

Chevron Environmental Management Company

Annual 2013 Groundwater Monitoring Report

Former Chevron Facility 301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska Alaska File No. 100.38.066

November 21, 2013

Michael MacDanie Field Technician

Greg Montgomery Project Scientist

Annual 2013 Groundwater Monitoring Report

Former Chevron Facility 301726 Lot 5A, Block 10, West Ramp Fairbanks International Airport Fairbanks, Alaska Alaska File No. 100.38.066

Prepared for:

Chevron Environmental Management Company

Prepared by: ARCADIS 1100 Olive Way Suite 800 Seattle Washington 98101 Tel 206.325.5254 Fax 206.325.8218

Our Ref.: B0046269

Date:

November 21, 2013

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

ARCADIS Table of Contents

1.0 Introductio	n	1
2.0 Groundwat	er Monitoring	1
2.1 Groun	dwater Gauging Methods	1
2.2 Groun	dwater Elevation and Flow Direction	1
2.3 Groun	dwater Sampling Methods	2
2.4 Groun	dwater Analytical Results	3
3.0 Laboratory	Data Quality Assurance Summary	3
3.1 Precis	ion	4
3.2 Accura	acy	4
3.3 Repre	sentativeness	4
3.4 Comp	arability	4
3.5 Comp	leteness	4
3.6 Sensit	ivity	4
4.0 Conclusion	ns and Recommendations	5
5.0 References	3	5
Tables		
Table 1	Groundwater Elevation and Gauging Data	
Table 2	Groundwater Analytical Results	
Figures		
Figure 1	Site Location Map	
Figure 2	Groundwater Elevation Contour Map – July 29, 2013	
Figure 3	Groundwater Analytical Results Petroleum Hydrocarbons - July 29, 2013	
Figure 4	Monitoring Well MW-1 Historical Groundwater Elevation and GRO Concentration	

i

ARCADIS Table of Contents

Figure 5 Monitoring Well MW-1 Historical Groundwater Elevation and DRO

Concentration

Figure 6 Monitoring Well MW-1 Historical Groundwater Elevation and

Benzene Concentration

Appendices

A Field Notes

B Laboratory Analytical Reports

C ADEC Data Review Checklist

Annual 2013 Groundwater Monitoring Report

Former Chevron Facility 301726

1.0 Introduction

On behalf of Chevron Environmental Management Company (Chevron), ARCADIS US, Inc. (ARCADIS), has prepared this report to document the annual 2013 groundwater sampling event for Former Chevron Facility 301726 (the site) located at Lot 5A, Block 10, West Ramp, Airport Industrial Rd., Fairbanks, Alaska. The site and surrounding area are shown on **Figure 1**. This report summarizes the groundwater gauging conducted by ARCADIS during 2013 and the annual sampling event conducted on July 29, 2013. Work was conducted under the direction of a "qualified person" as defined in 18 Alaska Administrative Code (AAC) 75.990 (100), and 18 AAC 78.995 (118).

2.0 Groundwater Monitoring

2.1 Groundwater Gauging Methods

Groundwater gauging was conducted during the annual 2013 groundwater monitoring event conducted on July 29, 2013. Site monitoring wells were gauged with an oil/water interface probe to determine depth to water and to ascertain if light non-aqueous phase liquids (LNAPL) are present.

The wells were gauged in order from lowest historical concentrations of petroleum constituents to highest in order to prevent cross contamination. Non-disposable groundwater gauging equipment was decontaminated prior to and after each use with a detergent solution and rinsed in potable water. Field notes taken during the annual groundwater monitoring event and 2013 gauging activities are included as **Appendix A**.

2.2 Groundwater Elevation and Flow Direction

On July 29, 2013, groundwater monitoring wells MW-1 through MW-6 were gauged to determine groundwater elevations and the presence of LNAPL. LNAPL was not present in any of the monitoring wells gauged during this event. During the July 2013 gauging event, depth-to-groundwater ranged between 7.48 feet below top of casing (btoc) in monitoring well MW-2 to 7.91 feet btoc in monitoring well MW-3. Groundwater elevations ranged from 418.25 feet above mean sea level (msl) to 419.27 feet msl in monitoring wells MW-3 and MW-1, respectively. Water table elevation data indicate groundwater flow direction is toward the southwest. The historical groundwater flow direction has seasonally fluctuated from the east toward the southwest. Current and

Annual 2013
Groundwater Monitoring
Report

Former Chevron Facility 301726

historical groundwater elevation data are included in **Table 1**. The horizontal hydraulic gradient present on site during the July 2013 event was approximately 0.01 ft/ft. The Groundwater Elevation Contour Map for the July 29, 2013, monitoring well gauging data is included as **Figure 2**.

2.3 Groundwater Sampling Methods

The annual 2013 groundwater monitoring event was conducted on July 29, 2013. Groundwater samples were collected from monitoring wells MW-1 through MW-6, using no-purge bailer sampling procedures in accordance with ADEC Draft Field Sampling Guidance (ADEC, 2010), ARCADIS Bailer-Grab Groundwater Sampling (ARCADIS, 2009), and ARCADIS Groundwater Sampling with Hydrasleeves® (ARCADIS, 2011). Disposable Hydrasleeves® and Teflon® bailers were used to collect groundwater samples. The top of the Hydrasleeves[®] were positioned in the monitoring wells below the midpoint of the saturated screened interval by a distance approximately equal to 0.75 times the full length of the Hydrasleeves[®]. After an equilibration period the Hydrasleeves[®] were removed from the wells and samples were collected for select analytes using a disposable sampling tip. The Teflon® bailers were then slowly lowered into the water column within the monitoring wells to a depth of approximately three to four feet below the groundwater surface. The bailers were retrieved to limit the amount of possible aeration of the water column. The groundwater samples were collected from the bottom of the bailer using a disposable sampling tip. This technique minimizes the disturbance and aeration of the groundwater within the bailer. The samples were then collected in the appropriate laboratory bottles, labeled, stored in a cooler packed with ice, and submitted to Pace Analytical Services (Pace) in Minneapolis, Minnesota, under proper chain-of-custody procedures. Groundwater samples were submitted to the analytical laboratory for one or more of the following analyses:

- Gasoline range organics (GRO) by method AK101
- Diesel range organics (DRO) by method AK102
- Diesel range organics with Silica Gel Cleanup (DRO SG) by AK102
- Residual Range Organics (RRO) by AK 103
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX), by Environmental Protection Agency (EPA) method 8206B

Annual 2013 Groundwater Monitoring Report

Former Chevron Facility 301726

Duplicate groundwater sample BD-1 was collected from MW-1 and submitted blind to the laboratory for DRO, GRO, and BTEX analysis. The July 29, 2012 groundwater analytical results are included on the site plan included as **Figure 3**.

2.4 Groundwater Analytical Results

During the July 2013 annual groundwater monitoring event, a concentration of GRO above the ADEC groundwater cleanup level (GCL) (2,200 micrograms per liter [μ g/L]) was detected in the monitoring well sample MW-1 and BD-1 ranging from 9,500 μ g/L (BD-1) to 10,100 μ g/L (MW-1). A plot of historical groundwater elevation data and GRO concentration in monitoring well MW-1 is shown on **Figure 4**.

A concentration of DRO greater than the ADEC GCL (1,500 μ g/L) was detected in the monitoring well sample MW-1 and BD-1 ranging from 197,000 μ g/L (MW-1) to 234,000 μ g/L (BD-1). A plot of historical groundwater elevation data and DRO concentration in monitoring well MW-1 is included as **Figure 5**.

RRO was not detected above the ADEC GCL (1,100 μ g/L) in the monitoring well groundwater samples collected during the 2013 annual event. However, the laboratory minimum detection limit (MDL) was equal to the RRO GCL. RRO concentrations in the monitoring well sample MW-1 were reported at <1,100 μ g/L. The blind duplicate sample collected from MW-1 contained a concentration of RRO at 1,400 μ g/L, which is greater than the ADEC GCL.

A concentration of benzene greater than the ADEC GCL (5 μ g/L) was detected in the monitoring well samples MW-1 and BD-1 with concentrations of 71.1 μ g/L and 80.9 μ g/L, respectively. A plot of historical groundwater elevation data and benzene concentration in monitoring well MW-1 is included as **Figure 6**.

Concentrations of toluene, ethylbenzene, and total xylenes were not detected above ADEC GCLs in the monitoring well samples collected from well MW-1. Concentrations of GRO, DRO, RRO, and BTEX constituents were below ADEC GCLs for the remaining monitoring wells sampled during the event. Analytical results for petroleum hydrocarbons are presented in **Table 2** and on **Figure 3**.

3.0 Laboratory Data Quality Assurance Summary

As required by ADEC (Technical Memorandum dated March 2009), ARCADIS completed laboratory data review checklists for the Eurofins Lancaster laboratories

Annual 2013 Groundwater Monitoring Report

Former Chevron Facility 301726

report during the annual 2013 reporting period. The laboratory reports are included in **Appendix B** and data review checklists are included in **Appendix C**. The following quality assurance (QA) summary describes six parameters related to the quality and usability of the data presented in this report.

3.1 Precision

The data meet precision objectives for laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) relative percent differences (RPDs).

3.2 Accuracy

All data meet accuracy objectives as indicated by the laboratory quality control samples, which were within method/laboratory limits. Analytes were not detected in the trip blanks submitted with the groundwater samples. The LCS recoveries were within respective limits.

3.3 Representativeness

The data appear to be representative of site conditions and are generally consistent with historical groundwater monitoring results and expected impacts to groundwater.

3.4 Comparability

The laboratory results are presented in the same units as previous reports to allow comparison.

3.5 Completeness

The results appear to be valid and usable, and thus, the laboratory results have 100% completeness.

3.6 Sensitivity

The sensitivity of the analyses was adequate for the samples as the detection limits were less than the ADEC GCLs for compounds which were not detected.

Annual 2013 Groundwater Monitoring Report

Former Chevron Facility 301726

4.0 Conclusions and Recommendations

The groundwater elevation data collected during the 2013 annual monitoring event indicate groundwater flow direction and horizontal hydraulic gradient to be generally consistent with historical data. Based on historical groundwater analytical results, groundwater impacts appear to be confined to well MW-1. Concentrations of DRO and RRO have periodically been detected in wells MW-2, MW-3, and MW-5 above GCLs during past monitoring events. In general, groundwater impacts at the site are stable. Concentrations of the constituents of concern in the groundwater samples collected during the 2013 annual event are generally consistent with historical data, though there is a marked increase in DRO concentration compared to recent sampling events.

Annual 2014 groundwater sampling is scheduled to be conducted in July 2014 by ARCADIS. If you have any questions or would like to discuss this further, please contact Gregory Montgomery at 206.726.4742.

5.0 References

ADEC 2010. *Draft Field Sampling Guidance*. Division of Spill Prevention and Response Contaminated Sites Program. May.

ADEC 2009. Technical Memorandum. *Environmental Laboratory Data and Quality Assurance Requirements*. ADEC, Division of Spill Prevention and Response Contaminated Sites Program. March.

ARCADIS 2009. Bailer-Grab Groundwater Sampling – Standard Operating Procedures. March 10.

ARCADIS 2011. Groundwater Sampling with Hydrasleeves[®]. – Standard Operating Procedures for Monitoring Wells. February 2.

