

November 13, 2019

Crowley Fuels LLC 201 Arctic Slope Avenue Anchorage, Alaska 99518

Attn: Mr. Prathap Kodial

RE: OCTOBER 2019 GROUNDWATER MONITORING, 459 WEST BLUFF DRIVE, ANCHORAGE, ALASKA; ADEC FILE NO. 2100.38.321

This report presents the results of Shannon & Wilson's October 2019 groundwater monitoring activities conducted at the Crowley Fuels LLC (Crowley) facility located at 459 West Bluff Drive, Anchorage, Alaska. The 2019 groundwater monitoring activities were conducted by Shannon & Wilson, Inc. on October 21, 2019. Authorization to proceed with the project was provided by Crowley in the form of purchase order number CFL000046 on July 12, 2019.

SITE AND PROJECT DESCRIPTION

Site Description

The Crowley facility is a fuel distribution terminal located in the Port of Anchorage (POA), as shown on Figure 1. Elevation varies at the site by approximately 20 feet, generally sloping downward towards the northern portion of the site. The site contains 27 bulk fuel above-ground storage tanks (ASTs) used to store jet fuel, pipelines, a rail loading rack, and office/warehouse/shop buildings. A pipeline linked to the POA valve yard, located 2,000 feet to the north, transfers petroleum products between the tank farm and oceangoing tankers/barges. This pipeline is the primary method of fuel delivery to Joint Base Elmendorf-Richardson. A lined detention pond and runoff basin are located in the northeastern portion of the site. A site plan is included as Figure 2.

Background

A site investigation conducted in 1987 identified impacted soil and groundwater at the site. Twenty-one monitoring wells (MW-1 through MW-21) were installed in 1989 at the site. The monitoring wells were sampled once in 1989, and annually from 1996 through 2009. The results indicate concentrations of gasoline range organics (GRO), diesel range organics (DRO), benzene, and ethylbenzene exceed Alaska Department of Environmental Conservation (ADEC) groundwater cleanup levels.

In a letter dated October 2, 2017, the ADEC approved a groundwater monitoring program comprising biennial sample collection from Monitoring Wells MW-6B, MW13A, MW-14, and

Crowley Fuels LLC Attn: Mr. Prathap Kodial November 13, 2019 Page 2 of 6

MW-19R. The remaining wells were decommissioned during the liner installation activities in 2011. Monitoring Well MW-1 was destroyed in 2018 during construction activities for a truck loading rack.

Purpose and Objectives

The purpose of this project is to monitor trends in dissolved phase hydrocarbon concentration gradients and distribution across the site. The project objective consisted of sampling four groundwater monitoring wells: Wells MW-6B, MW-13A, Well MW-14, and MW-19R. These wells have historically contained concentrations of GRO, DRO, residual range organics (RRO), benzene and/or ethylbenzene above the ADEC Table C cleanup levels.

FIELD ACTIVITIES

The field activities were conducted in accordance with our September 30, 2019 email work plan, approved by Mr. Grant Lidren of the ADEC in an email dated September 30, 2019.

Field work was conducted by an ADEC-qualified environmental professional, as defined by 18 Alaska Administrative Code (AAC) 75.333. Analytical testing of the project samples was conducted by SGS North America Inc. (SGS) of Anchorage, Alaska. NRC Alaska, Inc. (NRC) of Anchorage, Alaska disposed of the investigative-derived waste (IDW). SGS and NRC were subcontracted to Shannon & Wilson. Copies of the field notes are included as Attachment 1.

Groundwater Sampling

Groundwater samples were collected from Wells MW-6B, MW-13A, Well MW-14, and MW-19R on October 21, 2019. The wells were purged and sampled using low-flow techniques to reduce the effects of stagnant well casing water on chemical concentrations and to obtain a groundwater sample that is representative of the surrounding water-bearing formation. The wells were purged and sampled with a submersible pump and disposable tubing. The pump inlet was set within 2 feet of the surface of the groundwater column. The pump level was adjusted as necessary to maintain pump rate of about 0.1 liter per minute (L/min) with a goal of limiting the sustained water drawdown to a maximum drawdown of 0.2 feet (approximately two inches). During the purging process, field personnel monitored water quality parameters (pH, temperature, turbidity, and conductivity), purge volume, and drawdown which were recorded at 3-minute intervals.

Stabilization criterion is three successive readings of pH within 0.1 unit, temperature within 3 percent (minimum 0.2 degree Celsius), conductivity within 3 percent, and turbidity within 10 percent or three consecutive readings of less than 10 nephelometric turbidity units (NTUs).

Crowley Fuels LLC Attn: Mr. Prathap Kodial November 13, 2019 Page 3 of 6

Water quality parameters stabilized and at least one well volume was removed prior to analytical sample collection in each well. The final water quality parameters are listed on Table 1.

For quality control purposes, one field duplicate sample, designated Sample MW-23, was collected from Well MW-13A. Analytical samples were collected by transferring water directly from the pump tubing into the laboratory supplied containers. The sample jars were filled in decreasing order of volatility.

Groundwater Flow Direction

The October 2019 depth to water measurements and client-provided well survey data were used to interpret the groundwater flow direction. Groundwater elevations ranged from 32.72 feet mean sea level (MSL) in Well MW-13A to 50.69 feet MSL in Well MW-6B. Because of the well casing repair on Well MW-14 that took place in 2012, the elevation datum for that well is not included in the groundwater flow calculations. The groundwater data indicate an overall flow direction to the west. The groundwater elevations are within historical range, and the overall flow direction is consistent with historical data. Groundwater flow direction at the site is likely affected by multiple factors, including tidal influence, precipitation, and topography. Tidal effects appear to be the governing factor within 150 to 200 feet of Cook Inlet. These apparent tidal influences in the western portions of the property are likely contributing to fluctuations in flow direction and gradient in that area.

LABORATORY ANALYSES

The groundwater samples were submitted to SGS for analytical testing, using chain-of-custody procedures. The laboratory report and completed ADEC Laboratory Data Review Checklist (LDRC) are provided in Attachment 2.

Five groundwater samples, including one field duplicate, were submitted to SGS for analytical testing. The groundwater samples were analyzed for GRO by Alaska Method (AK) 101, DRO by AK 102, RRO by AK 103, and volatile organic compounds (VOCs) by EPA 8260C. The duplicate sample set MW-13A/MW-23 was also analyzed for polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D selective ion method (SIM). One trip blank accompanied the groundwater samples and was analyzed for GRO and VOCs. The analytical sample results and cleanup levels are listed in Table 2. Summary of historical groundwater data is included in Table 3. Graphs of select constituents are included as Figure 3.

Crowley Fuels LLC Attn: Mr. Prathap Kodial November 13, 2019 Page 4 of 6

DISCUSSION OF ANALYTICAL RESULTS

The analytical groundwater results were compared to ADEC cleanup levels presented in the October 2018, 18 AAC 75 regulations. The applicable groundwater cleanup levels are established in Table C of 18 AAC 75.345.

The following parameters exceed the ADEC Table C cleanup levels in one or more wells sampled in October 2019:

- GRO concentrations in Wells MW-13A (duplicate sample only) and MW-19R;
- DRO concentrations in Wells MW-6B, MW-13A (primary and duplicate samples), and MW-19R;
- RRO concentration in Well MW-13A (primary sample only);
- Benzene concentrations in Well MW-6B and MW-13A (primary and duplicate samples);
- Ethylbenzene concentrations in MW-6B, MW-13A (primary and duplicate samples), and MW-14;
- Total xylene concentration in Well MW-13A (primary and duplicate samples);
- 1,2,4-trimethylbenzene and naphthalene concentrations in each well; and,
- 1,3,5-trimethylbenzene concentrations in Well MW-6B and MW-19R.

By qualitative examination of the graphs on Figure 3, there appears to be a decreasing trend in downgradient Wells MW-13A and MW-19R of DRO and benzene. The GRO and RRO concentrations are within the historical ranges reported for each well.

QUALITY ASSURANCE SUMMARY

SGS follows on-going quality assurance/quality control (QA/QC) procedures to evaluate conformance to applicable ADEC data quality objectives (DQO). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spikes/matrix spike duplicates (MS/MSD), and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to measure precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a report specific note identifying the problem in the Case Narrative section of their Laboratory Analysis Report (See Attachment 2).

External quality controls included field records, one duplicate water sample, and a water trip blank. The relative percent difference (RPD) between the project sample and associated duplicate results are a measure of precision affected by matrix heterogeneity, sampling technique, and laboratory analyses. A duplicate set, MW-13A/MW-23 was collected to assess precision of the sampling and analysis processes using the calculated RPD. The ADEC

Crowley Fuels LLC Attn: Mr. Prathap Kodial November 13, 2019 Page 5 of 6

recommends an RPD of less than 30 percent for field duplicate water analysis. The RPDs for each of the detected parameters is less than 30 percent except for 2-methylnaphthalene, naphthalene, and phenanthrene. Because the duplicate concentrations are above (naphthalene) and below (2-methylnaphthalene and phenanthrene) ADEC Table C cleanup levels, it is our opinion the RPD non-conformances do not impact data usability for the objectives of this project. RPDs for several analytes could not be calculated due to non-detect results for the primary and/or duplicate samples. The affected data are "E-flagged" in Tables 2 and 4.

One water trip blank (Sample TB) accompanied the sample jars from the laboratory to the site during sampling activities and back again to SGS. No detections were reported in the trip blank, suggesting the project samples were not cross-contaminated during sample collection or transport. No detections were reported in the method blanks indicating the project samples were not impacted by laboratory contaminants.

Shannon & Wilson conducted a limited data assessment to review the laboratory's compliance with precision, accuracy, sensitivity, and completeness to the data quality objectives. Shannon & Wilson reviewed the SGS data deliverables and completed the ADEC's LDRC, which is included in Attachment 2. No non-conformances that would adversely affect the quality or usability of the data were noted.

INVESTIGATION DERIVED WASTE

IDW from this project consisted of purge water. The purge water from the onsite wells were stored in one, labeled 55-gallon drum. Shannon & Wilson completed an *ADEC Contaminated Soil Transport, Treatment, and Disposal Approval Form for Contaminated Media* prior to transporting the drum to NRC on November 6, 2019. Mr. Lidren of the ADEC approved of the transport and treatment of the water on November 4, 2019. A copy of the ADEC transport form, waste manifest, and disposal receipt are provided in Attachment 3.

SUMMARY

The October 2019 groundwater monitoring event included analytical groundwater sampling of four wells. The October 2019 sample results and historical data continue to suggest that the plume is stable based on recent trends of most contaminants of concern in downgradient Wells MW-13A and MW-19R.

CLOSURE/LIMITATIONS

This report was prepared for the exclusive use of our clients and their representatives in the study of this site. The findings we have presented within this report are based on the limited sampling and analyses that we conducted. They should not be construed as a definite conclusion regarding

Crowley Fuels LLC Attn: Mr. Prathap Kodial November 13, 2019 Page 6 of 6

the site's groundwater conditions. Therefore, the sampling and analyses performed can provide you with only our professional judgment as to the environmental characteristics of this site, and in no way guarantees that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the time of our site assessment. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Shannon & Wilson has prepared the documents in Attachment 4, "Important Information About Your Geotechnical/Environmental Report", to assist you and others in understanding the use and limitations of our reports. You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study, except with your permission or as required by law.

We appreciate the opportunity to be of service. Please call the undersigned at (907) 561-2120 with questions or comments concerning this report.

Sincerely,

SHANNON & WILSON, INC.

Prepared by:

Trevor Crosby, C.P.G.

Senior Geologist

Reviewed by:

Matthew Hemry, P.E

Vice President

Encl: Tables 1 through 4, Figures 1 through 3, and Attachments 1 through 4

TABLE 1 GROUNDWATER SAMPLING LOG

		Monitoring \	Well Number	
	MW-6B	MW-13A	MW-14	MW-19R
Water Level Measurement Data				
Date Water Level Measured	10/21/2019	10/21/2019	10/21/2019	10/21/2019
Time Water Level Measured	10:11	10:42	10:28	10:52
MP Elevation, Feet (MSL)*	76.40	38.01	-	40.19
Depth to Water Below MP, Feet	25.71	5.29	4.28	5.79
Groundwater Elevation, Feet	50.69	32.72	-	34.40
Purging/Sampling Data				
Date Sampled	10/21/2019	10/21/2019	10/21/2019	10/21/2019
Time Sampled	14:48	17:17	13:27	11:50
Depth to Water Below MP, Feet	25.71	5.29	4.28	5.79
Total Depth of Well Below MP, Feet	30.28	10.72	12.59	14.02
Water Column in Well, Feet	4.57	5.43	8.31	8.23
Gallons per Foot	0.65	0.65	0.65	0.16
Gallons in Well	2.97	3.53	5.40	1.32
Total Gallons Pumped	3.0	3.6	5.5	2.2
Purging/Sampling Method	Submersible Pump	Submersible Pump	Submersible Pump	Submersible Pump
Diameter of Well Casing	4-inch	4-inch	4-inch	2-inch
Water Quality Data				
Temperature, °C	6.33	10.48	6.24	10.04
Specific Conductance, µS/cm	1,188	518	679	801
pH, Standard Units	6.49	6.72	6.98	6.56
Turbidity, NTU	8.29	11.23	5.62	9.34
Remarks	Hydrocarbon odor	Hydrocarbon odor Duplicate sample "MW-23"	Hydrocarbon odor	Hydrocarbon odor

Notes:

Water quality parameters were measured with YSI and Hach Turbidimeter water quality instruments.

* = Previous reports provided by the client indicate that MP elevations were surveyed in 2007 by Karabelnikoff Surveying.

MSL = Mean Sea level

MP = Measuring point

μS/cm = Microsiemens per centimeter
NTU = Nephelometric Turbidity Units

mV = Millivolt

°C = Degrees Celsius

- = Not applicable or not measured

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

	SUMMART OF GROUNDWATER ANALITICAL RESULTS									
					Sample ID Number^ and Water Elevation in Feet Mean Sea Level					
					(S	ee Table 1, Figure 2	2, and Attachment	2)		
						Monitoring Wells			Trip Blank	
			Cleanup	MW-6B	MW-13A	MW-23~	MW-14	MW-19R	TB	
Parameter Tested	Units	Method*	Level**	50.69	32.72	32.72	-	34.40	-	
Gasoline Range Organics (GRO)	mg/L	AK101	2.2	0.565 J+	1.93	2.22 J+	0.620 J+	4.09 J+	< 0.0500	
Diesel Range Organics (DRO)	mg/L	AK102	1.5	8.27	3.24	2.44	0.951	1.34	-	
Residual Range Organics (RRO)	mg/L	AK103	1.1	0.769	1.11	0.854	0.243 J	0.371 J	-	
Volatile Organic Compounds (VOCs)										
Benzene	mg/L	EPA 8260C	0.0046	0.0113	0.00468	0.00463	0.00139	0.00181	< 0.000200	
Toluene	mg/L	EPA 8260C	1.1	0.000640 J	0.00803	0.00793	< 0.000500	0.00267	< 0.000500	
Ethylbenzene	mg/L	EPA 8260C	0.015	0.0852	0.326	0.333	0.0275	0.0134	< 0.000500	
Xylenes	mg/L	EPA 8260C	0.19	0.0877	0.367	0.356	0.0445	0.0369	< 0.00150	
Chloroethane	mg/L	EPA 8260C	=	< 0.000500	0.000360 J	0.000340 J	< 0.000500	< 0.000500	< 0.000500	
1,1,2,2-Tetrachloroethane	mg/L	EPA 8260C	0.00076	< 0.000250	0.000580	< 0.000250	< 0.000250	< 0.000250	< 0.000250	
1,2,4-Trimethylbenzene	mg/L	EPA 8260C	0.056	0.219	0.0669	0.0674	0.180	1.2	< 0.000500	
1,3,5-Trimethylbenzene	mg/L	EPA 8260C	0.06	0.0772	0.0232	0.0234	0.0130	0.393	< 0.000500	
4-Isopropyltoluene	mg/L	EPA 8260C	-	0.0184	0.00103	0.000960 J	0.00790	0.0270	< 0.000500	
Isopropylbenzene (Cumene)	mg/L	EPA 8260C	0.45	0.0389	0.00889	0.00863	0.0155	0.0803	< 0.000500	
Naphthalene	mg/L	EPA 8260C	0.0017	0.230	0.104	0.0988	0.0814	0.0840	< 0.000500	
n-Butylbenzene	mg/L	EPA 8260C	1	0.00985	< 0.000500	< 0.000500	0.00527	0.0212	< 0.000500	
n-Propylbenzene	mg/L	EPA 8260C	0.66	0.0426	0.00993	0.0100	0.00235	0.243	< 0.000500	
sec-Butylbenzene	mg/L	EPA 8260C	2	0.0164	0.000700 J	0.000700 J	0.00612	0.0160	< 0.000500	
tert-Butylbenzene	mg/L	EPA 8260C	0.69	0.00112	0.000390 J	0.000400 J	0.000860 J	0.00252	< 0.000500	
Other VOCs	mg/L	EPA 8260C	Varies	ND	ND	ND	ND	ND	ND	
Polynuclear Aromatic Hydrocarbons (PAHs)										
1-Methylnaphthalene	mg/L	EPA 8270D SIM	0.011	-	0.00742	0.00628	-	-	-	
2-Methylnaphthalene	mg/L	EPA 8270D SIM	0.036	-	0.00951 E	0.000782 E	-	-	-	
Acenaphthene	mg/L	EPA 8270D SIM	0.53	-	0.000224	0.000189	-	-	-	
Fluorene	mg/L	EPA 8270D SIM	0.29	-	0.000409	0.000361	-	-	-	
Naphthalene	mg/L	EPA 8270D SIM	0.0017	-	0.0393 E	0.0283 E	-	-	-	
Phenanthrene	mg/L	EPA 8270D SIM	0.17	-	0.000102 E	0.0000754 E	-	-	-	
Other PAHS	mg/L	EPA 8270D SIM	Varies	-	ND	ND	-	-	-	

