TESORO

TABLE OF CONTENTS

ACR	ONYMS AND ABBREVIATIONS	.II
1.0	EXECUTIVE SUMMARY	1
2.0	SITE BACKGROUND	2
3.0	FIELD ACTIVITIES	2
4.0	GROUNDWATER MONITORING RESULTS	3
5.0	REMEDIATION SYSTEM OPERATION AND MONITORING 2020	6
6.0	CONCLUSIONS	7
7.0	RECOMMENDATIONS AND PROPOSED ACTIVITIES	7
8.0	LIMITATIONS	8

LIST OF TABLES

Table 2 Field Measured Intrinsic Water Quality Parameters	Table 1	Groundwater Elevations	3
Table 3 Groundwater Analytical Results	Table 2	Field Measured Intrinsic Water Quality Parameters	4
	Table 3	Groundwater Analytical Results	5
Table 4 Laboratory Quality Control Objectives	Table 4	Laboratory Quality Control Objectives	6

LIST OF FIGURES

Figure 1	Location and Vicinity Map
Figure 2	Site Plan with Groundwater Levels and Analytical Results
Figure 3	Remediation System Layout
Figure 4	Graphs of Contaminant Concentrations and Groundwater Elevations
Figure 2 Figure 3 Figure 4	Site Plan with Groundwater Levels and Analytical Results Remediation System Layout Graphs of Contaminant Concentrations and Groundwater Elevation

LIST OF APPENDICES

Appendix A	Site Background
------------	-----------------

- Appendix B Field Methods and Procedures
- Appendix C Field Measurements, Notes, Hydraulic Gradient Plot, and Rainfall Table
- Appendix D Tables of Historical Monitoring Data
- Appendix E Laboratory Analytical Report and ADEC Laboratory Data Review Checklist

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
AK	Alaska Test Method
AS	air sparging
BTEX	benzene, toluene, ethylbenzene, and xylenes
Chemox	chemical oxidation
DO	dissolved oxygen
DRO	diesel range organics
EIT	Engineer in Training
EPA	U.S. Environmental Protection Agency
GCL	groundwater cleanup level
GRO	gasoline range organics
Mg/L	milligrams per liter
MW	monitoring well
PAH	polycyclic aromatic hydrocarbon
PQL	practical quantitation limit
ORP	oxidation-reduction potential
QA	quality assurance
QC	quality control
RM	remediation well
SIM	selective ion monitoring
Speedway	Speedway, LLC
Stantec	Stantec Consulting Services Inc.
SVE	soil vapor extraction
Tesoro	Tesoro Refining and Marketing Company
UST	Underground storage tank
VOC	volatile organic compound

1.0 EXECUTIVE SUMMARY

This third quarter 2020 semi-annual Monitoring Event Report was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Speedway LLC for Store #5315 (formally known as Tesoro 2 Go Mart #111), located at 3679 College Road, Fairbanks, Alaska (**Figure 1**). Field work activities from two quarters in 2019 and 2020 are summarized below. The methods that were used for these monitoring events were conducted in accordance with the 2019 and the 2020 Alaska Department of Environmental Conservation (ADEC) approved Work Plans for this site.

On October 24, 2019, the Stantec team which consisted of Project Engineer Bob Gilfilian, Environmental Scientist John Marshal, and Engineer in Training (EIT) Leslie Petre conducted a high dose injection of a chemical oxidation (chemox) solution. The solution consisted of 605 pounds of Klozur[®] One combined with 450 gallons of water from RM-2 into four subsurface injection lines (former SVE lines). The well was then flushed with an additional 900 gallons of water from RM-2. The subsurface soil formation and groundwater table accepted the large dose of Klozur[®] One without issue, i.e., no backup of flow was detected. A groundwater sampling event conducted on the same date for RM-1 and RM-2 documented analyte levels in exceedance of ADEC GCLs: RM-1 exceeded for Ethylbenzene, Xylenes, and GRO; RM-2 exceeded for Benzene, Ethylbenzene, and Xylenes.

On July 15, 2020, Stantec personnel Geologic Project Specialist Eli Fredrickson, Leslie Petre, and John Marshall conducted a chemox injection event with a solution of Klozur[®] One. The chemox solution was injected into the same four treatment points treated October 2019 and consisted of 440 lbs. of Klozur[®] One mixed with 440 gallons of water, followed by an additional 600+ gallons of water from RM-2 well to "hydraulically push" the chemox solution into the subsurface formation.

The semi-annual groundwater monitoring event was conducted in the 3rd quarter of 2020 on August 3 and 4, 2020 by Eli Fredrickson and Leslie Petre, and included measuring the depth to groundwater, measuring field intrinsic water quality parameters, and collecting and analyzing groundwater samples from Monitoring Wells G-1, G-5, MW-10, MW-11, MW-12, MW-13, MW-16, MW17-1, and MW17-2, as well as Remediation Well RM-1 and RM-2 (**Figure 2**). Results of the analytical sampling showed analytes were present at concentrations exceeding ADEC groundwater cleanup levels (GCLs) in Monitoring Wells G-5, MW-10, MW-12, MW-13, MW 17-1, MW 17-2, as well as Remediation Wells RM-1 and RM-2. Analytes in exceedance included: benzene, toluene, ethylbenzene, and xylenes (BTEX); gasoline range organics (GRO); diesel range organics (DRO).

The groundwater depth measurements indicate the average hydraulic gradient was approximately 0.023 feet per foot directed toward the northwest at 301 degrees. Characteristics of the groundwater direction and gradient for this monitoring event were higher than the typical values for this site, as shown in the groundwater flow summary presented on the "rose diagram" on **Figure 2**. The period of August 2019 through July 2020 was documented as the rainiest 12-month period on record for the Fairbanks area, with a total rain fall of 26.20"; see Rainfall Record in Appendix C.

The on-site soil vapor extraction (SVE) system and the air sparging (AS) system were deactivated several years ago since the treatment systems were determined to be ineffective. The SVE and AS systems are located in the western portion of the site beneath the existing fuel dispenser islands as shown in **Figure 3**. After the August 2020 sampling event, a low profile equipment shed was installed over remediation well RM-2. Subsequently plumbing was installed to facilitate recirculated groundwater flow pumped from RM-2 to discharge on a full time and year round basis into the former SVE horizontal wells located beneath and adjacent to the fuel dispenser islands.

2.0 SITE BACKGROUND

Background information for this site is summarized in Appendix A.

3.0 FIELD ACTIVITIES

The following field activities were conducted during the October 24, 2019 treatment event:

- Mix and inject 605 gallons of Klozur[®] One solution (11 55-pound bags mixed with 450 gallons of water) into 4 injection points and flushed with 900 gallons of water from remediation well RM-2. Injection the three western SVE horizontal lines: SVE-1, SVE-2, and SVE-3; injection of two bags into the horizontal groundwater injection well (former SVE line) located along the eastern edge of the underground storage tank (UST) system. Conducted field measurements of the following intrinsic water quality parameters from the groundwater monitoring wells and remediation wells RM-1 and RM-2: pH, temperature, oxidation-reduction potential, and conductivity.
- Collected groundwater samples from remediation well RM-1 and RM-2. The samples were submitted for laboratory analysis of: GRO by Alaska Test Method (AK)101, DRO by AK102, and volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Test Method 8260C. A sample from RM-2 was also submitted for sodium. A duplicate sample was not collected during this monitoring event.

The following field activities were conducted July 15, 2020 treatment, maintenance and monitoring event:

- Mix and inject 440 gallons of Klozur[®] One solution (8 55-pound bags mixed with 440 gallons of water) into 4 injection points and flushed with 750 gallons of water from RM-2 into the three former western SVE lines beneath the fueling islands and the former eastern SVE line on the eastern edge of the UST.
- Repair plumbing located in the vault on the water circulation line from RM-1.

The following field activities were conducted during the August 3rd -4th, 2020 sampling event:

- Measured the depth to groundwater in Monitoring Wells G-1, G-5, MW-10, MW-11, MW-12, MW-13, MW 17-1, and MW 17-2.
- Conducted field measurements of the following intrinsic water quality parameters from Monitoring Wells G-1, G-5, MW-10, MW-11, MW-12, MW-13, MW 17-1, and MW 17-2 and RM-1: pH, temperature, dissolved oxygen, oxidation-reduction potential, and conductivity.
- Collected groundwater samples from Monitoring Wells G-1, G-5, MW-10, MW-11, MW-12, MW-13, MW 17-1, MW 17-2, RM-1, and RM-2. The samples were submitted for laboratory analysis of: GRO by Alaska Test Method AK101, DRO by Alaska Test Method AK102, volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Test Method 8260C and Metals Method 6010C for sodium.

Field methods and procedures are provided in **Appendix B**, and field measurements, notes, and a hydraulic gradient plot are provided in **Appendix C**.

4.0 GROUNDWATER MONITORING RESULTS

Groundwater Levels. Table 1 presents groundwater elevations at this site based on the depths to static groundwater levels measured during the August 2020 monitoring event.

Monitoring Well Identification	Top of Casing Elevation (feet) ¹	Depth to Groundwater (feet)	Groundwater Elevation (amsl feet)
G-1	430.14	10.48	419.66
G-5	430.02	10.45	419.57
MW-10	430.11	10.37	419.74
MW-11	430.49	10.85	419.64
MW-12	427.84	5.26	422.58
MW-13	429.77	10.20	419.57
MW-16	429.27	NM	NM
MW17-1	430.55	10.92	419.63
MW17-2	430.17	10.50	419.67
RM-1	428.21	11.21	417.00
RM-2	NM	10.56	NM
RM-2 ²⁰¹⁹	NM	12.92	NM

Table 1Groundwater ElevationsMeasured on August 3-4, 2020

Key:			
	Based on a vertical control survey of July 28, 2015 and September 5, 2018, using an elevation datum of 432.00 feet located next to the front entrance of the store.	amsl	above mean sea level
1		NM	Not measured
		RM	Highlighted cells measured Oct. 2019

The groundwater depth measurements indicate the average hydraulic gradient was approximately 0.023 feet per foot directed toward the northwest at 301 degrees.

Field Parameters. The results of water quality parameter testing of the water samples collected during this monitoring event are presented in Table 2.

			-			
Monitoring Well Identification	Volume Purged (gallons)	Temperature (°C)	рН	Dissolved Oxygen (mg/L)	ORP (mV)	SC (µs/cm °C)
G-1	15.0	5.8	5.95	1.75	155.3	1470
G-5	4.0	6.6	6.34	1.81	267.3	1310
MW-10	14.8	5.9	6.68	2.16	119.8	1820
MW-11	7.0	5.6	6.68	1.91	142.5	1370
MW-12	9.0	10.6	6.52	5.64	398.0	1040
MW-13	7.5	12.0	6.51	2.04	375.8	910
MW17-1	4.5	9.6	6.67	0.61	126.7	1120
MW17-2	5.0	8.6	6.50	1.62	163.3	1590
RM-1	PR	6.8	6.30	1.92	147.7	930
RM-2	17.0	6.1	6.41	2.38	155.2	704
RM-1 ²⁰¹⁹	PR	4.6	6.76	NM	98	934
RM-2 ²⁰¹⁹	PR	4.99	6.58	NM	97	534
Key: °C degrees Celsius ORP o				ORP oxidatio	n-reduction pote	ntial

 Table 2 Field Measured Intrinsic Water Quality Parameters

Measured on August 3-4, 2020

degrees Ceisius

us/cm°C microSiemens per centimeter degrees Celsius milligrams per liter

mg/L

millivolts mν DO Dissolved Oxygen

NM Not measured

pH log [H⁺]

PR Pump running, purging not necessary

RM Highlighted cells measured Oct. 2019

SC specific conductance corrected to 25 °C

Water Sample Analytical Results. All wells were sampled in accordance with the 2019 and 2020 Work Plans. All historical monitoring data for this site are tabulated in Appendix D. Laboratory analytical results for compounds detected in groundwater samples collected during these events are summarized in Table 3. The laboratory analytical reports are provided in Appendix E.

Table 3 Groundwater Analytical Results

Sample ID	Benzene ¹ (mg/L)	Toluene ¹ (mg/L)	Ethylbenzene ¹ (mg/L)	Xylenes ¹ (mg/L)	GRO (mg/L)	DRO (mg/L)	Sodium (mg/L)
G-1	0.000817 J	U (0.001)	U (0.001)	U (0.003)	0.0109 J	U (0.800)	66.4
G-5	0.114	0.000683 J	0.123	0.124	0.712	1.07	77.0
MW-10	0.0577	0.142	0.597	1.89	4.2	1.9	60.0
MW-11	0.057	0.00403	0.434	1.75	5.63	3.51	90.6
MW-12	0.000353 J	0.0364	0.0538	0.487	1.23	0.852	48.7
MW-13	0.000323 J	0.0351	0.0439	0.454	1.01	0.554 J	49.6
MW 17-1	0.126	22.5	3.47	13.8	61.1	2.78	56.0
DUP 17-1	0.114	22.2	3.82	14.7	61.5	4.94	55.9
MW 17-2	0.0505	0.477	0.236	1.91	5.03	20.5	91.4
RM-1	0.000539 J	0.0922	0.131	1.32	2.81	1.23	47.2
RM-2	U (0.001)	U (0.001)	0.000505 J	0.000565 J	0.0135 J	U (0.800)	24.2
Trip Blank	U (0.001)	U (0.001)	U (0.001)	U (0.003)	U (0.100)	U (0.800)	U(3.00)
RM-1 ²⁰¹⁹	U (0.003)	0.038	0.15	1.49	4.3	1.4	
RM-2 ²⁰¹⁹	0.0046	0.058	0.089	0.342	2.00	0.45	32.0
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA
Key: 1 Analyzed by U.S. Environmental Protection Agency Method 8260C. J The identification of the analyte is acceptable; the reported value is an estimate. AK Alaska test method mg/L milligrams per liter BTEX benzene, toluene, ethylbenzene, and xylenes NA Not Applicable DRO Diesel range organics, analyzed by AK102. U Undetected above practical quantitation limits shown in parentheses.							
GCLs Groundwater cleanup levels, 18 AAC75.345, Table C. (9/18/2019)		.345, Table B	Bold indicates the concentration exceeds the GCL or the estimated quantitation limit exceeds the GCL				

Samples Collected on August 3-4, 2020

Quality Assurance (QA)/Quality Control (QC) Review. Test America ran the October 2019 limited analysis for RM-1 and RM-2 that was submitted with the samples from Tesoro Store 112 on 10/22/2019. A duplicate sample for RM-1 and RM-2 was not pulled for QC. The issues with hold times for the Tesoro Store 112 samples documented in the QA/QC Review did not affect the results for this report.

RM Highlighted cells measured Oct. 2019

Pace Analytical performed all analysis of groundwater samples for the August 2020 sampling event. Pace Analytical met all laboratory QA/QC criteria during the analysis of groundwater samples for this sampling event with the exception of duplicate precision (described below). Laboratory QC data and the ADEC Laboratory Data Review Checklists are included in **Appendix E**. The ADEC Laboratory Data Review Checklists the groundwater data included with the August laboratory analytical report.

Gasoline range organics, analyzed by AK101.

GRO

Table 4 Laboratory Quality Control Objectives

Quality Control Designation	Tolerance	Results for This Event
Holding Times		
DRO/Water/to analyze	40 days	11 to 15 days
DRO/Water/to extract	14 days	9 to 12 days
GRO/Water/to analyze	14 days	5 to 7 days
VOCs/Water/to analyze	14 days	6 to 9 days
Field Duplicate – Precision		
Benzene/Water	± 30%	+10.00%
Toluene/Water	± 30%	+1.34%
Ethylbenzene/Water	± 30%	-9.60%
Xylenes/Water	± 30%	-6.32
GRO/Water	± 30%	-0.65%
DRO/Water	± 30%	-55.96%
Sodium	NR	+0.18 %
Key:	050	

Samples Collected on August 3-4, 2020

% Percentage of variance

± plus or minus

GRO gasoline range organics

Not regulated, site treatment by-product

BTEX benzene, toluene, ethylbenzene, and xylenes

NR VOC

DRO diesel range organics

volatile organic compound

Sample TNS 111 Dup is a duplicate of sample MW 17-1. The duplicate sample set was collected to determine the precision of the field collection and laboratory analysis for this sampling event. Data presented in Table 4 show that the precision for the duplicate sample set (analytes that were detected above the PQLs and exceeded GCLs) was within the established QA criteria tolerances for benzene, toluene, ethylbenzene, xylenes, and GRO. DRO exceeded the precision criteria, with the duplicate sample having a markedly higher DRO than the MW 17-1 sample. Sodium was duplicated and analysis shows a high level of precision in the results.

5.0 **REMEDIATION SYSTEM OPERATION AND MONITORING 2020**

Monitoring of the submersible pump operation in RM-1 using iMonnit[®] surveillance equipment during the month of December 2019 revealed that the pump was running at pressures above 100 psi. There was concern that freezing of the pump discharge line had possibly occurred; as a result, the RM-1 pump was turned off in early January 2020 to prevent possible damage to the pump from overheating. The electrical heat trace on the piping system was left on to avoid freeze damage to the buried discharge lines. The iMonnit[®] system continued to show high pressure readings until the system pressure dropped to 60.7 psi on April 6, 2020 and the pressure bled off until the system reached 0 psi on April 14, 2020.

On July 1-2, 2020, the RM-1 pump system was turned back on, the heat trace was turned off, the pressure gauge was replaced, and the pump system was set to 68 psi for continuous operation. Site inspection on July 15, 2020, found a union at the mid-point of the system had apparent freeze damage from the previous winter and was leaking. The piping system was repaired and then brought back on-line and set to operate at a line pressure of 66-68 psi.

On July 15, 2020, an injection of chemox solution into 4 injection points and flushing of water from RM-2 was completed. A total of 440 pounds of Klozur[®] One was mixed into 400 gallons of water and gravity fed into the four horizontal injection lines (former SVE lines). Following the injection of the chemox solution, an additional 600 gallons of water from RM-2 was discharged into the injection lines in order to "hydraulically push" the chemox solution into the subsurface formation.

6.0 CONCLUSIONS

Graphs of contaminant concentrations and groundwater elevations for Monitoring Wells G-1, G-5, MW-10, MW-11, MW-12, MW-13, and MW-16 and Remediation Well RM-1 are presented on **Figure 4**. Sampled and not graphed due to the limited historic data points available are monitoring wells MW 17-1 and MW 17-2 and remediation well RM-2.

The October 2019 limited sampling event showed analytes were present at concentrations exceeding ADEC GCLs for RM-1 for ethylbenzene, xylenes, and GRO. RM-2 had concentrations exceeding GCLs for benzene, ethylbenzene, and xylene.

The August 2020 results of the analytical sampling showed analytes were present at concentrations exceeding ADEC GCLs in Monitoring Wells G-5, MW-10, MW-11, MW-12, MW-13, MW 17-1, MW 17-2, and remediation well RM-1. Analytes in exceedance included: BTEX, GRO, and DRO. However, it is worth noting that the concentration of petroleum related contaminants in remediation well RM-2 had decreased when compared to the test results collected in 2019 following the chemox injection. These findings suggest that the injection of Klozur[®] One coupled with the in-situ groundwater recirculation system may be achieving remediation of the groundwater table; future monitoring events will further assess this trend.

Results from the groundwater depth measurements indicate the average hydraulic gradient was approximately 0.023 feet per foot directed toward the northwest at 301 degrees. Characteristics of the groundwater direction and gradient for this monitoring event were generally consistent with the historical groundwater flow results for this site as shown on the "rose diagram" provided on **Figure 2**.

7.0 RECOMMENDATIONS AND PROPOSED ACTIVITIES

No anomalies were found during the August 2020 monitoring event that would require additional corrective action or changes to the approved year 2020 Corrective Action Work Plan for this site.

8.0 LIMITATIONS

Stantec conducted this monitoring event in accordance with the Corrective Action Work Plan approved by ADEC, and in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. All sampling activities were completed in accordance with the ADEC *Underground Storage Tanks Procedures Manual – Standard Sampling Procedures* (March 22, 2017). No other warranty, expressed or implied, is made. Data and recommendations made herein were prepared for Speedway, LLC for Speedway Store 5315 (former Tesoro 2 Go Mart #111). Information herein is for use at this site in accordance with the purpose of the report described.

FIGURES

Figure 1	Location and Vicinity Map
Figure 2	Site Plan with Groundwater Levels
	and Analytical Results
Figure 3	Remediation System Layout
Figure 4	Graphs of Contaminant
	Concentrations and Groundwater
	Elevations

V:\1857\active\185751325\05_report-deliv\3QGWM Event Aug 2020\figures

<u> </u>	PROPERTY LINE
	MONITORING WELL LOCATION
DRO	DIESEL RANGE ORGANICS
ft/ft	FEET PER FOOT
GRO	GASOLINE RANGE ORGANICS
GW Elev.	GROUNDWATER ELEVATION IN FEET
J	ESTIMATED VALUE
NM	NOT MEASURED
U	UNDETECTED ABOVE PRACTICAL QUANTITATION LIMIT SHOWN IN PARENTHESES

SITE PLAN
WITH GROUNDWATER
ANALYTICAL RESULTS

Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations

Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations

Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations

Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations

Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations

Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations

Figure 4 Graphs of Contaminant Concentrations and Groundwater Elevations

APPENDIX A

Site Background

APPENDIX A – SITE BACKGROUND

Tesoro 2 Go Mart #111 (3679 College Road, Fairbanks, Alaska) ADEC Facility ID #1112; ADEC File #102.26.026

Tesoro 2 Go Mart #111 is a retail fuel service station located at the corner of University Drive and College Road in Fairbanks, Alaska. The service station is operated in conjunction with a Tesoro convenience store. A fuel dispensing service station is reported to have been operated at this site since 1971.

Gilfilian Engineering & Environmental Testing (GE²T), MWH Americas, Inc. (MWH), and Stantec Consulting Services Inc. (Stantec) have performed numerous site investigations and monitoring events at this site since 1995.

November 1990. Shannon & Wilson Inc. installed three groundwater monitoring wells (MW-1, MW-3, and MW-4) and drilled one soil boring (SB-2) at the site to evaluate potential for soil and groundwater contamination prior to right-of-way acquisition. Monitoring Well MW-1 and Boring SB-2 were drilled near the former underground storage tanks (USTs). Petroleum hydrocarbons were detected above Alaska Department of Environmental Conservation (ADEC) soil cleanup levels (SCLs) in MW-1 and Boring SB-2.

February 1991. A release investigation (RI) was conducted by Shannon & Wilson Inc., during which two monitoring wells (MW-10 and MW-16) and seven soil borings were installed. Petroleum hydrocarbons were detected above SCLs in six of the nine soil borings. Petroleum-related compounds were detected in all monitoring wells sampled. The highest concentrations were detected in MW-10.

September 1992. Two 12,000-gallon USTs, one 8,000-gallon UST, and one 1,000-gallon UST were removed and replaced with three 10,000-gallon STIP-3, single wall USTs. Petroleum hydrocarbons were detected above SCLs in the UST removal excavations. Due to a nearby high flow groundwater extraction process along the Chena River, operated by a non-Tesoro entity, the groundwater table was lowered by many feet in the surrounding area. Prior to the pumping operation, the groundwater table was typically 12 feet below the ground surface (bgs). When the USTs were replaced, the groundwater was found at 22 feet bgs. After the pumping operation along the Chena River was completed, the groundwater table returned to normal levels. The drop and rise of the groundwater resulted in spreading the smear zone of petroleum contamination over a 12-foot vertical range beneath the site.

July 1995. GE²T installed two new monitoring wells (G-1 and G-2). Petroleum hydrocarbons were not detected above SCLs but were above the ADEC groundwater cleanup levels (GCLs) in both monitoring wells.

August through October 1998. The canopy and fuel dispenser system were upgraded to include new fuel dispensers, a tank monitoring system, and a cathodic protection system. Soil samples collected from below the former dispensers and piping exceeded SCLs for hydrocarbons. As a result, piping was laid in these excavations for expansion of the air sparge (AS) and soil vapor extraction (SVE) system. In addition, six vertical cathodic protection anodes were spaced around the USTs.

May 1991. A Phase III RI was conducted that involved drilling two soil borings off the site and installing two new monitoring wells (G-3 and G-4). Petroleum hydrocarbons were not detected above SCLs (borings) or GCLs (monitoring wells), indicating these wells are located beyond the extent of groundwater contamination at the site.

May 2001. A RI was conducted that involved drilling two soil borings and installing two new monitoring wells (on-site G-5 and off-site G-6). Samples collected from G-6 did not exceed SCLs or GCLs, but both were exceeded in samples from G-5 (on-site well)

May 2003. Four additional AS wells were installed at the site. Benzene was detected above the SCL in AS Wells AS-13 and AS-14, and diesel range organics (DRO) was detected slightly above the SCL in AS-14. No other compounds were detected above the SCLs.

November 2003. A RI was performed at the site. The RI involved drilling one soil boring that was completed as a 2-inch diameter monitoring well (G-9). No analytes of concern were detected at concentrations above the laboratory practical quantitation limits (PQLs) in soil or groundwater samples collected during the RI.

June 2010. A sampling event was conducted for sulfolane in Monitoring Well MW-10. Sample results were non-detect.

