

ALASKA CALIFORNIA COLORADO FLORIDA MISSOURI OREGON WASHINGTON WISCONSIN

November 4, 2016

CPD Alaska, LLC 201 Arctic Slope Avenue Anchorage, Alaska 99518

Attn: Ms. Carrie Godden

## RE: NOVEMBER 2015 GROUNDWATER MONITORING, 459 WEST BLUFF DRIVE, ANCHORAGE, ALASKA; ADEC FILE NO. 2100.38.321

This report presents the results of Shannon & Wilson's November 2015 groundwater monitoring activities conducted at the CPD Alaska, LLC (Crowley) facility at 459 West Bluff Drive, Anchorage, Alaska. The 2015 groundwater monitoring activities were conducted by Shannon & Wilson, Inc. on November 6, 2015. Written authorization to proceed with the project was provided by Todd Bullock, on October 27, 2015.

## SITE AND PROJECT DESCRIPTION

#### **Site Description**

The Crowley facility is a fuel distribution terminal located in the Port of Anchorage, as shown on Figure 1. Elevation varies at the site by approximately 20 feet, generally sloping downward towards the north and west. The site contains 14 active bulk fuel above-ground storage tanks (ASTs), pipelines, a rail loading rack, and office/warehouse/shop buildings. A pipeline linked to the Port of Anchorage valve yard, located 2,000 feet to the north, transfers petroleum products between the tank farm and oceangoing tankers/barges. This pipeline is the primary method of fuel delivery to and from the site. A lined detention pond and runoff basin are located in the northeastern portion of the site. A site plan is included as Figure 2.

#### Background

A site investigation conducted in 1987 identified soil and groundwater impacts at the site. Twenty-one monitoring wells (MW-1 through MW-21) were installed in 1989 on the site. The monitoring wells were sampled once in 1989, and annually from 1996 through 2009. The results indicate concentrations of gasoline range organics (GRO), diesel range organics (DRO), benzene, and ethylbenzene exceed Alaska Department of Environmental Conservation (ADEC) groundwater cleanup levels.

5430 FAIRBANKS STREET, SUITE 3 ANCHORAGE, ALASKA 99518-1263 907-561-2120 FAX: 907-561-4483 TDD 1-800-833-6388 Crowley Facility, 459 West Bluff Drive, Anchorage, Alaska November 4, 2016 Page 2 of 6

In a letter dated May 2010, the ADEC approved a groundwater monitoring program comprising annual sample collection from Monitoring Wells MW-1, MW-6B, MW13A, MW-14, and MW-19R. The remaining wells were decommissioned during the liner installation activities in 2011.

## **Purpose and Objectives**

The purpose of this work was to monitor trends in dissolved phase hydrocarbon concentration gradients and distribution across the site. The project objective consisted of sampling five groundwater monitoring wells: Wells MW-1, MW-6B, MW-13A, MW-14, and MW-19R. These wells have historically contained concentrations of GRO, DRO, RRO, benzene and/or ethylbenzene above the ADEC cleanup levels.

## FIELD ACTIVITIES

Groundwater monitoring was performed on November 6, 2015. The water monitoring field effort consisted of depth to water measurements and sample collection at five monitoring wells. Copies of the field notes are included as Attachment 1.

## **Groundwater Sampling**

Groundwater samples were collected from Wells MW-1, MW-6B, MW-13A, MW-14, and MW-19R on November 6, 2015. Depth to water measurements were taken with an electronic water level indicator prior to purging and sampling activities. The wells were purged and sampled using a low-flow groundwater sampling method with a submersible pump and disposable tubing. The wells were sampled when pH, conductivity, and temperature readings taken three to five minutes apart stabilized (0.1 standard unit for pH; and 3 percent for conductivity and temperature). Turbidity readings did not meet stabilization requirements of three successive readings within 10 percent, but all turbidity readings were under 20 NTUs. Depth to water levels and final water quality parameter measurements are summarized in Table 1.

For quality control purposes, one field duplicate sample, designated Sample MW-2, was collected from Well MW-1. The groundwater samples were transferred into laboratory-supplied containers in order from most volatile to least volatile and placed into chilled coolers for delivery to the project laboratory. Purgewater from the monitoring wells was contained in one labeled 55-gallon drum and temporarily stored on site.

Crowley Facility, 459 West Bluff Drive, Anchorage, Alaska November 4, 2016 Page 3 of 6

## **Groundwater Flow Direction**

The November 2015 depth to water measurements and client-provided well survey data were used to interpret the groundwater flow direction. Groundwater elevations ranged from 32.58 feet above mean sea level (MSL) in Well MW-13A to 51.12 feet above MSL in Well MW-6B. Because of the well casing repair on Well MW-14 that took place in 2012, the elevation data for that well are not included in the groundwater flow calculations. The groundwater data indicate an overall flow direction to the west at a gradient of 2 percent. The groundwater elevations are generally within historical range, and the overall flow direction is consistent with historical data.

Groundwater flow direction at the site is likely affected by multiple factors, including tidal influence, precipitation, and topography. Tidal effects appear to be the governing factor within 150 to 200 feet of Cook Inlet. These apparent tidal influences in the western portions of the property are likely contributing to fluctuations in flow direction and gradient in that area.

## LABORATORY ANALYSES

Six groundwater samples, including one field duplicate, were submitted to SGS for analytical testing. The groundwater samples were analyzed for GRO by Alaska Method 101 (AK101), DRO by AK 102, RRO by AK 103, and BTEX by 8021B. Trip blank samples accompanied the analytical sample containers from and to the laboratory during the sampling events, and were tested for GRO and BTEX. The laboratory reports are provided in Attachment 2.

#### **INVESTIGATION DERIVED WASTE**

Investigation derived waste (IDW) from this project consisted of one 55-gallon drum of purgewater. Emerald of Alaska (Emerald) picked up the drum on January 12, 2016. A waste manifest by Emerald Alaska is included in Attachment 3.

## DISCUSSION OF ANALYTICAL RESULTS

The reported contaminant concentrations in the groundwater were compared to the cleanup levels listed in Table C of 18 AAC 75.345 that will be effective on November 6, 2016. The analytical sample results and cleanup levels are listed in Table 2. Graphs showing the last 10 years concentration data are included as Figure 3. A summary of historical groundwater data for the five monitoring wells is included in Table 3.

Crowley Facility, 459 West Bluff Drive, Anchorage, Alaska November 4, 2016 Page 4 of 6

The following parameters exceed the ADEC cleanup levels in the November 2015 samples:

- GRO concentrations in Wells MW-1, MW-13A, and MW-19R;
- DRO concentrations in Wells MW-6B, MW-13A, and MW-14;
- RRO concentration in Well MW-13A;
- Benzene concentrations in each well except Well MW-14;
- Ethylbenzene concentrations in each well; and
- Xylene concentration in Well MW-13A.

As discussed with ADEC, an evaluation of plume stability may facilitate a reduction in sampling scope and/or frequency, with an emphasis on downgradient Wells MW-13A and MW-19R. The Figure 3 graphs demonstrate most constituents of concern appear to be generally stable or decreasing over the last 10 years. GRO, DRO, RRO, and benzene concentrations in monitoring well MW-13A decreased from last year's sampling event, continuing a 5-year trend of decreasing concentrations in that well. Likewise, the DRO concentration in monitoring well MW-19R was below ADEC cleanup levels for the first time in the well's sampling history. Concentrations in monitoring wells MW-1, MW-6B, and MW-14 also appear to be stable or decreasing.

To further evaluate the qualitative trends evident in the Figure 3 graphs, a statistical analysis was conducted for selected well-parameter data sets. The combined Shewhart- Cumulative Sum (CUSUM) control chart methodology was applied to the last 10 years GRO, DRO, and benzene data from downgradient/compliance Wells MW-1 and MW-13A, and to DRO data from Well MW-14. The analysis did not indicate short-term statistical exceedances of control chart limits. The long-term data analysis indicated statistically significant downward trends in multiple parameters, most notably GRO and benzene in Well MW-13A and DRO in Well MW-14, although none of the CUSUM values presently exceed the established control limits (using assigned control variables of k=1 and h=5). Note that this methodology is a relatively straightforward approach that does not consider seasonal variation in pooling data for mean and standard deviation statistics, is a parametric analysis that assumes normally-distributed data sets, and is based on a limited number of data points following the eight values used to establish baseline conditions. The control charts used for this analysis are not included with this report, but can be provided upon request.

#### QUALITY ASSURANCE SUMMARY

SGS follows on-going quality assurance/quality control (QC) procedures to evaluate conformance to applicable ADEC data quality objectives (DQO). Internal laboratory controls to

Crowley Facility, 459 West Bluff Drive, Anchorage, Alaska November 4, 2016 Page 5 of 6

assess data quality for this project include surrogates, method blanks, and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to determine precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a report specific note identifying the problem in the Case Narrative section of their Laboratory Analysis Reports (See Attachment 2).

Shannon & Wilson's analytical data evaluation included a review of laboratory results for field duplicate Samples MW-1 and MW-2 to document the precision of the sampling and analytical process. The primary and duplicate sample results were compared using the calculated RPD values, as shown in Table 4. The RPD was not within the DQO of 30 percent for RRO, but the concentrations were within a factor of two so the data are considered usable.

Laboratory-prepared trip blanks accompanied the sample containers during transport during the sampling event. There were no detections in the trip blank from the November 6, 2015 sampling event.

Shannon & Wilson reviewed the SGS data deliverables and completed the ADEC's Laboratory Data Review Checklists (LDRC) for each work order, which are included in Attachment 2. Quality control discrepancies and the impact to data quality/usability are described in further detail in the LDRC. In our opinion, no non-conformances that would adversely impact data usability were noted.

## **CONCLUSIONS & RECOMENDATIONS**

The November 2015 groundwater monitoring event included analytical groundwater sampling of five wells. The sample results continue recent trends that suggest the plume is stable or shrinking, with qualitatively decreasing trends evident for compliance Well MW-13A. An intrawell statistical analysis conducted to further evaluate the trends generally supported this conclusion, although none of the parameters evaluated exceed the conservative control limits established for the analysis. Based on these findings, it is our opinion that data support reducing the sampling frequency to a biennial basis.

## **CLOSURE/LIMITATIONS**

This report was prepared for the exclusive use of our clients and their representatives in the study of this site. The findings we have presented within this report are based on the limited sampling and analyses that we conducted. They should not be construed as a definite conclusion regarding the site's groundwater conditions. Therefore, the sampling and analyses performed can provide

Crowley Facility, 459 West Bluff Drive, Anchorage, Alaska November 4, 2016 Page 6 of 6

you with only our professional judgment as to the environmental characteristics of this site, and in no way guarantees that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report are only representative of the time of our site assessment. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Shannon & Wilson has prepared the documents in Attachment 4, "Important Information About Your Geotechnical/Environmental Report", to assist you and others in understanding the use and limitations of our reports. You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study, except with your permission or as required by law.

Copies of documents that may be relied upon by our client are limited to the printed copies (also known as hard copies) that are signed or sealed by Shannon & Wilson with a wet, blue ink signature. Files provided in electronic media format are furnished solely for the convenience of the client. Any conclusion or information obtained or derived from such electronic files shall be at the user's sole risk. If there is a discrepancy between the electronic files and the hard copies, or you question the authenticity of the report please contact the undersigned.

We appreciate the opportunity to be of service. Please call the undersigned at (907) 561-2120 with questions or comments concerning this report.

Sincerely,

SHANNON & WILSON, INC.

MSH for

Admon Abuamsha Environmental Scientist



Encl: Tables 1 through 4 Figures 1 through 3 Attachments 1 through 4

# TABLE 1GROUNDWATER SAMPLING LOG

|                                    |                      | Mo             | nitoring Well Numb | ber              |                  |
|------------------------------------|----------------------|----------------|--------------------|------------------|------------------|
|                                    | MW-1                 | MW-6B          | MW-13A             | <b>MW-14</b>     | MW-19R           |
| Water Level Measurement Data       |                      |                |                    |                  |                  |
| Date Water Level Measured          | 11/6/2015            | 11/6/2015      | 11/6/2015          | 11/6/2015        | 11/6/2015        |
| Time Water Level Measured          | 10:34                | 10:58          | 10:04              | 10:47            | 10:24            |
| MP Elevation, Feet (MSL)*          | 39.89                | 76.4           | 38.01              | -                | 40.19            |
| Depth to Water Below MP, Feet      | 6.64                 | 25.28          | 5.43               | 4.46             | 5.54             |
| Groundwater Elevation, Feet        | 33.25                | 51.12          | 32.58              | -                | 34.65            |
| Purging/Sampling Data              |                      |                |                    |                  |                  |
| Date Sampled                       | 11/6/2015            | 11/6/2015      | 11/6/2015          | 11/6/2015        | 11/6/2015        |
| Time Sampled                       | 14:28                | 12:16          | 16:48              | 13:22            | 13:30            |
| Depth to Water Below MP, Feet      | 6.64                 | 25.28          | 5.43               | 4.46             | 5.54             |
| Total Depth of Well Below MP, Feet | 14.11                | 30.21          | 10.67              | 12.64            | 14.36            |
| Water Column in Well, Feet         | 7.47                 | 4.93           | 5.24               | 8.18             | 8.82             |
| Gallons per Foot                   | 0.65                 | 0.65           | 0.65               | 0.65             | 0.16             |
| Gallons in Well                    | 4.86                 | 3.20           | 3.41               | 5.32             | 1.41             |
| Total Gallons Pumped/Bailed        | 2.2                  | 2.5            | 1.2                | 2.3              | 2.9              |
| Purging/Sampling Method            | Low-Flow             | Low-Flow       | Low-Flow           | Low-Flow         | Low-Flow         |
| Diameter of Well Casing            | 4-inch               | 4-inch         | 4-inch             | 4-inch           | 2-inch           |
| Water Quality Data                 |                      |                |                    |                  |                  |
| Temperature, °C                    | 8.9                  | 6.9            | 8.0                | 6.0              | 8.3              |
| Specific Conductance, µS/cm        | 4,240                | 635            | 439                | 318              | 389              |
| pH, Standard Units                 | 7.03                 | 6.51           | 6.61               | 6.85             | 6.56             |
| Turbidity, NTU                     | 13.50                | NM             | 11.50              | 17.40            | 9.99             |
| Remarks                            | Duplicate "MW-2"     | Sheen in purge | Hydrocarbon odor   | Hydrocarbon odor | Hydrocarbon odor |
|                                    | Sheen in purge water | water          |                    |                  |                  |

Notes:

Field Personnel: Admon Abuamsha

Water quality parameters were measured with Hanna and Hach water quality instruments.

\* = Previous reports provided by the client indicate that MP elevations were surveyed in 2007 by Karabelnikoff Surveying.

MSL = Mean sea level

MP = Measuring point

 $\mu$ S/cm = Microsiemens per centimeter

NTU = Nephelometric Turbidity Units

mV = Millivolt

- = Well repaired in 2012 with new segment of casing. Measuring point elevation has been altered.

°C = Degrees Celsius

NM = Not Measured

 TABLE 2

 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

|                                      |           | Cleanup Level**Sample ID Number^ and Water Elevation in Feet above Mean Sea<br>(See Table 1, Figure 2, and Attachment 2) |        |                      |                       | a Level               |                     |            |                        |            |
|--------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------|--------|----------------------|-----------------------|-----------------------|---------------------|------------|------------------------|------------|
|                                      |           |                                                                                                                          |        |                      | Monitoring Wells      |                       |                     |            |                        | Trip Blank |
| Parameter Tested                     | Method*   | 2008                                                                                                                     | 2016   | <b>MW-1</b><br>33.25 | <b>MW-2~</b><br>33.25 | <b>MW-6B</b><br>51.12 | <b>MW-13A</b> 32.58 | MW-14<br>- | <b>MW-19R</b><br>34.65 | WTB<br>-   |
| Gasoline Range Organics (GRO) - mg/L | AK101     | 2.2                                                                                                                      | 2.2    | 3.15 J+              | <b>3.49 J</b> +       | 1.15 J+               | <b>3.54 J</b> +     | 1.10 J+    | <b>3.46 J</b> +        | < 0.0500   |
| Diesel Range Organics (DRO) - mg/L   | AK102     | 1.5                                                                                                                      | 1.5    | 0.695                | 0.531 J               | 5.59                  | 5.76                | 1.69       | 1.36                   | -          |
| Residual Range Organics (RRO) - mg/L | AK103     | 1.1                                                                                                                      | 1.1    | 0.485                | 0.319 J               | 0.794                 | 1.21                | 0.576      | 0.542                  | -          |
| Volatile Organic Compounds (VOCs)    |           |                                                                                                                          |        |                      |                       |                       |                     |            |                        |            |
| Benzene - mg/L                       | EPA 8021B | 0.005                                                                                                                    | 0.0046 | 0.628                | 0.766                 | 0.0398                | 0.112               | 0.00361    | 0.0191                 | < 0.000250 |
| Toluene - mg/L                       | EPA 8021B | 1.0                                                                                                                      | 1.1    | 0.0421               | 0.0492                | 0.000640 J            | 0.0138              | 0.00135    | 0.00376                | < 0.000500 |
| Ethylbenzene - mg/L                  | EPA 8021B | 0.7                                                                                                                      | 0.015  | 0.0733               | 0.0860                | 0.102                 | 0.361               | 0.0550     | 0.0193                 | < 0.000500 |
| Xylenes - mg/L                       | EPA 8021B | 10                                                                                                                       | 0.19   | 0.0801               | 0.0932                | 0.117                 | 0.486               | 0.108      | 0.0506                 | < 0.001500 |

Notes:

\* = See Attachment 2 for compounds tested, methods, and laboratory reporting limits

\*\* = Groundwater cleanup levels are listed in Table C, 18 AAC 75.345 including former 2008 and new November 6, 2016 levels

^ = Sample ID number preceded by "17453-007-" on the chain of custody form

~ = Duplicate of Sample MW-1

mg/L = Milligrams per liter

- = Not applicable or sample not tested for this analyte

**0.205** = Reported concentration equals or exceeds the 2016 regulated cleanup level

J = Analyte detected, but at a concentration less than the laboratory reporting limit

J+ = Project result may be biased high due to surrogate failure (See LDRC, Attachment 2)