Notes:

- * = See Attachment 2 for compounds tested, methods, and laboratory reporting limits
- ** = Groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (October 2018) for the "under 40 inches (precipitation) zone"
- = Sample ID number preceded by "103513-" on the chain of custody form
- mg/L = Milligrams per Liter
- <0.0500 = Analyte not detected; laboratory limit of detection of 0.0500 mg/L
- **0.769** = Analyte detected
- **8.27** = Reported concentration exceeds ADEC cleanup level
 - = Not applicable or sample not tested for this analyte
 - ~ = Field duplicate of Sample MW-13A
 - J = Estimated concentration less than the limit of quantitation. See the SGS laboratory report for details.
- J+ = Analyte result is potentially biased high due to surrogate failure.
- E = Result is an estimate due to a primary/duplicate sample relative percent difference (RPD) failure.
- ND = Not detected

TABLE 3
SUMMARY OF HISTORICAL GROUNDWATER DATA

		Grand Instant			Cleanup Leve	l* in mg/L
Manitanina		Groundwater Elevation (feet)	GRO	DRO	RRO	Benzene
Monitoring Well	Comple Date	MSL	2.2	1.5	1.1	0.0046
	Sample Date	MSL	2,2	1.5	1.1	0.0040
MW-1	05/11/05	32.67	11.0	7.00	-	1.30
	05/16/06	32.58	16.0	5.40	-	1.50
	09/11/07	32.95	14.0	3.20	< 0.380	2.10
	08/21/08~	32.87	14.5	4.00	-	1.52
	10/07/08	33.14	-	-	-	-
	08/18/09~	32.79	1.99	1.31	< 0.385	0.656
	09/02/10	33.24	2.20	1.10	0.270	0.580
	10/07/11	32.58	3.67	1.13	0.283 J	0.707
	10/10/2012~	34.07	3.56	1.80	0.549	1.12
	10/22/13	33.40	2.31	0.876	0.252 J	0.663
	10/23/2014~	32.81	0.884	0.418 J	< 0.250	0.214
MW-6B	05/11/05	53.00	2.20	15.0	-	0.0900
	05/15/06	52.58	2.30	23.0	-	0.0540
	09/12/07	50.37	1.80	9.00	< 0.380	0.0600
	08/21/08	50.94	1.60	13.2	=	0.0472
	10/08/08	50.75	-	-	<3.54	0.0461
	08/19/09	50.30	1.52	13.0	1.45	0.0310
	09/01/10	50.62	1.10	23.0	<3.50	0.0310
	10/07/11	49.87	0.933	17.6	1.85	0.0175
	10/10/12	52.25	1.27 J+	7.58	0.836	0.0232
	10/22/13	53.00	2.05	7.64	0.683	0.0540
	10/23/14	50.78	1.18	6.16	0.596	0.0446
	11/21/17	50.98	0.697 J+	29.10	2.070	0.0192
	10/21/19	50.69	0.565 J+	8.27	0.769	0.0113
MW-13A	05/11/05	31.53	14.0	11.0	-	0.430
	05/16/06	31.28	15.0	22.0	-	0.330
	09/12/07	32.73	13.0	7.90	< 0.410	0.400
	08/21/08	31.61	17.1	16.4	-	0.291
	10/09/08	32.32	- 0.72	-	<3.54	0.293
	08/18/09	32.31	9.73	10.3	1.35	0.232
	09/01/10~	32.46	8.70	18.0	<1.40	0.260
	10/7/2011~	31.59	8.62	16.7	2.98	0.248
	10/10/12	33.76	6.52	10.1	1.55	0.167
	10/22/13	32.77	7.15	11.3	1.48	0.208
	10/23/14	32.16	5.56	11.2	1.47	0.154
	11/21/2017~	31.62	2.15	5.5 2.24	1.22	0.067
MW-14	10/21/2019~ 05/11/05	32.72	2.22 J+	3.24	1.11	0.00468
IVI VV -14		33.50	5.00	11.0	-	0.012
	05/15/06 08/21/08	33.81 32.93	5.20	15.0	-	0.018 0.00804
	10/08/08	32.93	4.38	13.4	1.65	0.00804
	08/19/09	33.41	2.38	5.25	0.596	0.00715
	09/01/10	33.55	2.38 2.70	5.25 9.00	< 0.780	0.0021
	10/07/11	32.51	2.70 2.64	9.00 8.44	<0.780 1.18	0.0040
	10/07/11 10/26/12	32.31		8.44 2.90	0.195 J	0.003/1 0.00723
	10/26/12	-	1.56 J+ 3.06	2.90 3.98	0.193 J 0.332 J	
	10/23/14	-	0.641 J		<0.250	0.00731 0.00498 J
	10/23/14 11/21/17	- Well Frozen - cou		1.03	<0.230	0.00498 J
		wen Fiozen - Col			0.242 I	0.00120
	10/21/19	-	0.620 J+	0.951	0.243 J	0.00139

See Notes on Page 2

TABLE 3
SUMMARY OF HISTORICAL GROUNDWATER DATA

		Groundwater	Parameter Tested and Cleanup Level* in mg/L						
Monitoring Well	Sample Date	Elevation (feet) MSL	GRO 2.2	DRO 1.5	RRO 1.1	Benzene 0.0046			
MW-19R	09/12/07	34.49	3.50	6.90	6.50	0.020			
	08/21/08	34.24	5.16	4.19	-	0.00448			
	10/08/08	34.26	=	-	1.09	0.00373			
	08/18/09	35.09	4.01	1.92	< 0.385	0.00530			
	09/02/10	34.42	4.80	2.80	< 0.350	0.00300			
	10/07/11	33.89	6.05	3.92	1.07	0.00214			
	10/10/12	35.59	3.25 J+	2.57	0.717	0.00159			
	10/22/13~	35.10	5.04	3.01	0.348 J	0.00398			
	10/23/14	32.49	5.31	1.88	0.416 J	0.0186			
	11/21/17	34.00	3.43	1.59	0.338 J	0.029			
	10/21/19	34.40	4.09 J+	1.34	0.371 J	0.00181			

Notes: Data prior to 2011 provided by ARCADIS

* =	= Groundwater	cleanup levels are	from Table C.	, 18 AAC 75.345 ((October 2018)
-----	---------------	--------------------	---------------	-------------------	----------------

mg/L = Milligrams per liter
MSL = Mean sea level

GRO = Gasoline Range Organics
DRO = Diesel Range Organics
RRO = Residual Range Organics

<0.380 = Analyte not detected at or above the laboratory reporting limit of 0.380 mg/L <3.54 = Laboratory limit of detection is greater than the ADEC Table C cleanup level

1.99 = Analyte detected

= Reported concentration exceeds ADEC cleanup level

= Not applicable or sample not tested for this analyte

= The higher concentrations between primary and duplicate samples are listed
 J = Analyte detected, but at a concentration less than the laboratory reporting limit

J+ = Project result may be biased high due to surrogate failure

J- = Project result may be biased low due to surrogate failure

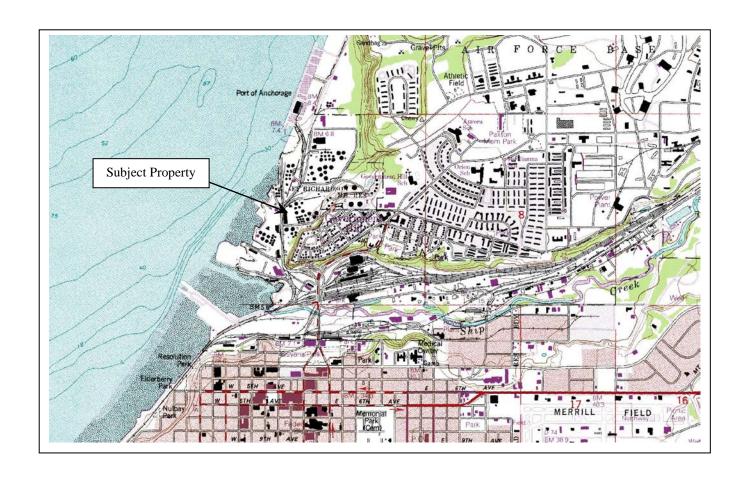
TABLE 4
QUALITY CONTROL DATA

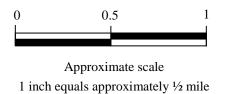
		Primary Sample	Duplicate Sample	Precision	Precision
Parameter Tested	Units	MW-13A	MW-23	(RPD)	QC Limit
				` '	
Gasoline Range Organics (GRO)	mg/L	1.93	2.22 J+	14%	30%
Diesel Range Organics (DRO)	mg/L	3.24	2.44	28%	30%
Residual Range Organics (RRO)	mg/L	1.11	0.854	26%	30%
Volatile Organic Compounds (VOCs)					
Benzene	mg/L	0.00468	0.00463	1%	30%
Toluene	mg/L	0.00803	0.00793	1%	30%
Ethylbenzene	mg/L	0.326	0.333	2%	30%
Xylenes	mg/L	0.367	0.356	3%	30%
Chloroethane	mg/L	0.000360 J	0.000340 J	6%	30%
1,1,2,2-Tetrachloroethane	mg/L	0.000580	< 0.000250	NA	30%
1,2,4-Trimethylbenzene	mg/L	0.0669	0.0674	1%	30%
1,3,5-Trimethylbenzene	mg/L	0.0232	0.0234	1%	30%
4-Isopropyltoluene	mg/L	0.00103	0.000960 J	7%	30%
Isopropylbenzene (Cumene)	mg/L	0.00889	0.00863	3%	30%
Naphthalene	mg/L	0.104	0.0988	5%	30%
n-Butylbenzene	mg/L	< 0.000500	< 0.000500	NA	30%
n-Propylbenzene	mg/L	0.00993	0.0100	1%	30%
sec-Butylbenzene	mg/L	0.000700 J	0.000700 J	0%	30%
tert-Butylbenzene	mg/L	0.000390 J	0.000400 J	3%	30%
Other VOCs	mg/L	ND	ND	NA	30%
Polynuclear Aromatic Hydrocarbons (PAHs)					
1-Methylnaphthalene	mg/L	0.00742	0.00628	17%	30%
2-Methylnaphthalene	mg/L	0.00951 E	0.000782 E	170%	30%
Acenaphthene	mg/L	0.000224	0.000189	17%	30%
Fluorene	mg/L	0.000409	0.000361	12%	30%
Naphthalene	mg/L	0.0393 E	0.0283 E	33%	30%
Phenanthrene	mg/L	0.000102 E	0.0000754 E	30%	30%
Other PAHS	mg/L	ND	ND	NA	30%

Notes:

RPD = Relative percent difference

QC = Quality control


NA = RPD not calculated due to non-detectable results


mg/L = Milligrams per liter

170% = RPD is equal to or greater than the precision QC limit

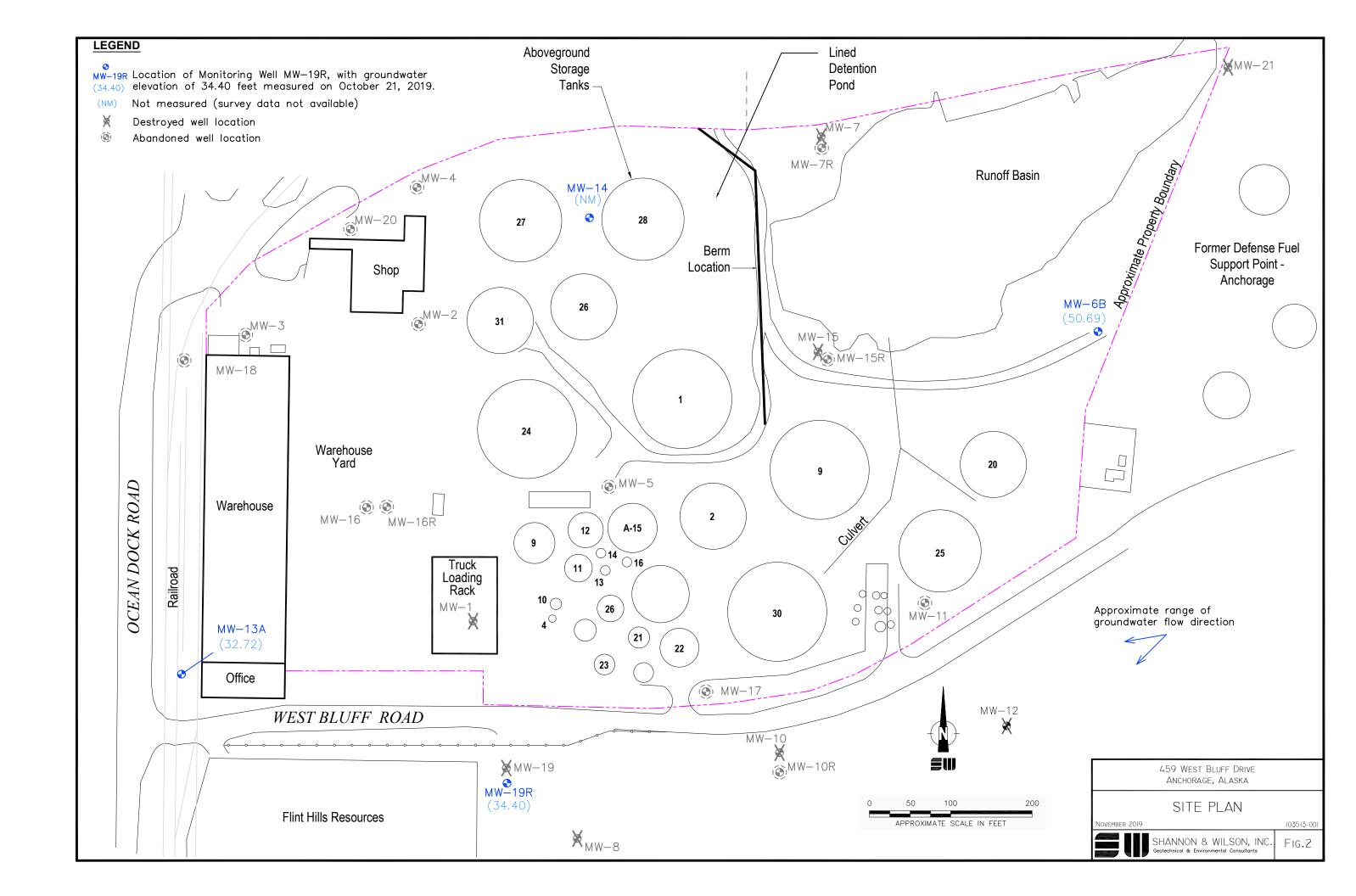
- = RPD could not be calculated due a non-detect value

E = Result is an estimate due to a primary/duplicate sample relative percent difference (RPD) failure.

