

Chevron Environmental Management Company

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks Alaska

January 18, 2010

Dawn Berube Scientist I

Greg Montgomery Project Scientist Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

Prepared for:

Chevron Environmental Management Company

Prepared by: ARCADIS 2300 Eastlake Avenue East Suite 200 Seattle

Washington 98102 Tel 206.325.5254 Fax 206.325.8218

Our Ref.: B0046269

Date: January 18, 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

1.	Introduction 2									
2.	Site F	listory and Background	2							
3.	Grou	ndwater Monitoring	3							
	3.1.	Groundwater Elevation and Flow Direction	3							
	3.2.	Laboratory Analyses	4							
	3.3.	Groundwater Analytical Results	4							
4.	Geoc	hemical Parameter Monitoring Results	5							
5.	Laboratory Data Quality Assurance Summary									
	5.1.	Precision	7							
	5.2.	Accuracy	7							
	5.3.	Representativeness	7							
	5.4.	Comparability	7							
	5.5.	Completeness	7							
	5.6.	Sensitivity	7							
6.	Conc	lusions and Recommendations	8							
7.	Refer	ences	8							
Table	:S									
	Table	1 Groundwater Elevations and Analytical Results								
	Table	2 Geochemical Parameter Monitoring Results								
Figur	es									
	Figure	1 Site Location Map								
	Figure	2 Groundwater Elevation Contour Map - October 4, 2009								
	Figure	3 Groundwater Analytical Results								
Appe	ndices									
	A Low-Flow Sampling Field Data Sheets and Field Notes									

Laboratory Analytical Report, Chain-of-Custody Documentation, and ADEC Laboratory Checklist

В

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

1. Introduction

On behalf of Chevron Environmental Management Company (Chevron), ARCADIS U.S., Inc. (ARCADIS) has prepared the Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results for former Chevron facility 301726 located at Lot 5A, Block 10, West Ramp at the Fairbanks International Airport (the site). The site location is shown on **Figure 1**. This report summarizes the groundwater monitoring events conducted by ARCADIS on October 4, 2009. Work was conducted under the direction of a "qualified person" as defined in 18 Alaska Administrative Code (AAC) 75.990 (100), and 18 AAC 78.995 (118).

2. Site History and Background

The site is approximately one acre and located on the southwestern portion of the Fairbanks International Airport (FIA), west of Airport Industrial Road. The site was originally designated as Block 10, Lots 5A and 5B; however, the lots were subsequently combined and are now referred to as Block 10, Lot 5A.

The site is currently vacant with no features remaining associated with the previous land uses. An abandoned six-inch diameter fuel pipeline crosses through the southeast portion of the site, adjacent to Airport Industrial Road. The former Texaco Bulk Terminal occupied the southeastern portion of the site facing Airport Industrial Road. This portion of the site is now covered with dirt and gravel and is used for truck staging and as an access road for a business located adjacent to the northeast portion of the site. The northwestern portion of the site is primarily unimproved land that is covered with mature vegetation. The Chena River is located approximately 700 feet west of the site.

Land use in the site vicinity is mixed industrial and unimproved (vegetation). The nearest residential properties are located approximately 600 feet west of the site. Domestic water production wells have been reported at the residential properties. Airplane hangars, tarmacs, and other facilities associated with airport land uses are across Airport Industrial Road from the site are commercial businesses.

The former Texaco bulk fuel terminal began operation at the site in July 1969 and was closed in September 1989. There were three 25,000-gallon aboveground storage tanks (ASTs) and a warehouse. The three ASTs and structures were relocated to another

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

facility in 1989 by MAPCO Alaska Petroleum, Inc. and the parcel has since remained vacant.

Seven documented petroleum releases of aviation fuel and diesel fuel occurred at the site during operation. Petroleum hydrocarbons have been detected and observed during routine utility maintenance operations and site investigations since 1992 and in groundwater samples since 2004.

The site geology consists of fill materials and unconsolidated alluvium deposited by the Chena and Tanana Rivers. Based on observations made during well installation approximately 200 feet northeast of the site, the alluvium deposit is overlain by gravel fill material to depths of up to 5 feet below ground surface (bgs) and underlain by silty sand that becomes coarser with depth and grades into a gravelly sand (SAIC, 2005). Groundwater has historically been encountered between approximately seven and ten feet bgs.

3. Groundwater Monitoring

The second semi-annual 2009 groundwater and geochemical parameter monitoring event was conducted on October 4, 2009. Six groundwater monitoring wells (MW-1 through MW-6) were gauged using an oil/water interface probe to determine depth to water and to ascertain if light non-aqueous phase liquid [LNAPL] was present. LNAPL was detected in groundwater monitoring well MW-1 at a thickness of 0.01 feet. Groundwater samples were not collected from MW-1 during the October 2009 sampling event.

Groundwater samples were collected using disposable Teflon[®] lined polyethylene tubing with a YSI 556[®] water quality meter, a flow-through cell, and a peristaltic pump. Geochemical parameters measured include dissolved oxygen (DO), oxidation-reduction potential (ORP), conductivity, pH, turbidity, and temperature. Groundwater was purged until geochemical parameters stabilized to within ten percent of the value for pH, DO, and ORP, to within three percent of the value for conductivity, and to within one percent of the value for turbidity. These parameters were recorded on low-flow field data sheets presented in **Appendix A**.

3.1. Groundwater Elevation and Flow Direction

Depth to groundwater during the October 2009 event ranged from 10.48 feet below top of casing (btoc) in monitoring well MW-2 to 10.90 feet btoc in monitoring well

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

MW-3. Groundwater elevations ranged from 416.19 feet above sea level (asl) in monitoring well MW-6 to 416.30 feet asl in monitoring well MW-1. The groundwater elevation data obtained from the October 2009 event were used to construct a potentiometric surface map shown on **Figure 2**. These data indicate groundwater flow direction is toward the southwest. The historical groundwater flow direction has seasonally fluctuated from the east toward the southwest. Current and historical groundwater elevation data are included in **Table 1**.

3.2. Laboratory Analyses

Groundwater samples were collected in properly labeled, clean, laboratory-supplied containers. Samples were then stored in a cooler packed with ice and submitted to TestAmerica in Bothell, Washington under proper chain-of-custody procedures. Groundwater samples from monitoring wells MW-2 through MW-6 were analyzed in the field for the following analyses:

- Ferrous Iron by colorimetric (Hach®) field kit
- Nitrate as nitrogen by colorimetric (Hach®) field kit

Groundwater samples from monitoring wells MW-2 through MW-6 were submitted to the analytical laboratory for the following analyses:

- Gasoline range organics (GRO) by method AK101
- Diesel range organics (DRO) by method AK102
- Residual range organics (RRO) by method AK103
- Benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA method 8021B
- Total alkalinity by EPA method 310.1
- Sulfate and nitrate as nitrogen by EPA method 300.0
- Methane by method RSK 175

3.3. Groundwater Analytical Results

GRO and BTEX concentrations were not detected at or above laboratory detection limits and applicable ADEC groundwater cleanup levels in groundwater samples collected during the October 2009 sampling event.

DRO concentrations reported in groundwater samples collected from monitoring wells MW-3 (1,290 μ g/L) and MW-5 (559 μ g/L) were below the ADEC GCL of 1,500 μ g/L. A

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

DRO concentration was detected in the duplicate groundwater sample collected from monitoring well MW-3 (2,640 μ g/L) greater than the GCL.

Concentrations of RRO detected in groundwater samples collected from monitoring wells MW-3 (438 μ g/L) and in duplicate samples (559 μ g/L) were below the ADEC GCL of 1,100 μ g/L. Analytical results obtained from the second semi-annual 2009 groundwater monitoring event are summarized in **Table 1** and **Table 2** and are shown on **Figure 3**.

4. Geochemical Parameter Monitoring Results

Due to the relatively low concentrations of petroleum-related hydrocarbons currently detected in groundwater samples collected from monitoring wells at the site and relatively small area of the site, natural attenuation via bioremediation may be a viable remedial solution. To determine the potential for natural attenuation at the site, monitoring wells MW-2, MW-3, MW-4, MW-5 and MW-6 were monitored for geochemical parameters to characterize the potential bioremediation of petroleum-related hydrocarbons. Geochemical parameter monitoring was conducted in conjunction with groundwater monitoring activities on October 4, 2009. This was the third geochemical parameter monitoring event conducted at the site. A summary of geochemical parameter monitoring results is shown on **Table 2**.

On-site groundwater elevation measurements indicate little variation of groundwater elevations across the site. This suggests there is little hydrologic influence on the hydrocarbon plume present on site. Due to the low frequency of sampling conducted since monitoring began in 2004, it is difficult to assess the long term COC concentration trends in on-site monitoring wells, however, COC concentrations appear to be decreasing in samples collected from on-site monitoring wells since monitoring began in August 2004.

Temperature measurements ranged from 2.34 degrees Celsius (°C) (MW-5) to 4.95 °C (MW-6) and pH measurements ranged from 6.26 (MW-5) to 6.97 (MW-4). Temperature measurements are below the range generally associated with conditions consistent with natural attenuation. However, numerous published results suggest natural attenuation of petroleum hydrocarbons at low temperatures does occur (Filler, 2008). On-site temperature ranges may vary due to seasonal fluctuations related to freeze/thaw conditions of the local groundwater supply. DO concentrations indicate whether the subsurface is aerobic or anaerobic. DO concentrations detected outside the plume (monitoring wells MW-2 and MW-4) were 1.69 mg/L and 0.32 mg/L

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

respectively. ORP measurements outside of the plume ranged from 12.3 millivolts (mV) (MW-4) to 84.8 mV (MW-2). DO concentrations detected inside the plume (monitoring wells MW-3, MW-5, and MW-6) were 0.34 mg/L, 1.49 mg/L, and 3.12 mg/L respectively. ORP measurements inside of the plume ranged from 85.60 mV (MW-3) to 140.80 mV (MW-5). Generally, ORP measurements greater than zero (mV) and DO measurements greater than 1.0 mg/L are indicative of aerobic conditions.

Methane concentrations detected inside the plume ranged from 0.00335 mg/L (MW-6) to 0.0143 mg/L (MW-3). Methane concentrations detected outside of the plume were below the laboratory detection limits (MW-2) and 0.0168 mg/L (MW-4). A ferrous iron concentration of 1.0 mg/L was measured in the field during groundwater sampling at MW-4. Ferrous iron was not detected in the remaining wells. The total alkalinity concentrations (as calcium carbonate, or mg/L as CaCO₃) were relatively consistent across the site. Alkalinity ranged from 427 mg/L as CaCO₃ (MW-4) to 549 mg/L as CaCO₃ (MW-6) inside the plume. Total alkalinity concentrations outside of the plume ranged from 368 mg/L as CaCO₃ (MW-2) to 426 mg/L as CaCO₃ (MW-4).

Reported sulfate concentrations in the groundwater samples ranged from 25.2 mg/L (MW-2) to 62.5 (MW-5) in October 2009. These sulfate concentrations are higher than the in the range of sulfate concentrations reported in September 2008 (1.56 mg/L to 31.8 mg/L). This may be due to seasonal fluctuations in the groundwater related to the freeze/thaw cycle.

Nitrate concentrations were below detection limits outside of the plume (MW-2 and MW-4). Nitrate concentrations inside the plume ranged from 4.01 mg/L (MW-6) to 10.6 mg/L (MW-5). The variation in nitrate concentrations may suggest seasonal microbial consumption of nitrate within the hydrocarbon plume.

Due to the limited extent of the monitoring well network, it is difficult to assess groundwater flow and its potential contribution to natural attenuation.

Groundwater samples were not collected from monitoring well MW-1 during the October 2009 monitoring event to due the presence of LNAPL.

5. Laboratory Data Quality Assurance Summary

As required by ADEC (Technical Memorandum 06-002, dated August 20, 2008), ARCADIS completed a laboratory data review checklist for each of the TestAmerica Laboratories reports during the second semi-annual 2009 reporting period. The

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

laboratory reports and data review checklists are included as **Appendix B**. The following quality assurance (QA) summary describes six parameters, related to the quality and usability of the data presented in this report.

5.1. Precision

The data meet precision objectives for laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) relative percent differences (RPDs).

5.2. Accuracy

The data meet accuracy objectives as indicated by the laboratory quality control samples, which were within method/laboratory limits. Analytes were not detected in the trip blanks submitted with the groundwater samples. The LCS recoveries were within respective limits.

5.3. Representativeness

The data appear to be representative of site conditions and are generally consistent with historical groundwater monitoring results and expected groundwater concentrations.

5.4. Comparability

The laboratory results are presented in the same units as previous reports to allow comparison.