Tables

Table 1 Groundwater Elevation Data

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Airport Industrial Rd, Fairbanks, Alaska

Monitoring Well ID	Date Sampled	TOC (feet-amsl)	DTW (feet)	LNAPL Thickness (feet)	GWE (feet-amsl)
MW-1	08/19/04	426.84	6.37		420.47
	03/30/05		10.09		416.75
	09/19/05		8.12		418.72
	09/11/08		8.63		418.21
	05/10/09		8.56		418.28
	10/04/09		10.55	0.01	416.30
	05/25/10		11.55	0.32	415.55
	06/18/10		9.45		417.39
	07/19/10		7.60		419.24
	08/16/10		7.25		419.59
	09/27/10		8.99		417.85
	10/27/10		11.09		415.75
	12/15/10 ²				
	01/04/11		10.64		416.20
	02/07/11		12.05	0.03	414.81
	04/14/11		11.3		415.54
	05/05/11		9.75		417.09
	06/11/11		9.64		417.20
	08/21/11		7.81		419.03
	07/24/12		7.17		419.67
	07/29/13		7.57		419.27
MW-2	08/19/04	426.73	6.29		420.44
	03/30/05		9.98		416.75
	09/19/05		8.02		418.71
	09/11/08		8.52		418.21
	05/10/09		8.43		418.30
	10/04/09		10.48		416.25
	07/19/10		7.90		418.83
	05/05/11		9.63		417.10
	06/11/11		9.53		417.20
	08/21/11		7.52		419.21
	07/24/12		7.08		419.65
	07/29/13		7.48		419.25
MW-3	09/11/08	426.16	6.29		419.87
	03/30/05		10.42		415.74
	09/19/05		8.47		417.69
	09/11/08		8.96		417.20
	5/10/09 ¹				
	10/04/09		10.90		415.26
	07/19/10		7.46		418.70
1	05/05/11		8.12		418.04
1	06/11/11		9.96		416.20
1	08/21/11		7.95		418.21
1	07/24/12		7.51		418.65
	07/29/13		7.91	-	418.25

Table 1 **Groundwater Elevation Data**

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Airport Industrial Rd, Fairbanks, Alaska

Monitoring Well ID	Date Sampled	TOC (feet-amsl)	DTW (feet)	LNAPL Thickness (feet)	GWE (feet-amsl)
MW-4	08/19/04	427.02	6.59		420.43
	03/30/05		10.29		416.73
	09/19/05		8.34		418.68
	09/11/08		8.71		418.31
	05/10/09		8.71		418.31
	10/04/09		10.78		416.24
	07/19/10		7.56		419.46
	05/05/11		9.96		417.06
	06/11/11		9.84		417.18
	08/21/11		7.83		419.19
	07/24/12		7.37		419.65
	07/29/13		7.77		419.25
MW-5	08/19/04	426.89	6.44		420.45
	03/30/05		10.16		416.73
	09/19/05		8.19		418.70
	09/11/08		8.70		418.19
	5/10/09 ¹				
	10/04/09		10.65		416.24
	07/19/10		7.65		419.24
	05/05/11		9.86		417.03
	06/11/11		9.75		417.14
	08/21/11		7.73		419.16
	07/24/12		7.29		419.60
	07/29/13		7.70		419.19
MW-6	08/19/04	426.82	6.36		420.46
	03/30/05		10.08		416.74
	09/19/05		8.12		418.70
	09/11/08		8.66		418.16
	05/10/09		8.55		418.27
	10/04/09		10.63		416.19
	07/19/10		7.69		419.13
	06/11/11		9.75		417.07
	08/21/11		7.72		419.10
	07/24/12		7.3		419.52
	07/29/13		7.77	-	419.05

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation LNAPL = Light Non-Aqueous Phase Liquids

¹Monitoring well was not gauged due to well obstruction.

²Monitoring well was not gauged due extremely cold outdoor temperatures. feet-amsl = feet above sea level

[&]quot;--" = Indicates no depth measurement was taken,

no LNAPL was present, and no groundwater elevation data is available. Data associated with current monitoring event in **bold**.

Table 2 **Groundwater Analytical Results**

Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Airport Industrial Rd, Fairbanks, Alaska

								BTEX ⁴		EDB	
Monitoring Well ID	Date Sampled	DRO¹ (μg/L)	DRO SG ¹ (μg/L)	RRO² (µg/L)	GRO ³ (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	(Methylene bromide) (ug/l)	Lead (ug/l)
ADEC GCL	.s ⁵ (μg/L)	1,500		1,100	2,200	5.0	1,000	700	10,000	470	15
MW-1	08/19/04	33,400		<480	27,200	1,770	3,790	261	3,750		
	03/30/05	436		<388	9,000	729	343	186	936		
	09/19/05	8,660		<397	<2,500	153	150	<25	116		
	09/11/08	12,000		<708	6,680	357	413	124	815		
	05/10/09	980		<420	3,960	28	75.7	72.7	392		
	10/04/09							PL Detected	•	i	
	07/20/10	4,700		79,000	<6,600	100	240	65	440	0.0097	9.8
	08/21/11	10,000		57,000	<3,300	180	270	170	1400		
	8/21/11D	6,500				130	140	190	1,000		
	07/26/12	19,000	58,000	<3,300	5,800	49	140	110	940		
	07/26/12D	78,000			5,700	51	130	110	850		
	07/29/13	197,000	213,000	<1,100	10,100	71.1	238	241	2,040	-	-
	7/29/2013D	234,000	-	1,400	9,500	80.9	261	249	2,220	-	-
MW-2	08/19/04				<50.0	<0.200	<0.500	<0.500	<1.00		
	03/30/05	4,040		427	<50.0	<0.500	<0.500	<0.500	<1.50		
	09/19/05	<417		<417	<50.0	<0.500	<0.500	<0.500	<1.50	-	
	09/11/08	<94.3		<708	<50.0	<0.200	<0.500	<0.500	<1.00	-	
	09/11/08 ^D	<95.2		<714	<50.0	<0.200	<0.500	<0.500	<1.00	-	
	05/10/09	<403		<403	<50.0	0.333	<0.500	<0.500	<1.00		
	10/04/09	<391		<391	<50.0	<0.500	<1.00	<1.00	<3.00		
	07/19/10	22		1,800	210	0.8	<0.5	0.70	<1.5		2.0
	08/21/11	<10		120	130	<0.5	<0.5	<0.5	<1.5	-	
	07/26/12 07/29/13	<50 <400	<49 <400	<70 <1000	<10 <100	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<1.5 <3.0		-
MW-3	08/19/04	1,190		<480	89	0.774	<0.500	5.83	3.18		-
	03/30/05	<391		<391	181	0.979	<0.500	24.1	6.94		
	09/19/05	6,730		2,120	<50.0	0.556	< 0.500	1.73	<1.50		
	09/11/08	12,000		<708	60.3	0.448	< 0.500	0.653	1.96		
	10/04/09	1,290		438	<50.0	< 0.500	<1.00	<1.00	<3.00		
	10/04/09	2,640		459	<50.0	< 0.500	<1.00	<1.00	<3.00		
	07/19/10	<10		88.00	160	<0.5	<0.5	<0.5	<1.5	0.0097	12.9
	08/21/11	<10		170.00	370	<0.5	<0.5	<0.5	<1.5		
	07/26/12	2,000	95	210	26	<0.5	1.8	<0.5	1.6		
	07/29/13	830	420	<980	<100	<1.0	<1.0	<1.0	<3.0	-	-
MW-4	08/19/04	<400		<480	<50.0	0.3	<0.500	<0.500	<1.00		
	03/30/05	<385		<385	<50.0	<0.500	<0.500	<0.500	<1.50		
	09/19/05	1,310		815	<50.0	<0.500	<0.500	<0.500	<1.50		
	09/11/08	<94.3		<708	<50.0	<0.200	<0.500	<0.500	<1.00		
	05/10/09	<403		<403	<50.0	<0.200	<0.500	<0.500	<1.00		
	05/10/09 ^D	<427		<427	<50.0	<0.200	<0.500	<0.500	<1.00		
	10/04/09	<385		<385	<50.0	<0.500	<1.00	<1.00	<3.00		45.5
	07/19/10	<10		210	460	<0.5	<0.5	<0.5	<1.5		15.5
	08/21/11	<10 85	 <51	200 350	590	<0.5	<0.5	<0.5	<1.5 <1.5		
	07/26/12 07/29/13	<390	<390	<980	<10 <100	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<1.5 <3.0		
MW-5	08/19/04	<400		<480	<50.0	<0.2	<0.500	<0.500	<1.00	_	-
WW-3	03/30/05	3,310		435	<50.0	<0.500	<0.500	<0.500	<1.50		
	09/19/05	<431		782	<50.0	<0.5	< 0.500	<0.500	<1.50		
	09/11/08	150		<708	<50.0	<0.2	< 0.500	<0.500	<1.00		
	10/04/09	559		<403	<50.0	<0.500	<1.00	<1.00	<3.00		
	07/20/10	<10		110	180	<0.5	<0.5	<0.5	<1.5	0.0097	20.8
	08/21/11	<10		120	350	<0.5	<0.5	<0.5	<1.5		
	07/26/12	130	<51	450	<10	<0.5	<0.5	<0.5	<1.5		
	07/29/13	<400	<400	<1,000	<100	<1.0	<1.0	<1.0	<3.0	-	-
MW-6	08/19/04	<400		<480	<50.0	0.351	<0.500	<0.500	<1.00		
	03/30/05	<388		<388	<50.0	<0.5	<0.500	<0.500	<1.50		
	09/19/05	<403		<403	<50.0	<0.5	<0.500	<0.500	<1.50		
	09/11/08	<100		<750	<50.0	<0.2	<0.500	<0.500	<1.0		
	05/10/09	<427		<427	<50.0	<0.200	<0.500	<0.500	<1.00		
	10/04/09	<385		<385	<50.0	<0.500	<1.00	<1.00	<3.00		
	07/19/10	<10		74	110	<0.5	<0.5	<0.5	<1.5		0.95
		<10		150	210	< 0.5	<0.5	< 0.5	<1.5		
	08/21/11							c =			
	07/26/12 07/29/13	<0.5 <430	<52 <430	130 <1,100	<10 <100	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<1.5 <3.0		

¹Diesel range organics (DRO) was analyzed by AK Method 102.

²Residual range organics (RRO) was analyzed by AK Method 103.

³Gasoline range organics (GRO) was analyzed by AK Method 101.

⁴Benzene, toluene, ethylbenzene, and total xylenes (BTEX) were analyzed by EPA Method 8021B. ADEC Groundwater Cleanup Levels (GCLs) per 18 AAC 75.345, Table C, Register 188, January 2009.

µg/L = micrograms per liter
"--" = Indicates analyte was not sampled or analyzed
Highlighted cell indicates concentration exceeds groundwater cleanup level
"-c" = Indicates analyte not detected greater than laboratory reporting limit indicated.

D = Indicates sample is a duplicate
SG = Silica Gel Cleanup
Data associated with current monitoring event in **bold**.

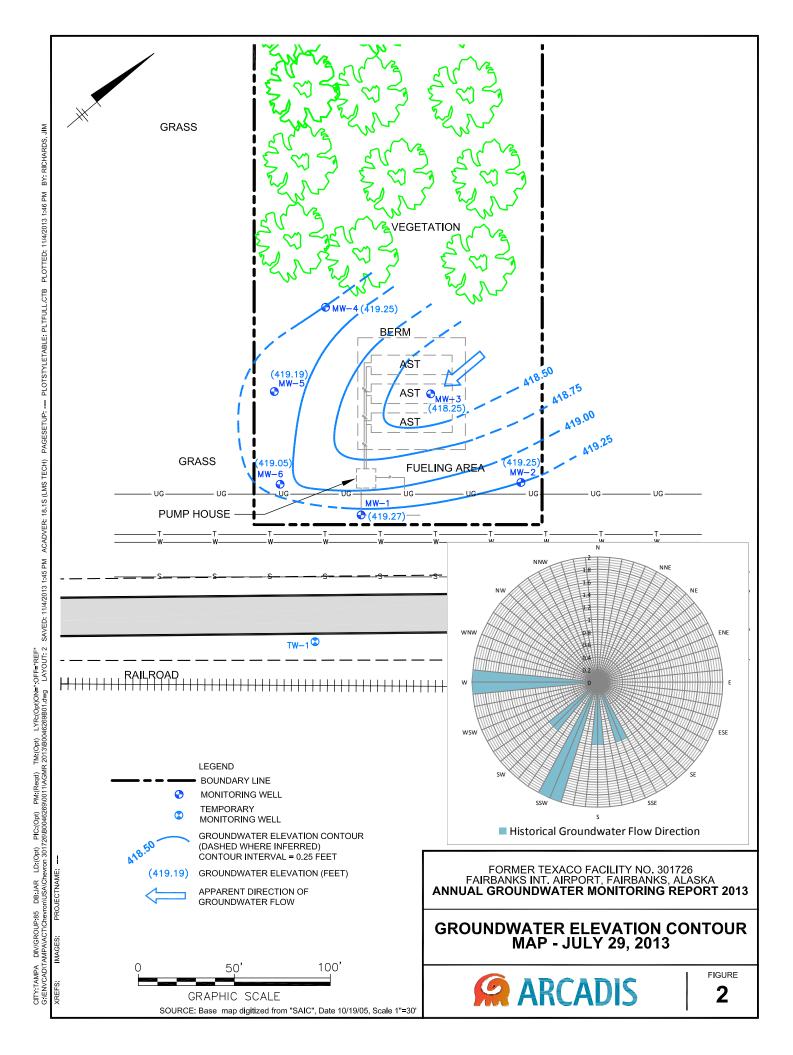
Table 2 **Groundwater Analytical Results**

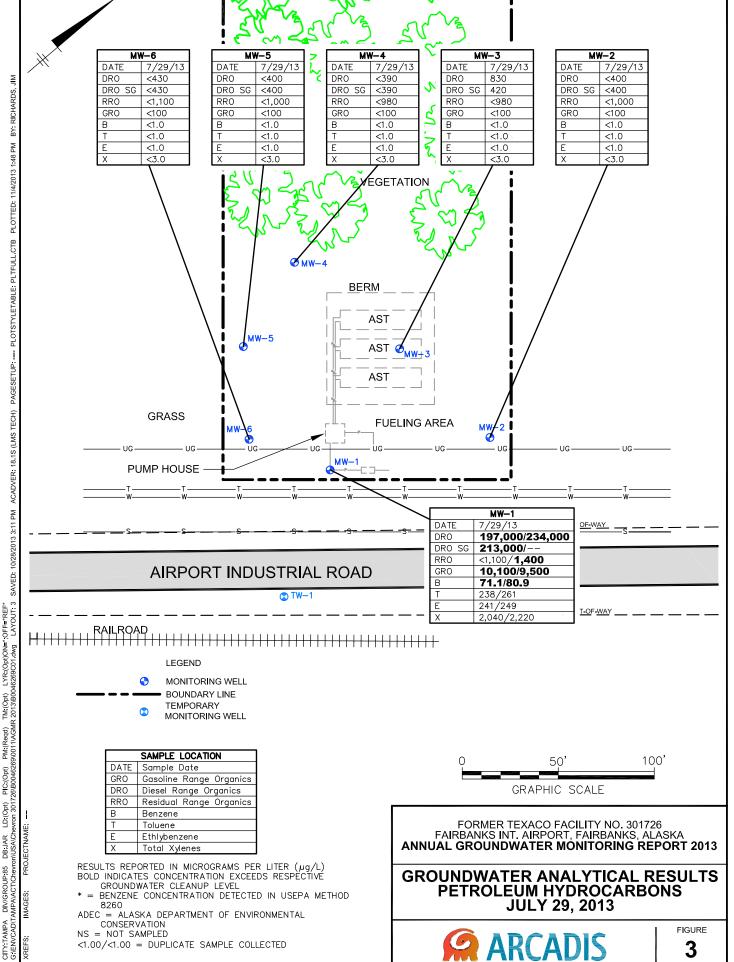
Former Chevron Facility #301726 Lot 5A, Block 10, West Ramp Airport Industrial Rd, Fairbanks, Alaska

								BTEX ⁴		EDB	
Monitoring Well ID	Date Sampled	DRO ¹ (µg/L)	DRO SG ¹ (µg/L)	RRO ² (µg/L)	GRO ³ (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	(Methylene bromide)	Lead
										(ug/l)	(ug/l)
ADEC GCL	.s ⁵ (μg/L)	1,500		1,100	2,200	5.0	1,000	700	10,000	470	15

ADEC= Alaska Department of Environmental Conservation
EDB - Dibromomethane

Figures

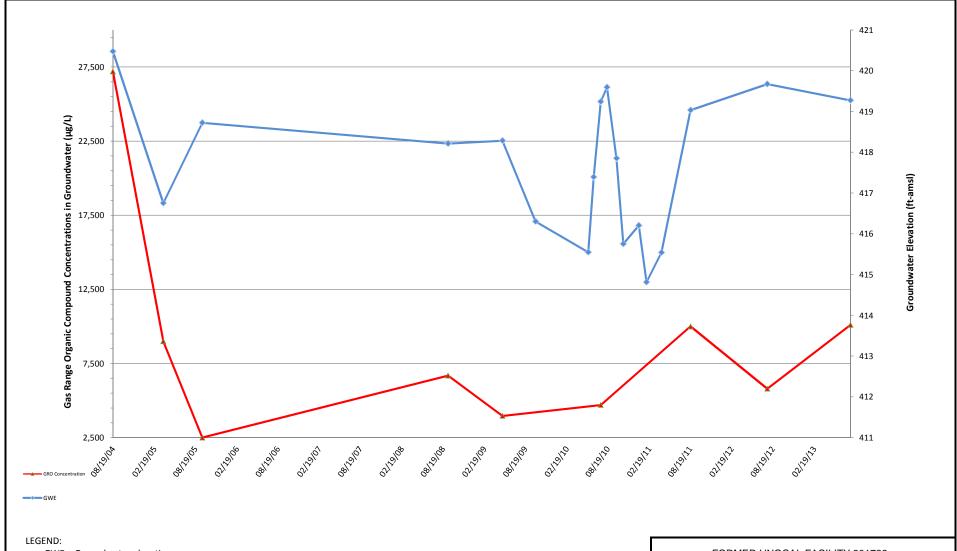

BY: RICHARDS, JIM


PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 11/4/2013 1:49 PM

ACADVER: 18.1S (LMS TECH)

SAVED: 11/4/2013 1:48 PM

PIC:(Opt) PM:(Reqd) TM:(Opt) LYR:1 B0046269\0011\AGMR 2013\B0046269\00

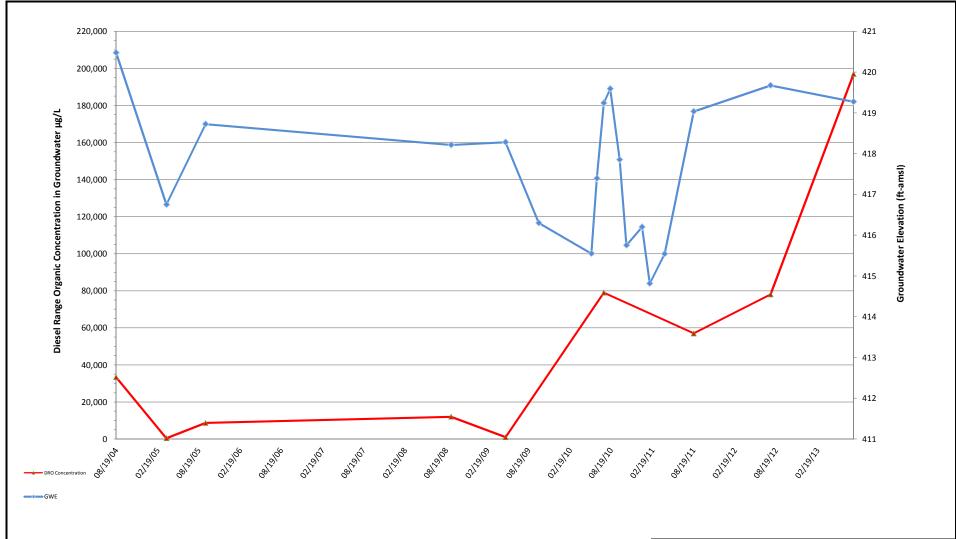

3

LD:(Opt) evron 3017. DB.JAR

PIC:(Opt)

SOURCE: Base map digitized from "SAIC", Date 10/19/05, Scale 1"=30"

<1.00/<1.00 = DUPLICATE SAMPLE COLLECTED


GWE = Groundwater elevation GRO= Gas Range Organic Compounds ft-amsl = Feet above mean sea level FORMER UNOCAL FACILITY 301726 Lot 5A, Block 10, Aiport Industrial Rd, FAIRBANKS, ALASKA Annual Grounwater Monitoring Report 2013

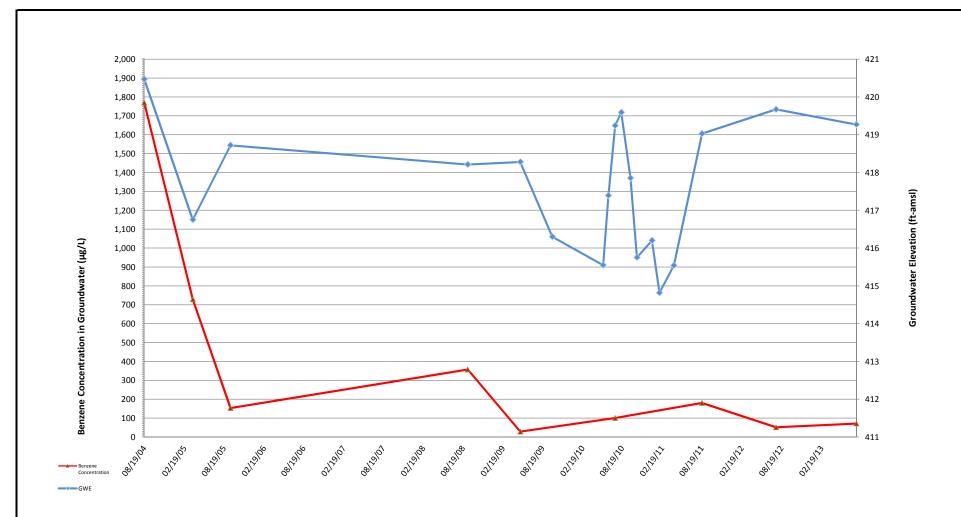
Monitoring Well MW-1 Historical Groundwater Elevation and GRO Concentration

FIGURE

4

LEGEND:

GWE = Groundwater elevation DRO= Diesel Range Organic Compounds ft-amsl = Feet above mean sea level


FORMER UNOCAL FACILITY 301726 Lot 5A, Block 10, Aiport Industrial Rd, FAIRBANKS, ALASKA Annual Grounwater Monitoring Report 2013