Taken from Anchorage A-8 NE Quadrangle U.S. Geological Survey

459 West Bluff Drive Anchorage, Alaska

VICINITY MAP


November 2019

103513-001

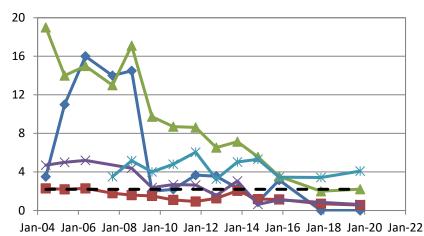

SHANNON & WILSON, INC. Geotechnical & Environmental Consultants

Fig. 1

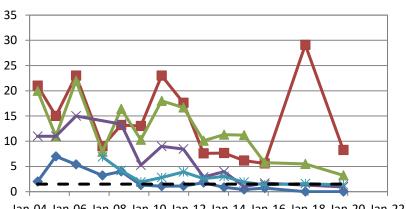
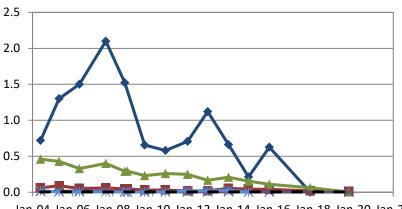


FIGURE 3 GRAPHS OF SELECT CONSITUENTS IN MILLIGRAMS PER LITER

GASOLINE RANGE ORGANICS (GRO)

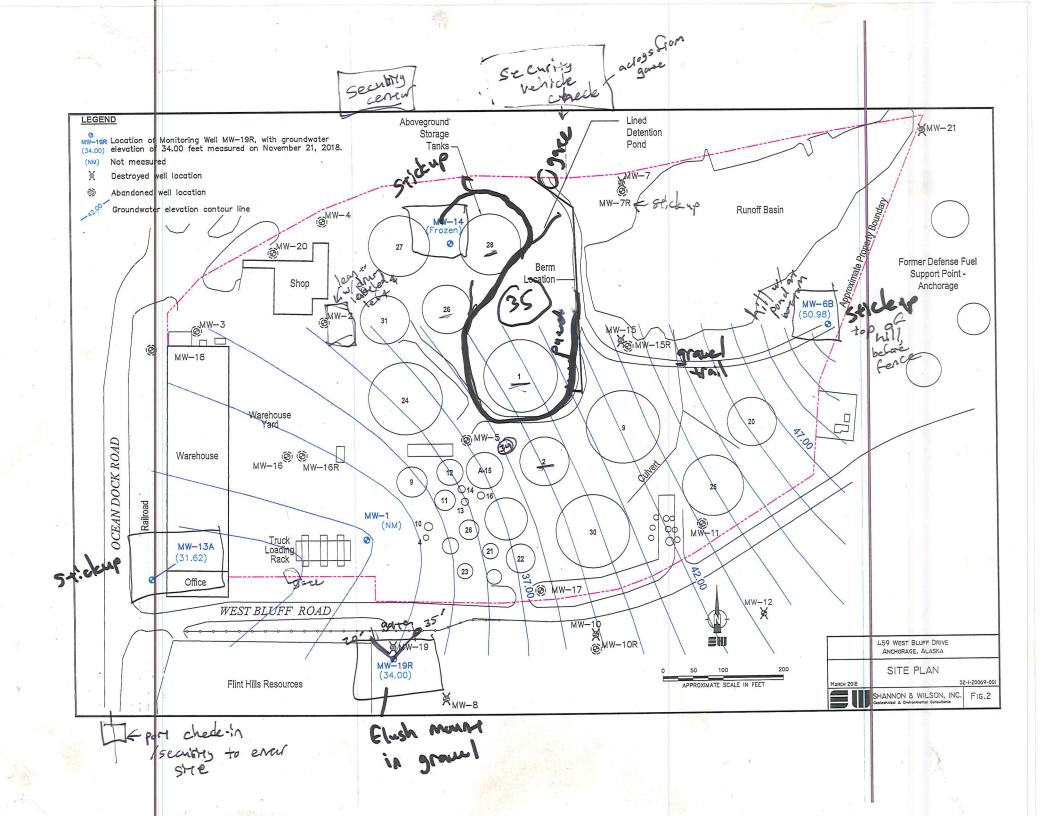
DIESEL RANGE ORGANICS (DRO)



Jan-04 Jan-06 Jan-08 Jan-10 Jan-12 Jan-14 Jan-16 Jan-18 Jan-20 Jan-22

RESIDUAL RANGE ORGANICS (RRO)

BENZENE


Jan-04 Jan-06 Jan-08 Jan-10 Jan-12 Jan-14 Jan-16 Jan-18 Jan-20 Jan-22

ATTACHMENT 1 FIELD NOTES

			103513
45	59 W. Bluff Dr	ine-Crowden	
10/21 /19			
8:00 calibrare	YSZ 556 & 4	inb #2	
8:45 caur (or Port of A	nchorage	
9:10 check in	at gate hou	se, ger so	ecur vistor pass
at seci	usty center	, 0	
9:20 check.	in with Crow	ey	
	General Work		
go ove	ste salery	& tou of.	site
	1 (all 7) Hz		
dws	W/WLI #		
In: II	mw-BE 6B	2 F 71	total dept
- Olma	Cucrol a ladas	4.3.1	30,28
10.75	rusted, no locles	on swell 4,28	17 00
- 0/00	rusied y cap screws		12:31
bish to	condition () as	the plug	, plug stes too
10.42	completely close mw-13A	5 29	10 72
Pipe too	high to close	lid to locked as	one side only
10::52	mw-19R	5,79	14.02
元 20 ft	from wext gaze pos	7 7235 by from	east garte post
16:30 dtw drawd	own dt Well MG	1-13A exceeds	80% y place
page & deco		gallen drum, bet	in team len-
new Shop.			collect samples
19.13 chelle our	1 at Securing gar		1 1 1
ماریک ماریک	Store Samp	les in Caoless	obernight, Chille
with gell	ed ice packs		
			10 44 9

Rite in the Rain.

Scale: 1 square = ____

Shannon & Wilson, Inc.

LOW-FLOW WATER SAMPLING LOG

	ob No: <u>103</u> Vell No.:	513 MW-61		on: 459 We	st Bluff Drive	We	ather:3	,9°F,	cloudy off 8	light ral
	ate:10/2	1/19	Time S	Started: 16	1:01	11	me Comple	ted: 15.0°	1	
								·		
			INITL	AL GROU	NDWATEF	R LEVEL	<u>DATA</u>	-		
Ti	me of Depth	Measurement	: 10:11		Date of	Depth Meas	urement: _	10/21/19		
M	easuring Poi	nt (MP) Top			el Protective C	Casing / Other	::			
	iameter of Ca	-		N 20	Well So	reen Interval	l:			
	-	Well Below I		50.28	Product	Thickness, i	f noted:			
	epth-to-Wate 'ater Column	er (DTW) Belo	ow MP:	4,57	(Total I	South of Wal	l Dolovy MI	DTW Dala	MD)	
	aler Column allons per fo			0.65	(10tai 1	Depui of wei	i Below Mi	P - DTW Belo	ow ivir)	
	allons in Wel			797	—— (Water	Column in W	/ell x Gallo	ns per foot)		
		·			*			p		
				<u>PUF</u>	RGING DA					
Da	ate Purged: _			Time Started:	14:11		Γime Comp	leted:	51	Maryaphing da
	ree Well Vo		91	(Gallon	s in Well x 3)		+00	276	- ^.	
	allons Purgeo	•			of Pump (gene			1 L 1,7	6-1	
		vn (generally (0.27	Pump 1		0,5	>		
	ell Purged D	•	Yes □		+/- 3% Co.1	use Well Pur 4/-3 Sp. Cond.:	ged Dry Lo	1/201		1/- 10%
lime:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp:	Sp. Cond.: (uS/cm)	″ DΦ: (mg/L)	рН: (S.U.)	ORP: (mV)	Turb: 人 (NTU)
1:15	0,1	0.2	25 79	0,08	7.06	1162		6,41		10.53
:18	0.3	0.3	25.82	0,11	6.48	1162		6.40		8,43
1:21	0,4	0,4	25.87	0.16	6.52	1155	-	6.40		11.84
1:24	0,6	0.4	<u> 25.90</u>	0.19	6.42	1161		6.41		9,46
1:27	0.9	0,4	25.96	0,25	6.36	1167		6.43		<u> 864</u>
1:30	1.3	0:5	25.96	0,25	6.32	1172		6,44		7.99
				SAM	PLING DA	ΛTA			1	
O	dor: Hy	drocarl	DP 11.5	-		- che	a (
	ımple Design		103513-	MW-CO		Date: 10/		14:48		
	Sample De					Date:				
Q.	A S ample D u	esignation:			Time /-1	Date:				
Ev	vacuation Me	ethod: Submer	rsible Pump	Other:^	in: whole					
		nod: Submers					1			
W	ater Quality	Instruments U	sed/Manufact	urer/Model Nu	umber <u> </u>	I 556,	Turb	. 2		
		o (Time, Rang			/ /	•				
Re	emarks:									_
Sa			LL CASING NNULAR SPA		GAL/FT): 1" E (GAL/FT):					-
	R	ΠA.Λ	1 well	UVWAIV						

(Jan. 2010)

LOW-FLOW WATER SAMPLING LOG

Continued from previous page

103513 Location: 459 West Bluff Drive Site: CPD Alaska LLC Job No:

Well No .: 10/21/19 Date:

Time: 14:33 14:36 14:39 14:42 14:46	Gallons: 1.7 7.0 2.3 2.6 3.0	Pump Rate (L/min): 0, 5 0, 5 0, 5 0, 5 Samp	DTW (ft BMP): 25 97 25,98 25,97 25,97 25,97	Drawdown (ft): 0,76 0,27 6,76 0,76 0,76	Temp: 6.3 2 6.3 2 6.3 2 6.3 3	Sp. Cond (uS/cm) [175 [178 [181	DO (mg/L)	pH: (S.U.) 6,4 6,4 6,4 6,4 6,4 6,4	7,96 8,99 7,81
	· .		- TO ANALAMAN	-					
				a			_		
		***************************************					-		
		*****					-		
	VALUE OF THE PARTY								
-	· · · · · · · · · · · · · · · · · · ·			-				-	
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp:	Sp. Cond.: (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTII)
ADEC (May 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	(±0.1)	±10	±10% or 410
EPA	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

Shannon & Wilson, Inc.			
Job No: 103513	Location: 459 West Bluff Drive	Weather: 39°F	cloudy off & on
Well No.: MW-134			17'48 light 1999
Date: 10/21/19	Time Started: 15:18	Time Completed:	17:48
			•
	<u>INITIAL GROUNDWATER L</u>	<u>LEVEL DATA</u>	
Time of Depth Measurement:	0:42 Date of De	epth Measurement: <u>10/21</u>	/19
	C Casing / Top of Steel Protective Casing / I/ Well Scree	ing / Other:	
Diameter of Casing.	Will bore	on mich van	
Total Depth of Well Below MP:		hickness, if noted:	
Depth-to-Water (DTW) Below MI Water Column in Well:		oth of Well Below MP - DTV	W Below MP)
Gallons per foot:	0,65	All of Well Bolow Mil Bi	, below hin)
Gallons in Well:		lumn in Well x Gallons per	foot)
	PURGING DATA		14.73
Date Purged: 10/21/19	Time Started: 5:21	Time Completed: _	16.50
Three Well Volumes: 0,59	(Gallons in Well x 3)	lly 2 ft from bottom):	7 >
Gallons Purged:			کہا
Max. Drawdown (generally 0.3 ft) Well Purged Dry:		e Well Purged Dry Log)	<u>-</u>
	• •		H: ORP: Turb:
(L/min): (ft	BMP): (ft): $({}^{\circ}C)$	(uS/cm) (mg/L) (S.	U.) (mV) (NTU)
15:23 0.3 0.5 5			86 17.79
15:76 0.6 0.5 5.			86 14.63
15:29 0.9 0.3 5	, <u> </u>		36 12,66
15.35 1.3 0.3	$\frac{08}{611}$ $\frac{0.79}{0.82}$ $\frac{9.46}{9.50}$	449 6.9	$\frac{85}{25}$ $\frac{12.37}{12.61}$
15.55 1.5 0,2	7.100	451	
15, 38 1, 7 0,0 6	70 0.11 1.51	15	11.00
	SAMPLING DAT	<u>'A</u>	
Odor: hydrocarbon	Color:	cheer	
	3513- MW-134 Time/Dat		17
		te: $\frac{10}{21/19}$ 17:4	17
QA Sample Designation:	Time / Dat	te:	
Evacuation Method: Submersible			
Sampling Method: Submersible F	المساحران	G-(-/	da
Water Quality Instruments Used/N		- 556, twb:	3 2
Calibration Info (Time, Ranges, et			
Remarks: Also Samp			
80% rechorge	draw down = 6,58		
Sampling Personnel:JKH WFLL C	ASING VOLUMES (GAL/FT): 1" = 0	0.04 2" = 0.16 4" = 0.65	
	LAR SPACE VOLUME (GAL/FT): 4"		
**	min I well volum	e	

Continued from previous page

Job No:

Location: 459 West Bluff Drive Site: CPD Alaska LLC

Well No .:

MW-13A- 13A

Date:

10/21/19

Time:	Gallons:	Pump Rate	DTW	Drawdown	Temp:	Sp. Cond	Ŋο	рН:	ORP:	Turb:
15:41	1,7	(L/min): ひ, て	(ft BMP):	110 &	9,66	(uS/cm) 45.7	(mg/L)	(S.U.)	(mV)	(NTU) 11,38
15:44	7.0	0.1	6,39	1010	9.61	458	-	6.83		12.17
15:53	2,3	0.1	6,49	1.20	9.60	465		6.81		11.81
15:58	7.4	01	6.54	1,25	10,05	477		6.75		13.14
16:06	2.8	01	6,65	1,36	10.12	483		6.76		13,27
6515	2,9	0,1	6,61	1.40	10.18	487		6.76		10.00
16,17	3,2	0.1	6.70	1,41	10,30	495	2)	4	5.73	11.71
16:24	3.6	$\frac{0.1}{0.1}$	6.11	1.42	10:38	513		6.73		12.13
16,27	3.60	0.1	6.72	1,43	10:48	V 518/		6.72		11.230
	<u>tur</u>	i of pr	mp, 16:3	o den	- 6,60					
	1	7:17	deu			ample			,	
				6,35	at at	17:38	when	n <u>sampl</u>	by Comp	en .
								- AMAZA		
	Interval	Pump Rate	Drawdown	Temp:	Sp. Cond.:	DO	pH:	ORP:	Tu	
	(minutes)	(mL/min):	(ft):	(°C)	(uS/cm)	(mg/L)	(S.U.)	(mV)	(N)	
ADEC (May 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	(±3%)	±10%	(±0.1)	±10	0141	ONTU
EPA (Jan. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or	<5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling

Shannon & Wilson, Inc.	
Job No: 103513 Location: 459 We	est Bluff Drive Weather: 39° E Coudy
Well No.: <u>Mw-14</u>	
Date: 10/21/19 Time Started: 17	: 29 Time Completed: 13,48
•	
<u>INITIAL GROU</u>	NDWATER LEVEL DATA
Time of Depth Measurement: 10:26	Date of Depth Measurement: _10/21/19
Measuring Point (MP) (Top of PVC Casing / Top of Ste	el Protective Casing / Other:
Diameter of Casing:	Well Screen Interval:
Total Depth of Well Below MP: 12.59 Depth-to-Water (DTW) Below MP: 4,29	Product Thickness, if noted:
Depth-to-Water (DTW) Below MP: 7.29 Water Column in Well:	(Total Depth of Well Below MP - DTW Below MP)
Gallons per foot: 0.65	(Total Depail of Well Below Mr. B. W. Below Mr.)
Gallons in Well: 5.40	(Water Column in Well x Gallons per foot)
nin	DOING DATA
•	RGING DATA
Date Purged: 10/21/19 Time Started:	
Three Well Volumes: \\(\lambda \lambda \) (Gallor	of Pump (generally 2 ft from bottom): V 6.2 G
Gallons Purged: 5,5 Depth Max. Drawdown (generally 0.3 ft): 0 0 6	Pump Rate:Pump Rate:
Well Purged Dry: beach mark = 4, 21	(If yes, use Well Purged Dry Log)
Time: Gallons: Pump Rate DTW Drawdown	Temp: Sp. Cond.: DO: pH: ORP: Turb:
(L/min): (ft BMP): (ft):	(°C) (uS/cm) (mg/L) (S.U.) (mV) (NTU)
12:36 0.2 3.9 4.23 0.02	5.44 625 6.89 15.94 5.41 628 6.90 17.51
17:42 2.5 0.5 4.25 0.04	5.41 628 6.90 17.51 5.58 641 6.91 13.20
12:45 0.9 0.5 4.26 0.05	5.75 6.54 6.93
12:51 1.7 0.5 4.27 0.06	5.88 663 6.94 9,18
12:54 2.1 0.5 4.76 0.05	5.88 665 6.96 11.96
	MPLING DATA
1 1	Color: Clear
Odor: hydro Carbons Sample Designation: 103513- MW-14	Time / Date: $13:27$ $10/21/19$
QC Sample Designation:	Time / Date:
QA Sample Designation:	Time / Date:
1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	in whale
Sampling Method: Submersible Pump / Other:	in whate
Water Quality Instruments Used/Manufacturer/Model N	
Calibration Info (Time, Ranges, etc) 8'.co	10/21/19
Remarks:	
Sampling Personnel: JKH	· ·
WELL CASING VOLUMES (GAL/FT): 1" = 0.04 2" = 0.16 4" = 0.65
	ME (GAL/FT): 4" casing and 2" well = 0.23
₩ Min	I well volume

Shannon & Wilson, Inc.

