

TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONSII					
1.0 EXECUTIVE SUMMARY					
2.0 SITE BACKGROUND					
3.0 FIELD ACTIVITIES					
4.0 GROUNDWATER MONITORING RESULTS2					
5.0 IN-SITU CHEMOX REMEDIATION5					
6.0 CONCLUSIONS AND RECOMMENDATIONS6					
7.0 LIMITATIONS6					
LIST OF TABLES					
Table 1Groundwater Elevations2Table 2Field Measured Intrinsic Water Quality Parameters3					
Table 3 Groundwater Analytical Results for BTEX, GRO, and DRO					
Table 4 Groundwater Analytical Results for VOCs and Sodium					
Table 5 Laboratory Quality Control Objectives					
LIST OF FIGURES					
Figure 1 Landing and Winite Man					
Figure 1 Location and Vicinity Map Figure 2 Site Plan with Groundwater Detections and Analytical Exceedances					
Figure 3 Remediation System Layout					
Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations					
LIST OF APPENDICES					
Amondin A. Cita Daalranaund					
Appendix A Site Background Appendix B Field Methods and Procedures					
Appendix C Field Measurements, Notes, and Hydraulic Gradient Plot					
Appendix D Tables of Historical Groundwater Monitoring Data					
ppendix E Laboratory Analytical Report and ADEC Laboratory Data Review Checklist					

ACRONYMS AND ABBREVIATIONS

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska Test Method amsl above mean sea level

BTEX benzene, toluene, ethylbenzene, and xylenes

DRO diesel range organics
DO dissolved oxygen
EIT Engineer in Training

EPA U.S. Environmental Protection Agency

GCL groundwater cleanup level GRO gasoline range organics

MW monitoring well

ORP oxidation-reduction potential

QA quality assurance
QC quality control
RW remediation well
Speedway Speedway, LLC

Stantec Stantec Consulting Services Inc.

Tesoro Tesoro Refining and Marketing Company

UST underground storage tank
VOC Volatile Organic Compounds

1.0 EXECUTIVE SUMMARY

This semi-annual 2020 monitoring event report was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Speedway LLC for Store #5310 (formerly known as Tesoro 2 Go Mart #112), located at 3392 Badger Road, North Pole, Alaska (**Figure 1**). The monitoring event was conducted by Stantec personnel on August 18, 2020, by Leslie Petre (Engineer-In-Training (EIT)), Austin Badger (Environmental Scientist), and Bob Gilfilian, Principal Engineer.

The August 2020 groundwater monitoring event included measuring the depth to groundwater, measuring water quality parameters, and collecting and analyzing groundwater samples from Monitoring Wells MW-2, MW-3, MW-6, MW-10, MW17-2, and MW17-5 (**Figure 2**). The methods that were used for this monitoring event were conducted in accordance with the Alaska Department of Environmental Conservation (ADEC) approved 2020 Corrective Action Work Plan for this site (see **Appendix B**).

Results from the groundwater depth measurements indicate the average hydraulic gradient was approximately 0.005 feet per foot with flow tending toward the northeast at 67 degrees. The flow direction and gradient for this monitoring event were consistent with the historical values for this site, as shown in the groundwater flow summary presented on **Figure 2**.

Results of the analytical sampling showed concentrations exceeding the ADEC groundwater cleanup levels (GCLs):

- MW-3: Benzene, Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, GRO, and DRO.
- MW 17-2: Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, and DRO.
- MW 17-5: Benzene, Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, and GRO.

2.0 SITE BACKGROUND

Background information is summarized in **Appendix A**.

3.0 FIELD ACTIVITIES

The following field activities were conducted during this monitoring event:

- Measuring depth to groundwater in Monitoring Wells MW-2, MW-3, MW-6, MW-10, MW17-2, and MW17-5.
- Collecting field measurements of the following intrinsic water quality parameters: temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and specific conductance.

- Collecting groundwater samples from Monitoring Wells MW-2, MW-3, MW-6, MW-10, MW17-2, and MW17-5, and submitted them for laboratory analysis of: U.S. Environmental Protection Agency (EPA) Method SW8260D for petroleum fuel related Volatile Organic Compounds (VOC) including benzene, toluene, ethylbenzene, and xylenes (BTEX); Alaska Test Method AK101 for GRO; and AK102 for DRO. EP200.8 for sodium was also completed for MW 17-2, MW 17-5, and MW-3 but not on the duplicate for MW-3.
- Completed chemox injection with Klozur One® into remediation wells RW 17-1, 17-3, 17-4 and 17-6. The remediation wells were installed in 2017 in the area of the petroleum-contaminated soil that was buried during the removal of the former underground storage tank (UST) system approximately 20 years ago.

Field methods and procedures are provided in **Appendix B** and field measurements, notes, and a hydraulic gradient plot are provided in **Appendix C**.

4.0 GROUNDWATER MONITORING RESULTS

Groundwater Levels. Table 1 presents groundwater elevations at this site based on the depths to static groundwater levels measured during this monitoring event. When evaluated by a polynomial regression, fitted to the water level observations, the average hydraulic gradient was approximately 0.005 feet per foot with flow tending toward the northeast at 67 degrees (see hydraulic gradient plot in **Appendix C**). The flow direction and gradient for this monitoring event were consistent with the historical data for this site, as shown in the groundwater flow summary presented on **Figure 2**.

Table 1 Groundwater Elevations Measurements taken on August 18, 2020

Monitoring Well Identification	Top of Casing Elevation (feet) ¹	Depth to Groundwater (feet)	Groundwater Elevation (feet)
MW-2	398.76	8.96	389.80
MW-3	398.80	9.05	389.75
MW-6	401.37	12.32	389.05
MW-10	401.52	12.87	388.65
MW17-2	398.28	8.45	389.83
MW17-5	398.60	8.78	389.82

Key:

Field Parameters. The results of water quality parameter testing of the water samples collected during this monitoring event are presented in **Table 2**. Temperature, pH, DO, ORP, and specific conductance were measured. Specific conductance values were generally within an expected range and pH values were within an expected range.

Based on vertical control survey of September 5, 2017, based on an arbitrary datum of 400 feet established at a local benchmark in 2003. The top of well casings for MW 17-2 and MW 17-5 were surveyed to the same benchmark on July 31, 2019.

 Table 2 Field Measured Intrinsic Water Quality Parameters

Measurements taken on August 18, 2020

Monitoring Well Identification	Purged Volume (gallons)	Temp. (°C)	рН	DO (mg/L)	ORP (mV)	SC (µs/cm°C)
MW-2	5.00	3.3	7.36	0.31	64.1	729
MW-3	10.68	5.1	6.46	0.46	15.8	752
MW-6	2.37	5.4	7.54	0.10	57.4	450
MW-10	3.15	4.3	7.71	0.21	53.2	339
MW17-2	3.12	6.0	7.10	0.25	0.40	931
MW17-5	2.19	4.3	6.56	0.34	47.8	495

Key: mV

millivolts

μs/cm°C

degrees Celsius microSiemens per centimeter degrees Celsius milligrams per liter Dissolved Oxygen

ORP oxidation-reduction potential

pH SC

log [H⁺] specific conductance corrected to 25 °C Temperature

Temp.

Water Sample Analytical Results. Historical monitoring data for this site are tabulated in Appendix D. Laboratory analytical results for BTEX, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, GRO, DRO, and Sodium in the groundwater samples collected during this monitoring event are summarized in **Tables 3 & 4.** The laboratory analytical report is provided in **Appendix E**.

Table 3 Groundwater Analytical Results for BTEX, GRO, and DRO

Samples collected on August 18, 2020

Sample ID	Benzene ¹ (ug/L)	Toluene ¹ (ug/L)	Ethylbenzene ¹ (ug/L)	Xylenes ¹ (ug/L)	GRO (mg/L)	DRO (mg/L)
MW-2	0.740	J (0.886)	7.28	15.6	0.203	0.632
MW-3	24.4	194	637	6860	12.6	2.84
MW-6	U (0.200)	U (0.500)	U (0.500)	U (1.500)	U (0.0500)	J (0.210)
MW-10	U (0.200)	U (0.500)	U (0.500)	U (1.500)	U (0.0500)	J (0.283)
MW17-2	J (1.70)	J (1.86)	83.7	320	1.76	1.96
MW17-5	30.8	386	151	896	2.68	0.825
DUP of MW-3	22.6	176	615	6530	12.3	3.41
Trip Blank	U (0.200)	U (0.500)	U (0.500)	U (1.500)	U (0.500)	U (0.300)
GCLs	4.6	1100	15	190	2.2	1.5

Key: Analyzed by U.S. Environmental Protection Agency Method 8260D. Alaska test method benzene, toluene, ethylbenzene, and xylenes BTEX DRO Diesel range organics, analyzed by AK102. Groundwater cleanup levels, 18 AAC75.345, Table C, updated September 29, 2018. Gasoline range organics, analyzed by AK101. milligrams per liter Not applicable

Undetected above practical quantitation limits shown in parentheses.

The identification of the analyte is acceptable; the reported value is an estimate.

indicates the concentration exceeds the GCL or the estimated quantitation limit exceeds the GCL

Table 4 Groundwater Analytical Results for VOCs and Sodium Samples collected on August 18, 2020

Sample ID	1,2,4 Trimethylbenzene ¹ (ug/L)	1,3,5 Trimethylbenzene ¹ (ug/L)	Naphthalene ¹ (ug/L)	Sodium (ug/L)
MW-2	6.42	6.97	J (0.779)	NT
MW-3	2260	633	34.8	28800
MW-6	U (0.500)	U (0.500)	U (0.500)	NT
MW-10	U (0.500)	U (0.500)	U (0.500)	NT
MW17-2	457	88	8.05	41600
MW17-5	190	117	7.29	12400
DUP of MW-3	2200	625	35.6	NT
Trip Blank	U (0.500)	U (0.500)	U (0.500)	U (250)
GCLs	56	60	1.7	NA

Analyzed by U.S. Environmental Protection Agency Method 8260D.

Alaska test method

Not tested

benzene, toluene, ethylbenzene, and xylenes BTEX

Diesel range organics, analyzed by AK102. Groundwater cleanup levels, 18 AAC75.345, Table C, updated September 29, 2018. Gasoline range organics, analyzed by AK101.

milligrams per liter Not applicable

Not tested

Undetected above practical quantitation limits shown in parentheses.

The identification of the analyte is acceptable; the reported value is an estimate. indicates the concentration exceeds the GCL or the estimated quantitation limit exceeds the GCL

Surrogate recovery for 4-bromofluorobenzene did not met the laboratory QC criteria due to matrix interference for MW-3 and the duplicate sample of MW-3. This laboratory test is part of AK101 GRO analysis. Historically, MW-3 has tested high for all analytes of concern. A duplicate of sodium was not pulled for MW-3.

Quality Assurance (QA)/Quality Control (QC) Review. SGS North America Inc. did meet all laboratory QA/QC criteria during the analysis of groundwater samples for this sampling event, as described in **Table 5**, which provides a summary of the laboratory QC objectives and outcomes for this monitoring event. Laboratory QC data and the ADEC Laboratory Data Review Checklist are included with the laboratory report in **Appendix E**.

Table 5 Laboratory Quality Control Objectives

Quality Control Designation	Tolerance	Results for this Event
Holding Times		
DRO/Water/to analyze	40 days	14 days
DRO/Water/to extract	14 days	9 days
GRO/Water/to analyze	14 days	9 days
BTEX/Water/to analyze	14 days	5 to 6 days
Field Duplicates – Precision		
Benzene	30%	7.66%
Toluene	30%	9.73%
Ethylbenzene	30%	3.51%
Xylenes	30%	4.93%
1,2,4 Trimethylbenzene	30%	2.69%
1,3,5 Trimethylbenzene,	30%	1.27%
Naphthalene	30%	2.27%
GRO	30%	2.41%
DRO	30%	18.24%

Key:

% Percentage of variance in absolute value BTEX benzene, toluene, ethylbenzene, and xylenes DRO diesel range organics
GRO gasoline range organics

Sample DUP is a quality control duplicate of Sample MW-3. The duplicate sample set was collected to determine the precision of the field collection and laboratory analyses for this sampling event. Data presented in **Table 5** show that the precision for the duplicate sample set was within the established QA criteria tolerances for all analytes duplicated. The holding times were within established criteria

5.0 IN-SITU CHEMOX REMEDIATION

Stantec completed an injection of the chemox product, Klozur One[®], into the four remediation wells (RW17-1, RW17-3, RW17-4, and RW17-6) on August 19, 2020. Klozur One[®] is a granular product manufactured by PeroxyChem that consists primarily of sodium persulfate and patented activator reagents. A total of 440 pounds of Klozur One[®] product was mixed with 200 gallons of clean water and then injected as a solution into the contaminated source area by gravity and a low pressure pump into the four remediation wells. The solution was then pushed into the formation with an additional 200 gallons of water injected into each remediation well.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Graphs of contaminant concentrations and groundwater elevations for Monitoring Wells MW-2 and MW-3 are presented on **Figure 4**.

The following summarizes laboratory test results that exceeded the GCLs for the August 2020 semi-annual groundwater monitoring event:

- Monitoring Well MW-3: Benzene, Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, GRO, and DRO.
- Monitoring Well MW 17-2: Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, and DRO.
- Monitoring Well MW 17-5: Benzene, Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, and GRO.

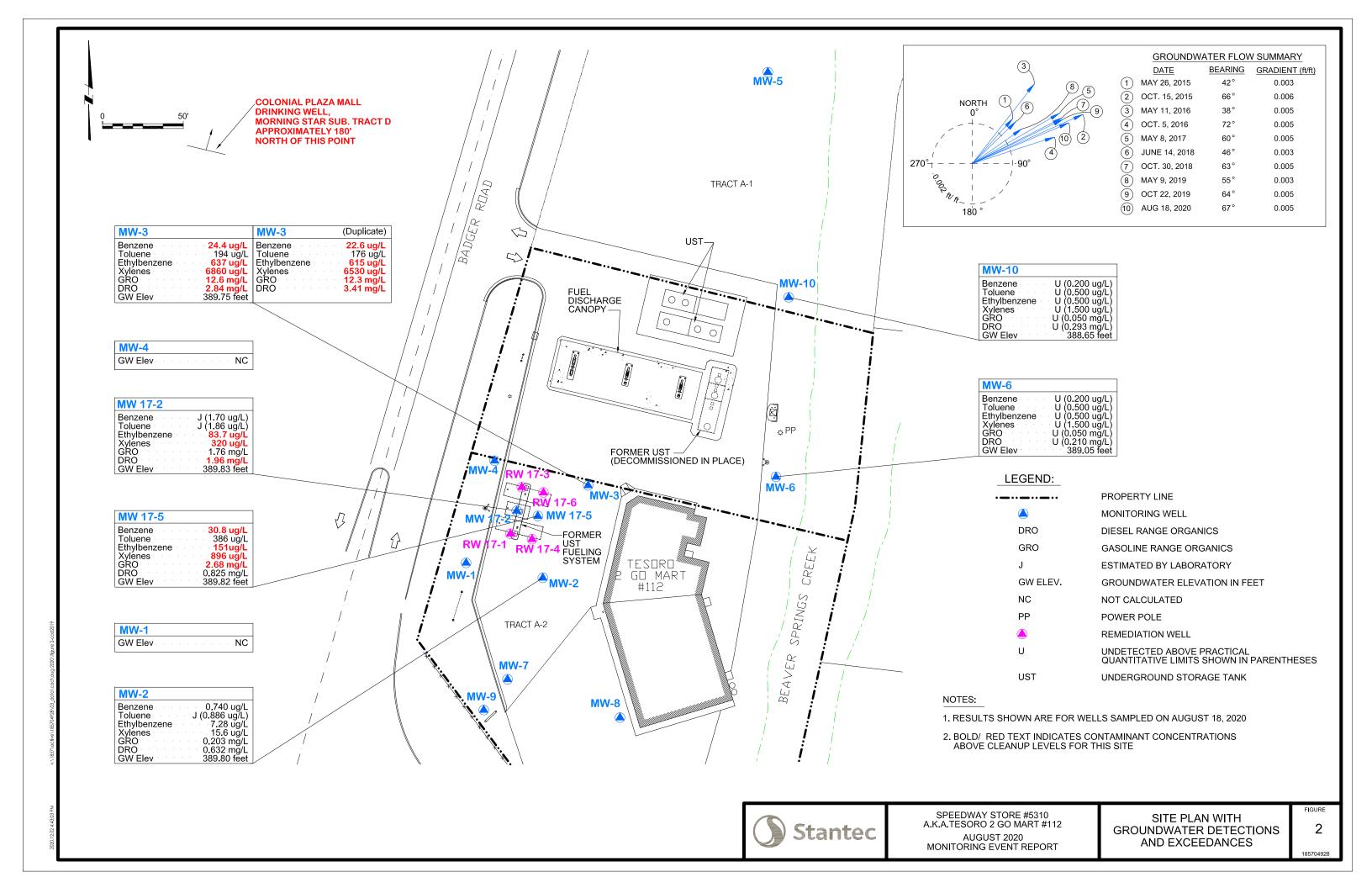
No anomalies were found during the August 2020 semi-annual monitoring event that would require additional corrective action or changes to the approved year 2020 Corrective Action Work Plan for this site.

7.0 LIMITATIONS

Stantec conducted this monitoring event in accordance with the Corrective Action Work Plan approved by ADEC, and in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. All sampling activities were completed in accordance with the ADEC *Underground Storage Tanks Procedures Manual – Standard Sampling Procedures* (March 22, 2017) and Field Guidance issued in October 2019. No other warranty, expressed or implied, is made. Data and recommendations made herein were prepared for Speedway, LLC Store 5310, formally known as Tesoro 2 Go Mart #112 and Tesoro Refining and Marketing Company. Information herein is for use at this site in accordance with the purpose of the report described.

FIGURES

Figure 1	Location and Vicinity Map
Figure 2	Site Plan with Groundwater Detections and
	Analytical Exceedances
Figure 3	Remediation System Layout
Figure 4	Graphs of Contaminant Concentrations and
	Groundwater Elevations



SPEEDWAY STORE 5310 A.K.A TESORO 2 GO MART #112

AUGUST 2020 MONITORING EVENT REPORT LOCATION AND VICINITY MAP

IGURE

185704928

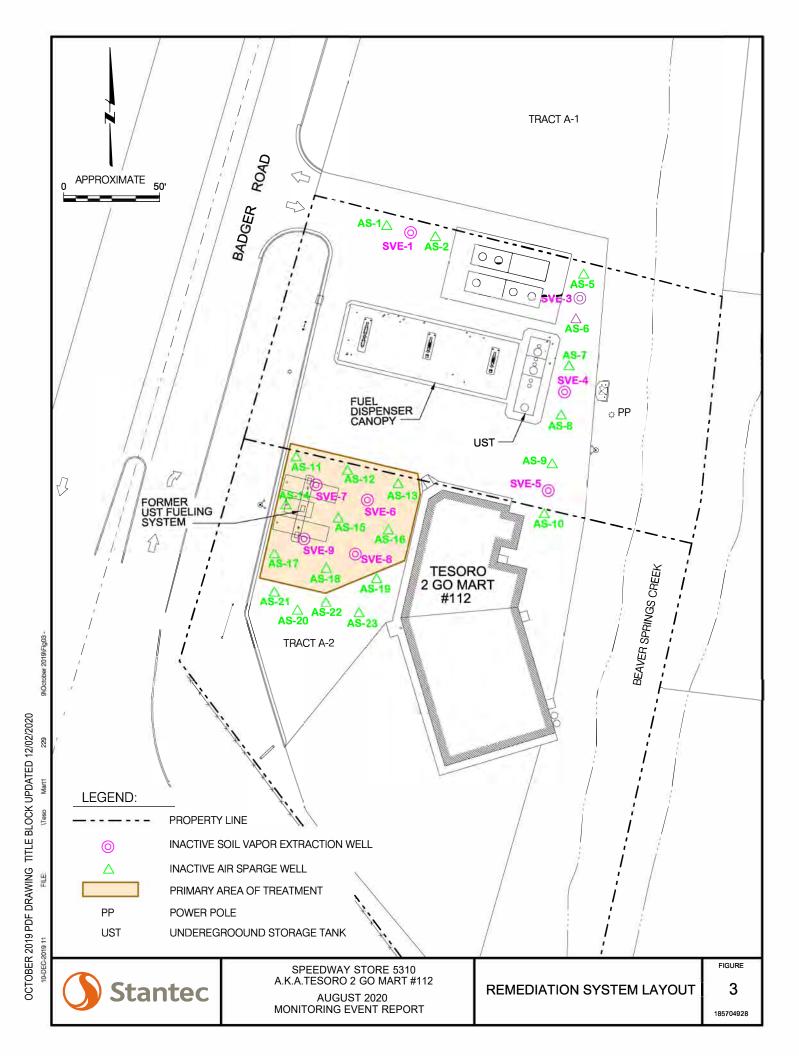


Figure 4
Graphs of Contaminant Concentrations and Groundwater Elevations

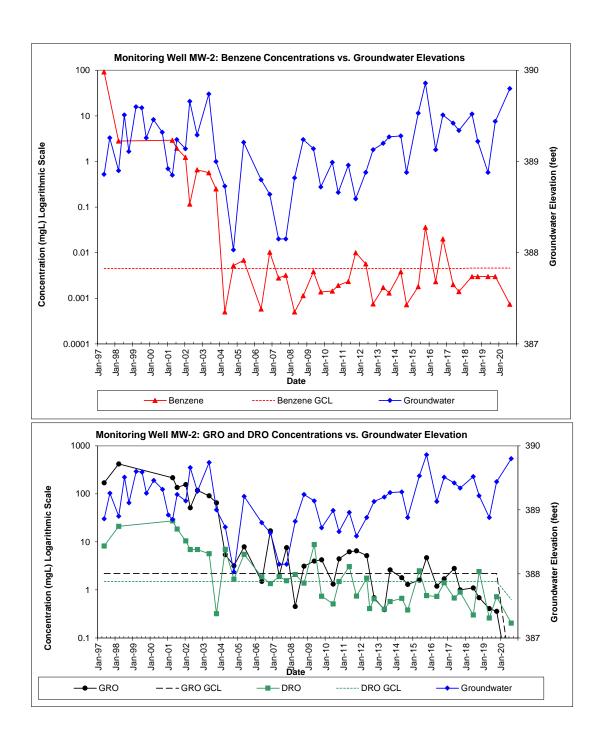
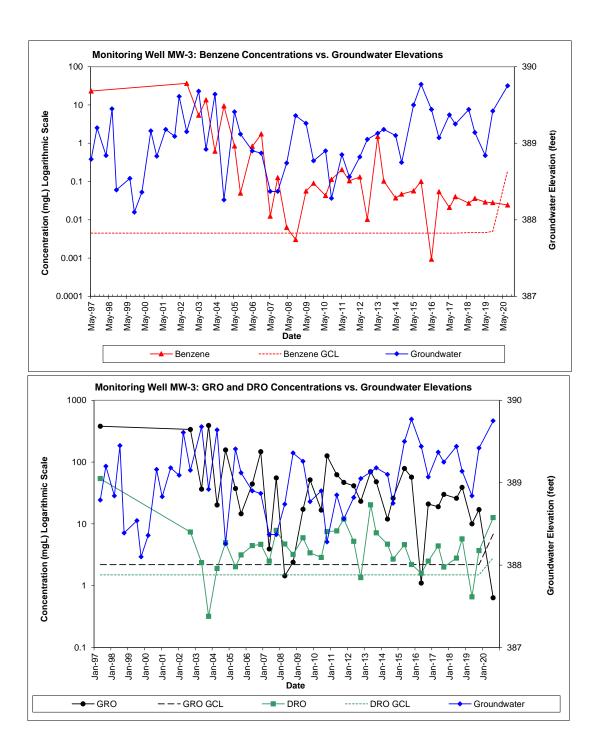
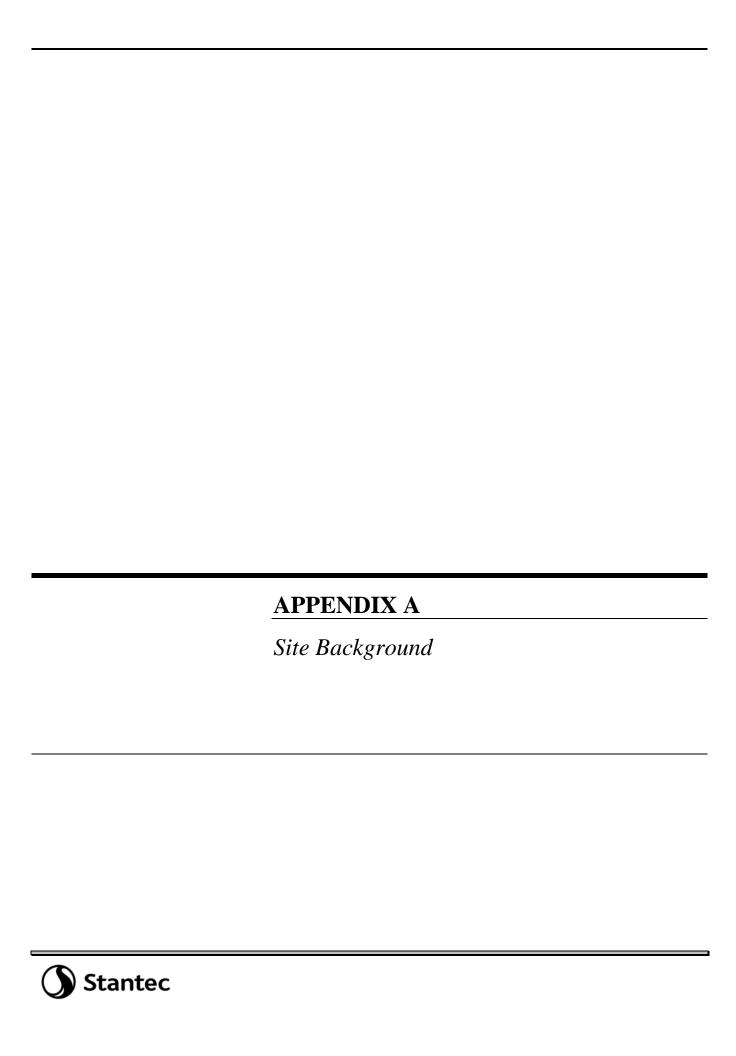




Figure 4
Graphs of Contaminant Concentrations and Groundwater Elevations

APPENDIX A - SITE BACKGROUND

Tesoro 2 Go Mart #112 (3392 Badger Road, North Pole, Alaska) **ADEC Facility ID #1116; ADEC File #100.26.159**

Tesoro 2 Go Mart #112 is a retail fuel service/convenience store located northeast of the Richardson Highway overpass on Badger Road in North Pole, Alaska. The property is approximately 1.9 acres in size and the legal description is Tract A-2, Morningstar Subdivision. The store is in the north end of a small strip mall. Beaver Springs Creek flows to the north immediately behind the strip mall. Three underground storage tanks (USTs) were initially installed to serve the original convenience store in December 1984.

November 1996. During field installation of a cathodic protection system on the USTs, a petroleum hydrocarbon release was discovered in several subsurface boreholes drilled around the perimeter of the USTs.

May 1997. Gilfilian Engineering and Environmental Testing, Inc. (GE²T) completed a Phase 1 Release Investigation (RI) at the site and installed four groundwater monitoring wells. In addition, representative water samples were collected from the mall drinking water system (served by an on-site water well) and from Beaver Springs Creek. Petroleum contaminants were detected above Alaska Department of Environmental Conservation (ADEC) cleanup levels in samples collected from all four soil borings/monitoring wells. Petroleum contaminants were detected at very low concentrations in the creek water samples, and none in the drinking water sample.

September 1997. Free phase petroleum was discovered in two of the four groundwater monitoring wells at the site, and dissolved petroleum contaminants was detected above ADEC groundwater cleanup levels (GCLs) in the other two monitoring wells.

March 1998. A well search was conducted within a ¹/₄-mile radius of the site. The findings of the well search noted there were approximately 24 domestic water supply wells within the search radius.

August/September 1998. GE²T conducted a UST Closure Site Assessment (SA) at the site. Three USTs and associated piping and dispensers were removed from the site and a new UST system was installed on an adjacent downgradient lot (to the north) of the site on Tract A-1 Morning Star Subdivision. Petroleum hydrocarbon contamination was found in the monitoring wells constructed in the area of the former and new UST systems. Seven soil vapor extraction (SVE) wells and sixteen air sparge (AS) wells systems were installed at the site for remediation of contamination found in the vadose soil zone and groundwater table beneath the site. Additional AS and SVE wells were installed at a later date

September 1999. An SA was completed for the removal of the new UST that were installed in September 1998 and replace with a new UST. Soil contamination was discovered in the area of

the replacement UST system. Contaminated soil was removed and transported off-site for thermal treatment.

June 2000. GE²T conducted a RI for installation of an additional monitoring well (MW-6) at the site. No contaminants were detected in soil samples from the boring.

March 2001. A Falco 300 Cat-Ox unit was installed as part of the remediation system to treat vapors captured in the SVE system.

September/October 2003. MWH Americas, Inc. (MWH) completed a RI that included the installation of additional AS and groundwater monitoring wells. The RI involved drilling five soil borings, of which four were completed as AS wells (AS-20, AS-21, AS-22, and AS-23) and one monitoring well (MW-7). Contaminants were detected in soil from borings MW-7, AS-20, and AS-21 and the water sample from MW-7.

March 2004. MWH completed a RI that involved the drilling two soil borings. These borings were completed as 2-inch diameter monitoring wells (MW-8 and MW-9). Laboratory results indicate that no contaminants were detected in the soil or groundwater samples collected.

September 2004. MWH completed a RI that involved the drilling of one soil boring. The boring that was completed as 2-inch diameter monitoring well (MW-10). Laboratory results indicate that no contaminants were detected in the soil samples collected. Benzene was detected above the GCL water sample collected from MW-10.

May 2005. Benzene, toluene, ethylbenzene, GRO, and DRO were detected above the ADEC GCLs in Monitoring Well MW-3. Benzene, GRO, and DRO were also detected above the GCLs in Monitoring Well MW-2. No analytes of concern were detected above the GCLs in any of the other tested wells. The AS and SVE systems remained in operation.

September 2005. Benzene, GRO, and DRO were detected above the ADEC GCLs in Monitoring Wells MW-2 and MW-3. Toluene was also detected above the GCL in Monitoring Well MW-3. No analytes of concern were detected above the GCLs in Monitoring Well MW-10. The AS and SVE systems remained in operation. The SVE exhaust vapor concentrations had decreased to a relatively low level that no longer necessitated the use of the catalytic oxidizer unit. Therefore, the catalytic oxidizer was disconnected from the SVE system in summer 2005.

May 2006. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above the ADEC GCLs in Monitoring Well MW-3. GRO and DRO were also detected above the GCLs in Monitoring Well MW-2. No analytes of concern were detected above the GCLs in Monitoring Wells MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, and MW-10. The AS and SVE system were shut down until system maintenance could be performed.

November 2006. Benzene, toluene, ethylbenzene, and gasoline range organics were detected above the ADEC GCLs in Monitoring Wells MW-2 and MW-3. Xylenes and diesel range organics

were also detected above the GCLs in Monitoring Well MW-3. No analytes of concern were detected above the GCLs in Monitoring Well MW-10. AS and SVE system were brought back online after system repair was performed.

May 2007. GRO and DRO were detected above the ADEC GCLs in Monitoring Wells MW-2 and MW-3. Benzene, toluene, ethylbenzene, and xylenes were detected above the practical quantitation limits (PQLs) in Monitoring Wells MW-2 and MW-3, but only benzene was above the GCL. DRO was detected above the PQL, but below the GCL, in Monitoring Wells MW-4 and MW-5. No analytes of concern were detected above the PQLs in Monitoring Wells MW-1, MW-6, MW-9, and MW-10. AS and SVE system remain in operation.

April 2008. DRO was detected above the ADEC GCLs in Monitoring Wells MW-2, MW-3, and MW-4. GRO were detected above the ADEC GCLs in Monitoring Wells MW-3 and MW-4. Benzene was also detected above the GCLs in Monitoring Well MW-3. DRO in Monitoring Well MW-1; ethylbenzene, xylenes, and GRO in MW-2; toluene, ethylbenzene, and xylenes in Monitoring Well MW-3; and benzene, toluene, ethylbenzene, and xylenes in Monitoring Well MW-4 were detected above the PQLs, but below the GCLs. No analytes were detected above the PQLs in Monitoring Wells MW-5 through MW-10. AS and SVE system remain in operation.

October 2008. DRO were detected above the ADEC GCL in Monitoring Well MW-3. GRO were detected above the GCL in Monitoring Wells MW-2 and MW-3. All other analytes were detected above the PQLs, but below the GCLs, in Monitoring Wells MW-2 and MW-3. No analytes were detected above the PQLs in Monitoring Well MW-10. AS and SVE system remain in operation.

May 2009. Diesel range organics were detected above the ADEC GCLs in Monitoring Wells MW-1, MW-2, and MW-3. GRO were detected above the GCL in Monitoring Wells MW-2 and MW-3. Benzene was detected above the GCL in Monitoring Well MW-3. All other analytes were detected above the PQLs, but below the GCLs, in Monitoring Wells MW-2 and MW-3. Toluene in Monitoring Wells MW-1 through MW-4, and MW-8; ethylbenzene in Monitoring Wells MW-1 through MW-4 and MW-7 through MW-9; and GRO in Monitoring Well MW-7 were detected above PQLs but below GCLs. All other analytes in the above wells sampled were not detected above the PQLs. No analytes were detected above the PQLs in Monitoring Wells MW-5, MW-6, and MW-10. AS and SVE system remain in operation.

October 2009. All analytes tested were detected above the ADEC GCLs in Monitoring Well MW-3. Ethylbenzene and gasoline range organics were detected above the GCLs in Monitoring Well MW-2. Benzene, toluene, xylenes, and diesel range organics were detected above the practical quantitation limits, but below the GCLs, in Monitoring Well MW-2. No analytes of concern were detected above the practical quantitation limits in Monitoring Well MW-10. AS and SVE system remain in operation.

June 2010. Benzene, GRO, and DRO were detected above the ADEC groundwater cleanup levels GCLs in Monitoring Well MW-3. Toluene, ethylbenzene, and xylenes were detected above the

PQLs, but below the GCLs, in Monitoring Well MW-3. Benzene, toluene, ethylbenzene, xylenes, and GRO were detected above the PQLs, but below the GCLs, in Monitoring Wells MW-1 and MW-2. DRO was also detected above the PQL, but below the GCL, in Monitoring Well MW-2. No analytes of concern were detected above the PQLs in Monitoring Wells MW-4, MW-6, or MW-10. AS and SVE system remain in operation. Measurements of the SVE exhaust with a PID indicated low amounts of volatile petroleum hydrocarbons are being removed from the vadose soil zone.

October 2010. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above the ADEC GCLs in Monitoring Well MW-3. GRO was detected above the GCL in Monitoring Well MW-2. Benzene, toluene, ethylbenzene, xylenes, and DRO were detected above the PQLs, but below the GCLs, in Monitoring Well MW-2. No analytes of concern were detected above the PQLs in Monitoring Well MW-10. AS and SVE system remain in operation.

May 2011. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above the ADEC GCLs in Monitoring Well MW-3. GRO and DRO were detected above the GCL in Monitoring Well MW-2. Benzene, toluene, ethylbenzene, and xylenes were detected above the PQLs, but below the GCLs, in Monitoring Well MW-2. Toluene, ethylbenzene, xylenes, GRO, and DRO were also detected above the PQLs, but below the GCLs, in Monitoring Well MW-1. Benzene was not detected above the PQL in Monitoring Well MW-1. No analytes of concern were detected above the PQLs in Monitoring Wells M-4, MW-6, and MW-10. AS and SVE system remain in operation.

October 2011. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above the ADEC GCLs in Monitoring Well MW-3. GRO was detected above the GCL in Monitoring Well MW-2. Ethylbenzene, xylenes, and DRO were detected above the PQLs, but below the GCLs, in Monitoring Well MW-2. Benzene and toluene were not detected above the PQLs in MW-2; however, the PQL for benzene is above the GCL and the result might exceed the GCL. No analytes of concern were detected above the PQLs in Monitoring Wells MW-6 and MW-10. The AS and SVE systems remain in operation on a full-time basis.

May 2012. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above GCLs in Monitoring Well MW-3. Benzene and GRO were detected above GCLs in Monitoring Well MW-2. Benzene, toluene, ethylbenzene, xylenes, and GRO were detected above PQLs and below GCLs in Monitoring Well MW-1. Toluene, ethylbenzene, and xylenes were detected above PQLs and below GCLs in Monitoring Well MW-2. No other analytes were detected above the PQLs in any of the samples collected during this monitoring event. The AS and SVE systems remained in operation on a full-time basis.

October 2012. Benzene and GRO were detected above GCLs in Monitoring Well MW-3. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above PQLs and below GCLs in Monitoring Well MW-2. Toluene, ethylbenzene, xylenes, and DRO were detected above PQLs and below GCLs in Monitoring Well MW-3. The AS and SVE systems were taken offline pending repairs and improvements. A total of 130 gallons of Klozur CR[®] was applied at the site

over two events. Approximately 10 gallons of Klozur CR was poured into SVE-7, and approximately 55 gallons into SVE-9 on August 29, 2012. Additionally, 65 gallons of Klozur CR were injected into Well SVE-9 on October 9, 2012.

May 2013. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above GCLs in Monitoring Well MW-3. Benzene, ethylbenzene, xylenes, GRO, and DRO were detected above PQLs but below GCLs in Monitoring Well MW-1. Benzene, toluene, ethylbenzene, xylenes, and GRO were detected above PQLs but below GCLs in Monitoring Well MW-2. The AS and SVE systems remain offline pending repairs and improvements.

September 2013. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above GCLs in Monitoring Well MW-3. GRO was detected above GCL in Monitoring Well MW-2. Benzene, toluene, ethylbenzene, xylenes, and DRO were detected above PQLs but below GCLs in Monitoring Well MW-2. The AS and SVE systems remain offline pending repairs and improvements.

May 2014. Benzene, GRO, and DRO were detected above GCLs in Monitoring Well MW-3. Ethylbenzene, xylenes, and DRO were detected above PQL and below GCLs in Monitoring Well MW-1. Benzene, ethylbenzene, xylenes, GRO, and DRO were detected above PQLs but below GCLs in Monitoring Well MW-2. Toluene, ethylbenzene, and xylenes were detected above PQLs and below GCLs in Monitoring Well MW-3. Xylenes were detected above PQLs but below GCLs in Monitoring Well MW-10. The AS and SVE systems remain offline pending repairs and improvements.

September 2014. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above GCLs in Monitoring Well MW-3. Benzene, toluene, ethylbenzene, xylenes, and GRO were detected above PQLs and below GCLs in Monitoring Well MW-2. The AS and SVE systems remain offline pending repairs and improvements.

May 2015. Benzene, toluene, ethylbenzene, xylenes, GRO, and DRO were detected above GCLs in Monitoring Well MW-3. DRO was detected above GCL in Monitoring Wells MW-1 and MW-2. Toluene, ethylbenzene, xylenes, and GRO were detected above PQLs but below GCLs in Monitoring Well MW-1. Benzene, ethylbenzene, xylenes, and GRO were detected above PQLs but below GCLs in Monitoring Well MW-2. DRO was detected above PQL but below GCL in Monitoring Well MW-4. The AS and SVE systems remain offline pending repairs and improvements.

October 2015. Benzene and GRO were detected above GCLs in Monitoring Well MW-2. Benzene, toluene, ethylbenzene, total xylenes, GRO, and DRO were detected above GCLs in Monitoring Well MW-3. One or more analytes were detected above the PQLs, but below the GCLs, in Monitoring Wells MW-2 (all analytes), MW-6 (DRO), and MW-10 (DRO). The AS and SVE systems remain offline pending repairs and improvements. Chemical oxidation of the groundwater at the site was conducted on October 6, 2015, with the injection of Klozur CR[®] into

Injection Well SVE-6 and well clusters SVE-7 and SVE-9 located at the footprint of the former underground storage tanks (USTs – Figure 3). Follow-up intrinsic measurements indicated negligible influence of the injection on groundwater at Monitoring Well MW-3.

May 2017. Results of analytical sampling showed concentrations exceeding the GCLs for:

- Monitoring Well MW-1: ethylbenzene, xylenes, 1,2,4-trimethylbenzene, and DRO.
- Monitoring Well MW-2: ethylbenzene, xylenes, 1,2,4-trimethylbenzene, naphthalene, and GRO.
- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, naphthalene, GRO, and DRO.

One or more analytes were detected above the PQLs, but below the GCLs, in Monitoring Wells MW-1, MW-2, MW-3, MW-4, and MW-10.

September 2017: Results of the semi-annual groundwater monitoring event conducted in September 2017 showed concentrations exceeding the GCLs for ethylbenzene in Monitoring Well MW-2; and benzene, ethylbenzene, xylenes, GRO, and DRO in MW-3. Monitoring Wells MW-6 and MW-10 were found to be absent of contaminants of concern. These findings are similar to results found in previous monitoring events

June 2018. Results of analytical sampling showed concentrations exceeding the GCLs for:

- Monitoring Well MW-1: 1,2,4-trimethylbenzene.
- Monitoring Well MW-2: ethylbenzene, 1,2,4-trimethylbenzene, benzopyrene, and indenopyrene.
- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, GRO, DRO, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene.
- Monitoring Well MW 17-5: benzene, ethylbenzene, xylenes, and 1,2,4-trimethylbenzene.

One or more analytes were detected above the PQLs, but below the GCLs, in Monitoring Wells MW-1, MW-2, MW-3, MW-4, and MW-17-5.

October 2018. The following summarizes results exceeding the GCLs for the October 2018 semi-annual groundwater monitoring event:

- Monitoring Well MW-2: ethylbenzene and DRO.
- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, GRO, DRO, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene.
- Monitoring Well MW 17-2: ethylbenzene, xylenes, GRO, DRO and 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene.
- Monitoring Well MW 17-5: benzene, ethylbenzene, xylenes, GRO, 1,2,4-trimethylbenzene,1,3,5-trimethylbenzene, and naphthalene

One or more analytes were detected above the PQLs, but below the GCLs, in Monitoring Wells MW-2, MW-3, MW-6, and MW-17-5.

In addition, several volatile organic compounds (VOCs) were reported by the laboratory as undetected but had laboratory reporting limits that equaled or exceeded their corresponding GCLs.

The chemical oxidation (chemox) treatment process was delayed until the third quarter of 2018 due to replacement of the chemical oxidant. In September 2018, Stantec completed an injection of the replacement chemox product, Klozur One[®], into the four remediation wells. Klozur One[®] is a granular product manufactured by PeroxyChem that consists primarily of sodium persulfate and patented activator reagents. A total of 220 pounds of Klozur One[®] product was mixed with clean water and then manually injected as a solution into the contaminated source area via Remediation Wells RM17-1, RM17-3, RM17-4, and RM17-6. Each of the four remediation wells received 55 pounds of Klozur One[®] that was prepared as a solution with 50 gallons of clean water. Following the injection of the chemox solution, a combined total of 550 gallons of clean water was injected in all the wells. It was noted that each of the remediation wells had different acceptance rates for delivery of the clean water that ranged from 55 to 210 gallons each.

May 2019. This May 2019 semi-annual groundwater monitoring event included measuring the depth to groundwater, measuring water quality parameters, and collecting and analyzing groundwater samples from Monitoring Wells MW-1, MW-2, MW-3, MW-4, MW-6, MW-10, MW 17-2, and MW 17-5. The methods that were used for this monitoring event were conducted in accordance with the Alaska Department of Environmental Conservation (ADEC) approved 2019 Corrective Action Work Plan for this site.

Results from the groundwater depth measurements indicate the average hydraulic gradient was approximately 0.003 feet per foot with flow tending toward the northeast at 55 degrees. The flow direction and gradient for this monitoring event were consistent with the historical values for this site.

Results of the analytical sampling showed concentrations exceeding the ADEC groundwater cleanup levels (GCLs) for the following monitoring wells:

- Monitoring Well MW-2: ethylbenzene.
- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, gasoline range organics (GRO), and naphthalene.
- Monitoring Well MW 17-5: ethylbenzene.

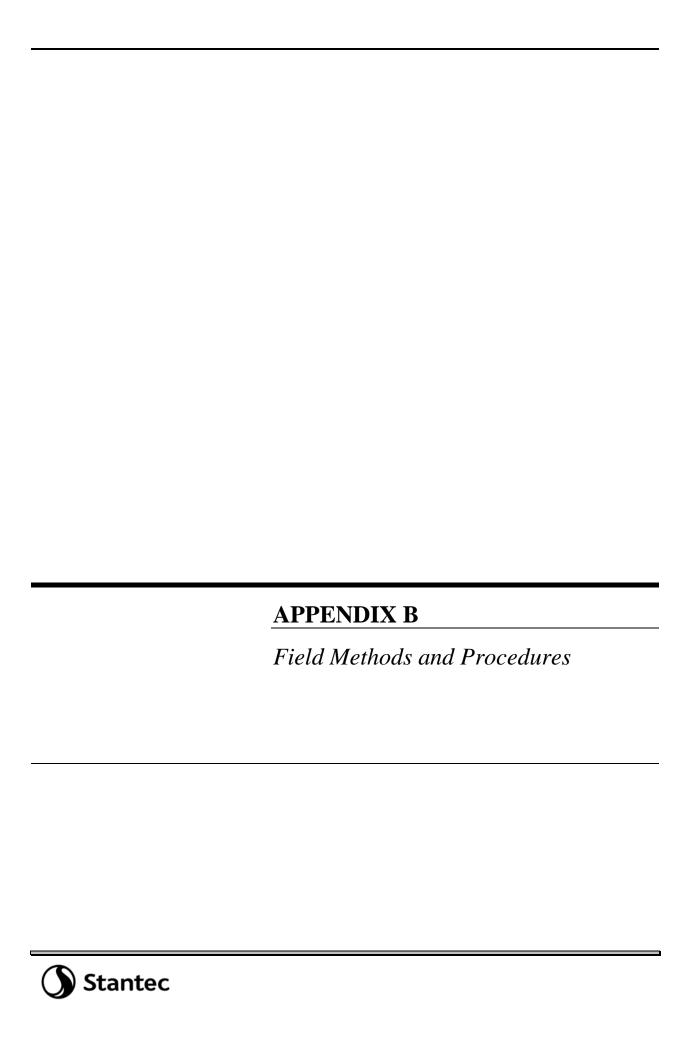
October 2019. This October 2019 semi-annual groundwater monitoring event included measuring the depth to groundwater, measuring water quality parameters, and collecting and analyzing groundwater samples from Monitoring Wells MW-2, MW-3, MW-6, MW-10, MW 17-2, and MW 17-5. The methods that were used for this monitoring event were conducted in accordance with the ADEC approved 2019 Corrective Action Work Plan for this site.

Results from the groundwater depth measurements indicate the average hydraulic gradient was approximately 0.005 feet per foot with flow tending toward the northeast at 64 degrees. The flow direction and gradient for this monitoring event were consistent with the historical values for this site.

Results of the analytical sampling showed concentrations exceeding the ADEC GCLs for the following monitoring wells:

- Monitoring Well MW-2: ethylbenzene.
- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, GRO, and DRO.
- Monitoring Well MW 17-2: ethylbenzene, xylenes, and GRO.
- Monitoring Well MW 17-5: benzene, ethylbenzene, xylenes, and GRO.

Stantec completed an injection of 220 pounds of the chemox product, Klozur One[®], into the four remediation wells (RW17-1, RW17-3, RW17-4, and RW17-6).


August 2020. The semi-annual groundwater monitoring event included measuring the depth to groundwater, measuring water quality parameters, and collecting and analyzing groundwater samples from Monitoring Wells MW-2, MW-3, MW-6, MW-10, MW17-2, and MW17-5. The methods that were used for this monitoring event were conducted in accordance with the Alaska Department of Environmental Conservation (ADEC) approved 2020 Corrective Action Work Plan for this site.

Results from the groundwater depth measurements indicate the average hydraulic gradient was approximately 0.005 feet per foot with flow tending toward the northeast at 67 degrees. The flow direction and gradient for this monitoring event were consistent with the historical values for this site.

The following summarizes laboratory test results that exceeded the GCLs for the August 2020 semi-annual groundwater monitoring event:

- Monitoring Well MW-3: Benzene, Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, GRO, and DRO.
- Monitoring Well MW 17-2: Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, and DRO.
- Monitoring Well MW 17-5: Benzene, Ethylbenzene, Total Xylenes, 1-2-4 Trimethylbenzene, 1-3-5 Trimethylbenzene, Naphthalene, and GRO.

Stantec completed an injection of 220 pounds of the chemox product, Klozur One[®], into the four remediation wells (RW17-1, RW17-3, RW17-4, and RW17-6).

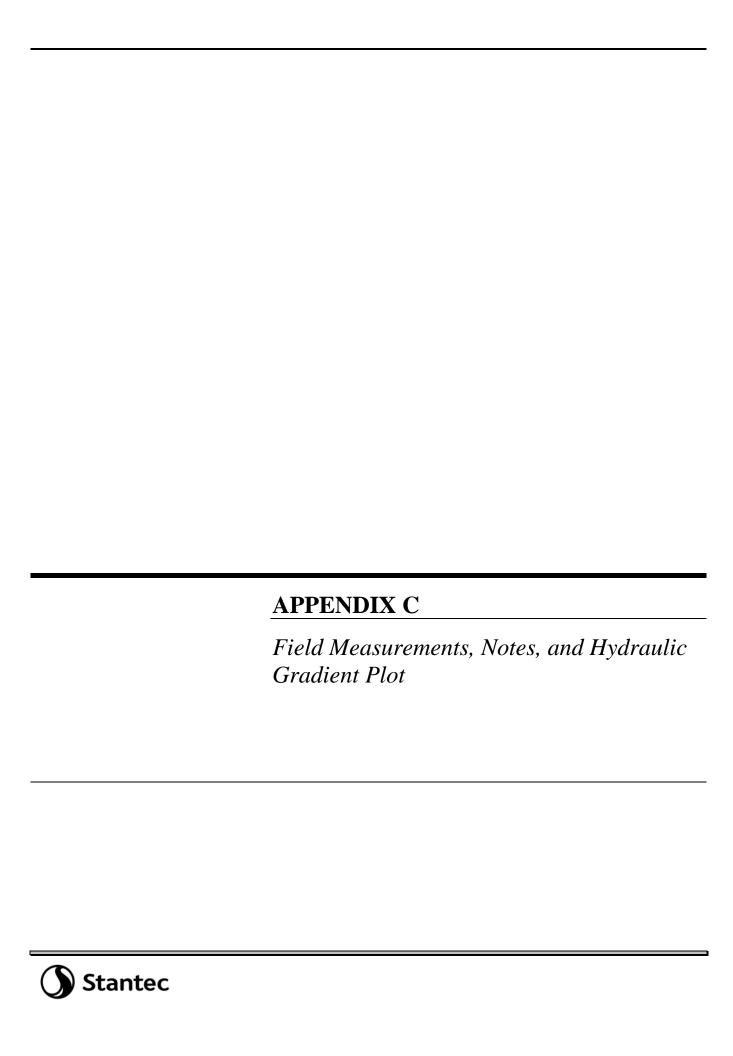
2020 Work Plan Schedule for Speedway Store 5310 (Formerly Tesoro 2Go Mart 112)

	Work Plan Task	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Task 1	Monitoring Wells: MW-2, MW-3, MW-6, MW-10, MW17-2 and MW17-5.		D, G, V, P, I, S*		D, G, I, V, S*
	Monitoring Wells MW-1 and MW-4		D, G, V, P, I		
Task 2	Chemical Oxidation Treatment		✓	✓	

Key:

AK – Alaska Test Method

D – Diesel range organics by AK102.


EPA – U.S. Environmental Protection Agency

G – Gasoline range organics by AK101.

- I Indicators, parameters tested include dissolved oxygen, specific conductance, oxygen-reduction potential, pH, and temperature.
- P Polynuclear aromatic hydrocarbons (PAHs), i.e., semi-volatile organic compounds, by EPA Test Method 8270D Selective Ion Monitoring.
- V Volatile organic compounds by EPA Test Method 8260C.
- S* Sodium which will only be tested in wells MW-3, MW 17-2 and MW 17-5.

The Corrective Action Work Plan for the year 2020 will be implemented by Stantec on behalf of Speedway. Groundwater monitoring will be conducted to track migration and trends of contaminants that are present at the site. All sampling activities will be completed in accordance with ADEC's *Underground Storage Tanks Procedures Manual—Standard Sampling Procedures* (March 22, 2017). The methods that will be used for conducting a monitoring event, unless otherwise noted in the monitoring report, will include:

- The static water levels in the monitoring wells will be measured with respect to the top of each well casing. The elevation of the static water level will be based on an arbitrary datum established on-site during a vertical control survey that will be completed by Stantec on an annual basis. The survey will be performed during the summer after the seasonal frost layer thaws.
- The monitoring wells will be purged of a minimum of three well bore volumes prior to collecting the water samples. A new, disposable, Teflon® bailer will be used to sample each well. The first bail of water removed from each well will be examined for petroleum odor, sheen, and any other unique physical features.
- Water and vapor samples will be collected in laboratory-supplied sample containers. The samples
 will be delivered to an ADEC-approved laboratory in accordance with standard chain-of-custody
 procedures.
- Additional water samples will be collected from the monitoring wells after the well has been purged, as described above, and tested in the field for chemical and physical intrinsic parameters listed in the 2020 Work Plan Schedule shown above.

Appendix C **Field Measurements and Notes**

Project:	Speedway Store #5310, aka TNS #112	Date:	8/18/2020
Stantec Project Number:	185704928	Samplers:	Austin Badger and Leslie Petre

Weather: 70's and Sunny

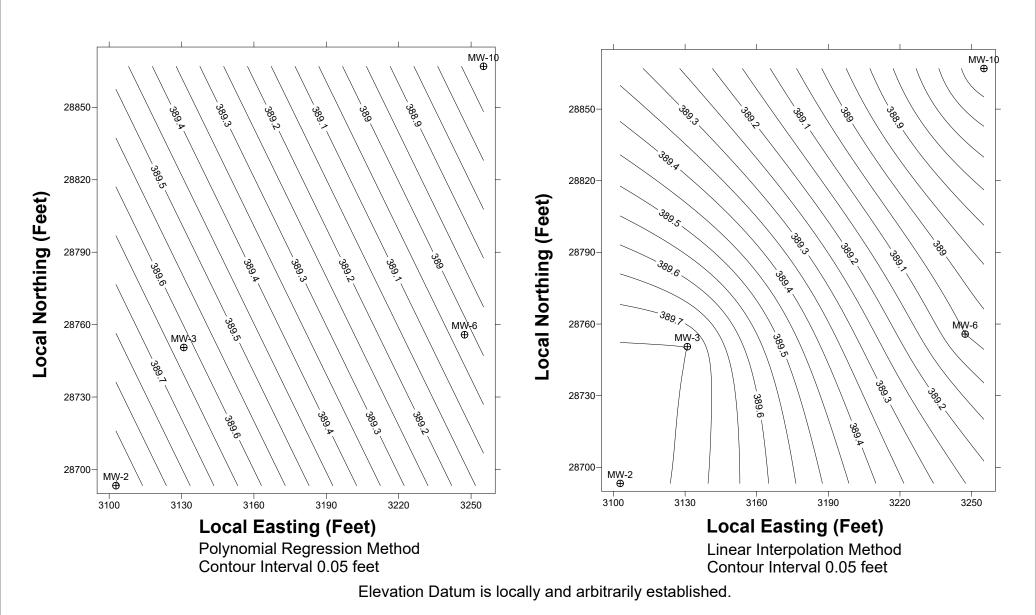
Well ID	Volume Purged (gallons)	Sheen/ Odor	Temp. (°C)	рН	Dissolved Oxygen (mg/l)	ORP (mV)	Specific Conductance (μs/cm)	Top of Casing* (feet)	Depth to Groundwater (feet btoc)	Water Column (feet)	Groundwater Elevation (feet)	Depth to Bottom (feet btoc)
MW-2	5.0	N/N	3.3	7.36	0.31	64.1	729	398.76	8.96	2.54	389.8	11.5 **
MW-3	10.7	Y/Y	5.1	6.46	0.46	15.8	752	398.80	9.05	5.45	389.75	14.5 **
MW-6	2.37	N/N	5.4	7.54	0.1	57.4	450	401.37	12.32	4.83	389.05	17.15 **
MW-10	3.15	N/N	4.3	7.71	0.21	53.2	339	401.52	12.87	6.53	388.65	19.28
MW17-2	3.12	N/N	6	7.1	0.25	0.4	931	398.28	8.45	6.35	389.83	14.80 **
MW17-5	2.19	N/N	4.3	6.56	0.34	47.8	495	398.60	8.78	4.47	389.82	13.25 **

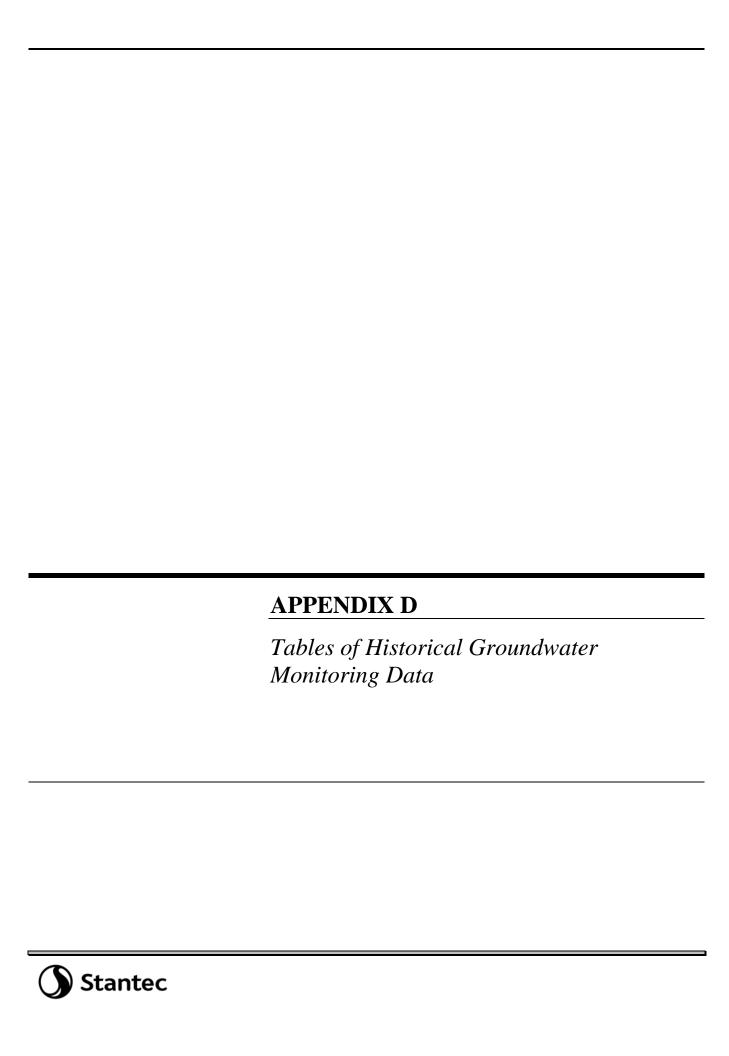
NC - Not Calculated

* Based on a vertical control survey of September 5, 2017, using an arbitrary datum, for MW-2, MW-3, MW-6, and MW-10. Vertical control survey for MW 17-2 and MW 17-5 was completed

NM - Not Measured

July 31, 2019.
** Depths from previous records. NP - Not Purged


Well ID	Notes	Well Dia.	Sample Time
MW-2	Water Murky, impacted externally with silt	4"	1300
MW-3	Some grit, slight odor with sheen	4"	1555
MW-6	Clear	2"	1145
MW-10	Clear	2"	1115
TNS 112 Dup	Of MW-3		1555
MW17-2	Murky	2"	1412
MW17-5	Clear	2"	1500


Instruments / methods	Model	
Static water level	Heron	H01L
pH *	YSI Pro Solo	556
Conductivity *	YSI Pro Solo	556
Dissolved Oxygen *	YSI Pro Solo	556
Temperature	YSI Pro Solo	556
ORP *	YSI Pro Solo	556

*Calibration in question due to calibration with solution opened in 2019 and because of 2 point pH calibration. Conductivity calibration okay. No ORP calibration.

Lab Analytical Methods:							
VOCs (8260)	ALL						
GRO (AK101)	ALL						
DRO (AK102)	ALL						
Sodium							

Speedway Store #5310 (Former Tesoro 2 Go Mart #112)-Groundwater Elevation Contours August 18, 2020

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
30-May-97	0.310	9.00	2.30	10.0	42.0	8.5	88.88
11-Sep-97	0.571	12.60	2.00	9.37	55.0	6.05	89.26
12-Mar-98	0.220	4.90	1.30	6.0	37	5.1	88.92
21-Jul-98	0.143	4.29	0.84	3.92	22	7.59	89.51
12-Oct-98	0.143	4.36	0.458	1.929	16	5.98	87.78
21-Jan-99	0.036	1.08	0.24	1.208	6.8	2.46	88.80
31-Mar-99	0.015	0.297	0.151	0.703	3.3	0.686	88.28
28-Jul-99	0.087	10.80	1.96	9.38	46	3.89	89.14
15-Oct-99	0.174	2.97	0.503	2.334	15	3.74	88.91
10-Mar-00	0.0216	0.718	0.161	0.783	4.7	0.81	88.52
21-Jun-00	0.0220	0.931	0.284	1.321	7.6	1.03	89.32
21-Sep-00	0.0329	0.471	0.160	0.736	5.0	1.61	89.26
25-Jan-01	0.0170	0.322	0.110	0.523	3.69	0.644	88.90
19-Apr-01	0.0123	0.097	0.046	0.221	1.48	0.920	88.87
24-Jul-01	0.0119	0.209	0.104	0.409	2.07	0.628	89.25
28-Jan-02	0.1200	2.070	0.604	2.841	10.8	0.778	89.16
30-Apr-02	5.020	9.480	0.284	3.470	32.2	2.1	89.65
30-Sep-02	0.659	0.209	0.0551	0.736	3.87	1.11	89.72
12-May-03	0.538	3.14	0.814	20.42	44.5	4.84	89.70
09-Oct-03	0.00437	0.00571	0.00189	0.0998	0.697	U (0.32)	389.08
16-Mar-04	NT	NT	NT	NT	NT	NT	NM
21-Apr-04	U (0.0005)	0.000709	U (0.0005)	0.00984	U (0.05)	U (0.5)	388.75
17-Sep-04	NT	NT	NT	NT	NT	NT	NM
21-Oct-04	0.00544	0.00284	0.00585	1.46	3.52	2.41	388.32
19-May-05	0.000943	0.00248	0.00272	0.0211	0.0709	0.48	389.26
26-Sep-05	NT	NT	NT	NT	NT	NT	NM
15-May-06	NT	NT	NT	NT	NT	NT	NM
07-Nov-06	NT	NT	NT	NT	NT	NT	NM
15-May-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.413)	388.45
16-Oct-07	NT	NT	NT	NT	NT	NT	NM
29-Apr-08	U (0.0005)	0.00088	U (0.0005)	U (0.0015)	U (0.05)	0.862	388.52
01-Oct-08	NT	NT	NT	NT	NT	NT	389.28
12-May-09	U (0.0005)	0.00427	0.00077	0.00586	U (0.05)	1.77	389.20
26-Oct-09	NT	NT	NT	NT	NT	NT	NM
15-Jun-10	0.00134	0.0297	0.0357	0.249	0.849	U (0.420)	389.00
14-Oct-10	NT	NT	NT	NT	NT	NT	NM
24-May-11	U (0.0005)	0.00056	0.00479	0.0377	0.0857	0.652	389.11
26-Oct-11	NT	NT	NT	NT	NT	NT	NM
22-May-12	0.000701	0.00284	0.0765	0.407	1.41	U (0.410)	388.89
11-Oct-12	NT	NT	NT	NT	NT	NT	NM
21-May-13	0.000845	U (0.0005)	0.125	0.455	1.21	0.587	389.20
25-Sep-13	NT	NT	NT	NT	NT	NT	389.30
06-May-14	U (0.0005)	U (0.0005)	0.0021	0.011	U (0.05)	0.64	389.34
17-Sep-14	NT	NT	NT_	NT	NT	NT	NM
26-May-15	U (0.001)	0.0044	0.0045	0.031	0.21	2.3	389.72
06-Oct-15	NT	NT	NT 0.0050	NT	NT	NT	NM
11-May-16	0.00055	0.0026	0.0053	0.029	U (0.1)	U (0.40)	389.18
05-Oct-16	NT	NT	NT	NT	NT II (40)	NT	NM
08-May-17	U (0.002)	U (0.002)	0.034	0.285	U (10)	1.5	389.46
05-Sep-17	NT	NT	NT	NT	NT	NT 0.42	NM
14-Jun-18	U (0.003)	0.0021	0.0086	0.071	0.028	0.43	389.56
30-Oct-18	NT	NT	NT LL (0, 000)	NT 0.0004	NT (0.25)	NT 0.40	NM
09-May-19	U (0.003)	U (0.002)	U (0.003)	0.0034	U (0.25)	0.42	388.94
22-Oct-19	NT	NT	NT NT	NT	NT	NT	NM
18-Aug-20	NT	NT	NT 2.015	NT 0.40	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Dete	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
30-May-97	92	64	7.1	33	170	8.2	88.86
11-Sep-97	NT	NT	NT	NT	NT	NT	89.26
12-Mar-98	2.8	44	13	62	420	21	88.90
21-Jul-98	NT	NT	NT	NT	NT	NT	89.51
12-Oct-98	NT	NT	NT	NT	NT	NT	89.11
21-Jan-99	NT	NT	NT	NT	NT	NT	NM
31-Mar-99	NT	NT	NT	NT	NT	NT	89.60
28-Jul-99	NT	NT	NT	NT	NT	NT	89.59
15-Oct-99	NT	NT	NT	NT	NT	NT	89.26
10-Mar-00	NT	NT	NT	NT	NT	NT	89.46
21-Jun-00	NT	NT	NT	NT	NT	NT	NM
21-Sep-00	NT	NT	NT	NT	NT	NT	89.32
25-Jan-01	NT	NT	NT	NT	NT	NT	88.92
19-Apr-01	2.93	52.9	9.9	44.5	216	27.4	88.85
24-Jul-01	1.95	30.5	5.3	33.9	136	18.5	89.24
28-Jan-02	1.23	33.4	7.38	39.8	156	10.5	89.14
30-Apr-02	0.116	10.2	2.60	17.43	51.4	6.9	89.66
30-Sep-02	0.656	17.9	2.92	26.61	118	6.93	89.29
12-May-03	0.569	19.7	4.15	25.43	90.8	5.68	89.74
09-Oct-03	0.25	6.21	2.88	14.2	64.9	U (0.32)	389.00
16-Mar-04	NT	NT	NT	NT	NT	NT	NM
21-Apr-04	U (0.005)	0.116	0.114	1.21	5.42	7	388.73
17-Sep-04	NT	NT	NT	NT	NT	NT	NM
21-Oct-04	0.00518	0.0824	0.109	0.699	3.2	1.74	388.03
19-May-05	0.00681	0.513	0.376	1.61	7.88	5.49	389.21
26-Sep-05	0.0125	0.58	0.422	1.78	9.6	3.15	388.93
15-May-06	0.00058	0.0273	0.0533	0.223	1.5	1.87	388.80
07-Nov-06	0.0102	1.11	0.906	3.24	17	1.35	388.64
15-May-07	0.00279	0.0199	0.0356	0.173	1.99	1.9	388.15
16-Oct-07	0.0032	0.173	0.412	1.03	7.61	1.55	388.15
29-Apr-08	U (0.0005)	U (0.0005)	0.0043	0.0131	0.453	2.09	388.82
01-Oct-08	0.00114	0.0194	0.228	0.739	3.12	1.38	389.24
12-May-09	0.00385	0.0114	0.308	0.537	4.0	8.79	389.14
26-Oct-09	0.00138	0.0108	0.717	1.48	4.25	0.738	388.76
15-Jun-10	0.00143	0.00135	0.0205	0.0729	1.32	0.510	388.99
14-Oct-10	0.00192	0.0136	0.127	0.700	4.45	1.49	388.66
24-May-11	0.00232	0.0313	0.798	1.320	6.24	3.04	388.96
26-Oct-11	U (0.010)	U (0.010)	0.345	1.110	6.53	0.744	388.59
22-May-12	0.00566	0.00275	0.179	0.503	5.17	NR	388.88
24-Jul-12	NT	NT	NT	NT	NT	U (0.410)	NM
11-Oct-12	0.000750	0.0197	0.00707	0.0614	0.687	0.655	389.13
21-May-13	0.000730	0.000638	0.0190	0.0325	0.388	U (0.397)	389.20
25-Sep-13	0.001730	0.00104	0.269	0.481	2.61	0.573	389.27
06-May-14	0.003800	U (0.0005)	0.150	0.210	1.80	0.670	389.28
17-Sep-14	0.000720	0.00068	0.096	0.150	1.30	U (0.38)	388.88
26-May-15	0.000720	U (0.003)	0.092	0.130	1.6	2.5	389.53
06-Oct-15	0.036	0.0039	0.290	0.640	4.7	0.76	389.86
11-May-16	0.0023	U (0.001)	0.10	0.040	1.2	0.73	389.13
05-Oct-16	U (0.020)	U (0.020)	0.15	0.14	1.7	1.4	389.51
08-May-17	U (0.002)	U (0.002)	0.23	0.639	2.8	0.68	389.42
05-Sep-17	0.0014	U (0.002)	0.041	0.039	1.000	0.00	389.34
14-Jun-18	U (0.003)	U (0.001)	0.077	0.001	1.1	0.9	389.52
30-Oct-18	U (0.003)	U (0.002)	0.042	0.062	0.69	2.4	389.22
09-May-19	U (0.003)	U (0.002)	0.042	0.062	0.69	0.26	388.88
22-Oct-19	U (0.003) 0.000740	U (0.002) J (0.000886)	0.017 0.00728	0.029 0.0156	0.36 0.203	0.72 0.632	389.44 389.8
18-Aug-20 GCLs	0.000740	1.1	0.00728	0.0136	2.2	1.5	NA
JOLS	0.0070		0.013	0.19	L.L	1.5	14/1

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
30-May-97	23	69	12	54	380	54	88.79
11-Sep-97	NT	NT	NT	NT	NT	NT	89.2
12-Mar-98	NT	NT	NT	NT	NT	NT	88.84
21-Jul-98	NT	NT	NT	NT	NT	NT	89.45
12-Oct-98	NT	NT	NT	NT	NT	NT	88.39
21-Jan-99	NT	NT	NT	NT	NT	NT	NM
31-Mar-99	NT	NT	NT	NT	NT	NT	NM
28-Jul-99	NT	NT	NT	NT	NT	NT	88.54
15-Oct-99	NT	NT	NT	NT	NT	NT	88.10
10-Mar-00	NT	NT	NT	NT	NT	NT	88.36
21-Jun-00	NT	NT	NT	NT	NT	NT	NM
21-Sep-00	NT	NT	NT	NT	NT	NT	89.16
	NT	NT	NT	NT	NT	NT	
25-Jan-01	NT	NT	NT	NT	NT	NT	88.83 NM
19-Apr-01	NT	NT	NT	NT	NT	NT	
24-Jul-01	NT	NT	NT	NT	NT	NT NT	89.18
28-Jan-02	NT NT					NT NT	89.09
30-Apr-02		NT 75.2	NT 3.87	NT 40.3	NT		89.61
30-Sep-02	36.6 5.41	75.3 6.45	3.87 1.44	40.3 7.86	337 36.6	7.38 2.37	89.15
12-May-03							89.68
09-Oct-03	13.6 NT	52.3 NT	5.31	49.9 NT	392 NT	U (0.32)	388.92
16-Mar-04			NT 0.700			NT	NM
21-Apr-04	0.617	1.47	0.722	5.69	20.2	1.9	389.34
17-Sep-04	NT	NT 20.5	NT 2.60	NT	NT 457	NT 4.00	NM
21-Oct-04	9.38	29.5	3.68	24.3	157	4.96	388.26
19-May-05	0.846	5.38	1.04	8.9	37.3	2.03	389.41
26-Sep-05	0.0496	1.27	0.261	4.24	14.6	3.15	389.12
15-May-06	0.833	5.05	1.63	12.5	44.3	4.44	388.90
07-Nov-06	1.74	26.4	3.74	31.4	174	4.68	388.87
15-May-07	0.0124	0.136	0.0942	0.948	3.93	2.49	388.37
16-Oct-07	0.126	2.3	0.272	17.5	55.3	7.82	387.31
29-Apr-08	0.0063	0.143	0.0197	0.321	1.44	4.71	388.74
01-Oct-08	0.00305	0.0238	0.0572	0.913	2.4	3.2	389.36
12-May-09	0.056	0.833	0.624	5.7	17.2	5.95	389.26
26-Oct-09	0.0903	2.25	0.935	13.6	51.5	3.41	388.70
15-Jun-10	0.0428	0.377	0.449	4.2	12.8	2.86	388.90
14-Oct-10	0.113	9.24	2.48	25.6	137	7.56	388.28
24-May-11	0.205	2.53	1.31	20.9	62.4	7.72	388.85
26-Oct-11	0.104	2.09	1.39	20.7	47.0	12.0	388.56
22-May-12	0.131	1.99	0.751	12.9	41.3	5.22	388.82
11-Oct-12	0.0102	0.373	0.271	3.83	23.2	1.35	389.05
21-May-13	1.50	11.2	2.39	15.9	70.0	20.3	389.13
25-Sep-13	0.102	4.01	1.93	23.9	47.9	7.15	389.18
06-May-14	0.037	0.470	0.420	3.8	12.0	4.70	389.10
17-Sep-14	0.047	1.5	1.200	14.0	26.0	2.70	388.75
26-May-15	0.057	2.0	1.6	13.0	79.0	4.6	389.50
06-Oct-15	0.10	2.1	1.5	16.0	57.0	2.2	389.77
11-May-16	0.00093	0.024	0.034	0.34	1.1	1.6	389.07
05-Oct-16	0.054	0.61	0.92	7.9	21	2.5	389.44
08-May-17	0.021	0.32	0.63	6.6	19	4.4	389.37
05-Sep-17	0.040	0.750	1.000	12.000	30.000	2.000	389.25
14-Jun-18	0.027	0.67	1.1	11.6	U (25)	2.8	389.44
30-Oct-18	0.036	0.37	1.2	12	39	5.7	389.14
10-May-19	0.029	0.200	0.380	4.02	10	0.66	388.84
22-Oct-19	0.028	0.150	0.750	5.5	17	3.7 H	389.42
18-Aug-20	0.0244	0.194	0.637	6.86	12.6	2.84	389.75
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
30-May-97	0.85	0.71	0.160	0.64	3.8	0.55	88.79
11-Sep-97	8.41	14.5	1.150	5.57	64	1.71	89.2
12-Mar-98	2.30	3.3	0.420	1.80	15	0.68	88.84
21-Jul-98	3.71	3.69	0.485	2.09	21	0.7	89.41
12-Oct-98	1.95	1.99	0.360	1.58	12	1.29	88.73
21-Jan-99	0.94	0.483	0.127	0.579	4.3	0.7	88.75
31-Mar-99	NT	NT	NT	NT	NT	NT	NM
28-Jul-99	3.48	5.6	0.390	1.86	21	2.65	89.03
15-Oct-99	3.3	5.4	0.422	1.962	26	3.84	88.81
10-Mar-00	1.88	2.52	0.466	2.03	14	1.91	88.45
21-Jun-00	1.44	1.78	0.201	0.923	10	0.660	89.24
21-Sep-00	U (0.0005)	U (0.002)	U (0.002)	U (0.002)	U (0.09)	0.838	89.18
25-Jan-01	0.5330	0.602	0.397	1.464	7.27	1.71	88.82
19-Apr-01	U (0.0005)	0.015	0.011	0.066	0.225	U(0.8)	88.78
24-Jul-01	0.001	U (0.002)	U (0.002)	U (0.002)	U (0.09)	0.869	89.17
28-Jan-02	0.2710	0.802	0.631	2.646	9.580	0.708	89.06
30-Apr-02	0.0644	U (0.002)	0.509	0.128	0.623	U (0.495)	89.66
30-Sep-02	0.0157	U (0.002)	0.00523	0.0114	0.0943	U (0.5)	89.22
12-May-03	0.0138	0.00268	0.00595	0.05252	0.167	U (0.3)	89.69
09-Oct-03	0.0311	U (0.0005)	0.00555	0.0657	0.266	2.95	388.92
16-Mar-04	NT	NT	NT	NT	NT	NT	NM
21-Apr-04	0.00295	U (0.0005)	0.00506	0.113	0.311	U (0.5)	388.65
17-Sep-04	NT	NT	NT	NT	NT	NT	NM
21-Oct-04	0.0121	U (0.0005)	U (0.0005)	0.00791	0.0646	0.455	387.82
19-May-05	0.00295	U (0.0005)	U (0.0005)	0.0167	0.067	U (0.391)	389.16
26-Sep-05	NT	NT	NT	NT	NT 0.054	NT	NM
15-May-06 07-Nov-06	0.000635 NT	U (0.0005) NT	U (0.0005) NT	0.00919 NT	0.051 NT	U (0.403) NT	388.63 NM
15-May-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.782	387.97
16-Oct-07	NT	NT	NT	NT	0 (0.03) NT	0.762 NT	386.87
29-Apr-08	0.00175	0.00338	0.00097	1.2	1.75	3.78	388.88
01-Oct-08	NT	0.00336 NT	NT	NT	NT	NT	NM
12-May-09	U (0.0005)	0.00121	U (0.0005)	0.00189	U (0.05)	U (0.427)	388.98
26-Oct-09	NT	NT	NT	NT	NT	NT	NM
15-Jun-10	U (0.0005)	U (0.0005)	U (0.0005)	U (0.00976)	U (0.05)	U (0.410)	388.93
14-Oct-10	NT	NT	NT	NT	NT	NT	NM
24-May-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	388.87
26-Oct-11	NT	NT	NT	NT	NT	NT	NM
22-May-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	388.82
11-Oct-12	NT	NT	NT	NT	NT	NT	NM
21-May-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	389.13
25-Sep-13	NT	NT	NT	NT	NT	NT	389.19
06-May-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	389.23
17-Sep-14	NT	NT	NT	NT	NT	NT	NM
26-May-15	U (0.001)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	0.23	389.50
06-Oct-15	NT	NT	NT	NT	NT	NT	NM
11-May-16	U (0.0020)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.40)	389.09
05-Oct-16	NT	NT	NT	NT	NT	NT	NM
08-May-17	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (1)	0.14	389.41
05-Sep-17	NT	NT	NT	NT	NT	NT	NM
14-Jun-18	U (0.003)	U (0.002)	U (0.003)	U (0.002)	U (0.000054)	U (0.25)	389.49
30-Oct-18	NT	NT	NT (a. a.a.a.)	NT	NT	NT	NM
09-May-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	0.51	393.87
22-Oct-19	NT	NT	NT	NT	NT	NT	NM
18-Aug-20	NT	NT	NT	NT	NT	NT .	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
	0.019	U (IIIg/L)	(mg/L)	0.002	0.045		85.78
12-Oct-98 21-Jan-99	0.019	U	U	U.002	0.045	0.110 0.127	86.04
31-Mar-99	0.031	U (0.001)	U (0.001)	0.0013	U (0.09)	U (0.297)	86.56
	0.023	U (0.001)	U (0.001)	U (0.002)	U (0.09)	U (0.300)	88.23
28-Jul-99			· /		. ,	. ,	
15-Oct-99	0.040	U (0.002)	U (0.002)	U (0.002) 0.005	0.11	U (0.297)	88.17
10-Mar-00	0.104 0.025	0.003	U (0.002) U (0.002)		0.22 U (0.09)	U (0.297) U (0.297)	88.17
21-Jun-00	0.025	U (0.002) U (0.002)	U (0.002)	U (0.002)	/	U (0.297)	88.67
21-Sep-00	0.025	. ,	` ,	U (0.002) 0.007	U (0.09) 0.19	. ,	88.39
25-Jan-01	U(0.0005)	0.003 0.002	0.002 0.003	0.007	U (0.09)	U (0.300) U(0.816)	88.15 88.06
19-Apr-01	U(0.0005)					` '	
24-Jul-01		U (0.002)	U (0.002)	U (0.002)	U (0.09)	U (0.495)	88.37
28-Jan-02	0.0029 U(0.0005)	U (0.002)	U (0.002)	0.002	U (0.09)	U (0.521)	88.28
30-Apr-02 30-Sep-02	U (0.0005)	U (0.002) U (0.002)	U (0.002) U (0.002)	U (0.002) U (0.002)	U (0.09) U (0.09)	U (0.500)	88.85 88.00
		U (0.002)			/	U (0.5)	
12-May-03 09-Oct-03	U (0.0005)		U (0.002)	U (0.002)	U (0.09)	U (0.3)	87.94
16-Mar-04	U (0.0005) NT	U (0.0005) NT	U (0.0005) NT	U (0.001) NT	U (0.08) NT	U (0.32) NT	388.19 NM
21-Apr-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.5)	387.86
17-Sep-04	NT	NT	NT	NT	NT	NT	NM
21-Oct-04	U (0.0002)	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.4)	387.72
19-May-05	U (0.0002)	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.391)	388.12
26-Sep-05	NT	NT	NT	NT	NT	NT	NM
15-May-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.391)	387.69
07-Nov-06	NT	NT	NT	NT	NT	NT	NM
15-May-07	U (0.0005)	U (0.0005)	U (0.0005)	0.00154	U (0.05)	0.522	387.46
16-Oct-07	NT	NT	NT	0.00134 NT	NT	NT	NM
29-Apr-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.435)	387.92
01-Oct-08	NT	NT	NT	NT	NT	NT	NM
12-May-09	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.450)	388.21
26-Oct-09	NT	NT	NT	NT	NT	NT	NM
15-Jun-10	NT	NT	NT	NT	NT	NT	NM
14-Oct-10	NT	NT	NT	NT	NT	NT	NM
24-May-11	NT	NT	NT	NT	NT	NT	NM
26-Oct-11	NT	NT	NT	NT	NT	NT	NM
22-May-12	NT	NT	NT	NT	NT	NT	NM
11-Oct-12	NT	NT	NT	NT	NT	NT	NM
21-May-13	NT	NT	NT	NT	NT	NT	NM
25-Sep-13	NT	NT	NT	NT	NT	NT	NM
06-May-14	NT	NT	NT	NT	NT	NT	NM
17-Sep-14	NT	NT	NT	NT	NT	NT	NM
26-May-15	NT	NT	NT	NT	NT	NT	NM
06-Oct-15	NT	NT	NT	NT	NT	NT	NM
11-May-16	NT	NT	NT	NT	NT	NT	NM
05-Oct-16	NT	NT	NT	NT	NT	NT	NM
08-May-17	NT	NT	NT	NT	NT	NT	NM
05-Sep-17	NT	NT	NT	NT	NT	NT	NM
14-Jun-18	NT	NT	NT	NT	NT	NT	NM
30-Oct-18	NT	NT	NT	NT	NT	NT	NM
09-May-19	NT	NT	NT	NT	NT	NT	NM
22-Oct-19	NT	NT	NT	NT	NT	NT	NM
18-Aug-20	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA
		•••					

Date 21-Jun-00 21-Sep-00 U 25-Jan-01 19-Apr-01 U 24-Jul-01 U 28-Jan-02 U 30-Apr-02 C 30-Sep-02 U 12-May-03 U 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	Benzene (mg/L) 0.0012 J (0.0005) 0.00051 J (0.0005) NT J (0.0005) NT J (0.0005) J (0.0005)	Toluene (mg/L) U (0.002) U (0.002) 0.0026 U (0.002) U (0.002) U (0.002) U (0.002) U (0.002) U (0.005) NT U (0.0005) NT U (0.0005)	Ethylbenzene (mg/L) U (0.002) U (0.005) NT U (0.0005) NT	Xylenes (mg/L) U (0.002) U (0.002) 0.003 0.003 U (0.002) U (0.002) U (0.002) U (0.002) U (0.001) NT U (0.0015)	GRO (mg/L) U (0.09) U (0.09) U (0.09) U (0.09) U (0.09) U (0.09) U (0.09) U (0.09) U (0.08) NT	DRO (mg/L) U (0.3) U (0.297) U (0.3) U(0.808) U (0.495) U (0.500) U (0.500) U (0.495) U (0.3) U (0.32) NT	88.51 88.47 88.22 88.17 88.48 88.43 88.77 88.40 88.13 388.30 NM
21-Jun-00 21-Sep-00 U 25-Jan-01 U 19-Apr-01 U 24-Jul-01 U 28-Jan-02 U 30-Apr-02 C 30-Sep-02 U 12-May-03 U 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	0.0012 J (0.0005) 0.00051 J (0.0005) J (0.0005) J (0.0005) J (0.0005) J (0.0005) J (0.0005) J (0.0005) NT J (0.0002)	U (0.002) U (0.002) 0.0026 U (0.002) U (0.002) U (0.002) U (0.002) U (0.002) U (0.002) U (0.005) NT U (0.0005) NT	U (0.002) U (0.0005) NT U (0.0005)	U (0.002) U (0.002) 0.003 0.003 U (0.002) U (0.002) U (0.002) U (0.002) U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.08) NT	U (0.3) U (0.297) U (0.3) U(0.808) U (0.495) U (0.500) U (0.500) U (0.495) U (0.3) U (0.32) NT	88.51 88.47 88.22 88.17 88.48 88.43 88.77 88.40 88.13 388.30
21-Sep-00 U 25-Jan-01 U 19-Apr-01 U 24-Jul-01 U 28-Jan-02 U 30-Apr-02 C 30-Sep-02 U 12-May-03 U 09-Oct-03 U 16-Mar-04 U 17-Sep-04	J (0.0005) 0.00051 J (0.0005) NT J (0.0005) NT J (0.0005)	U (0.002) 0.0026 U (0.002) U (0.002) U (0.002) U (0.002) U (0.002) U (0.002) U (0.005) NT U (0.0005) NT	U (0.002) U (0.005) NT U (0.0005)	U (0.002) 0.003 0.003 U (0.002) U (0.002) U (0.002) 0.01081 U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.08) NT	U (0.297) U (0.3) U(0.808) U (0.495) U (0.500) U (0.500) U (0.495) U (0.3) U (0.32) NT	88.47 88.22 88.17 88.48 88.43 88.77 88.40 88.13 388.30
25-Jan-01 19-Apr-01 24-Jul-01 28-Jan-02 30-Apr-02 30-Sep-02 12-May-03 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	0.00051 J (0.0005) J (0.0005) J (0.0005) D (0.0005) J (0.0005) J (0.0005) NT J (0.0005) NT J (0.0005)	0.0026 U (0.002) U (0.002) U (0.002) 0.00411 U (0.002) U (0.002) U (0.0005) NT U (0.0005)	U (0.002) U (0.002) U (0.002) U (0.002) 0.00203 U (0.002) U (0.002) U (0.005) NT U (0.0005)	0.003 0.003 U (0.002) U (0.002) 0.01081 U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.08) NT	U (0.3) U(0.808) U (0.495) U (0.500) U (0.500) U (0.495) U (0.3) U (0.32) NT	88.22 88.17 88.48 88.43 88.77 88.40 88.13 388.30
19-Apr-01 U 24-Jul-01 U 28-Jan-02 U 30-Apr-02 C 30-Sep-02 U 12-May-03 U 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	J (0.0005) J (0.0005) J (0.0005) 0.000565 J (0.0005) J (0.0005) J (0.0005) NT J (0.0005) NT J (0.0005)	U (0.002) U (0.002) U (0.002) 0.00411 U (0.002) U (0.002) U (0.0005) NT U (0.0005) NT	U (0.002) U (0.002) U (0.002) 0.00203 U (0.002) U (0.002) U (0.0005) NT U (0.0005)	0.003 U (0.002) U (0.002) 0.01081 U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.08) NT	U(0.808) U (0.495) U (0.500) U (0.500) U (0.495) U (0.3) U (0.32) NT	88.17 88.48 88.43 88.77 88.40 88.13 388.30
24-Jul-01 U 28-Jan-02 U 30-Apr-02 C 30-Sep-02 U 12-May-03 U 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	J (0.0005) J (0.0005) 0.000565 J (0.0005) J (0.0005) J (0.0005) J (0.0005) NT J (0.0005) NT J (0.0005)	U (0.002) U (0.002) 0.00411 U (0.002) U (0.002) U (0.0005) NT U (0.0005)	U (0.002) U (0.002) 0.00203 U (0.002) U (0.002) U (0.0005) NT U (0.0005)	U (0.002) U (0.002) 0.01081 U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.09) U (0.09) U (0.09) U (0.09) U (0.08) NT	U (0.495) U (0.500) U (0.500) U (0.495) U (0.3) U (0.32) NT	88.48 88.43 88.77 88.40 88.13 388.30
28-Jan-02 U 30-Apr-02 C 30-Sep-02 U 12-May-03 U 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	J (0.0005) 0.000565 J (0.0005) J (0.0005) J (0.0005) NT J (0.0005) NT J (0.0002)	U (0.002) 0.00411 U (0.002) U (0.002) U (0.0005) NT U (0.0005) NT	U (0.002) 0.00203 U (0.002) U (0.002) U (0.0005) NT U (0.0005)	U (0.002) 0.01081 U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.09) U (0.09) U (0.09) U (0.08) NT	U (0.500) U (0.500) U (0.495) U (0.3) U (0.32) NT	88.43 88.77 88.40 88.13 388.30
30-Apr-02	0.000565 J (0.0005) J (0.0005) J (0.0005) NT J (0.0005) NT J (0.0002)	0.00411 U (0.002) U (0.002) U (0.0005) NT U (0.0005) NT	0.00203 U (0.002) U (0.002) U (0.0005) NT U (0.0005)	0.01081 U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.09) U (0.09) U (0.08) NT	U (0.500) U (0.495) U (0.3) U (0.32) NT	88.77 88.40 88.13 388.30
30-Sep-02 U 12-May-03 U 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	J (0.0005) J (0.0005) J (0.0005) NT J (0.0005) NT J (0.0005) T J (0.0002)	U (0.002) U (0.002) U (0.0005) NT U (0.0005) NT	U (0.002) U (0.002) U (0.0005) NT U (0.0005)	U (0.002) U (0.002) U (0.001) NT	U (0.09) U (0.09) U (0.08) NT	U (0.495) U (0.3) U (0.32) NT	88.40 88.13 388.30
12-May-03 U 09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	J (0.0005) J (0.0005) NT J (0.0005) NT J (0.0005) J (0.0002)	U (0.002) U (0.0005) NT U (0.0005) NT	U (0.002) U (0.0005) NT U (0.0005)	U (0.002) U (0.001) NT	U (0.09) U (0.08) NT	U (0.3) U (0.32) NT	88.13 388.30
09-Oct-03 U 16-Mar-04 21-Apr-04 U 17-Sep-04	J (0.0005) NT J (0.0005) NT J (0.0002)	U (0.0005) NT U (0.0005) NT	U (0.0005) NT U (0.0005)	U (0.001) NT	U (0.08) NT	U (0.32) NT	388.30
16-Mar-04 21-Apr-04 17-Sep-04	NT J (0.0005) NT J (0.0002)	NT U (0.0005) NT	NT U (0.0005)	NT	NT	NT	
21-Apr-04 U 17-Sep-04	V (0.0005) NT V (0.0002)	U (0.0005) NT	U (0.0005)				
17-Sep-04	NT J (0.0002)	NT	,		11/11/15	11 (0.5)	387.99
	J (0.0002)			NT	U (0.05) NT	U (0.5) NT	NM
u /1-(1/f-(1/l '		11/11/11/11/15	U (0.0005)	U (0.001)	U (0.05)	U (0.4)	387.21
		U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.391)	388.24
26-Sep-05	NT	NT	NT	NT	0 (0.03) NT	NT	NM
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.397)	387.96
07-Nov-06	NT	NT	NT	NT	NT	NT	NM
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	387.44
16-Oct-07	NT	NT	NT	NT	0 (0.03) NT	NT	NM
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.481)	388.23
01-Oct-08	NT	NT	NT	NT	NT	NT	NM
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.400)	388.52
26-Oct-09	NT	NT	NT	NT	NT	NT	NM
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.00976)	U (0.05)	U (0.431)	NM
14-Oct-10	NT	NT	NT	NT	NT	NT	NM
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.385)	388.26
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	388.12
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	388.26
	J (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.403)	388.44
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	388.48
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.385)	388.63
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.42)	388.59
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0005)	U (0.05)	U (0.39)	389.46
	U (0.001)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	U (0.21)	389.20
	U (0.001)	U (0.001)	U (0.001)	U (0.003)	U (0.01)	0.84	388.99
	J (0.0020)	U (0.0020)	U (0.0020)	U (0.0020)	U (0.0020)	U (0.0020)	388.41
	J (0.0020)	U (0.0020)	U (0.0030)	U (0.0020)	U (0.05)	U (0.12)	388.70
	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (1)	U (0.11)	388.70
	U (0004)	U (0.001)	U (0.001)	U (0.003)	U (0.150)	U (0.290)	388.64
	U (0.003)	U (0.002)	U (0.003)	U (0.002)	U (025)	U (0.12)	388.77
	U (0.003)	U (0.002)	U (0.003)	0.0084	U (0.25)	U (0.12)	388.53
	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	388.30
	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	388.72
	J (0.0005)	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0500)	J (0.210)	389.05
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well MW-7

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
09-Oct-03	0.0237	0.00185	0.014	0.0877	2.36	U (0.32)	389.10
16-Mar-04	NT	NT	NT	NT	NT	NT	NM
21-Apr-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.5)	388.83
17-Sep-04	NT	NT	NT	NT	NT	NT	NM
21-Oct-04	0.00325	U (0.0005)	0.000934	0.00498	0.298	0.508	388.25
19-May-05	0.000909	U (0.0005)	0.000527	U (0.0015)	0.275	U (0.391)	389.29
26-Sep-05	NT	NT	NT	NT	NT	NT	NM
15-May-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	0.109	0.412	388.70
07-Nov-06	NT	NT	NT	NT	NT	NT	NM
15-May-07	NT	NT	NT	NT	NT	NT	NM
16-Oct-07	NT	NT	NT	NT	NT	NT	NM
29-Apr-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.413)	388.88
01-Oct-08	NT	NT	NT	NT	NT	NT	NM
12-May-09	U (0.0005)	U (0.0005)	0.00063	0.00231	1.16	U (0.442)	389.18
26-Oct-09	NT	NT	NT	NT	NT	NT	NM
15-Jun-10	NT	NT	NT	NT	NT	NT	NM
14-Oct-10	NT	NT	NT	NT	NT	NT	NM
24-May-11	NT	NT	NT	NT	NT	NT	NM
26-Oct-11	NT	NT	NT	NT	NT	NT	NM
22-May-12	NT	NT	NT	NT	NT	NT	NM
11-Oct-12	NT	NT	NT	NT	NT	NT	NM
21-May-13	NT	NT	NT	NT	NT	NT	NM
25-Sep-13	NT	NT	NT	NT	NT	NT	NM
06-May-14	NT	NT	NT	NT	NT	NT	NM
17-Sep-14	NT	NT	NT	NT	NT	NT	NM
26-May-15	NT	NT	NT	NT	NT	NT	NM
06-Oct-15	NT	NT	NT	NT	NT	NT	NM
11-May-16	NT	NT	NT	NT	NT	NT	NM
05-Oct-16	NT	NT	NT	NT	NT	NT	NM
08-May-17	NT	NT	NT	NT	NT	NT	NM
05-Sep-17	NT	NT	NT	NT	NT	NT	NM
14-Jun-18	NT	NT	NT	NT	NT	NT	NM
30-Oct-18	NT	NT	NT	NT	NT	NT	NM
09-May-19	NT	NT	NT	NT	NT	NT	NM
22-Oct-19	NT	NT	NT	NT	NT	NT	NM
18-Aug-20	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well MW-8

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
09-Oct-03	NT	NT	NT	NT	NT	NT	NM
16-Mar-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.37)	388.69
21-Apr-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.5)	388.79
17-Sep-04	NT	NT	NT	NT	NT	NT	NM
21-Oct-04	0.000298	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.4)	388.30
19-May-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	389.26
26-Sep-05	NT	NT	NT	NT	NT	NT	NM
15-May-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	388.73
07-Nov-06	NT	NT	NT	NT	NT	NT	NM
15-May-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.394)	388.41
16-Oct-07	NT	NT	NT	NT	NT	NT	NM
29-Apr-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	388.87
01-Oct-08	NT	NT	NT	NT	NT	NT	NM
12-May-09	U (0.0005)	0.00062	0.00067	0.00199	U (0.05)	U (0.413)	389.22
26-Oct-09	NT	NT	NT	NT	NT	NT	NM
15-Jun-10	NT	NT	NT	NT	NT	NT	NM
14-Oct-10	NT	NT	NT	NT	NT	NT	NM
24-May-11	NT	NT	NT	NT	NT	NT	NM
26-Oct-11	NT	NT	NT	NT	NT	NT	NM
22-May-12	NT	NT	NT	NT	NT	NT	NM
11-Oct-12	NT	NT	NT	NT	NT	NT	NM
21-May-13	NT	NT	NT	NT	NT	NT	NM
25-Sep-13	NT	NT	NT	NT	NT	NT	NM
06-May-14	NT	NT	NT	NT	NT	NT	NM
17-Sep-14	NT	NT	NT	NT	NT	NT	NM
26-May-15	NT	NT	NT	NT	NT	NT	NM
06-Oct-15	NT	NT	NT	NT	NT	NT	NM
11-May-16	NT	NT	NT	NT	NT	NT	NM
05-Oct-16	NT	NT	NT	NT	NT	NT	NM
08-May-17	NT	NT	NT	NT	NT	NT	NM
9/5/2017	NT	NT	NT	NT	NT	NT	NM
6/14/2018	NT	NT	NT	NT	NT	NT	NM
30-Oct-18	NT	NT	NT	NT	NT	NT	NM
09-May-19	NT	NT	NT	NT	NT	NT	NM
22-Oct-19	NT	NT	NT	NT	NT	NT	NM
18-Aug-20	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well MW-9

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
09-Oct-03	NT	NT	NT	NT	NT	NT	NM
16-Mar-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.37)	388.27
21-Apr-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.5)	388.88
17-Sep-04	NT	NT	NT	NT	NT	ŇT	NM
21-Oct-04	U (0.0002)	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.4)	388.22
19-May-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.391)	389.41
26-Sep-05	NT	NT	NT	NT	NT	NT	NM
15-May-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.391)	388.83
07-Nov-06	NT	NT	NT	NT	NT	NT	NM
15-May-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	388.33
16-Oct-07	NT	NT	NT	NT	NT	NT	NM
29-Apr-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	388.94
01-Oct-08	NT	NT	NT	NT	NT	NT	NM
12-May-09	U (0.0005)	U (0.0005)	U (0.0005)	0.00182	U (0.05)	U (0.400)	389.33
26-Oct-09	NT	NT	NT	NT	NT	NT	NM
15-Jun-10	NT	NT	NT	NT	NT	NT	NM
14-Oct-10	NT	NT	NT	NT	NT	NT	NM
24-May-11	NT	NT	NT	NT	NT	NT	NM
26-Oct-11	NT	NT	NT	NT	NT	NT	NM
22-May-12	NT	NT	NT	NT	NT	NT	NM
11-Oct-12	NT	NT	NT	NT	NT	NT	NM
21-May-13	NT	NT	NT	NT	NT	NT	NM
25-Sep-13	NT	NT	NT	NT	NT	NT	NM
06-May-14	NT	NT	NT	NT	NT	NT	NM
17-Sep-14	NT	NT	NT	NT	NT	NT	NM
26-May-15	NT	NT	NT	NT	NT	NT	NM
06-Oct-15	NT	NT	NT	NT	NT	NT	NM
11-May-16	NT	NT	NT	NT	NT	NT	NM
05-Oct-16	NT	NT	NT	NT	NT	NT	NM
08-May-17	NT	NT	NT	NT	NT	NT	NM
05-Sep-17	NT	NT	NT	NT	NT	NT	NM
14-Jun-18	NT	NT	NT	NT	NT	NT	NM
30-Oct-18	NT	NT	NT	NT	NT	NT	NM
09-May-19	NT	NT	NT	NT	NT	NT	NM
22-Oct-19	NT	NT	NT	NT	NT	NT	NM
18-Aug-20	NT	NT	NT	NT	NT	NT	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well MW-10

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
09-Oct-03	NT	NT	NT	NT	NT	NT	NM
17-Sep-04	0.0103	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.385)	NM
21-Oct-04	U (0.0002)	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	2.19	387.01
19-May-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.391)	387.92
26-Sep-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.397)	387.87
15-May-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.391)	387.69
07-Nov-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.442)	387.72
15-May-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	387.31
16-Oct-07	U (0.0005)	0.000745	U (0.0005)	0.00843	U (0.05)	U (0.427)	387.31
29-Apr-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.424)	387.79
01-Oct-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.49)	388.12
12-May-09	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	388.04
26-Oct-09	U (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.417)	387.77
15-Jun-10	U (0.0005)	U (0.0005)	U (0.0005)	U (0.00976)	U (0.05)	U (0.417)	387.95
14-Oct-10	U (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.397)	387.82
24-May-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.410)	387.92
26-Oct-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.410)	387.79
22-May-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.410)	387.87
11-Oct-12	U (0.0005)	U (0.001)	U (0.001)	U (0.003)	U (0.05)	U (0.413)	388.03
21-May-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.410)	388.09
25-Sep-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	388.21
06-May-14	U (0.0005)	U (0.0005)	U (0.0005)	0.0027	U (0.05)	U (0.41)	388.19
17-Sep-14	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.41)	389.21
26-May-15	U (0.001)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	U (0.22)	388.95
06-Oct-15	U (0.001)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	0.41	388.59
11-May-16	U (0.0020)	U (0.001)	U (0.001)	U (0.003)	U (0.1)	U (0.42)	388.07
05-Oct-16	U (0.0020)	U (0.002)	U (0.003)	U (0.002)	U (0.05)	2.6	388.42
08-May-17	U (0.002)	U (0.002)	U (0.003)	0.0056	U (1)	U (0.11)	388.32
05-Sep-17	U (.0004)	U (0.001)	U (0.001)	U (0.003)	U (0.150)	U (0.280)	388.28
14-Jun-18	U (0.003)	U (0.002)	U (0.003)	U (0.002)	U (0.25)	U (0.12)	388.37
30-Oct-18	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	388.19
09-May-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	388.01
22-Oct-19	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	U (0.12)	388.37
18-Aug-20	U (0.0002)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.050)	J (0.283)	388.65
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well 17-2

Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	GRO (mg/L)	DRO (mg/L)	GW Elev (feet)
30-Oct-18	U (0.003)	U (0.002)	0.18	0.9	3.9	2.5	NM
10-May-19	U (0.003)	U (0.002)	0.0051	0.012	U (0.25)	0.91	NM
22-Oct-19	U (0.003)	U (0.002)	0.210	0.790	3.5	1.4 H	389.50
18-Aug-20	J (0.0017)	J(0.00186)	0.084	0.320	1.76	1.96	389.83
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Monitoring Well 17-5

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet)
14-Jun-18	0.025	0.52	0.064	0.548	1.7	0.17	NM
30-Oct-18	0.055	0.21	0.15	0.505	3.7	0.26	NM
09-May-19	0.0032	0.0026	0.016	0.048	0.31	0.92	NM
22-Oct-19	0.022	0.360	0.230	0.721	3.7	0.47 H	389.47
18-Aug-20	0.0308	0.386	0.151	0.896	2.68	0.825	389.82
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA

Key:

DRO - diesel range organics

GCL - ground water cleanup levels

GRO - gasoline range organics

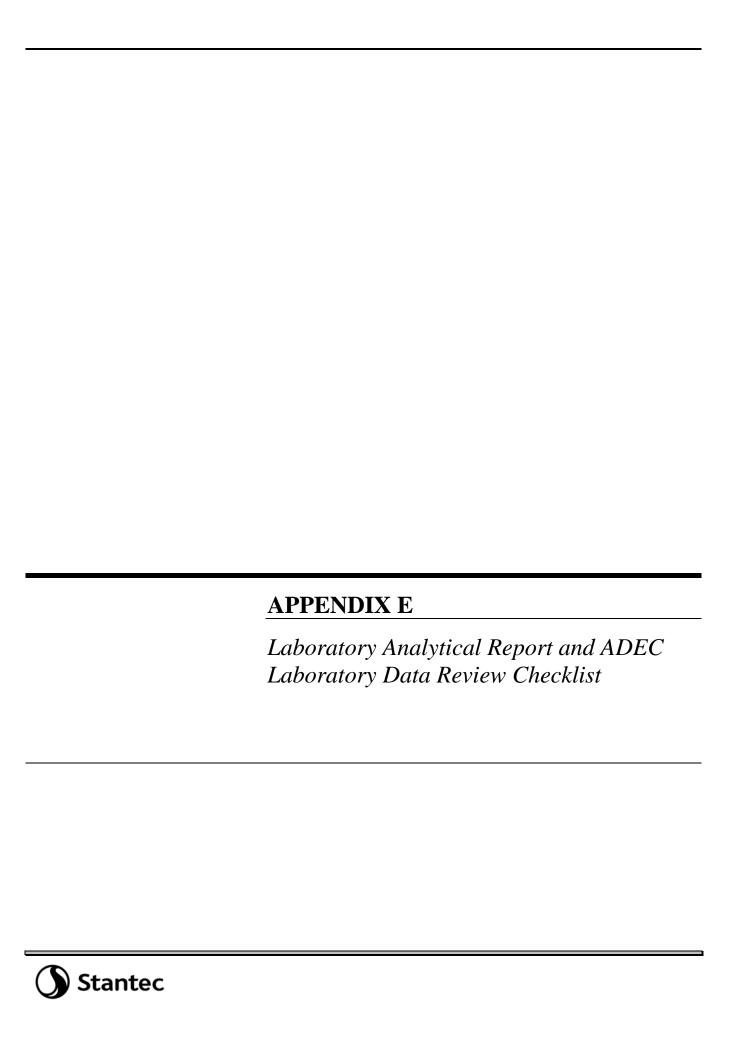
GW Elev - ground water elevation

H - Sample was preppred or analyzed beyond the specified holding time

mg/L - milligrams per liter

NA - not applicable

NM - not measured


NR - Reported as an unreliable result by the laboratory.

NT - not tested

U - Undetected above practical quantitation limits.

Analytical data for the June 2010 Monitoring Event may have an associated low bias for some samples. See ADEC laboratory QC checklist for impacted analytes.

Bold, shade indicates concentration exceeds the GCL.

Laboratory Report of Analysis

To: Stantec Consulting Services Inc.

725 E Fireweed Ln #200 Anchorage, AK 99503 (907)227-9883

Report Number: 1209586

Client Project: Store 112 Remediation

Dear Bob Gilfilian,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen C. Ede

Staphen C. Ede 2020.09.08

17:00:41 -08'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 09/08/2020 4:05:33PM Results via Engage

SGS North America Inc.

Case Narrative

SGS Client: Stantec Consulting Services Inc.
SGS Project: 1209586

Project Name/Site: **Store 112 Remediation**Project Contact: **Bob Gilfilian**

Refer to sample receipt form for information on sample condition.

MW-3 (1209586006) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

Dup (1209586007) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/08/2020 4:05:34PM

Report of Manual Integrations							
Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	<u>Reason</u>			
SW8260D							
1209586003	MW-2	VMS20239	n-Butylbenzene	SP			
1209586004	MW-17-2	VMS20239	4-Isopropyltoluene	SP			
1209586004	MW-17-2	VMS20239	n-Butylbenzene	SP			
1209586005	MW-17-5	VMS20236	4-Isopropyltoluene	SP			
1209586005	MW-17-5	VMS20236	n-Butylbenzene	SP			
1209586006	MW-3	VMS20236	4-Isopropyltoluene	SP			
1209586007	Dup	VMS20236	4-Isopropyltoluene	SP			

Manual Integration Reason Code Descriptions

Code O M SS BLG RP PIR IT SP RSP FPS BLC	Description Original Chromatogram Modified Chromatogram Skimmed surrogate Closed baseline gap Reassign peak name Pattern integration required Included tail Split peak Removed split peak Forced peak start/stop Baseline correction
BLC PNF	'

All DRO/RRO analysis are integrated per SOP.

Print Date: 09/08/2020 4:05:36PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/08/2020 4:05:38PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sampl	e Summary
-------	-----------

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-10	1209586001	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)
MW-6	1209586002	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)
MW-2	1209586003	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)
MW-17-2	1209586004	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)
MW-17-5	1209586005	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)
MVV-3	1209586006	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)
Dup	1209586007	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)
Trip Blank	1209586008	08/18/2020	08/21/2020	Water (Surface, Eff., Ground)

MethodMethod DescriptionAK102DRO Low Volume (W)AK101Gasoline Range Organics (W)

EP200.8 Metals in Water by 200.8 ICP-MS
SW8260D Volatile Organic Compounds (W) FULL

Print Date: 09/08/2020 4:05:39PM

Detectable	Results	Summary
-------------------	---------	---------

Client Sample ID: MW-10			
Lab Sample ID: 1209586001	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.283J	mg/L
_			<i>3</i> ∙ =
Client Sample ID: MW-6			
Lab Sample ID: 1209586002	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.216J	mg/L
Client Sample ID: MW-2			
Lab Sample ID: 1209586003	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.632	mg/L
Volatile Fuels	Gasoline Range Organics	0.203	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	6.42	ug/L
Volumo Governo	1,3,5-Trimethylbenzene	6.97	ug/L
	4-Isopropyltoluene	1.05	ug/L
	Benzene	0.740	ug/L
	Ethylbenzene	7.28	ug/L
	Isopropylbenzene (Cumene)	2.28	ug/L
	Naphthalene	0.779J	ug/L
	n-Butylbenzene	0.627J	ug/L
	n-Propylbenzene	4.78	ug/L
	o-Xylene	0.669J	ug/L
	P & M -Xylene	15.0	ug/L
	sec-Butylbenzene	0.901J	ug/L
	Toluene	0.886J	ug/L
	Trichlorofluoromethane	15.4	ug/L
	Xylenes (total)	15.6	ug/L
	Ayleries (total)	13.0	ug/L
Client Sample ID: MW-17-2			
Lab Sample ID: 1209586004	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Sodium	41600	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	1.96	mg/L
Volatile Fuels	Gasoline Range Organics	1.76	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	457	ug/L
	1,3,5-Trimethylbenzene	88.0	ug/L
	4-Isopropyltoluene	5.08	ug/L
	Benzene	1.70J	ug/L
	Ethylbenzene	83.7	ug/L
	Isopropylbenzene (Cumene)	21.9	ug/L
	Naphthalene	8.05	ug/L
	n-Butylbenzene	4.45J	ug/L
	n-Propylbenzene	40.5	ug/L
	o-Xylene	21.4	ug/L
	P & M -Xylene	299	ug/L
	sec-Butylbenzene	4.83J	ug/L
	Toluene	1.86J	ug/L
	Trichlorofluoromethane	22.1	ug/L
	Xylenes (total)	320	ug/L

Print Date: 09/08/2020 4:05:40PM

SGS North America Inc. 200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-17-5

Detectable Results Summary

Lab Sample ID: 1209586005	<u>Parameter</u>	Result	Units
Metals by ICP/MS	Sodium	12400	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.825	mg/L
Volatile Fuels	Gasoline Range Organics	2.68	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	190	ug/L
	1,3,5-Trimethylbenzene	117	ug/L
	4-Isopropyltoluene	1.83	ug/L
	Benzene	30.8	ug/L
	Ethylbenzene	151	ug/L
	Isopropylbenzene (Cumene)	24.7	ug/L
	Naphthalene	7.29	ug/L
	n-Butylbenzene	2.53	ug/L

n-Propylbenzene

P & M -Xylene

sec-Butylbenzene

o-Xylene

Toluene

Client Sample ID: MW-3 Lab Sample ID: 1209586006

Metals by ICP/MS **Semivolatile Organic Fuels Volatile Fuels** Volatile GC/MS

		•
Trichlorofluoromethane	15.0J	ug/L
Xylenes (total)	896	ug/L
Deremeter	Dogult	Linita
<u>Parameter</u>	Result	<u>Units</u>
Sodium	28800	ug/L
Diesel Range Organics	2.84	mg/L
Gasoline Range Organics	12.6	mg/L
1,2,4-Trimethylbenzene	2260	ug/L
1,3,5-Trimethylbenzene	633	ug/L
4-Isopropyltoluene	13.0J	ug/L
Benzene	24.4	ug/L
Ethylbenzene	637	ug/L
Isopropylbenzene (Cumene)	82.0	ug/L
Naphthalene	34.8	ug/L
n-Propylbenzene	161	ug/L
o-Xylene	1840	ug/L
P & M -Xylene	5020	ug/L
sec-Butylbenzene	10.5J	ug/L
Toluene	194	ug/L
Xylenes (total)	6860	ug/L

49.2

109

524

3.35

386

ug/L

ug/L

ug/L

ug/L

ug/L

Print Date: 09/08/2020 4:05:40PM

Detectable Results Summary

Client Sample ID: **Dup**Lab Sample ID: 1209586007 **Semivolatile Organic Fuels Volatile Fuels Volatile GC/MS**

<u>Parameter</u>	Result	<u>Units</u>
Diesel Range Organics	3.41	mg/L
Gasoline Range Organics	12.3	mg/L
1,2,4-Trimethylbenzene	2200	ug/L
1,3,5-Trimethylbenzene	625	ug/L
4-Isopropyltoluene	13.4J	ug/L
Benzene	22.6	ug/L
Ethylbenzene	615	ug/L
Isopropylbenzene (Cumene)	79.3	ug/L
Naphthalene	35.6	ug/L
n-Propylbenzene	157	ug/L
o-Xylene	1730	ug/L
P & M -Xylene	4810	ug/L
sec-Butylbenzene	9.92J	ug/L
Toluene	176	ug/L
Xylenes (total)	6530	ug/L

Print Date: 09/08/2020 4:05:40PM

Client Sample ID: MW-10

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586001 Lab Project ID: 1209586

Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.283 J	0.630	0.189	mg/L	1	Limits	09/01/20 17:51
Surrogates 5a Androstane (surr)	93	50-150		%	1		09/01/20 17:51

Batch Information

Analytical Batch: XFC15715 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/01/20 17:51 Container ID: 1209586001-A

Prep Batch: XXX43746 Prep Method: SW3520C Prep Date/Time: 08/27/20 14:34 Prep Initial Wt./Vol.: 238 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-10

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586001 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u> 08/28/20 02:26
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1	Limits	
Surrogates 4-Bromofluorohenzene (surr)	78.4	50-150		%	4		08/28/20 02:26

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 08/28/20 02:26 Container ID: 1209586001-C Prep Batch: VXX36229 Prep Method: SW5030B Prep Date/Time: 08/27/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-10

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586001 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		08/23/20 17:59
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/23/20 17:59
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
Benzene	0.200 U	0.400	0.120	ug/L	1		08/23/20 17:59
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
Bromoform	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Bromomethane	2.50 U	5.00	2.00	ug/L	1		08/23/20 17:59
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
Chloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-10

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586001 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter Result Qual LOG/CL bl. DL. Units DF Limits Date Analyzed Chloroform Chloroform 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Chloromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 cis-1,3-Dichloropropene 0.250 U 0.500 0.150 ug/L 1 08/23/20 17:59 Dibromochloromethane 0.250 U 0.500 0.150 ug/L 1 08/23/20 17:59 Dibromochloromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Dibromochloromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Hexachlorobutadiene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Isopropylbenzene (C							Allowable	
Chloromethane	<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF		Date Analyzed
cis-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 cis-1,3-Dichloropropene 0.250 U 0.500 0.150 ug/L 1 08/23/20 17:59 Dibromochloromethane 0.250 U 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Dibromomethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Isopropylbenzene (Cumene) 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Methyl-butyl ether 5.00 U 1.00 0.310 ug/L 1 08/23/20 17:59 Methyl-butyl ether 5.00 U 1.00 0.310 ug/L 1 08/23/20 17:59 Butylbene chloride	Chloroform	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
cis-1,3-Dichloropropene 0.250 U 0.500 0.150 ug/L 1 08/23/20 17:59 Dibromochloromethane 0.250 U 0.500 0.150 ug/L 1 08/23/20 17:59 Dibromochloromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Dibromochloromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Freon-113 5.00 U 1.00 0.310 ug/L 1 08/23/20 17:59 Isopropylbenzene (Cumene) 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Isopropylbenzene (Cumene) 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Methyl-t-butyl ether 5.00 U 1.00 0.310 ug/L 1 08/23/20 17:59 Methyl-t-butyl ether 5.00 U 1.00 0.310 ug/L 1 08/23/20 17:59 Naphthalene 0	Chloromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Dibromochloromethane 0.250 U 0.500 O 0.150 Ug/L 1 08/23/20 17:59 Dibromomethane 0.500 U 1.00 0.310 Ug/L 1 08/23/20 17:59 Dibromochloromethane 0.500 U 1.00 0.310 Ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 Ug/L 1 08/23/20 17:59 Freon-113 5.00 U 1.00 0.310 Ug/L 1 08/23/20 17:59 Hexachlorobutadiene 0.500 U 1.00 0.310 Ug/L 1 08/23/20 17:59 Isopropylbenzene (Cumene) 0.500 U 1.00 0.310 Ug/L 1 08/23/20 17:59 Isopropylbenzene (Cumene) 0.500 U 1.00 0.310 Ug/L 1 08/23/20 17:59 Methyl-Lebuf ether 5.00 U 10.0 3.10 Ug/L 1 08/23/20 17:59 Naphthalene 0.500 U 1.00 U 3.10 Ug/L 1 08/23/20 17:59 Naphthalene 0.500 U 1.00 U 0.310 Ug/L 1 08/23/20 17:59 n-Butylbenzene 0.500 U <td>cis-1,2-Dichloroethene</td> <td>0.500 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>08/23/20 17:59</td>	cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Dibromomethane	cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
Dichlorodifluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Freon-113 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Hexachlorobutadiene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Bespropylbenzene (Cumene) 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Methylene chloride 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Methylet-butyl ether 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Naphthalene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 p- & MXylene 1.00 U 2.00 <td>Dibromochloromethane</td> <td>0.250 U</td> <td>0.500</td> <td>0.150</td> <td>ug/L</td> <td>1</td> <td></td> <td>08/23/20 17:59</td>	Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 17:59
Ethylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Freon-113 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Hexachlorobutadiene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Isopropylbenzene (Cumene) 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Methylene chloride 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Methylene chloride 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Methylene chloride 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Naphthalene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Naylene 1.00 U 2.00 0	Dibromomethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Freon-113	Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Hexachlorobutadiene	Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Sopropy Benzene (Cumene) 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59	Freon-113	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
Methylene chloride 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Methyl-t-butyl ether 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Naphthalene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Yelne 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 08/23/20 17:59 sec-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310	Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Methyl-t-butyl ether 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Naphthalene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 o-Xylene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 o-Xylene 1.00 U 2.00 0.620 ug/L 1 08/23/20 17:59 o-Xylene 1.00 U 2.00 0.620 ug/L 1 08/23/20 17:59 sec-Butylbenzene 1.00 U 2.00 0.620 ug/L 1 08/23/20 17:59 Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tetr-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 <td< td=""><td>Isopropylbenzene (Cumene)</td><td>0.500 U</td><td>1.00</td><td>0.310</td><td>ug/L</td><td>1</td><td></td><td>08/23/20 17:59</td></td<>	Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Naphthalene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 o-Xylene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 08/23/20 17:59 sec-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Stert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trickloroethene 0.500 U 1.00 0.310	Methylene chloride	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
n-Butylbenzene	Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
n-Propylbenzene	Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
co-Xylene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 08/23/20 17:59 sec-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Toluene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 <td>n-Butylbenzene</td> <td>0.500 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>08/23/20 17:59</td>	n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 08/23/20 17:59 sec-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 Urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 Urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59	n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
sec-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Toluene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug	o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Styrene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Toluene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates	P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/23/20 17:59
tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Toluene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Toluene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr)	Styrene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Toluene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Toluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Trichloroethene 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 08/23/20 17:59 Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 08/23/20 17:59 Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Trichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Vinyl chloride 0.0750 U 0.150 0.0500 ug/L 1 08/23/20 17:59 Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 17:59
Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 08/23/20 17:59 urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		08/23/20 17:59
urrogates 1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/23/20 17:59
1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/23/20 17:59
1,2-Dichloroethane-D4 (surr) 100 81-118 % 1 08/23/20 17:59 4-Bromofluorobenzene (surr) 107 85-114 % 1 08/23/20 17:59	Surrogates							
	1,2-Dichloroethane-D4 (surr)	100	81-118		%	1		08/23/20 17:59
Toluene-d8 (surr) 104 89-112 % 1 08/23/20 17:59	4-Bromofluorobenzene (surr)	107	85-114		%	1		08/23/20 17:59
	Toluene-d8 (surr)	104	89-112		%	1		08/23/20 17:59

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: MW-10

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586001 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/23/20 17:59 Container ID: 1209586001-F Prep Batch: VXX36193 Prep Method: SW5030B Prep Date/Time: 08/23/20 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-6

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586002 Lab Project ID: 1209586 Collection Date: 08/18/20 11:45 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.216 J	0.615	0.184	mg/L	1	Limits	09/01/20 18:01
Surrogates 5a Androstane (surr)	93.5	50-150		%	1		09/01/20 18:01

Batch Information

Analytical Batch: XFC15715 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/01/20 18:01 Container ID: 1209586002-A

Prep Batch: XXX43746 Prep Method: SW3520C Prep Date/Time: 08/27/20 14:34 Prep Initial Wt./Vol.: 244 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-6

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586002 Lab Project ID: 1209586 Collection Date: 08/18/20 11:45 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Allowable</u> <u>Parameter</u> Result Qual <u>Units</u> DF LOQ/CL <u>DL</u> Limits Date Analyzed Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 08/27/20 22:19

Surrogates

4-Bromofluorobenzene (surr) 75.9 50-150 % 1 08/27/20 22:19

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 08/27/20 22:19 Container ID: 1209586002-C Prep Batch: VXX36229
Prep Method: SW5030B
Prep Date/Time: 08/27/20 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW-6

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586002 Lab Project ID: 1209586 Collection Date: 08/18/20 11:45 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		08/23/20 18:13
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/23/20 18:13
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
Benzene	0.200 U	0.400	0.120	ug/L	1		08/23/20 18:13
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
Bromoform	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Bromomethane	2.50 U	5.00	2.00	ug/L	1		08/23/20 18:13
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
Chloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-6

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586002 Lab Project ID: 1209586 Collection Date: 08/18/20 11:45 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Darameter	Popult Ougl	1.00/01	DI	Llaita	DE	Allowable	Data Analyzad
<u>Parameter</u> Chloroform	<u>Result Qual</u> 0.500 U	LOQ/CL 1.00	<u>DL</u> 0.310	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 08/23/20 18:13
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		08/23/20 18:13
				_			
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 18:13
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Freon-113	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/23/20 18:13
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Styrene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Toluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 18:13
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		08/23/20 18:13
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/23/20 18:13
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/23/20 18:13
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/23/20 18:13
4-Bromofluorobenzene (surr)	106	85-114		%	1		08/23/20 18:13
Toluene-d8 (surr)	103	89-112		%	1		08/23/20 18:13

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: MW-6

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586002 Lab Project ID: 1209586 Collection Date: 08/18/20 11:45 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/23/20 18:13 Container ID: 1209586002-F Prep Batch: VXX36193 Prep Method: SW5030B Prep Date/Time: 08/23/20 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586003 Lab Project ID: 1209586 Collection Date: 08/18/20 13:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.632	0.630	0.189	mg/L	1	Limits	09/01/20 18:11
Surrogates 5a Androstane (surr)	94.8	50-150		%	1		09/01/20 18:11

Batch Information

Analytical Batch: XFC15715 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/01/20 18:11 Container ID: 1209586003-A Prep Batch: XXX43746 Prep Method: SW3520C Prep Date/Time: 08/27/20 14:34 Prep Initial Wt./Vol.: 238 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586003 Lab Project ID: 1209586 Collection Date: 08/18/20 13:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.203	LOQ/CL 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/27/20 22:36
Surrogates							
4-Bromofluorobenzene (surr)	69.6	50-150		%	1		08/27/20 22:36

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 08/27/20 22:36 Container ID: 1209586003-C Prep Batch: VXX36229
Prep Method: SW5030B
Prep Date/Time: 08/27/20 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586003 Lab Project ID: 1209586 Collection Date: 08/18/20 13:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/24/20 21:59
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/24/20 21:59
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		08/24/20 21:59
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,2,4-Trimethylbenzene	6.42	1.00	0.310	ug/L	1		08/24/20 21:59
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/24/20 21:59
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/24/20 21:59
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,3,5-Trimethylbenzene	6.97	1.00	0.310	ug/L	1		08/24/20 21:59
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		08/24/20 21:59
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/24/20 21:59
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
4-Isopropyltoluene	1.05	1.00	0.310	ug/L	1		08/24/20 21:59
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
Benzene	0.740	0.400	0.120	ug/L	1		08/24/20 21:59
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		08/24/20 21:59
Bromoform	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Bromomethane	2.50 U	5.00	2.00	ug/L	1		08/24/20 21:59
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/24/20 21:59
Chloroethane	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59

Print Date: 09/08/2020 4:05:42PM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586003 Lab Project ID: 1209586 Collection Date: 08/18/20 13:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter Chloroform Chloromethane	Result Qual 0.500 U	LOQ/CL	DL	Units			
		1.00	0.310	ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 08/24/20 21:59
	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L ug/L	1		08/24/20 21:59
cis-1,3-Dichloropropene	0.250 U	0.500	0.310	ug/L ug/L	1		08/24/20 21:59
Dibromochloromethane	0.250 U	0.500	0.150	ug/L ug/L	1		08/24/20 21:59
Dibromomethane	0.230 U	1.00	0.130	ug/L ug/L	1		08/24/20 21:59
Dichlorodifluoromethane	0.500 U	1.00	0.310	•	1		08/24/20 21:59
	7.28			ug/L			
Ethylbenzene		1.00	0.310	ug/L	1		08/24/20 21:59
Freon-113	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Isopropylbenzene (Cumene)	2.28	1.00	0.310	ug/L	1		08/24/20 21:59
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
Naphthalene	0.779 J	1.00	0.310	ug/L	1		08/24/20 21:59
n-Butylbenzene	0.627 J	1.00	0.310	ug/L	1		08/24/20 21:59
n-Propylbenzene	4.78	1.00	0.310	ug/L	1		08/24/20 21:59
o-Xylene	0.669 J	1.00	0.310	ug/L	1		08/24/20 21:59
P & M -Xylene	15.0	2.00	0.620	ug/L	1		08/24/20 21:59
sec-Butylbenzene	0.901 J	1.00	0.310	ug/L	1		08/24/20 21:59
Styrene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Toluene	0.886 J	1.00	0.310	ug/L	1		08/24/20 21:59
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		08/24/20 21:59
Trichlorofluoromethane	15.4	1.00	0.310	ug/L	1		08/24/20 21:59
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		08/24/20 21:59
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/24/20 21:59
Xylenes (total)	15.6	3.00	1.00	ug/L	1		08/24/20 21:59
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		08/24/20 21:59
4-Bromofluorobenzene (surr)	105	85-114		%	1		08/24/20 21:59
Toluene-d8 (surr)	104	89-112		%	1		08/24/20 21:59

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: MW-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586003 Lab Project ID: 1209586 Collection Date: 08/18/20 13:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20239 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/24/20 21:59 Container ID: 1209586003-G Prep Batch: VXX36200 Prep Method: SW5030B Prep Date/Time: 08/24/20 15:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-17-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586004 Lab Project ID: 1209586 Collection Date: 08/18/20 14:12 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

Allowable <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Limits Date Analyzed Sodium 41600 5000 1500 ug/L 10 08/28/20 13:21

Batch Information

Analytical Batch: MMS10865 Analytical Method: EP200.8

Analyst: DMM

Analytical Date/Time: 08/28/20 13:21 Container ID: 1209586004-I Prep Batch: MXX33569 Prep Method: E200.2

Prep Date/Time: 08/24/20 17:36 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: MW-17-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586004 Lab Project ID: 1209586 Collection Date: 08/18/20 14:12 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 1.96	<u>LOQ/CL</u> 0.610	<u>DL</u> 0.183	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 09/01/20 18:21
Surrogates							
5a Androstane (surr)	91.8	50-150		%	1		09/01/20 18:21

Batch Information

Analytical Batch: XFC15715 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/01/20 18:21 Container ID: 1209586004-A Prep Batch: XXX43746 Prep Method: SW3520C Prep Date/Time: 08/27/20 14:34 Prep Initial Wt./Vol.: 246 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-17-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586004 Lab Project ID: 1209586

Collection Date: 08/18/20 14:12 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u> 08/27/20 19:04
Gasoline Range Organics	1.76	0.500	0.155	mg/L	5	<u>Limits</u>	
Surrogates 4-Bromofluorobenzene (surr)	122	50-150		%	5		08/27/20 19:04

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101 Analyst: ALJ

Analytical Date/Time: 08/27/20 19:04 Container ID: 1209586004-C

Prep Batch: VXX36228 Prep Method: SW5030B Prep Date/Time: 08/27/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-17-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586004 Lab Project ID: 1209586 Collection Date: 08/18/20 14:12 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

		LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
Parameter 1,1,1,2-Tetrachloroethane	Result Qual 1.25 U	2.50	<u>==</u> 0.750	ug/L	<u>5.</u> 5	Elitito	08/24/20 23:41
1,1,1-Trichloroethane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,1,2,2-Tetrachloroethane	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
1,1,2-Trichloroethane	1.00 U	2.00	0.600	ug/L	5		08/24/20 23:41
1,1-Dichloroethane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,1-Dichloroethene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,1-Dichloropropene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,2,3-Trichlorobenzene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,2,3-Trichloropropane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,2,4-Trichlorobenzene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,2,4-Trimethylbenzene	457	20.0	6.20	ug/L	20		08/23/20 20:55
1,2-Dibromo-3-chloropropane	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
1,2-Dibromoethane	0.188 U	0.375	0.0900	ug/L	5		08/24/20 23:41
1,2-Dichlorobenzene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,2-Dichloroethane	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
1,2-Dichloropropane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,3,5-Trimethylbenzene	88.0	20.0	6.20	ug/L	20		08/23/20 20:55
1,3-Dichlorobenzene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
1,3-Dichloropropane	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
1,4-Dichlorobenzene	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
2,2-Dichloropropane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
2-Butanone (MEK)	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
2-Chlorotoluene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
2-Hexanone	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
4-Chlorotoluene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
4-Isopropyltoluene	5.08	5.00	1.55	ug/L	5		08/24/20 23:41
4-Methyl-2-pentanone (MIBK)	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
Benzene	1.70 J	2.00	0.600	ug/L	5		08/24/20 23:41
Bromobenzene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Bromochloromethane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Bromodichloromethane	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
Bromoform	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Bromomethane	12.5 U	25.0	10.0	ug/L	5		08/24/20 23:41
Carbon disulfide	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
Carbon tetrachloride	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Chlorobenzene	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
Chloroethane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-17-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586004 Lab Project ID: 1209586 Collection Date: 08/18/20 14:12 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable <u>Limits</u>	Date Analyzed
Chloroform	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Chloromethane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
cis-1,2-Dichloroethene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
cis-1,3-Dichloropropene	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
Dibromochloromethane	1.25 U	2.50	0.750	ug/L	5		08/24/20 23:41
Dibromomethane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Dichlorodifluoromethane	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Ethylbenzene	83.7	20.0	6.20	ug/L	20		08/23/20 20:55
Freon-113	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
Hexachlorobutadiene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Isopropylbenzene (Cumene)	21.9	5.00	1.55	ug/L	5		08/24/20 23:41
Methylene chloride	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
Methyl-t-butyl ether	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
Naphthalene	8.05	5.00	1.55	ug/L	5		08/24/20 23:41
n-Butylbenzene	4.45 J	5.00	1.55	ug/L	5		08/24/20 23:41
n-Propylbenzene	40.5	20.0	6.20	ug/L	20		08/23/20 20:55
o-Xylene	21.4	5.00	1.55	ug/L	5		08/24/20 23:41
P & M -Xylene	299	10.0	3.10	ug/L	5		08/24/20 23:41
sec-Butylbenzene	4.83 J	5.00	1.55	ug/L	5		08/24/20 23:41
Styrene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
tert-Butylbenzene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Tetrachloroethene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Toluene	1.86 J	5.00	1.55	ug/L	5		08/24/20 23:41
trans-1,2-Dichloroethene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
trans-1,3-Dichloropropene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Trichloroethene	2.50 U	5.00	1.55	ug/L	5		08/24/20 23:41
Trichlorofluoromethane	22.1	5.00	1.55	ug/L	5		08/24/20 23:41
Vinyl acetate	25.0 U	50.0	15.5	ug/L	5		08/24/20 23:41
Vinyl chloride	0.375 U	0.750	0.250	ug/L	5		08/24/20 23:41
Xylenes (total)	320	15.0	5.00	ug/L	5		08/24/20 23:41
urrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	20		08/23/20 20:55
4-Bromofluorobenzene (surr)	103	85-114		%	20		08/23/20 20:55

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: MW-17-2

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586004 Lab Project ID: 1209586 Collection Date: 08/18/20 14:12 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/23/20 20:55

Container ID: 1209586004-F

Analytical Batch: VMS20239 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/24/20 23:41 Container ID: 1209586004-D

Prep Batch: VXX36193
Prep Method: SW5030B
Prep Date/Time: 08/23/20 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX36200 Prep Method: SW5030B Prep Date/Time: 08/24/20 15:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-17-5

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586005 Lab Project ID: 1209586 Collection Date: 08/18/20 15:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

Allowable <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Limits Date Analyzed Sodium 12400 5000 1500 ug/L 10 08/27/20 19:39

Batch Information

Analytical Batch: MMS10864 Analytical Method: EP200.8

Analyst: DMM

Analytical Date/Time: 08/27/20 19:39 Container ID: 1209586005-I Prep Batch: MXX33569 Prep Method: E200.2

Prep Date/Time: 08/24/20 17:36 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: MW-17-5

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586005 Lab Project ID: 1209586 Collection Date: 08/18/20 15:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.825	0.670	0.201	mg/L	1	Limits	09/01/20 18:31
Surrogates 5a Androstane (surr)	94.3	50-150		%	1		09/01/20 18:31

Batch Information

Analytical Batch: XFC15715 Analytical Method: AK102

Analyst: CDM
Analytical Date/Time

Analytical Date/Time: 09/01/20 18:31 Container ID: 1209586005-A

Prep Batch: XXX43746 Prep Method: SW3520C Prep Date/Time: 08/27/20 14:34 Prep Initial Wt./Vol.: 224 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-17-5

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586005 Lab Project ID: 1209586 Collection Date: 08/18/20 15:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Allowable</u> <u>Parameter</u> Result Qual <u>Units</u> DF LOQ/CL DL Limits Date Analyzed Gasoline Range Organics 2.68 1.00 0.310 mg/L 10 08/27/20 18:11 **Surrogates**

4.5

4-Bromofluorobenzene (surr) 101 50-150 % 10 08/27/20 18:11

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 08/27/20 18:11 Container ID: 1209586005-C Prep Batch: VXX36228 Prep Method: SW5030B Prep Date/Time: 08/27/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-17-5

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586005 Lab Project ID: 1209586 Collection Date: 08/18/20 15:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	08/23/20 20:11
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,2,4-Trimethylbenzene	190	20.0	6.20	ug/L	20	08/24/20 23:56
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/23/20 20:11
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,3,5-Trimethylbenzene	117	1.00	0.310	ug/L	1	08/23/20 20:11
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
4-Isopropyltoluene	1.83	1.00	0.310	ug/L	1	08/23/20 20:11
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
Benzene	30.8	0.400	0.120	ug/L	1	08/23/20 20:11
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
Bromoform	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Bromomethane	2.50 U	5.00	2.00	ug/L	1	08/23/20 20:11
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
Chloroethane	0.500 U					

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-17-5

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586005 Lab Project ID: 1209586 Collection Date: 08/18/20 15:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u> Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Chloromethane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	08/23/20 20:11
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Ethylbenzene	151	20.0	6.20	ug/L	20	08/24/20 23:56
Freon-113	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Isopropylbenzene (Cumene)	24.7	1.00	0.310	ug/L	1	08/23/20 20:11
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
Naphthalene	7.29	1.00	0.310	ug/L	1	08/23/20 20:11
n-Butylbenzene	2.53	1.00	0.310	ug/L	1	08/23/20 20:11
n-Propylbenzene	49.2	1.00	0.310	ug/L	1	08/23/20 20:11
o-Xylene	109	20.0	6.20	ug/L	20	08/24/20 23:56
P & M -Xylene	524	40.0	12.4	ug/L	20	08/24/20 23:56
sec-Butylbenzene	3.35	1.00	0.310	ug/L	1	08/23/20 20:11
Styrene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Toluene	386	20.0	6.20	ug/L	20	08/24/20 23:56
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	08/23/20 20:11
Trichlorofluoromethane	15.0 J	20.0	6.20	ug/L	20	08/24/20 23:56
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	08/23/20 20:11
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	08/23/20 20:11
Xylenes (total)	896	3.00	1.00	ug/L	1	08/23/20 20:11
Surrogates						
1,2-Dichloroethane-D4 (surr)	96.6	81-118		%	1	08/23/20 20:11
4-Bromofluorobenzene (surr)	93.4	85-114		%	1	08/23/20 20:11
Toluene-d8 (surr)	104	89-112		%	1	08/23/20 20:11

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-17-5

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586005 Lab Project ID: 1209586 Collection Date: 08/18/20 15:00 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/23/20 20:11 Container ID: 1209586005-F

Analytical Batch: VMS20239 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/24/20 23:56 Container ID: 1209586005-G Prep Batch: VXX36193
Prep Method: SW5030B
Prep Date/Time: 08/23/20 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX36200 Prep Method: SW5030B Prep Date/Time: 08/24/20 15:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-3

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586006 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

Allowable <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Limits Date Analyzed Sodium 28800 5000 1500 ug/L 10 08/27/20 19:42

Batch Information

Analytical Batch: MMS10864 Analytical Method: EP200.8

Analyst: DMM

Analytical Date/Time: 08/27/20 19:42 Container ID: 1209586006-I Prep Batch: MXX33569 Prep Method: E200.2

Prep Date/Time: 08/24/20 17:36 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: MW-3

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586006 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	2.84	0.620	0.186	mg/L	1	Limits	09/01/20 18:41
Surrogates 5a Androstane (surr)	95.3	50-150		%	1		09/01/20 18:41

Batch Information

Analytical Batch: XFC15715 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/01/20 18:41 Container ID: 1209586006-A

Prep Batch: XXX43746 Prep Method: SW3520C Prep Date/Time: 08/27/20 14:34 Prep Initial Wt./Vol.: 242 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-3

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586006 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	12.6	1.00	0.310	mg/L	10	Limits	08/27/20 17:53
Surrogates 4-Bromofluorobenzene (surr)	155 *	50-150		%	10		08/27/20 17:53

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 08/27/20 17:53 Container ID: 1209586006-C Prep Batch: VXX36228
Prep Method: SW5030B
Prep Date/Time: 08/27/20 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW-3

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586006 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:10
1,1,1-Trichloroethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,1,2,2-Tetrachloroethane	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:10
1,1,2-Trichloroethane	4.00 U	8.00	2.40	ug/L	20	08/23/20 21:10
1,1-Dichloroethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,1-Dichloroethene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,1-Dichloropropene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,2,3-Trichlorobenzene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,2,3-Trichloropropane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,2,4-Trichlorobenzene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,2,4-Trimethylbenzene	2260	20.0	6.20	ug/L	20	08/23/20 21:10
1,2-Dibromo-3-chloropropane	100 U	200	62.0	ug/L	20	08/23/20 21:10
1,2-Dibromoethane	0.750 U	1.50	0.360	ug/L	20	08/23/20 21:10
1,2-Dichlorobenzene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,2-Dichloroethane	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:10
1,2-Dichloropropane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,3,5-Trimethylbenzene	633	20.0	6.20	ug/L	20	08/23/20 21:10
1,3-Dichlorobenzene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
1,3-Dichloropropane	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:10
1,4-Dichlorobenzene	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:10
2,2-Dichloropropane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
2-Butanone (MEK)	100 U	200	62.0	ug/L	20	08/23/20 21:10
2-Chlorotoluene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
2-Hexanone	100 U	200	62.0	ug/L	20	08/23/20 21:10
4-Chlorotoluene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
4-Isopropyltoluene	13.0 J	20.0	6.20	ug/L	20	08/23/20 21:10
4-Methyl-2-pentanone (MIBK)	100 U	200	62.0	ug/L	20	08/23/20 21:10
Benzene	24.4	8.00	2.40	ug/L	20	08/23/20 21:10
Bromobenzene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
Bromochloromethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
Bromodichloromethane	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:10
Bromoform	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
Bromomethane	50.0 U	100	40.0	ug/L	20	08/23/20 21:10
Carbon disulfide	100 U	200	62.0	ug/L	20	08/23/20 21:10
Carbon tetrachloride	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10
Chlorobenzene	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:10
Chloroethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:10

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: MW-3

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586006 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	10.0 U	20.0	<u>==</u> 6.20	ug/L	20	Littico	08/23/20 21:10
Chloromethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
cis-1,2-Dichloroethene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
cis-1,3-Dichloropropene	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:10
Dibromochloromethane	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:10
Dibromomethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Dichlorodifluoromethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Ethylbenzene	637	20.0	6.20	ug/L	20		08/23/20 21:10
Freon-113	100 U	200	62.0	ug/L	20		08/23/20 21:10
Hexachlorobutadiene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Isopropylbenzene (Cumene)	82.0	20.0	6.20	ug/L	20		08/23/20 21:10
Methylene chloride	100 U	200	62.0	ug/L	20		08/23/20 21:10
Methyl-t-butyl ether	100 U	200	62.0	ug/L	20		08/23/20 21:10
Naphthalene	34.8	20.0	6.20	ug/L	20		08/23/20 21:10
n-Butylbenzene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
n-Propylbenzene	161	20.0	6.20	ug/L	20		08/23/20 21:10
o-Xylene	1840	20.0	6.20	ug/L	20		08/23/20 21:10
P & M -Xylene	5020	40.0	12.4	ug/L	20		08/23/20 21:10
sec-Butylbenzene	10.5 J	20.0	6.20	ug/L	20		08/23/20 21:10
Styrene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
tert-Butylbenzene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Tetrachloroethene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Toluene	194	20.0	6.20	ug/L	20		08/23/20 21:10
trans-1,2-Dichloroethene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
trans-1,3-Dichloropropene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Trichloroethene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Trichlorofluoromethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:10
Vinyl acetate	100 U	200	62.0	ug/L	20		08/23/20 21:10
Vinyl chloride	1.50 U	3.00	1.00	ug/L	20		08/23/20 21:10
Xylenes (total)	6860	60.0	20.0	ug/L	20		08/23/20 21:10
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	20		08/23/20 21:10
4-Bromofluorobenzene (surr)	100	85-114		%	20		08/23/20 21:10
Toluene-d8 (surr)	104	89-112		%	20		08/23/20 21:10

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: MW-3

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586006 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/23/20 21:10 Container ID: 1209586006-F

Prep Batch: VXX36193
Prep Method: SW5030B
Prep Date/Time: 08/23/20 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Dup

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586007 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	3.41	0.600	0.180	mg/L	1	Limits	09/01/20 18:51
Surrogates 5a Androstane (surr)	95.3	50-150		%	1		09/01/20 18:51

Batch Information

Analytical Batch: XFC15715 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/01/20 18:51 Container ID: 1209586007-A

Prep Batch: XXX43746 Prep Method: SW3520C Prep Date/Time: 08/27/20 14:34 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: Dup

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586007 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Allowable</u> <u>Parameter</u> Result Qual <u>Units</u> DF LOQ/CL <u>DL</u> Limits Date Analyzed Gasoline Range Organics 12.3 1.00 0.310 mg/L 10 08/27/20 17:35 **Surrogates** 4-Bromofluorobenzene (surr) 159 50-150 10 08/27/20 17:35

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 08/27/20 17:35 Container ID: 1209586007-C Prep Batch: VXX36228 Prep Method: SW5030B Prep Date/Time: 08/27/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: Dup

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586007 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:24
1,1,1-Trichloroethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,1,2,2-Tetrachloroethane	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:24
1,1,2-Trichloroethane	4.00 U	8.00	2.40	ug/L	20		08/23/20 21:24
1,1-Dichloroethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,1-Dichloroethene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,1-Dichloropropene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,2,3-Trichlorobenzene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,2,3-Trichloropropane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,2,4-Trichlorobenzene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,2,4-Trimethylbenzene	2200	20.0	6.20	ug/L	20		08/23/20 21:24
1,2-Dibromo-3-chloropropane	100 U	200	62.0	ug/L	20		08/23/20 21:24
1,2-Dibromoethane	0.750 U	1.50	0.360	ug/L	20		08/23/20 21:24
1,2-Dichlorobenzene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,2-Dichloroethane	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:24
1,2-Dichloropropane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,3,5-Trimethylbenzene	625	20.0	6.20	ug/L	20		08/23/20 21:24
1,3-Dichlorobenzene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
1,3-Dichloropropane	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:24
1,4-Dichlorobenzene	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:24
2,2-Dichloropropane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
2-Butanone (MEK)	100 U	200	62.0	ug/L	20		08/23/20 21:24
2-Chlorotoluene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
2-Hexanone	100 U	200	62.0	ug/L	20		08/23/20 21:24
4-Chlorotoluene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
4-Isopropyltoluene	13.4 J	20.0	6.20	ug/L	20		08/23/20 21:24
4-Methyl-2-pentanone (MIBK)	100 U	200	62.0	ug/L	20		08/23/20 21:24
Benzene	22.6	8.00	2.40	ug/L	20		08/23/20 21:24
Bromobenzene	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
Bromochloromethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
Bromodichloromethane	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:24
Bromoform	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
Bromomethane	50.0 U	100	40.0	ug/L	20		08/23/20 21:24
Carbon disulfide	100 U	200	62.0	ug/L	20		08/23/20 21:24
Carbon tetrachloride	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24
Chlorobenzene	5.00 U	10.0	3.00	ug/L	20		08/23/20 21:24
Chloroethane	10.0 U	20.0	6.20	ug/L	20		08/23/20 21:24

Print Date: 09/08/2020 4:05:42PM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: Dup

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586007 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Chloromethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
cis-1,2-Dichloroethene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
cis-1,3-Dichloropropene	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:24
Dibromochloromethane	5.00 U	10.0	3.00	ug/L	20	08/23/20 21:24
Dibromomethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Dichlorodifluoromethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Ethylbenzene	615	20.0	6.20	ug/L	20	08/23/20 21:24
Freon-113	100 U	200	62.0	ug/L	20	08/23/20 21:24
Hexachlorobutadiene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Isopropylbenzene (Cumene)	79.3	20.0	6.20	ug/L	20	08/23/20 21:24
Methylene chloride	100 U	200	62.0	ug/L	20	08/23/20 21:24
Methyl-t-butyl ether	100 U	200	62.0	ug/L	20	08/23/20 21:24
Naphthalene	35.6	20.0	6.20	ug/L	20	08/23/20 21:24
n-Butylbenzene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
n-Propylbenzene	157	20.0	6.20	ug/L	20	08/23/20 21:24
o-Xylene	1730	20.0	6.20	ug/L	20	08/23/20 21:24
P & M -Xylene	4810	40.0	12.4	ug/L	20	08/23/20 21:24
sec-Butylbenzene	9.92 J	20.0	6.20	ug/L	20	08/23/20 21:24
Styrene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
tert-Butylbenzene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Tetrachloroethene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Toluene	176	20.0	6.20	ug/L	20	08/23/20 21:24
trans-1,2-Dichloroethene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
trans-1,3-Dichloropropene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Trichloroethene	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Trichlorofluoromethane	10.0 U	20.0	6.20	ug/L	20	08/23/20 21:24
Vinyl acetate	100 U	200	62.0	ug/L	20	08/23/20 21:24
Vinyl chloride	1.50 U	3.00	1.00	ug/L	20	08/23/20 21:24
Xylenes (total)	6530	60.0	20.0	ug/L	20	08/23/20 21:24
urrogates						
1,2-Dichloroethane-D4 (surr)	105	81-118		%	20	08/23/20 21:24
4-Bromofluorobenzene (surr)	99.5	85-114		%	20	08/23/20 21:24
Toluene-d8 (surr)	103	89-112		%	20	08/23/20 21:24

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: Dup

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586007 Lab Project ID: 1209586 Collection Date: 08/18/20 15:55 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/23/20 21:24 Container ID: 1209586007-F Prep Batch: VXX36193 Prep Method: SW5030B Prep Date/Time: 08/23/20 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586008 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0310	mg/L	1	Limits	08/27/20 17:00
Surrogates 4-Bromofluorobenzene (surr)	80.6	50-150		%	1		08/27/20 17:00

Batch Information

Analytical Batch: VFC15314 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 08/27/20 17:00 Container ID: 1209586008-B

Prep Batch: VXX36228
Prep Method: SW5030B
Prep Date/Time: 08/27/20 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586008 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		08/23/20 14:33
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/23/20 14:33
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
Benzene	0.200 U	0.400	0.120	ug/L	1		08/23/20 14:33
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
Bromoform	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Bromomethane	2.50 U	5.00	2.00	ug/L	1		08/23/20 14:33
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
Chloroethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33

Print Date: 09/08/2020 4:05:42PM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: Trip Blank

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586008 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Chloromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		08/23/20 14:33
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Freon-113	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/23/20 14:33
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Styrene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Toluene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		08/23/20 14:33
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		08/23/20 14:33
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/23/20 14:33
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/23/20 14:33
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/23/20 14:33
4-Bromofluorobenzene (surr)	107	85-114		%	1		08/23/20 14:33
Toluene-d8 (surr)	104	89-112		%	1		08/23/20 14:33

Print Date: 09/08/2020 4:05:42PM

J flagging is activated

Client Sample ID: Trip Blank

Client Project ID: Store 112 Remediation

Lab Sample ID: 1209586008 Lab Project ID: 1209586 Collection Date: 08/18/20 11:15 Received Date: 08/21/20 09:54 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/23/20 14:33 Container ID: 1209586008-D Prep Batch: VXX36193 Prep Method: SW5030B Prep Date/Time: 08/23/20 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank ID: MB for HBN 1810779 [MXX/33569]

Blank Lab ID: 1576892

QC for Samples:

1209586004, 1209586005, 1209586006

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Sodium
 250U
 500
 150
 ug/L

Batch Information

Analytical Batch: MMS10864 Analytical Method: EP200.8

Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 8/27/2020 6:51:24PM

Prep Batch: MXX33569 Prep Method: E200.2

Prep Date/Time: 8/24/2020 5:36:54PM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 09/08/2020 4:05:45PM

Blank Spike ID: LCS for HBN 1209586 [MXX33569]

Blank Spike Lab ID: 1576893 Date Analyzed: 08/27/2020 18:54

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209586004, 1209586005, 1209586006

Results by EP200.8

Blank Spike (ug/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Sodium
 10000
 10800
 108
 (85-115)

Batch Information

Analytical Batch: MMS10864 Prep Batch: MXX33569
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 08/24/2020 17:36

Analyst: DMM Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/08/2020 4:05:48PM

Matrix Spike Summary

Original Sample ID: 1576897 MS Sample ID: 1576898 MS

MSD Sample ID:

Analysis Date: 08/27/2020 19:06 Analysis Date: 08/27/2020 19:09

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209586004, 1209586005, 1209586006

Results by EP200.8

Matrix Spike (ug/L) Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Sodium 250U 10000 306000 **3060** * 70-130

Batch Information

Analytical Batch: MMS10864 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 8/27/2020 7:09:19PM

Prep Batch: MXX33569

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 8/24/2020 5:36:54PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 09/08/2020 4:05:50PM

Blank ID: MB for HBN 1810753 [VXX/36193]

Blank Lab ID: 1576794

QC for Samples:

1209586001, 1209586002, 1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Devenuetos	Desults	1.00/01	DI	Lluita
Parameter 1.1.1.2 Tetraphlereethere	Results 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L
1,1,1,2-Tetrachloroethane				-
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 09/08/2020 4:05:51PM

Blank ID: MB for HBN 1810753 [VXX/36193]

Blank Lab ID: 1576794

QC for Samples:

1209586001, 1209586002, 1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	DL	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	103	81-118		%
4-Bromofluorobenzene (surr)	111	85-114		%
Toluene-d8 (surr)	104	89-112		%

Print Date: 09/08/2020 4:05:51PM

Blank ID: MB for HBN 1810753 [VXX/36193]

Blank Lab ID: 1576794

QC for Samples:

1209586001, 1209586002, 1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Results by SW8260D

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/23/2020 10:34:00AM

Prep Batch: VXX36193 Prep Method: SW5030B

Prep Date/Time: 8/23/2020 10:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/08/2020 4:05:51PM

Blank Spike ID: LCS for HBN 1209586 [VXX36193]

Blank Spike Lab ID: 1576795 Date Analyzed: 08/23/2020 11:08 Spike Duplicate ID: LCSD for HBN 1209586

[VXX36193]

Spike Duplicate Lab ID: 1576796 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209586001, 1209586002, 1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Results by SW8260D

Parameter Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 1,1,1,2-Tetrachloroethane 30 29.4 98 30 30.2 101 (78-124) 2.70 1,1,1-Trichloroethane 30 30.5 102 30 29.5 98 (74-131) 3.20 1,1,2,2-Tetrachloroethane 30 30.4 101 30 31.0 103 (71-121) 1.90 1,1,2-Trichloroethane 30 30.2 101 30 31.2 104 (80-119) 3.10 1,1-Dichloroethane 30 31.0 103 30.3 101 (77-125) 2.30 1,1-Dichloroethene 30 35.5 118 30 33.5 112 (71-131) 5.70 1,1-Dichloropropene 30 31.7 106 30 30.6 102 (79-125) 3.50	(< 20) (< 20)
1,1,1-Trichloroethane 30 30.5 102 30 29.5 98 (74-131) 3.20 1,1,2,2-Tetrachloroethane 30 30.4 101 30 31.0 103 (71-121) 1.90 1,1,2-Trichloroethane 30 30.2 101 30 31.2 104 (80-119) 3.10 1,1-Dichloroethane 30 31.0 103 30 30.3 101 (77-125) 2.30 1,1-Dichloroethene 30 35.5 118 30 33.5 112 (71-131) 5.70	(< 20) (< 20) (< 20) (< 20) (< 20)
1,1,2,2-Tetrachloroethane 30 30.4 101 30 31.0 103 (71-121) 1.90 1,1,2-Trichloroethane 30 30.2 101 30 31.2 104 (80-119) 3.10 1,1-Dichloroethane 30 31.0 103 30 30.3 101 (77-125) 2.30 1,1-Dichloroethene 30 35.5 118 30 33.5 112 (71-131) 5.70	(< 20) (< 20) (< 20) (< 20)
1,1,2-Trichloroethane 30 30.2 101 30 31.2 104 (80-119) 3.10 1,1-Dichloroethane 30 31.0 103 30 30.3 101 (77-125) 2.30 1,1-Dichloroethene 30 35.5 118 30 33.5 112 (71-131) 5.70	(< 20) (< 20) (< 20)
1,1-Dichloroethane 30 31.0 103 30 30.3 101 (77-125) 2.30 1,1-Dichloroethene 30 35.5 118 30 33.5 112 (71-131) 5.70	(< 20) (< 20)
1,1-Dichloroethene 30 35.5 118 30 33.5 112 (71-131) 5.70	(< 20)
,	
1.1-Dichloropropene 30 31.7 106 30 30.6 102 (79-125) 3.50	(< 20)
,, = ==================================	(- 20)
1,2,3-Trichlorobenzene 30 27.9 93 30 29.0 97 (69-129) 3.70	(< 20)
1,2,3-Trichloropropane 30 29.4 98 30 29.9 100 (73-122) 1.80	(< 20)
1,2,4-Trichlorobenzene 30 28.4 95 30 29.8 99 (69-130) 4.80	(< 20)
1,2,4-Trimethylbenzene 30 32.5 108 30 32.2 107 (79-124) 0.82	(< 20)
1,2-Dibromo-3-chloropropane 30 28.8 96 30 29.8 100 (62-128) 3.60	(< 20)
1,2-Dibromoethane 30 28.7 96 30 30.0 100 (77-121) 4.20	(< 20)
1,2-Dichlorobenzene 30 30.3 101 30 30.5 102 (80-119) 0.71	(< 20)
1,2-Dichloroethane 30 29.3 98 30 29.3 98 (73-128) 0.18	(< 20)
1,2-Dichloropropane 30 31.2 104 30 30.9 103 (78-122) 1.10	(< 20)
1,3,5-Trimethylbenzene 30 31.6 105 30 32.0 107 (75-124) 1.30	(< 20)
1,3-Dichlorobenzene 30 30.9 103 30 31.3 104 (80-119) 1.10	(< 20)
1,3-Dichloropropane 30 30.0 100 30 30.6 102 (80-119) 1.90	(< 20)
1,4-Dichlorobenzene 30 30.7 102 30 30.7 102 (79-118) 0.07	(< 20)
2,2-Dichloropropane 30 32.3 108 30 30.9 103 (60-139) 4.20	(< 20)
2-Butanone (MEK) 90 97.0 108 90 106 118 (56-143) 8.80	(< 20)
2-Chlorotoluene 30 32.8 109 30 32.2 107 (79-122) 1.80	(< 20)
2-Hexanone 90 91.4 102 90 94.9 105 (57-139) 3.70	(< 20)
4-Chlorotoluene 30 32.1 107 30 32.0 107 (78-122) 0.28	(< 20)
4-Isopropyltoluene 30 30.5 102 30 31.5 105 (77-127) 3.50	(< 20)
4-Methyl-2-pentanone (MIBK) 90 92.8 103 90 93.2 104 (67-130) 0.41	(< 20)
Benzene 30 31.3 104 30 31.2 104 (79-120) 0.55	(< 20)
Bromobenzene 30 29.6 99 30 29.7 99 (80-120) 0.51	(< 20)
Bromochloromethane 30 29.5 98 30 29.5 98 (78-123) 0.04	(< 20)
Bromodichloromethane 30 30.5 102 30 30.3 101 (79-125) 0.65	(< 20)
Bromoform 30 28.4 95 30 29.1 97 (66-130) 2.70	(< 20)
Bromomethane 30 27.7 92 30 26.8 90 (53-141) 3.20	(< 20)
Carbon disulfide 45 53.3 118 45 49.8 111 (64-133) 6.80	(< 20)

