	41	<u> </u>
	WELL INSPECT	ION OBSERVATIONS			
Pad Condition (cracked, heaved,	subsided): <u>GOUN</u>				
Casing Condition (bent, dented, p					
Well Identification (labeled with well locking one and lock	well numbers): <u>425</u>				
Well locking cap and lock present Field Screening with PID: $-\hat{Q}_{A}$	l:Yes ⊠ No 🗖 Note 2	s:			
			<u>. . </u>		
	INITIAL GROUND	WATER LEVEL DATA	- 12 / . / ·		
Time of Depth Measurement: Measuring Point (MP): Top of P	UC Coring / Tan of Starl 1	_ Date of Depth Measuremen	it: $\frac{12/2}{2}$	l	
Diameter of Casing:	C Cashig / Top of Steel I	Well Screen Interval:	unkno		
Total Depth of Well Below MP:	20.30	Product Thickness, if noted			<u> </u>
Depth-to-Water (DTW) Below M	P: 10.24 X : 10.	15	• <u> </u>	<u> </u>	
Water Column in Well: Gallons per foot:	10.06 7 10 1	🤄 (Total Depth of Well Below	WMP - DTW B	elow MP)	
Gallons in Well:	0.16 70.16	-			
		(Water Column in Well x G	allons per foot))	
10 1-1-0	PURG	ING DATA			
Date Purged: $\frac{12/3}{5}$	_ Time Started: 24	C Time Com	pleted: <u>1412</u>	·	
Four Well Volumes: (Gallons Purged:	<u> </u>	_ (Gallons in Well x 4)			-
Maximum Drawdown:	116.44	Depth of Pump Placement: Pump Rate:	$\frac{116.30}{236.4}$	HZ	_
Well Purged Dry:	Yes 🖸 No 🗖	I unp Kate. (If yes, use Well Purged Dry		H2	-
Time: Gallons: Pump Rate	Drawdown Temp:	Sp. Cond.; DO:	pH:	ORP:	Turb:
1258 0.4 0.3	(feet): (°C) りゅう	(mS/cm) (mg/L)	(S.U.)	(mV)	(ntu)
1302 0.8 0.3	0 0.08	$\frac{412}{100}$ $\frac{10.0}{9772}$	7.31	127 2	$\frac{146}{100}$
1306 1.2 0.3	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	407 7.66	1.41	109 6	$\frac{104}{801}$
$\frac{1310}{1314} \frac{1.6}{2.6} \frac{0.3}{0.3}$	0 8.69	407 7.15	7.33	91.7	66.0
	0 9.83	408 6.86	1.34	79.7	48.5
$\frac{1210}{1201}$ $\frac{2.4}{2.4}$ $\frac{0.3}{0.3}$	0 11.28	409 0.55	7.34	71.1	34.7
$\frac{1744}{1222}$ $\frac{110}{3.2}$ $\frac{110}{2.3}$		410 6.40	7.34	68.3	26.4
1337 9 8 0.3	SAMPL	ING DATA	7.34	26.0	212
Odor: None	11.91	Color: Clear - cola	1.55	45.3	16 3
Sample Designation: COFR	DAWA-05	Time / Date: 1405 12/3	108		
	li	Time / Date:			
Evacuation Method: Grundfos Sub Sampling Method: Grundfos Subm	mersible Pump / Other:				
Remarks: DTW = 110.15	$1244 \frac{2}{3}$	0			
$\frac{1}{10000000000000000000000000000000000$	<u> </u>				•
Sampling Personnel: <u>JAT + SIS</u>					
	L CASING VOLUMES (GAL/FT): $2^{"} = 0.16$ $4^{"} = 0.16$	65		
	AR SPACE VOLUME (GA	AL/FT): 4" casing and 2" well $\mathcal{L}_{\mathcal{C}} \mathcal{L}_{\mathcal{C}} \mathcal{L}_{\mathcal{C}} \mathcal{C}_{\mathcal{C}}$		14.1	13.9
1343 4.12 0.3		409 403	7 32 7 33	U T L	10 8
			1.52		-

والمقام ومعادية والمنازية والمراجع أتركونها المتحمد والمنافعة والمعادية

~

Time	Gal Pump	Prite Feet (ctroudown)	Tomp	Cond.	Do pH ORP TU:4.
13 48 13 53 13 57 13 57	5.0 0.3 5.4 0.3 5.9 0.3 6.2 0.3	6 6 0	10.52 10.00 973	410 410 410 409	6.05 7.33 72.1 7.09 6.06 7.31 75 2 7.50 6.14 7.30 762 650 6.14 7.30 762 650 6.14 7.30 762 650
1405 -	collected ana	lytical	9.62	409	6.02 T30 76.0 6.10

Well AP-39571 12/3/08 - OUE 32-1-17261

11 (mar - 1						
			HTRW Task O	rder 001, Conti	ract W911KB-08	-D-0005
Shannon & Wilson, Inc.	WATER:	SAMPLING L Richardson, Ala	OG	70°F OV	evast(121	(3/00)
Job No: 32-1-17162-	Location: Fort F	Cabandaan Ala	alea 317 11	50-000	Constal 182-	In Ing
Site: OVE	Well No.: $AP = 3$	anardison, Ala 3893	<u>SKa</u> Weather:	$\sim r v real$	(a) = (a)	<u>[</u>
Date: $12/3/08$	Time Started: 14	56	- Time Cor	mpleted: <u>1</u> 2	540	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		шрюкса, <u>··</u>		
	WELL INSPEC	<u>FION OBSER</u>	VATIONS			
Pad Condition (cracked, heaved,		- 1				
Casing Condition (bent, dented, p		<u> </u>				
Well Identification (labeled with		· · · · · · · · · · · · · · · · · · ·				_
Well locking cap and lock presen		tes:				-
Field Screening with PID:	1 ppm	······································				
	INITIAL GROUN	DWATER LE	VEL DAT	4		
Time of Depth Measurement:	11 08		h Measuremen	-	20C	
Measuring Point (MP): Top of P					<u>~:</u>	
Diameter of Casing:		Well Screen I	-	unkno	wn	
Total Depth of Well Below MP:	124.15/		kness, if noted:	none		
Depth-to-Water (DTW) Below M		<u>5</u> 5				
Water Column in Well;	34.50	(Total Depth)	of Well Below	MP - DTW F	Below MP)	
Gallons per foot: Gallons in Well:	0.16 / 0.					
Gallons in well:	-2.5 - 1.2	5.3 (Water Colum	un in Well x G	allons per foo	t)	
	PUR	GING DATA				
Date Purged: 12/3/08	Time Started:	618	Time Com	pleted: <u>1813</u>	3	
Four Well Volumes:		2.0	Time Com	pietea: <u> </u> -	·	
	- 22.687.22.4	Gallons in W	(ell v 4)			
Gallons Purged:	22.08/22.7	<u>2</u> (Gallons in W Depth of Pum		119.15	1	
	<u>14.0</u> <u>14.0</u> <u>49</u> , <u>82</u> 89			119.15	1	
Gallons Purged:	<u>14.0</u> <u>14.0</u> <u>201.22</u> <u>201.22</u> <u>201.22</u> <u>4</u> <u>14.0</u> <u>22.1</u> <u>14.0</u> <u>22.1</u> <u>14.0</u> <u>22.1</u> <u>14.0</u>	Depth of Pum		218.1	1	
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	<u>14,0</u> <u>201,22⁵⁵89</u> Yes □ No ² ⊠ Drawdown Temp	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement:	218.1	/ ORP:	Turb:
Gallons Purged: Maximum Drawdown: Well Purged Dry:	<u>14,0</u> <u></u>	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry	<u>218.1</u> /Log)	(mV)	Turb: (ntu)
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	<u>14,0</u> <u>201,22⁵⁵89</u> Yes □ No ² ⊠ Drawdown Temp	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO:	<u>218.1</u> / Log) pH:		(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	<u>14,0</u> <u>201,22⁵⁵89</u> Yes □ No ² ⊠ Drawdown Temp	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO:	216.1 / Log) pH: (S.U.)	(mV)	
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	<u>14,0</u> <u>201,22⁵⁵89</u> Yes □ No ² ⊠ Drawdown Temp	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO:	216.1 / Log) pH: (S.U.)	(mV)	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	<u>14,0</u> <u>201,22⁵⁵89</u> Yes □ No ² ⊠ Drawdown Temp	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO:	216.1 / Log) pH: (S.U.)	(mV)	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	<u>14,0</u> <u>201,22⁵⁵89</u> Yes □ No ² ⊠ Drawdown Temp	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO:	216.1 / Log) pH: (S.U.)	(mV)	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	<u>14,0</u> <u>201,22⁵⁵89</u> Yes □ No ² ⊠ Drawdown Temp	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO:	216.1 / Log) pH: (S.U.)	(mV)	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	$\begin{array}{c c} 14.0 \\ \hline $	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.6 -45.7 -69.5 -64.7 -63.5 -95.6	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth of Pum <u>80</u> Pump Rate: (If yes, use W 5: Sp. Cond. :	p Placement: ell Purged Dry DO:	216.1 / Log) pH: (S.U.)	(mV)	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth of Pump $\underbrace{\mathcal{E}}$ Pump Rate: (If yes, use W $\underbrace{Sp. Cond.:}$ $\underbrace{(mS/cm)}$ $\underbrace{3c 3}$ $\underbrace{3c 3}$ $\underbrace{7} 3c 3$ $\underbrace{7} 3c 4$ $\underbrace{3c 4}$ $\underbrace{3c 3}$ $\underbrace{7} 3c 4$ $\underbrace{3c 3}$ $\underbrace{7} 3c 4$ $\underbrace{3c 3}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 5}$ $\underbrace{3c 4}$ $\underbrace{3c 4}$ $\underbrace{3c 5}$ $\underbrace{3c 4}$ $\underbrace{3c 5}$ $\underbrace{3c 4}$ $\underbrace{3c 5}$ $\underbrace{3c 4}$ $\underbrace{3c 5}$ $\underbrace{3c 4}$ $\underbrace{3c 5}$ $\underbrace{3c 5}$ 3c 5	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.6 -45.7 -69.5 -64.7 -63.5 -95.6	(ntu) 15.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} 14.0 \\ \hline $		p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.8 -45.7 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate (gal/min): 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1654 8.4 0.28 1654 8.4 0.28 1700 9.5 0.46 1722 5.78 5.78 Odor: 0.0W Sample Designation: 0.64 QC Sample Designation: 0.64	$\begin{array}{c c} & 14.0 \\ \hline & -74.22 \\ \hline & 94.22 $	Depth of Pum <u>60</u> Pump Rate: (If yes, use W Sp. Cond.: (mS/cm) <u>365</u> <u>365</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>305</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>3055</u> <u>30555</u> <u>305555</u> <u>30555555555555555555555555555555555555</u>	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.6 -45.7 -69.5 -64.7 -63.5 -95.6	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate (gal/min): 1543 1.4 2.26 1543 1.4 2.26 1551 2.8 0.425 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1654 2.4 0.28 1654 2.4 0.28 1654 2.4 0.28 1654 2.4 0.28 1654 2.4 0.28 1700 1.5 0.26 1722 1.2 5.28 Odor: 0.08 Sample Designation: 0.84 QC Sample Designation: 4 Evacuation Method: Grundfor Sut	$\begin{array}{c c} & 14.0 \\ \hline & 5.4.22 \\ \hline & 5.6 \\ \hline & 5.6 \\ \hline & 7.1.2 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.12 \\ \hline & 6.12 \\ \hline & 6.10 \\ \hline & 7.1 \\ \hline & $	Depth of Pum 20 Pump Rate: (If yes, use W Sp. Cond.; (mS/cm) 1 3 5 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.8 -45.7 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate (gal/min): 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1543 1.4 2.2 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1654 8.4 0.28 1654 8.4 0.28 1700 9.5 0.46 1722 5.78 5.78 Odor: 0.0W Sample Designation: 0.64 QC Sample Designation: 0.64	$\begin{array}{c c} & 14.0 \\ \hline & 5.4.22 \\ \hline & 5.6 \\ \hline & 5.6 \\ \hline & 7.1.2 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.12 \\ \hline & 6.12 \\ \hline & 6.10 \\ \hline & 7.1 \\ \hline & $	Depth of Pum 20 Pump Rate: (If yes, use W Sp. Cond.; (mS/cm) 1 3 5 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.8 -45.7 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate (gal/min): 1543 1.4 2.26 1543 1.4 2.26 1551 2.8 0.425 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1626 5.16 0.28 1654 2.4 0.28 1654 2.4 0.28 1654 2.4 0.28 1654 2.4 0.28 1654 2.4 0.28 1700 1.5 0.26 1722 1.2 5.28 Odor: 0.08 Sample Designation: 0.84 QC Sample Designation: 4 Evacuation Method: Grundfor Sut	$\begin{array}{c c} & 14.0 \\ \hline & 5.4.22 \\ \hline & 5.6 \\ \hline & 5.6 \\ \hline & 7.1.2 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.14 \\ \hline & 6.12 \\ \hline & 6.12 \\ \hline & 6.10 \\ \hline & 7.1 \\ \hline & $	Depth of Pum 20 Pump Rate: (If yes, use W Sp. Cond.; (mS/cm) 1 3 5 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.8 -45.7 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate (gal/min): 1543 1.4 2.26 1543 2.8 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1626 5.6 0.28 1654 8.4 0.28 1722 1.2 8 0.8 0dor: 00W Sample Designation: 18 Evacuation Method: Grundfos Subnow	$\begin{array}{c c} & -\frac{14}{2}, & 22 & 509 \\ \hline \hline Yes & No & \\ \hline Drawdown & Temp \\ & 0, & \\ \hline 0, & & \\ \hline 0, $	Depth of Pum $\frac{60}{200}$ Pump Rate: (If yes, use W 3603 $\frac{3}{203}$ $\frac{3}{$	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	216.1 / Log) pH: (S.U.)	(my) -59.5 -43.8 -45.7 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5	(ntu) 15.7
Gallons Purged: Maximum Drawdown: Well Purged Dry: Time: Gallons: Pump Rate (gal/min): 1543 1.4 2.26 1644 2.6 1626 5.6 1626 5.6 1626 5.6 1626 5.6 1626 5.6 1626 5.6 1654 8.4 1054 8.4 1722 1.5 8 28 Odor: <u>NOW</u> Sample Designation: 1 Evacuation Method: Grundfos Subn Sampling Method: Grundfos Subn K Remarks: <u>NTW 89.55</u> Sampling Personnel: <u>May fa</u> WE	$\begin{array}{c c} & -\frac{14}{2}, & 22 & 509 \\ \hline \hline Yes & No & \\ \hline Drawdown & Temp \\ & 0, & \\ \hline 0, & & \\ \hline 0, $	Depth of Pum $\frac{60}{200}$ Pump Rate: (If yes, use W $\frac{30}{200}$ \frac	p Placement: ell Purged Dry DO: (mg/L) 2,00 2,15 2,17 1,724 1,724 1,724 1,724 1,724 1,724 1,724 1,724 1,724 1,724 1,724 1,724 1,755	210.1 /Log) pH: (S.U.) 2.02 8.02 3.00 9.03 9.0	(my) -59.5 -43.8 -45.7 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5 -08.5	(ntu) 15.7

TIMP. C	ial Rate	Drawdown	Temp Cond	pt ptt	OPS Turb.
1736 12.	6 0.28	0,10	10,00 301	NM 8,03	-115,1 3,60
1750 14	0 0.28	0.10	10.03 201	1.4 807	-1137 1. let

÷,

Well AP-3893 12/3/08 - OUE 32-1-17261

				HTRW Task O	rder 001, Contr	act W911KB-0	8-D-0005
33 11	WA	TER SA	<u>MPLING</u> L	06	a wordy		
Shannon & Wilson, Inc.	<u></u>			<u>vu</u>	Overaut	: ~25F(12/4/087
Job No: $32-1-\frac{17162}{17162}$	Location:	Fort Ricl	hardson, Alas				
Site: <u>OVE</u>	Well No.:	AP-436	11	<u></u> ///	<u></u>	<u> </u>	$\frac{1}{1}$
Date: $\frac{12/400}{2}$	Time Started	: 155		Time Con	mpleted: <u>10</u>	:00	
	WELLIN	SDECTI	NI ODSTRDI	VATIONS			
Ded Condition (anotation 1		a l	ON OBSER	VATIONS			
Pad Condition (cracked, heaved, st Casing Condition (bent, dented, pa	·	pd mid					
Well Identification (labeled with w	_						
Well locking cap and lock present:		D Notes:					
Field Screening with PID: $(\mathcal{D}, \mathcal{D})$						·	
I	INITIAL G	ROUND	VATER LE	VEL DATA			
Time of Depth Measurement:	1124		Date of Depth		- alala	R	-
Measuring Point (MP): Top of PV		o of Steel Pr	•		··· <u>··································</u>	<u>v</u>	
Diameter of Casing:	- 2"		Well Screen I		Winor	M	
Total Depth of Well Below MP:	67.96		Product Thick	mess, if noted	1011e		
*Depth-to-Water (DTW) Below MP		6384					
Water Column in Well: Gallons per foot:	3.94	14.12	(Total Depth of	of Well Below	MP - DTW E	Below MP)	
Gallons in Well:		10 10	, (Water Colum	m in Well v G	allong ner foot	•)	
	<u> </u>	10.00				0	
		<u>PURGI</u>	NG DATA				
Date Purged: 12/4/08	Time Star	ted: <u>85</u>	<u> </u>	Time Com	pleted: <u>94</u> 0)	_
Four Well Volumes:	2.64		Gallons in W	ell x 4)		,	-
Gallons Purged:	40.1		_ Depth of Pum	p Placement:	67.00		_
Maximum Drawdown: Well Purged Dry:	$\frac{64.1}{\text{Yes is }}$	<u> </u>	_Pump Rate:	-11 D D	320 . 8	2H-2	-
Time: Gallons: Pump Rate	Drawdown		(If yes, use We Sp. Cond.:			0.000	— .
(gal/min):	(feet):	Temp: (°C)	(mS/cm)	DO: (mg/L)	рН: (S.U.)	ORP: (mV)	Turb: (ntu)
· · · · · · · · · · · · · · · · · · ·	purged to	، محلان	ct	<u> </u>		<u> </u>	
41. as these parameter	₩ <u>~5 V</u>	·····	T . 0	<u>0 10</u>	7 60	110	
15/21 826 0.1 3 Oailed	<u>M</u>	8,54	512	9.28	7.39	169.5	21000
							
							
						····	
		<u>SAMPLI</u>	NG DATA				
Odor:			Color:	17 15/00	1705		_
Sample Designation:			Time / Date: Time / Date:	72/00	, 1305	··	_
Evacuation Method: Grundfos Subr	nersible Pump	Other: au		DISIZI			_
Sampling Method: Grundfos Subme							
-	4/08 (2)				2Th1sof	water	
neicrewent dry-100			rid NOT G	et wate	r -let N	1 mer the	20 min,
Sampling Personnel: Naud la	Swelling	ل جو المي	Ge Thom	lan		v -	still cours
WEI	L CASING V	OLUMES (GAL/FT): 2" =	0.16 4" = 0	.65	NC	i get more
ANNULA	ar space VC	JLUME (GA	L/FT): 4" casi	ng and 2" well	1 = 0.23	oth	still cours an 2 Thi water before
						U).	No im

— 11			HTRW Task	Order 001,	Contract W911KE	-08-D-0005
		WEL	L PURGED DRY LOG		dan (srup) Sr 30°F (a la lua >
Shannon &	k Wilson, Inc	·		Overia	ST 30 F (12/5/00)
Job No:	32-1-172	61 Location: F	Fort Richardson, Alaska Weathe	r: OrM	astrigor	·(12/2/08
Area:	OVE	Well No.:	<u>-++3++</u>			/
Date:	12/4/08	Time Started:	155 Time C	ompleted:	1000	
	-	INITIAL GR	OUNDWATER LEVEL DAT	<u>ГА</u>		
Time of De	pth Measure	ment:1122	Date of Depth Measurem	ent: 12/	2/08	
	-		of Steel Protective Casing / Other:		:	
Diameter o	f Casing:	<u> </u>	Well Screen Interval:	Citt	ylown	
	h of Well Be		Product Thickness, if not	ed: <u>v</u> 0	NE	
Depth-to-W	Vater (DTW)	Below MP: 64.02/63			2	
	imn in Well:			ow MP - D	TW Below MP)	
Gallons per		0.16/2		a 11		
Gallons in	Well:	0.63/D.k	(Water Column in Well x	Gallons p	er foot)	
			PURGING DATA			
Data Daras	1 12/3/08	+ 12/24 108 - 12/5/08 Time Starte	d. Time C	ompleted:		
-	ery Water C	ohuma 315	Water Column in Well x			
80% Recov	-	64.03	(Water Column in Well x (Initial DTW + (Water Co	ol. – 80% I	Recovery Water	Col.)
			P 1256			
	r	1 (00		Initial/		
	Purging	Time Well Purged Dry	Time Well Was 80% Recovered	DTW	Pump Rate	
	1	810 12/4/08		63.84/	32018	
	2	845 14/06	35 min-	65.20/	220.8	
	3	826 145108	1 day, 23m3 54m2	63,17	Bailed	
		· · · · · · · · · · · · · · · · · · ·				
		s	SAMPLING DATA			
Odor:			Color:			
Sample De	signation	OFFROAWA -18	Time / Date: 130 ラ /	12/5/0	20	
•	e Designation		Time / Date:			
(p.		~				·······

Evacuation Method: Grundfos Submersible Pump / Other: Sampling Method: Grundfos Submersible Pump / Other: Builey - Disposative

Remarks: Sampling Personnel: Maryla JWE QUINTE THOMAS

		HTRW Task O	rder 001, Contract W9111' B-08-	-D-0005
	WATER SA	MPLING LOG	1 - marca (Elsing 1
Shannon & Wilson, Inc.	· · · · · · · · · · · · · · · · · · ·		30°F; overiest (1	(19/08)
Job No: 32-1-1 7162	Location: Fort Ric	hardson. Alaska Weather:	5°E; Overcast (1	2/2/08)
Site: <u>AVE</u>	Well No.: $\frac{1}{4p-4}$	-/ (4		<u>, , , , , , , , , , , , , , , , , , , </u>
Date: 12/5/09	Time Started: 039	Time Co	mpleted: 042	
•			·	
		ON OBSERVATIONS		
Pad Condition (cracked, heaved,	/ **			
Casing Condition (bent, dented, p Well Identification (labeled with				
Well locking cap and lock presen	24	•		_
Field Screening with PID:				_
	INITIAL CROUND	WATER LEVEL DAT	Δ	
Time of Douth Management	12095	Date of Depth Measuremen		
Time of Depth Measurement: Measuring Point (MP): Top of P		_	1. · · · · · · · · · · · · · · · · · · ·	
Diameter of Casing:		Well Screen Interval:	Whenen	
Total Depth of Well Below MP:	101.10	Product Thickness, if noted	: nove	
Depth-to-Water (DTW) Below M			·······	
Water Column in Well:	3.90	(Total Depth of Well Below	v MP - DTW Below MP)	
Gallons per foot: Gallons in Well:	0.16	(Water Column in Well x C	follong per foot)	
			ations per 1000)	
		NG DATA	A .	
Date Purged: 12/5 09	Time Started: 659	Time Con	npleted: 02	
Four Well Volumes:	4.48	(Gallons in Well x 4)	00 10	
Gallons Purged: Maximum Drawdown:	2.50	_ Depth of Pump Placement:	1.23.20 117	
Well Purged Dry:		_ Pump Rate: (If yes, use Well Purged Dr		
Time: Gallons: Pump Rate	Drawdowa Temp:	Sp. Cond.: DO:	pH: ORP:	Turb:
(gal/min):	(feet): (°C)	(mS/cm) (mg/L)	(S.U.) (mV)	(ntu)
<u>0.60</u> 0.150	·	409 3,54	7.40 93.6	71000
$\frac{925}{914} = \frac{0.75}{0.72}$	0.10 9.10	$\frac{409}{108}$ $\frac{8.37}{0.31}$	<u>1.38</u> <u>93.9</u>	>1000
952 105 012	$\frac{0.10}{0.10}$ $\frac{1.69}{0.40}$	40 <u>8 8.76</u> 405 8.54	<u>1.30</u> <u>112.4</u> <u>1.33</u> 107.00	21000
954 1.20 OUT	$\frac{0.10}{0.10}$ $\frac{0.140}{9.20}$	<u>405 854</u> 404 8.36	7.34 105.2	<u>71000</u> 71000
956 135 012	$\frac{0.10}{0.10}$ $\frac{4.40}{10.10}$	403 8.34	7.34 105 6	
959 1.5 0.12	0,10 11.11	402 8,44	1.34 105.8	21000
				<u>y</u> 0
2	SAMPL	ING DATA		
Odor: None	200.00	Color: Turkid Gra	<u>~</u>	
Sample Designation:	CUHNA-12	Time / Date: $\frac{12}{502}$	1014 -	- dune
QC Sample Designation:		Time / Date: $\frac{12/5+00}{12}$	10+8-2-55-h	Stall Use
Evacuation Method: Grundfos Su Sampling Method: Grundfos Sub			MS	Sample Stin IMSD QC Samp
Remarks: Pump/Generator		Hour Dyco Tax and	+ representation of the la	sange
aas kyth-or-	INMANT-ITSEACONIN	100x < x > , 100 + apa	HERETWIGT IN GAR LIK	-0)/**
Sampling Personnel: Sharl(a	Swedlund - Jop	Thomas	· · · ·	
		(GAL/FT): 2" = 0.16 4" = -	0.65	
ANNU	JLAR SPACE VOLUME (G	AL/FT): 4" casing and 2" we	ll = 0.23	

.

iy and

Tinac	Gallons 1.65	1412p	Drunnlown 0.10	Temp 11,50	Cond 40.1	00 1H 012 Turb 8.51 7.34 107.2 7.77
1003	1.80	0.12	0.10		406	8.41 7.33 108.4 593
(1005 100 8	1.95 7.10	0,12	0.(0 0.10	11:51 11:54	407 407	8.39 7.33 109.9 459 8.27 7.32 117.2 285
1010 1013 1014	2.25 2.4 2.5	0,12 0,12 0,12	0.10 0.10 0.10	12.01 12.80 13.13	404 403 403	8.19 7.30 113.7 182 8.04 7.29 114.8 138

, i

.

•

.

34 - F

		HTRW Task O	rder 001, Contract W911KB-08	8-D-0005
	WATER S	AMPLING LOG		
Shannon & Wilson, Inc.	WALLENS	AMPLING LOG (ichardson, Alaska Weather:	We cast ~ 25 F (12/4/08)
17261	T if Dant D	ahandaan Alasla waxaa	DNERGASE ~ E°E ()	2/2/202
Job No: <u>32-1-17162</u> Site: 0.00		<u>ICHARDSON, AIASKa</u> Weather:	UNDER MYL	4408)
Date: 10_14/08	10.0		mpleted: 1203	
Date: 12/9/00/	Time Started:		npieted:	
1	WELL INSPECT	ION OBSERVATIONS		
Pad Condition (cracked, heaved, s	ubsided): <u>Nola</u>	(<u>K</u>		
Casing Condition (bent, dented, pa	aint condition: <u>Birnt</u>	unter record a 1º	5" apove casine	
Well Identification (labeled with w	vell'numbers): <u>No 1</u>	abeline		
Well locking cap and lock present	•	es:		_
Field Screening with PID:	0.0 pp	<u> </u>		
	INITIAL GROUN	DWATER LEVEL DATA	<u>N</u>	
Time of Depth Measurement:	12:45	Date of Depth Measuremen	1: 12/2/03	
Measuring Point (MP): Top of PV	/C Casing/ Top of Steel			
Diameter of Casing:	2	Well Screen Interval:	VNWNenn	
Total Depth of Well Below MP:	72.80	Product Thickness, if noted:	none	
👋 🖞 Depth-to-Water (DTW) Below M	P: 67.65 /1	.55		
Water Column in Well:		$\frac{2}{2}$ (Total Depth of Well Below	MP - DTW Below MP)	
Gallons per foot:				
Gallons per foot:	0.82/0.2	(Water Column in Well x G	allons per foot)	
jet -	, DTID/	אידא מיזאי		
lae milulae		SING DATA	NUL D	
E _ Date Purged: 12/4/08	- Time Started: []		pleted: <u>1140</u>	-
Four Well Volumes:	3.36	(Gallons in Well x 4)	10.05 35 71.30	
$\mathcal{F} \not \to \mathcal{F}$ Gallons Purged:	6.0	Depth of Pump Placement:		-
NE A Waximum Drawdown:	Var W No 20	Pump Rate: ⁵⁵ Af yes, use Well Purged Dry	<u> </u>	-
l cuitta-		C-	÷.	
Time: Gallons: Pump Rate	Drawdown Temp	: Sp. Cond.: DO: (mS/cm) v(mg/L)	pH: ORP: (S.U.) (mV)	Turb: (ntu)
> 1044 6.7.0 0.1	1 2.55 4 3	4 695 11.70	1.36 411.9	>1000
1051 0.90 0.1	2.55 4.1	1 695 10.04	7.39 1621	51.000
	512-55 53 11 8	4 679 11.39	755 323 W	815
			· · · · · · · · · · · · · · · · · · ·	<u> </u>
• • • • •	<u>SAMP</u>	LING DATA		
Odor: <u>NOVE</u>		_ Color: turbid, no		_
	<u> ROAWA-09</u>	Time / Date: $\frac{12}{4}$	1130	
QC Sample Designation:		Time / Date:		_
Evacuation Method: Grundfor Su			. T	
Sampling Method: Grundfos Subr			x5mr	•••• ••
Remarks: UTW 07.55 Q1	026; fwged m	4 (~ 1100, recoveredo	purged by apartle	σησ
	· J	1 (1.3gai)	purged any apartle	4 gal
Sampling Personnel: Shall l		re chances		-
		S (GAL/FT): 2" = 0.16 4" = 0 (GAL/FT): 4" casing and 2" well		
provered to 68.12	Calleded NM	Wolp .	1 – 0.23	
ANTONCICA IN DD'	- CONSTRUCT	. h.d.		

والمتلفظ ومعادماته والمراشجة أرغل كالت

وروادها فالمنافق والمتحديد والمرار

		HTRW Task	Order 001, Contract W911KB-08	8-D-0005
	WATER S	AMPLING LOG	(rereat in 30°F)	(14/5/08)
Shannon & Wilson, Inc.	T is Dent D	Jahandaan Alaslas we d	er: <u>Ottycast ~5'F (</u>	12/2/20
Job No: <u>32-1-17162</u> Site: $D \downarrow F$	Location: Fort R Well No.: AF-	4 4-13 Weath	er: <u>vice august in para c</u>	/ 00)
Date: $\frac{12}{500}$	_ Time Started: _ 101		Completed: 1210	
·	WELL INSPEC	TION OBSERVATION	s	
Pad Condition (cracked, heaved	· · · · · ·			
Casing Condition (bent, dented,	paint condition: Guid			
Well Identification (labeled with		· · · · · ·		
Well locking cap and lock prese Field Screening with PID:				
	INITIAL GROUN	DWATER LEVEL DA'	ΓΑ	
Time of Depth Measurement:	1221	Date of Depth Measurem	- intelan	
Measuring Point (MP): Top of	PVC Casing / Top of Steel			<u></u>
Diameter of Casing: Total Depth of Well Below MP	: 15.30	Well Screen Interval: Product Thickness, if not	ed: Mark	
Depth-to-Water (DTW) Below		1108400 111004000, 11 100		
Water Column in Well:	3.09	(Total Depth of Well Bel	ow MP - DTW Below MP)	
Gallons per foot: Gallons in Well:	0,10	(Water Column in Well x	Gallone ner Foot)	
Galions III well.	<u> </u>		Contons per 1000	
12/5/		GING DATA	1150	
Date Purged: 12/5 06	$\underline{\qquad} Time Started: \underline{\qquad} \\ 1.96$	(Gallons in Well x 4)	ompleted: 1150	-
Gallons Purged:	2.00	(Gations in well x 4) Depth of Pump Placemen	n: 14.00	
Maximum Drawdown:	12.54	Pump Rate:	220,00	-
Well Purged Dry:	Yes 🗆 No 🕅	(If yes, use Well Purged)		
Time: Gallons: Pump Rate]_ (gal/min):	-		pH: ORP; (S.U.) (mV)	Turb: (ntu)
1109 0.2 0.20	0.02 40	9 455 1.75	9.10 2474	
<u>1111 0.4 0.20</u>		$\frac{9}{1}$ $\frac{151}{1.79}$		71000
$\frac{1113}{1115} 0.5 0.20$		$\frac{1}{5}$ $\frac{450}{450}$ $\frac{11.70}{11.35}$		71000
$\frac{110}{1111} 0.8 0.20$		5 457 11.02		
1119 0.9 0.20	000 1.9	1 460 10.86		617
1121 1.0 0.20	0.00 8.6	6 460 10.51	<u>e 9.32 199.0</u>	501
	SAMP	LING DATA	1	
Odor: NONE	200:00 1/	Color: SI turbi	d gray	
Sample Designation: UZE QC Sample Designation:	20AWA-16	Time / Date: <u>12/5/00</u> Time / Date:		<u>. </u>
Evacuation Method Grundfos S	ubmersible Pump / Other:			_
Sampling Method: Grundfos Su				
Remarks:				-
Sampling Personnel: Maul a	Fired lund -U	or Thomas	· · · · · · · · · · · · · · · · · · ·	_
1 v	VELL CASING VOLUME	S (GAL/FT): 2" = 0.16 4"		_
ANN	ULAR SPACE VOLUME	(GAL/FT): 4" casing and 2"	well = 0.23	

Time Gaulous	Purgekat	Wawdown	Temp 9.62	Cond	Do	рн 🤇	By Turb
1122 -1-2	0.20	0.00	9.62	457	10-39		94.2 329
1122 172 1122 1.3 1124 1.3 1130 1.4	0-20	0100	10,23	458	10.27	9.26	191.5 284
W. W 1130 1.4	0.12	0.00	9.82	460	10,01	9.15	186.5 467
inge 1132 1.5	0.12	0.00	10.06	460	1059	9,14	185.2 592
1134 1.6	012	0.00	10,93	459	10.32	897	184.0 642
1138 1.8	0.12	0.00	11.56	459	10.19	8.88	182.7 578
11240 2-0	0.12	0.00	13.60 13.52	455 456	9,75 9.55	8.64 8.60	180.1 367 179.7 271

ν.

.

с. .

. .

Appendix A2 Field Log

Shannon+Wilson Book 1 Operable Unit E 12/2/08-

"Rite in the Rain" ALL-WEATHER

JOURNAL No. 390

Fort Richardson GW Monitoring Task Order 001 W 911KB-08-D-0005 NPDL 09.006

Fild Equipment REFERENCE CONTENTS YSI 556 (MRental) EMDECH 103 g 0568 A0; 04 D5945AC Grundfos (artrol Box (MRental) H0603200115 PID (SOW) 580 BOVM 580 - 0-35593-250 Solarist Interface Meter (TTT) Model 122' 122 006551-1 Water Level Indicator (TT) Annofos Pump Madel (TT) A 14106003 PI 0622 0003 Type: MP1-2-A-B-G-7V

Dicle Neuelulo - 441-5189(c) 384-3295 ENSR - David Britch - 748-9045 (enbo for Wells/Locks = 0911 (embe for LDW - 2711 "Rite in the Rain"

2*40*00

ALL-WEATHER HORIZONTAL LINE BOOK

Name
······································
Address
······································
Phone
Project
and the second
and an end of the second s
······································

This book is printed on "Rite in the Rain" All-Weather Writing Paper - A unique paper created to shed water and enhance the written image. It is widely used throughout the world for recording critical field data in all kinds of weather. For best results, use a pencil or an all-weather pen

Spec [nfalar oos tor tris 04 Page	Patterny	Cover	Options
ļ	Lett Page	Right Page	Polydural Crivia	Раронска: Солов
! 	Careo .	У Параб 	nem Niel Bilt.	ilgin koz (3.1.9) Turi ilgin koz (3.1.9)

	-17261-55	17261-55 .	(C)
December 2,2000	; 		Jec 2,2008
Weather - Cold - 5-F30	vercast	730 - Anne@ office-	pack up gran
Personnel - Sharpa Swed!	- Still	815-Talk to Half dan nume scheme	- call Joe
PPE - hitrile glours, ste	el toe, salety	845 - Pick up Joe Fri	mhane
Field Instruments -	glastes	946 - Antrela Well	Ap-3870
PID, Product Leve	1, waterliver	450 - Dick Nanahlor	een to 10W stc-
Gruhofos, 45I 556	, Turbidimeter	when place 1 Dr	
Collected Samples	······································	make note of r	for much volume
		dated + atta	ch in Ziplock onto
OBFROAWA-01 >A	-3870	956 - Calibrate PID	-calibration
@ 1657 12/2/08	7	$\mu S M + = 101.$	Hoom
Priman Sample 08 FROAWA-02 → Equ	ipment Rinsate	1005 - Take DTW/PM	oduct memt
(0) 726 12/2/0	<u>6</u>	@ Well Al-	3870
OBFROAWA-03-Jrp	Blank	- Bladder pur	np present m
@1740 - 12/2/	00	- Well Condition	~ - arozod
IDW	••	-PID - ILGAM DTL	~ 99.14; no prod
7,1 adlons purgewat	1 from	i 1020 - PID - Ilbom DTL Correct DTW/PR	once a
T.I gallons purgewat Well AP-3870	7 17 11 11	well AP-377	14 ammil
- decon water accio over @ Well A	D-280 0 5+	- Well Cond 1. tic - PID = 0. oppm DT 1042 - Collect DTW/Prod	W = 106.33 no pool
UYER CO WER A		1042 - Collect DTW/Prod	uct Moment
MOUE-01 DNM	······································	$(\alpha) M M - 3871 - 1$	pl (main an good
		Pid=0,2ppm, Oti	N= 110.24', no prod.

Sec. 2.

3 17261-53	17261-55 (4)
Dec. 2, 2008	Dec 2,2008
1108 - Colle of Div/Product from	1213 - Called Richard Nonahlo
JALALA AP-3893	441-5289-cell
Well CONTRACT good AND	384-3295 - work
PID = 0,1 ppm, DIW- 09.65, Product	Well AP-4411 - EOF BID 1732
1124 Collect DCW/Product from	- left msg on his office line -
Well Ap-4341	tauts juned on
well Condition - good	1223 - Go inside Bidg 732 - talked
PID=0 ppg DTW=64.02, no product	to Rick Brooks - shop supervisor
140 - Collect Driv / roduct	to let us into I oches pince
Well AP-3534	area for well AP-4411
Well condition - no cap	1245 - Collect DTW/ Product from Wes
AD=0.0 DTW-109.30, no prod	Well AP-4411-fush.
1145 Collected Dew/Prod from	well condition - Bentonite Frozn/
Well AP=3468	heaved ~ 1" above TOC - well
Well condition - cap is cracked	couplies not connect/close.
PID=0.0pp.Dtw=109.56', no prod	-no lock >> Blog 724
1140- David BAth - ENSR	: 1255-Go to Env. Resources Dept to
stops to give us his card/	warm up there luncer, use
contact	bathroom - get not checolate
cert # 748-9045	: 1320 - Drive to Well pp - 3870
1150 - Haydow culls to check-in	- calculate well volume -
1208 - Collect DTW/Product in Wey	Collibrate YSt When Ave-30710
AP-4342	1405-Beginsampling / purging Well AV-3870
well condition - good	1657 - Collect Sample 08 FRDAWA-01 from AP-3870
PID=0.0 DTW= 97.20 NO Produsci	UOPRUAWA-UT TYOM III-SOLO
PiD reading 7000 ppm. Turned off- reculibrated	1657 12/2/08 - Primary
	and a start of a latter of a latter of the start of the

17261-SS 17261-SS (5) December 3,2008 Dec 2,2008 1700 - Begin decorross decon 645-Artive@ off wrather - 20th F overcast sample materials Gersoninal - Shayla Swedlund-e 1726 - Collect sample Eaupment 08 FROAWA-02 - Rinsate Sample Joe Thomas -SPW 1757-Leave AP-3870 site PPE - nitrile glaves, steel toe Field Insmiments - SafetyGlass do go drop of IDW Water Level, Grunsfos 1810 - Drop of iow @ BI-YSI 556, Turbidimeter De-Watchy Facility 1813 - Call from thaydar checking Collected Samples 1815 - Leave How De-Watery Site well DBFROAWA-04 - AP-3774 Leave Fort Rich 1443 - get can from Dick to check @ 1050 12/3/08 08 FROAWA-05 Well AP - 3871 15 1 DW area is cleared -@ 405 12/3/08 he will check to verify 08FROAWA-06 - WW AP-3893 1845- mop off Joe @ home 1900 - Backa office - demob @ 1755 12/3/08 OBFROAWA-07 - Well AP-15 1930-1945- Leave office Rinsore Sample @ 1825 12-53 OBFROAWA-08 - Trip Blank @1830 End-Dec. 2,2008 Shaypen Snedlund IDW - Purgewater - AP - 3774 = 4.0 gallons - AP-3871 = 6,5 gallon - AP-3893 = 14.0 gallons Decon/RMSett20 = 9.0 gallons In Drum QUE. 01

		17261-55	17,261+55	·	(\mathcal{B})
Dece	mber 3, 2008.	·····	December 3,20	80	
645	5-Anrive @ office, M	ob gear,	1210 - Rand	J@SiW called -	1
	Fill out CUU for	- yesterilays	Cooler	r'at SGS-needer ircle "Sew-Ancl	Crrun ¹
020	- Richa un (Dora) lais	home	1210- POLLO	e pull over to se	$\sum_{n} \delta A \alpha$
	- Pich up bac his - Get call from Huy c	Jang Asked	if i	we have behicle f	poblens
<u>010</u>	about approp.	Nitrate/Nitrate	1248 - Start	prite well AP-:	3871
	proservative-no	ne in Hysoy	- 1405 - Coll	ect Sarrip U	
991	- Anive at Fort Ki	dr.	08F	ROIAWA-05	· · · · · · · · · ·
912	-Arrive at well	1 11- 37 14	1412 - Dem	ob/decon-comp	a sign
050	and set up;	calibrate 151	1441-Lew	Nr AP 3871 area AP-3893 (WW)-5	ut-up
4 <u>7</u>	7- Beg in purgulo in 5- Get call from +	Lundar -	1518 - Beg	M purging Well AP-	- 38913
	H2SOUNAL genes	are for	DTY	N differs from yest	eday
	Nitrate/Nitrite -	but not to	Dr	W 89.55 @ 1513, 17	3/08
	be used becau	ise not same		W 89165 @ 1108 12	12/08
	method/hold to	me-use	1755- Colle		<u> </u>
	non-preserved	Nalgenes		ROAWA'-06	
1050	? - collect Sampl		1813- hus	ect Sample	· · … •···
	08 FROAWFY-1	and the	102J - 08F	ROAWA-07 - Ams.	ite
	> mconsistent plug well - "Singer	" nate	1840-Lean	Ve WHY AP-3893 a	ner
	2 - leave well AP=	3774	ano	go to chop of 101	$\mathcal{N}_{\mathcal{A}}$
)) }	Take lunch	· · · · · · · · · · · · · · · · · · ·	1846-Am	ve @ Pol Dewatering	
1205	Take lunch 3- Arrive at Well	AP-3811	Fau	ve @ Pol Dewatering lity - transfer 1 onsite drum while 5-2 ets	ν_{W}
	set up		into	onsite drum wring bre	gal
	v		buck	253 -	

17264=SS 17261-SS 9) Deamher 4, W08 Dec 3,2000 1902 - Leave Pot De-Watersy Weather- Overcast 25°F Foulity-lock up - head Personnel - Shayla Swedlund P 1900-015/ Leave Fort Rich Joe Thomas - S+W PPE - Nitrile glores, Steel toe boots, Safety Glasses Field Instruments - Water Level, 1925 - Drop of Soc @ home 1950 - Arrive @ office - check in W/Randy Hessong Ennotes, YSE 356, Tubidimen - demot 2000 - Discuss /update Randy Collected Samples w/project + go over CO'C OSFROAWA-14-TripBland 1946 2040 - denido, AllPont COC 08 FROAWA - 09 - Well AP-4411 make copres of feld notes (0)11302145 - Leave office 08FROAWA-10-Well HP-3534 10 OBFROAWA - 11 - WS/MSD QC End of Dec 3, 2008 Sample from Well AP-3534 Shaypa Swedlund 101712 08FROAWA-12 - Well AP-3468 @ 1918 08 FROAWA - 13 - Rins ste Sample @ 1944 1DW -Purgewater - to Drum OUE-02 AP-4341=0.1gal AP-3534-12,3gal Ar-4411=6.0gal AP-3468 = 3.4 gal RinselDecon Water = 9.5 gal

17261-85 12 17261-55 $\left(H\right)$ December 4,008 December 4,2008 940 - Begin deca + packety up 615-Anvi@office; finish (OC, to go to next well tape up cooler, not 1000 - Leave With AP-4341 Avec 715-Leave to pickup De@his 1009 - Anive @ Well AP-4411 home 730-Pick up Joe-leave for Fort - gate is open Rich; 'he calibrated 452(@ 700 1 Tauris 150 - Arrive to For Kich- (mplace 155 - mrive @ well AP-4341 Stea set up 831 - Begin purging-set pump to 5300 Hz (morethan the NA RAN deeper wells)-still no water. burnfed up to 320.8 Wz - gush of water h 2 Tbls, went AP-4411 dry- Pulled art Grundfos to check if pump issue + allow well to recover ~ 20 min; purged ~2Tbls before drying again. (grish of idy turbid 1027 - Begin purging Well AP-4411 Brown viater too fait voir began @ 940 - Call Handago Shannone Wilson 0.4L/min te 0,2L/min-TWK too much drawdawn _ 2.55 - go ahead + move to another reduced it to 0.1 L/min

	(13) 17261-55	17261-55-
2	December 4, WOS	lic4,2008
	1100 - well AP-4411 purged any	1320 - Stopped purging to ve calibrate
	let recovers ~ 5 min	
	and continued to purge	1338 - YSI stading 7.0 pt soln as
	1110 - Purged dry, well Ap-4411	. 11.2 su 2 decided to warm
	11 JV COLLEN SOMALE UDIKUHWHT-09	up instrument in car to
	from Well AP-4411 -	dry out
	well recovered to 68.12 proc	345-Can Rang - he suggested
	1140- Finish pwgng-demob + decant.	thing out one end - opened in up - dry of plug
	equipment AP-4411	1351 - Call TT - asked Tom what
	1203- Leave Well AP-4411 and	Use we can do - he suggester
	go to buthroom in thet is Build 724	- Warnstre it wo
	1213 - Leave For Wells AP-3934-+ 3468	-Warming it up - drying it unt
	area - ear lunch in vehicle	- cheticing w/standard
-	1232 - Amire@ site Of Walls AP-3534+	- all userdone
	AP-3468 - set up for WCU	> a oned to get new YSI
	AP-3534	which couver will deliver
	1250 - Begin purging Well AP-3534	to FE Rich entrance
	1310 - Tark to Randy Hessony (Sew)	1545 - Call Les (courier)
	(he called) - makesure to	at 242-2578-he 15
	- # all pages of field log, include job	Ekiting Huy - Joe Leavesto
	+, + my mitials on each page	Switch old YSI to her YSI
	- Go back to Well AP-4341	1551- Joe back - check YSI
	+ sample w/Bailer	(which Tom said was calibrated
	1315- The Days offis around 11+ 1350-	today) - calibration OK
	Need to re-calibrate YSI (7.4460)	
	insteini	
		and the second secon

t, č Svaršiji

(T(13) 17261-SS	17261-55
Dec 4,2008	December 5,2008
1557 - Begin purging Well AP-3534	
1708 - Collect Sample	Weather - Overcast ~30"F
08FROAWA-10 from Well AP-3534	& fersinel-Joe Thomas, Sharpa
1712- Collect the MS on Sample	Swed lund - Field Randy Hessong OC
from Well AP- 3534 - Duplicate	PPE- Nitnle gloves, rafety glasses
08FBOAWA-11 well	steel toe boots
1725 - Finish purgine, decanipeplayicap 1748 - Set up for Well AP-3468	Field Instruments - DTW Instrument
1913 - Chi A China Will DO 714-9	15I 556, Grundfos, Disp Bailer 1.6, Turbidimetu
1913 - Start purping well AP-3468 1918 - Collect Sample	Collected Samples
08 FROA WA-12 from Well AP 3468	09 FOODWAR-15-Well AT-4342 (20 1014
1923 - Finish sampling Well AP-3468	-> taken add+i samples for ms/msp
1930- Peniop/Pach up/DEGON	08FR0AWA-16 - Wer AP-4413@ 1140
1914-Collect Finsate Sample	
08FROAWA-13	OBTROAWA-17-Wetts' Rinsate Sample
2000 - Leave Well AP-3468 area	(0) 1219
2003 - Arrive to anop of DUNO	OBFROAWA- 18 Well AP-4341 @ 1305
tol De-Waterie Facility	
Transfer Water (10W) +0	08 FROAWA- 19-Trip Blank @ 1310
Drim OVE-02	4 Missing-
2030 - Leave Pol Dewatering Facility	IDW
2055 Drop of De at His have	WELL AP-434 = 0.7gal
2105 - Amire at office - Demob,	Well pp - 4413 - 200 at 2.0 gal
2230-leave Office	Wey AP- 4342-2.5 gas
2230 Leave Office	Rinsewater/Decan=9igal
Find of Steenher 4.2000	
	t an and a star and the second star and the second star the second

1.1

17261-58 17261-55 17 December 5, 2008 Dec 5,2008 1100 - Begin purging well AP-4413 600- Arrive@ office, pack up, - subgrup well - stops flow copy field forms log field other of controller + start again 730-Pick up Joe @ his home the moving to cet flow going 1140-Collect Sample OBPROAWA-16 810 - Arrive@ Part Rich - go to From Well AP-4413 Wen AP-4341 which 1150 - Finish sampling wey AD-4413; de con purged In yesterday 1210-Decon on-site Set up for 826 -- Well AP-4341 puredon after the well volume -Rinsak Sample 1219- Collect Sample OBFROAWA-17 collected water quality parameters Rinsate Sample 035 - Leave WUI AP-4341 to stabilized and head to well AP-4342 recharge 245 - Meet Randy @ Enviro Building-Randy Mill QC sampling of WELL AF-4341 830-AT AP-4342 area setup - Generator surging - control 1247 - Amived @ Well AP-434 | area 1256 - Collected Drw from well box re-setting its et E -AP-4341 = 64.03 took is chalked oil +gas recovered sufficiently and it was ok 780/85 % to sample 1014 - Collect Sample 1305 - Collected Sample usingidi sp Bailer 08 FROAWA'-15 from WELL OBFROAWA-18 from Well AP-4341 AP-4342 - collected additional 1310-Fintskes. Set for MS/MSD QC camples used piece of teflon tubing 1021 - Finish sampling + decon equipment placed inside the bottom of the 1042 - Love wen AP-4342 Area bailer that was connected 1044- Anne Well AP-4413 to filter to sample dissolved Set vp

17261-55 Pec 5,2008 -Bailer -tup -Tilter 1318- Finish sampling + decm 1335- Leave well Afp-4341 area to geto POL Dewaters Facility 1339 - Anivia POL Dewaring Fac Inte + Jrop of IDN - NOTETE Self - contact David Britch to see if he has more drums for 10w purgewater 1358 - Leave Por Dewaring Facility lock up 1430 - Amereback at office 1530 - unpack, fillout COC, labels -> notice no trip blank in cooler 1600 - Have meeting w 5+W Matt Henry, Haydas Turker Randy Hessone, Trayla Swedling de Tribunos the see hourto Streamline prosect

17261-55 Jec. 5,2008 1630 - Randy calls Midrael Utley - UBACE chemist to see hav to hardle trig black (104 of) -> submit samples + note variation 1650 - Shayla - Jubmits Samples to SGS End of Dec. 5,2008 Shayla Dedund

Appendix B Chemical Data Quality Review

Appendix B1 Data Quality Evaluation Report

Fort Richardson Operable Unit E Groundwater Monitoring December 2008 Data Quality Evaluation Report

Introduction

This Data Quality Evaluation (DQE) assesses the quality of analytical results for water samples collected as part of ongoing groundwater monitoring at Operable Unit E (OUE; Armored Vehicle Maintenance Area), Fort Richardson, Alaska. We used data quality objectives (DQOs) and criteria presented in CH2M HILL's November 2002 Quality Assurance Program Plan (QAPP) as well as internal laboratory quality-control limits for this assessment.

This report presents a summary of data-quality issues and anomalies identified in our review that may affect the use of the results for ongoing groundwater monitoring.

Analytical Results

We collected a total of 10 project samples and one field-duplicate sample from 10 wells within OUE. We also collected one equipment-blank sample (EB) per day and, with one exception, delivered trip-blank samples (TBs) with coolers containing samples for analysis of volatile organic compounds (VOCs). We hand-delivered the samples to the SGS Environmental Services, Inc. (SGS) Anchorage laboratory in four sample delivery groups (SDGs): SGS work orders 108696, 1086519, 1086543, and 1086564. The samples were analyzed for the analytes listed in Table 1 by the methods shown:

Table 1 OUE Groundwater Analyses								
Parameter	Method	Laboratory						
Volatile Organic Compounds (VOC)	SW8260B	SGS Anchorage						
Dissolved metals (aluminum, arsenic, iron, manganese)	SW6020	SGS Anchorage						
Nitrite, nitrate, and sulfate	SW9056	SGS Anchorage						
Dissolved methane	RSK 175	SGS Wilmington						

SGS transferred samples for methane analysis to their Wilmington, NC laboratory by overnight carrier.

As part of this DQE, we reviewed: (1) sample handling information, including chain-of-custody (COC) documentation, holding-time compliance, and sample receipt forms; (2) calibration information presented in the laboratory case narratives; (3) analytical sensitivity, including comparison of practical quantitation limits (PQLs) to DQOs and examination of field blank and method blank results; (4) accuracy, as assessed by laboratory control sample (LCS) and LCS duplicate (LCSD), matrix spike (MS) and MS duplicate (MSD), and surrogate recoveries; and (5)

precision, as assessed by relative percent difference between LCS/LCSD, MS/MSD, and project sample/field duplicate results.

We validated analytical results, when affected by data-quality issues identified above, with data flags defined in the QAPP. We present the flagged results in Table 2; where multiple data flags were assigned for different data quality issues, the most conservative flag was designated as the final data flag for that result.

The data flags used are defined below:

- J = Analyte was present but the reported value may not be accurate or precise (estimated).
- J+ = Analyte was present but the reported value may not be accurate or precise (biased high).
- J- = Analyte was present but the reported value may not be accurate or precise (biased low).
- R = The result was rejected as unusable due to analytical deficiencies.
- U = Analyte was not detected at the specified reporting limit.
- UJ = Analyte was not detected and the specified reporting limit may not be accurate or precise (estimated).

Findings

We present a summary of our data-quality review below, and present flagged results in Table 2. We included the Alaska Department of Environmental Conservation laboratory data-review checklists for each SDG in Appendix B-3.

Sample Handling

We reviewed sample-receipt forms and COC documentation as we received it from SGS. Holding-time compliance was assessed upon receipt of the Level II laboratory reports.

Sample Condition

Temperature blank and cooler temperatures were within the acceptable range (2 °C to 6 °C) with the following exceptions: cooler temperature was low (1.5 °C) for SDG 1086519 and temperature blank and cooler temperatures were low (-0.1 °C and 0.1 °C, respectively) for SDG 1086543. No ice was observed in the samples, so results were not affected by the low temperatures.

Chain of Custody

COC seals were absent from the coolers containing water samples for methane analysis that were shipped from SGS Anchorage to SGS Wilmington; we were therefore unable to determine if custody was breached during transportation between the two laboratories. We did not place COC seals on coolers we hand-delivered to the Anchorage SGS laboratory, since samples were in our custody until delivery.

Holding Times

Holding-time criteria were met, with the exception of the nitrate, nitrite, and sulfate holding times for SDGs 1086543 and 1086564. The results were flagged J as estimated (with sulfate flagged J- to indicate low bias), and the reporting limits flagged UJ. Nitrate/nitrite results were not flagged J- as we cannot determine the direction of potential bias to nitrate/nitrite results (due to the potential for oxidation *or* reduction over time).

Calibration

No calibration anomalies affecting data quality were identified in the laboratory case narratives.

Analytical Sensitivity

PQLs were compared to the reporting-limit objectives in the QAPP, and blank samples were checked to determine if water samples were contaminated from laboratory practices, cross-contamination from other samples, or sampling equipment.

Practical Quantitation Limits

PQLs were within the reporting limit objectives specified in the QAPP.

Method Blanks

Method blanks (MBs) were analyzed for every preparation/analysis batch. MB results were below method detection limits (MDLs) and PQLs, with one exception. Trichloroethylene (TCE) was detected between the MDL and PQL in the VOC method blank in SDG 1086564; TCE was not detected in project samples, so results were not affected.

Field Blanks

Trip blanks were transported in coolers containing VOC samples, equipment blanks were collected at the required frequency (one per day), and results were below MDLs, with the following exceptions.

Nitrite was detected between the MDL and PQL in the equipment blank for SDG 1086519; nitrite was not detected in project samples, so results were not affected.

Chloroform was detected between the MDL and PQL in the equipment blank (EB) for SDG 1086543; the chloroform result for sample 08FROAWA-12 (1.04 µg/L) was less than 5x the estimated concentration (0.450 µg/L, J) in the EB (08FROAWA-13), and therefore may be attributable to contamination from sampling equipment. Chloroform in this sample was qualified as not detected and the result flagged "U" at the detected concentration.

No trip blank was present in the cooler for SDG 1086564; VOC results in the samples for this SDG are possibly attributable to contamination of sample vials from an outside source. This QC anomaly is not addressed in the QAPP, and it is not appropriate to qualify the data as estimated, biased, or non-detect. However, it is important to note, so the VOC data in question are flagged in the analytical results table with a dagger (†). Toluene was detected between the MDL and PQL in the EB for the same SDG; toluene was not detected in project samples, so the results were not affected by this QC anomaly.

Accuracy

We reviewed the analyte recovery information for QC samples and surrogate spikes to assess the accuracy of the analyses. LCS/LCSDs were reported for VOCs; LCSs and MS/MSDs were reported for metals; LCSs and undigested bench spikes and/or sample duplicates were reported for nitrate, nitrite, and sulfate; and LCS/LCSDs and MS/MSDs were reported for methane.

Laboratory Control Samples

LCS and LCSD analyte recoveries were within the laboratory control limits, with the exception of the LCSD recovery of naphthalene, which was recovered above the control limits (biased high) in SDG 1086496. Naphthalene was not detected in the project samples for this delivery group, so the results were not affected.

Matrix Spike Samples

Matrix spike samples provide information about the laboratory's ability to recover analytes from the actual sample matrix, thus providing a measure of matrix effects. We designated sample *08FROAWA-15* for MS/MSD analysis (the project, or billable, MS/MSD). The laboratory also analyzed internal MS/MSDs, spiking other project samples. MS/MSD analyte recoveries were within laboratory control limits in all cases.

Surrogates

Surrogates were added to all project and QC samples for VOC analysis. Surrogate recoveries were within laboratory control limits, with the exception of 4-bromofluorobenzene (biased high) in sample *08FROAWA-18*; analytes corresponding to the surrogate were not detected in the sample, so results were not affected.

Precision

We assessed precision by calculating relative percent difference (RPD; the difference between the original and duplicate results divided by the mean of the two) for LCS/LCSD, MS/MSD, and project-sample/field-duplicate pairs. LCS/LCSD and MS/MSD RPDs were within laboratory control limits in all cases. Field duplicate RPDs were within DQOs from the QAPP, where calculable. We assessed the precision of the nitrite, nitrate, and sulfate analysis by calculating RPD between project sample and undigested duplicate, or the MS/MSD (where available). RPDs were within laboratory control limits, where calculable. In SDGs 1086496 and 1086519, the laboratory did not report duplicate or MS/MSD information for nitrite or nitrate (but did for sulfate); in these cases, we were unable to evaluate the analytical precision of the nitrite/nitrate results. We identified these results in the analytical results table with a double dagger (‡). The field-duplicate RPD (0% for nitrate) indicated adquate overall precision, so these results were not qualified as estimates.

Overall Assessment

To conclude our data review, we evaluated whether the quality of the analytical results was sufficient for the purposes of the project and whether data completeness goals were achieved.

No data were rejected as unusable, and completeness objectives were met. The data are accurate, precise, and representative, as qualified by the following data flags resulting from the QC anomalies described above.

We summarize the key findings of our data quality review below:

- 1. Methane samples transferred by SGS from their Anchorage laboratory to their Wilimington laboratory were lacking COC seals; we cannot determine if custody was breached or sample integrity was compromised during sample transit.
- 2. Nitrate, nitrite, and sulfate holding-times were exceeded in two of four SDGs; nitrate, nitrite, and sulfate results for these samples (approximately 60 percent of total samples) were qualified as estimates.
- 3. The chloroform result for one VOC sample was qualified as not detected due to an equipment blank detection.
- 4. VOC results for the three project samples and the equipment blank in SDG 1086564 are in question due to lack of a trip-blank sample; this is noted in data tables and the data are flagged with a dagger (†).
- 5. We were unable to assess the precision of nitrate, nitrite, and sulfate results for two of four SDGs (approximately 40 percent of total samples); these results were identified in the data table with a double dagger (‡).

In general, the precision and accuracy of the data met the goals specified in the QAPP, and the data are of sufficient quality for the purposes of groundwater monitoring.

Table 2 Validation Flags

			Final				
Sample ID	Method	Analyte	Result	PQL	Units	Final Flag	Reason
08FROAWA-09	SW9056	Nitrate	3220		µg/L	J	HT Exceeded
08FROAWA-09	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-09	SW9056	Sulfate	24800		µg/L	J-	HT Exceeded
08FROAWA-10	SW9056	Nitrate	1230		µg/L	J	HT Exceeded
08FROAWA-10	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-10	SW9056	Sulfate	24100		µg/L	J-	HT Exceeded
08FROAWA-11	SW9056	Nitrate	1230		µg/L	J	HT Exceeded
08FROAWA-11	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-11	SW9056	Sulfate	24300		µg/L	J-	HT Exceeded
08FROAWA-12	SW9056	Nitrate	1980		µg/L	J	HT Exceeded
08FROAWA-12	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-12	SW9056	Sulfate	23700		µg/L	J-	HT Exceeded
08FROAWA-12	SW8260B	Chloroform		1.04	µg/L	U	EB Detection
08FROAWA-13	SW9056	Nitrate		100	µg/L	UJ	HT Exceeded
08FROAWA-13	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-13	SW9056	Sulfate	42		µg/L	J-	HT Exceeded
08FROAWA-15	SW9056	Nitrate	1920		µg/L	J	HT Exceeded
08FROAWA-15	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-15	SW9056	Sulfate	26800		µg/L	J-	HT Exceeded
08FROAWA-16	SW9056	Nitrate	1860		µg/L	J	HT Exceeded
08FROAWA-16	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-16	SW9056	Sulfate	28900		µg/L	J-	HT Exceeded
08FROAWA-17	SW9056	Nitrate		100	µg/L	UJ	HT Exceeded
08FROAWA-17	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-17	SW9056	Sulfate		100	µg/L	UJ	HT Exceeded
08FROAWA-18	SW9056	Nitrate	2500		µg/L	J	HT Exceeded
08FROAWA-18	SW9056	Nitrite		100	µg/L	UJ	HT Exceeded
08FROAWA-18	SW9056	Sulfate	22600		µg/L	J-	HT Exceeded

Notes:

- µg/L micrograms per liter
- HT holding time
- EB equipment blank
- J analyte was present but the reported value may not be accurate or precise (estimated)
- J- analyte was present but the reported value may not be accurate or precise (biased low)
- UJ analyte was not detected and the specified reporting limit may not be accurate or precise (estimated)
- U analyte was not detected at the specified reporting limit

Appendix B2 Validated Analytical Results

Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
	PS	2-Dec-08	08FROAWA-01	9056A	Nitrate-N	1110	‡	100	31	µg/L
	PS PS	2-Dec-08 2-Dec-08	08FROAWA-01 08FROAWA-01	9056A 9056A	Nitrite-N Sulfate	ND 24000		100 100	31 31	µg/L
		2-Dec-08	08FROAWA-01	9056A RSK-175	Methane	24000 ND		7.2	2.28	μg/L μg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW6020	Aluminum	ND		500	150	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW6020	Arsenic	ND		5	1.5	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW6020	Iron	ND		1000	310	µg/L
		2-Dec-08	08FROAWA-01	SW6020	Manganese	2.04		2	0.62	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,1,1,2-Tetrachloroethane	ND		0.5	0.15	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,1,1-Trichloroethane	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	1,1,2,2-Tetrachloroethane	ND		0.5	0.15	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,1,2-Trichloroethane	ND ND		1		µg/L
	PS PS	2-Dec-08 2-Dec-08	08FROAWA-01 08FROAWA-01	SW8260B SW8260B	1,1-Dichloroethane 1,1-Dichloroethene	ND ND		1	0.31 0.31	μg/L μg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,1-Dichloropropene	ND		1	0.31	µg/L µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2,3-Trichloropropane	ND		1		µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2,4-Trimethylbenzene	ND		1	0.31	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2-Dibromo-3-chloropropane	ND		2		µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2-Dibromoethane	ND		1		µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2-Dichlorobenzene	ND		1	0.31	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,2-Dichloroethane	ND		0.5		µg/L
	PS PS	2-Dec-08	08FROAWA-01	SW8260B	1,2-Dichloropropane	ND ND		1	0.31	µg/L
	PS PS	2-Dec-08 2-Dec-08	08FROAWA-01 08FROAWA-01	SW8260B SW8260B	1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ND		1	0.31 0.31	μg/L μg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	1,3-Dichloropropane	ND		0.4	0.12	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	1,4-Dichlorobenzene	ND		0.4	0.12	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	2,2-Dichloropropane	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	2-Butanone (MEK)	ND		10	3.1	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	2-Chlorotoluene	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	2-Hexanone	ND		10		µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	4-Chlorotoluene	ND		1	0.31	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	4-Isopropyltoluene	ND		1		µg/L
	PS PS	2-Dec-08	08FROAWA-01	SW8260B	4-Methyl-2-pentanone (MIBK)	ND		10	3.1	µg/L
	PS PS	2-Dec-08 2-Dec-08	08FROAWA-01 08FROAWA-01	SW8260B SW8260B	Acetone Benzene	ND ND		10 0.4	3.1 0.12	μg/L μg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	Bromobenzene	ND		0. 4 1	0.12	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	Bromochloromethane	ND		1	0.31	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	Bromodichloromethane	ND		0.5	0.15	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	Bromoform	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	Bromomethane	ND		3	0.94	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	Carbon disulfide	ND		2	0.62	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	Carbon tetrachloride	ND		1	0.31	µg/L
			08FROAWA-01		Chlorobenzene	ND		0.5		µg/L
		2-Dec-08	08FROAWA-01		Chloroethane	ND		1	0.31	µg/L
	PS PS	2-Dec-08 2-Dec-08	08FROAWA-01 08FROAWA-01	SW8260B SW8260B	Chloroform Chloromethane	ND ND		1	0.3 0.31	µg/L
		2-Dec-08		SW8260B	cis-1,2-Dichloroethene	ND		1	0.31	μg/L μg/L
		2-Dec-08	08FROAWA-01	SW8260B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	Dibromomethane	ND		1	0.31	µg/L
	PS	2-Dec-08		SW8260B	Dichlorodifluoromethane	ND		1	0.31	µg/L
	PS	2-Dec-08		SW8260B	Ethylbenzene	ND		1		µg/L
	PS	2-Dec-08		SW8260B	Hexachlorobutadiene	ND		1		µg/L
AP3870		2-Dec-08	08FROAWA-01	SW8260B	Isopropylbenzene (Cumene)	ND		1	0.31	µg/L
	PS PS	2-Dec-08 2-Dec-08	08FROAWA-01	SW8260B	Methylene chloride	ND ND		5	1	µg/L
	PS PS	2-Dec-08 2-Dec-08		SW8260B SW8260B	Methyl-t-butyl ether Naphthalene	ND ND		5 2		μg/L μg/L
	PS PS	2-Dec-08	08FROAWA-01	SW8260B	n-Butylbenzene	ND		-	0.82	µg/L µg/L
		2-Dec-08	08FROAWA-01	SW8260B	n-Propylbenzene	ND		1	0.31	µg/L µg/L
	PS	2-Dec-08		SW8260B	o-Xylene	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08		SW8260B	P & M -Xylene	ND		2	0.62	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	sec-Butylbenzene	ND		1	0.31	µg/L
		2-Dec-08		SW8260B	Styrene	ND		1	0.31	µg/L
	PS	2-Dec-08		SW8260B	tert-Butylbenzene	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08		SW8260B	Tetrachloroethene	ND		1		µg/L
	PS	2-Dec-08	08FROAWA-01	SW8260B	Toluene	ND		1	0.31	µg/L
	PS PS	2-Dec-08		SW8260B	trans-1,2-Dichloroethene	ND ND		1 1	0.31	µg/L
AF3010	ro	2-Dec-08	08FROAWA-01	SW8260B	trans-1,3-Dichloropropene	טאון	I	1	0.31	µg/L

							Final			
Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Validation Flag	PQL	MDL	Units
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	Trichloroethene	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	Trichlorofluoromethane	ND		1	0.31	µg/L
AP3870	PS	2-Dec-08	08FROAWA-01	SW8260B	Vinyl chloride	ND		1	0.31	µg/L
AP3870 AP3774	PS PS	2-Dec-08 3-Dec-08	08FROAWA-01 08FROAWA-04	SW8260B 9056A	Xylenes (total) Nitrate-N	ND 1180	t	2 100	1 31	µg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	9056A 9056A	Nitrite-N	ND	+	100	31	μg/L μg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	9056A	Sulfate	24600		100	31	µg/L µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	RSK-175	Methane	ND		7.2	2.28	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW6020	Aluminum	ND		500	150	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW6020	Arsenic	ND		5	1.5	μg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW6020	Iron	ND		1000	310	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW6020	Manganese	6.92		2	0.62	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,1,1,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,1,1-Trichloroethane	ND		1	0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04 08FROAWA-04	SW8260B SW8260B	1,1,2,2-Tetrachloroethane	ND ND		0.5	0.15 0.31	µg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,1-Dichloroethane	ND		1	0.31	μg/L μg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,1-Dichloroethene	ND		1	0.31	µg/L µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,1-Dichloropropene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,2,3-Trichloropropane	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,2,4-Trimethylbenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,2-Dibromo-3-chloropropane	ND		2	0.62	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,2-Dibromoethane	ND		1	0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04 08FROAWA-04	SW8260B SW8260B	1,2-Dichlorobenzene 1,2-Dichloroethane	ND ND		1 0.5	0.31 0.15	μg/L μg/L
AP3774 AP3774	PS PS	3-Dec-08	08FROAWA-04	SW8260B	1,2-Dichloropropane	ND		0.5	0.15	µg/L µg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,3,5-Trimethylbenzene	ND		1	0.31	µg/L µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,3-Dichlorobenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,3-Dichloropropane	ND		0.4	0.12	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	1,4-Dichlorobenzene	ND		0.5	0.15	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	2,2-Dichloropropane	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	2-Butanone (MEK)	ND		10	3.1	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	2-Chlorotoluene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	2-Hexanone	ND		10	3.1	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	4-Chlorotoluene	ND		1	0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04 08FROAWA-04	SW8260B SW8260B	4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK)	ND ND		1 10	0.31 3.1	μg/L μg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Acetone	ND		10	3.1	µg/∟ µg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Benzene	ND		0.4	0.12	µg/L µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Bromobenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Bromochloromethane	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Bromodichloromethane	ND		0.5	0.15	μg/L
	PS	3-Dec-08	08FROAWA-04		Bromoform	ND		1	0.31	µg/L
	PS	3-Dec-08	08FROAWA-04	SW8260B	Bromomethane	ND		3	0.94	µg/L
	PS	3-Dec-08	08FROAWA-04		Carbon disulfide	ND		2	0.62	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04		Carbon tetrachloride	ND		1	0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04 08FROAWA-04		Chlorobenzene Chloroethane	ND ND		0.5 1	0.15 0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04		Chloroform	ND		1	0.31	μg/L μg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Chloromethane	ND		1	0.3	μg/L μg/L
AP3774	PS	3-Dec-08	08FROAWA-04		cis-1,2-Dichloroethene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Dibromomethane	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08		SW8260B	Dichlorodifluoromethane	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04		Ethylbenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04		Hexachlorobutadiene	ND		1	0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04 08FROAWA-04	SW8260B SW8260B	Isopropylbenzene (Cumene) Methylene chloride	ND ND		1 5	0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04 08FROAWA-04		Methylene chloride Methyl-t-butyl ether	ND ND		5 5	1 1.5	μg/L μg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04		Naphthalene	ND		5 2		µg/L µg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04		n-Butylbenzene	ND		2	0.31	µg/L µg/L
AP3774	PS	3-Dec-08			n-Propylbenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04		o-Xylene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	P & M -Xylene	ND		2	0.62	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	sec-Butylbenzene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08		SW8260B	Styrene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	tert-Butylbenzene	ND	1	11	0.31	µg/L

Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Tetrachloroethene	0.45	J	1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Toluene	ND		1	0.31	µg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	trans-1,2-Dichloroethene	ND		1	0.31	µg/L
AP3774 AP3774	PS PS	3-Dec-08 3-Dec-08	08FROAWA-04 08FROAWA-04	SW8260B SW8260B	trans-1,3-Dichloropropene Trichloroethene	ND ND		1	0.31 0.31	μg/L μg/L
AP3774 AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Trichlorofluoromethane	ND		1	0.31	μg/L μg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Vinyl chloride	ND		1	0.31	μg/L
AP3774	PS	3-Dec-08	08FROAWA-04	SW8260B	Xylenes (total)	ND		2	1	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	9056A	Nitrate-N	751		100	31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	9056A	Nitrite-N	ND		100	31	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	9056A	Sulfate	38800		100	31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	RSK-175	Methane	ND		7.2	2.28	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW6020	Aluminum	ND		500	150	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW6020	Arsenic	ND		5	1.5	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05	SW6020 SW6020	Iron	ND 1.86		1000 2	310 0.62	µg/L
AP3871 AP3871	PS PS	3-Dec-08	08FROAWA-05 08FROAWA-05	SW8020 SW8260B	Manganese 1,1,1,2-Tetrachloroethane	1.00 ND	J	2 0.5	0.62	μg/L μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,1,1-Trichloroethane	ND		1	0.31	μg/L μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,1,2,2-Tetrachloroethane	ND		0.5	0.15	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,1,2-Trichloroethane	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,1-Dichloroethane	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,1-Dichloroethene	ND		1	0.31	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,1-Dichloropropene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,2,3-Trichloropropane	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05 08FROAWA-05	SW8260B SW8260B	1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ND ND		1	0.31 0.62	µg/L
AP3871 AP3871	PS PS	3-Dec-08	08FROAWA-05	SW8260B	1,2-Dibromoethane	ND		2	0.82	μg/L μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,2-Dichlorobenzene	ND		1	0.31	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,2-Dichloroethane	ND		0.5	0.15	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,2-Dichloropropane	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,3,5-Trimethylbenzene	ND		1	0.31	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,3-Dichlorobenzene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,3-Dichloropropane	ND		0.4	0.12	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	1,4-Dichlorobenzene	ND		0.5	0.15	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	2,2-Dichloropropane	ND		1	0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05 08FROAWA-05	SW8260B SW8260B	2-Butanone (MEK) 2-Chlorotoluene	ND ND		10	3.1 0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08	08FROAWA-05	SW8260B	2-Hexanone	ND		10	3.1	μg/L μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	4-Chlorotoluene	ND		10	0.31	μg/L μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	4-Isopropyltoluene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	4-Methyl-2-pentanone (MIBK)	ND		10	3.1	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Acetone	ND		10	3.1	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Benzene	ND		0.4	0.12	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05		Bromobenzene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Bromochloromethane	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05		Bromodichloromethane	ND		0.5	0.15	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05 08FROAWA-05	SW8260B	Bromoform	ND ND		1 3	0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05	SW8260B SW8260B	Bromomethane Carbon disulfide	ND ND	-	3	0.94 0.62	μg/L μg/L
AP3871 AP3871	PS PS	3-Dec-08	08FROAWA-05		Carbon tetrachloride	ND		2	0.82	µg/L µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Chlorobenzene	ND	1	0.5	0.15	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05		Chloroethane	ND		1	0.31	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05		Chloroform	3.73		1	0.3	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Chloromethane	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05		cis-1,2-Dichloroethene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05		cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
AP3871	PS	3-Dec-08		SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Dibromomethane	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05		Dichlorodifluoromethane	ND		1	0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05	SW8260B	Ethylbenzene Hexachlorobutadiene	ND ND		1	0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05 08FROAWA-05	SW8260B	Isopropylbenzene (Cumene)	ND ND		1	0.31 0.31	μg/L μg/L
AP3871 AP3871	PS PS	3-Dec-08	08FROAWA-05	SW8260B	Methylene chloride	ND		5	1	μg/L μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Methyl-t-butyl ether	ND	1	5	1.5	µg/L µg/L
AP3871	PS	3-Dec-08	08FROAWA-05		Naphthalene	ND	1	2	0.62	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	n-Butylbenzene	ND	1	1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	n-Propylbenzene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	o-Xylene	ND	1	1	0.31	µg/L

Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	P & M -Xylene	ND		2	0.62	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05 08FROAWA-05	SW8260B SW8260B	sec-Butylbenzene Styrene	ND ND		1	0.31 0.31	μg/L μg/L
AP3871		3-Dec-08	08FROAWA-05	SW8260B	tert-Butylbenzene	ND		1	0.31	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Tetrachloroethene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Toluene	ND		1	0.31	µg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	trans-1,2-Dichloroethene	ND		1	0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08 3-Dec-08	08FROAWA-05 08FROAWA-05	SW8260B SW8260B	trans-1,3-Dichloropropene Trichloroethene	ND ND		1	0.31 0.31	µg/L
AP3871 AP3871	PS PS	3-Dec-08	08FROAWA-05	SW8260B	Trichlorofluoromethane	ND		1	0.31	μg/L μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Vinyl chloride	ND		1	0.31	μg/L
AP3871	PS	3-Dec-08	08FROAWA-05	SW8260B	Xylenes (total)	ND		2	1	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	9056A	Nitrate-N	ND		100	31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	9056A	Nitrite-N	ND		100	31	µg/L
AP3893 AP3893	PS PS	3-Dec-08	08FROAWA-06 08FROAWA-06	9056A RSK-175	Sulfate Methane	20600 ND		100 7.2	31 2.28	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06	SW6020	Aluminum	ND		7.2 500	2.28	μg/L μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW6020	Arsenic	20.7		5	1.5	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW6020	Iron	ND		1000	310	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW6020	Manganese	42.3		2	0.62	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,1,1,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,1,1-Trichloroethane	ND	<u> </u>	1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,1,2,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06 08FROAWA-06	SW8260B SW8260B	1,1,2-Trichloroethane	ND ND		1	0.31 0.31	μg/L μg/L
AP3893 AP3893	PS PS	3-Dec-08	08FROAWA-06	SW8260B	1,1-Dichloroethene	ND		1	0.31	µg/L µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,1-Dichloropropene	ND		1	0.31	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,2,3-Trichloropropane	ND		1	0.31	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,2,4-Trimethylbenzene	ND		1	0.31	µg/L
AP3893 AP3893	PS PS	3-Dec-08	08FROAWA-06	SW8260B	1,2-Dibromo-3-chloropropane	ND		2	0.62	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06 08FROAWA-06	SW8260B SW8260B	1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND		1	0.31 0.31	μg/L μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,2-Dichloroethane	ND		0.5	0.15	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,2-Dichloropropane	ND		1	0.31	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,3,5-Trimethylbenzene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,3-Dichlorobenzene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	1,3-Dichloropropane	ND		0.4	0.12	µg/L
AP3893 AP3893	PS PS	3-Dec-08	08FROAWA-06 08FROAWA-06	SW8260B SW8260B	1,4-Dichlorobenzene 2,2-Dichloropropane	ND ND		0.5 1	0.15 0.31	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06	SW8260B	2-Butanone (MEK)	ND		10	3.1	μg/L μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	2-Chlorotoluene	ND		10	0.31	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	2-Hexanone	ND		10	3.1	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	4-Chlorotoluene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06		4-Isopropyltoluene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	4-Methyl-2-pentanone (MIBK)	ND		10	3.1	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06 08FROAWA-06	SW8260B	Acetone Benzene	ND ND		10 0.4	3.1 0.12	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08		SW8260B SW8260B	Benzene Bromobenzene	ND ND		0.4 1	0.12	µg/L µg/L
AP3893	PS	3-Dec-08	08FROAWA-06		Bromochloromethane	ND		1	0.31	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Bromodichloromethane	ND	1	0.5	0.15	µg/L
AP3893	PS	3-Dec-08		SW8260B	Bromoform	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06		Bromomethane	ND		3	0.94	µg/L
AP3893	PS	3-Dec-08		SW8260B	Carbon disulfide	ND		2	0.62	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06 08FROAWA-06		Carbon tetrachloride	ND ND		1 0.5	0.31	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06 08FROAWA-06		Chlorobenzene Chloroethane	ND ND		1	0.15 0.31	μg/L μg/L
AP3893	PS	3-Dec-08		SW8260B	Chloroform	ND		1	0.3	μg/L μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Chloromethane	ND	1	1	0.31	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	cis-1,2-Dichloroethene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08		SW8260B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
AP3893 AP3893	PS PS	3-Dec-08	08FROAWA-06 08FROAWA-06	SW8260B SW8260B	Dibromomethane Dichlorodifluoromethane	ND ND		1	0.31 0.31	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06	SW8260B SW8260B	Ethylbenzene	ND		1	0.31	μg/L μg/L
AP3893	PS	3-Dec-08	08FROAWA-06		Hexachlorobutadiene	ND		1	0.31	μg/L
AP3893	PS	3-Dec-08		SW8260B	Isopropylbenzene (Cumene)	ND		1	0.31	μg/L
AP3893		3-Dec-08	08FROAWA-06	SW8260B	Methylene chloride	ND		5	1	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Methyl-t-butyl ether	ND	1	5	1.5	µg/L

	Sample	Sample				Final	Final Validation			
Location	Туре	Date	Sample ID	Method	Analyte	Result	Flag	PQL	MDL	Units
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Naphthalene	ND		2	0.62	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06 08FROAWA-06	SW8260B	n-Butylbenzene n-Propylbenzene	ND ND		1	0.31	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06	SW8260B SW8260B	o-Xylene	ND		1	0.31 0.31	μg/L μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	P & M -Xylene	ND		2	0.62	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	sec-Butylbenzene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Styrene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	tert-Butylbenzene	ND		1	0.31	μg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Tetrachloroethene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Toluene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08		SW8260B	trans-1,2-Dichloroethene	ND		1	0.31	µg/L
AP3893	PS	3-Dec-08		SW8260B	trans-1,3-Dichloropropene	ND		1	0.31	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06 08FROAWA-06	SW8260B	Trichloroethene Trichlorofluoromethane	ND ND		1	0.31	µg/L
AP3893 AP3893	PS PS	3-Dec-08 3-Dec-08	08FROAWA-06	SW8260B SW8260B	Vinyl chloride	ND		1	0.31 0.31	µg/L µg/L
AP3893	PS	3-Dec-08	08FROAWA-06	SW8260B	Xylenes (total)	ND		2	1	µg/L µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	9056A	Nitrate-N	3220	J	100	31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	9056A	Nitrite-N	ND	UJ	100	31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	9056A	Sulfate	24800		100	31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	RSK-175	Methane	ND		7.2	2.28	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW6020	Aluminum	ND		500	150	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW6020	Arsenic	ND		5	1.5	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW6020	Iron	ND		1000	310	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW6020	Manganese	4.17		2	0.62	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,1,1,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,1,1-Trichloroethane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,1,2,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,1,2-Trichloroethane	ND		1	0.31	µg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09 08FROAWA-09	SW8260B SW8260B	1,1-Dichloroethane 1,1-Dichloroethene	ND ND		1	0.31 0.31	μg/L μg/L
AP4411 AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,1-Dichloropropene	ND		1	0.31	µg/L µg/L
AP4411 AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2,3-Trichloropropane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2,4-Trimethylbenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2-Dibromo-3-chloropropane	ND		2	0.62	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2-Dibromoethane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2-Dichlorobenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08		SW8260B	1,2-Dichloroethane	ND		0.5	0.15	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,2-Dichloropropane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,3,5-Trimethylbenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	1,3-Dichlorobenzene	ND		1	0.31	µg/L
AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09	SW8260B	1,3-Dichloropropane	ND		0.4 0.5	0.12	µg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09 08FROAWA-09	SW8260B	1,4-Dichlorobenzene 2,2-Dichloropropane	ND ND		0.5 1	0.15 0.31	μg/L μg/L
AP4411 AP4411	PS	4-Dec-08	08FROAWA-09		2-Butanone (MEK)	ND		10	3.1	µg/L µg/L
AP4411 AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	2-Chlorotoluene	ND		10	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		2-Hexanone	ND		10	3.1	µg/L
AP4411	PS	4-Dec-08		SW8260B	4-Chlorotoluene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		4-Isopropyltoluene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	4-Methyl-2-pentanone (MIBK)	ND		10	3.1	μg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Acetone	3.94	J	10	3.1	μg/L
AP4411	PS	4-Dec-08		SW8260B	Benzene	ND		0.4	0.12	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		Bromobenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		Bromochloromethane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08		SW8260B	Bromodichloromethane	ND		0.5	0.15	µg/L
AP4411	PS PS	4-Dec-08	08FROAWA-09		Bromoform	ND		1	0.31	µg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09 08FROAWA-09		Bromomethane Carbon disulfide	ND ND		3 2	0.94 0.62	µg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09 08FROAWA-09		Carbon disulfide	ND ND		2 1	0.62	μg/L μg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09		Chlorobenzene	ND		0.5	0.31	µg/L µg/L
AP4411 AP4411	PS	4-Dec-08	08FROAWA-09		Chloroethane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		Chloroform	ND	1	1	0.3	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		Chloromethane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		cis-1,2-Dichloroethene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08		SW8260B	cis-1,3-Dichloropropene	ND	t	0.5	0.15	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09		Dibromochloromethane	ND		0.5	0.15	µg/L
A D 4 4 4 4	PS	4-Dec-08	08FROAWA-09		Dibromomethane	ND		1	0.31	µg/L
AP4411										
AP4411 AP4411 AP4411	PS PS	4-Dec-08	08FROAWA-09	SW8260B	Dichlorodifluoromethane	ND		1	0.31	μg/L μg/L

Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Hexachlorobutadiene	ND		1	0.31	µg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09 08FROAWA-09	SW8260B SW8260B	Isopropylbenzene (Cumene) Methylene chloride	ND ND		1 5	0.31 1	μg/L μg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Methyl-t-butyl ether	ND		5	1.5	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Naphthalene	ND		2	0.62	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	n-Butylbenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	n-Propylbenzene	ND		1	0.31	µg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09 08FROAWA-09	SW8260B SW8260B	o-Xylene P & M -Xylene	ND ND		1 2	0.31 0.62	µg/L
AP4411 AP4411	PS PS	4-Dec-08	08FROAWA-09	SW8260B	sec-Butylbenzene	ND		<u>∠</u> 1	0.82	μg/L μg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Styrene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	tert-Butylbenzene	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Tetrachloroethene	6.64		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Toluene	ND		1	0.31	µg/L
AP4411 AP4411	PS PS	4-Dec-08 4-Dec-08	08FROAWA-09 08FROAWA-09	SW8260B SW8260B	trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ND ND		1	0.31 0.31	μg/L μg/L
AP4411 AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Trichloroethene	ND		1	0.31	µg/L µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Trichlorofluoromethane	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Vinyl chloride	ND		1	0.31	µg/L
AP4411	PS	4-Dec-08	08FROAWA-09	SW8260B	Xylenes (total)	ND		2	1	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	9056A	Nitrate-N	1230	J	100	31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	9056A	Nitrite-N	ND	UJ	100	31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08	08FROAWA-10 08FROAWA-10	9056A RSK-175	Sulfate Methane	24100 ND		100 7.2	31 2.28	µg/L
AP3534 AP3534	PS PS	4-Dec-08	08FROAWA-10	SW6020	Aluminum	ND		7.2 500	150	μg/L μg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW6020	Arsenic	ND		5	1.5	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW6020	Iron	ND		1000	310	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW6020	Manganese	ND		2	0.62	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,1,1,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,1,1-Trichloroethane	ND		1	0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08	08FROAWA-10 08FROAWA-10	SW8260B SW8260B	1,1,2,2-Tetrachloroethane	ND ND		0.5	0.15 0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08	08FROAWA-10	SW8260B	1,1-Dichloroethane	ND		1	0.31	µg/L µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,1-Dichloroethene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,1-Dichloropropene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	μg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,2,3-Trichloropropane	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08	08FROAWA-10 08FROAWA-10	SW8260B SW8260B	1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ND ND		1 2	0.31 0.62	μg/L μg/L
AP3534 AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,2-Dibromoethane	ND		2	0.02	µg/L µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,2-Dichlorobenzene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,2-Dichloroethane	ND		0.5	0.15	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	1,2-Dichloropropane	ND		1	0.31	µg/L
	PS	4-Dec-08	08FROAWA-10		1,3,5-Trimethylbenzene	ND		1	0.31	µg/L
	PS	4-Dec-08	08FROAWA-10		1,3-Dichlorobenzene	ND ND		1	0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08	08FROAWA-10 08FROAWA-10	SW8260B SW8260B	1,3-Dichloropropane 1,4-Dichlorobenzene	ND		0.4 0.5	0.12 0.15	μg/L μg/L
AP3534	PS	4-Dec-08	08FROAWA-10		2,2-Dichloropropane	ND		1		µg/L
AP3534	PS	4-Dec-08		SW8260B	2-Butanone (MEK)	ND		10	3.1	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	2-Chlorotoluene	ND		1	0.31	µg/L
	PS	4-Dec-08	08FROAWA-10	SW8260B	2-Hexanone	ND		10	3.1	µg/L
AP3534	PS	4-Dec-08		SW8260B	4-Chlorotoluene	ND		1	0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08		SW8260B SW8260B	4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK)	ND ND		1 10	0.31 3.1	μg/L μg/L
AP3534 AP3534	PS	4-Dec-08	08FROAWA-10		Acetone	ND		10	3.1	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10		Benzene	ND	<u> </u>	0.4	0.12	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Bromobenzene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08		SW8260B	Bromochloromethane	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08		SW8260B	Bromodichloromethane	ND		0.5	0.15	µg/L
AP3534	PS PS	4-Dec-08	08FROAWA-10		Bromoform			1	0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08	08FROAWA-10 08FROAWA-10	SW8260B SW8260B	Bromomethane Carbon disulfide	ND ND		3 2	0.94 0.62	μg/L μg/L
AP3534 AP3534	PS	4-Dec-08	08FROAWA-10		Carbon tetrachloride	ND		2	0.02	µg/L µg/L
AP3534	PS	4-Dec-08		SW8260B	Chlorobenzene	ND		0.5	0.15	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Chloroethane	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08		SW8260B	Chloroform	ND		1	0.3	µg/L
AP3534	PS	4-Dec-08		SW8260B	Chloromethane	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08		SW8260B	cis-1,2-Dichloroethene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	3110200B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L

	Sample	Sample				Final	Final Validation			
Location	Туре	Date	Sample ID	Method	Analyte	Result	Flag	PQL	MDL	Units
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Dibromomethane	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Dichlorodifluoromethane	ND		1	0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08	08FROAWA-10 08FROAWA-10	SW8260B SW8260B	Ethylbenzene Hexachlorobutadiene	ND ND		1 1	0.31 0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08	08FROAWA-10	SW8260B	Isopropylbenzene (Cumene)	ND		1	0.31	μg/L μg/L
AP3534 AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Methylene chloride	ND		5	1	µg/L µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Methyl-t-butyl ether	ND		5	1.5	μg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Naphthalene	ND		2	0.62	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	n-Butylbenzene	ND		1	0.31	μg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	n-Propylbenzene	ND		1	0.31	μg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	o-Xylene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	P & M -Xylene	ND		2	0.62	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	sec-Butylbenzene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Styrene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	tert-Butylbenzene	ND		1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Tetrachloroethene	22.8		1	0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08	08FROAWA-10 08FROAWA-10	SW8260B SW8260B	Toluene trans-1,2-Dichloroethene	ND ND		1	0.31 0.31	µg/L
AP3534 AP3534	PS PS	4-Dec-08 4-Dec-08	08FROAWA-10 08FROAWA-10	SW8260B SW8260B	trans-1,2-Dichloropropene	ND		1	0.31	μg/L μg/L
AP3534 AP3534	PS PS	4-Dec-08	08FROAWA-10	SW8260B	Trichloroethene	ND		1	0.31	µg/L µg/L
AP3534 AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Trichlorofluoromethane	ND		1	0.31	µg/L µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Vinyl chloride	ND	1	1	0.31	µg/L
AP3534	PS	4-Dec-08	08FROAWA-10	SW8260B	Xylenes (total)	ND		2	1	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	9056A	Nitrate-N	1230	J	100	31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	9056A	Nitrite-N	ND	UJ	100	31	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	9056A	Sulfate	24300		100	31	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	RSK-175	Methane	ND		7.2	2.28	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW6020	Aluminum	ND		500	150	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW6020	Arsenic	ND		5	1.5	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW6020	Iron	ND		1000	310	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW6020	Manganese	ND		2	0.62	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		1,1,1,2-Tetrachloroethane	ND ND		0.5 1	0.15	µg/L
AP9534 AP9534	FD FD	4-Dec-08 4-Dec-08	08FROAWA-11 08FROAWA-11	SW8260B SW8260B	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND		0.5	0.31 0.15	μg/L μg/L
AP9534 AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,1,2-Trichloroethane	ND		0.5	0.15	µg/L µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,1-Dichloroethane	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,1-Dichloroethene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,1-Dichloropropene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,2,3-Trichloropropane	ND		1	0.31	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,2,4-Trimethylbenzene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,2-Dibromo-3-chloropropane	ND		2	0.62	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		1,2-Dibromoethane	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		1,2-Dichlorobenzene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		1,2-Dichloroethane	ND		0.5	0.15	µg/L
AP9534 AP9534	FD FD	4-Dec-08 4-Dec-08	08FROAWA-11 08FROAWA-11		1,2-Dichloropropane	ND ND		1	0.31 0.31	µg/L µg/L
AP9534 AP9534	FD	4-Dec-08	08FROAWA-11		1,3-Dichlorobenzene	ND		1	0.31	µg/L µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	1,3-Dichloropropane	ND		0.4	0.12	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		1,4-Dichlorobenzene	ND		0.5	0.12	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	2,2-Dichloropropane	ND		1	0.31	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11		2-Butanone (MEK)	ND		10	3.1	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	2-Chlorotoluene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		2-Hexanone	ND		10	3.1	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		4-Chlorotoluene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		4-Isopropyltoluene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		4-Methyl-2-pentanone (MIBK)	ND		10	3.1	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		Acetone	ND		10	3.1	µg/L
AP9534 AP9534	FD FD	4-Dec-08	08FROAWA-11		Benzene	ND ND		0.4 1	0.12 0.31	µg/L
AP9534 AP9534	FD	4-Dec-08 4-Dec-08	08FROAWA-11 08FROAWA-11		Bromobenzene Bromochloromethane	ND ND		1	0.31	µg/L µg/L
AP9534 AP9534	FD	4-Dec-08	08FROAWA-11		Bromodichloromethane	ND		0.5	0.31	µg/L µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		Bromoform	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Bromomethane	ND	1	3	0.94	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11		Carbon disulfide	ND		2	0.62	µg/L
		4-Dec-08	08FROAWA-11		Carbon tetrachloride	ND	1	1	0.31	µg/L
AP9534	FD	4-Dec-00		OTTOLOOD					0.51	Mg/L
AP9534 AP9534	FD FD	4-Dec-08	08FROAWA-11		Chlorobenzene	ND		0.5	0.15	µg/L

Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Chloroform	ND		1	0.3	µg/L
AP9534 AP9534	FD FD	4-Dec-08 4-Dec-08	08FROAWA-11 08FROAWA-11	SW8260B SW8260B	Chloromethane cis-1.2-Dichloroethene	ND ND		1 1	0.31 0.31	μg/L μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Dibromochloromethane	ND		0.5	0.15	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Dibromomethane	ND		1	0.31	µg/L
AP9534 AP9534	FD	4-Dec-08	08FROAWA-11 08FROAWA-11	SW8260B	Dichlorodifluoromethane	ND ND		1	0.31	µg/L
AP9534 AP9534	FD FD	4-Dec-08 4-Dec-08	08FROAWA-11	SW8260B SW8260B	Ethylbenzene Hexachlorobutadiene	ND		1	0.31 0.31	μg/L μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Isopropylbenzene (Cumene)	ND		1	0.31	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Methylene chloride	ND		5	1	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Methyl-t-butyl ether	ND		5	1.5	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Naphthalene	ND		2	0.62	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	n-Butylbenzene	ND		1	0.31	µg/L
AP9534 AP9534	FD FD	4-Dec-08 4-Dec-08	08FROAWA-11 08FROAWA-11	SW8260B SW8260B	n-Propylbenzene o-Xylene	ND ND		1	0.31 0.31	μg/L μg/L
AP9534	FD	4-Dec-00 4-Dec-08	08FROAWA-11	SW8260B	P & M -Xylene	ND		2	0.62	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	sec-Butylbenzene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Styrene	ND		1	0.31	μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	tert-Butylbenzene	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Tetrachloroethene	23.2		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Toluene	ND		1	0.31	µg/L
AP9534 AP9534	FD FD	4-Dec-08 4-Dec-08	08FROAWA-11 08FROAWA-11	SW8260B SW8260B	trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ND ND		1	0.31 0.31	μg/L μg/L
AP9534 AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Trichloroethene	ND		1	0.31	μg/L μg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Trichlorofluoromethane	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Vinyl chloride	ND		1	0.31	µg/L
AP9534	FD	4-Dec-08	08FROAWA-11	SW8260B	Xylenes (total)	ND		2	1	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	9056A	Nitrate-N	1980	J	100	31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	9056A	Nitrite-N	ND	UJ	100	31	µg/L
AP3468 AP3468	PS PS	4-Dec-08 4-Dec-08	08FROAWA-12 08FROAWA-12	9056A RSK-175	Sulfate Methane	23700 ND		100 7.2	31 2.28	µg/L
AP3466 AP3468	PS	4-Dec-08	08FROAWA-12	SW6020	Aluminum	ND		7.2 500	150	μg/L μg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW6020	Arsenic	ND		5	1.5	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW6020	Iron	ND		1000	310	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW6020	Manganese	5.27		2	0.62	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW8260B	1,1,1,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW8260B	1,1,1-Trichloroethane	ND		1	0.31	µg/L
AP3468 AP3468	PS PS	4-Dec-08 4-Dec-08	08FROAWA-12 08FROAWA-12	SW8260B SW8260B	1,1,2,2-Tetrachloroethane	ND ND		0.5 1	0.15 0.31	μg/L μg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW8260B	1.1-Dichloroethane	ND		1	0.31	μg/L μg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW8260B	1,1-Dichloroethene	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,1-Dichloropropene	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,2,3-Trichlorobenzene	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,2,3-Trichloropropane	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP3468 AP3468	PS PS	4-Dec-08 4-Dec-08	08FROAWA-12 08FROAWA-12		1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ND ND		1 2	0.31 0.62	μg/L μg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,2-Dibromoethane	ND		2	0.31	μg/L μg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,2-Dichlorobenzene	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW8260B	1,2-Dichloroethane	ND		0.5	0.15	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,2-Dichloropropane	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		1,3,5-Trimethylbenzene	ND		1	0.31	µg/L
AP3468 AP3468	PS PS	4-Dec-08 4-Dec-08	08FROAWA-12 08FROAWA-12		1,3-Dichlorobenzene 1,3-Dichloropropane	ND ND		1 0.4	0.31 0.12	μg/L μg/L
AP3468 AP3468	PS	4-Dec-08	08FROAWA-12		1,4-Dichlorobenzene	ND		0.4 0.5	0.12	μg/L μg/L
AP3468	PS	4-Dec-08	08FROAWA-12		2,2-Dichloropropane	ND		1	0.31	μg/L
AP3468	PS	4-Dec-08	08FROAWA-12		2-Butanone (MEK)	ND		10	3.1	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW8260B	2-Chlorotoluene	ND	-	1	0.31	μg/L
AP3468	PS	4-Dec-08	08FROAWA-12		2-Hexanone	ND		10	3.1	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		4-Chlorotoluene	ND		1	0.31	µg/L
AP3468 AP3468	PS PS	4-Dec-08 4-Dec-08	08FROAWA-12 08FROAWA-12		4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK)	ND ND		1 10	0.31 3.1	μg/L μg/L
AP3466 AP3468		4-Dec-08	08FROAWA-12		Acetone	ND		10	3.1	µg/L µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		Benzene	ND		0.4	0.12	μg/L
AP3468	PS	4-Dec-08	08FROAWA-12		Bromobenzene	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	SW8260B	Bromochloromethane	ND		1	0.31	μg/L
AP3468	PS	4-Dec-08	08FROAWA-12		Bromodichloromethane	ND		0.5	0.15	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12		Bromoform	ND		1	0.31	µg/L
AP3468	PS	4-Dec-08	08FROAWA-12	3110200B	Bromomethane	ND		3	0.94	µg/L

AP3488 PS 4-0e-c0 05FROAWA-12 SW82806 Chiorobareane ND 1 0.31 Lip AP3488 PS 4-0e-c0 05FROAWA-12 SW82806 Chiorobareane ND 1 0.31 Lip AP3488 PS 4-0e-c0 05FROAWA-12 SW82806 Chiorobareane ND 1 0.31 Lip AP3488 PS 4-0e-c0 05FROAWA-12 SW82806 Chiorobareane ND 1 0.31 Lip AP3488 PS 4-0e-c0 05FROAWA-12 SW82806 Chiorobareane ND 1 0.31 Lip AP3488 PS 4-0e-c0 05FROAWA-12 SW82060 Dichlorobareane ND 1 0.31 Lip AP3488 PS 4-0e-c0 05FROAWA-12 SW82060 Dichlorobareane ND 1 0.31 Lip AP3488 PS 4-0e-c0 05FROAWA-12 SW82060 LipHoarobareane ND 1 0.31 Lip	Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
AP3468 PS 4 (Dec.00 DEFROAWA12 SW82206 Chiorobarcene ND I 0.31 HB AP3468 PS 4 (Dec.00 05FROAWA12 SW82206 Chioroform ND U 1.0 0.31 HB AP3468 PS 4 (Dec.00 05FROAWA12 SW82206 Chioroform ND 1 0.31 JB AP3468 PS 4 (Dec.00 05FROAWA12 SW82206 Chioroform ND 1 0.31 JB AP3468 PS 4 (Dec.00 05FROAWA12 SW82206 Chioroform ND 1 0.31 JB AP3468 PS 4 (Dec.00 05FROAWA12 SW82206 Chioroformormetane ND 1 0.31 JB AP3468 PS 4 (Dec.00 05FROAWA12 SW82206 Methyl-burg/encene ND 1 0.31 JB AP3468 PS 4 (Dec.00 05FROAWA12 SW82206 Methyl-burg/encene ND 1 0.31 <t< td=""><td>AP3468</td><td></td><td>4-Dec-08</td><td>08FROAWA-12</td><td>SW8260B</td><td>Carbon disulfide</td><td></td><td></td><td>2</td><td>0.62</td><td>µg/L</td></t<>	AP3468		4-Dec-08	08FROAWA-12	SW8260B	Carbon disulfide			2	0.62	µg/L
AF3468 PS 4-Dec. 80 OBFROAWA12 W022005 Chioromhane ND I 0.31 µp AF3468 PS 4-Dec. 80 OBFROAWA12 W022005 ChioromeTane ND I 0.31 µp AF3468 PS 4-Dec. 80 OBFROAWA12 W022005 ChioromeTane ND 0.5 0.15 µp AF3468 PS 4-Dec. 80 OBFROAWA12 W022005 ChioromeTane ND 0.5 0.15 µp AF3468 PS 4-Dec. 80 OBFROAWA12 W022005 Dibromonethane ND 1 0.31 µp AF3468 PS 4-Dec. 80 OBFROAWA12 W022080 Methylenzzehn ND 1 0.31 µp AF3468 PS 4-Dec. 80 OBFROAWA12 W022080 Methylenzzehn ND 1 0.31 µp AF3468 PS 4-Dec. 80 OBFROAWA12 W022080 Methylenzzehn ND 1 0.31 µp									1		µg/L
AP3488 PS 4-Dec-80 OBFROAWA-12 WW32080 Chardnerm ND U 1.4 0.31 Hp AP3488 PS 4-Dec-80 08FROAWA-12 WW32080 Chardnermethane ND 1 0.31 Hp AP3488 PS 4-Dec-80 08FROAWA-12 WW32080 Chardnermethane ND 0.5 0.15 Hp AP3488 PS 4-Dec-80 08FROAWA-12 WW32080 Dicharcenthane ND 1 0.31 Hp AP3488 PS 4-Dec-80 08FROAWA-12 WW32080 Dicharcenthane ND 1 0.31 Hp AP3488 PS 4-Dec-80 08FROAWA-12 WW32080 Methyd-burg thera ND 5 1 1 0.31 Hp AP3489 PS 4-Dec-80 08FROAWA-12 WW32080 Methyd-burg thera ND 1 0.31 Hp AP3488 PS 4-Dec-80 08FROAWA-12 WW32080 NA NM400											µg/L
AP3468 PS 4-Dec-08 05FROAWA-12 W022006 Chiocomethane ND 1 0.31 10 AP3468 PS 4-Dec-08 05FROAWA-12 W022006 0:6-1.3-Dichiocomethane ND 0.5 0.15 Jug AP3468 PS 4-Dec-08 05FROAWA-12 W022060 Dichoronchronethane ND 1 0.31 Jug AP3468 PS 4-Dec-08 05FROAWA-12 W022060 Dichoronchronethane ND 1 0.31 Jug AP3468 PS 4-Dec-08 05FROAWA-12 W022060 Dichoronchronethane ND 1 0.31 Jug AP3468 PS 4-Dec-08 05FROAWA-12 W022060 M040robrobationethane ND 1 0.31 Jug AP3468 PS 4-Dec-08 05FROAWA-12 W022080 Muprime chorde ND 1 0.31 Jug AP3468 PS 4-Dec-08 05FROAWA-12 W032080 Muprime chorde ND 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td><td>µg/L</td></t<>								11			µg/L
AP3468 PS 4-Dec-08 08FROWA-12 SW82608 cit-12-Dictingroppen ND 0.5 0.5 1.5 Hg AP3468 PS 4-Dec-08 08FROWA-12 SW82608 Dictromochiormethane ND 1 0.31 Hg AP3468 PS 4-Dec-08 08FROWA-12 SW82608 Dictromochiormethane ND 1 0.31 Hg AP3468 PS 4-Dec-08 08FROWA-12 SW82608 Environmethane ND 1 0.31 Hg AP3468 PS 4-Dec-08 08FROWA-12 SW82608 Methyd-burne chorinde ND 5 1.5 Hg AP3468 PS 4-Dec-08 08FROWA-12 SW82608 Methyd-burne chorinde ND 1 0.31 Hg AP3468 PS 4-Dec-08 08FROWA-12 SW82608 A-Mythene ND 1 0.31 Hg AP3468 PS 4-Dec-08 08FROWA-12 SW82608 A-Mythene ND 1 0								0	-		µg/L µg/L
AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B Disconcibromethane ND 0.5 0.5 1.5 µp AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B Disconcibromethane ND 1 0.31 µp AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B EtryUbenzone ND 1 0.31 µp AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B EtryUbenzone ND 1 0.31 µp AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B Methyl-bothylene chorde ND 5 1.5 µp AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B Methyl-bothylene ND 2 0.52 0.5 AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B PA-Mylene ND 1 0.31 µp AP3468 PS 4-Dec-08 0BFRQAWA-12 SW8220B PA-Mylene ND 1 0.31		-							•		µg/L
AP3488 PS 4-Dec-08 OBFROAWA-12 SW8220B Dibromentiane ND 1 0.5. 0.151 µpp AP3488 AP3488 PS 4-Dec-08 OBFROAWA-12 SW8220B Dibromentiane ND 1 0.311 µpp AP3488 AP3488 PS 4-Dec-08 OBFROAWA-12 SW8220B Hexachtorobulationme ND 1 0.311 µpp AP3488 AP3488 PS 4-Dec-08 OBFROAWA-12 SW8220B Hexachtorobulationme ND 1 0.311 µpp AP3488 AP3488 PS 4-Dec-08 OBFROAWA-12 SW8220B Matylemazene ND 1 0.311 µpp AP3488 AP3488 PS 4-Dec-08 OBFROAWA-12 SW8220B Naphthalene ND 1 0.311 0.31 µpp AP3488 PS 4-Dec-04 OBFROAWA-12 SW8220B naphthalene ND 1 0.31 0.31 µpp AP3488 PS 4-Dec-04 OBFROAWA-12 SW8220B naphthalene ND 1 0.31 µpp AP3						,			0.5		µg/L
AP3468 PS 4-0e-08 08FROWA-12 SW82605 Dibromethane ND 1 0.31 up AP3468 PS 4-0e-08 08FROWA-12 SW82605 Dibromethane ND 1 0.31 up AP3468 PS 4-0e-08 08FROWA-12 SW82605 Hexachrobulatiene ND 1 0.31 up AP3468 PS 4-0e-08 08FROWA-12 SW82606 Hexachrobulatiene ND 5 1.5 up AP3468 PS 4-0e-08 08FROWA-12 SW82606 n-Pupylbenzene ND 1 0.31 up AP3468 PS 4-0e-08 08FROWA-12 SW82606 n-Pupylbenzene ND 1 0.31 up AP3468 PS 4-0e-03 08FROWA-12 SW82605 sec-0uylbenzene ND 1 0.31 up AP3468 PS 4-0e-03 08FROWA-12 SW82605 sec-0uylbenzene ND 1 0.31 0.92 <tr< td=""><td>AP3468</td><td>PS</td><td></td><td></td><td>SW8260B</td><td></td><td>ND</td><td></td><td>0.5</td><td>0.15</td><td>µg/L</td></tr<>	AP3468	PS			SW8260B		ND		0.5	0.15	µg/L
AP3468 PS 4-Dec-08 08FRQAWA-12 SW22060 Enckenhorbutatione ND 1 0.31 µg AP3468 PS 4-Dec-08 08FRQAWA-12 SW22060 Hexcenhorbutatione ND 5 1.5 µg AP3468 PS 4-Dec-08 08FRQAWA-12 SW22060 Methylene chloride ND 5 1.5 µg AP3468 PS 4-Dec-08 08FRQAWA-12 SW22050 Methylene chloride ND 1 0.31 µg AP3468 PS 4-Dec-08 08FRQAWA-12 SW22050 PA ND 1 0.31 µg AP3468 PS 4-Dec-08 08FRQAWA-12 SW22050 PA ND 1 0.31 µg AP3468 PS 4-Dec-08 08FRQAWA-12 SW22060 Techylbarcene ND 1 0.31 µg AP3468 PS 4-Dec-08 08FRQAWA-12 SW22060 Techylbarcene ND 1 0.31 µg	AP3468		4-Dec-08			Dibromomethane	ND		1	0.31	µg/L
AP3468 PS 4-Dec-08 08FROWA-12 SW82008 Hexachorobutadiene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROWA-12 SW82008 Methylenchorobutadiene ND 5 1 µp AP3468 PS 4-Dec-08 08FROWA-12 SW82008 Methylether ND 2 0.62 µp AP3468 PS 4-Dec-08 08FROWA-12 SW82008 n-Procyborazene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROWA-12 SW82008 n-Procyborazene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROWA-12 SW82008 Stylene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROWA-12 SW82008 Totrachorobithene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROWA-12 SW82008 Totrachorobithene ND 1 0.31 µp									1		µg/L
AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B Methylene chloride ND 1 0.31 µp AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B Methylene chloride ND 5 1.5 µp AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B n-Aputophilatere ND 1 0.31 µp AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B n-Aputophilatere ND 1 0.31 µp AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B n-Aputophilatere ND 1 0.31 µp AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B Styrene ND 1 0.31 µp AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B Torlance ND 1 0.31 µp AP3468 PS 4-Dec-08 09FROWAV-12 SW2200B Torlanchorentene ND 1 0.31 µp									1		µg/L
AP3468 PS 4-Dec-08 08FROWA-12 SW82808 Methyl-buly defar ND 5 1 pp AP3468 PS 4-Dec-08 08FROWA-12 SW82808 Naphthalene ND 2 0.62 pp AP3468 PS 4-Dec-08 08FROWA-12 SW82808 n-Prophenzane ND 1 0.31 pp AP3488 PS 4-Dec-08 08FROWA-12 SW82808 n-Prophenzane ND 1 0.31 pp AP3488 PS 4-Dec-08 08FROWA-12 SW82808 c-Burybenzane ND 1 0.31 pp AP3488 PS 4-Dec-08 08FROWA-12 SW82808 Strant ND 1 0.31 pp AP3488 PS 4-Dec-08 08FROWA-12 SW82808 Tetrachroorehene ND 1 0.31 pp AP3488 PS 4-Dec-08 08FROWA-12 SW82808 Tetrachroorehene ND 1 0.31 pp									1		µg/L
AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B Methyl-thuryl ether ND 5 15 pp AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B n-Apthalene ND 1 0.31 Hp AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B n-Prophylbenzene ND 1 0.31 Hp AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B n-Prophylbenzene ND 1 0.31 Hp AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B Styrone ND 1 0.31 Hp AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B Toluene ND 1 0.31 Hp AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B Toluene ND 1 0.31 Hp AF3468 PS 4-Dec.03 DBFROWAN-12 SW2820B Toluene ND 1 0.31 Hp AF346B									1	0.31	µg/L
AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Naphthalence ND 1 0.31 pp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B n-Propythenzene ND 1 0.31 pp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B n-Propythenzene ND 1 0.31 pp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Sec-Burythenzene ND 1 0.31 pp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Styrene ND 1 0.31 pp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B trans-13-Dichicrosthene ND 1 0.31 pp AP3468 PS 4-Dec-06 08FROAWA-12 SW8260B trichicrosthene ND 1 0.31 pp AP3468 PS 4-Dec-06 08FROAWA-12 SW8260B trichicrosthene ND 1 0.31 pp										1	· -
AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B n-Butylbenzene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B o-Xydene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B sec-Butylbenzene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B sec-Butylbenzene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B Tetrachizoratione ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B Totachizoratione ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B Trachizoratione ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8200B Trachizoratione ND 1 0.31 µg											µg/L
AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B n-Prophylbenzene ND 1 0.31 pp AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B P & M. Xylene ND 1 0.31 up AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B Styteme ND 1 0.31 up AP3468 PS 4-Dec-08 0BFROAWA-12 SW8280B Styteme ND 1 0.31 up AP3468 PS 4-Dec-08 0BFROAWA-12 SW8280B Totuene ND 1 0.31 up AP3468 PS 4-Dec-08 0BFROAWA-12 SW8280B Totas-12-Dichoroethene ND 1 0.31 up AP3468 PS 4-Dec-08 0BFROAWA-12 SW8280B Trans-1.2-Dichoroethene ND 1 0.31 up AP3468 PS 4-Dec-08 0BFROAWA-12 SW8280B Trans-1.2-Dichoroethene ND 1 0.31 up									1		µg/L
AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B o-Xylene ND 1 0.31 µg AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B sec-Butylenzane ND 1 0.31 µg AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B tort-Butylenzane ND 1 0.31 µg AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B tort-Butylenzane ND 1 0.31 µg AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B trans-1-2-Dichorcethene ND 1 0.31 µg AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B trans-1-3-Dichorcethene ND 1 0.31 µg AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B trans-1-2-Dichorcethene ND 1 0.31 µg AP3468 PS 4-Dec-08 0BFROAWA-12 SW8200B trans-1-2-Dichorcethene ND 1 0									1		µg/L
AP3488 PS 4-Dec-08 09FROAWA-12 SW2260B P & M-Xylene ND 1 0.31 MQ AP3468 PS 4-Dec-08 09FROAWA-12 SW2260B Styrene ND 1 0.31 MQ AP3468 PS 4-Dec-08 09FROAWA-12 SW2260B Tetrachloroethene 63.3 1 0.31 MQ AP3468 PS 4-Dec-08 09FROAWA-12 SW2260B Totachloroethene ND 1 0.31 MQ AP3468 PS 4-Dec-08 08FROAWA-12 SW2260B Trachloroethene ND 1 0.31 MQ AP3468 PS 4-Dec-08 08FROAWA-12 SW2260B Trachloroethene ND 1 0.31 MQ AP3468 PS 4-Dec-08 08FROAWA-12 SW2260B Trachloroethene ND 1 0.31 MQ AP3468 PS 4-Dec-08 08FROAWA-12 SW2260B Trachloroethene ND 1 0.31 MQ							ND		1		µg/L
AP3468 PS 4-Dec-08 09FROAWA-12 SW8260B Styrnar ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Tetrachloroethene 63.3 1 0.31 µp AP3468 PS 4-Dec-06 08FROAWA-12 SW8260B Tetrachloroethene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B trans-1.2-Dichloroethene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichloroethene ND 1 0.31 µp AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Xinhorothene ND 1 0.31 µp AP3432 PS 5-Dec-08 08FROAWA-12 SW8260B Xinhorothene ND 1 0.31 µp AP3432 PS 5-Dec-08 08FROAWA-15 0966A Nitrate-N ND 1000 31 µp			4-Dec-08	08FROAWA-12	SW8260B	P & M -Xylene			2		µg/L
AP3488 PS 4-Dec-08 09FROAWA-12 SW8260B tet_allylberzene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8260B Trans-1,2-Dichloroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8260B trans-1,2-Dichloroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8260B trans-1,2-Dichloroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 09FROAWA-12 SW8260B Trichloroethene ND 1 0.31 µg AP3468 PS 4-Dec-06 09FROAWA-12 SW8260B Trichloroethene ND 1 0.31 µg AP34542 PS Dec-08 09FROAWA-12 SW8260B Valencion ND 2 1 0.03 1 0.42 1 0.31 µg AP4342 PS Dec-08 09FROAWA-15 0956A S						,			1		µg/L
AP3488 PS 4-Dec-08 OpEROAWA-12 SW8260B Totrachioroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 0#FROAWA-12 SW8260B Trans-1.2-Dichioroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 0#FROAWA-12 SW8260B trans-1.2-Dichioroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 0#FROAWA-12 SW8260B Trichioroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 0#FROAWA-12 SW8260B Virgicinoide ND 1 0.31 µg AP3482 PS 4-Dec-08 0#FROAWA-12 SW8260B Virgicinoide ND 1 0.31 µg AP4342 PS 5-Dec-08 0#FROAWA-15 SV656A Nitrate-N ND UJ 100 31 µg AP4342 PS 5-Dec-08 0#FROAWA-15 SV656A Nitrate-N ND 100 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>µg/L</td>									1		µg/L
AP3468 PS 4-Dec-08 OBFROAWA-12 SW8260B Toluene ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B trans-1.3-Dichloroptnene ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichloroptnee ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichloroptnee ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichloroptnee ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 0956A Nitrite-N ND 7.2 2.89 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Aluminum ND 500 150 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Aluminum ND 50 150 µg									1		µg/L
AP3468 PS 4-Dec-08 OBFROAWA-12 SW8260B trans-12-Dichloroptene ND 1 0.31 up AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichiorofluoromethane ND 1 0.31 up AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichiorofluoromethane ND 1 0.31 up AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Vinyl choride ND 1 0.31 up AP3432 PS 5-Dec-08 08FROAWA-15 SV656A Nitrate-N 1920 J 100 31 up AP4342 PS 5-Dec-08 08FROAWA-15 SV656A Suffate 28600 100 31 up AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Auminum ND 50 15 up AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 1000 310									1		µg/L
AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichiorostheme ND 1 0.31 up AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichiorostheme ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichiorostheme ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Trichiorostheme ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 9056A Nitrite-N ND UJ 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Aluminum ND 7.2 2.2.8 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6200 Irin ND 10.031 µg									1		
AP2488 PS 4-Dec-08 08FROAWA-12 SW3260B Trichloroethene ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW3260B Trichloroethane ND 1 0.31 µg AP3482 PS 4-Dec-08 08FROAWA-15 SW3260B Xylenes (tata) ND 2 1 µg AP3432 PS 5-Dec-08 08FROAWA-15 SU56A Nitrate-N 1920 J 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SU56A Suffate 2800 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arasenic ND 7.2 2.28 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arasenic ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Manganese 2.37 2 0.62 µg									1		µg/L µg/L
AP3488 PS 4-Dec-08 08FROAWA-12 SW8260B Trichloroflucromethane ND 1 0.31 µg AP3468 PS 4-Dec-08 08FROAWA-12 SW8260B Xijnyl chloride ND 1 0.31 µg AP3482 PS 5-Dec-08 08FROAWA-15 9056A Nitrate-N ND UU 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 9056A Nitrite-N ND UU 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW620 Aluminum ND 500 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW620 Arsenic ND 500 100 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6200 Arsenic ND 10.031 09 AP4342 PS 5-Dec-08 08FROAWA-15 SW8200B 1,1,1,2-Tetrachloroethane ND 1									1		µg/L
AP2468 PS 4-Dec-08 DBFROAWA-12 SW8200B Xipuenes (total) ND 1 0.31 up AP4348 PS 4-Dec-08 08FROAWA-15 9056A Nitrate-N 1920 J 100 31 µp AP4342 PS 5-Dec-08 08FROAWA-15 9056A Nitrate-N ND UJ 100 31 µp AP4342 PS 5-Dec-08 08FROAWA-15 S056A Sulfate 26800 100 31 µp AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arminum ND 7.2 2.8.8 µp AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arminum ND 1000 310 µp AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arminum ND 10.0.31 µp AP4342 PS 5-Dec-08 08FROAWA-15 SW82008 1,1.2.Tetrachloroethane ND 1 0.3.5 0.5.0				08FROAWA-12					1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 9056A Nitrate-N ND UJ 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 9056A Sulfate 26800 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 K%020 Auminum ND 500 150 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 500 150 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6200 Inanganese 2.37 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW82608 1,1,2-Trichoroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW82608 1,1,2-Trichoroethane ND 1 0.31 µg	AP3468	PS	4-Dec-08		SW8260B	Vinyl chloride	ND		1	0.31	µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 9056A Nitrite-N ND UJ 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SK5175 Methane ND 7.2 2.2.8 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Atuminum ND 500 150 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 5 1.5 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Iron ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8200 1,1,1-Zretrachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW82608 1,1,2-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW82608 1,1,2-Trichloroethane ND 1 0.31 µg	AP3468		4-Dec-08	08FROAWA-12	SW8260B	Xylenes (total)	ND				µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 9056A Sulfate 26800 100 31 µg AP4342 PS 5-Dec-08 08FROAWA-15 RSK-175 Methane ND 7.2 2.28 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 50 1.5 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Manganese 2.37 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,12-Tetrachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloropethane ND 1 0.31 µg <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>µg/L</td></t<>								•			µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 RSK-175 Methane ND 7.2 2.2.8 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Aluminum ND 500 150 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Iron ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Iron ND 0.50 0.51 Jug AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1-Trichloroethane ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,12,2-Tretrachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>UJ</td> <td></td> <td></td> <td>µg/L</td>								UJ			µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Aluminum ND 500 150 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Manganese 2.37 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1.2-Tretrachloroethane ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1.2-Tretrachloroethane ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1.2-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroptene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>µg/L</td>	-										µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Arsenic ND 5 1.5 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Iron ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1-2-Tetrachloroethane ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,12-Tetrachloroethane ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,2-2-Tetrachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>µg/L</td></t<>											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Iron ND 1000 310 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Manganese 2.37 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1-Tertachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,2-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1.2-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-4-Trichlorobenzene ND 1 0.31 </td <td></td>											
AP4342 PS 5-Dec-08 08FROAWA-15 SW6020 Manganese 2.37 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1,2-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1,2-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,12-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trinchorobenzene ND 1											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1,2-Tetrachloroethane ND 1 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1,2-Tetrachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,2-Tetrachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trinderopenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloroporpane											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,1-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1,2,2-Tetrachloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-3-Trichloroptopene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichloroptopane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloroetnane ND 1											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-2-Trichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloropropane ND <t< td=""><td>AP4342</td><td>PS</td><td>5-Dec-08</td><td>08FROAWA-15</td><td>SW8260B</td><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>1</td><td>0.31</td><td>µg/L</td></t<>	AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	1,1,1-Trichloroethane	ND		1	0.31	µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloroppane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloroppane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND	-										µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloroethene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloropropene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>µg/L</td></td<>									1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,1-Dichloropropene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Triichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Li-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromos1-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND									1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trinethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-5-Trimethylbenzene ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>1</td> <td></td> <td>µg/L</td>						,			1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,3-Trichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-4-Inforopropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND									1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-a-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-5-Timethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND									1		µg/L µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2,4-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-s-chloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibrlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND									1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromo-3-chloropropane ND 2 0.62 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromoethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichlorobenzene ND 0.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>µg/L</td>									1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dibromoethane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichlorobenzene ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichlorobenzene ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1	AP4342	PS							2		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloroethane ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3,5-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichlorobenzene ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 10				08FROAWA-15	SW8260B				1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3,5-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichlorobenzene ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Elutanone (MEK) ND 10									•		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3,5-Trimethylbenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichlorobenzene ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Elutanone (MEK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>µg/L</td></td<>											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichlorobenzene ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichlorobenzene ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Butanone (MEK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 3.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>/</td> <td></td> <td></td> <td></td> <td></td> <td>µg/L</td>						/					µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,3-Dichloropropane ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichloropropane ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Butanone (MEK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 1,4-Dichlorobenzene ND 0.5 0.15 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Butanone (MEK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31											µg/L ug/l
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2,2-Dichloropropane ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Butanone (MEK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Methyl-2-pentanone (MIBK) ND 10 3.1											µg/L µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Butanone (MEK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Methyl-2-pentanone (MIBK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Acetone ND 10 3.1 µg<											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Hexanone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Methyl-2-pentanone (MIBK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Acetone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Benzene ND 0.4 0.12 µg <td></td> <td>µg/L</td>											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 2-Hexanone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Methyl-2-pentanone (MIBK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Acetone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Benzene ND 0.4 0.12 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Benzene ND 0.4 0.12 µg <td></td> <td>µg/L</td>											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Chlorotoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 1 0.31 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Isopropyltoluene ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Methyl-2-pentanone (MIBK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Acetone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Benzene ND 0.4 0.12 µg	AP4342					2-Hexanone	ND		10	3.1	μg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B 4-Methyl-2-pentanone (MIBK) ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Acetone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Acetone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Benzene ND 0.4 0.12 µg			5-Dec-08	08FROAWA-15	SW8260B				1		µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Acetone ND 10 3.1 µg AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Benzene ND 0.4 0.12 µg											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Benzene ND 0.4 0.12 µg									-		µg/L
											µg/L
AP4342 PS 5-Dec-08 08FROAWA-15 SW8260B Bromobenzene ND 1 0.31 µg											μg/L μg/L

Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Bromochloromethane	ND		1	0.31	µg/L
AP4342 AP4342	PS PS	5-Dec-08 5-Dec-08	08FROAWA-15 08FROAWA-15	SW8260B SW8260B	Bromodichloromethane Bromoform	ND ND		0.5 1	0.15 0.31	μg/L μg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Bromomethane	ND		3	0.94	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Carbon disulfide	ND		2	0.62	µg/L
AP4342	PS	5-Dec-08		SW8260B	Carbon tetrachloride	1.29	†	1	0.31	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Chlorobenzene	ND		0.5	0.15	µg/L
AP4342 AP4342	PS PS	5-Dec-08 5-Dec-08	08FROAWA-15 08FROAWA-15	SW8260B SW8260B	Chloroethane Chloroform	ND 2.74	+	1 1	0.31 0.3	µg/L
AP4342 AP4342	PS PS	5-Dec-08	08FROAWA-15	SW8260B	Chloromethane	2.74 ND	1	1	0.3	μg/L μg/L
AP4342	PS	5-Dec-08		SW8260B	cis-1,2-Dichloroethene	ND		1	0.31	µg/L
AP4342	PS	5-Dec-08		SW8260B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Dibromomethane	ND		1	0.31	µg/L
AP4342 AP4342	PS PS	5-Dec-08 5-Dec-08	08FROAWA-15 08FROAWA-15	SW8260B SW8260B	Dichlorodifluoromethane Ethylbenzene	ND ND		1	0.31 0.31	µg/L
AP4342 AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Hexachlorobutadiene	ND		1	0.31	μg/L μg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Isopropylbenzene (Cumene)	ND		1	0.31	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Methylene chloride	ND		5	1	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Methyl-t-butyl ether	ND		5	1.5	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Naphthalene	ND		2	0.62	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	n-Butylbenzene	ND		1	0.31	µg/L
AP4342 AP4342	PS PS	5-Dec-08 5-Dec-08	08FROAWA-15 08FROAWA-15	SW8260B SW8260B	n-Propylbenzene o-Xylene	ND ND		1 1	0.31 0.31	µg/L
AP4342 AP4342	PS PS	5-Dec-08 5-Dec-08	08FROAWA-15	SW8260B SW8260B	P & M -Xylene	ND		2	0.31	μg/L μg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	sec-Butylbenzene	ND		1	0.31	µg/L µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Styrene	ND		1	0.31	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	tert-Butylbenzene	ND		1	0.31	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Tetrachloroethene	62.9	†	10	3.1	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Toluene	ND		1	0.31	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	trans-1,2-Dichloroethene	ND		1	0.31	µg/L
AP4342 AP4342	PS PS	5-Dec-08 5-Dec-08	08FROAWA-15 08FROAWA-15	SW8260B SW8260B	trans-1,3-Dichloropropene Trichloroethene	ND ND		1	0.31 0.31	μg/L μg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Trichlorofluoromethane	ND		1	0.31	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Vinyl chloride	ND		1	0.31	µg/L
AP4342	PS	5-Dec-08	08FROAWA-15	SW8260B	Xylenes (total)	ND		2	1	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16	9056A	Nitrate-N	1860	J	100	31	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16	9056A	Nitrite-N	ND	UJ	100	31	µg/L
AP4413 AP4413	PS PS	5-Dec-08	08FROAWA-16 08FROAWA-16	9056A RSK-175	Sulfate	28900		100 7.2	31 2.28	µg/L
AP4413 AP4413	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16	SW6020	Methane Aluminum	ND 415	J	7.2 500	2.28	μg/L μg/L
AP4413	PS	5-Dec-08	08FROAWA-16	SW6020	Arsenic	ND	Ŭ	5	1.5	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16	SW6020	Iron	684	J	1000	310	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16	SW6020	Manganese	26.3		2	0.62	μg/L
-	PS	5-Dec-08	08FROAWA-16		1,1,1,2-Tetrachloroethane	ND		0.5	0.15	µg/L
	PS	5-Dec-08		SW8260B	1,1,1-Trichloroethane	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16	SW8260B	1,1,2,2-Tetrachloroethane	ND		0.5	0.15	µg/L
AP4413 AP4413	PS PS	5-Dec-08 5-Dec-08		SW8260B SW8260B	1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND		1 1	0.31 0.31	μg/L μg/L
AP4413 AP4413	PS	5-Dec-08		SW8260B	1,1-Dichloroethene	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08		SW8260B	1,1-Dichloropropene	ND		1	0.31	µg/L
	PS	5-Dec-08	08FROAWA-16	SW8260B	1,2,3-Trichlorobenzene	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08		SW8260B	1,2,3-Trichloropropane	ND		1	0.31	µg/L
AP4413 AP4413	PS	5-Dec-08		SW8260B	1,2,4-Trichlorobenzene	ND		1	0.31	µg/L
AP4413 AP4413	PS PS	5-Dec-08 5-Dec-08		SW8260B SW8260B	1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ND ND		1 2	0.31 0.62	μg/L μg/L
AP4413 AP4413	PS PS	5-Dec-08		SW8260B	1,2-Dibromoethane	ND		-	0.82	µg/L µg/L
AP4413	PS	5-Dec-08	08FROAWA-16		1,2-Dichlorobenzene	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08		SW8260B	1,2-Dichloroethane	ND		0.5	0.15	µg/L
AP4413	PS	5-Dec-08		SW8260B	1,2-Dichloropropane	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16		1,3,5-Trimethylbenzene	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16		1,3-Dichlorobenzene	ND		1		µg/L
AP4413 AP4413	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B	1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND		0.4 0.5	0.12 0.15	μg/L μg/L
AP4413 AP4413	PS PS	5-Dec-08	08FROAWA-16	SW8260B	2,2-Dichloropropane	ND		0.5	0.15	µg/∟ µg/L
AP4413	PS	5-Dec-08		SW8260B	2-Butanone (MEK)	ND		10	3.1	µg/L
AP4413	PS	5-Dec-08		SW8260B	2-Chlorotoluene	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08		SW8260B	2-Hexanone	ND		10	3.1	µg/L
AP4413	PS	5-Dec-08		SW8260B	4-Chlorotoluene	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16	2008260B	4-Isopropyltoluene	ND	l	1	0.31	µg/L

Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Final Validation Flag	PQL	MDL	Units
	PS	5-Dec-08	08FROAWA-16	SW8260B	4-Methyl-2-pentanone (MIBK)	ND		10	3.1	µg/L
	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	Acetone Benzene	ND ND		10 0.4	3.1 0.12	μg/L μg/L
		5-Dec-08		SW8260B	Bromobenzene	ND		1		µg/L
AP4413	PS	5-Dec-08		SW8260B	Bromochloromethane	ND		1	0.31	µg/L
	PS	5-Dec-08		SW8260B	Bromodichloromethane	ND		0.5	0.15	µg/L
AP4413 AP4413	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	Bromoform Bromomethane	ND ND		1 3	0.31 0.94	µg/L
		5-Dec-08		SW8260B	Carbon disulfide	ND		3 2	0.94	μg/L μg/L
		5-Dec-08	08FROAWA-16	SW8260B	Carbon tetrachloride	1.32	†	1	0.31	µg/L
		5-Dec-08		SW8260B	Chlorobenzene	ND		0.5	0.15	µg/L
		5-Dec-08		SW8260B	Chloroethane	ND		1	0.31	µg/L
	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	Chloroform Chloromethane	5.27 ND	†	1	0.3 0.31	μg/L μg/L
		5-Dec-08		SW8260B	cis-1,2-Dichloroethene	ND		1	0.31	µg/L
		5-Dec-08		SW8260B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
		5-Dec-08		SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
	PS	5-Dec-08		SW8260B	Dibromomethane	ND		1	0.31	µg/L
	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	Dichlorodifluoromethane Ethylbenzene	ND ND		1 1	0.31 0.31	µg/L
		5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	Hexachlorobutadiene	ND ND		1	0.31	μg/L μg/L
	PS	5-Dec-08		SW8260B	Isopropylbenzene (Cumene)	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08	08FROAWA-16	SW8260B	Methylene chloride	ND		5	1	µg/L
		5-Dec-08		SW8260B	Methyl-t-butyl ether	ND		5	1.5	µg/L
	PS PS	5-Dec-08		SW8260B	Naphthalene	ND ND		2	0.62	µg/L
		5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	n-Butylbenzene n-Propylbenzene	ND ND		1	0.31 0.31	μg/L μg/L
		5-Dec-08		SW8260B	o-Xylene	ND		1	0.31	µg/L
AP4413	PS	5-Dec-08		SW8260B	P & M -Xylene	ND		2	0.62	µg/L
		5-Dec-08		SW8260B	sec-Butylbenzene	ND		1	0.31	µg/L
	PS	5-Dec-08	08FROAWA-16	SW8260B	Styrene	ND		1	0.31	µg/L
	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	tert-Butylbenzene Tetrachloroethene	ND 120		1 10	0.31 3.1	μg/L μg/L
AP4413 AP4413		5-Dec-08		SW8260B	Toluene	ND		10	0.31	µg/L
		5-Dec-08		SW8260B	trans-1,2-Dichloroethene	ND		1	0.31	µg/L
	PS	5-Dec-08		SW8260B	trans-1,3-Dichloropropene	ND		1	0.31	µg/L
		5-Dec-08		SW8260B	Trichloroethene	ND		1	0.31	µg/L
	PS PS	5-Dec-08 5-Dec-08	08FROAWA-16 08FROAWA-16	SW8260B SW8260B	Trichlorofluoromethane	ND ND		1	0.31 0.31	μg/L μg/L
	PS	5-Dec-08		SW8260B	Xylenes (total)	ND		2	1	µg/L
		5-Dec-08	08FROAWA-18	9056A	Nitrate-N	2500	J	100	31	µg/L
		5-Dec-08		9056A	Nitrite-N	ND	UJ	100	31	µg/L
	PS	5-Dec-08		9056A	Sulfate	22600		100	31	µg/L
	PS PS	5-Dec-08 5-Dec-08	08FROAWA-18 08FROAWA-18	RSK-175	Methane Aluminum	ND ND		7.2 500	2.28 150	μg/L μg/L
		5-Dec-08	08FROAWA-18		Arsenic	ND		5	1.5	µg/L
	PS	5-Dec-08		SW6020	Iron	ND		1000	310	µg/L
	PS	5-Dec-08	08FROAWA-18		Manganese	4.19		2	0.62	µg/L
		5-Dec-08 5-Dec-08	08FROAWA-18		1,1,1,2-Tetrachloroethane	ND ND		0.5	0.15 0.31	µg/L
		5-Dec-08	08FROAWA-18 08FROAWA-18		1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND		0.5	0.31	μg/L μg/L
	PS	5-Dec-08	08FROAWA-18		1,1,2-Trichloroethane	ND		1	0.31	µg/L
		5-Dec-08	08FROAWA-18		1,1-Dichloroethane	ND		1	0.31	µg/L
		5-Dec-08	08FROAWA-18		1,1-Dichloroethene	ND		1		µg/L
	PS	5-Dec-08	08FROAWA-18		1,1-Dichloropropene	ND		1	0.31	µg/L
	PS PS	5-Dec-08 5-Dec-08	08FROAWA-18 08FROAWA-18	SW8260B SW8260B	1,2,3-Trichlorobenzene	ND ND		1	0.31 0.31	μg/L μg/L
		5-Dec-08	08FROAWA-18		1,2,4-Trichlorobenzene	ND		1	0.31	µg/L µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	1,2,4-Trimethylbenzene	ND		1	0.31	µg/L
		5-Dec-08		SW8260B	1,2-Dibromo-3-chloropropane	ND		2	0.62	µg/L
	PS	5-Dec-08	08FROAWA-18		1,2-Dibromoethane			1	0.31	µg/L
		5-Dec-08 5-Dec-08	08FROAWA-18 08FROAWA-18		1,2-Dichlorobenzene 1,2-Dichloroethane	ND ND		0.5	0.31 0.15	μg/L μg/L
		5-Dec-08	08FROAWA-18		1,2-Dichloropropane	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18		1,3,5-Trimethylbenzene	ND		1	0.31	µg/L
		5-Dec-08	08FROAWA-18		1,3-Dichlorobenzene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18		1,3-Dichloropropane	ND		0.4	0.12	µg/L
		E D		014/00000						
AP4341	PS PS	5-Dec-08 5-Dec-08		SW8260B SW8260B	1,4-Dichlorobenzene 2,2-Dichloropropane	ND ND		0.5 1	0.15 0.31	μg/L μg/L

	0	Osmala				Final	Final			
Location	Sample Type	Sample Date	Sample ID	Method	Analyte	Final Result	Validation Flag	PQL	MDL	Units
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	2-Chlorotoluene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	2-Hexanone	ND		10	3.1	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	4-Chlorotoluene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	4-Isopropyltoluene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	4-Methyl-2-pentanone (MIBK)	ND		10	3.1	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Acetone	ND		10	3.1	μg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Benzene	ND		0.4	0.12	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Bromobenzene	ND		1	0.31	μg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Bromochloromethane	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Bromodichloromethane	ND		0.5	0.15	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Bromoform	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Bromomethane	ND		3	0.94	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Carbon disulfide	ND		2	0.62	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Carbon tetrachloride	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Chlorobenzene	ND		0.5	0.15	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Chloroethane	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Chloroform	ND		1	0.3	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Chloromethane	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	cis-1,2-Dichloroethene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	cis-1,3-Dichloropropene	ND		0.5	0.15	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Dibromochloromethane	ND		0.5	0.15	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Dibromomethane	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Dichlorodifluoromethane	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Ethylbenzene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Hexachlorobutadiene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Isopropylbenzene (Cumene)	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Methylene chloride	ND		5	1	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Methyl-t-butyl ether	ND		5	1.5	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	Naphthalene	ND		2	0.62	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	n-Butylbenzene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	n-Propylbenzene	ND		1	0.31	µg/L
AP4341	PS	5-Dec-08	08FROAWA-18	SW8260B	o-Xylene	ND		1	0.31	µg/L
AP4341	PS PS	5-Dec-08	08FROAWA-18	SW8260B	P & M -Xylene	ND		2	0.62	µg/L
AP4341		5-Dec-08	08FROAWA-18	SW8260B	sec-Butylbenzene	ND ND		1	0.31	µg/L
AP4341	PS PS	5-Dec-08	08FROAWA-18	SW8260B	Styrene	ND ND		1	0.31	µg/L
AP4341 AP4341	PS PS	5-Dec-08 5-Dec-08	08FROAWA-18	SW8260B SW8260B	tert-Butylbenzene Tetrachloroethene	ND ND		1	0.31 0.31	µg/L
AP4341 AP4341	PS PS	5-Dec-08 5-Dec-08	08FROAWA-18 08FROAWA-18	SW8260B SW8260B	Toluene	ND ND		1	0.31	µg/L
AP4341 AP4341	PS PS	5-Dec-08 5-Dec-08	08FROAWA-18 08FROAWA-18	SW8260B SW8260B	trans-1,2-Dichloroethene	ND ND		1	0.31	μg/L μg/L
AP4341 AP4341	PS PS	5-Dec-08 5-Dec-08	08FROAWA-18	SW8260B SW8260B	trans-1,2-Dichloropropene	ND		1	0.31	µg/L µg/L
AP4341 AP4341	PS PS	5-Dec-08 5-Dec-08	08FROAWA-18	SW8260B SW8260B	Trichloroethene	ND		1	0.31	µg/L µg/L
AP4341 AP4341	PS PS	5-Dec-08	08FROAWA-18	SW8260B	Trichlorofluoromethane	ND		1	0.31	µg/∟ µg/L
AP4341 AP4341	PS PS	5-Dec-08	08FROAWA-18	SW8260B	Vinyl chloride	ND		1	0.31	µg/∟ µg/L
AP4341 AP4341	PS PS	5-Dec-08		SW8260B	Xylenes (total)	ND		2	1	µg/∟ µg/L
714341	1.0	0-060-00	UULINOAWA-10	0110200D	Nyielies (lulai)	טאו		4	L!	lhà\r

Notes:

µg/L micrograms per liter

mg/L milligrams per liter

ND analyte not detected above PQL

PQL practical quantitation limit

MDL method detection limt

PS project sample

FD field duplicate

J analyte was present but the reported value may not be accurate or precise (estimated)

J+ analyte was present but the reported value may not be accurate or precise (biased high)

J- analyte was present but the reported value may not be accurate or precise (biased low)

UJ analyte was not detected and the specified reporting limit may not be accurate or precise (estimated)

U analyte was not detected at the specified reporting limit

trip blank was not submitted to lab in associated cooler; source of sample contamination not certain.

‡ unable to assess the precision

Appendix B3 ADEC Laboratory Data Review Checklists

LABORATORY DATA REVIEW CHECKLIST

(**NOTE**: **NA** = not applicable)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes/ No

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved? Yes / No / NA Note: ADEC certification is not required for methane analysis.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)? Yes/ No Note: COC seals were absent from the cooler of methane samples sent to SGS's Wilmington NC laboratory.

b. Were the correct analyses requested? Yes No Note: Ethane and ethene were requested on the COC form; these analytes were not in the SAP for Operable Unit E, so their results were not reported.

3. Laboratory Sample Receipt Documentation

- **a.** Sample/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$? **Yes** No
- **b.** Sample preservation acceptable acidified waters, MeOH-preserved VOC soil (GRO, BTEX, VOCs, etc.)? **Yes**/ **No**
- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? NA/ Yes / No
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? NA/ Yes / No
- e. Data quality or usability affected? Yes (explain) (No)

4. Case Narrative

- a. Present and understandable? Yes/ No (explain)
- b. Discrepancies, errors or QC failures noted by the lab? **NA** (Yes)/ **No (explain**)

c. Were all corrective actions documented NA/ Yes / No (explain) Note: No corrective action was required.

d. Is there an effect on data quality/usability, according to the case narrative? NA (No) Yes (explain)

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Yes/ No (explain)
- b. All applicable holding times met? Yes / No
- c. All soils reported on a dry-weight basis? (NA) Yes / No
- d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project? Yes/ No (explain only for non-detects with elevated PQLs) Note:
 1,2,3-Trichloropropane and ethylene dibromide PQLs were above their respective ADEC Table C groundwater cleanup levels; the PQLs met the reporting limit objectives specified in the QAPP, and these analytes are not a focus of this project, so data usability is not affected.
- e. Data quality or usability affected? No Yes (explain)

6. QC Samples

a. Method Blank

- i. Is at least one method blank (MB) reported per matrix, analysis, and 20 samples? Yes/ No
- ii. Are all method blank results less than PQL? Yes/ No
- iii. If MB above PQL, what samples are affected?
- iv. Do the affected sample(s) have data flags? Yes / No /NA

If so, are the data flags clearly defined? Yes / No /NA

v. Are data quality or usability affected? No(i.e., MB data are acceptable) / Yes (Explain)

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - Is at least one LCS/LCSD reported per matrix, analysis, and 20 samples? NA (Yes)/ No

- ii. Metals/Inorganics Is at least one LCS and one sample duplicate reported per matrix, analysis and 20 samples? NA / Yes No Note: A LCS and a MS/MSD were reported for the metals analysis. A LCS was reported for nitrate, nitrite, and sulfate, and an undigested duplicate and undigested bench spike were reported for sulfate.
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? [AK petroleum methods %R < 20%; other analyses, refer to lab QC pages] Yes No(explain) Note: LCSD recovery of naphthalene was high; naphthalene was not detected in project samples, so results were not affected.
- iv. Precision Are all relative percent differences (RPDs) reported and less than method or laboratory limits, or project-specified DQOs? **Yes**/ **No** (explain)
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NAbr list
- vi. Do the affected samples(s) have data flags? NA/Yes / No (explain)

If so, are the data flags clearly defined?

vii. Is the data quality or usability affected? NA / Yes No explain). Note: We cannot calculate the analytical precision of the nitrate/nitrite results. Does not affect data quality for project purposes

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, including field, QC and laboratory samples? Yes/ No
- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? Yes/ No
- iii. Do the sample results with failed surrogate recoveries have data flags?(NA/Yes / No (explain)
- If so, are the data flags clearly defined? Yes / No NA
- iv. Is the data quality or usability affected? Noor explain.

d. Trip Blank (volatiles only)

i. Is at least one trip blank (TB) reported per matrix, analysis and cooler? NA / Yes/ No Note: Sample 08FROAWA-03 was the trip blank for VOCs.

ii. Are TB results less than PQLs? NA (Yes)/ No

SGS Work Order Number: <u>1086496</u>

iii. If TB is above the PQL, what samples are affected? NA or list samples

iv. Is the data quality or usability affected? No r explain.

e. Field Duplicate

i. Was at least one field duplicate submitted per matrix, analysis and 10 project samples? Yes No Note: OUE field duplicate pair was 08FROAWA-10/08FROAWA-11, analyzed in work order 1086543.

ii. Were the field duplicates submitted blind to the lab? Yes/ No / NA

iii. Precision – Are all relative percent differences (RPDs) less than specified DOOs (recommended: 30% for nitrate, nitrite, and sulfate. QAPP: 15% for VOCs) ?(Yes) No / NA

iv. Is the data quality or usability affected? **No** Yes (explain)

f. Decontamination or Equipment Blank (if applicable)

Not Applicable or...

Note: Sample 08FROAWA-02 was the equipment blank.

i. Are all results less than the PQL? Yes / No

ii. If results are above PQL, what samples are affected? NA or list

iii. Is the data quality or usability affected? No or Explain.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

Not applicable or ...

a. Are they defined and appropriate? Yes / No

Completed by: Rodney GuritzTitle: Environmental ChemistDate: December 19, 2008Consultant Firm: Shannon & Wilson, Inc.CS Report Name: Fort Richardson Operable Unit E Armored Vehicle Maintenance AreaGroundwater MonitoringLaboratory Report Date: December 18, 2008Laboratory Name: SGS Environmental Services, Inc.

Laboratory Report Numbers: <u>1086496</u>

ADEC File Number: 2102.38.005

LABORATORY DATA REVIEW CHECKLIST

(**NOTE**: **NA** = not applicable)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes/ No

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved? Yes / No NA Note: ADEC certification is not required for methane analysis.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)? Yes/ No Note: COC seals were absent from the cooler of methane samples sent to SGS's Wilmington NC laboratory.

b. Were the correct analyses requested? Yes No Note: Ethane and ethene were requested on the COC form; these analytes were not in the SAP for Operable Unit E, so their results were not reported.

3. Laboratory Sample Receipt Documentation

- a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)?
 Yes No Note: Cooler temperature was 1.5 °C upon delivery; temperature blank was in the acceptable range, and no ice was observed in the samples, so data quality was not affected.
- **b.** Sample preservation acceptable acidified waters, MeOH-preserved VOC soil (GRO, BTEX, VOCs, etc.)? Yes/ No
- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? NA/ Yes / No
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? NA (Ves) / No
- e. Data quality or usability affected? Yes (explain) (No)

4. Case Narrative

a. Present and understandable? Yes/ No (explain)

- b. Discrepancies, errors or QC failures noted by the lab (NA/ Yes / No (explain))
- c. Were all corrective actions documented? (NA) Yes / No (explain)

d. Is there an effect on data quality/usability, according to the case narrative? NA (No) Yes (explain)

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Yes/ No (explain)
- b. All applicable holding times met? Yes / No
- c. All soils reported on a dry-weight basis? NA/ Yes / No
- d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project? Yes/ No (explain only for non-detects with elevated PQLs) Note:
 1,2,3-Trichloropropane and ethylene dibromide PQLs were above their respective ADEC Table C groundwater cleanup levels; however, the PQLs met the reporting limit objectives specified in the QAPP, and these analytes are not a focus of this project, so data usability is not affected.
- e. Data quality or usability affected? No Yes (explain)

6. QC Samples

a. Method Blank

i. Is at least one method blank (MB) reported per matrix, analysis, and 20 samples? Yes/ No

- ii. Are all method blank results less than PQL? Yes/ No
- iii. If MB above PQL, what samples are affected?

iv. Do the affected sample(s) have data flags? Yes / No /NA

If so, are the data flags clearly defined? Yes / No /NA

v. Are data quality or usability affected? No(i.e., MB data are acceptable) / Yes (Explain)

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - Is at least one LCS/LCSD reported per matrix, analysis, and 20 samples?

NA (Yes)/ No Note: A LCS/LCSD and a MS/MSD were reported for the methane analysis.

- Metals/Inorganics Is at least one LCS and one sample duplicate reported per matrix, analysis and 20 samples? NA / Yes No Note: A LCS and a MS/MSD were reported for the metals analysis. A LCS, an undigested duplicate, and a bench spike were reported for the sulfate analysis. A LCS was reported for nitrate and nitrite, but no sample duplicates were.
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? [AK petroleum methods %R < 20%; other analyses, refer to lab QC pages] Yes/ No (explain)
- iv. Precision Are all relative percent differences (RPDs) reported and less than method or laboratory limits, or project-specified DQOs? Yes/ No (explain) Note: RPDs were not calculated for the metals MS/MSD on the laboratory report, but our RPD calculations were within DQOs.
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NAbr list
- vi. Do the affected samples(s) have data flags? (NA/Yes / No (explain)

If so, are the data flags clearly defined?

vii. Is the data quality or usability affected? No overplain Note: We cannot assess the analytical precision of the nitrate/nitrite results. Data quality not affected for project purposes.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, including field, QC and laboratory samples? Yes/ No
- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? Yes/ No
- iii. Do the sample results with failed surrogate recoveries have data flags?(NA/Yes / No (explain)

If so, are the data flags clearly defined? Yes / No NA

iv. Is the data quality or usability affected? Noor explain.

SGS Work Order Number: <u>1086519</u>

d. Trip Blank (volatiles only)

i. Is at least one trip blank (TB) reported per matrix, analysis and cooler? NA (Yes)/ No Note: Sample 08FROAWA-08 was the trip blank for VOCs.

ii. Are TB results less than PQLs? NA (Yes)/ No

iii. If TB is above the PQL, what samples are affected? NA or list samples

iv. Is the data quality or usability affected **No** r explain.

e. Field Duplicate

i. Was at least one field duplicate submitted per matrix, analysis and 10 project samples? Yes No Note: OUE field duplicate pair was 08FROAWA-10/08FROAWA-11, analyzed in work order 1086543.

ii. Were the field duplicates submitted blind to the lab? Yes/ No / NA

iii. Precision – Are all relative percent differences (RPDs) less than specified DOOs (recommended: 30% for nitrate, nitrite, and sulfate. QAPP: 15% for VOCs) ? (Yes) No / NA

iv. Is the data quality or usability affected? No Yes (explain)

f. Decontamination or Equipment Blank (if applicable)

Not Applicable or...

Note: Sample 08FROAWA-07 was the equipment blank.

i. Are all results less than the PQL? Yes/ No Note: Nitrite was detected between the MDL and the PQL.

ii. If results are above PQL, what samples are affected? NAbr list Note: Nitrite was not detected in project samples.

iii. Is the data quality or usability affected? No or Explain.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

Not applicable or ...

a. Are they defined and appropriate? Yes / No

Completed by: Rodney GuritzTitle: Environmental ChemistDate: January 7, 2009Consultant Firm: Shannon & Wilson, Inc.CS Report Name: Fort Richardson Operable Unit E Armored Vehicle Maintenance AreaGroundwater MonitoringLaboratory Report Date: December 31, 2008Laboratory Name: SGS Environmental Services, Inc.Laboratory Report Number: 1086519

ADEC File Number: 2102.38.005

LABORATORY DATA REVIEW CHECKLIST

(**NOTE**: **NA** = not applicable)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes/ No

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved? Yes / No NA Note: ADEC certification not required for methane analysis.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)? Yes/ No Note: COC seals were absent from the cooler of methane samples sent to SGS's Wilmington NC laboratory.

b. Were the correct analyses requested? Yes No Note: Ethane and ethene were requested on the COC form; these analytes were not in the SAP for Operable Unit E, so their results were not reported.

3. Laboratory Sample Receipt Documentation

- a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)?
 Yes No
 Note: The temperature blank was at -0.1 °C and the cooler was at 0.1 °C upon deliver. No ice was observed in samples, so results were not affected.
- **b.** Sample preservation acceptable acidified waters, MeOH-preserved VOC soil (GRO, BTEX, VOCs, etc.)? **Yes**/ **No**
- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? NA/ Yes / No
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? NA (Yes/ No
- e. Data quality or usability affected? Yes (explain) (No)

4. Case Narrative

a. Present and understandable? Yes/ No (explain)

SGS Work Order Number: <u>1086543</u>

- b. Discrepancies, errors or QC failures noted by the lab? NA (Yes)/ No (explain)
- c. Were all corrective actions documented (NA)/ Yes / No (explain) Note: No corrective action was required.

d. Is there an effect on data quality/usability, according to the case narrative? NA (No) Yes (explain)

5. Sample Results

a. Correct analyses performed/reported as requested on COC? Yes/ No (explain)

b. All applicable holding times met? Yes No Note: Nitrate, nitrite, and sulfate hold time was exceeded by 1 day for all samples.

- c. All soils reported on a dry-weight basis? NA/ Yes / No
- d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project? Yes/ No (explain only for non-detects with elevated PQLs) Note:
 1,2,3-Trichloropropane and ethylene dibromide PQLs were above their respective ADEC Table C groundwater cleanup levels; however, the PQLs met the reporting limit objectives specified in the QAPP, and these analytes are not a focus of this project, so data usability is not affected.

e. Data quality or usability affected? No / Yes (explain) Note: Nitrate, nitrite, and sulfate results may be biased due to exceeded hold time; results are flagged as estimates (J).

6. QC Samples

a. Method Blank

i. Is at least one method blank (MB) reported per matrix, analysis, and 20 samples? Yes/ No

- ii. Are all method blank results less than PQL? Yes/ No
- iii. If MB above PQL, what samples are affected?

iv. Do the affected sample(s) have data flags? Yes / No /NA

If so, are the data flags clearly defined? Yes / No /NA

v. Are data quality or usability affected? No(i.e., MB data are acceptable) / Yes (Explain)

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics Is at least one LCS/LCSD reported per matrix, analysis, and 20 samples? NA /Yes/ No
- ii. Metals/Inorganics Is at least one LCS and one sample duplicate reported per matrix, analysis and 20 samples? NA / Yes No Note: A LCS and a MS/MSD were reported for the metals analysis, while a LCS and an undigested duplicate and a MS/MSD were reported for nitrate, nitrite, and sulfate analysis.
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? [AK petroleum methods %R < 20%; other analyses, refer to lab QC pages] Yes/ No (explain)
- iv. Precision Are all relative percent differences (RPDs) reported and less than method or laboratory limits, or project-specified DQOs? Yes/ No (explain)
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NAbr list
- vi. Do the affected samples(s) have data flags?(NA/Yes / No (explain)

If so, are the data flags clearly defined?

vii. Is the data quality or usability affected? No r explain.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, including field, QC and laboratory samples? Yes/ No
- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? Yes/ No
- iii. Do the sample results with failed surrogate recoveries have data flags?(NA/Yes / No (explain)

If so, are the data flags clearly defined? Yes / No NA

iv. Is the data quality or usability affected? No r explain.

d. Trip Blank (volatiles only)

i. Is at least one trip blank (TB) reported per matrix, analysis and cooler? NA /Yes/ No Note: Sample 08FROAWA-14 was the trip blank for VOCs.

SGS Work Order Number: <u>1086543</u>

ii. Are TB results less than PQLs? NA (Yes)/ No

iii. If TB is above the PQL, what samples are affected? NA or list samples

iv. Is the data quality or usability affected? No or explain.

e. Field Duplicate

i. Was at least one field duplicate submitted per matrix, analysis and 10 project samples? Yes No Note: OUE field duplicate pair was 08FROAWA-10/08FROAWA-11.

ii. Were the field duplicates submitted blind to the lab? Yes/ No / NA

iii. Precision – Are all relative percent differences (RPDs) less than specified DOOs (recommended: 30% for nitrate, nitrite, and sulfate. QAPP: 15% for VOCs) ?(Yes) No / NA

iv. Is the data quality or usability affected? **No** Yes (explain)

f. Decontamination or Equipment Blank (if applicable)

Not Applicable or...

Note: Sample 08FROAWA-13 was the equipment blank.

i. Are all results less than the PQL? Yes/ No Note: Chloroform was detected between the MDL and the PQL in the EB.

ii. If results are above PQL, what samples are affected? NA or list: 08FROAWA-12

iii. Is the data quality or usability affected? Explain. Note: Chloroform (a common lab contaminant) was detected at 1.04 μ g/L in sample 08FROAWA-12; this is less than 10x the EB detection, so this result may be attributable to contamination from sampling equipment.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

Not applicable or ...

a. Are they defined and appropriate? Yes / No

Completed by: Rodney GuritzTitle: Environmental ChemistDate: January 4, 2009Consultant Firm: Shannon & Wilson, Inc.CS Report Name: Fort Richardson Operable Unit E Armored Vehicle Maintenance AreaGroundwater MonitoringLaboratory Report Date: December 29, 2008Laboratory Name: SGS Environmental Services, Inc.Laboratory Report Numbers: 1086543

ADEC File Number: 2102.38.005

LABORATORY DATA REVIEW CHECKLIST

(**NOTE**: **NA** = not applicable)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? **Yes**/ **No**

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved? Yes / No NA Note: ADEC certification not required for methane analysis.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)? Yes/No Note: There were no COC seals on the coolers delivered to SGS Anchorage, since they were hand-delivered in person by the sampler. COC seals were absent from the cooler of methane samples sent to SGS's Wilmington NC laboratory.

b. Were the correct analyses requested? Yes No Note: Ethane and ethene were requested on the COC form; these analytes were not in the SAP for Operable Unit E, so their results were not reported.

3. Laboratory Sample Receipt Documentation

- **a.** Sample/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$? **Yes** No
- **b.** Sample preservation acceptable acidified waters, MeOH-preserved VOC soil (GRO, BTEX, VOCs, etc.)? **Yes**/ **No**
- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? NA/ Yes / No
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? NA (Yes) / No Note: No trip blank was submitted with the VOC samples.
- e. Data quality or usability affected? (Yes)(explain) / No Note: See trip blank section below.

4. Case Narrative

- a. Present and understandable? Yes/ No (explain)
- b. Discrepancies, errors or QC failures noted by the lab? NA (Yes)/ No (explain)
- c. Were all corrective actions documented NA/ Yes / No (explain) Note: No corrective action was required.

d. Is there an effect on data quality/usability, according to the case narrative? NA (No) Yes (explain)

5. Sample Results

a. Correct analyses performed/reported as requested on COC? Yes/ No (explain)

b. All applicable holding times met? Yes No Note: Nitrate, nitrite, and sulfate hold time was exceeded by 1 day for all samples.

- c. All soils reported on a dry-weight basis? (NA) Yes / No
- d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project? Yes/ No (explain only for non-detects with elevated PQLs) Note:
 1,2,3-Trichloropropane and ethylene dibromide PQLs were above their respective ADEC Table C groundwater cleanup levels; however, the PQLs met the reporting limit objectives specified in the QAPP, and these analytes are not a focus of this project, so data usability is not affected.

e. Data quality or usability affected? No / Yes (explain) Note: Nitrate, nitrite, and sulfate results may be biased due to exceeded hold time; results are flagged as estimates (J).

6. QC Samples

a. Method Blank

- i. Is at least one method blank (MB) reported per matrix, analysis, and 20 samples? Yes/ No ii. Are all method blank results less than POL? Yes/ No Note: Trichloroethylene (TCE) was
 - detected between the MDL and PQL in the VOC MB.
- iii. If MB above PQL, what samples are affected?Note: TCE was not detected in project samples.
- iv. Do the affected sample(s) have data flags? Yes / No /NA

If so, are the data flags clearly defined? Yes / No (NA)

v. Are data quality or usability affected? **No**(i.e., MB data are acceptable) / **Yes** (Explain)

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics Is at least one LCS/LCSD reported per matrix, analysis, and 20 samples? NA /Yes/ No Note: A project (billable) MS/MSD was also reported.
- Metals/Inorganics Is at least one LCS and one sample duplicate reported per matrix, analysis and 20 samples? NA Ves/ No Note: A LCS and a project (billable) MS/MSD were reported for the metals analysis, while a LCS, an undigested duplicate, and a project (billable) MS/MSD were reported for nitrate, nitrite, and sulfate analysis.
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? [AK petroleum methods %R < 20%; other analyses, refer to lab QC pages] Yes/ No (explain)
- iv. Precision Are all relative percent differences (RPDs) reported and less than method or laboratory limits, or project-specified DQOs? Yes/ No (explain)
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NA r list
- vi. Do the affected samples(s) have data flags?(NA/Yes / No (explain)

If so, are the data flags clearly defined?

vii. Is the data quality or usability affected? Noor explain.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, including field, QC and laboratory samples? Yes/ No
- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits or project-specified DQOs? Yes No
 Note: Recovery of 4-BFB was high for sample 08FROAWA-18; associated analytes were not detected, so results were unaffected.
- iii. Do the sample results with failed surrogate recoveries have data flags?(NA)/Yes / No (explain)

If so, are the data flags clearly defined? Yes / No (NA)

iv. Is the data quality or usability affected? No r explain.

d. Trip Blank (volatiles only)

- i. Is at least one trip blank (TB) reported per matrix, analysis and cooler? NA / Yes No
- ii. Are TB results less than PQLs? NA/ Yes / No
- iii. If TB is above the PQL, what samples are affected? NA or list samples

iv. Is the data quality or usability affected? No or explain. Note: We cannot determine whether VOCs detected in project samples are attributable to contamination occurring in transport or sample handling.

e. Field Duplicate

i. Was at least one field duplicate submitted per matrix, analysis and 10 project samples? Yes No Note: OUE field duplicate pair was 08FROAWA-10/08FROAWA-11, analyzed in work order 1086543.

ii. Were the field duplicates submitted blind to the lab? Yes/ No / NA

iii. Precision – Are all relative percent differences (RPDs) less than specified DOOs (recommended: 30% for nitrate, nitrite, and sulfate. QAPP: 15% for VOCs) ? Yes/ No / NA

iv. Is the data quality or usability affected? **No** Yes (explain)

f. Decontamination or Equipment Blank (if applicable)

Not Applicable or...

Note: Sample 08FROAWA-17 was the equipment blank.

i. Are all results less than the PQL? Yes/ No Note: Toluene was detected between the MDL and the PQL in the EB, at an estimated concentration of 0.460 μ g/L.

ii. If results are above PQL, what samples are affected? NA or list Note: Toluene was not detected in associated project samples.

iii. Is the data quality or usability affected? Nobr Explain.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

Not applicable or ...

a. Are they defined and appropriate? Yes / No

Completed by: Rodney GuritzTitle: Environmental ChemistDate: January 4, 2009Consultant Firm: Shannon & Wilson, Inc.CS Report Name: Fort Richardson Operable Unit E Armored Vehicle Maintenance AreaGroundwater MonitoringLaboratory Report Date: December 29, 2008Laboratory Name: SGS Environmental Services, Inc.Laboratory Report Numbers: 1086564

ADEC File Number: 2102.38.005

Appendix B4 Sample Receipts and Chain-of-Custody Forms (Raw Data Packages electronic file only)

						9 7			108	364	96	i¥.		
SHANNON & WI	LSON, INC.	C	HAIN-(OF-	-Cl	UST	ODY	RF.				- m	SEIS Page_I	of I
400 N. 34th Street, Suite 100 2043 Wes	nental Consultants	303 Wellsian Richland, W/	Way			lert	17				Attn:	He	(d)	
(206) 632-8020 (314) 699		(509) 946-63				_	1 100	h	Y DKA	preservativ	(e if used)	Descrip	entizisios	
(907) 479-0600 (907) 561					. ,		ANO T	VE S	Stor 2	250	125-12	J.		
2255 S.W. Canyon Road 1200 17th Portland, OR 97201-2498 Denver, C (503) 223-6147 (303) 825			Data		/	1	A THE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ALL CALLER				AUT COLORS	
Sample Identity	Lab No.	Time	Date Sampled		8/30	<u>~~</u>	Y2 4	130	Stor 5 CH	<u>\$</u> {\$`\$	*	10°0	Remarks/Ma	
	DA-I	1657	12/2/08		X	X	X	X		X		-98	WATERFI	eid Itcred
08FROAWA-02	かんエ	1726	12/2/08		X	X	X	×	X	X		-98	1243 [M.	etals nav
08FROAWA-03	DA.C	1740	12/2/08		X	X	3					1	1	-
						1								
		W.								St.	OR"	\$?:		
	and Marine Mana-										CONN.			
												******	- 84	
	20120										۲.			
						-								
					a lingual				D U	i tabad F			Delle evilation d	
Project Information		le Recei		ignature	iinq 们入	<mark>ןuished</mark> ז	i by: ime: <u>731</u>) Si	Relinqu gnature:	Tim	No. Constitution of the second second	Sig	Relinquished E nature: Tim	Construction and the second seco
Project Number: 32-1-17261 Project Name: Fort Rich Grw			14	34	R						-			
Contact: Shcylor Swedlwn	Received Goo			Tinted A	lame:	L G.	Date: 12/3	NO Pr	inted Name:	Date	e:	- Prir	nted Name: Dat	e:
Ongoing Project? Yes 🛛 No 🗆	Delivery Metho			Company	<u>y:</u>			100	ompany:			Cor	mpany:	
Sampler Shayla Swedly	(attach shipping	bill, if any)		Sha	nn	ontv	NILSOV	1						200400-4000 100 0000 0000
Inst	ructions			的代表的研究系统	5782000	ved By:	Contract Margina Line of	1.	Receive	ed By:	2.		Received By:	3.
Requested Turnaround Time: St	andard		S	ignature	e:	T	îme:	Si	gnature:	Tim	e:	- Sig	Tim	e:
Special Instructions: Cor ps Pro	pject		. P	rinted N	lame:		Date:	Pr	inted Name:	Date	e:	Prir	nted Name: Dat	e: 12.3-68
* Use Unpreserved 60		te for A	Nitrate/		1								JAMES MOUGH	
Distribution: White - w/shipment - retur Yellow - w/shipment - for	rned to Shannon & W	ilson w/ labora	atory report	Company	Y			C	ompany:			Co	SGS AMM	
dis cardally chapton & Wilson	nlee Elle, 12/1		12/3/08 2						-				JUI ANCH	Annual and a state of a state of a state of a
F-19-91/UR			69d	T	B =	= 7.1	C : 3.	0					No. 2	8642
											22		110	

rogin proof (check one); walved required performed by;	in and and		Notes:	9 9	Were all samples unbroken and clearly labeled? Were all samples sealed in separate plastic bags? Were all VOCs free of headspace and/or MeOH preserved?	\$	Was the CUC filled out property? Did the COC indicate USACE / Navy / AFCEE project? Did the COC and samples correspond?	taped inside hd of cooler?	#/ where: 2 FNOM & Alck Tol 610 Were seal(s) intact upon arrival?	Was there an airb⊞? (Note # above in the right hand column)	MA If temperature(s) <0 °C; were containers ice-free? N/A Notify PM immediately of any ice in samples	Exceptions Samples/Analyses Affected:		must be filled out for DoD projects (USACE, Navy, AFCEE)	project? (USACE, Navy, AFCEE)	d? (Level: 1 / 2 / 3 / 4) De	charges apply?	If this is for PWS provide PWSID	1	~	If yes, have you done <i>e-mail ALERT notification</i> ? Are samples <i>within 24 hrs.</i> of hold time or due date? Re		No NA SAMPLE RECEIPT FORM
Form # F004r17 revised 04/11/08	JANES NOCCAST			Change Order Required? SGS Contact:			Via: Phone / Fax / Email (circle one) Date/Time:	Individual contacted:	This section must be filled if problems are found. Yes No Was client notified of problems?				Additional Sample Remarks: (<i>\if applicable</i>) Extra Sample Volume?	Airbill #	AA Goldstreak / NAC / ERA / PenAir / Carlile/	Alert Courier / UPS / FedFx / USPS / DHL /	ometer correction fa		Thermometer ID: 696		Received Date: 12.3.08 Received Time: 1///0	TAT (circle one): (Standard -or- Bush	M SGS WO#:

SGS

SAMPLE RECEIPT FORM (page 2)

SGS WO#:

39 jugas	tenkari si setelar		ata da king pero	14.42 Maria					Con	tain	er V	'olur	ne		1.1		C	lonta	ainei	г Туј	pe				- 20	Pre	serv	ativ	е	
#	Container ID	Matrix	Test	QC	TB	1L	500 mL	250 mL	125 mL	60 mL	40 mL	8oz (250 mL)	4oz (125 mL)	Other	AG	CG	HDPE	Nalgene	Cubie	Coli	Septa	Other	None	HCI	HNO3	H_2SO_4	MeOH	$Na_2S_2O_3$	NaOH	Other .
42	AC	1	VOC 8260								6				L						L			L						
	D-F		NOC 8960 METHINE PSK								6				L						L			V						
	6		NO2 NO3						.e	2								V					V							
	H		CL 504							2								4					4						•	+
	I		Nog Noz CL 504 Diss Mords					2									V								5				\rightarrow	
3	1.C		VOC 8260		V						3				L						L	+	-	L			_	_	_	
P	A.C.		VUC 0260		Ť										~						-			-	- 6					
																										· e~				
																									- 1					
			- Hereiter - Marine																				- 15							
																						· •			11					
L									1								:								22.043			100000	-	
				-	<u> </u>								_				-							-	-4					
				_	—					<u>.</u>																				
									·														-						-	
			*									_				- 25										-				
	· · · ·		·																											
	1																													
																												÷.	-	
			1			MICL.									•															37- 83

15 Bottle Totals 2 4

Completed by:

Ũ Date: 12.3.08 any

Form # F004r16 revised 03/10/03

1086496 SGS Environmental Cooler \$16 CUSTODY SEAL Date/Time: 12/3/08 Signature 730 SGS Environmental CUSTODY SEAL Coolerpla Signature Date/Time: 12

	The second devices a second	R. #12-5	
Geotechnical and Environmental Consultants	-OF-CUSTO	Y RECORD	Laboratory, SGS Pageof
400 N. 34th Street, Suite 100 2043 Westport Center Drive 303 Wellsian Way Seattle, WA 98103 St. Louis, MO 63146-3564 Richland, WA 99352 (206) 632-8020 (314) 699-9660 (509) 946-6309		Analysis Parameters/Sample Co	ntainer Description
2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120		(include preservative)	
2255 S.W. Canyon Road 1200 17th Street, Suite 1024 Portland, OR 97201-2498 Denver, Co 80202	A A		
(503) 223-6147 (303) 825-3800 Date Sample Identity Lab No. Time Sample			Remarks/Matrix
08FROAWA-04 0 A-Z 1050 12/3/0	08 X X X	XXX	9 WATER; Field Filtered
	28 X X X		9 WINTER; Field Filtered
08FROAWA-06 3 1755 12/3/0			9 WATER; Field Filtercy
08 FROAWA-07 @ 1 1825 12/3/0	8 X X Y	XXX	9 WATER ; Field Filtered
08 FROAWA-08 DAC 18:30 12/3/09	3 X X		3 WATER
			6*** ill
			100
			< - "19947"
Project Information Sample Receipt	Relinquished By	: 1. Relinguished By	: 2. Relinguished By: 3.
Project Number: 32-1-112(6) Total Number of Containers	Signature Time:	2620_Signature: Time:_	Signature: Time:
Project Name: Fort Rich COC Seals/Intact? Y/N/NA	Printed Nage: Date:	7406 Printed Name: Date:	Printed Name: Date:
Contact Shay a Sived I Received Good Cond./Cold	Stanla Swedly	nd	
Ongoing Project? Yes X No Delivery Method: Sample: Shanla Swedimmed + (attach shipping bill, if any)	Shannon + Will	Som	Company:
Joe homas Instructions	Received By:	1. Received By:	2. Received By: 3.
Requested Turnaround Time: Standard	Signature: Time:	Signature: Time:	Signature: Time: 1640
Special Instructions: VSACE/CO-PS Project Cooler Ø2. Contract W911KB-08-D-0005	Printed Name: Date:	Printed Name: Date:	Printed Name Date: 12-9-05
lask Order 001; NPDL09-006	Company:	Company:	Company:
Distribution: White - w/shipment - returned to Shannón & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File		•	SGS ANCH
19-91/UR 890 TB = 2.0			No. 28643
C = 1.5		\$	No. 20045

Completed by (sign): Login proof (check one):	Notes:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Yes No			S
heck one): waived required performed by:	Cooler Temp Out of Rouge Cold, No 100 14 50	If temperature(s): <0%C. were containers ice-free? N/A Notify PM immediately of any ice in samples. Was there an arrbitl? (Note # above in the right hand solumn) Was cooler sealed with custody seals? #1/where: 2 file for the right hand solumn) Were seal(s) intact upon arrival? Was there a COC with cooler? Was there a COC with cooler? Was COC sealed in plastic bag & taped inside lid of cooler? Was the COC filled out properly? Did the COC and samples correspond? Were all sample packed to prevent breakage? Packing material DUMINE 100 Were all samples wibroken and clearly labeled? Were all samples wibroken and clearly labeled? Were all samples sealed in separate plastic bags? Were all VOCs free of headspace and/or MeOH preserved? Were correct container / sample sizes submitted? Is sample condition good? Was copy of CoC, SRF, and custody seals given to PM to fax?	on must be filled out for DoD projects (USACE, Navy, AFCEE) Is received temperature 4 ± 2°C? Exceptions: SEE AllowE SEE AllowE	If this is for PWS, provide PWSID. Will courier charges apply? Method of payment? Data package required? (Level: 1 / 2 / 3 / 4) <i>Notes:</i> Is this a DoD project? (USACE, Navy, AFCEE)	Are samples RUSH , priority or <i>w/in 72 hrs</i> of <u>hold time</u> If yes, have you done <i>e-mail ALERT notification</i> ? Are samples <i>within 24 hrs</i> . of hold time or due date ? If yes, have you also <i>spoken with</i> supervision? Archiving bottles (if req'd): Are they properly marked? Are there any problems ? PM Notified?	SAMPLE RECEIPT FORM
145 106 647-1 Form # F004-17 restined 04/11/08	replace for the	Lab-filtered for dissolved Lab-filtered for dissolved Foreign Soil? This section must be filled if problems are found. Yes No Vas client notified of problems? Individual contacted: H duy duy Via: (Phone) Fax / Email (circle one) Date Time: 12,22 12-4 -68 Reason for contact: Low Tem P S. Change Order Required? NO SGS Contact: QA	Airbill # Additional Sample Remarks: (<i>\ifgapplicable</i>) Extra Sample Volume? Limited Sample Volume? MeOH field preserved for volatiles? Field-filtered for dissolved		Cooler Tr	1086519 SGS WO#:

SGS

SAMPLE RECEIPT FORM (page 2)

SGS WO#:

•

Preservative **Container Volume Container** Type Other Other Other Test $Na_2S_2O_3$ NaOH Nalgene None MeOH # AG ß HDPE Cubie Coli Septa HCI $\mathrm{H}_2\mathrm{SO}_4$ Matrix 8 TB lL 500 mL 250 mL 125 mL 60 mL 40 mL 80z (250 mL) 4oz (125 mL) HNO₃ Container ID L 12 1-4 VOC METHANE RSKITS A.C 1 L L 12 DF L L L G NO2 NO2 4 L L 504 Diss Femmac As 4 L L 41 T 4 V V 5 AC VOC 3 L 6 レ L

8 27 **Bottle Totals** 4

Completed by: 2 ang Date: 12-4-68

	WILSON, INC.	CI	HAIN-C)F-C	UST	ODY	REC			16	SGS Page	of
206) 632-8020 (314) 2355 Hill Road 5430 Fairbanks, AK 99709 Anch 907) 479-0600 (907) 2255 S.W. Canyon Road 1200 Portland, OR 97201-2498 Denv	Westport Center Drive ouis, MO 63146-3564 1999-9660 Fairbanks Street, Suite 3 orage, AK 99518 561-2120 17th Street, Suite 1024 rer, Co 80202 825-3800 Lab No. DA-H DA-H DA-C(TB)	303 Wellsian Richland, W4 (509) 946-63 Time 1130 1708 1712 1918 1944 1944	99352	XXXXX N XXXXX N XXXXX N XXXXX N XXXXXX N XXXXXX N XXXXXX N XXXXXXXX N XXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Analysis I	Parameters/Sa (include pre	Att ample Containe servative if used where the server of the server and the server of		01	d-filend filend Filendi
Project Information Project Number: 32-1-1726 Project Name: Fort Richar Contact: Shay a Swediu Ongoing Project? Yes X No Sampler Shayla Surdium Thomas In Requested Turnaround Time: Special Instructions: USACE CODER # 3 NF Distribution: White - w/shipment - Yellow - w/shipment - Pink - Shannon & Wils	Total Number of Son COC Seals/Int A Received Goo Delivery Method Corps tack Total Number of Delivery Method Corps Tack TACK	act? Y/N/NA d Cond./Cole od: bill, if any) Drcler 0 3-08 - P 05	Signed Si	nature:20 htgd.Name hay la npany: hay	Sued 1 on-M ved By	Time: 64 Date:12/5 Ilus-el Vilsev	5 Sign 00 Print 00 Print 1. Sign Print Print	Relinquisi ature: ed Name: pany: Received ature: ed Name: pany:	Time:	Pr	ompany: Received By gnature:	Time: Date: Time: Date: Date:

	p: waived required perfo
MAS MOLGHANY	Completed by (sign):
	2
	Notes:
Change Order Required? SGS Contact:	U Were correct container / sample sizes submitted? L Is sample condition good? Was copy of CoC, SRF, and custody seals given to PM to fax?
	Packing material (DUDDUE WRAN) Were all samples unbroken and clearly labeled? Were all samples scaled in separate plastic bags? Were all VOCs free of headspace and/or MeOH preserved?
Via: Phone / Fax / Email (circle one) Date/Time: Reason for contact:	Was the Did the Did the Were al
Yes No Was client notified of problems?	Were seal(s) intact upon arrival? Was there a COC with cooler? Was cOC sealed in plastic bag & taped inside lid of cooler?
Foreign Soil?	s) <0 °C, v (immediate) rbill? ed with cu
MeOH field preserved for volatiles? Field-filtered for dissolved Lab-filtered for dissolved	
Airbill # Additional Sample Remarks: (<i>\sif applicable</i>) Extra Sample Volume?	Intrastant must be luied out for DoD projects (USACE, Nary, Ar CEE) Yes No
dstreak / NAC / ERA / PenAir / SGS / Other:	Is this a DoD project? (USACE, Navy, /
Note: Temperature readings include thermometer correction actors Delivery method (circle all that apply); Chent / Alert Courier / UPS / FedEx / USPS / DHL /	Data package required? (Level: 1 / 2 / 3 / 4) Notes:
° ° °	Will courier charges apply?
<u>Cooler ID</u> Temp Blank <u>Cooler Temp</u> / <u>-0./</u> °C <u>0./</u> °C °C °C	Were samples preserved correctly and pH verified?
Persion necess Local Time:	If yes, have you also <i>spoken with</i> supervisor? Archiving bottles (if req'd): Are they properly marked? Are there any problems? PM Notified?
TAT (circle one): <u>Standar</u> の-or- Rush Received Date: <u>/ 2、</u> デ・ <i>の</i> Received Time:	
SGS WO#:	Ves No NA SAMPLE RECEIPT FORM
1086543	SGS

SGS

SAMPLE RECEIPT FORM (page 2)

SGS WO#:

		NO RE							Cor	ıtair	ier V	⁷ olu1	me				C	lont	ainer	Ty	ре					Pre	serv	ativ	e	
#	Container ID	Matrix	Test	σc	TB	11	500 mL	250 mL	125 mL	60 mL	40 mL	8oz (250 mL)	4oz (125 mL)	Other	AG	CG	HDPE	Nalgene	Cubie	Coli	Septa	Other	None	HCI	HNO ₃	H ₂ SO ₄	MeOH	$Na_2S_2O_3$	NaOH	Other
1-5	A.C	1	VOC 8260								15				L						L			L						+
2	A.C D.F		NOC 8260 METTY ANE MIKE								15				L						L	2		L						
	G		NOX NOS 504 Diss Fo Al, As							5								V					5							
	H		Prss F. Al, As					5									L							-	V	1				·
			Det											· .									<u>.</u>						-+	
6	A.C	1.	Voc		~						3				6			н на <u>с</u>			l			L						
<u> </u>		-					_																							
1.1									- 1				-											-						
																														•
					14 A.							•		-																÷
			1														•					•								
			<u>, 1, 2</u>	<u> </u>																										
					-											-														
					-																		-							
				-										· · · · · · · · · · · · · · · · · · ·									-							
	· · · ·		· · · · ·	-					• 													-								
											•					-														
																								•						
									an an the	010000		46											-47-5-50							

Bottle Totals	5	5	33	

Completed by: Jan Dan

Date: 12-5-05

Form # F004r16 revised 03/10/03

1086543 SGS Environmental CUSTODY SEAL - COOLER (\$3B 12/5/08: 645 Signature: Date/Time: SGS Environmental CUSTODY SEAL - (coler \$3A Signature 645 Date/Time: 12/5/08

Geri, Heidi (Anchorage)

Sent: 5 Subject: From Jon Lindstrom [JEL@shanwil.com] Friday, December 05, 2008 4:26 PM Geri, Heidi (Anchorage); Haydar Turker; Rodney Guritz; Randy Hessong Re: Low Cooler Temps

Please proceed with the analyses. Regards, Jon

Jon E. Lindstrom, Ph.D. Environmental Chemist Associate Shannon & Wilson, Inc. 2355 Hill Rd. Fairbanks, AK 99709-5244 Telephone: (907) 479-0600 Fax: (907) 479-5691

 \sim "Geri, Heidi (Anchorage)" <Heidi.Geri@sgs.com> 12/5/2008 4:23 PM >>>

Hi,

1086543_08FROAWA-09 cooler temps are low, but samples. I will proceed with analyses unless there was no ice present I hear otherwise. in any of the

Please contact me to confirm.

Thank you, Heidi

Heidi Geri SGS Environmental Services Inc. Alaska Division Project Manager 200 West Potter Drive Anchorage, Alaska 99518 Phone: (907) 562-2343 Direct: (907) 562-3211 Fax: (907) 561-5301

electronic signatures, are considered official reports. You may distribute your PDF files electronically or as printed hardcopies, long as they are distributed in their entirety. All SGS services a rendered in accordance with the applicable SGS conditions of servi-available on request and accessible at http://www.sgs.com/terms_and_conditions.htm SGS sends analytical reports via the Internet as Portable Jocu Format (PDF) files. Reports in this format, with authenticated <http://www.sgs.com/terms_and_conditions.htm> reports via the Internet as Portable Document conditions of service are as

intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily Information in this email and any attachments is confidential and

Geri, Heidi (Anchorage)

From:	Randy Hessong [RTH@shanwil.com]
Sent:	Friday, December 05, 2008 4:47 PM
To:	Geri, Heidi (Anchorage); Haydar Turker; Jon Lindstrom; Rodney Guritz
Subject:	Re: Low Cooler Temps

4. 1.4.

Proceed with the I delivered it. Hi Heidi, analysis. Fresh ice packs had been placed in the cooler D little before

Randy Hessong Shannon & Wilson, Inc (907) 561-2120 RTH@shanwil.com

× × × "Geri, Heidi (Anchorage)" <Heidi.Geri@sgs.com> 12/5/2008 4:23 PM >>>

Ηi,

1086543_08FROAWA-09 cooler temps are low, but samples. I will proceed with analyses unless there was no ice present I hear otherwise. in any 0 Fi the

Please contact me to confirm.

Thank you,

Heidi

Heidi Geri

SGS Environmental Services Inc.

Alaska Division Project Manager

200 West Potter Drive

Anchorage, Alaska 99518

Phone: (907) 562-2343

Direct: (907) 550-3211

Fax: (907) 561-5301

accordance with the applicable SGS conditions of service accessible at http://www.sgs.com/terms_and_conditions.htm Reports in this format, with authenticated electronic signatures, are considered official reports. You may distribute your PDF files electronically or as printed hardcopies, as long as they are distributed in their entirety. All SGS services are rendered in SGS sends analytical reports via the Internet as Portable Document <http://www.sgs.com/terms_and_conditions.htm> service available on Format request (PDF) and files.

	SHORT HOLING OF-CUSTODY RECORD	1086564
400 N. 34th Street, Suite 1002043 Westport Center Drive St. Louis, MO 63146-3564303 Wellsian Way Richland, WA 99352 (206) 632-8020(206) 632-8020(314) 099-9650 5430 Fairbanks Street, Suite 3	Analysis Parameters/Sa	Laboratory
Fairbanks, AK 99708 Anchorage, AK 99518 (907) 479-0600 (907) 561-2120 2255 S.W. Canyon Road 1200 17th Street, Suite 1024 Portland, OR 97201-2498 Denver, Co 80202 (503) 223-6147 (303) 825-3800 Sample Identity Lab No.		And the second s
08 FROAWA-15 84.6 84.5 1018 12/510 08 FROAWA-16 5 A.H 1140 08 FROAWA-17 6 1219		16 Pleaser un MS/MSD on this suppl. Nator; Metals Field Filteral 8 Water; Metals Field Filteral 8
08FROAWA-18 8 / 1305 08FROAWA-19 1310		8 1 3 volder - 55
Project Information Sample Receipt Project Number: 32-1-17261 Total Number of Containers Project Name: Tor + Richard Son COC Seals/Intact? Y/N/NA	Relinquished By: 1. Relinquis Signature: Time: 1650 Signature:	hed By: 2. Relinquished By: 3. Time: Signature: Time:
Contact: Shall (0.6) Wedle if and iteration of the interval of	Printed Name: Date: 12/5/08 Printed Name: Shayla Swedlund Company: Company: Company:	Date: Printed Name: Date:
JOE THOMAS Instructions Requested Turnaround Time: Standard Special Instructions: USACE/Corps Task_Order 00 1 Contract W911KB-08-D-0005 COOLER#04 NPDLS-09-005	Received By: 1. Received Signature: Time: Signature: Printed Name: Date: Printed Name:	By: 2. Received By: 3. Time: Signature: Time: 650 Date: Printed Name: Date: 2-5-65)/ MHS MOCCARTY 7
Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File	Company: Company:	Company: 565 MMA

690 TP=5.4 C=5.6

No. 29106

F-19-91/UR

NES POUGARI	Completed by (sign):
J6K	Notes: NO TRIP RILLIA SUDMITTEN WITH SLAWLES
Change Order Required? SGS Contact:	d? JH JH Led?
Individual contacted: Via: Phone / Fax / Email (circle one) Date/Time: Reason for contact:	Was COC sealed in plastic bag & taped inside lid of cooler? Was the COC filled out properly? Did the COC indicate USACE / Navy / AFCEE project? Did the COC and samples correspond? Were all sample packed to prevent breakage? Were all sample packed to prevent breakage?
<u>This section must be filled if problems are found.</u> Yes No Was client notified of problems?	
Lab-filtered for dissolved Ref Lab required? METHINK Foreign Soil?	If temperature(s) <0°C, were containers ice-free?
Airbill # Additional Sample Remarks: (<i>\ifgapplicable</i>) Extra Sample Volume? Limited Sample Volume? MeOH field preserved for volatiles?	This section must be filled out for DoD projects (USACE, Navy, AFCEE) Yes No Lis received temperature 4 ± 2°C? Exceptions
Alert Courier / UPS / FedEx / USPS / DHL / AA Goldstreak / NAC / ERA / PenAir / Carlile/ Lynden / SGS / Other:	Notes: Is this a DoD project? (USACE, Navy, AFCEE)
°C °C (circle all that apply: Client	 If this is for PWS, provide PWSID. Will courier charges apply? Method of payment? Data package required? (Level: 1 / 2 / 3 / 4)
Cooler ID Temp Blank Cooler Temp 5.9°C 5.6°C °C °C °C °C	Are there any problems? PM Notified? Were samples preserved correctly and pH verified?
sion	Are samples RUSH, priori
SGS WO#:	Yes No NA SAMPLE RECEIPT FORM
1086564	SOS

Form # F004r17 revised 04/11/08

SGS

SAMPLE RECEIPT FORM (page 2)

SGS WO#:

Key and		Container Volume										Container Type								Preservative										
#	Container ID	Matrix	Test	QC -	TB	ÌĽ	500 mL	250 mL	125 mL	60 mL	40 mL .	8oz (250 mL)	4oz (125 mL)	Other	AG	CG	HDPE	Nalgene	Cubie	Coli	Septa	Other	None	HCI	HNO ₃	H ₂ SO ₄	MeOH	Na ₂ S ₂ O ₃	NaOH	Other
1	A,B	1	VOC					14			2				L						V	-		V						
•	c.D		METHINE ASK NOg NO3 SOY DISI Moldi EXTRA VOC								2				L						L			L						
	E		NOINOZ							1								V					5							
	F		504							1					•			4					6							
	6		Diss Metali					1						١.			L								L					0
	M	X	EXTRA VOL	_				1									L								4					
2	AiB		VOC METHANCIT	35							2				L						L			5						
	CD	-	METHANCIT	5						•	2		,		4				-		L			L						1
	E		NO, 103	3							5	J	4	IE									-						-	
	F		504	35	_						+		+	IF				-		-20000	-		_	_					-	
3	G		NOO 103 504 Post Motals VOC	the the as all all all and an							2	*	V	16	v			-												
>	A,B		VOC	2							7				, v						V		-	V	2					
	6.1		MPTHAC RSK	2		-		1			5	J	x	16	6		V		-		L		-	V	V					
4	E	- <u>-</u>	Pits Mobils NO.L. NO3 504	4				1_			7	J	î	15	-	-	V								-					
7	B		50:003	21							+	+	$\left\{ -\right\}$	1F																
	-		104	<i>"</i>	-					_	¥	¥	¢																	
5.7	A.C.	1	.VOC.								9				L						L		-	V						
	D-F		METHALE								9				L						L			L						
	G		NOA NO- SO.							3					ľ			V	-		-		4							
	H		METHANG NOg NO3504 PIST Hobell					3					•				V								v					
																									2.4					

Bottle Totals 6 5 30

Completed by:

Dang Date: 18-5.08

Appendix B5 COELT (electronic file only)