LOW-FLOW WATER SAMPLING LOG

Continued from previous page

Job No:

Location: 459 West Bluff Drive Site: CPD Alaska LLC

Well No .:

MW-14

Date:

10/21/19

Time: 12:57 13:00 13:03 13:06 13:12 13:16 13:19 13:26	Gallons: 2,5 2,6 3,2 3,5 4,1 4,5 4,9 5,7	Pump Rate (L/min): 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	DTW (ft BMP): 1, 26 4, 26 4, 25 4, 25 4, 25 4, 25 4, 25 4, 25 4, 25 4, 25	Drawdown (ft):	Temp: (°C) 5,89 5,93 5,97 6,03 6,05 6,10 6,15 6,19	Sp. Cond (uS/cm) 664 666 665 668 672 674 677 6,78	DO (mg/L)	pH: (S.U.) 6.97 6.96 6.97 6.98 6.98 6.98 6.98	ORP: (mV)	Turb: (NTU) 1,88 0,81 1,21 0,18 0,75 1,25 7,67 6,53
			parameter							
								-		
		,								
										· · · · · · · · · · · · · · · · · · ·
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp:	Sp. Cond.: (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTU	
ADEC (May 2010)	3 to 5	100 to 150	<0.0328 (±3% or ±0.2	\(\pm\)	±10%	±0.1	±10	or <10%	
EPA (Jan. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <5	5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

LOW-FLOW WATER SAMPLING LOG Shannon & Wilson, Inc. Weather: 37 F Location: 459 West Bluff Drive Job No: 103513 14W-19K Well No.: 10:50 Time Completed: Date: 10/21/19 Time Started: INITIAL GROUNDWATER LEVEL DATA 10:52 Date of Depth Measurement: 10/21/19Time of Depth Measurement: Measuring Point (MP): Top of PVC Casing / Top of Steel Protective Casing / Other: Well Screen Interval: Diameter of Casing: 14:02 Product Thickness, if noted: Total Depth of Well Below MP: 5.79 Depth-to-Water (DTW) Below MP: (Total Depth of Well Below MP - DTW Below MP) 8.23 Water Column in Well: 0.16 Gallons per foot: 1.32 (Water Column in Well x Gallons per foot) Gallons in Well: **PURGING DATA** Time Completed: 11/56 Time Started: 1:2 Date Purged: 10/21/19 (Gallons in Well x 3) Three Well Volumes: Depth of Pump (generally 2 ft from bottom): ~ 7.5 Cr 2.2 Gallons Purged: 0,30 Pump Rate: 0.4 Max. Drawdown (generally 0.3 ft): (If yes, use Well Purged Dry Log) Yes \square No 🗷 Well Purged Dry: ORP: Sp. Cond.: pH: Turb: DTW Drawdown Temp: DO: Pump Rate Time: Gallons: (NTU) (mg/L) (S.U.) (mV)(uS/cm) (L/min): (ft BMP): (ft): (°C) 10.08 808 6.49 76,08 11:24 0.30 6.09 45.88 10.13 795 609 0.30 0. : 27 0.5 28,21 6.09 0.30 794 .50 :30 10.11 794 10.09 797 15.00 0.30 10.64 :36 6,09 799 12, 78 10.05 0.30 6.09 SAMPLING DATA hydro carbon Cloudy to Color: 103513- MW-19R Time / Date: 19/21/19 11:50 Sample Designation: Time / Date: QC Sample Designation: Time / Date: OA Sample Designation: Min! whole Evacuation Method: Submersible Pump / Other: Mlal Whale Sampling Method (Submersible Pump) / Other: YSZ 556 Water Quality Instruments Used/Manufacturer/Model Number Calibration Info (Time, Ranges, etc)

~ 20h From west Remarks: trom 2951 gare JKH. Sampling Personnel:

WELL CASING VOLUMES (GAL/FT): 1" = 0.04 2" = 0.16 4" = 0.65ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

MIN 紁

Continued from previous page

Job No: 103513 Location: 459 West Bluff Drive Site: CPD Alaska LLC

Date: 10/21/19

	ime: 42 :45 48	Gallons: 1,8 2,0 2,7	Pump Rate (L/min): O, 4 O, 4	DTW (ft BMP): 6,09 6,09 6,09 Sample	Drawdown (ft): 0,30 0,30 11:50	Temp: (°C) [0.04] [0.04]	Sp. Cond (uS/cm) SO \ 80	DO (mg/L)	pH: (S.U.) 6,55 6,56	ORP: (mV)	Turb: (NTU) 9, 19 9, 91 9, 34
						Western Value of the Control of the					V-1000-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
		•									

					****	***************************************					
								-			
								-			

W (1997) - 1994 - 1994				400000000000000000000000000000000000000			-				
		Mary Committee C									
							,				
								-			

		Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp:	Sp. Cond.: (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)		rb: FU)
ADE (May 2		3 to 5	100 to 150	<0.0328	$\pm 3\% \text{ or } \pm 0.2$	±3%	±10% (±0.1	±10	0 C 2	0% 10NTU
EP. (Jan. 2		5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or	<5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

ATTACHMENT 2

RESULTS OF ANALYTICAL TESTING BY SGS NORTH AMERICA INC. OF ANCHORAGE, ALASKA AND

ADEC LABORATORY DATA REVIEW CHECKLIST

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks Street Suite 3 Anchorage, AK 99518

(907)433-3246

Report Number: 1196357

Client Project: 103513 - 459 W. Bluff Dr.

Dear Trevor Crosby,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jillian at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Jillian Janssen

2019.11.01

16:23:56 -08'00'

Jillian Janssen Project Manager

Jillian.Janssen@sgs.com

Date

Print Date: 11/01/2019 8:57:29AM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson, Inc.** SGS Project: **1196357**

Project Name/Site: 103513 - 459 W. Bluff Dr.
Project Contact: Trevor Crosby

Refer to sample receipt form for information on sample condition.

103513-MW-6B (1196357001) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

103513-MW-14 (1196357003) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

103513-MW-19R (1196357004) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

103513-MW-23 (1196357005) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

LCSD for HBN 1801540 [VXX/3514 (1540529) LCSD

8260C - LCS/LCSD RPD for chloroethane does not meet QC criteria. This analyte was not detected above the LOQ in the associated samples.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/01/2019 8:57:30AM

Report of Manual Integrations							
Client Sample ID	Analytical Batch	<u>Analyte</u>	<u>Reason</u>				
103513-MW-6B	VMS19606	4-Isopropyltoluene	RP				
103513-MW-6B	VMS19606	n-Butylbenzene	RP				
103513-MW-13A	VMS19606	4-Isopropyltoluene	SP				
103513-MW-19R	VMS19606	n-Butylbenzene	SP				
103513-MW-23	VMS19606	4-Isopropyltoluene	SP				
	103513-MW-6B 103513-MW-6B 103513-MW-13A 103513-MW-19R	Client Sample ID Analytical Batch 103513-MW-6B VMS19606 103513-MW-6B VMS19606 103513-MW-13A VMS19606 103513-MW-19R VMS19606	Client Sample ID Analytical Batch Malyte Analyte Analyte MS19606 A-Isopropyltoluene NS19606 N-Butylbenzene MS19606 A-Isopropyltoluene NMS19606 A-Isopropyltoluene NMS19606 A-Isopropyltoluene NMS19606 N-Butylbenzene				

Manual Integration Reason Code Descriptions

Code	Description
0	Original Chromatogram
M	Modified Chromatogram
SS	Skimmed surrogate
BLG	Closed baseline gap
RP	Reassign peak name
PIR	Pattern integration required
IT	Included tail
SP	Split peak
RSP	Removed split peak
FPS	Forced peak start/stop
BLC	Baseline correction
PNF	Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 11/01/2019 8:57:31AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification

J The quantitation is an estimation.

LCS(D) Laboratory Control Spike (Duplicate)

LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 11/01/2019 8:57:32AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

AK102

AK103

AK101

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
103513-MW-6B	1196357001	10/21/2019	10/22/2019	Water (Surface, Eff., Ground)
103513-MW-13A	1196357002	10/21/2019	10/22/2019	Water (Surface, Eff., Ground)
103513-MW-14	1196357003	10/21/2019	10/22/2019	Water (Surface, Eff., Ground)
103513-MW-19R	1196357004	10/21/2019	10/22/2019	Water (Surface, Eff., Ground)
103513-MW-23	1196357005	10/21/2019	10/22/2019	Water (Surface, Eff., Ground)
103513-TB	1196357006	10/21/2019	10/22/2019	Water (Surface, Eff., Ground)

Method Description

8270D SIM LV (PAH) 8270 PAH SIM GC/MS Liq/Liq ext. LV

DRO/RRO Low Volume Water DRO/RRO Low Volume Water Gasoline Range Organics (W)

SW8260C Volatile Organic Compounds (W) FULL

Print Date: 11/01/2019 8:57:33AM

Detectable Results Summary

Client Sample ID: 103513-MW-6B Lab Sample ID: 1196357001 Semivolatile Organic Fuels

Volatile Fuels Volatile GC/MS

<u>Parameter</u>	Result	<u>Units</u>
Diesel Range Organics	8.27	mg/L
Residual Range Organics	0.769	mg/L
Gasoline Range Organics	0.565	mg/L
1,2,4-Trimethylbenzene	219	ug/L
1,3,5-Trimethylbenzene	77.2	ug/L
4-Isopropyltoluene	18.4	ug/L
Benzene	11.3	ug/L
Ethylbenzene	85.2	ug/L
Isopropylbenzene (Cumene)	38.9	ug/L
Naphthalene	230	ug/L
n-Butylbenzene	9.85	ug/L
n-Propylbenzene	42.6	ug/L
o-Xylene	2.37	ug/L
P & M -Xylene	85.3	ug/L
sec-Butylbenzene	16.4	ug/L
tert-Butylbenzene	1.12	ug/L
Toluene	0.640J	ug/L
Xylenes (total)	87.7	ug/L

Print Date: 11/01/2019 8:57:34AM

Detectable	Results	Summary
-------------------	---------	---------

Client Sample ID: 103513-MW-13A			
Lab Sample ID: 1196357002	Parameter	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	7.42	ug/L
	2-Methylnaphthalene	9.51	ug/L
	Acenaphthene	0.224	ug/L
	Fluorene	0.409	ug/L
	Naphthalene	39.3	ug/L
	Phenanthrene	0.102	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	3.24	mg/L
	Residual Range Organics	1.11	mg/L
Volatile Fuels	Gasoline Range Organics	1.93	mg/L
Volatile GC/MS	1,1,2,2-Tetrachloroethane	0.580	ug/L
	1,2,4-Trimethylbenzene	66.9	ug/L
	1,3,5-Trimethylbenzene	23.2	ug/L
	4-Isopropyltoluene	1.03	ug/L
	Benzene	46.8	ug/L
	Chloroethane	0.360J	ug/L
	Ethylbenzene	326	ug/L
	Isopropylbenzene (Cumene)	8.89	ug/L
	Naphthalene	104	ug/L
	n-Propylbenzene	9.93	ug/L
	o-Xylene	3.90	ug/L
	P & M -Xylene	363	ug/L
	sec-Butylbenzene	0.700J	ug/L
	tert-Butylbenzene	0.390J	ug/L
	Toluene	8.03	ug/L
	Xylenes (total)	367	ug/L
Client Sample ID: 103513-MW-14			
Lab Sample ID: 1196357003	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.951	mg/L
-	Residual Range Organics	0.243J	mg/L
Volatile Fuels	Gasoline Range Organics	0.620	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	180	ug/L
	1,3,5-Trimethylbenzene	13.0	ug/L
	4-Isopropyltoluene	7.90	ug/L
	Benzene	1.39	ug/L
	Ethylbenzene	27.5	ug/L
	Isopropylbenzene (Cumene)	15.5	ug/L
	Naphthalene	81.4	ug/L
	n-Butylbenzene	5.27	ug/L
	n-Propylbenzene	23.5	ug/L
	P & M -Xylene	44.5	ug/L
	sec-Butylbenzene	6.12	ug/L
	tert-Butylbenzene	0.860J	ug/L
	Xylenes (total)	44.5	ug/L

Print Date: 11/01/2019 8:57:34AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: 103513-MW-19R Lab Sample ID: 1196357004 Semivolatile Organic Fuels

Volatile Fuels Volatile GC/MS

<u>Parameter</u>	Result	<u>Units</u>
Diesel Range Organics	1.34	mg/L
Residual Range Organics	0.371J	mg/L
Gasoline Range Organics	4.09	mg/L
1,2,4-Trimethylbenzene	1200	ug/L
1,3,5-Trimethylbenzene	393	ug/L
4-Isopropyltoluene	27.0	ug/L
Benzene	1.81	ug/L
Ethylbenzene	13.4	ug/L
Isopropylbenzene (Cumene)	80.3	ug/L
Naphthalene	84.0	ug/L
n-Butylbenzene	21.2	ug/L
n-Propylbenzene	243	ug/L
o-Xylene	2.38	ug/L
P & M -Xylene	34.6	ug/L
sec-Butylbenzene	16.0	ug/L
tert-Butylbenzene	2.52	ug/L
Toluene	2.67	ug/L
Xylenes (total)	36.9	ug/L

Print Date: 11/01/2019 8:57:34AM

Detectable Results Summary

Client Sample ID: 103513-MW-23			
Lab Sample ID: 1196357005	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	6.28	ug/L
	2-Methylnaphthalene	7.82	ug/L
	Acenaphthene	0.189	ug/L
	Fluorene	0.361	ug/L
	Naphthalene	28.3	ug/L
	Phenanthrene	0.0754	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.44	mg/L
	Residual Range Organics	0.854	mg/L
Volatile Fuels	Gasoline Range Organics	2.22	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	67.4	ug/L
	1,3,5-Trimethylbenzene	23.4	ug/L
	4-Isopropyltoluene	0.960J	ug/L
	Benzene	46.3	ug/L
	Chloroethane	0.340J	ug/L
	Chloromethane	0.310J	ug/L
	Ethylbenzene	333	ug/L
	Isopropylbenzene (Cumene)	8.63	ug/L
	Naphthalene	98.8	ug/L
	n-Propylbenzene	10.0	ug/L
	o-Xylene	3.93	ug/L
	P & M -Xylene	352	ug/L
	sec-Butylbenzene	0.700J	ug/L
	tert-Butylbenzene	0.400J	ug/L
	Toluene	7.93	ug/L
	Xylenes (total)	356	ug/L

Print Date: 11/01/2019 8:57:34AM

Results of 103513-MW-6B

Client Sample ID: 103513-MW-6B

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357001 Lab Project ID: 1196357 Collection Date: 10/21/19 14:48 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

_						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	8.27	0.577	0.173	mg/L	1		10/31/19 00:49
Surrogates							
5a Androstane (surr)	73.9	50-150		%	1		10/31/19 00:49

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/31/19 00:49 Container ID: 1196357001-A Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.769	0.481	0.144	mg/L	1		10/31/19 00:49
Surrogates							
n-Triacontane-d62 (surr)	78.2	50-150		%	1		10/31/19 00:49

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK103

Analyst: CMS

Analytical Date/Time: 10/31/19 00:49 Container ID: 1196357001-A Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:36AM J flagging is activated

Client Sample ID: 103513-MW-6B Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357001 Lab Project ID: 1196357 Collection Date: 10/21/19 14:48 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.565	0.100	0.0310	mg/L	1		10/25/19 14:23
Surrogates							
4-Bromofluorobenzene (surr)	306 *	50-150		%	1		10/25/19 14:23

Batch Information

Analytical Batch: VFC15013 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/19 14:23 Container ID: 1196357001-E Prep Batch: VXX35154
Prep Method: SW5030B
Prep Date/Time: 10/25/19 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-6B

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357001 Lab Project ID: 1196357 Collection Date: 10/21/19 14:48 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 14:54
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 14:54
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/24/19 14:54
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,2,4-Trimethylbenzene	219	10.0	3.10	ug/L	10	10/28/19 19:16
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/24/19 14:54
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/24/19 14:54
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 14:54
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,3,5-Trimethylbenzene	77.2	1.00	0.310	ug/L	1	10/24/19 14:54
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/24/19 14:54
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 14:54
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 14:54
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/24/19 14:54
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
4-Isopropyltoluene	18.4	1.00	0.310	ug/L	1	10/24/19 14:54
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 14:54
Benzene	11.3	0.400	0.120	ug/L	1	10/24/19 14:54
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 14:54
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
Bromomethane	2.50 U	5.00	1.50	ug/L	1	10/24/19 14:54
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/24/19 14:54
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 14:54
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 14:54

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-6B

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357001 Lab Project ID: 1196357 Collection Date: 10/21/19 14:48 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Chloromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		10/24/19 14:54
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 14:54
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Ethylbenzene	85.2	1.00	0.310	ug/L	1		10/24/19 14:54
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/24/19 14:54
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Isopropylbenzene (Cumene)	38.9	1.00	0.310	ug/L	1		10/24/19 14:54
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		10/24/19 14:54
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/24/19 14:54
Naphthalene	230	10.0	3.10	ug/L	10		10/28/19 19:16
n-Butylbenzene	9.85	1.00	0.310	ug/L	1		10/24/19 14:54
n-Propylbenzene	42.6	1.00	0.310	ug/L	1		10/24/19 14:54
o-Xylene	2.37	1.00	0.310	ug/L	1		10/24/19 14:54
P & M -Xylene	85.3	2.00	0.620	ug/L	1		10/24/19 14:54
sec-Butylbenzene	16.4	1.00	0.310	ug/L	1		10/24/19 14:54
Styrene	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
tert-Butylbenzene	1.12	1.00	0.310	ug/L	1		10/24/19 14:54
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Toluene	0.640 J	1.00	0.310	ug/L	1		10/24/19 14:54
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 14:54
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/24/19 14:54
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/24/19 14:54
Xylenes (total)	87.7	3.00	1.00	ug/L	1		10/24/19 14:54
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		10/24/19 14:54
4-Bromofluorobenzene (surr)	88.8	85-114		%	10		10/28/19 19:16
Toluene-d8 (surr)	105	89-112		%	1		10/24/19 14:54

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-6B

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357001 Lab Project ID: 1196357

Collection Date: 10/21/19 14:48 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/24/19 14:54

Container ID: 1196357001-C

Analytical Batch: VMS19612 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/28/19 19:16

Container ID: 1196357001-D

Prep Batch: VXX35148 Prep Method: SW5030B Prep Date/Time: 10/24/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX35161 Prep Method: SW5030B Prep Date/Time: 10/28/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-13A Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357002 Lab Project ID: 1196357

Collection Date: 10/21/19 17:17 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	7.42	0.0490	0.0147	ug/L	1		10/27/19 16:10
2-Methylnaphthalene	9.51	0.0490	0.0147	ug/L	1		10/27/19 16:10
Acenaphthene	0.224	0.0490	0.0147	ug/L	1		10/27/19 16:10
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		10/27/19 16:10
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		10/27/19 16:10
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Fluorene	0.409	0.0490	0.0147	ug/L	1		10/27/19 16:10
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Naphthalene	39.3	0.980	0.304	ug/L	10		10/29/19 00:25
Phenanthrene	0.102	0.0490	0.0147	ug/L	1		10/27/19 16:10
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		10/27/19 16:10
Surrogates							
2-Methylnaphthalene-d10 (surr)	62.1	47-106		%	1		10/27/19 16:10
Fluoranthene-d10 (surr)	44.7	24-116		%	1		10/27/19 16:10

Batch Information

Analytical Batch: XMS11839

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 10/29/19 00:25 Container ID: 1196357002-C

Analytical Batch: XMS11834

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 10/27/19 16:10 Container ID: 1196357002-C

Prep Batch: XXX42513 Prep Method: SW3520C Prep Date/Time: 10/23/19 08:26 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Prep Batch: XXX42513 Prep Method: SW3520C Prep Date/Time: 10/23/19 08:26 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-13A

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357002 Lab Project ID: 1196357 Collection Date: 10/21/19 17:17 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	3.24	0.600	0.180	mg/L	1		10/31/19 00:59
Surrogates							
5a Androstane (surr)	75.3	50-150		%	1		10/31/19 00:59

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/31/19 00:59 Container ID: 1196357002-A Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.11	0.500	0.150	mg/L	1		10/31/19 00:59
Surrogates							
n-Triacontane-d62 (surr)	77.3	50-150		%	1		10/31/19 00:59

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK103

Analyst: CMS

Analytical Date/Time: 10/31/19 00:59 Container ID: 1196357002-A Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 103513-MW-13A Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357002 Lab Project ID: 1196357 Collection Date: 10/21/19 17:17 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

	5 "6 "	1.00/0/	5.		5-	<u>Allowable</u>	5
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.93	0.100	0.0310	mg/L	1		10/25/19 14:40
Surrogates							
4-Bromofluorobenzene (surr)	145	50-150		%	1		10/25/19 14:40

Batch Information

Analytical Batch: VFC15013 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/19 14:40 Container ID: 1196357002-G

Prep Batch: VXX35154
Prep Method: SW5030B
Prep Date/Time: 10/25/19 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-13A Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357002 Lab Project ID: 1196357 Collection Date: 10/21/19 17:17 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:10
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,1,2,2-Tetrachloroethane	0.580	0.500	0.150	ug/L	1		10/24/19 15:10
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		10/24/19 15:10
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,2,4-Trimethylbenzene	66.9	1.00	0.310	ug/L	1		10/24/19 15:10
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:10
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		10/24/19 15:10
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:10
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,3,5-Trimethylbenzene	23.2	1.00	0.310	ug/L	1		10/24/19 15:10
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:10
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:10
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:10
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:10
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
4-Isopropyltoluene	1.03	1.00	0.310	ug/L	1		10/24/19 15:10
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:10
Benzene	46.8	0.400	0.120	ug/L	1		10/24/19 15:10
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:10
Bromoform	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
Bromomethane	2.50 U	5.00	1.50	ug/L	1		10/24/19 15:10
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:10
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:10
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:10
Chloroethane	0.360 J	1.00	0.310	ug/L	1		10/24/19 15:10

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-13A Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357002 Lab Project ID: 1196357 Collection Date: 10/21/19 17:17 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-			Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:10
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:10
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Ethylbenzene	326	10.0	3.10	ug/L	10	10/28/19 19:31
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:10
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Isopropylbenzene (Cumene)	8.89	1.00	0.310	ug/L	1	10/24/19 15:10
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	10/24/19 15:10
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:10
Naphthalene	104	1.00	0.310	ug/L	1	10/24/19 15:10
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
n-Propylbenzene	9.93	1.00	0.310	ug/L	1	10/24/19 15:10
o-Xylene	3.90	1.00	0.310	ug/L	1	10/24/19 15:10
P & M -Xylene	363	2.00	0.620	ug/L	1	10/24/19 15:10
sec-Butylbenzene	0.700 J	1.00	0.310	ug/L	1	10/24/19 15:10
Styrene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
tert-Butylbenzene	0.390 J	1.00	0.310	ug/L	1	10/24/19 15:10
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Toluene	8.03	1.00	0.310	ug/L	1	10/24/19 15:10
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:10
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:10
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	10/24/19 15:10
Xylenes (total)	367	3.00	1.00	ug/L	1	10/24/19 15:10
Surrogates						
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1	10/24/19 15:10
4-Bromofluorobenzene (surr)	88.3	85-114		%	1	10/24/19 15:10
Toluene-d8 (surr)	102	89-112		%	1	10/24/19 15:10

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-13A

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357002 Lab Project ID: 1196357 Collection Date: 10/21/19 17:17 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/24/19 15:10

Container ID: 1196357002-E

Analytical Batch: VMS19612 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/28/19 19:31

Container ID: 1196357002-F

Prep Batch: VXX35148
Prep Method: SW5030B
Prep Date/Time: 10/24/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX35161
Prep Method: SW5030B
Prep Date/Time: 10/28/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-14

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357003 Lab Project ID: 1196357 Collection Date: 10/21/19 13:27 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.951	0.577	0.173	mg/L	1	Limits	10/31/19 01:09
Surrogates 5a Androstane (surr)	80.5	50-150		%	1		10/31/19 01:09

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/31/19 01:09 Container ID: 1196357003-A Prep Batch: XXX42531
Prep Method: SW3520C
Prep Date/Time: 10/29/19 08:23
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.243 J	0.481	0.144	mg/L	1		10/31/19 01:09
Surrogates							
n-Triacontane-d62 (surr)	84.9	50-150		%	1		10/31/19 01:09

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK103

Analyst: CMS

Analytical Date/Time: 10/31/19 01:09 Container ID: 1196357003-A

Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: 103513-MW-14

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357003 Lab Project ID: 1196357

Collection Date: 10/21/19 13:27 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.620	0.100	0.0310	mg/L	1		10/25/19 14:58
Surrogates							
4-Bromofluorobenzene (surr)	193 *	50-150		%	1		10/25/19 14:58

Batch Information

Analytical Batch: VFC15013 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/19 14:58 Container ID: 1196357003-E

Prep Batch: VXX35154 Prep Method: SW5030B Prep Date/Time: 10/25/19 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-14

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357003 Lab Project ID: 1196357 Collection Date: 10/21/19 13:27 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/24/19 15:25
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,2,4-Trimethylbenzene	180	1.00	0.310	ug/L	1	10/24/19 15:25
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/24/19 15:25
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,3,5-Trimethylbenzene	13.0	1.00	0.310	ug/L	1	10/24/19 15:25
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
4-Isopropyltoluene	7.90	1.00	0.310	ug/L	1	10/24/19 15:25
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
Benzene	1.39	0.400	0.120	ug/L	1	10/24/19 15:25
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Bromomethane	2.50 U	5.00	1.50	ug/L	1	10/24/19 15:25
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-14

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357003 Lab Project ID: 1196357 Collection Date: 10/21/19 13:27 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:25
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Ethylbenzene	27.5	1.00	0.310	ug/L	1	10/24/19 15:25
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Isopropylbenzene (Cumene)	15.5	1.00	0.310	ug/L	1	10/24/19 15:25
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	10/24/19 15:25
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
Naphthalene	81.4	1.00	0.310	ug/L	1	10/24/19 15:25
n-Butylbenzene	5.27	1.00	0.310	ug/L	1	10/24/19 15:25
n-Propylbenzene	23.5	1.00	0.310	ug/L	1	10/24/19 15:25
o-Xylene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
P & M -Xylene	44.5	2.00	0.620	ug/L	1	10/24/19 15:25
sec-Butylbenzene	6.12	1.00	0.310	ug/L	1	10/24/19 15:25
Styrene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
tert-Butylbenzene	0.860 J	1.00	0.310	ug/L	1	10/24/19 15:25
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Toluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:25
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:25
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	10/24/19 15:25
Xylenes (total)	44.5	3.00	1.00	ug/L	1	10/24/19 15:25
urrogates						
1,2-Dichloroethane-D4 (surr)						
1,2-Dichiologularie-D4 (Sull)	106	81-118		%	1	10/24/19 15:25
4-Bromofluorobenzene (surr)	106 87.9	81-118 85-114		% %	1 1	10/24/19 15:25 10/24/19 15:25

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-14

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357003 Lab Project ID: 1196357 Collection Date: 10/21/19 13:27 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/24/19 15:25 Container ID: 1196357003-C Prep Batch: VXX35148
Prep Method: SW5030B
Prep Date/Time: 10/24/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-19R Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357004 Lab Project ID: 1196357 Collection Date: 10/21/19 11:50 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	1.34	0.588	0.176	mg/L	1		10/31/19 01:19
Surrogates							
5a Androstane (surr)	66.3	50-150		%	1		10/31/19 01:19

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/31/19 01:19 Container ID: 1196357004-A

Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.371 J	0.490	0.147	mg/L	1		10/31/19 01:19
Surrogates							
n-Triacontane-d62 (surr)	69.9	50-150		%	1		10/31/19 01:19

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK103

Analyst: CMS

Analytical Date/Time: 10/31/19 01:19 Container ID: 1196357004-A

Prep Batch: XXX42531
Prep Method: SW3520C
Prep Date/Time: 10/29/19 08:23
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Client Sample ID: 103513-MW-19R Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357004 Lab Project ID: 1196357 Collection Date: 10/21/19 11:50 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 4.09	LOQ/CL 0.500	<u>DL</u> 0.155	<u>Units</u> mg/L	<u>DF</u> 5	Allowable Limits	Date Analyzed 10/29/19 04:20
Surrogates							
4-Bromofluorobenzene (surr)	151 *	50-150		%	5		10/29/19 04:20

Batch Information

Analytical Batch: VFC15015 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/29/19 04:20 Container ID: 1196357004-D

Prep Batch: VXX35160
Prep Method: SW5030B
Prep Date/Time: 10/28/19 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-19R Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357004 Lab Project ID: 1196357 Collection Date: 10/21/19 11:50 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:40
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:40
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/24/19 15:40
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,2,4-Trimethylbenzene	1200	10.0	3.10	ug/L	10	10/28/19 19:46
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:40
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/24/19 15:40
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:40
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,3,5-Trimethylbenzene	393	10.0	3.10	ug/L	10	10/28/19 19:46
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:40
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:40
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:40
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:40
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
4-Isopropyltoluene	27.0	1.00	0.310	ug/L	1	10/24/19 15:40
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:40
Benzene	1.81	0.400	0.120	ug/L	1	10/24/19 15:40
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:40
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
Bromomethane	2.50 U	5.00	1.50	ug/L	1	10/24/19 15:40
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/24/19 15:40
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 15:40
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 15:40

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-19R Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357004 Lab Project ID: 1196357 Collection Date: 10/21/19 11:50 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Chloromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:40
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:40
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Ethylbenzene	13.4	1.00	0.310	ug/L	1		10/24/19 15:40
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:40
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Isopropylbenzene (Cumene)	80.3	1.00	0.310	ug/L	1		10/24/19 15:40
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		10/24/19 15:40
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:40
Naphthalene	84.0	1.00	0.310	ug/L	1		10/24/19 15:40
n-Butylbenzene	21.2	1.00	0.310	ug/L	1		10/24/19 15:40
n-Propylbenzene	243	10.0	3.10	ug/L	10		10/28/19 19:46
o-Xylene	2.38	1.00	0.310	ug/L	1		10/24/19 15:40
P & M -Xylene	34.6	2.00	0.620	ug/L	1		10/24/19 15:40
sec-Butylbenzene	16.0	1.00	0.310	ug/L	1		10/24/19 15:40
Styrene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
tert-Butylbenzene	2.52	1.00	0.310	ug/L	1		10/24/19 15:40
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Toluene	2.67	1.00	0.310	ug/L	1		10/24/19 15:40
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:40
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:40
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/24/19 15:40
Xylenes (total)	36.9	3.00	1.00	ug/L	1		10/24/19 15:40
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		10/24/19 15:40
4-Bromofluorobenzene (surr)	89.2	85-114		%	10		10/28/19 19:46
Toluene-d8 (surr)	99.2	89-112		%	1		10/24/19 15:40

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-19R Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357004 Lab Project ID: 1196357 Collection Date: 10/21/19 11:50 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/24/19 15:40 Container ID: 1196357004-C

Analytical Batch: VMS19612 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/28/19 19:46 Container ID: 1196357004-D Prep Batch: VXX35148
Prep Method: SW5030B
Prep Date/Time: 10/24/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX35161
Prep Method: SW5030B
Prep Date/Time: 10/28/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-23

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357005 Lab Project ID: 1196357

Collection Date: 10/21/19 17:47 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	6.28	0.0490	0.0147	ug/L	1	10/27/19 16:31
2-Methylnaphthalene	7.82	0.0490	0.0147	ug/L	1	10/27/19 16:31
Acenaphthene	0.189	0.0490	0.0147	ug/L	1	10/27/19 16:31
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1	10/27/19 16:31
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1	10/27/19 16:31
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Fluorene	0.361	0.0490	0.0147	ug/L	1	10/27/19 16:31
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Naphthalene	28.3	0.980	0.304	ug/L	10	10/29/19 00:46
Phenanthrene	0.0754	0.0490	0.0147	ug/L	1	10/27/19 16:31
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1	10/27/19 16:31
Surrogates						
2-Methylnaphthalene-d10 (surr)	61.7	47-106		%	1	10/27/19 16:31
Fluoranthene-d10 (surr)	46.3	24-116		%	1	10/27/19 16:31

Batch Information

Analytical Batch: XMS11839

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 10/29/19 00:46

Container ID: 1196357005-C

Analytical Batch: XMS11834

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 10/27/19 16:31 Container ID: 1196357005-C

Prep Batch: XXX42513 Prep Method: SW3520C Prep Date/Time: 10/23/19 08:26 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Prep Batch: XXX42513 Prep Method: SW3520C Prep Date/Time: 10/23/19 08:26 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-23

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357005 Lab Project ID: 1196357