Print Date: 09/08/2020 4:05:54PM

Blank Spike ID: LCS for HBN 1209586 [VXX36193]

Blank Spike Lab ID: 1576795 Date Analyzed: 08/23/2020 11:08 Spike Duplicate ID: LCSD for HBN 1209586

[VXX36193]

Spike Duplicate Lab ID: 1576796 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209586001, 1209586002, 1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Carbon tetrachloride	30	30.1	100	30	29.0	97	(72-136)	3.50	(< 20)
Chlorobenzene	30	29.1	97	30	29.2	97	(82-118)	0.30	(< 20)
Chloroethane	30	38.9	130	30	36.6	122	(60-138)	6.30	(< 20)
Chloroform	30	30.2	101	30	29.8	99	(79-124)	1.60	(< 20)
Chloromethane	30	31.8	106	30	29.2	97	(50-139)	8.60	(< 20)
cis-1,2-Dichloroethene	30	30.4	101	30	29.7	99	(78-123)	2.20	(< 20)
cis-1,3-Dichloropropene	30	31.4	105	30	31.1	104	(75-124)	0.96	(< 20)
Dibromochloromethane	30	28.5	95	30	29.4	98	(74-126)	3.10	(< 20)
Dibromomethane	30	29.9	100	30	29.9	100	(79-123)	0.03	(< 20)
Dichlorodifluoromethane	30	31.7	106	30	29.4	98	(32-152)	7.50	(< 20)
Ethylbenzene	30	32.6	109	30	32.2	107	(79-121)	1.30	(< 20)
Freon-113	45	53.5	119	45	50.9	113	(70-136)	5.00	(< 20)
Hexachlorobutadiene	30	25.6	85	30	26.7	89	(66-134)	4.40	(< 20)
Isopropylbenzene (Cumene)	30	32.2	107	30	32.3	108	(72-131)	0.31	(< 20)
Methylene chloride	30	31.6	105	30	31.0	103	(74-124)	2.00	(< 20)
Methyl-t-butyl ether	45	47.3	105	45	47.2	105	(71-124)	0.23	(< 20)
Naphthalene	30	29.7	99	30	29.8	100	(61-128)	0.47	(< 20)
n-Butylbenzene	30	29.9	100	30	32.4	108	(75-128)	8.00	(< 20)
n-Propylbenzene	30	33.8	113	30	33.9	113	(76-126)	0.29	(< 20)
o-Xylene	30	32.3	108	30	32.3	108	(78-122)	0.18	(< 20)
P & M -Xylene	60	64.7	108	60	63.8	106	(80-121)	1.30	(< 20)
sec-Butylbenzene	30	32.0	107	30	33.6	112	(77-126)	4.80	(< 20)
Styrene	30	32.2	107	30	32.2	107	(78-123)	0.05	(< 20)
tert-Butylbenzene	30	31.2	104	30	32.2	107	(78-124)	2.90	(< 20)
Tetrachloroethene	30	28.2	94	30	28.3	94	(74-129)	0.27	(< 20)
Toluene	30	29.5	99	30	29.6	99	(80-121)	0.07	(< 20)
trans-1,2-Dichloroethene	30	31.4	105	30	30.2	101	(75-124)	3.70	(< 20)
trans-1,3-Dichloropropene	30	31.4	105	30	32.5	108	(73-127)	3.20	(< 20)
Trichloroethene	30	30.5	102	30	29.7	99	(79-123)	2.50	(< 20)
Trichlorofluoromethane	30	38.6	129	30	33.1	110	(65-141)	15.30	(< 20)
Vinyl acetate	30	32.3	108	30	32.3	108	(54-146)	0.07	(< 20)
Vinyl chloride	30	34.2	114	30	31.7	106	(58-137)	7.80	(< 20)
Xylenes (total)	90	96.9	108	90	96.1	107	(79-121)	0.80	(< 20)

Print Date: 09/08/2020 4:05:54PM

Blank Spike ID: LCS for HBN 1209586 [VXX36193]

Blank Spike Lab ID: 1576795 Date Analyzed: 08/23/2020 11:08 Spike Duplicate ID: LCSD for HBN 1209586

[VXX36193]

Spike Duplicate Lab ID: 1576796 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209586001, 1209586002, 1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Results by SW8260D

		Blank Spil	(e (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.5	100	30	98.1	98	(81-118)	1.40	
4-Bromofluorobenzene (surr)	30	102	102	30	102	102	(85-114)	0.04	
Toluene-d8 (surr)	30	99.1	99	30	98.9	99	(89-112)	0.14	

Batch Information

Analytical Batch: VMS20236 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX36193
Prep Method: SW5030B

Prep Date/Time: 08/23/2020 10:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/08/2020 4:05:54PM

Blank ID: MB for HBN 1810785 3 VVX 56009

Blank] aL ID: 1b754/6

QC for Samples:

1604b8500/ 21604b8500, 21604b8500b

Matrix: Water (Surface2Eff.2Ground)

Results Ly SW8260D

,				
<u>Parameter</u>	Results] OQXC]	<u>D]</u>	<u>Units</u>
1212126-Tetrachloroethane	0.6b0U	0.b00	0.1b0	ug ¾
12121-Trichloroethane	0.b00U	1.00	0./ 10	ug∦
1212626-Tetrachloroethane	0.6b0U	0.b00	0.1b0	ug∦
12126-Trichloroethane	0.600U	0., 00	0.160	ug∦
121-Dichloroethane	0.b00U	1.00	0./ 10	ug∦
121-Dichloroethene	0.b00U	1.00	0./ 10	ug ¾
121-Dichloropropene	0.b00U	1.00	0./ 10	ug∦
1262 - Trichloro Lenzene	0.b00U	1.00	0./ 10	ug ¾
1262 -Trichloropropane	0.b00U	1.00	0./ 10	ug ¾
1262 -TrichloroLenzene	0.b00U	1.00	0./ 10	ug ¾
1262, -TrimethylLenzene	0.b00U	1.00	0./ 10	ug ¾
126-DiLromo-/ -chloropropane	b.00U	10.0	/ .10	ug∦
126-DiLromoethane	0.0/ 7bU	0.07b0	0.0180	ug∦
126-DichloroLenzene	0.b00U	1.00	0./ 10	ug∦
126-Dichloroethane	0.6b0U	0.b00	0.1b0	ug∦
126-Dichloropropane	0.b00U	1.00	0./ 10	ug ¾
12 2b-TrimethylLenzene	0.b00U	1.00	0./ 10	ug) [
12 -DichloroLenzene	0.b00U	1.00	0./ 10	ug) [
12 -Dichloropropane	0.6b0U	0.b00	0.1b0	ug) [
12 -DichloroLenzene	0.6b0U	0.b00	0.1b0	ug) [
626-Dichloropropane	0.b00U	1.00	0./ 10	ug) [
6-Butanone (MEK)	b.00U	10.0	/ .10	ug) [
6-Chlorotoluene	0.b00U	1.00	0./ 10	ug) [
6-Hexanone	b.00U	10.0	/ .10	ug) [
, -Chlorotoluene	0.b00U	1.00	0./ 10	ug) [
, -lsopropyltoluene	0.b00U	1.00	0./ 10	ug) [
, -Methyl-6-pentanone (MIBK)	b.00U	10.0	/ .10	ug ∦
Benzene	0.600U	0., 00	0.160	ug ∦
BromoLenzene	0.b00U	1.00	0./ 10	ug∦
Bromochloromethane	0.b00U	1.00	0./ 10	ug∦
Bromodichloromethane	0.6b0U	0.b00	0.1b0	ug∦
Bromoform	0.b00U	1.00	0./ 10	ug∦
Bromomethane	6.b0U	b.00	6.00	ug ∦
CarLon disulfide	b.00U	10.0	/ .10	ug∦
CarLon tetrachloride	0.b00U	1.00	0./ 10	ug∦
ChloroLenzene	0.6b0U	0.b00	0.1b0	ug ∦
Chloroethane	0.b00U	1.00	0./ 10	ug ∦
Chloroform	0.b00U	1.00	0./ 10	ug ∦

Blank ID: MB for HBN 1810785 3 VVX 56009

Blank] aL ID: 1b754/6

QC for Samples:

1604b8500/ 21604b8500, 21604b8500b

Matrix: Water (Surface2Eff.2Ground)

Results Ly SW8260D

<u>Parameter</u>	Results] OQXC]	<u>D]</u>	<u>Units</u>
Chloromethane	0.b00U	1.00	0./ 10	ug ¾
cis-126-Dichloroethene	0.b00U	1.00	0./ 10	ug ¾
cis-12 -Dichloropropene	0.6b0U	0.b00	0.1b0	ug ¾
DiLromochloromethane	0.6b0U	0.b00	0.1b0	ug ¾
DiLromomethane	0.b00U	1.00	0./ 10	ug ¾
Dichlorodifluoromethane	0.b00U	1.00	0./ 10	ug ¾
EthylLenzene	0.b00U	1.00	0./ 10	ug ¾
Freon-11/	b.00U	10.0	/ .10	ug ¾
HexachloroLutadiene	0.b00U	1.00	0./ 10	ug ¾
IsopropylLenzene (Cumene)	0.b00U	1.00	0./ 10	ug ¾
Methylene chloride	b.00U	10.0	/ .10	ug X
Methyl-t-Lutyl ether	b.00U	10.0	/ .10	ug X
Naphthalene	0.b00U	1.00	0./ 10	ug) ţ
n-ButylLenzene	0.b00U	1.00	0./ 10	ug ¾
n-PropylLenzene	0.b00U	1.00	0./ 10	ug ¾
o-Vylene	0.b00U	1.00	0./ 10	ug ¾
P & M -Vylene	1.00U	6.00	0.560	ug ¾
sec-ButylLenzene	0.b00U	1.00	0./ 10	ug ¾
Styrene	0.b00U	1.00	0./ 10	ug ¾
tert-ButylLenzene	0.b00U	1.00	0./ 10	ug ¾
Tetrachloroethene	0.b00U	1.00	0./ 10	ug) ţ
Toluene	0.b00U	1.00	0./ 10	ug X
trans-126-Dichloroethene	0.b00U	1.00	0./ 10	ug) ţ
trans-12 -Dichloropropene	0.b00U	1.00	0./ 10	ug X
Trichloroethene	0.b00U	1.00	0./ 10	ug) ţ
Trichlorofluoromethane	0.b00U	1.00	0./ 10	ug) ţ
[inyl acetate	b.00U	10.0	/ .10	ug) ţ
[inyl chloride	0.07b0U	0.1b0	0.0b00	ug ¾
Vylenes (total)	1.b0U	/ .00	1.00	ug ¾
Surrogates				
126-Dichloroethane-D, (surr)	106	81-118		%
, -BromofluoroLenzene (surr)	116	8b-11,		%
Toluene-d8 (surr)	10/	84-116		%

Blank ID: MB for HBN 1810785 3 VVX 56009

Blank] aL ID: 1b754/6

QC for Samples:

1604b8500/ 21604b8500, 21604b8500b

Matrix: Water (Surface2Eff.2Ground)

Results Ly SW8260D

Parameter Results 1 OQXC1 D1 Units

Batch Information

Analytical Batch: [MS606/ 4 Analytical Method: SW8650D Instrument: Agilent 7840-7bMS

Analyst: NRB

Analytical DateXTime: 8X6, X6060 /:, 7:00PM

Prep Batch: [VV/ 5600 Prep Method: SWb0/ 0B

Prep DateXTime: 8X6, X6060 /:00:00PM

Prep Initial Wt.\(ol.: b m\)
Prep Extract [ol: b m]

Leaching Blank

Blank ID:] B for HBN 1810b51 3TC] PX10778

Blank] aL ID: 1b7b87,

QC for Samples:

1604b8500/ 21604b8500, 21604b8500b

Matrix: Water (Surface2Eff.2Ground)

Results Ly SW8260D

Parameter	Results	1 OQXC1	<u>D]</u>	Units
12I-Dichloroethene	6b.0U	b0.0	1b.b	ug X
126-Dichloroethane	16.bU	6b.0	7.b0	ug X
12 -DichloroLenzene	16.bU	6b.0	7.b0	ug X
6-Butanone (MEK)	6b0U	b00	1bb	ug) ţ
Benzene	10.0U	60.0	5.00	ug) 【
CarLon tetrachloride	6b.0U	b0.0	1b.b	ug) 【
ChloroLenzene	16.bU	6b.0	7.b0	ug) 【
Chloroform	6b.0U	b0.0	1b.b	ug) 【
HexachloroLutadiene	6b.0U	b0.0	1b.b	ug) 【
Tetrachloroethene	6b.0U	b0.0	1b.b	ug) 【
Trichloroethene	6b.0U	b0.0	1b.b	ug) 【
[inyl chloride	6b.0U	b0.0	1b.b	ug ¾
Surrogates				
126-Dichloroethane-D, (surr)	101	81-118		%
, -BromofluoroLenzene (surr)	107	8b-11,		%
Toluene-d8 (surr)	10,	84-116		%

Batch Information

Analytical Batch: [MS606/ 4 Analytical Method: SW8650D

Instrument: Agilent 7840-7bMS

Analyst: NRB

Analytical DateXTime: 8X6, X6060 5:14:00PM

Prep Batch: [VV/ 5600 Prep Method: SWb0/ 0B

Prep DateXTime: 8X6, X6060 /:00:00PM

Prep Initial Wt.X ol.: b m]
Prep Extract [ol: b m]

Leaching Blank

Blank ID:] B for HBN 18105/ 1 3TC] PX 0781

Blank] aL ID: 1b75188

QC for Samples:

1604b8500/ 21604b8500, 21604b8500b

Matrix: Water (Surface2Eff.2Ground)

Results Ly SW8260D

<u>Parameter</u>	Results	<u>] OQXC]</u>	<u>D]</u>	<u>Units</u>
12I-Dichloroethene	6b.0U	b0.0	1b.b	ug ː ʃ
126-Dichloroethane	16.bU	6b.0	7.b0	ug ¾
12 -DichloroLenzene	16.bU	6b.0	7.b0	ug ¾
6-Butanone (MEK)	6b0U	b00	1bb	ug ¾
Benzene	10.0U	60.0	5.00	ug) 【
CarLon tetrachloride	6b.0U	b0.0	1b.b	ug ¾
ChloroLenzene	16.bU	6b.0	7.b0	ug ¾
Chloroform	6b.0U	b0.0	1b.b	ug ¾
HexachloroLutadiene	6b.0U	b0.0	1b.b	ug ¾
Tetrachloroethene	6b.0U	b0.0	1b.b	ug ¾
Trichloroethene	6b.0U	b0.0	1b.b	ug ¾
[inyl chloride	6b.0U	b0.0	1b.b	ug ¾
Surrogates				
126-Dichloroethane-D, (surr)	10/	81-118		%
, -BromofluoroLenzene (surr)	107	8b-11,		%
Toluene-d8 (surr)	10/	84-116		%
. ,				

Batch Information

Analytical Batch: [MS606/ 4 Analytical Method: SW8650D

Instrument: Agilent 7840-7bMS

Analyst: NRB

Analytical DateXTime: 8X6, X6060 5:, 8:00PM

Prep Batch: [VV/ 5600 Prep Method: SWb0/ 0B

Prep DateXTime: 8X6, X6060 /:00:00PM

Prep Initial Wt.X ol.: b m]
Prep Extract [ol: b m]

Blank Spike ID: LCS for HBN 1209586 [VXX36200]

Blank Spike Lab ID: 1576933 Date Analyzed: 08/2u/2020 16:21 Spike DcpliRate ID: LCSD for HBN 1209586

[VXX36200]

Spike DcpliRate Lab ID: 157693u x atriW (ater ,ScrfaReE. ffŒ) rocndP

4 C for Sa%pleM 1209586003E120958600uE1209586005

s eMcItMby SW8260D

S EINCILIVIDY SVVOZOOD		Blank Spike	e ,cQLP		Spike Dcpli	Rate ,cQ/LP			
<u>mara%eter</u>	Spike	s eMcIt	s eR,g P	Spike	seMclt	s eR,g P	CL	s mD,g P	s mD CL
1目目면-TetraRhloroethane	30	30 6	102	30	30 ©	102	, 78-12u P	0 3 5	,< 20 P
1日日-TriRhloroethane	30	303	100	30	29 3	98	, 7u-131 P	2 5 0	,< 20 P
1년 단면-TetraRhloroethane	30	30 9	103	30	31 %	106	, 71-121 P	2 9 0	,< 20 P
1∄ ᡛ-TriRhloroethane	30	313	10u	30	31 9	106	, 80-119 P	2 G 0	,< 20 P
1 ∄ -Di R hloroethane	30	30 ⑤	102	30	30@	101	, 77-125 P	0 6 9	,< 20 P
1 ∄ -DiRhloroethene	30	35 @	117	30	33 ©	113	, 71-131 P	u @ 0	,< 20 P
1 ∄ -DiRhloropropene	30	31 3	10u	30	30 ©	102	, 79-125 P	200	,< 20 P
1₽B-TriRhlorobenzene	30	27 6	92	30	28 G	95	, 69-129 P	3 6 0	,< 20 P
1₽B-TriRhloropropane	30	293	97	30	30₲	100	, 73-122 P	3 6 0	,< 20 P
1₽⊞-TriRhlorobenzene	30	28 ઉ	95	30	29 %	99	, 69-130 P	u @ 0	,< 20 P
1臣⊞-Tri%ethylbenzene	30	32 ⑤	108	30	33 ©	110	, 79-12u P	1 % 0	,< 20 P
1เ2-Dibro‰-3-Rhloropropane	30	28 ⑤	95	30	29 G	97	, 62-128 P	2 2 0	,< 20 P
1ᡛ-Dibro%oethane	30	29 %	99	30	30@	101	, 77-121 P	2 3 0	,< 20 P
112-DiRhlorobenzene	30	30 G	101	30	31 ©	103	, 80-119 P	130	,< 20 P
1เ2-DiRhloroethane	30	28 ®	96	30	29@	98	, 73-128 P	130	,< 20 P
1เ2-DiRhloropropane	30	31@	10u	30	31 ©	103	, 78-122 P	0 3 9	,< 20 P
1BB-Tri%ethylbenzene	30	32 5	108	30	32 G	108	, 75-12u P	0 @ 3	,< 20 P
1B-DiRhlorobenzene	30	31 ७	105	30	31 G	106	, 80-119 P	0 @ 3	,< 20 P
1₿-DiRhloropropane	30	303	102	30	31 ७	105	, 80-119 P	2 5 0	,< 20 P
1⊞-DiRhlorobenzene	30	31 ©	103	30	31@	10u	, 79-118 P	0 6 6	,< 20 P
2f2-DiRhloropropane	30	31 9	106	30	313	10u	, 60-139 P	2 3 0	,< 20 P
2-Bctanone ,x . KP	90	93 3	10u	90	92 8	103	, 56-1u3 P	0 5 7	,< 20 P
2-Chlorotolcene	30	33 ©	112	30	33 3	111	, 79-122 P	130	,< 20 P
2-HeWanone	90	89 G	99	90	90 ©	101	, 57-139 P	1 G 0	,< 20 P
u-Chlorotolcene	30	33 @	111	30	33 ②	111	, 78-122 P	0 © 6	,< 20 P
u-IMbpropyltolcene	30	31 G	105	30	32 @	107	, 77-127 P	2 G 0	,< 20 P
u-x ethyl-2-pentanone ,x IBKP	90	B88	98	90	89 G	99	, 67-130 P	1 ઉ 0	,< 20 P
Benzene	30	308	103	30	30 %	102	, 79-120 P	8 8 0	,< 20 P
Bro%obenzene	30	303	100	30	30₲	100	, 80-120 P	0 © 1	,< 20 P
Bro%oRhloro%ethane	30	28 ®	96	30	28 %	96	, 78-123 P	0 © 9	,< 20 P
Bro%odiRhloro%ethane	30	30 G	100	30	30₲	100	, 79-125 P	0 2 5	,< 20 P
Bro%ofor%	30	28 G	95	30	29 G	98	, 66-130 P	3 5 0	,< 20 P
Bro%o%ethane	30	29 ©	97	30	27 3	93	, 53-1u1 P	u G 0	,< 20 P
Carbon diMtlfide	u5	52 9	118	u5	u9 9	111	, 6u-133 P	5 8 0	,< 20 P

mrint Date: 09/08/2020 u:06:00mx

Blank Spike ID: LCS for HBN 1209586 [VXX36200]

Blank Spike Lab ID: 1576933 Date Analyzed: 08/2u/2020 16:21 Spike DcpliRate ID: LCSD for HBN 1209586

[VXX36200]

Spike DcpliRate Lab ID: 157693u x atriW (ater ,ScrfaReE. ffŒ) rocndP

4 C for Sa%pleM 1209586003E120958600uE1209586005

s eMcItMby SW8260D

		Blank Spike	e ,cQLP		Spike Dcpli	Rate ,cQ/LP			
mara%eter	<u>Spike</u>	s eMcIt	seR,gP	<u>Spike</u>	s eMcIt	<u>s eR,g P</u>	CL	<u>s mD,g P</u>	s mD CL
Carbon tetraRhloride	30	29 6	99	30	28 3	96	, 72-136 P	2 6 0	,< 20 P
Chlorobenzene	30	29 6	99	30	29 6	99	, 82-118 P	0 © 1	,< 20 P
Chloroethane	30	37 @	125	30	36 3	121	, 60-138 P	3 @ 0	,< 20 P
Chlorofor%	30	29 9	100	30	293	99	, 79-12u P	0 8 0	,< 20 P
Chloro%ethane	30	308	103	30	28 G	95	, 50-139 P	7 3 0	,< 20 P
RM1E2-DiRhloroethene	30	29 9	100	30	29 G	99	, 78-123 P	0 9 u	,< 20 P
RM1B-DiRhloropropene	30	31 @	10u	30	313	10u	, 75-12u P	0 2 9	,< 20 P
Dibro%oRhloro%ethane	30	29 3	98	30	29 9	100	, 7u-126 P	2 @ 0	,< 20 P
Dibro%o%ethane	30	29 @	97	30	29 G	99	, 79-123 P	1 3 0	,< 20 P
DiRhlorodiflcoro%ethane	30	29 @	98	30	26 9	90	, 32-152 P	8 9 0	,< 20 P
. thylbenzene	30	32 G	109	30	32 ⑤	108	, 79-121 P	0 % u	,< 20 P
Freon-113	u5	53 ©	118	u5	50 9	113	, 70-136 P	3 9 0	,< 20 P
HeWaRhlorobctadiene	30	263	89	30	27 ©	90	, 66-13u P	1 G 0	,< 20 P
IMbpropylbenzene,Cc%eneP	30	32 8	109	30	32 ⑤	108	, 72-131 P	0 8 7	,< 20 P
x ethylene Rhloride	30	303	102	30	31 3	10u	, 7u-12u P	1 3 0	,< 20 P
x ethyl-t-bctyl ether	u5	u5 @	101	u5	u6 5	103	, 71-12u P	2 8 0	,< 20 P
Naphthalene	30	293	97	30	29 G	98	, 61-128 P	0 9 9	,< 20 P
n-Bctylbenzene	30	31 G	106	30	33 G	110	, 75-128 P	u @ 0	,< 20 P
n-mropylbenzene	30	35 ©	117	30	3u G	115	, 76-126 P	1 3 0	,< 20 P
o-Xylene	30	33 ©	110	30	32 ઉ	108	, 78-122 P	1 @ 0	,< 20 P
m&x -Xylene	60	65 @	109	60	6u @	107	, 80-121 P	1 3 0	,< 20 P
MeR-Bctylbenzene	30	33 ©	110	30	3u @	11u	, 77-126 P	3 G 0	,< 20 P
Styrene	30	32 @	108	30	32 ©	107	, 78-123 P	130	,< 20 P
tert-Bctylbenzene	30	32 3	108	30	32 @	107	, 78-12u P	0 3 1	,< 20 P
TetraRhloroethene	30	29 6	99	30	28 9	96	, 7u-129 P	2 3 0	,< 20 P
Tolcene	30	30 ⑤	102	30	303	100	, 80-121 P	1 @ 0	,< 20 P
tranM1ᡛ-DiRhloroethene	30	30 G	101	30	303	100	, 75-12u P	1 G 0	,< 20 P
tranM1B-DiRhloropropene	30	32 6	109	30	32 ®	109	, 73-127 P	0 @ 9	,< 20 P
TriRhloroethene	30	30 3	101	30	29 6	99	, 79-123 P	2 @ 0	,< 20 P
TriRhloroflcoro%ethane	30	33 3	111	30	33 ©	112	, 65-1u1 P	0 8 6	,< 20 P
Vinyl aRetate	30	31 ©	103	30	31 %	106	, 5u-1u6 P	2 6 0	,< 20 P
Vinyl Rhloride	30	33 %	113	30	30 8	103	, 58-137 P	9 @ 0	,< 20 P
XyleneM,totalP	90	98@	109	90	96 ©	107	, 79-121 P	1 6 0	,< 20 P

mrint Date: 09/08/2020 u:06:00mx

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209586 [VXX36200]

Blank Spike Lab ID: 1576933 Date Analyzed: 08/2u/2020 16:21 Spike DcpliRate ID: LCSD for HBN 1209586

[VXX36200]

Spike DcpliRate Lab ID: 157693u x atriW (ater ,ScrfaReE. ffŒ) rocndP

4 C for Sa%pleM 1209586003E120958600uE1209586005

s eMcItMby SW8260D

		Blank Spik	ke ,g P		Spike Dcp	iRate,gP			
mara%eter	Spike	s eMblt	<u>s eR,g P</u>	Spike	s eMcIt	<u>s eR,g P</u>	CL	<u>s mD,g P</u>	s mD CL
Surrogates									
1Ē-DiRhloroethane-Du ,McrrP	30	97 5	98	30	97 5	98	, 81-118 P	0 © 2	
u-Bro%oflcorobenzene ,McrrP	30	103	103	30	103	103	, 85-11u P	0 3 1	
Tolcene-d8, McrrP	30	99 ©	100	30	100	100	, 89-112 P	0₫6	

Batch Information

AnalytiRal BatRn: VMS20239 AnalytiRal x ethod: SW8260D InMrc%ent: Agilent 7890-75MS

AnalyM: NRB

mrep BatRh: VXX36200 mrep x ethod: SW5030B

mrep Date/Ti%e: 08/24/2020 15:00

mrint Date: 09/08/2020 u:06:00mx

Method Blank

Blank ID: MB for HBN 1810976 [VXX/36228]

Blank Lab ID: 1577752

QC for Samples:

1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Matrix: Water (Surface, Eff., Ground)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0310mg/L

Surrogates

4-Bromofluorobenzene (surr) 75.6 50-150 %

Batch Information

Analytical Batch: VFC15314 Prep Batch: VXX36228
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/27/2020 6:00:00AM

Analyst: ALJ Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/27/2020 12:44:00PM Prep Extract Vol: 5 mL

Print Date: 09/08/2020 4:06:04PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209586 [VXX36228]

Blank Spike Lab ID: 1577755 Date Analyzed: 08/27/2020 13:37 Spike Duplicate ID: LCSD for HBN 1209586

[VXX36228]

Spike Duplicate Lab ID: 1577756 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209586004, 1209586005, 1209586006, 1209586007, 1209586008

Results by AK101

	E	Blank Spike	e (mg/L)	S	spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.988	99	1.00	1.01	101	(60-120)	2.10	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	90.7	91	0.0500	90.8	91	(50-150)	0.18	

Batch Information

Analytical Batch: VFC15314

Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ALJ

Prep Batch: VXX36228
Prep Method: SW5030B

Prep Date/Time: 08/27/2020 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 09/08/2020 4:06:07PM

Method Blank

Blank ID: MB for HBN 1810978 (VVX 3229]

Blank Lab ID: 1577759

QC for Samples:

1209583001412095830024120958300/

Ma,rti: x a,er W3(rfaue4cffr ro(nGd

) es(l,s bRAK101

 Oarame,er
) es(I,s)
 LUQXL
 DL
 y nt,s

 . asoltne) anPe UrPantus
 0⊞500y
 0⊞00
 0⊞/10
 mPX

Surrogates

g-Bromofl(orobenzene \%(rrd \qquad 79\boxed{B} \qquad 50-150 \qquad \%

Batch Information

AnalRtual Ba,uh: [FC15/ 1g Orep Ba,uh: [VV/ 3229 AnalRtual Me,hoG AK101 Orep Me,hoG Sx 50/ 0B

AnalRs,: ALJ Orep Int,tal x , EX olE 5 mL AnalRtual Da,eXTtme: 8½7½020 10:01:000M Orep ci ,rau, [ol: 5 mL

Ortn, Da,e: 09X08X2020 g:03:09OM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209586 [VXX36229]

Blank Spike Lab ID: 1577762 Date Analyzed: 08/27/2020 21:u3 Spike DcpliRate ID: LCSD for HBN 1209586

[VXX36229]

Spike DcpliRate Lab ID: 1577763 x atriW (ater ,ScrfaReE. ffŒ) rocndP

4 C for Sa%pleM 1209586001E1209586002E1209586003

s eMcItMby AK101

		Blank Spike	,%QLP	S	pike Dcplif	Rate, %QLP			
<u>mara%eter</u>	Spike	s eMblt	<u>s eR,g P</u>	Spike	s eMblt	<u>s eR,g P</u>	<u>CL</u>	<u>s mD ,g P</u>	s mD CL
) aMbline s anQe OrQaniRM	1@0	0 9 8u	98	1 @ 0	0 9 19	92	, 60-120 P	6 9 0	,< 20 P
Surrogates									
u-Bro%oflcorobenzene ,McrrP	0 © 500	90	90	0 © 500	86 3	86	, 50-150 P	u @ 0	

Batch Information

AnalytiRal BatRn: VFC15314 AnalytiRal x ethod: AK101 InMrc%ent: Agilent 7890A PID/FID

AnalyM: ALJ

mrep BatRh: VXX36229 mrep x ethod: SW5030B

mrep Date/Ti%e: 08/27/2020 06:00

Spike Init (t @VolG 1 @0 %QL . WhaRt Vol: 5 %L Dcpe Init (t @VolG 1 @0 %QL . WhaRt Vol: 5 %L

mrint Date: 09/08/2020 u:06:12mx

Method Blank

Blank ID: MB for HBN 1810915 [XXX/43746]

Blank Lab ID: 1577523

QC for Samples:

1209586001, 1209586002, 1209586003, 1209586004, 1209586005, 1209586006, 1209586007

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Matrix: Water (Surface, Eff., Ground)

Surrogates

5a Androstane (surr) 95.3 60-120 %

Batch Information

Analytical Batch: XFC15715 Prep Batch: XXX43746
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 8/27/2020 2:34:13PM

Analyst: CDM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 9/1/2020 5:22:00PM Prep Extract Vol: 1 mL

Print Date: 09/08/2020 4:06:14PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209586 [VVVX3] X6b

Blank Spike La7 ID: 15]] 52X Date Analyzed: 09/01/2020 1]:32 Spike Duplicate ID: LCSD for HBN 1209586

[VVVX3] X6b

Spike Duplicate La7 ID: 15]] 525 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209586001, 1209586002, 1209586003, 120958600X, 1209586005, 1209586006, 1209586000]

Results 7y AK102

,									
	E	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range 4 rganics	20	19.1	96	20	19.1	95	(]50125)	0.16	(- 20)
Surrogates									
5a Androstane (surr)	0.X	10X	10X	0.X	108	108	(600120)	3.50	

Batch Information

Analytical Batc<: XFC15715 Analytical Met<od: AK102 Instrument: Agilent 7890B F

Analyst: CDM

Prep Batc<: XXX43746
Prep Met<od: SW3520C

Prep Date/hime: 08/27/2020 14:34

Spike Init Wt./Tol.: 20 mg/L Extract Tol: 1 mL Dupe Init Wt./Tol.: 20 mg/L Extract Tol: 1 mL

Print Date: 09/08/2020 X:06:16PM

SGS N CHAIN OF

www.us.sgs.con

ICLIENT.		_	18.896	122	Annual	STARLES.	C	200	C where	t be filled		15.545.0011	
Stantec Consult	ma			1 (123)		Authorities 4	MINE 7 630	the second second	and the second second	t of analys	Market Committee		×.
CONTACT: PH	IONE #:				I	Ono.	nuy c	ciay ti	ic onsc	t or analys	101	Pageof_	1
Bob Gilfilian	907-227-9	1883	Sec	tion 3					Preser	vative			
NAME: Store 1/2 PW Remediation	ISID/ 1837492	28	# C		/	/	/		//	///		//	
2,	MAIL: bob.gilfilia ofile#: 5 pantec.	n@	O N T	Comp		· ·		1 5 1	Analysis*	TT	1 1	NOTE: *The following	- V
INVOICE TO: QU	DOTE #: p#3642		A I N E	MI (Multi- incre-	2 KG	283	200	2800			H	analyses require specific method compound list: I	and/or
RESERVED SAMPLE IDENTIFICATION	DATE TIME	MATRIX	R	mental)	20	子	2	1			1 . 1	Metals, PFAS	
for lab use	mm/dd/yy HH:MM	CODE	S		8	6	8	~	-	+ +		REMARKS/LC	OC ID
(1AA) /1W-10	08718/20 11:3	В	8		\times	\times	\times					-	
(2AH) MW-6	08/18/20 11:45		8		X	X	\times						
N JAHD MW-2	08/19/20 13:00		8		X	X	X					N. Francisco	
5 HAI) MW-17-2	8/18/20 14:12		9		X	>	X	\times					
5 SAD MW 17-5	8/18/20 1533	15-00	9	3	X	X	X	><				- 1	
"(GAI) MW-3	8/18/20 15:55		9		'X	X	X	X					
TAJIDID	8/18h 1555	1	8		V	X	X	1					
(8AF)	1/18/10 133		-		1	/ >							
8/15									100	9 - 1			
				1		1		1 = 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Religquished By: (1)	Date Time	Received By	; ;	//			Sect	ion 4	DOD Pro	ject? Yes No	Data D	eliverable Requireme	ents:
M. Burdie	8/19/200815	1/	//			- 1							*
1001	1.4	m	//	-	-	-	Cool					3	
Relinquished By: (2)	Date Time	Received By	•				Reque	sted Turr	naround T	ime and/or S	pecial Instru	ctions:	
	D 2000 1900		_										
Relinguished By: (3)	Date Time	Received By		1		1	S. Const.	O'CRESON!	e ta invis		LANC	an Abbrestantial	£.14.70 10
9				-	_		Tomp I	Blank °C:	L		Chain	of Custody Seal: (Cir	rcle)
Relinquished By: (4)	Date Time	Received For	r Labora	tory By			i emp i		Ambient	r 1	INTAC	BROKEN ABS	FN7
	8/21/20 9:54	VK11.	/	11/11	R	Sc					$\Lambda \lambda$	/)
	19/21/20 11-21	1 11ll	1 lh	un	AF IN A	7.0		Delive	ry Method	I: Hand Delive	cry[Comm	erical Delivery 📉	

http://www.sgs.com/terms-and-conditions

4.0 D45

8/51 KIC

Page 74 of 78 F083-Blank_COC_20181228

e-Sample Receipt Form

SGS Workorder #:

1209586

Review Criteria	ondition (Yes,	No, N/A	Exception	ns Noted bel	ow	
Chain of Custody / Temperature Requirem	<u>nents</u>	N	/A Exemption permitted	l if sampler hand	carries/deliv	ers.
Were Custody Seals intact? Note # & loca	tion Yes	1F, 1B				
COC accompanied sample	les? Yes					
DOD: Were samples received in COC corresponding cools	ers? N/A					
N/A **Exemption permitted if chill	led & colle	cted <8 hou	rs ago, or for samples w	here chilling is n	ot required	
Temperature blank compliant* (i.e., 0-6 °C after C	F)? Yes	Cooler ID:	1	@ 4.0 °C	Therm. ID:	D45
		Cooler ID:		@ °C	Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will be		Cooler ID:		@ °C	Therm. ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" be noted if neither is available.	" will ——	Cooler ID:		@ °C	Therm. ID:	
		Cooler ID:		@ °C	Therm. ID:	
*If >6°C, were samples collected <8 hours ag	o? N/A					
If <0°C, were sample containers ice fre	e? N/A					
		4				
Note: Identify containers received at non-compliant temperatu	ire .					
Use form FS-0029 if more space is need	led.					
Holding Time / Documentation / Sample Condition Requ		Note: Refer t	o form F-083 "Sample Guide	e" for specific holdir	ng times.	
Were samples received within holding tin	ne? Yes					
	-					
Do samples match COC** (i.e.,sample IDs,dates/times collecte						
**Note: If times differ <1hr, record details & login per COC.						
***Note: If sample information on containers differs from COC, SGS will default to COC						
Were analytical requests clear? (i.e., method is specified for analytical requests clear?)						
with multiple option for analysis (Ex: BTEX, Met	ais)					
		V	+++-		000 0/000	0.4.)
Word proper containers (4 malmood) - 1 malmood (4 malmood)	042	Y	***Exemption permit	ied for metals (e.	.g,200.8/6020	<u>UA).</u>
Were proper containers (type/mass/volume/preservative***)use	ed? Yes					
Volatile / LL-Hg Requir	ements					
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sample						
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mr						
Were all soil VOAs field extracted with MeOH+BF						
Note to Client: Any "No", answer above indicates non-co		with standa	d procedures and may i	mpact data quali	itv	
i i	•		<u> </u>	past adia quan	-,.	
Additional no	otes (if a	pplicable)	:			

e-Sample Receipt Form FBK

SGS Workorder #:

1209586

1209586

Review Criteria	Conditio	n (Yes,	No, N/A		Exception	ns Note	d below	
Chain of Custody / Temperature Requi	irement	t <u>s</u>	Y	Exempt	ion permitte	d if sample	r hand carries/de	livers.
Were Custody Seals intact? Note # &	location	N/A						
COC accompanied s	amples?	Yes						
DOD: Were samples received in COC corresponding	coolers?	N/A						
**Exemption permitted if	f chilled &	colle	cted <8 hou	rs ago, or f	or samples	where chilli	ng is not required	
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)?	Yes	Cooler ID:		1	@	4.1 °C Therm. II): D60
			Cooler ID:			@	°C Therm. II	D:
If samples received without a temperature blank, the "cooler temperature" wil			Cooler ID:			@	°C Therm. II	D:
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "cl be noted if neither is available.	hilled" will		Cooler ID:			@	°C Therm. II	D:
*If >6°C, were samples collected <8 hours	s ago?							
·								
If <0°C, were sample containers ice	e free?							
	Ľ							
Note: Identify containers received at non-compliant tempe	erature .							
Use form FS-0029 if more space is r	needed.							
Holding Time / Documentation / Sample Condition R			Note: Refe	to form F-	083 "Sample	e Guide" fo	r specific holding	times.
Do samples match COC** (i.e.,sample IDs,dates/times coll-	ected)?	N/C						
**Note: If times differ <1hr, record details & login per C	COC.							
***Note: If sample information on containers differs from COC, SGS will default to	COC inform	mation						
Were samples in good condition (no leaks/cracks/brea	akage)?	Yes						
Were analytical requests clear? (i.e., method is specified for a	nalvece							
with multiple option for analysis (Ex: BTEX,								
		Yes						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa								
Were all water VOA vials free of headspace (i.e., bubbles ≤								
Were all soil VOAs field extracted with MeOH	I+BFB?	N/A						
For Rush/Short Hold Time, was RUSH/Short HT ema	ail sent?	N/A						
Note to Client: Any "No", answer above indicates no	on-compli	ance	with standaı	d procedur	es and may	impact dat	a quality.	
Additions	al notes	(if a	pplicable)					
Additions	ul Holes	(ii a	ppiloable)					
SGS Profile #					0			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1209586001-A	HCL to pH < 2	OK	1209586006-I	HNO3 to pH < 2	OK
1209586001-B	HCL to pH < 2	OK	1209586007-A	HCL to pH < 2	OK
1209586001-C	HCL to pH < 2	OK	1209586007-B	HCL to pH < 2	OK
1209586001-D	HCL to pH < 2	OK	1209586007-C	HCL to pH < 2	OK
1209586001-E	HCL to pH < 2	OK	1209586007-D	HCL to pH < 2	OK
1209586001-F	HCL to pH < 2	OK	1209586007-E	HCL to pH < 2	OK
1209586001-G	HCL to pH < 2	OK	1209586007-F	HCL to pH < 2	OK
1209586001-H	HCL to pH < 2	OK	1209586007 F	HCL to pH < 2	OK
1209586002-A	HCL to pH < 2	OK	1209586007-H	HCL to pH < 2	OK
1209586002-B	HCL to pH < 2	OK	1209586008-A	HCL to pH < 2	OK
1209586002-C	HCL to pH < 2	OK	1209586008-B	HCL to pH < 2	OK
1209586002-D	HCL to pH < 2	OK	1209586008-C	HCL to pH < 2	OK
1209586002-E	HCL to pH < 2	OK	1209586008-D	HCL to pH < 2	OK
1209586002-F	HCL to pH < 2	OK	1209586008-E	HCL to pH < 2	OK
1209586002-G	HCL to pH < 2	OK	1209586008-F	HCL to pH < 2	OK
1209586002-H	HCL to pH < 2	OK	1207300000 1		OK
1209586003-A	HCL to pH < 2	OK			
1209586003-B	HCL to pH < 2	OK			
1209586003-C	HCL to pH < 2	OK			
1209586003-C	HCL to pH < 2	OK			
1209586003-B	HCL to pH < 2	OK			
1209586003-E	HCL to pH < 2	OK			
1209586003-F	HCL to pH < 2	OK OK			
1209586003-G 1209586003-H	HCL to pH < 2	OK			
	HCL to pH < 2	OK			
1209586004-A	HCL to pH < 2	OK OK			
1209586004-B 1209586004-C	HCL to pH < 2	OK OK			
1209586004-C	HCL to pH < 2	OK			
	HCL to pH < 2	OK			
1209586004-E 1209586004-F	HCL to pH < 2	OK OK			
1209586004-F	HCL to pH < 2	OK			
1209586004-G	HCL to pH < 2	OK			
	HNO3 to pH < 2	OK			
1209586004-I	HCL to pH < 2				
1209586005-A 1209586005-B	HCL to pH < 2	OK OK			
1209586005-B	HCL to pH < 2	OK			
	HCL to pH < 2				
1209586005-D 1209586005-E	HCL to pH < 2	OK OK			
1209586005-E	HCL to pH < 2	OK			
	HCL to pH < 2				
1209586005-G 1209586005-H	HCL to pH < 2	OK OK			
1209586005-I	HNO3 to pH < 2	OK			
1209586006-A	HCL to pH < 2	OK			
1209586006-A	HCL to pH < 2	OK OK			
	HCL to pH < 2				
1209586006-C	HCL to pH < 2	OK OK			
1209586006-D	HCL to pH < 2	OK			
1209586006-E	HCL to pH < 2	OK			
1209586006-F	HCL to pH < 2	OK			
1209586006-G	HCL to pH < 2	OK			
1209586006-H	.102 to pi1 1 2	OK			Page 77 of 78

Container IdPreservativeContainerContainer IdPreservativeContainerConditionCondition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Report Number	1209586	CS Site Name	Speedway Store 5310
Laboratory Report Date	09/08/2020	ADEC File Number	100.26.159
	Laboratory Dat	a Review Checklist	
Completed By:			
Leslie Petre			
Title:			
Engineer in Training			
Date:			
November 30, 2020			
Consultant Firm:			
Stantec Consulting Service, LLo	С		
Laboratory Name:			
SGS North America Inc.			
Laboratory Report Number:			
1209586			
Laboratory Report Date:			
September 8, 2020			
CS Site Name:			
Speedway Store 5310 North Po	le, AK		
ADEC File Number:			
100.26.159			
Hazard Identification Number:			
24476			

	L	aboratory Report Number	1209586	CS Site Name	Speedway Store 5310
	L	aboratory Report Date	09/08/2020	ADEC File Number	100.26.159
1		: Any N/A or No box che	cked must have a	n explanation in the com	ments box.
1.	Labo	<u>ratory</u>			
	a.	Did an ADEC CS approv Yes⊠ No□ N/A□	-	ve and <u>perform</u> all of the s	submitted sample analyses?
	b.	If the samples were transflaboratory, was the labora		-	
		Yes⊠ No□ N/A□	Comments:		
2.	Chair	n of Custody (CoC)			
	a	CoC information complet	ad signad and dat	ad (including ralessed/rac	aived by\?
	a.	_	_	ed (including released/rec	erved by):
		Yes⊠ No□ N/A□	Comments:		
		C 1	10		
	D.	Correct analyses requeste			
		Yes⊠ No□ N/A□	Comments:		
3.	Labo	ratory Sample Receipt Doc	<u>cumentation</u>		
	a.	Sample/cooler temperatur	e documented and	within range at receipt (0'	° to 6° C)?
		Yes⊠ No□ N/A□	Comments:		
	b.	Sample preservation acce Volatile Chlorinated Solv	-	vaters, Methanol preserve	d VOC soil (GRO, BTEX,
		Yes⊠ No□ N/A□	Comments:		
	c.	Sample condition docume	ented – broken, leal	king (Methanol), zero hea	dspace (VOC vials)?
	_	Yes⊠ No□ N/A□	Comments:		

Page 2 May 2020

	Laboratory Report Number 1209586 CS Site Name Speedway Store 5310 Laboratory Report Date 09/08/2020 ADEC File Number 100.26.159
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
Г	$Yes \boxtimes No \square N/A \square$ Comments:
	e. Data quality or usability affected?
	Comments:
	No.
4.	. <u>Case Narrative</u>
	a. Present and understandable?
	Yes⊠ No□ N/A□ Comments:
	Tesis 1401 14/11 Comments.
	b. Discrepancies, errors, or QC failures identified by the lab?
	Yes \boxtimes No \square N/A \square Comments:
	Lab documented that surrogate recovery for 4-bromofluorobenzene does not meet QC Criteria due to matrix interference.
	c. Were all corrective actions documented?
	Yes⊠ No□ N/A□ Comments:
	d. What is the effect on data quality/usability according to the case narrative?
	Comments:
	It does not affect the usability or data quality.
5 C.	
5. <u>S</u> a	amples Results
	a. Correct analyses performed/reported as requested on COC?
	Yes⊠ No□ N/A□ Comments:
	b. All applicable holding times met?
	Yes⊠ No□ N/A□ Comments:

er 1209586 09/08/2020	CS Site Name ADEC File Number	Speedway Store 5310 100.26.159
1	_	
•		
A⊠ Comments:		
s less than the Cleanup	Level or the minimum	required detection level for
A□ Comments:		
ity affected?		
	1 1 120 1 1	
	nalysis and 20 samples:	?
A Comments:		
results less than limit o	f quantitation (LOQ) or	project specified objectives?
results less than limit o A□ Comments:	f quantitation (LOQ) or	project specified objectives?
	f quantitation (LOQ) or	project specified objectives?
A□ Comments: project specified objecti		
A□ Comments: project specified objecti	ves, what samples are a	affected?
A□ Comments: project specified objecti	ves, what samples are a	affected?
A□ Comments: project specified objecti	ves, what samples are a	affected?
A□ Comments: project specified objecti	ves, what samples are a	affected?
	09/08/2020 a dry weight basis? A	ADEC File Number a dry weight basis? A □ Comments: A □ Comments:

Laboratory Report Number	1209586	CS Site Name	Speedway Store 5310		
Laboratory Report Date	09/08/2020	ADEC File Number	100.26.159		
b. Laboratory Control Sample/Duplicate (LCS/LCSD)					
	 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 				
Yes⊠ No□ N/A□	Comments:				
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?					
Yes□ No⊠ N/A□	☐ Comments:				
A duplicate for sodium was	not submitted.				
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)					
Yes⊠ No□ N/A□	☐ Comments:				
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)					
Yes⊠ No□ N/A□	☐ Comments:				
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:					
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?					
Yes□ No□ N/A□	☐ Comments:				
vii. Data quality or usability affected? (Use comment box to explain.) Comments:					

Laboratory Report Number Laboratory Report Date	1209586 09/08/2020	CS Site Name ADEC File Number	Speedway Store 5310 100.26.159	
Laboratory Report Date	07/00/2020	ADLC THE Number	100.20.137	
c. Matrix Spike/Matrix Spil Note: Leave blank if no	<u> </u>			
i. Organics – One MS/	MSD reported per ma	trix, analysis and 20 sa	amples?	
Yes□ No□ N/A□	Comments:			
ii. Metals/Inorganics –	one MS and one MSI	reported per matrix, a	analysis and 20 samples?	
Yes□ No□ N/A□	Comments:			
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?				
Yes□ No□ N/A□	Comments:			
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.				
Yes \square No \square N/A \square Comments:				
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:				
vi. Do the affected samp	ple(s) have data flags?	If so, are the data flag	s clearly defined?	
Yes□ No□ N/A□	Comments:			
vii. Data quality or usability affected? (Use comment box to explain.) Comments:				
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only				
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? 				
Yes□ No□ N/A□	Comments:			

Laboratory Report Number	1209586	_ CS Site Name	Speedway Store 5310	
Laboratory Report Date	09/08/2020	_ ADEC File Number	100.26.159	
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes □ No□ N/A□ Comments:				
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?				
Yes□ No□ N/A□	Comments:			
iv. Data quality or usability affected? Comments:				
e. Trip Blanks				
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 				
Yes□ No□ N/A□	☐ Comments:			
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC?(If not, a comment explaining why must be entered below)				
Yes⊠ No□ N/A□	Comments:			
iii. All results less than LOQ and project specified objectives?				
Yes⊠ No□ N/A□	Comments:			
iv. If above LOQ or pr	oject specified object Comments:	tives, what samples are	affected?	
v. Data quality or usability affected? Comments:				

Laboratory Report Number Laboratory Report Date	1209586 09/08/2020	CS Site Name ADEC File Number	Speedway Store 5310	
Laboratory Report Date	U3/U0/2U2U	ADEC FIIE Nulliber	100.20.139	
f. Field Duplicate				
i. One field duplicate s	submitted per matrix,	analysis and 10 project	samples?	
Yes□ No⊠ N/A□	Comments:			
A duplicate for Sodium was	not submitted. Sodium	n is not a regulated ana	dyte for this project.	
ii. Submitted blind to la	ab?			
Yes⊠ No□ N/A□	☐ Comments:			
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$				
		iple Concentration d Duplicate Concentra	tion	
	2	v – vr		
Yes⊠ No□ N/A□	Comments:			
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:				
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?				
Yes□ No□ N/A□	☐ Comments:			
New, disposable bailers and pipits are used for this project.				
i. All results less than LOQ and project specified objectives?				
Yes \boxtimes No \square N/A \square Comments:				
	2 2			
ii. If above LOQ or project specified objectives, what samples are affected? Comments:				
iii. Data quality or usab	oility affected? Comments:			

	Laboratory Report Number	1209586	CS Site Name	Speedway Store 5310
	Laboratory Report Date	09/08/2020	ADEC File Number	100.26.159
7.	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)			
	a. Defined and appropriate	?		
	Yes⊠ No□ N/A□	☐ Comments:		