Monitoring Well MW-1 Historical Groundwater Elevation and DRO Concentration

FIGURE

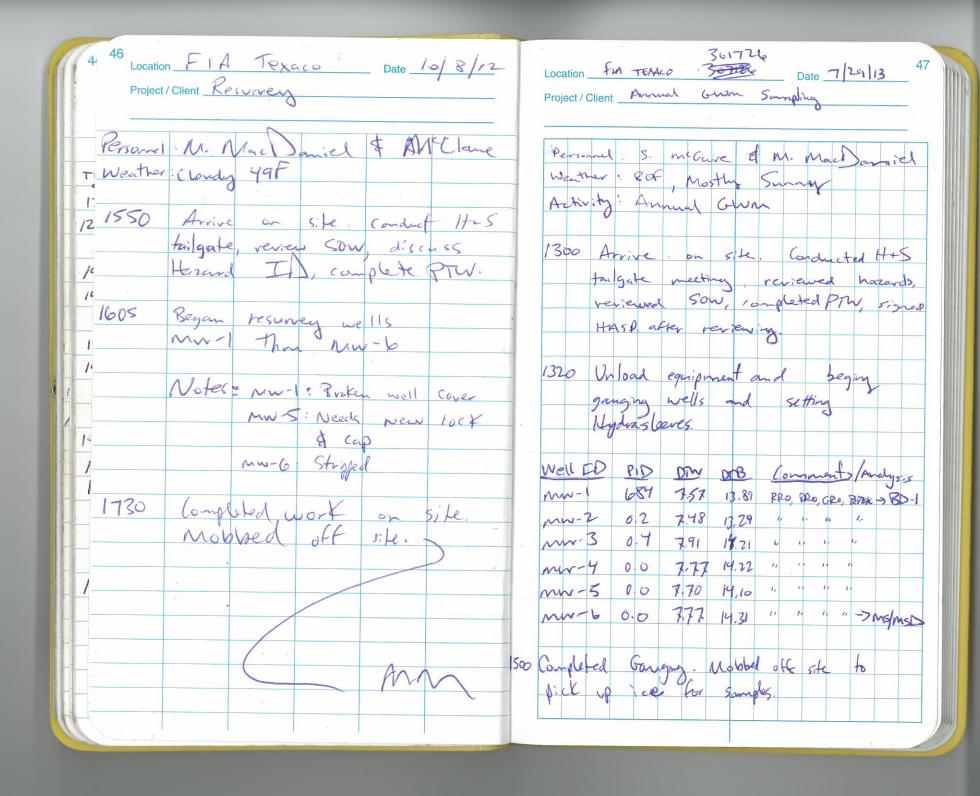
5

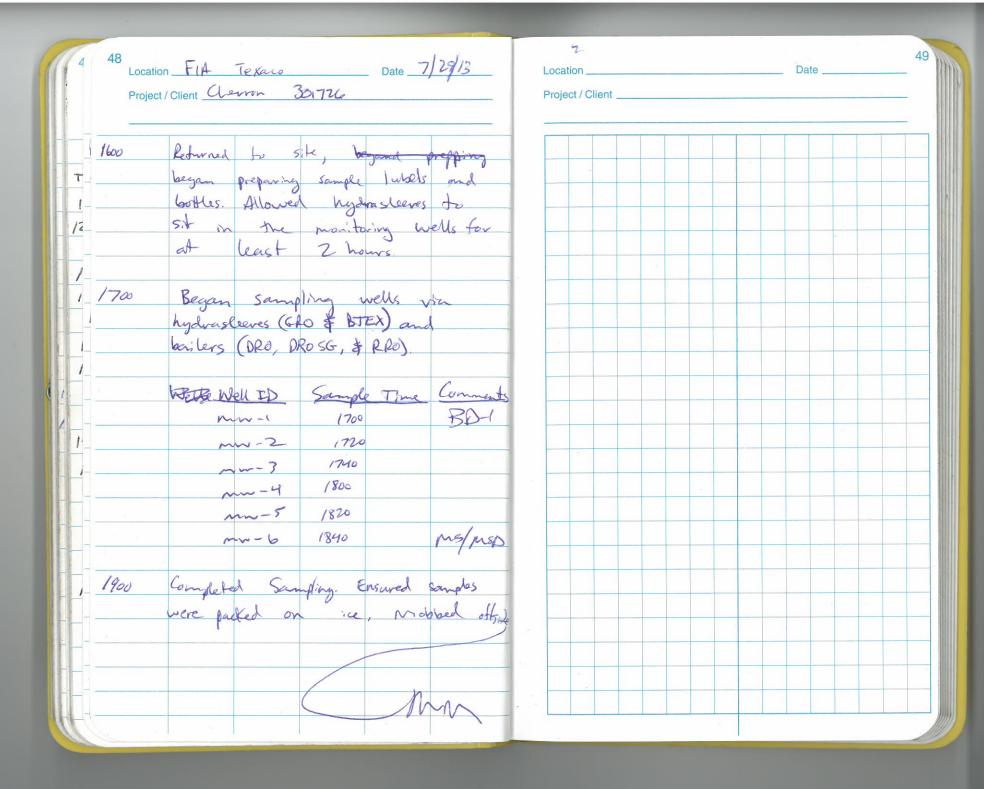
LEGEND:

GWE = Groundwater elevation ft-amsl = Feet above mean sea level

FORMER UNOCAL FACILITY 301726 Lot 5A, Block 10, Aiport Industrial Rd, FAIRBANKS, ALASKA Annual Grounwater Monitoring Report 2013

Monitoring Well MW-1 Historical Groundwater Elevation and Benzene Concentration




FIGURE

6

Appendix A

Field Notes

Appendix B

Laboratory Analytical Reports

August 13, 2013

Gregory Montgomery 1100 Olive Way Suite 800 Seattle, WA 98102

RE: Project: 301726 FIA Texaco

Pace Project No.: 10237254

Dear Gregory Montgomery:

Enclosed are the analytical results for sample(s) received by the laboratory on July 31, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mariah Peronto

Mariah K Pents

mariah.peronto@pacelabs.com Project Manager

Enclosures

cc: Accounts Payable, Arcadis U.S., Inc.

CERTIFICATIONS

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605 Georgia Certification #: 959

Georgia Certification #: 959
Hawaii Certification #Pace
Idaho Certification #: MN00064
Illinois Certification #: 200011
Kansas Certification #: E-10167
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Manuand Certification #: 322

Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT CERT0092

Nebraska Certification #: Pace
Nevada Certification #: Pace
Nevada Certification #: MN_00064
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530
North Dakota Certification #: R-036
Ohio VAP Certification #: 9507
Oklahoma Certification #: 9507
Oregon Certification #: MN200001
Oregon Certification #: MN300001

Pennsylvania Certification #: 68-00563 Puerto Rico Certification

Tennessee Certification #: 02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Virginia/DCLS Certification #: 002521
Virginia/VELAP Certification #: 460163
Washington Certification #: C754
West Virginia Certification #: 382
Wisconsin Certification #: 999407970

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10237254001	MW-1-W-072913	Water	07/29/13 17:00	07/31/13 16:08
10237254002	MW-2-W-072913	Water	07/29/13 17:20	07/31/13 16:08
10237254003	MW-3-W-072913	Water	07/29/13 17:40	07/31/13 16:08
10237254004	MW-4-W-072913	Water	07/29/13 18:00	07/31/13 16:08
10237254005	MW-5-W-072913	Water	07/29/13 18:20	07/31/13 16:08
10237254006	MW-6-W-072913 MS/MSD	Water	07/29/13 18:40	07/31/13 16:08
10237254007	BD-1-W-072913	Water	07/29/13 00:00	07/31/13 16:08
10237254008	Trip Blank	Water	07/29/13 00:00	07/31/13 16:08

SAMPLE ANALYTE COUNT

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10237254001	MW-1-W-072913	Alaska 102/103	JRH, MT	5
		Alaska 101	MJH	2
		EPA 8260	EB2	7
10237254002	MW-2-W-072913	Alaska 102/103	JRH, MT	5
		Alaska 101	KT1	2
		EPA 8260	EB2	7
10237254003	MW-3-W-072913	Alaska 102/103	JRH, MT	5
		Alaska 101	KT1	2
		EPA 8260	EB2	7
10237254004	MW-4-W-072913	Alaska 102/103	JRH, MT	5
		Alaska 101	KT1	2
		EPA 8260	EB2	7
10237254005	MW-5-W-072913	Alaska 102/103	JRH, MT	5
		Alaska 101	KT1	2
		EPA 8260	EB2	7
10237254006	MW-6-W-072913 MS/MSD	Alaska 102/103	JRH, MT	5
		Alaska 101	KT1	2
		EPA 8260	EB2	7
10237254007	BD-1-W-072913	Alaska 102/103	JRH	4
		Alaska 101	KT1	2
		EPA 8260	EB2	7
10237254008	Trip Blank	Alaska 101	KT1	2
		EPA 8260	EB2	7

REPORT OF LABORATORY ANALYSIS

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

Sample: MW-1-W-072913	Lab ID: 102	37254001	Collected: 07/29/1	3 17:00	Received: 07	7/31/13 16:08 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
ORO and RRO by AK102/103	Analytical Met	hod: Alaska	102/103 Preparation	n Metho	d: EPA 3510			
DRO by AK 102	197 m	g/L	21.7	50	08/02/13 11:29	08/05/13 16:46		N2
DRO by AK 102 Silica Gel Clean	213 m	g/L	21.7	50	08/02/13 11:29	08/06/13 16:47		N2
Residual Range Organics AK103	ND m	-	1.1	1	08/02/13 11:29	08/04/13 17:52		N2
Surrogates								
o-Terphenyl (S) SG	80 %		50-150	1	08/02/13 11:29	08/06/13 14:33	84-15-1	
n-Triacontane (S) SG	87 %		50-150	1		08/06/13 14:33		
AK101 GCV	Analytical Met	hod: Alaska	101					
arioi cov	Analytical Wet	noa. Alaska	101					
AK101 Gasoline Range Organics	10100 ug	g/L	1000	10		08/07/13 16:40		N2
Surrogates								
a,a,a-Trifluorotoluene (S)	108 %		60-120	10		08/07/13 16:40	98-08-8	
2260 MSV UST	Analytical Met	hod: EPA 82	60					
Benzene	71.1 ug	ı/L	10.0	10		08/02/13 15:40	71-43-2	
Ethylbenzene	241 ug	•	10.0	10		08/02/13 15:40		
Toluene	238 ug		10.0	10		08/02/13 15:40		
	2040 ug	•	30.0	10		08/02/13 15:40		
(ylene (Total) Surrogates	2040 uç	J/ L	30.0	10		06/02/13 13.40	1330-20-7	
,2-Dichloroethane-d4 (S)	111 %		75-125	10		08/02/13 15:40	17060 07 0	
			75-125 75-125					
				10		08/02/13 15:40	2037-26-5	
` ,	103 % 104 %		75-125	10		08/02/13 15:40		
-Bromofluorobenzene (S)				10	Received: 07	08/02/13 15:40		
1-Bromofluorobenzene (S)	104 %		75-125	10	Received: 07	08/02/13 15:40	460-00-4	Qua
Gample: MW-2-W-072913 Parameters	Lab ID: 102 Results	237254002 Units	75-125 Collected: 07/29/1	10 3 17:20 DF	Prepared	08/02/13 15:40 7/31/13 16:08 M	460-00-4 Matrix: Water	Qua
Gample: MW-2-W-072913 Parameters ORO and RRO by AK102/103	Lab ID: 102 Results Analytical Met	Units	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation	10 3 17:20 DF	Prepared d: EPA 3510	08/02/13 15:40 //31/13 16:08 M Analyzed	460-00-4 Matrix: Water	
Farameters PRO and RRO by AK102/103 PRO by AK 102	Lab ID: 102 Results Analytical Met	Units hod: Alaska	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40	10 3 17:20 DF n Method	Prepared d: EPA 3510 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14	460-00-4 Matrix: Water	N2
Farameters ORO and RRO by AK102/103 ORO by AK 102 ORO by AK 102 ORO by AK 102 Silica Gel Clean	Lab ID: 102 Results Analytical Met ND m ND m	Units hod: Alaska g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40	10 3 17:20 DF n Method	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55	460-00-4 Matrix: Water	N2 N2
P-Bromofluorobenzene (S) Sample: MW-2-W-072913 Parameters DRO and RRO by AK102/103 DRO by AK 102 DRO by AK 102 DRO by AK 102 Silica Gel Clean Residual Range Organics AK103	Lab ID: 102 Results Analytical Met	Units hod: Alaska g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40	10 3 17:20 DF n Method	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14	460-00-4 Matrix: Water	N2
Parameters PRO and RRO by AK102/103 PRO by AK 102 PRO by AK 102 Silica Gel Clean Residual Range Organics AK103 Burrogates	Lab ID: 102 Results Analytical Met ND m ND m ND m	Units hod: Alaska g/L g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0	10 3 17:20 DF 1 Method 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14	460-00-4 latrix: Water CAS No.	N2 N2
Parameters PRO and RRO by AK102/103 PRO by AK 102 PRO by AK 102 Silica Gel Clean Residual Range Organics AK103 Burrogates Terphenyl (S) SG	Lab ID: 102 Results Analytical Met ND m ND m ND m ND m	Units hod: Alaska g/L g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparatior 0.40 0.40 1.0 50-150	3 17:20 DF Method 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55	460-00-4 latrix: Water CAS No.	N2 N2
Farameters PRO and RRO by AK102/103 PRO by AK 102 PRO by AK 102 Silica Gel Clean Residual Range Organics AK103 Burrogates Forphenyl (S) SG	Lab ID: 102 Results Analytical Met ND m ND m ND m	Units hod: Alaska g/L g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0	10 3 17:20 DF 1 Method 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14	460-00-4 latrix: Water CAS No.	N2 N2
Parameters Parame	Lab ID: 102 Results Analytical Met ND m ND m ND m ND m	Units Hod: Alaska g/L g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150	3 17:20 DF Method 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55	460-00-4 latrix: Water CAS No.	N2 N2
DRO and RRO by AK102/103 DRO by AK 102 DRO by AK 102 DRO by AK 102 Silica Gel Clean Residual Range Organics AK103 Surrogates D-Terphenyl (S) SG D-Triacontane (S) SG AK101 GCV AK101 Gasoline Range Organics	Lab ID: 102 Results Analytical Met ND m ND m ND m ND m 72 %	Units Hod: Alaska g/L g/L g/L hod: Alaska	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150	3 17:20 DF Method 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55	460-00-4 latrix: Water CAS No.	N2 N2
Gample: MW-2-W-072913 Parameters ORO and RRO by AK102/103 ORO by AK 102 ORO by AK 102 Silica Gel Clean Residual Range Organics AK103 Output Company (S) SG Output Company (S) SG Ou	Lab ID: 102 Results Analytical Met ND m ND m ND m 72 % Analytical Met	Units hod: Alaska g/L g/L hod: Alaska	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150	3 17:20 DF 1 1 1 1 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 7/31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/06/13 14:55 08/06/13 14:55	460-00-4 latrix: Water CAS No.	N2 N2 N2
Parameters ORO and RRO by AK102/103 ORO by AK 102 ORO by AK 102 ORO by AK 102 ORO by AK 102 ORO by AK 103 ORO by AK 103 ORO by AK 105 ORO by AK 105	Analytical Met ND m ND m ND m ND m Analytical Met ND m	Units Hod: Alaska g/L g/L g/L hod: Alaska	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150 101 100 60-120	3 17:20 DF 1 1 1 1 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 7/31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/06/13 14:55 08/06/13 14:55	460-00-4 latrix: Water CAS No.	N2 N2 N2
Parameters Parame	Lab ID: 102 Results Analytical Met ND m ND m ND m Analytical Met ND ug 99 % Analytical Met	Units Hod: Alaska g/L g/L g/L hod: Alaska	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150 101 100 60-120	3 17:20 DF 1 Method 1 1 1 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55 08/06/13 14:55 08/06/13 17:03	460-00-4 latrix: Water CAS No. 84-15-1	N2 N2 N2
Parameters Parameters PRO and RRO by AK102/103 PRO by AK 102 PRO by AK 103 PRO By AK 103 PRO By AK 103 PRO By AK 104 PRO By AK 105 P	Lab ID: 102 Results Analytical Met ND m ND m ND m Analytical Met ND ug 99 % Analytical Met ND ug	Units Hod: Alaska g/L g/L g/L hod: Alaska n/L hod: EPA 82	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150 101 100 60-120 60 1.0	10 3 17:20 DF 1 Method 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55 08/06/13 14:55 08/02/13 17:03 08/02/13 17:03	460-00-4 latrix: Water CAS No. 84-15-1 98-08-8 71-43-2	N2 N2 N2 N2
A-Bromofluorobenzene (S) Bample: MW-2-W-072913 Parameters DRO and RRO by AK102/103 DRO by AK 102 DRO by AK 102 Silica Gel Clean Residual Range Organics AK103 Burrogates D-Terphenyl (S) SG D-Triacontane (S) SG AK101 GCV AK101 Gasoline Range Organics Burrogates a,a,a-Trifluorotoluene (S) Benzene Ethylbenzene	Lab ID: 102 Results Analytical Met ND m ND m ND m Analytical Met ND ug 99 % Analytical Met ND ug	Units Hod: Alaska g/L g/L g/L hod: Alaska a/L hod: EPA 82	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150 101 100 60-120 60 1.0 1.0	3 17:20 DF Method 1 1 1 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55 08/06/13 14:55 08/02/13 17:03 08/02/13 17:03 08/02/13 14:08 08/02/13 14:08	460-00-4 latrix: Water CAS No. 84-15-1 98-08-8 71-43-2 100-41-4	N2 N2 N2
Parameters Parameters Parameters Parameters Parameters PRO and RRO by AK102/103 PRO by AK 102 PRO by AK 102 PRO by AK 102 Silica Gel Clean Residual Range Organics AK103 Parameters Paramet	Lab ID: 102 Results Analytical Met ND m ND m ND m Analytical Met ND uç 99 % Analytical Met ND uç ND uç ND uç ND uç ND uç	Units Hod: Alaska g/L g/L g/L hod: Alaska a/L hod: EPA 82 g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150 101 100 60-120 60 1.0 1.0 1.0	3 17:20 DF Method 1 1 1 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55 08/06/13 14:55 08/02/13 17:03 08/02/13 17:03 08/02/13 14:08 08/02/13 14:08 08/02/13 14:08	460-00-4 latrix: Water CAS No. 84-15-1 98-08-8 71-43-2 100-41-4 108-88-3	N2 N2 N2 N2
Bample: MW-2-W-072913 Parameters ORO and RRO by AK102/103 ORO by AK 102 ORO by AK 102 Silica Gel Clean Residual Range Organics AK103 Burrogates O-Terphenyl (S) SG O-Triacontane (S) SG O-KK101 GCV OKK101 Gasoline Range Organics Surrogates O-Trifluorotoluene (S) OKSUR SURVEY OK	Lab ID: 102 Results Analytical Met ND m ND m ND m Analytical Met ND ug 99 % Analytical Met ND ug	Units Hod: Alaska g/L g/L g/L hod: Alaska a/L hod: EPA 82 g/L g/L	75-125 Collected: 07/29/1 Report Limit 102/103 Preparation 0.40 0.40 1.0 50-150 50-150 101 100 60-120 60 1.0 1.0	3 17:20 DF Method 1 1 1 1 1 1	Prepared d: EPA 3510 08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/02/13 15:40 //31/13 16:08 M Analyzed 08/04/13 18:14 08/06/13 14:55 08/04/13 18:14 08/06/13 14:55 08/06/13 14:55 08/02/13 17:03 08/02/13 17:03 08/02/13 14:08 08/02/13 14:08	460-00-4 latrix: Water CAS No. 84-15-1 98-08-8 71-43-2 100-41-4 108-88-3	N2 N2 N2 N2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

