KOTZEBUE FORMER UST SITE GROUNDWATER CHARACTERIZATION REPORT

KOTZEBUE, ALASKA

ADEC File Number: TBD ADEC Hazard ID Number: TBD

December 8, 2010

Prepared for:

Crowley Maritime Corporation

1102 SW Massachusetts Street Seattle, Washington 98134

Prepared by:

825 W. 8th Ave. Anchorage, AK 99501

Prepared by:

Melissa A. Pike Environmental Scientist

Reviewed by:

Daniel J. Frank Project Manager

TABLE OF CONTENTS

AC	RON	(MS AND ABBREVIATIONS	iii
EX	ECUT	IVE SUMMARY	. 5
1.	INTR	ODUCTION	.1
2.	SITE 2.1. 2.2.	BACKGROUND Site Location and Description Previous Investigations	.3 .3 .3
		 2.2.2. 1999 Release Investigation 2.2.3. 2000 Groundwater Sampling 2.2.4. 2008 ADEC Area-Wide Surface Water Evaluation 	.4 .4 .4
	2.3. 2.4. 2.5.	Geology and Hydrogeology Site Characterization Objectives Regulatory Standards	5 5 6
3.	SITE 3.1.	ASSESSMENT ACTIVITIES Soil Borings	. 7 . 7 . 7
	3.2.	Monitoring Well Installation	.7 .8 .8
	3.3.	Groundwater Monitoring	. 8
4.	SITE	OBSERVATIONS AND ANALYTICAL RESULTS	9
	4.1.	Field Observations4.1.1. Soil Lithology Observations4.1.2. Groundwater Table Observations4.1.3. Water Quality Observations	.9 .9 .9 .9
	4.2.	Laboratory Analytical Results	.9 .9 10
5.	QUA	LITY ASSURANCE/QUALITY CONTROL1	11
	5.1. 5.2.	Sample Handling and Chain of Custody	1 2
	5.3.	5.2.1. Trip Blanks	12 12 12
		 5.3.1. Method Blanks	12 12 13
		5.5.4. ivietnou Reporting Limits (Sensitivity)	13

	5.4.	Analytical Methods	. 13
		5.4.1. BTEX and EDC by EPA Method 8260	. 13
		5.4.2. GRO by AK101	. 13
		5.4.3. DRO/RRO by AK102/103	. 13
		5.4.4. Total Metals (Lead) by EPA Method 6020	.13
		5.4.5. EDB by EPA Method 8011	.13
	5.5.	Precision and Accuracy	. 13
		5.5.1. Completeness	.14
		5.5.2. Representativeness	. 14
		5.5.3. Comparability	. 14
	5.6.	Data Summary	.14
		,	
6.	CON	CEPTUAL SITE MODEL	. 15
6.	CON 6.1.	CEPTUAL SITE MODEL	. 15 .15
6.	CON 6.1. 6.2.	CEPTUAL SITE MODEL Source Impacted Media	. 15 . 15 . 15
6.	CON 6.1. 6.2. 6.3.	CEPTUAL SITE MODEL Source Impacted Media Transport Mechanisms	. 15 . 15 . 15 . 15
6.	CON 6.1. 6.2. 6.3. 6.4.	CEPTUAL SITE MODEL Source Impacted Media Transport Mechanisms Exposure Media	. 15 . 15 . 15 . 15 . 15
6.	CON 6.1. 6.2. 6.3. 6.4. 6.5.	CEPTUAL SITE MODEL Source Impacted Media Transport Mechanisms Exposure Media Human Health Exposure Routes	. 15 . 15 . 15 . 15 . 15 . 15
6 . 7 .	CON 6.1. 6.2. 6.3. 6.4. 6.5. CON	CEPTUAL SITE MODEL Source Impacted Media Transport Mechanisms Exposure Media Human Health Exposure Routes	. 15 . 15 . 15 . 15 . 15 . 15 . 15
6. 7.	CON 6.1. 6.2. 6.3. 6.4. 6.5. CON 7.1.	CEPTUAL SITE MODEL Source Impacted Media Transport Mechanisms Exposure Media Human Health Exposure Routes CLUSIONS Conclusions	. 15 . 15 . 15 . 15 . 15 . 15 . 15 . 17 . 17
 6. 7. 8. 	CON 6.1. 6.2. 6.3. 6.4. 6.5. CON 7.1. REFE	CEPTUAL SITE MODEL Source Impacted Media Transport Mechanisms Exposure Media Human Health Exposure Routes CLUSIONS Conclusions	. 15 . 15 . 15 . 15 . 15 . 15 . 15 . 15

TABLES

- 1: Groundwater Sample Collection Summary
- 2: Monitoring Well Construction and Survey Details
- 3: Groundwater Elevation Data
- 4: Groundwater Sample Analytical Results Summary

FIGURES

- 1: Site Location Map
- 2: Site Plan
- 3: Site Detail
- 4: 2010 Groundwater Elevations and Contours
- 5: 2010 Groundwater Analytical Results

APPENDICES

- A: Field Notes
- B: Photographic Log
- C: Borehole and Monitoring Well Installation Logs
- D: Survey Data/Map
- E: TestAmerica Analytical Results; ADEC Data Review Checklists
- F: ADEC Conceptual Site Model Human Health Scoping Form and Graphic

ACRONYMS AND ABBREVIATIONS

AAC..... Alaska Administrative Code ADEC Alaska Department of Environmental Conservation AK101 Alaska Method AK 101 AK102 Alaska Method AK 102 AK103 Alaska Method AK 103 AvGas Aviation gasoline bgs Below ground surface BTEX..... Benzene, toluene, ethylbenzene, and total xylenes °C Degrees Celsius Crowley Crowley Petroleum Distribution, Inc. CSM Conceptual site model DO..... Dissolved oxygen DQO Data quality objective DRO Diesel-range organics DTW Depth to groundwater EDB..... Ethylene dibromide EDC..... Ethylene dichloride EMCON EMCON Alaska, Inc. EPA...... U.S. Environmental Protection Agency GRO Gasoline-range organics Jet-A..... Jet Fuel Class A LCS/LCSD..... Laboratory control sample/laboratory control sample duplicate mg/L Milligrams per liter MS/MSD...... Matrix spike/matrix spike duplicate ND..... Non-detect OASIS OASIS Environmental, Inc. ORP Oxidation-reduction potential PID Photoionization detector ppm Parts per million PQL Practical quantitation limit PVC..... Polyvinylchloride QA/QC..... Quality assurance/quality control RPD..... Relative percent difference RRO Residual-range organics S&W Shannon and Wilson, Inc. UST..... Underground storage tank

EXECUTIVE SUMMARY

OASIS Environmental, Inc. conducted assessment and characterization of groundwater at the Crowley Petroleum Distribution, Inc. Kotzebue former UST site located in Kotzebue, Alaska, in September 2010. This assessment was conducted to evaluate the impact of petroleum hydrocarbons on groundwater at the site.

Site characterization activities included the installation and sampling of three permanent groundwater monitoring wells, identified as replacement wells MW-1R, MW-2R, and MW-3R.

Groundwater analytical results indicate gasoline-range organics (GRO), diesel-range organics (DRO), and benzene at monitoring wells MW-1R and MW-3R at concentrations above the Alaska Department of Environmental Conservation Table C groundwater cleanup levels. Additionally, the lead scavenger 1,2-dibromoethane was detected in MW-1R at a concentration exceeding its ADEC Table C groundwater cleanup level. Residual-range organics, ethylbenzene, m,p-xylenes, and total xylenes are present in MW-1R and MW-3R at levels below ADEC groundwater screening values. DRO and benzene were detected at levels below the ADEC groundwater screening values.

1. INTRODUCTION

This groundwater characterization report presents the results of drilling, sampling, and monitoring activities conducted in September 2010 by OASIS Environmental, Inc. (OASIS) at the Crowley Petroleum Distribution, Inc. (Crowley) former underground storage tank site (UST site), located in Kotzebue, Alaska. Groundwater characterization activities were conducted in accordance with the *Kotzebue Former UST Site Groundwater Characterization Work Plan*, dated August 30, 2010, as approved by the Alaska Department of Environmental Conservation (ADEC; OASIS 2010b). An ADEC File Number and Hazard ID have not been assigned. This report was prepared in accordance with Title 18 of the Alaska Administrative Code, Chapter 75 (18 AAC 75), Article 3, entitled *Oil and Hazardous Substance Pollution Control Regulations, Discharge Reporting, Cleanup, and Disposal of Oil and Other Hazardous Substances*, revised as of October 9, 2008 (ADEC 2008a), and *Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites* (ADEC 2009b).

The primary objective of site assessment activities was to characterize petroleum hydrocarbon impact to groundwater at the site by replacing previously installed (in 1999) and now destroyed monitoring wells.

Between September 23 and 24, 2010, three soil borings were advanced and completed as groundwater monitoring wells.

The ADEC-qualified persons conducting the sample collection activities for OASIS were Ms. Melissa Pike and Mr. Ryan Burich. Analytical data were evaluated by Mr. Robert Beckman. Data interpretation and reporting were conducted by Ms. Pike and Mr. Daniel Frank.

This document outlines the technical and analytical approaches employed during fieldwork and characterizes actual contaminants detected. This document includes site background information (Section 2); investigation activities (Section 3); site observations and analytical results (Section 4); a discussion of analytical data quality (Section 5); a conceptual site model (Section 6); conclusions (Section 7); and references (Section 8).

2. SITE BACKGROUND

2.1. Site Location and Description

Kotzebue is located 550 air miles northwest of Anchorage, Alaska, and 26 miles north of the Arctic Circle on the shores of the Chukchi Sea (Figure 1). Crowley's former UST facility is located at Lot 1, Block 4, Kotzebue Ralph Wien Memorial Airport, Kotzebue, Alaska.

The site is located on the south side of the main terminal apron area, north of Runway 8/26 and east of Taxiway C. The site is a gravel pad surrounded on three sides by a pond. Norton Sound is located approximately 700 feet west of the site, and Kotzebue Lagoon is located approximately 1,600 feet to the east (Figure 2).

The facility lies at approximately 66°53'24.49" north latitude and 162°36'14.96" west longitude.

2.2. Previous Investigations

2.2.1. 1998 UST Removal and Excavation

In May 1998, Crowley decommissioned and removed two 12,000-gallon-capacity USTs located at Block 4, Lot 1 of the Kotzebue Airport (Figure 3). EMCON Alaska, Inc. (EMCON) performed the removal oversight for Crowley (EMCON 1998). The northern UST formerly contained Jet Fuel Class A (Jet-A), and the southern UST contained aviation gasoline (AvGas; likely low lead). The USTs were nested in a concrete cradle, with the top of the tanks located at the ground surface. A fuel dispenser was located at the north side of the tanks, adjacent to and immediately south of the airport apron. During the tank removal, approximately 125 cubic yards of soil were temporarily stockpiled adjacent to the excavation. The concrete tank cradle was not removed. The excavated soil was placed back into the excavation after removal of the tanks and collection of field screening and confirmation samples from the excavation sidewalls. Groundwater was not encountered during the removal work.

During the removal, EMCON noted visibly stained soil with a petroleum-like odor. Field screening conducted with a photoionization detector (PID) indicated total volatile organics ranging from 34.7 parts per million (ppm) in excavated stockpiled soils to 748 ppm in soil located beneath the dispenser equipment. Because the concrete cradle was left in place, no field screening or confirmation sampling was conducted of soil below the former tank locations. Samples were collected from each of the four sidewalls. Three of the sidewall excavation samples were collected at the bottom of the sidewalls, approximately 8 feet below ground surface (bgs). The forth sidewall sample, collected on the north side, was collected at 4 feet bgs and below the former fuel dispensary. Soil samples were analyzed for gasoline-range organics (GRO), diesel-range organics (DRO), and benzene, toluene, ethylbenzene, and total xylenes (BTEX).

Analytical results indicate concentrations of GRO and BTEX above expected ADEC cleanup levels in samples collected from the north and east walls of the excavation. The

EMCON closure report concluded that impact at the site from the former USTs was confined to the area north and east of the excavated area. Additionally, the report concluded that completion of the groundwater migration pathway was not considered likely because groundwater at the site is non-potable (OASIS 2010a).

2.2.2. 1999 Release Investigation

In August 1999, IT Group/EMCON (IT/EMCON) performed additional site characterization activities at the former UST site to determine the extent of petroleum impact to soil and groundwater. Twenty-five test pits were excavated and field-screened to delineate the horizontal and vertical extent of hydrocarbon impact at the site. Soil samples were collected at five locations for BTEX, GRO, and DRO analysis. Generally, test pit soils indicated greater petroleum hydrocarbon impact north of the former UST site.

Additionally in 1999, at four test pits, pre-packed groundwater monitoring well screens were installed, and then the test pits were backfilled around the well screens. The well screens were installed from the surface to 6 or 8 feet bgs, depending on test pit depth and depth to groundwater. Groundwater was encountered at 4 to 4.5 feet bgs. Well locations and identification were as follows:

- MW-1 was located at the northwest corner of the former USTs, west of the former fuel dispensers.
- MW-2 was located 50 feet east of the former UST excavation.
- MW-3 was located 50 feet south of the former UST excavation.
- MW-4 was located 10 feet west of the southwest corner of the former UST excavation.

Each monitoring well was located at a test pit exhibiting petroleum hydrocarbon impact as indicated by field screening of test pit soils.

Groundwater was sampled for analysis at each of the four wells. Groundwater analytical results indicated low-level impact above current ADEC Table C groundwater cleanup levels for benzene at all four groundwater monitoring wells and GRO at MW-2 (IT/EMCON 2000; OASIS 2010a).

2.2.3. 2000 Groundwater Sampling

In September 2000, all four wells were sampled. GRO and DRO concentrations at MW-2 were reported above the associated ADEC Table C groundwater cleanup levels (2.2 milligrams per liter [mg/L] and 1.5 mg/L respectively). Benzene concentrations in all wells except MW-1 remained above the ADEC Table C groundwater cleanup level for benzene (0.005 mg/L). The groundwater flow appeared to be from west to east at the time of sampling (Golder Associates, Inc. 2002; OASIS 2010a).

2.2.4. 2008 ADEC Area-Wide Surface Water Evaluation

In October 2008, under contract to ADEC, Shannon and Wilson, Inc. (S&W) conducted an evaluation of pore-water to determine if petroleum hydrocarbon contamination at the

Kotzebue Airport was migrating into Kotzebue Sound to the west or Kotzebue Lagoon to the east. S&W hand-drove well points near the shoreline during low tide at four locations located west and north of the apron area along Kotzebue Sound and at three locations east and north of the apron area along Kotzebue Lagoon. Sample locations are presented in Figure 3. S&W reported the detection of DRO, residual-range organics (RRO), and benzene in pore-water samples at concentrations above ADEC's Table C cleanup levels. Additionally, trichloroethylene (TCE) was detected in sample AS01 on Kotzebue Sound (S&W 2009).

The nearest contaminated site (within 500 feet) to the western pore-water sample locations is Block 1, Lot AAA, owned and operated by the State of Alaska Department of Transportation and Public Facility. The ADEC record key for this site is 1999320001101. The nearest contaminated site (within 200 feet) to the east of the eastern pore-water sample locations is Block 2, Lot 4, owned by Northwestern Aviation. The ADEC record key for this site is 1995320003301. S&W recommended implementation of an airport-wide evaluation of groundwater along with additional pore-water analysis along Kotzebue Sound and Kotzebue Lagoon (S&W 2009; OASIS 2010a).

2.3. Geology and Hydrogeology

Kotzebue is located on a narrow spit about ½-mile wide and several miles long; it is separated from the peninsula by a brackish-water lagoon (Kotzebue Lagoon and Isaac Lake). The spit is composed of coarse-grained beach ridge deposits with lacustrine peats and silts filling the swales between ridges.

Formed by glaciers flowing westward out of the Kobuk and Selawik rivers, the 60-milelong peninsula is comprised mainly of marine, estuarine, glaciomarine, and glacial sediments. Lying 26 miles north of the Arctic Circle, the soil is in a zone of continuous permafrost (perennially frozen ground) with near-surface soils that freeze and thaw annually. The depth of freezing and thawing of the near-surface soils is dependent on the soil type, ground cover, and snow depth. Groundwater is shallow and situated above the permafrost, with small drainages and ponds that may alter groundwater flow direction (S&W 2009).

Soils at the site are well-to-poorly graded gravel with sand underlain by a 1-foot layer of soil mixed with organics found between 3 and 5 feet bgs depending on location. Fine- to course-grained sand underlies the organic-rich layer.

2.4. Site Characterization Objectives

Site characterization and assessment activities, described in the ADEC-approved work plan, were designed to focus on evaluation of groundwater at Crowley's former UST site located in Kotzebue, Alaska.

OASIS' approach complied with ADEC criteria for implementing this objective.

The following tasks were planned to meet this objective:

- Evaluate the vertical impact to soil by installing three soil borings using directpush technology (Geoprobe®) and a continuous sampler to log and field screen each soil boring from the ground surface to groundwater.
- Convert all soil borings to permanent groundwater monitoring wells.
- Collect groundwater samples from each groundwater monitoring well to evaluate impact to groundwater at the site.
- Evaluate analytical results against ADEC cleanup levels.
- Conduct routine groundwater monitoring to evaluate plume stability.

2.5. Regulatory Standards

Analytical results are compared to relevant State of Alaska cleanup criteria. The State of Alaska, through ADEC, has established cleanup criteria for petroleum-contaminated sites. Cleanup standards are defined in 18 AAC 75, Article 3, entitled *Oil and Hazardous Substance Pollution Control Regulations, Discharge Reporting, Cleanup, and Disposal of Oil and Other Hazardous Substances* (ADEC 2008a). Groundwater analysis results are evaluated against the cleanup levels listed in 18 AAC 75.345, Table C. The applicable ADEC groundwater cleanup levels are provided with the sample results on sample summary tables.

3. SITE ASSESSMENT ACTIVITIES

This section describes field activities conducted in support of the former UST site assessment objective. There were no deviations to the work plan.

The field effort for soil boring drilling and groundwater monitoring well installation was conducted in September 2010. All site groundwater monitoring wells were sampled in September 2010.

A summary of groundwater sample collection and analyses by date, time, location, and matrix is provided in Table 1. Well construction details are provided in Table 2. Groundwater elevation details are provided in Table 3, and groundwater analytical results are provided in Table 4. Groundwater monitoring well locations are presented in Figure 3, with survey coordinates and elevations provided in Table 3. Groundwater elevation and contours are provided in Figure 4, with groundwater analytical results presented in Figure 5. Field notes and groundwater monitoring forms are included in Appendix A. Photographic logs are included in Appendix B. The borehole monitoring well logs are included in Appendix C. The survey map generated from a land survey of existing and new wells is included in Appendix D.

3.1. Soil Borings

Three soil borings, designated as SB01 through SB03, were drilled between September 23 and 24, 2010. The soil borings were completed as monitoring wells MW-1R though MW-3R. Soil borings were drilled to a depth of 10 feet bgs. At each well/boring location, soil boring logs were recorded using a Borehole/Monitoring Well Construction Log form, and the soil was classified using the Unified Soil Classification System.