Collection Date: 10/21/19 17:47 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	2.44	0.588	0.176	mg/L	1		10/31/19 01:29
Surrogates							
5a Androstane (surr)	78.7	50-150		%	1		10/31/19 01:29

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK102 Analyst: CMS

Analytical Date/Time: 10/31/19 01:29

Container ID: 1196357005-A

Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.854	0.490	0.147	mg/L	1		10/31/19 01:29
Surrogates							
n-Triacontane-d62 (surr)	81.6	50-150		%	1		10/31/19 01:29

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK103

Analyst: CMS

Analytical Date/Time: 10/31/19 01:29 Container ID: 1196357005-A

Prep Batch: XXX42531 Prep Method: SW3520C Prep Date/Time: 10/29/19 08:23 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 103513-MW-23

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357005 Lab Project ID: 1196357 Collection Date: 10/21/19 17:47 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	2.22	0.100	0.0310	mg/L	1	Limits	10/25/19 15:33
Surrogates 4-Bromofluorobenzene (surr)	157 *	50-150		%	1		10/25/19 15:33

Batch Information

Analytical Batch: VFC15013 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/19 15:33 Container ID: 1196357005-G Prep Batch: VXX35154
Prep Method: SW5030B
Prep Date/Time: 10/25/19 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-MW-23

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357005 Lab Project ID: 1196357 Collection Date: 10/21/19 17:47 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:55
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:55
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		10/24/19 15:55
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,2,4-Trimethylbenzene	67.4	1.00	0.310	ug/L	1		10/24/19 15:55
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:55
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		10/24/19 15:55
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:55
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,3,5-Trimethylbenzene	23.4	1.00	0.310	ug/L	1		10/24/19 15:55
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:55
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:55
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:55
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:55
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
4-Isopropyltoluene	0.960 J	1.00	0.310	ug/L	1		10/24/19 15:55
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:55
Benzene	46.3	0.400	0.120	ug/L	1		10/24/19 15:55
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:55
Bromoform	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
Bromomethane	2.50 U	5.00	1.50	ug/L	1		10/24/19 15:55
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		10/24/19 15:55
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		10/24/19 15:55
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/24/19 15:55
Chloroethane	0.340 J	1.00	0.310	ug/L	1		10/24/19 15:55

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-23

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357005 Lab Project ID: 1196357 Collection Date: 10/21/19 17:47 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits Date Analy
<u>Chloroform</u>	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
Chloromethane	0.310 J	1.00	0.310	ug/L	1	10/24/19 1
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L ug/L	1	10/24/19 1
cis-1,3-Dichloropropene	0.250 U	0.500	0.310	ug/L ug/L	1	10/24/19 1
Dibromochloromethane	0.250 U	0.500	0.150	ug/L ug/L	1	10/24/19 1
Dibromomethane	0.500 U	1.00	0.130	Ū	1	10/24/19 1
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
				ug/L		
Ethylbenzene	333	10.0	3.10	ug/L	10	10/28/19 2
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/24/19 1
lexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
sopropylbenzene (Cumene)	8.63	1.00	0.310	ug/L	1	10/24/19 1
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	10/24/19 1
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/24/19 1
laphthalene	98.8	1.00	0.310	ug/L	1	10/24/19 1
Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
n-Propylbenzene	10.0	1.00	0.310	ug/L	1	10/24/19 1
p-Xylene	3.93	1.00	0.310	ug/L	1	10/24/19 1
P & M -Xylene	352	2.00	0.620	ug/L	1	10/24/19 1
sec-Butylbenzene	0.700 J	1.00	0.310	ug/L	1	10/24/19 1
Styrene	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
ert-Butylbenzene	0.400 J	1.00	0.310	ug/L	1	10/24/19 1
Гetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
Гoluene	7.93	1.00	0.310	ug/L	1	10/24/19 1
rans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
rans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
Frichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 1
/inyl acetate	5.00 U	10.0	3.10	ug/L	1	10/24/19 1
/inyl chloride	0.0750 U	0.150	0.0500	ug/L	1	10/24/19 1
Kylenes (total)	356	3.00	1.00	ug/L	1	10/24/19 1
urrogates						
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1	10/24/19 1
1-Bromofluorobenzene (surr)	87.1	85-114		%	1	10/24/19 1
Foluene-d8 (surr)	103	89-112		%	1	10/24/19 1

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-MW-23

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357005 Lab Project ID: 1196357 Collection Date: 10/21/19 17:47 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/24/19 15:55

Container ID: 1196357005-E

Analytical Batch: VMS19612 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/28/19 20:02

Container ID: 1196357005-F

Prep Batch: VXX35148
Prep Method: SW5030B
Prep Date/Time: 10/24/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX35161
Prep Method: SW5030B
Prep Date/Time: 10/28/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-TB

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357006 Lab Project ID: 1196357 Collection Date: 10/21/19 10:00 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		10/25/19 13:30
Surrogates							
4-Bromofluorobenzene (surr)	73.8	50-150		%	1		10/25/19 13:30

Batch Information

Analytical Batch: VFC15013 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/19 13:30 Container ID: 1196357006-C

Prep Batch: VXX35154
Prep Method: SW5030B
Prep Date/Time: 10/25/19 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 103513-TB

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357006 Lab Project ID: 1196357 Collection Date: 10/21/19 10:00 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/24/19 12:37
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/24/19 12:37
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
Benzene	0.200 U	0.400	0.120	ug/L	1	10/24/19 12:37
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Bromomethane	2.50 U	5.00	1.50	ug/L	1	10/24/19 12:37
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-TB

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357006 Lab Project ID: 1196357 Collection Date: 10/21/19 10:00 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/24/19 12:37
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	10/24/19 12:37
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
Naphthalene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
o-Xylene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	10/24/19 12:37
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Styrene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Toluene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/24/19 12:37
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/24/19 12:37
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	10/24/19 12:37
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	10/24/19 12:37
Surrogates						
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1	10/24/19 12:37
4-Bromofluorobenzene (surr)	95	85-114		%	1	10/24/19 12:37
Toluene-d8 (surr)	104	89-112		%	1	10/24/19 12:37

Print Date: 11/01/2019 8:57:36AM

Client Sample ID: 103513-TB

Client Project ID: 103513 - 459 W. Bluff Dr.

Lab Sample ID: 1196357006 Lab Project ID: 1196357 Collection Date: 10/21/19 10:00 Received Date: 10/22/19 08:43 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/24/19 12:37 Container ID: 1196357006-A Prep Batch: VXX35148
Prep Method: SW5030B
Prep Date/Time: 10/24/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1801540 [VXX/35148]

Blank Lab ID: 1540527

QC for Samples:

 $1196357001,\,1196357002,\,1196357003,\,1196357004,\,1196357005,\,1196357006$

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 11/01/2019 8:57:39AM

Method Blank

Blank ID: MB for HBN 1801540 [VXX/35148]

Blank Lab ID: 1540527

QC for Samples:

 $1196357001,\,1196357002,\,1196357003,\,1196357004,\,1196357005,\,1196357006$

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	97	85-114		%
Toluene-d8 (surr)	103	89-112		%
• •				

Print Date: 11/01/2019 8:57:39AM

Method Blank

Blank ID: MB for HBN 1801540 [VXX/35148]

Blank Lab ID: 1540527

QC for Samples:

 $1196357001,\,1196357002,\,1196357003,\,1196357004,\,1196357005,\,1196357006$

Results by SW8260C

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C Instrument: Agilent 7890-75MS

Analyst: CMC

Analytical Date/Time: 10/24/2019 11:05:00AM

Prep Batch: VXX35148 Prep Method: SW5030B

Prep Date/Time: 10/24/2019 6:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/01/2019 8:57:39AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1196357 [VXX35148]

Blank Spike Lab ID: 1540528 Date Analyzed: 10/24/2019 11:20 Spike Duplicate ID: LCSD for HBN 1196357

[VXX35148]

Spike Duplicate Lab ID: 1540529 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1196357001, 1196357002, 1196357003, 1196357004, 1196357005, 1196357006

Results by SW8260C

Blank Spike (ug/L) Spike Duplicate (ug/L)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	33.4	111	30	33.4	111	(78-124)	0.05	(< 20)
1,1,1-Trichloroethane	30	31.6	105	30	31.5	105	(74-131)	0.11	(< 20)
1,1,2,2-Tetrachloroethane	30	28.1	94	30	28.5	95	(71-121)	1.50	(< 20)
1,1,2-Trichloroethane	30	31.3	104	30	31.3	104	(80-119)	0.26	(< 20)
1,1-Dichloroethane	30	30.0	100	30	29.6	99	(77-125)	1.20	(< 20)
1,1-Dichloroethene	30	29.9	100	30	30.1	100	(71-131)	0.61	(< 20)
1,1-Dichloropropene	30	30.5	102	30	30.3	101	(79-125)	0.81	(< 20)
1,2,3-Trichlorobenzene	30	30.5	102	30	31.4	105	(69-129)	3.10	(< 20)
1,2,3-Trichloropropane	30	29.3	98	30	29.2	98	(73-122)	0.28	(< 20)
1,2,4-Trichlorobenzene	30	29.8	99	30	30.2	101	(69-130)	1.40	(< 20)
1,2,4-Trimethylbenzene	30	27.4	91	30	27.4	91	(79-124)	0.04	(< 20)
1,2-Dibromo-3-chloropropane	30	29.0	97	30	29.2	98	(62-128)	0.97	(< 20)
1,2-Dibromoethane	30	30.6	102	30	30.7	102	(77-121)	0.51	(< 20)
1,2-Dichlorobenzene	30	30.2	101	30	30.5	102	(80-119)	0.87	(< 20)
1,2-Dichloroethane	30	30.3	101	30	30.2	101	(73-128)	0.54	(< 20)
1,2-Dichloropropane	30	29.8	99	30	29.6	99	(78-122)	0.81	(< 20)
1,3,5-Trimethylbenzene	30	27.4	91	30	27.1	90	(75-124)	1.00	(< 20)
1,3-Dichlorobenzene	30	30.9	103	30	30.8	103	(80-119)	0.46	(< 20)
1,3-Dichloropropane	30	31.4	105	30	31.4	105	(80-119)	0.12	(< 20)
1,4-Dichlorobenzene	30	30.7	102	30	30.9	103	(79-118)	0.78	(< 20)
2,2-Dichloropropane	30	29.1	97	30	29.1	97	(60-139)	0.02	(< 20)
2-Butanone (MEK)	90	107	119	90	107	119	(56-143)	0.35	(< 20)
2-Chlorotoluene	30	26.9	90	30	26.4	88	(79-122)	1.80	(< 20)
2-Hexanone	90	105	116	90	105	117	(57-139)	0.59	(< 20)
4-Chlorotoluene	30	27.2	91	30	27.2	91	(78-122)	0.17	(< 20)
4-Isopropyltoluene	30	29.4	98	30	29.8	99	(77-127)	1.50	(< 20)
4-Methyl-2-pentanone (MIBK)	90	91.2	101	90	90.9	101	(67-130)	0.34	(< 20)
Benzene	30	28.9	96	30	29.7	99	(79-120)	3.00	(< 20)
Bromobenzene	30	29.4	98	30	29.3	98	(80-120)	0.24	(< 20)
Bromochloromethane	30	29.7	99	30	29.5	98	(78-123)	0.83	(< 20)
Bromodichloromethane	30	32.5	108	30	32.1	107	(79-125)	1.40	(< 20)
Bromoform	30	37.3	124	30	37.2	124	(66-130)	0.25	(< 20)
Bromomethane	30	28.4	95	30	29.3	98	(53-141)	3.10	(< 20)
Carbon disulfide	45	43.6	97	45	44.2	98	(64-133)	1.40	(< 20)

Print Date: 11/01/2019 8:57:40AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1196357 [VXX35148]

Blank Spike Lab ID: 1540528 Date Analyzed: 10/24/2019 11:20 Spike Duplicate ID: LCSD for HBN 1196357

[VXX35148]

Spike Duplicate Lab ID: 1540529 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1196357001, 1196357002, 1196357003, 1196357004, 1196357005, 1196357006

Results by SW8260C

	Blank Spike (ug/L)				Spike Duplicate (ug/L)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	33.8	113	30	33.6	112	(72-136)	0.36	(< 20)
Chlorobenzene	30	28.8	96	30	28.7	96	(82-118)	0.56	(< 20)
Chloroethane	30	32.4	108	30	40.0	133	(60-138)	21.00	* (< 20)
Chloroform	30	31.0	103	30	30.7	102	(79-124)	0.71	(< 20)
Chloromethane	30	29.6	99	30	29.6	99	(50-139)	0.20	(< 20)
cis-1,2-Dichloroethene	30	29.1	97	30	28.9	96	(78-123)	0.56	(< 20)
cis-1,3-Dichloropropene	30	29.7	99	30	29.2	98	(75-124)	1.60	(< 20)
Dibromochloromethane	30	33.0	110	30	33.3	111	(74-126)	0.79	(< 20)
Dibromomethane	30	30.0	100	30	29.9	100	(79-123)	0.33	(< 20)
Dichlorodifluoromethane	30	30.4	101	30	30.5	102	(32-152)	0.58	(< 20)
Ethylbenzene	30	29.8	100	30	29.7	99	(79-121)	0.63	(< 20)
Freon-113	45	45.8	102	45	45.6	101	(70-136)	0.32	(< 20)
Hexachlorobutadiene	30	27.8	93	30	29.3	98	(66-134)	5.30	(< 20)
Isopropylbenzene (Cumene)	30	31.1	104	30	30.9	103	(72-131)	0.39	(< 20)
Methylene chloride	30	29.0	97	30	29.1	97	(74-124)	0.39	(< 20)
Methyl-t-butyl ether	45	46.3	103	45	46.1	102	(71-124)	0.59	(< 20)
Naphthalene	30	29.1	97	30	30.1	100	(61-128)	3.60	(< 20)
n-Butylbenzene	30	26.8	89	30	27.1	91	(75-128)	1.40	(< 20)
n-Propylbenzene	30	27.6	92	30	27.4	92	(76-126)	0.66	(< 20)
o-Xylene	30	29.7	99	30	29.3	98	(78-122)	1.30	(< 20)
P & M -Xylene	60	58.9	98	60	59.1	99	(80-121)	0.29	(< 20)
sec-Butylbenzene	30	27.4	91	30	27.5	92	(77-126)	0.32	(< 20)
Styrene	30	30.9	103	30	30.2	101	(78-123)	2.40	(< 20)
tert-Butylbenzene	30	29.6	99	30	29.2	97	(78-124)	1.30	(< 20)
Tetrachloroethene	30	30.6	102	30	30.7	102	(74-129)	0.36	(< 20)
Toluene	30	28.0	94	30	27.7	92	(80-121)	1.30	(< 20)
trans-1,2-Dichloroethene	30	29.4	98	30	29.7	99	(75-124)	0.83	(< 20)
trans-1,3-Dichloropropene	30	31.6	105	30	31.7	106	(73-127)	0.27	(< 20)
Trichloroethene	30	29.5	99	30	29.4	98	(79-123)	0.54	(< 20)
Trichlorofluoromethane	30	33.7	112	30	36.4	121	(65-141)	7.70	(< 20)
Vinyl acetate	30	34.8	116	30	34.7	116	(54-146)	0.21	(< 20)
Vinyl chloride	30	28.9	96	30	28.4	95	(58-137)	1.80	(< 20)
Xylenes (total)	90	88.6	98	90	88.4	98	(79-121)	0.23	(< 20)

Print Date: 11/01/2019 8:57:40AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1196357 [VXX35148]

Blank Spike Lab ID: 1540528 Date Analyzed: 10/24/2019 11:20 Spike Duplicate ID: LCSD for HBN 1196357

[VXX35148]

Spike Duplicate Lab ID: 1540529

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1196357001, 1196357002, 1196357003, 1196357004, 1196357005, 1196357006

Results by SW8260C

		Blank Spike (%)			Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	106	106	30	106	106	(81-118)	0.52	
4-Bromofluorobenzene (surr)	30	89	89	30	89.4	89	(85-114)	0.37	
Toluene-d8 (surr)	30	102	102	30	103	103	(89-112)	1.00	

Batch Information

Analytical Batch: VMS19606 Analytical Method: SW8260C Instrument: Agilent 7890-75MS

Analyst: CMC

Prep Batch: VXX35148
Prep Method: SW5030B

Prep Date/Time: 10/24/2019 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/01/2019 8:57:40AM

Blank ID: MB for HBN 1801601 [VXX/35154]

Blank Lab ID: 1540815

QC for Samples:

1196357001, 1196357002, 1196357003, 1196357005, 1196357006

Matrix: Water (Surface, Eff., Ground)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0310mg/L