5.5. Completeness

The results appear to be valid and usable, and thus, the laboratory results have 100% completeness.

5.6. Sensitivity

The sensitivity of the analyses was adequate for the samples as the detection limits were less than the ADEC GCLs for compounds which were not detected.

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

6. Conclusions and Recommendations

The groundwater elevation data collected during the second semi-annual 2009 event indicate a groundwater flow direction toward the southwest. Seasonally fluctuating flow direction has been generally consistent with historical data.

A groundwater sample was not collected from monitoring well MW-1 due to the presence of LNAPL at the time of the October 2009 sampling event. A DRO concentration was detected in the duplicate groundwater sample collected from monitoring well MW-3 (2,640 μ g/L) at a concentration greater than the ADEC GCL of 1,500 μ g/L. GRO, BTEX, and DRO concentrations in groundwater samples collected from the remaining on-site monitoring wells were below their respective cleanup levels and/or below laboratory detection limits.

Based on geochemical parameter sampling data obtained from the second semiannual 2009 groundwater monitoring event, anaerobic biodegradation activities within the hydrocarbon plume cannot be determined at this time. The first semi-annual 2010 sampling event will provide further evaluation on whether anaerobic biodegradation is currently occurring at the site. Based upon data obtained during geochemical parameter sampling events in 2008 and 2009, Variations of geochemical parameter concentrations and trends measured between the 2008 and 2009 groundwater monitoring events highlight the seasonality of groundwater conditions at the site. It is likely that biological natural attenuation process are almost non-existent during the winter and early spring while they speed up and become relatively more significant to the plume attenuation later in the summer and early fall.

If you have any questions or would like to discuss this further, please contact ARCADIS at 206.726.4742.

7. References

ASTM Standard E1943-98, 2004. Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Sites. ASTM International, West Conshohocken, PA. DOI:10.1520/E1943-98R04.

Filler, D.M., I. Snape, and D.L. Barnes, editors. 2008. *Bioremediation of Petroleum Hydrocarbons in Cold Regions*. Cambridge University Press, Cambridge, Great Britain.

SAIC, 2008. Site Assessment Report – Former Texaco Bulk Terminal No. 301726.

Second Semi-Annual 2009 Groundwater Monitoring Report and Geochemical Parameter Monitoring Results

Former Chevron Facility 301726

November 22, 2004. Science Applications International Corporation.

Tables

TABLE 1 Groundwater Elevations and Analytical Results

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

			D=1/	LNAPL Thickness	OW/#	ppe1		2223		ВТ	EX ⁴	
Monitoring Well ID	Date Sampled	TOC (feet-amsl)	DTW	(feet)	GWE	DRO ¹	RRO ² (µg/L)	GRO ³	Benzene	Toluene	Ethylbenzene	Total Xylenes
		` ′	(feet)	(leet)	(feet-amsl)	(µg/L)		(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
			CLs⁵ (µg/L)			1,500	1,100	2,200	5.0	1,000	700	10,000
MW-1	08/19/04	426.84	6.37		420.47	33,400	<480	27,200	1,770	3,790	261	3,750
	03/30/05		10.09		416.75	436	<388	9,000	729	343	186	936
	09/19/05		8.12		418.72	8,660	<397	<2,500	153	150	<25	116
	09/11/08		8.63		418.21	12,000	<708	6,680	357	413	124	815
	05/10/09		8.56		418.28	980	<420	3,960	28	75.7	72.7	392
	10/04/09		10.55	0.01	416.30			Not S	Sampled-LNAPL De	etected		
MW-2	08/19/04	426.73	6.29		420.44	⁶	⁶	<50.0	<0.200	<0.500	< 0.500	<1.00
	03/30/05		9.98		416.75	4,040	427	<50.0	< 0.500	<0.500	< 0.500	<1.50
	09/19/05		8.02		418.71	<417	<417	<50.0	< 0.500	<0.500	< 0.500	<1.50
	09/11/08		8.52		418.21	<94.3	<708	<50.0	<0.200	<0.500	< 0.500	<1.00
	09/11/08 ^D					<95.2	<714	<50.0	<0.200	<0.500	<0.500	<1.00
	05/10/09		8.43		418.30	<403	<403	<50.0	0.333	<0.500	<0.500	<1.00
	10/04/09		10.48		416.25	<391	<391	<50.0	<0.500	<1.00	<1.00	<3.00
MW-3	08/19/04	427.16	6.73		420.43	1,190	<480	89.4	0.774	<0.500	5.83	3.18
	03/30/05		10.42		416.74	<391	<391	181	0.979	<0.500	24.1	6.94
	09/19/05		8.47		418.69	6,730	2,120	<50.0	0.556	<0.500	1.73	<1.50
	09/11/08		8.96		418.20	12,000	<708	60.3	0.448	<0.500	0.653	1.96
	05/10/09		•	•		Not	Sampled - Ice in	well	•	,	,	,
	10/04/09		10.90	-	416.26	1,290	438	<50.0	<0.500	<1.00	<1.00	<3.00
	10/04/09 ^D					2,640	459	<50.0	<0.500	<1.00	<1.00	<3.00
MW-4	08/19/04	427.02	6.59		420.43	<400	<480	<50.0	0.3	<0.500	<0.500	<1.00
	03/30/05		10.29		416.73	<385	<385	<50.0	< 0.500	<0.500	< 0.500	<1.50
	09/19/05		8.34		418.68	1,310	815	<50.0	< 0.500	<0.500	< 0.500	<1.50
	09/11/08		8.71		418.31	<94.3	<708	<50.0	<0.200	<0.500	<0.500	<1.00
	05/10/09		8.71		418.31	<403	<403	<50.0	<0.200	<0.500	<0.500	<1.00
	05/10/09 ^D		8.71		418.31	<427	<427	<50.0	<0.200	<0.500	<0.500	<1.00
	10/04/09		10.78	-	416.24	<385	<385	<50.0	<0.500	<1.00	<1.00	<3.00

TABLE 1

Groundwater Elevations and Analytical Results

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

			D=11/	LNAPL Thickness	0117	ppe1		0003		ВТ	EX ⁴	
Monitoring Well ID	Date Sampled	TOC	DTW	(feet)	GWE	DRO ¹	RRO ² (µg/L)	GRO ³	Benzene	Toluene	Ethylbenzene	Total Xylenes
		(feet-amsl)	(feet)	(leet)	(feet-amsl)	(µg/L)		(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
		ADEC G	CLs⁵ (µg/L)			1,500	1,100	2,200	5.0	1,000	700	10,000
MW-5	08/19/04	426.89	6.44		420.45	<400	<480	<50.0	<0.2	<0.500	< 0.500	<1.00
	03/30/05		10.16		416.73	3,310	435	<50.0	< 0.500	< 0.500	< 0.500	<1.50
	09/19/05		8.19		418.70	<431	782	<50.0	<0.5	<0.500	< 0.500	<1.50
	09/11/08		8.70		418.19	150	<708	<50.0	<0.2	<0.500	< 0.500	<1.00
	05/10/09		•			Not	Sampled - Ice in	well	•	•	•	•
	10/04/09		10.65	-	416.24	559	<403	<50.0	<0.500	<1.00	<1.00	<3.00
MW-6	08/19/04	426.82	6.36		420.46	<400	<480	<50.0	0.351	<0.500	< 0.500	<1.00
	03/30/05		10.08		416.74	<388	<388	<50.0	< 0.5	< 0.500	< 0.500	<1.50
	09/19/05		8.12		418.70	<403	<403	<50.0	<0.5	< 0.500	< 0.500	<1.50
	09/11/08		8.66		418.16	<100	<750	<50.0	<0.2	< 0.500	< 0.500	<1.0
	05/10/09		8.55		418.27	<427	<427	<50.0	< 0.200	<0.500	<0.500	<1.00
	10/04/09		10.63	-	416.19	<385	<385	<50.0	<0.500	<1.00	<1.00	<3.00

Notes:

feet-msl = feet above sea level

μg/L = micrograms per liter

"--" = Indicates analyte was not sampled or analyzed for or parameter was not measured.

Highlighted cell indicates concentration exceeds groundwater cleanup level

"<" = Indicates analyte not detected greater than laboratory reporting limit indicated.

Data associated with current monitoring event in **bold**.

ADEC= Alaska Department of Environmental Conservation

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation

^{1:} Diesel range organics (DRO) was analyzed by AK Method 102.

²: Residual range organics (RRO) was analyzed by AK Method 103.

³: Gasoline range organics (GRO) was analyzed by AK Method 101.

⁴: Benzene, toluene, ethylbenzene, and total xylenes (BTEX) were analyzed by EPA Method 8021B.

⁵: ADEC Groundwater Cleanup Levels (GCLs) per 18 AAC 75.345, Table C, Register 188, January 2009.

^{6:} MW-2 was not analyzed for DRO or RRO because there was insufficient sample volume due to breakage during shipping.

D = Indicates sample is a duplicate

TABLE 2 Geochemical Parameter Monitoring Results

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska

Monitoring Well ID	Date Sampled	Temperature (°C) ¹	pH ¹	DO (mg/L) ¹	ORP (mV) ¹	Total Alkalinity (mg/L as CaCO ₃) ²	Sulfate (mg/L) ³	Nitrate as nitrogen (mg/L) ³	Methane (mg/L) ⁴	Ferrous Iron by Field Measurement (mg/L) ⁵	Nitrate by Field Measurement (mg/L) ⁵
MW-1	10/04/09					Not Samp	led-LNAPL	Detected			
MW-2	10/04/09	4.13	6.40	1.69	84.8	368	25.2	<0.100	< 0.00120	0.0	0.0
MW-3	10/04/09	4.31	6.46	0.34	85.6	428	60.4	9.31	0.0143	0.0	3.0
MW-4	10/04/09	4.31	6.97	0.32	12.3	426	32.0	<0.100	0.0168	1.0	0.0
MW-5	10/04/09	2.34	6.26	1.49	140.8	427	62.5	10.6	0.00534	0.0	1.25
MW-6	10/04/09	4.95	6.39	3.12	139.6	549	43.0	4.01	0.00335	0.0	0.25

^{1:} Temperature, pH, DO and ORP were measured using an YSI 556 and flow cell

°C = Degrees Celsius

DO = Dissolved oxygen

mg/L = milligrams per liter

ORP = Oxidation-reduction potential

mV = millivolts

 $CaCO_3$ = Calcium carbonate

"<" = Indicates analyte not detected greater than laboratory reporting limit indicated

EPA = Environmental Protection Agency

²: Total Alkalinity analyzed using EPA method 310.1

³: Sulfate and nitrate analyzed by EPA method 300.0

⁴: Methane analyzed by method RSK 175

⁵: Ferrous iron and nitrate field measurement analyzed using colorimetric field kits

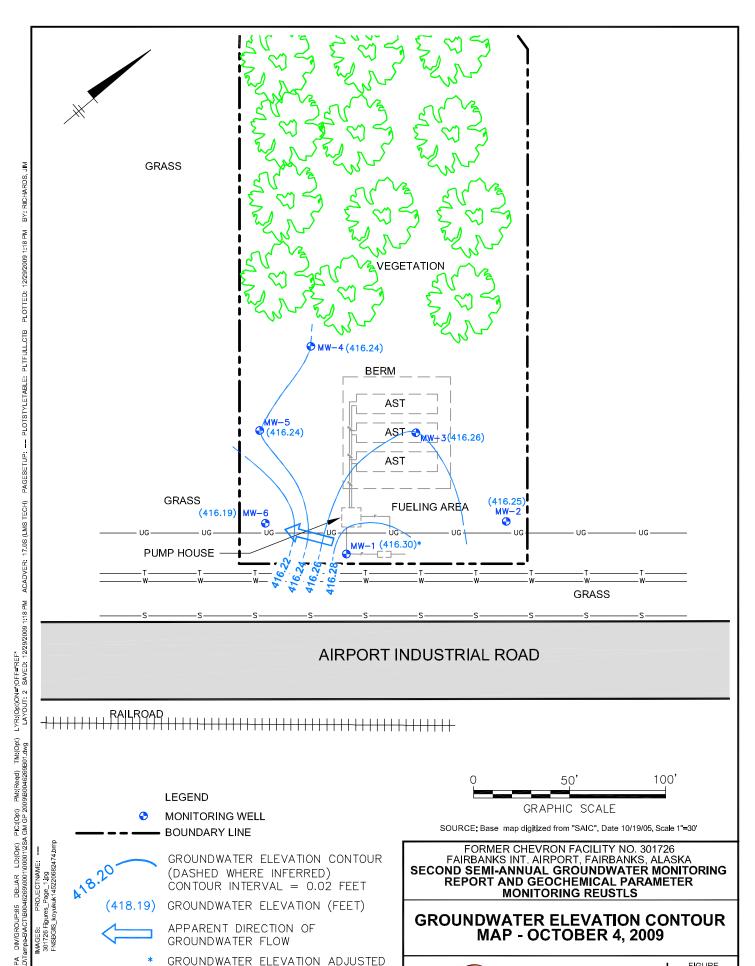
D = Indicates sample is a duplicate

[&]quot;--" = Not measured

Figures

SITE LOCATION

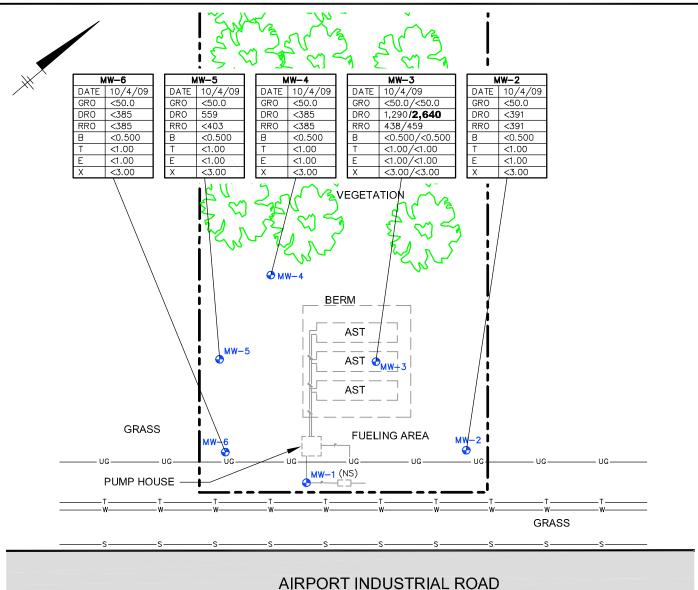
0 2000' 4000'


APPROXIMATE GRAPHIC SCALE

SITE LOCATION MAP

FIGURE

1


FOR THE PRESENCE OF LNAPL

(LIGHT NON-AQUEOUS PHASE LIQUID)

ARCADIS

FIGURE

2

┞╄┞┞┞┞

LEGEND

MONITORING WELL

BOUNDARY LINE


	SAMPLE LOCATION
DATE	Sample Date
GRO	Gasoline Range Organics
DRO	Diesel Range Organics
RRO	Residual Range Organics
В	Benzene
T	Toluene
E	Ethlybenzene
Χ	Total Xylenes

RESULTS REPORTED IN MICROGRAMS PER LITER $(\mu g/L)$

BOLD INDICATES CONCENTRATION EXCEEDS RESPECTIVE GROUNDWATER CLEANUP LEVEL

NS = NOT SAMPLED

<1.00/<1.00 = DUPLICATE SAMPLE COLLECTED SOURCE: Base map digitized from "SAIC", Date 10/19/05, Scale 1"=30"

FORMER CHEVRON FACILITY NO. 301726 FAIRBANKS INT. AIRPORT, FAIRBANKS, ALASKA SECOND SEMI-ANNUAL GROUNDWATER MONITORING REPORT AND GEOCHEMICAL PARAMETER MONITORING REUSTLS

GROUNDWATER ANALYTICAL RESULTS

FIGURE

3

IMAGES: PROJECTNAME: --301726 Figures_Page_1.jpg FNSBGIS_koyukuk145220682474.bmp

Appendix A

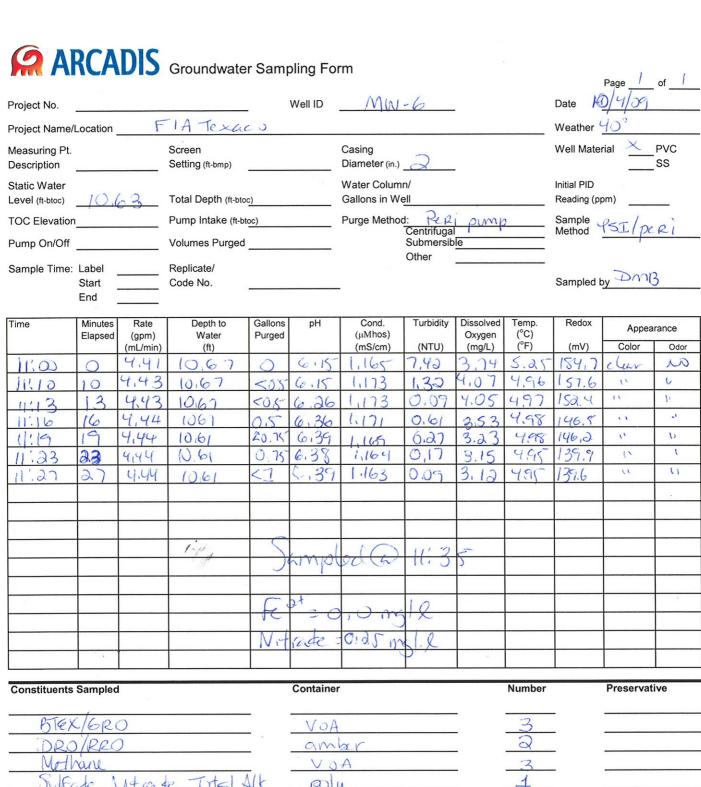
Low-Flow Sampling Field Data Sheets and Field Notes

A	RCA	DIS	Groundwate	r Sam	pling Fo	orm					1	1	
Project No.		2468			Well ID	_MW-	2			Date	Page 1	of	
Marine Europe Control Control			Texaco	30			1	65	AK		P.54	nnv	325
Measuring Pt. Description		52	Screen Setting (ft-bmp)		11000	Casing Diameter (in.)	211	1		Well Mate	,	PVC	
Static Water	10	NO				Water Colum	n/	-		Initial PID	O .	ss	
Level (ft-btoc)		,48	Total Depth (ft-bto			Gallons in We		ctal	Lie	Reading (p	pm)	_	
TOC Elevation Pump On/Off			Pump Intake (ft-bt Volumes Purged		-	Purge Method	Centrifuga Submersib		110	Sample Method	Peri	Stalt	ic
Sample Time:		220	Replicate/		1.		Other	V					
	Start End		Code No.	<u> </u>	A					Sampled	by Mi	-5	
Time	Minutes Elapsed	Rate (gpm)	Depth to Water	Gallons Purged		Cond. (μMhos)	Turbidity	Dissolved Oxygen	Temp.	Redox	Appea	rance	
115		(mL/min)) (ft)	0 1	1 112	(mS/cm)	(NTU)	(mg/L)	(°F)	(mV)	Color	Odor	
1151	0	200	10,48	0.1	6.47	0.721	4.25	4,28	4.41	894	Clear	None	2
1201	4	200	1(0.5	6.38	0,127	5.45	2.17	4.08	867	10	1(
1205	4	200	1(0,6	6.38	0.729	3,98	1,96	4.09	869	11	u	
1209	4	200	(1	0.8	6.39	0,731	3.68	1.81	4.11	85.9	11	1(
1214	500	200	(1	1,0	6.39	0.734	3.69	1.72	4.11	85.0	((e(
1213	4	200	11	1,2	6,40	0.735	2.42	1.69	4.13	84.8	il	"	
			N.						^				
			FOVE 181	06	T		0	m	1 / n	000	(or)		
			10110	77	TVO	NOO	10	7	, C	0 00	,		
			Milya	10	80	0	ppi	2	(no	col	01		
			1011111	10					U.		. ,		
Constituents BTE		20			Container	0A			Number		Preservati	ve	
00	101	20		•	Sma	4 (nber		3		110	00	
All	calin	ity			Oi	oly	riper			-	- 1		
54	lfate	Wit	rate/18000Ba	ane)		319				- 5	-	美一	
NA	10 211	one	ivery personal			VOA			3	-0	1	00	
			7					•		•			
					-					•			
										•			
Well Casing V													
Gallons/Foot	1" = 0.04 1.25" = 0.0		5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		.5" = 0.50 " = 0.65	6" = 1.47						
Well Informa	ition	^											
Well Loca	ation:	Side	12 Fen	ce			Well	Locked a	t Arrival:	Yes) /	No	
Condition o		(2000				Well Loc	ked at De	parture: _	Yes	_	No	
Well Comp	letion:	(F	lush Mount /	Stick	Up		Key	Number '	To Well:	30	110	GW Samp Form	

ARC	CADIS	Groundwate	r Samp	oling Fo	rm					,	5
Project No.	300462	69		Well ID	MW-	2			Date	Page	of
Project Name/Loca		Texaco :		1	Tourne		AV			Sunu	30s
Measuring Pt.	ation 1 4 / V	Screen	2011	ve /	Casing	unc.	7		Well Mate	()	PVC
Description	TOC	Setting (ft-bmp)			Diameter (in.)	2"					SS
Static Water Level (ft-btoc)	10.90	Total Depth (ft-btoo	;)		Water Column Gallons in We				Initial PID Reading (pr	om) 0	0
		Pump Intake (ft-btd			Purge Method	. Dori	stalt	ic	Sample		- staltic
Pump On/Off		Volumes Purged				Centrifugal Submersib			Method	Peris	SICILIC
Sample Time: Lab	oel 1120	Replicate/	27	. 1		Other				4.75	
Sta	art	Code No.	- BL)-1					Sampled b	y MC	5
MC-00000000	nutes Rate apsed (gpm)	Depth to Water	Gallons Purged	pН	Cond. (μMhos)	Turbidity	Dissolved Oxygen	(C)	Redox	Appea	
1041	(mL/min)	10.90	0.1	6.62	(mS/cm)	(NTU) 30.79	(mg/L) 3,25	(°F) 5.54	(mV)	Clear	Odor
1052 1	1 200	11	0.5	6,48	1.163	6.35	0.85	5,15	93.6	11	11
1059 5	200	1(1.0	650	1.167	4.51	0,49	4.72	89.4	11	ι(
1103	1 200	11	1,2	6.46	1.164	4.05	0.38	4.4	90.2	(L	i(
1108 5	200	1(1.4	6.46	1.151	2,22	0,37	4.35	88.4	((l(
1113	5 200	11	1,6	6,46	1.141	1,29	0.34	4.3	85.6	(\	CC
		Forrow	54		0	0	000	2/10	0.00	(0)	
		Terror	2 4	-V OV	1600		PPI	ICV	000	(Or)	
		10.0		0					-		
		Nitto	de		10	ppn	7				
Constituents San	npled			Container	•			Number		Preservati	ve
BTEX G	RO				JOA			3	_	HC	<u></u>
DRO/R	PRO		1000	Sma	all A	nber	•	2	_	- 40	0_
Alkali	nity	Ja	. >	P	di			-+	-	***************************************	
Sultate	e/ Nitra	TE	. /		VOX		-	3	-	40	0
Meen	are				VOR		•		-	410	
			•				•		-		
							•		_		
			•0				•		_		
Well Casing Volu	ımes									·····	
Gallons/Foot 1" =	= 0.04 1	.5" = 0.09 " = 0.16	2.5" = 0.26 3" = 0.37		3.5" = 0.50 3" = 0.65	6" = 1.47					
Well Information											
Well Location	B	rlot				Well	Locked at	Arrival:	Yes	5 /	No
Condition of W		reod				-	cked at De	-	Yes		No

Flush Mount /

Well Completion:


Stick Up

Key Number To Well:

A	RCA	DIS	Groundwate	r Samp	oling Fo	rm					1		
Project No.	BO	046	269		Well ID	MW-	-4			Date	Page 1	of <u> </u>	
	Location	FIA	Texaco	30	1721	b/Fa	irbar	nks, 1	4K	Weather	P.Sui	11/	30 s
Measuring Pt. Description		52	Screen Setting (ft-bmp)			Casing Diameter (in.	2"			Well Mate	erial 🗸	PVC SS	
Static Water Level (ft-btoc)	10	.78	Total Depth (ft-btoo	c)		Water Colur Gallons in W	nn/ /ell		11.	Initial PID Reading (p	pm) Di	0	
TOC Elevation			Pump Intake (ft-bto	oc)		Purge Metho	Centrifuga	ista	ltic	Sample Method	Peri	stal	tic
Pump On/Off		1200	Volumes Purged				Submersib Other	le A	/				
Sample Time:	Label Start End	1320	Replicate/ Code No.	N	/A	-				Sampled	by Mi	-5	
Time	Minutes Elapsed	Rate (gpm)	Depth to Water	Gallons Purged	рН	Cond. (μMhos)	Turbidity	Dissolved Oxygen	Temp.	Redox	Appear	ance	
1200		(mL/min)	(ft) 10.79	0.1	696	(mS/cm)	(NTU)	(mg/L)	4.88	(mV)	Clear	Odor None	
1252	9	200	10,40	0.2	10.99	0.899	13.16	1,28	4.53	76.5		11	
1256	4	200) [0.4	6,97	0,890	23,43	1.13	4.45	69.6	((ι(
1300	4	200	1 (1	0.6	6.9	10.81	31925	0.60	4.32	51.1	11	u	
303	4	200	11	1,1	6.17	(2,871	21.57	0,35	4.18	27.5	10	1,0	
1312	4	200	11	1,3	6,96	0.85	11.47	V	4.26	12.4	((11	
1316	4	200	11	1.4	6,97	0.85	9,89	0,33	4.31	12.3	(c	l (
						-							
						ļ .							
			Pervo	119	WE	n: 1	10 (pm					
			1 1 -1	(1	1		- 1 -			
			Nitro	ite	10	10 1	pm	(V	OC	0101			
Constituents	Sampled	1			Containe	r			Number		Preservati	ve	
BTE	X/C	aRO		_	V	OA		_	3	_	He	2	
DRI	O/R	RO	10 1. 10. 7	7 1	Sm	allA	inbei		2	_	_ 4	21_	
- AK	alini	ty 150	Utate/Ni	idle		1014		-	1	-		00	
	ern	SIVE		•		VUPI		-		-	9-1		
								_		_			
				-				_		_			
				-				-		-			
Well Casing	Volumes			_				_					
Gallons/Foot	1" = 0.04 1.25" = 0.0	1	.5" = 0.09 " = 0.16	2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47						
Well Informa	ation				٨						(USV		ř
Well Loc		-N	eav y	1000	15			Locked a	-	Yes	_	No	
Condition of Well Comp			lush Mount /	Stick	: Un			cked at De V Number	•	(Yes		NO GW Samp Form	

Dunia et Nia					Well ID	Mw-	5			Date	Page	_ of\ ⊘9
Project No.			C) 1 (•	Well ID						400	
roject Name/	Location		FIA Fex	100							- /	
Measuring Pt. Description			Screen Setting (ft-bmp)			Casing Diameter (in.)				Well Mate	rial <u>\</u>	_PVC _SS
Static Water evel (ft-btoc)	10.6	5	Total Depth (ft-bto	c)		Water Columi Gallons in We				Initial PID Reading (ppm)		
OC Elevation			Pump Intake (ft-bt	oc)		Purge Method	1: Per	21		Sample	TSI/p	00
Pump On/Off			Volumes Purged				Centrifugal Submersib			Method	132/0	CKI
					A CONTRACTOR OF THE PARTY OF TH		Other					
Sample Time:	Label Start End		Replicate/ Code No.			-				Sampled I	by DMB	
ime	Minutes	Rate	Depth to	Gallons	pН	Cond.	Turbidity	Dissolved	Temp.	Redox	Anno	
	Elapsed	(gpm)	Water	Purged		(μMhos)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Color	Odor
12/2/	_	(mL/min)	(ft)	O	4.93	(mS/cm)	1,42	16,34	2.41	171.0	clear	NO
12:06	9	3,87	10.69	<0.5	6.08	1.054	117	1142	2.27	148.7	C	100
12:15	9	3.88	10.69	2015	6.00	1,054	1,50	4.53		1461	11	V
12:18	12	3.86	10.69	0.5	6.15	1.054	1.74	1,54	2.30	141.0	V.V.	V,
12:21	15	3.55	10,69	10.75	6.24	1,059	1,68	1.55	2.31	143.7	1	11
12,25	21	3.87	1064	0 X	6,25	1,058	1.59	1,49	2.34	140,3	15	V
12:30	26	3.57	10.69	<7	6,26	1.058	150	1,41	2.34	143.6	11	4
12:33	25	3.87	1.0.69	<1	6,26	1.057	1.23	1.49	2,34	140.8	1.1	(1
**												
			,	Im	pled	(a) 1	2:40					
				E2	= 0	, 0 mg/	0					
				111	ibe :	1, 25	ms/	2				
Constituents	Sample	d			Containe	r			Number		Preserva	tive
17.	Т			_				-		_		
<u> </u>	TEXI	GRU	10 1 11.1					-		-	-	
Ti	2+61	AK/SU	Trade/MT	rufe				-	-			
	Meth	ane		-				-		-		
	DRO	TREC)	-				-		-		
				-				_	-	-	r	-
				_				_		_	***************************************	
								-				

Well Casing Gallons/Foot	Volumes 1" = 0.04 1.25" = 0.		1.5" = 0.09 2" = 0.16	2.5" = 0.2 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47					
Well Inform	ation											
Well Loc	cation:		park lot				_	I Locked a		Yes		No
Condition of Well:											No	
Well Com	pletion:	7	Flush Mount	Stick	(Up		Ke	y Number	To Well:			GW Samp F

DR	N/BRO Vane Vade 144	rate Total		amber Voa Poly		3 2 3 1			
Well Casing Gallons/Foot	y Volumes 1" = 0.04 1.25" = 0.06	1.5" = 0.09 2" = 0.16	2.5" = 0.26 3" = 0.37	3.5" = 0.50 4" = 0.65	6" = 1.47				
Well Inforn	nation			F-					
Well Lo	cation:	91455			Well L	ocked at Arrival: _	Yes	1	No
Condition	of Well:	5000			Well Lock	ed at Departure:	Yes	1	No
Well Con	npletion:	Flush Mount	/ Stick U	lp	Key N	lumber To Well:			GW Samp Form 9/25/2009

Location E1A Texaso Date 10 4 09 7	A HAS	Fish Gauge wells	MW-3 5-35 10-48 — 1205 MW-3 7-35 10-48 — 20 MW-2 7-35 10-48 — 20 MW-2 135-64 5-10-55 10-54 — 1205 MW-6 7-41 10-63 — 0.0 MW-4 9-50 10-78 — 0.0
6 Location Date	Min-6 0 0 9:20 MW-1 3.0 0 10:35 strong odax MW-1 0 0 10:35 Strong odax	en-1 Sampled for 13=7x, 6162, 080, 380 - One is located at back of Sit along trae in the (mer mury) - One is after 13 fall	Did not sample MW-5 (blocked) with it is or any now of color and intertran- 11:33 Airabis affsig

1015: Calibrate both 42I meters.
Calibrate both 42I meters.
Calibrate Mentogeneur about
LNA3L in MW-1. Confirm MA
Soumpling of wells (discrepance)
in tash order).

1830: Begin selling up at MW-6 and MW-3, MW-3 @ 1120 Nitrate 3.0 re²⁺0.0 (hocola) 80-1 collected from MW-3 NW-6 @ 1135 Nitrate 0,25 Fe 2+0,0

1500 Beam Setting Worth

MW-S @ 1240 NW-5 @ 1240 Nitrate 1.35 Ferrold

1240: Setup at NW- 4

NW-4 @ 1220 NHate O.O FEF 10

1330: PW-1 @ 1330

Later in 35 gal. A suge distant Draw is at edge of woods just eighting the woods.

1345; Dite secure ARCHUSS

Appendix B

Laboratory Analytical Report, Chainof-Custody, and ADEC Laboratory Checklist

ANCHORAGE, AK 2000 W INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

October 21, 2009

Greg Montgomery Arcadis - Seattle 2300 East Lake Ave East Suite 100 Seattle, WA 98102

RE: FIA Texaco

Enclosed are the results of analyses for samples received by the laboratory on 10/06/09 12:45. The following list is a summary of the Work Orders contained in this report, generated on 10/21/09 17:08.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
ASJ0032	FIA Texaco	301726

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle Project Name: FIA Texaco

2300 East Lake Ave East Suite 100 Project Number: 301726 Report Created:
Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2	ASJ0032-01	Water	10/04/09 12:20	10/06/09 12:45
MW-3	ASJ0032-02	Water	10/04/09 11:20	10/06/09 12:45
MW-4	ASJ0032-03	Water	10/04/09 13:20	10/06/09 12:45
MW-5	ASJ0032-04	Water	10/04/09 12:40	10/06/09 12:45
MW-6	ASJ0032-05	Water	10/04/09 11:35	10/06/09 12:45
BD-1	ASJ0032-06	Water	10/04/09 00:00	10/06/09 12:45
Trip Blank	ASJ0032-07	Water	10/04/09 00:00	10/06/09 12:45
PW-1	ASJ0032-08	Water	10/04/09 13:30	10/06/09 12:45
Trip Blank	ASJ0032-09	Water	10/04/09 00:00	10/06/09 12:45

TestAmerica Anchorage

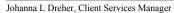
Johanna L Dreher, Client Services Manager

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Arcadis - Seattle Project Name: FIA Texaco

2300 East Lake Ave East Suite 100Project Number:301726Report Created:Seattle, WA 98102Project Manager:Greg Montgomery10/21/09 17:08


Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO

TestAmerica Anchorage

Analyte	Method	Result MI	DL* MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASJ0032-01 (MW-2)		Wate	er	S	ample	d: 10/04/09 1	2:20			
Diesel Range Organics	AK102/103	ND	0.391	mg/l	1x	9100079	10/16/09 10:30	10/17/09 15:58	JN	
Residual Range Organics	"	ND	0.391	"	"	"	"	"	JN	
Surrogate(s): 1-Chlorooctadecane		9	99.8%	50 - 1.	50%	"			"	
Triacontane		9	91.9%	50 - 1.	50 %	"			"	
ASJ0032-02 (MW-3)		Wate	er	S	ample	d: 10/04/09 1	1:20			
Diesel Range Organics	AK102/103	1.29	0.394	mg/l	1x	9100079	10/16/09 10:30	10/17/09 16:29	JN	
Residual Range Organics	"	0.438	0.394	"	"	"	"	"	JN	
Surrogate(s): 1-Chlorooctadecane			101%	50 - 1.		"			"	
Triacontane		9	97.2%	50 - 1.	50 %	"			"	
ASJ0032-03 (MW-4)		Wate	er	Sampled: 10/04/09 13:20						
Diesel Range Organics	AK102/103	ND	0.385	mg/l	1x	9100079	10/16/09 10:30	10/17/09 17:01	JN	
Residual Range Organics	"	ND	0.385	"	"	"	"	"	JN	
Surrogate(s): 1-Chlorooctadecane			108%	50 - 1.	50%	"			"	
Triacontane			101%	50 - 1.	50 %	"			"	
ASJ0032-04 (MW-5)		Wate	er	S	ample	d: 10/04/09 1	2:40			
Diesel Range Organics	AK102/103	0.559	0.403	mg/l	1x	9100079	10/16/09 10:30	10/17/09 17:32	JN	
Residual Range Organics	"	ND	0.403	"	"	"	"	"	JN	
Surrogate(s): 1-Chlorooctadecane		9	98.9%	50 - 1.	50%	"			"	
Triacontane		9	92.8%	50 - 1.	50 %	"			"	
ASJ0032-05 (MW-6)		Wate	er	S	ample	d: 10/04/09 1	1:35			
Diesel Range Organics	AK102/103	ND	0.385	mg/l	1x	9100079	10/16/09 10:30	10/17/09 18:04	JN	
Residual Range Organics	"	ND	0.385	"	"	"	"	"	JN	
Surrogate(s): 1-Chlorooctadecane			97.5%	50 - 1.		"			"	
Triacontane		9	91.0%	50 - 1.	50 %	"			"	
ASJ0032-06 (BD-1)		Wate	er	S	ample	d: 10/04/09 0	0:00			
Diesel Range Organics	AK102/103	2.64	0.391	mg/l	1x	9100079	10/16/09 10:30	10/17/09 18:35	JN	
Residual Range Organics	"	0.459	0.391	"	"	"	"	"	JN	
Surrogate(s): 1-Chlorooctadecane		9	99.1%	50 - 1.	50 %	"			"	
Triacontane			93.2%	50 - 1.		"			,,	

TestAmerica Anchorage

Johanna Dreher

ANCHORAGE, AK

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 301726 Report Created: Project Number: Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO

TestAmerica Anchorage

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASJ0032-08 (PW-1)	1	Vater		5	Sampleo	d: 10/04/09 1	3:30				
Diesel Range Organics	AK102/103	0.534		0.391	mg/l	1x	9100079	10/16/09 10:30	10/17/09 19:38	JN	
Residual Range Organics	"	ND		0.391	"	"	"	"	"	JN	
Surrogate(s): 1-Chlorooctadecane			97.8%		50 - 1	50 - 150 % "				"	
Triacontane			92.9%		50 - 1	50 %	"			"	

TestAmerica Anchorage

Johanna Dheher Johanna L Dreher, Client Services Manager

FIA Texaco

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Arcadis - Seattle Project Name:

2300 East Lake Ave East Suite 100 Project Number: 301726 Report Created:
Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Hydrocarbons by GC/FID Headspace

TestAmerica Anchorage

Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASJ0032-01	(MW-2)		Water			Sampled	: 10/04/09 1	2:20			
Methane		GC/FID	ND	1.20	ug/l	1x	9100075	10/16/09 07:59	10/16/09 11:30	DS	
ASJ0032-02	(MW-3)		Water			Sampled	: 10/04/09 1	1:20			
Methane		GC/FID	14.3	1.20	ug/l	1x	9100075	10/16/09 07:59	10/16/09 11:52	DS	
ASJ0032-03	(MW-4)		Water			Sampled: 10/04/09 13:20					
Methane		GC/FID	16.8	1.20	ug/l	1x	9100075	10/16/09 07:59	10/16/09 11:56	DS	
ASJ0032-04	(MW-5)		Water			Sampled	: 10/04/09 1	2:40			
Methane		GC/FID	5.34	1.20	ug/l	1x	9100075	10/16/09 07:59	10/16/09 12:04	DS	
ASJ0032-05	(MW-6)		Water			Sampled	: 10/04/09 1	1:35			
Methane		GC/FID	3.35	1.20	ug/l	1x	9100075	10/16/09 07:59	10/16/09 12:07	DS	

TestAmerica Anchorage

Johanna L Dreher, Client Services Manager

Johanna Dreher

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 301726 Report Created: Project Number: Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Selected Volatile Organic Compounds per EPA Method 8260B

TestAmerica Anchorage

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASJ0032-01 (MW-2)		•	Water		5	Sample	d: 10/04/09 1	2:20			
Gasoline Range Org	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100042	10/09/09 08:53	10/10/09 17:31	ds	
Benzene		"	ND		0.500	"	"	"	"	"	ds	
Toluene		"	ND		1.00	"	"	"	"	"	ds	
Ethylbenzene		"	ND		1.00	"	"	"	"	"	ds	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	ds	
Surrogate(s):	4-BFB			97.6%			115 %	"			"	
	Dibromofluoromethane			120%			125 %	"			"	
	Toluene-d8			88.4%		78 - I	115 %	"			"	
ASJ0032-02 ((MW-3)		•	Water		5	Sample	d: 10/04/09 1	1:20			
Gasoline Range Org	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100042	10/09/09 08:53	10/10/09 18:00	ds	
Benzene		"	ND		0.500	"	"	"	"	"	ds	
Toluene		"	ND		1.00	"	"	"	"	"	ds	
Ethylbenzene		"	ND		1.00	"	"	"	"	"	ds	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	ds	
Surrogate(s):	4-BFB			93.8%		85 - 1	115 %	"			"	
	Dibromofluoromethane			122%			125 %	"			"	
	Toluene-d8			88.8%		78 - 1	115 %	"			"	
ASJ0032-03 ((MW-4)		•	Water		5	Sample	d: 10/04/09 1	3:20			
Gasoline Range Org	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100042	10/09/09 08:53	10/10/09 18:29	ds	
Benzene		"	ND		0.500	"	"	"	"	"	ds	
Toluene		"	ND		1.00	"	"	"	"	"	ds	
Ethylbenzene		"	ND		1.00	"	"	"	"	"	ds	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	ds	
Surrogate(s):	4-BFB			96.8%		85 - 1	115 %	"			"	
	Dibromofluoromethane			121%			125 %	"			"	
	Toluene-d8			88.5%		78 - 1	115 %	"			"	
ASJ0032-04 ((MW-5)		•	Water			Sample	d: 10/04/09 1	2:40			
Gasoline Range Org	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100042	10/09/09 08:53	10/10/09 18:58	ds	
Benzene		"	ND		0.500	"	"	"	"	"	ds	
Toluene		"	ND		1.00	"	"	"	"	"	ds	
Ethylbenzene		"	ND		1.00	"	"	"	"	"	ds	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	ds	

TestAmerica Anchorage

Johanna Dheher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Arcadis - Seattle FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 301726 Report Created: Project Number: Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Selected Volatile Organic Compounds per EPA Method 8260B

TestAmerica Anchorage

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Note	
ASJ0032-04	(MW-5)		V	ater			Sample	ed: 10/04/09 1	2:40				
	Dibromofluoromethane	romethane		121%			25 %	Ix "	10/10/09 18:58				
	Toluene-d8			88.7%		78 - 1	15 %	,,			,,		
ASJ0032-05	(MW-6)		V	ater		5	Sample	ed: 10/04/09 1	1:35				
Gasoline Range Or	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100047	10/12/09 07:00	10/12/09 14:28	ds		
Benzene		"	ND		0.500	"	"	"	"	"	kc		
Toluene		"	ND		1.00	"	"	"	"	"	kc		
Ethylbenzene		"	ND		1.00	"	"	"	"	"	kc		
Xylenes (total)		"	ND		3.00	"	"	"	"	"	kc		
Surrogate(s):	4-BFB			99.8%			15 %	"			"		
	Dibromofluoromethane	112%			65 - 125 % "			"					
	Toluene-d8			97.3%		78 - 1	15 %	"			"		
ASJ0032-06	(BD-1)	V	ater		\$	Sample	ed: 10/04/09 0	00:00					
Gasoline Range Or	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100047	10/12/09 07:00	10/12/09 14:58	ds		
Benzene		"	ND		0.500	"	"	"	"	"	kc		
Toluene		"	ND		1.00	"	"	"	"	"	kc		
Ethylbenzene		"	ND		1.00	"	"	"	"	"	kc		
Xylenes (total)		"	ND		3.00	"	"	"	"	"	kc		
Surrogate(s):	4-BFB			94.8%		85 - 1	15 %	"			"		
	Dibromofluoromethane			113%		65 - 1	25 %	"			"		
	Toluene-d8			95.9%		78 - 1	15 %	"			"		
ASJ0032-07	(Trip Blank)		v	ater			Sample	ed: 10/04/09 0	00:00				
Gasoline Range Or	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100047	10/12/09 07:00	10/12/09 12:01	ds		
Benzene		"	ND		0.500	"	"	"	"	"	kc		
Toluene		"	ND		1.00	"	"	"	"	"	kc		
Ethylbenzene		"	ND		1.00	"	"	"	"	"	kc		
Xylenes (total)		"	ND		3.00	"	"	"	"	"	kc		
Surrogate(s):	4-BFB			101%		85 - 1	15 %	"			"		
- ',	Dibromofluoromethane			110%		65 - 1	25 %	"			"		
	Toluene-d8			96.8%		78 - 1	15 %	"			"		

TestAmerica Anchorage

Johanna Dheher

Johanna L Dreher, Client Services Manager

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Project Name:

Project Number:

Project Manager:

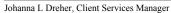
FIA Texaco

Greg Montgomery

2300 East Lake Ave East Suite 100 Seattle, WA 98102

301726

Report Created: 10/21/09 17:08


Selected Volatile Organic Compounds per EPA Method 8260B

TestAmerica Anchorage

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASJ0032-08	(PW-1)		,	Water		;	Sample	d: 10/04/09 1	3:30			A-01
Gasoline Range Org	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100047	10/12/09 07:00	10/12/09 15:27	ds	
Benzene		"	ND		0.500	"	"	"	"	"	kc	
Toluene		"	ND		1.00	"	"	"	"	"	kc	
Ethylbenzene		"	ND		1.00	"	"	"	"	"	kc	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	kc	
Surrogate(s):	4-BFB			97.3%		85	115 %	"			"	
	Dibromofluoromethane			114%		65	125 %	"			"	
	Toluene-d8			96.8%		78	115 %	"			"	
ASJ0032-09	(Trip Blank)		,	Water		Sampled: 10/04/09 00:00						
Gasoline Range Or	ganics	EPA 8260B	ND		50.0	ug/l	1x	9100047	10/12/09 07:00	10/12/09 12:31	ds	
Benzene		"	ND		0.500	"	"	"	"	"	kc	
Toluene		"	ND		1.00	"	"	"	"	"	kc	
Ethylbenzene		"	ND		1.00	"	"	"	"	"	kc	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	kc	
Surrogate(s):	4-BFB			99.4%		85	115 %	"			"	
	Dibromofluoromethane			110%		65	125 %	"			"	
	Toluene-d8			98.4%		78	115 %	"			"	

TestAmerica Anchorage

Johanna Dreher

E, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Arcadis - Seattle Project Name: FIA Texaco

2300 East Lake Ave East Suite 100 Project Number: 301726 Report Created: Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Anions per EPA Method 300.0

TestAmerica Portland

Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASJ0032-01	(MW-2)		Water			Sampled	l: 10/04/09 1	2:20			
Nitrate-Nitrogen		EPA 300.0	ND	0.100	mg/l	1x	9100305	10/09/09 08:13	10/09/09 12:00	SW	Н3
Sulfate		"	25.2	1.00	"	"	"	"	"	SW	
ASJ0032-02	(MW-3)		Water			Sampled	l: 10/04/09 1	1:20			
Nitrate-Nitrogen		EPA 300.0	9.31	0.100	mg/l	1x	9100305	10/09/09 08:13	10/09/09 12:14	SW	Н3
Sulfate		"	60.4	1.00	"	"	"	"	"	SW	
ASJ0032-03	(MW-4)		Water			Sampled	l: 10/04/09 1	3:20			
Nitrate-Nitrogen		EPA 300.0	ND	0.100	mg/l	1x	9100305	10/09/09 08:13	10/09/09 12:28	SW	Н3
Sulfate		"	32.0	1.00	"	"	"	"	"	SW	
ASJ0032-04	(MW-5)		Water			Sampled	l: 10/04/09 1	2:40			
Nitrate-Nitrogen		EPA 300.0	10.6	0.100	mg/l	lx	9100305	10/09/09 08:13	10/09/09 12:42	SW	Н3
Sulfate		"	62.5	1.00	"	"	"	"	"	SW	
ASJ0032-05	(MW-6)		Water			Sampled	l: 10/04/09 1	1:35			
Nitrate-Nitrogen		EPA 300.0	4.01	0.100	mg/l	1x	9100305	10/09/09 08:13	10/09/09 12:56	SW	Н3
Sulfate		"	43.0	1.00	"	"	"	"	"	SW	

TestAmerica Anchorage

Johanna L Dreher, Client Services Manager

Johanna Dreher

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Arcadis - Seattle FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 301726 Report Created: Project Number: Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Total Alkalinity by Conventional Chemistry Parameters per APHA/EPA Methods

TestAmerica Portland

Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASJ0032-01	(MW-2)		Water			Sampled	l: 10/04/09 1	2:20			
Total Alkalinity		EPA 310.1	368	5.00	mg/L as CaCO3	1x	9100504	10/15/09 07:45	10/15/09 12:52	SVW	
ASJ0032-02	(MW-3)		Water		1	Sampled	l: 10/04/09 1	1:20			
Total Alkalinity		EPA 310.1	428	5.00	mg/L as CaCO3	1x	9100457	10/14/09 10:05	10/14/09 17:37	SVW	
ASJ0032-03	(MW-4)		Water		1	Sampled	l: 10/04/09 1	3:20			
Total Alkalinity		EPA 310.1	426	5.00	mg/L as CaCO3	1x	9100457	10/14/09 10:05	10/14/09 17:45	SVW	
ASJ0032-04	(MW-5)		Water			Sampled	l: 10/04/09 1	2:40			
Total Alkalinity		EPA 310.1	427	5.00	mg/L as CaCO3	1x	9100457	10/14/09 10:05	10/14/09 17:53	SVW	
ASJ0032-05	(MW-6)		Water		1	Sampled	l: 10/04/09 1	1:35			
Total Alkalinity		EPA 310.1	549	5.00	mg/L as CaCO3	1x	9100457	10/14/09 10:05	10/14/09 18:16	SVW	

TestAmerica Anchorage

Johanna Dheher

Johanna L Dreher, Client Services Manager

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle FIA Texaco Project Name:

301726 Report Created: 2300 East Lake Ave East Suite 100 Project Number: Seattle, WA 98102 Project Manager: 10/21/09 17:08 Greg Montgomery

Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO - Laboratory Quality Control Results TestAmerica Anchorage

QC Batch: 9100079 Water Preparation Method: EPA 3510

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (9100079-BLK1)								Ext	racted:	10/16/09 10):30			
Diesel Range Organics	AK102/103	ND		0.500	mg/l	1x							10/17/09 13:52	
Residual Range Organics	"	ND		0.500	"	"							"	
Surrogate(s): 1-Chlorooctadecane Triacontane		Recovery:	85.0% 78.1%	Lii	nits: 50-150% 50-1509								10/17/09 13:52 "	
LCS (9100079-BS1)								Ext	racted:	10/16/09 10):30			
Diesel Range Organics	AK102/103	9.66		0.500	mg/l	1x		10.3	93.8%	(75-125)			10/17/09 14:24	
Residual Range Organics	"	12.0		0.500	"	"		10.2	117%	(60-120)			"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	104%	Lii	nits: 60-120%	6 "							10/17/09 14:24	
Triacontane			101%		60-120	% "							"	
LCS Dup (9100079-BSD1)								Ext	racted:	10/16/09 10):30			
Diesel Range Organics	AK102/103	10.1		0.500	mg/l	1x		10.3	98.3%	(75-125)	4.70%	(20)	10/17/09 14:55	
Residual Range Organics	"	12.1		0.500	"	"		10.2	118%	(60-120)	0.735%	6 "	"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	109%	Lii	nits: 60-120%	6 "							10/17/09 14:55	
Triacontane			105%		60-120	% "							"	
Duplicate (9100079-DUP1)				QC Source	: ASJ0032-0	1		Ext	racted:	10/16/09 10	0:30			
Diesel Range Organics	AK102/103	ND		0.391	mg/l	1x	ND				36.0%	(20)	10/17/09 15:27	R4
Residual Range Organics	"	ND		0.391	"	"	ND				18.2%	(50)	"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	98.1%	Lii	mits: 50-150%	6 "							10/17/09 15:27	

92.7%

50-150% "

TestAmerica Anchorage

Johanna Dreher Johanna L Dreher, Client Services Manager

Triacontane

THE LEADER IN ENVIRONMENTAL TESTING

ANCHORAGE, AK

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 Project Number: 301726 Report Created: Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Hydrocarbons by GC/FID Headspace - Laboratory Quality Control Results

TestAmerica Anchorage

						,							
QC Batch: 9100075	Water I	Preparation M	lethod: RS	K 175									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (9100075-BLK1)								Extracted:	10/16/09 0	7:59			
Methane	GC/FID	ND		1.20	ug/l	1x						10/16/09 11:15	
LCS (9100075-BS1)								Extracted:	10/16/09 0	7:59			
Methane	GC/FID	58.1		1.20	ug/l	1x		56.4 103%	(85-115)	-		10/16/09 11:08	
LCS Dup (9100075-BSD1)								Extracted:	10/16/09 0	7:59			
Methane	GC/FID	55.8		1.20	ug/l	1x		56.4 98.9%	(85-115)	4.13%	% (25)	10/16/09 11:48	
Duplicate (9100075-DUP1)				QC Source:	ASJ0032-0)1		Extracted:	10/16/09 0	7:59			
Methane	GC/FID	ND		1.20	ug/l	1x	ND			NR	(20)	10/16/09 11:20	

TestAmerica Anchorage

Johanna L Dreher, Client Services Manager

Johanna Dreher

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Project Name:

FIA Texaco

Greg Montgomery

2300 East Lake Ave East Suite 100 Seattle, WA 98102

Arcadis - Seattle

301726 Project Number: Project Manager:

Report Created: 10/21/09 17:08

Selected Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Anchorage

QC Batc	h: 9100042	Water 1	Preparation	Method:	EPA 50301	В									
Analyte		Method	Result	MDI	* MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (910004	42-BLK1)								Ext	racted:	10/09/09 08	:53			
Gasoline Range Org	anics	EPA 8260B	ND		50.0	ug/l	1x							10/09/09 13:48	
Benzene		"	ND		0.500	"	"							"	
Toluene		"	ND		1.00	"	"							"	
Ethylbenzene		"	ND		1.00	"	"							"	
Xylenes (total)		"	ND		3.00	"	"							"	
Surrogate(s):	4-BFB		Recovery:	98.2%	L	imits: 85-115%	"							10/09/09 13:48	
	Dibromofluoromethane			115%		65-125%	"							"	
	Toluene-d8			89.4%		78-115%	"							"	
LCS (9100042	2-BS1)								Ext	racted:	10/09/09 08	:53			
Benzene	,	EPA 8260B	19.3		0.500	ug/l	1x		20.0	96.6%	(67-125)			10/09/09 11:43	
Toluene		"	17.9		1.00	"	"		"	89.4%	(80-120)			"	
Ethylbenzene		"	19.1		1.00	"	"		"	95.4%	"			"	
Xylenes (total)		"	56.0		3.00	"	"		60.0	93.3%	"			"	
Surrogate(s):	4-BFB		Recovery:	94.1%	L	imits: 85-115%	"							10/09/09 11:43	
	Dibrom of luoromethane			118%		65-125%	"							"	
	Toluene-d8			91.4%		78-115%	"							"	
LCS (9100042	2-BS2)								Ext	racted:	10/09/09 08	:53			
Gasoline Range Org	anics	EPA 8260B	562		50.0	ug/l	1x		550	102%	(60-120)			10/09/09 12:13	
Surrogate(s):	4-BFB		Recovery:	94.4%	L	imits: 85-115%	"							10/09/09 12:13	
	Dibrom of luoromethane			115%		65-125%	"							"	
	Toluene-d8			89.5%		78-115%	"							"	
LCS Dup (910	00042-BSD1)								Ext	racted:	10/09/09 08	:53			
Benzene		EPA 8260B	20.0		0.500	ug/l	1x		20.0	100%	(67-125)	3.71%	(20)	10/09/09 12:42	
Toluene		"	18.6		1.00	"	"		"	93.0%	(80-120)	4.00%	, "	"	
Ethylbenzene		"	19.4		1.00	"	"		"	97.0%	"	1.56%	, "	"	
Xylenes (total)		"	57.0		3.00	"	"		60.0	95.0%	"	1.88%	, "	"	
Surrogate(s):	4-BFB		Recovery:	95.6%	L	imits: 85-115%	"							10/09/09 12:42	
- **	Dibromofluoromethane		,	118%		65-125%	"							"	
	Toluene-d8			91.2%		78-115%	"							"	

TestAmerica Anchorage

Johanna Dhehar

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Analyte

THE LEADER IN ENVIRONMENTAL TESTING

Arcadis - Seattle FIA Texaco Project Name:

301726 Report Created: 2300 East Lake Ave East Suite 100 Project Number: Seattle, WA 98102 Project Manager: 10/21/09 17:08 Greg Montgomery

Selected Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results TestAmerica Anchorage QC Batch: 9100042 Water Preparation Method: EPA 5030B Spike % (Limits) % (Limits) Analyzed Source Method Result MDL* MRL Units Dil

•								Result	Amt	REC	, ,	RPD `	, ·	
LCS Dup (910	00042-BSD2)								Ext	racted:	10/09/09 08	:53		
Gasoline Range Org	anics	EPA 8260B	609	-	50.0	ug/l	1x		550	111%	(60-120)	8.14% (20)	10/09/09 13:19	
Surrogate(s):	4-BFB		Recovery:	94.0%	Li	imits: 85-115%	"						10/09/09 13:19	
	Dibrom of luoromethane			122%		65-125%	"						"	
	Toluene-d8			86.2%		78-115%	"						"	
Duplicate (91	00042-DUP1)				QC Source	e: ASJ0018-06			Ext	racted:	10/09/09 08	:53		
Gasoline Range Org	anics	EPA 8260B	ND	-	50.0	ug/l	1x	ND				18.4% (12)	10/10/09 19:28	R4
Surrogate(s):	4-BFB		Recovery:	93.6%	Li	imits: 85-115%	"						10/10/09 19:28	
	Dibrom of luoromethane			120%		65-125%	"						"	
	Toluene-d8			88.2%		78-115%	"						"	
Matrix Spike	(9100042-MS1)				QC Source	e: ASJ0032-03			Ext	racted:	10/09/09 08	:53		
Benzene		EPA 8260B	23.7		0.500	ug/l	1x	ND	20.0	118%	(65-138)		10/10/09 19:57	
Toluene		"	20.4	-	1.00	"	"	ND	"	102%	(80-120)		"	
Ethylbenzene		"	21.6	-	1.00	"	"	ND	"	108%	(76-130)		"	
Xylenes (total)		"	62.5	-	3.00	"	"	ND	60.0	104%	(65-140)		"	
Surrogate(s):	4-BFB		Recovery:	93.2%	Li	imits: 85-115%	"						10/10/09 19:57	
	Dibrom of luoromethane			121%		65-125%	"						"	
	Toluene-d8			89.4%		78-115%	"						"	
Matrix Spike I	Oup (9100042-MSD	1)			QC Source	e: ASJ0032-03			Ext	racted:	10/09/09 08	:53		
Benzene		EPA 8260B	24.1	-	0.500	ug/l	1x	ND	20.0	120%	(65-138)	1.68% (20)	10/10/09 20:26	
Toluene		"	20.6	-	1.00	"	"	ND	"	103%	(80-120)	1.12% "	"	
Ethylbenzene		"	21.9	-	1.00	"	"	ND	"	110%	(76-130)	1.56% "	"	
Xylenes (total)		"	63.3	-	3.00	"	"	ND	60.0	105%	(65-140)	1.18% "	"	
Surrogate(s):	4-BFB		Recovery:	93.2%	Li	imits: 85-115%	"						10/10/09 20:26	
	Dibromofluoromethane			121%		65-125%	"						"	

78-115% "

TestAmerica Anchorage

Johanna Dreher

Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

87.8%

CS Approval Number: UST-067

Arcadis - Seattle

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 301726 Report Created: Project Number: Seattle, WA 98102 Project Manager: 10/21/09 17:08 Greg Montgomery

Selected Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Anchorage

QC Batc	h: 9100047	Water 1	Preparation	Method: I	EPA 5030E	B									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (910004	7-BLK1)								Exti	racted:	10/12/09 07	:00			
Gasoline Range Org	anics	EPA 8260B	ND		50.0	ug/l	1x							10/12/09 10:26	
Benzene		"	ND		0.500	"	"							"	
Toluene		"	ND		1.00	"	"							"	
Ethylbenzene		"	ND		1.00	"	"							"	
Xylenes (total)		"	ND		3.00	"	"							"	
Surrogate(s):	4-BFB		Recovery:	99.0%	Li	mits: 85-115%	"							10/12/09 10:26	
	Dibrom of luoromethane			113%		65-125%	"							"	
	Toluene-d8			92.7%		78-115%	"							"	
LCS (9100047	-BS1)								Exti	racted:	10/12/09 07	:00			
Benzene		EPA 8260B	20.2		0.500	ug/l	1x		20.0	101%	(67-125)			10/12/09 09:28	
Toluene		"	18.0		1.00	"	"		"	89.8%	(80-120)			"	
Ethylbenzene		"	19.5		1.00	"	"		"	97.3%	"			"	
Xylenes (total)		"	56.6		3.00	"	"		60.0	94.4%	"			"	
Surrogate(s):	4-BFB		Recovery:	93.4%	Li	mits: 85-115%	"							10/12/09 09:28	
	Dibrom of luoromethane			125%		65-125%	"							"	
	Toluene-d8			86.6%		78-115%	"							"	
LCS (9100047	-BS2)								Exti	racted:	10/12/09 07	:00			
Gasoline Range Org	anics	EPA 8260B	597		50.0	ug/l	1x		550	109%	(60-120)			10/12/09 09:57	
Surrogate(s):	4-BFB		Recovery:	94.2%	Li	mits: 85-115%	"							10/12/09 09:57	
	Dibrom of luoromethane			121%		65-125%	"							"	
	Toluene-d8			85.8%		78-115%	"							"	
LCS Dup (910	00047-BSD1)								Exti	racted:	10/12/09 07	:00			
Benzene		EPA 8260B	19.2		0.500	ug/l	1x		20.0	95.8%	(67-125)	5.18%	6 (20)	10/12/09 11:03	
Toluene		"	18.7		1.00	"	"		"	93.4%	(80-120)	3.93%	6 "	"	
Ethylbenzene		"	19.8		1.00	"	"		"	99.2%	"	1.88%	6 "	"	
Xylenes (total)		"	58.6		3.00	"	"		60.0	97.6%	"	3.33%	6 "	"	
Surrogate(s):	4-BFB		Recovery:	93.7%	Li	mits: 85-115%	"							10/12/09 11:03	
	Dibromofluoromethane			120%		65-125%	"							"	
	Toluene-d8			92.8%		78-115%	"							"	

TestAmerica Anchorage

Johanna Dhehar Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Arcadis - Seattle FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 Project Number: 301726 Report Created: Seattle, WA 98102 Project Manager: 10/21/09 17:08 Greg Montgomery

Selected Valatile Organic Compaunds per EPA Method 8260R - Laboratory Quality Control Results

OCP (0100047	***		M 41 1 E	D. 4. 5020D										
QC Batc	h: 9100047	Water	Preparation	Method: E	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS Dup (910	00047-BSD2)								Extr	acted:	10/12/09 07	:00			
Gasoline Range Org	anics	EPA 8260B	491		50.0	ug/l	1x		550	89.3%	(60-120)	19.5%	(20)	10/12/09 11:32	
Surrogate(s):	4-BFB Dibromofluoromethane Toluene-d8		Recovery:	96.8% 110% 95.1%	Lin	nits: 85-115% 65-125% 78-115%	"							10/12/09 11:32	
Duplicate (91	00047-DUP1)				QC Source:	ASJ0032-06			Extr	acted:	10/12/09 07	:00			
Gasoline Range Org	anics	EPA 8260B	ND		50.0	ug/l	1x	ND				12.8%	(12)	10/13/09 01:16	R
Surrogate(s):	4-BFB Dibromofluoromethane Toluene-d8		Recovery:	96.8% 111% 96.6%	Lin	65-115% 65-125% 78-115%	"							10/13/09 01:16 "	
Matrix Spike	(9100047-MS1)				QC Source:	ASJ0032-05			Extr	acted:	10/12/09 07	:00			
Benzene		EPA 8260B	19.1		0.500	ug/l	1x	ND	20.0	95.4%	(65-138)			10/14/09 05:07	
Toluene		"	19.1		1.00	"	"	ND	"	95.5%	(80-120)			"	
Ethylbenzene		"	20.2		1.00	"	"	ND	"	101%	(76-130)			"	
Xylenes (total)		"	58.0		3.00	"	"	ND	60.0	96.6%	(65-140)			"	
Surrogate(s):	4-BFB Dibromofluoromethane Toluene-d8		Recovery:	95.9% 112% 98.2%	Lin	nits: 85-115% 65-125% 78-115%	"							10/14/09 05:07	
Matrix Spike I	Oup (9100047-MSD	1)			QC Source:	ASJ0032-05			Extr	acted:	10/12/09 07	:00			
Benzene		EPA 8260B	19.8		0.500	ug/l	1x	ND	20.0	98.8%	(65-138)	3.45%	(20)	10/14/09 05:38	
Toluene		"	20.0		1.00	"	"	ND	"	100%	(80-120)	4.55%	, "	"	
Ethylbenzene		"	21.0		1.00	"	"	ND	"	105%	(76-130)	3.88%	, "	"	
Xylenes (total)		"	61.5		3.00	"	"	ND	60.0	103%	(65-140)	5.93%	. "	"	
Surrogate(s):	4-BFB		Recovery:	96.1%	Lin	nits: 85-115%	"							10/14/09 05:38	
	Dibromofluoromethane			111%		65-125%	"							"	

78-115% "

TestAmerica Anchorage

Johanna Dreher Johanna L Dreher, Client Services Manager

Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99.4%

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Arcadis - Seattle FIA Texaco Project Name:

2300 East Lake Ave East Suite 100 Project Number: 301726 Report Created: Seattle, WA 98102 Project Manager: 10/21/09 17:08 Greg Montgomery

Anions per EPA Method 300.0 - Laboratory Quality Control Results

TestAmerica Portland

				TestAmeric	a Portiani	u								
QC Batch: 9100305	Water P	reparation Mo	ethod:	Wet Chem										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (9100305-BLK1)								Extra	acted:	10/09/09 08	:13			
Nitrate-Nitrogen	EPA 300.0	ND		0.100	mg/l	1x							10/09/09 09:51	
Sulfate	"	ND		1.00	"	"							"	
LCS (9100305-BS1)								Extra	acted:	10/09/09 08	:13			
Sulfate	EPA 300.0	30.9		1.00	mg/l	1x		30.0	103%	(90-110)			10/09/09 10:06	
Nitrate-Nitrogen	"	4.96		0.100	"	"		5.00	99.2%	"			"	
Duplicate (9100305-DUP1)				QC Source:	ASJ0032-	01		Extra	acted:	10/09/09 08	:13			
Sulfate	EPA 300.0	25.1		1.00	mg/l	1x	25.2				0.557%	6 (20)	10/09/09 11:17	
Nitrate-Nitrogen	"	ND		0.100	"	"	ND					"	"	
Matrix Spike (9100305-MS1)				QC Source:	ASJ0032-	01		Extra	acted:	10/09/09 08	:13			
Nitrate-Nitrogen	EPA 300.0	2.31		0.111	mg/l	1x	ND	2.22	104%	(80-120)			10/09/09 11:31	
Sulfate	"	29.8		1.11	"	"	25.2	4.44	105%	"			"	
Matrix Spike (9100305-MS2)				QC Source:	PSJ0329-	02		Extra	acted:	10/09/09 08	:13			
Sulfate	EPA 300.0	4.63		1.11	mg/l	1x	ND	4.44	104%	(80-120)			10/09/09 17:13	
Nitrate-Nitrogen	"	2.24		0.111	"	"	ND	2.22	101%	"			"	
Matrix Spike Dup (9100305-MS	SD1)			QC Source:	ASJ0032-	01		Extra	acted:	10/09/09 08	:13			
Sulfate	EPA 300.0	29.9		1.11	mg/l	1x	25.2	4.44	106%	(80-120)	0.186%	6 (20)	10/09/09 11:45	
Nitrate-Nitrogen	"	2.32		0.111	"	"	ND	2.22	104%	"	0.480%	6 "	"	

TestAmerica Anchorage

Johanna Dreher Johanna L Dreher, Client Services Manager

ANCHORAGE, AK

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10

ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Project Name:

Project Manager:

FIA Texaco

Greg Montgomery

2300 East Lake Ave East Suite 100 Seattle, WA 98102 Project Number: 301726

Report Created: 10/21/09 17:08

Total Alkalinity by Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

			Τe	estAmeric	ca Portland								
QC Batch: 9100457	Water P	reparation M	lethod: Ge	eneral Pr	eparation								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (9100457-BLK1)								Extracted:	10/14/09 10	:05			
Total Alkalinity	EPA 310.1	ND		5.00	mg/L as CaCO3	1x						10/14/09 15:27	
LCS (9100457-BS1)								Extracted:	10/14/09 10	:05			
Total Alkalinity	EPA 310.1	193		5.00	mg/L as CaCO3	1x		200 96.4%	(90-110)			10/14/09 15:35	
Duplicate (9100457-DUP1)				QC Source	: PSJ0178-01			Extracted:	10/14/09 10	:05			
Total Alkalinity	EPA 310.1	135		5.00	mg/L as CaCO3	1x					(20)	10/14/09 15:41	

QC Batch: 9100504	Water P	Preparation M	lethod: W	et Chem									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (9100504-BLK1)								Extracted:	10/15/09	7:45			
Total Alkalinity	EPA 310.1	ND		5.00	mg/L as CaCO3	1x						10/15/09 10:39	
LCS (9100504-BS1)								Extracted:	10/15/09 (7:45			
Total Alkalinity	EPA 310.1	191		5.00	mg/L as CaCO3	1x		200 95.3%	(90-110)		10/15/09 10:47	
Duplicate (9100504-DUP1)				QC Source	: PSJ0204-01			Extracted:	10/15/09	7:45			
Total Alkalinity	EPA 310.1	104		5.00	mg/L as CaCO3	1x	104			0.0385	% (20)	10/15/09 10:54	

TestAmerica Anchorage

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210

CS Approval Number: UST-067

Arcadis - Seattle FIA Texaco Project Name:

301726 Report Created: 2300 East Lake Ave East Suite 100 Project Number: Seattle, WA 98102 Project Manager: Greg Montgomery 10/21/09 17:08

Notes and Definitions

Report Specific Notes:

A-01 pH>2

H3 Sample was received and analyzed past holding time.

Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. R4

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). RPD

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. MDL* *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

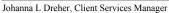
Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

percent solids, where applicable.

Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature


Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Anchorage

Limits

Johanna Dreher

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W. International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

78 8.6°C PAGE OF	_	Cooler # / Temp 30												
TIME:	FIRM:			PRINT NAME:	-		. Interest						-	ADDITIONAL REMARKS:
	·		-	RECEIVED BY:	· · · · · · · · · · · · · · · · · · ·		DATE:				FIRM:			PRINT NAME:
ANC TIME 12:45	FIRM: TAC-A	Engelvorn	Say Evere	PRINT NAME:	P :		TIME:	5	ADI	ARCA	L	havel Strickley FIRM:	20	W.C
10-6-00			242	RECEIVED BY:	R	5 00	DATE: 5		.	·				RELEASED BY:
		7	#			•							especiment and	10
														9
4	C W								×	X			7	Thip Blank
90	\(\sigma \)						X	X	X	X		0/4/09		· BD-I
20	WQ				×	X	X	X	X	X	/ 1135	10/4/09		9-MM-
ho	W O				X	X	\times	X	X	X	OHE!	0/4/09		1 MW-5
20	W 9		·		X	X	X	X	X	X	/ 13ao	104/09		3 MW-F
දු	< 2 -Q				X	X	X	X	X	X	1120	10/4/09		2 MW - 3
0	2				X	X	X	X	X	X	/ 1220	10/4/09		- MW-2
LOCATION/ TA COMMENTS WO ID	MATRIX # OF (W, S, O) CONT.		,	S.	Meti RSKI'S	Sulfa Nitra 308	IN INCO	AKI RP	BE 802 GR AKI DR AKI RR AKI	BE	ME	SAMPLING DATE/TIME		CLIENT SAMPLE IDENTIFICATION
* Turnaround Requests less than standard may incur Rush Charges.	* Turnaround Requests less than st			YSES	COMP H	1.7 1	WATE	02	0	TX		NB NB	5	SAMPLED BY: NUS/OMB
2 1 <1	\$\frac{1}{3}				E		- 128	T DH	五五	E			64VC	紐
on Analyse	6TD Petroleum Hydr	AB	7-26-1-1	30	JRTB - D	2	P.O. NUMBER:		218	18	8/28-575-90	776-474-4AX: 206	PLEYCY PLEAK: J	PROJECT NAME: 57
nalyses	Organic & Inorg								(، زو	4 98102	2	Seatta
in Business Days *	in Bush		EMC		Cheuron	\bigcirc			27.00	ج ا	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ナイン	M.	REPORT TO: ARCA
TURNAROUND REQUEST	~L			-			INVOICE TO:					MC	Z F	CLIENT: (MANNY)
157m22	Work Order #: /	•	7	REPORT	CODY	CHAIN OF CUSTODY REPO	AIN O	СН						

Cooler # 2 Temp 5.8°C

THE LEADER IN ENVIRONMENTAL TESTING

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

	- 71 -	la Ten	,		Cooler							
	EMP:	7.8- 2.6°C	300	Cooler #1 Temp.	Cooler							
	TIME:		FIRM:		PRINT NAME:	H	TIME:		FIRM:		PRINT NAME: ADDITIONAL REMARKS:	A PE
		FIRM: TAL ANC	FIRM: A	by Engshom	PRINT NAME: Tro	0800		CHAPTS	CLEGFIRM: A	acl Strickleform ARCHOTS	PRINT NAME: CLOCK RELEASED BY:	PRI
•	DATE 10-6-01				RECEIVED BY:	DATE 17/5/29	DAT				RELEASED BY	RH 10
										,	قد مين د مين	
								-				٥
												∞
												7
							:					6
								;				5
												4
.*												ω
2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0					×		-	Trip Blank	12
S) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1	<u> </u>				X	X	1330	10 4 Da	PW-1	<u> </u>
	LOCATION/ TA COMMENTS WO ID		MATRIX # OF (W, S, O) CONT.				ALI	BTE 802 GR ALI DR ALI		SAMPLING DATE/TIME	CLIENT SAMPLE IDENTIFICATION	
	* Turnaround Requests less than standard may incur Rush Charges.	sts less than stana	* Turnaround Reques			***	0 0 0 102	X B OOL		D 1818	SAMPLED BY: VCC)	SA
	:-	Specify:	OTHER		NALYSES	REQUESTED ANALYSES						:
	<u></u>	<u>ا</u> ا ا	STD.				ST DE	DAT TOPE		2007		PR
	ן ני	_ 8.5		0-1-LAB	-9-6-10500	P.O. NUMBER: NWEATS -030 PRESERVATIVE		8778	7525-8218	TOVOCO -	-16, P. £	PR PH
	Analyses	Organic & Inorganic Analyses	Organ			(WARE ARE TO COM	Secreta	
•	Days *	in Business Days *		TAC	The work F	The	3	27.0	<u>}</u>	TS	ADDRESS: ARCAO	AD RE
	TURNAROUND REQUEST	NAROUND	TUR			INVOICE TO:	IOANI			FMC	CLIENT: CAUNTA	5
	人間のなり	*	Work Order #: A TOO 35		Y REPORT	CHAIN OF CUSTODY REPO	CHAI]

60 30

Cooler #1 TesTAmerica Coleman

Test America Anchorage Cooler Receipt Form

WORK ORDER #_ASJO032 CLIENT: HYCadis PROJECT: FIA Texaco Date /Time Cooler Arrived 10 / 6 / 9 10:45 Cooler signed for by: Preliminary Examination Phase: Date cooler opened: Same as date received Cooler opened by (print) Troy Engstrom 1. Delivered by ALASKA AIRLINES Fed-Ex UPS UPS NAC DLYNDEN Other: Shipment Tracking # if applicable 563 G248 0168 (include copy of shipping papers in file) 2. Number of Custody Seals Signed by Michael Strickler Date 10/4/09 Were custody seals unbroken and intact on arrival? TYYes 3. Were custody papers sealed in a plastic bag? Y Yes □No 4. Were custody papers filled out properly (ink, signed, etc.)? X Yes 5. Did you sign the custody papers in the appropriate place? Yes Yes No 6. Was ice used? Yes No Type of ice: blue ice gelice Arealice dry ice Condition of Ice: we that Temperature by Digi-Thermo Probe 2.6 °C Thermometer # 5 Acceptance Criteria: 0 - 6°C 7. Packing in Cooler: Dubble wrap styrofoam cardboard Other: 8. Did samples arrive in plastic bags? □Yes NO 9. Did all bottles arrive unbroken, and with labels in good condition? Yes Yes ∏ No 10. Are all bottle labels complete (ID, date, time, etc.) √ Yes No 11. Do bottle labels and Chain of Custody agree? Y Yes \square No 12. Are the containers and preservatives correct for the tests indicated? Y Yes \square No 13. Conoco Phillips, Alyeska, BP H2O samples only: pH < 2? Yes No A/M 🗗 14. Is there adequate volume for the tests requested? X Yes \square No 15. Were VOA vials free of bubbles? X Yes \square N/A \square No If "NO" which containers contained "head space" or bubbles? Log-in Phase: Date of sample log-in 10 / 6 / 9 Samples logged in by (print) Kelsey Gerbrandt 1. Was project identifiable from custody papers? ĪΝο 2. Do Turn Around Times and Due Dates agree? No Was the Project Manager notified of status? 4. Was the Lab notified of status? 5. Was the COC scanned and copied? **▼**Yes INO

Test America Anchorage Cooler Receipt Form (Army Corps, Compliant)

Cooler #2 blue extrane Colonan

1,00000	Corps. Compitant)			
WORK ORDER # DESCRIBE CLIER	NT: Arcadi	5 PI	ROJECT: FIY	Tovan
Date /Time Cooler Arrived 10 / 6 / 89 12	: 45 Cooler s:	igned for by:	Trou Practo	Din
Preliminary Examination Phase:		(Pri	nt name)	
Date cooler opened: Same as date received or	/ /			
Cooler opened by (print) Tvoy Engstrum	(sign	n) Try Cy	5	
1. Delivered by ALASKA AIRLINES TIFED-EX DU		·-	ICLIENT Oth	er:
Shipment Tracking # if applicable 7995 046	USIb (include co	ppy of shipping pap	ers in file)	
A	had Stricke	_	15/84	
Were custody seals unbroken and intact on arrival?	Yes	□ No	· · · · · · · · · · · · · · · · · · ·	
3. Were custody papers sealed in a plastic bag?	☐ Yes	□No		
4. Were custody papers filled out properly (ink, signed, etc.)?	Yes	□No	- No coc	in Cooler
5. Did you sign the custody papers in the appropriate place?	Yes	□No	give Cooler	Al for COC
6. Was ice used? Yes No Type of ice: blue ice	lgelice Vrealic	e dry ice Co	ondition of Ice: _ W @	thig
Temperature by Digi-Thermo Probe 5.8 °C TAGE Acceptance Criteria: 0 - 6°C - 10 Tage	Thermometer #	5		
for all TA in the	E Bag - Tem	poler ten	op taken	
Production	d M.Other:		·	
8. Did samples arrive in plastic bags?	. Yes	` ⊠ No ⊸		
9. Did all bottles arrive unbroken, and with labels in good condit.	ion? Д Yes	□No		
10. Are all bottle labels complete (ID, date, time, etc.)	X Yes	□No		
11. Do bottle labels and Chain of Custody agree?	Yes Yes	□ No		
12. Are the containers and preservatives correct for the tests indica	ated? 📉 Yes	□ No	•	
13. Conoco Phillips, Alyeska, BP H2O samples only: pH < 2?	Yes	□No	N/A	
14. Is there adequate volume for the tests requested?	🕅 Yes	□ No		
15. Were VOA vials free of bubbles?	X Yes	□No		
If "NO" which containers contained "head space" or bubb	les?			
Log-in Phase:				
Date of sample log-in 10 / 6 / 6	_	- n /		
Samples logged in by (print) Kelstel Gerbranelt	(sign)	Boll _		
1. Was project identifiable from custody papers?	✓ Yes	∏No		
2. Do Turn Around Times and Due Dates agree?		□No		
3. Was the Project Manager notified of status?		□No		
4. Was the Lab notified of status?	☑ Yes	□No .		
5. Was the COC scanned and copied?	 Yes	□ No ·		

Custody Seal

Cooler # 2 contents

THE LEADER IN ENVIRONMENTAL TESTING
46C 831

Custody Seal

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING
46C831

FedEx 0002/0002 TUE - 06 OCT A4

MPS# PRIORITY OVERNIGHT 0681 7955 0461 4516

Mstr# 8688 9248 0168 0200

Q1 ANC 99503

AK-US AK-US ANC

emp# 232833 050CT09 08:33

Alaska Department of Environmental Conservation • Spill Prevention and Response Division • Contaminated Sites Program

Laboratory Data Review Checklist

Completed by:	Dawn Berube	
Title:	Scientist I	
Date:	11/18/09	
CS Report Name:	Second Semi-a Monitoring Res	nnual Groundwater Monitoring Report and Geochemical Parameter sults
Report Date:	11/18/09	
Consultant Firm:	ARCADIS	
Laboratory Name:	Test America	
Laboratory Report Nur	mber: ASJ0	032
ADEC File Number:	100.38.06	56
ADEC RecKey Numbe	er: 19923101	119101
Yesb. If the sample	□ No	l laboratory receive and <u>perform</u> all of the submitted sample analyses? Comments: red to another "network" laboratory or sub-contracted to an alternate bry performing the analyses ADEC CS approved?
Yes	No	Comments:
N/A		
2. Chain of Custody (COC)	
a. COC inform	nation completed	d, signed, and dated (including released/received by)?
○ Yes	□ No	Comments:
b. Correct and Yes	lyses requested? No	Comments:

Version 2.6 Page 1 of 7 03/09

a.	Sample/coo	ler temperat	ure documented and within range at receipt $(4^{\circ} \pm 2^{\circ} \text{ C})$? Comments:
		E NO	Comments.
	3.0° Celsius		
b.			ceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, lvents, etc.)?
	• Yes	□ No	Comments:
c.	Sample con	dition docur	mented – broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
d.		reservation,	pancies, were they documented? For example, incorrect sample sample temperature outside of acceptable range, insufficient or missing Comments:
]	N/A		
e.	Data quality	or usability	affected? Explain. Comments:
1	N/A		
Case I	<u>Narrative</u>		
a.	Present and	understanda	able?
	Yes	□ No	Comments:
b.	Discrepanci	es, errors or	QC failures identified by the lab?
	Yes	No	Comments:
c.	Were all co	rrective action	ons documented?
	Yes	◯ No	Comments:
	N/A		
_			

3. <u>Laboratory Sample Receipt Documentation</u>

4.

	d. What is the effect on data quality/usability according to the case narrative? Comments:	
	N/A	
5. <u>S</u>	mples Results	
	a. Correct analyses performed/reported as requested on COC?	
	Yes No Comments:	
	b. All applicable holding times met?	
	Yes No Comments:	
	The holding time for nitrate was not met.	
	c. All soils reported on a dry weight basis?	
	Yes No Comments:	
	N/A	
	d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level project?	l for th
	Yes No Comments:	
	e. Data quality or usability affected? Comments:	
	N/A	
6. <u>(</u>	<u>C Samples</u>	
	a. Method Blank	
	i. One method blank reported per matrix, analysis and 20 samples?	
	Yes No Comments:	
	ii. All method blank results less than PQL?	
	Yes No Comments:	
	iii. If above PQL, what samples are affected? Comments:	
	N/A	

		Do t Yes	he affected No	sample(s) have data f Comments:		, are the	data flag	s clearly	defined	!
N/A											
		Data	a quality or	usability	affected? Ex Comments:	-					
N/A											
). La	bora i.	Orga	anics – One	LCS/LC	licate (LCS/I SD reported s, LCS requir	per matrix		is and 20	samples	? (LCS/I	LCSD
	0	Yes	No		Comments:						
	ii.		C	ics – one	LCS and one	sample du	uplicate	reported	per matr	rix, analy	sis and 2
	0	Yes	ples?		Comments:						
	iii.	And	project spe	ecified DQ	ecoveries (% QOs, if applic 03 60%-120	able. (AK	Petrole	um metho	ods: AK	101 60%	-120%,
	Ō	Yes	□No		Comments:						
	iv.	labo LCS	ratory limit S/LCSD, M	ts? And pr S/MSD, a	ercent differe roject specifiend or sample poratory QC	ed DQOs, /sample d	if applie	cable. RF	D repor	ted from	
	0	Yes	□ No		Comments:						
	v.	If %	R or RPD i	s outside	of acceptable Comments:		hat sam _l	ples are a	ffected?		
		Do t Yes	he affected	sample(s) have data finents:	lags? If so.	, are the	data flag	s clearly	defined	?
N/A											

vii. Data quality or usability affected? (Use comment box to explain)

Comments:

Su	ırrogates -	- Organics Or	nly
	i. Are	surrogate reco	overies reported for organic analyses – field, QC and laboratory samples?
	Yes	□ No	Comments:
	And	project specia	ercent recoveries (%R) reported and within method or laboratory limits? fied DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other aboratory report pages)
	• Yes	□ No	Comments:
		he sample res s clearly defin	sults with failed surrogate recoveries have data flags? If so, are the data ned?
	Yes	□ No	Comments:
N/A			
N/A			cability affected? (Use the comment box to explain.) Comments:
Tr <u>So</u>	o <u>il</u>		llyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and corted per matrix, analysis and cooler? Comments:
	(If n	ot, a commen	to transport the trip blank and VOA samples clearly indicated on the COO at explaining why must be entered below) Comments:
	(If n	ot, a commen	t explaining why must be entered below) Comments:
	(If n	ot, a commen	t explaining why must be entered below) Comments:

	iv. If ab	ove PQL, wha	at samples are affected?
			Comments:
N/A			
	v. Data	quality or usa	ability affected? Explain.
			Comments:
N/A			
Fie	eld Dupli	cate	
	_		e submitted per matrix, analysis and 10 project samples?
	Yes	□ No	Comments:
	ii. Subi	mitted blind to	lab?
	Yes	◯ No	Comments:
			ative percent differences (RPD) less than specified DQOs?
	(Nec	tommended. S	0% water, 50% soil)
	RPD	O (%) = Absolu	
			${((R_1+R_2)/2)}$ x 100
	•	Where D. — Se	ample Concentration
			eld Duplicate Concentration
	• Yes	□ No	Comments:
	iv. Data	ı quality or usa	ability affected? (Use the comment box to explain why or why not.)
			Comments:
N/A			
1 1/ 1/			

	f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered	b
	below.)	
	Yes No Not Applicable	
	i. All results less than PQL?	
	Yes No Comments:	
	N/A	
	ii. If above PQL, what samples are affected?	
	Comments:	
	N/A	
	iii. Data quality or usability affected? Explain.	
	Comments:	
	N/A	
7. <u>Ot</u>	ther Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)	
	a. Defined and appropriate?	
	Yes No Comments:	
	Low levels of analyte were detected in the laboratory duplicate sample.	