QC = Quality control

<0.000500 = Not detected above the laboratory reporting limit of 0.000500 mg/L

# TABLE 3 SUMMARY OF HISTORICAL GROUNDWATER DATA

|            |                      |                  | Paramete               | er Tested and | Cleanup Lev    | el* in mg/L      |
|------------|----------------------|------------------|------------------------|---------------|----------------|------------------|
|            |                      | Groundwater      | <b>an</b> 0            |               |                |                  |
| Monitoring |                      | Elevation (feet) | GRO                    | DRO           | RRO            | Benzene          |
| Well       | Sample Date          | MSL              | 2.2                    | 1.5           | 1.1            | 0.0046           |
| MW-1       | 06/09/04             | 32.32            | 3.50                   | 2.00          | -              | 0.720            |
|            | 05/11/05             | 32.67            | 11.0                   | 7.00          | -              | 1.30             |
|            | 05/16/06             | 32.58            | 16.0                   | 5.40          | -              | 1.50             |
|            | 09/11/07             | 32.95            | 14.0                   | 3.20          | < 0.380        | 2.10             |
|            | 08/21/08~            | 32.87            | 14.5                   | 4.00          | -              | 1.52             |
|            | 10/07/08             | 33.14            | -                      | -             | -              | -                |
|            | 08/18/09~            | 32.79            | 1.99                   | 1.31          | < 0.385        | 0.656            |
|            | 09/02/10             | 33.24            | 2.20                   | 1.10          | 0.270          | 0.580            |
|            | 10/07/11             | 32.58            | 3.67                   | 1.13          | 0.283 J        | 0.707            |
|            | 10/10/2012~          | 34.07            | 3.56                   | 1.80          | 0.549          | 1.12             |
|            | 10/22/13             | 33.40            | 2.31                   | 0.876         | 0.252 J        | 0.663            |
|            | 10/23/2014~          | 32.81            | 0.884                  | 0.418 J       | < 0.250        | 0.214            |
| MW-6B      | 11/6/2015~           | 33.25            | 3.49 J+                | 0.695         | 0.485          | 0.766            |
| 1v1 vv -0B | 06/08/04             | 53.06            | 2.30                   | 21.0          | -              | 0.0630           |
|            | 05/11/05             | 53.00            | 2.20                   | 15.0          | -              | 0.0900           |
|            | 05/15/06             | 52.58            | 2.30                   | 23.0          | -              | 0.0540           |
|            | 09/12/07             | 50.37            | 1.80                   | 9.00          | < 0.380        | 0.0600           |
|            | 08/21/08             | 50.94            | 1.60                   | 13.2          |                | 0.0472           |
|            | 10/08/08             | 50.75            | -                      | - 12.0        | <3.54          | 0.0461           |
|            | 08/19/09             | 50.30            | 1.52                   | 13.0          | 1.45           | 0.0310           |
|            | 09/01/10             | 50.62            | 1.10                   | 23.0          | <3.50          | 0.0310           |
|            | 10/07/11             | 49.87            | 0.933                  | 17.6          | <b>1.85</b>    | 0.0175           |
|            | 10/10/12             | 52.25            | 1.27 J+                | 7.58<br>7.64  | 0.836          | 0.0232<br>0.0540 |
|            | 10/22/13             | 53.00<br>50.78   | 2.05<br>1.18           | 7.04<br>6.16  | 0.683<br>0.596 | 0.0340           |
|            | 10/23/14<br>11/06/15 | 51.12            | 1.18<br>1.15 J+        | 5.59          | 0.398          | 0.0398           |
| MW-13A     | 06/08/04             | 31.49            | 1.15 J+<br><b>19.0</b> | 20.0          | -              | 0.460            |
|            | 05/11/05             | 31.53            | 17.0                   | 11.0          |                | 0.430            |
|            | 05/16/06             | 31.28            | 15.0                   | 22.0          |                | 0.330            |
|            | 09/12/07             | 32.73            | 13.0                   | 7.90          | < 0.410        | 0.400            |
|            | 08/21/08             | 31.61            | 17.1                   | 16.4          | -              | 0.291            |
|            | 10/09/08             | 32.32            | -                      | -             | <3.54          | 0.293            |
|            | 08/18/09             | 32.31            | 9.73                   | 10.3          | 1.35           | 0.232            |
| i          | 09/01/10~            | 32.46            | 8.70                   | 18.0          | <1.40          | 0.260            |
|            | 10/7/2011~           | 31.59            | 8.62                   | 16.7          | 2.98           | 0.248            |
|            | 10/10/12             | 33.76            | 6.52                   | 10.1          | 1.55           | 0.167            |
|            | 10/22/13             | 32.77            | 7.15                   | 11.3          | 1.48           | 0.208            |
|            | 10/23/14             | 32.16            | 5.56                   | 11.2          | 1.47           | 0.154            |
|            | 11/06/15             | 32.58            | <b>3.54 J</b> +        | 5.8           | 1.21           | 0.112            |
| MW-14      | 06/08/04             | 33.36            | 4.70                   | 11.0          | -              | 0.011            |
|            | 05/11/05             | 33.50            | 5.00                   | 11.0          | -              | 0.012            |
|            | 05/15/06             | 33.81            | 5.20                   | 15.0          | -              | 0.018            |
|            | 08/21/08             | 32.93            | 4.38                   | 13.4          | -              | 0.00804          |
|            | 10/08/08             | 33.48            | -                      | -             | 1.65           | 0.00715          |
|            | 08/19/09             | 33.41            | 2.38                   | 5.25          | 0.596          | 0.0021           |
|            | 09/01/10             | 33.55            | 2.70                   | 9.00          | < 0.780        | 0.0040           |
|            | 10/07/11             | 32.51            | 2.64                   | 8.44          | 1.18           | 0.00371          |
|            | 10/26/12             | -                | 1.56 J+                | 2.90          | 0.195 J        | 0.00723          |
|            | 10/22/13             | -                | 3.06                   | 3.98          | 0.332 J        | 0.00731          |
|            | 10/23/14             | -                | 0.641 J                | 1.03          | < 0.250        | 0.00498 J        |
|            | 11/06/15             | -                | 1.1 J+                 | 1.69          | 0.576          | 0.00361          |

See Notes on Page 2

# TABLE 3 SUMMARY OF HISTORICAL GROUNDWATER DATA

|            |             |                  | Paramete        | Parameter Tested and Cleanup Level* in mg/L |         |         |  |  |  |  |
|------------|-------------|------------------|-----------------|---------------------------------------------|---------|---------|--|--|--|--|
|            |             | Groundwater      |                 |                                             |         |         |  |  |  |  |
| Monitoring |             | Elevation (feet) | GRO             | DRO                                         | RRO     | Benzene |  |  |  |  |
| Well       | Sample Date | MSL              | 2.2             | 1.5                                         | 1.1     | 0.0046  |  |  |  |  |
| MW-19R     | 09/12/07    | 34.49            | 3.50            | 6.90                                        | 6.50    | 0.020   |  |  |  |  |
|            | 08/21/08    | 34.24            | 5.16            | 4.19                                        | -       | 0.00448 |  |  |  |  |
|            | 10/08/08    | 34.26            | -               | -                                           | 1.09    | 0.00373 |  |  |  |  |
|            | 08/18/09    | 35.09            | 4.01            | 1.92                                        | < 0.385 | 0.00530 |  |  |  |  |
|            | 09/02/10    | 34.42            | 4.80            | 2.80                                        | < 0.350 | 0.00300 |  |  |  |  |
|            | 10/07/11    | 33.89            | 6.05            | 3.92                                        | 1.07    | 0.00214 |  |  |  |  |
|            | 10/10/12    | 35.59            | 3.25 J+         | 2.57                                        | 0.717   | 0.00159 |  |  |  |  |
|            | 10/22/13~   | 35.10            | 5.04            | 3.01                                        | 0.348 J | 0.00398 |  |  |  |  |
|            | 10/23/14    | 32.49            | 5.31            | 1.88                                        | 0.416 J | 0.0186  |  |  |  |  |
|            | 11/06/15    | 34.65            | <b>3.46 J</b> + | 1.36                                        | 0.542   | 0.0191  |  |  |  |  |

Notes:

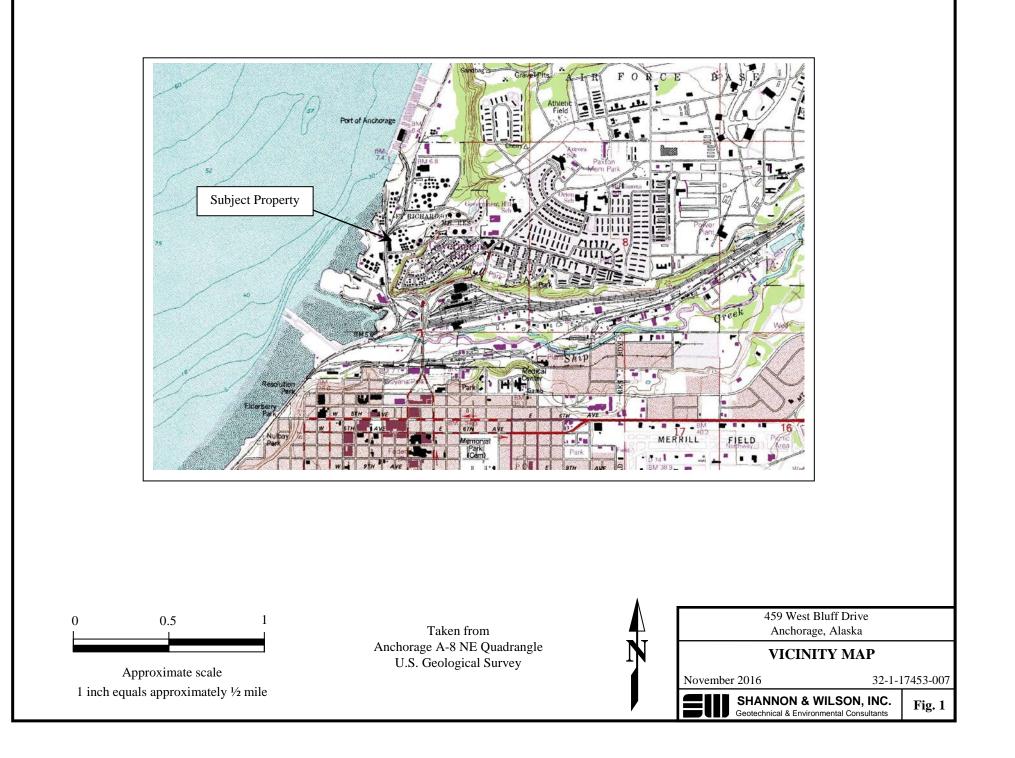
| mg/L    | = milligrams per liter                                                                |
|---------|---------------------------------------------------------------------------------------|
| MSL     | = Mean sea level                                                                      |
| GRO     | = Gasoline range organics                                                             |
| DRO     | = Diesel range organics                                                               |
| RRO     | = Residual range organics                                                             |
| 3.50    | = Reported concentration equals or                                                    |
|         | exceeds the 2016 regulated cleanup level                                              |
| -       | = Not applicable or sample not tested for this analyte                                |
| ~       | = The higher concentrations between primary and duplicate samples are tabulated       |
| J       | = Analyte detected, but at a concentration less than the laboratory reporting limit   |
| J+      | = Project result may be biased high due to surrogate failure (See LDRC, Attachment 2) |
| J-      | = Project result may be biased low due to surrogate failure (See LDRC, Attachment 2)  |
| < 0.380 | = Analyte not detected at or above the laboratory reporting limit of 0.380 mg/L       |
| *       | = Groundwater cleanup levels are from Table C, 18 AAC 75.345 (November 2016)          |

Data prior to 2011 provided by ARCADIS

| Parameter Tested                     | Primary Sample<br>MW-1 | Duplicate Sample<br>MW-2 | Precision<br>(RPD) | Precision<br>QC Limit |
|--------------------------------------|------------------------|--------------------------|--------------------|-----------------------|
| Gasoline Range Organics (GRO) - mg/L | 3.150                  | 3.490                    | 10%                | 30%                   |
| Diesel Range Organics (DRO) - mg/L   | 0.695                  | 0.531J                   | 27%                | 30%                   |
| Residual Range Organics (RRO) - mg/L | 0.485                  | 0.319 J                  | 41%                | 30%                   |
| Volatile Organic Compounds (VOCs)    |                        |                          |                    |                       |
| Benzene - mg/L                       | 0.628                  | 0.766                    | 20%                | 30%                   |
| Toluene - mg/L                       | 0.0421                 | 0.0492                   | 16%                | 30%                   |
| Ethylbenzene - mg/L                  | 0.0733                 | 0.0860                   | 16%                | 30%                   |
| Xylenes - mg/L                       | 0.0801                 | 0.0932                   | 15%                | 30%                   |

# TABLE 4QUALITY CONTROL DATA

Notes:


RPD = Relative percent difference

QC = Quality control

NA = RPD not calculated due to non-detectable results

mg/L = Milligrams per liter

**41%** = RPD is greater than the precision QC limit



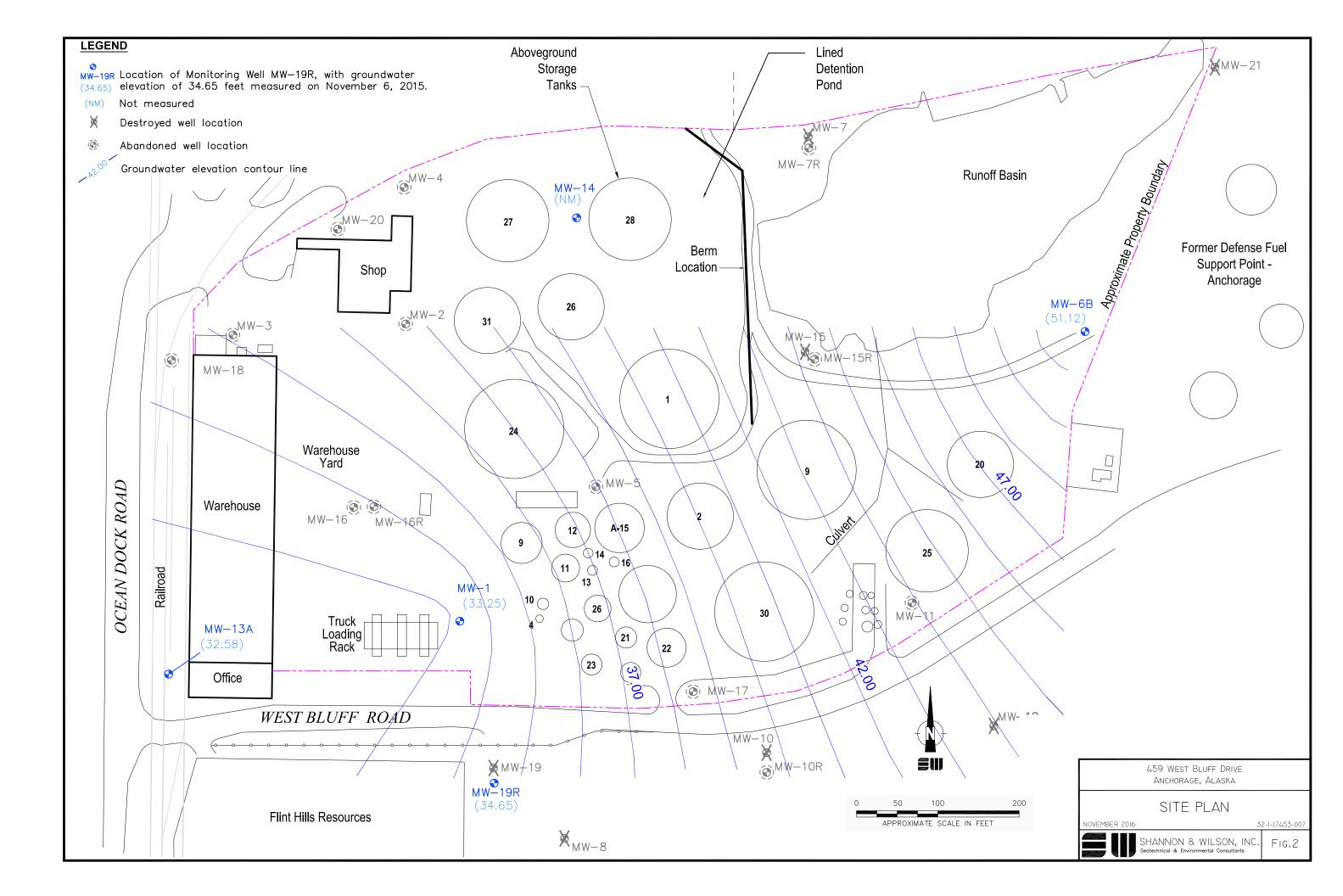
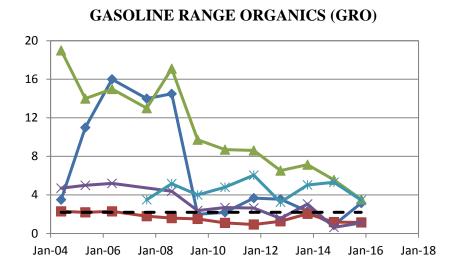
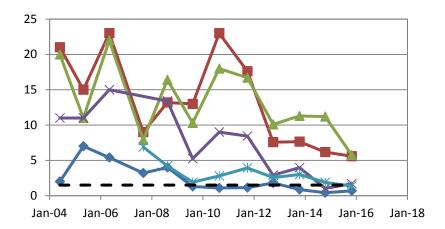
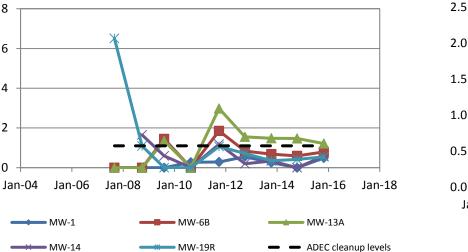
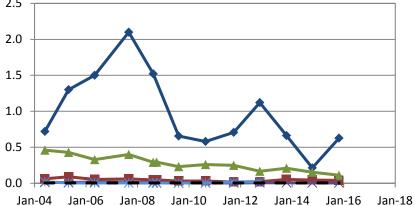





FIGURE 3 GRAPHS OF SELECT CONSITUENTS IN MILLIGRAMS PER LITER





**RESIDUAL RANGE ORGANICS (RRO)** 





#### BENZENE





8

6

4

2

0

## **ATTACHMENT 1**

## **FIELD NOTES**

|                                                                                          | LOW-FLOW V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WATER SAMPLING LOG                                        |                       |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|
| Shannon & Wilson, I                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                       |
| Job No: 1753-0                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | when ATF Weather: (loudy 35°                              | •                     |
|                                                                                          | -19K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                       |
| Date: <u>11615</u><br>Develop Date:                                                      | Time Started:<br>Develop End Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |                       |
| Develop Date.                                                                            | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |                       |
|                                                                                          | <b>INITIAL GROU</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NDWATER LEVEL DATA                                        |                       |
| Time of Depth Measur                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date of Depth Measurement:                                |                       |
|                                                                                          | : Top of PVC Casing/ Top of Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                       |
| Diameter of Casing:                                                                      | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Screen Interval:                                     |                       |
| Total Depth of Well B                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Product Thickness, if noted:                              |                       |
| Depth-to-Water (DTW<br>Water Column in Well                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Total Depth of Well Below MP - DTW Below MP)             |                       |
| Gallons per foot:                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                       |
| Gallons in Well:                                                                         | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Water Column in Well x Gallons per foot)                 |                       |
|                                                                                          | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |                       |
| · · · · ·                                                                                | PUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RGING DATA                                                |                       |
| Date Purged: 11 6                                                                        | 5 Time Started: <u>j</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 518 Time Completed: 1557                                  |                       |
| Three Well Volumes:                                                                      | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Gallons in Well x 3)                                     |                       |
| Gallons Purged:                                                                          | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth of Pump (generally 2 ft from bottom): <u>12</u>     |                       |
| Max. Drawdown (gene                                                                      | rally 0.3 ft): 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump Rate: 2                                              |                       |
| Well Purged Dry:                                                                         | Yes 🗆 No 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (If yes, use Well Purged Dry Log)                         |                       |
| Time: Gallons: Pump                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temp: Sp. Cond.: DO: pH: ORP:                             | Turb:                 |
| (L/mi                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (°C) (uS/cm) (mg/L) (S.U.) (mV)                           | (NTU)                 |
| <u>1521</u> <u>0.1</u> <u>0.7</u>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.72 <u><math>105</math></u> <u><math>100</math></u>      | 887.5                 |
| 1524 0.4 0.2                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{8.01}{510}$ $\frac{510}{1.28}$                     | 727.6                 |
| <u>1527 0.6 0.2</u>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{9'.00}{9.00}$ $\frac{485}{11/8}$ $\frac{6.78}{72}$ | 317.0                 |
| <u>1530 0.8 0.2</u><br>1533 1.2 0.2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{8.04}{8.05}$ $\frac{468}{454}$ $\frac{6.72}{6.68}$ | 214.6                 |
|                                                                                          | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | <u>152.0</u><br>112.2 |
| 1536 1.4 0.2                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.08 438 6.66                                             | 116.6                 |
|                                                                                          | SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IPLING DATA                                               |                       |
| Odor: $H(0)$                                                                             | dor 2 third an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Color: (lear                                              |                       |
| Sample Designation:                                                                      | 1753-007-MW-19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                     |                       |
| QC Sample Designation                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time / Date:                                              | <b>.</b>              |
| QA Sample Designation                                                                    | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time / Date:                                              |                       |
|                                                                                          | A second s |                                                           |                       |
|                                                                                          | adder Pump Submersible Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |                       |
| Sampling Method: Blac                                                                    | lder Pump / Submersible Pump / (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other:                                                    |                       |
| Sampling Method: Blac                                                                    | lder Pump / Submersible Pump / (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                       |
| Sampling Method: Blac<br>Water Quality Instrume                                          | lder Pump / Submersible Pump / Onter Submersible Pump / Onter Submersible Pump / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other:                                                    | -                     |
| Sampling Method: Blac<br>Water Quality Instrume<br>Calibration Info (Time,               | lder Pump / Submersible Pump / Onter Submersible Pump / Onter Submersible Pump / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other:                                                    |                       |
| Sampling Method: Blac<br>Water Quality Instrume<br>Calibration Info (Time,<br>Remarks: A | Ider Pump / Submersible Pump / (<br>nts Used/Manufacturer/Model Nu<br>Ranges, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other:                                                    | <br>                  |
| Sampling Method: Blac<br>Water Quality Instrume<br>Calibration Info (Time,               | Ider Pump / Submersible Pump / (<br>nts Used/Manufacturer/Model Nu<br>Ranges, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other:                                                    | <br><br>              |

t



#### LOW-FLOW WATER SAMPLING LOG

Shannon & Wilson, Inc.