Surrogates

4-Bromofluorobenzene (surr) 76.1 50-150 %

Batch Information

Analytical Batch: VFC15013 Prep Batch: VXX35154
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/25/2019 8:00:00AM

Analyst: ST Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 10/25/2019 11:19:00AM Prep Extract Vol: 5 mL

Print Date: 11/01/2019 8:57:41AM

Blank Spike ID: LCS for HBN 1196357 [VXX35154]

Blank Spike Lab ID: 1540816

Date Analyzed: 10/25/2019 11:55

Spike Duplicate ID: LCSD for HBN 1196357

[VXX35154]

Spike Duplicate Lab ID: 1540817

Matrix: Water (Surface, Eff., Ground)

1196357001, 1196357002, 1196357003, 1196357005, 1196357006 QC for Samples:

83.7

84

0.0500

Results by AK101

	E	Blank Spike	e (mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.937	94	1.00	0.957	96	(60-120)	2.10	(< 20)
Surrogates									

0.0500 84.7

Batch Information

4-Bromofluorobenzene (surr)

Analytical Batch: VFC15013 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX35154 Prep Method: SW5030B

Prep Date/Time: 10/25/2019 08:00

85

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

(50-150) 1.20

Print Date: 11/01/2019 8:57:42AM

Blank ID: MB for HBN 1801632 [VXX/35160]

Blank Lab ID: 1540981

QC for Samples: 1196357004

Matrix: Water (Surface, Eff., Ground)

Results by AK101

LOQ/CL Results <u>DL</u> <u>Units</u> **Parameter** Gasoline Range Organics 0.0500U 0.100 0.0310 mg/L

Surrogates

4-Bromofluorobenzene (surr) 81.2 50-150 %

Batch Information

Analytical Batch: VFC15015 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/29/2019 3:09:00AM

Prep Batch: VXX35160 Prep Method: SW5030B

Prep Date/Time: 10/28/2019 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/01/2019 8:57:44AM

Blank Spike ID: LCS for HBN 1196357 [VXX35160]

Blank Spike Lab ID: 1540982 Date Analyzed: 10/29/2019 00:12 Spike Duplicate ID: LCSD for HBN 1196357

[VXX35160]

Spike Duplicate Lab ID: 1540983 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1196357004

Results by AK101

	E	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.01	101	1.00	0.996	100	(60-120)	1.40	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	97.3	97	0.0500	96.3	96	(50-150)	1.10	

Batch Information

Analytical Batch: VFC15015 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX35160 Prep Method: SW5030B

Prep Date/Time: 10/28/2019 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 11/01/2019 8:57:46AM

Blank ID: MB for HBN 1801645 [VXX/35161]

Blank Lab ID: 1541023

QC for Samples:

1196357001, 1196357002, 1196357004, 1196357005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	93.1	85-114		%
Toluene-d8 (surr)	102	89-112		%

Batch Information

Analytical Batch: VMS19612 Analytical Method: SW8260C

Instrument: Agilent 7890-75MS

Analyst: CMC

Analytical Date/Time: 10/28/2019 4:30:00PM

Prep Batch: VXX35161 Prep Method: SW5030B

Prep Date/Time: 10/28/2019 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/01/2019 8:57:47AM

Blank Spike ID: LCS for HBN 1196357 [VXX35161]

Blank Spike Lab ID: 1541024 Date Analyzed: 10/28/2019 16:46 Spike Duplicate ID: LCSD for HBN 1196357

[VXX35161]

Spike Duplicate Lab ID: 1541025 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1196357001, 1196357002, 1196357004, 1196357005

Results by SW8260C

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2,4-Trimethylbenzene	30	25.8	86	30	25.2	84	(79-124)	2.30	(< 20)
1,3,5-Trimethylbenzene	30	26.0	87	30	25.1	84	(75-124)	3.20	(< 20)
Ethylbenzene	30	28.1	94	30	27.2	91	(79-121)	3.20	(< 20)
Naphthalene	30	26.7	89	30	27.4	91	(61-128)	2.50	(< 20)
n-Propylbenzene	30	25.8	86	30	24.7	82	(76-126)	4.20	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	107	107	30	106	106	(81-118)	0.84	
4-Bromofluorobenzene (surr)	30	89	89	30	88.4	88	(85-114)	0.76	
Toluene-d8 (surr)	30	101	101	30	101	101	(89-112)	0.58	

Batch Information

Analytical Batch: VMS19612 Analytical Method: SW8260C Instrument: Agilent 7890-75MS

Analyst: CMC

Prep Batch: VXX35161
Prep Method: SW5030B

Prep Date/Time: 10/28/2019 06:00

Spike Init Wt./Vol.: 30 ug/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L $\,$ Extract Vol: 5 mL $\,$

Print Date: 11/01/2019 8:57:48AM

Blank ID: MB for HBN 1801411 [XXX/42513]

Blank Lab ID: 1539909

QC for Samples:

1196357002, 1196357005

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

Results	LOQ/CL	DL	Units
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0100U	0.0200	0.00620	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0100U	0.0200	0.00620	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0500U	0.100	0.0310	ug/L
0.0250U	0.0500	0.0150	ug/L
0.0250U	0.0500	0.0150	ug/L
46.5*	47-106		%
47.9	24-116		%
	0.0250U 0.0250U 0.0250U 0.0250U 0.0250U 0.0250U 0.0250U 0.0100U 0.0250U	0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0100U 0.0200 0.0250U 0.0500 0.0500U 0.100 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500 0.0250U 0.0500	0.0250U 0.0500 0.0150 0.0100U 0.0200 0.00620 0.0250U 0.0500 0.0150 0.0500U 0.0150 0.0310 0.0250U 0.0500 0.0150 0.0250U 0.0500 0.0150 <t< td=""></t<>

Batch Information

Analytical Batch: XMS11834

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 10/27/2019 2:48:00PM

Prep Batch: XXX42513 Prep Method: SW3520C

Prep Date/Time: 10/23/2019 8:26:01AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:49AM

Blank Spike ID: LCS for HBN 1196357 [XXX42513]

Blank Spike Lab ID: 1539910 Date Analyzed: 10/27/2019 15:09

QC for Samples: 1196357002, 1196357005

Spike Duplicate ID: LCSD for HBN 1196357

[XXX42513]

Spike Duplicate Lab ID: 1539911 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

	-	Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.29	64	2	1.39	70	(41-115)	7.90	(< 20)
2-Methylnaphthalene	2	1.28	64	2	1.39	70	(39-114)	8.10	(< 20)
Acenaphthene	2	1.26	63	2	1.39	69	(48-114)	9.30	(< 20)
Acenaphthylene	2	1.34	67	2	1.45	72	(35-121)	7.60	(< 20)
Anthracene	2	1.34	67	2	1.47	73	(53-119)	8.70	(< 20)
Benzo(a)Anthracene	2	1.31	66	2	1.35	67	(59-120)	2.50	(< 20)
Benzo[a]pyrene	2	1.29	65	2	1.33	67	(53-120)	3.30	(< 20)
Benzo[b]Fluoranthene	2	1.44	72	2	1.50	75	(53-126)	3.80	(< 20)
Benzo[g,h,i]perylene	2	1.31	66	2	1.38	69	(44-128)	5.50	(< 20)
Benzo[k]fluoranthene	2	1.44	72	2	1.46	73	(54-125)	0.93	(< 20)
Chrysene	2	1.39	69	2	1.41	71	(57-120)	1.90	(< 20)
Dibenzo[a,h]anthracene	2	1.25	63	2	1.33	67	(44-131)	6.00	(< 20)
Fluoranthene	2	1.34	67	2	1.41	71	(58-120)	5.40	(< 20)
Fluorene	2	1.33	67	2	1.45	72	(50-118)	8.30	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.45	73	2	1.50	75	(48-130)	3.10	(< 20)
Naphthalene	2	1.30	65	2	1.43	71	(43-114)	9.00	(< 20)
Phenanthrene	2	1.26	63	2	1.34	67	(53-115)	5.70	(< 20)
Pyrene	2	1.39	70	2	1.46	73	(53-121)	5.20	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	73.7	74	2	74.7	75	(47-106)	1.30	
Fluoranthene-d10 (surr)	2	72.3	72	2	74.9	75	(24-116)	3.60	

Batch Information

Analytical Batch: XMS11834

Analytical Method: 8270D SIM LV (PAH)
Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Prep Batch: XXX42513
Prep Method: SW3520C

Prep Date/Time: 10/23/2019 08:26

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:50AM

Blank ID: MB for HBN 1801619 [XXX/42531]

Blank Lab ID: 1540930

QC for Samples:

1196357001, 1196357002, 1196357003, 1196357004, 1196357005

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 82.9 60-120 %

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK102

Instrument: Agilent 7890B R

Analyst: CMS

Analytical Date/Time: 10/30/2019 6:06:00PM

Prep Batch: XXX42531 Prep Method: SW3520C

Prep Date/Time: 10/29/2019 8:23:06AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:52AM

Blank Spike ID: LCS for HBN 1196357 [XXX42531]

Blank Spike Lab ID: 1540931

Date Analyzed: 10/30/2019 18:36

Spike Duplicate ID: LCSD for HBN 1196357

[XXX42531]

Spike Duplicate Lab ID: 1540932

Matrix: Water (Surface, Eff., Ground)

1196357001, 1196357002, 1196357003, 1196357004, 1196357005 QC for Samples:

Results by AK102

		Blank Spike	e (mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	19.0	95	20	17.2	86	(75-125)	9.70	(< 20)
Surrogates									
5a Androstane (surr)	0.4	98.4	98	0.4	91.8	92	(60-120)	6.90	

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: CMS

Prep Batch: XXX42531 Prep Method: SW3520C

Prep Date/Time: 10/29/2019 08:23

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:53AM

Blank ID: MB for HBN 1801619 [XXX/42531]

Blank Lab ID: 1540930

QC for Samples:

1196357001, 1196357002, 1196357003, 1196357004, 1196357005

Matrix: Water (Surface, Eff., Ground)

Results by AK103

LOQ/CL <u>Units</u> **Parameter** Results DL Residual Range Organics 0.250U 0.500 0.150 mg/L

Surrogates

n-Triacontane-d62 (surr) 86.6 60-120 %

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: CMS

Analytical Date/Time: 10/30/2019 6:06:00PM

Prep Batch: XXX42531 Prep Method: SW3520C

Prep Date/Time: 10/29/2019 8:23:06AM

Prep Initial Wt./Vol.: 250 mL

Prep Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:55AM

Blank Spike ID: LCS for HBN 1196357 [XXX42531]

Blank Spike Lab ID: 1540931

Date Analyzed: 10/30/2019 18:36

Spike Duplicate ID: LCSD for HBN 1196357

[XXX42531]

Spike Duplicate Lab ID: 1540932

Matrix: Water (Surface, Eff., Ground)

1196357001, 1196357002, 1196357003, 1196357004, 1196357005 QC for Samples:

Results by AK103

	-	Blank Spike	(mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	20.7	103	20	18.9	95	(60-120)	9.10	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	93.4	93	0.4	87.9	88	(60-120)	6.00	

Batch Information

Analytical Batch: XFC15456 Analytical Method: AK103

Analyst: CMS

Instrument: Agilent 7890B R

Prep Batch: XXX42531 Prep Method: SW3520C

Prep Date/Time: 10/29/2019 08:23

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 11/01/2019 8:57:56AM

1196357

, ,	J	V	J	J	
					ı
					ı
					ı

Profile:	334867 JKJ						_					
Geotechnical and 400 N. 34th Street, Suite 100 Seattle, WA 98103 (206) 632-8020 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 3990 Collins Way, Suite 100 Lake Oswego, OR 97035	N&WILSON, INC. Environmental Consultants 2043 Westport Center Drive St. Louis, MO 63146-3564 (314) 699-9660 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120 1321 Bannock Street, Suite 20 Denver, CO 80204 (303) 825-3800	2705 Saint A Pasco, WA 9 (509) 946-63		Suite A		10 agr	Analysis I	Parameter (include	s/Sample preservati	Labo Attn Container ive if used)	Descri	Pageofofofofofofof
Sample Identity	Lab No.	Time	Date Sampled	/5 th /5	/		1 1 20 C	10/CF 1	X/		10° 5	Remarks/Matrix
103513 - MW-6	B JA-E	14:48	10/4/19	×	×	CIVIE	×	X			5	Groundwater
Y MW+17	BA (2) A- (2)	17:17	<u> </u>			$\perp \times$				<u> </u>	7	
-mw-1"	1 3A-E	13:27									5	
- MW-19	IR GA-E	11:50	- 1			Ē					5	
- MW-2	12	17:47	1		7	X					7	
V - TB	6A-C	16:00	V				4	1			i	trip blank (water)
				·								
Project Informa Project Number: \035	-	ple Receip	Si	anature:	quishe	d By: Time: <u>\$14</u>		Relinqu ature:	ished l		Sigr	Relinquished By: 3.
Floject Number. 1032	10 tal Nulliber	or containers	 	n/ 2	1/	•	_					

Project Number: 103513	Total Number of Containers	Signature:	Time: 8:43
Project Name: 459 W. Blu	COC Seals/Intact? Y/N/NA	Printed Name:	Date: Lo/24
Contact: JKH, TWC	Received Good Cond./Cold	Judy Hepn	Date: W/24
Ongoing Project? Yes 2 No	☐ Delivery Method:	Company:	<u>u</u>
Sampler: JKH	(attach shipping bill, if any)	SWI	
Ins	structions	Received	l By: 1
Requested Turnaround Time:	Standard	Signature:	Time:
Special Instructions: Limited Sumple V		Printed Name:	Date:
Distribution: White - w/shipment - ref		Company:	

Relinquishe	ed By: 1.	Relinquis	shed By: 2.	Relinquis	shed By: 3.
Signature: W	Time: <u>\$',43</u>	Signature:	Time:	Signature:	Time:
Plinted Name:	Date: [0/24/1	Printed Name:	Date:	Printed Name:	Date:
Company: SWZ		Company:		Company:	
Received B	y: 1.	Received	By: 2.	Received	By: 3.
Received B Signature:	y: 1.	Received Signature:	By: 2. Time:	Received Signature:	By: 3. Time: 0843
				Signature:	Time: 0843 Date: 10/22/19

e-Sample Receipt Form

SGS Workorder #:

1196357

Review Criteria	Condition (Yes, No.		Exceptions Noted below					
Chain of Custody / Temperature Requ	uirements		Yes	Exemption permitted			elivers.	
Were Custody Seals intact? Note #		Absent						
COC accompanied	samples? Yes							
DOD: Were samples received in COC corresponding	g coolers? N/A							
N/A **Exemption permitted	I if chilled & colle	cted <8 h	nours	ago, or for samples w	here chilling	is not require	b	
Temperature blank compliant* (i.e., 0-6 °C a	fter CF)? Yes	Cooler	D:	1	@ 1.	7°C Therm. I	D: D60)
		Cooler		1	@	°C Therm. I	D:	
If samples received without a temperature blank, the "cooler temperature" v		Cooler	D:	1	@	°C Therm. I	D:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or " be noted if neither is available.	"chilled" will	Cooler	D:	ı	@	°C Therm. I	D:	
		Cooler	D:		@	°C Therm. I	D:	
*If >6°C, were samples collected <8 hou	ırs ago? N/A			<u>.</u>			_	
		Ï						
If <0°C, were sample containers i	ice free? N/A							
		ľ						
Note: Identify containers received at non-compliant temp	perature .							
Use form FS-0029 if more space is								
Holding Time / Documentation / Sample Condition		Note: Ref	er to fo	orm F-083 "Sample Guide	" for specific h	nolding times.		
Were samples received within holdi	ing time? Yes							
De comples match COC** /: a complet De dates //:mass co	lla ata d\O Va a							
Do samples match COC ** (i.e.,sample IDs,dates/times co **Note: If times differ <1hr, record details & login per	•							
***Note: If sample information on containers differs from COC, SGS will default to								
Were analytical requests clear? (i.e., method is specified for with multiple option for analysis (Ex: BTEX								
	,,							
			N/A	***Exemption permitt	ed for metal	s (e.g.200.8/6	020A).	
Were proper containers (type/mass/volume/preservative*	(**)used? Yes	Only 3 \						
	,	limited	volun	ne.				
Volatile / LL-Hg Re	equirements							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with s	samples? Yes							
Were all water VOA vials free of headspace (i.e., bubbles	≤ 6mm)? Yes							
Were all soil VOAs field extracted with MeO	H+BFB? N/A							
Note to Client: Any "No", answer above indicates r	non-compliance	with stan	dard p	procedures and may in	mpact data	quality.		
Addition	nal notes (if a	pplicah	le):					
- Addition	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,	- /.					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1196357001-A	HCL to pH < 2	OK			
1196357001-B	HCL to pH < 2	ОК			
1196357001-C	HCL to pH < 2	OK			
1196357001-D	HCL to pH < 2	OK			
1196357001-E	HCL to pH < 2	OK			
1196357002-A	HCL to pH < 2	OK			
1196357002-B	HCL to pH < 2	OK			
1196357002-C	No Preservative Required	OK			
1196357002-D	No Preservative Required	OK			
1196357002-E	HCL to pH < 2	OK			
1196357002-F	HCL to pH < 2	OK			
1196357002-G	HCL to pH < 2	ОК			
1196357003-A	HCL to pH < 2	OK			
1196357003-B	HCL to pH < 2	ОК			
1196357003-C	HCL to pH < 2	ОК			
1196357003-D	HCL to pH < 2	ОК			
1196357003-E	HCL to pH < 2	ОК			
1196357004-A	HCL to pH < 2	OK			
1196357004-B	HCL to pH < 2	OK			
1196357004-C	HCL to pH < 2	OK			
1196357004-D	HCL to pH < 2	ОК			
1196357004-E	HCL to pH < 2	OK			
1196357005-A	HCL to pH < 2	OK			
1196357005-B	HCL to pH < 2	OK			
1196357005-C	No Preservative Required	OK			
1196357005-D	No Preservative Required	OK			
1196357005-E	HCL to pH < 2	OK			
1196357005-F	HCL to pH < 2	OK			
1196357005-G	HCL to pH < 2	OK			
1196357006-A	HCL to pH < 2	OK			
1196357006-B	HCL to pH < 2	OK			
1196357006-C	HCL to pH < 2	OK			

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

LABORATORY DATA REVIEW CHECKLIST

CS Report Name: 459 West Bluff Drive Date: November 2019

Anchorage, Alaska

Laboratory Report Date: November 1, 2019

Consultant Firm: Shannon & Wilson, Inc.

Completed by: Trevor Crosby, CPG

Title: Senior Geologist

Laboratory Name: SGS North America, Inc.

Work Order Number: 1196357

ADEC File Number: 605

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? **Yes**/ **No** / **NA** (**Please explain.**)

Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved? **Yes / No (NA)**

Comments: The samples were not transferred to another "network" laboratory or subcontracted to an alternate laboratory.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?Yes/ No / NA (Please explain.)

Comments:

b. Correct analyses requested: Yes / No / NA (Please explain.) Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6°C)? Yes No / NA (Please explain.)

Comments: *The temperature blank had a temperature of 1.7°* C.

- b. Sample preservation acceptable acidified waters, Methanol-preserved VOC soil (GRO, BTEX, VOCs, etc.)? Yes/ No / NA (Please explain.)
 Comments:
- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? Yes/No/NA (Please explain.)
 Comments:
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? Yes/ No / NA (Please explain.)
 Comments: Only three VOA vials were provided for GRO/VOCs. The laboratory noted it proceeded with limited volume.
- e. Data quality or usability affected? Yes No (Please Explain.) Comments: See above.

4. Case Narrative

- a. Present and understandable? Yes/ No / NA (Please explain.)
 Comments:
- **b.** Discrepancies, errors or QC failures noted by the lab? Yes/ No / NA (Please explain.) Comments:
 - GRO surrogate 4-bromofluorobenzene recovery for Project Samples MW-6B, MW-14, MW-19R, and MW-23 do not meet the QC criteria due to matrix interference.
 - For Method EPA 8260C, LCS/LCSD recovery for chloroethane does not meet QC criteria. This analyte was not detected above the LOQ in the associated samples.
- c. Were corrective actions documented? Yes / No / NA (Please explain.)
 Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *The case narrative does not discuss quality/usability*.

5. Sample Results

a. Correct analyses performed/reported as requested on COC? Yes / No / NA (Please explain.)

Comments:

b. All applicable holding times met? Yes / No / NA (Please explain.) Comments:

- c. All soils reported on a dry-weight basis? Yes No NA (Please explain.) Comments: Soil samples were not submitted as part of this work order.
- **d.** Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? **Yes)** No / NA (**Please explain.**) Comments: The LOQ for 1,2,3-trichloropropane is greater than its respective ADEC Table C cleanup level.
- **e.** Data quality or usability affected? (**Please explain.**)
 Comments: The data cannot be used to determine whether or not concentration of 1,2,3-trichloropropane is present at a concentration greater than its respective ADEC cleanup level, but less than the LOQ.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis, and 20 samples?Yes/ No / NA (Please explain.)Comments:
 - ii. All method blank results less than LOQ? Yes No / NA (Please explain.)
 Comments:
 - **iii.** If above LOQ, what samples are affected? Comments:
 - iv. Do the affected sample(s) have data flags? Yes / No (NA) Comments:

If so, are the data flags clearly defined? Yes / No NA Comments:

v. Data quality or usability affected? (Please explain.) Comments: *See above*.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/No/NA (Please explain.)

Comments:

ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No / NA (Please explain.)

Comments: Only organic analyses were requested with this work order.

- iii. Accuracy All percent recoveries (%R) reported *and within method or laboratory limits?* And project specified DQOs, if applicable. (AK petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes No / NA (Please explain.) Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes (No) NA (Please explain.) Comments: LCS/LCSD recovery for chloroethane does not meet QC criteria.
- **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments: *All project samples are potentially affected*.
- vi. Do the affected samples(s) have data flags? Yes / No / NA Comments: Chloroethane was not detected in the parent sample. Therefore, flagging is not required.

If so, are the data flags clearly defined? Yes / No NA Comments:

vii. Data quality or usability affected? Explain. NA Comments: See above.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, field, QC, and laboratory samples? Yes/No/NA (Please explain.)
 Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No NA (Please explain.) Comments:
 - GRO surrogate 4-bromofluorobenzene recovery for Project Samples MW-6B, MW-14, MW-19R, and MW-23 do not meet the QC criteria due to matrix interference.
- iii. Do the sample results with failed surrogate recoveries have data flags? Yes/ No / NA (Please explain.)

Comments: Project samples affected by surrogate recovery failures due to matrix interference are flagged "J+" on Tables 2, 3, and 4 of the report.

If so, are the data flags clearly defined? Yes / No / NA Comments:

- **iv.** Data quality or usability affected? Explain. Comments: *The flagged data are considered estimates biased high.*
- **d. Trip Blank** Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and cooler? Yes/ No / NA (Please explain.)

Comments: *One water trip blank (TB) was submitted to the lab with the samples.*

- ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? Yes No NA (Please explain if NA or no.)

 Comments: Only one cooler was used to transport the samples.
- iii. All results less than LOQ? Yes/ No / NA (Please explain.) Comments:
- **iv.** If above LOQ, what samples are affected? Comments:
- **v.** Data quality or usability affected? Explain. Comments: *See above*.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes No / NA (Please explain.)

Comments: Sample MW-23 is the field duplicate of Sample MW-13A.

- ii. Were the field duplicates submitted blind to the lab? Yes/ No / NA (Please explain.) Comments:
- iii. Precision All relative percent differences (RPDs) less than specified DQOs? (Recommended: 30% for water, 50% for soil) Yes No NA (Please explain.) Comments:
 - The 2-methylnaphthalene, naphthalene and phenanthrene RPDs for the duplicate pair MW-13A/MW-23 were calculated outside the specified DQO at 170%, 33%, and 30%, respectively.
 - The affected result for the duplicate pair is flagged "E" to indicate estimated results.
- **iv.** Data quality or usability affected? Explain. NA

 Comments: Affected data are considered estimated results, but still usable for the purposes of this report.

f. Decontamination or Equipment Blank (if not applicable, a comment stating why must be entered below) **Yes No**/**NA** (**Please explain.**) Comments: *A decontamination and/or equipment blank was not included in the scope for*

this project.

- i. All results less than LOQ? Yes / No /NA (Please explain.)
 Comments:
- ii. If results are above LOQ, what samples are affected? **NA** Comments:
- iii. Data quality or usability affected? Explain. NA Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

a. Are they defined and appropriate? Yes/ No / NA Comments: Laboratory-specific flags are defined on page 3 of the SGS report.

ATTACHMENT 3

INVESTIGATION DERIVED WASTE DISPOSAL DOCUMENTATION

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE

Contaminated Sites and Prevention and Emergency Response Programs

Transport, Treatment, & Disposal Approval Form for Contaminated Media

DEC HAZARD/SPILL ID #	EC HAZARD/SPILL ID # NAME OF SPILL OR CONTAMINATED SITE						
	THE OF STREET STREET						
SITE OR SPILL LOCATION							
CURRENT LOCATION AND TYPE OF				F THE CONTAMINA	ATION		
CONTAMINATED MEDIA							
COMPOUNDS OF CONCERN	V	ESTIMATED V	OLUME	DATE(S) GENERA	TED		
POST TREATMENT ANALY	SIS REQUIRED (such as GRO, DRO	O, RRO, BTEX	and/or Chlorinated Sc	olvents)		
COMMENTS							
Facility Accepting the Con	ntaminated Med	dia					
NAME OF THE FACILITY	P	HYSICAL ADDI	RESS/PHONE	NUMBER			
Responsible Party and Co	ntractor Inform	nation					
BUSINESS/NAME	A	DDRESS/PHON	E NUMBER				
BUSINESS/NAME	A	DDRESS/PHON	E NUMBER				
BUSINESS/NAME	A	DDRESS/PHON	E NUMBER				
BUSINESS/NAME	A	DDRESS/PHON	E NUMBER				
BUSINESS/NAME	A	DDRESS/PHON	E NUMBER				
		DDRESS/PHON		iation			
Name of the Person Requesting A		DDRESS/PHON	Title/Assoc	iation			
		DDRESS/PHON		iation			
		DDRESS/PHON			one Number		
Name of the Person Requesting A	Approval (printed)		Title/Associ	Pho	one Number		
Name of the Person Requesting A			Title/Associ	Pho	one Number		
Name of the Person Requesting A	Approval (printed)	DEC USE (Title/Associ	Pho			
Name of the Person Requesting A	Approval (printed)	DEC USE (Title/Associ	Pho e-described media fo	or treatment in		
Name of the Person Requesting A Signature Based on the information pro accordance with the approve DEC Project Manager a copy	Approval (printed) ovided, ADEC apd facility operation of weight/voluri	DEC USE (proves transportons plan. The Refereceipts of the	Date ONLYt of the above esponsible Page e loads trans	Pho e-described media fourty or their consulta	or treatment in and a post treatment		
Name of the Person Requesting A Signature Based on the information pro accordance with the approve DEC Project Manager a copy analytical report. If the medi	Approval (printed) ovided, ADEC apd facility operation of weight/voluri	DEC USE (proves transportons plan. The Refereceipts of the	Date ONLYt of the above esponsible Page e loads trans	Pho e-described media fourty or their consulta	or treatment in and a post treatment		
Name of the Person Requesting A Signature Based on the information pro accordance with the approve DEC Project Manager a copy	Approval (printed) ovided, ADEC apd facility operation of weight/voluri	DEC USE (proves transportons plan. The Refereceipts of the	Date ONLYt of the above esponsible Page e loads trans	Pho e-described media fourty or their consulta	or treatment in and a post treatment		
Name of the Person Requesting A Signature Based on the information pro accordance with the approve DEC Project Manager a copy analytical report. If the medi AAC 60.015.	Approval (printed) ovided, ADEC apd facility operation of weight/voluri	DEC USE (proves transportons plan. The Refereceipts of the	Date ONLYt of the above esponsible Pare loads transe transported	e-described media for their consultate ported to the facility as a covered load in	or treatment in and a post treatment		
Name of the Person Requesting A Signature Based on the information pro accordance with the approve DEC Project Manager a copy analytical report. If the medi AAC 60.015. Grant Lidren	Approval (printed) ovided, ADEC apd facility operation of weight/voluments is contaminated.	DEC USE (proves transportons plan. The Refereceipts of the	Date DNLYt of the above esponsible Pare loads transe transported EPS I	e-described media for their consultation ported to the facility as a covered load in	or treatment in and a post treatment		
Name of the Person Requesting A Signature Based on the information pro accordance with the approve DEC Project Manager a copy analytical report. If the medi AAC 60.015.	Approval (printed) ovided, ADEC apd facility operation of weight/voluments is contaminated.	DEC USE (proves transportons plan. The Refereceipts of the	Date ONLYt of the above esponsible Pare loads transe transported	e-described media for their consultation ported to the facility as a covered load in	or treatment in and a post treatment		
Name of the Person Requesting A Signature Based on the information pro accordance with the approve DEC Project Manager a copy analytical report. If the medi AAC 60.015. Grant Lidren	Approval (printed) ovided, ADEC apd facility operation of weight/voluments is contaminated.	DEC USE (proves transportons plan. The Refereceipts of the	Date DNLYt of the above esponsible Pare loads transe transported EPS I	e-described media for their consultation ported to the facility as a covered load in mager Title	or treatment in and a post treatment		

*** IN CASE OF EMERGENCY CALL 800-899-4672 *** NON-HAZARDOUS WASTE MANIFEST

145169-PARK

NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No	0831750		Manifest Document No.	145169A	2. Page 1		
3. Generator's Name and Mailing Address CROWLEY PETROLEUM 201 ARCTIC SLOPE AVENUE ANCHORAGE, AK 99518	CROWLEY PETROLEUM 459 WEST BLUFF ROAD ANCHORAGE, AK 99501			32				
4. Generator's Phone () 5. Transporter 1 Company Name	6.	US EPA ID Number		A. State Trans	porter's ID			
5, Transporter 1 Company Name NRC ALASKA LLC		US EPA ID Number AKR000004184		B. Transporter	1 Phone 907-258-15	558		
7. Transporter 2 Company Name	Company Name 8, US EPA ID Number				C. State Transporter's ID			
O Decimand Facility Name and City Address	4.	LIO EDA ID Mussikas		D. Transporter E. State Facility				
9. Designated Facility Name and Site Address NRC ALASKA LLC 2020 VIKING DRIVE	10.	US EPA ID Number						
ANCHORAGE, AK 99501		AKR000004184		7. Fuolity 0 7 F	^{on} 907-258-1558			
11, WASTE DESCRIPTION			Co	ntainers	13. Total	14. Unit		
FM.			No.	Туре	Quantity	Wt./Vol.		
MATERIAL NOT REGULATE	D BY D.O.T.			DM	100	Р		
b					007			
C.								
d								
G_Additional Descriptions for Materials Listed Above	9			H. Handling Co	des for Wastes Listed Ab	pove		
1) EA0302 IDW DECON WATER	/ GROUNDWATER	?	D	16992				
15. Special Hendling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transporta	o certify that the ab					julations		
16. GENERATOR'S CERTIFICATION: I hereby cer in proper condition for transport. The materials of	tify that the contents of this ship lescribed on this manifest are no	ment are fully and accurately described it subject to federal hazardous waste re	and are in gulations.	all respects				
						Date		
Printed/Typed Name Ondy Hepner		Signature	n		<u> </u>	Month Day Year		
17. Transporter 1 Acknowledgement of Receipt of N Printed/Typed Name	Materials	stgnatur		F.		Date Month Day Year		
18. Transporter 2 Acknowledgement of Receipt of N	Ace TR	1 Sac-	Tu	de c	75	11 6 19 Date		
17. Transporter 1 Acknowledgement of Receipt of N Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of N Printed/Typed Name)(=====	Signature			,	Month Day Year		
19. Discrepancy Indication Space				J	111107	and a second		
20. Facility Owner or Operator: Certification of recei	pt of the waste materials covere	d by this manifest, except as noted in ite	əm 19.					
		- April 1994 (April 1995)		1-0		Date		
Printed Typed Name	easley	Signature	D	Bea	2 Ocept	Month Day Year		

CERTIFICATE OF DISPOSAL/RECYCLE

GENERATOR:

CROWLEY PETROLEUM

459 WEST BLUFF ROAD ANCHORAGE, AK 99501

DISPOSAL FACILITY:

NRC ALASKA LLC

2020 VIKING DRIVE

ANCHORAGE, AK 99501

EPA ID NUMBER:

AKD000831750

MANIFEST/DOCUMENT #:

145169A

DATE OF DISPOSAL/RECYCLE: NOV-08-2019

LINE

WASTE DESCRIPTION

IDW DECON WATER / GROUNDWATER

CONTAINERS

TYPE DM YTITHAUS

100

UOM

P

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above described waste was managed in compliance with all applicable laws, regulations, permits and licenses on the date listed above.

PREPARED BY:

PLB

SIGNATURE

attitud Karley

DATE:

NOV 08 2019

ATTACHMENT 4 IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 103513-001

Date: November 2019

To: Crowley Fuels LLC

459 West Bluff Drive

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 11/2017

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 11/2017