

Imagine the result

Chevron Environmental Management Company

2008 Vapor Assessment Report

Former Texaco Facility 211079

1501 South Cushman Street

Fairbanks, Alaska

December 2, 2008

Michael L. Strickler, G.I.T.

Geologist I

H8 Gregory Montgomery

Project Scientist

for Rebecca K. Andresen

Certified Project Manager

2008 Vapor Assessment Report

Former Texaco Facility 211079 1501 South Cushman Street Fairbanks, Alaska

Prepared for: Chevron Environmental Management Company

Prepared by: ARCADIS 2300 Eastlake Avenue East Suite 200 Seattle, Washington 98102 Tel 206-325-5254 Fax 206-325-8218

Our Ref.: B0045823

Date: December 2, 2008

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	Introduction						
2.	Site De	Site Description					
3.	Vapor	or Sampling					
	3.1	Sampling Procedures	3				
	3.2	Soil Vapor Screening Levels	4				
	3.3	Soil Vapor Analytical Results	4				
	3.4	Fixed Gases and Biodegradation	5				
	3.5	Ambient Air Analytical Results	5				
4.	Vapor	Sampling Data Quality Assurance	6				
	4.1	Leak Test Analytical Results	6				
	4.2	Field Blank and Trip Blank Analytical Results	6				
	4.3	Canister Vacuum Readings	7				
5.	Labora	tory Data Quality Assurance Summary	7				
	5.1	Precision	8				
	5.2	Accuracy	8				
	5.3	Representativeness	8				
	5.4	Comparability	9				
	5.5	Completeness	9				
	5.6	Sensitivity	9				
6.	Update	ed Conceptual Site Model	9				
7.	Conclusions 10						
8.	References 1						

Table of Contents

Tables

Table 1	Vapor Probe Analytical Data
Table 2	Fixed Gases and Tracer Gas
Table 3	Ambient Air and Quality Assurance Samples
Table 4	Canister Vacuum Readings
Figures	
Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Soil Vapor Analytical Summary Map

Figure 4 Ambient Air Samples Analytical Summary Map

Appendices

- A Soil Gas Sample Collection Logs
- B Laboratory Report & ADEC Data Review Checklist
- C Conceptual Site Model Scoping Form and Graph

2008 Vapor Assessment Report

Former Texaco 211079

1. Introduction

On behalf of Chevron Environmental Management Company (Chevron), ARCADIS U.S., Inc. (ARCADIS) has prepared this vapor assessment report for former Texaco 211079 located at 1501 South Cushman Street in Fairbanks, Alaska (the site). This assessment report supplements ARCADIS' 2007 Soil Vapor Assessment report for the site. The site and surrounding area are shown on **Figure 1**. This report summarizes the field activities and results of the vapor assessment conducted on September 14, 2008. This work was conducted under direction of a "qualified person" [18 AAC 75.990 (100), and 18 AAC 78.995 (118)].

2. Site Description

The property was previously operated as a Texaco service station and was closed in 1986. The former service station, car wash, and pump islands are no longer present at the site. Six single-walled steel underground storage tanks (USTs) were installed onsite in 1963. Five of the tanks (four 4,000 gallon and one 6,000 gallon) were reportedly used for gasoline storage and one tank (550 gallon) was used for used oil storage. The USTs, dispenser islands, and product lines were reportedly removed in 1988, although conflicting reports suggest that some of the tanks may have been removed in 1993. Soil and groundwater were observed to be impacted by petroleum during the tank removal in 1988. A remediation system was operated at the site from 1993 to 1998. There is currently a UST for heating oil located on the property.

Groundwater was monitored on a quarterly basis from 1994 to 2000, and was monitored on a semi-annual basis from 2001 to 2006. Remediation via soil vapor extraction (SVE) began in December 1993, and an air sparge (AS) system was later added in June 1994. The system consisted of six vapor extraction wells and seven sparge wells in the former tank pit and dispenser island areas. The system reduced concentrations of dissolved hydrocarbons by up to two orders of magnitude in onsite wells. Following approval from the Alaska Department of Environmental Conservation (ADEC), the AS/SVE system was permanently shut down in December 1998.

The concentrations of dissolved petroleum compounds in groundwater at the site and immediately down-gradient of the site are stable or decreasing. This is evidence that dissolved-phase petroleum hydrocarbons may be undergoing natural attenuation. Light, non-aqueous phase liquid (LNAPL) has not been observed at the site.

2008 Vapor Assessment Report

Former Texaco 211079

The site is mostly paved (the offsite area by monitoring well MW-6 is not paved) and located in a developed area. The site is currently the location of an active church. The petroleum impacts appear to have originated from the original USTs, underground piping and/or the dispenser islands, which were located on the northwestern portion of the site. The environmental impact caused by the release of petroleum hydrocarbons at the site is believed to be limited to the impacts to groundwater, soil, and possibly indoor air. The current potential receptors are commercial or industrial workers, residents (the property immediately down-gradient is residential), site visitors and trespassers.

In December 2006, ARCADIS issued a request for No Further Remedial Action Planned (NFRAP) to be issued by ADEC for the site. In response to this request, ADEC asked for additional information, including details about a domestic water well located to the north of the site, and an investigation into the possibility of a vapor intrusion pathway to indoor air.

In 2007, ARCADIS investigated a single identified domestic water well, located approximately 1,750 feet north of the site (El Dorado Estates). According to Rex Gavin, a member of the El Dorado Estates Board of Directors, the well has only been used for lawn watering.

In order to assess the potential for vapor intrusion at the site, ARCADIS installed a permanent soil vapor probe in 2007 in a location selected based on the highest remaining volatile groundwater concentrations at the site (vapor probe VP-1). The location of vapor probe VP-1 is shown on **Figure 2**. The analytical results indicated concentrations of benzene exceeding the Environmental Protection Agency (EPA) screening level for shallow gas concentrations during 2007 vapor sampling.

At the request of ADEC, an additional groundwater sampling event was conducted in April 2008 following ARCADIS' request for NFRAP. The analytical results indicated concentrations of gasoline range organics (GRO), diesel range organics (DRO), benzene and ethylbenzene exceeding the applicable ADEC groundwater cleanup level (GCL) in at least one groundwater sample.

2008 Vapor Assessment Report

Former Texaco 211079

3. Vapor Sampling

3.1 Sampling Procedures

The existing fittings on vapor probe VP-1 were replaced with air tight 2-way valves. The well head and entire sampling train (valves, tubing, fittings, gauges, SUMMA[™] canister) were placed in an enclosure. Helium, used as a tracer compound for a leak test, was then permitted into the enclosure and monitored for concentration stability with a helium detector. Helium concentrations were maintained at approximately 10-20% for the duration of purging and sampling at each location. The leak test is performed to ensure the integrity of the sampling system.

Purging consisted of removing approximately three volumes of stagnant soil gas using a 3-way valve and a personal sample pump. The purge volume was calculated based on the dimensions of the above-ground gauges, tubing, sampling equipment and below-ground tubing.

Following purging, the soil gas sample was then collected using a 6-liter SUMMATM canister with a laboratory provided flow regulator set to approximately 200 milliliters per minute (mL/min) for a sampling period of approximately 30 minutes. Laboratory supplied SUMMATM canisters were 100% certified by the laboratory prior to field receipt. Initial and final vacuum gauge readings were taken for each sample and recorded on the soil gas sample collection logs included in **Appendix A**.

A duplicate sample was collected in-line with its parent sample via a laboratory supplied duplicate tee fitting. The parent 6-liter SUMMA[™] canister and the duplicate 6-liter SUMMA[™] canister each were fitted with a laboratory provided flow regulator set to approximately 100 mL/min to maintain a combined flow of approximately 200 mL/min.

A field blank sample was collected by transferring the contents of a laboratory provided 6-liter pressurized SUMMA[™] canister to an evacuated 6-liter SUMMA[™] canister using a section of Teflon-lined polyethylene tubing from the batch of tubing used during sampling. A trip blank was also submitted as an evacuated 6-liter SUMMA[™] canister that travelled with the batch of canisters but was never opened.

Two ambient air samples were collected, one upwind and one downwind, of the site using evacuated 6-liter SUMMA[™] canisters with laboratory supplied flow controllers

2008 Vapor Assessment Report

Former Texaco 211079

set to approximately 200 mL/min. These samples were collected to assess any potential background contributions present in ambient air.

The vapor samples were shipped to Lancaster Laboratories in Lancaster, Pennsylvania for analysis of the following:

- BTEX and naphthalene by USEPA Method TO-15
- Oxygen, carbon dioxide and helium by American Society for Testing and Materials (ASTM) Method D-1946
- Methane by USEPA 18 modified

3.2 Soil Vapor Screening Levels

Soil gas screening levels used in this vapor assessment can be found in Table 2c of the USEPA Draft Guidance for Evaluation the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (USEPA, 2002). These screening levels are based on an incremental lifetime cancer risk of 1 x 10^{-6} or a non-cancer hazard index of 1 under a residential exposure scenario. The samples collected from 5 feet below ground surface (bgs) are compared to shallow gas screening levels (\leq 5 feet bgs) and the samples collected from 9 feet bgs are compared to deep soil gas screening levels (>5 feet bgs).

3.3 Soil Vapor Analytical Results

Samples collected from vapor probe VP-1 at 5 feet bgs did not contain concentrations of the analyzed compounds above USEPA screening levels for shallow soil gas. Benzene, ethylbenzene, o-xylene and naphthalene were not detected above the respective laboratory detection limits.

Samples collected from vapor probe VP-1 at 9 feet bgs did not contain concentrations of the analyzed compounds above USEPA screening levels for deep soil gas. Ethylbenzene and naphthalene were not detected above the respective laboratory detection limits.

Soil vapor analytical data is summarized in Table 1 and on Figure 3.

2008 Vapor Assessment Report

Former Texaco 211079

3.4 Fixed Gases and Biodegradation

The presence and concentration of oxygen and carbon dioxide can be indications of biodegradation of soil gas vapors in the subsurface. Due to low concentrations of volatile organic compounds and carbon dioxide with near atmospheric concentrations of oxygen, the potential for biodegradation of vapors in the vicinity of vapor probe VP-1 is inconclusive. A vapor attenuation factor from biodegradation is not applied to the analytical results present in this report. Fixed gas concentrations are summarized in **Table 2**.

3.5 Ambient Air Analytical Results

Two ambient air samples were collected during the September 14, 2008 vapor sampling event to assess potential background sources present in ambient air. Based on an approximate wind direction from the northeast to the southwest, one upwind ambient air sample was collected northeast of vapor probe VP-1 and one downwind ambient air sample was collected southwest of vapor probe VP-1. The approximate locations of these ambient air samples are shown on **Figure 4**.

Benzene, toluene, m/p-xylenes and o-xylene were detected at concentrations above the laboratory detection limits in both ambient air samples. Ethylbenzene was detected at a concentration above the laboratory detection limit in the upwind ambient air sample. There is no screening level established for these ambient samples. The ambient air analytical data are summarized in **Table 3** and **Figure 4**.

The concentrations in ambient air presented here are in most cases equivalent or higher than the concentrations in the soil gas samples collected from vapor probe VP-1. This indicates significant background concentrations potentially attributable to factors other than subsurface contamination. ADEC provides information on background levels of chemicals reported in indoor air in Appendix B of their 2004 technical memorandum (ADEC, 2004).

Additionally, ADEC cites research conducted in Anchorage (Schlapia and Morris, 1998) and Fairbanks (Maxwell, 2004) which found outdoor concentrations of BTEX at levels exceeding the shallow soil gas screening levels. This research, combined with the ambient air analytical results, indicate that the ambient air may contain higher concentrations of the target compounds than the soil gas concentrations and act as a major background source at this site.

2008 Vapor Assessment Report

Former Texaco 211079

4. Vapor Sampling Data Quality Assurance

For data quality assurance (QA) purposes, multiple QA techniques were employed during the September 14, 2008 vapor sampling. A leak test was performed at each sample location to ensure integrity of the sampling system and to demonstrate that ambient air was not being permitted into the sampling train or entering the subsurface, potentially biasing the samples. In addition, a field blank and a trip blank were submitted to assess background contamination due to equipment or bias due to contamination during transport to and from the laboratory. Canister pressures were also analyzed from field documents and laboratory receipt documents to ensure there were not leaks during transport.

4.1 Leak Test Analytical Results

A leak test was performed at each sampling location with the exception of the ambient air samples, trip blank and field blank. The respective well head and entire sampling train (valves, tubing, fittings, gauges, SUMMA[™] canister) were placed within an enclosure. Helium, used as the tracer compound for the leak test, was then permitted into the enclosure and monitored for concentration stability with a helium detector. Helium concentrations were maintained at approximately 10-20% for the duration of purging and sampling at each location.

Helium was not detected above the laboratory detection limit of 0.05 % by volume in the samples collected from vapor probe VP-1. This indicates that the integrity of the sampling train was maintained throughout sampling and confirms the absence of atmospheric leakages into the samples. Helium analytical results are summarized in **Table 2**.

4.2 Field Blank and Trip Blank Analytical Results

There were no detections of the analyzed compounds in the field blank sample above the laboratory reporting limit, demonstrating that sampling equipment did not bias the samples. Additionally, there were no detections of the analyzed compounds above the laboratory detection limit in the trip blank sample. Analytical results for quality assurance samples are summarized in **Table 3**.

2008 Vapor Assessment Report

Former Texaco 211079

4.3 Canister Vacuum Readings

An initial vacuum reading was taken for each SUMMA[™] canister during field setup for sampling. A final vacuum reading was taken at the end of the sampling period. These readings were recorded on the respective soil gas sample collection logs included in **Appendix A**. Upon laboratory receipt, a final vacuum pressure was recorded by the laboratory to assess whether leakage occurred during transport.

Final laboratory vacuum readings were corrected for elevation differences between the laboratory in Lancaster, Pennsylvania (approximately 368 feet above sea level) and the site in Fairbanks, Alaska (approximately 446 feet above sea level). The approximate relationship between elevation and vacuum gauge readings recommended by the laboratory is 1 inch of mercury (in Hg) per 1,000 feet in elevation gain. The laboratory vacuum readings were adjusted for comparison to the site readings using the following correction:

$$Vac_{corr}^{lab} = Vac_{un}^{lab} + \left(-78 feet \times \frac{1 in Hg}{1,000 feet}\right)$$

where:

 Vac_{corr}^{lab} = laboratory vacuum reading, corrected for elevation (in Hg)

 Vac_{un}^{lab} = laboratory vacuum reading, uncorrected for elevation (in Hg)

Table 4 summarizes the canister vacuum readings. The field blank sample shows an increase in vacuum of approximately 8.12 in Hg upon arrival at the lab. A crack in the vacuum gauge glass (as indicated in the field notes for this sample) likely caused a false reading in the field; however, upon laboratory receipt, the canister still contained an adequate vacuum and sample volume to allow for proper analysis.

The average change in vacuum for the remaining sample canisters is a decrease of 0.36 in Hg with a standard deviation of \pm 0.68 in Hg. These values can be considered negligible and may simply reflect human error in analog vacuum readings in the field compared to digital vacuum readings in the laboratory.

5. Laboratory Data Quality Assurance Summary

As required by ADEC (Technical Memorandum 06-002, dated August 20, 2008), ARCADIS completed a laboratory data review checklist for the Lancaster laboratory

2008 Vapor Assessment Report

Former Texaco 211079

report from the 2008 vapor sampling event. The laboratory reports and associated data review checklist is included as **Appendix B**. The following QA summary describes six parameters, related to the quality and usability of the data presented in this report.

5.1 Precision

Based on the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) relative percent differences, the data meet precision objectives. A field duplicate was collected for the vapor samples. The relative percent differences (RPDs) for the analyzed compounds were 0% for the vapor field duplicate with the exception of toluene, m/p-xylenes and oxygen with RPDs of 7.41%, 40% and 6.45%, respectively. Data quality or usability does not appear to be affected.

RPDs were calculated using the following formula:

$$RPD = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \times 100 \right|$$

Where:

RPD	= relative percent difference (%)
R ₁	= sample concentration (ppbv or %)
R ₂	= field duplicate concentration (ppbv or %)

5.2 Accuracy

The data meet accuracy objectives as indicated by the laboratory quality control samples (LCS), which were within method/laboratory limits.

5.3 Representativeness

The data appear to be representative of site conditions and are generally consistent with expected soil and vapor concentrations.

2008 Vapor Assessment Report

Former Texaco 211079

5.4 Comparability

These data are reported using the same units and formats as previous monitoring reports to allow for comparison.

5.5 Completeness

The results appear to be valid and usable, and thus, the laboratory results have 100% completeness.

5.6 Sensitivity

The sensitivity of the analyses was adequate for the samples as the laboratory reporting limits were less than the applicable vapor screening levels. A trip blank sample was submitted with the vapor samples for analysis of BTEX, naphthalene, oxygen, carbon dioxide, methane and helium. The vapor trip blank sample did not contain analyte concentrations above the laboratory reporting limits.

6. Updated Conceptual Site Model

The site is paved (offsite area by monitoring well MW-6 is not paved), located in a developed area and is currently the location of an active church. The petroleum impacts appear to have originated from the original USTs, underground piping and/or the dispenser islands, which were located on the northwestern portion of the site. The environmental impact caused by the release of petroleum hydrocarbons at the site is believed to be limited to the impacts to groundwater, soil, and possibly indoor air. The current potential receptors are commercial or industrial workers, residents (property immediately down-gradient is residential), and site visitors or trespassers.

Future potential receptors include residents and construction workers. The nature of these vapor assessment activities was designed to investigate the potential for an inhalation pathway. Other receptors which were considered, and were subsequently ruled out include: farmers, subsistence harvesters and subsistence consumers. These receptors were excluded because the site is developed and is located in a commercial area.

As requested in ADEC's response to ARCADIS' NFRAP request, a single identified domestic water well, located approximately 1,750 feet north of the site (El Dorado Estates) was investigated for its use, exact location and final depth. According to Rex

2008 Vapor Assessment Report

Former Texaco 211079

Gavin, a member of the El Dorado Estates Board of Directors, the well has only been used for lawn watering. An updated conceptual site model scoping form and graph are included in **Appendix C**.

7. Conclusions

Vapor samples collected in September 2008 from vapor probe VP-1 did not contain concentrations of benzene, ethylbenzene, toluene, m/p-xylenes, o-xylene or naphthalene above the respective USEPA soil gas screening levels for shallow or deep gas (as applicable) for residential areas. These data indicate that the possibility of vapor intrusion pathway to indoor air does not appear to exist.

Ambient air samples collected during the vapor sampling event contained concentrations of benzene, toluene, ethylbenzene, m/p-xylenes and o-xylenes in at least one sample suggesting that background interference due to ambient air concentrations may play a significant role in indoor air assessment.

8. References

ADEC. 2004. Draft Evaluation of Vapor Intrusion Pathway at Contaminated Sites Technical Memorandum. June 28, 16 pp.

Maxwell, Robert A. 2004. "Monitoring of Volatile Organic Compounds in Alaska Health Houses." Cold Climate Housing Research Center. Fairbanks, Alaska.

Schlapia, A. and S.S. Morris. 1998. "Architectural, Behavioral and Environmental Factors Associated with VOCs in Anchorage Homes." Presented at the Air and Waste Management Association's 91st Annual Meeting and Exhibition, June 14-18, 1998, San Diego, California.

Tables

Table 1Vapor Probe Analytical Data

Former Texaco 211079, 1501 South Cushman Street Fairbanks, Alaska

Vapor Probe	Depth (ft)	Sample Date	Benzene	Toluene	Ethylbenzene	m/p-Xylenes	o-Xylene	Naphthalene
EPA So	reening Level	(Shallow Gas):	0.98	1,100	5.1	16,000	16,000	5.7
VP-1	5	08/09/07	2.2	62	2.6	4.4	1.8	<0.4
		8/9/2007 ^D 09/14/08	1.1 <0.2	22 1.4	1.8 <0.2	3.1 0.26	1.3 <0.2	<0.4 < 0.4
		9/14/2008	<0.2	1.3	<0.2	0.39	<0.2	<0.4
EPA	Screening Lev	el (Deep Gas):	9.80	11,000	510.0	160,000	160,000	57
VP-1	9	08/09/07	4.6	44	2.4	4.0	1.6	<0.4
		09/14/08	1	1.7	<0.2	0.53	0.22	<0.4
Notes: Results are reported in parts per billion by volume (ppbv) Bold Type = Results of most recent sampling event Highlighted values indicate an exceedance of the respective EPA screening level ^D Duplicate of the preceding sample < = not detected greater than the laboratory reporting limit								

Table 2Fixed Gases and Tracer Gas

Former Texaco 211079, 1501 South Cushman Street Fairbanks, Alaska

Vapor Probe	Depth (ft)	Sample Date	Methane	Oxygen	Carbon dioxide	Helium
VP-1	5	08/09/07	0.00036	19	<0.025	
		8/9/2007 ^D 09/14/08	0.00032 <0.00040	21 16	<0.025 <0.025	<0.05
		9/14/2008 ^D	<0.00040	15	<0.025	<0.05
		08/09/07 09/14/08	0.00048 <0.00040	23 18	<0.025 <0.025	 <0.05
Notes: Results are rep Bold Type = Re ^D Duplicate of th < = not detecter "" = not analyz	orted in percent sults of most re e preceding sar d greater than th zed	age by volume (cent sampling e nple ne laboratory rep	(%v) vent porting limit			

Table 3 **Ambient Air and Quality Assurance Samples**

Former Texaco 211079, 1501 South Cushman Street Fairbanks, Alaska

Sample	Sample Date	Benzene	Toluene	Ethylbenzene	m/p-Xylenes	o-Xylene	Naphthalene
AMB-UP	09/14/08	0.67	1.7	0.23	0.75	0.29	<0.4
AMB-DOWN	09/14/08	0.59	1.5	<0.20	0.60	0.23	<0.4
Field Blank	09/14/08	<0.40	<0.40	<0.40	<0.40	<0.40	<0.80
Trip Blank	09/14/08	<0.20	<0.20	<0.20	<0.20	<0.20	<0.40

Notes: All results are reported in parts per billion by volume (ppbv) Bold Type = Results of most recent sampling event < = not detected greater than the laboratory reporting limit

Table 4Canister Vacuum Readings

Former Texaco 211079, 1501 South Cushman Street Fairbanks, Alaska

Vapor Probe	Depth (ft)	Sample Date	Initial Field Vacuum	Final Field Vacuum	Final Lab Vacuum	Final Lab Vacuum (Corrected for Elevation) ¹	Change in Vacuum ²
		Vapo	or Probe Sa	amples			
VP-1	5	09/14/08	30	5	4.2	4.1	0.88
		09/14/08^D	28.5	11.5	11.0	10.9	0.58
	9	09/14/08	28	5.5	6.0	5.9	-0.42
		Quality	Assurance	e Samples			
AMB-UP		09/14/08	26	5	5.5	5.4	-0.42
AMB-DOWN		09/14/08	29.5	5.5	4.4	4.3	1.18
Field Blank ³		09/14/08	20	5	13.2	13.1	-8.12
Trip Blank		09/14/08					
Notes:							
Readings are re	Readings are reported in inches of mercury (in Hg)						
^D Duplicate of the preceding sample							
¹ Elevation Correction = Final Lab Vacuum - 0.078							
² Change in Vac	uum = Final Lal	o Vacuum (Corr	ected) - Fin	al Field Vacu	ıum		
³ Field notes ind	Field notes indicate a crack on the vacuum gauge glass for this canister						

211079 2008 Vapor Assessment Tables.xls

Figures

BY: RICHARDS, 11/12/2008 5:33 PM PLOTTED: PLTFULL.CTB PLOTSTYLETABLE: PAGESETUP: 17.0S (LMS TECH) pt) LYR:(Opt)ON=*,OFF=*REF* 1/6/2008 10:06 AM ACADVER: -TIM (Opt) PM (Reqd) OUT 1 SAV PIC (Opt) PM vg LAYOUT gwb OUP:85 DB.JAR LD.(Opt) \00002\2008 VAR\45823N01.0 DIV/GROUP:85 323\0001 08/B00458 CITY:TMAPA,FL 200

NOTE: AMBIENT AIR SAMPLE

15TH AVENUE

LEGEND

MONITORING WELL

X DESTROYED MONITORING WELL

 \triangle SOIL VAPOR PROBE LOCATION

AMBIENT AIR SAMPLE LOCATION

SAMP	LE LOCATION
DATE	SAMPLE DATE
DEPTH	SAMPLE DEPTH
В	BENZENE
Т	TOLUENE
E	ETHYLBENZENE
m∕p−X	m/p-XYLENES
o-X	o-XYLENE
Ν	NAPHTHALENE

RESULTS REPORTED IN PARTS PER BILLION BY VOLUME (ppbv)

<0.2/<0.2 = DUPLICATE SAMPLE

BOLD VALUES INDICATE AN EXCEEDANCE OF THE RESPECTIVE EPA SCREENING LEVEL

15TH AVENUE

NOTE: AMBIENT AIR SAMPLE LOCATIONS ARE APPROXIMATE.

100' 50' GRAPHIC SCALE

SOURCE: Base map 'SITE PLAN' (Job #77CH.21079.04.0270) provided by SECOR, 3017 Kilgore Rd., Rancho Cordova, CA, (916) 861-0400. Map drawn full scale, map date Oct. 10, 2005.

FORMER CHEVRON FACILITY #211079 1501 CUSHMAN STREET, FAIRBANKS, ALASKA 2008 VAPOR ASSESSMENT REPORT

ARCADIS

SOIL VAPOR ANALYTICAL SUMMARY MAP

FIGURE 3

NOTE: AMBIENT AIR SAMPLE LOCATIONS ARE APPROXIMATE.

15TH AVENUE

RESULTS REPORTED IN PARTS PER BILLION BY VOLUME (ppbv)

SAMPL	E LOCATION
DATE	SAMPLE DATE
В	BENZENE
Т	TOLUENE
E	ETHYLBENZENE
m/p-X	m/p-XYLENES
0-X	o-XYLENE
N	NAPHTHALENE

LEGEND

MONITORING WELL

X DESTROYED MONITORING WELL

 \triangle SOIL VAPOR PROBE LOCATION

AMBIENT AIR SAMPLE LOCATION

 $\mathsf{Appendix}\,\mathbf{A}$

Soil Gas Sample Collection Logs

6	ADCA			Soil Gas Sam	ple Collect	ion Log
Fin	AKCA	ADIS	Date:	9/14/08	Sample ID:	VP-1-5.0
Client:		Chev	ron	Tubing Information:		High Press BC
Project:		21105	79	Misc. Equipment:	N.C.	He Detecto
Location:		Fairbo	anks, AK	Subcontractor:	A State State State	
Project #:			1	Moisture Content of S	ampling Zone:	Dry / Moist
Samplers:		MLS		Purge Method:		Sample Pri
Sample Poir	nt Location:	5.0		Appx. Purge Volume:		BX
Sampling De	epth:	5.0		Tracer Gas Manufactu	irer:	Airags
Time of Coll	ection:	1217	1.1259			
Tracer Gas:		Heli	im			
				-		
Canister Siz	e:	61		Canister ID:		018
Canister Siz Flow Contro	e: Iler ID:	62		Canister ID:		018
Canister Siz Flow Contro	e: iller ID:	61		Canister ID:	n a free a s	018
Canister Siz Flow Contro Duplicate Ca	e: Iler ID: anister Size:	61		Canister ID: Duplicate Canister ID:		018
Canister Siz Flow Contro Duplicate Ca Duplicate Flo	e: iller ID: anister Size: ow Controller ID:	61		Canister ID: Duplicate Canister ID:		018
Canister Siz Flow Contro Duplicate Ca Duplicate Flo	e: iller ID: anister Size: ow Controller ID:	61		Canister ID: Duplicate Canister ID:		018
Canister Siz Flow Contro Duplicate Ca Duplicate Flo Time	e: Iller ID: anister Size: ow Controller ID: Canister Pressure (inches of Hg)	(o L Temperature (°F or °C)	Relative Humidity (%)	Canister ID: Duplicate Canister ID: Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	066 PID (ppm or ppb)
Canister Siz Flow Contro Duplicate Ca Duplicate Flo Time	e: Iler ID: anister Size: ow Controller ID: Canister Pressure (Inches of Hg) - 30 4	Temperature (°F or °C)	Relative Humidity (%)	Canister ID: Duplicate Canister ID: Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	018 066 PID (ppm or ppb)
Canister Siz Flow Contro Duplicate Ca Duplicate Flo Time	e: Iler ID: anister Size: ow Controller ID: Canister Pressure (inches of Hg) -30 (-5,0)	Temperature (°F or °C)	Relative Humidity (%)	Canister ID: Duplicate Canister ID: Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	018 066 PID (ppm or ppb)
Canister Siz Flow Contro Duplicate Ca Duplicate Flo Time	e: Iler ID: anister Size: ow Controller ID: Canister Pressure (inches of Hg) -30 4 -5,0 ¹¹ -26,5	(oL Temperature (°F or °C)	Relative Humidity (%)	Canister ID: Duplicate Canister ID: Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	O 66 PID (ppm or ppb)

Well ID	Depth to Groundwater (ft.)

Digo Dup

General Observations/Notes
Dup-1 collected from VP-1-5.0
simutaneously w/ splitter tee
and how klow coutoflers
Live -
Sec.

		Soil Gas Sample Collection Log			
AKC	ADIS	Date:	9/14/08	Sample ID:	VP-1-9.0
Client:	Chevre	m	Tubing Information	1:	High Press Brake
Project:	21104	9.	Misc. Equipment:	and the second second	He Detector
Location:	Fairbo	unks, AK	Subcontractor:		
Project #:		,	Moisture Content	of Sampling Zone:	- Dry / Moist
Samplers:	MUS		Purge Method:	a state a state of	Sample Punio
Sample Point Location:	9.0		Appx. Purge Volur	ne:	3×
Sampling Depth:	9.0		Tracer Gas Manufa	acturer:	Airaas
Time of Collection:	1111	11206			
Tracer Gas:	Heliu	n	1		

Canister Size:	66	Canister ID: 325	
Flow Controller ID:			

Duplicate Canister Size:	Duplicate Canister ID:
Duplicate Flow Controller ID:	

Time	Canister Pressure (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	PID (ppm or ppb)
111	-28,01					
1206	-5,51					

Well ID	Depth to Groundwater (ft.)

General Observations/Notes
Replaced value to new 2-way
* Tag said "1/2 Hour" sample, however
Collection to of appr. 1 nour

		Soil Gas Sample Collection Log				
		Date:	9/14/08	Sample ID:	AMB-UP	
Client:	Chevi	ron	Tubing Information:			
Project:	21105	fg	Misc. Equipment:			
Location:	Fairb	anks,AK	Subcontractor:			
Project #:		/ .	Moisture Content of	Sampling Zone:	Dry / Moist	
Samplers:	MUS		Purge Method:			
Sample Point Location:			Appx. Purge Volume	a:	and the second sec	
Sampling Depth:			Tracer Gas Manufac	turer:		
Time of Collection:	1138	11207				
Tracer Gas:]			

Canister Size:	60	Canister ID:	181
Flow Controller ID:			

Duplicate Canister Size:	Duplicate Canister ID:
Duplicate Flow Controller ID:	

Time	Canister Pressure (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	PID (ppm or ppb)
1138	-26.0×					
1207	-5.0"					

Well ID	Depth to Groundwater (ft.)

General Observations/Notes
Ambient appoind sample cottected
Near S. Cushman street on
side walk/ concrete in fromt
of partier shop and Korran
restauvant.
× · · · ·

		Soil Gas Sample Collection Log				
		Date:	9/14/08	Sample ID:	AMB - DOWN	
Client:	Chevr	on	Tubing Information:			
Project:	21104	o	Misc. Equipment:		~	
Location:	Fairbo	inks. AK	Subcontractor:			
Project #:		,	Moisture Content of S	Sampling Zone:	Dry / Moist	
Samplers:	MUS		Purge Method:			
Sample Point Location:			Appx. Purge Volume:		· · · · · · · · · · · · · · · · · · ·	
Sampling Depth:			Tracer Gas Manufacturer:			
Time of Collection:	1144	11213				
Tracer Gas:]			

Canister Size:	6	Canister ID:	088	
Flow Controller ID:	1			

Duplicate Canister Size:	Duplicate Canister ID:
Duplicate Flow Controller ID:	-

Time	Canister Pressure (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	PID (ppm or ppb)
1144	- 29,51					
1213	-5,51					
	0					

Well ID	Depth to Groundwater (ft.)

General Observations/Notes
Ambient down-wind sample
collected from parking lot
between barber shop/loorean
Vestauvant ? Alaska Motel

		Soil Gas Sample Collection Log				
AKC	Date:	9/14/08	Sample ID:	Field Blank		
Client:	chert	m	Tubing Information	1:	FEP lined poly	
Project:	21105	79	Misc. Equipment:			
Location:	Fairb	anks, A	Subcontractor:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Project #:		(Moisture Content o	of Sampling Zone:	Dry / Moist	
Samplers:	MUS		Purge Method:			
Sample Point Location:			Appx. Purge Volum	ne:	\sim	
Sampling Depth:	-		Tracer Gas Manufa	cturer:	-	
Time of Collection:	1229	1124	1			
Tracer Gas:						

Canister Size:	62	Canister ID:	836
Flow Controller ID:			

Duplicate Canister Size:	Duplicate Canister ID:	
Duplicate Flow Controller ID:		

Time	Canister Pressure (inches of Hg)	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H ₂ O)	PID (ppm or ppb)
1229	-20,0"					
1241	-5.0"					

Well ID	Depth to Groundwater (ft.)

& TPTP BLANK

Anna P	al surve		General Observa	tions/Notes	
	Crack	ØŊ	Vacuum	gauge.	glass
	·				
	-				

 $\mathsf{Appendix}\, \mathbf{B}$

Laboratory Report & ADEC Data Review Checklist

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1110262. Samples arrived at the laboratory on Tuesday, September 16, 2008. The PO# for this group is 0015029778 and the release number is BARTON.

<u>Client Description</u>	Lancaster Labs Number
VP-1-5.0 Summa Canister #0018 Grab Air Sample	5469652
VP-1-9.0 Summa Canister #0325 Grab Air Sample	5469653
DUP-1 Summa Canister #0066 Grab Air Sample	5469654
AMB-UP Summa Canister #0181 Grab Air Sample	5469655
AMB-DOWN Summa Canister #0088 Grab Air Sample	5469656
Field Blank Summa Canister #0836 Grab Air Sample	5469657
Trip Blank Summa Canister #0553 Air Sample	5469658

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

ELECTRONIC	Arcadis US, Inc.	Attn: Rebecca Andresen
СОРҮ ТО		
ELECTRONIC	Arcadis BBL	Attn: Vanessa Varbel
СОРҮ ТО		
ELECTRONIC	ARCADIS	Attn: Michael Strickler
СОРҮ ТО		
ELECTRONIC	Arcadis	Attn: Greg Montgomery
СОРҮ ТО		
1 COPY TO	Data Package Group	

ELECTRONIC ARCADIS COPY TO Attn: Andrew Ohrt

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

had Moline

Chad A. Moline Group Leader

Page 1 of 1

Lancaster Laboratories Sample No. 5469652 AQ Group No. 1110262 VP-1-5.0 Summa Canister #0018 Grab Air Sample Facility# 211079 1501 S Cushman St - Fairbanks, AK

Collected:09/14/2008 12:17 by MLS through 09/14/2008 12:59 Submitted: 09/16/2008 09:30 Reported: 10/20/2008 at 15:16 Discard: 11/20/2008 Account Number: 11964

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CUSV1 SDG#: ASK25-01

		As Received Final			As Received Final			
Analysis Name	CAS Number	Result	MDL	Units	Result	MDL	Units	DF
Methane	74-82-8	N.D.	4.0	ppm(v)	N.D.	2.6	mg/m3	2
TO-15 VOA special compounds								
Benzene	71-43-2	N.D.	0.00020	ppm(v)	N.D.	0.00064	mg/m3	1
Toluene	108-88-3	0.0014	0.00020	ppm(v)	0.0054	0.00075	mg/m3	1
Ethylbenzene	100-41-4	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
m/p-Xylene	n.a.	0.00026	0.00020	ppm(v)	0.0011	0.00087	mg/m3	1
o-Xylene	95-47-6	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
Naphthalene	91-20-3	N.D.	0.00040	ppm(v)	N.D.	0.0021	mg/m3	1
Helium was not detected in this	sample. Dete	ction limit	t for Heliu	um is 500	ppm.			
O2 and CO2 in Air								
Oxygen	7782-44-7	160,000	3,000	ppm(v)	210,000	3,900	mg/m3	1
Carbon Dioxide	124-38-9	N.D.	250	ppm(v)	N.D.	450	mg/m3	1
	Analysis Name Methane TO-15 VOA special compounds Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene Naphthalene Helium was not detected in this O2 and CO2 in Air Oxygen Carbon Dioxide	Analysis NameCAS NumberMethane74-82-8TO-15 VOA special compoundsBenzene71-43-2Toluene108-88-3Ethylbenzene100-41-4m/p-Xylenen.a.o-Xylene95-47-6Naphthalene91-20-3Helium was not detected in this sample. DeteO2 and CO2 in AirOxygen7782-44-7Carbon Dioxide124-38-9	As Received FinalAnalysis NameCAS NumberResultMethane74-82-8N.D.TO-15 VOA special compoundsTO-15 VOA special compoundsN.D.Benzene71-43-2N.D.Toluene108-88-30.0014Ethylbenzene100-41-4N.D.m/p-Xylenen.a.0.00026o-Xylene95-47-6N.D.Naphthalene91-20-3N.D.Helium was not detected in this sample.Detection limitO2 and CO2 in Air7782-44-7160,000Carbon Dioxide124-38-9N.D.	As Received FinalAnalysis NameCAS NumberResultMDLMethane74-82-8N.D.4.0TO-15 VOA special compounds555Benzene71-43-2N.D.0.00020Toluene108-88-30.00140.00020Ethylbenzene100-41-4N.D.0.00020m/p-Xylenen.a.0.000260.00020o-Xylene95-47-6N.D.0.00020Naphthalene91-20-3N.D.0.00040Helium was not detected in this sample.Detection limit for HeliuO2 and CO2 in Air7782-44-7160,0003,000Carbon Dioxide124-38-9N.D.250	As Received FinalAnalysis NameCAS NumberResultMDLUnitsMethane74-82-8N.D.4.0ppm(v)TO-15 VOA special compoundsBenzene71-43-2N.D.0.00020ppm(v)Toluene108-88-30.00140.00020ppm(v)Ethylbenzene100-41-4N.D.0.00020ppm(v)m/p-Xylenen.a.0.000260.00020ppm(v)o-Xylene95-47-6N.D.0.00020ppm(v)Naphthalene91-20-3N.D.0.00040ppm(v)O2 and C02 in Air7782-44-7160,0003,000ppm(v)Carbon Dioxide124-38-9N.D.250ppm(v)	As Received FinalAs Received FinalAs Received FinalAnalysis NameCAS NumberResultMDLUnitsResultMethane74-82-8N.D.4.0ppm (v)N.D.TO-15 VOA special compounds5555Benzene71-43-2N.D.0.00020ppm (v)N.D.Toluene108-88-30.00140.00020ppm (v)0.0054Ethylbenzene100-41-4N.D.0.00020ppm (v)N.D.m/p-Xylenen.a.0.000260.00020ppm (v)N.D.0-Xylene95-47-6N.D.0.00020ppm (v)N.D.Naphthalene91-20-3N.D.0.00040ppm (v)N.D.Helium was not detected in thissample.Det tion limit for Helium is 500pm.Oxygen7782-44-7160,0003,000ppm (v)210,000Carbon Dioxide124-38-9N.D.250ppm (v)N.D.	As Received Final Xs Received Final Xs Received Final Ks Received Final Ks Received Final Analysis Name CAS Number Result MDL Units Result MDL Methane 74-82-8 N.D. 4.0 ppm(v) N.D. 2.6 TO-15 VOA special compounds 5	As Received FinalAs Received FinalAs Received FinalAnalysis NameCAS NumberResultMDLUnitsResultMDLUnitsMethane74-82-8N.D.4.0ppm(v)N.D.2.6mg/m3TO-15 VOA special compoundsTO-15 VOA special compoundsTO-15 VOA special compoundsN.D.0.00020ppm(v)N.D.0.00064mg/m3Toluene108-88-30.00140.00020ppm(v)N.D.0.00075mg/m3Ethylbenzene100-41-4N.D.0.00020ppm(v)N.D.0.00087mg/m3m/p-Xylenen.a.0.000260.00020ppm(v)N.D.0.00087mg/m3o-Xylene95-47-6N.D.0.00040ppm(v)N.D.0.0021mg/m3Helium was not detected in thissample.Dettimit for Helium is 50-pm.VN.D.0.0021mg/m3Cxygen7782-44-7160,0003,000ppm(v)N.D.450mg/m3Carbon Dioxide124-38-9N.D.250ppm(v)N.D.450mg/m3

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle							
CAT		-		Analysis		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
07056	Methane	EPA 18 modified	1	09/18/2008 14:03	David I Ressler	2	
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	09/19/2008 04:44	Jonathan K Nardelli	1	
00034	O2 and CO2 in Air	ASTM D1946	1	10/15/2008 08:00	Jeffrey B Smith	1	

Page 1 of 1

Lancaster Laboratories Sample No. 5469653 AQ Group No. 1110262 VP-1-9.0 Summa Canister #0325 Grab Air Sample Facility# 211079

1501 S Cushman St - Fairbanks, AK

Collected:09/14/2008 11:11 by MLS through 09/14/2008 12:06 Submitted: 09/16/2008 09:30 Reported: 10/20/2008 at 15:16 Discard: 11/20/2008 Account Number: 11964

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CUS1V SDG#: ASK25-02

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	MDL	Units	Result	MDL	Units	DF
07056	Methane	74-82-8	N.D.	4.0	ppm(v)	N.D.	2.6	mg/m3	2
00015	TO-15 VOA special compounds								
00019	Benzene	71-43-2	0.0010	0.00020	ppm(v)	0.0032	0.00064	mg/m3	1
00020	Toluene	108-88-3	0.0017	0.00020	ppm(v)	0.0064	0.00075	mg/m3	1
00021	Ethylbenzene	100-41-4	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
00022	m/p-Xylene	n.a.	0.00053	0.00020	ppm(v)	0.0023	0.00087	mg/m3	1
00023	o-Xylene	95-47-6	0.00022	0.00020	ppm(v)	0.00097	0.00087	mg/m3	1
00032	Naphthalene	91-20-3	N.D.	0.00040	ppm(v)	N.D.	0.0021	mg/m3	1
	Helium was not detected in this	sample. Det	ection limi	t for Heli	um is 500)ppm.			
00034	O2 and CO2 in Air								
00035	Oxygen	7782-44-7	180,000	3,000	ppm(v)	230,000	3,900	mg/m3	1
00036	Carbon Dioxide	124-38-9	N.D.	250	ppm(v)	N.D.	450	mg/m3	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle							
CAT Analysis						Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
07056	Methane	EPA 18 modified	1	09/18/2008 14:40	David I Ressler	2	
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	09/19/2008 05:29	Jonathan K Nardelli	1	
00034	O2 and CO2 in Air	ASTM D1946	1	10/16/2008 14:05	Jeffrey B Smith	1	

Page 1 of 1

Lancaster Laboratories Sample No. 5469654 AQ

Group No. 1110262

DUP-1 Summa Canister #0066 Grab Air Sample Facility# 211079 1501 S Cushman St - Fairbanks, AK

Collected:09/14/2008 by MLS

Submitted: 09/16/2008 09:30 Reported: 10/20/2008 at 15:16 Discard: 11/20/2008 Account Number: 11964

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CUSFD SDG#: ASK25-03FD

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	MDL	Units	Result	MDL	Units	DF
07056	Methane	74-82-8	N.D.	4.0	ppm(v)	N.D.	2.6	mg/m3	2
00015	TO-15 VOA special compounds								
00019	Benzene	71-43-2	N.D.	0.00020	ppm(v)	N.D.	0.00064	mg/m3	1
00020	Toluene	108-88-3	0.0013	0.00020	ppm(v)	0.0049	0.00075	mg/m3	1
00021	Ethylbenzene	100-41-4	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
00022	m/p-Xylene	n.a.	0.00039	0.00020	ppm(v)	0.0017	0.00087	mg/m3	1
00023	o-Xylene	95-47-6	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
00032	Naphthalene	91-20-3	N.D.	0.00040	ppm(v)	N.D.	0.0021	mg/m3	1
	Helium was not detected in this	sample. Dete	ection limi	t for Heli	um is 500	ppm.			
00034	O2 and CO2 in Air								
00035	Oxygen	7782-44-7	150,000	3,000	ppm(v)	200,000	3,900	mg/m3	1
00036	Carbon Dioxide	124-38-9	N.D.	250	ppm(v)	N.D.	450	mg/m3	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle							
CAT		-		Analysis		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
07056	Methane	EPA 18 modified	1	09/18/2008 15:10	David I Ressler	2	
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	09/19/2008 06:13	Jonathan K Nardelli	1	
00034	O2 and CO2 in Air	ASTM D1946	1	09/16/2008 11:48	Jeffrey B Smith	1	

Page 1 of 1

Lancaster Laboratories Sample No. 5469655 AQ AMB-UP Summa Canister #0181 Grab Air Sample Facility# 211079 1501 S Cushman St - Fairbanks, AK

Collected:09/14/2008 11:38 by MLS through 09/14/2008 12:07 Submitted: 09/16/2008 09:30 Reported: 10/20/2008 at 15:16 Discard: 11/20/2008 Account Number: 11964

Group No. 1110262

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CUSAU SDG#: ASK25-04

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	MDL	Units	Result	MDL	Units	DF
07056	Methane	74-82-8	N.D.	4.0	ppm(v)	N.D.	2.6	mg/m3	2
00015	TO-15 VOA special compounds								
00019	Benzene	71-43-2	0.00067	0.00020	ppm(v)	0.0021	0.00064	mg/m3	1
00020	Toluene	108-88-3	0.0017	0.00020	ppm(v)	0.0065	0.00075	mg/m3	1
00021	Ethylbenzene	100-41-4	0.00023	0.00020	ppm(v)	0.00099	0.00087	mg/m3	1
00022	m/p-Xylene	n.a.	0.00075	0.00020	ppm(v)	0.0033	0.00087	mg/m3	1
00023	o-Xylene	95-47-6	0.00029	0.00020	ppm(v)	0.0013	0.00087	mg/m3	1
00032	Naphthalene	91-20-3	N.D.	0.00040	ppm(v)	N.D.	0.0021	mg/m3	1
	Helium was not detected in this	sample. Dete	ction limi	t for Heli	um is 500	ppm.			
00034	O2 and CO2 in Air								
00035	Oxygen	7782-44-7	170,000	3,000	ppm(v)	220,000	3,900	mg/m3	1
00036	Carbon Dioxide	124-38-9	N.D.	250	ppm(v)	N.D.	450	mg/m3	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle							
CAT		-		Analysis		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
07056	Methane	EPA 18 modified	1	09/18/2008 15:41	David I Ressler	2	
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	09/19/2008 06:58	Jonathan K Nardelli	1	
00034	O2 and CO2 in Air	ASTM D1946	1	09/16/2008 11:48	Jeffrey B Smith	1	

Page 1 of 1

Lancaster Laboratories Sample No. 5469656 AQ Group No. 1110262 AMB-DOWN Summa Canister #0088 Grab Air Sample Facility# 211079 1501 S Cushman St - Fairbanks, AK

Collected:09/14/2008 11:44 by MLS through 09/14/2008 12:13 Submitted: 09/16/2008 09:30 Reported: 10/20/2008 at 15:16 Discard: 11/20/2008 Account Number: 11964

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CUSAD SDG#: ASK25-05

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	MDL	Units	Result	MDL	Units	DF
07056	Methane	74-82-8	21	4.0	ppm(v)	14	2.6	mg/m3	2
00015	TO-15 VOA special compounds								
00019	Benzene	71-43-2	0.00059	0.00020	ppm(v)	0.0019	0.00064	mg/m3	1
00020	Toluene	108-88-3	0.0015	0.00020	ppm(v)	0.0056	0.00075	mg/m3	1
00021	Ethylbenzene	100-41-4	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
00022	m/p-Xylene	n.a.	0.00060	0.00020	ppm(v)	0.0026	0.00087	mg/m3	1
00023	o-Xylene	95-47-6	0.00023	0.00020	ppm(v)	0.0010	0.00087	mg/m3	1
00032	Naphthalene	91-20-3	N.D.	0.00040	ppm(v)	N.D.	0.0021	mg/m3	1
	Helium was not detected in this	sample. Dete	ection limi	t for Heli	um is 500	ppm.			
00034	O2 and CO2 in Air								
00035	Oxygen	7782-44-7	200,000	3,000	ppm(v)	260,000	3,900	mg/m3	1
00036	Carbon Dioxide	124-38-9	N.D.	250	ppm(v)	N.D.	450	mg/m3	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle							
CAT		-		Analysis		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
07056	Methane	EPA 18 modified	1	09/18/2008 16:11	David I Ressler	2	
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	09/19/2008 07:43	Jonathan K Nardelli	1	
00034	O2 and CO2 in Air	ASTM D1946	1	09/16/2008 11:48	Jeffrey B Smith	1	

Page 1 of 1

Lancaster Laboratories Sample No. 5469657 AQ Group No. 1110262

Field Blank Summa Canister #0836 Grab Air Sample Facility# 211079 1501 S Cushman St - Fairbanks, AK

Collected:09/14/2008 12:29 by MLS through 09/14/2008 12:41 Submitted: 09/16/2008 09:30 Reported: 10/20/2008 at 15:16 Discard: 11/20/2008 Account Number: 11964

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CUSFB SDG#: ASK25-06FB

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	MDL	Units	Result	MDL	Units	DF
07056	Methane	74-82-8	N.D.	4.0	ppm(v)	N.D.	2.6	mg/m3	2
00015	TO-15 VOA special compounds								
00019	Benzene	71-43-2	N.D.	0.00040	ppm(v)	N.D.	0.0013	mg/m3	2
00020	Toluene	108-88-3	N.D.	0.00040	ppm(v)	N.D.	0.0015	mg/m3	2
00021	Ethylbenzene	100-41-4	N.D.	0.00040	ppm(v)	N.D.	0.0017	mg/m3	2
00022	m/p-Xylene	n.a.	N.D.	0.00040	ppm(v)	N.D.	0.0017	mg/m3	2
00023	o-Xylene	95-47-6	N.D.	0.00040	ppm(v)	N.D.	0.0017	mg/m3	2
00032	Naphthalene	91-20-3	N.D.	0.00080	ppm(v)	N.D.	0.0042	mg/m3	2
	Helium was not detected in this	sample. Dete	ction limit	t for Heliu	um is 500	ppm.			
00034	O2 and CO2 in Air								
00035	Oxygen	7782-44-7	N.D.	3,000	ppm(v)	N.D.	3,900	mg/m3	1
00036	Carbon Dioxide	124-38-9	N.D.	250	ppm(v)	N.D.	450	mg/m3	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	Chronic	cle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07056	Methane	EPA 18 modified	1	09/18/2008 16:42	David I Ressler	2
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	09/19/2008 10:29	Fanella S Zamcho	2
00034	O2 and CO2 in Air	ASTM D1946	1	09/16/2008 11:48	Jeffrey B Smith	1

Account Number: 11964

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Chevron

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. 5469658 AQ Group No. 1110262 Trip Blank Summa Canister #0553 Air Sample Facility# 211079 1501 S Cushman St - Fairbanks, AK

Collected:09/14/2008

Submitted: 09/16/2008 09:30 Reported: 10/20/2008 at 15:16 Discard: 11/20/2008

CUSTB SDG#: ASK25-07TB*

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	MDL	Units	Result	MDL	Units	DF
07056	Methane	74-82-8	N.D.	2.0	ppm(v)	N.D.	1.3	mg/m3	1
00015	TO-15 VOA special compounds								
00019	Benzene	71-43-2	N.D.	0.00020	ppm(v)	N.D.	0.00064	mg/m3	1
00020	Toluene	108-88-3	N.D.	0.00020	ppm(v)	N.D.	0.00075	mg/m3	1
00021	Ethylbenzene	100-41-4	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
00022	m/p-Xylene	n.a.	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
00023	o-Xylene	95-47-6	N.D.	0.00020	ppm(v)	N.D.	0.00087	mg/m3	1
00032	Naphthalene	91-20-3	N.D.	0.00040	ppm(v)	N.D.	0.0021	mg/m3	1
	Helium was not detected in this	sample. Dete	ction limit	t for Heliu	um is 500	ppm.			
00034	O2 and CO2 in Air								
00035	Oxygen	7782-44-7	N.D.	3,000	ppm(v)	N.D.	3,900	mg/m3	1
00036	Carbon Dioxide	124-38-9	N.D.	250	ppm(v)	N.D.	450	mg/m3	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	Chronic	cle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07056	Methane	EPA 18 modified	1	09/18/2008 17:12	David I Ressler	1
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	09/19/2008 11:13	Fanella S Zamcho	1
00034	O2 and CO2 in Air	ASTM D1946	1	09/16/2008 11:48	Jeffrey B Smith	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Quality Control Summary

Client Name: Chevron Reported: 10/20/08 at 03:16 PM Group Number: 1110262

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: 08290FG01	Sample num	ber(s): 54	169652-546	9658				
Oxygen	N.D.	3,000.	ppm(v)	103		70-130		
Carbon Dioxide	N.D.	250.	ppm(v)	92		70-130		
Batch number: D0826230AA	Sample num	ber(s): 54	169652-546	9658				
Benzene	N.D.	0.00020	ppm(v)	122	122	70-130	0	25
Toluene	N.D.	0.00020	ppm(v)	122	121	70-130	1	25
Ethylbenzene	N.D.	0.00020	ppm(v)	120	119	70-130	1	25
m/p-Xylene	N.D.	0.00020	ppm(v)	113	112	70-130	1	25
o-Xylene	N.D.	0.00020	ppm(v)	119	118	70-130	1	25
Naphthalene	N.D.	0.00040	ppm(v)	98	98	26-151	0	25
Batch number: M082631YA	Sample num	ber(s): 54	169652-546	9658				
Methane	N.D.	2.0	ppm(v)					

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

Lancaster Laboratories Where quality is a science.	Acct. #:	For Sample #	The Lancaster Laboratories use on $5 16 1653 - 58$	008355
•••		Āna	alyses Requested	(Snoup#/110262
Facility #: 211079	Matrix	Pre	eservation Codes	Preservative Codes
Site Address: 1501 S. Cushman St., Fairbanks, A	ĸ			$N = HNO_3$ B = NaOH
Chevron PM: Greg Barton Lead Consultant: ARCADIS	<u>م</u>			$S = H_2SO_4$ $O = Other$
Consultant/Office: <u>Seattle</u> , WA	aine aine		C ation de	□ J value reporting needed
Consultant Pri. Mgr.: Greg Montgomery				possible for 8260 compounds
Consultant Phone #: 206-726-4742 Fax #: 206-325-8218		External S		8021 MTBE Confirmation
Sampler: MLS				Confirm highest hit by 8260
Service Order #: NWZTB- O Zito + [] Non SAR:				Confirm all hits by 8260
Sample Identification Collected Collected 연 여	Vat Voit Oil [BITEX	Head Head	\Box Run oxy's on all hits
VP-1-5.0 9/14/08/1217/1259 X				Comments / Remarks
VP-1-9.0 9/14/08 1111/1206 X	+			* Oxygen,
AMB-11D 9/14/08/128/207				carbon dioxide
AMB-DOWN 9/14/08/144/123X				methane
Field Blank 9/14/08/229/1241X	XI			Initrogen
Trip Blank 9/14/08	× '			by D-1946
		╺╉╶┼╶┼╼┼		
		╶╋╴╁╌┼╶┽╴┽		BTEX
				Naphthalene
				16x TO-15
Turnaround Time Requested (TAT) (please circle)	atrickly	er Plate	Time Received by:	Date Time
STD TAT 72 hour 48 hour Relinquished b	<u>/:</u> /:	Date	Time Received by:	Date Time
24 nour 4 day 5 day				
Data Package Options (please circle if required)		Date	Hime Received by	Date lime
QC Summary Type I - Full Type VI (Raw Data) Disk / EDD Relinquished b	Commercial Carrie	ır:	Received by	Pate, Time
WIP (RWQCB) Standard Format UPS	edEx Other	·	- + Shulan	U/U/12 08 0830
DiskOther. Temperature	pon Receipt	C°	Custody Seals Intact?	Yes No

÷.,

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
mĪ	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

Laboratory Data Review Checklist

Completed by: Michael L. Strickler			
Title: Geologist I	Date:	Nov 5	, 2008
CS Report Name: 211079 2008 Vapor Assessment	Report	Date:	Nov 5, 2008
Consultant Firm: ARCADIS			
Laboratory Name: Lancaster Laboratories Laboratory Report N	umber: 11	10262	
ADEC File Number: 102.26.015 ADEC RecKey Number: 1990	31001020)1	
1. <u>Laboratory</u>			
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all o Yes O No Comments:	f the subn	nitted s	ample analyses?
 b. If the samples were transferred to another "network" laboratory laboratory, was the laboratory performing the analyses ADEC C Yes No 	or sub-cor S approve	ntracted?	l to an alternate
2 Chain of Custody (COC)			
a. COC information completed, signed, and dated (including released	l/received	bv)?	
● Yes ○ No Comments:			
b. Correct analyses requested? • Yes O No Comments:			
2 Laboratory Sample Respirit Desumentation			
a. Sample/cooler temperature documentation O Yes O No Comments:	t (4° ± 2°	C)?	1
N/A - SUMMA canisters not kept on ice.			

b. Saı Vo	mple pres latile Chl	ervation acceptab orinated Solvents	le - acidified waters, Methanol preserved VOC soil (GRO, BTEX, , etc.)?
0	Yes	() No	Comments:
N/A			
c. Saı	mple conc Yes	lition documented	I - broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
N/A			
d. If t prese	here were rvation, sa Yes	any discrepancie ample temperatur O No	e ouside of acceptance range, insufficient or missing samples, etc.? Comments:
N/A			
e. Da	ta quality	or usability affec	ted? Explain.
			Comments:
N/A			
Case Narra	ative		
a. Pre	sent and u	inderstandable?	
•	Yes	() No	Comments:
b. Di	screpancie	es, errors or QC fa	ailures identified by the lab?
	Yes	O NO	
N/A			
c. We	ere all cor Yes	rective actions do ○ No	cumented? Comments:
N/A			
d. Wl	hat is the o	effect on data qua	lity/usability according to the case narrative? Comments:
N/A			
IN/A Samples R	esults		
IN/A Samples R a. Con	<u>esults</u> rrect analy	/ses performed/re	ported as requested on COC?

5.

4.

o. mi appilo	able notating times inc	
• Yes	O No	Comments:
c. All soils ro O Yes	eported on a dry weig	ht basis? Comments:
N/A		
d. Are the re	ported POLs less thar	the Cleanup Level or the minimum required detection level for th
project?	r	
• Yes	○ No	Comments:
e. Data quali	ty or usability affecte	d? Explain. Comments:
N/A		
<u>Samples</u>		
a. Method Bl	ank	
a. Method Bl i. One m	ank ethod blank reported	per matrix, analysis and 20 samples?
a. Method Bl i. One m • Yes	ank ethod blank reported O No	per matrix, analysis and 20 samples? Comments:
a. Method Bl i. One m • Yes	ank ethod blank reported j O No	per matrix, analysis and 20 samples? Comments:
a. Method Bl i. One m • Yes ii. All mo	ank ethod blank reported p O No ethod blank results les	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments:
a. Method Bl i. One m • Yes ii. All mo • Yes	ank ethod blank reported p O No ethod blank results les O No	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments:
a. Method Bl i. One m • Yes ii. All mo • Yes	ank ethod blank reported j O No ethod blank results les O No	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments:
a. Method Bl i. One m • Yes ii. All mo • Yes iii. If abo	ank ethod blank reported p O No ethod blank results les O No	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments: es are affected? Comments:
a. Method Bl i. One m • Yes ii. All mo • Yes iii. If abo	ank ethod blank reported p O No ethod blank results les O No	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments: es are affected? Comments:
a. Method Bl i. One m • Yes ii. All m • Yes iii. If abo	ank ethod blank reported p O No ethod blank results les O No ove PQL, what sample	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments: es are affected? Comments:
a. Method Bl i. One m • Yes ii. All mo • Yes iii. If abo N/A iv. Do th © Yes	ank ethod blank reported O No ethod blank results les O No ove PQL, what sample e affected sample(s) h	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments: es are affected? Comments: have data flags? If so, are the data flags clearly defined? Comments:
a. Method Bl i. One m • Yes ii. All m • Yes iii. If abo V/A iv. Do th • Yes	ank ethod blank reported (O No ethod blank results les O No ove PQL, what sample e affected sample(s) h	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments: es are affected? Comments: have data flags? If so, are the data flags clearly defined? Comments:
a. Method Bl i. One m • Yes ii. All mo • Yes iii. If abo V/A iv. Do th • Yes V/A v. Data of	ank ethod blank reported (O No ethod blank results les O No ove PQL, what sample e affected sample(s) H O No	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments: es are affected? Comments: have data flags? If so, are the data flags clearly defined? Comments:
a. Method Bl i. One m • Yes ii. All mo • Yes iii. If abo V/A iv. Do th • Yes V/A v. Data q	ank ethod blank reported (O No ethod blank results les O No ove PQL, what sample e affected sample(s) H O No uality or usability aff	per matrix, analysis and 20 samples? Comments: ss than PQL? Comments: es are affected? Comments: have data flags? If so, are the data flags clearly defined? Comments: ected? Explain. Comments:

6.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

	• Yes	⊖ No	Comments:
	ii. Metals, samples?	/Inorganics - One	e LCS and one sample duplicate reported per matrix, analysis and 20
	• Yes	() No	Comments:
	iii. Accur project sp 75%-1259 • Yes	acy - All percent becified DQOs, if %, AK103 60%- O No	recoveries (%R) reported and within method or laboratory limits? And applicable. (AK Petroleum methods: AK101 60%-120%, AK102 120%; all other analyses see the laboratory QC pages) Comments:
	iv. Precisi limits? An or sample pages)	ion - All relative nd project specifi /sample duplicat	percent differences (RPD) reported and less than method or laboratory ed DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, an e. (AK Petroleum methods 20%; all other analyses see the laboratory Q
	• Yes	() No	Comments:
	v. If %R o	or RPD is outside	e of acceptable limits, what samples are affected? Comments:
/A			
	vi. Do the O Yes	e affected sample O No	s(s) have data flags? If so, are the data flags clearly defined? Comments:
/A			
	vii. Data o	quality or usabili	ty affected? Explain. Comments:
/A			
c. S	Surrogates	- Organics Only	
	i. Are sur	rogate recoveries ◯ No	reported for organic analyses - field, QC and laboratory samples? Comments:

ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

	2	1	1	
O Yes	($\bigcirc N$	0	

Comments:

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

○ Yes ○ No

Comments:

N/A

N/A

iv. Data quality or usability affected? Explain.

Comments:

N/A

d. Trip Blank - Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>

- i. One trip blank reported per matrix, analysis and cooler?
 - Yes O No Comments:

ii. All results less than PQL? • Yes • No

Comments:

iii. If above PQL, what samples are affected?

Comments:

N/A

iv. Data quality or usability affected? Explain.

Comments:

N/A

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?
• Yes
• No
• Comments:

ii. Submitted blind to lab?● Yes ○ No

Comments:

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute Value of: $(\underline{R_{1-} R_{2}}) \times 100$ (($R_{1+} R_{2}$)/2)

Where $R_1 =$ Sample Concentration

 R_2 = Field Duplicate Concentration

 \odot Yes \bigcirc No

Comments:

Benzene, ethylbenzene, o-xylene and naphthalene parent and duplicate samples are non-detect. Toluene RPD = 7.41%, m/p-xylene RPD = 40%, oxygen RPD = 6.45%.

iv. Data quality or usability affected? Explain. O Yes • No Comments:

Data quality or usability does not appear to be affected.

f. Decontamination or Equipment Blank (if applicable)

• Yes ONo O Not Applicable

i. All results less than PQL? • Yes O No

Comments:

ii. If above PQL, what samples are affected?

Comments:

N/A

iii. Data quality or usability affected? Explain.

Comments:

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

○ Yes ○ No

N/A

Reset Form

Appendix **C**

Conceptual Site Model Scoping Form and Graph

Human Health Conceptual Site Model Scoping Form

Site Name:	
File Number:	
Completed by:	

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, a CSM graphic and text must be submitted with the site characterization work plan.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

USTs	Vehicles
ASTs	Landfills
Dispensers/fuel loading racks	Transformers
Drums	Other:
Release Mechanisms (check potential release mec	hanisms at the site)
	Direct discharge
Leaks	Burning
	Other:
Impacted Media (check potentially-impacted medi	ia at the site)
Surface soil (0-2 feet bgs [*])	Groundwater
Subsurface Soil (>2 feet bgs)	Surface water
Air	Other:
Receptors (check receptors that could be affected b	by contamination at the site)
Residents (adult or child)	Site visitor
Commercial or industrial worker	Trespasser
Construction worker	Recreational user
Subsistence harvester (i.e., gathers wild foods)	Farmer
Subsistence consumer (i.e., eats wild foods)	Other:

2. **Exposure Pathways:** (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)

a)	Direct Contact – 1 Incidental Soil Ingestion			
	Is soil contaminated anywhere between 0 and 15 feet bgs?			
	Do people use the site or is there a chance they will use the site in the future?			
	If both boxes are checked, label this pathy	vay complete:		
	2 Dermal Absorption of Contaminant	s from Soil		
	Is soil contaminated anywhere between 0	and 15 feet bgs?		
	Do people use the site or is there a chance future?	they will use the site in the		
	Can the soil contaminants permeate the skin? (Contaminants listed below, or within the groups listed below, should be evaluated for dermal			
	Arsenic	Lindane		
	Cadmium	PAHs		
	Chlordane	Pentachlorophenol		
	2,4-dichlorophenoxyacetic acid	PCBs		
	Dioxins	SVOCs		
	DDT			
	If all of the boxes are checked, label this p	pathway complete:		
b)	Ingestion – 1 Ingestion of Groundwater			
	Have contaminants been detected or are they expected to be detected in the groundwater, OR are contaminants expected to migrate to groundwater in the future?			

Could the potentially affected groundwater be used as a current or future drinking water source? *Please note, only leave the box unchecked if ADEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.*

If both the boxes are checked, label this pathway complete:

2 Ingestion of Surface Water

	Have contaminants been detected or are they expected to be detected in surface water OR are contaminants expected to migrate to surface water in the future?				
	Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? <i>Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).</i>				
	If both boxes are checked, label this pathway complete:				
	3 Ingestion of Wild Foods				
	Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild food?				
	Do the site contaminants have the potential to bioaccumulate (<i>see</i> Appendix A)?				
	Are site contaminants located where they would have the potential to be taken up into biota? (i.e. the top 6 feet of soil, in groundwater that could be connected to surface water, etc.)				
	If all of the boxes are checked, label this pathway complete:				
c)	Inhalation 1 Inhalation of Outdoor Air				
	Is soil contaminated anywhere between 0 and 15 feet bgs?				
	Do people use the site or is there a chance they will use the site in the future?				
	Are the contaminants in soil volatile (See Appendix B)?				
	If all of the boxes are checked, label this pathway complete:				
	2 Inhalation of Indoor Air				
	Are occupied buildings on the site or reasonably expected to be placed on the site in an area that could be affected by contaminant vapors? (i.e., within 100 feet, horizontally or vertically, of the contaminated soil or groundwater, <u>or</u> subject to "preferential pathways" that promote easy airflow, like utility conduits or rock fractures)				
	Are volatile compounds present in soil or groundwater (See Appendix C)?				
	If both boxes are checked, label this pathway complete:				

3

3. Additional Exposure Pathways: (Although there are no definitive

questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- o Climate permits recreational use of waters for swimming,
- Climate permits exposure to groundwater during activities, such as construction, without protective clothing, or
- o Groundwater or surface water is used for household purposes.

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Volatile Compounds in Household Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- The contaminated water is used for household purposes such as showering, laundering, and dish washing, and
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix B)

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Fugitive Dust

Generally DEC soil ingestion cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway, although this is not true in the case of chromium. Examples of conditions that may warrant further investigation include:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers. This size can be inhaled and would be of concern for determining if this pathway is complete.

Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during recreational or some types of subsistence activities. People then incidentally **ingest** sediment from normal hand-to-mouth activities. In addition, **dermal absorption of contaminants** may be of concern if people come in contact with sediment and the contaminants are able to permeate the skin (see dermal exposure to soil section). This type of exposure is rare but it should be investigated if:

- Climate permits recreational activities around sediment, and/or
- Community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

ADEC soil ingestion cleanup levels are protective of direct contact with sediment. If they are determined to be over-protective for sediment exposure at a particular site, other screening levels could be adopted or developed.

Check the box if further evaluation of this pathway is needed:

Comments:

4. Other Comments (Provide other comments as necessary to support the information provided in this form.)

APPENDIX A

BIOACCUMULATIVE COMPOUNDS

Table A-1: List of Compounds of Potential Concern for Bioaccumulation

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table X of 18 AAC 75.345 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greater than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5 and inorganic compounds that are

listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (K_{ow}) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF

using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler,

DEC recommends using a log K_{ow} greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS

Table B-1: List of Volatile Compounds of Potential Concern

Common volatile contaminants of concern at contaminated sites. A chemical is defined as volatile if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater and the molecular weight less than 200 g/mole (g/mole; EPA 2004a). Those compounds in Table X of 18 AAC 75.345 that are volatile, based on the definition above, are listed below.

Acenaphthene	1,4-dichlorobenzene	Pyrene			
Acetone	1,1-dichloroethane	Styrene			
Anthracene	1,2-dichloroethane	1,1,2,2-tetrachloroethane			
Benzene	1,1-dichloroethylene Tetrachloroethylene				
Bis(2-chlorethyl)ether	Cis-1,2-dichloroethylene	Toluene			
Bromodichloromethane	Trans-1,2-dichloroethylene	1,2,4-trichlorobenzene			
Carbon disulfide	1,2-dichloropropane	1,1,1-trichloroethane			
Carbon tetrachloride	1,3-dichloropropane	1,1,2-trichloroethane			
Chlorobenzene	Ethylbenzene	Trichloroethylene			
Chlorodibromomethane	Fluorene	Vinyl acetate			
Chloroform	Methyl bromide	Vinyl chloride			
2-chlorophenol	Methylene chloride	Xylenes			
Cyanide	Naphthalene	GRO			
1,2-dichlorobenzene	Nitrobenzene	DRO			

APPENDIX C

COMPOUNDS OF CONCERN FOR VAPOR MIGRATION

Table C-1: List of Compounds of Potential Concern for the Vapor Migration

A chemical is considered sufficiently toxic if the vapor concentration of the pure component poses an incremental lifetime cancer risk greater than 10-6 or a non-cancer hazard index greater than 1. A chemical is considered sufficiently volatile if it's Henry's Law constant is $1 \ge 10^{-5}$ atm-m³/mol or greater.

is considered sufficiently volution	I It is from y is how constant is 1 x fo	
Acenaphthene	Dibenzofuran	Hexachlorobenzene
Acetaldehyde	1,2-Dibromo-3-chloropropane	Hexachlorocyclopentadiene
Acetone	1,2-Dibromoethane (EDB)	Hexachloroethane
Acetonitrile	1,3-Dichlorobenzene	Hexane
Acetophenone	1,2-Dichlorobenzene	Hydrogen cyanide
Acrolein	1,4-Dichlorobenzene	Isobutanol
Acrylonitrile	2-Nitropropane	Mercury (elemental)
Aldrin	N-Nitroso-di-n-butylamine	Methacrylonitrile
alpha-HCH (alpha-BHC)	n-Propylbenzene	Methoxychlor
Benzaldehyde	o-Nitrotoluene	Methyl acetate
Benzene	o-Xylene	Methyl acrylate
Benzo(b)fluoranthene	p-Xylene	Methyl bromide
Benzylchloride	Pyrene	Methyl chloride chloromethane)
beta-Chloronaphthalene	sec-Butylbenzene	Methylcyclohexane
Biphenyl	Styrene	Methylene bromide
Bis(2-chloroethyl)ether	tert-Butylbenzene	Methylene chloride
Bis(2-chloroisopropyl)ether	1,1,1,2-Tetrachloroethane	Methylethylketone (2-butanone)
Bis(chloromethyl)ether	1,1,2,2-Tetrachloroethane	Methylisobutylketone
Bromodichloromethane	Tetrachloroethylene	Methylmethacrylate
Bromoform	Dichlorodifluoromethane	2-Methylnaphthalene
1,3-Butadiene	1,1-Dichloroethane	MTBE
Carbon disulfide	1,2-Dichloroethane	m-Xylene
Carbon tetrachloride	1,1-Dichloroethylene	Naphthalene
Chlordane	1,2-Dichloropropane	n-Butylbenzene
2-Chloro-1,3-butadiene	1,3-Dichloropropene	Nitrobenzene
(chloroprene)		
Chlorobenzene	Dieldrin	Toluene
1-Chlorobutane	Endosulfan	trans-1,2-Dichloroethylene
Chlorodibromomethane	Epichlorohydrin	1,1,2-Trichloro-1,2,2-
		trifluoroethane
Chlorodifluoromethane	Ethyl ether	1,2,4-Trichlorobenzene
Chloroethane (ethyl	Ethylacetate	1,1,2-Trichloroethane
chloride)		
Chloroform	Ethylbenzene	1,1,1-Trichloroethane
2-Chlorophenol	Ethylene oxide	Trichloroethylene
2-Chloropropane	Ethylmethacrylate	Trichlorofluoromethane
Chrysene	Fluorene	1,2,3-Trichloropropane
cis-1,2-Dichloroethylene	Furan	1,2,4-Trimethylbenzene
Crotonaldehyde (2-butenal)	Gamma-HCH (Lindane)	1,3,5-Trimethylbenzene
Cumene	Heptachlor	Vinyl acetate
DDE	Hexachloro-1.3-butadiene	Vinvl chloride (chloroethene)

Source: EPA 2002.

HUMAN HEALTH CONCEPTUAL SITE MODEL

Site:			<i>Follow the directions below. <u>Do no</u> or land use controls when describ</i>	<u>ot</u> cor ing p	nsider e athway:	ngine s.	erinę	7		
Completed By: _ Date Completed:					Identify the	recepto	(5) rs. pote	ntially	affecte	ed by
(1) Check the media that could be directly affected by the release.	(2) For each medium identified in (1), follow the top arrow <u>and</u> check possible transport mechanisms. Briefly list other mechanisms or reference the report for details.	(3) Check exposure mec identified in (2).	(4) lia Check exposure pathways that are complete or need further evaluation. <u>The pathways</u> <u>identified must agree with Sections 2 and 3</u> of the CSM Scoping Form.		each expos receptors, ' both currer, Curre	sure pati "F" for fu at and fu ent & F	ture re ture re ture rec	eptors eptors eptors	;; or "C ;; or "C	urrent VF" for
Media	Transport Mechanisms	Exposure Media	Exposure Pathways	/	hildren) ^I or ^I orkers	trespasse nal users	n workers	- valsteng	e consumer	
Surface (0-2 ft bgs)	A check soil with a check soil with a check soil with a check soil with a check soil che			Residents (adm.	Commercia industrial Site visit	or recreatio Construction	Farmers or	Subsistenc	Other	
	Runoff or erosion <u>check surface water</u> Uptake by plants or animals <u>check biota</u> Other (<i>list</i>):	soil	Incidental Soil Ingestion Dermal Absorption of Contaminants from Soil							
Subsurface Soil (2-15 ft bgs)	rect release to subsurface soil check soil Migration to groundwater Check groundwater Colatilization Check air Other (list):	groundwater	Ingestion of Groundwater Dermal Absorption of Contaminants in Groundwater Inhalation of Volatile Compounds in Tap Water							
Ground- water	rect release to groundwater check groundwater Volatilization check air Flow to surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):	air	Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Fugitive Dust							
Surface Water	irect release to surface water check surface water Volatilization check air Sedimentation check sediment Uptake by plants or animals check biota	surface water	 Ingestion of Surface Water Dermal Absorption of Contaminants in Surface Water Inhalation of Volatile Compounds in Tap Water 							
Sediment	irect release to sediment check sediment Resuspension, runoff, or erosion check surface water	sediment	Direct Contact with Sediment							
	Oplane by plants or animilais <u>cneck biola</u> Other (list):	biota	Ingestion of Wild Foods							