Continued from previous page

| Job No:   | 1753-007  | Location: Crowly ATF | Site: |
|-----------|-----------|----------------------|-------|
| Well No.: | MW - 19 R |                      |       |
| Date:     | 11/6/15   |                      |       |

| Time:<br>1539<br>1541<br>1544<br>1547<br>1550<br>1553<br>1556<br>1557<br> | Gallons:<br>1.7<br>1.9<br>2.1<br>2.3<br>2.5<br>2.7<br>2.9<br>SAMPLE | Pump Rate $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ | DTW<br>(ft BMP):<br>5 15<br> | Drawdown<br>(ft):<br>0.21<br> | Temp: $(^{\circ}C)$ §. 17         §.27       §.28         §.25       §.31         §.33       §.33         §.34 | Sp. Cond.:<br>(uS/cm)<br><u>422</u><br><u>408</u><br><u>408</u><br><u>404</u><br><u>397</u><br><u>395</u><br><u>389</u> | DO:<br>(mg/L) | $\begin{array}{c} pH: \\ (S.U.) \\ \underline{6.63} \\ \underline{6.61} \\ \underline{6.60} \\ \underline{6.57} \\ \underline{6.57} \\ \underline{6.57} \\ \underline{6.56} \\ \hline \end{array}$ | ORP:<br>(mV)   | Turb:         (NTU) $69.6$ $41.4$ $31.8$ $26.9$ $16.4$ $13.2$ $9.99$ $9.99$ $9.99$ $9.99$ $9.99$ $9.99$ $9.99$ $9.99$ |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                           |                                                                     |                                                                                                                                                                                                                                                                                                                       |                              | STABILIZA                     | TION PARA                                                                                                      | METERS                                                                                                                  |               |                                                                                                                                                                                                    |                |                                                                                                                       |
|                                                                           | Interval<br>(minutes)                                               | Pump Rate<br>(mL/min):                                                                                                                                                                                                                                                                                                | Drawdown<br>(ft):            | Temp:<br>(°C)                 | Sp. Cond.:<br>(uS/cm)                                                                                          | DO:<br>(mg/L)                                                                                                           | рН:<br>(S.U.) | ORP:<br>(mV)                                                                                                                                                                                       | Turb:<br>(NTU) |                                                                                                                       |
| ADEC<br>⁄Iay 2010)                                                        | 3 to 5                                                              | 100 to 150                                                                                                                                                                                                                                                                                                            | <0.0328                      | ±3% or ±0.2                   | ±3%                                                                                                            | ±10%                                                                                                                    | ±0.1          | ±10                                                                                                                                                                                                | ±]             | 10%                                                                                                                   |
| EPA                                                                       | 5                                                                   | 50                                                                                                                                                                                                                                                                                                                    | <0.3                         | ±3%                           | ±3%                                                                                                            | ±10% or                                                                                                                 | ±0.1          | ±10                                                                                                                                                                                                | ±10% o         | or <5 NTU                                                                                                             |

Jan. 2010)

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

<0.5

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

|       |                                 |                                         | LOW          | /-FLOW W                                | ATER SA      | MPLING ]          | LOG              |                     |                                                   |               |
|-------|---------------------------------|-----------------------------------------|--------------|-----------------------------------------|--------------|-------------------|------------------|---------------------|---------------------------------------------------|---------------|
|       | Shannon & W                     | ilson, Inc.                             | Y            |                                         |              |                   |                  |                     |                                                   |               |
|       | Job No: <u>\\</u><br>Well No.:  | 453-00-<br>MW-13                        |              | on: Criss                               | itey AT      | F w               | eather: <u>C</u> | ondy                | 32°                                               | -             |
|       |                                 | 6115                                    |              | Started:                                | 219          | Tir               | me Complet       | ted: 170            | 4                                                 |               |
|       | Develop Date:                   | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |              | op End Time:                            |              |                   | 4 hour break     |                     | <b></b>                                           |               |
|       | Develop Date.                   |                                         |              | -                                       |              | <u> </u>          |                  | -7                  |                                                   |               |
| • .   |                                 |                                         |              | AL GROUI                                |              |                   |                  | 1110                | · ·                                               |               |
|       | Time of Depth                   |                                         |              | 4                                       |              | Depth Measu       |                  | 11011               |                                                   |               |
|       | Measuring Poin                  |                                         | of PVC Casir | ig / Top of Ste                         |              |                   |                  |                     |                                                   |               |
|       | Diameter of Ca                  | •                                       | /IP: 10      | 17                                      |              | creen Interval    |                  |                     |                                                   |               |
|       | Total Depth of                  |                                         |              | 13                                      | Produc       | t Thickness, i    | I noteu:         |                     |                                                   |               |
|       | Depth-to-Water<br>Water Column  |                                         |              | . 24                                    | <br>(Total ] | Depth of Well     | l Below MP       | - DTW Bel           | ow MP)                                            |               |
|       | Gallons per foc                 |                                         | 3            | 0.65                                    |              |                   |                  | DIWDON              | <i>y</i> (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)( |               |
|       | Gallons in Wel                  |                                         |              | 3.4                                     | (Water       | Column in W       | ell x Gallor     | ns per foot)        |                                                   |               |
|       |                                 | 1.                                      |              | <u> </u>                                | (            |                   |                  | 1 /                 |                                                   |               |
|       |                                 |                                         |              | PUF                                     | RGING DA     | <u>TA</u>         |                  | •                   |                                                   |               |
|       | Date Purged:                    | 1115                                    | - Tir        | ne Started:                             | 1630         | Tin               | ne Complete      | ed: 164             | 7                                                 | _             |
|       | Three Well Vo                   | 1 1                                     |              | 10.2                                    |              | s in Well x 3)    | )                |                     | _                                                 |               |
|       | Gallons Purged                  |                                         |              | 1.2                                     | Depth o      | of Pump (gene     | erally 2 ft fr   | om bottom):         | ~8_                                               | -             |
|       | Max. Drawdow                    |                                         | .3 ft):      | 0.67                                    | Pump         | Rate:             | 0.2              | ;                   |                                                   |               |
|       | Well Purged D                   | ry:                                     | Yes 🗆        | ] No 🗆                                  | (If yes,     | use Well Pur      | ged Dry Lo       | g)                  |                                                   |               |
| Time: | Gallons:                        | Pump Rate                               | DTW          | Drawdown                                | Temp:        | Sp. Cond.:        | DO:              | pH:                 | ORP:                                              | Turb:         |
| ~     |                                 | (L/min):                                | (ft BMP):    | (ft):                                   | (°C)         | (uS/cm)           | (mg/L)           | (S.U.)              | (mV)                                              | (NTU)         |
| 1633  |                                 | 0.2                                     | · Maser      |                                         | 7.25         | 442               | _                | 6.60                |                                                   | 126.0<br>80.2 |
| 16 36 |                                 | 0.2                                     |              |                                         | 7.36         | 439               | <u> </u>         | 6.61                |                                                   |               |
| 16 39 |                                 | 0.2                                     | 5.80         | 0.37                                    | 8.17         | <u>442</u><br>441 |                  | $\frac{6.61}{1.12}$ |                                                   | 28.6          |
| 16 41 | 0.7                             | 0.2                                     |              |                                         | 8.08         | 440               |                  | 6.62                |                                                   | 16.1          |
| 16 44 | 0.9                             | 0.2                                     | <u> </u>     | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 8.03         |                   |                  | 6.61                |                                                   | 19.7          |
| 1647  | 1.2                             | 0.2                                     | 6.10         | 0.67                                    | 7.98         | 439               | <u> </u>         | 0.01                |                                                   | 11.0          |
|       |                                 |                                         |              | SAM                                     | PLING DA     | <b>TA</b>         |                  |                     | 1                                                 |               |
|       | Odor: H(                        | Odar                                    | 1753-        | 007-MW-100                              | 3A > Color:  | Clear             |                  |                     |                                                   |               |
|       | Sample Designa                  | ation: -+                               | 7453-1       | 7-00                                    |              | Date: 164         | 18 .             | 11-6-               | -15                                               |               |
|       | QC Sample Des                   | signation:                              |              | 1.                                      | Time / ]     | Date:             |                  |                     |                                                   |               |
|       | QA Sample De                    | signation:                              |              | *<br>                                   | Time / 1     | Date:             |                  |                     |                                                   |               |
|       | Evacuation Met<br>Sampling Meth |                                         |              |                                         |              |                   |                  |                     |                                                   | <i>C</i> .    |
|       | Water Quality I                 |                                         |              |                                         |              |                   |                  |                     |                                                   | _             |
|       | Calibration Info                |                                         |              |                                         |              |                   |                  |                     |                                                   | _             |
|       | Remarks: N                      |                                         |              |                                         |              |                   |                  |                     | ~                                                 | -             |
|       | Remarks: <u>N</u>               | <u> </u>                                |              |                                         |              | ·.                |                  |                     |                                                   | <u> </u>      |
| •     | Sampling Perso                  | nnel: AR                                | A            |                                         |              |                   | `                |                     |                                                   | •             |
|       |                                 | WEI                                     | L CASING V   | /OLUMES (G                              | AL/FT): 1"   | = 0.04 2" =       | 0.16 (4"         | = 0.65              |                                                   |               |

t

ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

| Shannon & Wilson, Inc.                                                                                                                                                                                 | LOW-FLOW W                                                                                                               | ATER SAMPLING                                                                                                                                                                    | LOG                                                                  | а<br>К    | ·  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|----|
| Job No: <u>1753-007</u><br>Well No.: <u>NWJ-</u><br>Date: <u>116115</u><br>Develop Date:                                                                                                               | Location: <u>Crow</u><br><u>Location</u> : <u>Crow</u><br><u>Location</u> : <u>Crow</u><br><u>Location</u> : <u>Crow</u> |                                                                                                                                                                                  | Veather: <u>Cloudy</u><br>me Completed: <u>1239</u><br>4 hour break) |           |    |
|                                                                                                                                                                                                        | <b>INITIAL GROUN</b>                                                                                                     | DWATER LEVEL                                                                                                                                                                     | DATA                                                                 |           |    |
| Time of Depth Measuremen<br>Measuring Point (MP). To<br>Diameter of Casing:<br>Total Depth of Well Below<br>Depth-to-Water (DTW) Be<br>Water Column in Well:<br>Gallons per foot:<br>Gallons in Well:  | p of PVC Casing) Top of Stee<br>HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                     | Well Screen Interval<br>Product Thickness, i<br>(Total Depth of Wel                                                                                                              | r:                                                                   | 0w MP)    |    |
| Date Purged:<br>Three Well Volumes:<br>Gallons Purged:<br>Max. Drawdown (generally                                                                                                                     | 15Time Started:<br>9.6<br>2.5                                                                                            | (Gallons in Well x 3)                                                                                                                                                            | erally 2 ft from bottom):                                            | ,         |    |
| Well Purged Dry:                                                                                                                                                                                       | Yes 🗆 No 🗆                                                                                                               | (If yes, use Well Pur                                                                                                                                                            | ged Dry Log)                                                         | •         |    |
| Time:       Gallons:       Pump Rate (L/min): $1118$ $0.1$ $0.1$ $1148$ $0.15$ $0.1$ $1151$ $0.2$ $0.1$ $1151$ $0.2$ $0.1$ $1151$ $0.3$ $0.3$ $1154$ $0.5$ $0.3$ $1157$ $0.5$ $0.3$ $1157$ $0.5$ $0.3$ | DTW Drawdown<br>(ft BMP): (ft):<br>-<br>25.32 $0.44-25.40$ $0.12$                                                        | Temp:       Sp. Cond.: $(^{\circ}C)$ $(uS/cm)$ 5.66       636         5.55       631         5.50       631         5.98       633         6.51       644         6.64       646 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                | ORP: (mV) |    |
|                                                                                                                                                                                                        | SAMI                                                                                                                     | LING DATA                                                                                                                                                                        |                                                                      | -         |    |
| QC Sample Designation: _<br>QA Sample Designation: _<br>Evacuation Method: Bladde<br>Sampling Method: Bladder                                                                                          | 0 J<br>163-007-MW-6B<br>r Pump/Submersible Pump/<br>Pump/Submersible Pump/O<br>Jsed/Manufacturer/Model Num               | Color: <u>Clear</u><br>Time / Date: <u>1216</u><br>Time / Date: <u>-</u><br>Time / Date: <u>-</u><br>Other: <u>-</u>                                                             |                                                                      |           |    |
|                                                                                                                                                                                                        | ges, etc) (alibrated (                                                                                                   |                                                                                                                                                                                  | 15                                                                   |           |    |
|                                                                                                                                                                                                        | e purge wate                                                                                                             | ,                                                                                                                                                                                | ,                                                                    |           |    |
|                                                                                                                                                                                                        | A<br>LL CASING VOLUMES (GA<br>NNULAR SPACE VOLUME                                                                        |                                                                                                                                                                                  |                                                                      |           | L. |



#### LOW-FLOW WATER SAMPLING LOG

Shannon & Wilson, Inc.

Continued from previous page

| , i                                   | Jontinued             | nom previo             |                                         |                   |                                              |                       |               |                                        |              |                |
|---------------------------------------|-----------------------|------------------------|-----------------------------------------|-------------------|----------------------------------------------|-----------------------|---------------|----------------------------------------|--------------|----------------|
|                                       |                       | 1753-00.<br>MW-6B      | <b>7</b>                                | Location:         | wley AT                                      | F                     | Site:         | •                                      |              |                |
| Ι                                     | Date:                 | 16/1                   | 5                                       |                   |                                              |                       |               |                                        |              |                |
| Time:                                 | Gallons:              | Pump Rate<br>(L/min):  | DTW<br>(ft BMP):                        | Drawdown<br>(ft): | Temp:<br>(°C)                                | Sp. Cond.:<br>(uS/cm) | DO:<br>(mg/L) | рН:<br>(S.U.)                          | ORP:<br>(mV) | Turb:<br>(NTU) |
| 1203                                  | 0.9                   | 0.5                    | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                   | 6.76                                         | 1                     | 643           | 6.45                                   | Ĩ,           | <u> </u>       |
| 1206                                  | $\frac{0}{1}$         | 0.3                    | 25.42                                   | 0.14              | 6.84                                         |                       | 641           | 6.46                                   |              | 17,000         |
| 1209                                  | 1.5                   | 0.5                    |                                         | <u> </u>          | 6.89                                         |                       | 638           | 6.47                                   |              | Constants      |
| 1212                                  | 1.8                   | 0.3                    |                                         | ~                 | 6.91                                         |                       | 637           | 6.48                                   |              |                |
| 1215                                  | $\frac{1}{1.2}$       | 0.3                    | **enger**                               |                   | 6.94                                         |                       | 635           | 6.51                                   |              |                |
| 1010                                  | · -                   |                        |                                         |                   |                                              |                       | - <b>1</b>    | - <u>V</u> . <u>K</u> ada <u>a</u>     |              | ,              |
|                                       |                       | ·                      |                                         |                   |                                              |                       | <u> </u>      | ·                                      |              |                |
|                                       |                       |                        |                                         |                   |                                              |                       |               |                                        |              | ·              |
| · · · · · · · · · · · · · · · · · · · | ·                     |                        |                                         |                   |                                              |                       |               |                                        |              |                |
|                                       | -                     |                        |                                         |                   |                                              |                       |               |                                        |              |                |
| , <del>.</del>                        |                       |                        |                                         |                   | •                                            |                       |               |                                        |              |                |
| <u></u>                               | •                     | <u></u>                |                                         |                   |                                              |                       |               |                                        |              |                |
|                                       |                       | •                      |                                         |                   |                                              |                       |               | <i></i>                                |              |                |
|                                       |                       |                        |                                         |                   |                                              |                       |               |                                        |              |                |
|                                       |                       |                        |                                         |                   |                                              |                       | <b></b>       |                                        |              |                |
|                                       |                       |                        |                                         |                   |                                              |                       |               | . <u></u>                              |              |                |
|                                       |                       |                        |                                         |                   | <u>.                                    </u> |                       |               |                                        |              | ·              |
|                                       |                       |                        |                                         | •                 |                                              |                       |               |                                        |              |                |
| <u></u>                               |                       |                        |                                         |                   | <u></u>                                      |                       |               |                                        |              | <u>.</u>       |
|                                       |                       |                        | <u></u>                                 |                   |                                              |                       |               |                                        |              |                |
|                                       |                       |                        |                                         | <b>.</b>          |                                              |                       |               |                                        |              | ·····          |
|                                       |                       |                        |                                         |                   |                                              |                       |               | •••••••••••••••••••••••••••••••••••••• |              |                |
|                                       |                       |                        |                                         |                   |                                              | l                     | -             |                                        | •            |                |
|                                       | •                     |                        |                                         | STABILIZA         | TION PARA                                    | METERS                |               |                                        |              |                |
|                                       | Interval<br>(minutes) | Pump Rate<br>(mL/min): | Drawdown<br>(ft):                       | Temp:<br>(°C)     | Sp. Cond.:<br>(uS/cm)                        | DO:<br>(mg/L)         | рН:<br>(S.U.) | ORP:<br>(mV)                           |              | rb:<br>FU)     |
| ADEC<br>⁄Iay 2010)                    | 3 to 5                | 100 to 150             | <0.0328                                 | ±3% or ±0.2       | ±3%                                          | ±10%                  | ±0.1          | ±10                                    | ±10          | 0%             |
| EPA<br>Jan. 2010)                     | 5                     | 50                     | <0.3                                    | ±3%               | ±3%                                          | ±10% or<br><0.5       | ±0.1          | ±10                                    | ±10% or      | · <5 NTU       |

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

| ·                                                                                                               | e                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shannon & Wilson, Inc.                                                                                          | LOW-FLOW WATER SAMPLIN                      | NG LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Job No: <u>1753-097</u>                                                                                         | Location: Convibul ATF                      | Weather: (Lundah 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Well No.: $N(N) - 14$                                                                                           | Location: Linulay AIF                       | Weather: (Wudy 30s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date:6 15                                                                                                       | Time Started: 12 H 3                        | Time Completed: $1359$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Develop Date:                                                                                                   | Develop End Time:                           | (24 hour break)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                 | INITIAL GROUNDWATER LEV                     | EL DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Time of Depth Measurement:                                                                                      | <u> </u>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Summer and Statement and St | C Casing Top of Steel Protective Casing /   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Diameter of Casing:<br>Total Depth of Well Below MP:                                                            | Well Screen Internet                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Depth-to-Water (DTW) Below M                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Water Column in Well:                                                                                           | (Total Depth of                             | Well Below MP - DTW Below MP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gallons per foot:                                                                                               | 0.65                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gallons in Well:                                                                                                | 5,3. (Water Column                          | in Well x Gallons per foot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                 | PURGING DATA                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date Purged: 11615                                                                                              | Time Started: 1253                          | Time Completed: 1322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Three Well Volumes:                                                                                             | 15, 45 (Gallons in Well                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gallons Purged:                                                                                                 |                                             | (generally 2 ft from bottom): $\sim 1  \text{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Max. Drawdown (generally 0.3 ft)                                                                                | : О.О.Ь Pump Rate:                          | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Well Purged Dry:                                                                                                | Yes 🗆 No 🗆 (If yes, use Well                | Purged Dry Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A A                                                                                                             | TW Drawdown Temp: Sp. Cor                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (L/min): (ft)<br>1257 0.1 0.2 -                                                                                 | BMP): (ft): (°C) (uS/cn<br>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1300 0.2 0.2 4                                                                                                  | 5 0.05 5.22 310                             | $\frac{1}{1}$ $\frac{1}$ |
| 1303 0.4 0.2                                                                                                    | 5.46 311                                    | 6.82 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1306 0.6 0.2 -                                                                                                  | 5.66 313                                    | 6.73 32.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                 | 51 0.05 5.82 315                            | 6.77 27.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1312 1.2 0.2 -                                                                                                  | <u> </u>                                    | 6-80 26.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                 | SAMPLING DATA                               | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Odor: Slight Sulfur                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                 |                                             | 322 11/6/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| QC Sample Designation:                                                                                          | Time / Date:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                 |                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                 | / Submersible Pump / Other:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                 | anufacturer/Model Number                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                 | )                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Remarks:                                                                                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sampling Personnel: ARA                                                                                         |                                             | بر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| · WELL CA                                                                                                       | SING VOLUMES (GAL/FT): $1^{\circ} = 0.04$ 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ANNUL                                                                                                           | AR SPACE VOLUME (GAL/FT): 4" casing         | and 2'' well = 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### LOW-FLOW WATER SAMPLING LOG

Shannon & Wilson, Inc.