Sample: MW-2-W-072913	Lab ID:	10237254002	Collected: 07/29/	13 17:20	Received: 0	7/31/13 16:08	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST	Analytical	Method: EPA 82	260					
Surrogates Toluene-d8 (S) 4-Bromofluorobenzene (S)	_	2 % 4 %	75-125 75-125	1 1		08/02/13 14:0 08/02/13 14:0		
4 Bromondorobenzene (O)	10-	1 70	70-123	'		00/02/13 14.0	0 400 00 4	
Sample: MW-3-W-072913	Lab ID:	10237254003	Collected: 07/29/	13 17:40	Received: 0	7/31/13 16:08	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
DRO and RRO by AK102/103	Analytical	Method: Alaska	102/103 Preparation	n Metho	d: EPA 3510			
DRO by AK 102	0.83	3 mg/L	0.39	1	08/02/13 11:29	08/04/13 18:3	7	N2
DRO by AK 102 Silica Gel Clean	0.42	2 mg/L	0.39	1	08/02/13 11:29	08/06/13 15:1	8	N2
Residual Range Organics AK103 Surrogates	NE) mg/L	0.98	1	08/02/13 11:29	08/04/13 18:3	7	N2
o-Terphenyl (S) SG	76	6 %	50-150	1	08/02/13 11:29	08/06/13 15:1	8 84-15-1	
n-Triacontane (S) SG	89	9 %	50-150	1	08/02/13 11:29	08/06/13 15:1	8	
AK101 GCV	Analytical	Method: Alaska	101					
AK101 Gasoline Range Organics Surrogates	NE) ug/L	100	1		08/02/13 17:2	3	N2
a,a,a-Trifluorotoluene (S)	99	9 %	60-120	1		08/02/13 17:2	3 98-08-8	
8260 MSV UST	Analytical	Method: EPA 82	260					
Benzene	NE	0 ug/L	1.0	1		08/02/13 14:2	3 71-43-2	
Ethylbenzene	NE) ug/L	1.0	1		08/02/13 14:2	3 100-41-4	
Toluene	NE	0 ug/L	1.0	1		08/02/13 14:2	3 108-88-3	
Xylene (Total)	NE	0 ug/L	3.0	1		08/02/13 14:2	3 1330-20-7	
Surrogates	111	2 0/	75-125	1		09/02/12 14:2	3 17060-07-0	
1,2-Dichloroethane-d4 (S) Toluene-d8 (S)		6 % 3 %	75-125 75-125	1		08/02/13 14:2		
4-Bromofluorobenzene (S)		5 % 6 %	75-125 75-125	1		08/02/13 14:2		
4-Bromondorobenzene (3)	100	J /6	73-123	'		00/02/13 14.2	3 400-00-4	
Sample: MW-4-W-072913	Lab ID:	10237254004	Collected: 07/29/	13 18:00	Received: 0	7/31/13 16:08	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
DRO and RRO by AK102/103	Analytical	Method: Alaska	102/103 Preparation	n Metho	d: EPA 3510			
DRO by AK 102	NE) mg/L	0.39	1	08/02/13 11:29	08/04/13 18:5	9	N2
DRO by AK 102 Silica Gel Clean	NE) mg/L	0.39	1	08/02/13 11:29	08/06/13 15:4	0	N2
Residual Range Organics AK103 Surrogates	NE) mg/L	0.98	1	08/02/13 11:29	9 08/04/13 18:5	9	N2
o-Terphenyl (S) SG	69	9 %	50-150	1	08/02/13 11:29	08/06/13 15:4	0 84-15-1	
n-Triacontane (S) SG	82	2 %	50-150	1	08/02/13 11:29	08/06/13 15:4	0	
AK101 GCV	Analytical	Method: Alaska	101					
AK101 Gasoline Range Organics	NE	0 ug/L	100	1		08/02/13 17:4	3	N2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

Sample: MW-4-W-072913	Lab ID: 102372	254004 C	ollected:	07/29/1	3 18:00	Received: (07/31/13 16:08	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
AK101 GCV	Analytical Method	: Alaska 101	1						
Surrogates a,a,a-Trifluorotoluene (S)	98 %		6	60-120	1		08/02/13 17:43	3 98-08-8	
8260 MSV UST	Analytical Method	: EPA 8260							
Benzene	ND ug/L			1.0	1		08/02/13 14:39	9 71-43-2	
Ethylbenzene	ND ug/L			1.0	1		08/02/13 14:39	9 100-41-4	
Toluene	ND ug/L			1.0	1		08/02/13 14:39	9 108-88-3	
Xylene (Total)	ND ug/L			3.0	1		08/02/13 14:39	9 1330-20-7	
Surrogates 1,2-Dichloroethane-d4 (S)	115 %		7	75-125	1		08/02/13 14:39	9 17060-07-0	
Toluene-d8 (S)	103 %			75-125	1		08/02/13 14:39		
4-Bromofluorobenzene (S)	106 %			75-125	1		08/02/13 14:39		
Sample: MW-5-W-072913	Lab ID: 102372	2 54005 C	ollected:	07/29/1	3 18:20	Received: (07/31/13 16:08	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
DRO and RRO by AK102/103	Analytical Method	: Alaska 102	2/103 Pre	paration	Method	d: EPA 3510			
DRO by AK 102	ND mg/L			0.40	1	08/02/13 11:2	9 08/04/13 19:2	1	N2
DRO by AK 102 Silica Gel Clean	ND mg/L			0.40	1	08/02/13 11:2	9 08/06/13 16:02	2	N2
Residual Range Organics AK103 Surrogates	ND mg/L			1.0	1	08/02/13 11:2	9 08/04/13 19:2	1	N2
o-Terphenyl (S) SG	72 %		5	50-150	1	08/02/13 11:2	9 08/06/13 16:02	2 84-15-1	
n-Triacontane (S) SG	85 %		5	0-150	1	08/02/13 11:2	9 08/06/13 16:02	2	
AK101 GCV	Analytical Method	: Alaska 101	1						
AK101 Gasoline Range Organics Surrogates	ND ug/L			100	1		08/02/13 18:03	3	N2
a,a,a-Trifluorotoluene (S)	100 %		6	60-120	1		08/02/13 18:03	3 98-08-8	
8260 MSV UST									
6260 W3V U31	Analytical Method	: EPA 8260							
Benzene	Analytical Method ND ug/L	: EPA 8260		1.0	1		08/02/13 14:54	4 71-43-2	
Benzene	•	: EPA 8260		1.0 1.0	1 1		08/02/13 14:54 08/02/13 14:54	_	
Benzene Ethylbenzene	ND ug/L	: EPA 8260		-				4 100-41-4	
Benzene Ethylbenzene Toluene Xylene (Total)	ND ug/L ND ug/L	: EPA 8260		1.0	1		08/02/13 14:54	4 100-41-4 4 108-88-3	
	ND ug/L ND ug/L ND ug/L	: EPA 8260	7	1.0 1.0	1 1		08/02/13 14:54 08/02/13 14:54	4 100-41-4 4 108-88-3 4 1330-20-7	
Benzene Ethylbenzene Toluene Xylene (Total) Surrogates	ND ug/L ND ug/L ND ug/L ND ug/L	: EPA 8260		1.0 1.0 3.0	1 1 1		08/02/13 14:54 08/02/13 14:54 08/02/13 14:54	4 100-41-4 4 108-88-3 4 1330-20-7 4 17060-07-0	

REPORT OF LABORATORY ANALYSIS

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

Sample: MW-6-W-072913 MS/MSD	Lab ID: 10237	254006	Collected: 07/29/1	3 18:40	Received: 07	/31/13 16:08 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
DRO and RRO by AK102/103	Analytical Metho	d: Alaska	102/103 Preparation	n Method	d: EPA 3510			
DRO by AK 102	ND mg/l	_	0.43	1	08/02/13 11:29	08/04/13 16:00		N2
DRO by AK 102 Silica Gel Clean	ND mg/l		0.43	1	08/02/13 11:29	08/06/13 16:25		N2
Residual Range Organics AK103	ND mg/l	_	1.1	1	08/02/13 11:29	08/04/13 16:00		N2
Surrogates	3							
o-Terphenyl (S) SG	76 %		50-150	1	08/02/13 11:29	08/06/13 16:25	84-15-1	
n-Triacontane (S) SG	88 %		50-150	1	08/02/13 11:29	08/06/13 16:25		
AK101 GCV	Analytical Metho	d: Alaska	101					
AK101 Gasoline Range Organics	ND ug/L		100	1		08/02/13 13:22		N2
Surrogates								
a,a,a-Trifluorotoluene (S)	99 %		50-150	1		08/02/13 13:22	98-08-8	
8260 MSV UST	Analytical Metho	d: EPA 82	60					
Benzene	ND ug/L		1.0	1		08/02/13 12:36	71-43-2	
Ethylbenzene	ND ug/L		1.0	1		08/02/13 12:36	100-41-4	
Toluene	ND ug/L		1.0	1		08/02/13 12:36	108-88-3	
Xylene (Total)	ND ug/L		3.0	1		08/02/13 12:36	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	114 %		75-125	1		08/02/13 12:36	17060-07-0	
Toluene-d8 (S)	102 %		75-125	1		08/02/13 12:36	2037-26-5	
4-Bromofluorobenzene (S)	106 %		75-125	1		08/02/13 12:36	460-00-4	
Sample: BD-1-W-072913	Lab ID: 10237		Collected: 07/29/1				Matrix: Water	
Parameters —	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
DRO and RRO by AK102/103								
2110 4114 11110 23, 7111102, 100	Analytical Metho	d: Alaska	102/103 Preparation	n Method	d: EPA 3510			
	Analytical Metho		102/103 Preparation 21.7	n Method 50	d: EPA 3510 08/02/13 11:29	08/05/13 17:09		N2
DRO by AK 102	•	_						N2 N2
DRO by AK 102	234 mg/l	_	21.7	50	08/02/13 11:29			
DRO by AK 102 Residual Range Organics AK103 <i>Surrogates</i>	234 mg/l	_	21.7	50	08/02/13 11:29	08/04/13 19:44		
DRO by AK 102 Residual Range Organics AK103 <i>Surrogates</i> o-Terphenyl (S)	234 mg/l 1.4 mg/l	_	21.7 1.1	50 1	08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44	84-15-1	
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S)	234 mg/l 1.4 mg/l 87 %	-	21.7 1.1 50-150 50-150	50 1	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44	84-15-1	
DRO by AK 102 Residual Range Organics AK103	234 mg/l 1.4 mg/l 87 % 77 %	- - d: Alaska	21.7 1.1 50-150 50-150	50 1	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44	84-15-1 638-68-6	
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L	- - d: Alaska	21.7 1.1 50-150 50-150	50 1 1 1 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44	84-15-1 638-68-6	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S)	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L	- - d: Alaska	21.7 1.1 50-150 50-150 101 500 60-120	50 1 1 1	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04	84-15-1 638-68-6	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S) 8260 MSV UST	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L 115 % Analytical Metho	- d: Alaska d: EPA 82	21.7 1.1 50-150 50-150 101 500 60-120	50 1 1 1 1 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04 08/02/13 19:04	84-15-1 638-68-6 98-08-8	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S) 8260 MSV UST Benzene	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L 115 % Analytical Metho 80.9 ug/L	- d: Alaska d: EPA 82	21.7 1.1 50-150 50-150 101 500 60-120	50 1 1 1 1 5 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04 08/02/13 19:04	98-08-8 71-43-2	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S) 8260 MSV UST Benzene Ethylbenzene	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L 115 % Analytical Metho 80.9 ug/L 249 ug/L	d: Alaska d: EPA 82	21.7 1.1 50-150 50-150 101 500 60-120 60	50 1 1 1 1 5 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04 08/02/13 19:04 08/02/13 15:25 08/02/13 15:25	98-08-8 71-43-2 100-41-4	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S) 8260 MSV UST Benzene Ethylbenzene Toluene	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L 115 % Analytical Metho 80.9 ug/L 249 ug/L 261 ug/L	d: Alaska d: EPA 82	21.7 1.1 50-150 50-150 101 500 60-120 60 1.0 5.0	50 1 1 1 1 5 5 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04 08/02/13 19:04 08/02/13 15:25 08/02/13 15:25 08/07/13 10:49	98-08-8 71-43-2 100-41-4 108-88-3	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S) 8260 MSV UST Benzene Ethylbenzene Toluene Xylene (Total)	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L 115 % Analytical Metho 80.9 ug/L 249 ug/L	d: Alaska d: EPA 82	21.7 1.1 50-150 50-150 101 500 60-120 60	50 1 1 1 1 5 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04 08/02/13 19:04 08/02/13 15:25 08/02/13 15:25	98-08-8 71-43-2 100-41-4 108-88-3	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S) 8260 MSV UST Benzene Ethylbenzene Toluene Xylene (Total) Surrogates	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L 115 % Analytical Metho 80.9 ug/L 249 ug/L 261 ug/L 2220 ug/L	d: Alaska d: EPA 82	21.7 1.1 50-150 50-150 101 500 60-120 60 1.0 5.0 15.0	50 1 1 1 1 5 5 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04 08/02/13 19:04 08/02/13 15:25 08/02/13 15:25 08/07/13 10:49 08/07/13 10:49	98-08-8 71-43-2 100-41-4 108-88-3 1330-20-7	N2
DRO by AK 102 Residual Range Organics AK103 Surrogates o-Terphenyl (S) n-Triacontane (S) AK101 GCV AK101 Gasoline Range Organics Surrogates a,a,a-Trifluorotoluene (S) 8260 MSV UST Benzene Ethylbenzene Toluene Xylene (Total)	234 mg/l 1.4 mg/l 87 % 77 % Analytical Metho 9500 ug/L 115 % Analytical Metho 80.9 ug/L 249 ug/L 261 ug/L	d: Alaska d: EPA 82	21.7 1.1 50-150 50-150 101 500 60-120 60 1.0 5.0	50 1 1 1 1 5 5 5	08/02/13 11:29 08/02/13 11:29 08/02/13 11:29	08/04/13 19:44 08/04/13 19:44 08/04/13 19:44 08/02/13 19:04 08/02/13 19:04 08/02/13 15:25 08/02/13 15:25 08/07/13 10:49	98-08-8 71-43-2 100-41-4 108-88-3 1330-20-7	N2

REPORT OF LABORATORY ANALYSIS

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

Sample: BD-1-W-072913	Lab ID: 102	37254007	Collected: 07/29/1	13 00:00	Received: 0	7/31/13 16:08	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST	Analytical Met	hod: EPA 82	260					
Surrogates 4-Bromofluorobenzene (S)	105 %		75-125	1		08/02/13 15:25	5 460-00-4	
Sample: Trip Blank	Lab ID: 102	37254008	Collected: 07/29/1	13 00:00	Received: 0	7/31/13 16:08	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
AK101 GCV	Analytical Met	hod: Alaska	101					
AK101 Gasoline Range Organics Surrogates	ND uç	g/L	100	1		08/02/13 13:02	2	N2
a,a,a-Trifluorotoluene (S)	99 %		60-120	1		08/02/13 13:02	98-08-8	
8260 MSV UST	Analytical Met	hod: EPA 82	260					
Benzene	ND uç	g/L	1.0	1		08/02/13 12:05	5 71-43-2	
Ethylbenzene	ND uç		1.0	1		08/02/13 12:05	5 100-41-4	
Toluene	ND uç	g/L	1.0	1		08/02/13 12:05	5 108-88-3	
Xylene (Total) Surrogates	ND uç	g/L	3.0	1		08/02/13 12:05	5 1330-20-7	
1,2-Dichloroethane-d4 (S)	115 %		75-125	1		08/02/13 12:05	17060-07-0	
Toluene-d8 (S)	103 %		75-125	1		08/02/13 12:05	2037-26-5	
4-Bromofluorobenzene (S)	107 %		75-125	1		08/02/13 12:05	5 460-00-4	

QUALITY CONTROL DATA

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

QC Batch: GCV/11144 Analysis Method: Alaska 101

QC Batch Method: Alaska 101 Analysis Description: AK101W GCV Water

Associated Lab Samples: 10237254002, 10237254003, 10237254004, 10237254005, 10237254006, 10237254007, 10237254008

METHOD BLANK: 1492458 Matrix: Water

Associated Lab Samples: 10237254002, 10237254003, 10237254004, 10237254005, 10237254006, 10237254007, 10237254008

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 AK101 Gasoline Range Organics
 ug/L
 ND
 100
 08/02/13 12:42
 N2

LABORATORY CONTROL SAMPLE & LCSD: 1492459 1492460 Spike LCS **LCSD** LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers AK101 Gasoline Range Organics ug/L 1000 1010 991 101 99 60-120 2 20 N2 a,a,a-Trifluorotoluene (S) 104 90 60-120 %

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1493186 1493187

MSD MS 10237254006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual AK101 Gasoline Range ug/L ND 1000 1000 1200 1190 120 119 70-142 30 N2 **Organics** a,a,a-Trifluorotoluene (S) % 106 107 60-120

QUALITY CONTROL DATA

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

QC Batch: GCV/11172 Analysis Method: Alaska 101

QC Batch Method: Alaska 101 Analysis Description: AK101W GCV Water

Associated Lab Samples: 10237254001

METHOD BLANK: 1496659 Matrix: Water

Associated Lab Samples: 10237254001

Blank Reporting Limit Parameter Units Result Qualifiers Analyzed AK101 Gasoline Range Organics ND 08/07/13 16:00 N2 ug/L 100 % a,a,a-Trifluorotoluene (S) 98 60-120 08/07/13 16:00

LABORATORY CONTROL SAMPLE & LCSD: 1496660 1496661 Spike LCS **LCSD** LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers AK101 Gasoline Range Organics ug/L 1000 1050 1100 105 110 60-120 5 20 N2 a,a,a-Trifluorotoluene (S) % 105 105 60-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1496662 1496663 MSD MS 10237254001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual AK101 Gasoline Range ug/L 10100 10000 10000 24100 23600 139 135 70-142 30 N2 **Organics** a,a,a-Trifluorotoluene (S) % 120 118 60-120

QUALITY CONTROL DATA

Project: 301726 FIA Texaco

Pace Project No.: 10237254

QC Batch: MSV/24492 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV UST-WATER

Associated Lab Samples: 10237254001, 10237254002, 10237254003, 10237254004, 10237254005, 10237254006, 10237254007,

10237254008

METHOD BLANK: 1493012 Matrix: Water

Associated Lab Samples: 10237254001, 10237254002, 10237254003, 10237254004, 10237254005, 10237254006, 10237254007,

10237254008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene			1.0	08/02/13 11:34	
	ug/L				
Ethylbenzene	ug/L	ND	1.0	08/02/13 11:34	
Toluene	ug/L	ND	1.0	08/02/13 11:34	
Xylene (Total)	ug/L	ND	3.0	08/02/13 11:34	
1,2-Dichloroethane-d4 (S)	%	115	75-125	08/02/13 11:34	
4-Bromofluorobenzene (S)	%	105	75-125	08/02/13 11:34	
Toluene-d8 (S)	%	103	75-125	08/02/13 11:34	

LABORATORY CONTROL SAMPLE: 1493013

Date: 08/13/2013 05:18 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L		21.8	109	75-125	
Ethylbenzene	ug/L	20	20.3	101	75-125	
Toluene	ug/L	20	21.1	105	75-125	
Xylene (Total)	ug/L	60	61.7	103	75-125	
1,2-Dichloroethane-d4 (S)	%			116	75-125	
4-Bromofluorobenzene (S)	%			106	75-125	
Toluene-d8 (S)	%			104	75-125	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 14930	14		1493015							
			MS	MSD								
	102	237254006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	22.9	22.3	114	111	70-135	3	30	
Ethylbenzene	ug/L	ND	20	20	21.7	20.9	108	105	75-125	4	30	
Toluene	ug/L	ND	20	20	22.5	21.6	112	108	75-125	4	30	
Xylene (Total)	ug/L	ND	60	60	65.0	63.2	108	105	75-125	3	30	
1,2-Dichloroethane-d4 (S)	%						116	114	75-125			
4-Bromofluorobenzene (S)	%						105	105	75-125			
Toluene-d8 (S)	%						104	102	75-125			

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: 301726 FIA Texaco

Pace Project No.: 10237254

QC Batch: OEXT/22519 Analysis Method: Alaska 102/103
QC Batch Method: EPA 3510 Analysis Description: AK1023 GCS

Associated Lab Samples: 10237254001, 10237254002, 10237254003, 10237254004, 10237254005, 10237254006, 10237254007

METHOD BLANK: 1493110 Matrix: Water

Associated Lab Samples: 10237254001, 10237254002, 10237254003, 10237254004, 10237254005, 10237254006, 10237254007

Blank Reporting Parameter Units Result Limit Qualifiers Analyzed DRO by AK 102 mg/L ND 0.20 08/04/13 14:30 N2 mg/L 0.50 Residual Range Organics AK103 ND 08/04/13 14:30 N2 n-Triacontane (S) 08/04/13 14:30 % 95 60-120 o-Terphenyl (S) % 85 60-120 08/04/13 14:30

LABORATORY CONTROL SAMPLE: 1493111

Date: 08/13/2013 05:18 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
DRO by AK 102	mg/L	1	0.96	96	75-125	N2
Residual Range Organics AK103	mg/L	1	1.1	111	60-120	N2
n-Triacontane (S)	%			88	60-120	
o-Terphenyl (S)	%			86	60-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1493112 1493113

	10:	237254006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
DRO by AK 102	mg/L	ND	2	2	1.8	1.8	85	84	50-150	1	20	N2
Residual Range Organics AK103	mg/L	ND	2	2	2.1	2.0	101	95	50-150	6	20	N2
n-Triacontane (S)	%						86	86	50-150			
o-Terphenyl (S)	%						90	88	50-150			

QUALITY CONTROL DATA

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

QC Batch: OEXT/22542 Analysis Method: Alaska 102/103
QC Batch Method: EPA 3510 Analysis Description: AK1023 GCS

Associated Lab Samples: 10237254001, 10237254002, 10237254003, 10237254004, 10237254005, 10237254006

METHOD BLANK: 1494893 Matrix: Water

Associated Lab Samples: 10237254001, 10237254002, 10237254003, 10237254004, 10237254005, 10237254006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
DRO by AK 102 Silica Gel Clean	mg/L	ND ND	0.40	08/06/13 13:48	N2
n-Triacontane (S) SG	%	87	60-120	08/06/13 13:48	
o-Terphenyl (S) SG	%	77	60-120	08/06/13 13:48	

LABORATORY CONTROL SAMPLE: 1494894 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers DRO by AK 102 Silica Gel Clean mg/L 2 1.7 84 75-125 N2 n-Triacontane (S) SG 80 60-120 % o-Terphenyl (S) SG % 83 60-120

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 14948	95		1494896							
			MS	MSD								
	102	237254006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
DRO by AK 102 Silica Gel Clean	mg/L	ND	2	2	1.7	1.6	79	77	50-150	3	20	N2
n-Triacontane (S) SG	%						81	79	50-150			
o-Terphenyl (S) SG	%						85	81	50-150			

QUALIFIERS

Project: 301726 FIA Texaco

Pace Project No.: 10237254

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/13/2013 05:18 PM

N2 The lab does not hold TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 301726 FIA Texaco

Pace Project No.: 10237254

Date: 08/13/2013 05:18 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10237254001	MW-1-W-072913	EPA 3510	OEXT/22519	Alaska 102/103	GCSV/11787
10237254001	MW-1-W-072913	EPA 3510	OEXT/22542	Alaska 102/103	GCSV/11799
10237254002	MW-2-W-072913	EPA 3510	OEXT/22519	Alaska 102/103	GCSV/11787
10237254002	MW-2-W-072913	EPA 3510	OEXT/22542	Alaska 102/103	GCSV/11799
10237254003	MW-3-W-072913	EPA 3510	OEXT/22519	Alaska 102/103	GCSV/11787
10237254003	MW-3-W-072913	EPA 3510	OEXT/22542	Alaska 102/103	GCSV/11799
10237254004	MW-4-W-072913	EPA 3510	OEXT/22519	Alaska 102/103	GCSV/11787
10237254004	MW-4-W-072913	EPA 3510	OEXT/22542	Alaska 102/103	GCSV/11799
10237254005	MW-5-W-072913	EPA 3510	OEXT/22519	Alaska 102/103	GCSV/11787
10237254005	MW-5-W-072913	EPA 3510	OEXT/22542	Alaska 102/103	GCSV/11799
10237254006	MW-6-W-072913 MS/MSD	EPA 3510	OEXT/22519	Alaska 102/103	GCSV/11787
10237254006	MW-6-W-072913 MS/MSD	EPA 3510	OEXT/22542	Alaska 102/103	GCSV/11799
10237254007	BD-1-W-072913	EPA 3510	OEXT/22519	Alaska 102/103	GCSV/11787
10237254001	MW-1-W-072913	Alaska 101	GCV/11172		
10237254002 10237254003 10237254004 10237254005 10237254006 10237254008 10237254001 10237254001 10237254002 10237254003 10237254004 10237254005 10237254005	MW-2-W-072913 MW-3-W-072913 MW-4-W-072913 MW-5-W-072913 MW-6-W-072913 MS/MSD BD-1-W-072913 Trip Blank MW-1-W-072913 MW-2-W-072913 MW-3-W-072913 MW-4-W-072913 MW-5-W-072913 MW-6-W-072913	Alaska 101 EPA 8260	GCV/11144 GCV/11144 GCV/11144 GCV/11144 GCV/11144 GCV/11144 MSV/24492 MSV/24492 MSV/24492 MSV/24492 MSV/24492 MSV/24492 MSV/24492		
10237254007 10237254008	BD-1-W-072913 Trip Blank	EPA 8260 EPA 8260	MSV/24492 MSV/24492		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

DRINKING WATER OTHER 1681737 GROUND WATER REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) NPDES STATE Site Location TSU T Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: Section C Address: 1130/1131 Machaniel Purchase Order No. 7400 Holles. Coll. Con. Report To: Green on Setundon Project Name: FIM TEXALG Project Number: 301726 Section B STE 820 inall To Gregory Montgoine Charach Phone: Pax: U J. Code of the c Address New Olive Way Pace Analytical www.pacetats.com Section A Required Client Information: Settle, WA Company: ARCAINS

SAMPLE ID STATE COMPANY SAMPLE ID STATE COMPA												1									
SAMPLE ID Suggestive of the first state of the firs		lent Information	Matrix Codes	(fiel c	(AM	COLL	ECTED			Prese	rvatives		N/A			1.					+.
Company Comp			_	d seboo blisv ees)		COMPOSITE START	COMPOSI: END/GRA						09	201 TH					(N/Y) a	٠.	
A			:	CODE	D) BAYT			TA 9M3T	JENIATMO	· · ·			الم الم	1 59	milic l	<u> </u>			uholdO li		i de la companya de l
1	ILEM #			XIATAM			DATE	÷	# OF CC	[©] ONH	HO6N O _S 26N	Other	VienA.							ace Projec	t No./ Lab I.D.
1	E	MW-1-W-872912			1 -	93 1700				<u>^</u>			Ź	\geqslant	\Diamond						
1746 1746 1746 180	2	m-2-w-07812				V13 17.26		•.						\Diamond	X			-	-		
Samples Infants Samples In	9	Eno-10-M-5-ma		.¥	-	07.13 E1/2				×	-				Ø						
Samura S	4	nw-4-w-072913				o08.1 cs/			-	_		ر - عم	\times	\$	X			<i>i</i> .			
8 AAC-W-072413 1840 8 AAC-W-072413 10 Mm	ц	mw -5-10-072913		Z.	G 7/2	_						4	Ø		X						
10 Mrs 2 7/24/3 3 80 Mrs 2 7/24/3 84/0 Mrs 2 7/24/3 800000 CONDITIONS 10 Mrs 2 7/24/3 84/0 Mrs 2 AMPLER CONDITIONS 11 Mrs 2 7/24/3 84/0 Mrs 2 AMPLER CONDITIONS 12 Mrs 2 7/2 Mrs 2 7/	9	mw-6-W-072913		Ž	Ĝ,					×			\hat{Z}	\Diamond	\Diamond						
ADDITIONAL COMMENTS ADDITIONA		80-1-W-07293				_				×		<u>.</u>	\	X	X					:	
ADDITIONAL COMMENTS AMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: And Additional Company of Sampler: And Additional Control	æ	ENGTO-W-DA		_						<u>~</u>			X	X	X		-				
ADDITIONAL COMMENTS ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: Maching to the Maching of Sample BY A Noted BY	6	m50-W-0743			7	5				*			R	Z	×						g to
ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS AMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: Mockage Mockage Consider CN Consider CN Consider CN CONSIGNAL CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE of SAMPLER: Mockage Mockage CN CONSIGNAL CN CONSIGNAL CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage Mockage CN CONSIGNAL CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage Mockage CN CONSIGNAL CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage CN CONSIGNATIONS SAMPLER NAME AND SIGNATURE OF SAMPLER: Mockage CN	10	also.		Ξ	1	.,						7			-	-					
ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE SIGNATURE OF SAMPLER: MANUES GRAPLER: MANUES GRAPLER: MANUES GRAPLER: MANUED STRONG CONTESTING CONTES	1			•						+		7		-	+	• .				•	
ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE COMMITTONS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE COMMITTONS SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: Manual of Sampler: Manual	12				-					+					+		_	7	_		
SAMPLER NAME AND SIGNATURE SCHOOLSTOOLS ON THE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE OF SAMPLER: Management of Sampler of Sampler: Management of Sampler of Sampler: Management	.:.	ADDITIONAL COMMENTS		E.	Nousher	BY / WEFILIAN	<u>Ş</u>	DATE	TIME	- 1	ACC	EPTED	BY / AFFI	LIATION		DATE	TIMIL	\dashv	S	AMPLE CON	SNOILIO
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE Custody Sealed Cooler Custody Sealed Cooler Signature of Sampler: Management of Samples Intact Signature of Sampler: Management of Samples Intact Signature of Sampler: Management of Samples Intact Samples Intact	_		1/	11/1			,	1/05	930	- Text	180	Med	Ş		1,2	-	152	4 C4	\ \ \ \	7	7
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Make A Canal Constitution of SAMPLER: Make A Canal Consti			- Z	72	ind,	1.00		1/2,113	1628		The state of the s	The	12		4	2//2	9	R)	-	_	-
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Michael Coole Custody Custody Custody Signature of SAMPLER: Michael Coole S	<u> </u>			***	_		· 4000			<u></u>)	•)		,	-	_				i,	
SAMPLER NAME AND SIGNATURE ORIGINAL SIGNATURE SIGNAT	Page							 2							-				_		
ORIGINAL SIGNATURE of SAMPLER: Milk and Carly Consider Co	17					SAMPLE	ER NAME AN		ļ Į			'). 	uo		foet
SIGNATURE of SAMPLER: MANDONYO 130/12	of 18		ORIGINAL				PRINT Name		1 1	3	∀		\ 	12.0				, uj aw	bevie	(botsu:	bjes Iu
	3			!		_	SIGNATURE		1	7-10	Z	X	DAT (MM)	E Signed	02//20	ē.		T	Rec	o 	

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-Mav-2007

ace Analytical`

Document Name: Sample Condition Upon Receipt Form - ESI

Document No.:

Document Revised: 28Jan2013 Page 1 of 1 Issuing Authority:

Pace Minnesota Quality Office F-MN-L-210-rev.09 Sample Condition Client Name: Project #: WO#:10237254 Upon Receipt – ESI **Tech Specs** □UPS USPS Fed Ex Client Courier: Commercial Pace Other: Tracking Number: Optional: Proj. Due Date: Proj. Name: No Seals intact? Yes Packing Material: Bubble Wrap Bubble Bags None Other: 2-1060 Temp Blank? □No Thermom. Used: B88A912167504 B80512447 72337080 Type of Ice: ₽Wet Blue None Samples on ice, cooling process has begun 2.5 Cooler Temp Read (°C): _ Cooler Temp Corrected (°C): **Biological Tissue Frozen?** Temp should be above freezing to 6°C Comments: Chain of Custody Present? □No □N/A Yes Ż. Chain of Custody Filled Out? □No □N/A Chain of Custody Relinquished? Yes □No □N/A 3. Sampler Name and/or Signature on COC? □No □N/A 4. Yes Samples Arrived within Hold Time? ΠNo □n/a **₫**No Short Hold Time Analysis (<72 hr)? □Yes □N/A **Rush Turn Around Time Requested? ⊡**No □N/A 7. ☐ Yes Sufficient Volume (triple volume provided for MS/MSD)? Yes 8. ΠNo □N/A Yes □No Correct Containers Used? □N/A Yes -Pace Containers Used? □No ■N/A 7 Yes 10. Containers Intact? ΠNo □N/A Filtered Volume Received for Dissolved Tests? Yes □No M/A 11. Sample Labels Match COC? **Z**Yes □No □N/A 12. -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been □Yes ₽N/A ☐HNO₃ ∏H₂\$O₄ □NaOH Пнсі checked? All containers needing preservation are found to be in Sample # Yes □No M/A compliance with EPA recommendation? (HNO₃, H₂SO₄, HCl<2; NaOH>12) Lot # of added Per method, VOA pH is checked after analysis initial when completed:_ preservative: Headspace in VOA Vials (>6mm)? Yes ĽNo .□n/a 15.4 Trip Manks present 3 Trip Blanks Present? MNo □Yes □N/A Trip Blank Custody Seals Present? Yes □No □N/A 061113-1 Pace Trip Blank Lot # (if purchased): Field Data Required? Yes No CLIENT NOTIFICATION/RESOLUTION Person Contacted: Date/Time: Comments/Resolution: Temp Log: Temp must be maintained at <6°C during login, record temp every 20 mins Opened Time: 1628 Temp: 2-6 Temp: Time: put in cooler Corrected Time: Temp: Temp:

Project Manager Review: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

ARCADIS

Appendix C

ADEC Data Review Checklists

Laboratory Data Review Checklist

Completed by:	David Beaudoin	1			
Title:	Environmental S	Scientist II		Date:	Sept 5, 2013
CS Report Name:	Annual 2013 GV	WM Report		Report Date:	Sept 4, 2013
Consultant Firm:	ARCADIS	W			
Laboratory Name:	Pace Analytical	Inc.	Laboratory Report Nu	mber: 1023725	4
ADEC File Number:	100.38.066		ADEC RecKey Numb	per: 1992310	119101
1. <u>Laboratory</u>		8			
a. Did an A	ADEC CS approv	ed laboratory re	eceive and perform all of	the submitted	sample analyses?
• Yes	C No	O NA (Plea	se explain.)	Comments:	
2				1	
b. If the sar laborator	nples were transfry, was the labora	ferred to another atory performing	r "network" laboratory or g the analyses ADEC CS	r sub-contracted approved?	l to an alternate
O Yes	O No	NA (Please	e explain)	Comments:	
Samples not tran	nsferred				
2. Chain of Custody	(COC)				
a. COC inform	nation completed	d, signed, and da	nted (including released/	received by)?	
• Yes	O No	ONA (Please	e explain)	Comments:	
b. Correct and	alyses requested?)		-	
• Yes	O No	ONA (Plea	se explain)	Comments:	
3. <u>Laboratory Sample</u>	Receipt Docum	entation			
a. Sample/coo	ler temperature	documented and	within range at receipt ($(4^{\circ} \pm 2^{\circ} \text{ C})$?	
• Yes	C No	ONA (Plea	se explain)	Comments:	
Temperature 2.8	degrees C				

	O No	ONA (Please explain)	Comments:	
c. Sample cond	dition docume	nted - broken, leaking (Methanol),	zero headspace (VOC vi	als)?
• Yes	O No	ONA (Please explain)	Comments:	
		ncies, were they documented? - Fo ature outside of acceptance range, i		
O Yes	O No	NA (Please explain)	Comments:	
o discrepancies t	o document.			
e. Data quality	or usability at	ffected? (Please explain)		
	,		Comments:	
		22 1		
Data quality or us	sability is not a	iffected.		
<u> </u>	sability is not a	affected.	_ 8	
se Narrative				8
se Narrative a. Present and	understandable	e?		
se Narrative			Comments:	
se Narrative a. Present and	understandable	e?	Comments:	
se Narrative a. Present and Yes	understandable	e?	Comments:	
se Narrative a. Present and Yes	understandable	e? ONA (Please explain)	Comments:	
a. Present and Yes b. Discrepance	understandable O No les, errors or Q O No	e? ONA (Please explain) C failures identified by the lab?		
a. Present and Yes b. Discrepance Yes	understandable O No les, errors or Q O No	ONA (Please explain) C failures identified by the lab? NA (Please explain)		
a. Present and Yes b. Discrepance Yes	understandable O No les, errors or Q O No	e? ONA (Please explain) C failures identified by the lab?		
b. Discrepancies No discrepancies c. Were all con	understandable O No les, errors or Q O No rrective actions O No	e? ONA (Please explain) C failures identified by the lab? NA (Please explain) s documented?	Comments:	
b. Discrepancies O Yes No discrepancies C. Were all co-	understandable O No les, errors or Q O No rrective actions O No	e? ONA (Please explain) C failures identified by the lab? NA (Please explain) s documented?	Comments:	

nples Results			
a. Correct ana	lyses performe	d/reported as requested on COC?	
• Yes	O No	○ NA (Please explain)	Comments:
b. All applical	ole holding tim	es met?	
• Yes	C No	CNA (Please explain)	Comments:
c. All soils rep	oorted on a dry	weight basis?	
C Yes	C No	NA (Please explain)	Comments:
NA- only ground	water samples	collected	
d. Are the repoproject?	orted PQLs less	s than the Cleanup Level or the min	nimum required detection level for the
		ON (P)	
Yes e. Data quality	O No	ONA (Please explain) Ffected? (Please explain)	Comments:
e. Data quality	or usability af	fected? (Please explain)	Comments:
	or usability af	fected? (Please explain)	
e. Data quality IA - Data quality	or usability af	fected? (Please explain)	
e. Data quality	or usability af	fected? (Please explain)	
e. Data quality IA - Data quality Samples a. Method Blan	or usability af or usability is	fected? (Please explain)	Comments:
e. Data quality IA - Data quality Samples a. Method Blan	or usability af or usability is thod blank rep	ffected? (Please explain) s not affected.	Comments:
e. Data quality IA - Data quality C Samples a. Method Blan i. One me	or usability af or usability is thod blank rep	ffected? (Please explain) not affected. orted per matrix, analysis and 20 sa	Comments:
e. Data quality IA - Data quality C Samples a. Method Blan i. One me	or usability af or usability is k thod blank repo	ffected? (Please explain) not affected. orted per matrix, analysis and 20 sa	Comments:
e. Data quality IA - Data quality C Samples a. Method Blan i. One me	or usability af or usability is k thod blank repa	ffected? (Please explain) s not affected. orted per matrix, analysis and 20 sa ONA (Please explain)	Comments:
e. Data quality IA - Data quality C Samples a. Method Blan i. One me ii. All meth	or usability af or usability is k thod blank repo	ffected? (Please explain) s not affected. orted per matrix, analysis and 20 sa ONA (Please explain)	Comments: amples? Comments:

	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?						
	C Yes	C No	NA (Please explain)	Comments:			
NA -	no affected	samples					
	v. Data qu	ality or usabil	ity affected? (Please explain)	Comments:			
NA	•						
	=		ž.				
b.	Laboratory	Control Samp	ole/Duplicate (LCS/LCSD)				
	i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)						
	• Yes	O No	ONA (Please explain)	Comments:			
	ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples?						
	C Yes	O No	NA (Please explain)	Comments:			
No n	netal or inor	ganic analysis	s requested.				
	iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)						
	• Yes	O No	ONA (Please explain)	Comments:			
	iv. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)						
	• Yes	C No	ONA (Please explain)	Comments:			
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:						
NA							

	vi. Do the	affected samp	oles(s) have data flags? If so, are the	e data flags clearly defined?		
	• Yes	O No	CNA (Please explain)	Comments:		
	vii. Data q	uality or usab	oility affected? (Please explain)	Comments:		
Data	quality or	usability is no	t affected.			
	Surrogates	- Organics On	Jv.			
C. 1				ald OC 11-1		
	• Yes	O No	es reported for organic analyses - fi CNA (Please explain)	28		
	(e) Tes	O No	ONA (Please explain)	Comments:		
	-17					
	ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)					
	Yes	O No	CNA (Please explain)	Comments:		
	iii. Do the clearly def	sample result	s with failed surrogate recoveries ha	ave data flags? If so, are the data flags		
	C Yes	O No	• NA (Please explain)	Comments:		
	iv. Data qu	ality or usabi	lity affected? (Use the comment box	x to explain.). Comments:		
Data	quality or u	sability is not	affected.			
d. Soi	il. One trip	blank reporte	d per matrix, analysis and for each of	Chlorinated Solvents, etc.): Water and cooler containing volatile samples?		
	100	er explanation	,			
(• Yes	O No	O NA (Please explain.)	Comments:		
	ii. Is the co	ooler used to t	ransport the trip blank and VOA sar plaining why must be entered below	mples clearly indicated on the COC?		
	• Yes	C No	O NA (Please explain.)	Comments:		

	iii. All resu	ılts less than P	QL?			
	© Yes	O No	O NA (Please explain.)	Comments:		
	iv. If abov	ve POL, what	samples are affected?			
	17, 11 400	, o r Q2,ac.	, , , , , , , , , , , , , , , , , , ,	Comments:		
١A	20,000					
	v. Data qu	ality or usabil	ity affected? (Please explain.)			
		,		Comments:		
NA						
e.]	Field Duplic	ate				
	i. One fiel	d duplicate sul	omitted per matrix, analysis and 10 j	project samples?		
	• Yes	O No	ONA (Please explain)	Comments:		
		39-				
	ii. Submi	tted blind to la	b?			
	• Yes	O No	O NA (Please explain.)	Comments:		
				* "		
		-				
			ve percent differences (RPD) less the water, 50% soil)	nan specified DQOs?		
			RPD (%) = Absolute Value of: $(R_1$ -	R_2 x 100		
	$((R_{1+} R_2)/2)$					
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration					
	• Yes	O No	ONA (Please explain)	Comments:		
	iv. Data o	quality or usab	ility affected? (Use the comment bo			
	O Yes	No	ONA (Please explain)	Comments:		

f.	Decontamin	ation or Equip	oment Blank (if applicable)			
	C Yes	No	CNA (Please explain)	Comments:		
Equi	pment blank	not collected	due to sampling method used in gro	undwater collection.		
	i. All results less than PQL?					
	O Yes	C No	NA (Please explain)	Comments:		
NA -	no equipme	nt blank colle	cted			
	ii. If above	PQL, what s	amples are affected?	Comments:		
NA						
	iii. Data qu	iality or usabi	Comments:			
NA						
		ualifiers (AC)	OE, AFCEE, Lab Specific, etc.)		e.	
a.	Defined and	appropriate:				
	• Yes	O No	ONA (Please explain)	Comments:		
No o	ther flags/qu	alifiers		2		

Reset Form