3.1.1. Field Screening

Soil borings were field screened in situ using a PID. The PID was calibrated to 100 ppm isobutylene at the beginning of each day. In situ field screening was conducted by placing the PID probe within ½-inch of the soil contained within the soil bore core casing. In situ PID results were noted on the borehole log form for each boring (Appendix B).

3.2. Monitoring Well Installation

All soil borings were converted to monitoring wells for the collection of groundwater samples on September 24, 2010. Monitoring well installation was performed in accordance with ADEC's *Monitoring Well Design and Construction for Investigation of Contaminated Sites* dated February 2008 (ADEC 2008b). The monitoring wells were completed as a 2-inch-diameter groundwater monitoring wells using schedule 40 polyvinylchloride (PVC) casing with a 5-foot screen section of a 0.010-inch slotted screen and threaded end caps centered (when possible) on the static water level found during the soil boring installation. The filterpack was 10/20 rounded silica sand. All monitoring wells were countersunk 0.5 feet bgs and completed as flush-mount style with

0.5 feet of pea gravel placed over the top as protection during winter airport plowing operations.

3.2.1. Well Development

Monitoring wells were developed on September 24 and 25, 2010, after conversion from soil borings using a surge and purge technique, beginning with a gentle surging action and increasing agitation as development proceeded. Well development included purging of ten well casing volumes. Approximately 6 to 7 gallons were purged from each well. During the well development process, as purge water became visibly less turbid, the field team recorded water quality parameters including pH, dissolved oxygen (DO), temperature, and specific conductivity. Completed monitoring well development forms are attached with the field notes in Appendix A.

3.2.2. Monitoring Well Survey

The location, measuring point elevations, and top-of-casing elevations of the new monitoring wells were surveyed by Alaska Design Inc. on September 30, 2010. The horizontal coordinates and PVC measuring point elevations are provided in Table 3.

3.3. Groundwater Monitoring

All monitoring wells were sampled on September 25, 2010. Prior to sampling, all wells were gauged for depth to groundwater (DTW). No free-phase hydrocarbons were encountered during groundwater monitoring. Table 1 summarizes the water samples collected, sample locations, and requested analyses.

DTW was measured in each monitoring well prior to purging and sampling. Table 3 presents groundwater elevation calculations for this sampling event. Following the measurement of DTW, wells were purged using low-flow techniques that minimize purge volume and well draw down. The field team monitored and recorded in the field logbook (Appendix A) successive readings for pH, temperature, specific conductivity, and DO. Prior to sampling, a final set of groundwater quality parameters were recorded, additionally including values for oxidation-reduction potential (ORP). The field team monitored pH (within \pm 0.1), temperature (within 0.2 degrees Celsius [°C]), conductivity (within 3%), and DO (within \pm 10%) to monitor for well stability.

After purging, samples were collected for laboratory analysis. Laboratory analytical results are discussed in Section 4.

4. SITE OBSERVATIONS AND ANALYTICAL RESULTS

This section presents a discussion of field observations and the analytical results of groundwater sampling conducted in September 2010. A summary of groundwater samples collected and analyses performed is presented in Table 1. Groundwater well construction details and survey data are presented in Table 2, with groundwater elevation data presented in Table 3. Groundwater analytical sample results along with the regulatory standards used to evaluate the analytical data are summarized in Table 4. Laboratory analytical results and completed ADEC checklists are provided in Appendix E.

4.1. Field Observations

4.1.1. Soil Lithology Observations

Soil borings were drilled on September 24, 2010, for MW-1R through MW-3R. Soil logs from each boring characterized soil at the site to generally consist of 2 feet of sandy gravel material underlain by 2.5 feet of gravel, with wet sandy gravel from 5 to 8 feet bgs. Organic matter was found in MW-3R at 5 to 5.5 feet bgs. Soil boring and well completion logs are provided in Appendix C.

4.1.2. Groundwater Table Observations

Groundwater elevation data are presented in Table 3. Groundwater was present approximately 5.4 to 5.5 feet below grade depending on locations. The flow direction of the unconfined water table aquifer appears to be to the west, with a hydraulic gradient estimated at 0.0005. Inferred groundwater contours are presented in Figure 4. No separate-phase hydrocarbons were observed at any monitoring well.

4.1.3. Water Quality Observations

Groundwater from all three wells appeared amber to clear, with no odors noted during purging and sampling. Utilizing a YSI® water quality meter with a flow-through cell, OASIS recorded pH, temperature, conductivity, DO, and ORP. The pH across the site indicated a favorable range for both aerobic and anaerobic attenuation. Conductivity was relatively consistent across the site, indicating all groundwater wells are located within the same aquifer.

4.2. Laboratory Analytical Results

4.2.1. Analytical Methods

Groundwater analytical results are summarized in Table 4. Groundwater samples were submitted to the project laboratory, TestAmerica Laboratories, Inc located in Anchorage, Alaska, in accordance with standard chain-of-custody procedures outlined in the work plan. Duplicate samples were collected at a frequency of 10% per method and matrix for quality assurance/quality control (QA/QC) purposes. All samples were preserved and

stored at a temperature of $4^{\circ}C \pm 2^{\circ}C$ prior to shipment to TestAmerica for laboratory analysis. Groundwater analysis was conducted for both petroleum hydrocarbon constituents (GRO/BTEX and DRO/RRO) and the leaded fuel additives ethylene dibromide (EDB) and ethylene dichloride (EDC; also known as 1,2-dichloroethane). EDB and EDC are common synthetic organic chemicals used in leaded fuels to prevent the buildup of lead deposits within internal combustion engines. Both EDB and EDC pose potential cancer risks in humans.

Groundwater samples collected at all three wells were analyzed for the following target analytes using the methods specified:

- GRO/BTEX ((Alaska Method AK 101 [AK101]/U.S. Environmental Protection Agency [EPA] Solid Waste [SW] Method SW8260B)
- DRO/RRO (Alaska Method AK 102 [AK102]/Alaska Method AK 103 [AK103])
- EDC (EPA Method SW8260B)
- EDB (EPA Method SW8011)
- Lead (EPA Method 6020)

4.2.2. Groundwater Sampling Analytical Results

At groundwater monitoring well MW-1R, the reported concentrations for GRO, DRO, benzene, and EDB were above the associated ADEC Table C groundwater screening values. RRO, ethylbenzene, and total xylenes were detected, but at concentrations below the ADEC Table C groundwater cleanup values. Toluene, EDC, and lead were reported as non-detect at MW-1R.

At MW-2R, DRO and benzene were detected, but at concentrations below the relevant ADEC Table C groundwater cleanup values. All other analytes were reported as non-detect.

At MW-3R, GRO, DRO, benzene, and total xylenes were detected at concentrations above the ADEC Table C groundwater cleanup values. RRO, toluene, ethylbenzene, total xylenes, and EDB were detected, but at concentrations below their associated ADEC Table C groundwater cleanup values. EDC and lead were reported as non-detect.

5. QUALITY ASSURANCE/QUALITY CONTROL

Laboratory QA/QC data associated with the analysis of project samples have been reviewed to evaluate the integrity of the analytical data generated during the September 2010 groundwater investigation at the former UST site in Kotzebue, Alaska. Water samples were shipped to TestAmerica in Anchorage, Alaska, in one sample delivery group, ATI0083. Samples were collected, reported, and shipped in general accordance with the ADEC-approved work plan (OASIS 2010b).

All data were validated and reviewed in accordance with appropriate EPA procedural guidance documents (EPA 2008) and ADEC regulatory guidance documents (ADEC 2009a, 2010). This data review focuses on criteria for the following QA/QC parameters and their effect on the quality of data and usability: sample handling and chain-of-custody documentation; holding time compliance; field QA/QC (ambient blanks, trip blanks, field duplicate) results; laboratory QA/QC (method blanks, laboratory control samples, surrogates, matrix spike/matrix spike duplicate [MS/MSD]) results and analytical methods; method reporting limits; precision and accuracy; and completeness. In absence of other regulatory QC guidance, method- and/or standard operating procedure-specific QC limits were also utilized to apply qualifiers to the data.

Samples were tested using the following methods for the associated analytes:

- BTEX by EPA Method 8260B
- EDC by EPA Method 8260B
- EDB by EPA Method 8011B
- GRO by AK101
- DRO by AK102
- RRO by AK103
- Lead by EPA Method 6020

5.1. Sample Handling and Chain of Custody

Samples were shipped from Kotzebue to Anchorage and then hand delivered to TestAmerica in Anchorage. All sample coolers were delivered with custody seals in place, unbroken and intact. Chain-of-custody forms, laboratory sample receipt forms, and case narratives were reviewed to determine if any sample handling activities might affect the integrity of the samples and the quality of the associated data. All sample containers in the sample cooler were received at the laboratory intact and with proper documentation. A temperature blank was received by the lab within the specified range of $4^{\circ}C \pm 2^{\circ}C$ (3.0°C). All samples were extracted, digested, and/or analyzed within the holding time criteria for the applicable analytical methods and in accordance with the work plan specifications.

5.2. Field QA/QC

Field QA/QC protocols are designed to monitor for possible contamination during collection and transport of samples collected in the field. Collection and analysis of field duplicates also facilitates an evaluation of precision that takes into account potential variables associated with sampling procedures and laboratory analyses. For this project, trip blanks and field duplicates were submitted for analysis.

5.2.1. Trip Blanks

A trip blank was prepared by the laboratory, shipped to the site with the empty sample bottles/containers, stored with sample containers during the field event, and transported with the collected samples back to the laboratory for analysis. The trip blank was placed in the same cooler as the other project volatile organics samples (GRO/BTEX). All trip blank analytes were reported non-detect (ND).

5.2.2. Field Duplicates

Three primary samples and one duplicate were submitted for this project. Duplicate sample MW4R-01GW was collected from primary sample MW1R-01GW. The frequency of field duplicate collection met the 10% frequency requirements specified in the work plan. When analytes were present in concentrations below the method reporting limit in one or both samples, no valid comparison could be made. The primary sample and duplicate relative percent differences (RPDs) met applicable control limits for all detected analytes.

5.3. Laboratory QA/QC

5.3.1. Method Blanks

Method blanks were analyzed concurrent with a batch of 20 or fewer primary samples for each of the analytical procedures performed for this project. Method blanks were analyzed at the required frequency, and target analytes were ND in the blanks at concentrations above the analytical reporting limit or practical quantitation limit (PQL).

5.3.2. Laboratory Control Samples/ Matrix Spikes

Analysis of laboratory control samples (LCS) and LCS duplicates (LCSD) for target analytes met laboratory and project QC goals for all target analytes.

Precision and accuracy were evaluated by comparing field duplicate, MS/MSD, and LCS/LCSD pairs for this project. Recoveries and RPDs for all reported LCS/LCSD and MS/MSD samples were within required limits. The RPD for GRO in laboratory duplicate sample 10I0211-DUP1 was above the laboratory control limit; however, RPDs for field duplicate, LCS/LCSD, and MS/MSD pairs were within prescribed limits. Data quality and usability were not affected.

5.3.3. Surrogates

System Monitoring Compounds (Surrogates) are specified for organic chromatographic analytical procedures. Surrogates are compounds similar to target analytes. These compounds are added to each sample prior to collection or extraction. Subsequent surrogate recovery indicates overall method performance. Surrogate recoveries were within prescribed control limits for all field and laboratory samples.

5.3.4. Method Reporting Limits (Sensitivity)

Method reporting limits (MRLs) and PQLs met or were below established criteria specified for all analyses in the project work plan and below the ADEC-established cleanup levels with the exception of one sample. The PQL for EDC for sample MW1R-01GW was twice the ADEC-established cleanup level of 5 micrograms per liter. This result has been flagged J in Table 4, and results are considered estimated.

5.4. Analytical Methods

The following sections summarize whether quality control criteria were met for each analytical method. Sample results below the method detection limits are flagged "U" or non-detect, "ND." Results between the method detection limit and the method reporting limit have been flagged "J" as estimates due to the low level of quantization. Results that are estimated due to minor QA/QC deficiencies have been flagged "J" as estimated. Results with major QA/QC deficiencies have been flagged "R" as rejected.

5.4.1. BTEX and EDC by EPA Method 8260

Quality control criteria for this method were met for all BTEX constituents. EDC was not reported in laboratory LCS/LCSD and MS/MSD samples, therefore precision and accuracy cannot be confirmed for this analyte by the laboratory. These data have been flagged J in Table 4 and are considered estimated.

5.4.2. GRO by AK101

Quality control criteria for this method were met.

5.4.3. DRO/RRO by AK102/103

Quality control criteria for this method were met.

5.4.4. Total Metals (Lead) by EPA Method 6020

Quality control criteria for this method were met.

5.4.5. EDB by EPA Method 8011

Quality control criteria for this method were met.

5.5. Precision and Accuracy

Precision criteria monitor analytical reproducibility. Accuracy criteria monitor agreement of measured results with "true values" established by spiking applicable samples with a known quantity of analyte or surrogate. Precision and accuracy were evaluated by comparing LCS/LCSD, MS/MSD, and field duplicate pairs for this project. Field duplicates and MS/MSD samples were collected in accordance with work plan specifications. Field duplicate RPDs met applicable control limits. Recoveries and RPDs for all LCS/LCSD samples were within required limits. Some MS/MSD samples were outside required limits; LCS/LCSD samples were within limits, however. Data quality objectives (DQOs) of an overall 90% accuracy in QC samples were met.

5.5.1. Completeness

Data completeness is defined as the percentage of usable data (usable data divided by the total possible data). The overall project completeness goal is 90%:

% completeness = $\frac{\text{number of valid (i.e., non-R flagged) results}}{\text{number of possible results}}$

All requested analyses were performed in accordance with work plan specifications. Five results were qualified as unusable (i.e., "R"). Completeness for this project is 100%.

5.5.2. Representativeness

Data representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or environmental condition. The number and selection of samples were specified in the work plan and verified in the field to account accurately for site variations and sample matrices. The DQO for representativeness was met.

5.5.3. Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Data produced for this project followed applicable field sampling techniques and specific analytical methodology. The DQO for comparability for this project was met.

5.6. Data Summary

Based upon the information provided, the data are acceptable for use. All requested analyses were performed in accordance with work plan specifications. No results were qualified as unusable (i.e., "R"). Completeness for this project is 100%. In general, the overall quality of the data was acceptable. The EPA National Functional Guidelines (EPA 2008) were used to evaluate the acceptability of the data. Overall, data quality meets DQOs established in the work plan for this project. The associated sample results are usable for the purpose of this investigation.

6. CONCEPTUAL SITE MODEL

A conceptual site model (CSM) has been developed for the site based on site characterization results. The CSM was developed in accordance with ADEC *Draft Guidance on Developing Conceptual Site Models* (ADEC 2005).

6.1. Source

The source of impact at the site was two 12,000-gallon USTs that formerly contained AvGas and Jet-A. Undocumented leaks, spills, and discharges resulted in the impact of subsurface soil and groundwater at the site.

6.2. Impacted Media

Impacted media include soil and groundwater. The analytical evidence presented in Section 4 indicates that surface/subsurface soil and site groundwater are impacted by petroleum hydrocarbons, including benzene, at concentrations that exceed ADEC cleanup criteria. The former UST site is a gravel pad surrounded on three sides by surface water. The Unified Soil Classification for the soil at the site is GM: coarse-grained gravely soil with a silt and sand mixture (EMCON 1998). Site conditions and contaminant concentrations have likely changed since the site was last visited in 2000.

6.3. Transport Mechanisms

Impact to groundwater indicates that contaminants have migrated by leaching from soil to groundwater. Other possible transport mechanisms include volatilization of contaminants and fugitive dust of site soil to the air; surface runoff to surface water; and seepage of impacted groundwater to surface water. Targets/receptors at this site include short-term workers and trespassers. No permanent workers use the site.

6.4. Exposure Media

Possible exposure media at the former UST site include air (volatilization and fugitive dust), surface water (surface runoff and groundwater seepage), and groundwater (leaching).

6.5. Human Health Exposure Routes

The identified routes of exposure include ingestion, inhalation, and absorption. The site is within the airport area, with no current facilities located on the leased lot and no possibility of areas adjacent to the site to be used on a regular basis. Possible receptors are limited to current or future site visitors and current or future construction, commercial, or industrial workers. Site trespassers are considered unlikely within the airport boundary.

A human health exposure pathway via soil media is complete for commercial/industrial, site visitors, and construction workers at the site that would be engaged in excavation activities in areas where petroleum hydrocarbons and benzene impacts are present.

This pathway includes incidental soil ingestion and inhalation of outdoor air. The contaminants of concern are not considered dermally absorptive.

A human health exposure pathway by ingestion of groundwater is not considered complete for potential future users. Groundwater at this impacted shallow aquifer is not potable for drinking water; groundwater is assumed to be subject to salt water intrusion as well as the known area-wide contamination at the airport. Kotzebue reportedly obtains drinking water from a lake located 2 miles east of the site (EMCON 1998).

A human health exposure pathway by ingestion of surface water is not considered complete as the surface water adjacent to the site is not a viable drinking water source.

Exposure to site-related contaminates through the ingestion of wild food is not considered a viable exposure pathway as site contaminants of concern are not considered bioaccumulative.

Surface water impacts were not observed during the 2009 assessments; therefore, this exposure pathway is not considered complete in the CSM. Receptors and completed pathways are presented in the ADEC CSM checklist and graphic CSM provided in Appendix F.

7. CONCLUSIONS

Site characterization activities were conducted at Crowley's former UST site in September 2010 to evaluate the nature and extent of petroleum hydrocarbon impact to subsurface soil and groundwater associated with two former 12,000-gallon USTs removed in 1998.

Three soil borings were advanced and then competed as groundwater monitoring wells to aid in the characterization of impact to groundwater.

7.1. Conclusions

Groundwater sample analytical results indicate groundwater is impacted at MW-1R and MW-3R. No detections were reported for contaminants of concern at MW-2R. At both MW-1R and MW-3R, GRO, DRO, benzene, and EDB were reported at concentrations exceeding ADEC Table C groundwater cleanup levels.

8. REFERENCES

- Alaska Department of Environmental Conservation (ADEC). 2005. Draft Guidance on Developing Conceptual Site Models, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, Juneau, Alaska. Human Health Scoping and Graphic Forms downloaded from: http://www.dec.state.ak.us/spar/guidance.htm#csp. March 24.
- ———. 2008a. Alaska Administrative Code, *Title 18, Environmental Conservation Chapter 75, Oil and Other Hazardous Substances Pollution Control.* ADEC, Juneau, Alaska, October 9.
- ——. 2008b. Monitoring Well Design and Construction for Investigation of Contaminated Sites. ADEC Division of Spill Prevention and Response Contaminated Sites Program. Juneau, Alaska. November.
- ———. 2009a. Environmental Laboratory Data and Quality Assurance Requirements, Technical Memorandum, ADEC Division of Spill Prevention and Response. Contaminated Sites Program. Juneau, Alaska. March.
- ——. 2009b. Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites. September 23.
- ——. 2010. Laboratory Data Review Checklist, Version 2.7, ADEC Division of Spill Prevention and Response, Contaminated Sites Program form, downloaded from: http://dec.alaska.gov/spar/guidance.htm#methods. January.

EMCON. 1998. Letter Regarding Underground Storage Tank Closures. October 21.

- Golder Associates, Inc. 2002. Letter Regarding Recommendations for Future Activities. April 8.
- IT/EMCON. 2000. Letter Regarding 1999 UST Release Investigation, January 26.
- OASIS Environmental, Inc. (OASIS). 2010a. Former UST Site Conceptual Site Model Kotzebue Airport, Lot 1, Block 4, Kotzebue, Alaska. January 15.
- ———. 2010b. Kotzebue Former UST Site Groundwater Characterization Work Plan. . OASIS, Anchorage, Alaska. August 30.
- Shannon and Wilson, Inc. (S&W). 2009. Pore-Water Sampling Report, Ralph Wien Memorial Airport, Kotzebue, Alaska. June.
- U.S. Environmental Protection Agency (EPA). 2008. Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 540/R-94/012).

TABLES

TABLE 1: GROUNDWATER SAMPLE COLLECTION SUMMARY2010 KOTZEBUE FORMER UST SITE CHARACTERIZATION REPORT
CROWLEY PETROLEUM DISTRIBUTION
KOTZEBUE, ALASKA

		Duplicate	Sample Date	Sample Time	Laboratory Analyses							
Location	Sample No. 10-KUST-:				GRO (AK 101)	DRO (AK 102)	RRO (AK 103)	BTEX (EPA 8260)	EDC (EPA 8260)	EDB (EPA 8011)	LEAD (EPA 6020)	
MW-1R	MWR1-01GW	-	09/25/10	920	√	✓	✓	√	√	√	√	
MW-2R	MWR2-01GW	-	09/25/10	1045	✓	✓	✓	√	√	✓	✓	
MW-3R	MWR3-01GW	-	09/25/10	1145	✓	✓	✓	✓	✓	✓	✓	
MW-4R	MWR4-01GW	✓	09/25/10	1000	✓	✓	✓	✓	✓	✓	✓	
ТВ	TB-01GW	-	09/25/10	800	✓	-	-	✓	✓	-	-	

Key:

AK = Alaska

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

DRO = Diesel-range organics

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

EPA = United States Environmental Protection Agency

GRO = Gasoline-range organics

RRO = Residual-range organics

TABLE 2: MONITORING WELL CONSTRUCTION AND SURVEY DETAILS 2010 KOTZEBUE FORMER UST SITE CHARACTERIZATION REPORT CROWLEY PETROLEUM DISTRIBUTION KOTZEBUE, ALASKA

Well ID	Installation Date	Well Construction Details								Land Survey Details				
		Casing Diameter (inches)	Depth to Top of Screen (ft. bgs)	Depth to Bottom of Screen (ft. bgs)	Screen Length (ft.)	Total Depth (ft. bgs)	Top of Screen (BTOC)	Bottom of Screen (BTOC)	Northing	Easting	Measuring Point Elevation ^(1,2)	Ground Surface Elevation ⁽³⁾	Initial DTW (ft. bgs)	
MW-1R	9/23/2010	2	5.00	10.00	5.00	10.00	5.00	10.00	4711872.90	1553547.42	8.89	9.60	3.45	
MW-2R	9/23/2010	2	5.00	10.00	5.00	9.13	5.00	10.00	4711801.49	1553597.80	8.14	9.00	2.64	
MW-3R	9/23/2010	2	5.00	10.00	5.00	9.31	5.00	10.00	4711828.48	1553491.81	8.59	9.30	0.00	

Notes:

All measurements are in units of feet.

⁽¹⁾ NAVD88; US Feet

⁽²⁾ Top of (PVC) pipe elev's are at black mark; From trig levels - accuracy is +/- 0.01'.

⁽³⁾ Estimated by the surveyor from Iliamna Community Map and are approximate.

Key:

-- = None measured/not applicable

bgs = Below ground surface

BTOC = Below top of casing, a.k.a. below measuring point

DTW = Depth to water

ft. = Feet

TABLE 3: GROUNDWATER ELEVATION DATA 2010 KOTZEBUE FORMER UST SITE CHARACTERIZATION REPORT CROWLEY PETROLEUM DISTRIBUTION KOTZEBUE, ALASKA

			Bottom of		Depth fr	om Well MP		Groundwater	
Well ID	Measuring Point Elevation ^(1,2)	Top of Screen (BTOC)	Screen (BTOC)	Gauge Date	Depth to Product	Depth to Water	Groundwater Elevation	Elevation within Screening Interval?	
MW-1R	8.89	4.50	9.50	9/25/2010		3.45	5.44	Yes	
MW-2R	8.14	4.10	9.10	9/25/2010		2.64	5.50	Yes	
MW-3R	8.59	4.15	9.15	9/25/2010		3.15	5.44	Yes	

Notes:

All measurements are in units of feet.

⁽¹⁾ NAVD88; US Feet

⁽²⁾ Top of (PVC) pipe elev's are at black mark; From trig levels - accuracy is +/- 0.01'.

Key:

-- = None measured/not applicable

BTOC = Below top of casing, a.k.a. below measuring point

MP = Measuring point (a.k.a. PVC Elevation/TOC)

TABLE 4: GROUNDWATER SAMPLE ANALYTICAL RESULTS SUMMARY 2010 KOTZEBUE FORMER UST SITE CHARACTERIZATION REPORT CROWLEY PETROLEUM DISTRIBUTION KOTZEBUE, ALASKA

Location:	ADEC Groundwater	MW-1R MW-1R (duplicate)		MW-2R	MW-3R	Trip Blank				
Sample Number (10-KUST-):	Cleanup	MW1R-01GW	MW4R-01GW	MW2R-01GW	MW3R-01GW	TB-01GW 9/25/2010				
Sample Date:	Values	9/25/2010	9/25/2010	9/25/2010	9/25/2010					
ADEC Fuels (mg/L)										
Gasoline-Range Organics	2.2	<u>3.35</u>	<u>3.51</u>	ND (0.0500)	<u>4.02</u>	ND (0.0500)				
Diesel-Range Organics	1.5	<u>8.76</u>	<u>7.47</u>	0.417	<u>1.51</u>	-				
Residual-Range Organics	1.1	0.595	0.528	ND (0.407)	0.550	-				
VOCs (mg/L)	VOCs (mg/L)									
Benzene	0.005	<u>0.351</u>	<u>0.397</u>	0.00111	<u>0.0599</u>	ND (0.000200)				
Toluene	1	ND (0.010)	ND (0.00100)	ND (0.00100)	0.00124	ND (0.00100)				
Ethylbenzene	0.7	0.189	0.211	ND (0.00100)	0.0924	ND (0.00100)				
m,p-Xylenes	-	0.103	0.112	ND (0.00200)	0.0794	ND (0.00200)				
o-Xylene	-	ND (0.010)	ND (0.00100)	ND (0.00100)	0.00145	ND (0.00100)				
Total Xylenes	10	0.103	0.112	ND (0.00300)	0.0809	ND (0.00300)				
1,2-Dichloroethane (EDC)	0.005	ND (0.010) J	ND (0.00100)	ND (0.00100)	ND (0.00100)	ND (0.00100)				
1,2-Dibromoethane (EDB)	0.00005	<u>0.0000533</u>	<u>0.0000541</u>	ND (0.0000100)	0.0000121	-				
Total Metals (mg/L)	Fotal Metals (mg/L)									
Lead	0.015	ND (0.00100)	ND (0.00100)	ND (0.00200)	ND (0.00100)	-				

Notes:

Results above ADEC cleanup values are underlined and bolded.

⁽¹⁾ 18 AAC 75.345, Table C

Key:

ADEC = Alaska Department of Environmental Conservation

J = Estimated value due to minor QA/QC deficiencies.

mg/L = Milligrams per liter

ND = Analyte not detected above the method reporting limit

VOC = Volatile organic compound

FIGURES
PATH: V:\Project Drawings\Crowley\Kotz\10 Kotz\10 Kot Ust Rpt FILE: 465-009-KZ-UST-RPT-F1.DWG PLOTTED: 12/1/10.

	FIGURE	5
	SITE PLAN	KOTZEBUE FORMER UST SITE 2010 GROUNDWATER CHARACTERIZATION REPORT CROWLEY MARITIME CORPORATION Kotzebue, Alaska
TE 2	DATE: <u>DEC. 2010</u> CHKD: <u>M.A.P.</u>	DRAWN: <u>C.E.H.</u> PROJ. No.: <u>465-009</u> 825 w. 8th Ave., Anchorage, AK 99501, (907) 258-4880
0 100 200 APPROX. SCALE IN FEET	γ	

PATH: V:\Project Drawings\Crowley\Kotz\10 Kotz\10 Kt Ust Rpt FILE: 465-009-KZ-UST-RPT-F3.DWG PLOTTED: 12/1/10.

PATH: V:\Project Drawings\Crowley\Kotz\10 Kotz\10 Kt Ust Rpt FILE: 465-009-KZ-UST-RPT-F4.DWG PLOTTED: 12/1/10.

PATH: V:\Project Drawings\Crowley\Kotz\10 Kotz\10 Kt Ust Rpt FILE: 465-009-KZ-UST-RPT-F5.DWG PLOTTED: 12/1/10.

APPENDIX A

Field Notes

M.PIKE/R. BURICH Name Kotzebve UST Site

Address

Phone _

Project 465.009 Phase 2 TASK 2

"Rite in the Rain" - a unique all-weather writing surface created to shed water and to enhance the written image. Makes it possible to write sharp, legible field data in any kind of weather.

a product of

J. L. DARLING CORPORATION TACOMA, WA 98424-1017 USA www.RiteintheRain.com

4	OA	515	465	5-009 MPIKE	23 SEPT 2010 USE MOF/WINDY 10 mph 5
PHOTO	LOG	09	23 2010	RBURICH	TOS-009 R.BURICH/MPIKE
IMGP	1712	10:48	MW-IR	Installation	1050: Met WI AIRPORT MANAGER. SITE
	1713	10:48	MW-IR	Installation	WAUCTFRU
	1714	10:48	n		1124: SAFETY TAILGATE MTG BEGING
	1715	11:20	11	Complete	mwir. PID READINES (CORE SAMPLE
	1716	11:21	ч		0-5'.Ft.
	1717	11:21	11	Looking N	1157: Core 5-9Ft - PID READINGS
	1718	13:06	MW-2R	Core	1205: Core 9-11FH - PIDREADINGS
	1719	13:28	́ ц	Installation	Well MW-IR Completed screen @ 5-10'
	1720	13:29	II.		Photos taken of well - see photolog pg 4
	1721	13:29	N.		1215: Break for lunch.
	1722	13:42	MW3R	Installation	1330: Return to site. Start to drill
	1723	13:43	Lt	1.	at MW-2R. Well development at
	1724 -	13:43	u		MW-IR. Photos - seephoto log pg4
					1420: MW-2R completed. screen 5-10'
					Move drill rig to MW-3R.
					1430: Dvilling started at MW-3R.
(/		1500: Finished logging soil bores.
					started well development at
		13/10			MW-IR.
		all		1	1600: Well development at MW-IR.
	ne				1700: Finished at site. Depart.
	Y				
					mpike 1
				and the second	
				1	

.

ţ,

	Low-Flow G	roundwater Samp	ling with Min	imal Dr	awdov	wn Wor	kshee				
Project Name: KOTZEBUE UST Sample Location (ie. MW1): MW-IK											
Client:	Client: CROWLEY Date: 09/25/10										
Sampler:	MPIKE 1	r Burich		Purge Sta	art Time:	68	358				
Weather Condi	tions: <u>28</u> F	/ SUNNY / W	ND TMPH								
Sample ID [.]	10-KUST-N	WIR - NIGHI	Time: 0920	arimon		anlit					
Sample ID:	D-KUCT N	WILP DIGN		_ primary		split	ms/msa				
Sample ID:	10-1031 -14	WAR-UIGN		_ primary	Cup	split	ms/msd				
	Number/type of	Comments/			uup	Spin	ms/msu	0			
Analyses	Bottles	preservation:	Analyses			Rot	type of	Comments/			
GRO/BTEX X	Dottioo	HCI	Nitrate/Nitrite	Ph 100	d	500	lies	LA IA •	1: >		
DRO X	*************	HC	Sulfate ED	B		1		NON	5 F		
rro X			Total Metals (F	e & Mg)				1,4013	<u> </u>		
DRO w/silica			Dissolved Meta	als (Fe & N	/lg)						
RRO w/silica	O w/silica Alkalinity										
PAHS			Methane			<u> </u>					
Well Information	on / Purge Vol	ume Calculation									
Well Ca	asing Diameter (in):			Total Well	Depth (f	ft BTOC):	9.5'	(depth to bottom	n)		
Product	Present? (y/n/sheen)	NO		Depth to	Water (f	ft BTOC):	<u> 3.45'</u>				
Depth to Top of	Product (ft BTOC):			V	Nater Co	olumn (ft)	-				
Depth to Oil/Water I	nterface (ft BTOC):	4		One Pu	rge Volu	me (gal):					
BTOC = below top of casing) purge calcluation formula on back											
Sensory Obse	vations										
Color:	Clear, (Amber), Tai	n, Brown, Grey, Milky	White, Other:				DTW	wend a	31151		
Odor:	None Low, Mediu	m, High, Very Strong,	H2S, Fuel Like, (Chemical?	, Unknov	wn					
Instrument Ob		m, migh, very ruibia,	Heavy Slits	an an an a' thaile an		Sector and the second of the	tin en staat				
Instrument Op	Servations		n an								
	Volume Temp	Conductivity	Turbidity	DO	OPP			water	Draw-		
Round Time	(gal) °C	pH (MS/Gna	(NTUs)	(ma/L)	(mV)	Color	Odor	(ft BTOC)	(ft)		
1 0858	0.1 3.82	7.12 224.3	113	20.9	-98	Dive	NONE	3.65			
2 0904	0.5 2.45	7.19 3.952		6.9	-132;	1 LAFLI	NE NO	UE 3.65	• •		
3 0909	0.75 2.25	7.19 3.979		6.9	- 130 4	olive	NONE	3.65			
4 0915	1.0 2.12	7.21 3.982		6.6	-105	B Olive	NONE	3.65			
5 0911	1. 2.12	1.22 3.915	e	6.9	-100.	<u>6 0114</u>	e Non	E 3.65			
7									<u> </u>		
8						 					
9											
10											
11											
12											
Purge Rate (I	ow flow):	L/min Total Volume F	additional entry lines if Purged:	needea	Meas	ured Draw	down (ft):				
Notes: Drawdown shou	Id be less than 0.3 feet w	hile sampling. Minimal drawd	own shall be achieved	and measure	d by pump	oing at a low	rate (appro	ximately 0.1			
to 0.5 liter/m	inute) and continually m	easuring water levels in the we	ell. Note that site's hyro	ogeology may	/ make it d	ifficult to ach	nieve this s	pecification.			
Purg	e Method (disposable	bailer, teflon bailer, subme	ersible pump, etc.):								
Samp	le Method (disposable	e bailer, teflon bailer, subm	ersible pump, etc.):	L							
wen megnity (condition		ni sealing properiv, cemen	seal intact, etc.):								
	n of casing, flush mou										
Remarks (well recover	n of casing, flush mou , unusual conditions/	observations):									
Remarks (well recovery) of casing, flush mou /, unusual conditions/	observations):			Date:						

1 of	2
------	---

		Low-I	Flow G	roundv	vater Samp	ling with Mir	nimal Dra	awdov	vn Wor	ksheet	alaya ya kata a fata ya Wata ƙwallon	Aka <u>na (</u> 1997)
Projec	Project Name: KOTZEBUE UST Sample Location (ie. MW1): MU-2R											
	Client:	CROW	LEY	<u> </u>				Date:	09	25/10)	•
5	Sampler: MPIKE / R.BURICH									514		
Weath	er Cond	itions:	28F	SUN	M YAL	IND 7MP	<u>'H</u>		······	* *		
Sample ID:		10-KU	ST-N	NW2R	-01GW	Time: 1045	orimary	dup	split	ms/msd	>	
Sample ID:						Time:	primary	dup	split	ms/msd		
Sample ID:		Childrenit				Time:	primary	dup	split	ms/msd		
	*****	Number	/type of	Comme	nts/				Numbe	r/type of	Comments/	
Analyses		Bot	tles	preserva	ation:	Analyses			Bot	tles	preservation	า:
GRO/BTEX	X			HC	4	Nitrate/Nitrite	LEAD				+HNO:	3
DRO	<u> </u>			HC	1	Sulfate	edb				NONE	-
RRO	_X			HC		Total Metals (F	<u>e & Mg)</u>	-				
DRU W/silic												
PAHs	AHs Methane											
Well Info	ormati	on / Pur	ae Vol	ume C	alculation							
		asing Diar	eter (in):	24	vuidtivii		Total M/-	Donth //		Q IA		Reference of the second se
	Product	Present?					Donth to	Depth (1		0.10	(depth to bottor	n)
Denth i	to Ton of	f Product (i	H BTOC)				Depth to	Vvaler (i	LDTUU):	2.07		
Depth to O	il/Water	Interface (f					One Pu		mo (aol):			
(BTOC = belov	v top of ca	sing)	(2,00).				purge calclu	ation form	ula on back			
Sensory	Obse	rvations	5 . (40. 2 2233		
	Color:	Clear.	nber. Tar	. Brown	Grev Milky	White Other		n an suithead Anns an suithead	ne ha na séri na kuta Na hangan			
	Odora	None) Lo	₩, Mediu	m, High,	Very Strong	H2S, Fuel Like.	Chemical?	Unknov	wn			
Tu	rbidity:	None, Lo	w,)Mediu	m, High,	Very Turbid,	Heavy Silts						
Instrume	ent Ob	servatio	อ์ทร									an a
Γ							T			I	Water	Draw-
		Volume	Temp		Conductivity	Turbidity	DO	ORP			Level	down
Round		(gai)	-°C	pH	(1113/CM 3	(NTUs)	(mg/L)	(mV)	Color	Odor	(ft BTOC)	(ft)
	1024	0.25	1.04	701	0.024		32.1	-166.5	Amber	NONE	2.66	
3	1029	0.75	1.85	7 90	<u>a 079</u>		25	-122	R Amb	REF 110M	5 2.60	
4	1034	1.0	1.89	7.90	8.019		64	-128	7 Am	PP/Non	2.105	
51037.	1035	1.25	1.82	7.76	8.022		6.8	- 120.	9 Am	e non	2.65	
6	042	1.5	1.80	1.75	7.983		6.0 -	132.7	Ambe	rnone		
7												
8												
9 10												
11												
12												
Dura	o Poto (l	ow flow):		l /min	see back for a	additional entry lines	if needea			1		
Fuly		<u></u>				urgea:	-	Meas	ured Draw	down (ft):		
Notes: Draw	down shou o 0 5 liter/n	ild be less that	in 0.3 feet w	hile samplir	ng. Minimal drawdo	own shall be achieved	d and measure	d by pump	oing at a low	rate (appro	ximately 0.1	
	Purc	e Method (disposable	bailer, tef	ion bailer, subme	rsible pump, etc.)	Togeology may	make it d	inicult to ac	nieve this sp	ecification.	
	Sam	ble Method	disposable	bailer, te	flon bailer, subm	ersible pump, etc.)	:	······				
Well Integrity	(conditio	n of casing,	flush mour	nt sealing	properly, cement	seal intact, etc.):					48	
												
Remarks (we	Il recover	y, unusual c	conditions/	observatio	ns):							
Signed:								Date:				
Signed/Revi	ewer:							Date:				
	()))))))))))))))))))))))))))))))))))))	وفيتنافع اوتراعا فالاحتماد والمتعاول ال										

	Low-FI	low Gr	roundw	vater Samp	ling with Min	imal Dr	awdov	vn Wor	ksheel	i de la compansión de la compa	All All All
Project Name:	KOTZ	EBUI	FUS	7	Sample	Location (ie	e. MW1):	Mu	13R		
Client:	LROU	ULEY		2			Date:	912	5/10		-
Sampler:	MPIKE	<u> </u>	R KUK	<u>ach</u>	Purge Sta	art Time:		25			
Weather Condi	tions:	28	FIS	UNNY /	SMPH WI	ND					
Sample ID:	10-KU	IST-	MW3	R-DIGN	Time: 1145	orimary	aub 🤇	split	ms/msd		
Sample ID:		<u></u>			Time:	primary	dup	split	ms/msd		
Sample ID:					Time:	primary	dup	split	ms/msd		
	Number/t	ype of	Comme	nts/				Number	/type of	Comments/	
Analyses	Bottle	es	preserva	ation:	Analyses			Bot	tles	preservatio	n:
GRO/BTEX X			H	c <u>l</u>	Nitrate/Nitrite	EBB	-			NONE	2
DRO X			H	ц <u> </u>	Sulfate L	EAD ((B)			HAOZ	
DRO w/silica			H	<u>·</u> CI	I otal Metals (F	e & Mg)	A >				
RRO w/silica					Alkalinity	is (Fe & I	vig)				
PAHs					Methane						
Well Information	on / Purg	e Vol	ume C	alculation						la edistrigati e tra	
Well Ca	asing Diame	eter (in):	2	11		Total Well	Denth (f	t BTOC)	Q 15	(dopth to bottor	~)
Product	Present? (v	/n/sheen)	ΛΙ			Depth to	Water (f		215	(depth to bollor	n)
Depth to Top of	Product (ft	BTOC):	AIA			N N	Nater Co	olumn (ff)	0.10		
Depth to Oil/Water I	nterface (ft I	BTOC):	NA	<u>k</u>		One Pu	rae Volu	me (gal):			
(BTOC = below top of cas	ing)					purge calclu	ation form	ula on back	•	•	
Sensory Obse	rvations										
Color:	Clear, Amt	be), Tar	n, Brown,	, Grey, Milky V	Vhite, Other:						
Odor:	None, Low,	, Mediu	m, High,	Very Strong, I	H2S, Fuel Like, (Chemical?	, Unknov	wn			
I urbidity:	None, Low		m, High,	Very Lurbid,	Heavy Silts	ne a la vita ne a com	ete el constato de la consta		a see to star a se		
instrument Ob	servation	is									
	Volume .	Temp		Conductivity	Turbidity	DO	ORP			vvater	Draw-
Round Time	(gal)	°C	рН	AS/CM3	(NTUs)	(mg/L)	(mV)	Color	Odor	(ft BTOC)	(ft)
1 1126	0.1 2	2.89	7.67	5.095		48.3	-129.9	AMBE	RNONE	3.15	
2 13	0.25	3.06	7.62	4.780		3.8	-167.3	Amber	L NON	E 3.15	
$\frac{3}{137}$	0.5	3.65	7.60	4.493		3.0	-170.8	AMBE	<u>r non</u>	<u>e 3.15</u>	
4 1192	0115	3.17	1.60	4.250		3.0	-1-125	AMISE	<u>r non</u>	E 3.15	
6											
7											
8											
9											
10											
12					<u>*</u>						
Purge Rate (I	ow flow):	L	L/min	see back for a Total Volume P	additional entry lines if urged:	needea	Meas	ured Draw	down (ft):		
Notes: Drawdown shou	ld be less than	0.3 feet w	hile samplir	ng. Minimal drawdo	wn shall be achieved	and measure	ed by numr			vimately 0.1	
to 0.5 liter/m	inute) and con	tinually me	easuring wa	ter levels in the we	II. Note that site's hyre	ogeology may	y make it d	ifficult to acl	nieve this si	pecification.	
Purg	e Method (dis	sposable	bailer, tefl	on bailer, subme	rsible pump, etc.):						
Samp	le Method (di	isposable	bailer, ter	lon bailer, subme	ersible pump, etc.):						
vveli integrity (conditior	of casing, fil	usn mour	it sealing p	properly, cement	seal intact, etc.):						
Remarks (well recovery	/, unusual cor	nditions/c	observatio	ns):							
Signed:				· · · · · · · · · · · · · · · · · · ·			Date:				
Signed/Reviewer:							Date:				

APPENDIX B

Photographic Log

PHOTOGRAPH 1: KOTZEBUE UST SITE, VIEW NORTH. DRILLING MW-1R WELL. 23 SEPTEMBER 2010. 10:48

PHOTOGRAPH 2: KOTZEBUE UST SITE, VIEW SOUTHEAST. FINISHING DRILLING MW-2R 23 SEPTEMBER 2010. 13:28.

PHOTOGRAPH 3: KOTZEBUE UST SITE, VIEW NORTH. DRILLING MW-3R. 23 SEPTEMBER 2010.

APPENDIX C

Borehole and Monitoring Well Installation Logs

LOG OF EXPLORATORY BOREHOLE

BOREHOLE / WELL DESIGNATION: MW-1R

PROJECT NAME: Kotzebue UST Site LOCATION: Kotzebue, Alaska PROJECT MANAGER: Dan Frank LOGGED BY: Melissa Pike PROJECT NUMBER: 465-009 DATUM ELEVATION: 9.6 START TIME / END TIME: 1140/1205 DATE COMPLETED: 9/23/10 TOTAL BOREHOLE DEPTH: 11 feet DRILLING CONTRACTOR: Hammer Environmental DRILL RIG TYPE: Geoprobe SAMPLING METHOD: Direct Push

Recovered/Driven (feet)	In Situ PID (ppm)	GW Depth (feet)		We	ell De	tail		Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
3.5/5	0.0 0.0		Concrete			e Chips	Monument	1.0	SP		Gravelly Sand Dry, brown, gravelly sand.
	0.0 4.3		Unslotted PVC		•	Bentonit		3.0	GP	200 200 200 200 200 200 200 200	Gravel Moist, grey, fine Gravel.
2.75/4	10.5		2"					5.0	GP	2002 2005 2005 2002 2005 2005 2002 2005 2005	Sandy Gravel Wet, grey.
	5.5		lica Sand	•			Slot Screen PVC	7.0	GP/PT		Saturated with some organics.
	0.4		10/20 Si					8.0	SP		Sand Saturated sand with some gravel.
2.25/2	0.0						¥	9.0	SP/SW		Sand Top 3" - fine grained sand. Bottom 9" - moist, coarse grained sand.
	0.0							11.0	GP		Sandy Gravel Fine grained sandy gravel.
								12.0			
								13.0			
DATE: 10/26/10 DRAWN BY: Ashley CHECKED BY: Dan PROJECT NUMBER	Hanen C Frank R: 465-009	OMMENTS:									

LOG OF EXPLORATORY BOREHOLE

BOREHOLE / WELL DESIGNATION: MW-2R

PROJECT NAME: Kotzebue UST Site LOCATION: Kotzebue, Alaska PROJECT MANAGER: Dan Frank LOGGED BY: Ryan Burich PROJECT NUMBER: 465-009 DATUM ELEVATION: 9.0 feet START TIME / END TIME: 1345/1425 DATE COMPLETED: 9/23/10 TOTAL BOREHOLE DEPTH: 13 feet DRILLING CONTRACTOR: Hammer Environmental DRILL RIG TYPE: Geoprobe SAMPLING METHOD: Direct Push

Recovered/Driven (feet)	In Situ PID (ppm)	GW Depth (feet)		w	ell D	etail		Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
3.5/5.0	0.0						Monument	1.0	0.5		Sandy Gravel Moist, brown.
	0.0		Concrete -				te Chips	2.0	GP	2002202000000000000000000000000000000	
	0.0				•		Bentoni	3.0	GP/PT	All All <td>Sandy Gravel Saturated, grey, sandy gravel with some organics. At 4 feet, lense of organic matter ~</td>	Sandy Gravel Saturated, grey, sandy gravel with some organics. At 4 feet, lense of organic matter ~
	0.0		2" Unslotted					4.0			2" thick.
2.5/4.0	0.0						T	5.0	GP	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Sandy Gravel Saturated, grey.
	0.0		q	•			en PVC	6.0	SP		Gravelly Sand Saturated, grey, gravelly coarse grained sand.
	0.0		10/20 Silica San				2"	8.0	GM		Gravelly Sand Saturated, grey, gravelly fine grained sand.
4.0/4.0	0.0 0.0							9.0	SW	<u>7 07 07 0</u>	Sand Saturated, grey, coarse grained sand.
	0.0						•	10.0	SP/PT		Gravelly Sand Saturated, grey, gravelly sand with lense of orgainc material at the bottom 2".
								12.0	SM/PT		Sand Frozen, grey, fine grained sand with 2" orgainc layer at 12 feet.
DATE: 10/26/10 DRAWN BY: Ashley CHECKED BY: Dan PROJECT NUMBER	C Hansen Frank I: 465-009	OMMENTS:						13.0-		<u></u>	

LOG OF EXPLORATORY BOREHOLE

BOREHOLE / WELL DESIGNATION: MW-3R

PROJECT NAME: Kotzebue UST Site LOCATION: Kotzebue, Alaska PROJECT MANAGER: Dan Frank LOGGED BY: Melissa Pike PROJECT NUMBER: 465-009 DATUM ELEVATION: 9.3 feet START TIME / END TIME: 1430/1452 DATE COMPLETED: 9/23/10 TOTAL BOREHOLE DEPTH: 12 feet DRILLING CONTRACTOR: Hammer Environmental DRILL RIG TYPE: Geoprobe SAMPLING METHOD: Direct Push

Recovered/Driven (feet)	In Situ PID (ppm)	GW Depth (feet)		We	ell Deta	il	Depth (feet)	USCS Class	Lithologic Column	Lithologic Description
3.5/5.0	0.0		e			ument	1.0		900290029002 000000000 90029002900 0000000000	Sandy Gravel Damp, brown.
	0.0		Concret			inite Chips	2.0	GP		
	0.0				•	Bento	3.0		20000000000000000000000000000000000000	
	0.0		2" Unslotte				4.0	GP/PT	1 월 11 월 11 월 11 월 11 월 11 월 11 1 월 12 월 12	Gravel Damp, dark brown, gravel with organics and mineral soil.
3.0/4.0						T	5.0	PT	are are	Organic Matter Wet, dark brown.
	0.3						6.0			Gravelly Sand Saturated, grey.
	0.0		Sand	•		Screen PVC-	7.0			
	0.0		10/20 Silica			-2" 10-Slot	8.0	SP		
4.0/4.0	0.0						9.0			
	0.0									
	0.0					¥	10.0			
	0.0						11.0		8, 28, 28, 3 8, 28, 28, 3 7, 20, 20, 20, 3 7, 20, 20, 20, 20, 3 7, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	
	0.0						12.0	PT	The star	Organic Matter Wet, dark brown.
								SM		Sand Frozen, grey, fine grained.
DATE: 10/26/10 DRAWN BY: Ashley CHECKED BY: Dan PROJECT NUMBER	Hansen C Frank R: 465-009	U OMMENTS:	<u> </u>				13.0		<u> </u>	

APPENDIX D

Survey Data/Map

MONITOR WELL SURVEY

Kotzebue Airport Kotzebue, AK

ALASKA STATE PLANE ZONE 7, NAD83

NAVD88 ELEVATION

WELL ID	NORTHING	EASTING	PVC PIPE	GROUND
UST-NORTH	4711872.90	1553547.42	8.89	9.6
UST-WEST	4711828.48	1553491.81	8.59	9.3
UST-EAST	4711801.49	1553597.80	8.14	9.0
LOT M-EAST	4712028.19	1554381.15	14.10	11.3
LOT M-NORTH	4712090.97	1554372.42	13.21	10.7
LOT M-WEST	4712045.52	1554346.11	13.30	10.7

Coordinates and elevations are in US Survey feet

Surveyed September 30, 2010 Prepared For Oasis Environmental, Inc.

APPENDIX E

TestAmerica Analytical Results ADEC Data Review Checklists

Laboratory Data Review Checklist

Comp	bleted by:	Robert Beckma	an			
Title:		Environmental	Scientist		Date:	Nov 4, 2010
CS Re	eport Name:	KOTZEBUE F GROUNDWA REPORT	ORMER UST S TER CHARAC	DITE FERIZATION	Report Date:	Oct 12, 2010
Consu	ultant Firm:	Oasis Environr	nental, Inc.			
Labor	atory Name:	TestAmerican I Inc.	Laboratories,	Laboratory Report Nu	umber: ATI0083	3
ADEC	C File Number:	TBD		ADEC RecKey Num	ber: TBD	
1. <u>L</u>	a <u>boratory</u> a. Did an ⊿ ⊙ Yes	ADEC CS appro	oved laboratory 1 ○ NA (Plea	receive and <u>perform</u> all o ase explain.)	f the submitted Comments:	sample analyses?
	b. If the sat laborato	mples were tran ry, was the labo	sferred to anothe ratory performir	er "network" laboratory on the analyses ADEC CS	or sub-contracted S approved?	d to an alternate
г	• Yes	\bigcirc No	○NA (Pleas	se explain)	Comments:	
2. <u>Cł</u>	nain of Custody a. COC infor	(COC) mation complete	ed, signed, and o	lated (including released	/received by)?	
ſ	• Yes	⊖ No	○NA (Pleas	se explain)	Comments:	
	b. Correct an	alyses requested	1?			
	• Yes	○ No	⊖NA (Ple	ase explain)	Comments:	

3.	Laborator	y Sam	ple Receii	ot Documentation

				a. Sample/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ \text{ C})$?			
	• Yes	\bigcirc No	○NA (Please explain)	Comments:			
Coo	oler temperatu	re documented	l at 3.0°C				
1	b. Sample pres Volatile Ch	servation acception acceptication acception acception acception acception acception ac	otable - acidified waters, Methanol j ents, etc.)?	preserved VOC soil (GRO, BTEX,			
	• Yes	⊖ No	○NA (Please explain)	Comments:			
	c. Sample con	dition docume	nted - broken, leaking (Methanol), z	zero headspace (VOC vials)?			
	\bigcirc Yes	⊖ No	• NA (Please explain)	Comments:			
Sar	nples received	l in good condi	tion.				
•	d. If there wer preservation, s	e any discrepar sample tempera	ncies, were they documented? - For ature outside of acceptance range, in	r example, incorrect sample container nsufficient or missing samples, etc.?			
	• Yes	⊖ No	ONA (Please explain)	Comments:			
	e. Data quality or usability affected? (Please explain)						
(e. Data quality	v or usability at	ffected? (Please explain)				
(e. Data quality	v or usability at	ffected? (Please explain)	Comments:			
Dat	e. Data quality	v or usability at usability not at	ffected? (Please explain)	Comments:			
Dat	e. Data quality ta quality and	v or usability at usability not at	ffected? (Please explain)	Comments:			
Dat Case	e. Data quality ta quality and <u>Narrative</u>	v or usability at usability not at	ffected? (Please explain)	Comments:			
Dat Case 2	e. Data quality ta quality and <u>Narrative</u> a. Present and	v or usability at usability not at understandable	e?	Comments:			
Dat Zase	e. Data quality ta quality and <u>Narrative</u> a. Present and • Yes	v or usability at usability not at understandable O No	ffected? (Please explain) ffected. e? ONA (Please explain)	Comments: Comments:			
Dat Case	e. Data quality ta quality and <u>Narrative</u> a. Present and () Yes	v or usability at usability not at understandable	ffected? (Please explain) ffected. e? ONA (Please explain)	Comments: Comments:			
	e. Data quality ta quality and <u>Narrative</u> a. Present and (•) Yes b. Discrepanci	v or usability at usability not at understandable O No	ffected? (Please explain) ffected. NA (Please explain) C failures identified by the lab?	Comments: Comments:			
	e. Data quality ta quality and <u>Narrative</u> a. Present and	v or usability at usability not at understandable O No ies, errors or Q O No	ffected? (Please explain) ffected. e? ONA (Please explain) C failures identified by the lab? ONA (Please explain)	Comments: Comments:			
	e. Data quality ta quality and <u>Narrative</u> a. Present and	v or usability at usability not at understandable O No ies, errors or Q O No	ffected? (Please explain) ffected. e? ONA (Please explain) C failures identified by the lab? ONA (Please explain)	Comments: Comments:			
	e. Data quality ta quality and <u>Narrative</u> a. Present and	v or usability at usability not at understandable O No ies, errors or Q O No	ffected? (Please explain) ffected. ?? ONA (Please explain) C failures identified by the lab? ONA (Please explain) a documented?	Comments:			

d. What is the effect on data quality/usability according to the case narrative?

		• • • • • • • • • • • • • • • • • • • •		Comments:	
Γ	Data quality and	usability not	affected.		
5. <u>San</u>	nples Results				
	a. Correct ana	lyses perform	ed/reported as requested on COC?		
	• Yes	\bigcirc No	○NA (Please explain)	Comments:	
	b. All applical	ble holding ti	mes met?		
_	• Yes	⊖ No	○NA (Please explain)	Comments:	
	c. All soils ret	ported on a dr	y weight basis?		
	⊖ Yes	⊖ No	• NA (Please explain)	Comments:	
N	lo soil analyses	requested.			
	d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for project?				
	⊖ Yes	No	○NA (Please explain)	Comments:	
I	PQL for 1,2-Dichloroethane reported 2x above cleanup level for sample 10-KUST-MW1R-01GW.				
	e. Data quality or usability affected? (Please explain)				
	Comments:				
1	1,2-Dichloroethane result from sample MW1R-01GW has been flagged "J" and considered estimated.				
6. <u>Q</u>	<u>C Samples</u>				
	a. Method Blan	ık			
	i. One method blank reported per matrix, analysis and 20 samples?				
	⊖ Yes	🔿 No	○NA (Please explain)	Comments:	
•	Yes				
	ii. All method blank results less than PQL?				
	• Yes	\bigcirc No	○NA (Please explain)	Comments:	

	iii. If abov	e PQL, what	Comments:		
NA					
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?				
	○ Yes	\bigcirc No	• NA (Please explain)	Comments:	
No at	ffected samp	ples to flag.			
	v. Data qu	ality or usabil	ity affected? (Please explain)	Comments:	
Data	a quality and	l usability not	affected.		
b.	Laboratory	Control Samp	ble/Duplicate (LCS/LCSD)		
	i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)				
	• Yes	\bigcirc No	○NA (Please explain)	Comments:	
	ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples?				
	• Yes	⊖ No	○NA (Please explain)	Comments:	
	iii. Accura project spe 75%-125%	cy - All perce ecified DQOs 6, AK103 60%	ent recoveries (%R) reported and with , if applicable. (AK Petroleum metho %-120%; all other analyses see the la	hin method or laboratory limits? And ods: AK101 60%-120%, AK102 boratory QC pages)	
	• Yes	⊖ No	○NA (Please explain)	Comments:	
	iv. Precision limits? An or sample/ pages)	on - All relativ d project spec sample duplic	ve percent differences (RPD) reporte cified DQOs, if applicable. RPD repo cate. (AK Petroleum methods 20%; a	d and less than method or laboratory orted from LCS/LCSD, MS/DMSD, and ll other analyses see the laboratory QC	
	○ Yes	• No	○NA (Please explain)	Comments:	
RPD	above limi	t for GRO in s	ample 10I0211-DUP1. Field Duplic	ate within limits.	
	-				

v. If %R c	or RPD is outs	side of acceptable limits, what sample	es are affected? Comments:
No affected sam	ples		
vi. Do the \bigcirc Yes	affected sam	ples(s) have data flags? If so, are the • NA (Please explain)	data flags clearly defined?
	0 110		Comments.
No affected sam	ples.		
vii. Data ç	uality or usat	pility affected? (Please explain)	Comments:
Data quality and	d usability no	t affected. See QAR for details.	
c. Surrogates	- Organics Or	nly	eld OC and laboratory samples?
• Ves	\bigcirc No	\bigcirc NA (Please explain)	Comments:
. 103			Comments.
 ii. Accurate project spect spect the laborate • Yes 	cy - All perce ecified DQOs tory report pa O No	C NA (Please explain)	Comments:
iii. Do the clearly de	sample result fined?	ts with failed surrogate recoveries ha	we data flags? If so, are the data flags
⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
No sample result	s with failed	surrogate recoveries.	
iv. Data q	uality or usab	ility affected? (Use the comment boy	x to explain.). Comments:
Data quality and	usability not	affected.	
d. Trip Blank <u>Soil</u> i. One trip (If not, en	- Volatile ana blank reporte ter explanatio	alyses only (GRO, BTEX, Volatile C ed per matrix, analysis and for each c n below.)	Chlorinated Solvents, etc.): <u>Water and</u> cooler containing volatile samples?
• Yes	⊖ No	○ NA (Please explain.)	Comments:

ii. Is the c (If not,	ooler used to a comment ex	transport the trip blank and VOA sat splaining why must be entered below	mples clearly indicated on the COC? v)
○ Yes	⊖ No	• NA (Please explain.)	Comments:
Only one cooler	received by la	boratory for all samples.	
iii. All res	ults less than	PQL?	
• Yes	○ No	○ NA (Please explain.)	Comments:
iv. If abov	ve PQL, what	samples are affected?	
			Comments:
NA			
v. Data qu	ality or usabi	lity affected? (Please explain.)	
			Comments:
Data quality and	l usability not	affected.	
e. Field Duplic	ate		
i. One field	d duplicate su	bmitted per matrix, analysis and 10	project samples?
• Yes	⊖ No	○NA (Please explain)	Comments:
ii. Submit	tted blind to la	ıb?	
• Yes	○ No	○ NA (Please explain.)	Comments:
iii. Precisi (Recor	ion - All relati nmended: 309	we percent differences (RPD) less th water, 50% soil)	nan specified DQOs?
	:	RPD (%) = Absolute Value of: (R_{1-}) ((R_{1+} R	$\frac{R_2}{2} \times 100$
Where R	$R_1 = $ Sample C	oncentration	
R	$_2$ = Field Dup	licate Concentration	
• Yes	⊖ No	○NA (Please explain)	Comments:

	iv. Data quality or usability affected? (Use the comment box to explain why or why not.)				
	⊖ Yes	No	○NA (Please explain)	Comments:	
All a	analyte RPDs	s were below	the recommended 30% (for water) di	fference.	
f.	Decontamin	ation or Equi	pment Blank (if applicable)		
	⊖ Yes	⊖ No	○ NA (Please explain)	Comments:	
NA-	No equipme	ent was used v	which would require decontamination		
	i. All resul	ts less than P	QL?		
	○ Yes	⊖ No	• NA (Please explain)	Comments:	
See a	above				
	ii. If above PQL, what samples are affected?				
NA				Comments.	
	iii. Data qu	uality or usab	Comments:		
Data	Data quality and usability not affected.				
7. <u>Other I</u>	Data Flags/Q	ualifiers (AC	OE, AFCEE, Lab Specific, etc.)		
a.	Defined and	appropriate?			
	⊖ Yes	⊖ No	• NA (Please explain)	Comments:	
No c	other data fla	gs were reaui	red.		

Reset Form

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Anchorage 2000 West International Airport Road Suite A10 Anchorage, AK 99502-1119 Tel: (907) 563-9200

TestAmerica Job ID: ATI0083

TestAmerica Sample Delivery Group: ATI0083 Client Project/Site: 465-009 Client Project Description: Kotzebue UST Site

For:

Oasis Environmental, Inc. 825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Attn: Dan Frank

Johanna Dreher

Authorized for release by: 10/12/2010 2:50 PM

Johanna L Dreher Client Services Manager johanna.dreher@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Detection Summary	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	11
QC Association	20
Chronicle	24
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29

Qualifiers

00	•	-		
GC	V	0	iati	e

Qualifier	Qualifier Description
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
Metals	
Qualifier	Qualifier Description
RL1	Reporting limit raised due to sample matrix effects.
Fuels	
Qualifier	Qualifier Description
Q11	Detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel.
Q4	The hydrocarbons present are a complex mixture of diesel range and heavy oil range organics.
QP	Hydrocarbon result partly due to individual peak(s) in quantitation range.
Glossar	У

Qualifier	'S	3
GC Volati	les	
Qualifier	Qualifier Description	
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.	
Metals		5
Qualifier	Qualifier Description	
RL1	Reporting limit raised due to sample matrix effects.	
Fuels		
Qualifier	Qualifier Description	
Q11	Detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel.	0
Q4	The hydrocarbons present are a complex mixture of diesel range and heavy oil range organics.	0
QP	Hydrocarbon result partly due to individual peak(s) in quantitation range.	9
Glossar	у	10
Glossary	Glossary Description	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis.	
		13

Detection Summary

Client: Oasis Environmental, Inc. Project/Site: 465-009

TestAmerica Job ID: ATI0083 SDG: ATI0083

Lab Sample ID: ATI0083-01

Lab Sample ID: ATI0083-02

Lab Sample ID: ATI0083-03

Client Sample ID: 10-KUST-MW1R-01GW

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics	8.76	Q11	0.397		mg/l	1	_	AK102/103	total
Residual Range Organics	0.595		0.397		mg/l	1		AK102/103	total
1,2-Dibromoethane	0.0533		0.0100		ug/l	1		EPA 8011	total
Benzene	351		2.00		ug/l	10		EPA 8260B	total
Ethylbenzene	189		10.0		ug/l	10		EPA 8260B	total
m,p-Xylene	103		20.0		ug/l	10		EPA 8260B	total
Gasoline Range Hydrocarbons	3350		50.0		ug/l	1		AK 101	total

Client Sample ID: 10-KUST-MW2R-01GW

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Diesel Range Organics	0.417	Q4	0.407		mg/l	1	AK102/103	total
Benzene	1.11		0.200		ug/l	1	EPA 8260B	total

Client Sample ID: 10-KUST-MW3R-01GW

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics	1.51	QP	0.407		mg/l	1	_	AK102/103	total
Residual Range Organics	0.550		0.407		mg/l	1		AK102/103	total
1,2-Dibromoethane	0.0121		0.0100		ug/l	1		EPA 8011	total
Benzene	59.9		2.00		ug/l	10		EPA 8260B	total
Ethylbenzene	92.4		10.0		ug/l	10		EPA 8260B	total
m,p-Xylene	79.4		2.00		ug/l	1		EPA 8260B	total
o-Xylene	1.45		1.00		ug/l	1		EPA 8260B	total
Toluene	1.24		1.00		ug/l	1		EPA 8260B	total
Gasoline Range Hydrocarbons	4020		50.0		ug/l	1		AK 101	total

Client Sample ID: 10-KUST-MW4R-01GW

Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Diesel Range Organics 7.47 Q11 0.439 AK102/103 mg/l 1 total **Residual Range Organics** 0.528 0.439 AK102/103 mg/l 1 total 1,2-Dibromoethane 0.0541 0.0100 1 EPA 8011 total ug/l Benzene 397 2.00 10 EPA 8260B total ug/l Ethylbenzene 211 10.0 ug/l 10 EPA 8260B total m,p-Xylene 112 20.0 10 EPA 8260B total ug/l AK 101 Gasoline Range Hydrocarbons 3510 50.0 ug/l 1 total

Client Sample ID: 10-KOTZ-TB-01GW

Lab Sample ID: ATI0083-05

Lab Sample ID: ATI0083-04

No Detections.

> 10 11 12

TestAmerica Anchorage 10/12/2010

RL

2.00

10.0

10.0

10.0

20.0

10.0

MDL

Unit D

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

Analyte

Benzene

Toluene

Ethylbenzene

m,p-Xylene

o-Xylene

Triacontane

1,2-Dichloroethane (EDC)

Client Sample ID: 10-KUST-MW1R-01GW Date Collected: 09/25/10 09:20 Date Received: 09/27/10 12:00

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Result Qualifier

351

ND

ND

189

103

ND

Lab Sample ID: ATI0083-01 Matrix: Water

Analyzed

09/30/10 14:35

09/30/10 14:35

09/30/10 14:35

09/30/10 14:35

09/30/10 14:35

09/30/10 14:35

Prepared

09/30/10 08:44

09/30/10 08:44

09/30/10 08:44

09/30/10 08:44

09/30/10 08:44

09/30/10 08:44

10/06/10 14:31

5

Dil Fac

10

10

10

10

10

10

Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	86.6		80 - 120				09/30/10 08:44	09/30/10 14:35	10
Toluene-d8	89.2		74.2 - 120				09/30/10 08:44	09/30/10 14:35	10
4-bromofluorobenzene	89.0		70 - 120				09/30/10 08:44	09/30/10 14:35	10
Method: AK 101 - Gasoline Hydi	rocarbons (n-H	exane to <r< td=""><td>n-Decane) and E</td><td>BTEX by AK1</td><td>01</td><td></td><td></td><td></td><td></td></r<>	n-Decane) and E	BTEX by AK1	01				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	3350		50.0		ug/l	_	09/30/10 13:49	09/30/10 19:47	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a - Trifluorotoluene (FID)			50 - 150				09/30/10 13:49	09/30/10 19:47	1
- Method: EPA 8011 - EDB by EP	A Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.0533		0.0100		ug/l	_	09/29/10 11:49	09/30/10 10:16	1
Method: EPA 6020 - Total Metals	s per EPA 6000	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.00100		mg/l	_	10/01/10 10:03	10/02/10 19:20	1
- Method: AK102/103 - Diesel Rar	ige Organics (C	:10-C25) an	d Residual Ran	ge Organics	(C25-C36	5) pe	er AK102/RRO		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics	8.76	Q11	0.397		mg/l	_	10/06/10 14:31	10/09/10 16:29	1
Residual Range Organics	0.595		0.397		mg/l		10/06/10 14:31	10/09/10 16:29	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane		Q11	50 - 150				10/06/10 14:31	10/09/10 16:29	1

Client Sample ID: 10-KUST-MW2R-01GW Date Collected: 09/25/10 10:45 Date Received: 09/27/10 12:00

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

97.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.11		0.200		ug/l	_	09/30/10 08:44	09/30/10 15:03	1
1,2-Dichloroethane (EDC)	ND		1.00		ug/l		09/30/10 08:44	09/30/10 15:03	1
Toluene	ND		1.00		ug/l		09/30/10 08:44	09/30/10 15:03	1
Ethylbenzene	ND		1.00		ug/l		09/30/10 08:44	09/30/10 15:03	1
m,p-Xylene	ND		2.00		ug/l		09/30/10 08:44	09/30/10 15:03	1
o-Xylene	ND		1.00		ug/l		09/30/10 08:44	09/30/10 15:03	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	82.6		80 - 120				09/30/10 08:44	09/30/10 15:03	1
Toluene-d8	88.0		74.2 - 120				09/30/10 08:44	09/30/10 15:03	1
4-bromofluorobenzene	88.8		70 - 120				09/30/10 08:44	09/30/10 15:03	1

50 - 150

10/09/10 16:29

Lab Sample ID: ATI0083-02

1

Matrix: Water

Client Sample ID: 10-KUST-MW2R-01GW Date Collected: 09/25/10 10:45

Date Received: 09/27/10 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		50.0		ug/l	_	09/30/10 13:49	09/30/10 20:12	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a - Trifluorotoluene (FID)	122		50 - 150				09/30/10 13:49	09/30/10 20:12	1
- Method: EPA 8011 - EDB by EP	A Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/l	_	09/29/10 11:49	09/30/10 10:40	1
- Method: EPA 6020 - Total Metals	s per EPA 6000	7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND	RL1	0.00200		mg/l	_	10/05/10 21:07	10/06/10 14:57	2
_ Method: AK102/103 - Diesel Ran	nge Organics (C	:10-C25) an	d Residual Ran	ge Organics	(C25-C36) pe	er AK102/RRO		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics	0.417	Q4	0.407		mg/l	_	10/06/10 14:31	10/09/10 17:01	1
Residual Range Organics	ND		0.407		mg/l		10/06/10 14:31	10/09/10 17:01	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	86.1		50 - 150				10/06/10 14:31	10/09/10 17:01	1
1-Chlorooctadecane	00.1								

Client Sample ID: 10-KUST-MW3R-01GW Date Date

au Sample ID: AT10083-03 Matrix: Water

TestAmerica Job ID: ATI0083

Lab Sample ID: ATI0083-02

SDG: ATI0083

Matrix: Water

Collected: 09/25/10 11:45	
Received: 09/27/10 12:00	

Method: EPA 8260B - Volatile	organic Compou	inds by EP	A Method 8260E	3					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	59.9		2.00		ug/l	_	09/30/10 08:44	10/01/10 12:02	10
1,2-Dichloroethane (EDC)	ND		1.00		ug/l		09/30/10 08:44	09/30/10 17:24	1
Toluene	1.24		1.00		ug/l		09/30/10 08:44	09/30/10 17:24	1
Ethylbenzene	92.4		10.0		ug/l		09/30/10 08:44	10/01/10 12:02	10
m,p-Xylene	79.4		2.00		ug/l		09/30/10 08:44	09/30/10 17:24	1
o-Xylene	1.45		1.00		ug/l		09/30/10 08:44	09/30/10 17:24	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	81.4		80 - 120				09/30/10 08:44	09/30/10 17:24	1
Toluene-d8	93.6		74.2 - 120				09/30/10 08:44	09/30/10 17:24	1
4-bromofluorobenzene	91.8		70 - 120				09/30/10 08:44	09/30/10 17:24	1

Method: AK 101 - Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	4020		50.0		ug/l	_	09/30/10 13:49	09/30/10 21:51	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a - Trifluorotoluene (FID)	97.3		50 - 150				09/30/10 13:49	09/30/10 21:51	1
– Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.0121		0.0100		ug/l		09/29/10 11:49	09/30/10 11:53	1

Triacontane

Client Sample ID: 10-KUST Date Collected: 09/25/10 11:45 Date Received: 09/27/10 12:00	-MW3R-01GW	I					Lab Sam	ple ID: ATI0 Matrix	083-03 (: Water
Method: EPA 6020 - Total Meta	ls per EPA 6000	/7000 Serie	es Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.00100		mg/l	_	10/01/10 10:03	10/02/10 19:24	1
Method: AK102/103 - Diesel Ra	inge Organics (C	:10-C25) ar	nd Residual Ran	de Organics	(C25-C36	s) ne	er AK102/RRO		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics	1.51	QP	0.407		mg/l	—	10/06/10 14:31	10/11/10 12:06	1
Residual Range Organics	0.550		0.407		mg/l		10/06/10 14:31	10/11/10 12:06	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane			50 - 150				10/06/10 14:31	10/11/10 12:06	1
Triacontane	118		50 - 150				10/06/10 14:31	10/11/10 12:06	1
Client Sample ID: 10-KUST	-MW4R-01GW	1					Lab Sam	ple ID: ATIO	083-04
Date Collected: 09/25/10 10:00								Matrix	c: Water
Date Received: 09/27/10 12:00									
Method: EPA 8260B - Volatile (Organic Compou	inde hv FP	A Method 8260F	2					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene			2.00		ug/l	—	09/30/10 08:44	09/30/10 18:21	10
1.2-Dichloroethane (EDC)	ND		1.00		ua/l		09/30/10 08:44	09/30/10 17:52	1
Toluene	ND		1.00		ua/l		09/30/10 08:44	09/30/10 17:52	1
Ethylbenzene	211		10.0		ug/l		09/30/10 08:44	09/30/10 18:21	10
m n-Xylene	112		20.0		ug/l		09/30/10 08:44	09/30/10 18:21	10
o-Xylene	ND		1.00		ug/l		09/30/10 08:44	09/30/10 17:52	1
Our man to	0/ D	0					0	A	D# 5
	— % Recovery	Qualifier					Prepared	Analyzed	
	02.0		00 - 120 74 0 - 120				09/30/10 08:44	09/30/10 17.52	1
1 biuerie-do	100		74.2 - 120				09/30/10 08:44	09/30/10 17.52	1
4-bromonuorobenzene	119		70 - 720				09/30/10 08.44	09/30/10 17.52	I
Method: AK 101 - Gasoline Hyd	drocarbons (n-H	exane to <	n-Decane) and E	BTEX by AK1	01				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	3510		50.0		ug/l		09/30/10 13:49	09/30/10 22:16	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a - Trifluorotoluene (FID)	127		50 - 150				09/30/10 13:49	09/30/10 22:16	1
Method: EPA 8011 - EDB by E	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.0541		0.0100		ug/l		09/29/10 11:49	09/30/10 12:17	1
		7000 Corio	• Motheda						
Metriou. EPA 6020 - Total Meta	Result	Qualifier		MDI	Unit	п	Prepared	Analyzed	Dil Eac
		Quaimer	0 00100		ma/l	_	10/01/10 10:03	10/02/10 19·28	1
	ND		0.00100		mg/1		10/01/10 10:00	10/02/10 13.20	I
Method: AK102/103 - Diesel Ra	inge Organics (C	<mark>:10-C25</mark>) ar	nd Residual Ran	ge Organics	6 (C25-C36	5) pe	er AK102/RRO		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics	7.47	Q11	0.439		mg/l		10/06/10 14:31	10/09/10 17:33	1
Residual Range Organics	0.528		0.439		mg/l		10/06/10 14:31	10/09/10 17:33	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	89.4		50 - 150				10/06/10 14:31	10/09/10 17:33	1

