

2015 GROUNDWATER MONITORING & WELL INSTALLATION REPORT

ADEC File No. 2100.38.384

Former Norgetown Laundry Site Anchorage, Alaska

Prepared for:

EEB Ltd. Bellevue, Washington

February 2016

2015 GROUNDWATER MONITORING & WELL INSTALLATION REPORT

Former Norgetown Laundry Site Anchorage, Alaska

Prepared for: EEB Ltd. 400-112th Ave N.E. Suite 230 Bellevue WA 98004

Prepared by: ALTA Geosciences, Inc. 2020 Maltby Road Suite 7-197 Bothell, Washington 98021

> Phone: (425) 485-1053 Fax: (425) 984-0114

> > Date: February 18, 2016

The field work described herein was performed and this report prepared under the direct supervision of:

Alex Tula, L.G. Principal consultant

FORMER NORGETOWN LAUNDRY SITE

Source: Google Earth

TABLE OF CONTENTS

1.0	INTRO	DUCTION		1-1	
1.1		GROUND			
1.2	PURP	OSE AND SCOPE		1-2	
2.0	\A/E1.I	INSTALLATION & MAINTENANCE		2.4	
2.0		5			
2.1		9			
2.2		INSPECTION AND MAINTENANCE			
2.0	***			2	
3.0	2009 (ROUNDWATER SAMPLING AND ANALYSIS		3-1	
3.1	GROU	NDWATER MONITORING LEVELS		3-1	
3.2		LING PROCEDURES			
3.3	ANAL'	TICAL PROCEDURES		3-1	
3.4	QUAL	TY ASSURANCE SUMMARY		3-2	
4.0	INVES	TIGATION DERIVED WASTES		4-1	
5.0	CONC	LUSIONS AND RECOMMENDATIONS		5-1	
6.0	REFE	RENCES		6-1	
LIST (OF TAE	LES (following References)			
Table	1	Groundwater Levels in Sampled Wells			
Table	2	Groundwater Field Parameters			
Table	3	Laboratory Testing Results			
LIST (OF FIG	JRES (following Tables)			
		Site Location Map			
Figure		2015 Groundwater Elevations			
Figure	e 3	2015 PCE Concentrations in Groundwater			
<u>APPE</u>	NDIXE	<u> </u>			
	NDIX A				
	NDIX B				
APPE	PPENDIX C LABORATORY ANALYSIS CERTIFICATES AND ADEC				

1.0 INTRODUCTION

This document was prepared by ALTA Geosciences, Inc. (ALTA) of Bothell, Washington for the former Norgetown Laundry Site (Site). The Site is located at 5477 East Northern Lights Boulevard, northwest of the intersection of Boniface Parkway and Northern Lights Boulevard (Figure 1). Numerous past investigations have been performed at this and adjacent sites as described in the *Data Summary Report* (ALTA, July, 1997) and in the *Site Characterization Report* (July, 2000). These investigations have resulted in numerous soil borings and monitoring wells at and near the Norgetown Laundry Site.

1.1 BACKGROUND

Low but elevated levels of tetrachloroethylene (PCE) have been documented in soil and groundwater in and near the Former Norgetown Laundry Site. Soil concentrations have, in a few samples, ranged up to 4 mg/kg PCE, but are most typically less than 0.5 mg/kg. Groundwater concentrations up to 1.2 mg/L PCE have been reported in the past, although April 1998 sampling results were less than 0.2 mg/L, and are most typically 0.01 to 0.06 mg/L. Reported groundwater concentrations have been steadily declining with time. No evidence of non-aqueous phase liquids (NAPL) has been found in any of the explorations at the Site, and concentrations of PCE in soil, groundwater, and soil gas are so low that the existence of NAPL at the Site is highly unlikely.

During the 1999 and 2000 sewer pipe remediation work at the Site, it was determined that the 4-inch cast-iron, bell and spigot sewer pipe outside the Laundry had apparently leaked through its joints. This pipe extended from the north building door, westward, then south across the front of the building, then westward again to the Value Village Mall building. Subgrade soil samples below the joints along this 140-foot length indicated elevated levels of PCE, and sludge samples from inside the pipe indicated PCE had been disposed of through the sewer pipe. Also during the 2000 pipe remediation, an abandoned 6-inch sewer pipe was found running northward from a tee at the north building door area. This pipe was approximately 43 feet long and capped at the far end. It contained sludge with very high values of PCE, indicated prior disposal of that chemical through the sewer. Subgrade soils below this section of pipe indicate some leakage of PCE through the pipe joints. Both the 4-inch and 6-inch pipes were removed, disposed of offsite, and the 4-inch pipe was replaced with new pipe.

No other specific source (or sources) or release mechanisms have been discovered to date. Aside from this sewer pipe area, no specific areas of significantly elevated soil concentrations of PCE have been discovered, despite numerous soil borings and sample analyses and an extensive soil gas survey (see *Site Characterization Report*).

There is a possibility that sources offsite and unrelated to the laundry may be contributing to the observed contaminant distributions. At present, the relative contribution of such sources and previously leaking sewer pipes cannot be assessed.

The laundry/dry cleaning operation at the site was discontinued many years ago and the building is currently in use as a retail clothing store. No further environmental work has been performed at the site since 2011.

1.2 PURPOSE AND SCOPE

The Work Plan for Well Installation, Groundwater Monitoring, and Vapor Intrusion Preliminary Assessment (ALTA, June 28, 2015, hereafter referred to as the Work Plan) specified the work that was to be completed for at the Site in 2015, defined the sampling and data-gathering methods to be used for the field work, the sample handling methods, the chemical analysis methods, and quality assurance requirements. The well installation and groundwater monitoring portions of that work are described in this report. The vapor intrusion assessment will be described in a separate report.

1.3 HYDROGEOLOGIC CONDITIONS

Subsurface conditions are quite consistent in all explorations and consist of a two-layer system as described below:

- 1. From the ground surface to about 20 feet below ground surface (bgs), soils consist of relatively clean, dense sandy gravel.
- 2. Underlying the gravel is very dense glacial till consisting primarily of sandy silt with cobbles.

A layer of stiff sandy silt is described in the boring log for MW-44 from 4.5 to 7.5 feet bgs, but is absent from other boring logs and is therefore apparently a feature of only limited extent.

The glacial till layer represents a substantial barrier to downward migration of groundwater and contaminants. The glacial till is present at 20 to 30 feet bgs across the site, at an elevation of 170 to 175 feet above mean sea level (msl). The top of the till surface appears to be somewhat irregular, but the surface generally appears to slope gently downward to the south.

Groundwater beneath the site is typically encountered at 8 to 12 feet bgs; with a 1- to 3-foot change between dry season low groundwater levels (midwinter) and wet season high groundwater levels (early summer). High groundwater elevations are about elevation 183 feet, while wintertime groundwater elevations are typically near 180 feet.

Historical groundwater gradients across the site are very flat, typically 0.001 to 0.0007

2015 Groundwater Monitoring & Well Installation Report – Former Norgetown Laundry Site feet per foot to the southwest.

2.0 WELL INSTALLATION & MAINTENANCE

The Work Plan called for installation of two replacement monitoring wells:

- MW-11. MW-11 had been located on the south side of East Northern Lights Blvd., in an unpaved alley. How the well was destroyed is unknown, but it had not been able to be located since last sampled in 2008. Due to the insecure nature of the former location, the replacement well was placed just north of East Northern Lights Blvd., on the paved parking lot owned by EEB. The new well was to be designated MW-115.
- MW-109. MW-109 had been located on the west side of Rose Street. We had
 been unable to locate the well despite numerous attempts since last sampled in
 2007. In 2007 a new house was being constructed on the residential lot
 immediately west of the well and it was assumed the well had been destroyed
 by construction activities.

All wells were also inspected for condition (such as evidence of frost jacking) and any needed maintenance was to be performed.

2.1 MW-115

MW-115 was installed on August 24, 2015 at the location shown on Figure 2. The drilling contractor was Discovery Drilling of Anchorage, Alaska, using a hollow stem auger drill rig. The well construction diagram is presented in Appendix A. The well was fitted with a flush monument and the top of casing elevation determined as 193.10 feet by survey methods using back sights to wells MW-113 and MW-44A. The well was developed on August 24 by surging and bailing approximately 20 gallons of water. Development water was placed in a Department of Transportation approved drum for subsequent disposal (see Section 4.0). A sample of the purge water was collected and submitted for laboratory analysis (see laboratory report 1154773 in Appendix C). The purge water was found to contain 2.55 ug/L PCE. Soil cuttings from well installation were placed in a separate Department of Transportation approved drum for subsequent disposal (see Section 4.0). A sample of the soil was collected and submitted for laboratory analysis (see laboratory report 1154773 in Appendix C). The soil was found to contain 0.00179 mg/kg PCE.

2.2 MW-109

When we arrived to install the replacement well we were surprised to be able to locate the existing MW-109 well. The monument had been destroyed, but the well cap was still in place. We opened the well and sounded it, and found it was still clear to the bottom. We reconstructed a new flush monument and resurveyed the top of casing using a back sight to well MW-110. The top of casing elevation was found to be 189.65

feet.

2.3 WELL INSPECTION AND MAINTENANCE

All wells were sounded for depth and inspected for evidence of damage. No evidence of frost jacking was noted. The monument for well MW-44A was found to be damaged and was replaced with a new steel flush monument. The monument replacement did not result in any change to the top of casing elevation of the well.

3.0 2009 GROUNDWATER SAMPLING AND ANALYSIS

3.1 GROUNDWATER MONITORING LEVELS

The depth to groundwater in monitored wells was measured to the nearest 0.01 foot using a well sounder. The elevations relative to mean sea level (MSL) are shown in Table 1 along with historical water elevation data from the site. Water levels were consistent with prior observations. Figure 2 shows the water elevations on a site map and our interpretation of these data regarding the potentiometric groundwater surface and flow direction. As has been previously noted, the groundwater gradient across the site is extremely flat.

3.2 SAMPLING PROCEDURES

Groundwater samples obtained using Passive Diffusion Bag Samplers (PDBs) as described in *User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentration in Wells* (U.S. Geological Survey Water-Resource Investigation Report 01-4060, 2001). Twenty-four inch ("standard") PDBs were supplied by ALS Environmental, prefilled with 220 milliliters of deionized water. PDBs were deployed on August 25, 2015. The bottom of the PDBs were suspended approximately one foot above the bottom of the wells.

The PDBs were retrieved on September 11, 2015. The water in the PDBs was then transferred to laboratory supplied VOA vials. Note that MW-44A is incorrectly identified on the chain of custody and laboratory report as MW-44B.

In addition, following retrieval of the PDBs, a groundwater sample was also collected from well MW-44A using a peristaltic pump for comparison purposes. This is identified as sample MW-44BDB on the laboratory report. Sampling equipment consisted of a peristaltic pump with vinyl intake and discharge tubing. The well was purged at a rate of 0.5 to 1.5 liters per minute with the intake tubing set within the screened interval. The parameters pH, temperature and were monitored and recorded throughout the purging process. The well was purged until the readings stabilized within 10 percent. Approximately 3 gallons were purged prior to sample collection. The purge water placed in the drum with the development water from MW-115.

Samples were stored in a cooler with synthetic ice and transported to the analytical laboratory under chain of custody procedures.

3.3 ANALYTICAL PROCEDURES

Samples were analyzed by SGS Environmental Services of Anchorage, Alaska. All samples were submitted to the laboratory for analysis of halogenated volatile organic compounds (HVOCs) by EPA Method 8260B including vinyl chloride. The laboratory

2015 Groundwater Monitoring & Well Installation Report – Former Norgetown Laundry Site analysis report is contained in Appendix C.

3.4 QUALITY ASSURANCE SUMMARY

This QA summary includes a review, where appropriate, of holding times, blanks, matrix spike (MS) and laboratory control sample (LCS) recoveries, duplicate sample relative percent differences (RPDs), reporting limits, and overall assessment of data in the sample event. Each analysis that was performed is evaluated in the following subsections. The Data Quality Report and the ADEC Laboratory Data Review Checklist is contained in Appendix C.

Field samples were reviewed to determine overall precision of sampling and analysis as well as matrix heterogeneity for Halogenated Volatile Organic Compounds (HVOCs).

Laboratory data were evaluated using laboratory-supplied control criteria. In the following method-specific discussions, only the criteria exceedances that impact data qualification or require assessment beyond laboratory documentation are discussed.

HVOCs by SW8260B:

All data elements/indicators are in conformance with the project criteria, with the following exception:

• The RPDs for chloroform (40.6%) and tetrachloroethene (43.8%) in parent sample/field duplicate pair MW-44B/MW-44BDB are above QC limits (<30%). The chloroform and tetrachloroethene results in these samples are qualified as estimated (J)

Overall Assessment

The following summary highlights the data evaluation findings for this sampling event:

- No data are rejected.
- The completeness objectives (greater than 85 percent complete) for this project are met.
- The precision and accuracy of the laboratory data, as measured by laboratory quality control indicators, suggest that the data are useable as qualified for the purposes of this project.
- The precision measurements for result comparisons between primary and duplicate field samples are acceptable as qualified for the purpose of this project.

4.0 INVESTIGATION DERIVED WASTES

Soil cuttings from monitoring well development and development and purge water from the monitoring wells were placed in separate DOT approved drums pending laboratory analysis. The detection of PCE in both media resulted in characterization as F002 Hazardous Waste for transportation and disposal purposes. The materials were then transported under Hazardous Waste Manifest for disposal by Waste Management, Inc. Copies of the Hazardous Waste Manifests are contained in Appendix B.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Groundwater elevation data are shown on Table 1 and Figure 2. Groundwater analysis results are presented on Table 2 and Figure 3.

From these data the following conclusions can be drawn:

- The groundwater flow regime remains unchanged from prior monitoring events.
- The use of PDBs for groundwater sampling is justified. The sample collected from MW-44A using a peristaltic pump actually contained a lower concentration of PCE than did the sample collected using the PDB (7.13 ug/L for the PDB vs. 4.57 ug/L for the peristaltic). The peristaltic sample did contain trichloroethene which was not detected in any of the PDB samples, however the concentration (1.17 ug/L) was well below the ADEC cleanup level for that compound (5 ug/L).
- Vinyl chloride was not detected in any sample.
- Concentration of PCE in groundwater samples ranged from non-detect to 10.3 ug/L, slightly exceeding the ADEC cleanup level (5 ug/L).
- All the monitoring wells in the original source area around the former Norgetown Laundry building are below the ADEC cleanup level. This fact documents the effectiveness of past remediation measures taken at the site.
- Offsite monitoring wells MW-109 and MW-110 contained 7.77 ug/L PCE and 7.16 ug/L PCE, slightly exceeding the ADEC cleanup level (5 ug/L). These levels will likely continue to decline as water flushes through the system. However, the very flat groundwater gradient results in slow progress in down gradient areas.

Based on these results, we make the following recommendations:

- Groundwater monitoring should be repeated in 2017. At that time, the need for further monitoring should be evaluated. If the results in 2017 are consistent with those from 2015, groundwater monitoring might next be warranted in 2022.
- The wells to be retained for future monitoring should be considered following the 2017 monitoring event.
- Unneeded monitoring and former remediation wells should be considered for proper abandonment in accordance with ADEC guidance.

6.0 REFERENCES

- ALTA Geosciences, Inc., July 1997. Data Summary Report, Norgetown Laundry Site, Anchorage, Alaska.
- ALTA Geosciences, Inc., July 2000. Site Characterization Report, Norgetown Laundry Site, Anchorage, Alaska.
- ALTA Geosciences, Inc., September 2000. Construction Summary Report, Norgetown Laundry Site, Anchorage, Alaska
- ALTA Geosciences, Inc., June 28, 2015. Work Plan for Well Installation, Groundwater Monitoring, and Vapor Intrusion Preliminary Assessment
- U.S. Geological Survey, 2001. User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentration in Wells. Water-Resource Investigation Report 01-4060.

TABLES

	TOC ELEVATION	·														
Well ID	(ft MSL)	WATER	Sep-15	Jun-09	Oct-08	Jun-08	Oct-07		May-07		Jun-06	Oct-05	Jul-05	Oct-04	Jul-04	Oct-03
MW-11	192.13					181.83		181.34			181.34		181.06		182.23	181.13
MW-12	195.01										182.91					
MW-13	193.20					181.78	181.73	181.27		182.62	181.30	181.22	181.02	183.61	182.27	181.35
MW-43A	194.36	12.85	181.51	180.98	181.42	182.03	181.50	181.46	182.52	182.94	181.24	181.43	181.22	184.06	182.66	181.45
MW-44A	192.62	11.18	181.44	180.97	181.45	182.02	181.98	181.50	182.62	182.96	181.54	181.47	181.25	184.12	182.59	181.40
MW-107	195.40						182.06	181.56	182.67	183.06	181.62	181.50	181.30	184.27	182.72	181.49
MW-108	195.08					182.14	182.13	181.62	184.70	183.06	181.65	181.52	181.33	184.21	182.69	181.44
MW-109	189.65	8.62	181.03					181.18			181.23		180.98		182.08	181.06
MW-110	188.88	7.90	180.98	180.65		181.55		181.15			181.15		180.92		181.93	180.96
MW-112	193.73	12.27	181.46	181.31	181.50	182.09	182.04	181.55	182.56	182.98	181.58	181.50	181.28	184.14	182.61	181.41
MW-113	192.87	11.42	181.45	181.24	181.73	182.32	182.12		182.72	182.99	181.65	181.52	181.32	184.19	182.72	181.43
MW-114	192.71			181.17	181.82	182.27		181.69	182.79	183.12	181.70	181.56	181.36	184.22		181.44
MW-115	193.10	11.85	181.25													

⁻⁻ Not measured.

Table 2 - Groundwater Analytical Results

WELL:		MW-10	7		MW-43/	A		MW-108	3		MW-112	2		MW-113	3		MW-11	14/R-3 ¹			MW	-44A			MW-13		M	W-11/11	15 ²		MW-109	•		MW-110	
	11	pgradie	nt	Froi	nt of lau	ındrv	Sou	th of lau	ındrv		ngradie			ngradie		Dow	ngradier		undry	Sc	outh Pro	nerty I	ine	N.	of North	ern	S. c	of North	nern		Rose St		F	30th Av	e.
						,			,		Laundry			Laundry			•		,			. ,			Lights			Lights							
DATE	DCE	PCE	TCE	DCE	PCE	TCE	DCE	PCE	TCE	DCE	PCE	TCE	DCE	PCE	TCE	DCE	PCE	TCE	VC	DCE		TCE	VC	DCE	PCE	TCE	DCE	PCE	TCE	DCE	PCE	TCE	DCE		TCE
Apr-00	nd	nd	nd	nd	38.1	nd	nd	6.83	nd											nd	16.2	nd	nd	nd	22.5	nd	nd	nd	nd	4.76	34.8	4.56	nd	2.73	nd
Jul-00	nd	4.1	nd	nd	23.3	nd	nd	2.6	nd											nd	13.7	nd	nd	nd	20.1	nd	2.5	35	3.4	3.3	35.3	3.8	0.6 J		0.5 J
Sep-00	nd	4.83	nd	nd	32	nd	nd	4.99	nd	nd	9.9	nd	nd	16.1	nd	nd	39.7	nd	nd	nd	15.8	nd	nd	nd	22	nd	2.47	39	3.16	3.77	37.9	3.87	nd	2.58	nd
May-01	nd	3.45	nd	nd	32.7	nd	nd	3.34	nd				nd	19.2	nd	nd	39.6	nd	nd	nd	23.1	nd	nd				10	34.6	1.35	2.84	37.2	3	1.1	9.24	nd
Aug-01	nd	3.0	nd	nd	46.3	nd	nd	4.3	nd	nd	7.9	nd	nd	21.2	nd	nd	43.5	nd	nd	nd	12.9	nd	nd							3.1	39.6	3.7	nd	8.4	nd
Nov-01				nd	44.4	nd	nd	6.12	nd	nd	11.7	nd	nd	25.4	nd	nd	47.4	nd	nd	nd	16.2	nd	nd	nd	25.3	nd	3.17	38.1	3.12						
May-02	nd	4	nd	nd	29	nd	nd	6	nd	nd	24	nd	nd	27	nd	nd	32	nd	nd	nd	36	nd	nd	nd	nd	nd	1 J	36	1 J				3	18	2
Aug-02	nd	5	nd	nd	44	nd	nd	5	nd	nd	12	nd	nd	37	nd	nd	96	nd	nd	nd	28	nd	nd	nd	63	nd	1 J	40	2 J	3	40	3	2	17	2 J
Oct-02	nd	5	nd	nd	30	nd	nd	3	nd	nd	13	nd	nd	23	nd	nd	47	nd	nd	nd	29	nd	nd	nd	14	nd	nd	42	nd	3	42	3	nd	17	nd
11.03	nd	2.16	nd	nd	18.3	nd	nd	2.2	nd	nd	7.31	nd	nd	24.7	nd	nd	38.9	nd	nd	nd	28.9	nd	nd	nd	9.05	nd	nd	25.3	1 11	nd	25.9	1.75	nd	12.4	001
Jul-03	nd		nd	nd	19.3	nd	nd	2.61	nd	nd		nd	nd	15.4	nd	nd	36.3	nd	nd	nd	31.5	nd 1.47	nd	nd	10.3	nd	nd	27.3	1.14	nd			nd		
Oct-03	nd	1.7	nd	nd	19.3	nd	nd	2.01	nd	nd	15.1	nd	nd	13.4	nd	nd	30.3	nd	nd	1.67	31.3	1.47		nd	10.3	nd	nd	21.3	1.0	nd	21.7	1.51	nd	14.5	1.11
Jul-04	nd	3	nd	3.3	12.4	nd	nd	1.6	nd	nd	16.8	nd	nd	14.1	nd	nd	19.3	nd	nd	6.72	8.9	nd	nd	nd	6.8	nd	nd	15	nd	nd	14.4	nd	nd	9.5	nd
Oct-04	nd	4.09	nd	13.9	6.22	nd	nd	1.7	nd	nd	8.33	nd	1.57	14	nd	1.9	19.5	nd	nd	12.3	4.18	1	nd	nd	7.14	nd						nd			nd
Jul-05	nd	nd	nd	17.7	9.48	1.02	nd	1.4	nd	nd	4.79	nd	2.33	13	nd	1.8	28.8	nd	nd	18.4	9.77	nd	nd	nd	5.96	nd				nd	15.2	nd	nd	9.48	nd
Oct-05	nd	1.06	nd	34.5	5.22	nd	1.1	1.47	nd	nd	3.1	nd	1.59	12.8	nd	2.23	29.7	nd	nd	24.4		nd	nd	nd	7	nd									
									-										-																
Jun-06	nd	1.11	nd	26.5	5.31	nd	nd	1.46	nd	nd	5.47	nd	2.34	9.36	nd	2.61	23.8	nd	nd	25.8	6.64	2.88	nd	nd	4.72	nd	6.33	20.7	2.05	1.22	15	1.06	nd	8.56	0.55
Sep-06	nd	5.96	nd	34.8	4.13	nd	1.62	1.73	nd	2.7	5.27	nd	1.5	10.7	nd	5.28	12.2	1.65	nd	34.8	1.8	2.83	nd	nd	5.61	nd									
May-07	nd	3.41	nd	16.2	3.92	1.09	0.54	1.2	nd	1.91	9.32	0.52	2.83	15.7	0.65	3.31	16.7	2.17	0.57	25.6	5.85	6.08	nd												
Jun-07	nd	1.05	nd	19.5	2.84	1.05	nd	0.72	nd	1.13	3.57	0.59	0.77	5.26	nd	3.27	13.2	2.2	nd	30.8	3.51	6.13	nd	nd	3.41	nd	6.1	18.4	2.5	1.44	14	1.07	nd	4.46	nd
Oct-07	nd	0.51	nd	19	2.5	0.79	1.1	0.59	0.46	3	8.5	1.4	2.9	19	1.4					35.0	0.69	4.7	nd	nd	5.2	nd									
Nov-07													1.06	7.9	nd	2.66	13.7	2.32	1.4						-									-	
Jun-08				7.27	3.69	1.53	nd	1.54	nd	nd	3.37	nd	1.01	7.19	nd	1.84	14.3	1.71	nd	15.7	2.88	nd	nd	nd	3.91	nd	3.24	17.5	2.32				nd	5.95	nd
Oct-08				5.24	3.82	1.23				nd	4.26	nd	nd	8.47	nd	nd	5.43	nd	nd	12.9	3.73	nd	nd		-									-	
Jun-09				6.27	6.7	1.55				nd	4.62	nd	2.38	12.2	1.26	nd	4.88	nd	nd	10.7	4.18	1.23	5.04										nd	5.3	nd
Oct-11				4.56	8.68	1.14				nd	5.46	nd	2.69	13.4	1.49	BLOC	KED WI	TH SOI	L	6.6	1.56	1.42	nd										nd	6.48	nd
11-Sep-15				1.42	3.14	nd				nd	2.78	nd	nd	4.83	nd	nd	nd	nd	nd	nd	7.13	nd	nd				nd	10.3	nd	nd	7.77	nd	nd	7.16	nd
	Notes:																			nd	4.57	1.17	nd												

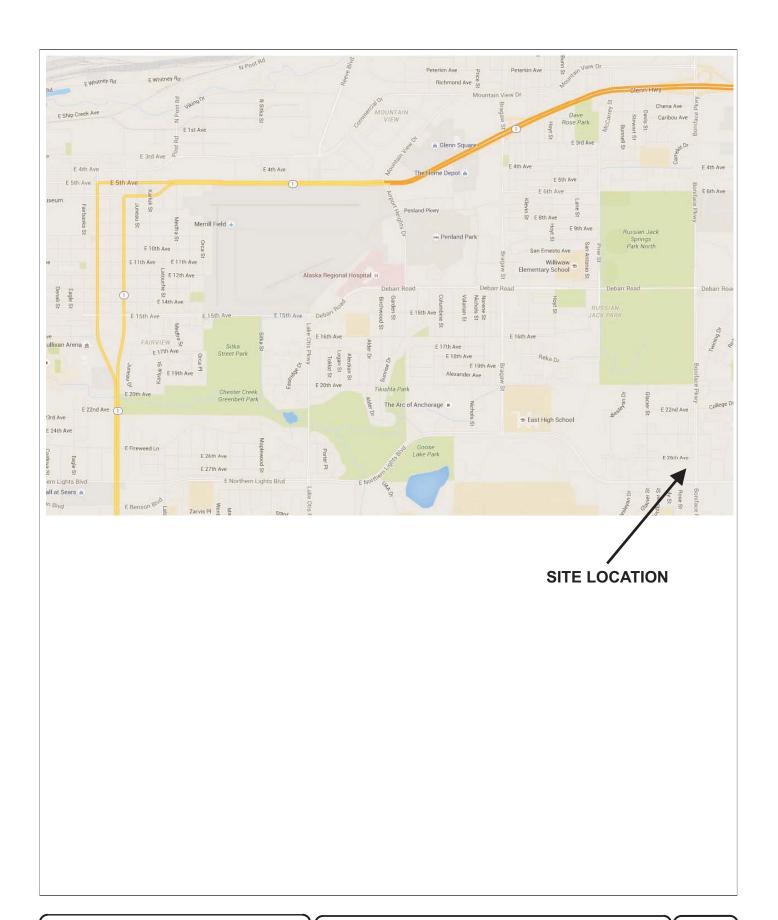
Duplicate sample

Wells listed in order from North (upgradient) to South (downgradient

BOLD indicates the concentration exceeds ADEC cleanup level.

ADEC cleanup criteria listed below in ().

DCE cis-1,2-dichloroethene (70)


PCE tetrachloroethene (5)

TCE trichloroethene (5)

VC vinyl chloride (2)

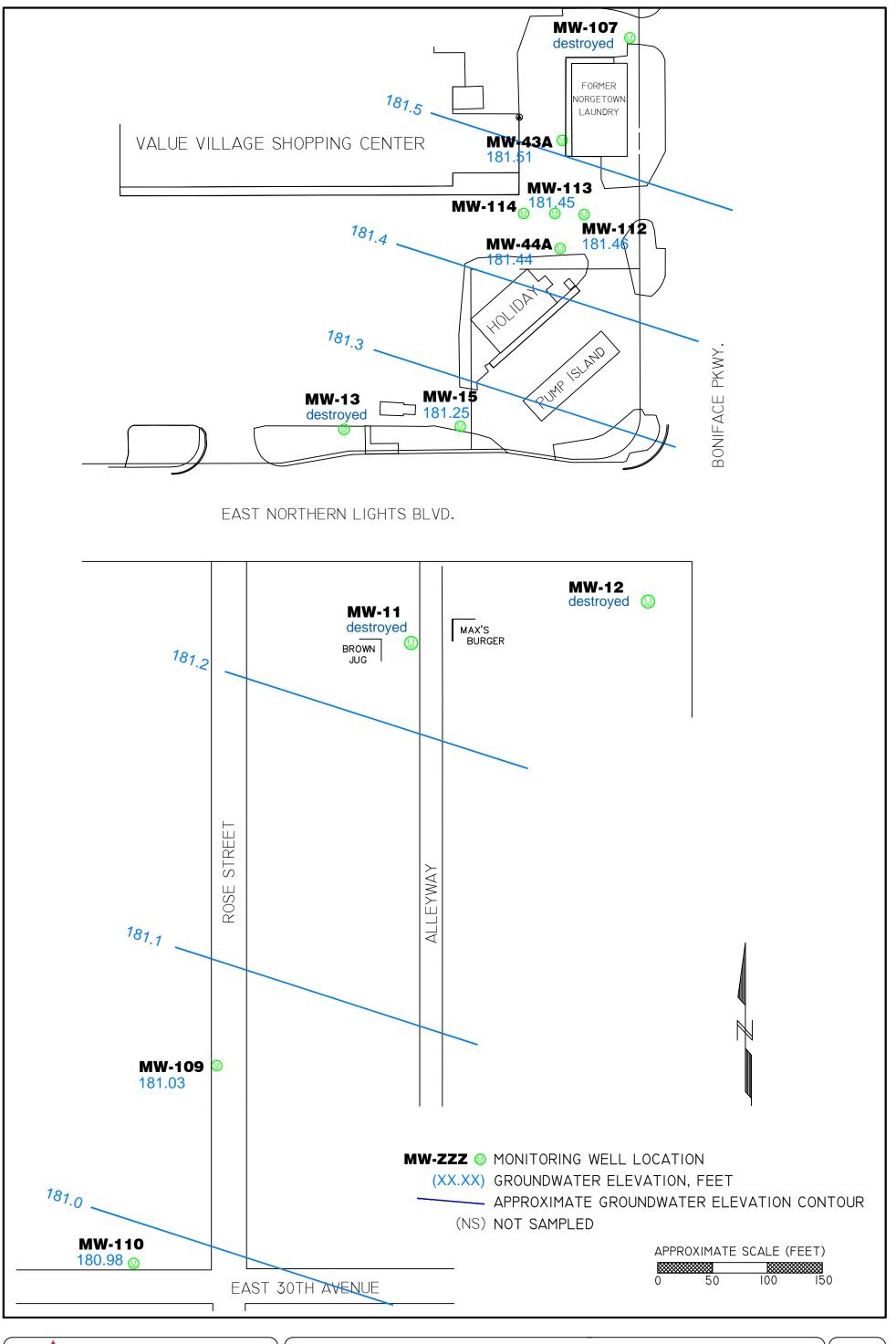
MW-114¹ Well R-3 substitued beginning September 2015 MW-11² New well MW-115 substituted beginning September 2015

FIGURES

Environmental & Geotechnical Solutions

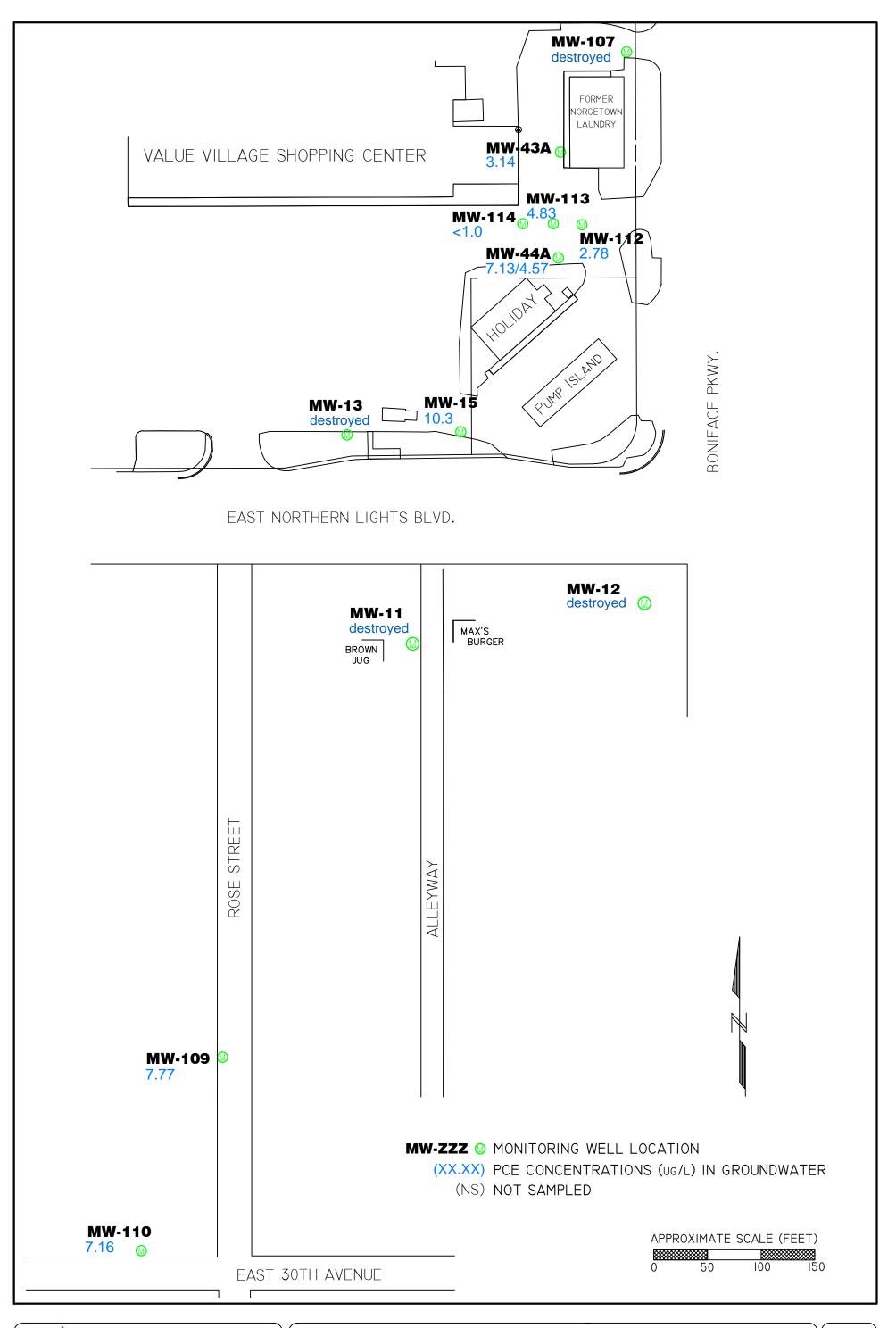
Bothell, Washington

Prepared for:


Legacy Commercial LLC

FORMER NORGETOWN LAUNDRY SITE

SITE LOCATION


FIGURE

1

FORMER NORGETOWN LAUNDRY SITE 2015 GROUNDWATER MONITORING REPORT

FORMER NORGETOWN LAUNDRY SITE 2015 GROUNDWATER MONITORING REPORT

APPENDIX A MONITORING WELL CONSTRUCTION DIAGRAM

Construction Diagram

Monitoring Well MW-115

Well Location: Former Norgetown

Laudery Site

Date Installed: 08/24/2015

Date Developed: 08/25/2015

Project Number: E15-1160AK

Geologist: Alex Tula

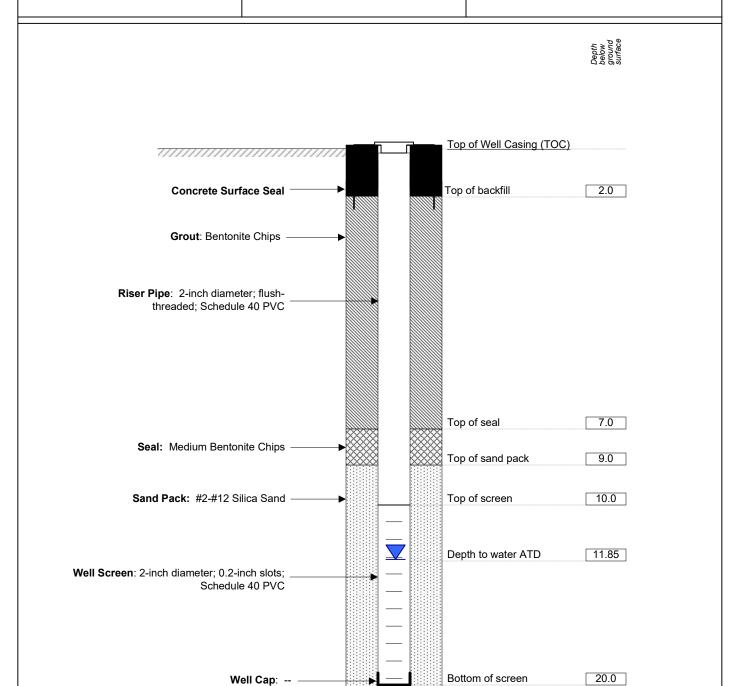
Ground Elevation: NA

TOC Elevation: 193.10

Northing: 61 11' 43.65" N Lat

Easting: 146 46' 46.62" W Long

Elevation Datum: feet MSL


Drilling Company: Discovery Drilling

Drilling Rig: CME-75

Total borehole depth

22.0

Drilling Method: hollow stem auger

APPENDIX B HAZARDOUS WASTE MANIFESTS

Ple	ase print or type. (Form designed for use on e								Approved. C	MB No. 20	50-0039
1	UNIFORM HAZARDOUS 1. Generator ID N WASTE MANIFEST	1 982654894	2. Page 1 of		ency Respons		4. Manifest 01.		2455	5 JJ	K
	5. Generator's Name and Mailing Address Actor Geosciences Japan Malt by Rd 2 Soft Colors WA 97021 Generator's Prione	Xe7#197		رو	gacy (anuna 1601. C	mailing address there	•	sBlud		
$\ \ $	Generator's Priorie: 6. Transporter 1 Company Name	425-485-109	<u>S</u>	٦	pnch	rage	U.S. EPA ID N	iumber			
	Carlele Tra	nsportation Sy:	stems	2		-	1.	R 00	x0050	الم	
	7. Transporter 2 Company Name Toten Ocoa	en Express							0397	135	-
	& Designated Facility Name and Site Address Chemical Waste M	lonagement					U.S. EPA ID N	iumber			
	8 Designated Facility Name and Site Address Acrucal Waste Color of United State Facility's Phone 90 U.S. DOT Description (including Property)	2 541-4	1542	630)		1 DRG	089	4523	63	
	9a. HM and Packing Group (if any)) 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, No. Type Quantity Wt./vol.										
GENERATOR —	UN3097, Waste Er X substances solidi	nvironmentally Hazai nostatvachilotoetho	idons,	٦,	l	DM		P	F002	edfriederstersterstersters uns son mediaters	
GENE	X Substances, legy	vivon neutolly tazo id no site hach love	adous patron	eya	1	DN		A	FD02	The second secon	no. vo Con 200 deside Mel Andidad Su 200 Con e
	3.									12-20-20-20-20-20-20-20-20-20-20-20-20-20	one-error counts companies
	4.								a a mark with the common and the com		555
	14. Special Handling Instructions and Additional in DOR.329625 Sould	formation contacted by	LTC.	E	•	Ce	ut of D	epos	el fig.	ine	2)
	Exporter, I certify that the contents of this cor	ION: I hereby declare that the contents of this I respects in proper condition for transport acc nsignment conform to the terms of the attache nt identified in 40 CFR 262.27(a) (if I am a larg	cording to appli ed EPA Acknow	icable interr vledgment o	national and nat of Consent.	tional governme	ental regulations.		ipment and I ar	m the Primary	y .
	Generator's/Offeror's Printed/Typed Name ALEX TULA agent to	- Lepin Commercial	Sig 	gnature	2001				Month	h Day 1 76	Year
N.			Export from	U.S.	Port of each						
		erials			Dulo louv	g 0.0					
PORTI	Transporter 1 Printed/Typed Name		Sig	gnature					Month	n Day	Year
TRANSPORTER	Transporter 2 Printed/Typed Name		Sig	gnature		,			Month	h Day	Year
 	18. Discrepancy								<u> </u>		l .
	18a. Discrepancy Indication Space Qua	antity Type		Mai	Residue	e Number:	Partial Rej	ection		Full Reject	tion
LIT	18b. Alternate Facility (or Generator)			11101			U.S. EPA ID N	lumber			
D FAC	Facility's Phone: 18c. Signature of Alternate Facility (or Generator)								Mont	th Day	Year
DESIGNATED FACILITY										Ja,	J
	19. Hazardous Waste Report Management Methol 1.	d Codes (i.e., codes for hazardous waste trea	atment, disposa	al, and recy	cling systems)		4.				
$\ $	20. Designated Facility Owner or Operator: Certific Printed/Typed Name	cation of receipt of hazardous materials cover		ifest except	t as noted in Ite	m 18a			Mont	th Day	Year
Ш	Transcertyped Haine) 	y iaiui c					iwont	Day	l cal

APPENDIX A LABORATORY ANALYSIS CERTIFICATES AND ADEC LABORATORY DATA REVIEW CHECKLIST

SGS Environmental Services Work Order No. 1154773 & 1155274

Laboratory Report of Analysis

To: ALTA Geosciences, INC

2020 Maltby Rd Ste 7 #197 Bothell, WA 98021 (206)979-8282

Report Number: 1154773

Client Project: Norgetown

Dear Alex Tula,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Chuck at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Date

Sincerely, SGS North America Inc.

Chuck Homestead
Project Manager
Charles.Homestead@sgs.com

Case Narrative

SGS Client: ALTA Geosciences, INC SGS Project: 1154773 Project Name/Site: Norgetown Project Contact: Alex Tula

Refer to sample receipt form for information on sample condition.

1154758001(1286740MS) (1286488) MS

8260B –MS/MSD recovery for n-butylbenzene does not meet QC criteria. Refer to LCS for accuracy.
8260B - BFB (surrogate) recovery does not meet QC criteria. Sample was analyzed twice for confirmation and the results confirmed.

1154758001(1286740MSD) (1286489) MSD

8260B –MS/MSD recovery for n-butylbenzene does not meet QC criteria. Refer to LCS for accuracy.
8260B - BFB (surrogate) recovery does not meet QC criteria. Sample was analyzed twice for confirmation and the results confirmed.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

D The analyte concentration is the result of a dilution.

DF Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.
F Indicates value that is greater than or equal to the DL

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification

J The quantitation is an estimation.

JL The analyte was positively identified, but the quantitation is a low estimation.

LCS(D) Laboratory Control Spike (Duplicate)
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than

M A matrix effect was present.

MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.
Q QC parameter out of acceptance range.

R Rejected

SGS North America Inc.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-115	1154773001	08/25/2015	08/25/2015	Water (Surface, Eff., Ground)
MW-115SO	1154773002	08/24/2015	08/25/2015	Soil/Solid (dry weight)
Trip Blank	1154773003	08/24/2015	08/25/2015	Soil/Solid (dry weight)
Trip Blank	1154773004	08/25/2015	08/25/2015	Water (Surface, Eff., Ground)

 Method
 Method Description

 SW8260B
 8021B by 8260B (S)

 SW8260B
 8021B by 8260B (W)

 SM21 2540G
 Percent Solids SM2540G

Detectable Results Summary

Client Sample ID: MW-115 Lab Sample ID: 1154773001 Volatile GC/MS

 Parameter
 Result
 Units

 Chloroform
 1.79
 ug/L

 Tetrachloroethene
 2.55
 ug/L

Client Sample ID: **MW-115SO** Lab Sample ID: 1154773002

Volatile GC/MS

ParameterResultUnitsTetrachloroethene22.7ug/Kg

Results of MW-115

Client Sample ID: **MW-115**Client Project ID: **Norgetown**Lab Sample ID: 1154773001
Lab Project ID: 1154773

Collection Date: 08/25/15 09:30 Received Date: 08/25/15 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1-Trichloroethane	1.00 ∪	1.00	0.310	ug/L	1		08/29/15 00:33
1,1,2,2-Tetrachloroethane	0.500 ∪	0.500	0.150	ug/L	1		08/29/15 00:33
1,1-Dichloroethane	1.00 ∪	1.00	0.310	ug/L	1		08/29/15 00:33
1,1-Dichloroethene	1.00 ⋃	1.00	0.310	ug/L	1		08/29/15 00:33
1,2-Dichlorobenzene	1.00 ⋃	1.00	0.310	ug/L	1		08/29/15 00:33
1,2-Dichloroethane	0.500 ⋃	0.500	0.150	ug/L	1		08/29/15 00:33
1,2-Dichloropropane	1.00 ⋃	1.00	0.310	ug/L	1		08/29/15 00:33
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/29/15 00:33
1,4-Dichlorobenzene	0.500 ⋃	0.500	0.150	ug/L	1		08/29/15 00:33
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		08/29/15 00:33
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/29/15 00:33
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/29/15 00:33
Chlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		08/29/15 00:33
Chloroform	1.79	1.00	0.300	ug/L	1		08/29/15 00:33
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/29/15 00:33
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		08/29/15 00:33
Methylene chloride	5.00 ⋃	5.00	1.00	ug/L	1		08/29/15 00:33
Tetrachloroethene	2.55	1.00	0.310	ug/L	1		08/29/15 00:33
trans-1,2-Dichloroethene	1.00 ⋃	1.00	0.310	ug/L	1		08/29/15 00:33
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1		08/29/15 00:33
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.7	81-118		%	1		08/29/15 00:33
4-Bromofluorobenzene (surr)	110	85-114		%	1		08/29/15 00:33
Toluene-d8 (surr)	99.9	89-112		%	1		08/29/15 00:33

Batch Information

Analytical Batch: VMS15212 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 08/29/15 00:33 Container ID: 1154773001-A Prep Batch: VXX27806 Prep Method: SW5030B Prep Date/Time: 08/28/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of MW-115SO

Client Sample ID: **MW-115SO**Client Project ID: **Norgetown**Lab Sample ID: 1154773002
Lab Project ID: 1154773

Collection Date: 08/24/15 08:30 Received Date: 08/25/15 10:24 Matrix: Soil/Solid (dry weight)

Solids (%):90.1 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable Limits Date Analyzed
1.1.1-Trichloroethane	32.4 IJ	32.4	<u>DL</u> 10.1	ug/Kg	<u>DF</u> 1	08/25/15 20:32
, ,		16.2				08/25/15 20:32
1,1,2,2-Tetrachloroethane	16.2 U		5.05	ug/Kg	1	
1,1-Dichloroethane	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
1,1-Dichloroethene	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
1,2-Dichlorobenzene	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
1,2-Dichloroethane	13.0 U	13.0	4.02	ug/Kg	1	08/25/15 20:32
1,2-Dichloropropane	13.0 U	13.0	4.02	ug/Kg	1	08/25/15 20:32
1,3-Dichlorobenzene	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
1,4-Dichlorobenzene	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
Bromodichloromethane	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
Bromoform	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
Carbon tetrachloride	16.2 U	16.2	5.05	ug/Kg	1	08/25/15 20:32
Chlorobenzene	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
Chloroform	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
cis-1,2-Dichloroethene	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
Dibromochloromethane	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
Methylene chloride	130 U	130	40.2	ug/Kg	1	08/25/15 20:32
Tetrachloroethene	22.7	16.2	5.05	ug/Kg	1	08/25/15 20:32
trans-1,2-Dichloroethene	32.4 U	32.4	10.1	ug/Kg	1	08/25/15 20:32
Trichloroethene	16.2 U	16.2	5.05	ug/Kg	1	08/25/15 20:32
Surrogates						
1,2-Dichloroethane-D4 (surr)	115	71-136		%	1	08/25/15 20:32
4-Bromofluorobenzene (surr)	97.3	55-151		%	1	08/25/15 20:32
Toluene-d8 (surr)	96.1	85-116		%	1	08/25/15 20:32

Batch Information

Analytical Batch: VMS15205 Analytical Method: SW8260B

Analyst: SCL

Analytical Date/Time: 08/25/15 20:32 Container ID: 1154773002-B

Prep Batch: VXX27778
Prep Method: SW5035A
Prep Date/Time: 08/24/15 08:30
Prep Initial Wt./Vol.: 51.54 g
Prep Extract Vol: 30.0874 mL

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **Norgetown** Lab Sample ID: 1154773003 Lab Project ID: 1154773 Collection Date: 08/24/15 08:30 Received Date: 08/25/15 10:24 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DE	Allowable Limits	Date Analyzed
1,1,1-Trichloroethane	24.2 U	24.2	<u>DL</u> 7.55	ug/Kg	<u>DF</u> 1	LIIIIIS	08/25/15 19:29
• •	•						
1,1,2,2-Tetrachloroethane	12.1 U	12.1	3.77	ug/Kg	1		08/25/15 19:29
1,1-Dichloroethane	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
1,1-Dichloroethene	24.2 ∪	24.2	7.55	ug/Kg	1		08/25/15 19:29
1,2-Dichlorobenzene	24.2 ∪	24.2	7.55	ug/Kg	1		08/25/15 19:29
1,2-Dichloroethane	9.67 ∪	9.67	3.00	ug/Kg	1		08/25/15 19:29
1,2-Dichloropropane	9.67 ∪	9.67	3.00	ug/Kg	1		08/25/15 19:29
1,3-Dichlorobenzene	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
1,4-Dichlorobenzene	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
Bromodichloromethane	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
Bromoform	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
Carbon tetrachloride	12.1 U	12.1	3.77	ug/Kg	1		08/25/15 19:29
Chlorobenzene	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
Chloroform	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
cis-1,2-Dichloroethene	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
Dibromochloromethane	24.2 ∪	24.2	7.55	ug/Kg	1		08/25/15 19:29
Methylene chloride	96.7 U	96.7	30.0	ug/Kg	1		08/25/15 19:29
Tetrachloroethene	12.1 U	12.1	3.77	ug/Kg	1		08/25/15 19:29
trans-1,2-Dichloroethene	24.2 U	24.2	7.55	ug/Kg	1		08/25/15 19:29
Trichloroethene	12.1 U	12.1	3.77	ug/Kg	1		08/25/15 19:29
Surrogates							
1,2-Dichloroethane-D4 (surr)	110	71-136		%	1		08/25/15 19:29
4-Bromofluorobenzene (surr)	93.7	55-151		%	1		08/25/15 19:29
Toluene-d8 (surr)	97.8	85-116		%	1		08/25/15 19:29

Batch Information

Analytical Batch: VMS15205 Analytical Method: SW8260B

Analyst: SCL

Analytical Date/Time: 08/25/15 19:29 Container ID: 1154773003-A Prep Batch: VXX27778
Prep Method: SW5035A
Prep Date/Time: 08/24/15 08:30
Prep Initial Wt./Vol.: 51.687 g
Prep Extract Vol: 25 mL

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **Norgetown**Lab Sample ID: 1154773004
Lab Project ID: 1154773

Collection Date: 08/25/15 09:30 Received Date: 08/25/15 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1-Trichloroethane	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
1,1,2,2-Tetrachloroethane	0.500 ∪	0.500	0.150	ug/L	1		08/28/15 22:37
1,1-Dichloroethane	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
1,1-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
1,2-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
1,2-Dichloroethane	0.500 ∪	0.500	0.150	ug/L	1		08/28/15 22:37
1,2-Dichloropropane	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
1,3-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
1,4-Dichlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		08/28/15 22:37
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		08/28/15 22:37
Bromoform	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
Carbon tetrachloride	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
Chlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		08/28/15 22:37
Chloroform	1.00 ∪	1.00	0.300	ug/L	1		08/28/15 22:37
cis-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		08/28/15 22:37
Methylene chloride	5.00 ∪	5.00	1.00	ug/L	1		08/28/15 22:37
Tetrachloroethene	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
trans-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1		08/28/15 22:37
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		08/28/15 22:37
4-Bromofluorobenzene (surr)	106	85-114		%	1		08/28/15 22:37
Toluene-d8 (surr)	103	89-112		%	1		08/28/15 22:37

Batch Information

Analytical Batch: VMS15212 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 08/28/15 22:37 Container ID: 1154773004-A

Prep Batch: VXX27806 Prep Method: SW5030B Prep Date/Time: 08/28/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1718419 [SPT/9707]

Blank Lab ID: 1286354

QC for Samples: 1154773002

Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Batch Information

Analytical Batch: SPT9707 Analytical Method: SM21 2540G

Instrument: Analyst: A.R

Analytical Date/Time: 8/25/2015 5:10:00PM

Duplicate Sample Summary

Original Sample ID: 1154714002 Duplicate Sample ID: 1286358

QC for Samples:

Analysis Date: 08/25/2015 17:10 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	86.3	81.5	%	5.70	(< 15)

Batch Information

Analytical Batch: SPT9707 Analytical Method: SM21 2540G

Instrument: Analyst: A.R

Print Date: 08/31/2015 4:45:51PM

Duplicate Sample Summary

Original Sample ID: 1154714005 Duplicate Sample ID: 1286359

QC for Samples: 1154773002

Analysis Date: 08/25/2015 17:10 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Solids	75.6	69.1	%	8.90	(< 15)

Batch Information

Analytical Batch: SPT9707 Analytical Method: SM21 2540G

Instrument: Analyst: A.R

Print Date: 08/31/2015 4:45:51PM

Duplicate Sample Summary

Original Sample ID: 1154773002 Duplicate Sample ID: 1286360

QC for Samples: 1154773002

Analysis Date: 08/25/2015 17:10 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	90.1	90.6	%	0.47	(< 15)

Batch Information

Analytical Batch: SPT9707 Analytical Method: SM21 2540G

Instrument: Analyst: A.R

Print Date: 08/31/2015 4:45:51PM

Method Blank

Blank ID: MB for HBN 1718448 [VXX/27778]

Blank Lab ID: 1286486

QC for Samples:

1154773002, 1154773003

Matrix: Soil/Solid (dry weight)

Results by SW8260B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1-Trichloroethane	12.5U	25.0	7.80	ug/Kg
1,1,2,2-Tetrachloroethane	6.25U	12.5	3.90	ug/Kg
1,1-Dichloroethane	12.5U	25.0	7.80	ug/Kg
1,1-Dichloroethene	12.5U	25.0	7.80	ug/Kg
1,2-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,2-Dichloroethane	5.00U	10.0	3.10	ug/Kg
1,2-Dichloropropane	5.00U	10.0	3.10	ug/Kg
1,3-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,4-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
Bromodichloromethane	12.5U	25.0	7.80	ug/Kg
Bromoform	12.5U	25.0	7.80	ug/Kg
Carbon tetrachloride	6.25U	12.5	3.90	ug/Kg
Chlorobenzene	12.5U	25.0	7.80	ug/Kg
Chloroform	12.5U	25.0	7.80	ug/Kg
cis-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
Dibromochloromethane	12.5U	25.0	7.80	ug/Kg
Methylene chloride	50.0U	100	31.0	ug/Kg
Tetrachloroethene	6.25U	12.5	3.90	ug/Kg
trans-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
Trichloroethene	6.25U	12.5	3.90	ug/Kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	109	71-136		%
4-Bromofluorobenzene (surr)	89.6	55-151		%
Toluene-d8 (surr)	92.7	85-116		%

Batch Information

Analytical Batch: VMS15205 Analytical Method: SW8260B Instrument: Agilent 7890-75MS

A de la Col

Analyst: SCL

Analytical Date/Time: 8/25/2015 2:33:00PM

Prep Batch: VXX27778
Prep Method: SW5035A

Prep Date/Time: 8/23/2015 12:00:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 08/31/2015 4:45:53PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1154773 [VXX27778]

Blank Spike Lab ID: 1286487 Date Analyzed: 08/25/2015 15:00

Matrix: Soil/Solid (dry weight)

QC for Samples: 1154773002, 1154773003

Results by SW8260B

Blank Spike (ug/Kg)									
Parameter	Spike	Result	Rec (%)	CL					
1,1,1-Trichloroethane	750	810	108	(73-130)					
1,1,2,2-Tetrachloroethane	750	809	108	(70-124)					
1,1-Dichloroethane	750	824	110	(76-125)					
1,1-Dichloroethene	750	807	108	(70-131)					
1,2-Dichlorobenzene	750	791	105	(78-121)					
1,2-Dichloroethane	750	844	113	(73-128)					
1,2-Dichloropropane	750	798	106	(76-123)					
1,3-Dichlorobenzene	750	778	104	(77-121)					
1,4-Dichlorobenzene	750	780	104	(75-120)					
Bromodichloromethane	750	823	110	(75-127)					
Bromoform	750	809	108	(67-132)					
Carbon tetrachloride	750	815	109	(70-135)					
Chlorobenzene	750	779	104	(79-120)					
Chloroform	750	816	109	(78-123)					
cis-1,2-Dichloroethene	750	797	106	(77-123)					
Dibromochloromethane	750	795	106	(74-126)					
Methylene chloride	750	828	110	(70-128)					
Tetrachloroethene	750	773	103	(73-128)					
trans-1,2-Dichloroethene	750	810	108	(74-125)					
Trichloroethene	750	793	106	(77-123)					
Surrogates									
1,2-Dichloroethane-D4 (surr)	750	106	106	(71-136)					
4-Bromofluorobenzene (surr)	750	93.5	94	(55-151)					
Toluene-d8 (surr)	750	101	101	(85-116)					
(2011)			-	(== : : •)					

Batch Information

Analytical Batch: VMS15205 Analytical Method: SW8260B

Instrument: Agilent 7890-75MS

Analyst: SCL

Prep Batch: VXX27778
Prep Method: SW5035A

Prep Date/Time: 08/23/2015 00:00

Spike Init Wt./Vol.: 750 ug/Kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/31/2015 4:45:53PM

Matrix Spike Summary

Original Sample ID: 1286740 MS Sample ID: 1286488 MS MSD Sample ID: 1286489 MSD

QC for Samples: 1154773002, 1154773003

Analysis Date: 08/25/2015 16:49 Analysis Date: 08/25/2015 15:30 Analysis Date: 08/25/2015 15:46 Matrix: Soil/Solid (dry weight)

Results by SW8260B

		Mat	rix Spike (ι	ıg/Kg)	Spike	Duplicate	(ug/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1-Trichloroethane	7.15U	536	589	110	536	564	105	73-130	4.40	(< 20)
1,1,2,2-Tetrachloroethane	3.58U	536	581	108	536	585	109	70-124	0.70	(< 20)
1,1-Dichloroethane	7.15U	536	577	108	536	552	103	76-125	4.40	(< 20)
1,1-Dichloroethene	7.15U	536	574	107	536	543	101	70-131	5.50	(< 20)
1,2-Dichlorobenzene	7.15U	536	576	108	536	561	105	78-121	2.60	(< 20)
1,2-Dichloroethane	2.86U	536	593	111	536	571	107	73-128	3.70	(< 20)
1,2-Dichloropropane	2.86U	536	569	106	536	549	103	76-123	3.50	(< 20)
1,3-Dichlorobenzene	7.15U	536	572	107	536	554	103	77-121	3.10	(< 20)
1,4-Dichlorobenzene	7.15U	536	574	107	536	553	103	75-120	3.80	(< 20)
Bromodichloromethane	7.15U	536	589	110	536	564	105	75-127	4.30	(< 20)
Bromoform	7.15U	536	587	110	536	580	108	67-132	1.20	(< 20)
Carbon tetrachloride	3.58U	536	597	111	536	569	106	70-135	4.80	(< 20)
Chlorobenzene	7.15U	536	561	105	536	551	103	79-120	1.80	(< 20)
Chloroform	7.15U	536	580	108	536	553	103	78-123	4.80	(< 20)
cis-1,2-Dichloroethene	7.15U	536	571	107	536	553	103	77-123	3.10	(< 20)
Dibromochloromethane	7.15U	536	582	109	536	572	107	74-126	1.60	(< 20)
Methylene chloride	28.6U	536	569	106	536	544	102	70-128	4.40	(< 20)
Tetrachloroethene	3.58U	536	553	103	536	552	103	73-128	0.16	(< 20)
trans-1,2-Dichloroethene	7.15U	536	571	107	536	547	102	74-125	4.20	(< 20)
Trichloroethene	3.58U	536	571	107	536	551	103	77-123	3.60	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		536	545	102	536	525	98	71-136	3.70	
4-Bromofluorobenzene (surr)		1430	622	44 *	1430	599	42 *	55-151	3.90	
Toluene-d8 (surr)		536	533	100	536	530	99	85-116	0.64	

Batch Information

Analytical Batch: VMS15205 Analytical Method: SW8260B Instrument: Agilent 7890-75MS

Analyst: SCL

Analytical Date/Time: 8/25/2015 3:30:01PM

Prep Batch: VXX27778

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 8/23/2015 12:00:00AM

Prep Initial Wt./Vol.: 70.02g Prep Extract Vol: 25.00mL

Print Date: 08/31/2015 4:45:54PM

Method Blank

Blank ID: MB for HBN 1718900 [VXX/27806]

Blank Lab ID: 1287561

QC for Samples:

1154773001, 1154773004

Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroform	0.500U	1.00	0.300	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	98.8	81-118		%
4-Bromofluorobenzene (surr)	107	85-114		%
Toluene-d8 (surr)	101	89-112		%

Batch Information

Analytical Batch: VMS15212 Analytical Method: SW8260B

Instrument: HP 5890 Series II MS3 VNA

Analyst: NRB

Analytical Date/Time: 8/28/2015 7:19:00PM

Prep Batch: VXX27806 Prep Method: SW5030B

Prep Date/Time: 8/28/2015 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/31/2015 4:45:55PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1154773 [VXX27806]

Blank Spike Lab ID: 1287562 Date Analyzed: 08/28/2015 20:20

QC for Samples: 1154773001, 1154773004

Spike Duplicate ID: LCSD for HBN 1154773

[VXX27806]

Spike Duplicate Lab ID: 1287563 Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1-Trichloroethane	30	29.7	99	30	30.4	101	(74-131)	2.30	(< 20)
1,1,2,2-Tetrachloroethane	30	30.6	102	30	30.0	100	(71-121)	2.10	(< 20)
1,1-Dichloroethane	30	29.8	99	30	30.7	102	(77-125)	2.90	(< 20)
1,1-Dichloroethene	30	28.3	94	30	28.4	95	(71-131)	0.63	(< 20)
1,2-Dichlorobenzene	30	30.7	102	30	30.6	102	(80-119)	0.36	(< 20)
1,2-Dichloroethane	30	28.5	95	30	28.8	96	(73-128)	1.00	(< 20)
1,2-Dichloropropane	30	30.0	100	30	29.5	98	(78-122)	1.70	(< 20)
1,3-Dichlorobenzene	30	32.4	108	30	31.6	105	(80-119)	2.40	(< 20)
1,4-Dichlorobenzene	30	31.7	106	30	31.6	105	(79-118)	0.25	(< 20)
Bromodichloromethane	30	29.1	97	30	28.4	95	(79-125)	2.60	(< 20)
Bromoform	30	28.9	96	30	28.3	94	(66-130)	2.20	(< 20)
Carbon tetrachloride	30	29.4	98	30	28.0	93	(72-136)	4.70	(< 20)
Chlorobenzene	30	30.2	101	30	29.6	99	(82-118)	2.10	(< 20)
Chloroform	30	29.2	97	30	28.8	96	(79-124)	1.30	(< 20)
cis-1,2-Dichloroethene	30	29.1	97	30	29.9	100	(78-123)	2.50	(< 20)
Dibromochloromethane	30	29.1	97	30	28.6	95	(74-126)	1.60	(< 20)
Methylene chloride	30	26.1	87	30	26.4	88	(74-124)	1.10	(< 20)
Tetrachloroethene	30	30.3	101	30	29.3	98	(74-129)	3.40	(< 20)
trans-1,2-Dichloroethene	30	28.3	94	30	28.7	96	(75-124)	1.50	(< 20)
Trichloroethene	30	28.0	93	30	27.4	91	(79-123)	2.20	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	96.7	97	30	98.1	98	(81-118)	1.40	
4-Bromofluorobenzene (surr)	30	100	100	30	99.7	100	(85-114)	0.23	
Toluene-d8 (surr)	30	101	101	30	102	102	(89-112)	1.40	

Batch Information

Analytical Batch: VMS15212
Analytical Method: SW8260B

Instrument: HP 5890 Series II MS3 VNA

Analyst: NRB

Prep Batch: VXX27806
Prep Method: SW5030B

Prep Date/Time: 08/28/2015 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/31/2015 4:45:56PM

SGS NORTH AMERICA INC. CHAIN OF CUS

SGS Environmental Services

200 West Potter Road Anchorage, AK 99518 (907) 562-2343 www.sgs.com/alaska

© SGS North America Inc. - 2014 - All rights reserved - SGS is a registered trademark of SGS Group Management SA

http://www.sgs.com/terms-and-conditions

1154773

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable. COC accompanied samples?	7	√	H	Exemption permitted if sampler hand carries/delivers.
Temperature blank compliant* (i.e., 0-6°C after CF)?			7	Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?		П	7	Sample one collected within 8 hours of arrival
If < 0 °C, were all sample containers ice free?	m	7	Ħ	time at the lab; Proceed with the analysis with
Cooler ID: 1 @ 20.2 w/ Therm ID: D3				Sample 2 per client's request.
Cooler ID: @ 20.2 w/ Therm.ID: D3 v/ Therm.ID:				Sample 2 per elicit s request.
Cooler ID: @ w/ Therm.ID:				
Cooler ID: w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
If samples are received without a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply):				
□USPS □Lynden □AK Air □Alert Courier				
□UPS □FedEx □RAVN □C&D Delivery				
□Carlile □Pen Air □Warp Speed□Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		√		
	Yes	N/A	No	
Were samples received within hold time?	√			Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC* (i.e., sample IDs, dates/times collected)?			\checkmark	Note: If times differ <1hr, record details and login per COC.
Were analyses requested unambiguous?	√			*
Were samples in good condition (no leaks/cracks/breakage)?	\			
Packing material used (specify all that apply): Bubble Wrap				
Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?	\checkmark			Exemption permitted for metals (e.g., 200.8/6020A).
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	V			
Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)?	√			
Were all soil VOAs field extracted with MeOH+BFB?	V		Ш	
For preserved waters (other than VOA vials, LL-Mercury or	_	_	_	
microbiological analyses), was pH verified and compliant ?	$ \bigsqcup $	\checkmark	Ш	
If pH was adjusted, were bottles flagged (i.e., stickers)?		V		
For special handling (e.g., "MI" soils, foreign soils, lab filter for				
dissolved, lab extract for volatiles, Ref Lab, limited volume),	_		_	
were bottles/paperwork flagged (e.g., sticker)?	Ш	✓	Ш	
For RUSH/SHORT Hold Time, were COC/Bottles flagged				Rush due 09/03/2015
accordingly? Was Rush/Short HT email sent, if applicable?	\checkmark			14d5ii ddc 07/05/2015
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were		_	_	
containers / paperwork flagged accordingly?	Ш	\checkmark	Ш	
For any question answered "No," has the PM been notified and	_		_	SRF Completed by: D.C 08/25/2015
the problem resolved (or paperwork put in their bin)?	Ш	\checkmark		PM notified:
Was PEER REVIEW of sample numbering/labeling completed?	\checkmark			Peer Reviewed by: KPV
Additional notes (if applicable):				
* The IDs and collection times for sample 2 do not match on the cont	ainers	and th	ne CO	C. Logged in per COC
The 125 wha concerns things for sample 2 we not matter on the con-		direction of		c. 20 5504 m p o r co c.
Note to Client: Any "no" answer above indicates non-comp	lianco	with	tanda	ard procedures and may impact data quality
Tion to Chem. Thy no unside above malcales non-complete	unce	vviii S	инии	на реоссии съ ина тиу ипристиши чишту.

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1154773001-A	HCL to pH \leq 2	OK			
1154773001-B	HCL to pH \leq 2	OK			
1154773001-C	HCL to pH \leq 2	OK			
1154773002-A	No Preservative Required	OK			
1154773002-В	Methanol field pres. 4 C	OK			
1154773003-A	Methanol field pres. 4 C	OK			
1154773004-A	HCL to pH \leq 2	OK			
1154773004-B	HCL to pH < 2	OK			
1154773004-C	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- BU The container was received with headspace greater than 6mm.

Laboratory Report of Analysis

To: ALTA Geosciences, INC

2020 Maltby Rd Ste 7 #197 Bothell, WA 98021 (206)979-8282

Report Number: 1155274
Client Project: Norgetown

Dear Alex Tula,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Chuck at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Charles.Homestead@sgs.com

Chuck Homestead Date
Project Manager

Case Narrative

SGS Client: ALTA Geosciences, INC SGS Project: 1155274 Project Name/Site: Norgetown Project Contact: Alex Tula

Refer to sample receipt form for information on sample condition.

MW-43A (1155274001) PS

Revised Report: Compound List adjusted per clients request.

MW-44B (1155274002) PS

Revised Report: Compound List adjusted per clients request.

MW-44BDB (1155274003) PS

Revised Report: Compound List adjusted per clients request.

MW-109 (1155274004) PS

Revised Report : Compound List adjusted per clients request.

MW-110 (1155274005) PS

Revised Report: Compound List adjusted per clients request.

MW-112 (1155274006) PS

Revised Report: Compound List adjusted per clients request.

MW-113 (1155274007) PS

Revised Report: Compound List adjusted per clients request.

MW-115 (1155274008) PS

Revised Report: Compound List adjusted per clients request.

R3 (1155274009) PS

Revised Report: Compound List adjusted per clients request.

Trip Blank (1155274010) TB

Revised Report: Compound List adjusted per clients request.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B. 1311. 3010A. 3050B. 3520C. 3550C. 5030B. 5035A. 6020A. 7470A. 7471B. 8021B. 8082A. 8260B. 8270D. 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

The analyte has exceeded allowable regulatory or control limits.

Surrogate out of control limits. !

В Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

Control Limit

The analyte concentration is the result of a dilution. D

DF **Dilution Factor**

DL Detection Limit (i.e., maximum method detection limit) Ε The analyte result is above the calibrated range. F Indicates value that is greater than or equal to the DL

GT Greater Than ΙB Instrument Blank

ICV Initial Calibration Verification J The quantitation is an estimation.

JL The analyte was positively identified, but the quantitation is a low estimation.

LCS(D) Laboratory Control Spike (Duplicate) LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than

M A matrix effect was present.

MB Method Blank

Matrix Spike (Duplicate) MS(D)

ND Indicates the analyte is not detected. Q QC parameter out of acceptance range.

R Rejected

SGS North America Inc.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. Note:

All DRO/RRO analyses are integrated per SOP.

Samp	ı	Q.	ım	m	21	٠,
Jailip	16	υu		ш	aı	y

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-43A	1155274001	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
MW-44B	1155274002	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
MW-44BDB	1155274003	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
MW-109	1155274004	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
MW-110	1155274005	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
MW-112	1155274006	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
MW-113	1155274007	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
MW-115	1155274008	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
R3	1155274009	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)
Trip Blank	1155274010	09/11/2015	09/11/2015	Water (Surface, Eff., Ground)

MethodMethod DescriptionSW8260B8021B by 8260B (W)

Client Sample ID: **MW-43A**Client Project ID: **Norgetown**Lab Sample ID: 1155274001
Lab Project ID: 1155274

Collection Date: 09/11/15 11:30 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits Date Analyzed
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	09/16/15 23:01
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1	09/16/15 23:01
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	09/16/15 23:01
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1	09/16/15 23:01
Bromoform	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
Chloroform	4.86	1.00	0.300	ug/L	1	09/16/15 23:01
cis-1,2-Dichloroethene	1.45	1.00	0.310	ug/L	1	09/16/15 23:01
Dibromochloromethane	0.500 ⋃	0.500	0.150	ug/L	1	09/16/15 23:01
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
Methylene chloride	5.00 U	5.00	1.00	ug/L	1	09/16/15 23:01
Tetrachloroethene	3.14	1.00	0.310	ug/L	1	09/16/15 23:01
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
Trichloroethene	1.00 U	1.00	0.310	ug/L	1	09/16/15 23:01
Vinyl chloride	1.00 ∪	1.00	0.310	ug/L	1	09/16/15 23:01
urrogates						
1,2-Dichloroethane-D4 (surr)	110	81-118		%	1	09/16/15 23:01
1,2-Dichloroethane-D4 (surr)						
4-Bromofluorobenzene (surr)	110	85-114		%	1	09/16/15 23:01
4-Bromofluorobenzene (surr)						
Toluene-d8 (surr)						
Toluene-d8 (surr)	99.8	89-112		%	1	09/16/15 23:01

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/16/15 23:01 Container ID: 1155274001-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW-44B**Client Project ID: **Norgetown**Lab Sample ID: 1155274002
Lab Project ID: 1155274

Collection Date: 09/11/15 10:40 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u> <u>Date A</u>	nalyzed
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
1,1,2,2-Tetrachloroethane	0.500 ∪	0.500	0.150	ug/L	1	09/16/1	15 23:17
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
1,2-Dichloroethane	0.500 ∪	0.500	0.150	ug/L	1	09/16/1	15 23:17
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
1,4-Dichlorobenzene	0.500 ∪	0.500	0.150	ug/L	1	09/16/1	15 23:17
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1	09/16/1	15 23:17
Bromoform	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
Chloroform	4.92	1.00	0.300	ug/L	1	09/16/1	15 23:17
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1	09/16/1	15 23:17
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
Methylene chloride	5.00 U	5.00	1.00	ug/L	1	09/16/1	15 23:17
Tetrachloroethene	7.13	1.00	0.310	ug/L	1	09/16/1	15 23:17
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/16/1	15 23:17
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1	09/16/1	15 23:17
Vinyl chloride	1.00 ∪	1.00	0.310	ug/L	1	09/16/1	15 23:17
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1	09/16/1	15 23:17
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	110	85-114		%	1	09/16/1	15 23:17
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)							
Toluene-d8 (surr)	99.9	89-112		%	1	09/16/1	15 23:17

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/16/15 23:17 Container ID: 1155274002-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of MW-44BDB

Client Sample ID: **MW-44BDB**Client Project ID: **Norgetown**Lab Sample ID: 1155274003
Lab Project ID: 1155274

Collection Date: 09/11/15 10:15 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter Parame	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		09/16/15 23:34
1,1,2,2-Tetrachloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:34
1,1-Dichloroethane	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
1,1-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
1,2-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
1,2-Dichloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:34
1,2-Dichloropropane	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
1,3-Dichlorobenzene	1.00 ⋃	1.00	0.310	ug/L	1		09/16/15 23:34
1,4-Dichlorobenzene	0.500 ⋃	0.500	0.150	ug/L	1		09/16/15 23:34
Bromodichloromethane	0.500 ⋃	0.500	0.150	ug/L	1		09/16/15 23:34
Bromoform	1.00 ⋃	1.00	0.310	ug/L	1		09/16/15 23:34
Carbon tetrachloride	1.00 ⋃	1.00	0.310	ug/L	1		09/16/15 23:34
Chloroform	3.26	1.00	0.300	ug/L	1		09/16/15 23:34
cis-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:34
Hexachlorobutadiene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
Methylene chloride	5.00 ⋃	5.00	1.00	ug/L	1		09/16/15 23:34
Tetrachloroethene	4.57	1.00	0.310	ug/L	1		09/16/15 23:34
trans-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
Trichloroethene	1.17	1.00	0.310	ug/L	1		09/16/15 23:34
Vinyl chloride	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:34
urrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1		09/16/15 23:34
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	109	85-114		%	1		09/16/15 23:34
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)	101	89-112		%	1		09/16/15 23:34

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/16/15 23:34 Container ID: 1155274003-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW-109**Client Project ID: **Norgetown**Lab Sample ID: 1155274004
Lab Project ID: 1155274

Collection Date: 09/11/15 09:25 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-				
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits	Date Analyzed
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		09/16/15 23:50
1,1,2,2-Tetrachloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:50
1,1-Dichloroethane	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
1,1-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
1,2-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
1,2-Dichloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:50
1,2-Dichloropropane	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
1,3-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
1,4-Dichlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:50
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:50
Bromoform	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
Carbon tetrachloride	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
Chloroform	1.19	1.00	0.300	ug/L	1		09/16/15 23:50
cis-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 23:50
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		09/16/15 23:50
Methylene chloride	5.00 ∪	5.00	1.00	ug/L	1		09/16/15 23:50
Tetrachloroethene	7.77	1.00	0.310	ug/L	1		09/16/15 23:50
trans-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
Vinyl chloride	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 23:50
Surrogates							
1,2-Dichloroethane-D4 (surr)	109	81-118		%	1		09/16/15 23:50
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	107	85-114		%	1		09/16/15 23:50
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)							
Toluene-d8 (surr)	97.3	89-112		%	1		09/16/15 23:50

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/16/15 23:50 Container ID: 1155274004-A

Prep Batch: VXX27925
Prep Method: SW5030B
Prep Date/Time: 09/16/15 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: **MW-110**Client Project ID: **Norgetown**Lab Sample ID: 1155274005
Lab Project ID: 1155274

Collection Date: 09/11/15 09:40 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	<u>5.</u> 1	LIIIIIG	09/17/15 00:07
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		09/17/15 00:07
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1		09/17/15 00:07
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
1,4-Dichlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:07
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:07
Bromoform	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
Chloroform	1.26	1.00	0.300	ug/L	1		09/17/15 00:07
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:07
Hexachlorobutadiene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:07
Methylene chloride	5.00 ∪	5.00	1.00	ug/L	1		09/17/15 00:07
Tetrachloroethene	7.16	1.00	0.310	ug/L	1		09/17/15 00:07
trans-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:07
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:07
Vinyl chloride	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:07
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		09/17/15 00:07
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	109	85-114		%	1		09/17/15 00:07
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)							
Toluene-d8 (surr)	99.8	89-112		%	1		09/17/15 00:07

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/17/15 00:07 Container ID: 1155274005-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW-112**Client Project ID: **Norgetown**Lab Sample ID: 1155274006
Lab Project ID: 1155274

Collection Date: 09/11/15 10:45 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Deremeter	Dogult Ougl	1.00/01	DI	Lleite	חר	Allowable	Data Analyzad
Parameter 1,1,1-Trichloroethane	<u>Result Qual</u> 1.00 U	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.310	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 09/17/15 00:23
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.310	ug/L ug/L	1		09/17/15 00:23
1,1-Dichloroethane	1.00 U	1.00	0.130	ug/L ug/L	1		09/17/15 00:23
1,1-Dichloroethene	1.00 U	1.00	0.310	•	1		09/17/15 00:23
,				ug/L			
1,2-Dichlorobenzene	1.00 U	1.00 0.500	0.310 0.150	ug/L	1 1		09/17/15 00:23 09/17/15 00:23
1,2-Dichloroethane	0.500 ∪			ug/L	•		
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:23
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:23
1,4-Dichlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:23
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:23
Bromoform	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:23
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:23
Chloroform	2.10	1.00	0.300	ug/L	1		09/17/15 00:23
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:23
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:23
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:23
Methylene chloride	5.00 ∪	5.00	1.00	ug/L	1		09/17/15 00:23
Tetrachloroethene	2.78	1.00	0.310	ug/L	1		09/17/15 00:23
trans-1,2-Dichloroethene	1.00 ⋃	1.00	0.310	ug/L	1		09/17/15 00:23
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:23
Vinyl chloride	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:23
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1		09/17/15 00:23
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	106	85-114		%	1		09/17/15 00:23
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)							
Toluene-d8 (surr)	99.3	89-112		%	1		09/17/15 00:23

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/17/15 00:23 Container ID: 1155274006-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW-113**Client Project ID: **Norgetown**Lab Sample ID: 1155274007
Lab Project ID: 1155274

Collection Date: 09/11/15 11:00 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:40
1,1,2,2-Tetrachloroethane	0.500 ⋃	0.500	0.150	ug/L	1		09/17/15 00:40
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:40
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:40
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:40
1,2-Dichloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:40
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:40
1,3-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:40
1,4-Dichlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:40
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:40
Bromoform	1.00 U	1.00	0.310	ug/L	1		09/17/15 00:40
Carbon tetrachloride	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:40
Chloroform	1.00 ∪	1.00	0.300	ug/L	1		09/17/15 00:40
cis-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:40
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 00:40
Hexachlorobutadiene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:40
Methylene chloride	5.00 ∪	5.00	1.00	ug/L	1		09/17/15 00:40
Tetrachloroethene	4.83	1.00	0.310	ug/L	1		09/17/15 00:40
trans-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:40
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:40
Vinyl chloride	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 00:40
urrogates							
1,2-Dichloroethane-D4 (surr)	109	81-118		%	1		09/17/15 00:40
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	105	85-114		%	1		09/17/15 00:40
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)							
Toluene-d8 (surr)	97.7	89-112		%	1		09/17/15 00:40

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/17/15 00:40 Container ID: 1155274007-A

Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW-115**Client Project ID: **Norgetown**Lab Sample ID: 1155274008
Lab Project ID: 1155274

Collection Date: 09/11/15 10:00 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits Date Analyzed
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.310	ug/L	1	09/17/15 00:57
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1	09/17/15 00:57
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	09/17/15 00:57
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1	09/17/15 00:57
Bromoform	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
Chloroform	3.47	1.00	0.300	ug/L	1	09/17/15 00:57
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1	09/17/15 00:57
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
Methylene chloride	5.00 U	5.00	1.00	ug/L	1	09/17/15 00:57
Tetrachloroethene	10.3	1.00	0.310	ug/L	1	09/17/15 00:57
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
Trichloroethene	1.00 U	1.00	0.310	ug/L	1	09/17/15 00:57
Vinyl chloride	1.00 ∪	1.00	0.310	ug/L	1	09/17/15 00:57
urrogates						
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1	09/17/15 00:57
1,2-Dichloroethane-D4 (surr)						
4-Bromofluorobenzene (surr)	107	85-114		%	1	09/17/15 00:57
4-Bromofluorobenzene (surr)						
Toluene-d8 (surr)						
Toluene-d8 (surr)	97.9	89-112		%	1	09/17/15 00:57

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/17/15 00:57 Container ID: 1155274008-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of R3

Client Sample ID: R3

Client Project ID: **Norgetown**Lab Sample ID: 1155274009
Lab Project ID: 1155274

Collection Date: 09/11/15 11:15 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1-Trichloroethane	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
1,1,2,2-Tetrachloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 01:14
1,1-Dichloroethane	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
1,1-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
1,2-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
1,2-Dichloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 01:14
1,2-Dichloropropane	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
1,3-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
1,4-Dichlorobenzene	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 01:14
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 01:14
Bromoform	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
Carbon tetrachloride	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
Chloroform	1.00 ∪	1.00	0.300	ug/L	1		09/17/15 01:14
cis-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/17/15 01:14
Hexachlorobutadiene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
Methylene chloride	5.00 ∪	5.00	1.00	ug/L	1		09/17/15 01:14
Tetrachloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
trans-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
Vinyl chloride	1.00 ∪	1.00	0.310	ug/L	1		09/17/15 01:14
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/17/15 01:14
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	102	85-114		%	1		09/17/15 01:14
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)	103	89-112		%	1		09/17/15 01:14
Toluene-d8 (surr)							

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/17/15 01:14 Container ID: 1155274009-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **Norgetown** Lab Sample ID: 1155274010 Lab Project ID: 1155274 Collection Date: 09/11/15 09:00 Received Date: 09/11/15 12:28 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DE	Allowable	Data Analyzad
Parameter 1,1,1-Trichloroethane	1.00 U	1.00	<u>DL</u> 0.310	ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 09/16/15 22:27
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.310	_	1		09/16/15 22:27
	•			ug/L	1		
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L			09/16/15 22:27
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		09/16/15 22:27
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		09/16/15 22:27
1,2-Dichloroethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 22:27
1,2-Dichloropropane	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
1,3-Dichlorobenzene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
1,4-Dichlorobenzene	0.500 ⋃	0.500	0.150	ug/L	1		09/16/15 22:27
Bromodichloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 22:27
Bromoform	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
Carbon tetrachloride	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
Chloroform	1.00 ∪	1.00	0.300	ug/L	1		09/16/15 22:27
cis-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
Dibromochloromethane	0.500 ∪	0.500	0.150	ug/L	1		09/16/15 22:27
Hexachlorobutadiene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
Methylene chloride	5.00 ∪	5.00	1.00	ug/L	1		09/16/15 22:27
Tetrachloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
trans-1,2-Dichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
Trichloroethene	1.00 ∪	1.00	0.310	ug/L	1		09/16/15 22:27
Vinyl chloride	1.00 ⋃	1.00	0.310	ug/L	1		09/16/15 22:27
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/16/15 22:27
1,2-Dichloroethane-D4 (surr)							
4-Bromofluorobenzene (surr)	108	85-114		%	1		09/16/15 22:27
4-Bromofluorobenzene (surr)							
Toluene-d8 (surr)	102	89-112		%	1		09/16/15 22:27
Toluene-d8 (surr)							

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 09/16/15 22:27 Container ID: 1155274010-A Prep Batch: VXX27925 Prep Method: SW5030B Prep Date/Time: 09/16/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1720715 [VXX/27925]

Blank Lab ID: 1291921

QC for Samples:

1155274010

Results by SW8260B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.300	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Vinyl chloride	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	103	81-118		%
4-Bromofluorobenzene (surr)	106	85-114		%
Toluene-d8 (surr)	101	89-112		%

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Instrument: HP 5890 Series II MS3 VNA

Analyst: NRB

Analytical Date/Time: 9/16/2015 8:15:00PM

Prep Batch: VXX27925 Prep Method: SW5030B

Prep Date/Time: 9/16/2015 6:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1155274 [VXX27925]

Blank Spike Lab ID: 1291922 Date Analyzed: 09/16/2015 20:52 Spike Duplicate ID: LCSD for HBN 1155274

[VXX27925]

Spike Duplicate Lab ID: 1291923 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155274001, 1155274002, 1155274003, 1155274004, 1155274005, 1155274006, 1155274007,

1155274008, 1155274009, 1155274010

Results by SW8260B

Parameter S			(ug/L)		Spike Duplic				
<u>r dramotor</u>	pike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1-Trichloroethane 30)	32.4	108	30	31.3	104	(74-131)	3.70	(< 20)
1,1,2,2-Tetrachloroethane 30)	29.4	98	30	30.3	101	(71-121)	3.00	(< 20)
1,1-Dichloroethane 30)	31.9	106	30	31.3	104	(77-125)	2.10	(< 20)
1,1-Dichloroethene 30)	31.9	106	30	30.4	101	(71-131)	5.00	(< 20)
1,2-Dichlorobenzene 30)	30.3	101	30	30.4	101	(80-119)	0.20	(< 20)
1,2-Dichloroethane 30)	28.7	96	30	28.8	96	(73-128)	0.35	(< 20)
1,2-Dichloropropane 30)	30.6	102	30	31.7	106	(78-122)	3.30	(< 20)
1,3-Dichlorobenzene 30)	30.2	101	30	32.2	107	(80-119)	6.30	(< 20)
1,4-Dichlorobenzene 30)	30.5	102	30	32.3	108	(79-118)	5.80	(< 20)
Bromodichloromethane 30)	31.7	106	30	30.2	101	(79-125)	4.60	(< 20)
Bromoform 30)	34.0	113	30	32.0	107	(66-130)	6.00	(< 20)
Carbon tetrachloride 30)	34.4	115	30	32.5	108	(72-136)	5.80	(< 20)
Chloroform 30)	31.1	104	30	31.1	104	(79-124)	0.03	(< 20)
cis-1,2-Dichloroethene 30)	29.5	98	30	29.0	97	(78-123)	1.60	(< 20)
Dibromochloromethane 30)	32.9	110	30	32.8	109	(74-126)	0.27	(< 20)
Hexachlorobutadiene 30)	31.0	103	30	28.6	95	(66-134)	8.00	(< 20)
Methylene chloride 30)	29.8	99	30	29.0	97	(74-124)	2.40	(< 20)
Tetrachloroethene 30)	32.8	109	30	30.8	103	(74-129)	6.30	(< 20)
trans-1,2-Dichloroethene 30)	30.8	103	30	30.9	103	(75-124)	0.19	(< 20)
Trichloroethene 30)	32.3	108	30	31.0	103	(79-123)	4.30	(< 20)
Vinyl chloride 30)	33.0	110	30	32.5	108	(58-137)	1.50	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr))	91.7	92	30	93.9	94	(81-118)	2.40	
4-Bromofluorobenzene (surr) 30)	95.6	96	30	98.3	98	(85-114)	2.80	
Toluene-d8 (surr) 30)	104	104	30	100	100	(89-112)	3.90	

Batch Information

Analytical Batch: VMS15262 Analytical Method: SW8260B

Instrument: HP 5890 Series II MS3 VNA

Analyst: NRB

Prep Batch: VXX27925
Prep Method: SW5030B

Prep Date/Time: 09/16/2015 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

155274

당

Section 3

PHONE NO: 425-485-1053

CONTACT: Alex Tula

NAME: NOGCTOWN

PROJECT

Section 1

Alta Gobience

CLIENT:

PROJECTI PWSIDI PERMIT#: [6-08

Locations Nationwide

New York Maryland Kentucky Indiana North Carolina West Virgina New Jersey

www.us.sgs.com

400	locteriotions.	Soctions 4	ı	To relify of tour		***************************************	2 PC-0	
ō	nissions m	Omissions may delay the onset of analysis	he onse	t of ana	va our Ivsis.	•		1 !
۲,								Pageof
2			Preservative	/e				
	724							
Type C = COMP								
GRAB MI= Multi Incre-	د) کر <i>ده</i>							
mental Soils	95 1014							REMARKS/ LOC ID
6								
6	~					-		
6	>							
v	>							
9	\sim							
8	2							
9	Μ							
6	3							
6	>							
6	3							
		Section 4	олч аоа	DOD Project? Yes	- N	Data I	Jelive	Data Deliverable Requirements:
	\bigcirc	Cooler ID:						
		Requested Turnaround Time and/or Special Instructions:	ırnaround T	ime and/or	Special	Instru	ctions	::
		Tomp Black		C.R. A. 2.7		Chair	of C	Chain of Custody Seal: (Circle)
ory By:			₹	7 - 1	1	INTACT		BROKEN ABSENT

r e 6

1100

1000

6 s S

25

3-11-6 8-11-12

0960

6-11-15

Blank

LUS

Relinquished By: (1)

O 9

1045

51-11-6 5-11-6

イントニア カアーニろ グニノスラ

ロートステ

Š なり

31-11-6

r E

5260 0240

9-11-15

S

1015

3-11-12

ツエナくろ

10 my

ペマレ しょう

アナームア

Altasco.com

atulae

75/2

4(cx REPORTS TO

INVOICE TO

E-MAIL:

QUOTE #:

P.O. #:

Tola

Arcs

MATRIX MATRIX CODE b

HH:MM

mm/dd/yy

SAMPLE IDENTIFICATION

RESERVED for lab use

50

010

9-11-15

130

9-11-15

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

(See attached Sample Receipt Form)

(See attached Sample Receipt Form)

Received For Laboratory By:

1228

Time

Date

Relinquished By: (4)

Received By:

Time

Date

Refinquished By (2)

Received By;

Time

Date

Relinquished By: (3)

Section 5

Received By:

Time

Date

101

9-11-15

http://www.sgs.com/terms-and-conditions

1155274

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable. COC accompanied samples?		✓		Exemption permitted if sampler hand carries/delivers.
Temperature blank compliant* (i.e., 0-6°C after CF)?	7		H	Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?		H	H	Exemption permitted if Chiteet & Conecieu & insugo.
If < 0 °C, were all sample containers ice free?		7	Ħ	
		•	ш	
Cooler ID:				
Cooler ID:				
Cooler ID: w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
If samples are received without a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply):				
□USPS □Lynden □AK Air □Alert Courier				
\square UPS \square FedEx \square RAVN \square C&D Delivery				
☐Carlile ☐Pen Air ☐Warp Speed☐Other:				
\rightarrow For WO# with airbills, was the WO# & airbill	_	_	_	
info recorded in the Front Counter eLog?	Ш	✓		
	Yes	N/A	No	
Were samples received within hold time?	✓			Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC* (i.e., sample IDs, dates/times collected)?	<u> </u>			Note: If times differ <1hr, record details and login per COC.
Were analyses requested unambiguous?	\checkmark		Ш	
Were samples in good condition (no leaks/cracks/breakage)?	✓			
Packing material used (specify all that apply): Bubble Wrap				
Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?	\checkmark		Ш	Exemption permitted for metals (e.g., 200.8/6020A).
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	<u> </u>	Ш	Ш	
Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)?		Ц	Щ	
Were all soil VOAs field extracted with MeOH+BFB?	Ш	✓	Ш	
For preserved waters (other than VOA vials, LL-Mercury or	l —			
microbiological analyses), was pH verified and compliant ?		V	\vdash	
If pH was adjusted, were bottles flagged (i.e., stickers)?	Ш	√	Ш	
For special handling (e.g., "MI" soils, foreign soils, lab filter for				
dissolved, lab extract for volatiles, Ref Lab, limited volume),		\checkmark		
were bottles/paperwork flagged (e.g., sticker)?	ш	V		
For RUSH/SHORT Hold Time, were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?	ш	\checkmark	Ш	
For SITE-SPECIFIC QC , e.g. BMS/BMSD/BDUP , were containers / paperwork flagged accordingly?		\checkmark		
For any question answered "No," has the PM been notified and	ш	V		SRF Completed by: EDJ
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of sample numbering/labeling completed?			+	Peer Reviewed by: VDL
	\checkmark	Ш	Ш	1 cci Reviewed by. VDL
Additional notes (if applicable):				
Note to Client: Any "no" answer above indicates non-comp	liance	with s	tanda	rd procedures and may impact data quality.

Sample Containers and Preservatives

Container Id	Preservative	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1155274001-A	HCL to pH < 2	OK			
1155274001-B	HCL to pH < 2	OK			
1155274001-C	HCL to pH < 2	OK			
1155274002-A	HCL to pH < 2	OK			
1155274002-B	HCL to pH < 2	OK			
1155274002-C	HCL to pH < 2	OK			
1155274003-A	HCL to pH < 2	OK			
1155274003-B	HCL to pH < 2	OK			
1155274003-C	HCL to pH < 2	OK			
1155274004-A	HCL to pH < 2	OK			
1155274004-B	HCL to pH < 2	OK			
1155274004-C	HCL to pH < 2	OK			
1155274005-A	HCL to pH < 2	OK			
1155274005-B	HCL to pH < 2	OK			
1155274005-C	HCL to pH < 2	OK			
1155274006-A	HCL to pH < 2	OK			
1155274006-B	HCL to pH < 2	OK			
1155274006-C	HCL to pH < 2	OK			
1155274007-A	HCL to pH < 2	OK			
1155274007-B	HCL to pH < 2	OK			
1155274007-C	HCL to pH < 2	OK			
1155274008-A	HCL to $pH < 2$	OK			
1155274008-B	HCL to $pH < 2$	OK			
1155274008-C	HCL to $pH < 2$	OK			
1155274009-A	HCL to $pH < 2$	OK			
1155274009-B	HCL to $pH < 2$	OK			
1155274009-C	HCL to $pH < 2$	OK			
1155274010-A	HCL to pH \leq 2	OK			
1155274010-B	HCL to pH \leq 2	OK			
1155274010-C	HCL to $pH < 2$	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- BU The container was received with headspace greater than 6mm.

2015 Groundwater Monitoring & Well Installation Report – Former Norgetown Laundry Site

Norgetown

QUALITY CONTROL SUMMARY

This QA summary includes a review, where appropriate, of holding times, blanks, matrix spike (MS) and laboratory control sample (LCS) recoveries, duplicate sample relative percent differences (RPDs), reporting limits, and overall assessment of data in the sample event. Each analysis that was performed is evaluated in the following subsections.

Field samples were reviewed to determine overall precision of sampling and analysis as well as matrix homogeneity for HVOCs.

Laboratory data were evaluated using laboratory-supplied control criteria. In the following method-specific discussions, only the criteria exceedances that impact data qualification or require assessment beyond laboratory documentation are discussed.

Samples were submitted to SGS Environmental Services (SGS) in Anchorage, Alaska. Ten (10) water samples, including one (1) field duplicate and one (1) trip blank, were submitted in person at the laboratory in one laboratory batch on September 11, 2015.

Sample MW-44BDB was collected as a field duplicate of sample MW-44B.

No samples were designated as matrix spike/matrix spike duplicate (MS/MSD) samples.

The sample results are reported under SGS job number 1155274, and all samples were received at the laboratory properly preserved with temperatures (0-6°C) and in good condition.

HVOCs BY SW8260B

All data elements/indicators are in conformance with the project criteria, with the following exception:

The RPDs for chloroform (40.6%) and tetrachloroethene (43.8%) in parent sample/field duplicate pair MW-44B/MW-44BDB are above QC limits (<30%). The chloroform and tetrachloroethene results in these samples are qualified as estimated (J).

OVERALL ASSESSMENT

The following summary highlights the data evaluation findings for this sampling event:

- No data are rejected.
- The completeness objectives (greater than 85 percent complete) for this project are met.

2015 Groundwater Monitoring & Well Installation Report – Former Norgetown Laundry Site

- The precision and accuracy of the laboratory data, as measured by laboratory quality control indicators, suggest that the data are useable as qualified for the purposes of this project.
- The precision measurements for result comparisons between primary and duplicate field samples are acceptable for the purpose of this project.

2015 Groundwater Monitoring & Well Installation Report – Former Norgetown Laundry Site

FIELD DUPLICATE RESULTS

			MW-44B	MW-44BDB		
			1155274002	1155274003		
Analyte	Method	Units	Sample	Duplicate	RPD ≤ 30	Qual
1,1,1-Trichloroethane	SW8260B	ug/L	ND	ND	NC	
1,1,2,2-Tetrachloroethane	SW8260B	ug/L	ND	ND	NC	
1,1-Dichloroethane	SW8260B	ug/L	ND	ND	NC	
1,1-Dichloroethene	SW8260B	ug/L	ND	ND	NC	
1,2-Dichlorobenzene	SW8260B	ug/L	ND	ND	NC	
1,2-Dichloroethane	SW8260B	ug/L	ND	ND	NC	
1,2-Dichloropropane	SW8260B	ug/L	ND	ND	NC	
1,3-Dichlorobenzene	SW8260B	ug/L	ND	ND	NC	
1,4-Dichlorobenzene	SW8260B	ug/L	ND	ND	NC	
Bromodichloromethane	SW8260B	ug/L	ND	ND	NC	
Bromoform	SW8260B	ug/L	ND	ND	NC	
Carbon tetrachloride	SW8260B	ug/L	ND	ND	NC	
Chloroform	SW8260B	ug/L	4.92	3.26	40.6	J
cis-1,2-Dichloroethene	SW8260B	ug/L	ND	ND	NC	
Dibromochloromethane	SW8260B	ug/L	ND	ND	NC	
Hexachlorobutadiene	SW8260B	ug/L	ND	ND	NC	
Methylene chloride	SW8260B	ug/L	ND	ND	NC	
Tetrachloroethene	SW8260B	ug/L	7.13	4.57	43.8	J
trans-1,3-Dichloroethene	SW8260B	ug/L	ND	ND	NC	
Trichloroethene	SW8260B	ug/L	ND	1.17	*	NQ
Vinyl chloride	SW8260B	ug/L	ND	ND	NC	

NC = RPD cannot be calculated.

ND = non-detect

NQ = No additional qualification required

* = positive result is less than 2 times the RL, RPD cannot be calculated.

J = The associated numerical value is an estimated quantity because the Quality Control criteria were not met.

Laboratory Data Review Checklist

Comp	leted by:	Rachel James				
Title:		Chemist, Argor	n Inc.		Date:	Oct 17, 2015
CS Re	eport Name:	Norgetown			Report Date:	Sep 24, 2015
Consu	ıltant Firm:	Alta Geoscieno	ees			
Labor	atory Name:	SGS North Am	erica, Inc.	Laboratory Report Nu	ımber: 1155274	
ADEC	File Number:			ADEC RecKey Numb	per:	
1. <u>L</u>	aboratory					
	a. Did an A	ADEC CS appro	oved laboratory r	eceive and perform all of	f the submitted	sample analyses?
	• Yes	○ No	O NA (Plea	ase explain.)	Comments:	
		-		er "network" laboratory og the analyses ADEC CS		d to an alternate
	○ Yes	○ No	NA (Pleas	se explain)	Comments:	
[Samples were n	ot subcontracted	d.			
2. <u>Cł</u>	nain of Custody	(COC)				
	a. COC infor	mation complet	ed, signed, and d	lated (including released	received by)?	
_	• Yes	○ No	ONA (Pleas	se explain)	Comments:	
	b. Correct an	alyses requested	1?			
_	• Yes	○ No	○NA (Ple	ase explain)	Comments:	
3. <u>La</u>	boratory Sampl	e Receipt Docu	mentation			
	a. Sample/co	oler temperature	e documented an	d within range at receipt	$(4^{\circ} \pm 2^{\circ} \text{ C})$?	
	• Yes	○ No	○ NA (Ple	ease explain)	Comments:	
[

• Yes	○ No	ONA (Please explain)	Comments:
c. Sample con	dition docume	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	○ No	○ NA (Please explain)	Comments:
1.70.1			
	•	· · · · · · · · · · · · · · · · · · ·	r example, incorrect sample contained insufficient or missing samples, etc.?
Yes	○ No	ONA (Please explain)	Comments:
e Data quality	y or usability a	ffected? (Please explain)	
o. Data quanty	y of asability a	rected. (Flease explain)	Comments:
No data quality o	or usability was	s affected by sample receipt.	
ase Narrative			
ase Narrative a. Present and	understandabl	e?	
_	understandabl	e? ○ NA (Please explain)	Comments:
a. Present and			Comments:
a. Present and • Yes	○ No	○NA (Please explain)	Comments:
a. Present and • Yes b. Discrepance	○ No	ONA (Please explain) C failures identified by the lab?	
a. Present and • Yes	○ No	○NA (Please explain)	Comments:
a. Present and • Yes b. Discrepance	○ No	ONA (Please explain) C failures identified by the lab?	
a. Present and • Yes b. Discrepance • Yes	○ No ies, errors or Q ○ No	ONA (Please explain) C failures identified by the lab?	Comments:
a. Present and • Yes b. Discrepance • Yes	○ No ies, errors or Q ○ No	ONA (Please explain) C failures identified by the lab? ONA (Please explain)	
a. Present and • Yes b. Discrepance • Yes c. Were all co	○ No ies, errors or Q ○ No	ONA (Please explain) OC failures identified by the lab? ONA (Please explain) s documented?	Comments:
a. Present and • Yes b. Discrepance • Yes c. Were all co	○ No ies, errors or Q ○ No	ONA (Please explain) OC failures identified by the lab? ONA (Please explain) s documented?	Comments:
a. Present and • Yes b. Discrepance • Yes c. Were all co • Yes	O No ies, errors or Q O No rrective action O No	ONA (Please explain) OC failures identified by the lab? ONA (Please explain) s documented?	Comments:

	_	d/reported as requested on COC?	Commonto
• Yes	○ No	ONA (Please explain)	Comments:
b. All applicat	ole holding tim	nes met?	
• Yes	○ No	○ NA (Please explain)	Comments:
c. All soils rep	oorted on a dry	weight basis?	
○ Yes	○ No	NA (Please explain)	Comments:
No soil samples v	were included.		
d. Are the repo	orted PQLs les	s than the Cleanup Level or the min	nimum required detection level for the
• Yes	○ No	○ NA (Please explain)	Comments:
• Yes	○ No	○ NA (Please explain)	Comments:
		ONA (Please explain) ffected? (Please explain)	Comments:
	or usability at	ffected? (Please explain)	
e. Data quality No data quality o C Samples a. Method Blar	or usability at r usability was	ffected? (Please explain)	Comments:
e. Data quality No data quality o C Samples a. Method Blar	or usability at rusability was	ffected? (Please explain) s affected. ported per matrix, analysis and 20 sa	Comments:
e. Data quality No data quality o C Samples a. Method Blan i. One me	or usability at rusability was a likethod blank rep	ffected? (Please explain) s affected. ported per matrix, analysis and 20 sa	Comments:
e. Data quality No data quality o C Samples a. Method Blan i. One me	r usability at r usability was ak thod blank rep	ffected? (Please explain) s affected. oorted per matrix, analysis and 20 sa ONA (Please explain)	Comments:

5. <u>Samples Results</u>

○ Yes	○ No	NA (Please explain)	Comments:
v. Data qı	uality or usabi	lity affected? (Please explain)	Comments:
o data quality	or usability is	affected by the method blank.	
b. Laboratory	Control Sam	ple/Duplicate (LCS/LCSD)	
_		CSD reported per matrix, analysis required per SW846)	and 20 samples? (LCS/LCSD required
• Yes	○ No	○ NA (Please explain)	Comments:
ii. Metals, samples?	/Inorganics - (One LCS and one sample duplicate	reported per matrix, analysis and 20
○ Yes	○ No	NA (Please explain)	Comments:
metals or inc	organics were	included.	
project sp	ecified DQOs	ent recoveries (%R) reported and w, if applicable. (AK Petroleum metl%-120%; all other analyses see the	
• Yes	○ No	ONA (Please explain)	Comments:
limits? An	nd project spec	cified DQOs, if applicable. RPD rep	ted and less than method or laboratory ported from LCS/LCSD, MS/DMSD, a all other analyses see the laboratory Q
• Yes	○ No	○ NA (Please explain)	Comments:

O Yes		• NA (Please explain)	Comments:
No data flags	were necessary	7.	
vii. Dat	ta quality or usa	bility affected? (Please explain)	Comments:
No data qual	ity or usability	was affected by the LCS/LCSDs or N	MS/MSDs.
c. Surrogat	es - Organics O	nly	
· ·	· ·	ries reported for organic analyses - fic	eld, QC and laboratory samples?
• Yes	○ No	ONA (Please explain)	Comments:
project	•	s, if applicable. (AK Petroleum method	hin method or laboratory limits? And ods 50-150 %R; all other analyses see
● Y	es O No	ONA (Please explain)	Comments:
clearly Yes	defined?	NA (Please explain)	Comments:
iv. Data	a quality or usat	oility affected? (Use the comment box	x to explain.). Comments:
No data quali	ty or usability is	s affected by the surrogates.	
Soil i. One t		ed per matrix, analysis and for each of	Chlorinated Solvents, etc.): Water and cooler containing volatile samples?
• Yes	○ No	O NA (Please explain.)	Comments:
		transport the trip blank and VOA sar xplaining why must be entered below	± •
Yes	○ No	○ NA (Please explain.)	Comments:

	iii. All resu	lts less than F	PQL?	
	• Yes	○ No	O NA (Please explain.)	Comments:
	iv. If above	e PQL, what	samples are affected?	
				Comments:
Not a	pplicable.			
	v. Data qua	ality or usabil	ity affected? (Please explain.)	
				Comments:
No da	ata quality o	r usability wa	as affected by the trip blank.	
e. F	ield Duplica	ite		
	i. One field	duplicate sub	omitted per matrix, analysis and 10 j	project samples?
	• Yes	○ No	ONA (Please explain)	Comments:
No fi	eld duplicat	e was include	ed.	
	ii. Submitt	ed blind to la	b?	
	• Yes	○ No	O NA (Please explain.)	Comments:
Samp	le MW-44B	DB was a fie	ld duplicate of sample MW-44B.	
			we percent differences (RPD) less the water, 50% soil)	an specified DQOs?
		I	RPD (%) = Absolute Value of: $(R_{1}$	R_2 x 100
			$((R_{1+} R_2)$	2)/2)
		= Sample Co	oncentration icate Concentration	
	\mathbf{R}_2	– I icia Dupi	icate Concentration	
	○ Yes	No	ONA (Please explain)	Comments:
The F			6%) and tetrachloroethene (43.8%)	in parent sample/field duplicate pair

MW-44B/MW-44BDB are above QC limits (<30%).

_	v. Data qua	anty or usabii	ity affected? (Use the comment box	to explain why or why not.)
	Yes	\bigcirc No	○ NA (Please explain)	Comments:
1			ethene results in samples MW-44B plicate imprecision.	and MW-44BDB are considered
f. De	contamina	tion or Equip	ment Blank (if applicable)	
(○ Yes	No	ONA (Please explain)	Comments:
No equi	pment bla	nk was submi	tted.	
i.	All result	s less than PQ	DL?	
() Yes	○ No	• NA (Please explain)	Comments:
No equi	pment bla	nk was submi	tted.	
ii	. If above	PQL, what sa	imples are affected?	
NA				Comments:
ii	i. Data qu	ality or usabil	ity affected? (Please explain.)	Comments:
No data	quality or	usability was	affected.	
Other Data	a Flags/Qu	ualifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
a. De	fined and	appropriate?		
(• Yes	○ No	○NA (Please explain)	Comments:

Reset Form