

Chevron Environmental Management Company

2008 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility #301726 ADEC File #100.38.066 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

December 12, 2008

Andrew Ohrt Staff Engineer

Greg Montgomery Project Scientist

Rebecca Andresen Certified Project Manager 2008 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility #301726

Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

Prepared for:
Chevron Environmental Management
Company

Our Ref.: B0046269

December 12, 2008

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

ARCADIS Table of Contents

1.	Intro	duction	1
2.	Site I	Description and Background	1
3.	Grou	ndwater Monitoring Methods	2
	3.1	Groundwater Gauging Methods	2
	3.2	Groundwater Sampling Methods	2
4.	Grou	ndwater Monitoring Results	3
	4.1	Groundwater Elevation and Flow Direction	3
	4.2	Groundwater Analytical Results	3
5.	Geoc	hemical Parameter Monitoring Results	4
6.	Labo	ratory Data Quality Assurance Summary	6
7.	Conc	elusion	6
8.	Reco	mmendations	7
9.	Refer	rences	7
Table	es		
	Table	1 – Groundwater Monitoring Results	
	Table	2 – Monitored Natural Attenuation Results	
Figur	es		
	Figure	e 1 – Site Location Map	
	Figure	2- Groundwater Elevations and Flow Direction	
	Figure	e 3 – Groundwater Analytical Data	
Appe	ndice	S	
	Α	Field Sheets	

Laboratory Analytical Reports and Chain-of-Custody Documentation

В

2008 Groundwater
Monitoring Report and
Geochemical Parameter
Monitoring Results

Former Chevron Facility #301726

1. Introduction

On behalf of Chevron Environmental Management Company (Chevron), ARCADIS U.S., Inc. (ARCADIS) has prepared this 2008 groundwater monitoring report and natural attenuation feasibility study for former Chevron facility 301726 located at Lot 5A, Block 10, West Ramp at the Fairbanks International Airport (the site). The site location is shown on **Figure 1**.

This report summarizes groundwater monitoring activities conducted at the site during September 2008. Monitoring activities were conducted pursuant to communications between ARCADIS and the Alaska Department of Environmental Conservation (ADEC). Monitoring activities were conducted under the direction of a "qualified person" [18 AAC 75. 990 (100), and 18 AAC 78.995 (118)]. The last sampling event at this site was conducted in September 2005.

2. Site Description and Background

The site is approximately one acre and located on the southwestern portion of the Fairbanks International Airport (FIA), west of Airport Industrial Road. The site was originally designated as Block 10, Lots 5A and 5B, however, the lots were subsequently combined, and are now referred to as Block 10, Lot 5A.

The site is currently vacant with no features remaining associated with the previous land uses. An abandoned six-inch diameter fuel pipeline crosses through the southeast portion of the site, adjacent to Airport Industrial Road. The former Texaco Bulk Terminal occupied the southeastern portion of the site facing Airport Industrial Road; this portion of the site is now covered with dirt and gravel and is used for truck staging and as an access road for a business located adjacent to the northeast portion of the site. The northwestern portion of the site is primarily unimproved land that is covered with mature vegetation. The Chena River is located approximately 700 feet west of the site.

Land use in the site vicinity is mixed industrial and unimproved (vegetation). The nearest residential properties are located approximately 600 feet west of the site. Domestic production wells have been reported at the residential properties. Airplane hangars, tarmacs, and other facilities associated with airport land uses are across Airport Industrial Road from the referenced site are commercial businesses.

2008 Groundwater
Monitoring Report and
Geochemical Parameter
Monitoring Results

Former Chevron Facility #301726

The former Texaco bulk fuel terminal began operation at the site in July 1969 and was closed in September 1989. There were three 25,000-gallon aboveground storage tanks (ASTs) and a warehouse. The three ASTs and structures were relocated to another facility in 1989 by MAPCO Alaska Petroleum, Inc. and the parcel has since remained vacant.

Seven documented petroleum releases of aviation fuel and diesel fuel occurred at the site during operation. Petroleum hydrocarbons have been detected and observed during routine utility maintenance operations and site investigations since 1992 and in groundwater samples since 2004.

The site geology consists of fill materials and unconsolidated alluvium deposited by the Chena and Tanana Rivers. Based on observations made during well installation approximately 200 feet northeast of the site, it is overlain by gravel fill material to depths of up to 5 feet below ground surface (bgs) and underlain by silty sand that becomes coarser with depth and grades into a gravelly sand (SAIC, 2005). Groundwater is approximately seven feet bgs.

3. Groundwater Monitoring Methods

3.1 Groundwater Gauging Methods

Groundwater elevations were measured in wells MW-1 through MW-6 on September 11, 2008. Groundwater elevations were measured using an oil/water interface probe. Immediately after opening each well for monitoring, the well casing organic vapor concentration was measured using a photoionization detector (PID).

Non-disposable groundwater monitoring equipment was decontaminated prior to and after each use with an Alconox® solution and rinsed in potable water.

3.2 Groundwater Sampling Methods

Groundwater samples were collected using dedicated, disposable Teflon[®] tubing with an In-Situ[®] 9500 meter and peristaltic pump. Geochemical parameters measured include dissolved oxygen (DO), oxidation-reduction potential (ORP), conductivity, pH, and temperature. Groundwater was purged until the geochemical parameters stabilized to within approximately ten percent of their value.

2008 Groundwater
Monitoring Report and
Geochemical Parameter
Monitoring Results

Former Chevron Facility #301726

The groundwater samples were labeled and stored in a cooler packed with ice and submitted to TestAmerica of Bothell, Washington for the following chemical analyses:

- Gasoline range organics (GRO) by method AK101
- Diesel range organics (DRO) by method AK102
- Residual range organics (RRO) by method AK103
- Benzene, toluene, ethylbenzene, total xylenes (BTEX) by EPA method 8021
- Total alkalinity by EPA method 310.1
- Sulfate by EPA method 300.0
- Nitrate as nitrogen by EPA method 300.0 and Hach colorimetric field kit
- Ferrous Iron by Hach colorimetric field kit
- Methane by method RSK 175

4. Groundwater Monitoring Results

4.1 Groundwater Elevation and Flow Direction

Depths-to-groundwater measured in wells MW-1 through MW-6 were consistent with historical measurements and ranged from 8.52 feet bgs in well MW-2 to 8.96 feet bgs in well MW-3. Groundwater elevations ranged from 418.16 feet above mean sea level (feet amsl) in well MW-6 to 418.21 feet amsl in wells MW-1 and MW-2. The inferred flow direction to the south-southwest; however, is not consistent with historical observations. Historical inferred groundwater directions were to the east and southeast. The apparent difference is likely due to natural groundwater fluctuations. Groundwater elevations are summarized in **Table 1**. Groundwater elevations and inferred flow direction are shown on **Figure 2**.

4.2 Groundwater Analytical Results

While constituent-of-concern (COC) concentrations have generally increased since the last monitoring event in September 2005, groundwater samples collected during the reporting period contained concentrations within the historical ranges for each well. Samples collected from wells MW-1 contained GRO, DRO, and benzene concentrations and samples collected from MW-3 contained DRO concentrations exceeding their respective ADEC groundwater cleanup levels. RRO, toluene, ethylbenzene, and total xylenes were not detected above their respective ADEC cleanup levels. Samples collected from wells MW-2, MW-4, and MW-6 did not contain COC concentrations exceeding their respective minimum reporting limits (MRLs). Groundwater analytical results are summarized in **Table 1**.

2008 Groundwater
Monitoring Report and
Geochemical Parameter
Monitoring Results

Former Chevron Facility #301726

5. Geochemical Parameter Monitoring Results

Due to the relatively low concentrations of petroleum-related hydrocarbons currently detected in groundwater samples collected from monitoring wells at the site and relatively small area of the site, natural attenuation may be a viable remedial solution. To determine the potential for natural attenuation at the site, wells MW-1 through MW-6 were monitored for geochemical parameters to characterize the potential biodegradation of petroleum-related hydrocarbons. Geochemical parameter monitoring was conducted in conjunction with groundwater monitoring activities on September 11, 2008 and was the first geochemical parameter monitoring event conducted at the site.

Groundwater elevation measurements at the site indicate little variation in groundwater elevations across the site. This may indicate little hydrologic influence on the hydrocarbon plume on-site. Due to the low frequency of sampling since monitoring began in 2005, it is difficult to assess the long term COC concentration trends in wells on-site. However, COC concentrations appear to be decreasing since monitoring began in August 2004. This may indicate the plume is stable or shrinking.

DO and ORP measurements can also be indicative of a stable or shrinking plume. DO concentrations in wells MW-1 and MW-3 (inside the plume) range from 0.02 milligrams per liter (mg/L) to 0.16 mg/L, respectively while concentrations in wells MW-2, MW-4, MW-5 and MW-6 (outside the plume) ranged from 1.17 mg/L (MW-5) to 6.43 mg/L (MW-2). ORP measurements were consistent with DO measurements, as the DO measurements approached zero mg/L, the ORP measurements became more negative. DO and ORP measurements are summarized in **Table 2**.

The difference in DO and ORP measurements between the wells inside and outside of the plume indicates an induced anaerobic (reductive) environment within the COC plume while the area outside the boundary of the plume outside of the plume remains aerobic. Generally, ORP measurements less than zero millivolts (mV) and DO measurements less than 1.0 mg/L are indicative of anaerobic conditions. Temperature measurements ranged from 1.39 degrees Celsius (°C) (MW-5) to 5.33 °C (MW-6) and pH measurements ranged from 4.29 (MW-3) to 4.62 (MW-4). Temperature measurements are below the range generally associated with conditions consistent with natural attenuation. However, numerous published results suggest natural attenuation of petroleum hydrocarbons at low temperatures does occur (Filler, 2008). DO, ORP, temperature and pH results are summarized in **Table 2**.

2008 Groundwater
Monitoring Report and
Geochemical Parameter
Monitoring Results

Former Chevron Facility #301726

Methane and ferrous iron results are also indicative of an anaerobic environment in and around wells MW-1 and MW-3. The methane concentration detected in well MW-1 (0.638 mg/L) is indicative of methanogenic conditions. It also corresponds to the highest total COC concentration. Methane was also detected in wells MW-3, MW-4 and MW-6 and in the case of MW-4 and MW-6 may be the result of past natural attenuation. In addition, ferrous iron was only detected in wells MW-1 and MW-3 at concentrations of 7.4 mg/L and 5.5 mg/L, respectively. Methane concentrations above 0.5 mg/L and ferrous iron concentrations elevated above background concentrations are generally consistent with anaerobic natural attenuation of petroleum hydrocarbons.

Total alkalinity was measured in all of the samples collected during the monitoring event. Total alkalinity concentrations in MW-1 and MW-3 were 627 mg/L as calcium carbonate (mg/L as CaCO₃) and 543 mg/L as CaCO₃, respectively. Concentrations in the remaining wells ranged from 347 mg/L as CaCO₃ in well MW-4 to 390 mg/L as CaCO₃ in wells MW-5 and MW-6. The total alkalinity concentrations elevated above background concentrations in wells MW-1 and MW-3 may be the result of past anaerobic natural attenuation.

Sulfate concentrations in wells MW-2 through MW-6 ranged from 12.5 mg/L in the duplicate sample from MW-2 to 31.8 mg/L in well MW-5 while the sulfate concentration in MW-1 was 1.56 mg/L. This may indicate sulfate reduction in well MW-1. Nitrate concentrations were not consistent with COC concentrations. The highest concentrations were detected in MW-5 and MW-6 while the nitrate was not detected in wells MW-1, MW-2 and MW-4. Nitrate field measurements ranged from non-detectable to 6.0 mg/L (MW-6). Nitrate concentrations are not conclusively indicative of nitrate reduction or anaerobic degradation.

Due to the limited extent of the monitoring well network, it is difficult to assess groundwater flow and its potential contribution to natural attenuation. Boring logs from site assessment activities classify the dominant soil type in the saturated zone as sand which generally has a high hydraulic conductivity.

The spatial variability of geochemical parameter concentrations is consistent with the inferred plume location. The distribution of electron acceptors (DO, nitrate, sulfate) and reduced electron acceptors (ferrous iron, methane) with respect to DRO and total BTEX concentrations indicates increased microbial activity within the plume. The data indicate that groundwater conditions are reducing in the impacted area (based on DO/ORP, decreased nitrate and sulfate, increased ferrous iron and methane) and aerobic downgradient and cross-gradient of the plume.

2008 Groundwater
Monitoring Report and
Geochemical Parameter
Monitoring Results

Former Chevron Facility #301726

6. Laboratory Data Quality Assurance Summary

As required by ADEC (Technical Memorandum 06-002, dated August 20, 2008), ARCADIS completed a laboratory data review checklist for the TestAmerica report from the 2008 groundwater monitoring events. The laboratory report and the data checklist are included as **Appendix B**. A supplemental data package from Lancaster is included along with the electronic data deliverable (EDD) on the enclosed CD. The following quality assurance (QA) summary describes six parameters, related to the quality and usability of the data presented in this report.

- Precision Based on the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) relative percent differences, the data meet precision objectives.
- 2. Accuracy The data generally meet accuracy objectives as indicated by the laboratory quality control samples, which were within method/laboratory limits.
 - Report #BRI0213 For sample MW-1 DRO analysis, the surrogate recovery was outside the acceptance limits due to sample matrix effects.
- 3. Representativeness The data appear to be representative of site conditions and are generally consistent with expected groundwater concentrations.
- 4. Comparability Comparability is not applicable to these laboratory results.
- 5. Completeness The results appear to be valid and usable, and thus, the laboratory results have 100% completeness.
- 6. Sensitivity The sensitivity of the analyses was adequate for the samples as the laboratory reporting limits were less than the applicable GCLs.

7. Conclusion

Groundwater elevations ranged from 418.16 ft-amsl to 418.21 ft-amsl and the inferred flow direction at the site is south to southwest. Wells MW-1 and MW-3 contained COC concentrations exceeding their respective ADEC groundwater cleanup levels while wells MW-2, MW-4 and MW-6 did not contain detectable COC concentrations.

2008 Groundwater
Monitoring Report and
Geochemical Parameter
Monitoring Results

Former Chevron Facility #301726

Groundwater monitoring results from September 11, 2008 indicate spatial variability of geochemical parameter concentrations consistent with the estimated petroleum hydrocarbon plume distribution. Based on geochemical parameter sampling, anaerobic natural attenuation of the petroleum-hydrocarbon related impact may be occurring at the site. DO, ORP, total alkalinity, sulfate, ferrous iron and methane concentrations are also consistent with trends and observations associated with anaerobic natural attenuation while conditions outside of the COC plume indicate that the general subsurface conditions are aerobic.

The available geochemical data indicate that groundwater conditions in the vicinity of the source area may be nitrate and sulfate depleted. The groundwater gradient at the site is very flat, which may limit the rate at which electron acceptors are supplied. In addition, groundwater pH at the site is approximately 4.5, which is low enough to be potentially inhibitory to overall microbial activity. Continued monitoring of geochemical parameters is recommended to corroborate the trends observed in September 2008.

8. Recommendations

Additional COC and geochemical parameter sampling at the site is necessary to characterize seasonal and long-term concentration trends at the site. Enhanced natural attenuation may provide a remedial solution with a shorter time horizon than monitored natural attenuation.

9. References

Filler, D.M., I. Snape, and D.L. Barnes, editors. 2008. *Bioremediation of Petroleum Hydrocarbons in Cold Regions*. Cambridge University Press, Cambridge, Great Britain.

SAIC, 2008. *Site Assessment Report – Former Texaco Bulk Terminal No. 301726*. November 22, 2004. Science Applications International Corporation.

Tables

TABLE 1

Groundwater Elevations and Analytical Results

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

		T00	DTW	OME	pp.e1	PD 02	0003		ВТ	EX ⁴	
Monitoring Well ID	Date Sampled	TOC	DTW	GWE	DRO ¹	RRO ²	GRO ³	Benzene	Toluene	Ethylbenzene	Total Xylenes
		(ft-amsl)	(ft)	(ft-amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ADEC GCLs ⁵ (μg/L)					1,500	1,100	2,200	5.0	1,000	700	10,000
MW-1	08/19/04	426.84	6.37	420.47	33,400	<480	27,200	1,770	3,790	261	3,750
	03/30/05		10.09	416.75	436	<388	9,000	729	343	186	936
	09/19/05		8.12	418.72	8,660	<397	<2,500	153	150	<25	116
	09/11/08		8.63	418.21	12,000	<708	6,680	357	413	124	815
MW-2	08/19/04	426.73	6.29	420.44	⁶	⁶	<50	<0.2	<0.5	<0.5	<1.0
	03/30/05		9.98	416.75	4,040	427	<50	<0.5	<0.5	<0.5	<1.5
	09/19/05		8.02	418.71	<417	<417	<50	<0.5	<0.5	<0.5	<1.5
	09/11/08		8.52	418.21	<94.3	<708	<50.0	<0.200	<0.500	<0.500	<1.0
	9/11/08 ^D				<95.2	<714	<50.0	<0.200	<0.500	<0.500	<1.0
MW-3	08/19/04	427.16	6.73	420.43	1,190	<480	89.4	0.774	<0.5	5.83	3.18
	03/30/05		10.42	416.74	<391	<391	181	0.979	<0.5	24.1	6.94
	09/19/05		8.47	418.69	6,730	2,120	<50	0.556	<0.5	1.73	<1.5
	09/11/08		8.96	418.20	12,000	<708	60.3	0.448	<0.500	0.653	1.96
MW-4	08/19/04	427.02	6.59	420.43	<400	<480	<50	0.3	<0.5	<0.5	<1.0
	03/30/05		10.29	416.73	<385	<385	<50	<0.5	<0.5	<0.5	<1.5
	09/19/05		8.34	418.68	1,310	815	<50	<0.5	<0.5	<0.5	<1.5
	09/11/08		8.83	418.19	<94.3	<708	<50.0	<0.200	<0.500	<0.500	<1.0
MW-5	08/19/04	426.89	6.44	420.45	<400	<480	<50	<0.2	<0.5	<0.5	<1.0
	03/30/05		10.16	416.73	3,310	435	<50	<0.5	<0.5	<0.5	<1.5
	09/19/05		8.19	418.70	<431	782	<50	<0.5	<0.5	<0.5	<1.5
	09/11/08		8.70	418.19	150	<708	<50.0	<0.200	<0.500	<0.500	<1.0
MW-6	08/19/04	426.82	6.36	420.46	<400	<480	<50	0.351	<0.5	<0.5	<1.0
	03/30/05		10.08	416.74	<388	<388	<50	<0.5	<0.5	<0.5	<1.5
	09/19/05		8.12	418.70	<403	<403	<50	<0.5	<0.5	<0.5	<1.5
	09/11/08		8.66	418.16	<100	<750	<50.0	<0.200	<0.500	<0.500	<1.0

Notes:

ft = feet

ft-amsl = feet-above mean sea level

μg/L = micrograms per liter

"--" = Indicates analyte was not sampled or analyzed for or parameter was not measured.

Highlighted cell indicates concentration exceeds groundwater cleanup level

"<" = Indicates analyte not detected greater than laboratory reporting limit indicated.

D = Indicates sample is a duplicate

Data associated with current monitoring event in **bold**.

^{1:} Diesel range organics (DRO) was analyzed by AK Method 102.

²: Residual range organics (RRO) was analyzed by AK Method 103.

³: Gasoline range organics (GRO) was analyzed by AK Method 101.

⁴: Benzene, toluene, ethylbenzene, and total xylenes (BTEX) were analyzed by EPA Method 8021B.

⁵: ADEC Groundwater Cleanup Levels (GCLs) per 18 AAC 75.345, Table C, Register 188, January 2009.

⁶: MW-2 was not analyzed for DRO or RRO because there was insufficient sample volume due to breakage during shipping.

TABLE 2

Geochemical Parameter Monitoring Results

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

Monitoring Well ID	Date Sampled	Temperature (°C) ¹	pH ¹	DO (mg/L) ¹	ORP (mV) ¹	Total Alkalinity (mg/L as CaCO3) ²	Sulfate (mg/L) ³	Nitrate (mg/L) ³	Methane (mg/L) ⁴	Ferrous Iron (mg/L) ⁵	Nitrate by Field Measurement (mg/L) ⁵
MW-1	9/11/2008	4.22	4.34	0.02	-114.32	627	1.56	<0.200	0.638	7.4	6.0
MW-2	9/11/2008	4.63	4.41	6.43	145.16	376	12.6	<0.200	< 0.0012	0.0	5.0
	9/11/2008 ^D	-1				375	12.5	<0.200	< 0.0012		
MW-3	9/11/2008	4.51	4.29	0.16	-8.10	543	28.1	0.210	0.0405	5.5	0.0
MW-4	9/11/2008	4.67	4.62	4.59	109.82	347	18.2	<0.200	0.0566	0.0	1.0
MW-5	9/11/2008	1.39	4.49	4.27	119.75	390	31.8	2.30	< 0.0012	0.0	0.0
MW-6	9/11/2008	5.33	4.45	1.17	93.34	390	19.6	0.680	0.0336	0.0	3.0

¹: Temperature, pH, DO and ORP measured using an In-Situ® 9500 and flow through cell.

°C = Degrees Celsius

DO = Dissolved oxygen

mg/L = milligrams per liter

ORP = Oxidation-reduction potential

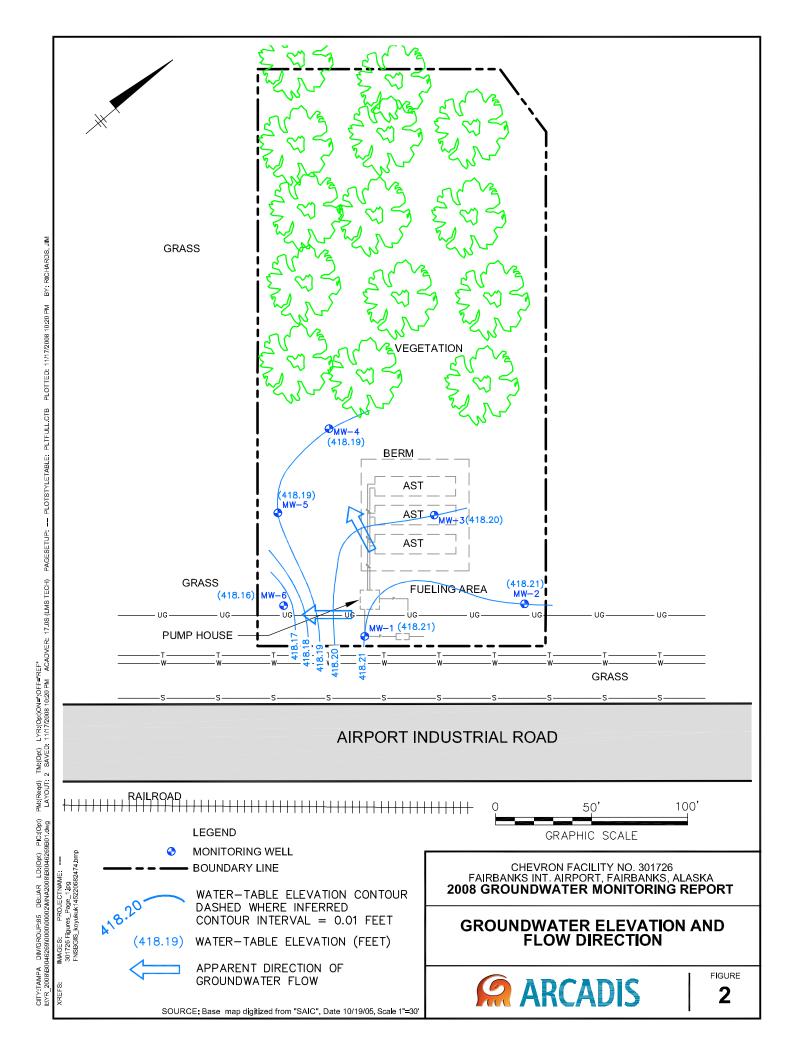
mV = millivolts

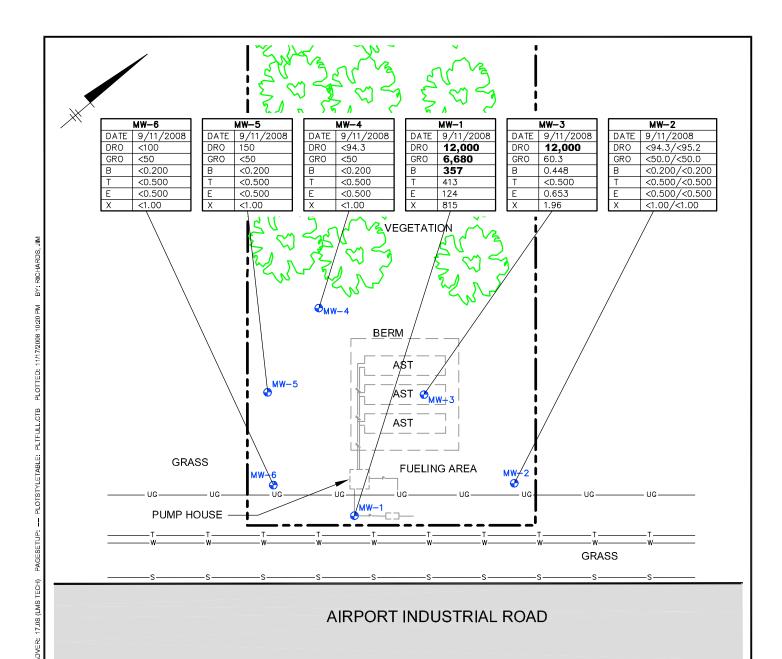
CaCO₃ = Calcium carbonate

"<" = Indicates analyte not detected greater than laboratory reporting limit indicated.

EPA = Environemental Protection Agency

D = Indicates sample is a duplicate


²: Total Alkalinity analyzed using EPA method 310.1

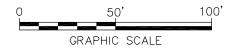

³: Sulfate and nitrate analyzed by EPA method 300.0.

⁴: Methane analyzed using method RSK 175.

⁵: Ferrous iron and nitrate field measurement analyzed using a Hach field kit.

Figures

LEGEND


MONITORING WELLBOUNDARY LINE

1		SAMPLE LOCATION	
1	DATE	SAMPLE DATE	ADEC LEVEL
1	DRO	DIESEL RANGE ORGANICS	1,500
1	GRO	GASOLINE RANGE ORGANICS	2,200
1	В	BENZENE	5.0
1	T	TOLUENE	1,000
	E	ETHYLBENZENE	700
	Χ	TOTAL XYLENES	10,000

RESULTS REPORTED IN MICROGRAMS PER LITER $(\mu g/L)$

BOLD INDICATES CONCENTRATION EXCEEDS RESPECTIVE GROUNDWATER CLEANUP LEVEL

 $\ensuremath{\mathsf{ADEC}} = \ensuremath{\mathsf{ALSKA}}$ DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CHEVRON FACILITY NO. 301726 FAIRBANKS INT. AIRPORT, FAIRBANKS, ALASKA 2008 GROUNDWATER MONITORING REPORT

GROUNDWATER ANALYTICAL RESULTS

FIGURE

3

IMAGES: PROJECTNAME: ---301726 Figures_Page_1.jpg FNSBGIS_koyukuk145220682474.bmp

SOURCE: Base map digitized from "SAIC", Date 10/19/05, Scale 1"=30"

Appendix A

Field Sheets

ARCADIS Groundwate	r Sampling Form
Project No.	Well ID
Project Name/Location FIA Texaco	301726/F

Peec A		כועו	Groundwate	r Sam	pling Fo	rm					Page	of 1
Project No.				-	Well ID	MW-				Date	9/11	08
Project Name/	Location	FIA	Texaco	3013	726	/ Fair	sand	S, AK		Weather	Part	4 Clo
Measuring Pt. Description			Screen Setting (ft-bmp)			Casing Diameter (in.)				Well Mate	erial	PVC SS
Static Water Level (ft-btoc)	8.6	03	Total Depth (ft-bto	c) 13	99	Water Colum Gallons in W	in/ ell 5,30	0/00	87)			
TOC Elevation	1		Pump Intake (ft-bt	oc)		Purge Metho	d: Per (5	stattie	<u>د</u>	Sample Method	Poris	taltic
Pump On/Off			Volumes Purged				Submersib	le		Wicthou	10/10	1001110
Sample Time:	Label Start End	1540	Replicate/ Code No.			-	Other		i	Sampled	by Mc	5
Time	Minutes Elapsed		Depth to Water	Gallons Purged	рН	Cond. (µMhos)	Turbidity	Dissolved Oxygen	Temp.	Redox	Appea	arance
		(mL/min)	(ft)	-		(mS/cm)	(NTU)	(mg/L)	(°F)	(mV)	Color	Odor
		TV	1-514	u								
									١.			
		T	errou	5 -	tro	no 7	e TY	ng				
	/											
							-	2			-	4
Field		A	Difra	te	0 (), Ø	mo	1				
											+	
											-	
	<u> </u>	L						1				
Constituents BETX		1 120 20		-	Containe	VOA		-	Number 3 2		Preservat	tive +CQ
Tota	A	Ikal	inity	-	1	L Poli	١.	-		_	-	
Nitro	han	as h	Vitroger	<u>,</u>		OA	Y	-	3	_		tce
				-				-				
Well Casing \	Volumes 1" = 0.04		1.5" = 0.09	2.5" = 0.20	6	3.5" = 0.50	6" = 1.47	-				
Canonan out	1.25" = 0.		2" = 0.16	3" = 0.37		4" = 0.65	ज्ञाता जना					
Well Informa		Fal	200		rave	0						
Well Location of Condition of C		101	ge of	9	nuce		_	l Locked a cked at De	the second second	1	×	No No
Well Com			Flush Mount /	Stick	Up		-	Number		16:	3018	GW Samp Form

Low-Flow System ISI Low-Flow Log

	Pro	iect	Infor	mation:
--	-----	------	-------	---------

Operator Name Mike Strickler
Company Name ARCADIS
Project Name FIA Texaco
Site Name 301726

Pump Information:

Pump Model/Type Geopump 2
Tubing Type FEP lined poly
Tubing Diameter 0.43 [cm]
Tubing Length 40 [m]
Pump placement from TOC 0 [m]

Well Information:

Well Id MW-1
Well diameter 2 [cm]
Well total depth 13.99 [m]
Depth to top of screen 0 [m]
Screen length 0 [cm]
Depth to Water 8.63 [m]

Pumping information:

Final pumping rate 250 [mL/min]
Flowcell volume 1131.88 [mL]
Calculated Sample Rate 272 [sec]
Sample rate 272 [sec]
Stabilized drawdown 0 [cm]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [mS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.1	+/-0.03	+/-0.1	+/-0.1	+/-10
				+/-10 %	+/-10 %	+/-10 %	
	15:13:50	4.45	4.30	0.07	10.45	0.26	-109.65
	15:18:32	4.36	4.31	0.07	9.64	0.09	-111.19
Last 5 Readings	15:23:14	4.24	4.33	0.07	7.66	0.06	-112.65
	15:27:56	4.21	4.34	0.07	7.09	0.04	-113.82
	15:32:38	4.22	4.34	0.07	7.59	0.02	-114.32
	15:23:14	-0.13	0.01	0.00	-1.98	-0.04	-1.46
Variance in last 3 readings	15:27:56	-0.03	0.01	0.00	-0.58	-0.02	-1.17
	15:32:38	0.01	0.01	0.00	0.50	-0.01	-0.50

Notes: 1540 sample time

A	RCA	DIS	Groundwate	er Sam	oling Fo	rm						1
Project No.					Well ID	M \	-2			Date	Page	of
Project Name	/I ocation	LTC	+ Texac	0 3	3017	AW	mich	mule	SAK		Purs	le Sur
Measuring Pt.	Location	121	Screen		0011			jerover	1	Well Mate		PVC
Description			Setting (ft-bmp)			Casing Diameter (in.)	2"	•		vvon mate		ss
Static Water Level (ft-btoc)	8.5	12	Total Depth (ft-btd	oc) 13	29	Water Colum Gallons in W	in/	70.	78			
TOC Elevation	n		Pump Intake (ft-b	toc)		Purge Metho	d: Per Centrifuga	ista	Hic	Sample Method	Peris	stalti
Pump On/Off			Volumes Purged				Submersib	le		Wiethou	101	3700
Sample Time:	Label Start End	1325	Replicate/ Code No.	Du	P-1	-	Other		,	Sampled	by 1	MLS
Time	Minutes	Rate	Depth to	Gallons	рН	Cond.	Turbidity	Dissolved	Temp.	Redox	Τ.	
000000750042	Elapsed	(gpm) (mL/min)	Water (ft)	Purged		(μMhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Color	Odor
		(111211111)	(1.)			(,	(11.0)	(mg/L)	(-)	(,	00101	- Cuci
		1			1							
			n-c	TI	U							-
				-		-				-		+
										-		+
0		1		-		0 (X		11	1/1	O,	
h		4	ex row	6	NO	no	0,0	Ma		. (C	000	
0/2)			/
WW/	1			-						-	-	
16				-						-	-	+
		h	1 1 1	1		d		,			-	+
			VITYC	ite	° L	ψ	mal					
	N									ļ	ļ	
	4		UP-		0	ecte	df	Don	N (thi	5 1	Vell
Constituents	Sampled				Containe	r .			Number		Preserva	ative
BETX	(? G	1RO		_		10A			3	_		CL
DRO	SKR	$\overline{\Omega}$	\	_		mber			d	_	-	HCC
Total	Alk	aline	+4	- \		Poli	i		1	_	- L \	04 0
Nili	rate	as N	Vitngen	-	$\rightarrow +$	POR		-		_		one
INAO,	than		Jilliagai	- /	V	DA		-	3	-	. H	Cl
				_				_		_		
				_				-		_		
-			(177							_		
Well Casing Gallons/Foot	Volumes 1" = 0.04 1.25" = 0.0		1.5" = 0.09 2" = 0.16	2.5" = 0.20 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47					
Well Informa	ation											
Well Loc		Vd	je of	Fen	æ		Well	Locked at	Arrival:	Yes) /	No

Well Locked at Departure:

Key Number To Well:

Yes

No

GW Samp For

Condition of Well:

Well Completion:

Flush Mount

Stick Up

Low-Flow System ISI Low-Flow Log

Pro	ject	Info	rmati	on:
-----	------	------	-------	-----

Operator Name Mike Strickler
Company Name ARCADIS
Project Name FIA Texaco
Site Name 301726

Pump Information:

Pump Model/Type Geopump 2
Tubing Type FEP lined poly
Tubing Diameter 0.43 [cm]
Tubing Length 40 [m]
Pump placement from TOC 0 [m]

Well Information:

Pumping information:

Final pumping rate 250 [mL/min]
Flowcell volume 1131.88 [mL]
Calculated Sample Rate 272 [sec]
Sample rate 272 [sec]
Stabilized drawdown 0 [cm]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [mS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.1	+/-0.03	+/-0.1	+/-0.1	+/-10
				+/-10 %	+/-10 %	+/-10 %	
	13:00:40	5.63	4.38	0.05	17.46	7.86	136.34
	13:05:22	5.13	4.39	0.05	5.83	7.09	139.15
Last 5 Readings	13:10:04	4.67	4.39	0.04	4.21	6.72	141.57
	13:14:46	4.64	4.40	0.04	3.11	6.50	143.48
	13:19:28	4.63	4.41	0.04	2.58	6.43	145.16
	13:10:04	-0.46	0.00	0.00	-1.62	-0.37	2.42
Variance in last 3 readings	13:14:46	-0.03	0.01	0.00	-1.11	-0.22	1.90
	13:19:28	-0.01	0.00	0.00	-0.53	-0.07	1.69

Notes: 1325 sample time

AR	CA	DIS	Groundwate	r Sam _l	oling Fo	orm					D	. 1
Project No.					Well ID	MW-	-3			Date	Page	of
Project Name/Loc	cation	FI	A Texa	10	3017	26/F	airb	ank	5 AK		Clou	der
Measuring Pt. Description	_		Screen Setting (ft-bmp)			Casing Diameter (in.)			7	Well Mate		PVC
Static Water Level (ft-btoc)	8.9	6	Total Depth (ft-bto	c) 14	.04	Water Colum Gallons in W		10.9	83)			
TOC Elevation			Pump Intake (ft-bt	oc)		Purge Metho	d: Peri	stal.	tic	Sample Method	Povis	taltic
Pump On/Off		and the same of th	Volumes Purged				Submersib	le		Metriod	10113	1001110
Sample Time: La St Er	tart _	220	Replicate/ Code No.			-	Other		,	Sampled	by Mi	_5
	linutes lapsed	Rate (gpm) (mL/min)	Depth to Water (ft)	Gallons Purged	рН	Cond. (µMhos) (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp. (°C) (°F)	Redox (mV)	Appea	orance
			0-1									
	V	1-	DITI	1								
										1		
							1					
		_/	Fermon	5	Im	20)	710	1/ -		
		$\overline{}$	101.00		710	110	-				-	
<u> </u>	\rightarrow										+	
KIEN												
M.						/	,					
,			Ma. Ha	10	•	7	17		NO	-		
			WITE	210	Ò	98	4		01	OR	CH	AN)CI
		1			_	/	ma	/_			COL	Tog
		•					110					
Constituents Sa	mpled				Containe	r			Number		Preservat	ive
BETY	19	GRE		_	V				3	_	Hc	メ
DIO	? K	RO	0.11		Ai	nber			2	_	HC	
10tal Sulf	Pat	Kali	rity		11	Polis		•		_	11:0	550
			itrogen	- /		Porg				-	un	PIE.
	nai		3		V	OA			3	_	H	a
				_						_		
				-						_		
				-				•		_		
	umes = 0.04 25" = 0.06		.5" = 0.09 2" = 0.16	2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47					
Well Information			00								7	
Well Location Condition of V	-		and				_	Locked a	-	Yes		No No
Well Complet	VOII		lush Mount /	Stick			_	Number	-	7	910	GW Samp Form

Low-Flow System ISI Low-Flow Log

Operator Name Mike Strickler
Company Name ARCADIS
Project Name FIA Texaco
Site Name 301726

Pump Information:

Pump Model/Type Geopump 2
Tubing Type FEP lined poly
Tubing Diameter 0.43 [cm]
Tubing Length 40 [m]
Pump placement from TOC 0 [m]

Well Information:

Well Id MW-3
Well diameter 2 [cm]
Well total depth 14.07 [m]
Depth to top of screen 0 [m]
Screen length 0 [cm]
Depth to Water 8.96 [m]

Pumping information:

Final pumping rate 250 [mL/min]
Flowcell volume 1136.75 [mL]
Calculated Sample Rate 273 [sec]
Sample rate 273 [sec]
Stabilized drawdown 0 [cm]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [mS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.1	+/-0.03	+/-0.1	+/-0.1	+/-10
				+/-10 %	+/-10 %	+/-10 %	
	11:55:04	5.13	4.27	0.06	5.58	0.69	8.63
	11:59:50	4.65	4.27	0.06	9.03	0.37	0.82
Last 5 Readings	12:04:33	4.79	4.28	0.06	30.57	0.23	-5.03
	12:09:16	4.64	4.28	0.06	50.75	0.17	-7.25
	12:13:59	4.51	4.29	0.06	174.04	0.16	-8.10
	12:04:33	0.14	0.00	0.00	21.54	-0.14	-5.85
Variance in last 3 readings	12:09:16	-0.14	0.00	0.00	20.17	-0.05	-2.22
	12:13:59	-0.14	0.01	0.00	123.29	-0.01	-0.85

Notes: 1220 sample time

A	RCADI S	Groundwate	r Sam	pling Fo	rm					Page	of \
Project No.	And the state of t		_	Well ID	MW-	4			Date	9/11/0	8
Project Name	Location	A Texac	031	01721	o/ For	irba	nks,	AK	Weather	Cloud	des
Measuring Pt. Description		Screen Setting (ft-bmp)			Casing Diameter (in.)				Well Mate		PVC () SS
Static Water Level (ft-btoc)	8.83	_ Total Depth (ft-bto	c) 14	.16	Water Colum Gallons in We	ell 5,	33/0	87)		
	1				Purge Method	d: Per	Stalt	ic	Sample Method	Perist	altic
						Submersib Other					
Sample Time:	Start End	Replicate/ Code No.			-			I	Sampled	by MU	<u></u>
Time	Minutes Rate		Gallons	рН	Cond.	Turbidity	Dissolved	Temp.	Redox	Appear	ance
	Elapsed (gpm) (mL/mi		Purged		(μMhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Color	Odor
		10-81	1						-		
		401	101								
			-	-		1		11			
1-0/0	1	errous	1	ror	6 0	P	Mo				
Her					· ·	. ,			 		
that		17 1		,		11			-		
		trate	, ;	1.9	M	all					
				114							
			-								
			-						-	-	
										1	
										ŝ.	
					L		L				
Constituents BET	2 PPD	`(.	-	Container	10A nber	1	-	Number 3 2	-	Preservativ	L.
SUF	ate	1149	-	>PE	14 (10	-)			-		
Nitro	ate as	Nitroger							_		
Mex	have	3	-		10A			3	_		d
			-				-		_		
	~		-						-		
			-					Da www.x-			
Well Casing Gallons/Foot	Volumes 1" = 0.04 1.25" = 0.06	1.5" = 0.09 2" = 0.16	2.5" = 0.20 3" = 0.37		3.5" = 0.50 b" = 0.65	6" = 1.47					
Well Informa			111-	Λ.							
Well Loc		age of	WO	ods		778 property or the court of the	Locked a		Yes		No
Condition of		Flush Mount	Stick	· Un		-	cked at De	-	(Yes	3910	NO GW Samp Form

Low-Flow System ISI Low-Flow Log

Operator Name Mike Strickler
Company Name ARCADIS
Project Name FIA Texaco
Site Name 301726

Pump Information:

Pump Model/Type Geopump 2
Tubing Type FEP lined poly
Tubing Diameter 0.43 [cm]
Tubing Length 40 [m]
Pump placement from TOC 0 [m]

Well Information:

Well Id MW-4
Well diameter 2 [cm]
Well total depth 14.16 [m]
Depth to top of screen 0 [m]
Screen length 0 [cm]
Depth to Water 8.83 [m]

Pumping information:

Final pumping rate 250 [mL/min]
Flowcell volume 1131.88 [mL]
Calculated Sample Rate 272 [sec]
Sample rate 272 [sec]
Stabilized drawdown 0 [cm]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [mS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.1	+/-0.03	+/-0.1	+/-0.1	+/-10
				+/-10 %	+/-10 %	+/-10 %	
	17:27:39	4.10	4.65	0.04	43.46	12.87	116.14
	17:32:20	4.64	4.62	0.04	8.71	8.51	116.18
Last 5 Readings	17:37:02	4.65	4.63	0.04	2.91	6.46	112.25
	17:41:44	4.62	4.63	0.04	2.51	5.22	110.03
	17:46:26	4.67	4.62	0.04	2.16	4.59	109.82
	17:37:02	0.01	0.01	0.00	-5.81	-2.05	-3.93
Variance in last 3 readings	17:41:44	-0.04	0.00	0.00	-0.39	-1.23	-2.22
	17:46:26	0.06	0.00	0.00	-0.36	-0.63	-0.21

Notes: 1755 sample time

			Groundwate				5 rban	jks, A	IC.	Date Weather	Page 1 9/11/ Cloud	of 1 08 des
Measuring Pt. Description			Screen Setting (ft-bmp)			Casing Diameter (in.)	2"			Well Mate		PVC SS
Static Water Level (ft-btoc)	8.		Total Depth (ft-btoo			Water Colum Gallons in We	ell 5.5	10,0	10)			
TOC Elevation	1		Pump Intake (ft-bte			Purge Method	Centrifuga		10	Sample Method	Peris	italti
Pump On/Off Sample Time:	Label Start End	1715	Volumes Purged Replicate/ Code No.			-	Submersib Other	le	,	Sampled	by M	LS
Time	Minutes Elapsed	Rate (gpm) (mL/min)	Depth to Water (ft)	Gallons Purged	рН	Cond. (μMhos) (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp. (°C) (°F)	Redox (mV)	Appear	rance Odor
		7	M-51	Tu T		d	1		<i>[</i>			
			envous	1	the	φ_{ι}	P	Maj				
red		K	itrate	2 8		M	9/L					
- h.												
Constituents BET		GR	D			10 A			Number 3	_	Preservati	ve + cl
Tota	d A	ikal 2	inity	-		n ber	4		7	- -	H	
Net	rate	e as	Nitroger	<u>.</u>	<u></u>	04	0	-	3	-		ty
				- - -				-		- -		

Well	Casing	Volumes

Gallons/Foot

1" = 0.04 1.25" = 0.06

1.5" = 0.09 2" = 0.16

2.5" = 0.26 3" = 0.37

3.5" = 0.50 4" = 0.65

6" = 1.47

Well Information

ves Well Location: Well Locked at Arrival: No Yes Burley Condition of Well: Well Locked at Departure: No GW Samp For Flush Mount Well Completion: Stick Up Key Number To Well:

Low-Flow System ISI Low-Flow Log

Project Information:	
----------------------	--

Operator Name Mike Strickler
Company Name ARCADIS
Project Name FIA Texaco
Site Name 301726

Pump Information:

Pump Model/Type Geopump 2
Tubing Type FEP lined poly
Tubing Diameter 0.43 [cm]
Tubing Length 40 [m]
Pump placement from TOC 0 [m]

Well Information:

 $\begin{array}{lll} \text{Well Id} & \text{MW-5} \\ \text{Well diameter} & 2 \text{ [cm]} \\ \text{Well total depth} & 14.2 \text{ [m]} \\ \text{Depth to top of screen} & 0 \text{ [m]} \\ \text{Screen length} & 0 \text{ [cm]} \\ \text{Depth to Water} & 8.7 \text{ [m]} \\ \end{array}$

Pumping information:

Final pumping rate 250 [mL/min]
Flowcell volume 1131.88 [mL]
Calculated Sample Rate 272 [sec]
Sample rate 272 [sec]
Stabilized drawdown 0 [cm]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [mS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.1	+/-0.03	+/-0.1	+/-0.1	+/-10
				+/-10 %	+/-10 %	+/-10 %	
	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00
	16:52:27	2.46	4.52	0.04	66.61	10.08	104.16
Last 5 Readings	16:57:08	1.59	4.49	0.04	40.33	6.08	113.18
	17:01:50	1.44	4.49	0.04	14.97	4.86	117.09
	17:06:32	1.39	4.49	0.04	10.17	4.27	119.75
	16:57:08	-0.88	-0.03	0.00	-26.27	-4.01	9.03
Variance in last 3 readings	17:01:50	-0.15	-0.01	0.00	-25.36	-1.22	3.90
	17:06:32	-0.05	0.00	0.00	-4.80	-0.59	2.66

Notes: 1715 sample time

ARCADIS	Groundwate	r Samp	oling Fo	rm					Page 1	of
Project No.			Well ID	MW-	6			Date	9/11/0	8
Project Name/Location TIA	Texaco	3017	126	MW- Fairb	anks,	AK		Weather	Part	ly Sil
Measuring Pt. Description	Screen Setting (ft-bmp)			Casing Diameter (in.)	211			Well Mate	erial	PVC
Pump On/Off Sample Time: Label 1025 Start	Total Depth (ft-btoo Pump Intake (ft-bto Volumes Purged Replicate/ Code No.	oc)		Water Colum Gallons in We Purge Method	ell 5, 2	Stall		Sample Method	Peris	stalti
End			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						_	
Time Minutes Rate Elapsed (gpm) (mL/min)	Depth to Water (ft)	Gallons Purged	рН	Cond. (μMhos) (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp. (°C) (°F)	Redox (mV)	Appea	Odor
Iv	-51-	u								
4		-		- d	/		1. /	i/\(T\)		
/ le	nous	li	on	00,	pr	ng/	L (CO	lor)	
rold Ni	trate	0	3,		m	a/L	_		6	
						<i>J</i>				
Constituents Sampled			Containe	r		<u> </u>	Number		Preservat	ive
DRO 7 RRO Total Alkali	nity	-	A	mber		-	2	-		a
Sulfate Vitrate as	Nitroop	en	\rightarrow	L Po	ly			_	1 Andrew	
Methane	J			VOA		-	_3_	_		CC
		-				-		_		
Well Casing Volumes Gallons/Foot 1" = 0.04 1	.5" = 0.09	2.5" = 0.20		3.5" = 0.50	6" = 1.47					

Low-Flow System ISI Low-Flow Log

Project Informat

Operator Name Mike Strickler
Company Name ARCADIS
Project Name FIA Texaco
Site Name 301726

Pump Information:

Pump Model/Type Geopump 2
Tubing Type FEP lined poly
Tubing Diameter 0.43 [cm]
Tubing Length 40 [m]
Pump placement from TOC 0 [m]

Well Information:

 $\begin{array}{lll} \text{Well Id} & \text{MW-6} \\ \text{Well diameter} & 2 \text{ [cm]} \\ \text{Well total depth} & 13.95 \text{ [m]} \\ \text{Depth to top of screen} & 0 \text{ [m]} \\ \text{Screen length} & 0 \text{ [cm]} \\ \text{Depth to Water} & 8.66 \text{ [m]} \\ \end{array}$

Pumping information:

Final pumping rate 250 [mL/min]
Flowcell volume 1131.88 [mL]
Calculated Sample Rate 272 [sec]
Sample rate 272 [sec]
Stabilized drawdown 0 [cm]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [mS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.1	+/-0.03	+/-0.1	+/-0.1	+/-10
				+/-10 %	+/-10 %	+/-10 %	
	16:10:41	5.37	4.44	0.05	448.95	3.35	76.45
	16:15:24	5.58	4.44	0.05	303.62	1.98	82.02
Last 5 Readings	16:20:06	5.41	4.44	0.05	93.84	1.64	86.52
	16:24:47	5.37	4.45	0.05	16.31	1.35	90.68
	16:29:29	5.33	4.45	0.05	3.07	1.17	93.34
	16:20:06	-0.17	0.00	0.00	-209.78	-0.33	4.50
Variance in last 3 readings	16:24:47	-0.04	0.00	0.00	-77.53	-0.29	4.16
	16:29:29	-0.04	0.00	0.00	-13.23	-0.18	2.66

Notes: 1625 sample time

Appendix B

Laboratory Analytical Reports and Chain-of-Custody Documentation

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

September 29, 2008

Mike Strickler Arcadis, Geraghty, & Miller - Seattle 2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

RE: 301726

Enclosed are the results of analyses for samples received by the laboratory on 09/13/08 12:01. The following list is a summary of the Work Orders contained in this report, generated on 09/29/08 11:41.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
BRI0213	301726	[none]

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle Project Name: 301726

2300 Eastlake Avenue East, Suite 100 Project Number: [none] Report Created: Seattle, WA/USA 98102 Project Manager: Mike Strickler 09/29/08 11:41

ANALYTICAL REPORT FOR SAMPLES

Laboratory ID	Matrix	Date Sampled	Date Received
BRI0213-01	Water	09/11/08 15:40	09/13/08 12:01
BRI0213-02	Water	09/11/08 13:25	09/13/08 12:01
BRI0213-03	Water	09/11/08 12:20	09/13/08 12:01
BRI0213-04	Water	09/11/08 17:55	09/13/08 12:01
BRI0213-05	Water	09/11/08 17:15	09/13/08 12:01
BRI0213-06	Water	09/11/08 16:25	09/13/08 12:01
BRI0213-07	Water	09/11/08 17:00	09/13/08 12:01
BRI0213-08	Water	09/11/08 17:00	09/13/08 12:01
	BRI0213-01 BRI0213-02 BRI0213-03 BRI0213-04 BRI0213-05 BRI0213-06 BRI0213-07	BRI0213-01 Water BRI0213-02 Water BRI0213-03 Water BRI0213-04 Water BRI0213-05 Water BRI0213-06 Water BRI0213-07 Water	BRI0213-01 Water 09/11/08 15:40 BRI0213-02 Water 09/11/08 13:25 BRI0213-03 Water 09/11/08 12:20 BRI0213-04 Water 09/11/08 17:55 BRI0213-05 Water 09/11/08 17:15 BRI0213-06 Water 09/11/08 16:25 BRI0213-07 Water 09/11/08 17:00

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

Carlling

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

Project Name: Project Number: 301726

[none]

Report Created:

Project Manager: Mike Strickler 09/29/08 11:41

Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101/EPA 8021B

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRI0213-01 (MW-1)		v	Vater	Sampled: 09/11/08 15:40							
Gasoline Range Hydrocarbons	AK 101	6680		500	ug/l	10x	8116027	09/16/08 11:21	09/17/08 03:11	kmt	
Benzene	"	357		2.00	"	"	"	"	"	kmt	
Toluene	"	413		5.00	"	"	"	"	"	kmt	
Ethylbenzene	"	124		5.00	"	"	"	"	"	kmt	
Xylenes (total)	"	815		10.0	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID)			91.1%		60 - 1	120 %	lx			"	
4-BFB (PID)			99.1%		68 - 1	140 %	"			"	
BRI0213-02 (MW-2)		v	Vater		;	Sample	d: 09/11/08 1	3:25			
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	8116027	09/16/08 11:21	09/17/08 00:29	kmt	
Benzene	"	ND		0.200	"	"	"	"	"	kmt	
Toluene	"	ND		0.500	"	"	"	"	"	kmt	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	kmt	
Xylenes (total)	"	ND		1.00	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID)			86.5%		60 - 1	120 %	"			"	
4-BFB (PID)			101%		68 - 1	140 %	"			"	
BRI0213-03 (MW-3)		v	Vater		!	Sample	d: 09/11/08 1	2:20			
Gasoline Range Hydrocarbons	AK 101	60.3		50.0	ug/l	1x	8116027	09/16/08 11:21	09/16/08 20:41	kmt	Q8
Benzene	"	0.448		0.200	"	"	"	"	"	kmt	
Toluene	"	ND		0.500	"	"	"	"	"	kmt	
Ethylbenzene	"	0.653		0.500	"	"	"	"	"	kmt	
Xylenes (total)	"	1.96		1.00	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID)			99.5%		60 - 1	120 %	"			"	
4-BFB (PID)			106%		68 - 1	140 %	"			"	
BRI0213-04 (MW-4)		v	Vater		;	Sample	d: 09/11/08 1	7:55			
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	8116027	09/16/08 11:21	09/17/08 01:01	kmt	
Benzene	"	ND		0.200	"	"	"	"	"	kmt	
Toluene	"	ND		0.500	"	"	"	"	"	kmt	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	kmt	
Xylenes (total)	"	ND		1.00	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID)			86.4%		60 - 1	120 %	"			"	
4-BFB (PID)			100%		68 - 1	140 %	"			"	

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

301726 Project Name:

Project Number: [none] Project Manager: Mike Strickler

Report Created: 09/29/08 11:41

Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101/EPA 8021B

TestAmerica Seattle

Analyte	Method	Result 1	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRI0213-05 (MW-5)		W	Water Sampled: 09/11/08 17:15								
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	8I16027	09/16/08 11:21	09/17/08 01:34	kmt	
Benzene	"	ND		0.200	"	"	"	"	"	kmt	
Toluene	"	ND		0.500	"	"	"	"	"	kmt	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	kmt	
Xylenes (total)	"	ND		1.00	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)			84.8% 100%			120 % 140 %	"			"	
BRI0213-06 (MW-6)		W	ater			Sample	d: 09/11/08 1	6:25			
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	8I16027	09/16/08 11:21	09/17/08 02:06	kmt	
Benzene	"	ND		0.200	"	"	"	"	"	kmt	
Toluene	"	ND		0.500	"	"	"	"	"	kmt	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	kmt	
Xylenes (total)	"	ND		1.00	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)			85.2% 100%			120 % 140 %	"			"	
BRI0213-07 (DUP-1)		W	ater			Sample	d: 09/11/08 1	7:00			
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	8116027	09/16/08 11:21	09/17/08 02:39	kmt	
Benzene	"	ND		0.200	"	"	"	"	"	kmt	
Toluene	"	ND		0.500	"	"	"	"	"	kmt	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	kmt	
Xylenes (total)	"	ND		1.00	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)			86.8% 100%			120 % 140 %	"			"	
BRI0213-08 (Trip Blank)		W	ater			Sample	d: 09/11/08 1	7:00			
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	8116027	09/16/08 11:21	09/16/08 23:56	kmt	
Benzene	"	ND		0.200	"	"	"	"	"	kmt	
Toluene	"	ND		0.500	"	"	"	"	"	kmt	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	kmt	
Xylenes (total)	"	ND		1.00	"	"	"	"	"	kmt	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)			86.5% 100%			120 % 140 %	"			"	

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

THE LEADER IN ENVIRONMENTAL TESTING

SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

Project Name:

301726

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Number: [none]
Project Manager: Mike S

Mike Strickler

Report Created: 09/29/08 11:41

Diesel Hydrocarbons (C10-C25) and Heavy Oil (C25-C36) by AK102 and AK103

TestAmerica Seattle

Analyte	Method	Result MDL*	MRL	Units D	il Batch	Prepared	Analyzed	Analyst	Note
BRI0213-01 (MW-1)		Water			Sampled: 09/11/08 15:40				
Residual Range Organics	AK102_103	ND	0.708	mg/l 1:	x 8I15017	09/15/08 09:20	09/17/08 11:55	WAS	
Surrogate(s): 2-FBP		154%	ó	50 - 150 %	"			" Z	X
Octacosane		106%	ó	50 - 150 %	"			"	
BRI0213-01RE1 (MW-1)		Water		Samp	Sampled: 09/11/08 15:40				
Diesel Range Hydrocarbons	AK102_103	12.0	0.472	mg/l 5:	x 8I15017	09/15/08 09:20	09/17/08 19:18	WAS	Q11
Surrogate(s): 2-FBP		198%	6	50 - 150 %	"			" Z.	X
Octacosane		92.2%	ó	50 - 150 %	"			"	
BRI0213-02 (MW-2)		Water		Sam	pled: 09/11/08	13:25			
Diesel Range Hydrocarbons	AK102_103	ND	0.0943	mg/l 1:	x 8115017	09/15/08 09:20	09/17/08 12:25	WAS	
Residual Range Organics	"	ND	0.708	" "	"	"	"	WAS	
Surrogate(s): 2-FBP		77.4%	ó	50 - 150 %	"			"	
Octacosane		105%	ó	50 - 150 %	"			"	
BRI0213-03 (MW-3)		Water		Sampled: 09/11/08 12:20					
Diesel Range Hydrocarbons	AK102_103	12.0	0.0943	mg/l 1:	x 8I15017	09/15/08 09:20	09/17/08 12:39	WAS	Q11
Residual Range Organics	"	ND	0.708	" "	"	"	"	WAS	
Surrogate(s): 2-FBP		119%	6	50 - 150 %	"			"	
Octacosane		104%	ó	50 - 150 %	"			"	
BRI0213-04 (MW-4)		Water		Sampled: 09/11/08 17:55					
Diesel Range Hydrocarbons	AK102_103	ND	0.0943	mg/l 1:	x 8I15017	09/15/08 09:20	09/17/08 13:09	WAS	
Residual Range Organics	"	ND	0.708	" "	"	"	"	WAS	
Surrogate(s): 2-FBP		75.7%	ó	50 - 150 %	"			"	
Octacosane		102%	ó	50 - 150 %	"			"	
BRI0213-05 (MW-5)		Water		Sam	pled: 09/11/08	17:15			
	AK102_103	0.150	0.0943	mg/l 1:		09/15/08 09:20	09/17/08 13:39	WAS	Q3
Diesel Range Hydrocarbons						"	"	WAS	
Diesel Range Hydrocarbons Residual Range Organics	"	ND	0.708	" "				WAO	
- ·	"	ND 77.2%		50 - 150 %			<u> </u>	"	

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL WA 98011-8244

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle 2300 Eastlake Avenue East, Suite 100

301726

Project Name: Project Number:

[none]

Report Created: 09/29/08 11:41

Seattle, WA/USA 98102

Project Manager: Mike Strickler

Diesel Hydrocarbons (C10-C25) and Heavy Oil (C25-C36) by AK102 and AK103

TestAmerica Seattle

Analyte	Method	Result M	DL* MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRI0213-06 (MW-6)		Wat	ter	;	Sample	d: 09/11/08 1	16:25			
Diesel Range Hydrocarbons	AK102_103	ND -	0.100	mg/l	1x	8115017	09/15/08 09:20	09/17/08 13:54	WAS	
Residual Range Organics	"	ND -	0.750	"	"	"	"	"	WAS	
Surrogate(s): 2-FBP			79.4%	50 -	150 %	"			"	
Octacosane			50	150 %	"			"		
BRI0213-07 (DUP-1)		Wat	ter	:	Sample	d: 09/11/08 1	17:00			
Diesel Range Hydrocarbons	AK102_103	ND -	0.0952	mg/l	1x	8115017	09/15/08 09:20	09/17/08 14:24	WAS	
Residual Range Organics	"	ND -	0.714	"	"	"	"	"	WAS	
Surrogate(s): 2-FBP			84.9%	50	150 %	"			"	
Octacosane			108%	50	150 %	"			"	

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: 301726

[none]

Report Created:

Project Manager: Mike Strickler

09/29/08 11:41

Conventional Chemistry Parameters by APHA/EPA Methods

TestAmerica Seattle

			1680	America	Scattle						
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRI0213-01	(MW-1)		Water		S	Sampled	: 09/11/08 1	5:40			
Total Alkalinity		EPA 310.1	627	5.00	mg/L as CaCO3	1x	8117056	09/17/08 17:29	09/17/08 19:30	PT	
BRI0213-02	(MW-2)		Water		S	Sampled	: 09/11/08 1	3:25			
Total Alkalinity		EPA 310.1	376	5.00	mg/L as CaCO3	1x	8117056	09/17/08 17:29	09/17/08 19:30	PT	
BRI0213-03	(MW-3)		Water		S	Sampled	: 09/11/08 1	2:20			
Total Alkalinity		EPA 310.1	543	5.00	mg/L as CaCO3	1x	8117056	09/17/08 17:29	09/17/08 19:30	PT	
BRI0213-04	(MW-4)		Water		S	Sampled	: 09/11/08 1	7:55			
Total Alkalinity		EPA 310.1	347	5.00	mg/L as CaCO3	1x	8117056	09/17/08 17:29	09/17/08 19:30	PT	
BRI0213-05	(MW-5)		Water		5	Sampled	: 09/11/08 1	7:15			
Total Alkalinity		EPA 310.1	390	5.00	mg/L as CaCO3	1x	8117056	09/17/08 17:29	09/17/08 19:30	PT	
BRI0213-06	(MW-6)		Water		5	Sampled	: 09/11/08 1	6:25			
Total Alkalinity		EPA 310.1	390	5.00	mg/L as CaCO3	1x	8117056	09/17/08 17:29	09/17/08 19:30	PT	
BRI0213-07	(DUP-1)		Water		5	Sampled	: 09/11/08 1	7:00			
Total Alkalinity		EPA 310.1	375	5.00	mg/L as CaCO3	1x	8117056	09/17/08 17:29	09/17/08 19:30	PT	

TestAmerica Seattle

Carling

Curtis D. Armstrong, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

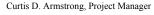
2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: 301726

Project Number: [none]
Project Manager: Mike Strickler

Report Created: 09/29/08 11:41


Anions by EPA Method 300.0

TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRI0213-01	(MW-1)		V	Vater			Sampled	l: 09/11/08 1	5:40			
Nitrate-Nitrogen		EPA 300.0	ND		0.200	mg/l as	1x	8114003	09/13/08 12:33	09/13/08 13:04	LSB	
Sulfate		"	1.56		0.400	N mg/l	"	"	"	"	LSB	
BRI0213-02	(MW-2)		v	Vater			Sampled	l: 09/11/08 1	3:25			
Nitrate-Nitrogen		EPA 300.0	ND		0.200	mg/l as	1x	8114003	09/13/08 12:33	09/13/08 12:48	LSB	
Sulfate		"	12.6		0.400	Mg/l	"	"	"	"	LSB	
BRI0213-03	(MW-3)		v	Vater			Sampled	l: 09/11/08 1	2:20			
Nitrate-Nitrogen		EPA 300.0	0.210		0.200	mg/l as	1x	8I14003	09/13/08 12:33	09/13/08 12:33	LSB	
Sulfate		"	28.1		0.800	mg/l	2x	"	"	09/16/08 13:15	LSB	
BRI0213-04	(MW-4)		V	Vater			Sampled	l: 09/11/08 1	7:55			
Nitrate-Nitrogen		EPA 300.0	ND		0.200	mg/l as	1x	8114003	09/13/08 12:33	09/13/08 13:20	LSB	
Sulfate		"	18.2		0.400	mg/l	"	"	"	"	LSB	
BRI0213-05	(MW-5)		V	Vater			Sampled	l: 09/11/08 1	7:15			
Nitrate-Nitrogen		EPA 300.0	2.30		0.200	mg/l as	1x	8114003	09/13/08 12:33	09/13/08 13:35	LSB	
Sulfate		"	31.8		0.800	N mg/l	2x	"	"	09/16/08 13:30	LSB	
BRI0213-06	(MW-6)		V	Vater			Sampled	l: 09/11/08 1	6:25			
Nitrate-Nitrogen		EPA 300.0	0.680		0.200	mg/l as	1x	8I14003	09/13/08 12:33	09/13/08 13:51	LSB	
Sulfate		"	19.6		0.800	mg/l	2x	"	"	09/16/08 13:46	LSB	
BRI0213-07	(DUP-1)		v	Vater			Sampled	l: 09/11/08 1	7:00			
Nitrate-Nitrogen		EPA 300.0	ND		0.200	mg/l as	1x	8I14003	09/13/08 12:33	09/13/08 14:07	LSB	
Sulfate		п	12.5		0.400	mg/l	"	"	"	"	LSB	

TestAmerica Seattle

Carlonay

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

301726 Project Name:

Project Number:

[none] Mike Strickler Report Created:

09/29/08 11:41

Hydrocarbons by GC/FID Headspace

Project Manager:

TestAmerica Anchorage

Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRI0213-01	(MW-1)		Water			Sampled	l: 09/11/08 1	5:40			
Methane		GC/FID	638	1.20	ug/l	1x	8090086	09/23/08 09:16	09/23/08 13:26	DS	
BRI0213-02	(MW-2)		Water			Sampled	l: 09/11/08 1	3:25			
Methane		GC/FID	ND	1.20	ug/l	1x	8090086	09/23/08 09:16	09/23/08 13:26	DS	
BRI0213-03	(MW-3)		Water			Sampled	l: 09/11/08 1	2:20			
Methane		GC/FID	40.5	1.20	ug/l	1x	8090086	09/23/08 09:16	09/23/08 13:26	DS	
BRI0213-04	(MW-4)		Water			Sampled	l: 09/11/08 1	7:55			
Methane		GC/FID	56.6	1.20	ug/l	1x	8090086	09/23/08 09:16	09/23/08 13:26	DS	
BRI0213-05	(MW-5)		Water			Sampled	l: 09/11/08 1	7:15			
Methane		GC/FID	ND	1.20	ug/l	1x	8090086	09/23/08 09:16	09/23/08 13:26	DS	
BRI0213-06	(MW-6)		Water			Sampled	l: 09/11/08 1	6:25			
Methane		GC/FID	33.6	1.20	ug/l	1x	8090086	09/23/08 09:16	09/23/08 13:26	DS	
BRI0213-07	(DUP-1)		Water			Sampled	l: 09/11/08 1				
Methane		GC/FID	ND	1.20	ug/l	1x	8090086	09/23/08 09:16	09/23/08 13:26	DS	

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

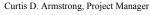
Arcadis, Geraghty, & Miller - Seattle

Project Name:

301726

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

Project Number: Project Manager: [none] Mike Strickler Report Created: 09/29/08 11:41


Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101/EPA 8021B - Laboratory Quality Control Results

TestAmerica Seattle

QC Batch: 8I16027	Water	Preparation	Method: F	EPA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8I16027-BLK1)								Extr	acted:	09/16/08 11	:21			
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x							09/16/08 16:52	
Benzene	"	ND		0.200	"	"							"	
Toluene	"	ND		0.500	"	"							"	
Ethylbenzene	"	ND		0.500	"	"							"	
Xylenes (total)	"	ND		1.00	"	"							"	
Surrogate(s): 4-BFB (FID)		Recovery:	87.7%	Lin	nits: 60-120%	ó "							09/16/08 16:52	
4-BFB (PID)			100%		68-1409	6 "							"	
LCS (8I16027-BS1)								Extr	acted:	09/16/08 11	:21			
Gasoline Range Hydrocarbons	AK 101	1090		50.0	ug/l	1x		1000	109%	(60-120)			09/16/08 17:25	
Surrogate(s): 4-BFB (FID)		Recovery:	98.0%	Lin	nits: 60-120%	ó "							09/16/08 17:25	
LCS (8I16027-BS2)								Extr	acted:	09/16/08 11	:21			
Benzene	AK 101	33.9		0.200	ug/l	1x		30.0	113%	(80-120)			09/16/08 18:30	
Toluene	"	32.1		0.500	"	"		"	107%	"			"	
Ethylbenzene	"	32.5		0.500	"	"		"	108%	"			"	
Xylenes (total)	"	94.9		1.00	"	"		90.0	105%	"			"	
Surrogate(s): 4-BFB (PID)		Recovery:	101%	Lin	nits: 68-140%	ó "							09/16/08 18:30	
LCS Dup (8I16027-BSD1)								Extr	acted:	09/16/08 11	:21			
Gasoline Range Hydrocarbons	AK 101	1200		50.0	ug/l	1x		1000	120%	(60-120)	9.53%	6 (20)	09/16/08 17:58	
Surrogate(s): 4-BFB (FID)		Recovery:	98.8%	Lin	nits: 60-120%	<i>"</i>							09/16/08 17:58	
LCS Dup (8I16027-BSD2)								Extr	acted:	09/16/08 11	:21			
Benzene	AK 101	33.6		0.200	ug/l	1x		30.0	112%	(80-120)	0.8689	% (25)	09/16/08 19:03	
Toluene	"	31.7		0.500	"	"		"	106%	"	1.03%	6 "	"	
Ethylbenzene	"	32.3		0.500	"	"		"	108%	"	0.6339	% "	"	
Xylenes (total)	"	94.4		1.00	"	"		90.0	105%	"	0.4989	% "	"	
Surrogate(s): 4-BFB (PID)		Recovery:	101%	Lin	nits: 68-140%	ó "							09/16/08 19:03	
Duplicate (8I16027-DUP1)				QC Source:	BRI0212-0	1		Extr	acted:	09/16/08 11	:21			
Gasoline Range Hydrocarbons	AK 101	839		50.0	ug/l	1x	885				5.32%	6 (20)	09/16/08 20:09	
Benzene	"	47.7		0.200	"	"	47.8				0.3469	% (25)	"	
Toluene	"	54.4		0.500	"	"	54.6				0.3259	% "	"	
Ethylbenzene	"	14.2		0.500	"	"	14.3				0.4229	% "	"	
Xylenes (total)	"	105		1.00	"	"	106				0.3869	% "	"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	96.2% 101%	Lin	nits: 60-120% 68-1409								09/16/08 20:09	

TestAmerica Seattle

Carlling

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

301726 Project Name:

Project Number: [none] Project Manager: Mike Strickler

Report Created: 09/29/08 11:41

Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101/EPA 8021B - Laboratory Quality Control Results

TestAmerica Seattle

QC Batch: 8I16027 Water Preparation Method: EPA 5030
--

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Duplicate (8I16027-DUP2)				QC Source:	BRI0250-02			Extr	acted:	09/16/08 11	:21			
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	ND				NR	(20)	09/17/08 06:27	
Benzene	"	ND		0.200	"	"	ND				NR	(25)	"	
Toluene	"	ND		0.500	"	"	ND				NR	"	"	
Ethylbenzene	"	ND		0.500	"	"	ND				NR	"	"	
Xylenes (total)	"	ND		1.00	"	"	ND				NR	"	"	
Surrogate(s): 4-BFB (FID)		Recovery: 8	85.8%	Lin	nits: 60-120%	"							09/17/08 06:27	
4-BFB (PID)			101%		68-140%	"							"	
Matrix Spike (8I16027-MS1)				QC Source:	BRI0212-01			Extr	acted:	09/16/08 11	:21			
Gasoline Range Hydrocarbons	AK 101	1810		50.0	ug/l	1x	885	1000	92.6%	(60-120)			09/16/08 21:13	

Gasoline Range Hydrocarbons	AK 101	1810		50.0 ug/l	1x	885	1000 92.6% (60-120)	 09/16/08 21:13
Surrogate(s): 4-BFB (FID)		Recovery:	106%	Limits: 60-120%	"			09/16/08 21:13
Matrix Spike (8116027-MS2)				OC Source: BRI0213-03			Extracted: 09/16/08 11:21	

Matrix Spike (8I16027-MS2)			QC Source:	BRI0213-	.03		Exti	acted: (09/16/08 11:2	21	
Benzene	AK 101	37.5	 0.200	ug/l	1x	0.448	30.0	124%	(46-130)		 09/16/08 21:46
Toluene	"	33.9	 0.500	"	"	0.302	"	112%	(60-124)		 "
Ethylbenzene	"	36.3	 0.500	"	"	0.653	"	119%	(56-141)		 "
Xylenes (total)	"	104	 1.00	"	"	1.96	90.0	113%	(66-132)		 "

09/16/08 21:46 Surrogate(s): 4-BFB (PID) Limits: 68-140% Recovery: 106%

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

Carlling

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL WA 98011-8244

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

QC Batch: 8I15017

Project Name: Project Number: Project Manager: 301726

[none] Mike Strickler Report Created: 09/29/08 11:41

Diesel Hydrocarbons (C10-C25) and Heavy Oil (C25-C36) by AK102 and AK103 - Laboratory Quality Control Results

TestAmerica Seattle

Water Preparation Method: EPA 3520C

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8I15017-BLK1)								Ext	racted:	09/15/08 09:	:20			
Diesel Range Hydrocarbons	AK102_103	ND		0.100	mg/l	1x							09/16/08 20:35	
Residual Range Organics	"	ND		0.750	"	"							"	
Surrogate(s): 2-FBP		Recovery:	82.3%	Lin	nits: 50-150%	"							09/16/08 20:35	
Octacosane			108%		50-150%	"							"	
LCS (8I15017-BS1)								Ext	racted:	09/15/08 09:	:20			
Diesel Range Hydrocarbons	AK102_103	1.75		0.100	mg/l	1x		2.00	87.6%	(75-125)			09/16/08 20:49	
Residual Range Organics	"	1.93		0.750	"	"		"	96.7%	(60-120)			"	
Surrogate(s): 2-FBP		Recovery:	84.5%	Lin	nits: 50-150%	"							09/16/08 20:49	
Octacosane			106%		50-150%	"							"	

LCS Dup (8I15017-	BSD1)						Ext	racted: (09/15/08 09:	20	
Diesel Range Hydrocarbons	AK102_103	1.84		0.100	mg/l	1x	 2.00	91.9%	(75-125)	4.75% (20)	09/16/08 21:19
Residual Range Organics	"	1.98		0.750	"	"	 "	99.1%	(60-120)	2.46% "	"
Surrogate(s): 2-FBF	ı	Recovery: 8	7.4%	Lim	its: 50-150	% "					09/16/08 21:19
Octac	osane	Ì	02%		50-150)% "					"

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

301726 Project Name:

Project Number: [none] Project Manager: Mike Strickler

Report Created: 09/29/08 11:41

Conventional Chemistry Parameters by APHA/EPA Methods - Laboratory Quality Control Results

			Т	estAmeri	ica Seattle									
QC Batch: 8I17056	Water P	reparation M	ethod: Ge	eneral Pr	eparation							- _		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8I17056-BLK1)								Extra	acted:	09/17/08 1	7:29			
Total Alkalinity	EPA 310.1	ND		5.00	mg/L as CaCO3	1x						(09/17/08 19:30	
LCS (8I17056-BS1)								Extra	acted:	09/17/08 1	7:29			
Total Alkalinity	EPA 310.1	54.1		5.00	mg/L as CaCO3	1x		50.0	108%	(90-110)		(09/17/08 19:30	
LCS (8I17056-BS2)								Extra	acted:	09/17/08 1	7:29			
Total Alkalinity	EPA 310.1	51.0		5.00	mg/L as CaCO3	1x		50.0	102%	(90-110)		(09/17/08 19:30	
Duplicate (8I17056-DUP1)				QC Source	: BRI0213-0	17		Extra	acted:	09/17/08 1	7:29			
Total Alkalinity	EPA 310.1	375		5.00	mg/L as CaCO3	1x	375				0.0533%	(20)	09/17/08 19:30	
Duplicate (8I17056-DUP2)				QC Source	: BRI0175-(13		Extra	acted:	09/17/08 1	7:29			
Total Alkalinity	EPA 310.1	1200		5.00	mg/L as CaCO3	1x	1200	-			0.750%	(20)	09/17/08 19:30	

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

Carlling

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

Project Name: 301726

Project Number: [none]

Mike Strickler

Report Created: 09/29/08 11:41

Anions by EPA Method 300.0 - Laboratory Quality Control Results

TestAmerica Seattle

Project Manager:

Water Pr													
*** atti 11	reparation M	ethod: C	General Pr	eparation									
Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
							Extr	acted:	09/13/08 12	2:33			
EPA 300.0	ND		0.400	mg/l	1x							09/13/08 14:38	
"	ND		0.200	mg/l as N	"							"	
							Extr	acted:	09/13/08 12	2:33			
EPA 300.0	5.94		0.400	mg/l	1x		6.00	99.0%	(90-110)			09/13/08 14:54	
"	0.980		0.200	mg/l as N	"		1.00	98.0%	"			"	
			QC Source	e: BRI0213-0	6		Extr	acted:	09/13/08 12	2:33			
EPA 300.0	19.5		0.800	mg/l	2x	19.6				0.9219	% (25)	09/16/08 14:49	
"	0.680		0.200	mg/l as N	1x	0.680				0.00%	6 "	09/13/08 15:56	
			QC Source	: BRI0213-0	6		Extr	acted:	09/13/08 12	2:33			
EPA 300.0	24.4		0.800	mg/l	2x	19.6	6.00	80.0%	(54-124)			09/16/08 14:33	
"	1.54		0.200	mg/l as N	1x	0.680	1.00	86.0%	(59-126)			09/13/08 15:41	
	EPA 300.0 " EPA 300.0 " EPA 300.0 "	EPA 300.0 ND " ND EPA 300.0 5.94 " 0.980 EPA 300.0 19.5 " 0.680	EPA 300.0 ND " ND EPA 300.0 5.94 " 0.980 EPA 300.0 19.5 " 0.680	EPA 300.0 ND 0.400 " ND 0.200 EPA 300.0 5.94 0.400 " 0.980 0.200 CC Source EPA 300.0 19.5 0.800 " 0.680 0.200 CC Source EPA 300.0 24.4 0.800	EPA 300.0 ND 0.400 mg/l as N EPA 300.0 5.94 0.400 mg/l as N " 0.980 0.200 mg/l as N QC Source: BRI0213-0 EPA 300.0 19.5 0.800 mg/l " 0.680 0.200 mg/l as N QC Source: BRI0213-0	EPA 300.0 ND 0.400 mg/l lx " ND 0.200 mg/l as N " EPA 300.0 5.94 0.400 mg/l lx " 0.980 0.200 mg/l as N " COC Source: BRI0213-06 EPA 300.0 19.5 0.800 mg/l 2x " 0.680 0.200 mg/l as N lx COC Source: BRI0213-06 EPA 300.0 24.4 0.800 mg/l 2x	EPA 300.0 ND 0.400 mg/l lx " ND 0.200 mg/l as N " EPA 300.0 5.94 0.400 mg/l lx " 0.980 0.200 mg/l as N " COC Source: BRI0213-06 EPA 300.0 19.5 0.800 mg/l 2x 19.6 " 0.680 0.200 mg/l as N lx 0.680 COC Source: BRI0213-06 EPA 300.0 24.4 0.800 mg/l 2x 19.6	EPA 300.0 ND 0.400 mg/l lx	EPA 300.0 ND 0.400 mg/l 1x	EPA 300.0 ND 0.400 mg/l 1x	EPA 300.0 ND 0.400 mg/l 1x	EPA 300.0 ND 0.400 mg/l 1x	EPA 300.0 ND

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

Project Name: 301726

[none]

Mike Strickler

Report Created: 09/29/08 11:41

 $Hydrocarbons\ by\ GC/FID\ Head space\ -\ Laboratory\ Quality\ Control\ Results$

TestAmerica Anchorage

Project Number:

Project Manager:

						,							
QC Batch: 8090086	Water I	Preparation M	lethod: RS	K 175									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	o‰ RPD ((Limits)	Analyzed	Notes
Blank (8090086-BLK1)								Extracted:	09/23/08 0	9:16			•
Methane	GC/FID	ND		1.20	ug/l	1x					09	/23/08 13:26	
LCS (8090086-BS1)								Extracted:	09/23/08 0	9:16			
Methane	GC/FID	49.2		1.20	ug/l	1x		56.3 87.4%	(80-120)		09	/23/08 13:26	
LCS Dup (8090086-BSD1)								Extracted:	09/23/08 0	9:16			
Methane	GC/FID	50.5		1.20	ug/l	1x		56.3 89.7%	(80-120)	2.59%	(25) 09	/23/08 13:26	
Duplicate (8090086-DUP1)				QC Source:	ARI0063-0)1		Extracted:	09/23/08 0	9:16			
Methane	GC/FID	31.6		1.20	ug/l	1x	28.5			10.5%	(35) 09	/23/08 13:26	

TestAmerica Seattle

Curtis D. Armstrong, Project Manager

Carlling

11720 NORTH CREEK PKWY N. SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

301726 Project Name:

Project Number: [none] Project Manager: Mike Strickler

09/29/08 11:41

Report Created:

Notes and Definitions

Report Specific Notes:

011 Detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel.

Q3 The chromatographic pattern is not consistent with diesel fuel.

08 Detected hydrocarbons in the gasoline range appear to be due to overlap of diesel range hydrocarbons.

ZXDue to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Laboratory Reporting Conventions:

Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. DET

Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). ND

Not Reported / Not Available NR/NA _

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.

*MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

Signature

Curtis D. Armstrong, Project Manager

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

11922 E. First Ave, Spokane, WA 99206-5302

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 FAX 906-9210

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 503-906-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

Work Order #:

CHAIN OF CUSTODY REPORT

CLIENT: Cherron INVOICE TO: TURNAROUND REQUEST REPORT TO: ARCADIS ADDRESS: 2300 Eastlake Ave. E., Ste. 200 Seattle, WA 98102 PHONE: 906-325-52 FAX: 206-325-8218 in Business Days * Organic & Inorganic Analyses 5 4 3 2 1 <1
Petroleum Hydrocarbon Analyses P.O. NUMBER: NW RTB-0301726-1-0ML PRESERVATIVE PROJECT NUMBER: 301726 SAMPLED BY: MLS LOCATION/ CLIENT SAMPLE SAMPLING MATRIX COMMENTS IDENTIFICATION DATE/TIME (W, S, O) CONT WO ID 1540 MW-1325 MW-2 MW-7 220 MW-4 Trip Blank RELEASED BY: DATE: RECEIVED BY: Michael Strickler FRM ARCADIS TIME: PRINT NAME: RELEASED BY: DATE: RECEIVED BY: PRINT NAME: TIME: PRINT NAME: TIME: ADDITIONAL REMARKS TEMP: have 48-Hour Hold Time Wet Chemistries

				(If Y, see other side)
	TEST AMERICA	SAMPLE RECEIPT CH	HECKLIST	34,385,39
Received By:	Logged-in By:	Unpacked/Labeled By	Cooler ID:	
(applies to temp at receipt) Date: 4(13/56)	09/12/20	09-16-08		TANIA ROTAN
1 1	Date: 13/0	Date: 1 1 208	Work Order No	1
Time: 12:01pm	Time:	Time: <u>1315</u>	Client:	
miliais	Initials:	Initials:	Project:	
Container Type:	coc	Seais: docklo	Packing Material	· :
Cooler	Ship Containe	1 /	Bubble Bags	Styrofoam
Вох	On Bottles	09 1208 Date	Foam Packs	
None/Other	- 01	None 7	None/Other	
Refrigerant:	S	(1913/cc 3 cc	Received Via: Bill#	
Gel Ice Pack		113/08		_ Client
Loose Ice			UPS	_ TA Courier
None/Other			DHL	_ Mid ∀alley
			Senvoy	_ TDP
				_ Other
Cooler Temperature (IF	CPlastic Gl	lass (Frozen filters, Tedla	ars and aqueous Met	als exempt)
BP. OPLC,ARCO-Temp //initial/date/time):	7.7	ery 15 minutes:	Trip Blank	? Y or N or NA.
Sample Containers:				 D
Intact?	Y ON Broken	Cimber Metals Preserved?	? Yor Nor.	
Provided by TA?	Opor N	 Client QAPP Prese	,	<u></u>
Correct Type?	Y OF N	Adequate Volume	? (?) or N	
#Containers match COC	22 Y OF N Staten	(for tests requested)	dspace? Y or Nor	NA
IDs/time/date match CC		Comments: MW	-1 - 1 Broten Amber	1
Hold Times in hold?	(A)	Trip blank	hus 4 VOAS.	
PROJECT MANAGEM	ENT			
is the Chain of Custody	complete?	•	Y or N If N, circle the ii	tems that were incomplete
Comments.Problems				
-				
Total access set up? Has client been contacted regi	arding non-conformances?		YorN YorN IfY, / Date	
PM Initials:	Date:	Time:	Date	Time

Paperwork to PM - Date:_____Time:____

TAT: _____

Page Time & Initials:_____

Non-Conformances?

Circle Y or N

NOTIFICATION OF DISCREPANCY

DATE: 913/08 TIME: 1230 PM: SC INITIALS: SS
Rush/Short Hold? Pres INO
☐ Project Not Set Up in ELM ☐ New Client ☐ COC Received ON HOLD ☐ Analysis Requested on COC – Not Listed for Project in ELM
□ PM To Add Analysis: □ Clarification of Analysis: ───────────────────────────────
Received Extra Sample(s) Not Listed on COC:
☐ Sample Description(s) or Date/Time Sampled Do Not Match COC:
□ Improper Preservative For method: □ Sample Received Broken: 13roker Amber (Hcl) □ Insufficient Sample Volume: 5ample preserved upon receipt:
☐ Temperature Outside recommended range (4°C±2°C): ☐ Received on-ice within 4 hours of collection, temperature between ambient to 2°C acceptable. ☐ Other:
PROJECT MANAGER RESOLUTION: (Date & Time when returned to SC)
Approval By: Date: Time:

Laboratory Data Review Checklist

Comple	eted by:	And	rew Ohrt						
Title:	Staff En	gine	er				Date:	Nov 5	5, 2008
CS Rep	ort Name	••	08 GWM and Geoch	nemical Par	ameter Monitoring		Report	Date:	Sep 29, 2008
Consult	tant Firm:	AR	CADIS U.S., Inc.						
Laborat	Laboratory Name: TestAmerica Laboratory Report Number: BRI0213								
ADEC File Number: 100.38.066 ADEC RecKey Number: 1992310119101									
1. <u>Lat</u>	a. Did		ADEC CS approved I	laboratory 1	receive and <u>perform</u> Comments:	<u>ı</u> all of t	he subn	nitted s	sample analyses?
	labo		mples were transferr ry, was the laborator No			•			d to an alternate
N	I/A								
2. <u>Cha</u>	in of Cus	tody_	(COC)						
	a. COC		mation completed, s	igned, and	dated (including rel Comments:	leased/r	eceived	by)?	
	b. Corre		alyses requested?		Comments:				
3. <u>Lab</u>	oratory S	<u>ampl</u>	e Receipt Document	tation					
	a. Sample		oler temperature doc	cumented a	nd within range at r Comments:	receipt (4° ± 2°	C)?	

v oracine er	nlorinated Solvents	s, etc.)?
• Yes	○ No	Comments:
c. Sample cor • Yes	ndition documented O No	d - broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
A 1 liter amber f	rom well MW-1 w	vas broken during shipment.
	•	es, were they documented? - For example, incorrect sample container re ouside of acceptance range, insufficient or missing samples, etc.? Comments:
N/A		
e. Data qualit	y or usability affec	eted? Explain.
		Comments:
No		
ase Narrative		
a Present and	understandable?	
• Yes		Comments:
h Digaranana	ing among an OC f	Soilywag idantified by the Jako
• Yes	O No	Cailures identified by the lab? Comments:
MW 1 and MW	2 DDO gumo cata	waaayawy high
IVI W - 1 and IVI W -	-2, DRO surrogate	recovery high.
c. Were all co	orrective actions do No	
O res	• NO	Comments:
d. What is the	e effect on data qua	ality/usability according to the case narrative? Comments:
Unknown		
amples Results		
ampies resents		
•	lyses performed/re	eported as requested on COC?

b.	All applica	able holding time No	met? Comments:
In cas	se narrative	e, does not specif	sample.
c.	All soils re	eported on a dry v	eight basis? Comments:
N/A			
	Are the reproject?	ported PQLs less	han the Cleanup Level or the minimum required detection level for the
	• Yes	○ No	Comments:
e.	Data qualit	ty or usability af	cted? Explain. Comments:
Unkr	nown		
C Sar	<u>mples</u>		
а.	Method Bla	ank	
			ed per matrix, analysis and 20 samples? Comments:
	ii. All me • Yes	ethod blank resul	less than PQL? Comments:
	iii. If abo	ve PQL, what sa	ples are affected? Comments:
N/A			
	iv. Do the	e affected sample	s) have data flags? If so, are the data flags clearly defined? Comments:
N/A			
	v. Data q	uality or usability	affected? Explain. Comments:
No			

6.

	O Yes	O No	Comments:
Yes			
	ii. Metals samples?	•	e LCS and one sample duplicate reported per matrix, analysis and 20
	O Yes	O No	Comments:
N/A			
	project sp 75%-125	pecified DQOs, if %, AK103 60%-1	recoveries (%R) reported and within method or laboratory limits? And applicable. (AK Petroleum methods: AK101 60%-120%, AK102 20%; all other analyses see the laboratory QC pages)
	• Yes	O No	Comments:
	limits? A	nd project specifi	1
	limits? A or sample	nd project specifi	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and
	limits? A or sample pages)	nd project specifi e/sample duplicate	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC
	limits? A or sample pages) • Yes	nd project specifie/sample duplicate	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC
N/A	limits? A or sample pages) • Yes	nd project specifie/sample duplicate	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC Comments:
N/A	limits? A or sample pages) • Yes v. If %R	nd project specifice/sample duplicate O No or RPD is outside	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC Comments:
N/A	limits? A or sample pages) • Yes v. If %R	nd project specifice/sample duplicate O No or RPD is outsided e affected samples	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC Comments: c of acceptable limits, what samples are affected? Comments: s(s) have data flags? If so, are the data flags clearly defined?
	limits? A or sample pages) • Yes v. If %R vi. Do the	nd project specifice/sample duplicate O No or RPD is outsided e affected samples O No	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC Comments: c of acceptable limits, what samples are affected? Comments: s(s) have data flags? If so, are the data flags clearly defined?
	limits? A or sample pages) • Yes v. If %R vi. Do the	nd project specifice/sample duplicate O No or RPD is outsided e affected samples O No	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC Comments: e of acceptable limits, what samples are affected? Comments: s(s) have data flags? If so, are the data flags clearly defined? Comments:
N/A No	limits? A or sample pages) • Yes v. If %R vi. Do the O Yes vii. Data	nd project specifice/sample duplicate O No or RPD is outsided e affected samples O No	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC Comments: e of acceptable limits, what samples are affected? Comments: s(s) have data flags? If so, are the data flags clearly defined? Comments:
N/A No	limits? A or sample pages) • Yes v. If %R vi. Do the O Yes vii. Data	or RPD is outside e affected sample O No quality or usability - Organics Only	ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and e. (AK Petroleum methods 20%; all other analyses see the laboratory QC Comments: e of acceptable limits, what samples are affected? Comments: s(s) have data flags? If so, are the data flags clearly defined? Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

	project spec	cified DQOs, if a	coveries (%R) reported and within method or laboratory limits? And pplicable. (AK Petroleum methods 50-150 %R; all other analyses see
	the laborate	ory report pages) No	Comments:
MW-	1 and MW-2	, DRO surrogate	recovery high.
	iii. Do the s	-	th failed surrogate recoveries have data flags? If so, are the data flags
	• Yes	O No	Comments:
	iv. Data qua	ality or usability	affected? Explain. Comments:
Unkn	nown		
d. <u>Sc</u>	<u>oil</u>		s only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and
	1. One trip t • Yes	O No	r matrix, analysis and cooler? Comments:
		ts less than PQL'	
	• Yes	O No	Comments:
	iii. If above	PQL, what same	oles are affected? Comments:
N/A			
	iv. Data qu	ality or usability	affected? Explain. Comments:
No			
e.	Field Duplic	ate	
	i. One field • Yes	duplicate submi	ted per matrix, analysis and 10 project samples? Comments:
	ii. Submitte	ed blind to lab?	
	• Yes	○ No	Comments:

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute Value of: $(R_1 - R_2)_{x=100}$ $((R_{1+} R_2)/2)$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration • Yes O No Comments: iv. Data quality or usability affected? Explain. O Yes Comments: No f. Decontamination or Equipment Blank (if applicable) Not Applicable O Yes ONo i. All results less than PQL? O Yes Comments: O No ii. If above PQL, what samples are affected? Comments: iii. Data quality or usability affected? Explain. Comments: 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate? Comments: • Yes O No

Reset Form