June 2012. MWH conducted an UST closure site assessment. The former UST system consisted of three 10,000-gallon capacity gasoline and diesel tanks, associated piping, and three dispenser islands with one overhead canopy. The three USTs were replaced with two, multi-compartment, 15,000-gallon capacity fiberglass USTs. Petroleum-contaminated soil was encountered during the UST removal. The contaminated soil was removed from the site for off-site thermal treatment. Soil contamination was found at 13 feet bgs, a couple of feet below the bottom of the new USTs. Due to the groundwater conditions, the saturated contaminated soil could not be removed and, therefore, was left in-place.

September 2012. A RI was performed at the site. The RI involved advancing four soil borings (three around the new USTs in the northern portion of the site and one along the west edge of the site) and collecting three soil samples from each soil boring. Three groundwater monitoring wells (MW-11, MW-12, and MW-13) and one air lift well (RM-1) were installed in the four soil borings and groundwater samples were collected. Petroleum hydrocarbons were detected above SCLs in the soil borings along the west edge of the site, the northern portion of the property line on the east side of the USTS, and the northern side of the dispenser island. Petroleum hydrocarbons were detected above the GCLs in all three monitoring wells.

June 2013. A first round of chemical oxidation application of Klozur CR[®] was injected into two on-site wells (Monitoring Well MW-10 and AS Well AS-9). Monitoring Well G-5 was used to measure the chemical oxidation impact to the groundwater table. The prior and post injection

results of intrinsic parameters clearly indicated the effectiveness of the chemical oxidant – in particular with respect to the sodium, pH, total organic carbon (TOC), and dissolved oxygen levels. The laboratory analytical results indicated significant reductions in the petroleum contaminants of concern.

July 2013. A pump test was conducted of Remediation Well RM-1, which was initially designed and constructed to serve as an air-lift well. Due to concerns about maintaining a continuous pumping air-lift well in the sub-Arctic climate found in the Fairbanks area, it was decided to pump the well with a submersible well pump. The field test data collected during the 2-day well pump test indicated that, by recirculating the water pumped from RM-1 into the upgradient horizontal wells that were installed along the bottom edge of the USTs, the contaminated groundwater flowing beneath the USTs would be captured in RM-1. Then the groundwater could be pumped (re-circulated) back into the upgradient horizontal wells. On a quarterly basis, the groundwater would undergo chemical oxidation with the injection of Klozur CR[®] into the horizontal wells. Also, it was initially planned to add air in the well pump discharge line via a venturi air injector.

August/September 2013. Two rounds of Klozur CR[®] were injected into one on-site well (Monitoring Well MW-12). Water samples were collected from Monitoring Wells MW-12 and MW-13, and Remediation Well RM-1 prior to and approximately 6 and 8 weeks after the first round of Klozur CR[®] application. Most analytes of concern showed a significant reduction in concentrations. In addition, the dissolved oxygen level in MW-12 was noted to be very high, which confirmed the claim that Klozur CR[®] provides an extended oxygen release for long-term remediation of contaminant plumes in groundwater. Given these positive preliminary pilot test findings, MWH recommended additional rounds of application of Klozur CR[®] chemical oxidant to treat the residual contamination found in the area beneath the USTs.

March 2014. Petroleum compounds were found to exceed GCLs in Monitoring Wells G-1, MW-10, MW-11, MW-12, MW-16, and Remediation Well RM-1. The SVE system remained in operation. The AS system operation was temporarily inactive pending system upgrades.

July 2014. Petroleum compounds were found to exceed GCLs in Monitoring Wells G-5, MW-10, MW-11, and MW-16, as well as Remediation Well RM-1. The SVE system remained in operation. The AS system operation was temporarily inactive pending system upgrades. During July, Remediation Well RM-1 was outfitted with a submersible pump and linked to a series of horizontal injection wells which were positioned at the water table interface along the east and southern periphery of the UST system upgrades at the site. An in-line venturi was installed to aerate water within the remediation system prior to injection.

March 2015. Petroleum compounds were found to exceed GCLs in Monitoring Wells MW-10, MW-11, MW-12, and MW-16, as well as Remediation Well RM-1. The SVE system remained in operation. The operation of the groundwater circulation system was suspended due to mineral deposits or biological growth (related to the abundance of aqueous iron in the system) that fouled the submersible pump and lowered the efficiency of the well screen at the remediation well (RM-1).

July 2015. Petroleum compounds were found to exceed GCLs in Monitoring Wells MW-10, MW-11, MW-12, and MW-16, as well as Remediation Well RM-1. The SVE system remained in operations. Well rehabilitation, by acid treatment, was performed in RM-1 and the south horizontal injection well. Chemical oxidation treatment with the manual injection of Klozur CR[®] product was performed at the southeast and northeast horizontal injection wells.

February 2016. Results of the analytical sampling showed the analytes detected above the GCLs included: DRO in Monitoring Wells MW-10 and MW-13, and gasoline range organics (GRO) in Remediation Well RM-1. Chemical oxidation treatment with the manual injection of Klozur CR[®] product was performed at the southeast and northeast horizontal injection wells.

October 2016. Results of the analytical sampling showed that DRO was detected above the GCL in Monitoring Well MW-10, and benzene and GRO were detected above the GCLs in Remediation Well RM-1. Remediation Well RM-1 was manually injected with NUWELLTM. Chemical oxidation treatment with the manual injection of Klozur CR[®] product was performed at the southeast and northeast horizontal injection wells.

March 2017. Results of the analytical sampling showed analytes present above the GCLs in Monitoring Wells G-1, G-5, MW-10, MW-11, and MW-12. Analytes in exceedance included benzene, ethylbenzene, xylenes, GRO, and DRO. The SVE system continues to operate within normal parameters. Remediation Well RM-1 remains inactive, following the discovery of a frozen circulation line the last week of November 2016. The AS system is currently inactive pending evaluation of the system.

July 2017. Results of the analytical sampling showed analytes present above the GCLs in Monitoring Wells G-1, MW-11, MW-12, and MW-16. Monitoring Wells G-5 and MW-10 had ice plugs present. The expanded suite of volatile organic compounds (VOCs) and polynuclear aromatic hydrocarbons (PAHs) for Monitoring Wells MW-11, MW-12, and Remediation Well RM-1 also indicated GCL exceedances. Remediation Wells RM-1 was placed back in operation at 1.4 gallons per minute at 90 pounds per square inch (psi). SVE and AS systems currently inactive.

March 2018. Results of the analytical sampling showed analytes were present above the GCLs in Monitoring Wells G-5, MW-10, MW-11, MW17-1, and MW17-2. Remediation Well RM-1 was shut down during the winter because of the continued power failure of the newly installed heat trace. The SVE and AS systems remain inactive.

September 2018. Results of the analytical sampling showed analytes were present at concentrations exceeding ADEC GCLs in Monitoring Wells G-5, MW-10, MW-11, MW-12, MW17-1, and MW17-2, as well as Remediation Well RM-1. Analytes in exceedance included: BTEX, GRO, DRO, VOCs, and/or PAHs.

Upon arrival at the site, Remediation Well RM-1, for the groundwater recirculation chemox treatment system, was not operating due to freeze damage caused by heat trace failure. The RM-1 well pump was placed back into continuous operation after repairs were made to the water line located in RM-1 manhole.

A chemox solution consisting of 110 pounds of Klozur One, with approximately 800 gallons of clean water, was injected into the two horizontal groundwater injection wells located along the eastern edge of the UST.

March 2019. Results of the analytical sampling showed analytes were present at concentrations exceeding ADEC GCLs in Monitoring Wells G-1, G-5, MW-10, MW-11, MW-16, MW 17-1, and MW 17-2. Analytes in exceedance included: BTEX, GRO, and DRO. It is noted that GRO above the GCL was detected in Monitoring Well G-1, which was uncharacteristic since this well has not had an exceedance for GRO in past 17 years of monitoring. This well will be resampled during the semi-annual monitoring event to further assess the groundwater condition in this area of the site.

Upon arrival at the site, Remediation Well RM-1, for the groundwater recirculation chemox treatment system, was operating but was shut off due to debris entering the pump intake. It will be cleaned and restarted after daily air temperatures remain above freezing.

July 2019. Results of the analytical sampling showed analytes were present at concentrations exceeding ADEC GCLs in Monitoring Wells G-5, MW-10, MW-11, MW 17-1, and MW 17-2 and Remediation Well RM-1. Analytes in exceedance included: BTEX; GRO; DRO; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; naphthalene; and 1-methylnaphthalene. It was noted that GRO above the GCL was detected in Monitoring Well G-1 during March 2019 monitoring (an anomaly after 17 years of sampling), and this well was resampled during this semi-annual monitoring event and GRO was found to be under the PQL and the GCL.

Upon arrival at the site, Remediation Well RM-1, for the groundwater recirculation chemox treatment system, was operating but was shut off due to debris entering the pump intake. It will be cleaned and restarted after daily air temperatures remain above freezing.

October 2019. A high dose chemox solution of 165 lbs of Klozur® One to 150 gallons of water was injected into each of the three SVE injection lines (SVE-1, SVE-2, and SVE-3) while 110 lbs of Klozur® One was injected into the horizontal groundwater injection well on the eastern edge of the UST. The Klozur® One treatments were then pushed into the formation with 1100 gallons of water from RM-2. In summary, Stantec injected a total of 605 lbs of Klozur® One.

Analytical sampling of RM-1 and RM-2 was conducted. Analyte levels exceeding ADEC GCLs in RM-2 were Benzene, Ethylbenzene, and Xylene. Analyte levels exceeding ADEC GCLs in RM-1 were Ethylbenzene, Xylene, and GRO. The October 2019 limited sampling event showed analytes were present at concentrations exceeding ADEC GCLs for RM-1 for ethylbenzene, toluene, and GRO. RM-2 had concentrations exceeding GCLs for benzene, ethylbenzene, and xylene.

July and August 2020. On July 15, 2020, an injection of chemox solution into 4 injection points and flushing of water from remediation well RM-2 was completed. A total of 440 pounds of Klozur[®] One was mixed into 400 gallons of water and gravity fed into the four horizontal injection lines (former SVE lines). Following the injection of the chemox solution, an additional 600 gallons of water from RM-1 was discharged into the injection lines as a means to "hydraulically push" the chemox solution into the subsurface formation.

The August 2020 results of the analytical sampling showed analytes were present at concentrations exceeding ADEC GCLs in Monitoring Wells G-5, MW-10, MW-11, MW-12, MW-13, MW 17-1, MW 17-2, and remediation well RM-1. Analytes in exceedance included: BTEX, GRO, and DRO. However, it is worth noting that the concentration of petroleum related contaminants in remediation well RM-2 had decreased when compared to the test results collected in 2019 following the chemox injection. These findings indicate the injection of Klozur[®] One coupled with the in-situ groundwater recirculation system may be achieving remediation of the groundwater table – future monitoring events will be evaluated to assess this apparent promising result.

Results from the groundwater depth measurements for the August groundwater monitoring event indicate the average hydraulic gradient was approximately 0.023 feet per foot directed toward the northwest at 301 degrees. Characteristics of the groundwater direction and gradient for this monitoring event were generally consistent with the historical groundwater flow results for this site.

APPENDIX B

Field Methods and Procedures

APPENDIX B – FIELD METHODS AND PROCEDURES

(This Appendix Provides Work Plans for 2019 and 2010)

Tesoro 2 Go Mart #111 (3679 College Road, Fairbanks, Alaska)

The following table presents the proposed tasks for the Alaska Department of Environmental Conservation (ADEC)-approved 2019 Corrective Action Work Plan. The scope of these tasks is based on the results and findings of the monitoring and remediation completed to date at Tesoro 2 Go Mart #111 (ADEC Facility ID #1112; ADEC File #100.26.026).

	Work Plan Task	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Task 1	Monitoring Wells: MW-11, MW-12, MW-13, MW-16, MW-10, G-1, G-5, MW-17-1, and MW- Task 1 17-2.			D, G, V, P, I	
	RM-1 and New Fueling Island Recirculation Well (see Task 4)	V, D, G, I	V, D, G, I	D, G, V, P, I	V, D, G, I
Task 2	Remediation System O&M		✓	✓	✓
Task 3	Task 3 Chemical Oxidation Treatment		✓	✓	✓
Task 4	Install New Groundwater Recirculation Well located north of fueling islands		1		

2019 Work Plan Schedule

Key:

AK – Alaska Test Method

D – Diesel range organics by AK102.

EPA – U.S. Environmental Protection Agency

G – Gasoline range organics by AK101.

I – Indicators, parameters tested include: dissolved oxygen, specific conductance, oxygen-reduction potential, pH, and temperature.

O&M – operation and maintenance

- P Polynuclear aromatic hydrocarbons (PAHs), i.e., semi-volatile organic compounds, by EPA Test Method 8270D Selective Ion Monitoring.
- V Soil vapor extraction system vapors by EPA Method 8020/8015.

All sampling activities will be completed in accordance with ADEC's *Underground Storage Tanks Procedures Manual–Standard Sampling Procedures* (March 22, 2017). The methods that will be used for conducting a monitoring event, unless otherwise noted in the monitoring report, will include:

- The static water levels in the monitoring wells will be measured with respect to the top of each well casing. The elevation of the static water level will be based on an arbitrary datum established on-site during a vertical control survey that will be completed by Stantec on an annual basis. The survey will be performed during the summer after the seasonal frost layer thaws.
- The monitoring wells will be purged of a minimum of three well bore volumes prior to collecting the water samples. A new, disposable, Teflon[®] bailer will be used to sample each

well. The first bail of water removed from each well will be examined for petroleum odor, sheen, and any other unique physical features.

- Water and vapor samples will be collected in laboratory-supplied sample containers. The samples will be delivered an ADEC-approved laboratory in accordance with standard chain-of-custody procedures.
- Additional water samples will be collected from the monitoring wells after the well has been purged, as described above, and tested in the field for chemical and physical intrinsic parameters listed in the 2019 Work Plan Schedule shown above.

The following table presents the proposed tasks for the Alaska Department of Environmental Conservation (ADEC)-approved 2020 Corrective Action Work Plan. The scope of these tasks is based on the results and findings of the monitoring and remediation completed to date at Speedway Store 5315 (former Tesoro 2 Go Mart #111), ADEC Facility ID #1112; ADEC File #100.26.026. Approval for changes in the proposed work schedule were granted by ADEC and Speedway due to unforeseen changes to the work flow as a result of Covid-19 Alaska State Mandates delaying 1st and 2nd quarter work.

	Work Plan Task	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th * Quarter
Task 1	Monitoring Wells: MW-10, MW-11, MW- 12, MW-13, MW-16, G-1, G-5, MW 17-1 and MW 17-2	V, D, G, I, S		D, G, V, P, I, S	
	RM-1 and RM-2	V, D, G, I, S	V, D, G, I, S	D, G, V, P, I, S	V, D, G, I, S
Task 2	Complete the Installation of the RM-2 Well Recirculation Groundwater Treatment System		~	~	
Task 3	Recirculation Well Remediation Systems O&M	~	~	~	✓
Task 4	Chemical Oxidation Treatment		~	~	

2020 Work Plan Schedule for Speedway Store 5315 (former Tesoro 2Go Mart 111)

Key:

D – Diesel range organics by AK102.

G – Gasoline range organics by AK101.

- I Indicators, parameters tested include dissolved oxygen, specific conductance, oxygen-reduction potential, pH, sodium and temperature.'
- P Polynuclear aromatic hydrocarbons (PAHs), i.e., semi-volatile organic compounds, by EPA Test Method 8270D Selective Ion Monitoring.

V – Volatile organic compounds by EPA Test Method 8260C.

S – Sodium

* – Results were not issued to client or ADEC in 2019 reports for this site and included in the 3rd Quarter monitoring report.

• Task 2 – <u>Complete the Installation of the Groundwater Pump and Treat System</u>

During the 4th quarter of 2019, Stantec installed and developed the new 4-inch diameter remediation well (RM-2). As shown above in the 2020 Schedule, Stantec plans during the second quarter of 2020 to connect the submersible well pump via insulated piping to the three horizontal SVE lines that were originally used to extract soil vapor from the areas beneath the existing fuel dispenser islands. The piping system will be enclosed in a low profile shed. The new RM-2 well will be operated on a continuous basis similar to the existing RM-1 groundwater treatment system currently in operation at this site. An iMonnit[®] sensor will be installed on the electrical wires on the submersible well pump in RM-2 well. A second iMonnit[®] sensor will be installed on the RM-2 plumbing system to monitor water pressure.

• Task 3 – <u>Recirculation Well Remediation Systems O&M</u>

This task proposed to perform quarterly maintenance to operate the remediation system, consisting of the existing RM-1 and RM-2 groundwater recirculation systems for treating the vadose zone soil and groundwater beneath the existing USTs and fuel dispenser islands. The operation of the submersible pumps for both treatment systems will be monitored daily via the internet with iMonnit® wireless sensors and the equipment physically inspected monthly and maintenance provided on an as need basis.

• Task 4 – <u>Chemical Oxidation Treatment</u>

Stantec proposes to provide chemical oxidation treatment of the petroleum contaminated soil and groundwater twice a year into the three existing horizontal injection lines located beneath the fuel dispenser islands and the two horizontal injection lines located on east side of the USTs. The first annual injection will occur in the spring of the year after the winter frost dissipates, and the second injection will take place several months later just prior to winter freeze-up. A minimum of 500 gallons of a prepared solution of 550 pounds of the chemical oxidant Klozur One[®] (a chemical mixture consisting primarily of sodium persulfate) will be injected equally (100 gallons per well) into the five horizontal injection lines. The on-site monitoring wells will be sampled semi-annually as outlined in Task 1 to assess treatment impact the groundwater table. In addition, the monitoring wells and the pumped wells RM-1 and RM-2 will be sampled for sodium to monitor the distribution/migration of the oxidant.

The Corrective Action Work Plan for the year 2020 will be implemented by Stantec on behalf of Speedway. Groundwater monitoring will be conducted to track migration and trends of contaminants that are present at the site. All sampling activities will be completed in accordance with ADEC's *Underground Storage Tanks Procedures Manual– Standard Sampling Procedures* (March 22, 2017). The methods that will be used for conducting a monitoring event, unless otherwise noted in the monitoring report, will include:

- The static water levels in the monitoring wells will be measured with respect to the top of each well casing. The elevation of the static water level will be based on an arbitrary datum established on-site during a vertical control survey that will be completed by Stantec on an annual basis. The survey will be performed during the summer after the seasonal frost layer thaws.
- The monitoring wells will be purged of a minimum of three well bore volumes prior to collecting the water samples. A new, disposable, Teflon[®] bailer will be used to sample each well. The first bail of water removed from each well will be examined for petroleum odor, sheen, and any other unique physical features.
- Water and vapor samples will be collected in laboratory-supplied sample containers. The samples will be delivered to an ADEC-approved laboratory in accordance with standard chain-of-custody procedures.

• Additional water samples will be collected from the monitoring wells after the well has been purged, as described above, and tested in the field for chemical and physical intrinsic parameters listed in the 2020 Work Plan Schedule shown above.

APPENDIX C

Field Measurements, Notes, Hydraulic Gradient Plot, and Rainfall Table

Appendix C **Field Measurements and Notes**

Store 5315 (TNS 111) Project Phase: 2020 1st Quarter Delayed Monitoring Date:

8/3-8/4/2020

Project number: 185751325

Project:

Sampler: Leslie Petre and Eli Fredrickson

Well I.D.	Volume Purged (gallons)	Sheen/ Odor	Temp. (°C)	рН	Dissolved Oxygen (mg/L)	ORP (mv)	Specific Conductance (µs/cm)	Top of Casing₁ (feet)	Depth to GW (feet)	GW Elevation (feet)	Total Depth (feet btoc)
G-1	15.0	N/N	5.8	5.95	1.75	155.3	1470	430.14	10.48	419.66	18.51
G-5	4.0	N/N	6.6	6.34	1.81	267.3	1210	430.02	10.45	419.57	18.08
MW-10	14.8	Y/Y	5.9	6.68	2.16	119.8	1820	430.11	10.51	419.60	17.60
MW-11	7.0	Y/Y	5.6	6.68	1.91	142.5	1370	430.49	10.85	419.64	24.87
MW-12	9.0	N/N	10.6	6.52	5.64	398.0	1040	427.84	5.26	422.58	24.24
MW-13	7.5	N/N	12.0	6.51	2.04	375.8	910	429.77	10.20	419.57	24.91
MW-16				/				429.27			
MW 17-1	4.5	N/Y	9.6	6.67	0.61	126.7	1,120	430.55	10.92	419.63	19.30
MW 17-2	5.0	Y/Y	8.6	6.50	1.62	163.3	1,590	430.17	10.50	419.67	19.21
RM-1	NP	N/N*	6.8	6.3	1.92	147.7	930	428.21	11.21	417.00	NM (pump running)
RM-2	17.0	N/N*	6.1	6.41	2.38	155.2	704	NM	10.56		Bailed with installed pump
1 - Based on vertical control survey completed September 06 2017, using an elevation datum of 432.00 feet * Organic to metallic odor, non-fuel											

GW - groundwater NP - not purged

mv - millivolts

mg/L - milligrams per liter

N - no

µS/cm - microsiemens per centimeter

Y - yes

Samples analyzed for AK101, AK102, 8260 (BTEX), sodium NM - not measured

ORP -- oxidation-reduction potential

' Organic to metallic odor, non-fuel

54°-65°F
under 5 mph
High
Rain on 8/3, clear 8/4

NOTES:		Well Dia.	Sample Date and Time
G-1		4"	8/3/2020 12:48
G-5	impacted with soil within well housing but outside of well.	2"	8/4/2020 10:20
MW-10		4"	8/4/2020 11:25
MW-11		2"	8/4/2020 11:15
MW-12	Temp pulled after sampling	2"	8/3/2020 13:55
MW-13		2"	8/3/2020 16:39
MW-16	Under water, could not be cleared to sample	4"	
MW 17-1	Found plug off well on 8/3/2020; measured temp after sampling complete	2"	8/4/2020 16:46
MW 17-2		2"	8/4/2020 15:35
RM-1		4"	8/4/2020 12:05
RM-2		4"	8/4/2020 12:35
TNS 111 Dup.	17-1	N/A	8/4/2020 16:53

Instruments / methods used	Model	
Static water level	Solinst	122
рН	YSI	Pro Plus
Conductivity	YSI	Pro Plus
Dissolved Oxygen	YSI	Pro Plus
ORP	YSI	Pro Plus
Temperature	VSI	Pro Plus
Temperature	151	FIUFIUS

Notes on Remediation System Operation:
Speedway Store #5315 (Former Tesoro 2 Go Mart #111)-Groundwater Elevation Contours August 3, 2020

2020 rain graph

Aug 8, 2020

A graph created by Rick Thoman, using data from NOAA's National Centers for Environmental Information, illustrates that August 2019 to July 2020 was the rainiest 12-month period on record.

Courtesy Rick Thoman

As featured on

Fairbanks North Star Borough sees rainiest 12-month period on record That it's been a rainy spring and summer is news to no one. But just how wet have the past 1...

APPENDIX D

Tables of Historical Monitoring Data

	Benzene	Toluene	Ethylbenzene	Xvlenes	GRO	DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)
10-Mar-94	19	24	2.3	19	NT	NT	NM	418.07
09-Sep-94	15.2	18	0.9	14.9	NT	NT	NM	419.89
12-Dec-94	16.7	20	2.1	15.5	NT	NT	NM	418.1
15-Aug-97	8.3	14.4	1.16	9.35	77	NT	NM	415.92
27-May-99	6.88	13.4	1.35	7.17	64	12.8	NM	415.09
17-Apr-00	1.86	7.06	0.887	3.47	35	5.84	NM	413.89
26-Oct-00	1.88	7.2	0.914	5.53	39.7	9.04	NM	417.44
13-Dec-01	2.7	9.6	1.59	7.73	53.8	10.1	NM	413.14
01-May-02	0.0122	0.0074	0.0137	0.117	1.1	1.96	NM	414.55
19-Aug-02	1.92	3.55	0.664	3.512	27.5	15.9	NM	417.86
05-Nov-02	0.0456	0.00533	0.0368	0.1189	1.7	6.78	NM	417.06
19-Mar-03	0.477	0.313	0.319	1.404	8.8	12.9	NM	416.21
05-Aug-03	2.54	8.79	0.876	7.09	61.8	17.6	NM	418.43
08-Mar-04	0.198	0.912	U (0.025)	2.89	12.8	10.3	NM	414.92
15-Sep-04	0.0802	0.00234	0.0497	0.446	2.06	6.01	NM	416.64
15-Jul-05	0.416	3.37	0.513	3.63	25.6	14.9	NM	417.82
27-Jul-06	0.413	5.3	0.714	4.88	32.5	16.3	NM	417.06
02-Mar-07	0.203	2.33	0.545	3.9	32.8	8.8	NM	414.23
17-Oct-07	0.00324	0.00102	0.0105	0.0406	1.15	6.43	NM	416.47
05-Jun-08	0.23	2.9	1.18	8.14	38.4	10.2	NM	415.69
29-Sep-08	0.00139	0.00403	0.012	0.0777	1.18	3.67	NM	417.20
25-Feb-09	0.0778	2.7	1.18	8.89	43.4	30.3	NM	NM
21-Jul-09	0.014	1.77	1.26	12.2	47.3	11.8	NM	416.71
17-Mar-10	0.0027	1.50	1.20	9.5	92	16.2	NM	413.98
15-Sep-10	0.00635	0.0902	0.776	4.06	16.2	21.3	NM	416.60
22-Mar-11	0.00425	0.0195	0.678	3.15	16.0	17.4	NM	414.01
01-Sep-11	0.00673	0.0908	0.498	3	22.5	30.5	NM	417.49
13-Mar-12	U (0.010)	U (0.010)	0.118	0.679	4.2	10.3	NM	414.42
23-Jul-12	0.00226	0.0012	0.00161	U (0.0030)	0.32	2.57	NM	416.97
21-Feb-13	0.000877	0.00156	0.00702	0.166	2.69	4.55	NM	414.24
13-Aug-13	0.00245	0.00455	0.022	0.0755	1.59	10.3	NM	416.54*
19-Mar-14	0.000642	0.00404	0.015	0.119	1.98	7.82	NM	414.30
31-Jul-14	0.011	0.00240	0.047	1.20	5.0	10.0	NM	419.65
03-Mar-15	0.00067	U (0.0005)	0.0020	0.0063	0.23	3.2	NM	414.98
27-Jul-15	0.0012	0.0020	0.0037	0.011	0.65	4.0	NM	416.16
23-Feb-16	U (0.001)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	2.7	NM	415.20
06-Oct-16	U (0.001)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	2.3	NM	418.72
16-Mar-17	0.011	0.0027	0.16	0.489	3.7	6.7	NM	414.92
29-Mar-18	0.022	0.01	0.35	1.3	9.6	13	NM	414.6
07-Sep-18	0.027	0.0052	0.27	1.283	5.2	13	NM	418.69
13-Mar-19	0.016	U (0.002)	0.21	0.726	3.5	8	NM	415.23
29-Jul-19	U (0.15)	U (0.1)	0.2	0.82	5.6	13	NM	416.33
04-Aug-20	0.0577	0.142	0.6	1.89	4.2	1.9	60	419.74
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Monitoring Well MW-10

* Event dates that sampling did not occur on have been removed from this chart.

Monitoring Well MW-11

	Benzene	Toluene	Ethvlbenzene	Xvlenes	GRO	DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)
28-Sep-12	0.235	0.594	0.873	5.52	40.3	19.4	NM	416.27
21-Feb-13	0.0177	0.00707	1.61	7.2	41.1	5.72	NM	414.26
13-Aug-13	0.257	0.0152	0.600	1.15	5.45	7.79	NM	416.53
19-Mar-14	0.0933	0.0548	0.915	3.28	22.1	14.1	NM	414.33
31-Jul-14	0.088	0.032	0.510	2.0	10.0	7.0	NM	419.65
03-Mar-15	0.038	0.071	0.600	2.9	17.0	3.0	NM	414.99
27-Jul-15	0.460	0.160	1.50	6.6	34.0	13.0	NM	416.20
23-Feb-16	U (0.001)	U (0.001)	U (0.001)	0.0025	0.13	1.2	NM	415.22
06-Oct-16	U (0.001)	U (0.001)	0.0068	0.0025	0.20	0.77	NM	418.74
16-Mar-17	U (0.2)	0.48	0.89	3.99	14	6.2	NM	414.93
07-Jul-17	0.110	0.260	0.400	1.76	7.10	7.40	NM	416.97
29-Mar-18	U (0.15)	0.71	0.92	6.1	U (90)	8.0	NM	414.62
07-Sep-18	0.068	0.066	0.57	2.29	7.8	3.2	NM	418.71
13-Mar-19	0.1	0.3	0.85	5	19	9.9	NM	415.23
29-Jul-19	U (0.15)	0.16	0.67	4.96	15	9.8	NM	416.28
04-Aug-20	0.057	0.00403	0.434	1.75	5.63	3.51	NM	419.64
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Monitoring Well MW-12 Benzene Toluene Ethylbenzene **Xylenes** GRO DRO Sodium **GW Elev** mg/L Date (mg/L)(mg/L)(mg/L)(mg/L)(mg/L)(mg/L)(feet) 28-Sep-12 0.00438 13.9 3.51 19.5 165 2.74 NM 416.30 7.69 NM 21-Feb-13 0.012 2.69 12.8 71.1 3.66 414.30 7.30 1.00 6.21 6.05 NM 416.54 13-Aug-13 0.0334 22.6 24-Sep-13 0.00913 1.65 0.344 1.72 7.11 NM NM 8.35 19-Nov-13 0.0117 1.83 0.527 2.19 13.5 11.7 NM 415.65 19-Mar-14 0.0128 2.24 0.663 5.34 27.9 11.4 NM 414.40 0.5 NM 419.67 31-Jul-14 U (0.0005) 0.01 0.003 0.015 0.18 NM 0.240 6.8 1.2 416.05 03-Mar-15 U (0.0005) 0.01 0.022 27-Jul-15 0.00057 0.011 0.026 0.190 3.2 0.99 NM 416.21 23-Feb-16 U (0.001) U (0.001) U (0.001) U (0.001) U (0.05) 0.32 NM 415.28 06-Oct-16 U (0.001) U (0.001) U (0.001) U (0.001) U (0.05) 0.39 NM 418.79 U (0.02) NM 415.00 16-Mar-17 U (0.02) 0.3 0.52 3.8 1.5 07-Jul-17 U (0.002) U (0.04) NM 417.04 0.13 0.38 2.8 1.4 NM 29-Mar-18 U (0.003) U (0.002) U (0.003) U (0.002) 2.0 0.58 414.69 07-Sep-18 U (0.0004) U (0.001) 0.019 0.063 1.1 0.56 NM 418.78 0.78 NM 415.30 13-Mar-19 U (0.003) U (0.002) 0.01 0.055 1.3 0.26 NM 416.38 30-Jul-19 U (0.003) U (0.002) U (0.003) 0.0039 0.47 03-Aug-20 0.000353 0.0364 0.054 0.487 1.23 0.852 48.7 422.58 GCLs 0.0046 1.1 0.015 0.19 2.2 1.5 NA NA

	Benzene	Toluene	Ethylbenzene	Xvlenes	GRO	DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)
28-Sep-12	U (0.0005)	0.0316	0.0263	0.609	8.11	0.738	NM	416.31
21-Feb-13	0.00130	U (0.0005)	0.0125	0.167	0.649	1.90	NM	414.31
13-Aug-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.839	NM	416.55
24-Sep-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.736	NM	NM
19-Nov-13	U (0.0005)	0.000751	U (0.0005)	0.00168	U (0.05)	0.478	NM	415.48
18-Mar-14	0.00067	0.000846	U (0.0005)	0.00208	0.0593	1.13	NM	414.42
31-Jul-14	U (0.0005)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	U (0.42)	NM	419.67
03-Mar-15	0.02	U (0.0005)	0.028	0.130	0.820	0.62	NM	415.04
27-Jul-15	U (0.0005)	U (0.0005)	0.0014	0.0046	U (0.05)	0.58	NM	416.24
23-Feb-16	U (0.001)	U (0.001)	0.0096	0.073	1.0	2.3	NM	415.31
06-Oct-16	U (0.001)	U (0.001)	U (0.001)	0.0058	U (0.05)	0.65	NM	418.8
16-Mar-17	U (0.002)	U (0.002)	U (0.0053)	0.013	0.150	0.44	NM	415.02
07-Jul-17	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (1.0)	0.32	NM	417.06
29-Mar-18	U (0.003)	U (0.002)	U (0.003)	U (0.002)	U (1)	0.45	NM	414.70
07-Sep-18	U (0.0004)	U (0.001)	U (0.001)	U (0.002)	U (0.15)	0.43	NM	418.76
13-Mar-19	U (0.003)	U (0.002)	0.0072	0.0094	U (1.3)	0.36	NM	415.34
29-Jul-19	U (0.003)	U (0.002)	0.0085	0.0214	0.45	1.1	NM	416.37
03-Aug-20	0.000323	0.0351	0.0439	0.454	1.01	0.6	49.6	419.57
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Monitoring Well MW-16										
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev		
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)		
26-Feb-92	0.004	U	U	U	NT	NT	NM	418.29		
04-Jun-92	0.003	U	U	0.007	NT	NT	NM	418.41		
30-Nov-92	0.51	0.094	0.056	0.15	NT	NT	NM	416.6		
24-Feb-93	0.41	0.033	0.036	0.084	NT	NT	NM	418.13		
18-Aug-93	0.099	U	U	0.014	NT	NT	NM	420.26		
23-Nov-93	0.039	U	U	0.004	NT	NT	NM	419.59		
10-Mar-94	0.005	0.001	U	U	NT	NT	NM	418.28		
01-Jun-94	0.022	U	0.003	0.003	NT	NT	NM	418.82		
08-Sep-94	U	U	U	U	NT	NT	NM	420.22		
14-Dec-94	0.012	U	0.001	U	NT	NT	NM	418.22		
20-Dec-95	0.055	U	U	0.003	NT	NT	NM	414.53		
16-May-96	0.007	U	U	U	NT	NT	NM	415.78		
15-Aug-96	U	U	U	U	NT	NT	NM	416.58		
09-Dec-96	0.0071	U	U	U	NT	NT	NM	415.43		
20-Mar-97	0.0056	U	U	U	NT	NT	NM	414.4		
18-Nov-97	0.00134	0.00101	U	0.00135	U	NT	NM	415.22		
01-May-98	0.00567	0.00308	0.00193	0.00739	0.089	0.534	NM	414.38		
14-Oct-98	U	U	U	0.00222	U	0.281	NM	416.59		
27-May-99	0.00203	U	U	U	U	2.64	NM	415.29		
05-Nov-99	U	U	U	U	U	13	NM	415.51		
17-Apr-00	0.00305	U	U	U	U	3.66	NM	414.15		
26-Oct-00	0.00186	0.00261	U	0.003	U	3.98	NM	417.47		
30-May-01	0.0007	U	U	U	U	6.65	NM	413.63		
13-Dec-01	0.0480	0.302	0.0109	0.0554	0.9	5.29	NM	413.23		
19-Aug-02	U (0.0005)	U (0.002)	U (0.002)	0.00896	U (0.09)	U (0.5)	NM	417.85		
05-Nov-02	0.000589	U (0.002)	U (0.002)	0.00234	U (0.09)	0.595	NM	417.07		
19-Mar-03	0.000531	0.00653	U (0.002)	0.00469	U (0.09)	1.1	NM	416.23		
08-Mar-04	U (0.0005)	0.0288	U (0.0005)	U (0.001)	0.072	2.85	NM	414.95		
15-Sep-04	0.0006	0.0143	U (0.0005)	U (0.0015)	0.0521	1.36	NM	416.65		
10-Jan-05	0.000648	0.0886	U (0.0005)	0.00221	0.175	1.24	NM	414.70		
15-Jul-05	0.0007	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.06	NM	417.99		
16-Feb-06	U (0.0005)	0.0225	U (0.0005)	U (0.0015)	0.0641	2.09	NM	414.58		
27-Jul-06	0.000638	0.0108	U (0.0005)	U (0.0015)	U (0.05)	1.06	NM	417.08		
02-Mar-07	U (0.0005)	0.00206	U (0.0005)	U (0.0015)	U (0.05)	1.95	NM	414.25		
17-Oct-07	U (0.0025)	0.00318	<u>U (0.0025)</u>	U(0.0075)	U (0.25)	6.53	NM	416.62		
05-Jun-08	U (0.0005)	0.0117	<u>U (0.0005)</u>	U(0.0015)	0.0761	4.4	NM	415.88^		
29-Sep-08	U (0.0005)	0 (0.0005)	<u>U (0.0005)</u>	U(0.0015)	0 (0.05)	2.69		417.26		
25-Feb-09	0(0.0005)	0.0135	0 (0.0005)	0(0.0015)	0.0633	3.44		414.49		
21-Jul-09	0(0.0005)	0(0.001)		0(0.003)	U(0.05)	0.564		416.76		
17-Mar-10			0 (0.001)	0 (0.002)		0.586		413.98		
15-Sep-10	0(0.0005)	0 (0.0005)	0.000796	0.00508	0 (0.05)	2.30		416.52		
22-IVIAI-11	0(0.0005)	0.0652		0(0.0015)		2.02		413.96		
12 Mar 12	0(0.0005)	0 (0.0005)		0(0.0015)	0 (0.05)	2.30		417.42		
23_1ul_12	11(0.0005)	0.0040		11(0.0013)	0.241	1.04		117 61		
23-JUI-12	11(0.0005)	0.0010)		U(0.0030)	0 (0.00)	1.04		11/ 2/		
<u>21-1 CD-13</u> 13_Δμα_12	11(0.0005)	0.000		U(0.0015)		3.61		116 56		
18-Mar-14		0.00143		11(0.0015)	0 178	3.01		414 51		
31_101_1/						23		410 7		
03_Mar_15	0.0003)	0 (0.001)	0 0073	0 (0.001)	0.740	1 2		/15.7		
27- Iul-15	0.015	0.009	0.0073	0.130	0.140	0.81	NIM	416.22		
23-Feb-16				0.0058	U (0 05)	0.01	NM	415.22		
2010010				0.0000	- (0.00)	5.40	1 1 1 1	1.0.20		

06-Oct-16	U (0.001)	U (0.001)	U (0.001)	0.0024	U (0.05)	0.35	NM	418.77
16-Mar-17	U (0.002)	U (0.002)	U (0.003)	U (0.002)	U (0.05)	0.88	NM	414.98
07-Jul-17	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (1.0)	3.7	NM	417.02
07-Sep-18	U (0.0004)	U (0.001)	U (0.001)	U (0.002)	U (0.15)	0.34	NM	418.73
13-Mar-19	U(0.003)	U (0.002)	U (0.003)	U (0.003)	U (1.3)	1.9	NM	415.27
30-Jul-19	U(0.003)	U (0.002)	U (0.003)	0.003	U (0.25)	0.39	NM	416.37
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

* Event dates that sampling did not occur on have been removed from this chart.

Monitoring Well G-1										
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev		
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)		
20-Dec-95	1.54	1.26	0.56	2.53	NT	NT	NM	414.48		
16-May-96	5.9	3.9	1.8	8.2	NT	NT	NM	415.71		
09-Dec-96	2.1	2.1	0.73	3.1	NT	NT	NM	NM		
20-Mar-97	2.1	2.5	0.81	4.3	NT	NT	NM	NM		
18-Nov-97	4.91	4.21	1.89	8	NT	NT	NM	415.22		
01-May-98	4.83	6.67	2.18	10.13	60	5.03	NM	NM		
14-Oct-98	5.04	3.81	1.8	7.47	43	4.37	NM	416.35		
27-May-99	4.34	5.02	1.94	8.89	43	5.46	NM	415.3		
05-Nov-99	2.59	1.74	1.01	3.89	23	3.16	NM	415.48		
17-Apr-00	3.12	3.77	1.64	7.14	46	5.9	NM	414.06		
26-Oct-00	3.04	0.596	1.15	3.39	23	2.19	NM	417.48		
30-May-01	1.59	0.158	0.727	1.87	17	2.61	NM	413.6		
01-May-02	1.3	0.0371	0.683	1.51	8.6	1.84	NM	414.52		
19-Aug-02	0.89	0.0588	0.774	1.465	13.5	1.41	NM	417.79		
05-Nov-02	0.0616	U (0.002)	0.00845	0.0666	0.787	U (0.5)	NM	417.06		
19-Mar-03	0.00765	U(0.002)	U (0.002)	0.00242	U (0.09)	0.509	NM	416.18**		
05-Aug-03	0.11	0.00209	0.101	0.062	1.3	U (0.32)	NM	418.33		
08-Mar-04	0.00979	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.37)	NM	414.92		
15-Sep-04	0.00206	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.385)	NM	416.65		
10-Jan-05	0.0327	U (0.0005)	0.000623	U (0.0015)	0.134	U (0.388)	NM	414.58		
15-Jul-05	0.0626	U (0.0005)	0.0445	0.00354	0.426	U (0.391)	NM	417.94		
16-Feb-06	0.00406	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.397)	NM	414.54		
27-Jul-06	0.0222	0.000805	0.0104	0.00217	0.163	U (0.397)	NM	417.37		
02-Mar-07	0.00159	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.424)	NM	414.59		
17-Oct-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	NM	416.88		
05-Jun-08	0.00614	U (0.0005)	U (0.0005)	0.00379	0.082	0.877	NM	415.81*		
29-Sep-08	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.435)	NM	417.21		
25-Feb-09	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.417)	NM	414.48		
21-Jul-09	0.00601	U (0.001)	U (0.001)	0.00363	0.0954	U (0.397)	NM	416.75		
17-Mar-10	U (0.001)	U (0.001)	U (0.001)	U (0.002)	U (0.05)	U (0.431)	NM	414.03		
15-Sep-10	U (0.0005)	U (0.0005)	0.00926	0.0619	0.15	U (0.385)	NM	416.56		
22-Mar-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.657	NM	413.97		
01-Sep-11	0.0029	0.000601	U (0.0005)	U (0.0015)	0.0719	U (0.410)	NM	417.44		
13-Mar-12	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.446)	NM	414.37		
23-Jul-12	0.0134	U (0.0010)	U (0.0010)	U (0.0030)	0.263	U (0.397)	NM	417.01		
21-Feb-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.431)	NM	414.26		
13-Aug-13	0.00621	0.000688	U (0.0005)	U (0.0015)	U (0.05)	U (0.413)	NM	416.50		
18-Mar-14	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.403)	NM	414.38		
31-Jul-14	0.0026	U (0.001)	0.0022	U (0.001)	0.056	0.67	NM	419.66		
03-Mar-15	U (0.0005)	U(0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.45)	NM	415.09		
27-Jul-15	U(0.00054)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.25	NM	416.21		
23-Feb-16	U(0.001)	U (0.001)		U(0.001)	U (0.05)	U(0.11)	NM	415.25		
06-Oct-16	U(0.001)	U(0.001)		U(0.001)	U (0.05)	0.24	NM	418 73		
16-Mar-17	0.0058	U(0.007)		U(0.002)	U(0.00)	0.60	NM	414.96		
29-Mar-18	0.0041	U(0.002)		U(0.002)	(1.00)	0.76	NM	414 63		
07-Sen-18	0.0024	U(0.002)	U (0 001)	U(0.002)	U(0.15)	0.28	NM	418.62		
12-Mar-10				U(0.002)	94	0.20	NM	415.02		
29_1ul_10		U(0.002)			(0.25)	0.00	NM	416 20		
03-Aug-20	0.000817	U(0.002)			0 0109	U (0 800)	66 40	419.66		
GCI e	0,0046	11	0.015	0 19	22	1.5	NA	NA		
0010	0.00 TO		31010							

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)
20-Dec-95	0.069	U	U	U	NT	NT	NM	414.49
16-May-96	0.2	U	U	U	NT	NT	NM	415.74
15-Aug-96	0.32	U	U	U	NT	NT	NM	416.57
09-Dec-96	0.14	U	U	U	NT	NT	NM	415.42
20-Mar-97	0.002	U	U	U	NT	NT	NM	414.4
15-Aug-97	0.0253	U	U	U	0.077	NT	NM	415.88
18-Nov-97	U	U	U	0.00169	U	NT	NM	415.2
01-May-98	0.00523	U	U	0.00139	U	0.221	NM	414.35
14-Oct-98	0.0318	U	U	0.00135	0.076	0.248	NM	416.55
27-May-99	U	0.00624	U	0.00326	U	0.345	NM	415.27
05-Nov-99	0.0514	U	U	U	0.13	U	NM	415.47
17-Apr-00	0.00749	U	U	U	U	U	NM	414.12
26-Oct-00	0.0051	0.0032	U	0.00759	U	U	NM	417.44
30-May-01	U	U	U	U	U	U	NM	413.58
13-Dec-01	U	U	U	U	U	U	NM	413.04
01-May-02	U	U	U	U	U	U	NM	414.52
19-Aug-02	0.000596	U (0.002)	U (0.002)	U (0.002)	U (0.09)	U (0.505)	NM	417.79
05-Nov-02	U (0.0005)	U (0.002)	U (0.002)	U (0.002)	U (0.09)	U (0.5)	NM	416.99
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Monitoring Well G-2

*Ground Water monitoring did not occurred between March 19, 2003 to August 04, 2020

Monitoring Well G-3

_	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev	
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)	
01-Apr-99	U	0.001	U	U	U	U	NM	NT	
27-May-99	U	U	U	U	U	0.413	NM	415.18	
05-Nov-99	U	U	U	U	U	0.883	NM	415.41	
17-Apr-00	U	U	U	U	U	U	NM	414.07	
26-Oct-00	U	U	U	U	U	U	NM	418.18	
30-May-01	0.00029	U	0.000718	0.001855	U	U	NM	413.49	
13-Dec-01	0.00064	U	U	U	U	U	NM	413.07	
01-May-02	NT	NT	NT	NT	NT	NT	NM	NM	
19-Aug-02	U (0.0005)	U (0.002)	U (0.002)	0.00241	U (0.09)	U (0.505)	NM	417.74	
05-Nov-02	NT	NT	NT	NT	NT	NT	NM	NM	
19-Mar-03	NT	NT	NT	NT	NT	NT	NM	NM	
05-Aug-03		Monitoring Well Destroyed							
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA	

*Ground Water monitoring did not occurred after November 05, 2002

Date	Benzene (mg/L)	Toluene (ma/L)	Ethylbenzene (mg/L)	Xylenes (ma/L)	GRO (ma/L)	DRO (mg/L)	Sodium ma/L	GW Elev (feet)
01-Apr-99	U	U	U	U	U	U	NM	NM
27-May-99	U	U	U	U	U	U	NM	415.26
05-Nov-99	U	U	U	U	U	U	NM	415.48
17-Apr-00	U	U	U	U	U	U	NM	414.04
26-Oct-00	U	U	U	U	U	U	NM	418.25
30-May-01	U	U	U	0.001	U	U	NM	413.59
13-Dec-01	U	U	U	U	U	U	NM	413.19
01-May-02	NT	NT	NT	NT	NT	NT	NM	NM
19-Aug-02	0.000545	U (0.002)	U (0.002)	0.00366	U (0.09)	U (0.5)	NM	418.13
05-Nov-02	NT	NT	NT	NT	NT	NT	NM	NM
03-Aug-20	NT	NT	NT	NT	NT	NT	NM	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Monitoring Well G-4

*Ground Water monitoring did not occurred between November 05, 2002 to August 03, 2020

Monitoring Well G-5									
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev	
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)	
30-May-01	12.4	11.5	2.1	9.9	107	6.47	NM	412.59	
13-Dec-01	6.21	8.71	1.71	12.74	72.8	3.05	NM	413.22	
01-May-02	11.9	7.7	1.95	15.1	83.4	6.75	NM	414.55	
19-Aug-02	12.9	7.31	2	8.53	86.6	7.85	NM	417.8	
05-Nov-02	5.7	4.37	1.38	6.7	41.9	7.17	NM	417.05	
19-Mar-03	2.46	1.75	0.741	5.25	30	7.55	NM	416.19	
05-Aug-03	5.07	2.99	0.943	6.41	47.5	5.78	NM	418.76	
08-Mar-04	0.00254	0.00495	0.00104	0.0327	0.126	3.45	NM	414.93	
15-Sep-04	0.00577	0.00126	0.000506	0.00467	0.061	1.84	NM	416.64	
10-Jan-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.22	NM	414.80	
15-Jul-05	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.19	NM	417.83	
16-Feb-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.08	NM	414.48	
27-Jul-06	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.865	NM	417.09	
02-Mar-07	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.03	NM	414.24	
17-Oct-07	0.000837	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	3.44	NM	416.22	
05-Jun-08	U (0.0005)	U (0.0005)	0.00452	0.0316	0.112	1.1	NM	415.73	
29-Sep-08	U (0.0005)	U (0.0005)	0.00458	0.0103	0.0794	1.66	NM	417.20	
25-Feb-09	0.00068	0.00053	0.0579	0.174	2.53	1.3	NM	414.45	
21-Jul-09	0.0018	U (0.0010	U (0.001)	U (0.003)	U (0.05)	1.27	NM	416.73	
17-Mar-10	0.013	0.0014	0.19	0.37	4.4	0.961	NM	413.98	
15-Sep-10	0.0849	0.000886	0.00279	0.0149	0.287	1.10	NM	416.59	
22-Mar-11	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	1.04	NM	413.96	
01-Sep-11	0.00331	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.898	NM	417.44	
13-Mar-12	0.0307	0.00346	0.113	0.23	3.63	1.02	NM	414.37	
23-Jul-12	0.00199	U (0.0010)	U (0.0010)	U (0.0030)	U (0.05)	0.57	NM	416.90	
13-Aug-13	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	0.884	NM	416.50	
18-Mar-14	0.025	0.00612	0.0739	0.161	2.44	0.778	NM	414.36	
31-Jul-14	0.49	0.0064	0.071	0.21	2.2	1.40	NM	419.24	
03-Mar-15	U (0.0005)	U (0.0005)	U (0.0005)	0.0015	U (0.05)	0.430	NM	414.58	
27-Jul-15	0.92	0.57	0.59	1.1	10	1.40	NM	416.18	
23-Feb-16	U (0.001)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	0.21	NM	415.19	
06-Oct-16	U (0.001)	U (0.001)	U (0.001)	U (0.001)	U (0.05)	0.95	NM	418.75	
16-Mar-17	0.27	0.36	0.56	1.91	7.9	1.3	NM	414.93	
07-Jul-17	NT	NT	NT	NT	NT	NT	NM	416.96	
29-Mar-18	0.38	0.3	0.72	2.27	14	1.6	NM	414.68	
07-Sep-18	0.61	0.91	0.51	1.92	7.4	2.4	NM	418.68	
13-Mar-19	0.11	0.011	0.39	1.05	5.8	1.2	NM	415.24	
30-Jul-19	U (0.15)	U (0.1)	0.18	0.71	2.9	1.2	NM	416.31	
04-Aug-20	0.114	0.000683	0.123	0.124	0.712	1.07	77	419.57	
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA	

* Event dates that sampling did not occur on have been removed from this chart.

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev			
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)			
30-May-01	U	U	U	U	U	U	NM	413.54			
13-Dec-01	U	U	U	U	U	U	NM	413.26			
01-May-02	NT	NT	NT	NT	NT	NT	NM	NM			
19-Aug-02	U (0.0005)	U (0.002)	U (0.002)	U (0.002)	U (0.09)	U (0.505)	NM	417.93			
05-Nov-02	NT	NT	NT	NT	NT	NT	NM	NM			
04-Aug-20	NT	NT	NT	NT	NT	NT	NM	NM			
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA			
*0											

Monitoring Well G-6

*Ground Water monitoring did not occurred between November 05, 2002 to August 03, 2020

Monitoring Well G-9

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)
07-Nov-03	U (0.0005)	U (0.0005)	U (0.0005)	U (0.001)	U (0.08)	U (0.32)	NM	NM
08-Mar-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.001)	U (0.05)	U (0.37)	NM	414.96
15-Sep-04	U (0.0005)	U (0.0005)	U (0.0005)	U (0.0015)	U (0.05)	U (0.385)	NM	416.62
10-Jan-05	NT	NT	NT	NT	NT	NT	NM	NM
04-Aug-20	NT	NT	NT	NT	NT	NT	NM	NM
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

*Ground Water monitoring did not occurred between January 10, 2005 to August 04, 2020

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)
10-Oct-12	0.0425	15.4	3.08	16.7	175	10.8	NM	416.29
21-Feb-13	0.0251	7.25	2.14	11.3	69.9	10.7	NM	414.27
13-Aug-13	0.0432	12.2	1.80	10.4	39.9	9.27	NM	416.55
24-Sep-13	0.0246	6.09	0.942	6.83	27.2	12.6	NM	NM
19-Nov-13	0.0213	2.83	0.593	5.09	14.7	17.5	NM	415.53
19-Mar-14	0.0268	0.201	0.568	2.55	11.9	13.2	NM	414.37
31-Jul-14	U (0.0005)	0.15	0.084	0.51	1.8	1.7	NM	419.58
03-Mar-15	0.055	0.68	0.096	1.6	8.4	1.5	NM	402.63
27-Jul-15	0.084	0.770	0.360	2.9	12.0	5.2	NM	
23-Feb-16	U (0.001)	0.93	0.2	1.80	9.8	1.3	NM	414.75
06-Oct-16	0.0067	0.33	U (0.001)	0.71	3.5	0.74	NM	417.91
16-Mar-17	NT	NT	NT	NT	NT	NT	NM	NM
07-Jul-17	0.0087	0.69	0.45	2.73	12	3.3	NM	417.04
06-Sep-17	0.0050	0.74	0.270	2.000	7.6	0.92	NM	NM
07-Jul-17	NT	NT	NT	NT	NT	NT	NM	NM
29-Mar-18	NT	NT	NT	NT	NT	NT	NM	NM
07-Sep-18	0.00072	0.23	0.2	2.06	4.7	1.2	NM	413.04
13-Mar-19	NT	NT	NT	NT	NT	NT	NM	415.16
30-Jul-19	U (0.15)	0.4	0.23	1.55	6.1	1.1	NM	415.38
24-Oct-19	(0.003) U	0.038	0.15	1.49	4.3	1.4	NM	NM
04-Aug-20	0.000539	0.1	0.131	1.32	2.81	1.23	47.2	417
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Remediation Well RM-1

	Remediation Well RM-2												
	Benzene	Toluene	Ethylbenzene	Xylenes	GRO DRO		Sodium	GW Elev					
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)					
29-Aug-19	0.00179	0.00209	0.0157	0.0666	0.479	0.384 J	22.9	NM					
24-Oct-19	0.0046	0.058	0.089	0.342	2.00	0.45	32.0	NM					
04-Aug-20	U (0.001)	U (0.001)	0.000505	0.000565	0.0135	U (0.800)	24.2	NM					
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA					

Monitoring Well MW 17-1

	Benzene	Toluene	Ethylbenzene	e Xylenes GRO		DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L	(feet)
29-Mar-18	2.9	6.6	1.2	8.5 U (100)		6	NM	NM
07-Sep-18	0.18	26	3.3	18 80		4.8	NM	NM
14-Mar-19	3	7.4	1.7	7.4	7.4 47		NM	415.28
30-Jul-19	0.36	9.2	3.4	14.9	14.9 88		NM	416.35
04-Aug-20	0.126	22.5	3.47	13.8	61.1	2.78	56	419.63
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Monitoring Well MW 17-2

	Benzene	Toluene	Ethylbenzene	Xylenes GRO		DRO	Sodium	GW Elev
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L)		mg/L	(feet)
29-Mar-18	U (0.30)	2.7	U (0.30)	2.11	22	12	NM	NM
07-Sep-18	0.18	3.2	0.66	4.5	17	15	NM	NM
14-Mar-19	0.047	0.94	0.094	1.49	4.2	10	NM	415.28
29-Jul-19	U (0.15)	1.8	0.5	3.9	16	8.5	NM	416.35
04-Aug-20	0.0505	0.477	0.2	1.91	5.03	20.5	91.4	419.67
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5	NA	NA

Key:

* - Elevation may be biased due to presence of ice plug.

DRO - diesel range organics

GCLs - ground water cleanup levels

GRO - gasoline range organics

J - The identification of the analyte is acceptable; the reported value is an estimate.

mg/L - milligram per liter

NA - not applicable

NT - not tested

NM - not measured

U - Undetected above practical quantitation limit.

Bold, shade indicates concentration exceeds the GCL or, if not detected, the practical quantitation limit exceeds the GCL

APPENDIX E

Laboratory Analytical Report and ADEC Laboratory Data Review Checklist

ANALYTICAL REPORT

Stantec - Anchorage, AK - Speedway

Sample Delivery Group:

Samples Received:

Project Number: Description:

Site:

Report To:

08/06/2020 Speedway 5315 0005315

L1247400

Mr. John Marshall 725 E Fireweed Lane

Suite 200 Anchorage, AK 99503 Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

ELE

Craig Cothron Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: Stantec - Anchorage, AK - Speedway PROJECT:

SDG: L1247400

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
G-01 L1247400-01	6
G-05 L1247400-02	7
MW-10 L1247400-03	8
MW-11 L1247400-04	9
MW-12 L1247400-05	10
MW-13 L1247400-06	11
MW17-01 L1247400-07	12
MW17-02 L1247400-08	13
RM-01 L1247400-09	14
RM-02 L1247400-10	15
DUP1 L1247400-11	16
Qc: Quality Control Summary	17
Metals (ICP) by Method 6010C	17
Volatile Organic Compounds (GC) by Method AK101	18
Volatile Organic Compounds (GC/MS) by Method 8260C	20
Semi-Volatile Organic Compounds (GC) by Method AK102	27
GI: Glossary of Terms	29
Al: Accreditations & Locations	30
Sc: Sample Chain of Custody	31

SDG: L1247400

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Cn

Sr

Qc

GI

Â

Sc

G-01 L1247400-01 GW			Collected by EF/LP	Collected date/time 08/03/20 12:48	Received da 08/06/20 09	ite/time):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 19:54	EL	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method AK101	WG1522625	1	08/08/20 12:21	08/08/20 12:21	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1523090	1	08/09/20 19:39	08/09/20 19:39	JHH	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1	08/13/20 09:08	08/14/20 07:25	KME	Mt. Juliet, TI
G-05 L1247400-02 GW			Collected by EF/LP	Collected date/time 08/04/20 10:20	Received da 08/06/20 09	te/time 9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 19:57	EL	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method AK101	WG1522625	1	08/08/20 12:45	08/08/20 12:45	BMB	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1523161	1	08/10/20 05:42	08/10/20 05:42	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1	08/13/20 09:08	08/14/20 07:45	KME	Mt. Juliet, Ti
MW-10 11247400-03 GW			Collected by EF/LP	Collected date/time 08/04/20 11:25	Received da 08/06/20 09	ite/time 9:00
	Batch	Dilution	Proparation	Analysis	Analyst	Location
ALCHIOU	Daten	Dilution	date/time	date/time	AndiySt	LUCATION
Metals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 19:59	EL	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method AK101	WG1522933	20	08/10/20 18:24	08/10/20 18:24	ACG	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1523161	1	08/10/20 06:02	08/10/20 06:02	JCP	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1524680	20	08/12/20 17:16	08/12/20 17:16	JHH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1	08/13/20 09:08	08/14/20 08:05	KME	Mt. Juliet, TI
MW-11 L1247400-04 GW			Collected by EF/LP	Collected date/time 08/04/20 11:15	Received da 08/06/20 09	ite/time 9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	-)	
Metals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 20:02	EL	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method AK101	WG1522933	20	08/10/20 18:48	08/10/20 18:48	ACG	Mt. Juliet, Ti
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1523161	1	08/10/20 06:22	08/10/20 06:22	JCP	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1524680	20	08/12/20 17:35	08/12/20 17:35	JHH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1.05	08/13/20 09:08	08/14/20 08:25	KME	Mt. Juliet, TI
MW-12 L1247400-05 GW			Collected by EF/LP	Collected date/time 08/03/20 13:55	Received da 08/06/20 09	ite/time 9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010C	WG1522254	1	08/09/20 11.50	08/10/20 20:05	FI	Mt. Juliet TI
/olatile Organic Compounds (GC) by Method AK101	WG1522625	1	08/08/20 13:58	08/08/20 13:58	BMB	Mt. Juliet T
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1523161	1	08/10/20 06.42	08/10/20 06.42	JCP	Mt. Juliet TI
Semi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1	08/13/20 09:08	08/14/20 08:45	KME	Mt. Juliet, TI
					_	
MW-13 1247400-06 GW			Collected by EF/LP	Collected date/time 08/03/20 16:39	Received da 08/06/20 09	ite/time):00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 20:07	EL	Mt. Juliet, Ti
Iolatile Organic Compounds (GC) by Method AK101	WG1522625	1	08/08/20 14:22	08/08/20 14:22	BMB	Mt. Juliet, TI
	11/04500407		0.0 /4.0 /0.0 0.4 40	00/10/00 01 10		
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1523167	1	08/10/20 04:43	08/10/20 04:43	JCP	Mt. Juliet, TN

ACCOUNT: Stantec - Anchorage, AK - Speedway PROJECT:

SDG: L1247400

L 00

DATE/TIME: 08/26/20 09:38 PAGE: 3 of 32

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW17-01 L1247400-07 GW			Collected by EF/LP	Collected date/time 08/04/20 16:46	Received da 08/06/20 09	te/time 9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 20:15	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method AK101	WG1522933	250	08/10/20 19:13	08/10/20 19:13	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1523167	25	08/10/20 09:34	08/10/20 09:34	JCP	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1524930	1000	08/12/20 23:35	08/12/20 23:35	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1	08/13/20 09:08	08/14/20 09:26	KME	Mt. Juliet, TN
MW17-02 L1247400-08 GW			Collected by EF/LP	Collected date/time 08/04/20 15:35	Received da 08/06/20 09	te/time):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Aetals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 20:18	EL	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method AK101	WG1522933	20	08/10/20 19:37	08/10/20 19:37	ACG	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260C	WG1523318	1	08/10/20 11:26	08/10/20 11:26	JCP	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260C	WG1524247	25	08/12/20 00:23	08/12/20 00:23	ADM	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	5	08/13/20 09:08	08/14/20 17:59	KME	Mt. Juliet, TN
RM-01 L1247400-09 GW			Collected by EF/LP	Collected date/time 08/04/20 12:05	ime Received date/time 08/06/20 09:00	
Nethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Ietals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 20:21	EL	Mt. Juliet, TI
olatile Organic Compounds (GC) by Method AK101	WG1522933	10	08/10/20 20:01	08/10/20 20:01	ACG	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260C	WG1523318	1	08/10/20 11:46	08/10/20 11:46	JCP	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260C	WG1524247	20	08/12/20 00:03	08/12/20 00:03	ADM	Mt. Juliet, II
emi-Volatile Organic Compounds (GC) by Method AK102	WG1526958	1	08/16/20 15:28	08/18/20 01:56	CAG	Mt. Juliet, T
RM-02 L1247400-10 GW			Collected by EF/LP	Collected date/time 08/04/20 12:35	Received da 08/06/20 09	te/time):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Netals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 20:23	EL	Mt. Juliet, Tl
olatile Organic Compounds (GC) by Method AK101	WG1522933	1	08/10/20 18:00	08/10/20 18:00	ACG	Mt. Juliet, Ti
olatile Organic Compounds (GC/MS) by Method 8260C	WG1523318	1	08/10/20 12:06	08/10/20 12:06	JCP	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260C	WG1524247	1	08/11/20 23:23	08/11/20 23:23	ADM	Mt. Juliet, Ti
emi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1	08/13/20 09:08	08/14/20 10:26	KME	Mt. Juliet, Ti
DUP1 L1247400-11 GW			Collected by EF/LP	Collected date/time 08/04/20 00:00	time Received date/time 0 08/06/20 09:00	
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Ietals (ICP) by Method 6010C	WG1522254	1	08/09/20 11:50	08/10/20 20:26	EL	Mt. Juliet, Tl
olatile Organic Compounds (GC) by Method AK101	WG1522933	250	08/10/20 20:25	08/10/20 20:25	ACG	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260C	WG1523318	25	08/10/20 16:31	08/10/20 16:31	JCP	Mt. Juliet, Tl
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1524247	500	08/12/20 00:43	08/12/20 00:43	ADM	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method AK102	WG1523441	1	08/13/20 09:08	08/14/20 10:46	KMF	Mt. Juliet. TN

SDG: L1247400

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Craig Cothron Project Manager

SDG: L1247400 DATE/TIME: 08/26/20 09:38

PAGE: 5 of 32

SAMPLE RESULTS - 01 L1247400

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	66.4		1.40	3.00	1	08/10/2020 19:54	WG1522254	⁻Tc

Volatile Organic Compounds (GC) by Method AK101

Volatile Organic Compounds (GC) by Method AK101									³Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			4 Cn
TPHGAK C6 to C10	0.0109	J	0.0100	0.100	1	08/08/2020 12:21	WG1522625		CII
(S) a,a,a-Trifluorotoluene(FID)	102			50.0-150		08/08/2020 12:21	WG1522625		⁵ Sr
(S) a,a,a-Trifluorotoluene(PID)	100			79.0-125		08/08/2020 12:21	WG1522625		
									°Qc

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	GI
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.000817	J	0.0000941	0.00100	1	08/09/2020 19:39	WG1523090	8
Toluene	U		0.000278	0.00100	1	08/09/2020 19:39	<u>WG1523090</u>	AI
Ethylbenzene	U		0.000137	0.00100	1	08/09/2020 19:39	WG1523090	
Total Xylenes	U		0.000174	0.00300	1	08/09/2020 19:39	<u>WG1523090</u>	Sc
(S) Toluene-d8	97.6			80.0-120		08/09/2020 19:39	WG1523090	
(S) 4-Bromofluorobenzene	95.9			77.0-126		08/09/2020 19:39	<u>WG1523090</u>	
(S) 1,2-Dichloroethane-d4	99.0			70.0-130		08/09/2020 19:39	WG1523090	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	U		0.229	0.800	1	08/14/2020 07:25	WG1523441
(S) o-Terphenyl	70.7			50.0-150		08/14/2020 07:25	WG1523441

SAMPLE RESULTS - 02 L1247400

Metals (ICP) by Method 6010C

								I Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	77.0		1.40	3.00	1	08/10/2020 19:57	WG1522254	Tc

Volatile Organic Compounds (GC) by Method AK101

Volatile Organic Compounds (GC) by Method AK101									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			4 Cn
TPHGAK C6 to C10	0.712		0.0100	0.100	1	08/08/2020 12:45	WG1522625		CII
(S) a,a,a-Trifluorotoluene(FID)	95.4			50.0-150		08/08/2020 12:45	WG1522625		⁵Sr
(S) a,a,a-Trifluorotoluene(PID)	103			79.0-125		08/08/2020 12:45	WG1522625		
									⁶ Qc

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.114		0.0000941	0.00100	1	08/10/2020 05:42	WG1523161	8
Toluene	0.000683	J	0.000278	0.00100	1	08/10/2020 05:42	WG1523161	AI
Ethylbenzene	0.123		0.000137	0.00100	1	08/10/2020 05:42	WG1523161	
Total Xylenes	0.124		0.000174	0.00300	1	08/10/2020 05:42	WG1523161	Sc
(S) Toluene-d8	87.3			80.0-120		08/10/2020 05:42	WG1523161	
(S) 4-Bromofluorobenzene	93.3			77.0-126		08/10/2020 05:42	WG1523161	
(S) 1,2-Dichloroethane-d4	89.7			70.0-130		08/10/2020 05:42	WG1523161	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	1.07		0.229	0.800	1	08/14/2020 07:45	WG1523441
(S) o-Terphenyl	71.3			50.0-150		08/14/2020 07:45	WG1523441

SAMPLE RESULTS - 03 L1247400

Metals (ICP) by Method 6010C

									Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/l		mg/l	mg/l		date / time			2
Sodium	60.0		1.40	3.00	1	08/10/2020 19:59	WG1522254		Tc

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
TPHGAK C6 to C10	4.20		0.200	2.00	20	08/10/2020 18:24	WG1522933
(S) a,a,a-Trifluorotoluene(FID)	101			50.0-150		08/10/2020 18:24	WG1522933
(S) a.a.a.Trifluorotoluene(PID)	97.6			79.0-125		08/10/2020 18:24	WG1522933

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 G
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.0577		0.0000941	0.00100	1	08/10/2020 06:02	WG1523161	8
Toluene	0.142		0.000278	0.00100	1	08/10/2020 06:02	WG1523161	AI
Ethylbenzene	0.597		0.00274	0.0200	20	08/12/2020 17:16	WG1524680	
Total Xylenes	1.89		0.00348	0.0600	20	08/12/2020 17:16	WG1524680	Sc
(S) Toluene-d8	87.3			80.0-120		08/10/2020 06:02	WG1523161	
(S) Toluene-d8	108			80.0-120		08/12/2020 17:16	WG1524680	
(S) 4-Bromofluorobenzene	96.4			77.0-126		08/10/2020 06:02	WG1523161	
(S) 4-Bromofluorobenzene	101			77.0-126		08/12/2020 17:16	WG1524680	
(S) 1,2-Dichloroethane-d4	91.5			70.0-130		08/10/2020 06:02	WG1523161	
(S) 1,2-Dichloroethane-d4	107			70.0-130		08/12/2020 17:16	WG1524680	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	1.90		0.229	0.800	1	08/14/2020 08:05	WG1523441
(S) o-Terphenyl	71.5			50.0-150		08/14/2020 08:05	WG1523441

SAMPLE RESULTS - 04 L1247400

.

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	C
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	90.6		1.40	3.00	1	08/10/2020 20:02	WG1522254	¯Тс

Volatile Organic Compounds (GC) by Method AK101

Volatile Organic Compounds (GC) by Method AK101									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			4 Cn
TPHGAK C6 to C10	5.63		0.200	2.00	20	08/10/2020 18:48	WG1522933		CII
(S) a,a,a-Trifluorotoluene(FID)	97.7			50.0-150		08/10/2020 18:48	WG1522933		⁵Sr
(S) a a a Triffuorotoluono/PID)	99.7			79.0-125		08/10/2020 18:48	WG1522933		
a,a,a-minaoroloidene(FID)									⁶ Qc

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.0570		0.0000941	0.00100	1	08/10/2020 06:22	WG1523161	8
Toluene	0.00403		0.000278	0.00100	1	08/10/2020 06:22	WG1523161	AI
Ethylbenzene	0.434		0.00274	0.0200	20	08/12/2020 17:35	WG1524680	
Total Xylenes	1.75		0.00348	0.0600	20	08/12/2020 17:35	WG1524680	Sc
(S) Toluene-d8	91.3			80.0-120		08/10/2020 06:22	WG1523161	
(S) Toluene-d8	107			80.0-120		08/12/2020 17:35	WG1524680	
(S) 4-Bromofluorobenzene	95.4			77.0-126		08/10/2020 06:22	WG1523161	
(S) 4-Bromofluorobenzene	101			77.0-126		08/12/2020 17:35	WG1524680	
(S) 1,2-Dichloroethane-d4	89.2			70.0-130		08/10/2020 06:22	WG1523161	
(S) 1,2-Dichloroethane-d4	106			70.0-130		08/12/2020 17:35	WG1524680	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	3.51		0.240	0.840	1.05	08/14/2020 08:25	WG1523441
(S) o-Terphenyl	75.1			50.0-150		08/14/2020 08:25	WG1523441

SAMPLE RESULTS - 05 L1247400

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	48.7		1.40	3.00	1	08/10/2020 20:05	WG1522254	Tc

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
TPHGAK C6 to C10	1.23		0.0100	0.100	1	08/08/2020 13:58	WG1522625
(S) a,a,a-Trifluorotoluene(FID)	100			50.0-150		08/08/2020 13:58	WG1522625
(S) a.a.a-Trifluorotoluene(PID)	100			79.0-125		08/08/2020 13:58	WG1522625

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.000353	J	0.0000941	0.00100	1	08/10/2020 06:42	WG1523161	8
Toluene	0.0364		0.000278	0.00100	1	08/10/2020 06:42	WG1523161	AI
Ethylbenzene	0.0538		0.000137	0.00100	1	08/10/2020 06:42	WG1523161	
Total Xylenes	0.487		0.000174	0.00300	1	08/10/2020 06:42	WG1523161	Sc
(S) Toluene-d8	83.0			80.0-120		08/10/2020 06:42	WG1523161	
(S) 4-Bromofluorobenzene	87.2			77.0-126		08/10/2020 06:42	WG1523161	
(S) 1,2-Dichloroethane-d4	86.6			70.0-130		08/10/2020 06:42	WG1523161	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	0.852		0.229	0.800	1	08/14/2020 08:45	WG1523441
(S) o-Terphenyl	72.2			50.0-150		08/14/2020 08:45	WG1523441

SAMPLE RESULTS - 06 L1247400

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	49.6		1.40	3.00	1	08/10/2020 20:07	WG1522254	Tc

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
TPHGAK C6 to C10	1.01		0.0100	0.100	1	08/08/2020 14:22	WG1522625
(S) a,a,a-Trifluorotoluene(FID)	101			50.0-150		08/08/2020 14:22	WG1522625
(S)	102			79.0-125		08/08/2020 14:22	WG1522625

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.000323	J	0.0000941	0.00100	1	08/10/2020 04:43	WG1523167	8
Toluene	0.0351		0.000278	0.00100	1	08/10/2020 04:43	WG1523167	AI
Ethylbenzene	0.0439		0.000137	0.00100	1	08/10/2020 04:43	WG1523167	
Total Xylenes	0.454		0.000174	0.00300	1	08/10/2020 04:43	WG1523167	Sc
(S) Toluene-d8	97.3			80.0-120		08/10/2020 04:43	WG1523167	
(S) 4-Bromofluorobenzene	94.9			77.0-126		08/10/2020 04:43	WG1523167	
(S) 1,2-Dichloroethane-d4	97.0			70.0-130		08/10/2020 04:43	WG1523167	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	0.554	J	0.229	0.800	1	08/14/2020 09:05	WG1523441
(S) o-Terphenyl	63.7			50.0-150		08/14/2020 09:05	WG1523441

SAMPLE RESULTS - 07 L1247400

.

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 C
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	56.0		1.40	3.00	1	08/10/2020 20:15	WG1522254	Tc

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
TPHGAK C6 to C10	61.1		2.50	25.0	250	08/10/2020 19:13	WG1522933
(S) a,a,a-Trifluorotoluene(FID)	102			50.0-150		08/10/2020 19:13	WG1522933
(S) a.a.a-Trifluorotoluene(PID)	99.3			79.0-125		08/10/2020 19:13	WG1522933

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	7	GI
Analyte	mg/l		mg/l	mg/l		date / time			
Benzene	0.126		0.00235	0.0250	25	08/10/2020 09:34	WG1523167	8,	<u> </u>
Toluene	22.5		0.278	1.00	1000	08/12/2020 23:35	WG1524930		AI
Ethylbenzene	3.47		0.00343	0.0250	25	08/10/2020 09:34	WG1523167		
Total Xylenes	13.8		0.00435	0.0750	25	08/10/2020 09:34	WG1523167	"S	Sc
(S) Toluene-d8	99.1			80.0-120		08/10/2020 09:34	WG1523167		
(S) Toluene-d8	93.9			80.0-120		08/12/2020 23:35	WG1524930		
(S) 4-Bromofluorobenzene	100			77.0-126		08/10/2020 09:34	WG1523167		
(S) 4-Bromofluorobenzene	95.2			77.0-126		08/12/2020 23:35	WG1524930		
(S) 1,2-Dichloroethane-d4	97.8			70.0-130		08/10/2020 09:34	WG1523167		
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		08/12/2020 23:35	WG1524930		

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	2.78		0.229	0.800	1	08/14/2020 09:26	WG1523441
(S) o-Terphenyl	60.0			50.0-150		08/14/2020 09:26	WG1523441

SAMPLE RESULTS - 08 L1247400

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	91.4		1.40	3.00	1	08/10/2020 20:18	WG1522254	Tc

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
TPHGAK C6 to C10	5.03		0.200	2.00	20	08/10/2020 19:37	WG1522933
(S) a,a,a-Trifluorotoluene(FID)	102			50.0-150		08/10/2020 19:37	WG1522933
(S) a.a.a-Trifluorotoluene(PID)	98.9			79.0-125		08/10/2020 19:37	WG1522933

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 G
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.0505		0.0000941	0.00100	1	08/10/2020 11:26	WG1523318	8
Toluene	0.477		0.00695	0.0250	25	08/12/2020 00:23	WG1524247	AI
Ethylbenzene	0.236		0.00343	0.0250	25	08/12/2020 00:23	WG1524247	
Total Xylenes	1.91		0.00435	0.0750	25	08/12/2020 00:23	WG1524247	Sc
(S) Toluene-d8	109			80.0-120		08/10/2020 11:26	WG1523318	
(S) Toluene-d8	107			80.0-120		08/12/2020 00:23	WG1524247	
(S) 4-Bromofluorobenzene	106			77.0-126		08/10/2020 11:26	WG1523318	
(S) 4-Bromofluorobenzene	105			77.0-126		08/12/2020 00:23	WG1524247	
(S) 1,2-Dichloroethane-d4	88.0			70.0-130		08/10/2020 11:26	WG1523318	
(S) 1,2-Dichloroethane-d4	119			70.0-130		08/12/2020 00:23	WG1524247	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	20.5		1.15	4.00	5	08/14/2020 17:59	WG1523441
(S) o-Terphenyl	63.8			50.0-150		08/14/2020 17:59	WG1523441

SAMPLE RESULTS - 09 L1247400

Metals (ICP) by Method 6010C

									20
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		-
Analyte	mg/l		mg/l	mg/l		date / time		2	_
Sodium	47.2		1.40	3.00	1	08/10/2020 20:21	WG1522254	T	Ċ

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
TPHGAK C6 to C10	2.81		0.100	1.00	10	08/10/2020 20:01	WG1522933
(S) a,a,a-Trifluorotoluene(FID)	102			50.0-150		08/10/2020 20:01	WG1522933
(S) a.a.a.Trifluorotoluene(PID)	98.5			79.0-125		08/10/2020 20:01	WG1522933

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	0.000539	J	0.0000941	0.00100	1	08/10/2020 11:46	WG1523318	8
Toluene	0.0922		0.000278	0.00100	1	08/10/2020 11:46	WG1523318	AI
Ethylbenzene	0.131		0.000137	0.00100	1	08/10/2020 11:46	WG1523318	
Total Xylenes	1.32		0.00348	0.0600	20	08/12/2020 00:03	WG1524247	Sc
(S) Toluene-d8	106			80.0-120		08/10/2020 11:46	WG1523318	
(S) Toluene-d8	112			80.0-120		08/12/2020 00:03	WG1524247	
(S) 4-Bromofluorobenzene	103			77.0-126		08/10/2020 11:46	WG1523318	
(S) 4-Bromofluorobenzene	106			77.0-126		08/12/2020 00:03	WG1524247	
(S) 1,2-Dichloroethane-d4	86.4			70.0-130		08/10/2020 11:46	WG1523318	
(S) 1,2-Dichloroethane-d4	116			70.0-130		08/12/2020 00:03	WG1524247	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	1.23		0.229	0.800	1	08/18/2020 01:56	WG1526958
(S) o-Terphenyl	117			50.0-150		08/18/2020 01:56	WG1526958

SAMPLE RESULTS - 10 L1247400

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	24.2		1.40	3.00	1	08/10/2020 20:23	WG1522254	Tc

Volatile Organic Compounds (GC) by Method AK101

())								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		5
Sodium	24.2		1.40	3.00	1	08/10/2020 20:23	WG1522254	2
Volatile Organic C	Compound	ds (GC) by	Method A	AK101				3
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L
Analyte	mg/l		mg/l	mg/l		date / time		4
TPHGAK C6 to C10	0.0135	J	0.0100	0.100	1	08/10/2020 18:00	WG1522933	
(S) a,a,a-Trifluorotoluene(FID)	98.8			50.0-150		08/10/2020 18:00	WG1522933	5
(S) a.a.a.Trifluorotoluene(PID)	99.7			79.0-125		08/10/2020 18:00	WG1522933	
								e

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	U		0.0000941	0.00100	1	08/10/2020 12:06	WG1523318	8
Toluene	U		0.000278	0.00100	1	08/11/2020 23:23	WG1524247	AI
Ethylbenzene	0.000505	J	0.000137	0.00100	1	08/11/2020 23:23	WG1524247	
Total Xylenes	0.000565	J	0.000174	0.00300	1	08/11/2020 23:23	WG1524247	Sc
(S) Toluene-d8	105			80.0-120		08/10/2020 12:06	WG1523318	
(S) Toluene-d8	111			80.0-120		08/11/2020 23:23	WG1524247	
(S) 4-Bromofluorobenzene	102			77.0-126		08/10/2020 12:06	WG1523318	
(S) 4-Bromofluorobenzene	103			77.0-126		08/11/2020 23:23	WG1524247	
(S) 1,2-Dichloroethane-d4	86.0			70.0-130		08/10/2020 12:06	WG1523318	
(S) 1,2-Dichloroethane-d4	115			70.0-130		08/11/2020 23:23	WG1524247	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	U		0.229	0.800	1	08/14/2020 10:26	WG1523441
(S) o-Terphenyl	74.5			50.0-150		08/14/2020 10:26	WG1523441

SAMPLE RESULTS - 11 L1247400

Metals (ICP) by Method 6010C

· · · · · ·								 1° Cr
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		2
Sodium	55.9		1.40	3.00	1	08/10/2020 20:26	WG1522254	Tc

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
TPHGAK C6 to C10	61.5		2.50	25.0	250	08/10/2020 20:25	WG1522933
(S) a,a,a-Trifluorotoluene(FID)	101			50.0-150		08/10/2020 20:25	WG1522933
(S) a.a.a-Trifluorotoluene(PID)	98.9			79.0-125		08/10/2020 20:25	WG1522933

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	7	GI
Analyte	mg/l		mg/l	mg/l		date / time		L	
Benzene	0.114		0.00235	0.0250	25	08/10/2020 16:31	WG1523318	8	A 1
Toluene	22.2		0.139	0.500	500	08/12/2020 00:43	WG1524247	/	AI
Ethylbenzene	3.82		0.00343	0.0250	25	08/10/2020 16:31	WG1523318		
Total Xylenes	14.7		0.0870	1.50	500	08/12/2020 00:43	WG1524247	9.	Sc
(S) Toluene-d8	106			80.0-120		08/10/2020 16:31	WG1523318		
(S) Toluene-d8	115			80.0-120		08/12/2020 00:43	WG1524247		
(S) 4-Bromofluorobenzene	102			77.0-126		08/10/2020 16:31	WG1523318		
(S) 4-Bromofluorobenzene	106			77.0-126		08/12/2020 00:43	WG1524247		
(S) 1,2-Dichloroethane-d4	88.4			70.0-130		08/10/2020 16:31	WG1523318		
(S) 1,2-Dichloroethane-d4	113			70.0-130		08/12/2020 00:43	WG1524247		

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
AK102 DRO C10-C25	4.94		0.229	0.800	1	08/14/2020 10:46	WG1523441
(S) o-Terphenyl	78.3			50.0-150		08/14/2020 10:46	WG1523441

WG1522254

Method Blank (MB)

Analyte

Sodium

Analyte

Sodium

Metals (ICP) by Method 6010C

(MB) R3558398-1 08/10/20 19:11

(LCS) R3558398-2 08/10/20 19:14

MB Result

Spike Amount LCS Result

mg/l

10.0

mg/l

mg/l

10.0

U

Laboratory Control Sample (LCS)

MB Qualifier

MB MDL

LCS Rec.

%

100

mg/l

1.40

QUALITY CONTROL SUMMARY

¹Cp

² Tc	
³Ss	
⁴ Cn	

Sc

L1247212-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

MB RDL

mg/l

3.00

Rec. Limits

80.0-120

%

(OS) L1247212-01 08/10/20 19:16 • (MS) R3558398-4 08/10/20 19:21 • (MSD) R3558398-5 08/10/20 19:24												
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sodium	10.0	23.7	33.6	33.6	98.4	98.6	1	75.0-125			0.0627	20

LCS Qualifier

SDG: L1247400 DATE/TIME: 08/26/20 09:38

PAGE: 17 of 32 Volatile Organic Compounds (GC) by Method AK101

QUALITY CONTROL SUMMARY L1247400-01,02,05,06

¹Cp

Sr

°Sc

Method Blank (MB)

(MB) R3557805-3 08/08	3/20 09:09				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
TPHGAK C6 to C10	U		0.0100	0.100	
(S) a,a,a-Trifluorotoluene(PID)	99.9			79.0-125	³Ss
(S) a,a,a-Trifluorotoluene(FID)	102			60.0-120	⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3557805-2 08/08/	(LCS) R3557805-2 08/08/20 08:00 • (LCSD) R3557805-5 08/08/20 18:25													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		⁶ Qc		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%				
TPHGAK C6 to C10	0.400	0.375	0.387	93.8	96.8	60.0-120			3.15	20		7		
(S) a,a,a-Trifluorotoluene(PID)				100	101	79.0-125						G		
(S) a,a,a-Trifluorotoluene(FID)				104	104	60.0-120						⁸ Al		

WG1522933

Volatile Organic Compounds (GC) by Method AK101

QUALITY CONTROL SUMMARY L1247400-03,04,07,08,09,10,11

ONE LAB. NATIONWIDE.

Sr

°Sc

Method Blank (MB)

	<i>)</i>				1 Cn
(MB) R3559572-3 08/10/	/20 15:42				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
TPHGAK C6 to C10	U		0.0100	0.100	
(S) a,a,a-Trifluorotoluene(PID)	100			79.0-125	³ Ss
(S) a,a,a-Trifluorotoluene(FID)	100			60.0-120	⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3559572-1 08/10/20 14:35 • (LCSD) R3559572-5 08/10/20 21:13												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		⁶ Qc
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
TPHGAK C6 to C10	0.400	0.401	0.408	100	102	60.0-120			1.73	20		7
(S) a,a,a-Trifluorotoluene(PID)				98.2	97.1	79.0-125						G
(S) a,a,a-Trifluorotoluene(FID)				101	100	60.0-120						⁸ Al

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3558654-4 08/09/	20 18:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100
Ethylbenzene	U		0.000137	0.00100
Toluene	U		0.000278	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	99.2			80.0-120
(S) 4-Bromofluorobenzene	102			77.0-126
(S) 1,2-Dichloroethane-d4	99.1			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3558654-1 08/09/	20 17:02 • (LCS	D) R3558654	-2 08/09/2017	2:22							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	΄GΙ
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00469	0.00480	93.8	96.0	70.0-123			2.32	20	8
Ethylbenzene	0.00500	0.00487	0.00491	97.4	98.2	79.0-123			0.818	20	A
Toluene	0.00500	0.00441	0.00466	88.2	93.2	79.0-120			5.51	20	9
Xylenes, Total	0.0150	0.0145	0.0153	96.7	102	79.0-123			5.37	20	Sc
(S) Toluene-d8				95.5	97.9	80.0-120					
(S) 4-Bromofluorobenzene				98.7	101	77.0-126					
(S) 1,2-Dichloroethane-d4				102	101	70.0-130					

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Qc

Method Blank (MB)

(MB) R3558992-3 08/10/20 00:34										
	MB Result	MB Qualifier	MB MDL	MB RDL		2				
Analyte	mg/l		mg/l	mg/l		Tc				
Benzene	U		0.0000941	0.00100						
Ethylbenzene	U		0.000137	0.00100		³ Ss				
Toluene	U		0.000278	0.00100						
Xylenes, Total	U		0.000174	0.00300		4				
(S) Toluene-d8	93.8			80.0-120		Cn				
(S) 4-Bromofluorobenzene	91.7			77.0-126						
(S) 1,2-Dichloroethane-d4	96.0			70.0-130		⁵Sr				

Laboratory Control Sample (LCS)

(LCS) R3558992-1 08/09	/20 23:33					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	΄GΙ
Analyte	mg/l	mg/l	%	%		
Benzene	0.00500	0.00540	108	70.0-123		⁸ A I
Ethylbenzene	0.00500	0.00492	98.4	79.0-123		AI
Toluene	0.00500	0.00475	95.0	79.0-120		Q
Xylenes, Total	0.0150	0.0139	92.7	79.0-123		Sc
(S) Toluene-d8			90.8	80.0-120		
(S) 4-Bromofluorobenzene			93.3	77.0-126		
(S) 1,2-Dichloroethane-d4			90.3	70.0-130		

SDG: L1247400
QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Qc

Method Blank (MB)

Method Blank (MD)				1 Cn
(MB) R3559162-3 08/10/2	20 03:16				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Benzene	U		0.0000941	0.00100	
Ethylbenzene	U		0.000137	0.00100	³ Ss
Toluene	U		0.000278	0.00100	00
Xylenes, Total	U		0.000174	0.00300	4
(S) Toluene-d8	98.5			80.0-120	Cn
(S) 4-Bromofluorobenzene	97.4			77.0-126	
(S) 1,2-Dichloroethane-d4	98.0			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3559162-1 08/10/	20 02:18					,,
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/l	mg/l	%	%		
Benzene	0.00500	0.00434	86.8	70.0-123	8	Δ
Ethylbenzene	0.00500	0.00444	88.8	79.0-123		AI
Toluene	0.00500	0.00425	85.0	79.0-120		4
Xylenes, Total	0.0150	0.0136	90.7	79.0-123		Sc
(S) Toluene-d8			97.7	80.0-120		
(S) 4-Bromofluorobenzene			100	77.0-126		
(S) 1,2-Dichloroethane-d4			101	70.0-130		

SDG: L1247400 DATE/TIME: 08/26/20 09:38

QUALITY CONTROL SUMMARY L1247400-08,09,10,11

Sr

Method Blank (MB)

Method Blank (ME)					1 Cn				
(MB) R3558750-2 08/10/20 08:41										
	MB Result	MB Qualifier	MB MDL	MB RDL		2				
Analyte	mg/l		mg/l	mg/l		Tc				
Benzene	U		0.0000941	0.00100						
Ethylbenzene	U		0.000137	0.00100		³ SS				
Toluene	U		0.000278	0.00100						
(S) Toluene-d8	106			80.0-120		4				
(S) 4-Bromofluorobenzene	99.6			77.0-126		Cn				
(S) 1,2-Dichloroethane-d4	90.2			70.0-130						

Laboratory Control Sample (LCS)

Eaboratory contro		(0,0)				6
(LCS) R3558750-1 08/10/	20 08:00					- QC
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	7
Analyte	mg/l	mg/l	%	%		΄GΙ
Benzene	0.00500	0.00471	94.2	70.0-123		_
Ethylbenzene	0.00500	0.00541	108	79.0-123		8
Toluene	0.00500	0.00515	103	79.0-120		AI
(S) Toluene-d8			108	80.0-120		
(S) 4-Bromofluorobenzene			104	77.0-126		Sc
(S) 1,2-Dichloroethane-d4			88.1	70.0-130		

DATE/TIME: 08/26/20 09:38

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

Method Blank (MB)

Method Blank (IV	10)				1 cm
(MB) R3559158-2 08/1	1/20 18:13				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Ethylbenzene	U		0.000137	0.00100	
Toluene	U		0.000278	0.00100	³ Ss
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	107			80.0-120	4
(S) 4-Bromofluorobenzer	ne 98.2			77.0-126	Cn
(S) 1,2-Dichloroethane-d	4 108			70.0-130	L

Laboratory Control Sample (LCS)

Eaboratory contro		CO)				6
(LCS) R3559158-1 08/11/2	0 17:32					Qc
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	7
Analyte	mg/l	mg/l	%	%		[′] Gl
Ethylbenzene	0.00500	0.00429	85.8	79.0-123		
Toluene	0.00500	0.00460	92.0	79.0-120		8 1
Xylenes, Total	0.0150	0.0135	90.0	79.0-123		AI
(S) Toluene-d8			109	80.0-120		9
(S) 4-Bromofluorobenzene			109	77.0-126		Sc
(S) 1,2-Dichloroethane-d4			124	70.0-130		

SDG: L1247400 DATE/TIME: 08/26/20 09:38

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

Qc

GI

A

Sc

Method Blank (MB)

Method Blank (MB)				1 Cn
(MB) R3559507-3 08/12/2	20 14:12				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Ethylbenzene	U		0.000137	0.00100	
Xylenes, Total	U		0.000174	0.00300	³ Ss
(S) Toluene-d8	110			80.0-120	
(S) 4-Bromofluorobenzene	101			77.0-126	4
(S) 1,2-Dichloroethane-d4	105			70.0-130	Cn
					-

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3559507-1 08/12/2	20 12:54 • (LCSI	D) R3559507-2	2 08/12/20 13:1	4						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Ethylbenzene	0.00500	0.00545	0.00526	109	105	79.0-123			3.55	20
Xylenes, Total	0.0150	0.0164	0.0162	109	108	79.0-123			1.23	20
(S) Toluene-d8				110	108	80.0-120				
(S) 4-Bromofluorobenzene				99.0	99.1	77.0-126				
(S) 1,2-Dichloroethane-d4				105	106	70.0-130				

DATE/TIME: 08/26/20 09:38

WG1524930

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

)							1 Cn
(MB) R3559589-3 08/12/2	20 19:32							Ср
	MB Result	MB Qualifier	MB MDL	MB RDL				2
Analyte	mg/l		mg/l	mg/l				Tc
Toluene	U		0.000278	0.00100				
(S) Toluene-d8	92.9			80.0-120			:	³ Ss
(S) 4-Bromofluorobenzene	91.6			77.0-126				
(S) 1,2-Dichloroethane-d4	96.4			70.0-130			F	4
								Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3559589-1 08/12/2	20 18:11 • (LCSD) R3559589-2	08/12/20 18:3	1						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Toluene	0.00500	0.00467	0.00485	93.4	97.0	79.0-120			3.78	20
(S) Toluene-d8				93.1	94.1	80.0-120				
(S) 4-Bromofluorobenzene				98.1	97.6	77.0-126				
(S) 1,2-Dichloroethane-d4				92.8	90.1	70.0-130				

DATE/TIME: 08/26/20 09:38 Semi-Volatile Organic Compounds (GC) by Method AK102

QUALITY CONTROL SUMMARY L1247400-01,02,03,04,05,06,07,08,10,11

Cn

GI

Method Blank (MB)

					1 Cn
(MB) R3559793-1 08/14	4/20 03:23				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
AK102 DRO C10-C25	U		0.229	0.800	
(S) o-Terphenyl	72.8			60.0-120	³ SS
					00

Laboratory Control Sample (LCS)

(LCS) R3559793-6 08	3/14/20 14:30					L
(,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/l	mg/l	%	%		l
AK102 DRO C10-C25	3.00	2.34	78.0	75.0-125		
(S) o-Terphenyl			78.5	60.0-120		

L1245975-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1245975-01 08/14/20 04:43 • (MS) R3559793-4 08/14/20 05:03 • (MSD) R3559793-5 08/14/20 05:24										A				
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	/	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	9	
AK102 DRO C10-C25	3.34	0.689	2.81	3.09	63.5	71.9	1.11	75.0-125	<u>J6</u>	<u>J6</u>	9.49	20	Sc	
(S) o-Terphenyl					69.0	76.9		50.0-150					L	

SDG: L1247400 DATE/TIME: 08/26/20 09:38

WG1526958

Semi-Volatile Organic Compounds (GC) by Method AK102

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Cn

Sr

°Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3560944-1 08/17/20 22:53								
Analyte	mg/l		mg/l	mg/l		Tc		
AK102 DRO C10-C25	U		0.229	0.800				
(S) o-Terphenyl	108			60.0-120		³ SS		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3560944-2 08/17/20 23:13 • (LCSD) R3560944-3 08/17/20 23:35											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
AK102 DRO C10-C25	3.00	3.24	3.23	108	108	75.0-125			0.309	20	
(S) o-Terphenyl				123	119	60.0-120	J1				

DATE/TIME: 08/26/20 09:38

GLOSSARY OF TERMS

*

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Guanner	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ^{1 4}	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ACCOUNT: Stantec - Anchorage, AK - Speedway PROJECT:

SDG: L1247400

DATE/TIME: 08/26/20 09:38

		Billing Infor	mation:		10	Analysis / Container / Preservative Chain of Cust						Chain of Custody	Page of				
Stantec - Anchorage, AK - Speedway 725 E Fireweed Lane Suite 200			Accounts PO Box 1 Springfie	ounts Payable Box 1510 ingfield, OH 45501				2	12							Pace F National Cen	nalytical [®] ther for Tasting & innovation
Anchorage AK 99503												100			ľ		
Report to: Mr. John Marshall	leport to: Email To: J Ar. John Marshall				tantec.com		A Computer	-								1206S Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585	
Project Description: Speedway 5315	City/State Fairban Collected:			aks/AK	Please Circ	cle: ET				1				The second		Phone: 800-767-585 Fax: 615-758-5859	
Phone: 907-266-1108	Client Project	#		Lab Project #		11				in a			134			D11	4
Fax:				STAAAKSSA	-5315	24		1.54	m	PH						Table # 1 L	nilatina
Collected by (print): XLan	P Site/Facility ID # 0005315			P.O. #	Įn.		ICI	HCI	ONH-	Amb-						Acctnum: STAA	LAKSSA
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #			Amb H	I Amb	HDP	40m				1		Template: T165 Prelogin: P764	474 565
Immediately Packed on Ice N Y X	Next Day Two Day Three D	y5 Day y5 Day y10 Da ay	(Rad Only) ay (Rad Only)	sults Needed	No. of	1 40ml4	2 100m	250ml	BTEXC	JBIEAU			Contraction of		PM: 034 - Craig PB: 3 2	34 Craig Cothron	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	AK10	AK10	NAICH	V826(Shipped Via: Fe Remarks	Sample # (lab only)
G-01		GW	10.48	8/3/202	112:48	9	X	X	X	X			i sere	1		- E.H.	- 0
G-05	The second	GW	10.45	8/4/200	10:20	9	Х	X	X	X		-				and are	1 01
MW-10		GW	10-51	8/4/20	11:25	9	X	X	Х	X			1		r. 9		_ 03
MW-11		GW	10,85'	8/4/202	011:15	9	X	X	X	X							- 04
MW-12		GW	5,26	8/3/200	0 13:55	9	X	X	Х	X	CE				1	1.1	- 05
MW-13	-	GW	10.20'	8/3/20	0 16:39	9	Х	X	Х	X			-				- 0
MW-16		GW				9	X	X	X	X							
MW-17-01	1	GW	10.92'	8/4 /202	0 16:46	9	X	X	Х	X			-		-		-0
MW-17-02	-	GW	10,50'	5/4/20	20 15:35	9	X	X	X	X	1		-				-0
RM-01		GW	11.21'	8/4/200	0 12:05	9	Х	X	X	X			12			are and	-09
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	E.		122		pH Flow		Temp Other		COC S COC S Bott1 Corre	Sam eal P igned es ar ct bo	ole Receipt Ch resent/Intact /Accurate: rive intact: ttles used:	ecklist NP Y N Y N				
DW - Drinking Water OT - Other	Samples retur UPSFe	ned via: dExCou	rier		Tracking # 16	63	5	759	7	261	,	2		Suffi VOA Z	cient ero H	volume sent: <u>If Applicab</u> eadspace: on Correct/Chu	e CY/N
Relinquished by: (Signature) Date: Date: D8/05/2			5/20	ime: 12:00	Received by: (Signi	ature)	2		and the second	Trip Blank Received: Pes/ No HCl / MeoH				Preservation Correct/Checked: 4 N RAD Screen <0.5 mR/hr: 4 N N			
Relinquished by : (Signature)		Date:	T	ïme:	Received by: (Signa	ature)		E.u.		Temp WA2°C Bottles Received:				If pres	ervatio	on required by Log	in: Date/Time
Relinquished by : (Signature) Date:			T	îme:	Received for fab by: (Signature)					Date:	20	Time:	22	Hold:	-		Condition NCF / OK

	Billing Information:					Analysis / Container / Preservative Chain of Cus						Chain of Custod	y Page of				
Stantec - Anchorage, AK - Speedway 725 E Fireweed Lane Suite 200 Anchorage, AK 99503			Account PO Box 1	Accounts Payable PO Box 1510				62	12							Pace	Analytical®
			Springfie	eld, OH 4550	1 - 17-											National C	Denter for Texting & Innovation
Report to: Mr. John Marshall			Email To: jo						-					12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858			
Project Description: Speedway 5315	1.2	City/State Collected:	Fairkanl	es/AK	Bet MT CT	le: ET										Phone: 815-758-58 Phone: 800-767-58 Fax: 615-758-5859	
Phone: 907-266-1108 Fax:	Client Project	#	nan en	Lab Project # STAAAKSSA-5315				Same a		Ū			-			SDG # UN	47900
Collected by (print):	Site/Facility ID)#	-	P.O. #		-	Ę	EONH	H-dm						Table #	AAVECA	
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #	al de la constante de la const Registra de la constante de la c	-	h HC	t quu	DPE-1	DmIA		1				Template:T16	5474
Immediately Packed on Ice N Y	Same Da Next Day Two Day Three Da	ay Five y 5 Da y 10 D ay	Day y (Rad Only) ay (Rad Only)	Date Re	sults Needed	No. of	1 40mlAn	2 100ml A	250mlHi	BTEXC 4(Prelogin: P764565 PM: 034- Craig Cothron PB: 306/00 Mg		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	AK101	AK102	NAICP	V8260	Aller of					Shipped Via: F Remarks	edEX 2nd Day Sample # (lab only)
RM-02		GW	10,56	8/4/20	0 12:35	19	X	X	X	X		2-11	-			1.1.1.1.1.1	-10
DUP1		GW	11,21	8/4/20	a 16:53	9	X	X	X	X							11
T.r.P_080520	Contraction of	1. T. 6. 7. V	11-21	0 1	0.0.01	T		6.153	The second	P			1.5		100		112
the second	1. 7.	1			and the	100		1.1			1911					1 22 6	The second second
n an			3		1 1 1 2 200											120	
	- delle	-				N.C.											
		6		1	1. march												
and the second se	Laster.	-		141	in and the				1								
and the second second	Property and	0.6352	1 3	10. J. 19.	and the second					2.4					1	1000	
* * ****	1		18 1	1.2	A MARCH			1		and the	12	12			199		1
is - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay WW - WasteWater	Remarks:								P.	pH _	n est	Temp Other		COC S COC S Bottl	Seal P Seal P Signed les ar	ple Receipt (resent/Intac /Accurate: rive intact:	t: _NP _Y _N _Y _N _Y _N
DW - Drinking Water DT - Other	Samples return UPS Fed	ied via: IEx Cou	rier		racking #			-				-	-	Suffi VOA 2	icient Zero H	volume sent If Applica eadspace:	E ZY N
Relinquished by : (Signature) Date:		Date:	5/20	me: 12:00	eceived by: (Signat	ure)				Trip Blank	Receiv	ed: (Yes)	No Меон	Prese RAD S	ervati Screen	on Correct/Cl <0.5 mR/hr:	necked: TY _N
Relinquished by : (Signature)		Date:	Ti	me: R	eceived by: (Signat	ure)				Temp:	1-a	Bottles R	eceived:	If pres	servatio	on required by Lo	ogin: Date/Time
Relinquished by : (Signature)	linquished by : (Signature) Date:		Tir	ime: Received for lab by			ure)			Date:	1.0-,179 ate:		Time:		210		Condition NCF / OB

Laboratory Data Review Checklist

Completed By:

Eli Fredrickson

Title:

Geologic Project Specialist

Date:

11/23/20

Consultant Firm:

Stantec Consulting Services

Laboratory Name:

Pace Analytical

Laboratory Report Number:

L1247400

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

ADEC File Number:

100.26.026

Hazard Identification Number:

1112

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes \boxtimes No \square N/A \square Comments:
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes \square No \square N/A \boxtimes Comments:
2.	Chain of Custody (CoC)
	$C_{\rm e} C_{\rm e} C_{\rm e} C_{\rm e} (1 + 1) + \frac{1}{2} + $
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes No N/A Comments:
	b. Correct analyses requested?
	Yes No N/A Comments:
3.	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	$Yes \boxtimes No \square N/A \square Comments:$

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Laboratory R	eport Dat	e:		
08/26/202	20]
CS Site Name	e:			
Speedway	y 0005315	5		
c. Sar	nple cond Yes⊠ 1	lition d	ocument N∕A□	ted – broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
d. If t cor san	here were ntainers/pi nples, etc.	any di reserva ?	screpanc tion, sam	cies, were they documented? For example, incorrect sample nple temperature outside of acceptable range, insufficient or missing
	Yes X	No	N/A	Comments:
e. Da	ta quality	or usał	oility affe	Tected?
N				
NO.				
4. <u>Case</u>	<u>Narrative</u>			
a. Pr	resent and	unders	standable	e?
[Yes⊠	No□	N/A	Comments:
b. Di	iscrepanci	es, erro	ors, or Q	C failures identified by the lab?
	Yes⊠	No	N/A	Comments:
c. W	ere all co	rrective	e actions	documented?
· · · · · ·	Yes⊠	No□	N/A	Comments:
d. W	That is the	effect	on data q	quality/usability according to the case narrative?
_				Comments:
See be	elow secti	ons.		

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

c. All soils reported on a dry weight basis?

Yes□	No□	N/A	Comments:
		1 1/ 1 1	comments.

No soil samples analyzed.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

e. Data quality or usability affected?

No.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives? Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

No affected samples

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No affected samples.

v. Data quality or usability affected?

Comments:

No.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \boxtimes N/A \square Comments:

AK102 DRO C10-C25 sample matrix interfered with the ability to make any accurate determination; spike value is low.

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Samples affected are Matrix Spike and Matrix Spike Duplicate (MS/MSD).

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments:

The flags are marked by alpha-numeric symbol "J6".

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No. This is not indicative of a systematic control problem because these were random marginal exceedances.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes No \square N/A Comments:

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

YesNoN/AComments:

- - iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \square No \square N/A Comments:

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \square No \square N/A Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A Comments:

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

```
Yes \square No \boxtimes N/A \square Comments:
```

AK102 DRO, o-Terphenyl surrogate recovery limits have been exceeded; values are outside upper control limits.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments:

Flags are marked by alpha-numeric symbol "J1"

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

iv. Data quality or usability affected?

Comments:

No.			

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

ts:
ts

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

No affected samples

v. Data quality or usability affected?

Comments:

No.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

ii. Submitted blind to lab?

Yes⊠	No□	N/A	Comments:

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \boxtimes N/A \square Comments:

RPD met the DQOs for all detected analytes except DRO/Water

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

No. This is not indicative of a systematic control problem because these were random marginal exceedances.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

No decontamination or equipment blanks were required for this project because no reusable (only disposable) equipment was used.

i. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

No decontamination or equipment blanks submitted.

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

No decontamination or equipment blanks submitted.

iii. Data quality or usability affected?

Comments:

No decontamination or equipment blanks submitted.

Laboratory Report Date:

08/26/2020

CS Site Name:

Speedway 0005315

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \boxtimes No \square N/A \square Comments:

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-90398-1

Client Project/Site: Tesoro - 2Go Mart 112

For:

Stantec Consulting Services Inc 1835 S. Bragraw Suite 350 Anchorage, Alaska 99508

Attn: Mike Zidek

M. Elaine Walker

Authorized for release by: 11/14/2019 3:48:50 PM

Elaine Walker, Project Manager II (253)248-4972 elaine.walker@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Have a Question?

LINKS

Review your project results through

Visit us at: www.testamericainc.com

The

Expert

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	16
Chronicle	24
Certification Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

Job ID: 580-90398-1

Laboratory: Eurofins TestAmerica, Seattle

Narrative

(LCS out of Job Narrative 580-90398-1

Receipt

Ten samples were received on 10/28/2019 1:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.8° C.

Receipt Exceptions

The following sample was crossed off on the COC with a note in the special instructions that it was included. We have logged in all analysis pending client verification. RM-1 (580-90398-8)

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-3 (580-90398-2), MW17-2 (580-90398-5), MW17-5 (580-90398-6), 2GM112 DUP (580-90398-7), RM-1 (580-90398-8) and RM-2 (580-90398-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method AK101: The Gasoline Range Organics (GRO) concentration reported for the following samples is due to the presence of discrete peaks: MW17-2 (580-90398-5), MW17-5 (580-90398-6), RM-1 (580-90398-8) and RM-2 (580-90398-9). Gasoline Range Organics (GRO) -C6-C10

Method AK101: Detections were seen outside the AK101 range for samples MW17-2 (580-90398-5) and MW17-5 (580-90398-6).

Method AK101: The following sample required anti-foam: (MB 580-315586/9). Anti-foam was added to the associated MB.

Method AK101: Surrogate 4-Bromofluorobenzene (Surr) recovery for the following samples were outside control limits: MW-3 (580-90398-2) and 2GM112 DUP (580-90398-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method AK102 & 103: Surrogate recovery for the following sample was outside control limits: 2GM112 DUP (580-90398-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method AK102 & 103: The following sample contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: RM-2 (580-90398-9).

Method AK102 & 103: Samples were re-extracted outside of holding time and re-analyzed due to QC failure in the initial extraction (LCS/LCSD outside control limits). Both sets of data for these samples are reported. Affected samples: MW-2 (580-90398-1), MW-3 (580-90398-2), MW-6 (580-90398-3), MW-10 (580-90398-4), MW17-2 (580-90398-5), MW17-5 (580-90398-6) and 2GM112 DUP (580-90398-7).

Method AK102 & 103: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-2 (580-90398-1) and MW-3 (580-90398-2) at 5.0 and 5.0. Elevated reporting limits (RLs) are provided.

Method AK102 & 103: The laboratory control sample (LCS) for preparation batch 580-315972 and analytical batch 580-316161 recovered outside control limits for the following analytes: DRO (nC10-<nC25). The associated sample(s) was re-prepared and/or re-analyzed outside holding time. Both sets of data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 580-90398-1 (Continued)

Laboratory: Eurofins TestAmerica, Seattle (Continued)

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dilution Factor

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Calculated

Quality Control

Limit of Quantitation (DoD/DOE)

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Qualifiers

DER

DL

DLC

EDL

LOD

LOQ

MDA

MDC

MDL

ML

NC

ND PQL

QC

RL RPD

TEF

TEQ

RER

Dil Fac

DL, RA, RE, IN

GC VOA	
Overlifien	0

GC VOA	Qualifier Description	
X	Surrogate is outside control limits	
GC Semi VC	OA	Į.
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	
Н	Sample was prepped or analyzed beyond the specified holding time	
х	Surrogate is outside control limits	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Client Sample Results

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Client Sample ID: MW-2 Date Collected: 10/22/19 15:55 Date Received: 10/28/19 13:25

Job	١D·	580-90398-1
000	ю.	200-20230-

Lab Sample ID: 580-90398-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		3.0	0.53	ug/L			10/30/19 14:04	
Toluene	ND		2.0	0.39	ug/L			10/30/19 14:04	
Ethylbenzene	17		3.0	0.50	ug/L			10/30/19 14:04	
m-Xylene & p-Xylene	29		3.0	0.75	ug/L			10/30/19 14:04	
o-Xylene	ND		2.0	0.39	ug/L			10/30/19 14:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	106		80 - 120					10/30/19 14:04	
Trifluorotoluene (Surr)	92		80 - 120					10/30/19 14:04	
4-Bromofluorobenzene (Surr)	92		80 - 120					10/30/19 14:04	
Dibromofluoromethane (Surr)	94		80 - 120					10/30/19 14:04	
1,2-Dichloroethane-d4 (Surr)	98		80 - 126					10/30/19 14:04	
Method: AK101 - Alaska - Gas	oline Rang	e Organics	s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) C6-C10	0.36		0.25	0.10	mg/L			10/31/19 01:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	94		50 - 150					10/31/19 01:08	
4-Bromofluorobenzene (Surr)	111		50 - 150					10/31/19 01:08	
Method: AK102 & 103 - Alaska	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgai	nics (C	SC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>0.72</td><td>*</td><td>0.61</td><td>0.42</td><td>mg/L</td><td></td><td>11/05/19 09:25</td><td>11/06/19 20:58</td><td></td></nc25)<>	0.72	*	0.61	0.42	mg/L		11/05/19 09:25	11/06/19 20:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
p-Terphenyl	77		50 - 150				11/05/19 09:25	11/06/19 20:58	
Method: AK102 & 103 - Alaska	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	de Ordai	nics (C	GC) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>0.64</td><td>Н</td><td>0.61</td><td>0.42</td><td>mg/L</td><td></td><td>11/08/19 08:56</td><td>11/10/19 05:08</td><td></td></nc25)<>	0.64	Н	0.61	0.42	mg/L		11/08/19 08:56	11/10/19 05:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
- Tombowd	75		50 150				-	-	

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Client Sample ID: MW-3 Date Collected: 10/22/19 16:55 Date Received: 10/28/19 13:25

Method: 8260C - Volatile Organic Compounds by GC/MS									
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	28		3.0	0.53 ug/L			10/30/19 14:29	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	106		80 - 120				10/30/19 14:29	1	
Trifluorotoluene (Surr)	90		80 - 120				10/30/19 14:29	1	

	oy GC/MS - DL		
1,2-Dichloroethane-d4 (Surr)	97	80 - 126	10/30/19 14:29
Dibromofluoromethane (Surr)	94	80 - 120	10/30/19 14:29
4-Bromofluorobenzene (Surr)	107	80 - 120	10/30/19 14:29

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	150	100	20	ug/L			10/31/19 21:53	50
Ethylbenzene	750	150	25	ug/L			10/31/19 21:53	50
m-Xylene & p-Xylene	4500	150	38	ug/L			10/31/19 21:53	50
o-Xylene	1000	100	20	ug/L			10/31/19 21:53	50

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120		10/31/19 21:53	50
Trifluorotoluene (Surr)	91		80 - 120		10/31/19 21:53	50
4-Bromofluorobenzene (Surr)	92		80 - 120		10/31/19 21:53	50
Dibromofluoromethane (Surr)	93		80 - 120		10/31/19 21:53	50
1,2-Dichloroethane-d4 (Surr)	101		80 - 126		10/31/19 21:53	50

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Analyte	Result C	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	17		0.25	0.10 mg/L			10/31/19 18:35	1
Surrogate	%Recovery G	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	89		50 - 150				10/31/19 18:35	1
4-Bromofluorobenzene (Surr)	205 X	<	50 - 150				10/31/19 18:35	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>2.2</th><th>*</th><th>0.61</th><th>0.41</th><th>mg/L</th><th></th><th>11/05/19 09:25</th><th>11/06/19 21:18</th><th>5</th></nc25)<>	2.2	*	0.61	0.41	mg/L		11/05/19 09:25	11/06/19 21:18	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50 - 150				11/05/19 09:25	11/06/19 21:18	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>3.7</th><th>Н</th><th>0.64</th><th>0.44</th><th>mg/L</th><th></th><th>11/08/19 08:56</th><th>11/10/19 05:30</th><th>5</th></nc25)<>	3.7	Н	0.64	0.44	mg/L		11/08/19 08:56	11/10/19 05:30	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	81		50 - 150				11/08/19 08:56	11/10/19 05:30	5
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	28		2.0	0.33	mg/L		11/11/19 07:58	11/11/19 17:50	1

Job ID: 580-90398-1

Matrix: Water

Lab Sample ID: 580-90398-2

1 1 1 RL

3.0

2.0

3.0

2.0

Limits

80 - 120

80 - 120

80 - 120

80 - 120

80 - 126

MDL Unit

0.53 ug/L

0.39 ug/L

0.50 ug/L

0.39 ug/L

D

Prepared

Prepared

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Client Sample ID: MW-6 Date Collected: 10/22/19 14:05 Date Received: 10/28/19 13:25

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Ethylbenzene

Job	١D·	580-90398-1
000	ю.	000-00000-

Lab Sample ID: 580-90398-3

Analyzed

10/30/19 14:54

10/30/19 14:54

10/30/19 14:54

10/30/19 14:54

Analyzed

10/30/19 14:54

10/30/19 14:54

10/30/19 14:54

10/30/19 14:54

10/30/19 14:54

Matrix: Water

Dil Fac	5
1	
1	
1	
1	
Dil Fac	Ģ
1	
1	
1	9
1	
1	

Method: 8260C - Volatile Organic Compounds by GC/MS - RA

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

103

90

92

97

96

%Recovery Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	ND		3.0	0.75	ug/L			10/31/19 21:28	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120	10/31/19 21:2	<u></u> 3 <u>1</u>
Trifluorotoluene (Surr)	91		80 - 120	10/31/19 21:2	8 1
4-Bromofluorobenzene (Surr)	92		80 - 120	10/31/19 21:2	8 1
Dibromofluoromethane (Surr)	99		80 - 120	10/31/19 21:2	8 1
1,2-Dichloroethane-d4 (Surr)	98		80 - 126	10/31/19 21:2	81

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Gasoline Range Organics (GRO) -C6-C10	ND		0.25	0.10	mg/L			10/31/19 02:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	95		50 - 150			-		10/31/19 02:45	1
4-Bromofluorobenzene (Surr)	102		50 - 150					10/31/19 02:45	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>ND</th><th>*</th><th>0.12</th><th>0.084</th><th>mg/L</th><th></th><th>11/05/19 09:25</th><th>11/06/19 21:38</th><th>1</th></nc25)<>	ND	*	0.12	0.084	mg/L		11/05/19 09:25	11/06/19 21:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	62		50 - 150				11/05/19 09:25	11/06/19 21:38	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) - RE Analyte Result Qualifier RI MDL Unit п Prepared Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>ND</th><th>Н</th><th>0.13</th><th>0.086</th><th>mg/L</th><th></th><th>11/08/19 08:56</th><th>11/10/19 06:14</th><th>1</th></nc25)<>	ND	Н	0.13	0.086	mg/L		11/08/19 08:56	11/10/19 06:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	65		50 - 150				11/08/19 08:56	11/10/19 06:14	1

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Client Sample ID: MW-10 Date Collected: 10/22/19 13:35 Date Received: 10/28/19 13:25

Job	١D·	580-90398-1
000	ю.	000-00000-

Lab Sample ID: 580-90398-4

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		3.0	0.53	ug/L			10/30/19 15:20	
Toluene	ND		2.0	0.39	ug/L			10/30/19 15:20	
Ethylbenzene	ND		3.0	0.50	ug/L			10/30/19 15:20	
m-Xylene & p-Xylene	ND		3.0	0.75	ug/L			10/30/19 15:20	
o-Xylene	ND		2.0	0.39	ug/L			10/30/19 15:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	105		80 - 120					10/30/19 15:20	
Trifluorotoluene (Surr)	93		80 - 120					10/30/19 15:20	
4-Bromofluorobenzene (Surr)	91		80 - 120					10/30/19 15:20	
Dibromofluoromethane (Surr)	94		80 - 120					10/30/19 15:20	
1,2-Dichloroethane-d4 (Surr)	98		80 - 126					10/30/19 15:20	
Method: AK101 - Alaska - Ga	asoline Rang	e Organics	s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	ND		0.25	0.10	mg/L			10/31/19 03:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	92		50 - 150					10/31/19 03:08	
4-Bromofluorobenzene (Surr)	101		50 - 150					10/31/19 03:08	
Method: AK102 & 103 - Alas	ka - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgai	nics (C	GC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>ND</td><td>*</td><td>0.12</td><td>0.082</td><td>mg/L</td><td></td><td>11/05/19 09:25</td><td>11/06/19 21:58</td><td></td></nc25)<>	ND	*	0.12	0.082	mg/L		11/05/19 09:25	11/06/19 21:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	64		50 - 150				11/05/19 09:25	11/06/19 21:58	
Method: AK102 & 103 - Alas	ka - Diesel Ra	ange Orga	nics & Resid	ual Ran	ae Oraai	nics (C	GC) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	D	, Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>ND</td><td>H</td><td>0.12</td><td>0.080</td><td>mg/L</td><td></td><td>11/08/19 08:56</td><td>11/10/19 06:36</td><td></td></nc25)<>	ND	H	0.12	0.080	mg/L		11/08/19 08:56	11/10/19 06:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Tembenyl			50 150				11/08/19 08:56	11/10/10 06.36	

Client Sample Results

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Client Sample ID: MW17-2 Date Collected: 10/22/19 18:18 Date Received: 10/28/19 13:25

Job	ID.	580-90398-1	
000	ю.	000-00000-1	

Lab Sample ID: 580-90398-5 Matrix: Water

5

Method: 8260C - Volatile Orga	nic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		3.0	0.53	ug/L			10/30/19 15:46	1
Toluene	ND		2.0	0.39	ug/L			10/30/19 15:46	1
o-Xylene	140		2.0	0.39	ug/L			10/30/19 15:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120					10/30/19 15:46	1
Trifluorotoluene (Surr)	90		80 - 120					10/30/19 15:46	1
4-Bromofluorobenzene (Surr)	100		80 - 120					10/30/19 15:46	1
Dibromofluoromethane (Surr)	94		80 - 120					10/30/19 15:46	1
1,2-Dichloroethane-d4 (Surr)	96		80 - 126					10/30/19 15:46	1
_ Method: 8260C - Volatile Orga	nic Compo	unds by G	C/MS - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	210		30	5.0	ug/L			10/31/19 22:43	10
m-Xylene & p-Xylene	650		30	7.5	ug/L			10/31/19 22:43	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120					10/31/19 22:43	10
Trifluorotoluene (Surr)	91		80 - 120					10/31/19 22:43	10
4-Bromofluorobenzene (Surr)	95		80 - 120					10/31/19 22:43	10
Dibromofluoromethane (Surr)	94		80 - 120					10/31/19 22:43	10
1,2-Dichloroethane-d4 (Surr)	99		80 - 126					10/31/19 22:43	10
Method: AK101 - Alaska - Gas	oline Rang	e Organic	s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	3.5		0.25	0.10	mg/L			10/31/19 03:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	106		50 - 150					10/31/19 03:33	1
4-Bromofluorobenzene (Surr)	131		50 - 150					10/31/19 03:33	1
_ Method: AK102 & 103 - Alaska	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	ae Oraa	nics (C	SC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>0.62</td><td>*</td><td>0.13</td><td>0.086</td><td>mg/L</td><td></td><td>11/05/19 09:25</td><td>11/06/19 22:19</td><td>1</td></nc25)<>	0.62	*	0.13	0.086	mg/L		11/05/19 09:25	11/06/19 22:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	67		50 - 150				11/05/19 09:25	11/06/19 22:19	1
Method: AK102 & 103 - Alaska	- Diesel R	ango Orga	nics & Rosid	ual Ran	no Oraa	nics ((C) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>1.4</td><td>H</td><td>0.12</td><td>0.083</td><td>mg/L</td><td></td><td>11/08/19 08:56</td><td>11/10/19 06:57</td><td>1</td></nc25)<>	1.4	H	0.12	0.083	mg/L		11/08/19 08:56	11/10/19 06:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	78		50 - 150				11/08/19 08:56	11/10/19 06:57	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	31		20	0.33	ma/l		11/11/19 07 58	11/11/19 18:16	1

Client Sample ID: MW17-5 Date Collected: 10/22/19 17:50 Date Received: 10/28/19 13:25

Sodium

Method: 8260C - Vo	olatile Organic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	22		3.0	0.53	ug/L			10/30/19 16:11	1
o-Xylene	61		2.0	0.39	ug/L			10/30/19 16:11	1
Surrogata	% Pasavary	Qualifiar	Limito				Branarad	Analyzad	

%Recovery	Quanner Linns	Prepareu	Analyzeu	DIIFac
104	80 - 120		10/30/19 16:11	1
90	80 - 120		10/30/19 16:11	1
98	80 - 120		10/30/19 16:11	1
94	80 - 120		10/30/19 16:11	1
97	80 - 126		10/30/19 16:11	1
	104 90 98 94 97	JokeCovery Quantier Limits 104 80 - 120 90 80 - 120 98 80 - 120 94 80 - 120 97 80 - 126	Jokecovery Qualitier Limits Prepared 104 80 - 120 90 80 - 120 90 80 - 120 98 80 - 120 94 80 - 120 97 80 - 126	JokeCovery Qualitier Limits Prepared Analyzed 104 80 - 120 10/30/19 16:11 10/30/19 16:11 90 80 - 120 10/30/19 16:11 10/30/19 16:11 98 80 - 120 10/30/19 16:11 10/30/19 16:11 94 80 - 120 10/30/19 16:11 10/30/19 16:11 97 80 - 126 10/30/19 16:11 10/30/19 16:11

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	360		20	3.9	ug/L			10/31/19 23:09	10
Ethylbenzene	230		30	5.0	ug/L			10/31/19 23:09	10
m-Xylene & p-Xylene	660		30	7.5	ug/L			10/31/19 23:09	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120		10/31/19 23:09	10
Trifluorotoluene (Surr)	89		80 - 120		10/31/19 23:09	10
4-Bromofluorobenzene (Surr)	93		80 - 120		10/31/19 23:09	10
Dibromofluoromethane (Surr)	94		80 - 120		10/31/19 23:09	10
1,2-Dichloroethane-d4 (Surr)	96		80 - 126		10/31/19 23:09	10

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DIIFac
Gasoline Range Organics (GRO) -C6-C10	3.7		0.25	0.10	mg/L			10/31/19 03:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	99		50 - 150			-		10/31/19 03:57	1
4-Bromofluorobenzene (Surr)	131		50 - 150					10/31/19 03:57	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>0.31</th><th>*</th><th>0.12</th><th>0.081</th><th>mg/L</th><th></th><th>11/05/19 09:25</th><th>11/06/19 22:59</th><th>1</th></nc25)<>	0.31	*	0.12	0.081	mg/L		11/05/19 09:25	11/06/19 22:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		50 - 150				11/05/19 09:25	11/06/19 22:59	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) - RE										
Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac	
DRO (nC10- <nc25)< th=""><th>0.47</th><th>н</th><th>0.12</th><th>0.081</th><th>mg/L</th><th></th><th>11/08/19 08:56</th><th>11/10/19 07:19</th><th>1</th></nc25)<>	0.47	н	0.12	0.081	mg/L		11/08/19 08:56	11/10/19 07:19	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	73		50 - 150				11/08/19 08:56	11/10/19 07:19	1	
Method: 6010C - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	

2.0

0.33 mg/L

11/11/19 07:58 11/11/19 18:19

Matrix: Water

Lab Sample ID: 580-90398-6

11/14/2019

1

9 1(RL

3.0

Limits

80 - 120

80 - 120

80 - 120

MDL Unit

0.53 ug/L

D

Prepared

Prepared

Client Sample ID: 2GM112 DUP Date Collected: 10/22/19 16:57 Date Received: 10/28/19 13:25

Analyte

Benzene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

27

%Recovery Qualifier

109

92

105

96

100

JUD ID. 200-90390-1

Analyzed

10/30/19 16:37

Analyzed

10/30/19 16:37

10/30/19 16:37

10/30/19 16:37

10/31/19 22:18

10/31/19 22:18

Matrix: Water

Dil Fac

Dil Fac

1

1

1

1

50

50

Lab Sample ID: 580-90398-7

8
9

Dibromofluoromethane (Surr)	96		80 - 120					10/30/19 16:37	1
1,2-Dichloroethane-d4 (Surr)	96		80 - 126					10/30/19 16:37	1
_ Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	170		100	20	ug/L			10/31/19 22:18	50
Ethylbenzene	800		150	25	ug/L			10/31/19 22:18	50
m-Xylene & p-Xylene	5000		150	38	ug/L			10/31/19 22:18	50
o-Xylene	1200		100	20	ug/L			10/31/19 22:18	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120			-		10/31/19 22:18	50
Trifluorotoluene (Surr)	92		80 - 120					10/31/19 22:18	50
4-Bromofluorobenzene (Surr)	92		80 - 120					10/31/19 22:18	50

Method: AK101 - Alaska -	Gasoline Range Organics (GC)
Amelute	Desult Qualifier

Analyte	Result	Quaimer	RL	WDL	Unit	U	Prepared	Analyzed	DIFac
Gasoline Range Organics (GRO) -C6-C10	18		0.25	0.10	mg/L			10/31/19 18:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	86		50 - 150					10/31/19 18:59	1
4-Bromofluorobenzene (Surr)	209	X	50 - 150					10/31/19 18:59	1

80 - 120

80 - 126

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>0.61</th><th>*</th><th>0.12</th><th>0.079</th><th>mg/L</th><th></th><th>11/05/19 09:25</th><th>11/06/19 23:19</th><th>1</th></nc25)<>	0.61	*	0.12	0.079	mg/L		11/05/19 09:25	11/06/19 23:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	24	X	50 - 150				11/05/19 09:25	11/06/19 23:19	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>4.2</th><th>н</th><th>0.61</th><th>0.41 mg/L</th><th></th><th>11/08/19 08:56</th><th>11/10/19 07:41</th><th>5</th></nc25)<>	4.2	н	0.61	0.41 mg/L		11/08/19 08:56	11/10/19 07:41	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	75		50 - 150			11/08/19 08:56	11/10/19 07:41	5

RL

3.0

2.0

Limits

80 - 120

80 - 120

80 - 120

80 - 120

80 - 126

MDL Unit

0.53 ug/L

0.39 ug/L

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Client Sample ID: RM-1 Date Collected: 10/24/19 14:45 Date Received: 10/28/19 13:25

Analyte

Benzene

Toluene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Lab Sample	ID:	580-90398-8

Prepared

Prepared

D

Matrix: Water

1

1

1

1

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

38

%Recovery Qualifier

106

94

99

94

100

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	150	30	5.0	ug/L			11/02/19 09:08	10
m-Xylene & p-Xylene	1300	30	7.5	ug/L			11/02/19 09:08	10
o-Xylene	190	20	3.9	ug/L			11/02/19 09:08	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120		11/02/19 09:08	10
Trifluorotoluene (Surr)	90		80 - 120		11/02/19 09:08	10
4-Bromofluorobenzene (Surr)	95		80 - 120		11/02/19 09:08	10
Dibromofluoromethane (Surr)	96		80 - 120		11/02/19 09:08	10
1,2-Dichloroethane-d4 (Surr)	96		80 - 126		11/02/19 09:08	10

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	4.3		0.25	0.10	mg/L			10/31/19 04:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	97		50 - 150			-		10/31/19 04:45	1
4-Bromofluorobenzene (Surr)	124		50 - 150					10/31/19 04:45	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
DRO (nC10- <nc25)< th=""><th>1.4</th><th></th><th>0.12</th><th>0.080</th><th>mg/L</th><th></th><th>11/07/19 09:54</th><th>11/09/19 22:36</th><th>1</th></nc25)<>	1.4		0.12	0.080	mg/L		11/07/19 09:54	11/09/19 22:36	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
o-Terphenyl	72		50 - 150				11/07/19 09:54	11/09/19 22:36	1		

Dil Fac 1 1 Dil Fac 1

Analyzed

10/30/19 17:03

10/30/19 17:03

Analyzed

10/30/19 17:03

10/30/19 17:03

10/30/19 17:03

10/30/19 17:03

10/30/19 17:03

Client Sample Results

RL

3.0

2.0

3.0

2.0

Limits

00 100

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

4.6

58

89

62

%Recovery Qualifier

105

Client Sample ID: RM-2

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Toluene-d8 (Surr)

Date Collected: 10/24/19 16:05

Date Received: 10/28/19 13:25

Job ID: 580-90398-1

Matrix: Water

Dil Fac

1

1

1

1

Dil Fac

Lab Sample ID: 580-90398-9

Analyzed

10/30/19 17:27

10/30/19 17:27

10/30/19 17:27

10/30/19 17:27

Analyzed

10/20/10 17:27

5

Toluerie-uo (Sull)	105		80 - 120					10/30/19 17.27	1	
Trifluorotoluene (Surr)	92		80 - 120					10/30/19 17:27	1	
4-Bromofluorobenzene (Surr)	98		80 - 120					10/30/19 17:27	1	
Dibromofluoromethane (Surr)	92		80 - 120					10/30/19 17:27	1	Ē.
1,2-Dichloroethane-d4 (Surr)	95		80 - 126					10/30/19 17:27	1	
Method: 8260C - Volatile Orga	anic Compo	unds by G	C/MS - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
m-Xylene & p-Xylene	280		30	7.5	ug/L			11/02/19 09:33	10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	105		80 - 120					11/02/19 09:33	10	
Trifluorotoluene (Surr)	90		80 - 120					11/02/19 09:33	10	
4-Bromofluorobenzene (Surr)	95		80 - 120					11/02/19 09:33	10	
Dibromofluoromethane (Surr)	95		80 - 120					11/02/19 09:33	10	
1,2-Dichloroethane-d4 (Surr)	99		80 - 126					11/02/19 09:33	10	
- Method: AK101 - Alaska - Gas	soline Rang	e Organics	s (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO) -C6-C10	2.0		0.25	0.10	mg/L			10/31/19 05:09	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Trifluorotoluene (Surr)	100		50 - 150					10/31/19 05:09	1	

MDL Unit

0.53 ug/L

0.39 ug/L

0.50 ug/L

0.39 ug/L

D

Prepared

Prepared

4-Bromofluorobenzene (Surr)	113		50 - 150					10/31/19 05:09	1
Method: AK102 & 103 - Alaska	- Diesel Ra	ange Orga	nics & Resi	dual Ran	ge Orga	nics (C	GC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>0.45</td><td></td><td>0.11</td><td>0.076</td><td>mg/L</td><td></td><td>11/07/19 09:54</td><td>11/09/19 22:58</td><td>1</td></nc25)<>	0.45		0.11	0.076	mg/L		11/07/19 09:54	11/09/19 22:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		50 - 150				11/07/19 09:54	11/09/19 22:58	1

Method: 6010C - Metals (ICP)							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sodium	32	2.0	0.33 mg/L		11/11/19 07:58	11/11/19 18:22	1

Client Sample ID: TRIP BLANK Date Collected: 10/22/19 12:00 Date Received: 10/28/19 13:25

Lab Sample ID: 580-90398-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND		3.0	0.53	ug/L			10/30/19 13:12	1	
Toluene	ND		2.0	0.39	ug/L			10/30/19 13:12	1	
Ethylbenzene	ND		3.0	0.50	ug/L			10/30/19 13:12	1	
m-Xylene & p-Xylene	ND		3.0	0.75	ug/L			10/30/19 13:12	1	
o-Xylene	ND		2.0	0.39	ug/L			10/30/19 13:12	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	109		80 - 120			-		10/30/19 13:12	1	
Trifluorotoluene (Surr)	89		80 - 120					10/30/19 13:12	1	
4-Bromofluorobenzene (Surr)	90		80 - 120					10/30/19 13:12	1	
Dibromofluoromethane (Surr)	96		80 - 120					10/30/19 13:12	1	
1,2-Dichloroethane-d4 (Surr)	99		80 - 126					10/30/19 13:12	1	
Method: AK101 - Alaska - G	asoline Rang	e Organics	s (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO) -C6-C10	ND		0.25	0.10	mg/L			10/31/19 02:21	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Trifluorotoluene (Surr)	103		50 - 150			-		10/31/19 02:21	1	
4-Bromofluorobenzene (Surr)	103		50 - 150					10/31/19 02:21	1	
Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-315538/7

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Water Analysis Batch: 315538

MB	МВ							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene ND		3.0	0.53	ug/L			10/30/19 12:37	1
Toluene ND		2.0	0.39	ug/L			10/30/19 12:37	1
Ethylbenzene ND		3.0	0.50	ug/L			10/30/19 12:37	1
m-Xylene & p-Xylene ND		3.0	0.75	ug/L			10/30/19 12:37	1
o-Xylene ND		2.0	0.39	ug/L			10/30/19 12:37	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		80 - 120		10/30/19 12:37	1
Trifluorotoluene (Surr)	92		80 - 120		10/30/19 12:37	1
4-Bromofluorobenzene (Surr)	92		80 - 120		10/30/19 12:37	1
Dibromofluoromethane (Surr)	94		80 - 120		10/30/19 12:37	1
1,2-Dichloroethane-d4 (Surr)	98		80 - 126		10/30/19 12:37	1

Lab Sample ID: LCS 580-315538/4 Matrix: Water Analysis Batch: 315538

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	9.74		ug/L		97	75 - 121	
Toluene	10.0	11.1		ug/L		111	80 - 120	
Ethylbenzene	10.0	10.9		ug/L		109	80 - 120	
m-Xylene & p-Xylene	10.0	10.4		ug/L		104	80 - 120	
o-Xylene	10.0	10.5		ug/L		105	80 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		80 - 120
Trifluorotoluene (Surr)	91		80 - 120
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	93		80 - 120
1,2-Dichloroethane-d4 (Surr)	97		80 - 126

Lab Sample ID: LCSD 580-315538/5 **Matrix: Water** Analysis Batch: 315538

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	9.54		ug/L		95	75 - 121	2	14
Toluene	10.0	10.3		ug/L		103	80 - 120	8	19
Ethylbenzene	10.0	10.1		ug/L		101	80 - 120	7	14
m-Xylene & p-Xylene	10.0	9.81		ug/L		98	80 - 120	6	14
o-Xylene	10.0	9.82		ug/L		98	80 - 120	7	16

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
Trifluorotoluene (Surr)	92		80 - 120
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	97		80 - 120

Eurofins TestAmerica, Seattle

5

6

QC Sample Results

6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Lab Sample ID: LCSD 580-315538/5 **Client Sample ID: Lab Control Sample Dup** Matrix: Water Prep Type: Total/NA Analysis Batch: 315538 LCSD LCSD Limits Surrogate %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 100 80 - 126 Lab Sample ID: MB 580-315621/7 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 315621 MB MB Analyte **Result Qualifier** RL MDL Unit D Analyzed Dil Fac Prepared Benzene ND 3.0 0.53 ug/L 10/31/19 14:43 Toluene ND 2.0 10/31/19 14:43 0.39 ug/L 1 ND Ethylbenzene 3.0 0.50 ug/L 10/31/19 14:43 1 m-Xylene & p-Xylene ND 3.0 10/31/19 14:43 0.75 ug/L 1 o-Xylene ND 2.0 0.39 ug/L 10/31/19 14:43 1 MB MB Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 105 80 - 120 10/31/19 14:43 Trifluorotoluene (Surr) 90 80 - 120 10/31/19 14:43 1 4-Bromofluorobenzene (Surr) 91 80 - 120 10/31/19 14:43 1 98 80 - 120 Dibromofluoromethane (Surr) 10/31/19 14:43 1 1,2-Dichloroethane-d4 (Surr) 100 80 - 126 10/31/19 14:43 1 Lab Sample ID: LCS 580-315621/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 315621 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits Benzene 10.0 10.0 ug/L 100 75 - 121 Toluene 10.0 117 80 - 120 11.7 ug/L Ethylbenzene 80 - 120 10.0 11.4 ug/L 114 ug/L m-Xylene & p-Xylene 10.0 10.9 109 80 - 120 o-Xylene 10.0 10.9 ug/L 109 80 - 120 LCS LCS Surrogate Qualifier Limits %Recovery Toluene-d8 (Surr) 108 80 - 120 Trifluorotoluene (Surr) 93 80 - 120 91 80 - 120 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) 96 80 - 120 1,2-Dichloroethane-d4 (Surr) 97 80 - 126 Lab Sample ID: LCSD 580-315621/5 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 315621									
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	9.64		ug/L		96	75 - 121	4	14
Toluene	10.0	10.7		ug/L		107	80 - 120	9	19
Ethylbenzene	10.0	10.8		ug/L		108	80 - 120	6	14
m-Xylene & p-Xylene	10.0	10.3		ug/L		103	80 - 120	5	14
o-Xylene	10.0	10.2		ug/L		102	80 - 120	7	16

QC Sample Results

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MR MR

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		80 - 120
Trifluorotoluene (Surr)	90		80 - 120
4-Bromofluorobenzene (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	97		80 - 126

Lab Sample ID: MB 580-315794/7 **Matrix: Water** Analysis Batch: 315794

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		3.0	0.53	ug/L			11/02/19 00:26	1
Toluene	ND		2.0	0.39	ug/L			11/02/19 00:26	1
Ethylbenzene	ND		3.0	0.50	ug/L			11/02/19 00:26	1
m-Xylene & p-Xylene	ND		3.0	0.75	ug/L			11/02/19 00:26	1
o-Xylene	ND		2.0	0.39	ug/L			11/02/19 00:26	1

	MB					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		80 - 120		11/02/19 00:26	1
Trifluorotoluene (Surr)	91		80 - 120		11/02/19 00:26	1
4-Bromofluorobenzene (Surr)	91		80 - 120		11/02/19 00:26	1
Dibromofluoromethane (Surr)	97		80 - 120		11/02/19 00:26	1
1 2-Dichloroethane-d4 (Surr)	99		80 - 126		11/02/19 00:26	1

Lab Sample ID: LCS 580-315794/4 **Matrix: Water** Analysis Batch: 315794

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	9.02		ug/L		90	75 - 121	
Toluene	10.0	10.2		ug/L		102	80 - 120	
Ethylbenzene	10.0	10.0		ug/L		100	80 - 120	
m-Xylene & p-Xylene	10.0	9.51		ug/L		95	80 - 120	
o-Xylene	10.0	9.60		ug/L		96	80 - 120	

LCS	
Qualifier	Limits
	80 - 120
	80 - 120
	80 - 120
	80 - 120
	80 - 126
	LCS Qualifier

Lab Sample ID: LCSD 580-315794/5 **Matrix: Water** Analysis Batch: 315794

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec Benzene 10.0 8.81 uq/L 88 75 - 121 2 14 Toluene 10.0 9.87 ug/L 80 - 120 19 99 4 Ethylbenzene 10.0 9.86 ug/L 99 80 - 120 2 14 m-Xylene & p-Xylene 10.0 9.40 ug/L 94 80 - 120 1 14

Eurofins TestAmerica, Seattle

Prep Type: Total/NA

Job ID: 580-90398-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Prep Type: Total/NA

11/14/2019

Spike	LCS
Added	Resul

Lab Sample ID: LCSD 580 Matrix: Water	-315794/5						C	client Sa	ampl	e I	D: Lab	Control S	Sampl	e Dup tal/NA
Analysis Batch: 315794												пертур	. 10	
·				Spike		LCSD	LCSD					%Rec.		RPD
Analyte				Added		Result	Qualifier	Unit	0)	%Rec	Limits	RPD	Limit
o-Xylene				10.0		9.54		ug/L			95	80 - 120	1	16
	1000	100	20											
Surrogate	%Recoverv	Qua	lifier	Limits										
Toluene-d8 (Surr)	104			80 - 120	-									
Trifluorotoluene (Surr)	91			80 - 120										
4-Bromofluorobenzene (Surr)	94			80 - 120										
Dibromofluoromethane (Surr)	94			80 - 120										
1,2-Dichloroethane-d4 (Surr)	97			80 - 126										
- Method: AK101 - Alask	a - Gasoli	ine	Range	Organ	ics	(GC)								
-				- gui		(00)								
Lab Sample ID: MB 580-31	15497/33								CI	Iel	nt Sam		etnod	Blank
Matrix: Water												Prep Typ	be: 10	
Analysis Batch: 315497		MD	MD											
Analyta	Ba		NID		ы				D	D.,	anarad	Apolyz	~ d	
Gasoline Range Organics (GRO)	Ne	ND	Quaimer		0.25		0.10 ma/L				epareu	- <u>Analyz</u> 10/30/192	21:55	1
-C6-C10							5							
0	0/ D	MB	MB		•••					-				D
	%Reco	very	Qualifier							Pr	epared	Analyz	ea	DIIFac
1 rifiuorotoluene (Surr)		88		50 -	150							10/30/191	21:55	1
4-Bromofluorobenzene (Surr)		100		50 -	150							10/30/191	21:55	1
Lab Sample ID: LCS 580-3	315497/34							Clie	ent Sa	am	nple ID	: Lab Con	trol S	ample
Matrix: Water												Prep Typ	e: To	tal/NA
Analysis Batch: 315497														
-				Spike		LCS	LCS					%Rec.		
Analyte				Added		Result	Qualifier	Unit	0)	%Rec	Limits		
Gasoline Range Organics (GRO) -C6-C10				1.00		0.893		mg/L			89	77 - 123		
	105	105	:											
Surrogate	%Recoverv	Qua	difier	l imits										
Trifluorotoluene (Surr)				50 _ 150	-									
4-Bromofluorobenzene (Surr)	105			50 - 150										
-														
Lab Sample ID: LCSD 580 Matrix: Water	-315497/35						C	lient Sa	ampl	e l	D: Lab	Control S Prep Typ	Sampl be: To	e Dup tal/NA
Analysis Batch: 315497														
-				Spike		LCSD	LCSD					%Rec.		RPD
Analyte				habhA		Pocult	Qualifier	Unit	г	h	%Pac	Limite	חסס	Limi

Gasoline Range Organics (GRO) -C6-C10			1.00	0.874	
	LCSD	LCSD			
Surrogate	%Recovery	Qualifier	Limits		
Trifluerateluere (Surr)			<u> </u>		

i rifluorotoluene (Surr)	89	50 - 150
4-Bromofluorobenzene (Surr)	105	50 - 150

87 77 - 123

mg/L

2

20

Lab Sample ID: MB 580-315586/9

Matrix: Water

Analysis Batch: 315586

QC Sample Results

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Job ID: 580-90398-1

Prep Type: Total/NA

Client Sample ID: Method Blank

5 6

Analyte												
Analyto	Res	sult Qualifier	RL		MDL	Unit		D	Prepared	Analyz	ed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10		ND	0.25		0.10	mg/L				10/31/19	12:10	1
		MB MB										
Surrogate	%Recov	ery Qualifier	Limits						Prepared	Analyz	ed	Dil Fac
Trifluorotoluene (Surr)		86	50 - 150							10/31/19	12:10	1
4-Bromofluorobenzene (Surr)		104	50 - 150							10/31/19	12:10	1
Lah Sample ID: LCS 580-3	15586/10						Cli	ont S	amplo ID	· Lah Con	trol S	amnlo
Matrix: Water	15500/10									Drop Tyr	1000	
Analysis Batch: 315586										пертур	Je. 10	
Analysis Datch. 515500			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Quali	ifier	Unit) %Rec	Limits		
Gasoline Range Organics (GRO) -C6-C10			1.00	1.00			mg/L		100	77 - 123		
	LCS	LCS										
Surrogate	%Recovery	Qualifier	Limits									
			50 450									
Trifluorotoluene (Surr)	95		50 - 150									
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	95 108		50 - 150 50 - 150									
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580	95 108 - 315586/11		50 - 150 50 - 150			C	lient S	Sampl	e ID: Lat	Control S	Sampl	e Dup
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water	95 108 - 315586/11		50 - 150 50 - 150			C	lient S	Sampl	e ID: Lat	Control S	Sampl be: To	e Dup tal/NA
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 315586	95 108 - 315586/11		50 - 150 50 - 150			C	lient S	Sampl	e ID: Lat	Control S Prep Typ	Sampl be: To	e Dup tal/NA
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 315586	95 108 -315586/11		50 - 150 50 - 150 Spike	LCSD	LCSI	C	Client S	Sampl	e ID: Lak	Control S Prep Typ %Rec.	Sampl be: To	e Dup tal/NA RPD
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 315586 Analyte	95 108 - 315586/11		50 - 150 50 - 150 Spike Added	LCSD Result	LCSI Quali	C D ifier	Client S	Sampl	e ID: Lat 0 %Rec	Control S Prep Typ %Rec. Limits	Sampl be: To RPD	<mark>e Dup</mark> tal/NA RPD Limit
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 315586 Analyte Gasoline Range Organics (GRO) -C6-C10	95 108 -315586/11		Spike Added	LCSD Result 1.02	LCSI Quali	C D ifier	Unit mg/L	Sampl	e ID: Lat	Control S Prep Typ %Rec. Limits 77 - 123	Sampl be: To 	e Dup tal/NA RPD Limit 20
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 315586 Analyte Gasoline Range Organics (GRO) -C6-C10	95 108 -315586/11 		Spike Added	LCSD Result 1.02	LCSI Quali	C D ifier	Client S	Sampl	e ID: Lat 0 <u>%Rec</u> 102	Control S Prep Typ %Rec. Limits 77 - 123	Sampl be: To RPD 2	e Dup tal/NA RPD Limit 20
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 315586 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	95 108 -315586/11 	LCSD Qualifier	Spike Added 1.00	LCSD Result 1.02	LCSI Quali	C ifier	Unit mg/L	Sampl	e ID: Lak	Control S Prep Typ %Rec. Limits 77 - 123	Sampl be: To RPD 2	e Dup tal/NA RPD Limit 20
Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 315586 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	95 108 -315586/11 <i>LCSD</i> %Recovery 99	LCSD Qualifier	50 - 150 50 - 150 Spike Added 1.00 Limits 50 - 150	LCSD Result 1.02	LCSI Quali	C D ifier	Unit mg/L	Sampl	e ID: Lak	Control S Prep Typ %Rec. Limits 77 - 123	Sampl be: To RPD 2	e Dup tal/NA RPD Limit 20

Matrix: Water Analysis Batch: 316161							i i	Prep Type: To Prep Batch: 3	otal/NA 315972
Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>ND</td><td></td><td>0.11</td><td>0.075</td><td>mg/L</td><td></td><td>11/05/19 09:25</td><td>11/06/19 15:35</td><td>1</td></nc25)<>	ND		0.11	0.075	mg/L		11/05/19 09:25	11/06/19 15:35	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		50 - 150				11/05/19 09:25	11/06/19 15:35	1

Job ID: 580-90398-1

6

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued) Lab Sample ID: LCS 580-315972/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 316161 **Prep Batch: 315972** LCS LCS %Rec. Spike Added **Result Qualifier** D %Rec Limits Analyte Unit * DRO (nC10-<nC25) 2.00 1.41 mg/L 70 75 - 125 LCS LCS Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 68 Lab Sample ID: LCSD 580-315972/3-A Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analysis Batch: 316161 Prep Batch: 315972 LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec 2.00 1.28 DRO (nC10-<nC25) mg/L 64 75 - 125 9 20 LCSD LCSD Surrogate %Recovery Qualifier Limits o-Terphenyl 65 50 - 150 Lab Sample ID: MB 580-316216/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 316419 **Prep Batch: 316216** MB MB Analvte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac D DRO (nC10-<nC25) ND 0.11 0.075 mg/L 11/07/19 09:53 11/09/19 14:14 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 71 50 - 150 11/07/19 09:53 11/09/19 14:14 Lab Sample ID: LCS 580-316216/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 316419 Prep Batch: 316216 Spike LCS LCS %Rec. Analvte Added **Result Qualifier** Unit %Rec Limits D DRO (nC10-<nC25) 2.00 1.87 mg/L 94 75 - 125 LCS LCS %Recovery Qualifier Limits Surrogate 50 - 150 o-Terphenyl 121 Lab Sample ID: LCSD 580-316216/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Water Prep Type: Total/NA Analysis Batch: 316419 **Prep Batch: 316216** LCSD LCSD Spike %Rec. RPD Analyte Added **Result Qualifier** Unit %Rec Limits RPD Limit D DRO (nC10-<nC25) 2.00 91 20 1.81 mg/L 75 - 125 3 LCSD LCSD Surrogate Limits

Surrogate%RecoveryQualifierLimitso-Terphenyl9550 - 150

6

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued) Lab Sample ID: MB 580-316340/1-A **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 316419 **Prep Batch: 316340** MB MB Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac DRO (nC10-<nC25) ND 0.11 0.075 mg/L 11/08/19 08:56 11/09/19 23:19 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 50 - 150 11/08/19 08:56 11/09/19 23:19 o-Terphenyl 89 1 Lab Sample ID: LCS 580-316340/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 316419 **Prep Batch: 316340** Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit Limits D %Rec 2.00 DRO (nC10-<nC25) 1.82 mg/L 91 75 - 125 LCS LCS Surrogate %Recovery Qualifier Limits o-Terphenyl 104 50 - 150 Lab Sample ID: LCSD 580-316340/3-A Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analysis Batch: 316419 **Prep Batch: 316340** LCSD LCSD Spike %Rec. RPD Analvte Added **Result Qualifier** Unit D %Rec Limits RPD Limit DRO (nC10-<nC25) 2.00 1.79 90 75 - 125 2 20 mg/L LCSD LCSD Surrogate %Recovery Qualifier Limits o-Terphenyl 105 50 - 150 Method: 6010C - Metals (ICP) Lab Sample ID: MB 580-316453/11-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 316544 **Prep Batch: 316453** MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Sodium ND 2.0 0.33 mg/L 11/11/19 07:58 11/11/19 17:41 1 Lab Sample ID: LCS 580-316453/12-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 316544 **Prep Batch: 316453** LCS LCS Spike %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits Sodium 20.0 20.0 mg/L 100 80 - 120 Lab Sample ID: LCSD 580-316453/13-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA Analysis Batch: 316544 **Prep Batch: 316453** LCSD LCSD %Rec. Spike RPD Added **Result Qualifier** Analyte Unit D %Rec Limits RPD Limit 20.0 20.2 Sodium 101 80 - 120 20 mg/L 1

QC Sample Results

Job ID: 580-90398-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 580-90398- Matrix: Water Analysis Batch: 316544	-2 MS Sample	Sample	Spike	MS	MS			CI	ient Samp Prep Typ Prep Ba %Rec.	le ID: be: Tot itch: 31	MW-3 al/NA 16453
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sodium	28		20.0	49.0		mg/L		104	75 - 125		
Lab Sample ID: 580-90398-	-2 MSD							CI	ient Samp	le ID:	MW-3
Matrix: Water									Prep Typ	be: Tot	al/NA
Analysis Batch: 316544									Prep Ba	tch: 3	6453
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sodium	28		20.0	49.5		mg/L		107	75 - 125	1	20
Lab Sample ID: 580-90398-	-2 DU							CI	ient Samp	le ID:	MW-3
Matrix: Water									Prep Typ	be: Tot	al/NA
Analysis Batch: 316544									Prep Ba	tch: 3	6453
-	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Sodium	28			29.3		mg/L				4	20

Client Sample ID: MW-2 Date Collected: 10/22/19 15:55 Date Received: 10/28/19 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 14:04	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 01:08	EML	TAL SEA
Total/NA	Prep	3510C	RE		316340	11/08/19 08:56	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	5	316419	11/10/19 05:08	TL1	TAL SEA
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		5	316161	11/06/19 20:58	T1W	TAL SEA

Client Sample ID: MW-3 Date Collected: 10/22/19 16:55 Date Received: 10/28/19 13:25

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 14:29	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	50	315621	10/31/19 21:53	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315586	10/31/19 18:35	DCV	TAL SEA
Total/NA	Prep	3510C	RE		316340	11/08/19 08:56	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	5	316419	11/10/19 05:30	TL1	TAL SEA
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		5	316161	11/06/19 21:18	T1W	TAL SEA
Total/NA	Prep	3010A			316453	11/11/19 07:58	A1B	TAL SEA
Total/NA	Analysis	6010C		1	316544	11/11/19 17:50	T1H	TAL SEA

Client Sample ID: MW-6 Date Collected: 10/22/19 14:05

Date Received: 10/28/19 13:25

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number or Analyzed Analyst Туре Run Lab Total/NA 8260C 315538 10/30/19 14:54 TL1 TAL SEA Analysis 1 Total/NA Analysis 8260C RA 1 315621 10/31/19 21:28 TL1 TAL SEA Total/NA TAL SEA Analysis AK101 315497 10/31/19 02:45 EML 1 Total/NA 3510C RE 316340 11/08/19 08:56 NRF TAL SEA Prep Total/NA RE Analysis 316419 11/10/19 06:14 TL1 TAL SEA AK102 & 103 1 Total/NA Prep 3510C 315972 11/05/19 09:25 NRF TAL SEA Total/NA TAL SEA Analysis AK102 & 103 316161 11/06/19 21:38 T1W 1

Client Sample ID: MW-10 Date Collected: 10/22/19 13:35 Date Received: 10/28/19 13:25

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 15:20	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 03:08	EML	TAL SEA
Total/NA	Prep	3510C	RE		316340	11/08/19 08:56	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316419	11/10/19 06:36	TL1	TAL SEA

Eurofins TestAmerica, Seattle

Lab Sample ID: 580-90398-1

Matrix: Water

Analyst	Lab
TL1	TAL SEA
EML	TAL SEA
NRF	TAL SEA
TL1	TAL SEA
NRF	TAL SEA
T1W	TAL SEA
Lab S	Sample II

Lab Sample ID: 580-90398-3

Lab Sample ID: 580-90398-4

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: MW-10 Date Collected: 10/22/19 13:35 Date Received: 10/28/19 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316161	11/06/19 21:58	T1W	TAL SEA

Client Sample ID: MW17-2 Date Collected: 10/22/19 18:18 Date Received: 10/28/19 13:25

—	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 15:46	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	10	315621	10/31/19 22:43	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 03:33	EML	TAL SEA
Total/NA	Prep	3510C	RE		316340	11/08/19 08:56	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316419	11/10/19 06:57	TL1	TAL SEA
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316161	11/06/19 22:19	T1W	TAL SEA
Total/NA	Prep	3010A			316453	11/11/19 07:58	A1B	TAL SEA
Total/NA	Analysis	6010C		1	316544	11/11/19 18:16	T1H	TAL SEA

Client Sample ID: MW17-5 Date Collected: 10/22/19 17:50 Date Received: 10/28/19 13:25

Lab Sample ID: 580-90398-6

Lab Sample ID: 580-90398-7

Lab Sample ID: 580-90398-5

Matrix: Water

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 16:11	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	10	315621	10/31/19 23:09	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 03:57	EML	TAL SEA
Total/NA	Prep	3510C	RE		316340	11/08/19 08:56	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316419	11/10/19 07:19	TL1	TAL SEA
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316161	11/06/19 22:59	T1W	TAL SEA
Total/NA	Prep	3010A			316453	11/11/19 07:58	A1B	TAL SEA
Total/NA	Analysis	6010C		1	316544	11/11/19 18:19	T1H	TAL SEA

Client Sample ID: 2GM112 DUP Date Collected: 10/22/19 16:57 Date Received: 10/28/19 13:25

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 16:37	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	50	315621	10/31/19 22:18	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315586	10/31/19 18:59	DCV	TAL SEA
Total/NA	Prep	3510C	RE		316340	11/08/19 08:56	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	5	316419	11/10/19 07:41	TL1	TAL SEA

Lab Sample ID: 580-90398-4

Job ID: 580-90398-1

Matrix: Water

Matrix: Water

11/14/2019

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316161	11/06/19 23:19	T1W	TAL SEA

Client Sample ID: RM-1 Date Collected: 10/24/19 14:45 Date Received: 10/28/19 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 17:03	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	10	315794	11/02/19 09:08	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 04:45	EML	TAL SEA
Total/NA	Prep	3510C			316216	11/07/19 09:54	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316419	11/09/19 22:36	TL1	TAL SEA

Client Sample ID: RM-2 Date Collected: 10/24/19 16:05 Date Received: 10/28/19 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 17:27	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	10	315794	11/02/19 09:33	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 05:09	EML	TAL SEA
Total/NA	Prep	3510C			316216	11/07/19 09:54	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316419	11/09/19 22:58	TL1	TAL SEA
Total/NA	Prep	3010A			316453	11/11/19 07:58	A1B	TAL SEA
Total/NA	Analysis	6010C		1	316544	11/11/19 18:22	T1H	TAL SEA

Client Sample ID: TRIP BLANK Date Collected: 10/22/19 12:00 Date Received: 10/28/19 13:25

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315538	10/30/19 13:12	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 02:21	EML	TAL SEA

Laboratory References:

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Job ID: 580-90398-1

mpla ID: 590 00209 7

Lab Sample ID: 580-90398-7 Matrix: Water

Lab Sample ID: 580-90398-8

9 10

Lab Sample ID: 580-90398-9

Matrix: Water

Matrix: Water

Lab Sample ID: 580-90398-10 Matrix: Water

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Laboratory: Eurofins TestAmerica, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-024	01-19-22
ANAB	Dept. of Defense ELAP	L2236	01-19-22
ANAB	ISO/IEC 17025	L2236	01-19-22
Montana (UST)	State	NA	04-13-21
Oregon	NELAP	WA100007	11-06-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	US Federal Programs	P330-17-00039	02-10-20
Washington	State	C553	02-17-20

Job ID: 580-90398-1

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: Tesoro - 2Go Mart 112

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
580-90398-1	MW-2	Water	10/22/19 15:55	10/28/19 13:25	
580-90398-2	MW-3	Water	10/22/19 16:55	10/28/19 13:25	
580-90398-3	MW-6	Water	10/22/19 14:05	10/28/19 13:25	
580-90398-4	MW-10	Water	10/22/19 13:35	10/28/19 13:25	
580-90398-5	MW17-2	Water	10/22/19 18:18	10/28/19 13:25	
580-90398-6	MW17-5	Water	10/22/19 17:50	10/28/19 13:25	
580-90398-7	2GM112 DUP	Water	10/22/19 16:57	10/28/19 13:25	
580-90398-8	RM-1	Water	10/24/19 14:45	10/28/19 13:25	
580-90398-9	RM-2	Water	10/24/19 16:05	10/28/19 13:25	
580-90398-10	TRIP BLANK	Water	10/22/19 12:00	10/28/19 13:25	

TestAmerica Anchorage 2000 M. International Airport Road Suite A10

Chain of Custody Record

249748

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Anchorage, AE 99502 Phone: 907.563.9200 Fax: 907.563.92	10			dad ala						٤						THE LEADER IN I		ESTING
Client Contact	Regi	llatory Pr	ogram:	DW		S	R	CRA		Other:							TAL-821) (0713)
Company Name: Sha Jar	Tol/Eav.	hanager: /	mike 2	-USC K	<u> </u>	Site	Co	ntac	t:			Date:	10/24	119		COC No:	<u>,</u>	1
Address: 725 E Elerust LN C. (1. 200	Teirrax;	Analysis	Turnaroun	d Time		Lab		ntaci	t:	· · · · · · · · · · · · · · · · · · ·		Carrie	r:	<i>t</i>		of	L COCs	
Dity/State/Zip: Ancharace AK AN 503						4		<	1							Sampler: S	m	
Phone: 907-266-1108	<u></u>	T if different	from Below	AKING DA	13	+ L	-16									For Lab Use O	nly:	
ax:	\neg	in a canorent) weeks				92	3								Walk-in Client:		
Project Name: TNS 112			1 week				15	χ								Lab Sampling:		
Site:			2 days			29		5										
20# Send to Anne Duarte & Stadway			1 day			- Defe	R		5							JOD / SDG No.:		
		1	Sample			- S		ťő	Ś									
,	Sample	Sample	Туре			De la	12	\Box	N									
Sample Identification	Date	Time	(C≃Comp, G=Grab)	Matrix	# of Cont.	et le	R	Z	3								_	
Ani >		1	1	()	0	╞╞	\mathbf{k}	∇			╪═┿					Sample	Specific Notes:	
mw-a	10/22/14	1555	$ \mathcal{O} $	W	<u> </u>		<u> X</u>	. <u> </u> Χ										
	10/22/15	1655	1		9		X	\mathbf{X}	X									
	11/14	1405			8		\overline{V}	Y)			┼╍┽		┝╼╊╍╌╂					
ML - 10	Johnlie	1335			Ř		∇	5			┼╌┼							
ALVO-D	- 1-1 sept -	19.0	<u>├</u> ─ <u></u>	╞╌┠╶┤	$\frac{\sigma}{\alpha}$	┢┼╋	<u>₩</u>				┝─┼		-++				<u> </u>	
	10/23/17	1313		┝╍╌┨──┤			X	1	X									
MW17-5	10/22/19	1750			9		X	$ \mathbf{X} $	Υl							1		
26MILL DUD	0/22/19	1657			8		X	X				-		-++				
	- haberto	1940			Q.		∇				┼┈┼							
Pm-D	L. hul A	V ac			å		\mathbb{C}	()	\pm	-+		+	_			12m-1 65	5 induled	The in
	Playm	1602			-1		쓰	X	X							The 111		
Trip Blank	liohaa/14	1900	V	V	6		X											
eservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3	; 5=NaOH; 6	= Other				9 90 V	permen e		2403404 AA		enargen 2209	ABAN ADRIANSIA (P	AND RADIAN CON					
e any samples from a listed EPA Hazardous Wasto? Dio	oo Listaau E		O			s						I W P	1	104000 2000	erena sinternida siterrija	<u>ial 1</u>	<u> </u>	न् न
omments Section if the lab is to dispose of the sample.	ise List any E	PA waste	Lodes for th	ie sampł	e in the									T	herm. ID	Cor: 1	0 ° Unc: <u>/</u>	<u> </u>
Non-Hazard Flammable Skin Irritant	Poison I	3	Linknow			-								C	ooler Ds	a h	FedEx:	
ecial Instructions/QC Requirements & Comments:		-		94 F										P	acking:			
Nes Dont DOD 600 R	TEV	a).						-00-5	1029	o Chain of Cus	stody			. C	ust. Seal	: \ es <u>[\ \</u>	Lab Cour	
PICARE REEDON ISHO DED 12	<u>ACI16</u>	UNIY												Ы	ue lce.V	Vet, Dry, None	Other: 🔽 🗞	<u>. c</u>
Ustody Seals Intact: Yes No	Custody Se	al No.: /						C	Coole	er Temp. (°C):	Obs'd		Cor	r'd:		HEHHLD NO.;		
National Action	Company:		I	Date/Tim	e:	Red	ceive	ed by	/:			Ċ	Company:			Date/Time:		
linguished by:	Company	126		0/24/1	1 2 91	<u> </u>										1		
······································	Company:		10	Jate/Tim	e:	Rec	ceive	ed by	/:			C	company:			Date/Time:		
linguished by:	Company			Data (T)	<u> </u>				<u> </u>							I		
·	Company.		10	Jate/ Hm	e:	Rec	eive	ed in	ג⊿bo ה	则炒		Γ	ompany:			Date/Time:		
					L.	/	Jer		<	of A	M		10.28.19	1325				

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc

Login Number: 90398 List Number: 1 Creator: Vallelunga, Diana L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-90398-1

List Source: Eurofins TestAmerica, Seattle

Laboratory Data Review Checklist

Completed By:

Erin O'Malley

Title:

Environmental Engineer

Date:

9/10/2019

CS Report Name:

July 2019 2Go Mart 111 Monitoring Event

Report Date:

August 22, 2019

Consultant Firm:

Stantec Consulting Services Inc.

Laboratory Name:

TestAmerica Seattle

Laboratory Report Number:

580-88121-1 (GW Samples Only)

ADEC File Number:

100.26.026

Hazard Identification Number:

24247

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

		🖸 Yes	🖸 No	Comments:
	b	If the sa alternate	mples were transferred to e laboratory, was the labo	another "network" laboratory or sub-contracted to an ratory performing the analyses ADEC CS approved?
		🖸 Yes	🖸 No	Comments:
2. <u>C</u>	<u>Chain o</u>	f Custody	<u>(CoC)</u>	
	a. C	CoC inform	ation completed, signed,	and dated (including released/received by)?
		🖸 Yes	🖸 No	Comments:
	b. C	Correct Ana	alyses requested?	
		🖸 Yes	🖸 No	Comments:
3. <u>L</u>	aborat	ory Sampl	e Receipt Documentation	
	a. S	ample/coo	ler temperature document	ted and within range at receipt (0° to 6° C)?
		🖸 Yes	🖸 No	Comments:
	b. S V	ample pres olatile Ch	servation acceptable – aci lorinated Solvents, etc.)?	dified waters, Methanol preserved VOC soil (GRO, BTEX,
		🖸 Yes	🖸 No	Comments:

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?

🖸 Yes	🖸 No	Comments:

Samples received in good condition and preservation status.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

_		🖸 Yes	🖸 No	Comments:	
	e.	Data quality	or usability affected?		
_				Comments:	
	No.				
4.	<u>Ca</u>	se Narrative			
	a.	Present and	understandable?		
		🖸 Yes	C No	Comments:	
	b.	Discrepanci	es, errors, or QC failures	identified by the lab?	
		🖸 Yes	🖸 No	Comments:	
	c.	Were all co	rrective actions document	ed?	
		🖸 Yes	🖸 No	Comments:	
	d.	What is the	effect on data quality/usal	bility according to the case narrative?	
				Comments:	
	Se	e below secti	ons.		
Sa	Samples Results				
	a.	Correct ana	lyses performed/reported	as requested on COC?	
		🖸 Yes	🖸 No	Comments:	
	b.	All applicat	ble holding times met?		
		🖸 Yes	🖸 No	Comments:	

5.

c. All soils reported on a dry weight basis?

	C No	Comments:
No soil sampl	es.	
d. Are the rep the project	oorted LOQs less t ?	than the Cleanup Level or the minimum required detection level for
🖸 Yes	🖸 No	Comments:
There are a nu	mber of LOQs tha	at exceed the GCLs for all samples.
e. Data quali	ty or usability affe	ected?
🖸 Yes	🖸 No	Comments:
All non-detec	t results where the	e LOQ exceeds the GCL are affected.
C Samples		
a. Method Bl	ank	
i. On	e method blank re	ported per matrix, analysis and 20 samples?
C Yes	🖸 No	Comments:
ii. All	method blank res	sults less than limit of quantitation (LOQ)?
ii. All € Yes	method blank res	sults less than limit of quantitation (LOQ)? Comments:
ii. All € Yes iii. If a	method blank res	sults less than limit of quantitation (LOQ)? Comments: samples are affected?
ii. All € Yes iii. If a	method blank res	sults less than limit of quantitation (LOQ)? Comments: samples are affected? Comments:
ii. All Yes iii. If a Not applicable	method blank res	sults less than limit of quantitation (LOQ)? Comments: samples are affected? Comments:
ii. All Yes iii. If a Not applicable iv. Do	method blank res	sults less than limit of quantitation (LOQ)? Comments: samples are affected? Comments: ble(s) have data flags? If so, are the data flags clearly defined?
ii. All E Yes iii. If a Not applicable iv. Do E Yes	method blank res No bove LOQ, what s the affected samp No	sults less than limit of quantitation (LOQ)? Comments: samples are affected? Comments: ble(s) have data flags? If so, are the data flags clearly defined? Comments:

Comments:

No.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

	🖸 Yes	🖸 No	Comments:
	ii. Meta 20 s	als/Inorganics amples?	- one LCS and one sample duplicate reported per matrix, analysis and
	🖸 Yes	🖸 No	Comments:
No m	netals or in	organics anal	yzed.
	iii. Acc And AK	uracy – All pe project speci 102 75%-1259	rcent recoveries (%R) reported and within method or laboratory limits? fied DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, %, AK103 60%-120%; all other analyses see the laboratory QC pages)
	🖸 Yes	🖸 No	Comments:
	 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) 		
	🖸 Yes	🖸 No	Comments:
	v. If%	R or RPD is c	outside of acceptable limits, what samples are affected?
			Comments:
Not a	pplicable.		
	vi. Do t	he affected sa	mple(s) have data flags? If so, are the data flags clearly defined?
	🖸 Yes	🖸 No	Comments:
Not a	pplicable.		
	vii. Data	a quality or us	ability affected? (Use comment box to explain.)
		-	Comments:
No.			

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

🖸 Yes 🛛 No	Comments:
------------	-----------

- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- Yes No Comments:

Method 8260C: The following samples failed quality control limits for the surrogates Trifluorotoluene (Surr), Trifluorotoluene (Surr), and/or 1,2-Dichloroethane-d4 (Surr): MW-10 (580-88121-4), MW-11 (580-88121-5), MW-111 DUP (580-88121-6), MW-16 (580-88121-8), MW-12 (580-88121-9), RM-1 (580-88121-10), MW 17-1 (580-88121-11), G-5 (580-88121-12), RM-2 (15-15.5) (580-88121-13), RM-2 (30-30.5) (580-88121-14), RM-2 (39.5-40) (580-88121-15), DUP-01 (580-88121-16), TB-01 (580-88121-17), (CCVIS 580-307639/3), (CCVL 580-307639/6), (LCS 580-307639/4), (LCSD 580-307639/5) and (MB 580-307639/7).

Method 8260C: The following samples were re-analyzed due to surrogate failure in the initial analysis: MW-13 (580-88121-2), TB-01 (580-88121-7), MW-16 (580-88121-8) and MW-12 (580-88121-9).

Method 8270D SIM: Surrogate recovery for the following samples were outside control limits: MW-13 (580-88121-2) and MW-12 (580-88121-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No Comments:

iv. Data quality or usability affected?

Comments:

Yes. The samples where surrogate recovery exceeded criteria and evidence of matrix interference was present MW-13 (580-88121-2) and MW-12 (580-88121-9) are affected. The other samples MW-10 (580-88121-4), MW-11 (580-88121-5), MW-111 DUP (580-88121-6), MW-16 (580-88121-8), MW-12 (580-88121-9), RM-1 (580-88121-10), MW 17-1 (580-88121-11), G-5 (580-88121-12), RM-2 (15-15.5) (580-88121-13), RM-2 (30-30.5) (580-88121-14), RM-2 (39.5-40) (580-88121-15), DUP-01 (580-88121-16), TB-01 (580-88121-17), (CCVIS 580-307639/3), (CCVL 580-307639/6), (LCS 580-307639/4), (LCSD 580-307639/5) and (MB 580-307639/7) are not affected because the reporting analytes are not chemically associated with the surrogates and the data have been reported.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

🖸 Yes	C No	Comments:		
ii. Is t CO	ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)			
C Yes	🖸 No	Comments:		
iii. Al	iii. All results less than LOQ?			
🖸 Yes	C No	Comments:		
iv. If a	above LOQ, what samples	are affected? Comments:		
Not applicabl	е.			
v. Da	ta quality or usability affe	cted?		
		Comments:		
No.				
e. Field Dup	licate			
i. On	e field duplicate submitted	d per matrix, analysis and 10 project samples?		
🖸 Yes	C No	Comments:		
ii. Su	bmitted blind to lab?			
🖸 Yes	C No	Comments:		
MW-111 DU	P and MW 17-2			

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2) x 100

 $((R_1+R_2)/2)$ Where R_1 = Sample Concentration

 R_2 = Field Duplicate Concentration

🖸 Yes 💽 No

Comments:

RPD for 1,2,4-Trimethylbenzene outside the recommended 30% for water. (56.41%)

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

No. Reported concentrations were consistently above the GCL for 1,2,4-Trimethylbenzene in both primary and duplicate samples.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

CYes CNo Not Applicable

i. All results less than LOQ?

C Yes No Comments:

No decontamination or equipment blanks submitted.

ii. If above LOQ, what samples are affected?

Comments:

No decontamination or equipment blanks submitted.

iii. Data quality or usability affected?

Comments:

No decontamination or equipment blanks submitted.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes No Comments: