

December 2, 2005

DCN: C07-SAI-301726-01-8464

Ms. Kim De Rutyer
Alaska Department of Environmental Conservation
Contaminated Sites Program
610 University Avenue
Fairbanks, Alaska 99709

RECLIVED

DEC 0 7 2005

CONTAMINATED SITES FAIRBANKS

Re: Groundwater Sampling Report - September 19, 2005 Sampling Event
Former Texaco Bulk Fuel Terminal No. 301726
Fairbanks International Airport
Fairbanks, Alaska

Dear Ms. De Rutyer:

On behalf of Chevron Environmental Management Company (Chevron), Science Applications International Corporation (SAIC) has prepared this report documenting recent groundwater sampling activities at the above referenced site (Figure 1).

SITE LOCATION AND BACKGROUND

The site is located on the southwestern portion of the Fairbanks International Airport (FIA), west of Airport Industrial Road (Figures 1 and 2). The site was originally designated as Block 10, Lots 5A and 5B, however, the lots were subsequently combined, and are now referred to as Block 10, Lot 5A¹. The site is approximately 150 feet wide along Airport Industrial Road and 300 feet long, and is 44,623 square feet in area (Figures 3 and 4).

The site is currently vacant with no features remaining associated with the previous land uses. A 6-inch diameter, abandoned fuel pipeline crosses through the southeast portion of the site, adjacent to Airport Industrial Road. The former Texaco Bulk Terminal occupied the southeastern portion of the site facing Airport Industrial Road; this portion of the site is now covered with dirt and gravel and is used for truck staging and as an access road for a business located adjacent to the northeast portion of the site. The northwestern portion of the site is primarily unimproved land that is covered with vegetation. Site elevation is approximately 430 feet above mean sea level. The terrain around the site is relatively flat. The Chena River is located approximately 700 feet west of the site, and a tributary of the Tanana River is located approximately 3,500 feet south of the site (Figure 1).

¹ Electronic mail correspondence dated September 14, 2005 from Kristen DuBois, FIA

Land use in the site vicinity is mixed industrial and unimproved (vegetation). The nearest residential properties are located approximately 600 feet west of the site (Figure 3). Domestic production wells have been reported at the residential properties. Across Airport Industrial Road from the referenced site are commercial businesses, airplane hangers, tarmacs, and other facilities associated with airport land uses (Figure 3).

Fuel Distribution Facilities

The former Texaco bulk fuel terminal began operation at the site in July 1969 under a 20-year lease from FIA signed on October 27, 1969 and renewed on April 2, 1975 and March 8, 1976. On May 23, 1979, North Pole Refining (NPR) accepted assignment of the lease's terms and conditions as specified in Lease Agreement ADA-01445. A Bill of Sale, dated January 7, 1979, between Texaco and NPR describes the sale of a warehouse building and three 25,000-gallon aboveground storage tanks. On June 14, 1979, Texaco transferred the lease and all rights to use of the property to NPR and the name on the lease agreement was changed. NPR renewed the lease on several occasions including March 1983. On September 27, 1983, the name listed on the lease agreement changed again to MAPCO Alaska Petroleum, Inc. (MAPCO), reflecting the purchase of NPR by MAPCO. On July 1, 1989, the Lease Agreement between FIA and MAPCO expired and the file was closed by the FIA leasing office on September 26, 1989. MAPCO removed tanks and structures from the property and relocated them to Block 10, Lots 2 and 3 at that time (Figure 3). There have been no other known occupants on the property since MAPCO left in 1989.

Spills and Releases

Seven documented/reported spills or releases occurred at the Block 10, Lot 5A property. The first reported spill occurred on December 3, 1978 and was reported to Mr. John Janssen of the Alaska Department of Environmental Conservation (ADEC) by Kent M. Herman of NPR, on January 6, 1978. According to the spill report completed by NPR, 985 gallons of Jet-A fuel overflowed from a storage tank while off-loading a tank truck. The spill was reported to have occurred "approximately 2,000 yards south-southwest of the AIA hanger". Equipment Research Incorporated (ERI) responded to the spill and determined that approximately 1,000 to 1,200 gallons of product had spilled. The fuel had over-filled the storage tanks and collected in a lined berm around the tanks. ERI reported that approximately 4 to 5 inches of fuel had accumulated in the berm. ERI indicated that had it not been for an open sump drain within the berm, the spilled fuel would not have reached the ground outside the berm. However, because the sump drain was open, approximately 300 gallons of fuel had drained into the gravel outside of the berm. ERI notified the ADEC and FIA authorities, and began recovery and containment actions. Approximately 600 gallons of fuel was ultimately recovered and approximately 12 cubic yards of contaminated gravel removed. A spill notification report, sent to the Environmental Protection Agency (EPA) by ADEC, lists NPR as the responsible party, indicating

² North Pole Refining, December 4, 1978. Oil Spill Report, received by the Department of Environmental Conservation in December 1978.

that NPR was operating at the property prior to the official sale and lease transfer in January-June 1979. Additional spills have been reported as summarized below:

- December 21, 1978 300 gallons of JP-4 was released when a tank truck was over-filled.
 Responsible Party: NPR
- March 13, 1979 25-50 gallons of JP-4 was released during an aboveground tank "overflow" which occurred within the diked area, some of the JP-4 soaked into the gravel. Responsible Party: NPR
- June 23, 1979 30 gallons of diesel was released due to a valve malfunction. Responsible Party: none listed, spill reported by NPR.
- June 23, 1979 5 gallons of diesel was released; no cause given. Responsible Party: none listed, spill reported by NPR.
- July 27, 1979 15 gallons of Jet-A (kerosene) fuel was released from a ruptured hose. Responsible Party: report un-readable, spill reported by NPR.
- May 20, 1981 40 gallons of Jet-A fuel was released due to an automatic shut-off valve malfunction resulting in an over-fill of a truck and an over-flow to the gravel loading area.
 Responsible Party: AIA truck driver, spill reported by NPR to Alaska State Troopers.

Previous Investigations

On June 24, 1992, College Utilities Corporation (CUC) encountered strong hydrocarbon odors in soils within the upper six feet of a trench excavation while installing a new water main along Airport Industrial Road adjacent to the site. On June 26, 1992, Alan Braley, FIA Engineer, performed a preliminary assessment along the length of the trench using a photo-ionization detector (PID)³. Results from this assessment indicated elevated PID readings from soil samples collected at seven locations along both the east and west side of the trench. PID readings were taken from soil samples collected at one-foot depth intervals between one and five feet below grade on the west side of the trench and between one and six feet below grade on the east side of the trench. PID readings ranged between 0 and 432 parts per million (ppm) in samples from the west side of the trench and between 0 and 420 mg/kg in samples from the east side of the trench. Based on the locations of these sample collection points, it appears that the highest PID readings corresponded with locations along the west side of the trench (closest to the property) and near the middle of the property width.

A soil sample collected by FIA from the west trench sidewall near the center of the property width was submitted to Northern Testing Laboratories in Fairbanks, Alaska. This sample was analyzed for gasoline range hydrocarbons (GRO) by EPA Method 8100 modified, diesel range hydrocarbons (DRO) by EPA Method 8015 modified and a limited list of volatile hydrocarbons including benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8020. This soil sample contained

³ Electronic mail correspondence dated September 14, 2005 from Kristen DuBois, FIA

7,900 milligrams per kilogram (mg/kg) GRO (as C-6 through C-10), 45,000 mg/kg DRO (as C-10 through C-28) and benzene (57 mg/kg), toluene (360 mg/kg), ethylbenzene (74 mg/kg) and xylenes (370 mg/kg). The sample analyzed did not contain chlorobenzene or chlorobenzene isomers at concentrations at or above the 4.0 mg/kg reporting limit.

On August 16 and 17, 2004, soil borings B-1 through B-13 and monitoring wells MW-1 through MW-6 were installed to assess the extent of petroleum hydrocarbons in soil and the shallow waterbearing zone at the site at the locations shown on Figure 5. Analysis of soil samples detected GRO and DRO at concentrations of up to 339 and 30,900 mg/kg, respectively, in well boring MW-1 at approximately 4 feet below ground surface (bgs). BTEX constituents were also detected in soil samples collected from B-2, B-3, B-4, B-5, B-8, B-11, B-12, and MW-1 at concentrations of up to 16.9 mg/kg benzene, 18.5 mg/kg toluene, 10.6 mg/kg ethylbenzene, and 76.5 mg/kg xylenes. Lead was detected in each soil sample at concentrations up to 10.2 mg/kg in a sample collected from well boring MW-1. The results of soil sample analysis are presented in Table 1. Monitoring wells MW-1 through MW-6 were constructed using 2-inch diameter PVC with 0.020-inch slotted screen from 5 to 15 feet bgs. The initial groundwater samples were collected from wells MW-1 through MW-6 on August 19, 2004. TPHg was detected in wells MW-1 and MW-3 at concentrations of 27,200 and 89.4 micrograms per liter (ug/L), respectively, and TPHd was detected in wells MW-1 and MW-3 at concentrations of 33,400 and 1,190 ug/L, respectively. Benzene was detected in wells MW-1, MW-3, MW-4, and MW-6 at concentrations ranging from 0.351 to 1,770 ug/L. Toluene, ethylbenzene, and xylenes were also detected in wells MW-1 and MW-3. Field procedures and analytical results were presented in SAIC's November 22, 2004 Site Assessment Report.

Off-Site Sources

Nearby properties or features with identified or possible ongoing environmental investigations are summarized below.

FIA Fuel Hydrant System Pipeline

A 6-inch diameter fuel pipeline, referred to as the vendor pipeline, runs through the former Texaco bulk terminal site at the location shown on Figure 5. The vendor pipeline was apparently only used from 1979 until 1983 and the fuel hydrant located at the site that is connected to the vendor pipeline, was reportedly never used. In 1997, the remaining fuel in the vendor pipeline was gravity drained and in 2004-2005 the pipeline passed a pressure test performed on the pipeline. A low point in the system that may likely have been vented and used to remove water from the pipeline is located approximately 50 feet to the southwest of the site. There have been no documented releases from the vendor portion of the hydrant system pipeline. NPR/Mapco is the only entity known to have used the vendor pipeline.⁴

⁴ Electronic mail correspondence dated September 14, 2005 from Kristen DuBois, FIA

MAPCO Facility, Block 10, Lots 2 and 3

A search of the ADEC contaminated sites database indicated that numerous petroleum releases have occurred at the MAPCO facility located on Block 10, Lots 2 and 3 (Figures 3 and 4). MAPCO reportedly began operation at this property in 1983.

According to ADEC records, soil and groundwater impacts, including petroleum-based separate-phase hydrocarbons (SPH), are present at the current MAPCO location. Review of preliminary data from the ADEC indicates that there are 20 groundwater monitoring wells within Lots 2 and 3 and off-site in Dale Road. Numerous aviation fuel releases have occurred at the site, primarily due to over-filled tanks and open valves. SPH at thicknesses of up to 2 feet have been documented in Well MW-1, located in the immediate vicinity of the truck loading rack located in the center of Lot 3. Currently, ongoing activities include the assessment of petroleum hydrocarbons as SPH in the subsurface.

5250 Airport Industrial Road, Block 10, Lot 7

This is the former Mark Air warehouse (former Weaver Brothers warehouse) and is now occupied by Alaska Mechanical, Inc. College Utilities Corporation currently supplies the facilities water. Information provided by the ADEC indicates that four diesel and unleaded gasoline underground storage tanks (USTs) and two waste oil USTs were removed from the site and underlying impacted soil excavated. A hydrocarbon sheen was observed on the groundwater in the excavation cavity, and seven groundwater monitoring wells were eventually installed on- and off-site (Figures 3 and 4). A water production well reportedly exists on the property. Available analytical results of groundwater sampling in June 1993 revealed the presence of up to 150 micrograms per liter (ug/L) GRO, 210 ug/L DRO, and 52 ug/L benzene in groundwater samples collected from the groundwater monitoring wells

Mark Air, Block 1, Lot 6

The site is currently doing business as Everts Air Fuel. There are documented releases from former UST as this site.⁶

Former Unocal Tank Farm, Block 1, Lot 8

The site is currently doing business as Frontier Flying Service. Information provided by ADEC shows six monitoring wells at the Mark Air properties across Airport Industrial Road from the subject site. In October 1991, four 10,000-gallon aviation fuel USTs, two pump stations, and associated piping were removed from the site. Approximately 1,200 cubic yards of impacted soil were removed from the site during UST removal. During the September 4, 2003 monitoring event, up to 2.31 feet of SPH was observed on the groundwater table surface in Monitoring Well GEI-5.7

⁵ Ibid.

⁶ Ibid.

⁷ Ibid.

Hydrogeology

The subject site is situated on unconsolidated alluvium deposited by the Chena and Tanana Rivers consisting of sand and gravel mixtures. Silt filled swales and oxbows from former stream and river courses are common in the area. The airport and surrounding areas have been graded, and there are areas of imported fill and borrow sources. Review of available borings logs generated during this investigation and during installation of groundwater monitoring wells at 5250 Airport Industrial Road, located approximately 200 feet northeast of the subject site, indicates that the area is overlain by gravel fill material to depths of up to 5 feet bgs, underlain by silty sand that becomes generally coarser with depth and grades into a gravelly sand. Groundwater was encountered at approximately seven feet below grade during the August 2004 well installation, and the borings were advanced to total depths of approximately 21.5 feet bgs.

The alluvial sediment thickness in the Fairbanks area ranges from 400 to 800 feet based on seismic interpretations (Barnes, 1961). The bedrock under the Fairbanks area is pelitic schist consisting of metamorphosed marine silt deposits. In some areas, the pelitic schist grades to calcium-mica schist referred to as the Birch Creek Schist, marble or quartzite (Pewe and others, 1976).

FIELD PROCEDURES

Groundwater samples were collected from wells MW-1 through MW-6 on September 19, 2005. Prior to purging, the depth to water in each well at the site was measured relative to the top of casing using an electronic depth to groundwater meter. The groundwater table in each well was inspected for the presence of SPH or sheen using a clear Teflon bailer. The wells were then purged a minimum of three casing volumes. After purging and prior to sampling, groundwater in the well was allowed to recharge to within 80% of the original groundwater level. Groundwater samples were then collected with a clean Teflon bailer and placed in appropriate EPA-approved containers for storage. Each sample container was then labeled for sample identification, and transported on ice to the laboratory using appropriate chain-of-custody documentation. Well monitoring data sheets are included in Attachment A.

Groundwater samples were analyzed by NCA Laboratory of Anchorage, Alaska and Bothell, Washington. Groundwater samples were analyzed for GRO and BTEX as per AK101, DRO and residual range organics (RRO) were analyzed as per AK102, and selected volatile organic compounds were analyzed as per EPA Method 8260B. The results of groundwater sample analysis for petroleum hydrocarbons are summarized in Table 2, and the results for volatile organic compound analysis are summarized in Table 3. NCA analytical reports are presented in Attachment B.

RESULTS

Analytical Results of Groundwater Samples: Analysis of groundwater samples collected during the September 19, 2005 sampling event for petroleum hydrocarbons did not detect GRO in any of the samples. DRO was detected in wells MW-1, MW-3 and MW-4 at concentrations of 8.66, 6.73, and

1.31 ug/L, respectively. RRO was detected in wells MW-4, MW-5, and MW-6 at concentrations of 2.12, 0.815, and 0.782 ug/L, respectively. Benzene was detected in wells MW-1 and MW-3 at concentrations of 153 and 0.556 ug/L, respectively. Toluene and xylenes were also detected in well MW-1, and ethylbenzene was detected in MW-3. The results of groundwater sample analysis for petroleum hydrocarbons are presented in Table 1, and depicted graphically on Figure 7.

Groundwater samples were analyzed for volatile organic compounds which detected several other chemical analytes including 1,1-dichloroethane, naphthalene, trichlorofluoromethane, and trimethylbenzenes. The results of groundwater sample analysis for volatile organic compounds are presented in Table 3.

Comparison of Analytical Results to Cleanup Levels: The maximum concentrations of GRO, DRO, and benzene in soil samples collected in August 2004 and groundwater samples collected on September 19, 2005 were compared to ADEC cleanup levels. The ADEC soil cleanup levels for the "Under 40-inch zone" for the inhalation pathway are presented below.

	Maximum Soil Concentration* (August 2004)	Sample Location	ADEC Soil Cleanup Level	Maximum Groundwater Concentrations (September 19, 2005)	Sample Location	ADEC Groundwater Cleanup Level
GRO (C ₆ – C ₁₀)	339 mg/kg	MW-1 at 4 feet bgs	1,400 mg/kg	ND<2,500 ug/L	MW-I	1,300 ug/L
DRO (C ₁₀ – C ₂₅)	30,900 mg/kg	MW-1 at 4 feet bgs	12,500 mg/kg	8.66 ug/L	MW-1	1,500 ug/L
Benzene	16.9 mg/kg	MW-1 at 4 feet bgs	9 mg/kg	153 ug/L	MW-I	5 ug/L
Toluene	18.5 mg/kg	MW-1 at 4 feet bgs	180 mg/kg	150 ug/L	MW-1	1,000 ug/L
Ethylbenzene	10.6 mg/kg	B-4 at 3.5 feet bgs	89 mg/kg	1.73 ug/L	MW-3	None
Xylenes	76.5 mg/kg	MW-1 at 4 feet bgs	81 mg/kg	116 ug/L	MW-1	10,000 ug/L
Lead	10.2	MW-1 at 4 feet bgs	400 mg/kg	Not analyzed		15 ug/L

*See SAIC's November 22, 2004 Site Assessment Report for analytical results

Note: Bold when maximum concentration above ADEC cleanup level.

Only one soil sample, MW-1 at 4 feet, contained petroleum hydrocarbons at concentrations above the ADEC clean up levels within the "Under 40-inch zone" for the inhalation pathway. The sample was collected during installation of a monitoring well approximately 10 feet south of the 6-inch diameter fuel pipeline. Likewise, during the September 19, 2005 monitoring event the only groundwater sample to contain petroleum hydrocarbons (GRO, DRO, benzene, and toluene) above the ADEC groundwater cleanup level was collected from well MW-1.

⁸ Alaska Department of Environmental Conservation, 18 ACC 75 – Oil and Other Hazardous Substances Pollution Control, May 26, 2004, Tables B1 and B-2.

Comparison of the concentrations of volatile organic compounds in groundwater detected using EPA Method 8260 revealed that only concentrations of benzene collected from well MW-1 exceeded the ADEC groundwater cleanup levels. The reported detection limit for GRO in the sample collected from MW-1 exceeded the ADEC groundwater cleanup level.

FINDINGS

Findings based on the results of this and previous investigative activities are presented below.

Groundwater Elevation: During the September 19, 2005 groundwater monitoring event, the depth to groundwater in wells MW-1 through MW-6 ranged from 8.02 to 8.47 feet below the top of well casings. Groundwater elevations ranged from 418.69 to 418.77 feet above mean sea level. A summary of the depth to groundwater and calculated groundwater elevations are presented in Table 1, and depicted graphically on Figure 6. Compared with the previous monitoring event conducted on March 30, 2005, the groundwater elevations in the monitoring wells have decreased an average of 1.96 feet.

Groundwater Gradient: The groundwater gradient, as calculated from the September 19, 2005 groundwater monitoring event, is generally in a westerly direction at a magnitude of 0.001 in the western portion of the site, and is relatively flat in the eastern potion of the site. This is consistent with the groundwater gradient directions calculated during the August 19, 2004 and March 30, 2005 monitoring events.

Concentrations of Petroleum Hydrocarbons in Groundwater: The concentrations of GRO, DRO, RRO, and BTEX concentrations detected in each monitoring well during the September 19, 2005 sampling event decreased compared with the results of the March 30, 2005 sampling event.

Extent of Petroleum Hydrocarbons in Groundwater: As shown on Figure 7, the detectable concentrations of dissolved-phase benzene, and possibly GRO, are currently limited to well MW-1, which is located approximately 15 feet southeast of the FIA fuel pipeline. Detectable concentrations of DRO are limited to MW-1, MW-3, and MW-5. The concentrations of DRO detected during the September 19, 2005 sampling event are not above the ACED Groundwater Cleanup Levels.

CONCLUSIONS

Conclusions based on the results and findings of groundwater sampling and analysis conducted to date indicate the following:

Local Setting: The site is located in an industrial area of FIA near various off-site documented fuel releases located in up-gradient, cross-gradient, and down-gradient directions from the site.

Comparison of Groundwater Concentrations to ADEC Cleanup Levels: As shown on Table 2, concentrations of dissolved-phase benzene above ADEC cleanup levels during the September 19, 2005 sampling event were detected in the sample collected from Well MW-1. The reported detection

limit of GRO in MW-1 is above the ADEC cleanup levels, and, therefore, may represent an exceedance. Well MW-1 is located approximately 10 feet southeast of the FIA fuel pipeline.

Groundwater Concentration Trends: Based on the results of the August 19, 2004, March 30, 2005, and September 19, 2005 groundwater sampling events, concentrations of dissolved-phase petroleum hydrocarbons are generally decreasing.

CLOSING

Should you have any question, please call Brady Nagle of SAIC at (408) 356-0200 extension 17. Sincerely,

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

Brady Nagle

Senior Project Manager

Joseph Muzzio

Program Manager

Tables: 1 - Summary of Soil Analytical Results

2 - Summary of Groundwater Monitoring and Analytical Results for Petroleum Hydrocarbons

3 - Summary of Groundwater Analytical Results for Volatile Organic Analysis

Figures: 1 - Site Vicinity Map

2 - Fairbanks Airport

3 - Aerial Photograph

4 - Site Area Detail

5 - Site Plan

6 - Potentiometric Groundwater Elevation Contour Map - March 30, 2005

7 - Chemical Concentrations in Groundwater - March 30, 2005

Attachments:

A- Well Monitoring Data Sheets

B - Laboratory Analytical Reports

cc: Mr. Gerald O'Regan, Chevron Products Company, P.O. Box 6012, San Ramon, California 94583-0804

Ms. Kristen DuBois, Fairbanks International Airport, 6450 Airport Way, Site 1, Fairbanks, Alaska 99709

TABLE 1
ANALYTICAL RESULTS IN SOIL

	M		TPHg (a)	TPHd (b)	Residual Range						
Well/Boring	Depth	Date	C ₆ -C ₁₀	C ₁₀ -C ₂₅	Organics (b)	Benzene (c)	Toluene (c)	Ethylbenzene (c)	Xylenes (c)	Lead	Dry Weight (d
Name	(feet)		(mg/kg)	(mg/kg)	C ₂₅ -C ₃₆	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(Percentage)
			-	 -	(mg/kg)						
B-1	4	08/17/04	<1.31	<29.2	<58.3	<0.00654	<0.0131	10.0404			
	8	08/17/04	<1.05	<28.8	<57.7	<0.00526	<0.0131	<0.0131	<0.0196	6.42	73.2
				-20.0	-31.1	~0.0052 0	<0.0105	0.0132	0.0367	3.03	78.2
B-2	3.5	08/17/04	<1.13	<29.2	<58.4	<0.00563	<0.0113	<0.0113	<0.0203	6.10	79.8
	6.5	08/17/04	<1.02	<29.2	<58.4	< 0.00509	<0.0102	<0.0102	<0.0153	5.25	
						490	0.0.02	10.0102	~0,0 133	5.25	75.9
B-3	3.5	08/17/04	18.9	1,570	<57.9	<0.00481	<0.00961	0.0829	0.314	3.71	93.4
	6.5	08/17/04	2.61	2,430	<56.3	<0.00558	<0.0112	<0.0112	0.03	4.36	77.4
										4.50	11.4
B-4	3.5	08/17/04	222	1,770	<58.1	4.49	8.34	10.6	22.3	7.44	66.5
	6.5	08/17/04	12.7	<28.8	<57.6	0.174	0.110	0.171	0.547	3.94	76.0
B-5	3.5	08/17/04	<1.02	284	.50.4						
	6.5	08/17/04	5.35	<29.0	<58.4	0.0207	<0.0102	<0.0102	<0.0153	2.86	87.3
		00/11/04	5.35	~29.0	<58.0	<0.00576	<0.0115	<0.0115	<0.0173	5.71	77.3
B-6	6.5	08/17/04	<0.952	<28.1	<56.2	<0.00476	<0.00952	<0.00952	<0.0143	4 74	75.0
						5.555	10.00002	10.00332	~0.0143	4.71	75.0
B-7	3.5	08/17/04	<1.03	<29.0	<58.0	<0.00515	<0.0103	<0.0103	<0.0155	3.83	94.6
	6.5	08/17/04	<1.06	<29.3	<58.6	<0.00530	<0.0106	<0.0106	<0.0159	4.46	82.1
5.0									5.5.50	4.40	02.1
B-8	6.5	08/17/04	<0.934	<28.9	<57.8	0.00794	< 0.00934	<0.00934	<0.0140	6.56	76.0
B-9	6.5	08/17/04	-4.04	.00.0							
	U .U	00/1//04	<1.01	<28.6	<57.2	<0.00507	<0.0101	<0.0101	<0.0152	5.22	75.8
B-11	5	08/18/04	86.2	2,640	<57.6	<0.0757	<0.4E4	0.000			
				_,0.00	-57.0	10.0757	<0.151	0.222	15.9	9.09	81.3
B-12	3.5	08/18/04	330	306	<57.2	<0.218	0.838	3.91	38.0	0 02	74.0
	6.5	08/18/04	<1.26	<28.1	<56.3	<0.00630	<0.0126	<0.0126	0.110	8.82 6.80	74.3
			6.54					**************************************	0.110	0.0U	69.9
B-13	5	08/18/04	<1.42	<29.3	<58.7	<0.00709	<0.0142	<0.0142	<0.0213	6.69	79.7

TABLE 1
ANALYTICAL RESULTS IN SOIL

Well/Boring Name	Depth (feet)	Date	TPHg (a) C ₆ -C ₁₀ (mg/kg)	TPHd (b) C ₁₀ -C ₂₅ (mg/kg)	Residual Range Organics (b) C ₂₅ -C ₃₈ (mg/kg)	Benzene (c) (mg/kg)	Toluene (c) (mg/kg)	Ethylbenzene (c) (mg/kg)	Xylenes (c) (mg/kg)	Lead (mg/kg)	Dry Weight (d) (Percentage)
MW-1	4	08/17/04	339	30,900	<5,820	16.9	18.5	9.54	76.5	10.20	20.0
	8	08/17/04	67.5	1,170	<58.2	0.362	1.18	0.384	9.80		80.0
	14.5	08/18/04	222	198	<56.7	0.732	9.82	2.57	31.7	4.68 3.47	83.2 78.0
MW-2	3.5	08/17/04	<1.83	<28.8	<57.6	0.0113	<0.0183	<0.0183	-0.0075	5.50	
	6.5	08/17/04	<1.12	<29.3	<58.6	<0.00558	<0.0103	<0.0163	<0.0275	5.56	86.5
	14.5	08/18/04	<1.35	<29.2	<58.3	<0.00673	<0.0112	<0.0112	<0.0167 <0.0202	4.64 3.00	77.8 81.2
MW-3	6.5	08/17/04	<0.941	<29.1	<58.2	<0.00471	<0.00941	<0.00941	<0.0141	5.98	78.5
MVV-4	6.5	08/18/04	<1.06	<29.0	<58.1	<0.00528	<0.0106	<0.0106	<0.0158	4.26	74.9
MW-5	6.5	08/18/04	<1.03	<28.2	<56.4	<0.00514	<0.0103	<0.0103	<0.0154	5.38	76.4
MW-6	3.5	08/18/04	<1.42	<28.5	<56.9	<0.00710	<0.0142	<0.0142	0.0000		
	6.5	08/18/04	<1.05	<28.6	<57.2	<0.00523	< 0.0105	<0.0142	0.0228	6.42	77.1
	14.5	08/18/04	<1.11	<29.2	<58.4	<0.00553	<0.0111	<0.0103	<0.0157 <0.0166	4.15 3.34	81.1 78.9
SP-1-Comp		08/18/04	23.9	_		0.0166	0.0659	0.254	2.22	4.75	
ADEC Cleanup Level (e)	***	1,400	125,000	220,000	9	180	89	81	400	***

Abbreviations:	Notes:	
TPHg = Total petroleum hydrocarbons by gasoline.	(a)	TPHg analyzed by Method AK101.
TPHd = Total petroleum hydrocarbons by diesel.	(b)	TPHd and residual range organics analyzed by Method AK102/RRO.
mg/kg = millagrams per kilogram	(c)	Benzene, toulene, ethylbenzene, total xylenes, and analyzed by EPA Method 8260B.
<x.xx =="" at="" detected="" detection="" limit.<="" method="" not="" td=""><td>(d)</td><td>Dry weight physical parameters analyzed by EPA Methods APHA/ASTM.</td></x.xx>	(d)	Dry weight physical parameters analyzed by EPA Methods APHA/ASTM.
= Not analyzed/applicable	(e)	Alaska Department of Environmental Conservation, 18 ACC 75 - Oil and Other Hazardous Substances
		Pollution Control, May 26, 2004, Tables B1 and B2 for the inhalation pathway in the under 40 inch zone.

TABLE 2
SUMMARY OF GROUNDWATER MONITORING AND ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS

Well/Boring	Date	Top of	Depth to	Groundwater	GRO (a)	DRO (b)	RRO (b)		-		
Name		Casing	Water	Elevation	C ₆ -C ₁₀	C ₁₀ -C ₂₅	C ₂₅ -C ₃₆	Benzene (c)	Toluene (c)	Ethylbenzene (c)	Vidence (-)
		(feet msl)	(feet msi)	(feet msi)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		Xylenes (c)
			-			(1-37	<u>(F3'-7</u>	(Pg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	08/19/04	426.84	6.37	420.47	27,200	33,400	<480	1,770	3,790	261	2.752
MW-1	03/30/05	426.84	10.09	416.75	9,000	436	<388	729	343	186	3,750
MW-1	09/19/05	426.84	8.12	418.72	<2,500	8.66	<0.397	153	150		936
					_,		40.007	133	150	<25	116
MW-2	08/19/04	426.73	6.29	420.44	<50.0	(d)	(d)	<0.200	<0.500	40 E00	-4.00
MW-2	03/30/05	426.73	9.98	416.75	<50.0	4,040	427	<0.500	<0.500	<0.500	<1.00
MW-2	09/19/05	426.73	8.02	418.71	<50.0	<0.417	<0.417	<0.500		<0.500	<1.50
						30.711	10.417	~0.500	<0.500	<0.500	<1.50
MW-3	08/19/04	427.16	6.73	420.43	89.4	1,190	<480	0.774	<0.500		
MW-3	03/30/05	427.16	10.42	416.74	181	<391	<391	0.774	<0.500	5.83	3.18
MW-3	09/19/05	427.16	8.47	418.69	<50.0	6.73	2.12	0.556		24.1	6.94
						••	2.72	0.550	<0.500	1.73	<1.50
MW-4	08/19/04	427.02	6.59	420.58	<50.0	<400	<480	0.300	<0.500	.0.500	
MW-4	03/30/05	427.02	10.29	416.86	<50.0	<385	<385	<0.500	<0.500	<0.500	<1.00
MW-4	09/19/05	427.02	8.34	418.83	<50.0	1.31	0.815	<0.500		<0.500	<1.50
							0.013	~0.500	<0.500	<0.500	<1.50
MW-5	08/19/04	426.89	6.44	420.53	<50.0	<400	<480	<0.200	<0.500	-0.500	
MW-5	03/30/05	426.89	10.16	416.81	<50.0	3,310	435	<0.500		<0.500	<1.00
MW-5	09/19/05	426.89	8.19	418.77	<50.0	<0.417	0.782	<0.500	<0.500	<0.500	<1.50
						5.11 ,	0.702	~0.500	<0.500	<0.500	<1.50
MW-6	08/19/04	426.82	6.36	420.46	<50.0	<400	<480	0.351	<0.500	*0.500	
MW-6	03/30/05	426.82	10.08	416.74	<50.0	<388	<388	<0.500		<0.500	<1.00
MW-6	09/19/05	426.82	8.12	418.70	<50.0	<0.403	<0.403	<0.500	<0.500	<0.500	<1.50
						10.400	~0.403	~0.500	<0.500	<0.500	<1.50
Purge Water	09/19/05		_	-	261	1.45	0.524	40.0	4		
						1.70	0.524	18.2	15.7	1.96	14.1
Trip Blank	03/30/05			_	<50.0	<400	<480	-0 E00	-0.500		
Trip Blank	09/19/05	***			<50.0	400	~400	<0.500	<0.500	<0.500	<1.50
					-00.0			<0.500	<0.500	<0.500	<1.50
DEC Cleanup Leve	el (e)			_	1,300	1,500	1 100	-	4.000		
					.,000	1,500	1,100	5	1,000		10,000

TABLE 2 SUMMARY OF GROUNDWATER MONITORING AND ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS

Abbreviations	Notes:	
GRO = Gasoline range organics.	(a)	GRO analyzed by Method AK101/EPA 8021B.
DRO = Diesel range organics.	(b)	DRO and RRO and residual range organics analyzed by Method AK102/RRO.
RRO = Residual range organics.	(c)	Benzene, toulene, ethylbenzene, total xylenes, and analyzed by EPA Method 8260B.
Cx-Cx = Carbon range.	(d)	MW-2 was not analyzed for DRO or RRO because there was
μg/L = millagrams per liter.		insufficient sample volume due to breakage during shipping.
<x.xx =="" at="" detected="" detection="" limit.<="" method="" not="" td=""><td>(e)</td><td>Alaska Department of Environmental Conservation , 18 ACC 75 – Oil and Other Hazardous Substances</td></x.xx>	(e)	Alaska Department of Environmental Conservation , 18 ACC 75 – Oil and Other Hazardous Substances
= Not analyzed/applicable		Pollution Control, May 26, 2004, Table C.

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS

Former Texaco Bulk Fuel Terminal No. 301726 Fairbanks International Airport, Fairbanks, Alaska

Well/Boring Name	Date	Benzena (µg/L)	(µg/L)	sec-68 (µg/L)	tert-BB (µg/L)	Chloroethans (µg/L)	Chloroform (µg/L)	1,1-DCA (µg/L)	Ethylbenzene (µg/L)	IPB (µg/L)	ρ-IPT (μ g/ L)	Naphthalene (μg/L)	n-PB (µg/L)	Toluene (µg/L)	1,1,1-TCA (µg/L)	TCFM (µg/L)	1,2,4-TMB (µg/L)	1,3,5-TMB (µg/L)	o-Xylene (µg/L)	m,p-Xylene (µg/L)
MW-1	08/19/04	786	24.2	10.0	2.67	<1.00	<1.00	<1.00	285	24.7	28.6	206	25.7	962	-1.00					
MW-1	03/30/05	736	<25.0	<5.00	<5.00	<5.00	<6.00	<5.00	156	11.2	<10.0	136	8.16	344	<1.00 <5.00	14.5	445	207	755	869
MW-1	09/19/05	700	<50.0	<10.0	<10.0	<10.0	<10.0	<10.0	64.2	<20.0	<20.0	81.1	<10.0	620	<10.0	<5.00 <10.0	114 81.1	62.6 62.8	237 182	512 264
MW-1 re (a)	08/19/04	1,860	<100	<100	<100	<100	<100	<100	266	<100	<100	483	<100	4,060	<100	<100	460	203	1,850	2,340
MW-2	08/19/04	<1.00	<1.00	<1.00	<1.00	<1.00	4.90	<1.00	<1.00	-4.00										
MW-2	03/30/05	<1.00	<5.00	<1.00	<1.00	<1.00	1.68	<1.00	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	<1.00	13.2	<1.00	<1.00	<1.00	<2.00
MW-2	09/19/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00		<2.00	<2.00	<2.00	<1.00	<1.00	1.26	19.3	<1.00	<1.00	<1.00	<2.00
						-1.55	1.00	<1.00	<1.00	<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	10.3	<1.00	<1.00	<1.00	<2.00
MW-3	08/19/04	<1.00	<1.00	1.06	<1.00	<1.00	4.76	<1.00	7.12	5.83	<1.00	00.0								
MW-3	03/30/05	1.09	<5.00	5.23	<1.00	1,26	<1.00	1.76	15.8	15.3		23.0	3.00	<1.00	<1.00	4.84	2.40	10.3	<1.00	2.71
MW-3	09/19/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00	1.84	<2.00	6.09	139	11.9	<1.00	<1.00	2.97	1.47	9.48	<1.00	3.40
						1.00	-1.00	~1.00	1.04	<2.00	<2.00	36.3	<1.00	<1.00	<1.00	5.63	<1.00	<1.00	<1.00	<2.00
MW-4	08/19/04	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	1.06	<1.00	<1.00	<1.00	<1.00								
MW-4	03/30/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	1.63	<1.00	<2.00	<2.00	-	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00
MW-4	09/19/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	1.39	<1.00	<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00
							-1.00	1.44	1.00	~2.00	42.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00
MW-5	08/19/04	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1,00	-1.00	-4.00						
MW-5	03/30/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	5.97	<1.00	<1,00	<1.00	<2.00
MW-5	09/19/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	12.1	<1.00	<1.00	<1.00	<2.00
									-1.00	-2.00	~2.00	~2.00	<1.00	<1.00	<1.00	5.17	<1.00	<1.00	<1.00	<2.00
MW-6	08/19/04	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
MW-6	03/30/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	4.33	<1.00	<1.00	<1.00	<2.00
MW-6	09/19/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00		<1.00	<1.00	3.3	<1.00	<1.00	<1.00	<2.00
									11.00	~2.00	~2.00	₹2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00
Purge Water	09/19/05	18.6	<5.00	1.06	<1.00	<1.00	<1.00	<1.00	1.71	<2.00	<2.00	6.36	1.34	13.4	<1.00	<1.00	3.25	1.84	4.08	6.09
Trip Blank	03/30/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-0.00										
Trip Blank	09/19/05	<1.00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.00		<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00
						-1.00	~1.00	×1.00	<1.00	<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00
ADEC Cleanup	Level (b)	5		-	-		100	3,650	***			700	_	1,000					10,0	100

Abbreviations:

n-BB = n-Butylbenzene

sec-BB = sec-Butylbenzene

tert-BB = tert-Butylbenzene

1,1-DCA ≈ 1,1-Dichloroethane

iPB = Isopropylbenzene

p-IPT = p-isopropyttoluene

n-PB = n-Propyibanzene

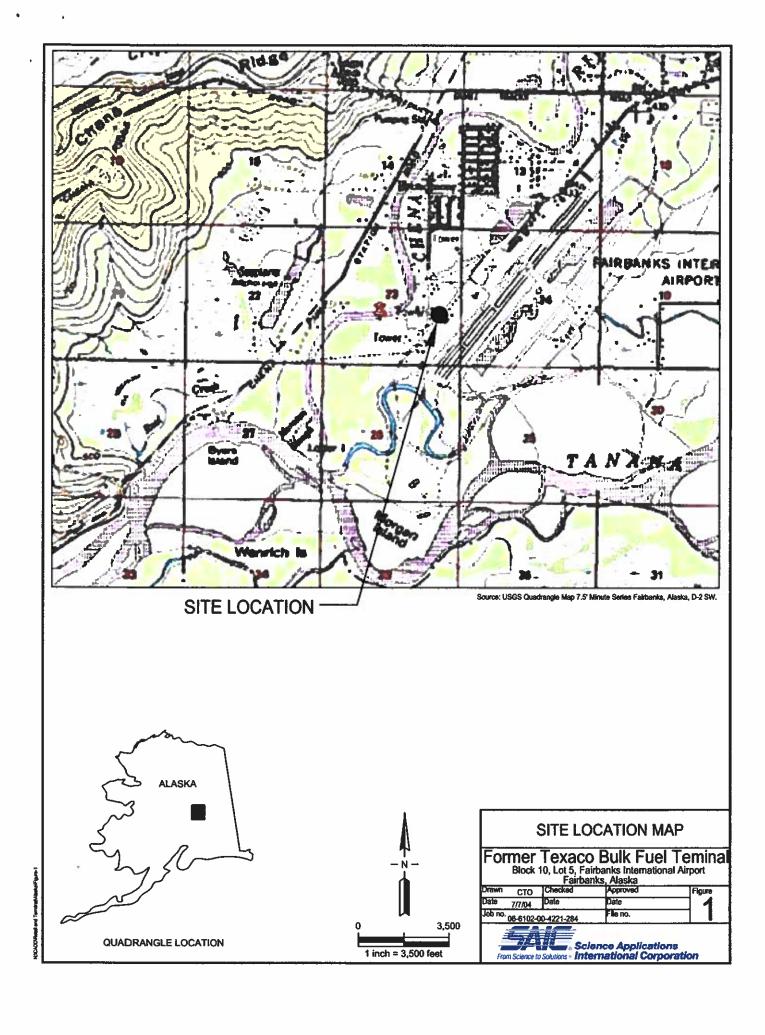
TCFM = Trichlorofluoromethane

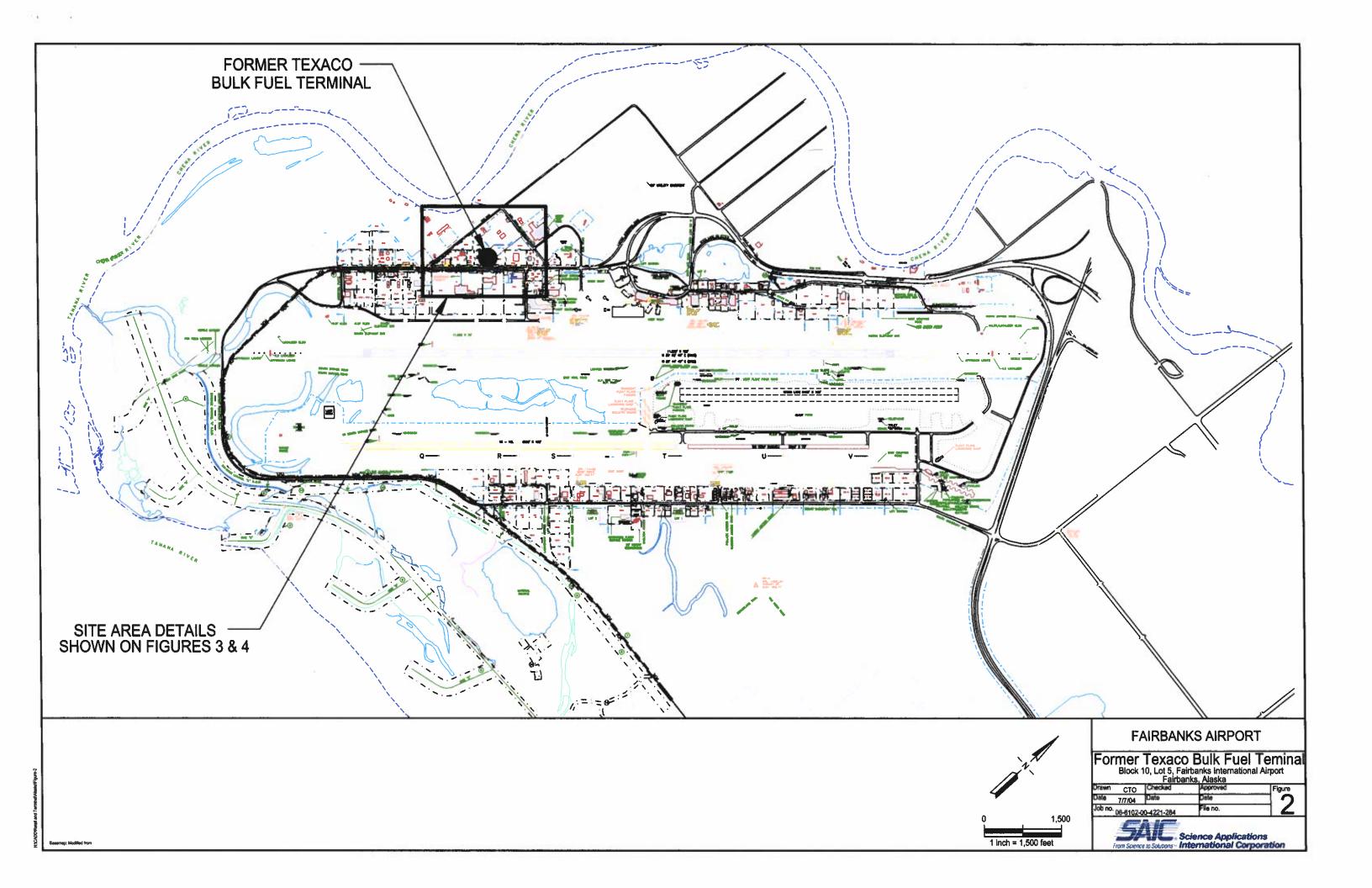
1,2,4-TMB = 1,2,4-Trimethylbenzene

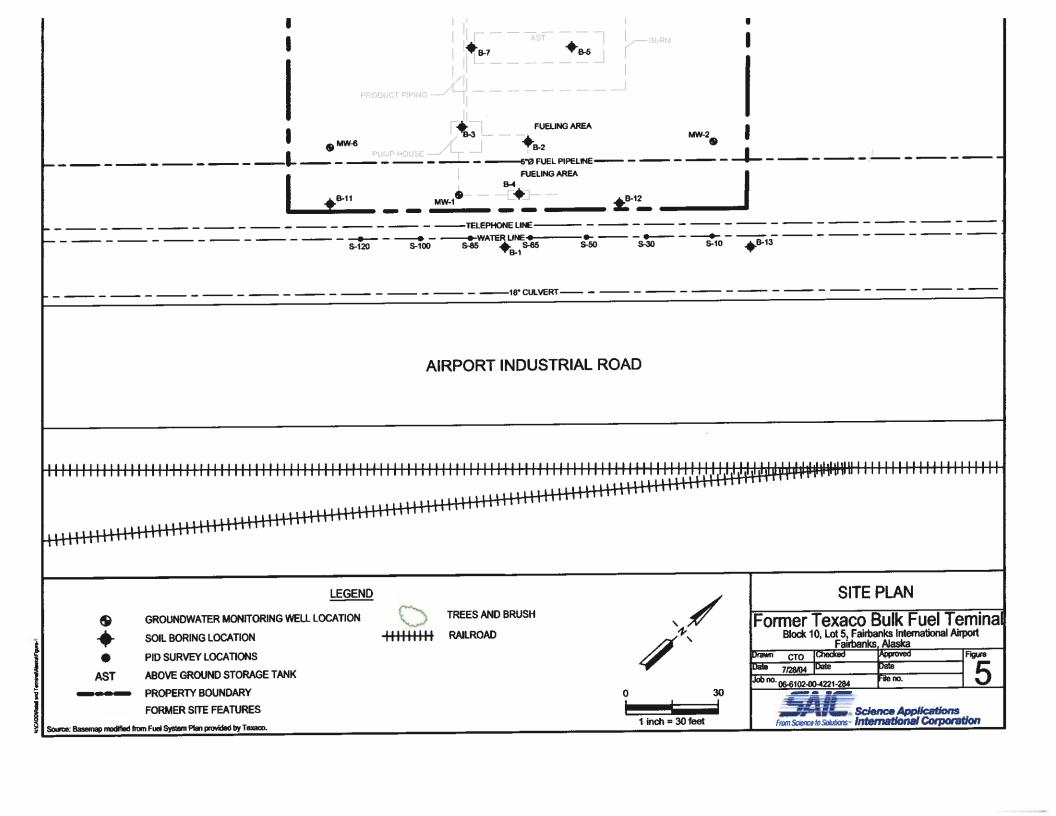
1,3,5-TMB = 1,3,5-Trimethylbenzene

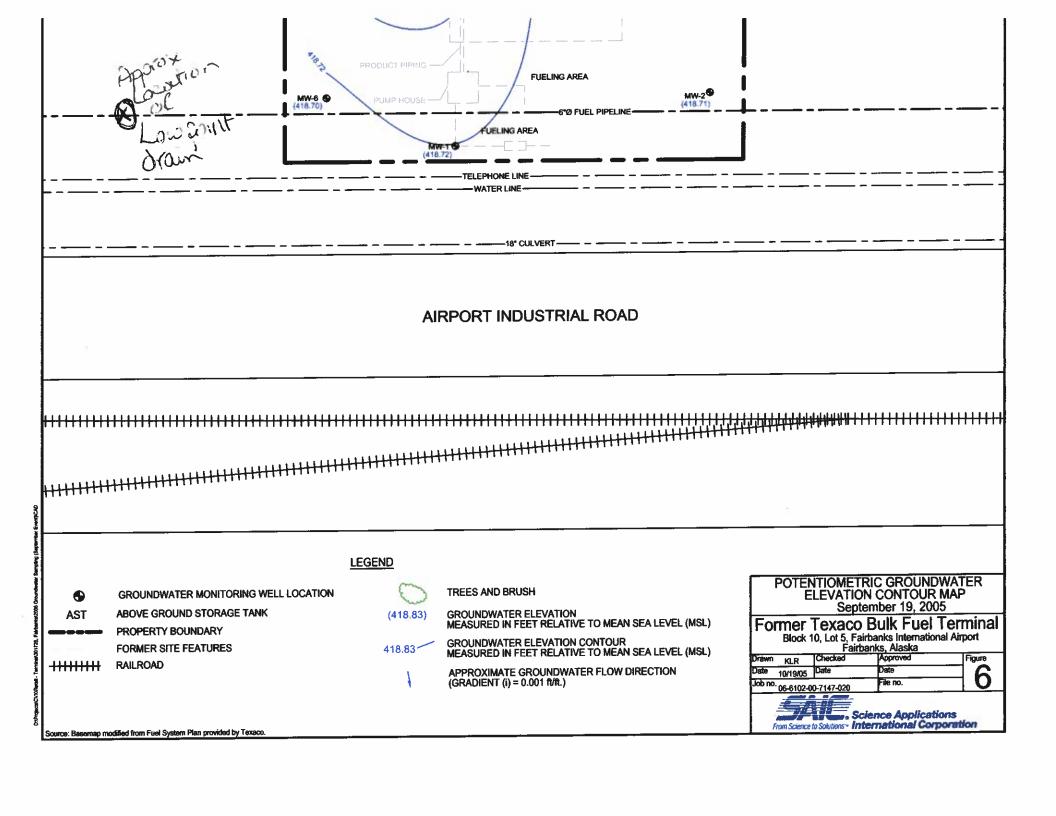
µg/L = millegrams per liter.

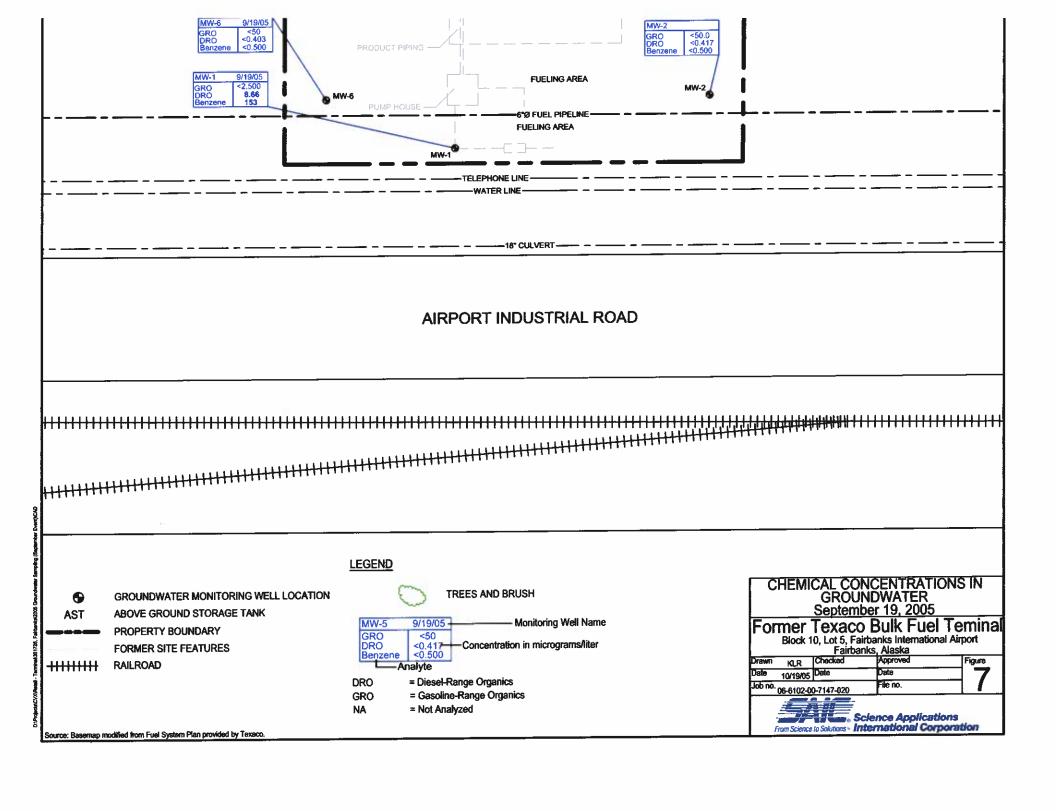
<x.xx = Not detected at method detection limit


Notes:


All volatile organic compounds analyzed by EPA Method 8260B


(a) The reported values for MW-1 exceeded the capacity of the detector and therefore is unreliable. MW-1 was reanalyzed with a higher reporting limit. Results are reported as "MW-1 re" (b)


Alaska Department of Environmental Conservation , 16 ACC 75 - Oil and Other Hazardous Substances


Pollution Control, May 26, 2004, Table C.

ATTACHMENT A WELL MONITORING DATA SHEETS

Field Data Sheet

Site Information

Former Texaco Terminal 301728 9/19/2005 301728
Project Name

Block 10, Lot 5A, Fairbanks Airport Address

Water Level Equipment

Weasured By: Steve Krcik

X Electronic Indicator name

Oil Water Interface Probe

Notes:

X Other (specify) _ checked for product w/bailor

			,	DTW	Depth to SPH	SPH Thickness	
DTW Order	Well ID	Time (24:00)	Total Depth	(toc or tob)	(toc or tob)	(toc or tob)	Notes (describe 5
<u>t</u>	MW-4	1724	13.80	8.34		none	
2	MW-6	1734	13.95	8.12		none	
3	MW-3	1740	13.77	8.47		none	
4	MW-5	1747	14.15	8.19		none	
5	MW-2	1750	13.30	8.02		none	
6	MW-1	1734	13.64	8.12		none	
							
							
							
							
				<u> </u>			_
	· · · · · ·				— 	<u> </u>	
				 			
							
		+					
							
							
							
							
3							
							
							
						\	

Sit	e Information								
	Former Texaco Bu	ulk Terminal 301726		MW-1 Well/Serrole Point F	301726 Project Number				
	Block 10, Lot 5A,	Fairbanks Airport	Fairbanks	AK	. Proportunido				
	Address		СКУ	State	_				
-	e Information		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
	ster Level Equipm			Purge Equipment	_	CTraffice #1			
-	Electronic Indicato Oil Water Interfac			Bailer Submersible P	Diposable ump; type: <u>Mini M</u>	Teflon #:			
_		checked for product	w/bailor	Other (specify)			_		
	 	Purge Calculation		casing	gallons per	Purged By:	Steve Krcik		
		*A.1 (78) 844		diameter	linear foot		name		-
		total depth	13.64	0.75 in.	0.023	Purge Notes:			
		depth to water	- 8.12	1 in.	0.04				
		linear feet of water	= 5.52	2 in.	x 0.17				
	94	allons per linear foot	x _0.17	4 in.	0.67				
		gallons per casing	= 0.94	6 in.	1.5				
		number of casings	X3	other	calculate	ļ 			···
Į		calculated purge	- 3	1 cubic foo	t = 7.48 gallons	Purged Dry?: N	0	Sampling Delay?:	No
		time (24:00)	gallons (total purged)	pH (units)	EC (ms @ 25° C)	temp (C")	color (see below)	turbity (NTU or see below)	odor (see below)
	volume 1	2045	2	5.8	1.0	5.6	cloady	light	säght
	volume 2	2048	4	5.8	1.0	5.5	clear	light	slight
	rotume 3	2047	6	5.8	1.0	5.4	clear	trace	alight
	volume 4				ļ				
[complete	1	6						
							ciouay, clear	neavy, moderate light, trace	strong, moderate sught, none
Gn	oundwater Sampli	ng Information						<u> </u>	
_	mple Type			Sampling Equipmen					
=	Wonitoring Well			X Bailer		Teflon #:			
=	Extraction Well Domestic Well			Submersible Pum Sampling Port	p; type:				
	Other (specify)			Other (specify)		_			
			······································			-			
	Sample ID	Date	Time (24:00)						
!	W-1	9/19/2005	2100	!		Sampled By:	Steve Krcik		
_	Oupe #		12:00				name		
# 0	Cont.	Analyses (check	and circle)	Container/Size	Preservative	Sampling Notes:			
<u>L</u>	4	GRO, BTEX		40 ml VOA	нсі				
		U							
T	2	Voc.		40 ml VOA	HCI		····		
	2	DRO, RRO			HCL		1		
				125 ml amber	ITOL		/ \		
		H					01	<i>,</i>	
LL		<u> </u>				Signature:			

Site Information				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Former Texaco B	ulk Terminal 30172	6	MW-2	301726				
Project Name	P-14 1 41		WellSample Poli					
Address	Fairbanks Airport	Fairbanks City	AK State					
Purge Information								
Water Level Equipm			Purge Equipme	ent		<u> </u>		
X Electronic Indicate			☐ Bailer	Diposable	Teffon #:			
Oil Water Interfac		.		Pump; type: Mini M	onsoon			
X Other (specify)			Other (specif	y)				
1 1	Purge Calculation		casing	gallons per	Purged By:	Steve Krcik		_
 	total depth	12.20	diameter	linear foot	-	name		-
	•		0.75 in.	0.023	Purge Notes:			
	depth to water		1 in.	0.04				
	linear feet of water		2 in.	× 0.17				
	itions per linear foot		4 in.	0.67				
	gallons per casing	-	6 in.	1.5		<u> </u>		
	number of casings	х <u>з</u>	other	calculate				
	calculated purge	3	1 cubic fo	ot = 7,48 gallons	Purged Dry?: N	No	Sampling Delay?:	No
	time (24:00)	gallons (total purged)	pH (units)	EC (ma @ 25° C)	temp (C°)	color (see below)	turbity (NTU or see below)	odor (see below)
volume 1	2015	2	5,9	0.7	7.1	cloady	light	slight
volume 2	2018	4	5.9	0.7	7.0	clear	light	
volume 3	2017		5.9	0.7	7.1	clear	trace	slight
volume 4								slight
complete		6						
						Drown, yellow Cloudy, clear	neavy, moderate	strong, moderate
Groundwater Samplin	g Information					Glody, Gloss	agnt, trace	slight, none
Sample Type			Sampling Equipmer	nt				
X Monitoring Well Extraction Well		İ	X Bailer	Diposable [Teflon #:			
Domestic Well		ļ	Submersible Purr	ηρ; type:				
Other (specify)		I I	Sampling Port Other (specify)					
					•			
Sample ID	Date	Time (24:00)						
MW-2	9/19/2006	2030			Sampled By:	Stave Krcik		
Dupe #		12:00				name		
# of Cont.	Analyses (check a	and circle)	Container/Size	Preservative	Sampling Notes:			
4	GRO, BTEX		40 ml VOA	нсі				
]		1					
	7		1	} }				
	ןֿ		1					
	า์						· · · · · · · · · · · · · · · · · · ·	
	<u> </u>							
2	vocs		40 ml VOA	HCI				
2	DRO, RRO		125 ml amber	HCL			$\overline{}$	
	!					4	,	
					Signature:	010	<i>31</i>	

Ī,	ite Information		•	·					
ľ		ılk Terminal 301726	.	MW-3	301726				
	Project Name Block 10, Lot 5A,	· · · · · · · · · · · · · · · · · · ·	— Feirbanks	Wel/Sample Point	ID Project Number	•			
L	Address	ranbanks Airpon	City	5000	-				
Pu	rge Information								
W	ater Level Equipm	ent		Purge Equipmen	t				· · · · · · · · · · · · · · · · · · ·
K	Electronic Indicato	ж		Bailer	Diposable	Teflon #:			
	Oil Water Interface				ump; type: <u>Mini M</u>	necen	_		
Ľ	Other (specify)	checked for product	w/ballor	Other (specify))				
l	İ	Purge Calculation		casing diameter	gallons per linear foot	Purged By:	Steve Krcik		-
		total depth	_13.77	0.75 in.	0.023	Purge Notes:	(letito		
		depth to water	- 8.47	1 in.	0.04				
		linear feet of water	* 5.3	2 in.	x 0.17				
	94	illons per linear foot	x _0.17	4 in.	0.67				
		gations per casing	= 0.9	6 in.	1.5				
	[number of casings	x <u>3</u>	other	calculate				
	[[calculated purge	<u> </u>	1 cubic foc	x = 7.48 gallons	Purged Dry?: N	lo	Sampling Delay?:	No
	volume	time (24:00)	galions (total purged)	pH (units)	EC (ms @ 25° C)	temp (C°)	color (see below)	turbity (NTU or see below)	odor (see below)
	volume 1	1921	2	6.0	1.0	7.1	cloady	light	slight
	volume 2	1922	4	5.9	0.9	8.7	clear	light	slight
l,	volume 3	1923	6	5.9	1.0	6.8	clear	trace	slight
	volume 4								
		 			 				
	complete		6						
	complete	1 2 1	6				brown, yellow cloudy, clear	heavy, moderate light, trace	strong, moderate slight, none
Ğı	complete	ng Information	6						
Si	roundwater Sampli ample Type	ng Information		Sampling Equipmen	_				
S:	roundwater Sampli ample Type Monitoring Well	ng Information		Bailer	Diposable				
si ×	roundwater Sampli ample Type Monitoring Well Extraction Well	ng Information		Bailer Submersible Pun	Diposable				
ő × □	roundwater Sampli ample Type Monitoring Well Extraction Well Domestic Well			Bailer Submersible Pun Sampling Port	Diposable				
ő × □	roundwater Sampli ample Type Monitoring Well Extraction Well			Bailer Submersible Pun	Diposable				
ő × □	roundwater Sampli ample Type Monitoring Well Extraction Well Domestic Well			Bailer Submersible Pun Sampling Port	Diposable				
	roundwater Sampli ample Type Monitoring Well Extraction Well Domestic Well Other (specify)		; [[-	Bailer Submersible Pun Sampling Port	Diposable	Teflon #:			
\$ X	roundwater Sampli ample Type Monitoring Well Extraction Well Domestic Well Other (specify)	Dete	[i [[[Time (24:00)	Bailer Submersible Pun Sampling Port	Diposable		cloudy, clear		
	roundwater Sampli ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID	Dete	Time (24:00) 1930 12:00	Bailer Submersible Pun Sampling Port	Diposable		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe #	Date 9/19/2005	Time (24:00) 1930 12:00	Baller Submersible Puri Sampling Port Other (specify)	Diposable pp; type:		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe #	Date 9/19/2005	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size	Diposable		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe #	Date 9/19/2005	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size	Diposable pp; type:		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe #	Date 9/19/2005	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size	Diposable pp; type:		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe #	Date 9/19/2005	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size	Diposable pp; type:		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe #	Date 9/19/2005	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size	Diposable pp; type:		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe # of Cont.	Date 9/19/2005	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size	Diposable pp; type:		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe # of Cont. 4	Date 9/19/2005 Analyses (check x GRO, BTEX	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size	Preservative HCI		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe # of Cont. 4	Date 9/19/2005 Analyses (check x GRO, BTEX	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size 40 ml VOA	Preservative HCI		Steve Krcik		
	roundwater Sampliample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-3 Dupe # of Cont. 4	Date 9/19/2005 Analyses (check x GRO, BTEX	Time (24:00) 1930 12:00	Baller Submersible Purr Sampling Port Other (specify) Container/Size 40 ml VOA	Preservative HCI		Steve Krcik		

s	Site Information								
`		Bulk Terminal 301726)a	MW-4	301726				
	Project Name		_	Web'Sample Point	Froject Number	_			
L	Block 10, Lot 5A	A, Fairbanks Airport	Feirbanks Cay	AK State	_				
Pu	rge Information								
_	Vater Level Equipm	ment		Purge Equipment	nt				
×	Electronic Indicat	itor		Bailer	Diposable	Teffon #:			
	Oil Water Interfac		1.72		Pump; type: <u>Mini M</u>	onsoon			
Ľ	Other (specify) _	checked for product		Other (specify)	1				
		Purge Calculation	,	casing	gallons per	Purged By:	Steve Krcik		
	ļ	total death	40.00	diameter	linear foot	_	name		_
		total depth		0.75 in.	0.023	Purge Notes:			
		depth to water	···· I	1 in.	0.04				
		linear feet of water		2 in.	× 0.17				
	9	jallons per linear foot		4 in.	0.87				
	ĺ	gallons per casing	= 0.93	6 in.	1.5	l			
		number of casings	x <u>3</u>	other	calculate				
ļ		calculated purge		1 cubic foot	x = 7.48 gallons	Purged Dry?: No	lo	Sampling Delay?:	No
	volume	time (24:00)	galions (total purged)	pH (units)	EC (ma @ 25° C)	temp (C°)	color (see below)	turbity (NTU or see below)	odor (see below)
	volume 1	1801	2	6.0	1.2	7,2	clear	trace	slight
	volume 2	1802	4	6.1	0.8	7.5	clear	trace	alight
ŀ	volume 3	2047	6	6.2	0.7	7	clear	trace	# # # # # # # # # # # # # # # # # # #
·	volume 4	<u> </u>							- engree
Ŀ	complete		6						
							Drown, yellow cloudy, clear	neavy, moderate	strong, moderate
Gro	oundwater Samplin	ng Information					Coody, com	ngnt, trace	angnt, none
	mple Type		٤	Sampling Equipment	ŧ				
=	Monitoring Well		<u></u>		Diposable [Teflon #:			
=	Extraction Well Domestic Well		_	Submersible Pump	p; type:	_			
느	Other (specify)		<u></u>	Sampling Port Other (specify)					
_]Outer (4000.77					
	Sample ID	Date	Time (24:00)						
M	/W-4	9/19/2005	1820			Sampled By:	Steve Krcik		
D)upe #		12:00				name		
# of	Cont.	Analyses (check a	and circle)	Container/Size F	Preservative	Sampling Notes:			
L	4	GRO, BTEX			HCI	*			
		. דֿ	!	1					
Γ		j	1	1 1					
Γ		ヿ		1					
F		า์							<u> </u>
늗									
L		voc _a		40 ml VOA H	нсі				
L	2	DRO, RRO		125 ml amber H	HCL				
L][]	j				A	 	
						Signature:	()	16/	
						Signature.		<u> </u>	

l si	ite Information								
		lk Terminal 301726	<u>. </u>	MW-5 Well/Sample Point	301726 ID Project Number	-			
	Block 10, Lot 5A,	Fairbenks Airport	Fairbanks	AK					
-	Address		City	State					
Pui	rge Information								
	/ater Level Equipmo			Purge Equipmen					
	Electronic Indicato			Bailer		Teflon #:			
_	Oil Water Interface		i aarthamittaa		^p ump; type: <u>Mini M</u>	onsoon			
<u> </u>	Other (specify)			Other (specify)	 	_			
		Purge Calculation	1	casing	gallons per	Purged By:	Steve Krcik		-
		total depth	14.15	diameter 0.75 in.	linear foct 0.023	Purge Notes:	name		
		depth to water		1 in.	0.023	ruigo ricios,			
		linear feet of water		2 in.	x 0.17				
	ge	lions per linear foot		4 in.	0.67				
	-	gallons per casing		6 in.	1.5				
	{	number of casings		other	calculate		· · · · · · · · · · · · · · · · · · ·		
		calculated purge			xt = 7.48 gallons	Purged Dry?: N	o	Sampling Delay?:	No
	volume	time (24:00)	gations (total purged)	pH (units)	EC (ms @ 25° C)	temp (C°)	color (see below)	turbity (NTU or see below)	odor (see below)
	volume 1	1948	2	5.8	0.7	4.6	cloady	light	slight
	volume 2	1949	4	5.8	0.7	4.3	clear	trace	slight
	volume 3	1950	6	5.8	0.7	4.5	clear	trace	elight
	volume 4			5.3					
	complete		6		<u> </u>				
	complete		6	. 			brown, yellow cloudy, clear	heavy, moderate light, trace	strong, moderate slight, none
	complete	g Information	6			5:			
Gr		g Information		Sampling Equipmen	nt .	*:			
Gr Sa	roundwater Samplin	g Information		x Baller	Diposable				
Gr Se	roundwater Samplin ample Type Monitoring Well Extraction Well	g Information		x Bailer Submersible Pum					
Se X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well	g Information	: [x Bailer Submersible Pum Sampling Port	Diposable				
Se X	roundwater Samplin ample Type Monitoring Well Extraction Well	g Information	: [x Bailer Submersible Pum	Diposable				
Se X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify)			x Bailer Submersible Pum Sampling Port	Diposable				
Gr Sa X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify)	Date	Time (24:00)	x Bailer Submersible Pum Sampling Port	Diposable				
Gr Sa X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify)		Time (24:00)	x Bailer Submersible Pum Sampling Port	Diposable		cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5	Date 9/19/2005	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify)	Date 9/19/2005 Analyses (check	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port	Diposable		cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5	Date 9/19/2005	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable ip; type: Preservative	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable ip; type: Preservative	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable ip; type: Preservative	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable ip; type: Preservative	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable ip; type: Preservative	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplin ample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check	Time (24:00) 2000 12:00	x Bailer Submersible Pum Sampling Port Other (specify)	Diposable ip; type: Preservative	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplinample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check GRO, BTEX	Time (24:00) 2000 12:00	x Baller Submersible Pum Sampling Port Other (specify) Container/Size 40 ml VOA	Diposable	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplinample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check GRO, BTEX	Time (24:00) 2000 12:00	x Baller Submersible Pum Sampling Port Other (specify) Container/Size 40 ml VOA	Diposable ip; type: Preservative HCI	Sampled By:	cloudy, clear		
Gr Ss X	roundwater Samplinample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check GRO, BTEX	Time (24:00) 2000 12:00	x Baller Submersible Pum Sampling Port Other (specify) Container/Size 40 ml VOA	Diposable	Sampled By: Sampling Notes:	cloudy, clear	light, trace	
Gr Ss	roundwater Samplinample Type Monitoring Well Extraction Well Domestic Well Other (specify) Sample ID MW-5 Dupe #	Date 9/19/2005 Analyses (check GRO, BTEX	Time (24:00) 2000 12:00	x Baller Submersible Pum Sampling Port Other (specify) Container/Size 40 ml VOA	Diposable	Sampled By:	cloudy, clear		

0 h . 1 - 5 V								
Site Information		_						
Project Name	Bulk Terminal 30172	<u>6</u>	MW-6 WellSample Point	301728 Project Number	-			
Block 10, Łot 5	5A, Fairbanks Airport	Fairbanks	AK	Topoc resigns				
XXXIII		CHY	State	-				
Purge Information				· · · · · · · · · · · · · · · · · · ·				
Water Level Equi	•		Purge Equipmen	nt				
Electronic Indic			Bailer	Diposable	Teffon #:			
Oil Water Inter				Pump; type: <u>Mini M</u>	onsoon	_		
[X]Other (specify)	checked for produc		. Other (specify))				
	Purge Calculation		casing	gallons per	Purged By:	Steve Krclk		
			diameter	linear foot		name		-
	total depth		0.75 in.	0.023	Purge Notes:			
	depth to water	8.12	1 in.	0.04				
	finear feet of water	= <u>5.83</u>	2 in.	x 0.17	[<u>.</u>
	gallons per linear foot	X <u>0.17</u>	4 in.	0.67				
	gallons per casing	= 1.0	6 in,	1.5				
1	number of casings	1	other	Ħ				
ļ	•			Calculate		·		
volume	calculated purge		1 ouble foo	t = 7.48 gallone	Purged Dry?: N	lo	Sampling Delay?:	No
voiume	time (24:00)	gailons (total purged)	pH (units)	EC (ms @ 25° C)	temp (C°)	color	turbity	odor
volume 1	1855	2	6.0	0.5	7.6	(see below)	(NTU or see below)	(see below)
volume 2	1858	4	6.0	0.4	7.0	clear	trace	slight
volume 3	1857	6	6.0	0.4	6.8	clear	trace	slight
volume 4					5.0	Cida	trace	slight
complete		6					 	
						brown, yellow	heavy, moderate	strong, moderate
Groundwater Samp	pling Information					cloudy, clear	light, trace	slight, none
Sample Type		· · · · · · · · · · · · · · · · · · ·	Sampling Equipment					
X Monitoring Well			_	_	Teflon #:			
Extraction Well		ĺ	Submersible Pum				55	
Domestic Well		[Sampling Port					
Other (specify) _		[Other (specify)	·				
Sample ID	Date	Time (24:00)						
MW-6		i						
	9/19/2005	1910			Sampled By:	Steve Krcik		
Dupe #		12:00				name		
F of Cont.	Analyses (check	and circle)	Container/Size	Preservative	Sampling Notes:			
	GRO, BTEX		40 ml VOA	HCI				
	<u> </u>		1	-				
			1	i				
	П		[[1				
	<u> </u>			j				
							<u></u>	
	VOCs		40 mt VOA	HCI				
2			1 .					
2	DRO, RRO		125 ml amber	-ICL				
			125 mi amber	HCL		-		
			125 ml amber	HCL	Signature:	4		

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 Seattle 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503,906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

September 30, 2005

Brady Nagle SAIC 401 Alberto Way, Suite B Los Gajos, CA/USA 95032

RE: Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Enclosed are the results of analyses for samples received by the laboratory on 09/20/05 17:30. The following list is a summary of the NCA Work Orders contained in this report. If you have any questions concerning this report, please feel free to contact me.

<u>Work</u> A510071	Project Former Tex. Bulk Plant Blk 10 Lot 5 l	ProjectNumber 301726

Thank You,

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Stephen Wilson For Mike Priebe, Technical Services Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

SAIC

Project Name

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Number: Project Manager: 301726 Brady Nagle Report Created:

09/30/05 01:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	A510071-01	Water	09/19/05 21:00	09/20/05 17:30
MW-2	A5I0071-02	Water	09/19/05 00:00	09/20/05 17:30
MW-3	A510071-03	Water	09/19/05 19:30	09/20/05 17:30
MW-4	A510071-04	Water	09/19/05 18:20	09/20/05 17:30
MW-5	A510071-05	Water	09/19/05 20:00	09/20/05 17:30
MW-6	A5I0071-06	Water	09/19/05 19:10	09/20/05 17:30
Purge Water	A510071-07	Water	09/19/05 21:10	09/20/05 17:30
Trip Blk	A510071-08	Water	09/19/05 00:00	09/20/05 17:30

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

> North Creek Analytical, Inc. Environmental Laboratory Network

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone; (907) 563,9200 fax: (907) 563,9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726

Project Manager: **Brady Nagle**

Report Created: 09/30/05 01:22

Gasoline Range Organics (C6-C10) and BTEX per AK101

North Creek Analytical - Alaska

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-01	Water	MW-I	Sampled: 09/19/05							_	
Gasoline Range	Organics	AK101	ND		2500	սg/l	50x	5090070	09/21/05	09/21/05 23:01	
Benzene		14	153	*****	25.0		•	**			
Toluene		73	150	*****	25.0	н	•	n			
Ethylbenzene			ND		25.0	H					
Xylenes (total)		N	116		75.0	10			•	н	
Surrogate(s):	a,a,a-Tl-T (l-11))		Recovery: 95.1%	6	l.imits:	50 - 150 %	1x	- 100 =		,	
	a,a,a-Tl-T (PII))		87.1%	6	7	2.5 - 131 %	··.			*	
A510071-02	Water	MW-2	Sampled: 09/19/05	00:00							
Gasoline Range	Organics	AK101	ND		50.0	ug/l	lx	5090070	09/21/05	09/22/05 09:17	
Benzene		н	ND		0.500	•	**			tt.	
Toluene		*	ND	*****	0.500	•		**		*	
Ethylbenzene			ND	****	0.500			**	9	*	
Xylenes (total)		Ð	ND	*****	1.50	H		**	10	и	
Surrogate(s):	a,a,a-TFT (FID)		Recovery 106%	5	Limits:	50 - 150 %	*				- 533
	a,a,a-TFT (PH))		92.3%	6	7	2.5 - 131 %				ri	
A510071-03	Water	MW-3	Sampled: 09/19/05	19:30							
Gasoline Range (Organics	AK101	ND		50.0	ս g/l	1x	5090077	09/22/05	09/23/05 00:09	
Benzene		0	0.556	*****	0.500	н	н	**	u	10	
Toluene		49	ND	*****	0.500	10			11	•	
Ethylbenzene		"	1.73	*****	0.500				•	41	
Xylenes (total)		H	ND		1.50	**		н		•	
Surrogate(s):	a,a,a-TFT (FH))	100000	Recovery: 102%		Limits	50 - 150 %	~		-	п	
	a,a,a-TFT (PID)		88.8%	i	7	2.5 - 131 %				n	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its intirety.

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

SAIC

Project Name

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Number: Project Manager: 301726 Brady Nagle

Report Created: 09/30/05 01:22

Gasoline Range Organics (C6-C10) and BTEX per AK101

North Creek Analytical - Alaska

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-04	Water	MW-4	Sampled: 09/19/05	18:20						<u>-</u>	
Gasoline Range (Organics	AK101	ND	****	50.0	ug/l	lx	5090077	09/22/05	09/23/05 00:42	
Benzene		ы	ND	****	0.500		*			*	
Toluene			ND	*****	0.500	*		*			
Ethylbenzene		*	ND	-	0.500		н	**		-	
Xylenes (total)			ND	*****	1.50		**		ж.	*	
Surrogate(s):	a,a,a-TFT (FID)		Recovery: 1042	6	Limits:	50 - 150 %	**				
	a,a,a-TI-T (PID)		91,85	6	7	2.5 = 131 %	N			*	
A510071-05	Water	MW-5	Sampled: 09/19/0:	5 20:00							
Gasoline Range (Organics	AKI01	NĐ		50.0	ug/l	ix	5090077	09/22/05	09/23/05 01:14	
Benzene		n	ND		0.500	10	"	19			
Toluene		* 1	ND		0.500	10	**		*	*	
Ethylbenzene		*1	ND	*****	0.500	10	*		*		
Xylenes (total)	0		ND		1.50	10	*		•		
Surrogate(s)	a.a.a-IFT (FID)		Recovery: 1025	16	Limits:	50 - 150 %	*				
	a,a,a-TFT (PID)		89.4	%	7	2.5 - 131 %	"				
A510071-06	Water	MW-6	Sampled: 09/19/0:	5 19:10							
Gasoline Range	Organics	AK101	ND	*****	50.0	ug/l	lx	5090077	09/22/05	09/23/05 01:47	
Benzene	-	н	ND	*****	0,500		н	н		0	
Toluene		n	ND		0.500		"		"	•	
Ethylbenzene		**	ND		0.500		н	н			
Xylenes (total)		e	ND		1,50			in .			
Surrogate(s):	a,a,a-TFT (FID)		Recovery: 104	14	Limits	50 - 150 %				•	
20 2707	a,a,a-TFT (PH))		92.4		7	2.5 - 131 %	75.				

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Anchorage 2000 W International Angor Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726 Project Manager:

Brady Nagle

Report Created: 09/30/05 01:22

Gasoline Range Organics (C6-C10) and BTEX per AK101

North Creek Analytical - Alaska

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-07	Water	Purge Water	Sampled: 0	/19/05 21:1	0						
Gasoline Range	Organics	AK101	261	*****	50.0	ug/t	lx	5090070	09/21/05	09/21/05 (2:43	
Benzene		,,	18.2		0.500	"	*	н	н	н	
Toluene			15.7		0.500	н	**	н	-	н	
Ethylbenzene		н	1.96	*****	0.500	10	н				
Xylenes (total)		H	14.1		1.50	ıı .		•			
Surrogate(s):	a,a,a-TFT (FID)		Recovery: 107%		Limits:	50 - 150 %				n	-
	a,a,a-TFT (PII))		98.5%	;	7	2.5 - 131 %				H	
A510071-08	Water	Trip Blk	Sampled: 09/19/	05 00:00							
Gasoline Range (Organics	AK101	ND		50.0	ug/l	lx	5090070	09/21/05	09/22/05 02:49	·
Benzene		**	ND		0.500			**	#		
Toluene		•	ND	*****	0.500		•	н	•	n	
Ethylbenzene		H	ND		0.500	te			n	ı,	
Xylenes (total)		п	ND	*****	1.50	10				er e	
Surrogate(s):	a,a,a-TFT (FID)	377	Recovery: 99.8%		Limits:	50 - 150 %				N	-
	a,a,a-Tl-T (PII))		90.6%			5 - 131 %				W	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the claun of custody document. This analytical report must be reproduced in its entirety

\$40,

priorie: (503) 900-9240 raik: (503) 900-9210 2033 Empler Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383-9310 fax: 541.382-7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563-9200 fax: (907) 563-9210

SAIC

Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Number: Project Manager 301726 Brady Nagle Report Created,

09/30/05 01:22

Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO

North Creek Analytical - Alaska

Analyte		Method	Result	MDL*	MRL	Units	Dii	Batch	Prepared	Analyzed	Notes
A510071-01RE1	Water	MW-1	Sampled: 09/19/05	21:00							
Diesel Range Org	anics	AK 102/103	8.66		0.397	mg/l	1x	5090082	09/26/05	09/27/05 13:11	
Residual Range O	rganics	ıı	ND		0.397	10	-	M	и	н	
Surrogate(s)	1-Chlorooctadecane		Recovery: 86.6%		Limits:	50 - 150 %	**			"	
	Triacontane		96.0%			50 - 150 %	*			μ	
A510071-02	Water	MW-2	Sampled: 09/19/05	00:00						···	
Diesel Range Org	anics	AK102/103	ND	*****	0.417	mg/l	1x	5090075	09/22/05	09/22/05 13:18	
Residual Range O	rganics	н	ND	*****	0 417		H		10	10	
Surrogate(s)	1-Chlorooctadecane		Recovery: 104%		Limits:	50 - 150 %	~			"	
	Triacontane		92,3%			50 - 150 %				#	
A519071-03	Water	MW-3	Sampled: 09/19/05	19:30							
Diesel Range Org	zanics	AK 102/103	6.73		0.417	mg/l	lx	5090075	09/22/05	09/23/05 17:39	
Residual Range (Organics	н	2.12		0,417		10		•	41	
Surrogate(s)	1-Chlorooctadecane		Recovery: 85.2%		l.imits:	50 - 150 %	"			n	
	Triacontane		86.8%	i		50 - 150 %	,,			"	
A510071-04	Water	MW-4	Sampled: 09/19/05	18:20							
Diesel Range Org	ganics	AK102/103	1.31		0.403	mg/l	lx	5090075	09/22/05	09/23/05 18:11	
Residual Range (Organics	н	0.815		0.403	*	•	4	**	н	
Surrogate(s):	1-Chlorooctadecane		Recovery: 88.8%		Limits:	50 - 150 %	W			"	
100	Triacontane		88.3%	;		50 - 150 %	*			"	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Seattle

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9200 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383 9310 fax: 541.382.7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number 301726 Project Manager:

Brady Nagle

Report Created: 09/30/05 01:22

Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO

North Creek Analytical - Alaska

Analyte	<u> </u>	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-05	Water	MW-5	Sampled: 09/19/05 20	00:							
Diesel Range Org	ganics	AK102/103	ND		0.431	mg/l	lx	5090075	09/22/05	09/23/05 17:06	
Residual Range	Organics	4	0.782	*****	0.431		11	*	D	o o	
Surrogate(s)	1-Chlorooctadecane		Recovery: 92.6%		Limits	50 - 150 %				"	-
	Triacontane		92.4%			50 - 150 %	*			**	
A510071-06	Water	MW-6	Sampled: 09/19/05 19	:10							
Diesel Range Org		AK102/103	ND		0.403	mg/l	lx	5090075	09/22/05	09/23/05 15:30	_
Residual Range C	Prganics		ND	*****	0.403	11		H	#	н	
Surrogate(s):	1-Chlorooctadecane		Recovery: 73.9%		Limits:	50 - 150 %	N	-		0	
	Triacontane		86.6%			50 - 150 %	**			*	
A510071-07	Water	Purge Water	Sampled: 09/19	9/05 21:10							
Residual Range C	rganics	AK102/103	ND		0.400	mg/l	lx	5090066	09/21/05	09/21/05 12:55	
Surrogate(s):	1-Chlorooctadecane		Recovery: N5.6%		Limits	50 - 150 %	N			"	WA
	Triacontane		92.0%			50 - 150 %	*			н	
A510071-07RE1	Water	Purge Water	Sampled: 09/1	9/05 21:10	9						
Diesel Range Org	tanics	AK102/103	1.45		0.394	mg/l	lx	5090075	09/22/05	09/22/05 13:18	
Residual Range (Organics		0.524		0.394	*	"	н	*	11	
Surrogate(s):	1-Chlorooctadecane		Recovery: 92 9%		Limits:	50 - 150 %	N			"	
	Triacontane		91.6%			50 - 150 %	,,			"	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

11720 North Creek Pkwy N, Suite 400, Botheli, WA 38011-182 phone: (425) 420-200 fax: (425) 420-9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924-9200 fax: (509) 924-9290 9405 SW Nimbus Avenue, Beaverton, 0R 97008-7132 phone: (503) 906-9200 fax: (503) 906-9210

priorie (2003) 900-9200 163; (2003) 900-9200 20332 Empire Avenue, Sulte F-1, Bend, OR 97701-5711 phone: (541) 383-9310 fax: 541.382.7588 2000 W International Airport Road, Sulte A-10, Anchorage, AK 99502-1119 phone: (907) 563-9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager 301726 Brady Nagle Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-01REI Water	MW-1	Sampled: 09/19/0	5 21:00							
Acetone	EPA 8260B	ND		250	ug/l	10x	5091023	09/25/05	09/25/05 15:20	
Benzene	**	700		10.0				*	**	
Bromobenzene	- 4	ND		10.0	*	10	10	20		
Bromochloromethane	W).	ND	*****	10.0	9.		н	*	*	
Bromodichloromethane	H.)	ND	*****	10.0	95	••			D	
Bromoform	M E	ND	*****	10.0	* 1	**	25	19	P	
Bromomethane	•	ND		50.0	5.5	*	7.7	н		
2-Butanone	"	ND	****	100				•		
n-Butylbenzene	н	ND		50.0	•	н			*	
sec-Butylbenzene	n	ND	*****	10.0	10		•	47	**	
tert-Butylbenzene	н	ND	****	10.0	14	н	Pl	**	*	
Carbon disulfide		ND		100		W	*1			
Carbon tetrachloride	•	ND	*****	10.0	-		**	н	н	
Chlorobenzene	•	ND	*****	10.0	*		**	4	*	
Chloroethane	н	ND		10.0	*	17		н.	н	
Chloroform	н	ND	*****	10.0		u	18			
Chloromethane	н	ND		50.0	ě.			н	Ħ	
2-Chlorotoluene		ND	*****	10,0	10			•	#1	
4-Chlorotoluene		ND	*****	10.0	10	и	*	**	91	
1,2-Dibromo-3-chloropropane	•	ND		50.0	н		+	**	40	
Dibromochloromethane	ч	ND	****	10.0	н	н	•	te	18	
1,2-Dibromoethane	10	ND	****	10.0	м	•	**	10	10	
Dibromomethane		ИĎ	*****	10.0	*	**	**		16	
1,2-Dichlorobenzene	50	ND		10.0		**	**	"	10	
1,3-Dichlorobenzene		ND		10.0	41	ь	**		4	
1,4-Dichlorobenzene		ND	*****	10.0	e	u		н	н	
Dichlorodifluoromethane		ND	•	50,0	•			**	11	
1.1-Dichloroethane		ND	•••••	10.0	ь			**	**	
1.2-Dichloroethane		ND		10.0	16	н	н	**	**	
1,1-Dichloroethene		ND		10.0			н	•	0	
cis-1,2-Dichloroethene		ND		10.0	10		и	•1	и	
trans-1,2-Dichloroethene	4	ND		10.0		*	н		н	
1,2-Dichloropropane	4	ND		10.0		•		**	41	
1,3-Dichloropropane	н	ND		10.0	19	••	*	••	4	
2,2-Dichloropropane	le .	ND	•	10.0	N	и	**	v	*1	
1,1-Dichloropropene	ie.	ND		10.0		4		u u	41	
cis-1,3-Dichloropropene	•	ND		10.0	•1	4	•		7	
trans-1,3-Dichloropropene	×	ND		10.0	•1	47	•			
Ethylbenzene	14	64.2		10.0	40	•	e		I I	
Hexachlorobutadiene	ņ	ND		40,0	•	*	**	н	#	
2-Hexanone	AC.	ND		100	41	41	•	н	н	
	16	ND		20.0	•1	4)	•	14		
Isopropylbenzene		שא		20.0						

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726 Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dij	Batch	Prepared	Analyzed	Notes
A510071-01RE1	Water	MW-1	Sampled: 09/19/05	21:00							
p-Isopropyltoluer	ne	EPA 8260B	ND		20.0	ug/l	10x	5091023	09/25/05	09/25/05 15:20	
4-Methyl-2-penta	none	II	ND	*****	50.0	н	**	н	н	10	
Methyl tert-butyl	ether	II.	ND		10.0		**	•	н	"	
Methylene chlorid	de	D	ND	*****	50.0		**	4	м	41	
Naphthalene		16	81.1		20.0	н	*1	10	H	*	
n-Propy!benzene		19	ND	*****	10.0	le .	н		N	m	
Styrene		•	ND		10.0	ii.				м	
1,1,1,2-Tetrachlo	roethane	er er	ND		10.0	Te .		•	10	н	
1,1,2,2-Tetrachlo	roethane	"	ND		10.0	**		41	10	*	
Tetrachloroethene	e	*	ND		10.0	47	**	**	11		
Toluene		m	620		10.0	•		m	**	10	
1,2,3-Trichlorobe	nzene	N	ND		10.0			м	•1	**	
1,2,4-Trichlorobe	nzene	N	ND		10.0	#1		N	••	•	
1,1,1-Trichloroetl	hane	n	ND		10.0	-		-	•1	**	
1,1,2-Trichloroetl	hane	и	ND		10,0		**		•	**	
Trichloroethene		N	ND		10.0	н			et	н	
Trichlorofluorom	ethane	•	ND		10.0	н			*	•	
1,2,3-Trichloropre	opane	Ħ	ND		10,0		н			n	
1,2,4-Trimethylb	enzene	10	81.1		10.0		н	N	н	н	
1,3,5-Trimethylb	enzene	II .	62.8		10.0	100	н	n	н	н	
Vinyl chloride			ND		10.0	н	н	*		**	
o-Xylene			182		10.0	**	10	•		w	
m,p-Xylene			254		20.0	•	**		10		
Surrogate(s):	4-BFB		Recovery 99 5%		Limits:	75 - 120 %	1x			"	
	1,2-DCA-d4		97.5%			77 - 129 %	*			*	
	Dibromofluorometh	nane	96.0%			80 - 121 %	ne .			~	
	Toluene-d8		103%			80 - 120 %	20			"	

North Creek Analytical - Alaska

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726

Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-02 Water	MW-2 Sa	mpled: 09/19/05	00:00						<u>-</u> .	
Acetone	EPA 8260B	ND	****	25.0	ug/l	lx	5091015	09/24/05	09/24/05 14:54	
Benzene	Ħ	ND	*****	1.00		-		H	ú	
Bromobenzene	n	NĐ	77.0	1.00		40	*	*	*	
Bromochloromethane	n	ND	••••	1.00				"	11	
Bromodichloromethane	н	ND	*****	1.00	н.:	н	м	•	*	
Bromoform	q	ND	*****	1.00		**	9	"	*	
Bromomethane	P	ND		5.00	н	**	D	н	**	
2-Butanone	H	ND	*****	10.0	41	10	•	н	**	
n-Butylbenzene	*	ND	*****	5.00		10	*	u	**	
sec-Butylbenzene	u	ND	*****	1,00		14	H	e	Ħ	
tert-Butylbenzene	41	ND		1.00	14	-			7	
Carbon disulfide	Ħ	ND	*****	10.0		-				
Carbon tetrachloride	rt .	ND	*****	1.00	7	•	•	N CTG		
Chlorobenzene	*	ND	*****	1,00					*	
Chloroethane	н	ND	*****	1.00				H		
Chloroform	e e	ND	****	1,00	•			**		
Chloromethane	4	ND	*****	5.00			٠	**	N	
2-Chlorotoluene	16	ND	*****	1.00		*		10	N	
4-Chlorotoluene	•	ND	*****	1,00	**	ы	*	P	**	
1,2-Dibromo-3-chloropropane		ND	*****	5,00	*	41	41	"	92	
Dibromochloromethane		ND	,	1.00	*1	**	P		**	
1,2-Dibromoethane		ND	*****	1.00	•	**	ь	и		
Dibromomethane	*	ND	*****	1.00	**			et	II .	
1,2-Dichlorobenzene	*	ND		1.00	10	"		**		
1,3-Dichlorobenzene	*	ND	+	1.00	**	н		•	н	
1,4-Dichlorobenzene	н	ND	*****	1,00		**		•	"	
Dichlorodifluoromethane	*	ND	*****	5.00	н			ь	н	
1,1-Dichloroethane	N.	ND	••••	1.00	*	78			•	
1,2-Dichloroethane		ND	*****	1.00	-	**		н		
1,1-Dichloroethene	<i>*</i> 1	ND	****	1,00	•			н		
cis-1,2-Dichloroethene		ND	*****	1.00			8	"		
trans-1,2-Dichloroethene		ND		1,00		•			19	
1,2-Dichloropropane	•	ND	*****	1.00	**	•				
1,3-Dichloropropane		ND	-	1.00	*	н		"	•	
2,2-Dichloropropane		ND	****	1,00	1.	14	н	41		
1,1-Dichloropropene	•	ND	*****	1.00		н	н	•	н	
cis-1,3-Dichloropropene	N	ND	*****	1.00	н	**	"	**	м	
trans-1,3-Dichloropropene		ND		1.00	••	er	4	"		
Ethylbenzene	*	ND		1.00	(A)	•	44	10	65	
Hexachlorobutadiene	н	ND	*****	4,00	H	**	et e	D	41	
2-Hexanone	*	ND	****	10.0	•	19	rt.	14	41	
Isopropylbenzene		ND	2	2.00	*1	10			#	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its convery

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420,9200 fax: (425) 420,9210 ### 1720 ### 1

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726

Project Manager Brady Nagle Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte	<u> </u>	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-02	Water	MW-2	Sampled: 09/19/05	00:00							
p-Isopropyltolue	ene	EPA 8260B	ND	7.2	2.00	ug/l	lx	5091015	09/24/05	09/24/05 14:54	
4-Methyl-2-pent	tanone		ND	*****	5.00	н	н	**	n		
Methyl tert-buty	l ether	•	ND		1.00	u	10	*	10	н	
Methylene chlor	ride		ND		5.00	10	10	•	10	н	
Naphthalene		u	ND	****	2.00	**	19	**	**		
n-Propylbenzene	e	•	ND	*****	1.00	44	**		**	11	
Styrene		•	ND	*****	1.00			N	N		
1,1,1,2-Tetrachle	oroethane		ND	*****	1.00	н		n	н	н	
1,1,2,2-Tetrachle	oroethane		ND	****	1.00		н	**		te	
Tetrachloroether	ne		ND	*****	1.00		**	41	77	10	
Toluene			ND	*****	1.00	**	**	н	**	er	
1,2,3-Trichlorob	enzene		ND	*****	1.00	н	н	н	н	n n	
1,2,4-Trichlorob	enzene	*	ND		1.00	н		N	н	н	
1,1,1-Trichloroet	thane		ND	*****	1.00		•	10	н	н	
1,1,2-Trichloroet	thane	.0	ND		1.00			**	10	10	
Trichloroethene		9	ND	127	1.00	ı	10	•	10	v	
Trichlorofluoro	methane		10.3		1.00	*	0	•1	9	•	
1,2,3-Trichlorop	ropane	ir .	ND		1.00	39	•	*1	•	,	
1,2,4-Trimethylb	enzene	u	ND		1.00	**			*1		
1,3,5-Trimethylb	penzene	=	ND		1.00			10	*	18	
Vinyl chloride		n	ND		1.00	4	н	10	n		
o-Xylene		p	ND	*****	1.00		н	91		н	
m,p-Xylene		**	ND		2.00	*	*	61		N	
Surrogate(s):	4-HFB		Recovery: 92.0%		Limits:	75 - 120 %	п			и	
	1,2-DCA-d4		80.0%	i		77 - 129 %	,			*	
	Dihromofluorometl	hane	85.5%	;		80 - 121 %	"			•	
	Toluene-d8		92.0%	;		80 - 120 %				u	

North Creek Analytical - Alaska

12

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420-9200 fax: (425) 420-9210 East 11115 Montpornery, Suite B, Spokane, WA 99206-4776 phone: (509) 924-9200 fax: (509) 924-9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906-9200 fax: (503) 906-9210

phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager:

301726 Brady Nagle Report Created:

09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

											<u> </u>
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-03	Water	MW-3	Sampled: 09/19/0	5 19:30							
Acetone		EPA 8260B	ND		25.0	ug/l	ŧx	5091015	09/24/05	09/24/05 15:20	
Benzene		**	ND	*****	1.00	**	н	*		M	
Bromobenzene			ND	*****	1.00	**			н	41	
Bromochloromet	thane	н	ND		1.00	"	•1		M	**	
Bromodichlorom	nethane	**	ND		1.00	н	••	"	*	*	
Bromoform		ei	ND		1.00	-		3	20	н	
Bromomethane		н	ND		5.00	•	н	•	н	м	
2-Butanone		н	ND		10.0		н	*	H	er er	
n-Butylbenzene		19	ND	***	5.00	"		*	•	,	
sec-Butylbenzen	e	•	ND		1.00	н	**			•	
tert-Butylbenzen	ie	n dec	ND		1.00		•		6	н	
Carbon disulfide		10	ND		10.0	•		•	*	49	
Carbon tetrachlo		н	ND		1.00					41	
Chlorobenzene		•	ND		1.00	•	н			41	
Chloroethane		#	ND		1.00		*1	ь	4	•	
Chloroform		it	ND		1.00	н	**	10	10		
Chloromethane		16	ND		5.00	-		*	10	н	
2-Chlorotoluene	:	н	ND		1.00		11	и	*	м	
4-Chlorotoluene		4	ND		1.00				*	•	
1,2-Dibromo-3-c	chloropropane	19	ND		5.00	**	ж.	47	77	41	
Dibromochloron		u	ND	1000	1.00		н	40	*	**	
1,2-Dibromoeth		н	ND	2.22	1.00	M	•			D	
Dibromomethan		"	ND	*****	1.00		**	н	*	N	
1,2-Dichloroben		44	ND		1.00	н	••	*		f#	
1,3-Dichloroben		**	ND		1.00		**			н	
1.4-Dichloroben		u u	ND		1.00	H	18	41	*	**	
Dichlorodifluore	omethane	ı	ND	******	5.00	•	п	**		0	
1.1-Dichloroeth		н	ND		1.00	**	н	10	"	19	
1,2-Dichloroeth	ane	**	ND		1.00	10	***				
1,1-Dichloroeth		e	ND	*****	1,00	14		19	10		
cis-1,2-Dichloro		și.	ND	*****	1.00	18	и		*	10	
trans-1,2-Dichlo		19	ND		1.00		*	м	u	"	
1,2-Dichloropro		10	ND		1,00	н		н			
1,3-Dichloropro	-	14	ND	*****	1.00	*:	**	н		•	
2,2-Dichloropro		H	ND		1,00	*	**	el .		н	
1,1-Dichloropro		н	ND		1.00	*	10	**	*	41	
cis-1,3-Dichloro	-	4	ND	*****	1.00	*	9	**		**	
trans-1,3-Dichlo	•	**	ND	****	1.00	*		19		,*	
Ethylbenzene			1.64		1.00	ь	25	10		ь	
Hexachlorobuta	diene	11	ND		4.00		н	10		U	
2-Hexanone		14	ND	*****	10.0		н			D	
Isopropylbenzer	ne	14	ND	*****	2.00		*				
isopropyrociizer	in.										

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Anchorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726

Project Manager:

Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-03	Water	MW-3 Sa	mpled: 09/19/05	19:30							
p-Isopropyltoluen	ne	EPA 8260B	ND		2.00	ug/l	lx	5091015	09/24/05	09/24/05 15:20	
4-Methyl-2-penta	none	н	ND	-1	5.00	e	11		u		
Methyl tert-butyl	ether	м	ND	••••	1.00	м	н		11		
Methylene chlorid	de	•	ND		5.00	н	н		tr .		
Naphthalene			36.3		2.00			10	*	н	
n-Propylbenzene		P	ND	****	1.00	u	10	•	41	e1	
Styrene		4	ND	*****	1.00	0	**	•	*		
1,1,1,2-Tetrachlor	roethane	r r	ND	*****	1.00	**	0	*		м	
1,1,2,2-Tetrachlor	roethane		ND	*****	1.00	•1	•			н	
Tetrachloroethene	•	n	ND		1.00	**	*1		н	D	
Toluene		te .	ND		1.00	м		н		10	
1,2,3-Trichlorobe	nzene	te	ND	*****	1.00	m	н		H	41	
1,2,4-Trichlorobe	nzene	H	ND		1.00	10	н		*1	м	
1,1,1-Trichloroeth	nane	#	ND		1.00	10		*	*	н	
1,1,2-Trichloroeth	nane	н	ND		1.00	**	u	•		н	
Trichloroethene		н	ND		1.00	*	•	*		D	
Trichlorofluoron	nethane	*	5.53	******	1.00	41		•		10	
1,2,3-Trichloropro	opane	*	ND		1.00	и	•			**	
1,2,4-Trimethylbe	enzene		ND		1.00				н	**	
1,3,5-Trimethylbe	enzene	н	ND		1.00	N			u		
Vinyl chloride		#	ND	****	1.00	н		10	**		
o-Xylene		lf	ND		1,00	D	10	17	41	**	
m,p-Xylene		*	ND	••••	2.00				н	**	
Surrogate(s):	4-8FB		Recovery: 96.0%		Limits:	75 - 120 %	,,		0	"	1777
	1,2-DCA-d4		82.5%	\$		77 - 129 %	*			N	
	Dibromofluoromet	hane	88.0%	5		80 - 121 %	*			"	
	Toluene-d8		95.5%	5		80 - 120 %	"			,,	

North Creek Analytical - Alaska

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420,9200 fax: (425) 420,9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924,9200 fax: (509) 924,9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906,9200 fax: (503) 906,9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383,9310 fax: 541,382,7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563,9200 fax: (907) 563,9210

SAIC

Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Number: Project Manager: 301726

Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A5I0071-04RE1 Water	MW-4	Sampled: 09/19/0	5 18:20							_
Acetone	EPA 8260B	ND	*****	25.0	ug/l	lx	5091023	09/25/05	09/25/05 15:47	
Benzene	**	ND		1.00		*		*		
Bromobenzene	н	ND	1-800	1.00	**	4	**	н	N	
Bromochloromethane	н	ND		1.00	19	н	•	*	*	
Bromodichloromethane	4	ND		1.00	14	¥0		41	și.	
Bromoform	**	ND		1.00	•	и.	н	h•	##	
Bromomethane	n	ND	*****	5.00	**	*		*		
2-Butanone	**	ND	*****	10.0	n				м	
n-Butylbenzene	ď	ND	*****	5,00		21	16		9 1	
sec-Butylbenzene	10	ND		1,00		*	н	7.	NF.	
tert-Butylbenzene	н	ND	*****	1.00	27	**	1.0			
Carbon disulfide	**	ND		10.0	**	.70	**	"		
Carbon tetrachloride	19	ND	***	1.00	13		•	•	**	
Chlorobenzene	18	ND	*****	1,00		н	4	•	"	
Chloroethane	м	ND		1.00	"	•		"	11	
Chloroform	**	ND		1,00	41	44		"	16	
Chloromethane		ND	34	5.00	11-		41	н		
2-Chlorotoluene	10	ND		1.00	18	"	р	u		
4-Chlorotoluene	н	ND	****	1.00	H		n	#	81	
1,2-Dibromo-3-chloropropane	н	ND		5.00	-	•	н		**	
Dibromochloromethane	*	ND		1.00	**	**	H		**	
1,2-Dibromoethane	**	ND		1.00	10	"	- 0	**	le .	
Dibromomethane	p	ND		1.00	10	н	n		H	
1,2-Dichlorobenzene	н	ND		1,00	14			**	*	
1,3-Dichlorobenzene		ND		1.00	M		*	•	•	
1.4-Dichlorobenzene	u	ND		1.00	41	•	*		"	
Dichlorodifluoromethane	**	ND	****	5.00	41	**		H	41	
1,1-Dichloroethane	M	1.39		1.00	н	10		•	IF.	
1,2-Dichloroethane	**	ND		1.00	н	"	D	a		
1,1-Dichloroethene	**	ND		1.00	•	н	10	*	H	
cis-1,2-Dichloroethene	u u	ND	*****	1.00		н	10	*1	n	
trans-1,2-Dichloroethene	**	ND		1.00		н	•	49	16	
1,2-Dichloropropane	11	ND		1.00	el		•	10	H	
1,3-Dichloropropane	и	ND		1.00		41	н		•	
2,2-Dichloropropane	и	ND		1,00		H.		н	"	
1,1-Dichloropropene	н	ND		1.00		н	**	н	er	
cis-1,3-Dichloropropene	**	ND		1,00	н	н	0	q	79	
trans-1,3-Dichloropropene		ND	*****	1.00			10	**	ь	
Ethylbenzene	н	ND		1.00	*1	41	14	19		
Hexachlorobutadiene	и	ND		4.00		u	н			
	"	ND	••••	10.0	16	4	*	10	н	
2-Hexanone	**	ND	*****	2.00	**	41		,,	н	
Isopropylbenzene		שוו		4,00						

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-82-44 phone: (425) 420.9200 fax: (425) 420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 120332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383-9310 fax: 541.382.7588

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager:

301726 Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-04RE1	Water	MW-4	Sampled: 09/19/05	18:20							
p-IsopropyItoluen	e	EPA 8260B	ND	*****	2,00	ug/l	1x	5091023	09/25/05	09/25/05 15:47	
4-Methyl-2-penta	none	4	ND		5.00	44	н	9	н	er	
Methyl tert-butyl	ether	**	ND		1,00	41		**	н	•	
Methylene chlorid	ie	**	ND		5,00	**		••		•	
Naphthalene		**	ND		2 00		**				
n-Propylbenzene		H	ND		1.00		•		*	•	
Styrene		н	ИD	*****	1.00		•	H	*	#	
1,1,1,2-Tetrachlor	roethane	10	ND		1.00	0	н		4	et	
1,1,2,2-Tetrachlor	roethane	19	ND		1.00		н			н	
Tetrachloroethene	:	*	ND		1.00	*	н	l#	н	*	
Toluene		e	ND		1.00	el			н	*	
1,2,3-Trichlorobe	nzene	41	ND		1.00	**		61	n	**	
1,2,4-Trichlorobe	nzene	н	ND		1.00		"	*		**	
I.I.I-Trichloroeth	iane	н	ND		1.00		•	*		•	
1,1,2-Trichloroeth	nane	н	ND	***	1.00	н	**	и	10	u	
Trichloroethene		н	ND	*****	1.00	16	tr	н	•	n	
Trichlorofluorome	ethane	и	ND		1.00	10	tr	p	•	•	
1,2,3-Trichloropro	opane	P	ND		1.00	ie .	**	**	•	v	
1.2.4-Trimethylbe	nzene	u u	ND	****	1.00		н		**	•	
1,3,5-Trimethylbe		9	ND		1.00	#		0	M	**	
Vinyl chloride		•	ND	****	1.00		н		н	N	
o-Xylene			ND	****	1.00		19				
m,p-Xylene		н	ND		2.00		•	н		**	
Surrogate(s):	4-BFB		Recovery: 95.5%		Limits: 7	75 - 120 %				n	
	1,2-1X 'A-d4		96.5%	;	7	7 - 129 %	"			"	
	Dibromofluoromethane	y .	95.5%	i	8	0 - 121 %	"			"	
	Toluene-d8		97.5%	i	8	80 - 120 %	"			*	

North Creek Analytical - Alaska

East 11115 Montgomery, Suite by, Spokane, WA 992/05-9 phone: (509) 924-9200 fax: (509) 924-9290 9405 SW Mimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906-9200 fax: (503) 906-9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

phone: (541) 383-3310 fax: 541.382.7588 2000 W (nternational Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563,9200 fax: (907) 563,9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726 Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-05	Water	MW-5	Sampled: 09/19/05	5 20:00							
Acetone	<u> </u>	EPA 8260B	ND		25,0	սաչ/1	lx	5091015	09/24/05	09/24/05 16:13	
Benzene		**	ND		1.00	-		•	*	•	
Bromobenzene		**	ND		1.00		*	*	**	"	
Bromochlorometha	ne	н	ND		1.00		*		10	**	
Bromodichloromet		**	ФИ		1.00	**	4	ę!	н	III	
Bromoform		•	ND		1.00	•	D	: 40	41	и	
Bromomethane		14	ND		5.00	**				*	
2-Butanone			ND		10.0	*	*	**	и	8 5	
n-Butylbenzene		19	ND		5.00	*1		18	41	ėt	
sec-Butylbenzene		н	ND	7,2	1.00		200	Ħ	**	19	
=		D D	ND		1.00	20	+1	22	14	и	
tert-Butylbenzene Carbon disulfide		а	ND		10.0		*		-	-	
-	i_	н	ND		1.00				•		
Carbon tetrachlorid	ic .	#1	ND		1.00				4		
Chlorobenzene		,,	ND		1.00			•		14	
Chloroethane		н	ND		1.00			**	н	N	
Chloroform			ND		5.00				41	41	
Chloromethane			ND ND		1.00		н	н	•	10	
2-Chlorotoluene					1.00		74		н	19	
4-Chlorotoluene		,,	ND			и	•	- 9	н	*1	
1,2-Dibromo-3-chl			ND		5.00					47	
Dibromochloromet			ND		1.00		н		- 14	IP.	
1,2-Dibromoethane	•	п	ND		1.00	и н	-		N	н	
Dibromomethane		н	ND		1.00	,		*		и	
1,2-Dichlorobenze	ne	**	ND		1.00			,,			
1,3-Dichlorobenze	ne	**	ND		1.00			H			
1,4-Dichlorobenze	ne	И	ND		1.00						
Dichlorodifluorom	ethane	н	ND		5.00	N	*	"			
1,1-Dichloroethane	e	0	ND		1.00	*	11	4	**	el	
1,2-Dichloroethane	e	н	ND	****	1.00	17		н	105	61-	
1,1-Dichloroethen	e	н	ND		1.00		*	н		•	
cis-1,2-Dichloroet		H	ND	••••	1.00		et Edit	Ħ		н	
trans-1,2-Dichloro		**	ND	••••	1.00	•		**	н	и	
1,2-Dichloropropa		10	ND		1.00	н		10	•	м	
1,3 Dichloropropa		14	ND		1.00	*	1.0	10	•	41	
2,2-Dichloropropa		н	ND		1,00			н	D	40	
1,1-Dichloroprope			ND		1.00	н	н	н	"		
cis-1,3-Dichloropr		10	ND		1.00	н	•	•	*1	м	
trans-1,3-Dichloro		и	ND		1,00	11	11	10	- 10	41	
Ethylbenzene	highene	N	ND	*****	1,00			14	11	*	
Hexachlorobutadio	ene	10-	ND		4.00		*	N			
2-Hexanone	ELIC		ND	****	10.0	н	•	н			
Z-Hexanone Isopropyibenzene		10	ND		2.00			**	н	н	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726

Project Manager:

Brady Nagle

Report Created 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-05	Water	MW-5	Sampled: 09/19/05	20:00							
p-Isopropyltolue	ene	EPA 8260B	ND	V	2,00	ug/l	lχ	5091015	09/24/05	09/24/05 16:13	
4-Methyl-2-pent	tanone	N	ND		5.00			17	#	н	
Methyl tert-buty	1 ether	**	ND	*****	1.00	н	"	tf	#	**	
Methylene chlor	ide	10	ND	****	5.00	н		**	•	**	
Naphthalene		11	ND	****	2.00	н	49	*1	м	**	
n-Propylbenzene	e		ND		1.00		**			ės .	
Styrene			ND	****	1.00	83	41	н	H	H	
1,1,1,2-Tetrachle	oroethane	**	ND	***	1.00		++	н		N	
1,1,2,2-Tetrachle	oroethane	**	ND		1.00		**			*	
Tetrachioroether	ne	н	ND		1.00	•	н		1*	10	
Toluene		н	ND	-	1.00		н		**	**	
1,2,3-Trichlorob	enzene	н	ND		1.00		4	17	11	•	
1,2,4-Trichlorob	enzene	10	ND		1.00		10	**	**	**	
1,1,1-Trichloroe	thane	16	ND		1.00	м	10	•	*1	н	
1,1,2-Trichloroe	thane	**	ND	*****	1.00			er er		н .	
Trichloroethene		я	ND	****	1.00		*	*1	н	10	
Trichlorofluoro	methane	а	5.17		1.00		0	*1		16	
1,2,3-Trichlorop	ropane	u	ND	*****	1.00	10	**	**	W	**	
1,2,4-Trimethyll	benzene	•	ND	*****	1.00	**	**	•	H	1)	
1,3,5-Trimethyll	benzene	"	ND		1.00	11				#1	657
Vinyl chloride		TP .	ND		1.00	**	н		н	н	
o-Xylene		#	ND		1.00	**	н	10	**	н	
m,p-Xylene		н	ND		2.00	н		**	4	10	
Surrogate(s):	4-BFB		Recovery: 93.0%	;	Limits:	75 - 120 %	"			,,	-3
	1,2-DCA-d4		83.0%	\$		77 - 129 %	"			**	
	Dibromofluorometh	hane	89.0%	\$		80 - 121 %				#	
	Toluene-d8		89.5%	\$		80 - 120 %	Ħ			*	

North Creek Analytical - Alaska

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

phone: (425) 420,9200 Tax: (445) 420,9210 Fast 1115 Montgomery, Suite 6, Spokene, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

phone: (541) 383,9310 fax: 541,382,7568
2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
phone: (907) 563,9200 fax: (907) 563,9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager:

301726

Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-06	Water	MW-6	Sampled: 09/19/05	19:10	_						
Acetone		EPA 8260B	ND		25.0	ug/l	lx	5091015	09/24/05	09/24/05 16:40	
Benzene		н	ND		1.00	•	H	**	H		
Bromobenzene		49	ND		1.00	н	bi .	*	**	и	
Bromochlorometh	iane	40	ND		1.00		**		e.	**	
Bromodichlorome	thane	н	ND	227	1.00	10		н	ж.	B	
Bromotorm		**	ND		1.00	10	н	**	н	4	
Bromomethane		**	ND		5.00	W	"	19	•		
2-Butanone		н	ND		10.0	47		H	10	*1	
n-Butylbenzene		н	ND		5.00	P	н	**	P.	49	
sec-Butylbenzene		**	ND		1.00	н	**	ď	•	H	
tert-Butylbenzene		**	ND		1 00	н	"	•		*	
Carbon disulfide		•	ND		10.0	**	**	14	н	"	
Carbon tetrachlor	ide	br .	ND		1.00	#	**	и		•	
Chlorobenzene		17	ND		1.00	10	2	н		*	
Chloroethane		H	ND		1.00	н	*	•		ч	
Chloroform		н	ND		1.00	н	#1		"	н	
Chloromethane		н	ND		5.00		**			H	
2-Chlorotoluene		19	ND	*****	1.00	**		н	н	**	
4-Chlorotoluene		н	ND		1.00	D			**	10	
	Noronronana	*	ND		5.00		*	19	**	M	
1,2-Dibromo-3-cl Dibromochlorom		**	ND		1.00	м		н		*	
		N	ND		1.00	81		н	н	**	
1,2-Dibromoetha		и	ND		1.00	•	11	**	N	18	
Dibromomethane			ND		1.00				**		
1,2-Dichlorobenz		*	ND		1.00	н	*		**		
1,3-Dichlorobenz		H	ND		1.00	н	*1	н		4	
1,4-Dichlorobenz			ND ND		5.00	**	"	н	н	**	
Dichlorodifluoro					1.00	41	4		н	10	
1,1-Dichloroetha			ND		1.00	ь		•		н	
1,2-Dichloroetha			ND				и	10		н	
1,1-Dichloroethe		"	ND	*****	1.00		н	10		н	
cis-1,2-Dichloroe			ND	•••••	1.00		н		11	и	
trans-1,2-Dichlor			ND	*****	1.00						
1,2-Dichloroprop		н	ND		1.00			"			
1,3-Dichloroprop	ane	*	ND	*****	1.00	47			,	**	
2,2-Dichloroprop	oane	D	ND		1.00		11				
1,1-Dichloroprop	ene	te .	ND	**	1.00						
cis-1,3-Dichlorop	propene	H	ND		1.00		н	**		N	
trans-1,3-Dichlor	ropropene	41	ND	*****	1.00	н	H	14	,,		
Ethylbenzene		**	ND	*****	1.00	м		н	"	4	
Hexachlorobutad	liene	II-	ИÐ		4.00	#	**	н	н	86	
2-Hexanone		**	ND	•	10.0	4	0		н	19	
Isopropylbenzen	e	N	ND	****	2.00	11	"	**	*1	D	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number:

Project Manager: **Brady Nagle**

301726

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-06	Water	MW-6	Sampled: 09/19/05	3 19:10							
p-I sopropy Itolue	ne	EPA 8260B	ND		2.00	ug/l	1x	5091015	09/24/05	09/24/05 [6:40	
4-Methyl-2-penta	anone	N	ND		5.00	n		**	11		
Methyl tert-butyl	l ether	•	ND		1.00	11	н	er .	41	D	
Methylene chlori	ide	•	ND	******	5.00	P	n	**	ál	114	
Naphthalene		10	ND		2.00	19	*	**	41	•	
n-Propylbenzene	;	10	ND		1.00	41	P		*	n	
Styrene		ir	ND		1.00	#	*	н		41	
1,1,1,2-Tetrachlo	proethane	#	ND		1.00	*	*	N		•	
1,1,2,2-Tetrachlo	proethane	11	ND		1.00		*	м			
Tetrachloroethen	ie	#	ND	*****	1.00	•	44	14	M	•	
Toluene		н	ND		1.00		*		N	N	
1,2,3-Trichlorob	enzene	н	ND	*****	1.00	•	**	н	H	H	
1,2,4-Trichlorobe	enzene	H	ND		1.00		4		H	*	
1,1,1-Trichloroet	thane		ND		1.00		*	•	N	19	
1,1,2-Trichloroet	thane		ND		1.00			10		41	
Trichloroethene			ND	*****	1.00		"	10		*1	
Trichlorofluoron	nethane	•	ND		1.00	н	н	11	n	41	
1,2,3-Trichloropa	ropane		ND		1.00		н	**	*	41	
1,2,4-Trimethylb	•	н	ND		1.00		н		19	и	
1,3,5-Trimethylb	enzene	н	ND	*****	1.00		н	**		н	
Vinyl chloride		н	ND		1.00		н	**	#	и	
o-Xylene		н	ND	*****	1.00	1.0	n	#F	н	10	
m,p-Xylene		n	ND		2.00			e1		0	
Surrogate(s):	4-BFB		Recovery: 95.59	6	Limits:	75 - 120 %	*			n	
	1,2-DCA-d4		84.02	6		77 - 129 %	*			o	
	Dibromofluoromethar	ne	89.02	6		80 - 121 %	*			μ	
	Toluene-d8		93.09	6		80 - 120 %	H			#	

North Creek Analytical - Alaska

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax: (425) 420.9210 | fax: 5420.9210 | fax:

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number:

301726

Project Manager: Brady Nagle

Report Created. 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-07	Water	Purge Water	Sampled: 0	9/19/05 21:1	0						
Acetone		EPA 8260B	ND	*****	25.0	ug/l	lx	5091015	09/24/05	09/24/05 17:06	
Benzene		"	18.6		1.00			•61	49	**	
Bromobenzene		v	ND	*****	1.00	10		•		19	
Bromochlorometha	ane	D	ND	****	1.00				"	•	
Bromodichlorome		н	ND		1.00			н	4	н	
Bromoform		**	ND		1.00		40	v	**	ŧt	
Bromomethane		10	ND	****	5.00	н	•	10		10	
2-Butanone		N	_ ND		10.0	•1	•	н	•	"	
n-Butylbenzene		#I	ND		5.00	•	41	н	*1	н	
sec-Butylbenzene		e	1.08	*****	1,00	26.5		90	0	er	
tert-Butylbenzene		19	ND		1.00	10				•	
Carbon disulfide		н	ND		10.0		9.1		**	"	
Carbon tetrachlori	de	N	ND		1.00		te	и	41	41	
Chlorobenzene		47	ND		1.00		н	н	41	a	
Chloroethane		19	ND		1.00		**	đ	10	e e	
Chloroform		м	ND		1,00	"	47	10	*	D	
Chloromethane		н	ND		5.00	IV.			•	14	
2-Chlorotoluene		ti	ИD		1.00	N		•	4	N	
1-Chlorotoluene		**	ND		1.00	u		н	Ħ	41	
1,2-Dibromo-3-ch	loropropane	н	ND		5.00	**	4	**	P	#1	
Dibromochlorome		н	ND	****	1.00		*	**	*		
1,2-Dibromoethan	ie	u	ND	****	1.00	ıı.			*	н	
Dibromomethane		9	ND		1.00	н	H	н	4	н	
1,2-Dichlorobenzo	ene	н	ND		1.00	н	*	н	*1		
1,3-Dichlorobenzo	ene	N	ND	••••	1.00	••	и	**	19	"	
1,4-Dichlorobenze	ene	н	ND		1.00		41	**	10	**	
Dichlorodifluoron	nethan e	e e	ND	*****	5.00		40	19	m		
1,1-Dichloroethan		16	ND		1.00	н	•	и	Ħ	H	
1,2-Dichloroethan		N	ND		1.00	H	•	н	**	н	
1,1-Dichloroether		и	ND		1.00	"			**	**	
cis-1,2-Dichloroe		9)	ND		1.00	H	**		47	"	
trans-1,2-Dichlore		41	ND		1.00	et et	н		D	Ħ	
1,2-Dichloropropa		17	ND		1,00	**	*	**	10	**	
1,3-Dichloropropa		10	ND	*****	1.00		40	10	10	н	
2,2-Dichloroprop		н	ND	*****	1.00	"			*	14	
I,I-Dichloroprop		н	ND	****	1.00	16	P	н	**	н	
cis-1,3-Dichlorop		11	ND		1.00			н	"	**	
trans-1,3-Dichlore	•	10	ND	*****	1.00	•1	н	#1	**	"	
Ethylbenzene		10	1.71	••••	1,00	**	"	41	ь	**	
Hexachlorobutadi	ene	и	ND	*****	4.00	•		0		0	
2-Hexanone	-	н	ND		10.0	D	11	0	U	19	
Isopropylbenzene		*1	ND		2.00	*	11	14	н		

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726

Brady Nagle

Report Created. 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-07	Water	Purge Water	Sampled: 0	9/19/05 21:1	0						
p-Isopropyltoluer	ne	EPA 8260B	ND	****	2.00	ug/l	lx	5091015	09/24/05	09/24/05 17:06	
4-Methyl-2-penta	ınone		ND		5.00	*	•	*	H	и	
Methyl tert-butyl	ether	u	ND	****	1.00	41	*1	н	н	н	
Methylene chlori-	de		ND		5.00	n	**	н	н	н	
Naphthalene		10	5.35		2.00	47			**		
n-Propylbenzene	•	10	1.34		1.00	41	**		11	u	
Styrene		10	ND		1.00	n	н	н	н	U	
1,1,1,2-Tetrachlo	roethane	10	ND		1.00	н			D	n	
1,1,2,2-Tetrachlo	roethane	10	ND		1.00		н			10	
Tetrachloroethene	e	•	ND	*****	1.00	*	10			•	
Toluene		**	13,4	*****	1.00	*	19		10	**	
1,2,3-Trichlorobe	enzene	**	ND		1.00	н	н	**	u	**	
1,2,4-Trichlorobe	enzene	tr.	ND		1.00	н		10	*		
1,1,1-Trichloroet	hane	**	ND		1.00	н	14	10	**	**	
1,1,2-Trichloroet	hane	**	ND		1.00		н		**	n	
Trichloroethene		••	ND	****	1.00				ur .		
Trichlorofluorom	ethane	**	ND		1.00	н	н	#	17		
1,2,3-Trichloropr	ropane	18	ND		1.00		н	•	•	N	
1,2,4-Trimethylb	enzene	49	3.25	****	1.00		10	**	*	H	
1,3,5-Trimethylb	enzene	0	1.94	****	1.00		10	•	44	t#	
Vinyl chloride		P	ND	*****	1.00	3.14	10	u	•	11	
o-Xylene		п	4.08		1.00	19	**	41	н	**	
m,p-Xylene		•	5.09	*****	2.00	tr .		,		**	
Surrogate(s)	4-BFB		Recovery: 1049	6	Limits:	75 - 120 %	N			п	
	1.2-DCA-d4		92.0%	6		77 - 129 %	H			n	
	Dibromofluorometh	ane	95.09			80 - 121 %	"			•	
	Toluene-d8		97.59	6		80 - 120 %	H			**	

North Creek Analytical - Alaska

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563,9200 fax: (907) 563,9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name: Project Number: Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Manager:

301726

Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-08	Water	Trip Blk	Sampled: 09/19	/05 00:00		_					
Acetone		EPA 8260B	ND		25.0	ug/l	lx	5091015	09/24/05	09/24/05 12:40	
Benzene		•	ND		1.00	м	**	н	**	10	
Bromobenzene		D	ND		1.00	••			н	,	
Bromochloromethan	ne	И	ND		1.00	**	ь		H		
Bromodichlorometh	iane	•	ND		1.00		н	н	11	49	
Bromoform			ND	**	1.00	•			н	н	
Bromomethane		•	ND		5.00	•		"			
2-Butanone			ND	••••	10.0		н		11	*	
n-Butylbenzene		n n	ND	*****	5.00	м	41		н		
sec-Butylbenzene		Ħ	ND	••	1.00	96	•		W)	"	
tert-Butylbenzene		*	ND	****	1.00		"		•	44	
Carbon disulfide		W	ND	*****	10.0						
Carbon tetrachlorid	e		ND		1.00	**		3.5	н	и	
Chlorobenzene		•0	ND		1.00	41		**	н	•	
Chloroethane		D	ND		1.00	the same		14	4		
Chloroform		н	ND		1.00	10	н				
Chloromethane		#	ND		5.00	н	•		н	"	
2-Chlorotoluene		*	ND	*****	1.00	er er	19				
4-Chlorotoluene		18	ND		1.00				•		
1,2-Dibromo-3-chlo	oropropane	м	ND		5.00	*	и	14			
Dibromochloromet		19	ND	*****	1.00		er	*1	**	н	
1.2-Dibromoethane		10	ND		1.00			**	0		
Dibromomethane		н	ND	*****	1.00		н	14	u		
1,2-Dichlorobenzer	ne	н	ND		1.00	*	н	М	н	*	
1,3-Dichlorobenzer		D	ND		1.00	*1	41		и		
1.4-Dichlorobenzer		N	ND		1.00	40		**	•		
Dichlorodifluorom		*	ND		5.00		н	**	a		
1.1-Dichloroethane		**	ND		1.00	н		н	н	•	
1.2-Dichloroethane		14	ND	10	1.00	*1	47	**	**		
1,1-Dichloroethene		+	ND		1.00	**	10	•	**		
cis-1,2-Dichloroeth		Ħ	ND	*****	1.00	.00	19	•			
trans-1,2-Dichloroe		44	ND		1,00			n	11	•	
1,2-Dichloropropa		в	ND		1.00	-	н	14		•	
1,3-Dichloropropar		н	ND		1.00	**	,	н	н		
2.2-Dichloropropa		== н	ND		1.00	41	IP.	in the	**		
1,1-Dichloroproper		**	ND		1.00	n	19	19	ø	•	
cis-1,3-Dichloropro		10	ND		1.00			· .			
•	*	W	ND		1.00			10			
trans-1,3-Dichloro	ριορειις	*	ND		1.00	41	#	н	*1	н	
Ethylbenzene		*	ND	28	4.00	11		**	e		
Hexachlorobutadie	THE	*	ND	*****	10.0			•			
2-Hexanone		м	ND ND		2.00		14	19	19		
Isopropylbenzene			ND		2,00						

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of createdy document. This analytical report must be reproduced in its entirety.

phone: (541) 383,9310 fax: 541 382,7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563,9200 fax: (907) 563,9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager:

301726 Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A510071-08	Water	Trip Blk	Sampled: 09/19/	05 00:00							
p-Isopropyltoluer	ne	EPA 8260B	ND	-0.000	2.00	ug/l	lx	5091015	09/24/05	09/24/05 12:40	
4-Methyl-2-penta	none	N	ND		5.00	19	,,	4	н		
Methyl tert-butyl	ether	H	ND	*****	1.00	47	14	**	н	el .	
Methylene chlorie	de	•	ND	*****	5.00	•	10	**	н	61	
Naphthalene		M	ND	*****	2.00	19		49	19	и	
n-Propylbenzene		N	ND	*****	1.00	10	10	+1	•	н	
Styrene		N	ND	*****	1.00	42		*1	0	*	
1,1,1,2-Tetrachlo	roethane	н	ND		1.00	#	10	••	•		
1,1,2,2-Tetrachlo	roethane	H	ND		1.00	**	10	*1	•		
Tetrachloroethene	e	n	ND	*****	1.00	11	**	**	**		
Toluene		14	ND	*****	1.00	ď	40	*1	•		
1,2,3-Trichlorobe	nzene	n	ND	*****	1.00	e	R	н	Ħ		
1,2,4-Trichlorobe	nzene	D.	ND	****	1.00	и	**		•		
1,1,1-Trichloroetl	hane	н	ND		1.00		40				
1,1,2-Trichloroetl	hane	ь	NĐ	****	1.00		**	-	**	*	
Trichloroethene			ND		1.00	**		W	H		
Trichlorofluorom	ethane	D	ND	****	1.00	*	87	н			
1,2,3-Trichloropr	opane	D	ND		1.00		41	*	N	ti.	
1,2,4-Trimethylbe	•		ND	****	1.00	н	u-	н	**	H	
1,3,5-Trimethylbe	enzene	u	ND	3.00	1.00	•		н	*1	н	
Vinyl chloride		n	ND	82	1.00	н	н	н	n		
o-Xylene		n	ND	-	1.00	N	н		н		
m,p-Xylene		***************************************	ND		2.00		H	10		н	
Surrogate(s):	4-BFB		Recovery: 91.5%		Limits:	75 - 120 %	"			N	
	1.2-IX'A-d4		95.0%	6		77 - 129 %	,,			#	
	Dibromofluorometha	ne	97.0%	6		80 - 121 %	**			*	
	Toluene-d8		98.5%	6		80 - 120 %	*			"	

North Creek Analytical - Alaska

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726 Project Manager:

Brady Nagle

Report Created: 09/30/05 01:22

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results North Creek Analytical - Alaska

							C	e_:	%		•/~			***
nalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	RPD	(Limits)	Analyzed	Note
Blank (5090070-BLK1)					<u></u>		_	Extra	ected:	09/21/05 08	1:22			
Gasoline Range Organics	AK10I	ND	3.44	50.0	ug/l	lx	.75	55		***		-	09/21/05 10:04	
	GRO/BTEX	ND		0.500				2.5	••	20				
enzene		ND		0.500	34	•			••	22			•	
oluen c		ND	8.777	0.500			••	••		••	_		*	
thylbenzene		ND	***	1.50		-				**				
(ylenes (total)			-					-		-		-	09 21 05 10:04	
Surregate(s): a,a,a-TFT (FID)		Recovery:	103% 95.2%	1,10	iits: 50-150% 72.5-131%								"	
a,a,a-71+7* ((*1/))			93.276		12.0-10174									
.CS (5090070-BS1)								Extr	acted:	09/21/05 0	B: 22			
enzene	AK101 GRO/BTEX	20.5	==	0.500	ug/l	lx	**	200	102%	(77 3-136)	••	09/22/05 00:39	
Toluene		20.8	•••	0,500		•	•	- 7	104%	(83 9-121)	(1)		
thylbenzene		21.2		0 500	•	33	••	•	106%	(77.7-125) 🚎	5.5	•	
(ylenes (total)		62 3		1,50		•	**	60.0	104%	(86-122)		••	•	
Surregate(s): a,a,a-TFT (PH))		Recovery:	91.6%	Limi	ts: 72.5-131%	70							09 22 05 00:39	
LCS (5090070-BS2)			- <u>-</u> -					Extr	acted:	09/21/05 0	8:22		.	
Gasoline Range Organics	AK101 GRO/BTEX	556	- 20	50,0	ug/l	lx		550	101%	(60-120)		_	09/21/05 11:30	
Surrogate(s): a.a.a-TFT (F1D)	19	Recovery	114%	Lin	nits: 50-150%	**							09 21 05 11:30	
23								F-+-	endadı.	09/21/05 0	2-77			
LCS Dup (5090070-BSD1)			····										09/21/05 17 34	
Benzene	AK101 GRO/BTEX	20.0	57	0.500	ا/يون	lx		20 0	100%	(77,3-136) 2.47	76 (10.9)	09/21/05 17 34	
Coluene	OKO/BIEA	20.5	***	0 500	•	•	••	•	102%	(83.9-121) 1 45	% (12.5)	•	
thylbenzene	•	21.0		0.500	•	•		-	105%	(77_7-125) 0.948	3% (11.8)	•	
Kylenes (total)		61.8	***	1 50				60.0	103%	(86-122)	0.800	5% (10.6)	•	
Surrogate(s) a.a.a-TFT (PH)	- 77	Recovery	y3.2%	Limi	is: 72.5-131%	*							ay 21 05 17 34	
LOOD (FARAGE DODG)								Ext	racted:	09/21/05 0	8:22			
LCS Dup (5090070-BSD2)		524		50.0	ug/l	lx		550	95,3%	(60-120)	5.93	% (20)	09/21/05 18:06	
Gasoline Range Organics	AK101 GRO/BTEX										- 1		09 21 05 1R:06	- 22
Surrogate(s): a,a,a-IFT (FII)		Recovery:	107%	Li	mits: 50-150%	-							ay 21 03 (n.aa	
Duplicate (5090070-DUP1)	_			QC Source	: A510070-02			Ext	racted:	09/21/05 0	8:22			
Gasoline Range Organics	AK101 GRO/BTEX	ND		50 0	uy/I	lx	ND	••		- 3-	NI	R (50)	09/22/05 10 04	
Surrogate(s) a,a,a-TFT (FH)	GROBILA	Recovery:	11104	1.	mits: 50-150%			7, 50					89 22 05 10:04	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This onalytical report must be reproduced in its entirety

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726 Brady Nagle

Report Created: 09/30/05 01:22

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results

North Creek Analytical - Alaska

QC Batch: 5090070	Water	Preparation	Method: E	PA 5030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Note
Matrix Spike (5090070-MS1)				QC Source:	A510070-01			Extr	acted:	09/21/05 08	:22			
Benzene	AK10I GRO/BTEX	20.0		0 500	ug/l	lx	ND	20.0	100%	(62 1-143)	-	••	09/22/05 10:37	
Toluene		20.6		0.500	•		ND	•	103%	(68.5-133)	***			
Ethylbenzene	•	20.9		0.500	-	•	ND		104%	(64.5-132)	_		•	
Xylenes (total)		61.7	•••	1.50	•		0.320	60.0	102%	(70.2-133)		2		
Surrogate(s): a,a,a-Tl-T (PID)	V 255	Recovery	9R.R%	Limits	72.5-131%	•		11.00			- 00		09 22 05 10:37	- 0
Matrix Spike Dup (5090070-M	SD1)			QC Source:	A510070-01			Extr	acted:	09/21/05 08	:22			
Benzene	AK10I GRO/BTEX	20.4		0.500	ug/l	lx	ND	20.0	102%	(62 1-143)	1,989	6 (13.3)	09/22/05 11:10	
Toluene	•	21.1		0.500	•	-	ND	*	106%	(68.5-133)	2.40%	6 (16.4)		
Ethylbenzene		21.5	•••	0.500	-	•	ND		108%	(64 5-132)	2.83%	4 (14.8)	•	
Xylenes (total)		62.8		1.50	•		0.320	60,0	104%	(70.2-133)	1.77%	6 (14.9)		
Surrogate(s): a,a,a-77-7 (PID)		Recovery:	99.3%	Limits	: 72.5-131%								09 22 05 11:10	

QC Batch: 5090077	Water	Preparation	Method: El	A 5030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (5090077-BLK1)								Extr	acted:	09/22/05 14	:29			
Gasoline Range Organics	AK101 GRO/BTEX	ND	***	50.0	ug/l	1x		••					09/23/05 07:16	
Benzene	•	ND	***	0.500		•				••		_	•	
Toluene		ND		0.500	-	•	_			••	_		-	
Ethylbenzene	•	ND		0.500	*		-						•	
Xylenes (total)	*	ND		1.50		•								
Surrogate(s): a,a,a-TFT (FID)		Recovery:	106%	Lin	iis: 50-150%	-	-						09 23 05 07:16	
a,a,a-TFT (PII)			94.5%		72.5-131%	-							•	
LCS (5090077-BS1)								Extr	acted:	09/22/05 14	:29			
Benzene	AK101 GRO/BTEX	19.0	***	0.500	ug/l	lx	-	20.0	95.0%	(77.3-136)		(09/22/05 23.03	
Toluene	•	20.0	•••	0.500	*	•			100%	(83.9-121)	_	-	•	
Ethylbenzene	•	20.8		0.500	•	•	-	•	104%	(77.7-125)			-	
Xylenes (total)	*	60.8		1.50	•	•	••	60.0	101%	(86-122)		-	•	
Surrogate(s): a,a,a-TFT (PID)		Recovery	RR.3%	Limit	s: 72.5-131%			7573				-	09 22 05 23:03	100

North Creek Analytical - Alaska

12

| Seattle | 11720 North Creek Pkwy N, Sulte 400, Bothell, WA 98011-8244 phone: (425) 420,9200 fax: (425) 420,9210 | Spokane | East 11115 Montpomery, Sulte B, Spokane, WA 99206-4776 phone: (509) 924,9200 fax: (509) 924,9290 | 900 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906,9200 fax: (503) 906,9210 | 2032 Empire Avenue, Sulte F-1, Bend, OR 97701-5711 phone: (541) 383,9310 fax: (541,382,7588 | 2000 W International Airport Road, Sulte A-10, Anchorage, AK 99502-1119 phone: (907) 563,9200 fax: (907) 563,9210

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name: Project Number:

Project Manager:

301726

Brady Nagle

Report Created: 09/30/05 01:22

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results North Creek Analytical - Alaska

Water I	reparation	Method: E	PA 5030B										
Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limita)	Analyzed	Note
			 				Extr	acted:		:29			
AKIOI GRO/BTEX	512		50.0	นมู/ไ	1x	-	550	93 1%	(60-120)		••		_
	Recovery	10896	Limit	s: 50-150%	.,							09 22 05 23:36	
			·				Extr				_		
AKIOI GRO/BTEX	19.3		0.500	ug/l	lx		20.0		95		,		
	20.2		0.500			••			-				
•	20.7		0.500			••	7.	104%	(77.7-125)	0,482	% (11.8)		
•	61.2		1 50	•		-	60.0	102%	(86-122)	0.656	% (10.6)		
	Recovery	98 294	Limits:	72.5-131%	*							09 23 05 06:11	
			<u></u>				Ext	ncted:	09/22/05 14	1:29		 	
AK101 GRO/BTEX	518	***	50.0	บนู/ไ	lx		550	94 2%	(60-120)	1 17	% (20)	09/23/05 06:43	
	Recovery:	111%	Limi	ıs; 50-150%								09 23 05 06:43	
			QC Source:	A510071-04			Ext	racted:	09/22/05 1-	4:29			
AK101 GRO/BTEX	ND	***	50.0	ug/l	lx	ND		12.25	Į.	NF	(50)		
	Recovery:	/03%	l.imi	is: 50-150%	1							09 25 05 13:50	
			QC Source:	A510071-05			Ext	racted:	09/22/05 1	4:29			
AK101 GRO/BTEX	20 4	***	0.500	սայ/1	lx	ND	20.0		•			09/25/05 14:23	
*1	20.7		0 500		•	ND	*	104%	(68 5-133)	-	•	
10	20.8	575	0.500		•	0 128	м	103%	(64.5-132	}	-	•	
•	60.2	•••	1 50	*	•	Q 586	60.0	99 4%	(70.2-133)	••	•	
	Recovery:	95.7%	Limits	72.5-131%	•							09 25 05 14:23	
SD1)			QC Source:	A510071-05			Est	racted:	09/22/05 1	4;29			
AKIOI GRO/BTEX	20.6		0 500	սք/I	lx	ND	20.0		5.8	-		09/25/05 14 56	
	21.0		0 500	•	•	ND		Swill		277		•	
	21.1		0.500		•	0 128	-	105%	(64.5-132) 143	1% (148)	•	
	AKIOI GRO/BTEX AKIOI GRO/BTEX AKIOI GRO/BTEX AKIOI GRO/BTEX AKIOI GRO/BTEX	## AKIOI 512 GRO/BTEX Recovery: ### AKIOI 19.3 GRO/BTEX 20.2 20.7 61.2 Recovery: ### AKIOI 518 GRO/BTEX Recovery: ### AKIOI ND GRO/BTEX Recovery: ### AKIOI 20.4 GRO/BTEX 20.7 20.8 60.2 Recovery: ### AKIOI 20.4 GRO/BTEX 20.7 20.8 60.2 Recovery: ### AKIOI 20.4 GRO/BTEX 20.7 20.8 60.2 Recovery: ### SD1) ### AKIOI 20.6 GRO/BTEX 20.6 GRO/BTEX 21.0 GRO/BTEX 21	## AKIOI S12	Method Result MDL* MRL	Method Result MDL* MRL Units	Method Result MDL* MRL Units Dil	Method Result MDL* MRL Units Dil Source Result	Method Result MDL* MRL Units Dil Source Result Anni	Method Result MDL^4 MRL Units Dil Source Result Amt REC	Method Result MDL* MRL Units Dil Source Result Amt REC (Limits)	Method Result MDL^ MRL Units Dil Source Result Amt REC (Limits) RPD	Method Result MDL* MRL Units Dil Source Result Note Result REC Climits RPD (Limits) RPD (Limits) RPD (Limits) RPD (Limits) RPD (Limits) RPD (Limits) REC RESUlt RE	Method Result MIDL MRL Units Dia Result Ami REC Country RPD Country Navyses

North Creek Analytical - Alaska

Surrogate(s): a,a,a-11-7 (PH)

The results in this report apply to the samples analyzed in accordance with the chain of enclody document. This analytical report must be reproduced in its entirety

\$400 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone; (425) 420.9200 fax; (425) 420.9210

\$500 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone; (425) 420.9200 fax; (425) 420.9210

\$500 North Creek Pkwy N, Suite A, Spokane, WA 99206-4776 phone; (509) 924.9200 fax; (509) 924.9290

\$900 North Creek Pkwy N, Suite A, Spokane, WA 99206-4776 phone; (503) 906.9200 fax; (503) 906.9210

\$100 North Creek Pkwy N, Suite A, Suit

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Project Manager:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726

Brady Nagle

Report Created: 09/30/05 01:22

Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO - Laboratory Quality Control Results North Creek Analytical - Alaska

<u> </u>				th Citer Au										
QC Batch: 5090066	Water	Preparation	Method:	EPA 3510										
Analyte	Method	Result	MDI	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (5090066-BLK1)								Extr	acted:	09/20/05 13	:56			
Diesel Range Organics	AK102/103	1,00		0.500	mg/l	lx	••		_				09/21/05 16:52	B-1
Residual Range Organics		ND		0.500	•	•	-	-			-			
Surrogatets): 1-Chlorooctadecane Triacontane		Recovery	87.7% 95.9%	Lin	sils: 50-150% 50-150%	:							09 21 05 16:52 "	
LCS (5090066-BS1)								Extr	acted:	09/20/05 13	:56			
Diesel Range Organics	AK102/103	8.37	•••	0.500	mg/l	lx		10.1	82.9%	(75-125)			09/21/05 14:16	8-19
Residual Range Organics	-	8.08	***	0 500			-	10.0	80.8%	(60-120)			•	
Surrogate(s): 1-Chlorooctadecane Triacontane		Recovery:	78,5% 84,8%	Lin	50-150% 50-150%	,							09 21 05 14:16 "	
LCS Dup (5090066-BSD1)								Extr	acted:	09/20/05 13	:56			
Diesel Range Organics	AK102/103	8,87		0.500	mg/l	lx		10.1	87.8%	(75-125)	5.80%	(20)	09/21/05 16:12	B-19
Residual Range Organics	•	8.26	-00	0.500			••	10.0	82.6%	(60-120)	2.20%			
Surrogate(s): 1-Chlorooctadecane Triacontane		Recovery	H2.696 H9.396	Lin	50-150% 50-150%	,							09 21 05 16:12	
Duplicate (5090066-DUP1)				QC Source:	A510053-01			Extr	acted:	09/20/05 13	:56			
Diesel Range Organics	AK102/103	ND		0.431	mg/l	lx	ND	-			6.25%	(50)	09/21/05 13 35	B-19
Residual Range Organics		ND		0.431	•		ND	-		-	NR	•		
Surrogate(s): 1-Chlorooctadecane Triacontane		Recovery	85.7% 92.8%	Lim	50-150%	÷			_				09 21 05 13:35	

North Creek Analytical - Alaska

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
phone: (425) 420.9200 fax: (425) 420.9210
East 11115 Montgomery, Suite 8, Spokane, WA 99205-4776
phone: (509) 924.9200 fax: (509) 924.9290
9405 SW Mimbus Avenue, Beaverton, OR 97008-7132
phone: (503) 906.9200 fax: (503) 906.9210
20322 Empire Avenue, Suite F-1, Bend, OR 97701-5711
phone: (541) 381.9310 fax: 541.382,7588
2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name;

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726

Brady Nagle

Report Created:

09/30/05 01:22

Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO - Laboratory Quality Control Results North Creek Analytical - Alaska

QC Batch: 5090075	Water	Preparation	Metho	d: E	PA 3510										
Analyte	Method	Result	N	IDL^	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (5090075-BLK1)									Extr	ncted:	09/22/05 08	:30			
Diesel Range Organics	AK102/103	ND	- 8		0 500	mg/l	lx	52	••	-	-		-	09/22/05 12:01	
Residual Range Organics	•	ND	-		0.500	-	*	-		**	**		**		
Surrogate(s): 1-('hlorooctadec Triacontane	vane	Recovery	NS.9% R4.5%		l,imi	50-150% 50-150%								09 22 05 12 01	
LCS (5090075-BS1)									Exte	racted:	09/22/05 08	:30			
Diesel Range Organics	AK102/103	10.2			0 500	mg/l	lx	44	10.1	101%	(75-125)	**	~	09/22/05 12:01	
Residual Range Organics	•	9 72			0 500				10.0	97.2%	(60-120)			-	-
Surrogate(5) 1-Chlorooctade Triacontane	cane	Recovery:	90.0% 96.6%		Limi	s 50-150% 50-150%	**							09 22 05 12:01 "	
LCS Dup (5090075-BSD1)									Ext	racted:	09/22/05 08	1:30			
Diesel Range Organics	AK102/103	9 38		520	0.500	mg/l	1x	_	10.1	92 9%	(75-125)	8 389	6 (20)	09/22/05 12:43	
Residual Range Organics		9.10		***	0.500	•	•	44	10.0	91 0%	(60-120)	6.599		•	- 55
Surrogate(s): 1-4 hlorooctade Triacontane	ccane	Recovery	H1.3% 91.5%		Limi	its: 50-150% 50-150%	e Wi							09 22 05 12:43 "	
Duplicate (5090075-DUP1))				QC Source:	A510071-02		_	Ext	racted:	09/22/05 08	8:30			
Diesel Range Organics	AK102/103	ND		***	0.413	mg/l	lx	ND	**	-	**		6 (50)	09/22/05 12:43	
Residual Range Organics		ND		***	0.413	•	•	ND		-	-	NR	•	•	
Surrogate(s): 1-Chlorooctade Triaconiane	eane	Recovery	NR. 6% R6,0%		Lim	us: 50-150% 50-150%	*							09 22 05 12:43 "	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726

Project Manager Brady Nagle

Report Created: 09/30/05 01:22

Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO - Laboratory Quality Control Results North Creek Analytical - Alaska

QC Batch: 5090082	Water	Preparation	n Method:	EPA 3510										
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (5090082-BLK1)								Ext	racted:	09/26/05 09	:46			
Diesel Range Organics	AK102/103	ND	**-	0.500	mg/l	lx	~				_		09/27/05 11:49	
Residual Range Organics	•	ND		0.500			-	-	_	••			•	
Surrogate(s): I-Chlorometadecane Triacontane		Recovery	94.0% 98.8%	Lin	sits: 50-150% 5t)-150%								09 27 05 11 49	
LCS (5090082-BS1)								Ext	racted:	09/26/05 09	:46			
Diesel Range Organics	AK102/103	9.65	•••	0.500	mg/l	lx	••	10.1	95.5%	(75-125)			09/27/05 11:49	
Residual Range Organics	•	9.42	-	0.500		*0	_	10.0	94.2%	(60-120)	_			
Surrogate(s): I-Chlorooctadecane Triacontane		Recovery:	95.7% 97.6%	Lin	sits: 50-150% 50-150%	•							09 27 05 11:49	
LCS Dup (5090082-BSD1)								Exte	acted:	09/26/05 09	:46			
Diesel Range Organics	AK102/103	961		0.500	mg/l	1×	22	10.1	95.1%	(75-125)	0 415%	(20)	09/27/05 12 31	
Residual Range Organics	- Tauricki	961		0.500		•	-	10.0	96.1%	(60-120)	2.00%	•	-	
Surrogate(s): 1-Chlorooctadecane Triacontane		Recovery:	95.1% 96.1%	Lin	50-150% 50-150%	-							09 27 05 12:31 "	
Duplicate (5090082-DUP1)				QC Source:	A510085-03			Ext	acted;	09/26/05 09	:46			
Diesel Range Organics	AK102/103	ND	•••	0.455	mg/l	lx	ND	26		25	52.3%	(50)	09/27/05 13:11	Q-00
Residual Range Organics	2000	ND		0.455		-	ND				NR	•		
Surrogate(s): 1-Chlorooctadecone Triacontane		Recovery	R7.3% 96.4%	Lim	iis: 50-150% 50-150%	*							09 27 05 13.11	

North Creek Analytical - Alaska

11720 North Creek Pkwy N, Sulte 400, Bothell, WA 98011-8244
phone: (425) 420-9200 fax: (425) 420-9210
East 11115 Montgomery, Surte B, Spokane, WA 99206-4776
phone: (509) 924-9200 fax: (509) 924-9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
phone: (503) 906-9200 fax: (503) 906-9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
phone: (541) 383-9310 fax: 541.382.7588
2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726

Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

North Creek Analytical - Portland

							Sames	Snik-	*/a		9/2	48.4		B1 ·
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits)	Analyzed	Not
Blank (5091015-BLK1)				_				Extr	acted:	09/24/05 09	:13			
Acetone	EPA 8260B	ND	***	25 0	ug/l	lx	3	**	-				09/24/05 12 14	
Benzene	•	ND	***	1.00	-			••	•11		••		•	
Bromobenzene	•	ND	***	1.00	•		••	-	**	**	411		•	
Bromochloromethane	•	ND		1.00	•	•	••	**	-	••	-		•	
Bromodichloromethane	•	ND		1.00	•	*5		••		••	***		•	
Bromoform	•	ND		1.00	•	•		-	•	-	**		•	
Bromomethane	•	ND		5 00	•	*	••	200	••	157.0	**	••	•	
2-Butanone	•	ND	***	100	*	•	-	**		••	**	55		
n-Butylbenzene	•	ND	***	5 00	*	~	••		-1		- 5	50	•	
sec-Butylbenzene		ND	***	1 00	=		1000			**	**		•	
tert-Butylbenzene	•	NÐ		1.00	-		-	4.	••	-			•	
Carbon disulfide		ND	***	100				_	••	-	**	**	•	
Carbon tetrachloride		ND		1.00	•	*	**	-			-	**	•	
Chlorobenzene	4	ND	***	1 00	•	*		-	**	••	-		*	
Chloroethane	•	ND	***	1.00	•	25	**				***	**	•	
Chloroform		ND		1 00	-	•			••			••	•	
Chloromethane		ND		5.00	н	•		_	••			••	-	
2-Chlorotoluene		ND		1.00						**			•	
		ND		1 00	•	-				••			•	
4-Chlorotoluene		ND	•••	5.00		-							•	
1,2-Dibromo-3-chloropropane		ND		1 00										
Dibromochloromethane		ND		1.00	•			**						
1.2-Dibromoethane		ND		1.00			••					••		
Dibromomethane		ND	***	1.00		-	••		_					
1,2-Dichlorobenzene	_			1.00		м	••						•	
1,3-Dichlorobenzene	_	ND	•••	100										
1,4-Dichlorobenzene	•	ND		5.00			••						×	
Dichlorodifluoromethane	•	ND								**	-		н	
1,1-Dichloroethane	•	ND	•	1.00	-					-	_			
1,2-Dichloroethane	•	ND		1 00				••		-		••	•	
1,1-Dichloroethene	•	ND		1.00	•	-			••			**		
cis-1,2-Dichloroethene	•	NĎ	***	1 00		•			-		••		_	
trans-1,2-Dichloroethene	•	ND	***	1 00	•	•	-	•			••	••		
1,2-Dichloropropane		ND		1 00	•	•			••		••		-	
1,3-Dichloropropane	•	ND	•••	1.00		•	••	••	-	**				
2,2-Dichloropropane	•	ND	***	1.00		•		••		_	••	••	•	
1.1-Dichloropropene	-	ND		1.00	•	•				••			•	
cis-1,3-Dichloropropene	•	ND	•••	1 00	4	•		••	-	••	••	••	•	
trans-1,3-Dichloropropene	•	ND	***	1.00	•	•	-	••					•	
Ethylbenzene	•	ND	•••	1 00	•	•		••		••		••	*	
Hexachlorobutadiene		ND	***	4.00	-	*		••	••				•	
2-Hexanone	7	ND	•••	100				••			**		-	

North Creek Analytical - Alaska

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: 301726

Project Manager:

Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

North Creek Analytical - Portland

OC Rotch: \$891015 Water Preparation Methods EDA 6020D

	h: 5091015			n Method: 1			-							 	
Analyte		Method	Result	MDL*	MRL	Units	Dü	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	N.
Blank (50910)	I5-BLK1)								Extr	acted:	09/24/05 09	:13			
Isopropylbenzene		EPA 8260B	ND	•••	2.00	ug/l	1x	-		_			- (09/24/05 12:14	
p-Isopropyltoluen	e	•	ND	•••	2.00	•	26	-						•	
4-Methyl-2-penta	none	-	ND		5,00	•	*						_	•	
Methyl tert-butyl	ether	•	ND	***	1.00	•			_	••	-	••	_		
Methylene chlorid	le	•	ND	•••	5.00			1.00	**			-			
Naphthalene			ND		2.00	•		-	••						
n-Propylbenzene		*	ND		1 00	-				_				•	
Styrene		•	ND	4.2	1.00	•	4.1		-						
1.1,1,2-Tetrachlor	oethane	-	ND		1 00	•	40		_				-		
1.1,2,2-Tetrachlor	oethane	•	ND		1.00		**		_				~		
Tetrachloroethene	•	*	ND	***	1 00	•	5.0	34							
Toluene		м	ND	***	1.00		•	-		_		_			
1,2,3-Trichlorober	nzene	4	ND	-	1.00				_				_		
1,2,4-Trichlorober	nzene	*	ND	-	1.00										
1, 1, 1-Trichtoroeth	ane	*	ND		1.00					••			_		
1,1,2-Trichloroeth	ane		ND		1 00			-			••	_			
Trichloroethene			ND	•••	1,00			2		_					
Trichlorofluorome	thane		ND	•••	1.00			1_		_					
1,2,3-Trichloropro	pane		ND	***	1.00	•	•		_	••					
1,2,4-Trimethylbe	nzene		ND	***	1:00	•	•			••	_		_		
1,3,5-Trimethylbe	nzene	•	ND		1.00				••	**	**				
Vinyl chloride		•	ND	***	1.00			**		**		_			
o-Xylene		•	ND		1.00		•	**		••				•	
m,p-Xylene		•	ND	***	2.00	-	-			_	••				
Surrogate(s):	4-HFB	177	Recovery:	97.0%	l imi	ts: 75-120%								09 24 05 12:14	_
- 1	1,2-DCA-d4			95.5%	1,	77-129%	-							W 24 05 12:14	
	Dibromofluoromethane			98.5%		80-121%								rv .	
	Toluene-d8			100%		RO-120%	H							•	

North Creek Analytical - Alaska

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420-9200 fax: (425) 420-9210 | Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924-9200 fax: (509) 924-9200 | 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906-9200 fax: (503) 906-9210 | Sand 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 183-9310 fax: 541-382-7588 | chhorage | 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563-9200 fax: (907) 563-9210 |

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726 **Brady Nagle**

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

QC Batch	: 5091015	Water l	Preparation	Method:	EPA 5030B										
nalyte		Method	Result	MDL	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (5091015-	-BSI)								Extr	acted:	09/24/05 09:	:13			
Benzene		EPA 8260B	20.3	•••	1 00	ug/l	lx	- 22	20.0	102%	(80-120)	**		09/24/05 10 00	
Chlorobenzene			23.0	•••	1,00	•	•		*	115%	(80-124)		••	•	
. I-Dichloroethene	e	-	19.3		1 00	•	•	**	•	96.5%	(78-120)	••		*	
Foluene			22.1	***	1.00	•	•		*	110%	(80-124)	••		-	
Frichloroethene		N .	20.1		1 00					100%	(80-132)			•	
Surrogate(s)	4-BFB		Recovery:	102%	l,imits	: 75-120%								09 24 05 10:00	
	1,2-DCA-d4			95.0%		77-129%	*							#	
	Dihromofluoromethane			9N. 596		HO-121%	н							-5	
	Toluene-d8			104%		RO-120%	-							- 5	
Matrix Spike ((5091015-MS1)				QC Source: I	P510786-01			Extr	acted:	09/24/05 09	:13	<u></u>		
Benzene		EPA 8260B	193		1 00	ug/l	l×	ND	200	96.5%	(80-124)		-	09/24/05 10:27	
Chlorobenzene			19.8		1.00		•	ND		99 0%	(72.9-134)	**	_	at .	
. I-Dichloroethen	e	•	19.1		1.00	•	-	ND	н	95.5%	(79.3-127)	**	-		
Toluene	-		19.5	***	1 00	2.0	70	ND	м	97.5%	(79.7-131)	• ••		-	
Trichloroethene			182		1 00	•	•	ND	*	91 0%	(68.4-130)		••		
Surrogate(s):	4-HFB		Recovery:	95.0%	l,imit	s: 75-120%	*							09 24 05 10:27	
	1,2-DCA-d4			91.5%		77-129%	*							~	
	Dibromofluoromethane			95.0%		HO-121%	-								
	Toluene-d8			100%		RO-120%	•								
Matrix Spike D	oup (50 <u>91015-MS</u>	D1)	_		QC Source:	P510786-01			Ext	racted:	09/24/05 09):13			
Benzene		EPA 8260B	19.6		1.00	บหู/ไ	lx	ND	20.0	98.0%	(80-124)	1.549	4 (25)	09/24/05 10.54	
Chlorobenzene		*	20.0	•••	1 00	•	•	ND	•	100%	(72 9-134)	1 015	6 "	•	
1.1-Dichloroethen	ie	90	19.5		1.00	•	*	ND		97 5%	(79.3-127)	2.07%	6 ·	•	
Toluene			20 0		1.00	•	•	ND	*	100%	(79 7-131)	2.539	4 -		
Trichloroethene		•	18.6	•••	1.00			ND		93.0%	(68.4-130)	2.179	• •	•	
Surrogate(s):	4-BFB		Recovery	99.5%	Limit	s. 75-120%	,						-(0 - 1)	09 24 05 10.54	
	1,2-DCA-d4		•	91.5%		77-129%	-							"	
	Dibromofluoromethane	•		95.5%		80-121%	~							-	
	Toluene-d8			100%		NO-120%	*							•	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (509) 924.9290 | fax: (509) 926.9210 | fax: (509) 9

<u>SAIC</u>

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager:

301726 **Brady Nagle**

Report Created 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

North Creek Analytical - Portland

QC Batch: 5091023	Water	Preparation M	lethod: EP	A 5030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (5091023-BLK1)								Extr	acted:	09/25/05 08	1:23			
Acetone	EPA 8260B	ND	•••	25.0	սաչ/1	lx			123			1	09/25/05 12:14	
Benzene		ND	***	1 00		2.	_		-	••	_		•	
Bromobenzene	•	ND		1.00		*.		-		**		-		
Bromochloromethane	**	ND		1.00	•							_	•	
Bromodichloromethane		ND	•••	1.00			**	••	_					
Bromoform	•	ND	•••	1.00	•		**	**		_				
Bromomethane	*	ND		5.00	-								•	
2-Butanone	•	ND		10.0	•	•	••	**				-		
n-Butylbenzene	70	ND		5 00		*								
sec-Butylbenzene	75	ND	***	1.00		•		••		-				
tert-Butylbenzene	•	ND	***	1 00		•			_					
Carbon disulfide		ND	***	10.0				••		**		••	£1	
Carbon tetrachloride		ND		1.00		•	••			_			•	
Chlorobenzene	41	ND		1.00				_		_		_		
Chloroethane		ND		1.00						••		_		
Chloroform	•	ND	-	1.00						••				
Chloromethane	•	ND	•••	5.00	м		2	••		••				
2-Chlorotoluene	•	ND	•••	1.00				••						
4-Chlorotoluene	-	ND		1.00		•		**				3		
1,2-Dibromo-3-chloropropane	•	ND		5.00	•					_	-	_		
Dibromochloromethane		ND	***	1 00	•							_		
1,2-Dibromoethane	•	ND	***	1 00		-	••							
Dibromomethane	•	ND		1.00					_					
1,2-Dichlorobenzene		ND	***	1.00				••	_		2.0	_	•	
1,3-Dichlorobenzene	•	ND	***	1.00	•					_		_	•	
1,4-Dichlorobenzene		ND	***	1.00			••					_		
Dichlorodifluoromethane	•	ND	***	5.00	•		••				37.3			
1,1-Dichloroethane	,	ND	***	1 00			_				_			
1.2-Dichloroethane		ND	22	1.00						_				
1,1-Dichloroethene		ND		1.00	•					-				
cis-1,2-Dichloroethene	w	ND	•••	1.00						••		••		
trans-1,2-Dichloroethene	н	NĐ		1 00			_	-				_	650	
1,2-Dichloropropane		ND	10-	1.00			-	-				_	_	
1,3-Dichloropropane	•	ND	***	1.00					••	-		**	-	
2,2-Dichloropropane	•	ND	***	1.00				••	-		••	••		
1,1-Dichloropropene		ND		1.00				-		••	••	-	-	
cis-1,3-Dichloropropene	H	ND		1.00									-	
trans-1,3-Dichloropropene		ND	***	1.00							••			
Ethy lbenzene		ND							**		••	-	-	
Hexachlorobutadiene		ND	-	100		-	_	••	-			••		
			•••	4.00	173	4		**			••			
2-Hexanone		ND	***	10.0	•					**	**	-		

North Creek Analytical - Alaska

<u>SAIC</u>

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number: Project Manager: 301726 Brady Nagle

Report Created: 09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

North Creek Analytical - Portland

QC Batch: 50	91023	Water	Preparation	Method:	EPA 503	0B									
Analyte		Method	Result	МД	L^ MR	L Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (5091023-BL	.K1)								Extr	acted:	09/25/05 08	3:23			
isopropyibenzene		EPA 8260B	ND		2 00) ug/l	lx	••			••		(09/25/05 12:14	
p-Isopropyltoluene		•	ND		2.00) н	•	••	••		**	••		•	
4-Methyl-2-pentanone		•	ND		5 00	. *	•		-	••	••		••	,	
Methyl tert-butyl ether		•	ND	***	1.00	•	•						-	•	
Methylene chloride		•	ND	***	5.00	•	•				••	••		•	
Naphthalene			ND		2.00) "	•	1.57		••		••		•	
n-Propylbenzene		•	ND		1.00	. "			**			••		•	
Styrene		•	ND	400	1.00	•		••						•	
1,1,1,2-Tetrachloroethar	ie		ND	***	1.00	"		••		-	••			•	
1,1,2,2-Tetrachloroethar		•	ND		1 00	"		**	••				_	•	
Tetrachloroethene		•	ND		1 00) *	•		••	••		••	••	•	
Folu ene		•	ND		1.00	• •	•	-		••		••			
1,2,3-Trichlorobenzene	9		ND		1.00	•	•	••			••			•	
1,2,4-Trichlorobenzene		•	ND	•••	1.0	•	•	••			-			•	
1,1,1-Trichloroethane		•	ND	***	1.0	o "	•	••			••			*	
1,1,2-Trichloroethane		•	ND		1 0	D "	•	4750	••	••		••	••	•	
Trichloroethene			ND	100	10	o •	•	-		••			••		
Trichlorofluoromethane	•		ND		10	o •	•			••	**		***		
1,2,3-Trichloropropane			ND	***	1,0	0 "	•	••			••		-		
1,2,4-Trimethylbenzene	1		ND		10	0 "	-	••	••	.27				18	
1,3,5-Trimethylbenzene		•	ND		1.0	0 "	•		••		_	••	••		
Vinyl chloride			ND	32	1.0	0 *	•	-0		••		••	•	•	
o-Xylene			ND	7-	1.0	0 *	•	-		••		••	-		
m,p-Xylene			ND	***	20	0 "	•	••			••	6	73		
Surrogate(s): 4-Bl	Н		Recovery:	92.0%	-	Limits: 75-120%	-							89 25 85 12:1	4
	DCA-d4			98.0%		77-1399	6 "								
Dibr	omofluoromethane			9X,0%		NO-1219									
Tolu	ene-dA			102%		80-1209	6 "								

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98031-6244 | phone: (425) 420.9200 | fax: (425) 420.9210 | Spokene | East 11115 Montgomery, Suite B, Spokene, WA 99206-4776 | phone: (509) 924.9200 | fax: (509) 924.9290 | 925 W Nimbus Avenue, Beaverton, OR 97006-7132 | phone: (503) 906.9200 | fax: (503) 906.9210 | Send 2033 Empire Avenue, Suite F-1, Bend, OR 97701-5711 | phone: (541) 383-9310 | fax: 541.382,7588 | Anchorage | 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 | phone: (907) 563.9200 | fax: (907) 563.9210 | fax: 407) 563.9

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032 Project Name:

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport

Project Number:

Project Manager: Brady Nagle Report Created:

09/30/05 01:22

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

North Creek Analytical - Portland

QC Bate	h: 5091023	Water	Preparation	n Method:	EPA 5030B										
Analyte		Method	Result	MDL4	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
LCS (5091023	-BS1)								Extr	acted:	09/25/05 08	:23			
Benzene		EPA 8260B	19.9		1,00	ug/l	lx		20.0	99.5%	(80-120)		-	09/25/05 10:01	
Chlorobenzene		•	21.7		1,00	•	250		•	108%	(80-124)	_	-	*	
l 1-Dichloroether	e	•	173	•••	1.00			-	•	86.5%	(78-120)	**			
Toluene		-	20.8	***	1 00			**		104%	(80-124)		_	•	
richloroethene			19.6		1 00					98.0%	(80-132)	3.00			
Surrogate(s):	4-BFB		Recovery:	101%	Limits	75-120%								09 25 05 10:01	
	1,2-DCA-d4			92.0%		77-129%									
	Dibromofluoromethane			95.5%		HO-121%									
	Toluene-d8			99.5%		80-12096									
Matrix Spike	(5091023-MS1)				QC Source: P	510796-01			Extr	acted:	09/25/05 08	:23			
Benzene		EPA 8260B	20.1		1,00	ו/שָנו	lx	ND	20.0	100%	(80-124)	-	- 9	09/25/05 10:28	
`htorobenzene		•	20,1		1.00	*	•	ND		100%	(72.9-134)	-			
1-Dichloroethen	e	•	18.4		1.00	•	•	ND		92.0%	(79.3-127)	-	••		
oluene			19,9	***	1.00	•		ND		99.5%	(79.7-131)		_		
l'richloroethene			191	***	1 00	•		ND	-	95.5%	(68.4-130)		-		
Surrogate(s).	4-BFB		Recovery	y8.0%	Limits	75-120%	н	77.57			_		-	09 25 05 10:28	_
	1,2-1XCA-d4			89.5%		77-129%	4							•	
	Dibromofluoromethane			90.0%		80-121%								*	
	Toluene-dit			97.0%		80-120%								•	
Aatrix Spike D	up (5091023-MSI	D(1)			QC Source: P	510796-01			Extr	acted:	09/25/05 08:	:23			
Benzene		EPA 8260B	21.1	•••	1.00	ug/l	1x	ND	20.0	106%	(80-124)	4.85%	(25)	99/25/95 10:54	
`htorobenzene		•	21.1	•••	1.00		•	ND	•	106%	(72.9-134)	4.85%	•		
,1-Dichloroethen	e	•	19.8		1.00			ND		99.0%	(79.3-127)	7.33%	-		
oluene		•	21.0		1,00		•	ND		105%	(79.7-131)	5.38%	R	-	
richloroethene		•	20.2		1.00	•	n	ND		101%	(68.4-130)	5.60%		•	
Surrogate(s):	4-BFB		Recovery:	101%	Limits	75-120%	*							09 25 05 10:54	
	1,2-DCA-d4			95.0%		77-129%								•	
	Dibromofluoromethane			95.5%		80-121%	м							*	
	Toluene-d8			102%		RO-120%	м							H	

North Creek Analytical - Alaska

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924-9200 fax: (509) 924-9290 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

SAIC

401 Alberto Way, Suite B Los Gajos, CA/USA 95032

Former Tex. Bulk Plant Blk 10 Lot 5 FBX Airport Project Name: 301726

Brady Nagle

Report Created: 09/30/05 01:22

Notes and Definitions

Project Number:

Project Manager:

Report Specific Notes:

Q-06

Analyte detected in the method blank at a concentration greater than or equal to the MRL. Sample concentrations less MRL, data not B-19

Analyses are not controlled on RPD values from sample concentrations less than 5 times the reporting limit.

Laboratory Reporting Conventions:

Analyte <u>DETECTED</u> at or above the Reporting Limit. Qualitative Analyses only DET

- Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). ND

NR / NA - Not Reported / Not Available

- Sample results reported on a dry weight basis. Reporting Limits are corrected for %Solids when %Solids are <50%. dry

- Sample results and reporting limits reported on a wet weight basis (as received). <u>wet</u>

· Relative Percent Difference (RPDs calculated using Results, not Percent Recoveries). <u>RPD</u>

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. **MRL**

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. MDL* *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution <u>Dil</u> found on the analytical raw data

Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Reporting percent solids, where applicable. limits

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Stephen Wilson For Mike Priebe, Technical Services Manager

11720 North Creek Plwy N Suite 400, Bothell, WA 98011-8244 11922 E 1st Ave, Spokane, WA 99206-5302

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 20332 Empire Ave, Ste Ft, Bend, OR 97701-5712 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

FAX 382-7588 FAX 583-9210 FAX 420-9210 FAX 924-9290 503-906-9200 541-383-9310 907-563-9200 425-420-9200 509-924-9200

CHAIN OF CLISTONY REPORT

MOA OF TENER.	CHAINO	CHAIN OF CUSTODY REPORT	REPORT		*	Work Order #:	HST807/	1
700		4	INVOICE TO:			TURNA	TURNAROUND REOURST	
ADDRESS: 40/ AUBERT	16 54/C		A 541C	Ą		.9	in Beschaess Days	
105 04705	499052						ganic Analyses	
0000	FAX: 408 356 256 5		P.O. NUMBER:				-]	Ţ
200	2 TEXACO		PRESERVATIVE	ATIVE			nyatotatota Attanyasa	
JMBER:	201726	150 - 1	A			_		
SAMPLED BY: 5 /		107	REQUESTED ANALYSES	ANALYSES		OTHER	Specify	
CLIENT SAMPLE DENTIES ATTOM	SAMPLING	30 017 2017 1 X 2	1097				LOCATION /	Ş
	DATECIME	01/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/				(W, S, O) CONT.		WOLD
1-MW-1	949-050-200					8		Τ
2 MW-2	@							
3 MW-3	@ 1930							
4MW-4	@ 1820							T
5 MW-5	@ 2000							
6 MW-6	@ 1910							
· PURCE WATER	@2110	う ラ				→	2	T
87219 #1	-					u		
9 Th/10 # 2	>					~		
10							30	T
RELEASED BY: / C (DAT	DATE: 9/20/05	RECEIVED BY:	R		DATE /73	5
PRINT NAMECTEE K	RCIK FIRM: FI	TIME	E 1300	PRINT NAME: Ste	- Mutuals	FIRM: MCV		>
RELEASED BY:		DATE	L	RECEIVED BY:				
PRINT NAME:	FIRM:	TDME:	ü	PRINT NAME:		FIRM:	TIME	
ADDITIONAL REMARKS: COC REV 09/04	WIE BLAD	JOHN WELL	My Cle	4560	c.com		TEMP:	0,1
			11401	17	TUIN 100102		PAGE OF	