## Continued from previous page

1

| Job No:   | 1753-007 | Location: _ | Crowley | ATF | Site: |  |
|-----------|----------|-------------|---------|-----|-------|--|
| Well No.: | MW-14    |             |         |     |       |  |
| Date:     | 11/6/13  |             |         |     |       |  |

| Time:      | Gallons:                               | Pump Rate<br>(L/min):     | DTW<br>(ft BMP): | Drawdown<br>(ft): | Temp:<br>(°C)                         | Sp. Cond.:<br>(uS/cm)                  | DO:<br>(mg/L) | рН:<br>(S.U.) | ORP:<br>(mV) | Turb:<br>(NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------------------------------------|---------------------------|------------------|-------------------|---------------------------------------|----------------------------------------|---------------|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 315        | 1.5                                    | 0.2                       | ~                | ~~~               | 5.95                                  | 316                                    | ( <b>g</b> )  | 6-81          |              | 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1318       | 1.8                                    | 0.2                       | 4.52             | 0.06              | 6.01                                  | 317                                    |               | 6.84          |              | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1321       | 2.2                                    | 0.3                       |                  |                   | 6.04                                  | 318                                    | +             | 6.85          |              | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1322       | _SAM                                   | PLG T                     | INE              |                   |                                       |                                        |               |               | -+-          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u> </u>   |                                        | Annal 1 and 1 and 1 and 1 |                  | <b>_</b>          | •                                     |                                        |               |               |              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | . <u> </u>                             | . <u></u>                 | . <u></u>        |                   |                                       |                                        |               |               |              | ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <u> </u>                               |                           |                  |                   |                                       |                                        |               | . <u> </u>    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        | ·                         |                  |                   |                                       |                                        | -             |               |              | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | -                                      |                           |                  |                   |                                       |                                        |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •          |                                        | <u></u>                   |                  |                   | •                                     |                                        |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        | ·                         |                  |                   |                                       |                                        |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        | •                         |                  | <u> </u>          |                                       |                                        |               |               |              | terrestation of the second state of the second |
| • <u> </u> |                                        | . <u></u>                 |                  |                   |                                       |                                        |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        |                           |                  |                   | <u> </u>                              | . <u> </u>                             |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        | ·                         |                  |                   |                                       |                                        | <u> </u>      |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·····      |                                        |                           | ·                |                   | · · · · · · · · · · · · · · · · · · · | ······································ |               |               |              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                        | **                        | ·                |                   |                                       |                                        |               | ·             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·          | ······································ | . <u></u>                 | <u></u>          |                   |                                       |                                        |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        |                           |                  |                   |                                       |                                        |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        |                           |                  |                   |                                       |                                        |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        |                           |                  |                   |                                       |                                        | ,             |               | l            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                        |                           |                  | STABILIZAT        | 'ION PARAM                            | <b>IETERS</b>                          |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Intorrol                               | Dumn Data                 | Drowdown         | Tomn              | Sn Cond ·                             | DO                                     | nH·           | ORP           | T            | urh•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                   | Interval<br>(minutes) | Pump Rate<br>(mL/min): | Drawdown<br>(ft): | Temp:<br>(°C) | Sp. Cond.:<br>(uS/cm) | DO:<br>(mg/L)   | рН:<br>(S.U.) | ORP:<br>(mV) | Turb:<br>(NTU) |
|-------------------|-----------------------|------------------------|-------------------|---------------|-----------------------|-----------------|---------------|--------------|----------------|
| ADEC<br>May 2010) | 3 to 5                | 100 to 150             | <0.0328           | ±3% or ±0.2   | ±3%                   | ±10%            | ±0.1          | ±10          | ±10%           |
| EPA<br>Jan. 2010) | 5                     | 50                     | <0.3              | ±3%           | ±3%                   | ±10% or<br><0.5 | ±0.1          | ±10          | ±10% or <5 NTU |

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

| Shann                                                         | <b>Market</b><br>on & Wilson, Inc.                                                                                                                | LOW-FLOW                                                                                       | WATER SAMI                                                                                                                               | PLING LOG                                                                                                                                               |                                                                        |                                                          |     |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|-----|
|                                                               | 1763-007                                                                                                                                          | Location: Cro                                                                                  | wley ATF                                                                                                                                 | Weather:                                                                                                                                                | Clundy                                                                 | 30°s                                                     |     |
| Date:<br>Develop                                              | 11/6/15                                                                                                                                           | Time Started:<br>Develop End Time                                                              |                                                                                                                                          |                                                                                                                                                         | eted: <u>1500</u><br>ak)                                               |                                                          |     |
|                                                               |                                                                                                                                                   | INITIAL GROU                                                                                   | JNDWATER L                                                                                                                               | LEVEL DATA                                                                                                                                              |                                                                        |                                                          |     |
| Measur<br>Diamete<br>Total D<br>Depth-t<br>Water C<br>Gallons | f Depth Measuremen<br>ing Point (MP): Top<br>er of Casing:<br>epth of Well Below<br>o-Water (DTW) Bel<br>Column in Well:<br>per foot:<br>in Well: | t: <u>1034</u><br>of PVC Casing / <u>Top of S</u><br>- <del>5,51,6 4</del><br>MP: <u>14 11</u> | Date of De<br>teel Protective Cas                                                                                                        | epth Measurement:                                                                                                                                       |                                                                        | <u>ς</u><br><br>w MP)                                    |     |
|                                                               |                                                                                                                                                   | DI                                                                                             | RGING DATA                                                                                                                               |                                                                                                                                                         |                                                                        |                                                          |     |
| Gallons                                                       | rged:                                                                                                                                             | 5 Time Started:2.2                                                                             | 14 0 년<br>(Gallons in                                                                                                                    | Time Comple<br>Well x 3)<br>ump (generally 2 ft 1                                                                                                       | ted: <u>142</u><br>from bottom): <u>-</u>                              | ,                                                        |     |
| Well Pu                                                       | rged Dry:                                                                                                                                         | Yes 🗖 No 🗗                                                                                     | (If yes, use                                                                                                                             | Well Purged Dry L                                                                                                                                       | og)                                                                    |                                                          |     |
| 14107 0<br>1410 0.<br>1413 0.<br>1416 0.                      | Ions:         Pump Rate (L/min): $1$ $0.2$ $3$ $0.2$ $6$ $0.3$ $9$ $0.3$ $9$ $0.3$ $3$ $0.3$ $6$ $0.3$ $6$ $0.3$                                  | DTW Drawdown<br>(ff BMP): (ff):<br>                                                            | (°C)<br><u>8.49</u><br><u>8.80</u><br><u>8.87</u><br><u>8.87</u><br><u>8.87</u><br><u>8.88</u><br><u>8.88</u><br><u>8.90</u><br><u>4</u> | p. Cond.:       DO: $(uS/cm)$ $(mg/L)$ $1/89$ (mg/L) $1314$ (mg/L) $1324$ (mg/L) $1324$ (mg/L) $1324$ (mg/L) $1324$ (mg/L) $1324$ (mg/L) $13277$ (mg/L) | pH:<br>(S.U.)<br>6.587<br>6.87<br>6.95<br>6.95<br>6.98<br>7.00<br>7.02 | ORP: Tur<br>(mV) (NT<br>55<br>45<br>33<br>27<br>23<br>19 | TU) |
|                                                               |                                                                                                                                                   | SAN                                                                                            | <b>IPLING DATA</b>                                                                                                                       | <u>A</u>                                                                                                                                                |                                                                        |                                                          |     |
| QC Sam<br>QA Sam                                              | ple Designation:<br>ple Designation:                                                                                                              | 753-007-MW-<br>753-007-MW-<br>Pump/Submersible Pump                                            | Z   Time / Date      Time / Date                                                                                                         | <u>(llar</u><br>e: <u>1428</u><br>e: <u>1448</u><br>e:                                                                                                  |                                                                        | 5<br>5                                                   | ·   |
|                                                               |                                                                                                                                                   | Pump Submersible Pump                                                                          |                                                                                                                                          |                                                                                                                                                         |                                                                        |                                                          |     |
| Water Q                                                       | uality Instruments U                                                                                                                              | sed/Manufacturer/Model N                                                                       | lumber                                                                                                                                   |                                                                                                                                                         |                                                                        |                                                          |     |
| Calibrat                                                      | ion Info (Time, Rang                                                                                                                              | ges, etc)                                                                                      |                                                                                                                                          |                                                                                                                                                         |                                                                        |                                                          |     |
| Remarks                                                       | : _ Sheen in _                                                                                                                                    | purge water                                                                                    |                                                                                                                                          |                                                                                                                                                         |                                                                        |                                                          |     |
| Samplin                                                       |                                                                                                                                                   | A<br>LL CASING VOLUMES (<br>NULAR SPACE VOLUM                                                  | GAL/FT): $1^{"} = 0$ .                                                                                                                   |                                                                                                                                                         | = 0.65                                                                 |                                                          |     |



Shannon & Wilson, Inc.

#### **LOW-FLOW WATER SAMPLING LOG**

Continued from previous page

٦.

| Job No:   | 1753-007 | Location: (nowley | ATF | Site:     |
|-----------|----------|-------------------|-----|-----------|
| Well No.: | MW-1     | U.                |     | • · · · · |
| Date:     | 11-6-15  |                   |     |           |
|           |          |                   |     |           |

| Time:<br><u>14 2 <b>4</b></u><br>14 2 7 | Gallons:<br><u>1. 9</u><br>2. 2 | Pump Rate<br>(L/min):<br>0.3<br>0.3 | DTW<br>(ft BMP):  | Drawdown<br>(ft):<br> | Temp:<br>(°C)<br><b>%</b> ~89<br>8.90 | Sp. Cond.:<br>(uS/cm)<br><u>4259</u><br><u>4240</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DO:<br>(mg/L)    | pH:<br>(S.U.)<br>7. 03<br>7.03 | ORP:<br>(mV) | Turb:<br>(NTU)<br><u>16.64</u><br>13.5 |
|-----------------------------------------|---------------------------------|-------------------------------------|-------------------|-----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|--------------|----------------------------------------|
| 1428                                    |                                 | TIVE                                |                   | ·                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
|                                         | Amount of a second              |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
|                                         |                                 |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · _ <del> </del> |                                |              | •·····                                 |
|                                         |                                 | ( <u>f</u>                          |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              | ·                                      |
|                                         |                                 |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
|                                         | ·                               |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                |                                |              |                                        |
| · · · · · ·                             |                                 |                                     |                   | <u> </u>              |                                       | Name and the first of the first state of the second state of the s |                  |                                |              |                                        |
|                                         | <u></u>                         | <u></u>                             | L                 |                       | ·                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
|                                         |                                 | · · ·                               | · · · ·           | ·                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
| ·                                       |                                 |                                     | · .               |                       |                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                |              |                                        |
|                                         |                                 |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
|                                         |                                 |                                     |                   |                       | ·•                                    | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | <u> </u>                       | <u> </u>     |                                        |
|                                         | <u> </u>                        | . <u></u>                           |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              | <u></u>                                |
|                                         |                                 |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
|                                         | · · ·                           |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              |                                        |
|                                         |                                 |                                     | •1                |                       | <u></u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>         |                                |              | ·                                      |
|                                         |                                 |                                     |                   |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                |              | ·                                      |
|                                         |                                 |                                     |                   | STABILIZAT            | TION PARA                             | METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                |              |                                        |
|                                         | Interval<br>(minutes)           | Pump Rate<br>(mL/min):              | Drawdown<br>(ft): | Temp:<br>(°C)         | Sp. Cond.:<br>(uS/cm)                 | DO:<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | рН:<br>(S.U.)    | ORP:<br>(mV)                   |              | urb:<br>NTU)                           |
| ADEC                                    | 3 to 5                          | 100 to 150                          | <0.0328           | ±3% or ±0.2           | ±3%                                   | ±10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.1             | ±10                            | ±            | 10%                                    |

EPA Jan. 2010) 5

50

< 0.3

/Iay 2010)

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

±3%

±10% or

<0.5

±0.1

±10

±10% or <5 NTU

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

±3%

## **ATTACHMENT 2**

## **RESULTS OF ANALYTICAL TESTING BY**

## SGS NORTH AMERICA INC. OF ANCHORAGE, ALASKA

#### AND

## ADEC LABORATORY DATA REVIEW CHECKLISTS



#### Laboratory Report of Analysis

To: Shannon & Wilson, Inc. 5430 Fairbanks St Ste #3 Anchorage, AK 99518 907-561-2120

Report Number: **1156607** 

Client Project: 32-1-17453-007 Crowley GW

Dear Matt Hemry,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Victoria Pennick Project Manager Victoria.Pennick@sgs.com Date

Print Date: 11/17/2015 11:07:59AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com



#### Case Narrative

#### SGS Client: Shannon & Wilson, Inc. SGS Project: 1156607 Project Name/Site: 32-1-17453-007 Crowley GW Project Contact: Matt Hemry

Refer to sample receipt form for information on sample condition.

#### 17453-007-MW-6B (1156607001) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (304%) does not meet QC criteria due to matrix interference.

#### 17453-007-MW-14 (1156607002) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (176%) does not meet QC criteria due to matrix interference.

#### 17453-007-MW-1 (1156607003) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (151%) does not meet QC criteria due to matrix interference.

#### 17453-007-MW-2 (1156607004) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (155%) does not meet QC criteria due to matrix interference.

#### 17453-007-MW-19R (1156607005) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (425%) does not meet QC criteria due to matrix interference.

#### 17453-007-MW-13A (1156607006) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (154%) does not meet QC criteria due to matrix interference.

\*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/17/2015 11:07:59AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group



#### Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

| *                                                  | The analyte has exceeded allowable regulatory or control limits.                     |
|----------------------------------------------------|--------------------------------------------------------------------------------------|
| !                                                  | Surrogate out of control limits.                                                     |
| В                                                  | Indicates the analyte is found in a blank associated with the sample.                |
| CCV/CVA/CVB                                        | Continuing Calibration Verification                                                  |
| CCCV/CVC/CVCA/CVCB                                 | Closing Continuing Calibration Verification                                          |
| CL                                                 | Control Limit                                                                        |
| D                                                  | The analyte concentration is the result of a dilution.                               |
| DF                                                 | Dilution Factor                                                                      |
| DL                                                 | Detection Limit (i.e., maximum method detection limit)                               |
| E                                                  | The analyte result is above the calibrated range.                                    |
| F                                                  | Indicates value that is greater than or equal to the DL                              |
| GT                                                 | Greater Than                                                                         |
| IB                                                 | Instrument Blank                                                                     |
| ICV                                                | Initial Calibration Verification                                                     |
| J                                                  | The quantitation is an estimation.                                                   |
| JL                                                 | The analyte was positively identified, but the quantitation is a low estimation.     |
| LCS(D)                                             | Laboratory Control Spike (Duplicate)                                                 |
| LOD                                                | Limit of Detection (i.e., 1/2 of the LOQ)                                            |
| LOQ                                                | Limit of Quantitation (i.e., reporting or practical quantitation limit)              |
| LT                                                 | Less Than                                                                            |
| Μ                                                  | A matrix effect was present.                                                         |
| MB                                                 | Method Blank                                                                         |
| MS(D)                                              | Matrix Spike (Duplicate)                                                             |
| ND                                                 | Indicates the analyte is not detected.                                               |
| Q                                                  | QC parameter out of acceptance range.                                                |
| R                                                  | Rejected                                                                             |
| RPD                                                | Relative Percent Difference                                                          |
| U                                                  | Indicates the analyte was analyzed for but not detected.                             |
| Sample summaries which<br>All DRO/RRO analyses are | include a result for "Total Solids" have already been adjusted for moisture content. |

Print Date: 11/17/2015 11:08:01AM

Note:



| Sample | Summary |
|--------|---------|
|--------|---------|

| Client Sample ID | Lab Sample ID | Collected  | Received   | <u>Matrix</u>                 |
|------------------|---------------|------------|------------|-------------------------------|
| 17453-007-MW-6B  | 1156607001    | 11/06/2015 | 11/09/2015 | Water (Surface, Eff., Ground) |
| 17453-007-MW-14  | 1156607002    | 11/06/2015 | 11/09/2015 | Water (Surface, Eff., Ground) |
| 17453-007-MW-1   | 1156607003    | 11/06/2015 | 11/09/2015 | Water (Surface, Eff., Ground) |
| 17453-007-MW-2   | 1156607004    | 11/06/2015 | 11/09/2015 | Water (Surface, Eff., Ground) |
| 17453-007-MW-19R | 1156607005    | 11/06/2015 | 11/09/2015 | Water (Surface, Eff., Ground) |
| 17453-007-MW-13A | 1156607006    | 11/06/2015 | 11/09/2015 | Water (Surface, Eff., Ground) |
| 17453-007-WTB    | 1156607007    | 11/06/2015 | 11/09/2015 | Water (Surface, Eff., Ground) |
|                  |               |            |            |                               |

Method

AK101 SW8021B AK102 AK103

#### Method Description

AK101/8021 Combo. AK101/8021 Combo. DRO/RRO Low Volume Water DRO/RRO Low Volume Water

Print Date: 11/17/2015 11:08:02AM



#### **Detectable Results Summary**

| Client Sample ID: 17453-007-MW-6B |                         |        |               |
|-----------------------------------|-------------------------|--------|---------------|
| Lab Sample ID: 1156607001         | Parameter               | Result | <u>Units</u>  |
| Semivolatile Organic Fuels        | Diesel Range Organics   | 5.59   | mg/L          |
|                                   | Residual Range Organics | 0.794  | mg/L          |
| Volatile Fuels                    | Benzene                 | 39.8   | ug/L          |
|                                   | Ethylbenzene            | 102    | ug/L          |
|                                   | Gasoline Range Organics | 1.15   | mg/L          |
|                                   | o-Xylene                | 4.29   | ug/L          |
|                                   | P & M -Xylene           | 113    | ug/L          |
|                                   | Toluene                 | 0.640J | ug/L          |
| Client Sample ID: 17453-007-MW-14 |                         |        |               |
| Lab Sample ID: 1156607002         | Parameter               | Result | <u>Units</u>  |
| Semivolatile Organic Fuels        | Diesel Range Organics   | 1.69   | mg/L          |
| -                                 | Residual Range Organics | 0.576  | mg/L          |
| Volatile Fuels                    | Benzene                 | 3.61   | ug/L          |
|                                   | Ethylbenzene            | 55.0   | ug/L          |
|                                   | Gasoline Range Organics | 1.10   | mg/L          |
|                                   | o-Xylene                | 4.21   | ug/L          |
|                                   | P & M -Xylene           | 104    | ug/L          |
|                                   | Toluene                 | 1.35   | ug/L          |
| Client Sample ID: 17453-007-MW-1  |                         |        |               |
| Lab Sample ID: 1156607003         | Parameter               | Result | Units         |
| Semivolatile Organic Fuels        | Diesel Range Organics   | 0.695  | mg/L          |
| <b>.</b>                          | Residual Range Organics | 0.485  | mg/L          |
| Volatile Fuels                    | Benzene                 | 628    | ug/L          |
|                                   | Ethylbenzene            | 73.3   | ug/L          |
|                                   | Gasoline Range Organics | 3.15   | mg/L          |
|                                   | o-Xylene                | 5.97   | ug/L          |
|                                   | P & M -Xylene           | 74.1   | ug/L          |
|                                   | Toluene                 | 42.1   | ug/L          |
| Client Sample ID: 17453-007-MW-2  |                         |        |               |
| Lab Sample ID: 1156607004         | Parameter               | Result | Units         |
| Semivolatile Organic Fuels        | Diesel Range Organics   | 0.531J | mg/L          |
|                                   | Residual Range Organics | 0.319J | mg/L          |
| Volatile Fuels                    | Benzene                 | 766    | ug/L          |
|                                   | Ethylbenzene            | 86.0   | ug/L          |
|                                   | Gasoline Range Organics | 3.49   | mg/L          |
|                                   | o-Xylene                | 6.90   | ug/L          |
|                                   | P & M -Xylene           | 86.3   | ug/L          |
|                                   | Toluene                 | 49.2   | ug/L          |
|                                   |                         | 10.2   | ~-3, <b>–</b> |

Print Date: 11/17/2015 11:08:03AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com



#### **Detectable Results Summary**

| Client Sample ID: 17453-007-MW-19R |                         |               |              |
|------------------------------------|-------------------------|---------------|--------------|
| Lab Sample ID: 1156607005          | Parameter               | Result        | Units        |
| Semivolatile Organic Fuels         | Diesel Range Organics   | 1.36          | mg/L         |
|                                    | Residual Range Organics | 0.542         | mg/L         |
| Volatile Fuels                     | Benzene                 | 19.1          | ug/L         |
|                                    | Ethylbenzene            | 19.3          | ug/L         |
|                                    | Gasoline Range Organics | 3.46          | mg/L         |
|                                    | o-Xylene                | 2.81          | ug/L         |
|                                    | P & M -Xylene           | 47.8          | ug/L         |
|                                    | Toluene                 | 3.76          | ug/L         |
| Client Sample ID: 17453-007-MW-13A |                         |               |              |
| Lab Sample ID: 1156607006          | Parameter               | <u>Result</u> | <u>Units</u> |
| Semivolatile Organic Fuels         | Diesel Range Organics   | 5.76          | mg/L         |
|                                    | Residual Range Organics | 1.21          | mg/L         |
| Volatile Fuels                     | Benzene                 | 112           | ug/L         |
|                                    | Ethylbenzene            | 361           | ug/L         |
|                                    | Gasoline Range Organics | 3.54          | mg/L         |
|                                    | o-Xylene                | 10.7          | ug/L         |
|                                    | P & M -Xylene           | 475           | ug/L         |
|                                    | Toluene                 | 13.8          | ug/L         |
|                                    |                         |               |              |

Print Date: 11/17/2015 11:08:03AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

| SGS |  |
|-----|--|
|     |  |

| ParameterResult QualLOQ/CLDLUnitsDFLimitsDiesel Range Organics5.590.5660.170mg/L1Surrogates5a Androstane (surr)77.350-150%1Batch InformationAnalytical Batch: XFC12205Analytical Method: AK102Analytical Date/Time: 11/13/15 11:34Prep Batch: XXX34610Container ID: 1156607001-DPrep Initial Wt./Vol.: 265 mLPrep Extract Vol: 1 mLAllowab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1       11/13/15 11:34         1       11/13/15 11:34         5 09:09                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ParameterResult QualLOQ/CLDLUnitsDELimitsDiesel Range Organics5.590.5660.170mg/L1Surrogates5a Androstane (surr)77.350-150%1Batch InformationAnalytical Batch: XFC12205<br>Analytical Method: AK102<br>Analytical Date/Time: 11/13/15 11:34<br>Container ID: 1156607001-DPrep Batch: XXX34610<br>Prep Date/Time: 11/11/15 09:09<br>Prep Initial Wt./Vol.: 265 mL<br>Prep Extract Vol: 1 mLParameterResult Qual<br>0.794LOQ/CL<br>0.472DL<br>0.142Units<br>mg/LAllowab<br>LimitsParameterResult Qual<br>0.794LOQ/CL<br>0.472DL<br>0.142Mits<br>mg/LAllowab<br>LimitsSurrogates<br>n-Triacontane-d62 (surr)85.750-150%1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE         Limits         Date Analyzed           1         11/13/15 11:34           1         11/13/15 11:34           5 09:09         mL           DE         Limits         Date Analyzed           1         11/13/15 11:34           J         Allowable         Date Analyzed           1         11/13/15 11:34           1         11/13/15 11:34           1         11/13/15 11:34 |
| urrogates         5a Androstane (surr)       77.3       50-150       %       1         Batch Information         Analytical Batch: XFC12205       Prep Batch: XXX34610         Analytical Method: AK102       Prep Method: SW3520C         Analytical Date/Time: 11/13/15 11:34       Prep Date/Time: 11/11/15 09:09         Container ID: 1156607001-D       Prep Initial Wt./Vol.: 265 mL         Prep Extract Vol: 1 mL       Prep Extract Vol: 1 mL         Parameter       Result Qual       LOQ/CL       DL       Units       DE       Limits         Progates       0.794       0.472       0.142       mg/L       1         urrogates       85.7       50-150       %       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         11/13/15 11:34           5 09:09         mL           DF         Limits         Date Analyzed           1         11/13/15 11:34           1         11/13/15 11:34                                                                                                                                                                                                                |
| 5a Androstane (surr)       77.3       50-150       %       1         Batch Information         Analytical Batch: XFC12205         Analytical Method: AK102       Prep Batch: XXX34610         Analytical Method: AK102       Prep Date/Time: 11/11/15 09:09         Analytical Date/Time: 11/13/15 11:34       Prep Initial Wt./Vol.: 265 mL         Container ID: 1156607001-D       Prep Extract Vol: 1 mL         Parameter       Result Qual       LOQ/CL       DL       Units       DF         Limits       0.794       0.472       0.142       mg/L       1         Allowab         urrogates       n-Triacontane-d62 (surr)       85.7       50-150       %       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 09:09<br>mL<br><u>DF Limits Date Analyzed</u><br>1 11/13/15 11:34<br>1 11/13/15 11:34                                                                                                                                                                                                                                                                                                      |
| Analytical Batch: XFC12205       Prep Batch: XXX34610         Analytical Method: AK102       Prep Method: SW3520C         Analyst: NLL       Prep Date/Time: 11/11/15 09:09         Analytical Date/Time: 11/13/15 11:34       Prep Initial Wt./Vol.: 265 mL         Container ID: 1156607001-D       Prep Extract Vol: 1 mL         Parameter       Result Qual       LOQ/CL       DL       Units       DF         Limits       0.794       0.472       0.142       mg/L       1         urrogates       N-Triacontane-d62 (surr)       85.7       50-150       %       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Allowable           DF         Limits         Date Analyzed           1         11/13/15 11:34           1         11/13/15 11:34                                                                                                                                                                                                                                                            |
| Analytical Method: AK102<br>Analytical Method: AK102<br>Analytical Date/Time: 11/13/15 11:34<br>Container ID: 1156607001-D<br>Parameter<br>Residual Range Organics<br>n-Triacontane-d62 (surr)<br>Residual Range Organics<br>Residual Range Organics<br>Residual Range Organics<br>New York State | Allowable           DF         Limits         Date Analyzed           1         11/13/15 11:34           1         11/13/15 11:34                                                                                                                                                                                                                                                            |
| Parameter       Result Qual       LOQ/CL       DL       Units       DF       Limits         Residual Range Organics       0.794       0.472       0.142       mg/L       1         urrogates       85.7       50-150       %       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DF         Limits         Date Analyzed           1         11/13/15 11:34           1         11/13/15 11:34                                                                                                                                                                                                                                                                                |
| urrogates<br>n-Triacontane-d62 (surr) 85.7 50-150 % 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 11/13/15 11:34                                                                                                                                                                                                                                                                                                                                                                             |
| n-Triacontane-d62 (surr) 85.7 50-150 % 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              |
| Batch Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |
| Analytical Batch: XFC12205Prep Batch: XXX34610Analytical Method: AK103Prep Method: SW3520CAnalyst: NLLPrep Date/Time: 11/11/15 09:09Analytical Date/Time: 11/13/15 11:34Prep Initial Wt./Vol.: 265 mLContainer ID: 1156607001-DPrep Extract Vol: 1 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |

| Client Sample ID: <b>17453-007-MW-6B</b><br>Client Project ID: <b>32-1-17453-007 Cr</b><br>Lab Sample ID: 1156607001<br>Lab Project ID: 1156607 | R<br>M<br>S                | ollection Da<br>eceived Dat<br>latrix: Wate<br>olids (%):<br>ocation: | te: 11/09/                                                                         | 15 10:44                                  | ound)          |                                   |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|----------------|-----------------------------------|---------------|
| Results by Volatile Fuels                                                                                                                       |                            |                                                                       |                                                                                    |                                           |                |                                   |               |
| Parameter<br>Gasoline Range Organics                                                                                                            | <u>Result Qual</u><br>1.15 | <u>LOQ/CL</u><br>0.100                                                | <u>DL</u><br>0.0310                                                                | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed |
| u <b>rrogates</b><br>4-Bromofluorobenzene (surr)                                                                                                | 304 *                      | 50-150                                                                |                                                                                    | %                                         | 1              |                                   | 11/11/15 15:0 |
| Batch Information                                                                                                                               |                            |                                                                       |                                                                                    |                                           |                |                                   |               |
| Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:02<br>Container ID: 1156607001-A    |                            | F                                                                     | Prep Batch: \<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract \ | : SW5030E<br>me: 11/11/′<br>′t./Vol.: 5 m | 15 08:00       |                                   |               |
| Parameter                                                                                                                                       | <u>Result Qual</u>         | LOQ/CL                                                                | <u>DL</u>                                                                          | <u>Units</u>                              | DF             | <u>Allowable</u><br>Limits        | Date Analyze  |
| Benzene                                                                                                                                         | 39.8                       | 0.500                                                                 | 0.150                                                                              | ug/L                                      | 1              | LIIIIIIS                          | 11/11/15 15:0 |
| Ethylbenzene                                                                                                                                    | 102                        | 1.00                                                                  | 0.310                                                                              | ug/L                                      | 1              |                                   | 11/11/15 15:0 |
| o-Xylene                                                                                                                                        | 4.29                       | 1.00                                                                  | 0.310                                                                              | ug/L                                      | 1              |                                   | 11/11/15 15:0 |
| P & M -Xylene                                                                                                                                   | 113                        | 2.00                                                                  | 0.620                                                                              | ug/L                                      | 1              |                                   | 11/11/15 15:0 |
| Toluene                                                                                                                                         | 0.640 J                    | 1.00                                                                  | 0.310                                                                              | ug/L                                      | 1              |                                   | 11/11/15 15:0 |
| urrogates                                                                                                                                       |                            |                                                                       |                                                                                    |                                           |                |                                   |               |
| 1,4-Difluorobenzene (surr)                                                                                                                      | 97.1                       | 77-115                                                                |                                                                                    | %                                         | 1              |                                   | 11/11/15 15:0 |
| Batch Information                                                                                                                               |                            |                                                                       |                                                                                    |                                           |                |                                   |               |
| Analytical Batch: VFC12817<br>Analytical Method: SW8021B<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:02                                |                            | F                                                                     | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract V   | : SW5030E<br>me: 11/11/′<br>′t./Vol.: 5 m | 15 08:00       |                                   |               |

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

| SGS |  |
|-----|--|
|     |  |

| Results by <b>Semivolatile Organic Fuel</b> <u>Parameter</u> Diesel Range Organics <b>urrogates</b> 5a Androstane (surr) Batch Information   | <u>Result Qual</u><br>1.69  | <u>LOQ/CL</u><br>0.566 | <u>DL</u><br>0.170                                                            | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | Allowable<br>Limits | Date Analyzed                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------|---------------------|---------------------------------|
| Diesel Range Organics<br><b>urrogates</b><br>5a Androstane (surr)                                                                            | 1.69                        |                        |                                                                               |                                           |                |                     |                                 |
| Diesel Range Organics<br><b>urrogates</b><br>5a Androstane (surr)                                                                            | 1.69                        |                        |                                                                               |                                           |                |                     |                                 |
| 5a Androstane (surr)                                                                                                                         | 76.6                        |                        |                                                                               |                                           |                |                     | 11/13/15 11:54                  |
|                                                                                                                                              | 76.6                        |                        |                                                                               |                                           |                |                     |                                 |
| Batch Information                                                                                                                            | 76.6                        | 50-150                 |                                                                               | %                                         | 1              |                     | 11/13/15 11:54                  |
| Batch information                                                                                                                            |                             |                        |                                                                               |                                           |                |                     |                                 |
| Analytical Batch: XFC12205<br>Analytical Method: AK102<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 11:54<br>Container ID: 1156607002-D |                             |                        | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 265 | 5 09:09        |                     |                                 |
| Demonster                                                                                                                                    | DesultQuel                  | 1.00/01                |                                                                               | 11-1-14-1                                 | DE             | Allowable           |                                 |
| <u>Parameter</u><br>Residual Range Organics                                                                                                  | <u>Result Qual</u><br>0.576 | <u>LOQ/CL</u><br>0.472 | <u>DL</u><br>0.142                                                            | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | <u>Limits</u>       | Date Analyzed<br>11/13/15 11:54 |
| urrogates                                                                                                                                    |                             |                        |                                                                               |                                           |                |                     |                                 |
| n-Triacontane-d62 (surr)                                                                                                                     | 89.7                        | 50-150                 |                                                                               | %                                         | 1              |                     | 11/13/15 11:54                  |
| Batch Information                                                                                                                            |                             |                        |                                                                               |                                           |                |                     |                                 |
| Analytical Batch: XFC12205<br>Analytical Method: AK103<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 11:54<br>Container ID: 1156607002-D |                             |                        | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 265 | 5 09:09        |                     |                                 |

| Results of <b>17453-007-MW-14</b>                                                                                                                |                            |                                                                                                                                         | o                                                                             |                                           |                |                     |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------|---------------------|--------------------------------|
| Client Sample ID: <b>17453-007-MW-14</b><br>Client Project ID: <b>32-1-17453-007 Cro</b><br>Lab Sample ID: 1156607002<br>Lab Project ID: 1156607 | wley GW                    |                                                                                                                                         | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:      |                                           |                |                     |                                |
| Results by Volatile Fuels                                                                                                                        |                            |                                                                                                                                         |                                                                               |                                           |                |                     |                                |
| <u>Parameter</u><br>Gasoline Range Organics                                                                                                      | <u>Result Qual</u><br>1.10 | <u>LOQ/CL</u><br>0.100                                                                                                                  | <u>DL</u><br>0.0310                                                           | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | Allowable<br>Limits | Date Analyze<br>11/11/15 15:2  |
| urrogates<br>4-Bromofluorobenzene (surr)                                                                                                         | 176 *                      | 50-150                                                                                                                                  |                                                                               | %                                         | 1              |                     | 11/11/15 15:2                  |
| Batch Information                                                                                                                                |                            |                                                                                                                                         |                                                                               |                                           |                |                     |                                |
| Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:21<br>Container ID: 1156607002-A     |                            | Prep Batch: VXX28257<br>Prep Method: SW5030B<br>Prep Date/Time: 11/11/15 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                                                                               |                                           |                |                     |                                |
| Parameter                                                                                                                                        | Result Qual                | LOQ/CL                                                                                                                                  | DL                                                                            | <u>Units</u>                              | <u>DF</u>      | Allowable<br>Limits | Date Analyze                   |
| Benzene                                                                                                                                          | 3.61                       | 0.500                                                                                                                                   | 0.150                                                                         | ug/L                                      | 1              |                     | 11/11/15 15:2                  |
| Ethylbenzene                                                                                                                                     | 55.0                       | 1.00                                                                                                                                    | 0.310                                                                         | ug/L                                      | 1              |                     | 11/11/15 15:2                  |
| o-Xylene                                                                                                                                         | 4.21                       | 1.00                                                                                                                                    | 0.310                                                                         | ug/L                                      | 1              |                     | 11/11/15 15:2                  |
| P & M -Xylene<br>Toluene                                                                                                                         | 104<br>1.35                | 2.00<br>1.00                                                                                                                            | 0.620<br>0.310                                                                | ug/L<br>ug/L                              | 1<br>1         |                     | 11/11/15 15:2<br>11/11/15 15:2 |
| urrogates                                                                                                                                        |                            |                                                                                                                                         |                                                                               | -                                         |                |                     |                                |
| 1,4-Difluorobenzene (surr)                                                                                                                       | 93.3                       | 77-115                                                                                                                                  |                                                                               | %                                         | 1              |                     | 11/11/15 15:2                  |
| Batch Information                                                                                                                                |                            |                                                                                                                                         |                                                                               |                                           |                |                     |                                |
| Analytical Batch: VFC12817<br>Analytical Method: SW8021B<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:21<br>Container ID: 1156607002-A   |                            |                                                                                                                                         | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | : SW5030E<br>me: 11/11/′<br>/t./Vol.: 5 m | 15 08:00       |                     |                                |

J flagging is activated

Member of SGS Group

| Results of <b>17453-007-MW-1</b><br>Client Sample ID: <b>17453-007-MW-1</b>                                                                  |                             |                        | Collection Da                                                                | ato: 11/06/                               | 15 14.29       |                            |                |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|------------------------------------------------------------------------------|-------------------------------------------|----------------|----------------------------|----------------|
| Client Sample ID: 17433-007-000-1<br>Client Project ID: 32-1-17453-007 Cro<br>Lab Sample ID: 1156607003<br>Lab Project ID: 1156607           | wley GW                     | <br> <br>              | Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:                      | te: 11/09/                                | 15 10:44       |                            |                |
| Results by Semivolatile Organic Fuel                                                                                                         | s                           |                        |                                                                              |                                           |                |                            |                |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                    | <u>Result Qual</u><br>0.695 | <u>LOQ/CL</u><br>0.545 | <u>DL</u><br>0.164                                                           | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | <u>Allowable</u><br>Limits | Date Analyzed  |
| urrogates                                                                                                                                    |                             |                        |                                                                              |                                           |                |                            |                |
| 5a Androstane (surr)                                                                                                                         | 81.3                        | 50-150                 |                                                                              | %                                         | 1              |                            | 11/13/15 12:15 |
| Batch Information                                                                                                                            |                             |                        |                                                                              |                                           |                |                            |                |
| Analytical Batch: XFC12205<br>Analytical Method: AK102<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 12:15<br>Container ID: 1156607003-D |                             |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                            |                |
| Deremeter                                                                                                                                    | Deput Quel                  | 1.00/01                | DI                                                                           | Linita                                    |                | Allowable                  | Data Analyza   |
| <u>Parameter</u><br>Residual Range Organics                                                                                                  | <u>Result Qual</u><br>0.485 | <u>LOQ/CL</u><br>0.455 | <u>DL</u><br>0.136                                                           | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | <u>Limits</u>              | Date Analyzed  |
| urrogates                                                                                                                                    |                             |                        |                                                                              |                                           |                |                            |                |
| n-Triacontane-d62 (surr)                                                                                                                     | 89.4                        | 50-150                 |                                                                              | %                                         | 1              |                            | 11/13/15 12:1  |
| Batch Information                                                                                                                            |                             |                        |                                                                              |                                           |                |                            |                |
| Analytical Batch: XFC12205<br>Analytical Method: AK103<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 12:15<br>Container ID: 1156607003-D |                             |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                            |                |
|                                                                                                                                              |                             |                        |                                                                              |                                           |                |                            |                |

| Results of <b>17453-007-MW-1</b><br>Client Sample ID: <b>17453-007-MW-1</b><br>Client Project ID: <b>32-1-17453-007 Cro</b><br>Lab Sample ID: 1156607003<br>Lab Project ID: 1156607 | wley GW                    | F                      | Collection Da<br>Received Dat<br>Aatrix: Wate<br>Solids (%):                       | te: 11/09/*                            | 15 10:44       | und)                |                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------|----------------------------------------|----------------|---------------------|--------------------------------------|
| Doculto by Veletile Eyele                                                                                                                                                           |                            | L                      | ocation:                                                                           |                                        |                |                     |                                      |
| Results by <b>Volatile Fuels</b> Parameter Gasoline Range Organics                                                                                                                  | <u>Result Qual</u><br>3.15 | <u>LOQ/CL</u><br>0.100 | <u>DL</u><br>0.0310                                                                | <u>Units</u><br>mg/L                   | <u>DF</u><br>1 | Allowable<br>Limits | <u>Date Analyze</u><br>11/11/15 15:4 |
| <b>urrogates</b><br>4-Bromofluorobenzene (surr)                                                                                                                                     | 151 *                      | 50-150                 |                                                                                    | %                                      | 1              |                     | 11/11/15 15:4                        |
| Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:40<br>Container ID: 1156607003-A                                        |                            |                        | Prep Batch: '<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract ' | SW5030B<br>ne: 11/11/1<br>t./Vol.: 5 m | 5 08:00        |                     |                                      |
| Parameter                                                                                                                                                                           | Result Qual                | LOQ/CL                 | DL                                                                                 | Units                                  | DF             | Allowable<br>Limits | Date Analyze                         |
| Benzene                                                                                                                                                                             | 628                        | 5.00                   | 1.50                                                                               | ug/L                                   | 10             |                     | 11/12/15 12:4                        |
| Ethylbenzene                                                                                                                                                                        | 73.3                       | 1.00                   | 0.310                                                                              | ug/L                                   | 1              |                     | 11/11/15 15:4                        |
| o-Xylene                                                                                                                                                                            | 5.97                       | 1.00                   | 0.310                                                                              | ug/L                                   | 1              |                     | 11/11/15 15:4                        |
| P & M -Xylene<br>Toluene                                                                                                                                                            | 74.1<br>42.1               | 2.00<br>1.00           | 0.620<br>0.310                                                                     | ug/L<br>ug/L                           | 1<br>1         |                     | 11/11/15 15:4<br>11/11/15 15:4       |
| urrogates                                                                                                                                                                           |                            |                        |                                                                                    | Ū                                      |                |                     |                                      |
| 1,4-Difluorobenzene (surr)                                                                                                                                                          | 96.9                       | 77-115                 |                                                                                    | %                                      | 1              |                     | 11/11/15 15:4                        |
| Batch Information                                                                                                                                                                   |                            |                        |                                                                                    |                                        |                |                     |                                      |
| Analytical Batch: VFC12817<br>Analytical Method: SW8021B<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:40<br>Container ID: 1156607003-A                                      |                            |                        | Prep Batch: '<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract ' | SW5030B<br>ne: 11/11/1<br>t./Vol.: 5 m | 5 08:00        |                     |                                      |
| Analytical Batch: VFC12820<br>Analytical Method: SW8021B<br>Analyst: KAS<br>Analytical Date/Time: 11/12/15 12:48<br>Container ID: 1156607003-B                                      |                            |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract     | SW5030B<br>ne: 11/12/1<br>t./Vol.: 5 m | 5 08:00        |                     |                                      |

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

| Results of <b>17453-007-MW-2</b><br>Client Sample ID: <b>17453-007-MW-2</b><br>Client Project ID: <b>32-1-17453-007 Cro</b> v                | vley GW                       |                        | Collection Da<br>Received Da                                                 | te: 11/09/1                                | 15 10:44       |                                   |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|------------------------------------------------------------------------------|--------------------------------------------|----------------|-----------------------------------|--------------------------------|
| Lab Sample ID: 1156607004<br>Lab Project ID: 1156607                                                                                         |                               |                        | Matrix: Wate<br>Solids (%):<br>Location:                                     | er (Surface,                               | Eff., Gro      | ound)                             |                                |
| Results by Semivolatile Organic Fuels                                                                                                        | ;                             |                        | _                                                                            |                                            |                |                                   |                                |
| Parameter<br>Diesel Range Organics                                                                                                           | <u>Result Qual</u><br>0.531 J | <u>LOQ/CL</u><br>0.545 | <u>DL</u><br>0.164                                                           | <u>Units</u><br>mg/L                       | <u>DF</u><br>1 | Allowable<br>Limits               | Date Analyzed<br>11/13/15 12:3 |
| urrogates                                                                                                                                    |                               |                        |                                                                              |                                            |                |                                   |                                |
| 5a Androstane (surr)                                                                                                                         | 79                            | 50-150                 |                                                                              | %                                          | 1              |                                   | 11/13/15 12:3                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                            |                |                                   |                                |
| Analytical Batch: XFC12205<br>Analytical Method: AK102<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 12:35<br>Container ID: 1156607004-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract | l: SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                                   |                                |
| Parameter<br>Residual Range Organics                                                                                                         | <u>Result Qual</u><br>0.319 J | <u>LOQ/CL</u><br>0.455 | <u>DL</u><br>0.136                                                           | <u>Units</u><br>mg/L                       | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyze<br>11/13/15 12:3  |
| urrogates                                                                                                                                    | <b>a</b> a <i>i</i>           |                        |                                                                              | <u>.</u>                                   |                |                                   |                                |
| n-Triacontane-d62 (surr)                                                                                                                     | 88.1                          | 50-150                 |                                                                              | %                                          | 1              |                                   | 11/13/15 12:3                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                            |                |                                   |                                |
| Analytical Batch: XFC12205<br>Analytical Method: AK103<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 12:35<br>Container ID: 1156607004-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract | l: SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                                   |                                |
|                                                                                                                                              |                               |                        |                                                                              |                                            |                |                                   |                                |
|                                                                                                                                              |                               |                        |                                                                              |                                            |                |                                   |                                |
|                                                                                                                                              |                               |                        |                                                                              |                                            |                |                                   |                                |

J flagging is activated

| Results of <b>17453-007-MW-2</b><br>Client Sample ID: <b>17453-007-MW-2</b><br>Client Project ID: <b>32-1-17453-007 Crowley GW</b><br>Lab Sample ID: 1156607004<br>Lab Project ID: 1156607 |                            | F<br>M<br>S            | Collection Da<br>Received Dat<br>Matrix: Wate<br>Solids (%):<br>.ocation:          | te: 11/09/*                            | 15 10:44       | und)                              |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------|----------------------------------------|----------------|-----------------------------------|---------------|
| Results by Volatile Fuels                                                                                                                                                                  |                            | L                      |                                                                                    |                                        |                |                                   |               |
| Parameter<br>Gasoline Range Organics                                                                                                                                                       | <u>Result Qual</u><br>3.49 | <u>LOQ/CL</u><br>0.100 | <u>DL</u><br>0.0310                                                                | <u>Units</u><br>mg/L                   | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyze  |
| <b>urrogates</b><br>4-Bromofluorobenzene (surr)                                                                                                                                            | 155 *                      | 50-150                 |                                                                                    | %                                      | 1              |                                   | 11/11/15 15:5 |
| Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:59<br>Container ID: 1156607004-A                                               |                            |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract     | SW5030B<br>ne: 11/11/1<br>t./Vol.: 5 m | 5 08:00        |                                   |               |
| Parameter                                                                                                                                                                                  | Result Qual                | LOQ/CL                 | DL                                                                                 | Units                                  | DF             | <u>Allowable</u><br>Limits        | Date Analyze  |
| Benzene                                                                                                                                                                                    | 766                        | <u>5.00</u>            | <u>1.50</u>                                                                        | ug/L                                   | 10             | Linito                            | 11/12/15 13:0 |
| Ethylbenzene                                                                                                                                                                               | 86.0                       | 1.00                   | 0.310                                                                              | ug/L                                   | 1              |                                   | 11/11/15 15:  |
| o-Xylene                                                                                                                                                                                   | 6.90                       | 1.00                   | 0.310                                                                              | ug/L                                   | 1              |                                   | 11/11/15 15:  |
| P & M -Xylene                                                                                                                                                                              | 86.3                       | 2.00                   | 0.620                                                                              | ug/L                                   | 1              |                                   | 11/11/15 15:  |
| Toluene                                                                                                                                                                                    | 49.2                       | 1.00                   | 0.310                                                                              | ug/L                                   | 1              |                                   | 11/11/15 15:  |
| urrogates                                                                                                                                                                                  | 07.0                       | 77 445                 |                                                                                    | 0/                                     | 4              |                                   |               |
| 1,4-Difluorobenzene (surr)                                                                                                                                                                 | 97.6                       | 77-115                 |                                                                                    | %                                      | 1              |                                   | 11/11/15 15:  |
| Batch Information                                                                                                                                                                          |                            |                        |                                                                                    |                                        |                |                                   |               |
| Analytical Batch: VFC12817<br>Analytical Method: SW8021B<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 15:59<br>Container ID: 1156607004-A                                             |                            |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract     | SW5030B<br>ne: 11/11/1<br>t./Vol.: 5 m | 5 08:00        |                                   |               |
| Analytical Batch: VFC12820<br>Analytical Method: SW8021B<br>Analyst: KAS<br>Analytical Date/Time: 11/12/15 13:07<br>Container ID: 1156607004-B                                             |                            |                        | Prep Batch: '<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract ' | SW5030B<br>ne: 11/12/1<br>t./Vol.: 5 m | 5 08:00        |                                   |               |

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group



| Client Sample ID: <b>17453-007-MW-19R</b><br>Client Project ID: <b>32-1-17453-007 Crowley GW</b><br>Lab Sample ID: 1156607005<br>Lab Project ID: 1156607 |                             | <br> <br>              | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>_ocation:     |                                           |                |                                   |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|------------------------------------------------------------------------------|-------------------------------------------|----------------|-----------------------------------|---------------------------------|
| Results by Semivolatile Organic Fuels                                                                                                                    | \$                          |                        |                                                                              |                                           |                |                                   |                                 |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                                | <u>Result Qual</u><br>1.36  | <u>LOQ/CL</u><br>0.545 | <u>DL</u><br>0.164                                                           | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>11/13/15 12:56 |
| Surrogates                                                                                                                                               | 82.4                        | 50-150                 |                                                                              | %                                         | 1              |                                   | 11/13/15 12:56                  |
| 5a Androstane (surr)                                                                                                                                     | 02.4                        | 50-150                 |                                                                              | 70                                        | I              |                                   | 11/13/13 12.30                  |
| Analytical Batch: XFC12205<br>Analytical Method: AK102<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 12:56<br>Container ID: 1156607005-D             |                             |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                                   |                                 |
| <u>Parameter</u><br>Residual Range Organics                                                                                                              | <u>Result Qual</u><br>0.542 | <u>LOQ/CL</u><br>0.455 | <u>DL</u><br>0.136                                                           | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | Allowable<br>Limits               | Date Analyzed<br>11/13/15 12:56 |
| Surrogates<br>n-Triacontane-d62 (surr)                                                                                                                   | 89                          | 50-150                 |                                                                              | %                                         | 1              |                                   | 11/13/15 12:56                  |
| Batch InformationAnalytical Batch: XFC12205Analytical Method: AK103Analyst: NLLAnalytical Date/Time: 11/13/15 12:56Container ID: 1156607005-D            |                             |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                                   |                                 |

J flagging is activated

Member of SGS Group

| SGS |  |
|-----|--|
|     |  |

| Client Sample ID: <b>17453-007-MW-19R</b><br>Client Project ID: <b>32-1-17453-007 Crowley GW</b><br>Lab Sample ID: 1156607005<br>Lab Project ID: 1156607 |                            |                       | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:      | und)                                                  |                 |                            |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|-----------------|----------------------------|----------------|
| Results by Volatile Fuels                                                                                                                                |                            |                       |                                                                               |                                                       |                 |                            |                |
| Parameter                                                                                                                                                | Result Qual                | LOQ/CL                | DL                                                                            | <u>Units</u>                                          | <u>DF</u>       | <u>Allowable</u><br>Limits | Date Analyzed  |
| Gasoline Range Organics                                                                                                                                  | 3.46                       | 1.00                  | 0.310                                                                         | mg/L                                                  | 10              |                            | 11/12/15 14:23 |
| urrogates                                                                                                                                                |                            |                       |                                                                               |                                                       |                 |                            |                |
| 4-Bromofluorobenzene (surr)                                                                                                                              | 425 *                      | 50-150                |                                                                               | %                                                     | 1               |                            | 11/11/15 16:18 |
| Batch Information                                                                                                                                        |                            |                       |                                                                               |                                                       |                 |                            |                |
| Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 16:18<br>Container ID: 1156607005-A             |                            |                       | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | : SW5030E<br>me: 11/11/ <sup>,</sup><br>/t./Vol.: 5 m | 15 08:00        |                            |                |
| Analytical Batch: VFC12820<br>Analytical Method: AK101<br>Analyst: KAS<br>Analytical Date/Time: 11/12/15 14:23<br>Container ID: 1156607005-B             |                            |                       | Prep Batch:<br>Prep Method<br>Prep Date/Til<br>Prep Initial W<br>Prep Extract | : SW5030E<br>me: 11/12/ <i>*</i><br>/t./Vol.: 5 m     | 15 08:00        |                            |                |
| Devenueter                                                                                                                                               | DesultQual                 | 100/01                |                                                                               | Linita                                                |                 | Allowable                  |                |
| <u>Parameter</u><br>Benzene                                                                                                                              | <u>Result Qual</u><br>19.1 | <u>LOQ/CL</u><br>5.00 | <u>DL</u><br>1.50                                                             | <u>Units</u><br>ug/L                                  | <u>DF</u><br>10 | <u>Limits</u>              | Date Analyzed  |
| Ethylbenzene                                                                                                                                             | 19.3                       | 1.00                  | 0.310                                                                         | ug/L                                                  | 1               |                            | 11/11/15 16:18 |
| o-Xylene                                                                                                                                                 | 2.81                       | 1.00                  | 0.310                                                                         | ug/L                                                  | 1               |                            | 11/11/15 16:18 |
| P & M -Xylene                                                                                                                                            | 47.8                       | 2.00                  | 0.620                                                                         | ug/L                                                  | 1               |                            | 11/11/15 16:18 |
| Toluene                                                                                                                                                  | 3.76                       | 1.00                  | 0.310                                                                         | ug/L                                                  | 1               |                            | 11/11/15 16:18 |
| urrogates                                                                                                                                                |                            |                       |                                                                               |                                                       |                 |                            |                |
| 1,4-Difluorobenzene (surr)                                                                                                                               | 84.6                       | 77-115                |                                                                               | %                                                     | 1               |                            | 11/11/15 16:18 |
| Batch Information                                                                                                                                        |                            |                       |                                                                               |                                                       |                 |                            |                |
| Analytical Batch: VFC12817<br>Analytical Method: SW8021B<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 16:18<br>Container ID: 1156607005-A           |                            |                       | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | : SW5030E<br>me: 11/11/′<br>/t./Vol.: 5 m             | 15 08:00        |                            |                |
| Analytical Batch: VFC12820<br>Analytical Method: SW8021B<br>Analyst: KAS<br>Analytical Date/Time: 11/12/15 14:23<br>Container ID: 1156607005-B           |                            |                       | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | : SW5030E<br>me: 11/12/<br>/t./Vol.: 5 m              | 15 08:00        |                            |                |

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com



| Client Sample ID: <b>17453-007-MW-13A</b><br>Client Project ID: <b>32-1-17453-007 Cro</b><br>Lab Sample ID: 1156607006<br>Lab Project ID: 1156607 |                            |                        | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:      | te: 11/09/                                | 15 10:44       |                            |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------|----------------------------|----------------------------------------|
| Results by Semivolatile Organic Fuel                                                                                                              | S                          |                        |                                                                               |                                           |                |                            |                                        |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                         | <u>Result Qual</u><br>5.76 | <u>LOQ/CL</u><br>0.545 | <u>DL</u><br>0.164                                                            | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | Allowable<br>Limits        | <u>Date Analyzed</u><br>11/13/15 13:16 |
| <b>urrogates</b><br>5a Androstane (surr)                                                                                                          | 79.2                       | 50-150                 |                                                                               | %                                         | 1              |                            | 11/13/15 13:16                         |
| Batch Information                                                                                                                                 |                            |                        |                                                                               |                                           |                |                            |                                        |
| Analytical Batch: XFC12205<br>Analytical Method: AK102<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 13:16<br>Container ID: 1156607006-D      |                            |                        | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                            |                                        |
| <u>Parameter</u><br>Residual Range Organics                                                                                                       | <u>Result Qual</u><br>1.21 | <u>LOQ/CL</u><br>0.455 | <u>DL</u><br>0.136                                                            | <u>Units</u><br>mg/L                      | <u>DF</u><br>1 | <u>Allowable</u><br>Limits | Date Analyzed                          |
| <b>Surrogates</b><br>n-Triacontane-d62 (surr)                                                                                                     | 83.3                       | 50-150                 |                                                                               | %                                         | 1              |                            | 11/13/15 13:16                         |
| Batch Information                                                                                                                                 |                            |                        |                                                                               |                                           |                |                            |                                        |
| Analytical Batch: XFC12205<br>Analytical Method: AK103<br>Analyst: NLL<br>Analytical Date/Time: 11/13/15 13:16<br>Container ID: 1156607006-D      |                            |                        | Prep Batch:<br>Prep Method<br>Prep Date/Tii<br>Prep Initial W<br>Prep Extract | : SW3520C<br>me: 11/11/1<br>/t./Vol.: 275 | 5 09:09        |                            |                                        |

J flagging is activated

Member of SGS Group

| SGS |  |
|-----|--|
|     |  |

| Client Sample ID: <b>17453-007-MW-13</b><br>Client Project ID: <b>32-1-17453-007 Cro</b><br>Lab Sample ID: 1156607006<br>Lab Project ID: 1156607 |                           | (<br> <br> <br> <br>   | und)                                                                               |                                        |                |                            |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|------------------------------------------------------------------------------------|----------------------------------------|----------------|----------------------------|---------------------------------|
| Results by Volatile Fuels                                                                                                                        |                           |                        | <u> </u>                                                                           |                                        |                |                            |                                 |
| Parameter                                                                                                                                        | <u>Result Qual</u>        | LOQ/CL                 | DL                                                                                 | <u>Units</u>                           | <u>DF</u>      | <u>Allowable</u><br>Limits | Date Analyzed                   |
| Gasoline Range Organics                                                                                                                          | 3.54                      | 0.100                  | 0.0310                                                                             | mg/L                                   | 1              |                            | 11/11/15 16:37                  |
| urrogates                                                                                                                                        |                           |                        |                                                                                    |                                        |                |                            |                                 |
| 4-Bromofluorobenzene (surr)                                                                                                                      | 154 *                     | 50-150                 |                                                                                    | %                                      | 1              |                            | 11/11/15 16:37                  |
| Batch Information                                                                                                                                |                           |                        |                                                                                    |                                        |                |                            |                                 |
| Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 16:37<br>Container ID: 1156607006-A     |                           |                        | Prep Batch: V<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract V | SW5030B<br>ne: 11/11/1<br>t./Vol.: 5 m | 5 08:00        |                            |                                 |
|                                                                                                                                                  |                           |                        |                                                                                    |                                        |                | Allowable                  |                                 |
| Parameter<br>Banzana                                                                                                                             | <u>Result Qual</u><br>112 | <u>LOQ/CL</u><br>0.500 | <u>DL</u><br>0.150                                                                 | <u>Units</u>                           | <u>DF</u><br>1 | <u>Limits</u>              | Date Analyzed<br>11/11/15 16:37 |
| Benzene<br>Ethylbenzene                                                                                                                          | 361                       | 0.500<br>10.0          | 0.150<br>3.10                                                                      | ug/L<br>ug/L                           | 10             |                            | 11/12/15 13:26                  |
| o-Xylene                                                                                                                                         | 10.7                      | 1.00                   | 0.310                                                                              | ug/L                                   | 10             |                            | 11/11/15 16:37                  |
| P & M -Xylene                                                                                                                                    | 475                       | 2.00                   | 0.620                                                                              | ug/L                                   | 1              |                            | 11/11/15 16:37                  |
| Toluene                                                                                                                                          | 13.8                      | 1.00                   | 0.310                                                                              | ug/L                                   | 1              |                            | 11/11/15 16:37                  |
| urrogates                                                                                                                                        |                           |                        |                                                                                    |                                        |                |                            |                                 |
| 1,4-Difluorobenzene (surr)                                                                                                                       | 88.3                      | 77-115                 |                                                                                    | %                                      | 1              |                            | 11/11/15 16:37                  |
| Batch Information                                                                                                                                |                           |                        |                                                                                    |                                        |                |                            |                                 |
| Analytical Batch: VFC12817<br>Analytical Method: SW8021B<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 16:37<br>Container ID: 1156607006-A   |                           |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract     | SW5030B<br>ne: 11/11/1<br>t./Vol.: 5 m | 5 08:00        |                            |                                 |
| Analytical Batch: VFC12820<br>Analytical Method: SW8021B<br>Analyst: KAS<br>Analytical Date/Time: 11/12/15 13:26<br>Container ID: 1156607006-B   |                           |                        | Prep Batch: V<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract V | SW5030B<br>ne: 11/12/1<br>t./Vol.: 5 m | 5 08:00        |                            |                                 |
|                                                                                                                                                  |                           |                        |                                                                                    |                                        |                |                            |                                 |
| rint Date: 11/17/2015 11:08:03AM                                                                                                                 |                           |                        |                                                                                    |                                        |                | J flaggin                  | g is activated                  |
|                                                                                                                                                  |                           |                        |                                                                                    |                                        |                |                            |                                 |
| SGS North America Inc.                                                                                                                           | 00 West Potter Dri        | ve Anchorad            | e, AK 95518                                                                        |                                        |                |                            |                                 |

| Results of <b>17453-007-WTB</b><br>Client Sample ID: <b>17453-007-WTB</b><br>Client Project ID: <b>32-1-17453-007 Crowley GW</b><br>Lab Sample ID: 1156607007<br>Lab Project ID: 1156607 |                                                                          | C<br>R<br>M<br>S                                |                                                                                |                                                      |                               |                                   |                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|
| Results by Volatile Fuels                                                                                                                                                                |                                                                          |                                                 | ]                                                                              |                                                      |                               |                                   |                                                                                                         |
| <u>Parameter</u><br>Gasoline Range Organics                                                                                                                                              | <u>Result Qual</u><br>0.0500 U                                           | <u>LOQ/CL</u><br>0.100                          | <u>DL</u><br>0.0310                                                            | <u>Units</u><br>mg/L                                 | <u>DF</u><br>1                | <u>Allowable</u><br><u>Limits</u> | Date Analyzed                                                                                           |
| u <b>rrogates</b><br>4-Bromofluorobenzene (surr)                                                                                                                                         | 95.8                                                                     | 50-150                                          |                                                                                | %                                                    | 1                             |                                   | 11/11/15 11:34                                                                                          |
| Batch Information<br>Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 11:34<br>Container ID: 1156607007-A                        | Ļ                                                                        |                                                 | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | SW5030E<br>ne: 11/11/<br>t./Vol.: 5 m                | 15 08:00                      |                                   |                                                                                                         |
| Parameter<br>Benzene<br>Ethylbenzene<br>o-Xylene<br>P & M -Xylene<br>Toluene                                                                                                             | <u>Result Qual</u><br>0.250 U<br>0.500 U<br>0.500 U<br>1.00 U<br>0.500 U | LOQ/CL<br>0.500<br>1.00<br>1.00<br>2.00<br>1.00 | <u>DL</u><br>0.150<br>0.310<br>0.310<br>0.620<br>0.310                         | <u>Units</u><br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | <u>DF</u><br>1<br>1<br>1<br>1 | Allowable<br>Limits               | Date Analyzed<br>11/11/15 11:34<br>11/11/15 11:34<br>11/11/15 11:34<br>11/11/15 11:34<br>11/11/15 11:34 |
| urrogates                                                                                                                                                                                |                                                                          |                                                 |                                                                                | - 3                                                  | -                             |                                   |                                                                                                         |
| 1,4-Difluorobenzene (surr)                                                                                                                                                               | 90.8                                                                     | 77-115                                          |                                                                                | %                                                    | 1                             |                                   | 11/11/15 11:34                                                                                          |
| Batch Information<br>Analytical Batch: VFC12817<br>Analytical Method: SW8021B<br>Analyst: CRD<br>Analytical Date/Time: 11/11/15 11:34<br>Container ID: 1156607007-A                      | Ļ                                                                        |                                                 | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | SW5030E<br>ne: 11/11/<br>t./Vol.: 5 m                | 15 08:00                      |                                   |                                                                                                         |

J flagging is activated

Member of SGS Group

# SGS

| Blank ID: MB for HBN 1725049<br>Blank Lab ID: 1303850<br>QC for Samples:                                                                                       | 9 [VXX/28257]             | Matrix                          | : Water (Surfac                                                                             | e Eff Ground)        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|---------------------------------------------------------------------------------------------|----------------------|--|
|                                                                                                                                                                |                           |                                 |                                                                                             |                      |  |
| 1150007001, 1150007002, 11500                                                                                                                                  | 07003, 1156607004, 1156   | 607005, 1156607006              | , 1156607007                                                                                |                      |  |
| Results by AK101                                                                                                                                               |                           |                                 |                                                                                             |                      |  |
| Parameter<br>Gasoline Range Organics                                                                                                                           | <u>Results</u><br>0.0500U | <u>LOQ/CL</u><br>0.100          | <u>DL</u><br>0.0310                                                                         | <u>Units</u><br>mg/L |  |
| Surrogates<br>4-Bromofluorobenzene (surr)                                                                                                                      | 97                        | 50-150                          |                                                                                             | %                    |  |
| Batch Information<br>Analytical Batch: VFC12817<br>Analytical Method: AK101<br>Instrument: Agilent 7890A PIE<br>Analyst: CRD<br>Analytical Date/Time: 11/11/20 |                           | Prep Me<br>Prep Da<br>Prep Init | tch: VXX28257<br>thod: SW5030B<br>te/Time: 11/11/2<br>ial Wt./Vol.: 5 mL<br>rract Vol: 5 mL |                      |  |

Print Date: 11/17/2015 11:08:06AM

Blank Spike ID: LCS for HBN 1156607 [VXX28257] Blank Spike Lab ID: 1303853 Date Analyzed: 11/11/2015 10:56 Spike Duplicate ID: LCSD for HBN 1156607 [VXX28257] Spike Duplicate Lab ID: 1303854 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1156607001, 1156607002, 1156607003, 1156607004, 1156607005, 1156607006, 1156607007

| Results by AK101                              |        |             | _              |              |            |                |                           |                |        |
|-----------------------------------------------|--------|-------------|----------------|--------------|------------|----------------|---------------------------|----------------|--------|
|                                               | I      | Blank Spike | e (mg/L)       | S            | pike Dupli | cate (mg/L)    |                           |                |        |
| <u>Parameter</u>                              | Spike  | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result     | <u>Rec (%)</u> | <u>CL</u>                 | <u>RPD (%)</u> | RPD CL |
| Gasoline Range Organics                       | 1.00   | 1.07        | 107            | 1.00         | 1.10       | 110            | (60-120)                  | 2.20           | (< 20) |
| urrogates                                     |        |             |                |              |            |                |                           |                |        |
| 4-Bromofluorobenzene (surr)                   | 0.0500 | 102         | 102            | 0.0500       | 106        | 106            | (50-150)                  | 3.50           |        |
| Batch Information                             |        |             |                |              |            |                |                           |                |        |
| Analytical Batch: VFC12817                    |        |             |                | Prep         | Batch: V   | XX28257        |                           |                |        |
| Analytical Method: AK101                      |        |             |                |              |            | SW5030B        |                           |                |        |
| Instrument: Agilent 7890A PIE<br>Analyst: CRD | )/FID  |             |                |              |            | e: 11/11/201   | 15 08:00<br>g/L Extract \ | /ol: 5 ml      |        |
| Analyst. CRD                                  |        |             |                |              |            |                | g/L Extract V             |                |        |
|                                               |        |             |                |              |            |                |                           |                |        |
|                                               |        |             |                |              |            |                |                           |                |        |
|                                               |        |             |                |              |            |                |                           |                |        |
|                                               |        |             |                |              |            |                |                           |                |        |
|                                               |        |             |                |              |            |                |                           |                |        |

Print Date: 11/17/2015 11:08:07AM

# SGS

### Method Blank

Blank ID: MB for HBN 1725049 [VXX/28257] Blank Lab ID: 1303850 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1156607001, 1156607002, 1156607003, 1156607004, 1156607005, 1156607006, 1156607007

| Results by SW8021B         |         |        |           |              |  |
|----------------------------|---------|--------|-----------|--------------|--|
| Parameter                  | Results | LOQ/CL | <u>DL</u> | <u>Units</u> |  |
| Benzene                    | 0.250U  | 0.500  | 0.150     | ug/L         |  |
| Ethylbenzene               | 0.500U  | 1.00   | 0.310     | ug/L         |  |
| o-Xylene                   | 0.500U  | 1.00   | 0.310     | ug/L         |  |
| P & M -Xylene              | 1.00U   | 2.00   | 0.620     | ug/L         |  |
| Toluene                    | 0.500U  | 1.00   | 0.310     | ug/L         |  |
| Surrogates                 |         |        |           |              |  |
| 1,4-Difluorobenzene (surr) | 92      | 77-115 |           | %            |  |

Analytical Batch: VFC12817 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD Analytical Date/Time: 11/11/2015 10:00:00AM Prep Batch: VXX28257 Prep Method: SW5030B Prep Date/Time: 11/11/2015 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2015 11:08:08AM



#### **Blank Spike Summary**

Blank Spike ID: LCS for HBN 1156607 [VXX28257] Blank Spike Lab ID: 1303851 Date Analyzed: 11/11/2015 10:38 Spike Duplicate ID: LCSD for HBN 1156607 [VXX28257] Spike Duplicate Lab ID: 1303852 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1156607001, 1156607002, 1156607003, 1156607004, 1156607005, 1156607006, 1156607007

| Results by SW8021B         |       |             |                |              |             |                |          |                |        |
|----------------------------|-------|-------------|----------------|--------------|-------------|----------------|----------|----------------|--------|
|                            |       | Blank Spike | e (ug/L)       | :            | Spike Dupli |                |          |                |        |
| Parameter                  | Spike | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result      | <u>Rec (%)</u> | CL       | <u>RPD (%)</u> | RPD CL |
| Benzene                    | 100   | 100         | 100            | 100          | 97.2        | 97             | (80-120) | 2.90           | (< 20) |
| Ethylbenzene               | 100   | 107         | 107            | 100          | 105         | 105            | (75-125) | 1.60           | (< 20) |
| o-Xylene                   | 100   | 106         | 106            | 100          | 104         | 104            | (80-120) | 1.90           | (< 20) |
| P & M -Xylene              | 200   | 214         | 107            | 200          | 211         | 105            | (75-130) | 1.60           | (< 20) |
| Toluene                    | 100   | 103         | 103            | 100          | 100         | 100            | (75-120) | 2.90           | (< 20) |
| Surrogates                 |       |             |                |              |             |                |          |                |        |
| 1,4-Difluorobenzene (surr) | 50    | 94.7        | 95             | 50           | 93.8        | 94             | (77-115) | 0.87           |        |
| Batch Information          |       |             |                |              |             |                |          |                |        |

Analytical Batch: VFC12817 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD Prep Batch: VXX28257 Prep Method: SW5030B Prep Date/Time: 11/11/2015 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 11/17/2015 11:08:10AM

# SGS

| Method Blank<br>Blank ID: MB for HBN 1725<br>Blank Lab ID: 1304073<br>QC for Samples:<br>1156607003, 1156607004, 11             |                           | )<br>Matrix                     | c: Water (Surfa                                                                          | ace, Eff., Ground)   |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|------------------------------------------------------------------------------------------|----------------------|--|
| Results by AK101                                                                                                                |                           | )                               |                                                                                          |                      |  |
| <u>Parameter</u><br>Gasoline Range Organics                                                                                     | <u>Results</u><br>0.0386J | <u>LOQ/CL</u><br>0.100          | <u>DL</u><br>0.0310                                                                      | <u>Units</u><br>mg/L |  |
| Surrogates<br>4-Bromofluorobenzene (surr)                                                                                       | 70                        | 50-150                          |                                                                                          | %                    |  |
| Batch Information                                                                                                               |                           |                                 |                                                                                          |                      |  |
| Analytical Batch: VFC128<br>Analytical Method: AK101<br>Instrument: Agilent 7890A<br>Analyst: KAS<br>Analytical Date/Time: 11/1 | PID/FID                   | Prep Me<br>Prep Da<br>Prep Init | tch: VXX28263<br>thod: SW5030<br>te/Time: 11/12/<br>ial Wt./Vol.: 5 r<br>tract Vol: 5 mL | B<br>/2015 8:00:00AM |  |
|                                                                                                                                 |                           |                                 |                                                                                          |                      |  |
|                                                                                                                                 |                           |                                 |                                                                                          |                      |  |

Print Date: 11/17/2015 11:08:11AM



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1156607 [VXX28263] Blank Spike Lab ID: 1304076 Date Analyzed: 11/12/2015 09:59 Spike Duplicate ID: LCSD for HBN 1156607 [VXX28263] Spike Duplicate Lab ID: 1304077 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1156607003, 1156607004, 1156607005, 1156607006

| Results by AK101             |              |             |          |              |             |                                       |                                 |                |         |
|------------------------------|--------------|-------------|----------|--------------|-------------|---------------------------------------|---------------------------------|----------------|---------|
|                              | E            | Blank Spike | e (mg/L) | S            | pike Duplic | cate (mg/L)                           |                                 |                |         |
| Parameter                    | <u>Spike</u> | Result      | Rec (%)  | <u>Spike</u> | Result      | <u>Rec (%)</u>                        | <u>CL</u>                       | <u>RPD (%)</u> | RPD CL  |
| Gasoline Range Organics      | 1.00         | 1.14        | 114      | 1.00         | 1.11        | 111                                   | (60-120)                        | 2.40           | (< 20 ) |
| Surrogates                   |              |             |          |              |             |                                       |                                 |                |         |
| 4-Bromofluorobenzene (surr)  | 0.0500       | 105         | 105      | 0.0500       | 106         | 106                                   | (50-150)                        | 0.85           |         |
| Batch Information            |              |             |          |              |             |                                       |                                 |                |         |
| Analytical Batch: VFC12820   |              |             |          | 1            | Batch: V    |                                       |                                 |                |         |
| Analytical Method: AK101     | _ /          |             |          |              | Method:     |                                       |                                 |                |         |
| Instrument: Agilent 7890A PI | D/FID        |             |          | 1            |             | e: 11/12/201                          | <b>5 08:00</b><br>g/L Extract \ | Vol: 5 ml      |         |
| Analyst: KAS                 |              |             |          |              |             | · · · · · · · · · · · · · · · · · · · | g/L Extract V                   |                |         |

Print Date: 11/17/2015 11:08:12AM

# SGS

| enzene       0.250U       0.500       0.150         ithylbenzene       0.500U       1.00       0.310         urrogates       91.4       77-115                                                                                            | <u>Units</u><br>ug/L         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Benzene         0.250U         0.500         0.150           Ethylbenzene         0.500U         1.00         0.310           urrogates         91.4         77-115                                                                       | ug/L                         |
| Surrogates<br>1,4-Difluorobenzene (surr) 91.4 77-115<br>atch Information                                                                                                                                                                  | ug/L                         |
| atch Information                                                                                                                                                                                                                          | %                            |
| Analytical Batch:VFC12820Prep Batch:VXX2826Analytical Method:SW8021BPrep Method:SW5030Instrument:Agilent 7890A PID/FIDPrep Date/Time:11/12Analyst:KASPrep Initial Wt./Vol.:5Analytical Date/Time:11/12/20159:02:00AMPrep Extract Vol:5 mL | 0B<br>2/2015 8:00:00AM<br>mL |

Print Date: 11/17/2015 11:08:14AM



#### **Blank Spike Summary**

Blank Spike ID: LCS for HBN 1156607 [VXX28263] Blank Spike Lab ID: 1304074 Date Analyzed: 11/12/2015 09:40 Spike Duplicate ID: LCSD for HBN 1156607 [VXX28263] Spike Duplicate Lab ID: 1304075 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1156607003, 1156607004, 1156607005, 1156607006

|                            |              | Blank Spike | e (ug/L) | :            | Spike Dupli | cate (ug/L)    |           |                |        |
|----------------------------|--------------|-------------|----------|--------------|-------------|----------------|-----------|----------------|--------|
| Parameter                  | <u>Spike</u> | Result      | Rec (%)  | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>CL</u> | <u>RPD (%)</u> | RPD CL |
| Benzene                    | 100          | 104         | 104      | 100          | 108         | 108            | (80-120)  | 4.50           | (< 20) |
| Ethylbenzene               | 100          | 107         | 107      | 100          | 110         | 110            | (75-125)  | 2.30           | (< 20) |
| Surrogates                 |              |             |          |              |             |                |           |                |        |
| 1.4-Difluorobenzene (surr) | 50           | 93.2        | 93       | 50           | 96.6        | 97             | (77-115)  | 3.60           |        |

Analytical Batch: VFC12820 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: KAS Prep Batch: VXX28263 Prep Method: SW5030B Prep Date/Time: 11/12/2015 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 11/17/2015 11:08:15AM

# SGS

Print Date: 11/17/2015 11:08:16AM



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1156607 [XXX34610] Blank Spike Lab ID: 1303631 Date Analyzed: 11/13/2015 07:47 Spike Duplicate ID: LCSD for HBN 1156607 [XXX34610] Spike Duplicate Lab ID: 1303632 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1156607001, 1156607002, 1156607003, 1156607004, 1156607005, 1156607006

|                                                    |              | Blank Spike | e (mg/L) | 5            |               |                |                                        |                |         |
|----------------------------------------------------|--------------|-------------|----------|--------------|---------------|----------------|----------------------------------------|----------------|---------|
| <u>Parameter</u>                                   | <u>Spike</u> | Result      | Rec (%)  | <u>Spike</u> | Result        | <u>Rec (%)</u> | <u>CL</u>                              | <u>RPD (%)</u> | RPD CL  |
| Diesel Range Organics                              | 20           | 18.0        | 90       | 20           | 18.8          | 94             | (75-125)                               | 4.20           | (< 20 ) |
| urrogates                                          |              |             |          |              |               |                |                                        |                |         |
| 5a Androstane (surr)                               | 0.4          | 102         | 102      | 0.4          | 106           | 106            | (60-120)                               | 3.90           |         |
| Instrument: <b>HP 7890A</b><br>Analyst: <b>NLL</b> | FID SV E F   |             |          | Spil         | ke Init Wt./\ | 0              | 5 09:09<br>E Extract Vo<br>Extract Vol |                |         |

Print Date: 11/17/2015 11:08:17AM

# SGS

| Method Blank                                                                                                                 |                           | )                                     |                                                                                  |                               |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|----------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|
| Blank ID: MB for HBN 1725<br>Blank Lab ID: 1303630                                                                           | 004 [XXX/34610]           | Matrix: Water (Surface, Eff., Ground) |                                                                                  |                               |  |  |  |  |  |
| QC for Samples:<br>1156607001, 1156607002, 11                                                                                | 56607003, 1156607004, 115 | 56607005, 1156607006                  |                                                                                  |                               |  |  |  |  |  |
| Results by AK103                                                                                                             |                           | )(                                    |                                                                                  |                               |  |  |  |  |  |
| Parameter<br>Residual Range Organics                                                                                         | <u>Results</u><br>0.250U  | <u>LOQ/CL</u><br>0.500                | <u>DL</u><br>0.150                                                               | <u>Units</u><br>mg/L          |  |  |  |  |  |
| Surrogates<br>n-Triacontane-d62 (surr)                                                                                       | 94.9                      | 60-120                                |                                                                                  | %                             |  |  |  |  |  |
| Batch Information                                                                                                            |                           |                                       |                                                                                  |                               |  |  |  |  |  |
| Analytical Batch: XFC1220<br>Analytical Method: AK103<br>Instrument: HP 7890A<br>Analyst: NLL<br>Analytical Date/Time: 11/13 | FID SV E F                | Prep Metl<br>Prep Date<br>Prep Initia | ch: XXX34610<br>hod: SW3520<br>e/Time: 11/11<br>al Wt./Vol.: 25<br>act Vol: 1 mL | C<br>/2015 9:09:34AM<br>i0 mL |  |  |  |  |  |
|                                                                                                                              |                           |                                       |                                                                                  |                               |  |  |  |  |  |



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1156607 [XXX34610] Blank Spike Lab ID: 1303631 Date Analyzed: 11/13/2015 07:47 Spike Duplicate ID: LCSD for HBN 1156607 [XXX34610] Spike Duplicate Lab ID: 1303632 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1156607001, 1156607002, 1156607003, 1156607004, 1156607005, 1156607006

|                                              |              | Blank Spike | e (mg/L)       | 5            | Spike Duplic | cate (mg/L)    |             |                |        |
|----------------------------------------------|--------------|-------------|----------------|--------------|--------------|----------------|-------------|----------------|--------|
| Parameter                                    | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result       | <u>Rec (%)</u> | CL          | <u>RPD (%)</u> | RPD CL |
| Residual Range Organics                      | 20           | 19.2        | 96             | 20           | 19.2         | 96             | (60-120)    | 0.03           | (< 20) |
| urrogates                                    |              |             |                |              |              |                |             |                |        |
| n-Triacontane-d62 (surr)                     | 0.4          | 93.2        | 93             | 0.4          | 97.7         | 98             | (60-120)    | 4.80           |        |
| Batch Information Analytical Batch: XFC12205 |              |             |                | Pre          | o Batch: X   | XX34610        |             |                |        |
| Analytical Method: AK103                     |              |             |                |              | o Method:    |                |             |                |        |
| Instrument: HP 7890A                         | FID SV E F   |             |                |              |              | e: 11/11/201   |             |                |        |
| Analyst: NLL                                 |              |             |                |              |              | 0              | Extract Vo  |                |        |
|                                              |              |             |                | Dup          | e Init Wt./V | 'ol.: 20 mg/L  | Extract Vol | : 1 mL         |        |

Print Date: 11/17/2015 11:08:20AM



|                                                                        | N&WILSON, INC.<br>ad Environmental Consultants                           | Cł                                          | IAIN-      | OF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -Cl                                   | JST                       | ODY           | RE       | ECORD                                 |                 | Laborato                                 | ry SUS        | Page_1of_1_       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|---------------|----------|---------------------------------------|-----------------|------------------------------------------|---------------|-------------------|
| 400 N. 34th Street, Suite 100<br>Seattle, WA 98103<br>(206) 632-8020   | 2043 Westport Center Drive<br>St. Louis, MO 63146-3564<br>(314) 699-9660 | 2705 Saint A<br>Pasco, WA 9<br>(509) 946-63 |            | , Suite A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                           |               | Analy    | vsis Parameters                       | Sample Con      | tainer Desc                              |               |                   |
| 2355 Hill Road<br>Fairbanks, AK 99709<br>(907) 479-0600                | 5430 Fairbanks Street, Suite 3<br>Anchorage, AK 99518<br>(907) 561-2120  |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | /                         | A Contraction | AN.      |                                       | preservative if | used)                                    |               | 7                 |
| 3990 Collins Way, Suite 100<br>Lake Oswego, OR 97035<br>(503) 223-6147 | 1321 Bannock Street, Suite 200<br>Denver, CO 80204<br>(303) 825-3800     | )                                           | Date       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$`/s                                 |                           |               | E.       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                 |                                          | NUCCIT        |                   |
| Sample Identity                                                        | Lab No.                                                                  | Time                                        | Sampled    | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N. S.                                 | R                         | J.J.          | *        |                                       |                 |                                          | Re            | emarks/Matrix     |
| 1753-007-MW                                                            | -6B WA-E                                                                 | 1216                                        | 11-6-15    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                     | X                         | X             |          |                                       |                 | 5                                        |               | indwater          |
| 1753 -007-MW-                                                          | 14 (2)A-E                                                                | 1322                                        | C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                     | 6                         |               |          |                                       |                 | (                                        |               | (                 |
| 1753 -007-MW-                                                          | 1 3A-E                                                                   | 1428                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                     |                           | 17            |          |                                       |                 |                                          |               | 1                 |
| 1753-007-MW                                                            |                                                                          | 1448                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                     |                           |               |          |                                       |                 |                                          |               |                   |
| 1753-007-MW-1                                                          |                                                                          | 1557                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                     |                           |               |          |                                       |                 | -+1                                      |               |                   |
| 1753-007- MW                                                           | J-13A 6A-E                                                               | 1648                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                     |                           |               |          |                                       |                 |                                          |               |                   |
| WTB                                                                    | DA-C                                                                     | 1200                                        | V          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | V                         |               |          |                                       |                 | 1                                        | Water         | Trip Blank        |
|                                                                        |                                                                          |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Γ                                     |                           |               |          |                                       |                 |                                          |               |                   |
|                                                                        |                                                                          |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                           |               |          |                                       |                 |                                          |               |                   |
|                                                                        |                                                                          |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                           |               |          |                                       |                 |                                          |               |                   |
| Project Inform                                                         | ation Samj                                                               | ole Receip                                  | t          | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | linq                                  | uished                    | Bÿ:           |          | Relingu                               | ished By:       | 2.                                       | Relinqui      | shed By: 3.       |
| Project Number 32                                                      | 7453-007 Total Number                                                    | of Containers                               |            | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Э:                                    |                           | Time: 104     | <u>q</u> | Signature:                            | Time:           | 14 A  | Signature:    | Time:             |
| Project Name: Crowley                                                  | 6W COC Seals/Int                                                         | tact? Y/N/NA                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                     | Hoyar                     | the           | 1        |                                       |                 |                                          |               | $\searrow$        |
| Contact: Matt Hemr                                                     |                                                                          |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ame                                   | $\mathcal{O}$             | Date: 11 9    | цъ.      | Printed Name:                         | Date:           | F                                        | Printed Name: | Date:             |
| Ongoing Project? Yes<br>Sampler:                                       |                                                                          |                                             |            | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y:                                    | <i>7</i> ~~               | <u></u>       |          | Company:                              |                 | 0                                        | Company:      |                   |
| Sampler: ABINON AL                                                     | ouamsha (attach shipping                                                 | bill, if any)                               |            | and the second s | Carl Section                          | Carry and a series        | M:1294        | Actions  |                                       |                 | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |               |                   |
| Populated Turpers and T                                                | Instructions                                                             |                                             |            | <b>Re</b><br>Bignature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. 1. 1. 1. 1. 2. S                   | an a conservative servati | •<br>Time:    | 1.       | Receive                               |                 | 2.                                       | Received      | By: 3             |
| Requested Turnaround 7<br>Special Instructions:                        | Time: Standard                                                           | J                                           |            | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>3.</sup> 5                       |                           | nine:         |          | Signature:                            | Time:           | s                                        | Signature:    | Time: <u>1077</u> |
|                                                                        |                                                                          |                                             | F          | Printed N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lame:                                 | [                         | Date:         | -        | Printed Name:                         | Date:           | F                                        | Printed Name: | Date: 11/1/15     |
| Distribution: White - w/shipn                                          | nent - returned to Shannon & W<br>ment - for consignee files             | /ilson w/ laborate                          | ory report | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y:                                    |                           |               |          | Company:                              |                 | C                                        | Company:      | " Seal Astar      |
|                                                                        | & Wilson - Job File                                                      |                                             |            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · |                           |               |          |                                       |                 |                                          | Sis An        | Ch 1.7%/02        |
| 19-91/UR                                                               |                                                                          |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                           |               |          |                                       |                 |                                          |               | 30824             |
|                                                                        |                                                                          |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                           |               |          |                                       |                 |                                          | Ν             | 0. 30024          |

F-19-91/UR



# 1156607



# SAMPLE RECEIPT FORM

| Review Criteria:                                                                | Yes                     | N/A          | No | Comments/Action Taken:                                                    |
|---------------------------------------------------------------------------------|-------------------------|--------------|----|---------------------------------------------------------------------------|
| Were <b>custody seals</b> intact? Note # & location, if applicable.             |                         | $\checkmark$ |    | Exemption permitted if sampler hand carries/delivers.                     |
| COC accompanied samples?                                                        | $\mathbf{\nabla}$       |              |    |                                                                           |
| <b>Temperature blank</b> compliant* (i.e., 0-6°C after CF)?                     | $\mathbf{V}$            |              |    | Exemption permitted if chilled & collected <8 hrs ago.                    |
| If $>6$ °C, were samples collected $<8$ hours ago?                              |                         | $\mathbf{V}$ |    |                                                                           |
| If $<0$ °C, were all sample containers ice free?                                |                         | $\checkmark$ |    |                                                                           |
| Cooler ID: <u>1</u> @ <u>1.7</u> w/ Therm.ID: <u>D2</u>                         |                         |              |    |                                                                           |
| Cooler ID: @ w/ Therm.ID:                                                       |                         |              |    |                                                                           |
| Cooler ID: @ w/ Therm.ID:                                                       |                         |              |    |                                                                           |
| Cooler ID: @ w/ Therm.ID:                                                       |                         |              |    |                                                                           |
| Cooler ID: @ w/ Therm.ID:                                                       |                         |              |    |                                                                           |
| If samples are received without a temperature blank, the "cooler                |                         |              |    |                                                                           |
| temperature" will be documented in lieu of the temperature blank &              |                         |              |    |                                                                           |
| "COOLER TEMP" will be noted to the right. In cases where neither a              |                         |              |    | Note: Identify containers received at non-compliant                       |
| temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled." |                         |              |    | temperature. Use form FS-0029 if more space is needed.                    |
| Delivery method (specify all that apply): Client (hand carried)                 |                         |              |    |                                                                           |
| USPS Lynden AK Air Alert Courier                                                |                         |              |    |                                                                           |
| $\Box$ UPS $\Box$ FedEx $\Box$ RAVN $\Box$ C&D Delivery                         |                         |              |    |                                                                           |
| Carlile Pen Air Warp Speed Other:                                               |                         |              |    |                                                                           |
| $\rightarrow$ For WO# with airbills, was the WO# & airbill                      |                         |              | _  |                                                                           |
| info recorded in the Front Counter eLog?                                        |                         | $\checkmark$ |    |                                                                           |
|                                                                                 | Yes                     | N/A          | No |                                                                           |
| Were samples received within hold time?                                         |                         |              |    | Note: Refer to form F-083 "Sample Guide" for hold times.                  |
| Do samples <b>match COC</b> * (i.e., sample IDs, dates/times collected)?        | $\overline{\mathbf{V}}$ | H            | H  | Note: If times differ <1hr, record details and login per COC.             |
| Were analyses requested unambiguous?                                            |                         | H            | H  |                                                                           |
| Were samples in <b>good condition</b> (no leaks/cracks/breakage)?               |                         | Ħ            | H  |                                                                           |
| Packing material used (specify all that apply):                                 |                         |              |    |                                                                           |
| Separate plastic bags Vermiculite Other:                                        |                         |              |    |                                                                           |
| Were <b>proper containers</b> (type/mass/volume/preservative*) used?            |                         |              |    | Exemption permitted for metals (e.g., 200.8/6020A).                       |
| Were <b>Trip Blanks</b> (i.e., VOAs, LL-Hg) in cooler with samples?             |                         | Н            | H  |                                                                           |
| Were all VOA vials free of headspace (i.e., bubbles $\leq 6$ mm)?               |                         | H            | H  |                                                                           |
| Were all soil VOAs <b>field extracted</b> with MeOH+BFB?                        |                         | Z            | H  |                                                                           |
| For preserved waters (other than VOA vials, LL-Mercury or                       |                         |              |    | Samples 3 and 4 for the DRO/RRO analysis were preserved at the lab with 2 |
| microbiological analyses), was <b>pH verified and compliant</b> ?               |                         |              | M  | each of HCI. Lot #: LW09-0463-12-08                                       |
| If pH was adjusted, were bottles flagged (i.e., stickers)?                      | 71                      | -77-         | H  |                                                                           |
| For <b>special handling</b> (e.g., "MI" soils, foreign soils, lab filter for    |                         |              |    |                                                                           |
| dissolved, lab extract for volatiles, Ref Lab, limited volume),                 |                         |              |    |                                                                           |
| were bottles/paperwork flagged (e.g., sticker)?                                 |                         | $\checkmark$ |    |                                                                           |
| For <b>RUSH/SHORT Hold Time</b> , were COC/Bottles flagged                      |                         |              |    |                                                                           |
| accordingly? Was Rush/Short HT email sent, if applicable?                       |                         | $\checkmark$ |    |                                                                           |
| For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were                                  | ╎└┙                     |              |    |                                                                           |
| containers / paperwork flagged accordingly?                                     |                         | $\checkmark$ |    |                                                                           |
| For any question answered "No," has the PM been notified and                    |                         |              |    | SRF Completed by: D.C 11/09/2015                                          |
| the problem resolved (or paperwork put in their bin)?                           |                         | $\checkmark$ |    | PM notified:                                                              |
| Was <b>PEER REVIEW</b> of <i>sample numbering/labeling completed</i> ?          |                         |              | H  | Peer Reviewed by: EDJ                                                     |
| Additional notes (if empliciple):                                               |                         |              |    |                                                                           |

Additional notes (if applicable):

Sample IDs should be "17453-..." per A Abuamsha 11/9/15 VLP

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.



### **Sample Containers and Preservatives**

| Container Id | Preservative    | Container Condition | Container Id | Preservative | Container Condition |
|--------------|-----------------|---------------------|--------------|--------------|---------------------|
| 1156607001-A | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607001-В | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607001-C | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607001-D | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607001-Е | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607002-A | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607002-В | HCL to $pH < 2$ | OK                  |              |              |                     |
| 1156607002-С | HCL to $pH < 2$ | OK                  |              |              |                     |
| 1156607002-D | HCL to $pH < 2$ | OK                  |              |              |                     |
| 1156607002-Е | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607003-A | HCL to $pH < 2$ | OK                  |              |              |                     |
| 1156607003-В | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607003-С | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607003-D | HCL to pH < 2   | PA                  |              |              |                     |
| 1156607003-Е | HCL to pH < 2   | PA                  |              |              |                     |
| 1156607004-A | HCL to pH < 2   | ОК                  |              |              |                     |
| 1156607004-В | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607004-C | HCL to pH < 2   | ОК                  |              |              |                     |
| 1156607004-D | HCL to pH < 2   | PA                  |              |              |                     |
| 1156607004-Е | HCL to pH < 2   | PA                  |              |              |                     |
| 1156607005-A | HCL to pH < 2   | ОК                  |              |              |                     |
| 1156607005-В | HCL to pH < 2   | ОК                  |              |              |                     |
| 1156607005-С | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607005-D | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607005-Е | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607006-A | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607006-В | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607006-С | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607006-D | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607006-Е | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607007-A | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607007-В | HCL to pH < 2   | OK                  |              |              |                     |
| 1156607007-С | HCL to pH < 2   | OK                  |              |              |                     |

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added. PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

# LABORATORY DATA REVIEW CHECKLIST

**CS Report Name:** November 2015 Groundwater Monitoring, 459 West Bluff Drive, Anchorage, Alaska

Date: January 2016

Laboratory Report Date: November 17, 2015

Consultant Firm: Shannon & Wilson, Inc.

**Completed by:** Admon Abuamsha **Title:** Environmental Scientist

Laboratory Name: SGS North America Inc. Work Order Number: <u>1156607</u>

ADEC File Number: 2100.38.321 ADEC RecKey Number: NA (NOTE: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

## 1. Laboratory

- a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes / No
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved?
   NA/ Yes / No

## 2. Chain of Custody (COC)

- a. COC information completed, signed, and dated (including released/received by)? (Yes / No
- **b.** Correct analyses requested? **Yes**/**No**

## 3. Laboratory Sample Receipt Documentation

- a. Sample/cooler temperature documented and within range at receipt  $(4^\circ \pm 2^\circ C)$ ? Yes / No Comments: *Temperature 1.7° C*
- **b.** Sample preservation acceptable acidified waters, Methanol-preserved VOC soil (GRO, BTEX, VOCs, etc.)? *NA* (Yes) / No

- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? Yes/ No Comments:
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? NA /Yes/ No
   Comments: The preservation for DRO samples 17453-007-MW-1 and 17453-007-MW-2 was not compliant and was preserved at the lab with 2 mL each of HCL.

The laboratory considers a temperature of 0 to  $6^{\circ}$  C as being compliant. Therefore, the laboratory does not consider the 1.7° C temperature blank reading as being a discrepancy.

e. Data quality or usability affected? Explain. Comments: Samples 17453-007-MW-1 and 17453-007-MW-2 were extracted within 5 days of sample collection and did not contain large concentrations of microbes; therefore we do not consider the data quality or usability affected.

Because the sample temperature for the cooler was below  $2^{\circ}$  C but above freezing, we do not consider the data quality or usability affected by the cool temperature.

### 4. <u>Case Narrative</u>

- a. Present and understandable? Yes/ No
- b. Discrepancies, errors or QC failures noted by the lab? None Noted Yes Comments: For Method AK 101, surrogate recovery of 4-bromofluorobenzene does not meet QC criteria (biased high) for samples 17453-007-MW-1, 17453-007-MW-2, 17453-007-MW-6B, 17453-007-MW-13A, 17453-007-MW-14, and 17453-007-MW-19R due to matrix interference.
- c. Were corrective actions documented? None Noted / Yes Comments: Corrective actions were not noted.
- **d.** What is the effect on data quality/usability, according to the case narrative? *NA*(*No*)/*ves* Comments: *The case narrative does not discuss data quality/usability.*

### 5. <u>Sample Results</u>

- a. Correct analyses performed/reported as requested on COC? (Yes) / No Comments:
- **b.** All applicable holding times met? (Yes)/ No

- c. All soils reported on a dry-weight basis? NA / Yes / No
- **d.** Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? **Ves No**
- e. Data quality or usability affected? Explain. (NA)

## 6. <u>QC Samples</u>

## a. Method Blank

- i. One method blank reported per matrix, analysis, and 20 samples? Yes/ No
- ii. All method blank results less than LOQ? Yes / No
- iii. If above LOQ, what samples are affected? (NA)
- iv. Do the affected sample(s) have data flags? (NA) / Yes / No If so, are the data flags clearly defined? (NA) Yes / No Comments:
- v. Data quality or usability affected? Explain. N/A; Data quality not affected.

## b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) *NA* / (es) No
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? (NA) Yes / No
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) (ves) No Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes / No Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: *None of the project samples were affected.*

- vi. Do the affected samples(s) have data flags? (NA) Yes / No If so, are the data flags clearly defined? (NA) / Yes / No
- vii. Data quality or usability affected? Explain. Comments: *N/A; data quality not affected.*

### c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, field, QC, and laboratory samples? *NA* (Ye)/No
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) NA / Yes No
  Comments: For Method AK 101, surrogate recovery of 4-bromofluorobenzene was biased high for samples 17453-007-MW-1, 17453-007-MW-2, 17453-007-MW-6B, 17453-007-MW-13A, 17453-007-MW-14, and 17453-007-MW-19R due to matrix interference.
- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? NA / Yes / No Comments: GRO results for samples 17453-007-MW-1, 17453-007-MW-2, 17453-007-MW-6B, 17453-007-MW-13A, 17453-007-MW-14, and 17453-007-MW-19R are flagged "J+" to indicate potential high bias.
- iv. Data quality or usability affected? Explain.
   Comments: The flagged data are considered estimates biased high, as indicated by the "J+" flag.
- d. Trip Blank Volatile analyses only (GRO, BTEX, VOCs, etc.) [soil and water]
  - i. One trip blank reported per matrix, analysis and cooler? *NA* / **Yes**/ **No** Comments:
  - ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? NA (Yes) / No (if no explain): Comments:
  - iii. All results less than LOQ? NA (Ye) / No
  - **iv.** If above LOQ, what samples are affected? Comments: *No samples above LOQ*
  - **v.** Data quality or usability affected? Explain. (NA)

## e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes / No
- ii. Were the field duplicates submitted blind to the lab? NA (Ye) / No
- iii. Precision All relative percent differences (RPDs) less than specified DQOs? (Recommended: 30% for water, 50% for soil) NA / Yes No
   Comment: The RPD for RRO is 41 percent.
- **iv.** Data quality or usability affected? Explain. Comment: *Refer to Table 4 for summary of QC data. Data quality not affected because RRO concentrations are in the same order of magnitude in both samples.*
- **f. Decontamination or Equipment Blank** (if not applicable, a comment stating why must be entered below)

**NA** Yes / No Comment: Limited scope of sampling and disposable tubing was used

- i. All results less than  $LOQ^{(N)} / Yes / No$
- ii. If results are above LOQ, what samples are affected? (NA)
- iii. Data quality or usability affected? Explain. (NA)

## 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

**a.** Are they defined and appropriate? (NA) Yes / No Comment: No further qualifiers needed.

# ATTACHMENT 3

# WASTE MANIFEST

ヨー つて ろう つつ つ つ し しょう と コ

101081 (RP)

# NON-HAZARDOUS WASTE MANIFEST

| Plea             | se print or type (Form designed for use on elite (                                                                                                                                                | 12 pitch) typewriter)                                  |                                                                                            |                                    |                                  |                                |                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|--------------------------------|---------------------------------------|
|                  | NON-HAZARDOUS<br>WASTE MANIFEST                                                                                                                                                                   | 1. Generator's US EP<br>CESQG                          | Site Address                                                                               |                                    | Manifest<br>Document No          | 101081                         | 2. Page 1                             |
|                  | 3. Generators Name And Mailing Kodrass VICI<br>2011 ARCTIC SLOPE AVENI<br>ANCHORAGE, AK 99518<br>4. Generator's Phone (907) 258-230                                                               | JE                                                     | crowley marine 3<br>459 west bluff d<br>Anchorage, ak 99                                   | RIVE                               |                                  |                                | 5 f % e.s*                            |
|                  | 5. Transporter L Company Name                                                                                                                                                                     |                                                        | & K R USEPAD Number 4 1.                                                                   | 84                                 | A. State Trans<br>B. Transporter | (902)                          | 220-1220<br>226-1220                  |
|                  | 7. Transporter 2 Company Name                                                                                                                                                                     |                                                        | 8. US EPA ID Number                                                                        |                                    | C. State Trans<br>D. Transporter |                                | · ·                                   |
|                  | 9. Designated Facility Name and Site Address<br>2020 VIKING DRIVE                                                                                                                                 |                                                        | 10. US EPA ID Number                                                                       |                                    | E. State Facili                  | y's ID                         |                                       |
|                  | AKR00004184                                                                                                                                                                                       |                                                        |                                                                                            | F. Facility's Phone (907) 258-1558 |                                  |                                |                                       |
|                  | 11. WASTE DESCRIPTION                                                                                                                                                                             |                                                        | · · · · · · · · · · · · · · · · · · ·                                                      | Cor<br>No.                         | ntainers<br>Type                 | 13.<br>Total<br>Quantity       | 14.<br>Unit<br>Wt./Vol.               |
|                  | MATERIAL NOT REGULATED BY                                                                                                                                                                         | D.O.T.                                                 |                                                                                            | 1                                  | DM                               | 150                            | · p                                   |
| GENER            | b.                                                                                                                                                                                                |                                                        |                                                                                            |                                    |                                  |                                |                                       |
| R<br>A<br>T<br>O | С.                                                                                                                                                                                                |                                                        | · · · · · · · · · · · · · · · · · · ·                                                      |                                    |                                  |                                |                                       |
| R                | d.                                                                                                                                                                                                |                                                        |                                                                                            |                                    |                                  |                                |                                       |
|                  | G. Additional Descriptions for Materials Listed Above<br>1)EA0302 IDW DECON WATER/                                                                                                                |                                                        | . · · · ·                                                                                  |                                    | H. Handling Co                   | des for Wastes Listed Above    |                                       |
|                  | 15. Special Handling Instructions and Additional Infor<br>I Certify that this mate<br>Hazardous Waste under 40<br>the definition under 40<br>or its subsidiary for ar<br>related to the above cer | iv damages. (                                          | rator aurees to indemi                                                                     | 11 I V EL                          | TELL FILLE                       | narniess akt a                 | meets<br>LASKA                        |
|                  | 16. GENERATOR'S CERTIFICATION: I hereby certifing proper condition for transport. The materials de                                                                                                | y that the contents of this scribed on this manifest a | shipment are fully and accurately described are not subject to federal hazardous waste rec | and are in a gulations.            | Il respects                      |                                | 1 [ ] [                               |
|                  | For CPD<br>Printed/Typed Name<br>Jalke Tracia                                                                                                                                                     | -                                                      | Signature"                                                                                 |                                    |                                  | / Month                        | Date<br>Day Year                      |
| TRANSPORTER      | <ul> <li>17. Transporter 1 Acknowledgement of Receipt of Me</li> <li>Printed/Typed Name</li> <li>18. Transporter 2 Acknowledgement of Receipt of Ma</li> <li>Printed/Typed Name</li> </ul>        | JALone d                                               | Signature<br>Signature                                                                     | <u> </u>                           | AL                               | Month<br>Month<br>Month        | Date<br>Day Year<br>(7) / (2)<br>Date |
| F<br>A<br>C      | 19. Discrepancy Indication Space                                                                                                                                                                  |                                                        | I                                                                                          |                                    |                                  |                                |                                       |
|                  | 20. Facility Owner or Operator: Certification of receipt                                                                                                                                          | of the waste materials co                              | overed by this manifest, except as noted in iter                                           | m 19.                              |                                  |                                | Date                                  |
| T<br>Y           | Printed/Typed Name                                                                                                                                                                                |                                                        | Signature                                                                                  |                                    |                                  | Month                          | Day Year                              |
| CF               | 14 © 2002 LABELMASTER® (800) 621-5                                                                                                                                                                | 808 www.labelmas                                       | ter.com                                                                                    |                                    |                                  | PRIMED ON RECYC<br>USING SOYDE | ALEO PAPER                            |

# **ATTACHMENT 4**

# IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT



Attachment to and part of Report 32-1-17453-007

| Date: | November 2016                           |
|-------|-----------------------------------------|
| To:   | CPD Alaska, LLC                         |
| Re:   | 459 West Bluff Drive, Anchorage, Alaska |

# **Important Information About Your Geotechnical/Environmental Report**

#### CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

#### THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors, which were considered in the development of the report, have changed.

#### SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

#### MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

#### A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

#### THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

#### BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

#### READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland