

February 5, 2021

Mr. Eric Hershey, P.E. Alaska Department of Transportation and Public Services 2200 East 42nd Avenue Anchorage, Alaska 99508

RE: ADDITIONAL SITE CHARACTERIZATION AND MONITORING WELL DECOMMISSIONING ACTIVITIES, LOT 1A, BLOCK 100, PORT HEIDEN AIRPORT, PORT HEIDEN, ALASKA; ADEC FILE NUMBERS 2637.26.002 AND 2637.57.002

Dear Mr. Hershey:

This report presents the results of Shannon & Wilson's additional site characterization and well decommissioning activities conducted at Lot 1A, Block 100, Port Heiden Airport. A warehouse, fuel tanks, and pump house were formerly located at the site. A concrete pad formerly used for storage is located east of the former warehouse. A vicinity map, site plan, and detailed site plan are included as Figures 1, 2, and 3, respectively.

The project was conducted in general accordance with our July 13, 2020 work plan which was approved by Grant Lidren of the Alaska Department of Environmental Conservation (ADEC) in an email dated July 15, 2020.

BACKGROUND

Two ADEC listed contaminated sites, identified as "Frosty Fuels Inc. – Port Heiden" (ADEC File Nos. 2637.26.002 and 2637.57.002, Hazard ID 23200) and "ADOT&PF Port Heiden Airport, Block 1A, Lot 100" (ADEC File No. 2637.57.002, Hazard ID 25437), are located at the property. According to the ADEC contaminated sites database, the Frosty Fuels site has been granted a Cleanup Complete with Institutional Controls by the ADEC. The ADOT&PF Port Heiden Airport site is listed as an active contaminated site.

As documented in our December 7, 2018 *Groundwater Monitoring, Lot 1A, Block 100, Port Heiden Airport, Port Heiden, Alaska; ADEC File No. 2637.26.002* report, six groundwater monitoring wells (MW-4, MW-7, MW-11, MW-18, MW-22, and MW-39) were identified at the site during an October 2018 site visit. The wells were previously installed as part of the assessment of the Frosty Fuels site. The approximate well locations are shown on Figure 2. It is our understanding that the ADEC has requested decommissioning of the wells.

As documented in the August 2010 *Port Heiden Airport – Former Frosty Fuels Tank Farm and Old Reeve Warehouse, Property Assessment and Cleanup Plan* prepared by Hoefler Consulting Group, petroleum-impacted soil was identified in two soil samples (PHASS01 and PHASS03) collected in 2009. Sample PHASS01 was collected from windblown soil particles on the surface of the concrete pad, beneath a leaking drum. Sample PHASS03 was collected from surface soil, potentially impacted by another leaking drum. The soil samples contained concentrations of diesel range organics (DRO), residual range organics (RRO), 1-methylnaphthalene, and/or naphthalene exceeding the current ADEC Method Two cleanup levels. In addition, polychlorinated biphenyls (PCBs) were detected at concentrations less than the ADEC Method Two cleanup level in Sample PHASS02, which was collected south of Sample PHASS1 adjacent to the concrete pad, and Sample PHASS03. The approximate sample locations are shown on Figure 3. The report recommended:

- collecting and analyzing additional samples from the site for PCBs,
- excavating PCB-impacted soil, if identified,
- excavating petroleum-impacted soil identified north of the concrete pad,
- disposing of drums, batteries, and debris,
- cleanup of the petroleum spill observed on the concrete pad, and
- conducting additional groundwater sampling.

In a letter dated November 8, 2016, the ADEC requested that the ADOT&PF address the recommendations presented in the Property Assessment and Cleanup Plan (PACP) and install additional groundwater monitoring wells at the site.

FIELD ACTIVITIES

The project consisted of decommissioning monitoring wells, advancing one test pit, collecting analytical soil samples, and handling investigation-derived waste (IDW). B.C. Excavating, LLC (BCX) provided an operator to advance the test pit using a rented local backhoe. SGS North America, Inc. (SGS) provided analytical testing of the soil samples.

As noted in the project work plan, drums, batteries, and debris were observed at the site during the PACP field activities. In addition, stained soil was observed at Samples PHASS01 and PHASS03. These items and stains were not observed during our 2020 site activities.

Monitoring Well Decommissioning Activities

Monitoring Wells MW-4, MW-7, MW-18, MW-22, and MW-39 were decommissioned in accordance with the ADEC's September 2013 *Monitoring Well Guidance* document using hand tools. Shannon & Wilson and BCX excavated around the wells in order to cut the polyvinyl chloride (PVC) well casings off approximately 1 foot below ground surface (bgs). Silica sand was placed in the wells to about 0.5 foot above the top of the well screens. Hydrated bentonite chips were then placed on top of the silica sand in the well casings to within about 1 foot of the ground surface. The ground surface was repaired with native soil to match the surrounding grade.

Upon arrival to the site, the well monument for Well MW-11 was missing and the well was filled with soil. To facilitate the decommissioning process, soil was removed from the casing to about 1 foot bgs, and the casing was cut down to approximately 1 foot bgs. The ground surface was repaired to match the surrounding grade.

Test Pits and Soil Sampling

The utility locate center was contacted to mark buried utilities within the project area and identify potential conflicts such that the locations of the proposed test pits could be adjusted, if necessary. Upon arrival in Port Heiden, the Shannon & Wilson representative also met with a local utility locator to mark approximate locations of buried utilities at the site. Buried power and telephone lines were marked in the vicinity of proposed Test Pits TP3 through TP6, TP8, and TP9. The approximate locations of the buried utilities are shown on Figure 3.

One test pit, designated Test Pit TP1, was advanced to a depth of approximately 6 feet below ground surface (bgs). The test pit was advanced adjacent to the concrete slab in the approximate location of Sample PHASS02 collected in 2009. Groundwater was not encountered in the test pit. While advancing Test Pit TP1, buried metal debris and unmarked/unlabeled 55-gallon drums were encountered from approximately 4 to 6 feet bgs. The drums were rusted, not fully intact, and did not contain liquids. The ADOT&PF project manager was notified, and the decision was made to not advance the remainder of the proposed test pits, due to the presence of the drums and the on-site utilities.

Field screening samples were collected from the test pit at approximately 1-foot intervals until the base of the test pit. Each sample was visually described and "screened" for volatile organic compounds (VOCs) using a photoionization detector (PID) and ADEC-approved headspace screening techniques. The field screening samples were collected in re-sealable

plastic bags, warmed to at least 40 degrees Fahrenheit, and tested within 60 minutes of collection. To screen, the sample was agitated for about 15 seconds, the seal of the bag was opened slightly, the instrument probe was inserted into the air space above the soil, and the bag was held closed around the probe. The maximum ionization response as the PID draws vapor from the sample bag was recorded. The PID was calibrated with 100 parts per million (ppm) isobutylene in air standard gas.

Two analytical soil samples from the test pit were submitted for laboratory analysis. The samples were collected from the sample intervals with the highest PID measurements. For each volatile sample, at least 25 grams of soil, but no more than what can be completely submerged with 25-milliliters of methanol, was placed into a pre-weighted, 4-ounce jar with a septa lid. A 25-milliliter aliquot of methanol containing laboratory-added surrogates was added to the sample jar to submerge the soil sample. For each non-volatile sample, the laboratory-supplied jar was completely filled with soil, taking care to exclude gravel and debris. Sample jars were filled using dedicated stainless-steel spoons, placed in coolers with ice packs, and transferred to the laboratory using chain of custody procedures.

Investigation-Derived Waste Management

IDW consisted of excavated soil, drums, metal debris generated while advancing Test Pit TP1, and well materials (casings and protective monuments) generated during the well decommissioning activities. The soil was used to backfill the test pit and the well materials were removed from the site and disposed as unregulated solid waste. The drums and metal debris were crushed and placed in a supersack, labeled, and stored onsite pending future disposal by others.

LABORATORY ANALYSIS

The soil samples were submitted to SGS for analytical testing, using chain-of-custody procedures. One primary and field duplicate sample set were analyzed for gasoline range organics (GRO) by Alaska Method (AK) 101, DRO by AK 102, RRO by AK 103, VOCs by Environmental Protection Agency (EPA) Method 8260D, Metals by EPA Method 6020B, PCBs by EPA Method 8082A, and polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D SIM . On additional sample was collected and analyzed for DRO by AK 102, RRO by AK 103, and PCBs by EPA Method 8082A. The laboratory reports and completed ADEC Laboratory Data Review Checklists (LDRCs) are provided in Attachment 3. The analytical soil sample results are summarized in Table 2.

SUBSURFACE CONDITIONS

The subsurface soil at the site generally consists of well-graded sand with gravel. Metal debris including 55-gallon drums were encountered from about 4 to 6 feet bgs in Test Pit TP1. Groundwater was not encountered in the test pit.

DISCUSSION OF ANALYTICAL RESULTS

The analytical soil results were compared to ADEC cleanup levels presented in the November 2020, 18 Alaska Administrative Code (AAC) 75 regulations. The applicable soil criteria consist of the most stringent ADEC Method Two cleanup levels listed in Tables B1 and B2 of 18 AAC 75.341, for the "under 40-inch (precipitation) zone." The applicable soil and cleanup levels are listed in Table 2.

Arsenic (maximum 2.91 mg/kg) was detected in duplicate Samples TP1S5/TP1S15 at concentrations greater than the ADEC cleanup levels of 0.2 mg/kg. However, in our opinion, these concentrations are likely consistent with background arsenic concentrations. DRO (maximum 16.2 J mg/kg), RRO (maximum 95.7 mg/kg), PCBs (maximum 0.211 mg/kg), barium (maximum 43.1 mg/kg), cadmium (0.0773 J mg/kg), chromium (3.58 mg/kg), and lead (maximum 7.82 mg/kg) were also detected in one or more soil samples at concentrations less than the most stringent ADEC Method Two cleanup levels of 250 mg/kg, 11,000 mg/kg, 1.0 mg/kg, 2,100 mg/kg, 9.1 mg/kg, 100,000 mg/kg, and 400 mg/kg, respectively. The remaining tested analytes were not detected.

QUALITY ASSURANCE SUMMARY

The project laboratory follows on-going quality assurance/quality control procedures to evaluate conformance to applicable ADEC data quality objectives (DQOs). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spike/matrix spike duplicates (MS/MSD), and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to assess precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a brief narrative concerning the problem in the case narrative of their laboratory reports (see Attachment 3).

Field quality control samples included a field duplicate soil sample set. One duplicate soil (TP1S5/TP1S15) set was collected to assess precision of the sampling and analysis processes using the calculated relative percent difference (RPD). All of the RPDs are within the ADEC recommended DQO of 50 percent for soil.

An estimated concentration of GRO was detected in the method blank associated with Samples TP1S5 and TP1S15. Samples are flagged "B" in Table 2 when the reported sample concentration is within 10 times the reported method blank concentration. Estimated concentrations of GRO were detected in Samples TP1S5 and TP1S15 at levels less than the LOQ; therefore, the sample concentrations are flagged "B" and reported as non-detect at the LOQ.

Shannon & Wilson conducted a limited data assessment to review the laboratory's compliance with precision, accuracy, sensitivity, and completeness to the data quality objectives. Shannon & Wilson reviewed the SGS data deliverables and completed the ADEC's Laboratory Data Review Checklist for each data package, which is included in Attachment 3. No non-conformances that would adversely affect the quality or usability of the data were noted, with the exceptions discussed above.

CONCLUSIONS

Project activities consisted of decommissioning six wells, advancing one test pit, and collecting soil samples. Arsenic concentrations exceeding the most stringent ADEC Method Two cleanup levels were detected in duplicate Samples TP1S5/TP1S15. However, in our opinion, these concentrations are consistent with background arsenic concentrations. The remaining tested analytes were either not detected or were reported at concentrations less than the ADEC cleanup levels. Due to the presence of buried utilities and metal drums/debris, the remaining test pits and groundwater monitoring wells could not be advanced or completed.

CLOSURE/ LIMITATIONS

This report was prepared for the exclusive use of our client and their representatives. The findings we have presented within this report are based on the limited sampling and analyses we conducted for this project. As a result, the analyses and sampling performed can only provide you with our professional judgment as to the environmental characteristics of this site, and in no way guarantee that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the time of our site characterization. Changes due to natural forces or human activity can occur on the site. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Shannon & Wilson has prepared the attachment in Attachment 4, "Important Information About Your Geotechnical/Environmental Report," to assist you in understanding the use and limitations of our reports.

You are advised that various state and federal agencies (EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study except upon your authorization or as required by law.

We appreciate this opportunity to be of service and your confidence in our firm. If you have questions or comments concerning this report, please call the undersigned at (907) 561-2120.

Sincerely,

SHANNON & WILSON

Prepared by:

Alec J. Rizzo

Environmental Staff

Reviewed by:

Dan P. McMahon, PMP

Senior Associate

Enc. Tables 1 and 2; Figures 1 through 3; and Attachments 1 through 4

TABLE 1
SAMPLE LOCATIONS AND DESCRIPTIONS

Sample Number	Date	Sample Location (See Figure 3)	Depth (feet) ^^	Headspace (ppm) ^	Sample Description
Soil Samples					
Test Pit TP1					
TP1S1	11/5/2020	Test Pit TP1, Sample S1	0-1	2.0	Brown, well graded sand with gravel; moist
* TP1S2	11/5/2020	Test Pit TP1, Sample S2	1-2	2.3	Brown, well graded sand with gravel; moist
TP1S3	11/5/2020	Test Pit TP1, Sample S3	2-3	2.2	Brown, well graded sand with gravel; moist
TP1S4	11/5/2020	Test Pit TP1, Sample S4	3-4	1.9	Brown, well graded sand with gravel; moist
* TP1S5	11/5/2020	Test Pit TP1, Sample S5	4-5	2.9	Brown, well graded sand with gravel; moist; metal debris
* TP1S15	11/5/2020	Duplicate of Sample TP1-S5	4-5	2.9	Brown, well graded sand with gravel; moist; metal debris
TP1S6	11/5/2020	Test Pit TP1, Sample S6	5-6	2.0	Brown, well graded sand with gravel; moist; metal debris

Notes:

* = Sample analyzed by the project laboratory (See Table 2)

^ = Field screening instrument was a Thermo Environmental Instruments 580B photoionization detector (PID).

 $^{\wedge\wedge}$ = Depth of soil samples are measured below ground surface.

bgs = below ground surface

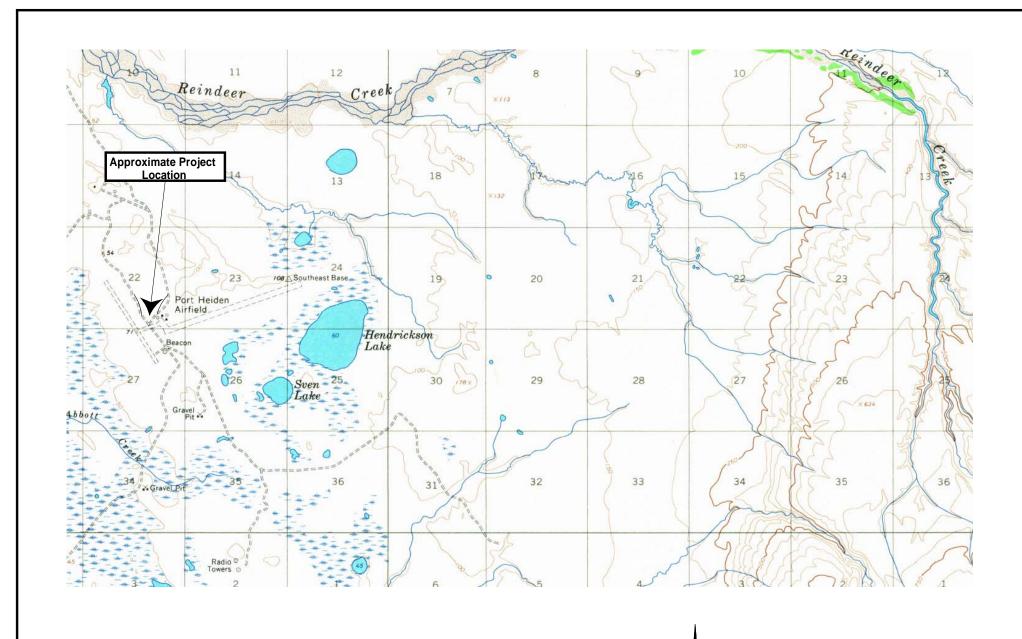

ppm = parts per million

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS

			Camala ID Na	k^d C11	Sample Depth in
			Sample ID NU	Feet bgs	Sample Depth in
			(Sa	e Table 1 and Fig	uro 3)
		Cleanup	•	Test Pit Soil Sam	
		Level	TP1S2	TP1S5	TP1S15~
Parameter Tested	Method*	(mg/kg)**	1-2	4-5	4-5
PID Headspace Reading - ppm	OVM 580B	-	2.3	2.9	2.9
Gasoline Range Organics (GRO) - mg/kg	AK 102	300	-	<4.89 B	<5.16 B
Diesel Range Organics (DRO) - mg/kg	AK 102	250	10.9 J	16.2 J	14.8 J
Residual Range Organics (RRO) - mg/kg	AK 103	11,000	80.6 J	95.7 J	82.7 J
Volatile Organic Compounds (VOCs)					
Benzene - mg/kg	EPA 8260D	0.022	-	< 0.0123	< 0.0129
Toluene - mg/kg	EPA 8260D	6.7	-	< 0.0244	< 0.0258
Ethylbenzene - mg/kg	EPA 8260D	0.13	-	< 0.0244	< 0.0258
Xylenes (total) - mg/kg	EPA 8260D	1.5	-	< 0.0735	< 0.0775
Other VOC Analytes - mg/kg	EPA 8260D	Various	-	ND	ND
Polychlorinated Biphenyls (PCBs)					
Arochlor-1260 - mg/kg	EPA 8082A	1.0	0.176	0.211	0.183
Other PCB Analytes - mg/kg	EPA 8082A	1.0	ND	ND	ND
Metals- mg/kg					
Arsenic - mg/kg	EPA 6020A	0.20	-	2.91	2.48
Barium - mg/kg	EPA 6020A	2,100	-	41.6	43.1
Cadmium - mg/kg	EPA 6020A	9.1	-	< 0.118	0.0773 J
Chromium - mg/kg	EPA 6020A	100,000^^	-	3.58	3.58
Lead - mg/kg	EPA 6020A	400	-	7.82	7.30
Mercury - mg/kg	EPA 6020A	0.36	-	< 0.177	< 0.174
Selenium - mg/kg	EPA 6020A	6.9	-	< 0.590	< 0.580
Silver - mg/kg	EPA 6020A	11	-	< 0.295	< 0.290
Polynuclear Aromatic Hydrocarbons (PAHs) - mg/kg	EPA 8270D SIM	Various	-	ND	ND

Notes:

- * = See Attachment 3 for compounds tested, methods, and laboratory reporting limits
- ** = Soil cleanup level is the most stringent ADEC Method 2 standard listed in Table B1 or B2, 18 AAC 75 (November 2020), for the "under 40 inches (precipitation) zone"
- ^ = Sample ID number preceded by "101644-" on the chain of custody form
- ^^ = Cleanup level for chromium III; there are no known sources of chromium VI at the site.
- mg/kg = Milligram per kilogram
- PID = Photoionization detector
- < 0.0123 = Analyte not detected; laboratory limit of detection of 0.0123 mg/kg
- 10.9 = Analyte detected
- = Reported concentration exceeds the ADEC cleanup level
 - Not applicable or sample not tested for this analyte
 - J = Estimated concentration less than the limit of quantitation. See the SGS laboratory report for more details.
 - B = Analyte concentration is potentially affected by method blank detection.
 - See ADEC Laboratory Data Review Checklist for details.
- bgs = below ground surface
- ppm = part per million
- ~ = Duplicate sample of TP1S5

NOT TO SCALE

Elevation in Feet Contour Interval 50 Feet Taken from Chignik D-2 U.S. Geological Survey Quadrangle (N

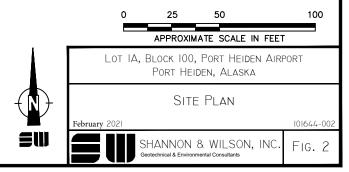
Lot 1A, Block 100, Port Heiden Airport Port Heiden, Alaska

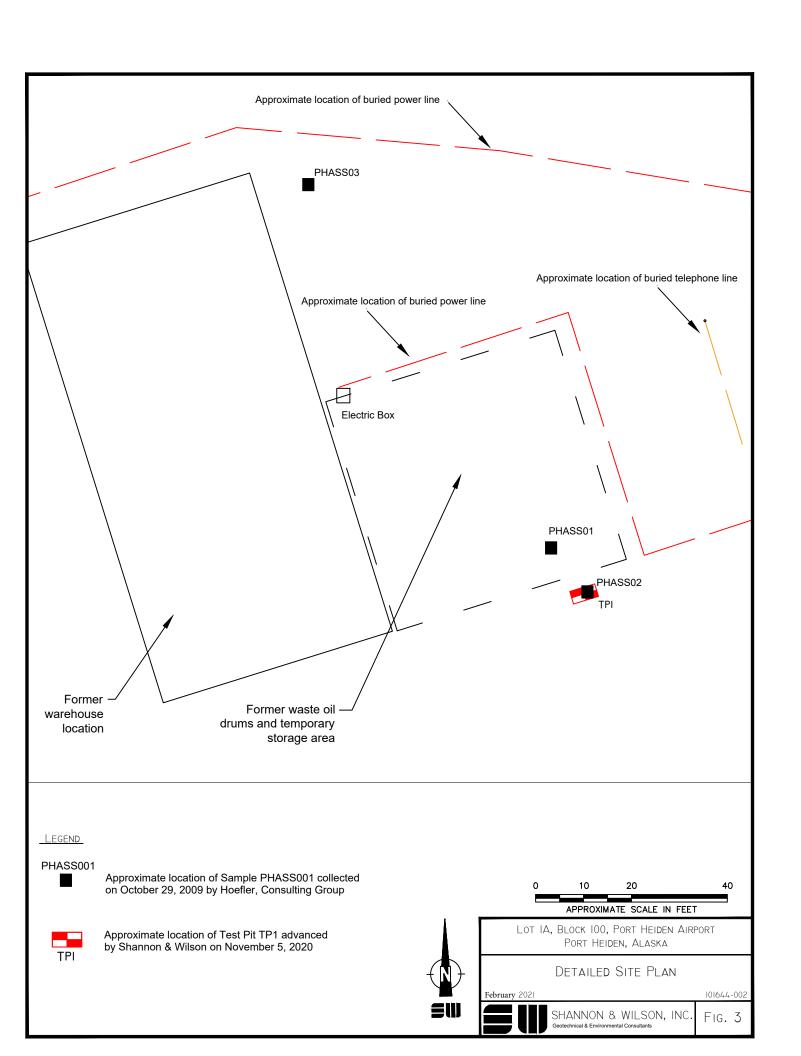
VICINITY MAP

February 2021

101644-002

Aerial imagery provided by Google Earth Pro, reproduced by permission granted by Google Earth Mapping Service.


LEGEND


⊕ MW-2

Approximate location of former Monitoring Well W-2.

Approximate location of Monitoring Well MW-4, decommissioned on November 4, 2020.

SHANNON & WILSON, INC.

ATTACHMENT 1

Site Photographs

Lot 1A, Block 100, Port Heiden Airport Project No. 101644-002

Photo 1: Looking south at the advancement of Test Pit TP1. (November 5, 2020)

Photo 2: Looking south into Test Pit TP1. Metal debris were encountered between approximately 4 to 6 feet bgs. (November 5, 2020)

Lot1A, Block 100, Port Heiden Airport Port Heiden, Alaska

PHOTOS 1 AND 2

February 2021

101644-002

Photo 3: Looking southeast at the metal debris and 55-gal drums removed from Test Pit TP1. (November 5, 2020)

Lot 1A, Block 100, Port Heiden Airport Port Heiden, Alaska

PHOTO 3

February 2021

101644-002

SHANNON & WILSON, INC.

ATTACHMENT 2

Field Notes

Lot 1A, Block 100, Port Heiden Airport Project No. 101644-002

SAMPLE COLLECTION LOG

Project Number:	Project Number: 1016년나						Tonnelon. O at 11 c.1.	
Name: 11 (57 20	9 -							2 ~
CH TOTAL							-	
Sample Number	Location	Sample		Sample	GPS	PID	CHECK NATIONAL	
FP1-1	Exidents or	913	1 1	Lype	Keading*	Reading 2,0	Soil Classification Analyses	
201-2		415		24		2.3	المدرا	
, H. IAL		4 170	いいい	₹ 2 2 2 3		ري. دي		
5-100		925	1	3/2		-0		
アンプ	>	930		100		2,0	3	T
								I
								T
								Γ
								Ţ.
								Ī
						-		
			-	·				1
			Commits True	T.				
				Tabe				
				Field duplicate	ardi			
			Z E	Field Screening	Field Screening	•		
				GPS readings only	collected from analysis	, and comment for		
				}		rea sample location	22	

11/3/20 11/2/20 5830 Armie at ADET Building - begin Iscarry wells. Calibrak PID Amile @ Lake clark Air, Await 0800 Reported to Port Heiden 930 Louter Mover to Locate a DOT + Frosty Freising Depart Archarage 1030 Begin getting Draw at 1030 Arrive in Port Heiden - meet DOT Building with derek to get agripment. 1300 MW-1 DTW DIB 1045 Begin Finding monitoring wells 16.21 1400 a fosty feels site and coordinating 1054 mw-2 10.33 with Locales / villiage for Lots MW-3 10.32 11.15 1035 Site. 1120 Begn Advaning TP-9 1700 End of day 1320 Begin Installing MW-4 in T129 1400 Finish metalling 14V-4. 1405 Begin advancy TP-7 1545 Begin advenuy TP-8 1600 Regin bankfily TP-7. 1700 PILISH GRUANY TP-7 1728 Begin Advaning TP-4 1815 Bogin Bakfily TP8 - Will lo a skepent fist pt 20 fz to south tous now 1900 End of day Rite in the Rain

11/4/20 0800 Amre onsite. Start Exceventer to let whom, calisman PIB 0845 Begin advancing TP-10, Step Dut kest pit from TP-4, ~20 At to 0940 Being Havaning +10-6. 1030 Finish w/ TP-4; begin backfilly TP-10. Plan to install hw in 1040 Finish backfully toto, begin instally Mw is TP-4 1130 Finish instally Mw =5, begin advanca 124 Begin backfilly TP-5+ TP-6 Finsh with ADOT + OF maintene buildy work - wend to Frosty fress Begin dellmission wells MW-39 13.34 140 MW -18 12,46 16,50 MW-12 11-35 15.72 1500 1520 unsure of heates a site -

contact sin statt/paject manager to confact check about more information on undergrand utilities. Miso talked to Villings staff about possible locations of parmer/ Lohn lines. 1000 Contrare decomissions wells MW-4 11.17 19,60 1630 Truck has issues and overheits spend some thre cally Scott Cretical owher) to get fixed. continue decomission vells.

1715 Wel get a new vehicle -

(730 MV-7

Amue at hw-11, Cap "is torn off likely due to snow proving and is filled with Sedinent, Remove first 4 inches 695 and (PVC) and cover with

End of day Rite in the Rain.

,			
(a)	115/20	Prosty Ruels	MW DTW DTB TIME
	830 F	trave ensite - calibrate PID,	10.69 16.00 1318 10.34 15.80 14132
	4	um an excurator, pup for sampling	141.12
			MW3 11.15 16.32 1324 15.10 1327
Ì	•		15.26 133.8
	920	Begin encountering metal deboxs +	mw5 11.10
		OLIVAN COLUMN CO	
		munager to discuss what to	1340 Begin Developy MW-5.
		do next. Stop work.	1920 Rinish Durlopy / Samply
	1010	After talky w/ project manager	MIN-S = (DIVITED IND
		who dishill issue w/ chent. Decisions	MU-15
		was made to stop dissing @ site	12AD truck decomment cleaning
		collect soil samples from TD-1	up, putty well caps on
		and begin to Love A.M. Plan to	all wells, and story gear
		put metal debris in a supersite, lasel it, and leave ousite.	
	1115		
		drums in a supersule a Label	
		TOT I WAS CARED	
	4.22		
	1130	Begin Surveyor wells + tsky Swing hes (see fight) @ ABOT	
		MRRE Builday	
-			Rite in the Rain.
1			

11/7/20 burns on Det Euch - continue 0800 parky great and prepry for Repartine Apart Part Henden for 1400 Anthory brue in Buchongs - hour 1430 to office to send thereoft form for year to grant avidion End of Day 1730

Rite in the Rain

ATTACHMENT 3

RESULTS OF ANALYTICAL TESTING BY

SGS NORTH AMERICA INC. OF ANCHORAGE, ALASKA

AND

ADEC LABORATORY DATA REVIEW CHECKLIST

Lot 1A, Block 100, Port Heiden Airport Project No. 101644-002

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907)433-3223

Report Number: 1206171

Client Project: 101644 Port Heiden FrostyFuels

Dear Dan McMahon,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Justin Nelson

2020.11.30

15:39:47 -09'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 11/30/2020 3:14:02PM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson, Inc.**SGS Project: **1206171**

Project Name/Site: 101644 Port Heiden FrostyFuels

Project Contact: Dan McMahon

Refer to sample receipt form for information on sample condition.

1206171002(1592559MS) (1592560) MS

6020B - Metals MS recovery for barium does not meet QC criteria. The post digestion spike was successful.

1206145001MS (1592960) MS

8082A - PCB Aroclors 1016/1260 MS recoveries do not meet QC criteria due to sample matrix. Refer to the LCS for accuracy requirements.

1206177005(1593090MS) (1593091) MS

8260D - MS recoveries for several analytes do not meet QC criteria. See LCS for accuracy requirements.

1206145001MSD (1592961) MSD

8082A - PCB Aroclors 1016/1260 MSD recoveries do not meet QC criteria due to sample matrix. Refer to the LCS for accuracy requirements.

1206177005(1593090MSD) (1593092) MSD

8260D - MSD recoveries for several analytes do not meet QC criteria. See LCS for accuracy requirements. 8260D - MS/MSD RPD for 1,2,3-trichlorobenzene does not meet QC criteria. This analyte was not detected above the LOQ in the parent sample.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/30/2020 3:14:03PM

	Report o	of Manual Integration	ns	
<u>Laboratory ID</u>	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason
SW8082A				
1592959	LCS for HBN 1814198 [XXX/44231	XGC10762	Aroclor-1016	SP
1593331	CCV for HBN 1814282 (XGC/10762	XGC10762	Aroclor-1016	SP
1593335	CCV for HBN 1814282 (XGC/10762	XGC10762	Aroclor-1016	SP
1593351	CCV for HBN 1814283 (XGC/10763	XGC10763	Aroclor-1016	SP
1593352	CCV for HBN 1814283 (XGC/10763	XGC10763	Aroclor-1016	SP
SW8260D				
1593091	1206177005(1593090MS)	VMS20487	tert-Butylbenzene	SP
1593092	1206177005(1593090MSD)	VMS20487	tert-Butylbenzene	SP
1593094	CCV for HBN 1814218 (VMS/20487	VMS20487	tert-Butylbenzene	SP
1593095	CVC for HBN 1814218 (VMS/20487	VMS20487	tert-Butylbenzene	SP

Manual Integration Reason Code Descriptions

All DRO/RRO analysis are integrated per SOP.

Print Date: 11/30/2020 3:14:04PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 11/30/2020 3:14:06PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SM21 2540G

Sample Summary

Client Sample ID Lab Sample ID Collected Received Matrix Soil/Solid (dry weight) 101644-TP1S2 1206171001 11/05/2020 11/09/2020 101644-TP1S5 1206171002 11/05/2020 11/09/2020 Soil/Solid (dry weight) 101644-TP1S15 1206171003 Soil/Solid (dry weight) 11/05/2020 11/09/2020

Percent Solids SM2540G

Method Description

8270 SIM (PAH)

8270 PAH SIM Semi-Volatiles GC/MS

AK102

Diesel/Residual Range Organics

AK103

Diesel/Residual Range Organics

AK101

Gasoline Range Organics (S)

SW6020B

Metals by ICP-MS (S)

SW8082A SW8082 PCB's

SW8260D VOC 8260 (S) Field Extracted

Print Date: 11/30/2020 3:14:07PM

Detectable Results Summary

Client Sample ID: 101644-TP1S2			
Lab Sample ID: 1206171001	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polychlorinated Biphenyls	Aroclor-1260	176	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	10.9J	mg/kg
	Residual Range Organics	80.6J	mg/kg
Client Sample ID: 101644-TP1S5			
Lab Sample ID: 1206171002	Parameter	Result	Units
Metals by ICP/MS	Arsenic	2.91	mg/kg
·	Barium	41.6	mg/kg
	Chromium	3.58	mg/kg
	Lead	7.82	mg/kg
Polychlorinated Biphenyls	Aroclor-1260	211	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	16.2J	mg/kg
	Residual Range Organics	95.7J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.49J	mg/kg
Client Sample ID: 101644-TP1S15			
Lab Sample ID: 1206171003	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	2.48	mg/kg
•	Barium	43.1	mg/kg
	Cadmium	0.0773J	mg/kg
	Chromium	3.58	mg/kg
	Lead	7.30	mg/kg
Polychlorinated Biphenyls	Aroclor-1260	183	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	14.8J	mg/kg
-	Residual Range Organics	82.7J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.97J	mg/kg

Print Date: 11/30/2020 3:14:08PM

Client Sample ID: 101644-TP1S2

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171001 Lab Project ID: 1206171 Collection Date: 11/05/20 10:15 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):86.0 Location:

Results by Polychlorinated Biphenyls

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Aroclor-1016	28.8 U	57.5	14.4	ug/kg	1		11/16/20 17:55
Aroclor-1221	57.5 U	115	28.7	ug/kg	1		11/16/20 17:55
Aroclor-1232	28.8 U	57.5	14.4	ug/kg	1		11/16/20 17:55
Aroclor-1242	28.8 U	57.5	14.4	ug/kg	1		11/16/20 17:55
Aroclor-1248	28.8 U	57.5	14.4	ug/kg	1		11/16/20 17:55
Aroclor-1254	28.8 U	57.5	14.4	ug/kg	1		11/16/20 17:55
Aroclor-1260	176	57.5	14.4	ug/kg	1		11/16/20 17:55
Surrogates							
Decachlorobiphenyl (surr)	85	60-125		%	1		11/16/20 17:55

Batch Information

Analytical Batch: XGC10762 Analytical Method: SW8082A

Analyst: LAW

Analytical Date/Time: 11/16/20 17:55 Container ID: 1206171001-A Prep Batch: XXX44231
Prep Method: SW3550C
Prep Date/Time: 11/13/20 13:20
Prep Initial Wt./Vol.: 22.768 g
Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S2

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171001 Lab Project ID: 1206171 Collection Date: 11/05/20 10:15 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):86.0 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	10.9 J	23.0	7.12	mg/kg	1		11/14/20 00:22
Surrogates							
5a Androstane (surr)	94.8	50-150		%	1		11/14/20 00:22

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 11/14/20 00:22 Container ID: 1206171001-A Prep Batch: XXX44222 Prep Method: SW3550C Prep Date/Time: 11/12/20 10:59 Prep Initial Wt./Vol.: 30.37 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	80.6 J	115	49.4	mg/kg	1		11/14/20 00:22
Surrogates							
n-Triacontane-d62 (surr)	97.5	50-150		%	1		11/14/20 00:22

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 11/14/20 00:22 Container ID: 1206171001-A Prep Batch: XXX44222 Prep Method: SW3550C Prep Date/Time: 11/12/20 10:59 Prep Initial Wt./Vol.: 30.37 g Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	2.91	1.18	0.366	mg/kg	10		11/13/20 12:27
Barium	41.6	0.354	0.111	mg/kg	10		11/13/20 12:27
Cadmium	0.118 U	0.236	0.0732	mg/kg	10		11/13/20 12:27
Chromium	3.58	0.472	0.153	mg/kg	10		11/13/20 12:27
Lead	7.82	0.236	0.0732	mg/kg	10		11/13/20 12:27
Mercury	0.177 U	0.354	0.118	mg/kg	10		11/13/20 12:27
Selenium	0.590 U	1.18	0.366	mg/kg	10		11/13/20 12:27
Silver	0.295 U	0.590	0.177	mg/kg	10		11/13/20 12:27

Batch Information

Analytical Batch: MMS10942 Analytical Method: SW6020B

Analyst: DMM

Analytical Date/Time: 11/13/20 12:27 Container ID: 1206171002-A Prep Batch: MXX33823 Prep Method: SW3050B Prep Date/Time: 11/11/20 09:52 Prep Initial Wt./Vol.: 1.006 g Prep Extract Vol: 50 mL

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Polychlorinated Biphenyls

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aroclor-1016	29.6 U	59.3	14.8	ug/kg	1		11/16/20 18:06
Aroclor-1221	59.5 U	119	29.6	ug/kg	1		11/16/20 18:06
Aroclor-1232	29.6 U	59.3	14.8	ug/kg	1		11/16/20 18:06
Aroclor-1242	29.6 U	59.3	14.8	ug/kg	1		11/16/20 18:06
Aroclor-1248	29.6 U	59.3	14.8	ug/kg	1		11/16/20 18:06
Aroclor-1254	29.6 U	59.3	14.8	ug/kg	1		11/16/20 18:06
Aroclor-1260	211	59.3	14.8	ug/kg	1		11/16/20 18:06
Surrogates							
Decachlorobiphenyl (surr)	83	60-125		%	1		11/16/20 18:06

Batch Information

Analytical Batch: XGC10762 Analytical Method: SW8082A

Analyst: LAW

Analytical Date/Time: 11/16/20 18:06 Container ID: 1206171002-A Prep Batch: XXX44231 Prep Method: SW3550C Prep Date/Time: 11/13/20 13:20 Prep Initial Wt./Vol.: 22.551 g Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Polynuclear Aromatics GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
1-Methylnaphthalene	14.8 U	29.5	7.39	ug/kg	1	LIIIIIIS	11/25/20 23:46
2-Methylnaphthalene	14.8 U	29.5	7.39	ug/kg ug/kg	1		11/25/20 23:46
Acenaphthene	14.8 U	29.5	7.39	ug/kg ug/kg	1		11/25/20 23:46
Acenaphthylene	14.8 U	29.5	7.39	ug/kg ug/kg	1		11/25/20 23:46
Anthracene	14.8 U	29.5	7.39	ug/kg ug/kg	1		11/25/20 23:46
Benzo(a)Anthracene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Benzo[a]pyrene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Benzo[b]Fluoranthene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Benzo[g,h,i]perylene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Benzo[k]fluoranthene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Chrysene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Dibenzo[a,h]anthracene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Fluoranthene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Fluorene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Indeno[1,2,3-c,d] pyrene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Naphthalene	11.8 U	23.6	5.91	ug/kg	1		11/25/20 23:46
Phenanthrene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Pyrene	14.8 U	29.5	7.39	ug/kg	1		11/25/20 23:46
Surrogates							
2-Methylnaphthalene-d10 (surr)	79.7	58-103		%	1		11/25/20 23:46
Fluoranthene-d10 (surr)	81.1	54-113		%	1		11/25/20 23:46

Batch Information

Analytical Batch: XMS12421 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 11/25/20 23:46 Container ID: 1206171002-A Prep Batch: XXX44219
Prep Method: SW3550C
Prep Date/Time: 11/11/20 14:20
Prep Initial Wt./Vol.: 22.611 g
Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Semivolatile Organic Fuels

	D # 0 1	1.00/01	D.	11.2	D.E.	Allowable	5. 4
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	16.2 J	23.5	7.29	mg/kg	1		11/14/20 00:32
Surrogates							
5a Androstane (surr)	93.5	50-150		%	1		11/14/20 00:32

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 11/14/20 00:32 Container ID: 1206171002-A

Prep Batch: XXX44222
Prep Method: SW3550C
Prep Date/Time: 11/12/20 10:59
Prep Initial Wt./Vol.: 30.31 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	95.7 J	118	50.6	mg/kg	1		11/14/20 00:32
Surrogates							
n-Triacontane-d62 (surr)	95.7	50-150		%	1		11/14/20 00:32

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 11/14/20 00:32 Container ID: 1206171002-A

Prep Batch: XXX44222 Prep Method: SW3550C Prep Date/Time: 11/12/20 10:59 Prep Initial Wt./Vol.: 30.31 g Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	1.49 J	4.89	1.47	mg/kg	1	Limits	11/10/20 15:05
Surrogates 4-Bromofluorobenzene (surr)	94.4	50-150		%	1		11/10/20 15:05

Batch Information

Analytical Batch: VFC15445 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 11/10/20 15:05 Container ID: 1206171002-C Prep Batch: VXX36670
Prep Method: SW5035A
Prep Date/Time: 11/05/20 10:25
Prep Initial Wt./Vol.: 37.576 g
Prep Extract Vol: 30.9404 mL

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Volatile GC/MS

<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	19.6 U	39.1	12.1	ug/kg	1		11/15/20 03:22
1,1,1-Trichloroethane	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,1,2,2-Tetrachloroethane	1.96 U	3.91	1.21	ug/kg	1		11/15/20 03:22
1,1,2-Trichloroethane	0.780 U	1.56	0.489	ug/kg	1		11/15/20 03:22
1,1-Dichloroethane	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,1-Dichloroethene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,1-Dichloropropene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,2,3-Trichlorobenzene	48.9 U	97.8	29.3	ug/kg	1		11/15/20 03:22
1,2,3-Trichloropropane	1.96 U	3.91	1.21	ug/kg	1		11/15/20 03:22
1,2,4-Trichlorobenzene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,2,4-Trimethylbenzene	48.9 U	97.8	29.3	ug/kg	1		11/15/20 03:22
1,2-Dibromo-3-chloropropane	98.0 U	196	60.6	ug/kg	1		11/15/20 03:22
1,2-Dibromoethane	0.980 U	1.96	0.782	ug/kg	1		11/15/20 03:22
1,2-Dichlorobenzene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,2-Dichloroethane	1.96 U	3.91	1.37	ug/kg	1		11/15/20 03:22
1,2-Dichloropropane	9.80 U	19.6	6.06	ug/kg	1		11/15/20 03:22
1,3,5-Trimethylbenzene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,3-Dichlorobenzene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
1,3-Dichloropropane	9.80 U	19.6	6.06	ug/kg	1		11/15/20 03:22
1,4-Dichlorobenzene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
2,2-Dichloropropane	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
2-Butanone (MEK)	245 U	489	153	ug/kg	1		11/15/20 03:22
2-Chlorotoluene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
2-Hexanone	98.0 U	196	60.6	ug/kg	1		11/15/20 03:22
4-Chlorotoluene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
4-Isopropyltoluene	98.0 U	196	48.9	ug/kg	1		11/15/20 03:22
4-Methyl-2-pentanone (MIBK)	245 U	489	153	ug/kg	1		11/15/20 03:22
Acetone	245 U	489	153	ug/kg	1		11/15/20 03:22
Benzene	12.3 U	24.5	7.63	ug/kg	1		11/15/20 03:22
Bromobenzene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
Bromochloromethane	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
Bromodichloromethane	1.96 U	3.91	1.21	ug/kg	1		11/15/20 03:22
Bromoform	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22
Bromomethane	19.6 U	39.1	12.1	ug/kg	1		11/15/20 03:22
Carbon disulfide	98.0 U	196	60.6	ug/kg	1		11/15/20 03:22
Carbon tetrachloride	12.3 U	24.5	7.63	ug/kg	1		11/15/20 03:22
Chlorobenzene	24.4 U	48.9	15.3	ug/kg	1		11/15/20 03:22

Print Date: 11/30/2020 3:14:10PM

J flagging is activated

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Volatile GC/MS

ъ.	D 110 1	1.00/01	D.		D.E.	<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroethane	196 U	391	121	ug/kg	1	11/15/20 03:22
Chloroform	3.91 U	7.82	1.96	ug/kg	1	11/15/20 03:22
Chloromethane	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
cis-1,2-Dichloroethene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
cis-1,3-Dichloropropene	12.3 U	24.5	7.63	ug/kg	1	11/15/20 03:22
Dibromochloromethane	4.89 U	9.78	2.93	ug/kg	1	11/15/20 03:22
Dibromomethane	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
Dichlorodifluoromethane	48.9 U	97.8	29.3	ug/kg	1	11/15/20 03:22
Ethylbenzene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
Freon-113	98.0 U	196	60.6	ug/kg	1	11/15/20 03:22
Hexachlorobutadiene	19.6 U	39.1	12.1	ug/kg	1	11/15/20 03:22
Isopropylbenzene (Cumene)	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
Methylene chloride	98.0 U	196	60.6	ug/kg	1	11/15/20 03:22
Methyl-t-butyl ether	98.0 U	196	60.6	ug/kg	1	11/15/20 03:22
Naphthalene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
n-Butylbenzene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
n-Propylbenzene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
o-Xylene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
P & M -Xylene	48.9 U	97.8	29.3	ug/kg	1	11/15/20 03:22
sec-Butylbenzene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
Styrene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
tert-Butylbenzene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
Tetrachloroethene	12.3 U	24.5	7.63	ug/kg	1	11/15/20 03:22
Toluene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
trans-1,2-Dichloroethene	24.4 U	48.9	15.3	ug/kg	1	11/15/20 03:22
trans-1,3-Dichloropropene	12.3 U	24.5	7.63	ug/kg	1	11/15/20 03:22
Trichloroethene	4.89 U	9.78	2.93	ug/kg	1	11/15/20 03:22
Trichlorofluoromethane	48.9 U	97.8	29.3	ug/kg	1	11/15/20 03:22
Vinyl acetate	98.0 U	196	60.6	ug/kg	1	11/15/20 03:22
Vinyl chloride	0.780 U	1.56	0.489	ug/kg	1	11/15/20 03:22
Xylenes (total)	73.5 U	147	44.6	ug/kg	1	11/15/20 03:22
urrogates						
1,2-Dichloroethane-D4 (surr)	101	71-136		%	1	11/15/20 03:22
4-Bromofluorobenzene (surr)	94.1	55-151		%	1	11/15/20 03:22
4-bromondobenzene (suir)						

Print Date: 11/30/2020 3:14:10PM

J flagging is activated

Client Sample ID: 101644-TP1S5

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171002 Lab Project ID: 1206171 Collection Date: 11/05/20 10:25 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.2 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20487 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 11/15/20 03:22 Container ID: 1206171002-C Prep Batch: VXX36677
Prep Method: SW5035A
Prep Date/Time: 11/05/20 10:25
Prep Initial Wt./Vol.: 37.576 g
Prep Extract Vol: 30.9404 mL

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	2.48	1.16	0.360	mg/kg	10		11/13/20 13:28
Barium	43.1	0.348	0.109	mg/kg	10		11/13/20 13:28
Cadmium	0.0773 J	0.232	0.0720	mg/kg	10		11/13/20 13:28
Chromium	3.58	0.464	0.151	mg/kg	10		11/13/20 13:28
Lead	7.30	0.232	0.0720	mg/kg	10		11/13/20 13:28
Mercury	0.174 U	0.348	0.116	mg/kg	10		11/13/20 13:28
Selenium	0.580 U	1.16	0.360	mg/kg	10		11/13/20 13:28
Silver	0.290 U	0.581	0.174	mg/kg	10		11/13/20 13:28

Batch Information

Analytical Batch: MMS10942 Analytical Method: SW6020B

Analyst: DMM

Analytical Date/Time: 11/13/20 13:28 Container ID: 1206171003-A Prep Batch: MXX33823 Prep Method: SW3050B Prep Date/Time: 11/11/20 09:52 Prep Initial Wt./Vol.: 1.015 g Prep Extract Vol: 50 mL

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Polychlorinated Biphenyls

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aroclor-1016	29.0 U	58.0	14.5	ug/kg	1		11/16/20 18:16
Aroclor-1221	58.0 U	116	29.0	ug/kg	1		11/16/20 18:16
Aroclor-1232	29.0 U	58.0	14.5	ug/kg	1		11/16/20 18:16
Aroclor-1242	29.0 U	58.0	14.5	ug/kg	1		11/16/20 18:16
Aroclor-1248	29.0 U	58.0	14.5	ug/kg	1		11/16/20 18:16
Aroclor-1254	29.0 U	58.0	14.5	ug/kg	1		11/16/20 18:16
Aroclor-1260	183	58.0	14.5	ug/kg	1		11/16/20 18:16
Surrogates							
Decachlorobiphenyl (surr)	89	60-125		%	1		11/16/20 18:16

Batch Information

Analytical Batch: XGC10762 Analytical Method: SW8082A

Analyst: LAW

Analytical Date/Time: 11/16/20 18:16 Container ID: 1206171003-A Prep Batch: XXX44231 Prep Method: SW3550C Prep Date/Time: 11/13/20 13:20 Prep Initial Wt./Vol.: 22.844 g Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Polynuclear Aromatics GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits	Date Analyzed
1-Methylnaphthalene	14.6 U	29.1	<u>DL</u> 7.27	ug/kg	1	LIIIIIIS	11/26/20 00:06
2-Methylnaphthalene	14.6 U	29.1	7.27	ug/kg ug/kg	1		11/26/20 00:06
Acenaphthene	14.6 U	29.1	7.27	ug/kg ug/kg	1		11/26/20 00:06
Acenaphthylene	14.6 U	29.1	7.27	ug/kg ug/kg	1		11/26/20 00:06
Anthracene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Benzo(a)Anthracene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Benzo[a]pyrene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Benzo[b]Fluoranthene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Benzo[g,h,i]perylene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Benzo[k]fluoranthene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Chrysene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Dibenzo[a,h]anthracene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Fluoranthene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Fluorene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Indeno[1,2,3-c,d] pyrene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Naphthalene	11.7 U	23.3	5.82	ug/kg	1		11/26/20 00:06
Phenanthrene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Pyrene	14.6 U	29.1	7.27	ug/kg	1		11/26/20 00:06
Surrogates							
2-Methylnaphthalene-d10 (surr)	78.1	58-103		%	1		11/26/20 00:06
Fluoranthene-d10 (surr)	80	54-113		%	1		11/26/20 00:06

Batch Information

Analytical Batch: XMS12421 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 11/26/20 00:06 Container ID: 1206171003-A Prep Batch: XXX44219
Prep Method: SW3550C
Prep Date/Time: 11/11/20 14:20
Prep Initial Wt./Vol.: 22.784 g
Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Diesel Range Organics	14.8 J	23.3	7.24	mg/kg	1		11/14/20 00:42
Surrogates							
5a Androstane (surr)	96.5	50-150		%	1		11/14/20 00:42

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 11/14/20 00:42 Container ID: 1206171003-A

Prep Batch: XXX44222 Prep Method: SW3550C Prep Date/Time: 11/12/20 10:59 Prep Initial Wt./Vol.: 30.285 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	82.7 J	117	50.2	mg/kg	1		11/14/20 00:42
Surrogates							
n-Triacontane-d62 (surr)	98.5	50-150		%	1		11/14/20 00:42

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 11/14/20 00:42 Container ID: 1206171003-A

Prep Batch: XXX44222 Prep Method: SW3550C Prep Date/Time: 11/12/20 10:59 Prep Initial Wt./Vol.: 30.285 g Prep Extract Vol: 5 mL

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Volatile Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics Surrogates	1.97 J	5.16	1.55	mg/kg	1		11/10/20 14:47
4-Bromofluorobenzene (surr)	91.2	50-150		%	1		11/10/20 14:47

Batch Information

Analytical Batch: VFC15445 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 11/10/20 14:47 Container ID: 1206171003-C

Prep Batch: VXX36670
Prep Method: SW5035A
Prep Date/Time: 11/05/20 10:40
Prep Initial Wt./Vol.: 34.518 g
Prep Extract Vol: 30.2296 mL

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	20.6 U	41.3	<u>52</u> 12.8	ug/kg	<u>5. </u>		11/15/20 03:37
1,1,1-Trichloroethane	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,1,2,2-Tetrachloroethane	2.06 U	4.13	1.28	ug/kg	1		11/15/20 03:37
1,1,2-Trichloroethane	0.825 U	1.65	0.516	ug/kg	1		11/15/20 03:37
1,1-Dichloroethane	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,1-Dichloroethene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,1-Dichloropropene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,2,3-Trichlorobenzene	51.5 U	103	31.0	ug/kg	1		11/15/20 03:37
1,2,3-Trichloropropane	2.06 U	4.13	1.28	ug/kg	1		11/15/20 03:37
1,2,4-Trichlorobenzene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,2,4-Trimethylbenzene	51.5 U	103	31.0	ug/kg	1		11/15/20 03:37
1,2-Dibromo-3-chloropropane	103 U	206	64.0	ug/kg	1		11/15/20 03:37
1,2-Dibromoethane	1.03 U	2.06	0.826	ug/kg	1		11/15/20 03:37
1,2-Dichlorobenzene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,2-Dichloroethane	2.06 U	4.13	1.44	ug/kg	1		11/15/20 03:37
1,2-Dichloropropane	10.3 U	20.6	6.40	ug/kg	1		11/15/20 03:37
1,3,5-Trimethylbenzene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,3-Dichlorobenzene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
1,3-Dichloropropane	10.3 U	20.6	6.40	ug/kg	1		11/15/20 03:37
1,4-Dichlorobenzene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
2,2-Dichloropropane	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
2-Butanone (MEK)	258 U	516	161	ug/kg	1		11/15/20 03:37
2-Chlorotoluene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
2-Hexanone	103 U	206	64.0	ug/kg	1		11/15/20 03:37
4-Chlorotoluene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
4-Isopropyltoluene	103 U	206	51.6	ug/kg	1		11/15/20 03:37
4-Methyl-2-pentanone (MIBK)	258 U	516	161	ug/kg	1		11/15/20 03:37
Acetone	258 U	516	161	ug/kg	1		11/15/20 03:37
Benzene	12.9 U	25.8	8.05	ug/kg	1		11/15/20 03:37
Bromobenzene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
Bromochloromethane	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
Bromodichloromethane	2.06 U	4.13	1.28	ug/kg	1		11/15/20 03:37
Bromoform	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37
Bromomethane	20.6 U	41.3	12.8	ug/kg	1		11/15/20 03:37
Carbon disulfide	103 U	206	64.0	ug/kg	1		11/15/20 03:37
Carbon tetrachloride	12.9 U	25.8	8.05	ug/kg	1		11/15/20 03:37
Chlorobenzene	25.8 U	51.6	16.1	ug/kg	1		11/15/20 03:37

Print Date: 11/30/2020 3:14:10PM

J flagging is activated

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Volatile GC/MS

Paramete <u>r</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits <u>Date An</u>	alyzed
 Chloroethane	207 U	413	128	ug/kg	1	11/15/20	-
Chloroform	4.13 U	8.26	2.06	ug/kg	1	11/15/20	03:3
Chloromethane	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
cis-1,2-Dichloroethene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
cis-1,3-Dichloropropene	12.9 U	25.8	8.05	ug/kg	1	11/15/20	03:3
Dibromochloromethane	5.15 U	10.3	3.10	ug/kg	1	11/15/20	03:3
Dibromomethane	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
Dichlorodifluoromethane	51.5 U	103	31.0	ug/kg	1	11/15/20	03:3
Ethylbenzene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
Freon-113	103 U	206	64.0	ug/kg	1	11/15/20	03:3
Hexachlorobutadiene	20.6 U	41.3	12.8	ug/kg	1	11/15/20	03:3
Isopropylbenzene (Cumene)	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
Methylene chloride	103 U	206	64.0	ug/kg	1	11/15/20	03:3
Methyl-t-butyl ether	103 U	206	64.0	ug/kg	1	11/15/20	03:3
Naphthalene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
n-Butylbenzene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
n-Propylbenzene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
o-Xylene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
P & M -Xylene	51.5 U	103	31.0	ug/kg	1	11/15/20	03:3
sec-Butylbenzene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
Styrene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
tert-Butylbenzene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
Tetrachloroethene	12.9 U	25.8	8.05	ug/kg	1	11/15/20	03:3
Toluene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
trans-1,2-Dichloroethene	25.8 U	51.6	16.1	ug/kg	1	11/15/20	03:3
trans-1,3-Dichloropropene	12.9 U	25.8	8.05	ug/kg	1	11/15/20	03:3
Trichloroethene	5.15 U	10.3	3.10	ug/kg	1	11/15/20	03:3
Trichlorofluoromethane	51.5 U	103	31.0	ug/kg	1	11/15/20	03:3
Vinyl acetate	103 U	206	64.0	ug/kg	1	11/15/20	03:3
Vinyl chloride	0.825 U	1.65	0.516	ug/kg	1	11/15/20	03:3
Xylenes (total)	77.5 U	155	47.1	ug/kg	1	11/15/20	03:3
urrogates							
1,2-Dichloroethane-D4 (surr)	100	71-136		%	1	11/15/20	03:3
4-Bromofluorobenzene (surr)	95.8	55-151		%	1	11/15/20	
Toluene-d8 (surr)	98.5	85-116		%	1	11/15/20	

Print Date: 11/30/2020 3:14:10PM

J flagging is activated

Client Sample ID: 101644-TP1S15

Client Project ID: 101644 Port Heiden FrostyFuels

Lab Sample ID: 1206171003 Lab Project ID: 1206171 Collection Date: 11/05/20 10:40 Received Date: 11/09/20 13:11 Matrix: Soil/Solid (dry weight)

Solids (%):84.8 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20487 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 11/15/20 03:37 Container ID: 1206171003-C

Prep Batch: VXX36677
Prep Method: SW5035A
Prep Date/Time: 11/05/20 10:40
Prep Initial Wt./Vol.: 34.518 g
Prep Extract Vol: 30.2296 mL

Blank ID: MB for HBN 1814111 [MXX/33823]

Blank Lab ID: 1592557

QC for Samples:

1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by SW6020B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/kg
Barium	0.150U	0.300	0.0940	mg/kg
Cadmium	0.100U	0.200	0.0620	mg/kg
Chromium	0.200U	0.400	0.130	mg/kg
Lead	0.100U	0.200	0.0620	mg/kg
Mercury	0.150U	0.300	0.100	mg/kg
Selenium	0.500U	1.00	0.310	mg/kg
Silver	0.250U	0.500	0.150	mg/kg

Batch Information

Analytical Batch: MMS10942 Analytical Method: SW6020B Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 11/13/2020 12:18:08PM

Prep Batch: MXX33823 Prep Method: SW3050B

Prep Date/Time: 11/11/2020 9:52:27AM

Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Print Date: 11/30/2020 3:14:12PM

Blank Spike ID: LCS for HBN 1206171 [MXX33823]

Blank Spike Lab ID: 1592558 Date Analyzed: 11/13/2020 12:22

Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171002, 1206171003

Results by SW6020B

Blank Spike (mg/kg)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>					
Arsenic	50	53.6	107	(82-118)					
Barium	50	48.5	97	(86-116)					
Cadmium	5	5.08	102	(84-116)					
Chromium	20	21.6	108	(83-119)					
Lead	50	56.8	114	(84-118)					
Mercury	0.5	0.540	108	(74-126)					
Selenium	50	55.4	111	(80-119)					
Silver	5	5.28	106	(83-118)					

Batch Information

Analytical Batch: MMS10942
Analytical Method: SW6020B

Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Prep Batch: MXX33823
Prep Method: SW3050B

Prep Date/Time: 11/11/2020 09:52

Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/30/2020 3:14:14PM

Original Sample ID: 1592559 MS Sample ID: 1592560 MS MSD Sample ID: 1592561 MSD

QC for Samples: 1206171002, 1206171003 Analysis Date: 11/13/2020 12:27 Analysis Date: 11/13/2020 12:32 Analysis Date: 11/13/2020 12:36

Matrix: Solid/Soil (Wet Weight)

Results by SW6020B

		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			· ·
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Arsenic	2.45	49.6	53	102	49.4	54.4	105	82-118	2.62	(< 20)
Barium	35.0	49.6	107	144 *	49.4	88.3	108	86-116	18.80	(< 20)
Cadmium	0.0995U	4.96	5.03	101	4.94	5.06	102	84-116	0.55	(< 20)
Chromium	3.02	19.8	23.1	101	19.8	24.7	110	83-119	6.59	(< 20)
Lead	6.59	49.6	62.2	112	49.4	61.1	110	84-118	1.74	(< 20)
Mercury	0.149U	0.496	.538	108	0.494	0.530	107	74-126	1.36	(< 20)
Selenium	0.497U	49.6	50.4	102	49.4	52.7	107	80-119	4.52	(< 20)
Silver	0.249U	4.96	5.27	106	4.94	5.18	105	83-118	1.76	(< 20)

Batch Information

Analytical Batch: MMS10942 Analytical Method: SW6020B Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 11/13/2020 12:32:14PM

Prep Batch: MXX33823

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 11/11/2020 9:52:27AM

Prep Initial Wt./Vol.: 1.01g Prep Extract Vol: 50.00mL

Print Date: 11/30/2020 3:14:16PM

Bench Spike Summary

Original Sample ID: 1592559 MS Sample ID: 1592562 BND

MSD Sample ID:

QC for Samples: 1206171002, 1206171003

Analysis Date: 11/13/2020 12:27 Analysis Date: 11/13/2020 12:41

Analysis Date:

Matrix: Solid/Soil (Wet Weight)

Results by SW6020B

Matrix Spike (mg/kg) Spike Duplicate (mg/kg)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Barium 35.0 249 275 **97** 75-125

Batch Information

Analytical Batch: MMS10942 Analytical Method: SW6020B

Instrument: Perkin Elmer NexIon P5

Analyst: DMM

Analytical Date/Time: 11/13/2020 12:41:39PM

Prep Batch: MXX33823

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 11/11/2020 9:52:27AM

Prep Initial Wt./Vol.: 1.01g Prep Extract Vol: 50.00mL

Print Date: 11/30/2020 3:14:16PM

Blank ID: MB for HBN 1814106 [SPT/11181]

Blank Lab ID: 1592545

QC for Samples:

1206171001, 1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Batch Information

Analytical Batch: SPT11181 Analytical Method: SM21 2540G

Instrument: Analyst: H.M

Analytical Date/Time: 11/10/2020 4:50:00PM

Print Date: 11/30/2020 3:14:18PM

Duplicate Sample Summary

Original Sample ID: 1206170009 Duplicate Sample ID: 1592546

QC for Samples:

Analysis Date: 11/10/2020 16:50 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	81.7	82.7	%	1.10	(< 15)

Batch Information

Analytical Batch: SPT11181 Analytical Method: SM21 2540G

Instrument: Analyst: H.M

Print Date: 11/30/2020 3:14:19PM

Duplicate Sample Summary

Original Sample ID: 1206170020 Duplicate Sample ID: 1592547

QC for Samples:

1206171001, 1206171002, 1206171003

Analysis Date: 11/10/2020 16:50 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	76.8	76.9	%	0.15	(< 15)

Batch Information

Analytical Batch: SPT11181 Analytical Method: SM21 2540G

Instrument: Analyst: H.M

Print Date: 11/30/2020 3:14:19PM

Blank ID: MB for HBN 1814123 [VXX/36670]

Blank Lab ID: 1592610

QC for Samples:

1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.782J2.500.750mg/kg

Surrogates

4-Bromofluorobenzene (surr) 92.4 50-150 %

Batch Information

Analytical Batch: VFC15445 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ALJ

Analytical Date/Time: 11/10/2020 11:50:00AM

Prep Batch: VXX36670 Prep Method: SW5035A

Prep Date/Time: 11/10/2020 6:00:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/30/2020 3:14:23PM

Blank Spike ID: LCS for HBN 1206171 [VXX36670]

Blank Spike Lab ID: 1592611 Date Analyzed: 11/10/2020 11:14

QC for Samples: 1206171002, 1206171003

Spike Duplicate ID: LCSD for HBN 1206171

[VXX36670]

Spike Duplicate Lab ID: 1592612 Matrix: Soil/Solid (dry weight)

Results by AK101

	Е	lank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	12.5	13.5	108	12.5	12.9	103	(60-120)	4.50	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	98.4	98	1.25	96.8	97	(50-150)	1.60	

Batch Information

Analytical Batch: **VFC15445** Analytical Method: **AK101**

Instrument: Agilent 7890A PID/FID

Analyst: ALJ

Prep Batch: VXX36670 Prep Method: SW5035A

Prep Date/Time: 11/10/2020 06:00

Spike Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL

Print Date: 11/30/2020 3:14:25PM

Blank ID: MB for HBN 1814217 [VXX/36677]

Blank Lab ID: 1593088

QC for Samples:

1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by SW8260D

,				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	10.0U	20.0	6.20	ug/kg
1,1,1-Trichloroethane	12.5U	25.0	7.80	ug/kg
1,1,2,2-Tetrachloroethane	1.00U	2.00	0.620	ug/kg
1,1,2-Trichloroethane	0.400U	0.800	0.250	ug/kg
1,1-Dichloroethane	12.5U	25.0	7.80	ug/kg
1,1-Dichloroethene	12.5U	25.0	7.80	ug/kg
1,1-Dichloropropene	12.5U	25.0	7.80	ug/kg
1,2,3-Trichlorobenzene	25.0U	50.0	15.0	ug/kg
1,2,3-Trichloropropane	1.00U	2.00	0.620	ug/kg
1,2,4-Trichlorobenzene	12.5U	25.0	7.80	ug/kg
1,2,4-Trimethylbenzene	25.0U	50.0	15.0	ug/kg
1,2-Dibromo-3-chloropropane	50.0U	100	31.0	ug/kg
1,2-Dibromoethane	0.500U	1.00	0.400	ug/kg
1,2-Dichlorobenzene	12.5U	25.0	7.80	ug/kg
1,2-Dichloroethane	1.00U	2.00	0.700	ug/kg
1,2-Dichloropropane	5.00U	10.0	3.10	ug/kg
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	ug/kg
1,3-Dichlorobenzene	12.5U	25.0	7.80	ug/kg
1,3-Dichloropropane	5.00U	10.0	3.10	ug/kg
1,4-Dichlorobenzene	12.5U	25.0	7.80	ug/kg
2,2-Dichloropropane	12.5U	25.0	7.80	ug/kg
2-Butanone (MEK)	125U	250	78.0	ug/kg
2-Chlorotoluene	12.5U	25.0	7.80	ug/kg
2-Hexanone	50.0U	100	31.0	ug/kg
4-Chlorotoluene	12.5U	25.0	7.80	ug/kg
4-Isopropyltoluene	50.0U	100	25.0	ug/kg
4-Methyl-2-pentanone (MIBK)	125U	250	78.0	ug/kg
Acetone	125U	250	78.0	ug/kg
Benzene	6.25U	12.5	3.90	ug/kg
Bromobenzene	12.5U	25.0	7.80	ug/kg
Bromochloromethane	12.5U	25.0	7.80	ug/kg
Bromodichloromethane	1.00U	2.00	0.620	ug/kg
Bromoform	12.5U	25.0	7.80	ug/kg
Bromomethane	10.0U	20.0	6.20	ug/kg
Carbon disulfide	50.0U	100	31.0	ug/kg
Carbon tetrachloride	6.25U	12.5	3.90	ug/kg
Chlorobenzene	12.5U	25.0	7.80	ug/kg
Chloroethane	100U	200	62.0	ug/kg

Print Date: 11/30/2020 3:14:28PM

Blank ID: MB for HBN 1814217 [VXX/36677]

Blank Lab ID: 1593088

QC for Samples:

1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by SW8260D

Parameter	Results	LOQ/CL	DL	Units
Chloroform	2.00U	4.00	<u>52</u> 1.00	ug/kg
Chloromethane	12.5U	25.0	7.80	ug/kg
cis-1,2-Dichloroethene	12.5U	25.0	7.80	ug/kg
cis-1,3-Dichloropropene	6.25U	12.5	3.90	ug/kg
Dibromochloromethane	2.50U	5.00	1.50	ug/kg
Dibromomethane	12.5U	25.0	7.80	ug/kg
Dichlorodifluoromethane	25.0U	50.0	15.0	ug/kg
Ethylbenzene	12.5U	25.0	7.80	ug/kg
Freon-113	50.0U	100	31.0	ug/kg
Hexachlorobutadiene	10.0U	20.0	6.20	ug/kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/kg
Methylene chloride	50.0U	100	31.0	ug/kg
Methyl-t-butyl ether	50.0U	100	31.0	ug/kg
Naphthalene	12.5U	25.0	7.80	ug/kg
n-Butylbenzene	12.5U	25.0	7.80	ug/kg
n-Propylbenzene	12.5U	25.0	7.80	ug/kg
o-Xylene	12.5U	25.0	7.80	ug/kg
P & M -Xylene	25.0U	50.0	15.0	ug/kg
sec-Butylbenzene	12.5U	25.0	7.80	ug/kg
Styrene	12.5U	25.0	7.80	ug/kg
tert-Butylbenzene	12.5U	25.0	7.80	ug/kg
Tetrachloroethene	6.25U	12.5	3.90	ug/kg
Toluene	12.5U	25.0	7.80	ug/kg
trans-1,2-Dichloroethene	12.5U	25.0	7.80	ug/kg
trans-1,3-Dichloropropene	6.25U	12.5	3.90	ug/kg
Trichloroethene	2.50U	5.00	1.50	ug/kg
Trichlorofluoromethane	25.0U	50.0	15.0	ug/kg
Vinyl acetate	50.0U	100	31.0	ug/kg
Vinyl chloride	0.400U	0.800	0.250	ug/kg
Xylenes (total)	37.5U	75.0	22.8	ug/kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	71-136		%
4-Bromofluorobenzene (surr)	98.3	55-151		%
Toluene-d8 (surr)	99.4	85-116		%

Print Date: 11/30/2020 3:14:28PM

Blank ID: MB for HBN 1814217 [VXX/36677]

Blank Lab ID: 1593088

QC for Samples:

1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by SW8260D

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS20487 Analytical Method: SW8260D

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: NRB

Analytical Date/Time: 11/14/2020 9:54:00PM

Prep Batch: VXX36677 Prep Method: SW5035A

Prep Date/Time: 11/14/2020 12:30:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/30/2020 3:14:28PM

Blank Spike ID: LCS for HBN 1206171 [VXX36677]

Blank Spike Lab ID: 1593089 Date Analyzed: 11/14/2020 22:37

Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171002, 1206171003

Results by SW8260D

	I	Blank Spike	(ug/kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1,1,1,2-Tetrachloroethane	750	779	104	(78-125)
1,1,1-Trichloroethane	750	780	104	(73-130)
1,1,2,2-Tetrachloroethane	750	739	99	(70-124)
1,1,2-Trichloroethane	750	749	100	(78-121)
1,1-Dichloroethane	750	749	100	(76-125)
1,1-Dichloroethene	750	784	104	(70-131)
1,1-Dichloropropene	750	782	104	(76-125)
1,2,3-Trichlorobenzene	750	660	88	(66-130)
1,2,3-Trichloropropane	750	717	96	(73-125)
1,2,4-Trichlorobenzene	750	711	95	(67-129)
1,2,4-Trimethylbenzene	750	748	100	(75-123)
1,2-Dibromo-3-chloropropane	750	758	101	(61-132)
1,2-Dibromoethane	750	767	102	(78-122)
1,2-Dichlorobenzene	750	737	98	(78-121)
1,2-Dichloroethane	750	754	101	(73-128)
1,2-Dichloropropane	750	770	103	(76-123)
1,3,5-Trimethylbenzene	750	760	101	(73-124)
1,3-Dichlorobenzene	750	759	101	(77-121)
1,3-Dichloropropane	750	766	102	(77-121)
1,4-Dichlorobenzene	750	755	101	(75-120)
2,2-Dichloropropane	750	818	109	(67-133)
2-Butanone (MEK)	2250	2330	103	(51-148)
2-Chlorotoluene	750	777	104	(75-122)
2-Hexanone	2250	2290	102	(53-145)
4-Chlorotoluene	750	750	100	(72-124)
4-Isopropyltoluene	750	760	101	(73-127)
4-Methyl-2-pentanone (MIBK)	2250	2300	102	(65-135)
Acetone	2250	2010	89	(36-164)
Benzene	750	759	101	(77-121)
Bromobenzene	750	799	106	(78-121)
Bromochloromethane	750	744	99	(78-125)
Bromodichloromethane	750	797	106	(75-127)
Bromoform	750	826	110	(67-132)
Bromomethane	750	835	111	(53-143)

Print Date: 11/30/2020 3:14:30PM

Blank Spike ID: LCS for HBN 1206171 [VXX36677]

Blank Spike Lab ID: 1593089 Date Analyzed: 11/14/2020 22:37

Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171002, 1206171003

Results by SW8260D

	-	Blank Spike	(ug/kg)	
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>
Carbon disulfide	1130	1260	112	(63-132)
Carbon tetrachloride	750	807	108	(70-135)
Chlorobenzene	750	754	101	(79-120)
Chloroethane	750	963	128	(59-139)
Chloroform	750	725	97	(78-123)
Chloromethane	750	733	98	(50-136)
cis-1,2-Dichloroethene	750	755	101	(77-123)
cis-1,3-Dichloropropene	750	821	109	(74-126)
Dibromochloromethane	750	827	110	(74-126)
Dibromomethane	750	772	103	(78-125)
Dichlorodifluoromethane	750	736	98	(29-149)
Ethylbenzene	750	754	100	(76-122)
Freon-113	1130	1170	104	(66-136)
Hexachlorobutadiene	750	875	117	(61-135)
Isopropylbenzene (Cumene)	750	742	99	(68-134)
Methylene chloride	750	752	100	(70-128)
Methyl-t-butyl ether	1130	1100	98	(73-125)
Naphthalene	750	694	93	(62-129)
n-Butylbenzene	750	761	101	(70-128)
n-Propylbenzene	750	750	100	(73-125)
o-Xylene	750	747	100	(77-123)
P & M -Xylene	1500	1490	100	(77-124)
sec-Butylbenzene	750	743	99	(73-126)
Styrene	750	767	102	(76-124)
tert-Butylbenzene	750	718	96	(73-125)
Tetrachloroethene	750	788	105	(73-128)
Toluene	750	736	98	(77-121)
trans-1,2-Dichloroethene	750	825	110	(74-125)
trans-1,3-Dichloropropene	750	817	109	(71-130)
Trichloroethene	750	766	102	(77-123)
Trichlorofluoromethane	750	816	109	(62-140)
Vinyl acetate	750	805	107	(50-151)
Vinyl chloride	750	773	103	(56-135)
Xylenes (total)	2250	2240	100	(78-124)

Print Date: 11/30/2020 3:14:30PM

Blank Spike ID: LCS for HBN 1206171 [VXX36677]

Blank Spike Lab ID: 1593089 Date Analyzed: 11/14/2020 22:37

Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171002, 1206171003

Results by SW8260D

Blank Spike (ug/kg)						
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	CL		
Surrogates						
1,2-Dichloroethane-D4 (surr)	750	97.6	98	(71-136)		
4-Bromofluorobenzene (surr)	750	96.4	96	(55-151)		
Toluene-d8 (surr)	750	100	100	(85-116)		

Batch Information

Analytical Batch: VMS20487
Analytical Method: SW8260D

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: NRB

Prep Batch: VXX36677
Prep Method: SW5035A

Prep Date/Time: 11/14/2020 00:30

Spike Init Wt./Vol.: 750 ug/kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/30/2020 3:14:30PM

Original Sample ID: 1593090 MS Sample ID: 1593091 MS MSD Sample ID: 1593092 MSD

QC for Samples: 1206171002, 1206171003

Analysis Date: 11/15/2020 1:19 Analysis Date: 11/14/2020 23:00 Analysis Date: 11/14/2020 23:15 Matrix: Solid/Soil (Wet Weight)

Results by SW8260D

results by CTTO200B	Ma	atrix Spike ((ug/kg)	Spike	e Duplicate	(ug/kg)			
<u>Parameter</u> San	ple Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane 6.10		597	130 *	458	594	130 *	78-125	0.47	(< 20)
1,1,1-Trichloroethane 7.65	U 458	589	128	458	589	129	73-130	0.12	(< 20)
1,1,2,2-Tetrachloroethane 0.61	0U 458	562	123	458	566	123	70-124	0.77	(< 20)
1,1,2-Trichloroethane 0.24	5U 458	579	126 *	458	580	126 *	78-121	0.16	(< 20)
1,1-Dichloroethane 7.65	U 458	571	125	458	570	124	76-125	0.15	(< 20)
1,1-Dichloroethene 7.65	U 458	568	124	458	554	121	70-131	2.40	(< 20)
1,1-Dichloropropene 7.65	U 458	586	128 *	458	583	127 *	76-125	0.60	(< 20)
1,2,3-Trichlorobenzene 15.3	U 458	518	113	458	649	142 *	66-130	22.40 *	(< 20)
1,2,3-Trichloropropane 0.61	0U 458	540	118	458	555	121	73-125	2.80	(< 20)
1,2,4-Trichlorobenzene 7.65	U 458	537	117	458	621	135 *	67-129	14.50	(< 20)
1,2,4-Trimethylbenzene 15.3	U 458	563	123	458	575	125 *	75-123	2.10	(< 20)
1,2-Dibromo-3-chloropropane 30.6	U 458	591	129	458	627	137 *	61-132	5.90	(< 20)
1,2-Dibromoethane 0.30	6U 458	590	129 *	458	590	129 *	78-122	0.02	(< 20)
1,2-Dichlorobenzene 7.65	U 458	547	119	458	540	118	78-121	1.10	(< 20)
1,2-Dichloroethane 0.61	0U 458	573	125	458	577	126	73-128	0.66	(< 20)
1,2-Dichloropropane 3.06	U 458	587	128 *	458	593	129 *	76-123	1.00	(< 20)
1,3,5-Trimethylbenzene 7.65	U 458	550	120	458	569	124	73-124	3.40	(< 20)
1,3-Dichlorobenzene 7.65	U 458	558	122 *	458	572	125 *	77-121	2.30	(< 20)
1,3-Dichloropropane 3.06	U 458	595	130 *	458	588	128 *	77-121	1.20	(< 20)
1,4-Dichlorobenzene 7.65	U 458	552	121 *	458	570	124 *	75-120	3.20	(< 20)
2,2-Dichloropropane 7.65	U 458	586	128	458	586	128	67-133	0.07	(< 20)
2-Butanone (MEK) 76.5	U 1370	1820	133	1370	1890	137	51-148	3.40	(< 20)
2-Chlorotoluene 7.65	U 458	566	124 *	458	575	126 *	75-122	1.60	(< 20)
2-Hexanone 30.6	U 1370	1810	132	1370	1830	133	53-145	1.30	(< 20)
4-Chlorotoluene 7.65	U 458	549	120	458	562	123	72-124	2.40	(< 20)
4-Isopropyltoluene 30.6	U 458	553	121	458	579	126	73-127	4.70	(< 20)
4-Methyl-2-pentanone (MIBK) 76.5	U 1370	1770	129	1370	1810	131	65-135	2.00	(< 20)
Acetone 76.5	U 1370	1570	114	1370	1630	119	36-164	3.80	(< 20)
Benzene 3.83		578	126 *	458	578	126 *	77-121	0.01	(< 20)
Bromobenzene 7.65	U 458	588	128 *	458	582	127 *	78-121	1.00	(< 20)
Bromochloromethane 7.65	U 458	566	123	458	570	124	78-125	0.77	(< 20)
Bromodichloromethane 0.61	0U 458	611	133 *	458	616	135 *	75-127	0.81	(< 20)
Bromoform 7.65	U 458	636	139 *	458	642	140 *	67-132	0.94	(< 20)
Bromomethane 6.10	U 458	693	151 *	458	663	145 *	53-143	4.40	(< 20)
Carbon disulfide 30.6		859	125	687	821	119	63-132	4.60	(< 20)
Carbon tetrachloride 3.83	U 458	612	134	458	604	132	70-135	1.40	(< 20)
Chlorobenzene 7.65	U 458	575	126 *	458	575	125 *	79-120	0.14	(< 20)

Print Date: 11/30/2020 3:14:32PM

Original Sample ID: 1593090 MS Sample ID: 1593091 MS MSD Sample ID: 1593092 MSD

QC for Samples: 1206171002, 1206171003

Analysis Date: 11/15/2020 1:19 Analysis Date: 11/14/2020 23:00 Analysis Date: 11/14/2020 23:15 Matrix: Solid/Soil (Wet Weight)

Results by SW8260D

		Mat	rix Spike (ı	ug/kg)	Spike	Duplicate	e (ug/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Chloroethane	61.0U	458	676	148 *	458	655	143 *	59-139	3.30	(< 20)
Chloroform	1.23U	458	553	121	458	555	121	78-123	0.43	(< 20)
Chloromethane	7.65U	458	627	137 *	458	593	129	50-136	5.60	(< 20)
cis-1,2-Dichloroethene	7.65U	458	571	125 *	458	576	126 *	77-123	0.89	(< 20)
cis-1,3-Dichloropropene	3.83U	458	621	136 *	458	621	135 *	74-126	0.11	(< 20)
Dibromochloromethane	1.53U	458	643	140 *	458	640	140 *	74-126	0.53	(< 20)
Dibromomethane	7.65U	458	588	128 *	458	592	129 *	78-125	0.65	(< 20)
Dichlorodifluoromethane	15.3U	458	657	143	458	596	130	29-149	9.80	(< 20)
Ethylbenzene	7.65U	458	567	124 *	458	573	125 *	76-122	0.96	(< 20)
Freon-113	30.6U	687	823	120	687	815	119	66-136	1.00	(< 20)
Hexachlorobutadiene	6.10U	458	634	138 *	458	612	134	61-135	3.50	(< 20)
Isopropylbenzene (Cumene)	7.65U	458	551	120	458	574	125	68-134	4.10	(< 20)
Methylene chloride	30.6U	458	567	124	458	568	124	70-128	0.17	(< 20)
Methyl-t-butyl ether	30.6U	687	830	121	687	846	123	73-125	1.90	(< 20)
Naphthalene	7.65U	458	539	118	458	625	136 *	62-129	14.60	(< 20)
n-Butylbenzene	7.65U	458	538	117	458	548	120	70-128	2.00	(< 20)
n-Propylbenzene	7.65U	458	541	118	458	572	125	73-125	5.50	(< 20)
o-Xylene	7.65U	458	572	125 *	458	581	127 *	77-123	1.60	(< 20)
P & M -Xylene	15.3U	917	1110	121	917	1140	125 *	77-124	2.80	(< 20)
sec-Butylbenzene	7.65U	458	530	116	458	568	124	73-126	7.10	(< 20)
Styrene	7.65U	458	592	129 *	458	596	130 *	76-124	0.60	(< 20)
tert-Butylbenzene	7.65U	458	529	115	458	550	120	73-125	3.90	(< 20)
Tetrachloroethene	3.83U	458	578	126	458	592	129 *	73-128	2.40	(< 20)
Toluene	7.65U	458	564	123 *	458	562	123 *	77-121	0.21	(< 20)
trans-1,2-Dichloroethene	7.65U	458	571	125	458	567	124	74-125	0.84	(< 20)
trans-1,3-Dichloropropene	3.83U	458	618	135 *	458	611	133 *	71-130	1.10	(< 20)
Trichloroethene	1.53U	458	577	126 *	458	581	127 *	77-123	0.70	(< 20)
Trichlorofluoromethane	15.3U	458	673	147 *	458	660	144 *	62-140	1.90	(< 20)
Vinyl acetate	30.6U	458	674	147	458	686	150	50-151	1.90	(< 20)
Vinyl chloride	0.245U	458	644	141 *	458	682	149 *	56-135	5.60	(< 20)
Xylenes (total)	22.9U	1370	1680	122	1370	1720	125 *	78-124	2.40	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		458	449	98	458	452	99	71-136	0.66	
4-Bromofluorobenzene (surr)		603	538	89	603	541	90	55-151	0.55	
Toluene-d8 (surr)		458	463	101	458	458	100	85-116	1.10	

Print Date: 11/30/2020 3:14:32PM

Original Sample ID: 1593090 MS Sample ID: 1593091 MS MSD Sample ID: 1593092 MSD

QC for Samples: 1206171002, 1206171003

Analysis Date:

Analysis Date: 11/14/2020 23:00 Analysis Date: 11/14/2020 23:15 Matrix: Solid/Soil (Wet Weight)

Results by SW8260D

Matrix Spike (%)

Spike Duplicate (%)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Batch Information

Analytical Batch: VMS20487 Analytical Method: SW8260D

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: NRB

Analytical Date/Time: 11/14/2020 11:00:00PM

Prep Batch: VXX36677

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 11/14/2020 12:30:00AM

Prep Initial Wt./Vol.: 103.64g Prep Extract Vol: 31.71mL

Print Date: 11/30/2020 3:14:32PM

Blank ID: MB for HBN 1814130 [XXX/44219]

Blank Lab ID: 1592647

QC for Samples:

1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	12.5U	25.0	6.25	ug/kg
2-Methylnaphthalene	12.5U	25.0	6.25	ug/kg
Acenaphthene	12.5U	25.0	6.25	ug/kg
Acenaphthylene	12.5U	25.0	6.25	ug/kg
Anthracene	12.5U	25.0	6.25	ug/kg
Benzo(a)Anthracene	12.5U	25.0	6.25	ug/kg
Benzo[a]pyrene	12.5U	25.0	6.25	ug/kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	ug/kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	ug/kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	ug/kg
Chrysene	12.5U	25.0	6.25	ug/kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	ug/kg
Fluoranthene	12.5U	25.0	6.25	ug/kg
Fluorene	12.5U	25.0	6.25	ug/kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	ug/kg
Naphthalene	10.0U	20.0	5.00	ug/kg
Phenanthrene	12.5U	25.0	6.25	ug/kg
Pyrene	12.5U	25.0	6.25	ug/kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	78.3	58-103		%
Fluoranthene-d10 (surr)	84.7	54-113		%

Batch Information

Analytical Batch: XMS12421 Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 11/25/2020 4:55:00PM

Prep Batch: XXX44219 Prep Method: SW3550C

Prep Date/Time: 11/11/2020 2:20:07PM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 11/30/2020 3:14:33PM

Blank Spike ID: LCS for HBN 1206171 [XXX44219]

Blank Spike Lab ID: 1592648 Date Analyzed: 11/25/2020 17:16

Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171002, 1206171003

Results by 8270D SIM (PAH)

	ı	Blank Spike	(ug/kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	111	93.0	84	(43-111)
2-Methylnaphthalene	111	94.4	85	(39-114)
Acenaphthene	111	96.8	87	(44-111)
Acenaphthylene	111	98.3	89	(39-116)
Anthracene	111	97.1	87	(50-114)
Benzo(a)Anthracene	111	92.4	83	(54-122)
Benzo[a]pyrene	111	95.9	86	(50-125)
Benzo[b]Fluoranthene	111	99.2	89	(53-128)
Benzo[g,h,i]perylene	111	93.0	84	(49-127)
Benzo[k]fluoranthene	111	101	91	(56-123)
Chrysene	111	101	91	(57-118)
Dibenzo[a,h]anthracene	111	93.9	85	(50-129)
Fluoranthene	111	104	93	(55-119)
Fluorene	111	98.9	89	(47-114)
Indeno[1,2,3-c,d] pyrene	111	101	91	(49-130)
Naphthalene	111	93.8	84	(38-111)
Phenanthrene	111	105	94	(49-113)
Pyrene	111	102	92	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	111	82.4	82	(58-103)
Fluoranthene-d10 (surr)	111	84.8	85	(54-113)

Batch Information

Analytical Batch: XMS12421 Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Prep Batch: XXX44219 Prep Method: SW3550C

Prep Date/Time: 11/11/2020 14:20

Spike Init Wt./Vol.: 111 ug/kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/30/2020 3:14:36PM

Original Sample ID: 1206170020 MS Sample ID: 1592649 MS MSD Sample ID: 1592650 MSD

QC for Samples: 1206171002, 1206171003 Analysis Date: 11/25/2020 22:03 Analysis Date: 11/25/2020 22:24 Analysis Date: 11/25/2020 22:44 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Matrix Spike (ug/kg)		Spike Duplicate (ug/kg)						
<u>Parameter</u>	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	16.1U	145	118	82	145	113	78	43-111	3.80	(< 20)
2-Methylnaphthalene	16.1U	145	120	83	145	115	80	39-114	3.90	(< 20)
Acenaphthene	16.1U	145	120	83	145	117	81	44-111	2.80	(< 20)
Acenaphthylene	16.1U	145	123	86	145	119	83	39-116	3.20	(< 20)
Anthracene	16.1U	145	118	82	145	117	81	50-114	1.70	(< 20)
Benzo(a)Anthracene	16.1U	145	113	79	145	112	78	54-122	1.20	(< 20)
Benzo[a]pyrene	16.1U	145	119	83	145	118	82	50-125	1.10	(< 20)
Benzo[b]Fluoranthene	16.1U	145	123	85	145	121	84	53-128	1.10	(< 20)
Benzo[g,h,i]perylene	16.1U	145	113	79	145	113	78	49-127	0.66	(< 20)
Benzo[k]fluoranthene	16.1U	145	121	84	145	119	83	56-123	1.20	(< 20)
Chrysene	16.1U	145	121	84	145	119	82	57-118	2.10	(< 20)
Dibenzo[a,h]anthracene	16.1U	145	116	80	145	115	79	50-129	0.94	(< 20)
Fluoranthene	16.1U	145	125	87	145	123	85	55-119	1.50	(< 20)
Fluorene	16.1U	145	121	84	145	118	81	47-114	2.80	(< 20)
Indeno[1,2,3-c,d] pyrene	16.1U	145	122	85	145	121	84	49-130	0.42	(< 20)
Naphthalene	12.9U	145	118	82	145	115	80	38-111	3.20	(< 20)
Phenanthrene	16.1U	145	127	89	145	124	86	49-113	2.70	(< 20)
Pyrene	16.1U	145	121	84	145	121	84	55-117	0.26	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		145	113	79	145	112	78	58-103	0.62	
Fluoranthene-d10 (surr)		145	114	79	145	112	78	54-113	1.40	

Batch Information

Analytical Batch: XMS12421 Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 11/25/2020 10:24:00PM

Prep Batch: XXX44219

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 11/11/2020 2:20:07PM

Prep Initial Wt./Vol.: 22.60g Prep Extract Vol: 5.00mL

Print Date: 11/30/2020 3:14:37PM

Blank ID: MB for HBN 1814151 [XXX/44222]

Blank Lab ID: 1592765

QC for Samples:

1206171001, 1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/kg

Surrogates

5a Androstane (surr) 96.8 60-120 %

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: CDM

Analytical Date/Time: 11/13/2020 8:52:00PM

Prep Batch: XXX44222 Prep Method: SW3550C

Prep Date/Time: 11/12/2020 10:59:40AM

Prep Initial Wt./Vol.: 30 g Prep Extract Vol: 5 mL

Print Date: 11/30/2020 3:14:39PM

Blank Spike ID: LCS for HBN 1206171 [XXX44222]

Blank Spike Lab ID: 1592766 Date Analyzed: 11/13/2020 21:02 Spike Duplicate ID: LCSD for HBN 1206171

[XXX44222]

Spike Duplicate Lab ID: 1592767 Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171001, 1206171002, 1206171003

Results by AK102

	В	lank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	833	727	87	833	711	85	(75-125)	2.20	(< 20)
Surrogates									
5a Androstane (surr)	16.7	107	107	16.7	107	107	(60-120)	0.26	

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: CDM

Prep Batch: XXX44222
Prep Method: SW3550C

Prep Date/Time: 11/12/2020 10:59

Spike Init Wt./Vol.: 833 mg/kg $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 833 mg/kg $\,$ Extract Vol: 5 mL $\,$

Print Date: 11/30/2020 3:14:41PM

Blank ID: MB for HBN 1814151 [XXX/44222]

Blank Lab ID: 1592765

QC for Samples:

1206171001, 1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics50.0U10043.0mg/kg

Surrogates

n-Triacontane-d62 (surr) 102 60-120 %

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: CDM

Analytical Date/Time: 11/13/2020 8:52:00PM

Prep Batch: XXX44222 Prep Method: SW3550C

Prep Date/Time: 11/12/2020 10:59:40AM

Prep Initial Wt./Vol.: 30 g Prep Extract Vol: 5 mL

Print Date: 11/30/2020 3:14:44PM

Blank Spike ID: LCS for HBN 1206171 [XXX44222]

Blank Spike Lab ID: 1592766 Date Analyzed: 11/13/2020 21:02 Spike Duplicate ID: LCSD for HBN 1206171

[XXX44222]

Spike Duplicate Lab ID: 1592767 Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171001, 1206171002, 1206171003

Results by AK103

	E	Blank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	833	738	89	833	718	86	(60-120)	2.80	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	16.7	101	101	16.7	102	102	(60-120)	0.94	

Batch Information

Analytical Batch: XFC15811 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: CDM

Prep Batch: XXX44222
Prep Method: SW3550C

Prep Date/Time: 11/12/2020 10:59

Spike Init Wt./Vol.: 833 mg/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 833 mg/kg Extract Vol: 5 mL

Print Date: 11/30/2020 3:14:47PM

Blank ID: MB for HBN 1814198 [XXX/44231]

Blank Lab ID: 1592958

QC for Samples:

1206171001, 1206171002, 1206171003

Matrix: Soil/Solid (dry weight)

Results by SW8082A

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Aroclor-1016	25.0U	50.0	12.5	ug/kg
Aroclor-1221	50.0U	100	25.0	ug/kg
Aroclor-1232	25.0U	50.0	12.5	ug/kg
Aroclor-1242	25.0U	50.0	12.5	ug/kg
Aroclor-1248	25.0U	50.0	12.5	ug/kg
Aroclor-1254	25.0U	50.0	12.5	ug/kg
Aroclor-1260	25.0U	50.0	12.5	ug/kg
Surrogates				
Decachlorobiphenyl (surr)	97	60-125		%

Batch Information

Analytical Batch: XGC10762 Analytical Method: SW8082A

Instrument: Agilent 7890B GC ECD SW F

Analyst: LAW

Analytical Date/Time: 11/16/2020 10:00:00AM

Prep Batch: XXX44231 Prep Method: SW3550C

Prep Date/Time: 11/13/2020 1:20:59PM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 11/30/2020 3:14:49PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1206171 [XXX44231]

Blank Spike Lab ID: 1592959 Date Analyzed: 11/16/2020 10:10

Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171001, 1206171002, 1206171003

Results by SW8082A

Blank Spike (ug/kg)							
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>			
Aroclor-1016	222	216	97	(47-134)			
Aroclor-1260	222	240	108	(53-140)			

Surrogates

Decachlorobiphenyl (surr) 222 92 92 (60-125)

Batch Information

Analytical Batch: XGC10762 Analytical Method: SW8082A

Instrument: Agilent 7890B GC ECD SW F

Analyst: LAW

Prep Batch: XXX44231 Prep Method: SW3550C

Prep Date/Time: 11/13/2020 13:20

Spike Init Wt./Vol.: 222 ug/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/30/2020 3:14:52PM

Matrix Spike Summary

Original Sample ID: 1206145001 MS Sample ID: 1592960 MS MSD Sample ID: 1592961 MSD Analysis Date: 11/16/2020 16:43 Analysis Date: 11/16/2020 16:54 Analysis Date: 11/16/2020 17:04 Matrix: Soil/Solid (dry weight)

QC for Samples: 1206171001, 1206171002, 1206171003

Results by SW8082A

		Mat	rix Spike (ι	ug/kg)	Spike	e Duplicate	(ug/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Aroclor-1016	1875U	329	1875U	0 *	327	1875U	0 *	47-134	0.00	(< 30)
Aroclor-1260	40700	329	38438	-661 *	327	37387	-993 *	53-140	2.86	(< 30)
Surrogates										
Decachlorobiphenyl (surr)		329	329	100	327	327	100	60-125	0.26	

Batch Information

Analytical Batch: XGC10763 Analytical Method: SW8082A

Instrument: Agilent 7890B GC ECD SW R

Analyst: LAW

Analytical Date/Time: 11/16/2020 4:54:00PM

Prep Batch: XXX44231

Prep Method: Sonication Extraction Soil SW8082 PCB

Prep Date/Time: 11/13/2020 1:20:59PM

Prep Initial Wt./Vol.: 22.83g Prep Extract Vol: 5.00mL

Print Date: 11/30/2020 3:14:53PM

PH 365300 XD

			SGS North America Inc.									
Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 (907) 561-2120 Fax (206) 695-6777			DRO/RRO- AK102/103	PCBs- EPA Method 8082A	GRO- AK101	VOCs- EPA Method 80260D	RCRA Metals	PAHs- EPA Method 8270D SIM				
Date	Time		Sample ID	Total Containers	4C ARHET	4C	MeoH	MeoH	40	40		
11/5/2020	10:15	10:	1644-TP1S2	2	Х	Х						
11/5/2020	10:25	101644-TP1S5 3		3	Х	Х	Х	X	Х	Х		
11/5/2020	10:40	101644-TP1S15 3		3	X	Х	Х	X	х	X		
<i>y</i>												
Relinquished [Ву:		Relinquished By:			Project Informat	ion	Tagan at the second				
Signature:	ture		Signature:			Project Number: 101644						
Print Name:	Alie From	<u> </u>	Print Name:	$\overline{}$	Project Name: Port Heiden Frosty Fuels							
Company: Shannon & Wilson, Inc. Company:			Contact: Dan McMahon									
Date: 1/9/20 Date:			Sampler: AJR									
Time:			Special Instructions:									
Received By: Signature: Signature:				Sample Receipt Shipped Via:	Hand Deli	vered	1-6 sen	+				
Print Name: Print Name:				bilipped via.	Tand Den	vojeu /	10 sen	1				
Company: Company: 56 5				Cooler Tempera	ture Upon A	Arrival: \.	0°C	059				
Date: Date: 1/9/20			Sample Matrix: Groundwater Sail									
Time: Time: 13 11					10 Working DAY							

e-Sample Receipt Form

SGS Workorder #:

1206171

<u>'</u>		-			1 2	0 0	' '	
Review Criteria	Condition (Yes,	No, N/A		Exception	ons No	ted below	1	
Chain of Custody / Temperature Require	ments		Yes	Exemption permitte	ed if samp	oler hand car	ries/delive	ers.
Were Custody Seals intact? Note # & loc								
COC accompanied sam								
DOD: Were samples received in COC corresponding coo	olers? N/A							
N/A **Exemption permitted if ch	nilled & colle	cted <8 ho	urs a	ago, or for samples	where ch	illing is not re	equired	
Temperature blank compliant* (i.e., 0-6 °C after		Cooler ID	_	1	@		nerm. ID:	D59
remperature plank compliant (i.e., 0-0 Caller	OI)! Ites			•				
		Cooler ID	_		@		erm. ID:	
If samples received without a temperature blank, the "cooler temperature" will be		Cooler ID):		@	PQ Tr	erm. ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chille be noted if neither is available.	au Will	Cooler ID):		@	°C Tr	erm. ID:	
35 Hotel Hotels to Grandott.		Cooler ID	_		@		nerm. ID:	
*If: COC ware completed to be used	2 2	Coolei IL			©	9"	ieiiii. ib.	
*If >6°C, were samples collected <8 hours a	Igo? N/A]						
If <0°C, were sample containers ice for	ree? N/A							
		1						
Note: Identify containers ressined at your container to any	turo							
Note: Identify containers received at non-compliant temperate Use form FS-0029 if more space is need Use for the space Use form FS-0029 if more space Use for the space Use for Use for the space Use for the space Use for the space Use for Use for Us								
Use form F3-0029 if more space is need	eueu.							
Holding Time / Documentation / Sample Condition Reg	uiromonte	Noto: Pofor	to fo	rm E 093 "Sample Guid	do" for enc	oific holding tir	moc	
		Note. Refer	10 10	im r-063 Sample Gui	ue ioi spe	cine notating til	nes.	
Were samples received within holding t	ime? Yes							
Do samples match COC** (i.e.,sample IDs,dates/times collect	ted)?							
		ł						
**Note: If times differ <1hr, record details & login per CO								
***Note: If sample information on containers differs from COC, SGS will default to CO	C information							
Were analytical requests clear? (i.e., method is specified for anal	lyses Yes							
with multiple option for analysis (Ex: BTEX, Me								
	,							
				I				
			N/A	***Exemption perm	itted for r	netals (e.g,2	00.8/6020)A).
Were proper containers (type/mass/volume/preservative***)u	sed? Yes							
		Ī						
Volatile / LL-Hg Requi	irements							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samp								
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6n								
Were all soil VOAs field extracted with MeOH+E	BFB? Yes							
Note to Client: Any "No", answer above indicates non-	compliance	with stand	ard n	procedures and may	impact o	data quality		
11010 to Guiditt / thy Tho , answer above indicates horre	- Jimpilario	Gland	2. u p		paor C	ata quality.		
Additional i	notes (if a	pplicable	e):					
. Identification	,							

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	Container Condition
1206171001-A	No Preservative Required	OK			
1206171001-B	No Preservative Required	OK			
1206171002-A	No Preservative Required	OK			
1206171002-B	No Preservative Required	OK			
1206171002-C	Methanol field pres. 4 C	ОК			
1206171003-A	No Preservative Required	ОК			
1206171003-B	No Preservative Required	OK			
1206171003-C	Methanol field pres. 4 C	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

LABORATORY DATA REVIEW CHECKLIST

Completed by: Alec Rizzo

Title: Geologist **Date:** 12/16/2020

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America Inc. **Laboratory Report Number:** 1206171 **Laboratory Report Date:** 11/30/2020

Contaminated Site Name: Frosty Fuels, Inc.- Port Heiden

ADEC File Number: 2637.26.002 and 637.57.002

Hazard Identification Number: 23200

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes/ No / NA
 Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? **Yes / No (NA)**

Comments: The samples were not transferred to another "network" laboratory or subcontracted to an alternate laboratory.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?Yes/ No / NAComments:

b. Correct analyses requested? Yes / No / NA Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? **Yes/ No / NA**

Comments: The cooler temperature blank was 1.0° Celsius.

b. Sample preservation acceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, VOCs, etc.)? Yes/ No / NA Comments:

c. Sample condition documented - broken, leaking (MeOH), zero headspace (VOC vials)? Yes/ No / NA

Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? **Yes / No NA**

Comments: No discrepancies were noted.

e. Data quality or usability affected?

Comments: Data quality/usability considered unaffected; see above.

4. Case Narrative

a. Present and understandable? Yes/ No / NA Comments:

- **b.** Discrepancies, errors or QC failures noted by the lab? Yes / No / NA Comments: *The case narrative noted the following:*
 - MS 6020B Metals recovery for barium does not meet QC criteria. The post digestion spike was successful.
 - MS/MSD 8082A PCB Aroclors 1016/1260 recoveries do not meet QC criteria due to sample matrix. Refer to the LCS for accuracy requirements.
 - MS/MSD 8260D Recoveries for several analytes do not meet QC criteria. See LCS for accuracy requirements
 - MS/MSD 8260D RPD for 1,2,3-trichlorobenzene does not meet QC criteria. This analyte was not detected above the LOQ in the parent sample.
- c. Were all corrective actions documented? Yes/ No / NA Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *See above*.

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Ves/No/NA Comments:
- **b.** All applicable holding times met? Yes / No / NA Comments:

- c. All soils reported on a dry weight basis? Yes / No / NA Comments:
- d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? Yes / No / NA

Comments: The LOQs for 1,2,3-trichloropropane, 1,2-dibromoethane, dibromochloromethane, dibromomethane, hexachlorobutadiene, and vinyl chloride exceed the ADEC cleanup levels.

e. Data quality or usability affected?

Comments: There is a potential that the target analytes are present at concentrations greater than the ADEC cleanup level, but less than the LOQ; however, the analytes were not detected at estimated concentrations in the project samples.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis, and 20 samples? Yes/ No / NA

Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes/No/NA

Comments: Although, GRO (0.782 J mg/kg) was detected in the method blank at a concentration less than the LOQ.

- **iii.** If above LOQ or project specified objectives, what samples are affected? Comments: *Samples TP1S5 and TP1S15*.
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes (No)/NA

Comments: When the reported concentrations are within 10 times the reported blank concentration, the project samples are flagged "B." GRO was detected at estimated concentrations in Samples TP1S5 and TP1S15 at levels less than the LOQ; therefore, the sample concentrations are reported as non-detect at the LOQ and flagged "B" in Table 2.

v. Data quality or usability affected? Comments: *See above*.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/ No / NA Comments:
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No / NA
 Comments:
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages Ye / No / NA Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from LCS/LCSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes/ No / NA Comments:
- **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes / No NA Comments:
- **vii.** Data quality or usability affected? Comments: *No. see above.*
- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis, and 20 samples?Yes/ No / NAComments:
 - ii. Metals/Inorganics One MS and one MSD reported per matrix, analysis and 20 samples? Yes / No / NA
 Comments:

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes No/ NA Comments: The MS/MSD recoveries for several VOC analytes do not meet QC criteria. In addition, the MS/MSD recoveries for PCB Aroclors 1016/1260 do not meet QC criteria.
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from MS/MSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No/ NA
 Comments: The MS/MSD RPD for 1,2,3-trichlorobenzene does not meet OC criteria.
- **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments: *Samples TP1S5 and TP1S15*.
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes (No) NA

Comments: No, the samples used as the parent were collected from another work order. Therefore, flagging is not required.

vii. Data quality or usability affected? Comments: *No*, *see above*.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

- i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples? Yes/No/NA
 Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages Yes / No / NA Comments:
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes / No NA Comments:
- **iv.** Data quality or usability affected? Comments: *No, see above.*

e. Trip Blank - Volatile analyses only (GRO, BTEX, VOCs, etc.)

i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? Yes / No NA

Comments: Our ADEC-approved work plan did not include volatile analyses. Therefore, a trip blank was not included with the sample kit. Based on changed site conditions volatiles were analyzed.

- ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? Yes / No / NA Comments:
- iii. All results less than LOQ and project specified objectives? Yes / No (NA) Comments:
- **iv.** If above LOQ or project specified DQOs, what samples are affected? Comments:
- v. Data quality or usability affected? Comments:

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?Yes/ No / NA

Comments: Sample TP1S15 (duplicate of TP1S5) was submitted to the laboratory.

- ii. Were the field duplicates submitted blind to the lab? Yes/ No / NA Comments:
- iii. Precision All relative percent differences (RPDs) less than specified project objectives? (Recommended: 30% for water, 50% for soil Yes / No / NA Comments:
- **iv.** Data quality or usability affected? Comments: *No, see above.*
- **g. Decontamination or Equipment Blank** (if not applicable, a comment stating why must be entered below).

Yes /No NA

Comments: A decontamination blank was not included in our ADEC-approved workplan.

i. All results less than LOQ and project specified objectives?

Yes / No (NA)
Comments:

- **ii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- **iii.** Data quality or usability affected? Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate? **Yes** / **No** / **NA**Comments: *A key is provided on Page 4 of the SGS Laboratory Report.*

ATTACHMENT 4

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Lot 1A, Block 100, Port Heiden Airport Project No. 101644-002

Attachment to and part of Report 101644-002

Date: February 2021
To: ADOT

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2016

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2016