1

10/09/10 17:33

10/06/10 14:31

50 - 150

82.6

Analyte

Benzene

Toluene

1,2-Dichloroethane (EDC)

Client Sample ID: 10-KOTZ-TB-01GW Date Collected: 09/25/10 08:00 Date Received: 09/27/10 12:00

Lab Sample ID: ATI0083-05 Matrix: Water

Analyzed

09/30/10 18:49

09/30/10 18:49

09/30/10 18:49

09/30/10 08:44

ug/l

9

Dil Fac	
1	
1	
1	
1	
1	
1	
Dil Fac	
1	
1	
1	

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B Unit D Result Qualifier RL MDL Prepared ND 0.200 ug/l 09/30/10 08:44 ND 1.00 ug/l 09/30/10 08:44

1.00

ND

Ethylbenzene	ND		1.00		ug/l	09/30/10 08:44	09/30/10 18:49	1
m,p-Xylene	ND		2.00		ug/l	09/30/10 08:44	09/30/10 18:49	1
o-Xylene	ND		1.00		ug/l	09/30/10 08:44	09/30/10 18:49	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	85.2		80 - 120			09/30/10 08:44	09/30/10 18:49	1
Toluene-d8	90.2		74.2 - 120			09/30/10 08:44	09/30/10 18:49	1
4-bromofluorobenzene	89.6		70 - 120			09/30/10 08:44	09/30/10 18:49	1
Method: AK 101 - Gasoline	Hydrocarbons (n-H	exane to <	n-Decane) and BTI	EX by AK101				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Hydrocarbons	ND		50.0		ug/l	_	09/30/10 13:49	09/30/10 22:41	1	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
a,a,a - Trifluorotoluene (FID)			50 - 150				09/30/10 13:49	09/30/10 22:41	1	

Prep Type: total

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B Matrix: Water

				Percent Surrogate	Recovery (Acceptance Lim
		DBFM	TOL	BFB	
Lab Sample ID	Client Sample ID	(80-120)	(74.2-120)	(70-120)	
10I0203-BLK1	10I0203-BLK1	83.0	86.0	87.2	
10I0203-BS1	10I0203-BS1	84.2	88.4	89.2	
10I0203-BS2	10I0203-BS2	86.4	87.0	87.6	
10I0203-MS1	10-KUST-MW2R-01GW	83.4	89.0	87.8	
10I0203-MS2	10-KUST-MW2R-01GW	85.4	89.6	89.8	
10I0203-MSD1	10-KUST-MW2R-01GW	83.4	89.0	88.0	
10I0203-MSD2	10-KUST-MW2R-01GW	83.8	88.6	87.8	
ATI0083-01	10-KUST-MW1R-01GW	86.6	89.2	89.0	
ATI0083-02	10-KUST-MW2R-01GW	82.6	88.0	88.8	
ATI0083-03	10-KUST-MW3R-01GW	81.4	93.6	91.8	
ATI0083-04	10-KUST-MW4R-01GW	82.0	100	119	
ATI0083-05	10-KOTZ-TB-01GW	85.2	90.2	89.6	
Surrogate Legend					
DBFM = Dibromofluoron	nethane				
TOL = Toluene-d8					
BFB = 4-bromofluorober	izene				

Method: AK 101 - Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101 Matrix: Water

			Percent Surrogate Recovery (Acceptance Limits)
		ifluorotoluc	
Lab Sample ID	Client Sample ID	(50-150)	
10I0211-BLK1	10I0211-BLK1	119	
10I0211-BS1	10I0211-BS1	62.3	
10I0211-DUP1	10-KUST-MW2R-01GW	115	
10I0211-MS1	10-KUST-MW2R-01GW	118	
10I0211-MSD1	10-KUST-MW2R-01GW	108	
ATI0083-01	10-KUST-MW1R-01GW	114	
ATI0083-02	10-KUST-MW2R-01GW	122	
ATI0083-03	10-KUST-MW3R-01GW	97.3	
ATI0083-04	10-KUST-MW4R-01GW	127	
ATI0083-05	10-KOTZ-TB-01GW	112	

Surrogate Legend

a,a,a - Trifluorotoluene (FID) = a,a,a - Trifluorotoluene (FID)

Method: AK102/103 - Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO Matrix: Water

				Percent Surrogate Recovery (Acceptance Limits)
		1COD	тс	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	
10J0028-BLK1	10J0028-BLK1	84.0	77.1	
10J0028-DUP1	ATI0082-02	98.7	94.0	
10J0028-MS1	ATI0082-02	104	91.3	
10J0028-MS2	10-KUST-MW2R-01GW	99.9	92.1	
10J0028-MSD1	ATI0082-02	105	89.1	
10J0028-MSD2	10-KUST-MW2R-01GW	90.5	83.4	

Prep Type: total

Method: AK102/103 - Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO (Continued)

Matrix: Water				Prep Type: total
				Percent Surrogate Recovery (Acceptance Limits)
		1COD	тс	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	
ATI0083-01	10-KUST-MW1R-01GW	99.6 Q11	97.5	·
ATI0083-02	10-KUST-MW2R-01GW	86.1	81.7	
ATI0083-03	10-KUST-MW3R-01GW	116	118	
ATI0083-04	10-KUST-MW4R-01GW	89.4	82.6	
Surrogate Legend				
1COD = 1-Chloroocta	adecane			
TC = Triacontane				
- Nothod: AK102/1	03 Diosol Pango Organic	cc (C10 C25)	and Po	sidual Pango Organico (C25 C26)
er AK102/RRO	05 - Dieser Kange Organic	.5 (010-025)		sidual Range Organics (025-050)
latrix: Water				Prep Type: tota
				Percent Surrogate Recovery (Acceptance Limits)
		1COD	тс	
Lab Sample ID	Client Sample ID	(60-120)	(60-120)	
10J0028-BS1	10J0028-BS1	88.2	77.3	·

82.3

90.3

Surrogate Legend

10J0028-BSD1

1COD = 1-Chlorooctadecane

10J0028-BSD1

TC = Triacontane

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 10I0203-BLK1 Matrix: Water Analysis Batch: 10l0203

Analyte

Acetone

2-Butanone 1,1-Dichloropropene

Benzene

Trichloroethene

1,2-Dichloroethane (EDC)

Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride

Dichlorodifluoromethane Chloromethane Vinyl chloride

trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloropropane Bromochloromethane Chloroform Carbon tetrachloride 1,1,1-Trichloroethane

					Client Sa	ample ID: 101020	3-BLK1
						Prep Typ	e: total
						Prep Batch: 10	0203_P
Blank	Blank Qualifier Bl	МП	Unit	п	Prenared	Analyzed	Dil Fac
	1.00		ua/l	_	09/30/10 08:44	09/30/10 10:17	1
ND	5.00		ua/l		09/30/10 08:44	09/30/10 10:17	1
ND	0.200		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	5.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	10.0		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	25.0		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	10.0		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	0.200		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	10.0		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1
ND	1.00		ug/l		09/30/10 08:44	09/30/10 10:17	1

Dibromomethane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,2-Dichloropropane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Bromodichloromethane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
cis-1,3-Dichloropropene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Toluene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
4-Methyl-2-pentanone	ND	10.0	ug/l	09/30/10 08:44	09/30/10 10:17
trans-1,3-Dichloropropene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Tetrachloroethene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,1,2-Trichloroethane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Dibromochloromethane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,3-Dichloropropane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,2-Dibromoethane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
2-Hexanone	ND	10.0	ug/l	09/30/10 08:44	09/30/10 10:17
Ethylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Chlorobenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,1,1,2-Tetrachloroethane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
m,p-Xylene	ND	2.00	ug/l	09/30/10 08:44	09/30/10 10:17
o-Xylene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Styrene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Bromoform	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
lsopropylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
n-Propylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,1,2,2-Tetrachloroethane	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Bromobenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,3,5-Trimethylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17

5 7

TestAmerica Anchorage 10/12/2010

1

1

1

1

1

1

1

1

1

1

1

1

1

RL

1.00

1.00

1.00

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Blank Blank

ND

ND

ND

Result Qualifier

Lab Sample ID: 10I0203-BLK1 Matrix: Water

Client Sample ID: 10I0203-BLK1

Analysis Batch: 1010203

Analyte

2-Chlorotoluene

4-Chlorotoluene

1,2,3-Trichloropropane

		,	Prep Typ Prep Batch: 10	e: total 0203_P
MDL	Unit D	Prepared	Analyzed	Dil Fac
	ug/l	09/30/10 08:44	09/30/10 10:17	1
	ug/l	09/30/10 08:44	09/30/10 10:17	1
	ug/l	09/30/10 08:44	09/30/10 10:17	1
	ua/l	09/30/10 08:44	09/30/10 10:17	1

tert-Butylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,2,4-Trimethylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
sec-Butylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
p-Isopropyltoluene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,3-Dichlorobenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,4-Dichlorobenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
n-Butylbenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,2-Dichlorobenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,2-Dibromo-3-chloropropane	ND	5.00	ug/l	09/30/10 08:44	09/30/10 10:17
Hexachlorobutadiene	ND	2.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,2,4-Trichlorobenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17
Naphthalene	ND	2.00	ug/l	09/30/10 08:44	09/30/10 10:17
1,2,3-Trichlorobenzene	ND	1.00	ug/l	09/30/10 08:44	09/30/10 10:17

	Blank	Blank				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	83.0		80 - 120	09/30/10 08:44	09/30/10 10:17	1
Toluene-d8	86.0		74.2 - 120	09/30/10 08:44	09/30/10 10:17	1
4-bromofluorobenzene	87.2		70 - 120	09/30/10 08:44	09/30/10 10:17	1

Lab Sample ID: 10I0203-BS1 **Matrix: Water** Analysis Batch: 1010203

Client Sample ID: 10I0203-BS1 Prep Type: total Prep Batch: 10I0203 P

Client Sample ID: 10I0203-BS2

Prep Type: total

Analysis Datch. 1010203	Spike	LCS	LCS				% Rec.	1. 1010203_F
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,1-Dichloroethene	10.0	8.98		ug/l		89.8	60.4 - 140	
Benzene	10.0	10.7		ug/l		107	72.9 - 120	
Trichloroethene	10.0	10.2		ug/l		102	73.7 - 120	
Toluene	10.0	9.83		ug/l		98.3	72.4 - 132	
Chlorobenzene	10.0	9.95		ug/l		99.5	80 - 120	
L	CS LCS							

200	200 200					
% Recovery	Qualifier	Limits				
84.2		80 - 120				
88.4		74.2 - 120				
89.2		70 - 120				
	% Recovery 84.2 88.4 89.2	% Recovery Qualifier 84.2 88.4 89.2 89.2				

Lab Sample ID: 10I0203-BS2

Matrix: Water

Analysis Batch: 10I0203							Prep Batch: 1010203_P	
	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Methyl tert-butyl ether	10.0	10.0		ug/l		100	47.6 - 150	
Benzene	10.0	9.52		ug/l		95.2	72.9 - 120	
Toluene	10.0	9.19		ug/l		91.9	72.4 - 132	
Ethylbenzene	10.0	9.40		ug/l		94.0	0 - 200	
m,p-Xylene	20.0	19.6		ug/l		97.9	70 - 130	
o-Xylene	10.0	10.1		ug/l		101	70 - 130	
Naphthalene	10.0	9.44		ug/l		94.4	70 - 130	

TestAmerica Anchorage

Client Sample ID: 10I0203-BS2

Client Sample ID: 10-KUST-MW2R-01GW

Client Sample ID: 10-KUST-MW2R-01GW

Prep Type: total Prep Batch: 10I0203_P

Prep Type: total

Prep Type: total

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 1010203-BS2	
Matrix: Water	
Analysis Batch: 10I0203	
-	LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Dibromofluoromethane	86.4		80 - 120
Toluene-d8	87.0		74.2 - 120
4-bromofluorobenzene	87.6		70 - 120

Lab Sample ID: 1010203-MS1 Matrix: Water Analysis Batch: 1010203

Analysis Batch: 10I0203									Prep Batch	n: 10l0203_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spike			% Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,1-Dichloroethene			10.0	9.82		ug/l		98.2	52.5 - 135	
Benzene	1.11		10.0	12.5		ug/l		114	72.3 - 120	
Trichloroethene			10.0	11.0		ug/l		110	80 - 120	
Toluene	ND		10.0	10.7		ug/l		106	62.7 - 137	
Chlorobenzene			10.0	10.6		ug/l		106	78.9 - 120	
	Matrix Snike	Matrix Snike								

maan opine	maan opin	
% Recovery	Qualifier	Limits
83.4		80 - 120
89.0		74.2 - 120
87.8		70 - 120
	% Recovery 83.4 89.0 87.8	% Recovery Qualifier 83.4 89.0 87.8 87.8

Lab Sample ID: 1010203-MS2 Matrix: Water Analysis Batch: 1010203

Analysis Batch: 10I0203									Prep Batch	n: 10l0203_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spike			% Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Methyl tert-butyl ether			10.0	8.26		ug/l		82.6	44.3 - 150	
Benzene	1.11		10.0	9.89		ug/l		87.8	72.3 - 120	
Toluene	ND		10.0	8.65		ug/l		85.5	62.7 - 137	
Ethylbenzene	ND		10.0	8.79		ug/l		86.8	0 - 200	
m,p-Xylene	ND		20.0	18.7		ug/l		92.5	70 - 130	
o-Xylene	ND		10.0	9.54		ug/l		95.4	70 - 130	
Naphthalene			10.0	7.98		ug/l		79.8	70 - 130	
	Matrix Spike	Matrix Spike								

	maan opine	maan opine	
Surrogate	% Recovery	Qualifier	Limits
Dibromofluoromethane	85.4		80 - 120
Toluene-d8	89.6		74.2 - 120
4-bromofluorobenzene	89.8		70 - 120

Lab Sample ID: 1010203-MSD1 Matrix: Water Analysis Batch: 1010203

Client Sample ID: 10-KUST-MW2R-01GW

Prep Type: total Prep Batch: 1010203 P

Analysis Datch. 1010205									Fiep Datch. 1010205_f				
	Sample	Sample Spike		Matrix Spike Dup	Matrix Spike Dup				% Rec.	% Rec.			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit		
1,1-Dichloroethene			10.0	9.32		ug/l		93.2	52.5 - 135	5.22	10.5		
Benzene	1.11		10.0	12.1		ug/l		110	72.3 - 120	3.01	10.7		
Trichloroethene			10.0	10.6		ug/l		106	80 - 120	3.99	10		
Toluene	ND		10.0	10.0		ug/l		99.5	62.7 - 137	6.27	13		
Chlorobenzene			10.0	10.0		ug/l		100	78.9 - 120	5.44	11.2		

Prep Type: total

Prep Batch: 10I0203_P

Client Sample ID: 10-KUST-MW2R-01GW

Client Sample ID: 10-KUST-MW2R-01GW

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 1010203-MSD1 Matrix: Water

Analysis Batch: 1010203

	Matrix Spike Dup	Matrix Spike Dup				
Surrogate	% Recovery	Qualifier	Limits			
Dibromofluoromethane	83.4		80 - 120			
Toluene-d8	89.0		74.2 - 120			
4-bromofluorobenzene	88.0		70 - 120			

Lab Sample ID: 1010203-MSD2 Matrix: Water

4-bromofluorobenzene

Matrix: Water									Pre	p Type	: total
Analysis Batch: 10l0203									Prep Batc	h: 1010	203_P
	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spi	ke Dup			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether			10.0	8.97		ug/l		89.7	44.3 - 150	8.24	15.7
Benzene	1.11		10.0	10.3		ug/l		92.1	72.3 - 120	4.26	10.7
Toluene	ND		10.0	9.12		ug/l		90.2	62.7 - 137	5.29	13
Ethylbenzene	ND		10.0	9.31		ug/l		92.0	0 - 200	5.75	200
m,p-Xylene	ND		20.0	19.6		ug/l		97.0	70 - 130	4.66	12
o-Xylene	ND		10.0	10.0		ug/l		100	70 - 130	5.21	12
Naphthalene			10.0	8.80		ug/l		88.0	70 - 130	9.77	12
	Matrix Spike Dup	Matrix Spik	e Dup								
Surrogate	% Recovery	Qualifier	Limits								
Dibromofluoromethane	83.8		80 - 120								
Toluene-d8	88.6		74.2 - 120								

Method: AK 101 - Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101

87.8

70 - 120

Lab Sample ID: 10I0211-BLK1 Matrix: Water									C	Client Sa	ample ID: 10l021 Prep Typ	1-BLK1 be: total
Analysis Batch: 1010211											Prep Batch: 10	10211_P
	E	lank	Blank									
Analyte	R	esult	Qualifier				L	Init D		Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons		ND		:	50.0		I	l/gu	09/30	0/10 13:49	10/01/10 14:12	1
	E	lank	Blank									
Surrogate	% Reco	very	Qualifier	Limits	s					Prepared	Analyzed	Dil Fac
a,a,a - Trifluorotoluene (FID)		119		50 - 1	50				09/3	0/10 13:49	10/01/10 14:12	1
Lab Sample ID: 10I0211-BS1										Client S	Sample ID: 10102	211-BS1
Matrix: Water											Prep Typ	be: total
Analysis Batch: 10I0211											Prep Batch: 10	0211_P
-				Spike	LCS	LCS					% Rec.	
Analyte				Added	Result	Qualifi	ier Ur	nit	D	% Rec	Limits	
Gasoline Range Hydrocarbons				1000	1070		ug	/I		107	60 - 120	
	LCS	LCS										
Surrogate	% Recovery	Qua	lifier	Limits								
a,a,a - Trifluorotoluene (FID)	62.3			50 - 150								
Lab Sample ID: 10I0211-MS1								Clie	ent Sai	mple ID:	10-KUST-MW2	R-01GW
Matrix: Water											Prep Typ	be: total
Analysis Batch: 10I0211											Prep Batch: 10	0211_P
-	Sample	Sam	ple	Spike	Matrix Spike	Matrix	Spike				% Rec.	_
Analyte	Result	Qua	lifier	Added	Result	Qualifi	ier Ur	nit	D	% Rec	Limits	
Gasoline Range Hydrocarbons	ND			1000	966		ug	/I		93.7	70 - 130	

5

7

Method: AK 101 - Gasoline Hydrocarbons (n-Hexane to <n-Decane) and BTEX by AK101 (Continued) Lab Sample ID: 10I0211-MS1 Client Sample ID: 10-KUST-MW2R-01GW **Matrix: Water** Prep Type: total Prep Batch: 10I0211_P Analysis Batch: 10I0211 Matrix Spike Matrix Spike Surrogate % Recovery Qualifier Limits 50 - 150 a,a,a - Trifluorotoluene (FID) 118 Lab Sample ID: 10I0211-MSD1 Client Sample ID: 10-KUST-MW2R-01GW Matrix: Water Prep Type: total Analysis Batch: 10I0211 Prep Batch: 10I0211_P Sample Sample Spike Matrix Spike Dup Matrix Spike Dup % Rec. RPD Result Qualifier Analyte Result Qualifier Added Unit D Limits RPD Limit % Rec 1000 70 - 130 20 Gasoline Range Hydrocarbons ND 997 ug/l 96.8 3.12 Matrix Spike Dup Matrix Spike Dup Surrogate % Recovery Qualifier Limits 50 - 150 a,a,a - Trifluorotoluene (FID) 108

Lab Sample ID: 10I0211-DUP1						C	ient Sample	D: 10-KUST-M	W2R-	01GW
Matrix: Water								Prep	Туре	: total
Analysis Batch: 10I0211								Prep Batch:	10102	211_P
	Sample	Sample		Duplicate	Duplicate					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Gasoline Range Hydrocarbons	ND			21.8	R4	ug/l			28.4	20
	Duplicate	Duplicate								
Surrogate	% Recovery	Qualifier	Limits							
a.a.a - Trifluorotoluene (FID)	115		50 - 150							

Method: EPA 8011 - EDB by EPA Method 8011

Lab Sample ID: 10I0194-BLK1 Matrix: Water Analysis Batch: 10I0194	Blank	Blank							c	lient Sa	mple ID: 10l019 Prep Ty Prep Batch: 10	94-BLK1 pe: total 10194_P
Analyte	Result	Qualifier		RL	м	DL	Unit	D		Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0	100			ug/l		09/29	9/10 11:49	09/30/10 09:28	1
Lab Sample ID: 10I0194-BS1										Client S	ample ID: 1010	194-BS1
Matrix: Water											Prep Ty	pe: total
Analysis Batch: 10I0194			Spike		LCS	LCS					Prep Batch: 10 % Rec.	10194_P
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits	
1,2-Dibromoethane			0.125		0.138		ug/l			110	60 - 140	
Lab Sample ID: 10I0194-BS2										Client S	ample ID: 1010 ⁻	194-BS2
Matrix: Water											Prep Ty	pe: total
Analysis Batch: 10I0194											Prep Batch: 10	10194_P
			Spike		LCS	LCS					% Rec.	
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits	
1,2-Dibromoethane			0.125		0.125		ug/l			99.6	60 - 140	

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 10I0194-MS1							Client Sa	nple ID	: 10-KUST-	MW2R-	-01GV
Matrix: Water									Pre	ер Туре	: tota
Analysis Batch: 10I0194									Prep Batc	:h: 1010	194_F
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			% Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits		
1,2-Dibromoethane	ND		0.125	0.134		ug/l		107	60 - 140		
Lab Sample ID: 10I0194-MSD1							Client Sa	nple ID	: 10-KUST-	MW2R-	.01GV
Matrix: Water									Pre	эр Туре	: tota
Analysis Batch: 10I0194									Prep Batc	:h: 1010	194_F
-	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spil	ke Dup			% Rec.		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limi
1,2-Dibromoethane	ND		0.125	0.129		ug/l		103	60 - 140	3.62	2
-											
Anthod: EBA 6020 - Total Mo	tale por		7000 80	rice Mothod	c						

Lab Sample ID: 10J0013-BLK1 Matrix: Water									С	lient Sa	mple ID: 10J Prep	0013- Type	BLK1 : total
Analysis Batch: 10J0013	_										Prep Batch:	10J0()13_P
	E	Blank	Blank										
Analyte	R	esult	Qualifier				Unit	D		Prepared	Analyz	ed	Dil Fac
Lead		ND		0.0	0100		mg/l		10/01	1/10 10:03	10/02/10 18:	33	1
Lab Sample ID: 10J0013-BS1										Client S	ample ID: 10	J001:	3-BS1
Matrix: Water											Prep	Туре	: total
Analysis Batch: 10J0013											Prep Batch:	10J0	013_P
				Spike	LCS	LCS					% Rec.		
Analyte				Added	Result	Qualifier	Unit		D	% Rec	Limits		
Lead				0.100	0.0895		mg/l			89.5	80 - 120		
_ Lab Sample ID: 10J0013-MS1										Client	Sample ID: I	PT109	22-02
Matrix: Water											Prep	Type	: total
Analysis Batch: 10J0013											Prep Batch:	10,00	013 P
·	Sample	Sam	ple	Spike	Matrix Spike	Matrix Spik	е				% Rec.		
Analyte	Result	Qual	ifier	Added	Result	Qualifier	Unit		D	% Rec	Limits		
Lead	ND			0.100	0.0860		mg/l			86.0	75 - 125		
_ Lab Sample ID: 10J0013-MS2										Client	Sample ID: I	PT109	69-01
Matrix: Water											Prep	Type	: total
Analysis Batch: 10J0013											Prep Batch:	10,00	013 P
,	Sample	Sam	ple	Spike	Matrix Spike	Matrix Spik	е				% Rec.		
Analyte	Result	Qual	ifier	Added	Result	Qualifier	Unit		D	% Rec	Limits		
Lead	0.00610			0.100	0.0950		mg/l			88.9	75 - 125		
Lab Sample ID: 10J0013-DUP1										Client	Sample ID: I	PT109	22-01
Matrix: Water											Prep	Type	: total
Analysis Batch: 10J0013											Prep Batch:	10,00	013 P
•	Sample	Sam	ple		Duplicate	Duplicate							RPD
Analyte	Result	Qual	ifier		Result	Qualifier	Unit		D			RPD	Limit
Lead	0.0189				0.0190		ma/l					0.52	20

8

Method: EPA 6020 - Total Metals per EPA 6000/7000 Series Methods (Continued)

Lab Sample ID: 10J0144-BLK1 Matrix: Water Analysis Batch: 10J0144	_						С	lient Sa	mple ID: 10 Pre Prep Batch	J0144- p Type : 10J0 ⁻	BLK1 : total 144_P
Analyta	E D	Blank Blank			וחו	Unit	D	Broparod	۸nal	hore	Dil Eac
	- <u> </u>					ma/l	<u> </u>	5/10 21:07	10/06/10 1	4:35	1
			0.0			mg/i	10,00	5,10 21.01	10,00,101	1.00	•
Lab Sample ID: 10J0144-BS1								Client S	ample ID: 1	0J014	4-BS1
Matrix: Water									Pre	р Туре	: total
Analysis Batch: 10J0144									Prep Batch	: 10J0	144_P
			Spike	LCS	LCS				% Rec.		
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits		
Lead			0.100	0.0999		mg/l		99.9	80 - 120		
Lab Sample ID: 10J0144-MS1 Matrix: Water Analysis Batch: 10J0144	Sample	Sample	Spike	Matrix Spike	Matrix Spik	C	lient Sar	mple ID:	10-KUST-M Pre Prep Batch % Rec.	/IW2R- p Type :: 10J0 ⁻	01GW : total 144_P
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits		
Lead	ND	RL1	0.100	0.0973		mg/l		95.9	75 - 125		
Lab Sample ID: 10J0144-MSD1 Matrix: Water Analysis Batch: 10J0144	Sample	Sample	Spike M	Aatrix Spike Dup	Matrix Spik	C e Dup	lient Sar	mple ID:	10-KUST-M Pre Prep Batch % Rec.	/W2R- p Type :: 10J0 ⁻	01GW : total 144_P RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Lead	ND	RL1	0.100	0.0961		mg/l		94.7	75 - 125	1.24	20

Method: AK102/103 - Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO

Lab Sample ID: 10J0028-BLK1								С	lient Sa	mple ID: 10J00 Pren Tv	28-BLK1
Analysis Batch: T000555										Pren Batch: 10	10028 P
Analysis Batch. 1000303	Bla	ık Blank								Thep Bateri. To	00020_1
Analyte	Resi	ut Qualifi	er Ri	м	וח	Unit	п		Prenareo	Analyzed	Dil Fac
Diesel Range Organics			0.500			ma/l		10/06	3/10 14:31	10/09/10 20:45	1
Residual Range Organics	N	D	0.500			mg/l		10/06	x/10 14:01	10/09/10 20:45	1
Residual Range Organics		D	0.000			ing/i		10/00	10 14.01	10/03/10 20.40	
	Blai	nk Blank									
Surrogate	% Recove	ry Qualifi	er Limits						Prepared	d Analyzed	Dil Fac
1-Chlorooctadecane	84	.0	50 - 150				_	10/06	6/10 14:31	1 10/09/10 20:45	1
Triacontane	77	.1	50 - 150					10/06	6/10 14:31	1 10/09/10 20:45	1
Lab Sample ID: 10J0028-BS1									Client S	Sample ID: 10J0	028-BS1
Matrix: Water										Prep Ty	pe: total
Analysis Batch: T000555										Prep Batch: 10	J0028 P
			Spike	LCS	LCS					% Rec.	
Analyte			Added	Result	Qualifier	Unit		D	% Rec	Limits	
Diesel Range Organics			11.1	10.5		mg/l			94.5	75 - 125	
Residual Range Organics			10.3	10.1		mg/l			98.2	60 - 120	
	LCS L	cs									
Surrogate	% Recovery Q	ualifier	Limits								
- 1-Chlorooctadecane	88.2		60 - 120								
Triacontane	77.3		60 - 120								

Method: AK102/103 - Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO (Continued)

Matrix: Water Prep Type: total Analyte Added Result Cl S Dup Unit D % Rec. RPD Limits Diesel Range Organics 11.1 11.3 mg/l 0 % Rec. RPD Limits RPD Limits RPD Limits Prep Batch: 10J0028-J 10.3 10.9 mg/l 106 60 - 120 7.64 20 Surrogate % Recovery Qualifier Limits 60 - 120 7.64 20 Triacontane 82.3 60 - 120 7.64 20 Prep Type: total Analyte % Recovery Qualifier Limits Clernt Sample ID: ATI0082-02 Triacontane 82.3 60 - 120 Result Prep Batch: 10J0028-V2 Matrix: Water Result Qualifier Matrix Spike Matrix Spike % Rec Yrep Batch: 10J0028_P2 Analyte Result Qualifier Added Result Qualifier Unit D % Rec Yrep Batch: 10J0028_P2 S
Analysis Batch: T000555 Prep Batch: 10J0028_P Analyte Added Result ClS Dup LCS Dup Matrix Prep Batch: 10J0028_P Rec Rep Limits
Analyte Spike LCS Dup LCS Dup Vice RPD Diesel Range Organics 11.1 11.3 mg/l 0 % Rec. RPD Limits RPD Limits RPD Limits RPD Limits RPD Limits 20 Surrogate % Rec.overy Qualifier Limits 10.9 mg/l 106 60 - 120 7.64 20 Surrogate % Rec.overy Qualifier Limits 60 - 120 7.64 20 Triacontane 82.3 60 - 120 7.64 20 Prep Batch: 100082-02 Prep Type: total Analyte Sample ID: 10,0028-MS1 Matrix Yater Analyte Matrix Yater Prep Batch: 10,0028_P % Rec. Prep Type: total Analyte Result Qualifier Added Result Qualifier Unit Matrix Spike % Rec. Matrix Spike % Rec. % Rec. Matrix Spike % Rec. Matrix Spike % Rec. % Rec. Matrix Spike % Rec. Matrix Spike %
Analyte Added Result Qualifier Unit D % Rec Limits RPD Limit Diesel Range Organics 11.1 11.3 mg/l 10.9 mg/l 100 75 - 125 7.54 20 Surrogate % Recovery Qualifier Limits 60 - 120 60 - 120 7.64 20 Triacontane 82.3 60 - 120 60 - 120 7.64 20 Matrix: Water Analysis Batch: T000556 Example Example Sample Sample Sample Matrix Spike Matrix Spike % Rec. Ne ce. Limits -
Diesel Range Organics 11.1 11.3 mg/l 102 75-125 7.54 20 Residual Range Organics 10.3 10.9 mg/l 106 60-120 7.54 20 Surrogate % Recovery Qualifier Limits 60-120 7.54 20 F-Chlorooctadecane 90.3 60-120 60-120 7.54 20 Lab Sample ID: 10J0028-MS1 82.3 60-120 75.4 20 Lab Sample ID: 10J0028-MS1 Sample Sample Sample Prep Type: total Analyte Result Qualifier Added Result Qualifier Unit Prep Batch: 10J0028-P Matrix Spike Matrix Spike Matrix Spike Matrix Spike % Rec. 111 60-120 % Rec. Sample Disel Range Organics 0.827 8.51 10.0 mg/l 111 60-120 % Rec. Sample ID: 10.J0028-MS2 Matrix Spike Matrix Spike Matrix Spike Prep Type: total Triacontane 91.3 50
Residual Range Organics 10.3 10.9 mg/l 106 60 - 120 7.64 20 Surrogate 20 Mainfier LCS Dup LCS Dup LCS Dup Low Low <thlow< th=""> Low <thlow< t<="" td=""></thlow<></thlow<>
LCS Dup SurrogateLCS Dup % Recovery 00.allifierLimits Limits7-Chlorooctadecane90.360 - 120Triacontane82.360 - 120Lab Sample ID: 10J0028-MS1 Matrix: WaterClient Sample ID: AT10082-02 Prep Type: totalAnalyteResultQualifierAnalyteResultQualifierAnalyteResultQualifierAnalyteResultQualifierMatrix SpikeMatrix Spike% Rec.Matrix SpikeMatrix Spike% Rec.AnalyteResultQualifierDiesel Range Organics15.78.952.90.8278.311.00mg/l11160 - 120Matrix SpikeMatrix SpikeSurrogate% Recovery 9 (Jualifier1.70.95 - 150Triacontane91.350 - 15050 - 150Triacontane91.32.4Matrix SpikeMatrix: Water Analyte% Recovery 9 (JualifierAnalyteSampleSampleAnalyteResultQualifierAddedAnalyteResultQualifierAddedAnalyteResultQualifierAddedResidual Range Organics0.417Q49.4910.8mg/l10.160 - 120Matrix SpikeMatrix SpikeKanalyteSampleBasel Range Organics0.417Q49.49ND8.80<
Surrogate % Recovery Qualifier Limits 1-Chloroociadecane 90.3 60 - 120 7riacontane 82.3 60 - 120 Lab Sample ID: 10J0028-MS1 Karix Spike Client Sample ID: AT10082-02 Matrix: Water Prep Type: total Prep Type: total Analysis Batch: T000556 Sample Sample Spike Matrix Spike Valifier Valifier Analyte Result Qualifier Added Result Qualifier Matrix Spike % Rec. Diesel Range Organics 0.827 8.31 10.0 mg/l 111 60 - 120 Matrix Spike Matrix Spike Matrix Spike Matrix Spike Prep Type: total Surrogate ½ Recovery Qualifier Limits 111 60 - 120 Matrix Spike Matrix Spike Matrix Spike Prep Type: total Prep Type: total 1-Chloroocidecane 104 50 - 150 50 - 150 Prep Batch: 10.0028-Prep Type: total Analyte Sample Sample Spike Matrix Spike </td
T-Chlorooctadecane 90.3 60 - 120 Triacontane 82.3 60 - 120 Triacontane 82.3 60 - 120 Lab Sample ID: 10J0028-MS1 Client Sample ID: ATI0082-02 Matrix: Water Prep Type: total Analyte Result Qualifier Added Matrix Spike Matrix Spike Matrix Spike Prep Batch: 10J0028_P Diesel Range Organics 15.7 8.95 24.9 mg/l Dint D % Rec Limits Surrogate % Recovery Qualifier Limits Dimits Dimits Dimits Dimits Prep Type: total Analyte Matrix Spike Limits Dimits
Triacontane82.360 - 120Lab Sample ID: 10J0028-MS1 Matrix: Water Analysis Batch: T000556Client Sample ID: AT10082-02 Prep Batch: 10J0028_PAnalyteSampleSampleSpike QualifierMatrix SpikeMatrix Spike% Rec.AnalyteResultQualifierAdded 9.95Matrix SpikeMatrix Spike% Rec.AnalyteResultQualifierAdded 9.95ResultQualifier 10.0Unit mg/lD 9% Rec.AnalyteResultQualifierAdded 9.95Matrix SpikeMatrix Spike% Rec.Matrix SpikeMatrix SpikeMatrix SpikeMatrix Spike11160 - 120Matrix SpikeMatrix SpikeMatrix SpikeVPrep Type: total 1110Surrogate% Recorery 104Qualifier 50 - 150Limits 50 - 150VPrep Type: total 100Lab Sample ID: 10J0028-MS2 Matrix SpikeSampleSpike 50 - 150Matrix SpikeMatrix SpikePrep Type: total 10.0028_PAnalyteResultQualifier 4 ddedAdded 9.92Matrix SpikeMatrix Spike% Recorery % Rec.AnalyteResultQualifier 4 ddedAdded 9.92Matrix SpikeMatrix Spike% Rec.AnalyteResultQualifier 4 ddedAdded 9.92Matrix Spike% Rec.AnalyteResultQualifier 4 ddedAdded 9.92Matrix Spike% Rec.AnalyteResultQualifier 4 ddedAdded
Lab Sample ID: 10J0028-MS1 Matrix: Water Analysis Batch: T000556 Client Sample ID: ATI0082-02 Prep Type: total Prep Batch: 10J0028_P Analyte Sample Sample Spike Matrix Spike Matrix Spike Prep Batch: 10J0028_P Analyte Result Qualifier Added Result Qualifier Unit D % Rec. Analyte Result Qualifier Added Result Qualifier Unit D % Rec. Evidual Range Organics 0.827 8.31 10.0 mg/l 111 60 - 120 Matrix Spike Matrix Spike Matrix Spike Limits Prep Type: total Prep Type: total Surrogate % Recovery Qualifier Limits 50 - 150 111 60 - 120 Triacontane 91.3 50 - 150 String Matrix Spike Prep Type: total Analyte Sample Sample Spike Matrix Spike Matrix Spike Prep Type: total Analyte Result Qualifier Added Result Qualifier Unit P % Rec. Dissel Range Organics ND 8.80 9.92
Lab Sample ID: 10J0028-MS1 Matrix: Water Client Sample ID: AT10082-02 Prep Type: total Analysis Batch: T000556 Sample Sample Spike Matrix Spike Matrix Spike Matrix Spike Prep Batch: 10J0028_P Analyte Result Qualifier Added Result Qualifier Unit D % Rec. Limits Diesel Range Organics 0.827 8.31 10.0 mg/l 111 60 - 120 Matrix Spike Matrix Spike Matrix Spike Matrix Spike Matrix Spike Prep Type: total Surrogate % Recovery Qualifier Limits Solution mg/l 111 60 - 120 Triacontane 91.3 50 - 150 Solution Prep Batch: 10J0028_PP Matrix Water Prep Type: total Prep Type: total Analyte Sample Sample Spike Matrix Spike Matrix Spike Matrix Spike Prep Type: total Diesel Range Organics 0.417 Q4 949 Matrix Spike Matrix Spike % Rec. Analyte Result Qualifier Qualifier Matrix Spike Matrix Spike Matrix S
Matrix: Water Prep Type: total Analysis Batch: T000556 Sample Sample Spike Matrix Spike Matrix Spike Matrix Spike Prep Batch: 10J0028_P % Rec. Analyte Result Qualifier Added Result Qualifier Unit D % Rec. Limits
Analysis Batch: T000556 Prep Batch: 10J0028_P Sample Sample Spike Matrix Spike Matrix Spike Matrix Spike % Rec. Analyte Result Qualifier Added Result Qualifier Unit D % Rec. Limits
SampleSampleSpikeMatrix SpikeMatrix SpikeMatrix Spike% Rec.AnalyteResultQualifierAddedResultQualifierUnitD% Rec.LimitsDiesel Range Organics15.78.9524.9mg/l10275 - 125Residual Range Organics0.8278.3110.0mg/l11160 - 120Matrix SpikeMatrix SpikeMatrix SpikeLimitsSourcestandSourcestandSourcestandSurrogate% RecoveryQualifierLimits50 - 15050 - 15050 - 150Triacontane91.350 - 15050 - 150Frep Type: totalMatrix: WaterSample ID: 10J0028-MS2Prep Type: totalPrep Type: totalAnalysis Batch: T000556Sample SampleSpikeMatrix SpikeMatrix Spike% Rec.AnalyteResultQualifierAddedResultQualifierUnitD% Rec.Diesel Range Organics0.417Q49.4910.8mg/l11075 - 125Residual Range OrganicsND8.809.92mg/l11160 - 120
AnalyteResultQualifierAddedResultQualifierUnitD% RecLimitsDiesel Range Organics15.798.9524.999910275 - 125
Diesel Range Organics15.78.9524.9mg/l10275 - 125Residual Range Organics0.8278.3110.0mg/l11160 - 120Matrix SpikeMatrix SpikeMatrix SpikeSurrogate% RecoveryQualifierLimits1-Chlorooctadecane10450 - 150Triacontane91.350 - 150Lab Sample ID: 10J0028-MS2Client Sample ID: 10-KUST-MW2R-01GWMatrix: WaterPrep Type: totalAnalysis Batch: T000556SampleAnalyteResultQualifierDiesel Range Organics0.417Q49.4910.8mg/l11160 - 120Matrix SpikeND8.809.92mg/l11160 - 120
Residual Range Organics0.8278.3110.0mg/l11160 - 120Matrix SpikeMatrix SpikeImitsSurrogate% RecoveryQualifierLimits1-Chlorooctadecane10450 - 150Triacontane91.350 - 150Client Sample ID: 10J0028-MS2Matrix: WaterPrep Type: totalAnalysis Batch: T000556% ResultQualifierSampleSpikeMatrix SpikeVAnalyteResultQualifierAddedResultQualifierUnitD% Rec.Diesel Range Organics0.417Q49.4910.8mg/l11160 - 120Matrix SpikeND8.809.92mg/l11160 - 120
Matrix Spike SurrogateMatrix Spike % Recovery 1-ChlorooctadecaneMatrix Spike QualifierLimits 50 - 1501-Chlorooctadecane10450 - 150Triacontane91.350 - 150Lab Sample ID: 10J0028-MS2 Matrix: Water Analysis Batch: T000556Client Sample ID: 10-KUST-MW2R-01GW Prep Type: total Prep Batch: 10J0028_PAnalyteSampleSampleSpike 4ddedMatrix SpikeMatrix SpikePrep Batch: 10J0028_P % Rec.AnalyteResult QualifierQualifier Q4AddedResult 9.92Qualifier mg/lD % RecLimits 75 - 125Residual Range OrganicsND8.809.92mg/l11160 - 120Matrix SpikeMatrix SpikeMatrix SpikeMatrix SpikeMatrix Spike11160 - 120
Surrogate 1-Chlorooctadecane% Recovery 104Qualifier 50 - 150Limits 50 - 150Triacontane91.350 - 150Lab Sample ID: 10J0028-MS2 Matrix: Water Analysis Batch: T000556Client Sample ID: 10-KUST-MW2R-01GW Prep Type: total Prep Batch: 10J0028_PAnalyteSampleSampleSpike 4ddedMatrix SpikePrep Batch: 10J0028_P % Rec.AnalyteResult QualifierQualifierAdded 9.49Matrix SpikeMatrix Spike% Rec.Escidual Range OrganicsND8.809.92mg/l11160 - 120Matrix SpikeMatrix SpikeMatrix SpikeMatrix SpikeMatrix Spike
1-Chlorooctadecane10450 - 150Triacontane91.350 - 150Lab Sample ID: 10J0028-MS2Client Sample ID: 10-KUST-MW2R-01GWMatrix: WaterPrep Type: totalAnalysis Batch: T000556SampleSampleMatrix SpikeMatrix SpikeMatrix SpikeAnalyteResultQualifierDiesel Range Organics0.417Q4Q49.4910.8mg/lMatrix SpikeMatrix SpikeMatrix SpikeMatrix Spike
Triacontane91.350 - 150Lab Sample ID: 10J0028-MS2Client Sample ID: 10-KUST-MW2R-01GWMatrix: WaterPrep Type: totalAnalysis Batch: T000556Prep Batch: 10J0028_PSampleSampleSpikeMatrix SpikeMatrix Spike% Rec.AnalyteResultQualifierAddedResultQualifierUnitD% Rec.AnalyteResultQualifierAddedResultQualifierUnitD% Rec.Matrix SpikeND8.809.92mg/l11160 - 120Matrix SpikeMatrix SpikeMatrix SpikeMatrix SpikeMatrix Spike
Lab Sample ID: 10J0028-MS2 Matrix: WaterClient Sample ID: 10-KUST-MW2R-01GW Prep Type: total Prep Type: totalAnalysis Batch: T000556Prep Batch: 10J0028_PSampleSampleSpikeMatrix SpikeMatrix Spike% Rec.AnalyteResultQualifierAddedResultQualifierMitD% Rec.Diesel Range Organics0.417Q49.4910.8mg/l11075 - 125—Residual Range OrganicsND8.809.92mg/l11160 - 120Matrix SpikeMatrix SpikeKatrix SpikeKatrix SpikeKatrix Spike
Lab Sample ID: 10J0028-MS2Matrix: WaterClient Sample ID: 10-KUST-MW2R-01GWAnalysis Batch: T000556Prep Type: totalSampleSampleSpikeMatrix SpikeMatrix SpikeAnalyteResultQualifierAddedResultQualifierUnitD% Rec.AnalyteResultQualifierAddedResultQualifierUnitD% Rec.Matrix SpikeND8.809.92mg/l11160 - 120Matrix SpikeMatrix SpikeMatrix SpikeMatrix SpikeMatrix Spike
Matrix: Water Prep Type: total Analysis Batch: T000556 Sample Sample Spike Matrix Spike Matrix Spike Prep Batch: 10J0028_P Analyte Result Qualifier Added Result Qualifier Unit D % Rec. Diesel Range Organics 0.417 Q4 9.49 10.8 mg/l 110 75 - 125 Residual Range Organics ND 8.80 9.92 mg/l 111 60 - 120 Matrix Spike Matrix Spike Ker
Analysis Batch: T000556 Sample Sample Spike Matrix Spike Matrix Spike Prep Batch: 10J0028_P Analyte Result Qualifier Added Result Qualifier Unit D % Rec. Diesel Range Organics 0.417 Q4 9.49 10.8 mg/l 110 75 - 125 Residual Range Organics ND 8.80 9.92 mg/l 111 60 - 120 Matrix Spike Matrix Spike Katrix Spike Katrix Spike Katrix Spike Katrix Spike
Sample Sample Sample Spike Matrix Spike
AnalyteResultQualifierAddedResultQualifierUnitD% RecLimitsDiesel Range Organics0.417Q49.4910.8mg/lmg/l11075 - 125Residual Range OrganicsND8.809.92mg/l11160 - 120Matrix Spike
Diesel Range Organics 0.417 Q4 9.49 10.8 mg/l 110 75 - 125 Residual Range Organics ND 8.80 9.92 mg/l 111 60 - 120 Matrix Spike
Residual Range Organics ND 8.80 9.92 mg/l 111 60 - 120 Matrix Spike Matrix Spike
Matrix Spike Matrix Spike
Surrogate % Recovery Qualifier Limits
1-Chlorooctadecane 99.9 50 - 150
Triacontane 92.1 50 - 150
Lab Sample ID: 10J0028-MSD1 Client Sample ID: ATI0082-02
Matrix: Water Prep Type: total
Analysis Batch: T000556 Prep Batch: 10.10028 P
Sample Sample Spike Matrix Spike Dup Matrix Spike Dup % Rec. RPD
Analyte Result Qualifier Added Result Qualifier Unit D % Rec Limits RPD Limit
Diesel Range Organics 15.7 8.95 24.2 mg/l 95.1 75 - 125 2.67 25
Residual Range Organics 0.827 8.31 9.76 mg/l 108 60 - 120 2.52 25
Matrix Spike Dup Matrix Spike Dup
Surrogate % Recovery Qualifier Limits
$\frac{1-Chloropoctadecane}{1-Chloropoctadecane} = \frac{105}{105} = \frac{105}{50-150}$
Triacontane 89.1 50 - 150
- Client Sample ID: 10.10028-MSD2 Client Sample ID: 10-KUST-MW2P-01GW
Matrix: Water Dron Tune: total
Analysis Batch: T000556 Pron Batch: 10 10028 P
Sample Sample Spike Matrix Spike Dup Matrix Spike Dup % Rec. RPD
Sample Spike Matrix Spike Dup Matrix Spike Dup % Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D % Rec Limits

Method: AK102/103 - Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO (Continued)

Lab Sample ID: 10J0028-MS Matrix: Water Analysis Batch: T000556	D2						Client Sa	mple ID:	10-KUST-I Pre Prep Batch	MW2R- p Type n: 10J0	01GW : total 028_P
-	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spik	e Dup			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Residual Range Organics	ND		8.31	8.44		mg/l		99.9	60 - 120	16.0	25
	Matrix Spike Dup	Matrix Spike	e Dup								
Surrogate	% Recovery	Qualifier	Limits								
1-Chlorooctadecane	90.5		50 - 150								
Triacontane	83.4		50 - 150								
Lab Sample ID: 10J0028-DU Matrix: Water Analysis Batch: T000556	P1							Client	Sample ID Pre Prep Batch	: ATIO0 p Type n: 10J00	82-02 : total 028_P
	Sample	Sample		Duplicate	Duplicate						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Diesel Range Organics	15.7			15.7		mg/l				0.20	20
Residual Range Organics	0.827			0.781		mg/l				5.75	50
	Duplicate	Duplicate									
Surrogate	% Recovery	Qualifier	Limits								
1-Chlorooctadecane	98.7		50 - 150								
Triacontane	94.0		50 - 150								

GCMS Volatiles

Analysis Batch: 1010203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10I0203-BLK1	10I0203-BLK1	total	Water	EPA 8260B	10I0203_P
10I0203-BS1	10I0203-BS1	total	Water	EPA 8260B	10I0203_P
10I0203-BS2	10l0203-BS2	total	Water	EPA 8260B	10I0203_P
ATI0083-01	10-KUST-MW1R-01GW	total	Water	EPA 8260B	10I0203_P
ATI0083-02	10-KUST-MW2R-01GW	total	Water	EPA 8260B	10I0203_P
10I0203-MS1	10-KUST-MW2R-01GW	total	Water	EPA 8260B	10I0203_P
10I0203-MSD1	10-KUST-MW2R-01GW	total	Water	EPA 8260B	10I0203_P
10I0203-MS2	10-KUST-MW2R-01GW	total	Water	EPA 8260B	10I0203_P
10I0203-MSD2	10-KUST-MW2R-01GW	total	Water	EPA 8260B	10I0203_P
ATI0083-03	10-KUST-MW3R-01GW	total	Water	EPA 8260B	10I0203_P
ATI0083-04	10-KUST-MW4R-01GW	total	Water	EPA 8260B	10I0203_P
ATI0083-04	10-KUST-MW4R-01GW	total	Water	EPA 8260B	10I0203_P
ATI0083-05	10-KOTZ-TB-01GW	total	Water	EPA 8260B	10I0203_P
ATI0083-03	10-KUST-MW3R-01GW	total	Water	EPA 8260B	10I0203_P

Prep Batch: 10I0203_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batc
10I0203-BLK1	10I0203-BLK1	total	Water	GC/MS Volatiles
10I0203-BS1	10I0203-BS1	total	Water	GC/MS Volatiles
10I0203-BS2	10I0203-BS2	total	Water	GC/MS Volatiles
ATI0083-01	10-KUST-MW1R-01GW	total	Water	GC/MS Volatiles
ATI0083-02	10-KUST-MW2R-01GW	total	Water	GC/MS Volatiles
10I0203-MS1	10-KUST-MW2R-01GW	total	Water	GC/MS Volatiles
10I0203-MSD1	10-KUST-MW2R-01GW	total	Water	GC/MS Volatiles
10I0203-MS2	10-KUST-MW2R-01GW	total	Water	GC/MS Volatiles
10I0203-MSD2	10-KUST-MW2R-01GW	total	Water	GC/MS Volatiles
ATI0083-03	10-KUST-MW3R-01GW	total	Water	GC/MS Volatiles
ATI0083-04	10-KUST-MW4R-01GW	total	Water	GC/MS Volatiles
ATI0083-04	10-KUST-MW4R-01GW	total	Water	GC/MS Volatiles
ATI0083-05	10-KOTZ-TB-01GW	total	Water	GC/MS Volatiles
ATI0083-03	10-KUST-MW3R-01GW	total	Water	GC/MS Volatiles

GC Volatiles

Analysis Batch: 1010211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
ATI0083-01	10-KUST-MW1R-01GW	total	Water	AK 101	10I0211_P
ATI0083-02	10-KUST-MW2R-01GW	total	Water	AK 101	10l0211_P
10I0211-DUP1	10-KUST-MW2R-01GW	total	Water	AK 101	10l0211_P
10I0211-MS1	10-KUST-MW2R-01GW	total	Water	AK 101	10l0211_P
10I0211-MSD1	10-KUST-MW2R-01GW	total	Water	AK 101	10l0211_P
ATI0083-03	10-KUST-MW3R-01GW	total	Water	AK 101	10l0211_P
ATI0083-04	10-KUST-MW4R-01GW	total	Water	AK 101	10l0211_P
ATI0083-05	10-KOTZ-TB-01GW	total	Water	AK 101	10l0211_P
10I0211-BS1	10I0211-BS1	total	Water	AK 101	10l0211_P
10I0211-BLK1	10l0211-BLK1	total	Water	AK 101	10I0211_P

Prep Batch: 10I0211_P

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
ATI0083-01	10-KUST-MW1R-01GW	total	Water	GC Volatiles	
ATI0083-02	10-KUST-MW2R-01GW	total	Water	GC Volatiles	
10I0211-DUP1	10-KUST-MW2R-01GW	total	Water	GC Volatiles	

GC Volatiles (Continued)

Prep Batch: 10I0211_P (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10I0211-MS1	10-KUST-MW2R-01GW	total	Water	GC Volatiles	
10I0211-MSD1	10-KUST-MW2R-01GW	total	Water	GC Volatiles	
ATI0083-03	10-KUST-MW3R-01GW	total	Water	GC Volatiles	
ATI0083-04	10-KUST-MW4R-01GW	total	Water	GC Volatiles	
ATI0083-05	10-KOTZ-TB-01GW	total	Water	GC Volatiles	
10I0211-BS1	10I0211-BS1	total	Water	GC Volatiles	
10I0211-BLK1	10I0211-BLK1	total	Water	GC Volatiles	

Semivolatiles

Analysis Batch: 10I0194

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10I0194-BS2	10I0194-BS2	total	Water	EPA 8011	10I0194_P
10I0194-BLK1	10I0194-BLK1	total	Water	EPA 8011	10I0194_P
10I0194-BS1	10I0194-BS1	total	Water	EPA 8011	10I0194_P
ATI0083-01	10-KUST-MW1R-01GW	total	Water	EPA 8011	10I0194_P
ATI0083-02	10-KUST-MW2R-01GW	total	Water	EPA 8011	10I0194_P
10I0194-MS1	10-KUST-MW2R-01GW	total	Water	EPA 8011	10I0194_P
10I0194-MSD1	10-KUST-MW2R-01GW	total	Water	EPA 8011	10I0194_P
ATI0083-03	10-KUST-MW3R-01GW	total	Water	EPA 8011	10I0194_P
ATI0083-04	10-KUST-MW4R-01GW	total	Water	EPA 8011	10I0194_P

Prep Batch: 10I0194_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10I0194-BS2	10I0194-BS2	total	Water	EPA 3510/600	
				Series	
10I0194-BLK1	10I0194-BLK1	total	Water	EPA 3510/600	
				Series	
10I0194-BS1	10I0194-BS1	total	Water	EPA 3510/600	
				Series	
ATI0083-01	10-KUST-MW1R-01GW	total	Water	EPA 3510/600	
				Series	
ATI0083-02	10-KUST-MW2R-01GW	total	Water	EPA 3510/600	
				Series	
10I0194-MS1	10-KUST-MW2R-01GW	total	Water	EPA 3510/600	
				Series	
10I0194-MSD1	10-KUST-MW2R-01GW	total	Water	EPA 3510/600	
				Series	
ATI0083-03	10-KUST-MW3R-01GW	total	Water	EPA 3510/600	
				Series	
ATI0083-04	10-KUST-MW4R-01GW	total	Water	EPA 3510/600	
				Series	

Metals

Analysis Batch: 10J0013

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10J0013-BLK1	10J0013-BLK1	total	Water	EPA 6020	10J0013_P
10J0013-BS1	10J0013-BS1	total	Water	EPA 6020	10J0013_P
10J0013-MS1	PTI0922-02	total	Water	EPA 6020	10J0013_P
ATI0083-01	10-KUST-MW1R-01GW	total	Water	EPA 6020	10J0013_P
ATI0083-03	10-KUST-MW3R-01GW	total	Water	EPA 6020	10J0013_P
ATI0083-04	10-KUST-MW4R-01GW	total	Water	EPA 6020	10J0013_P
10J0013-MS2	PTI0969-01	total	Water	EPA 6020	10J0013_P
10J0013-DUP1	PTI0922-01	total	Water	EPA 6020	10J0013_P

3 4 5

8

Prep Type

total

total

total

total

total

total

total

total

Matrix

Water

Water

Water

Water

Water

Water

Water

Water

Client Sample ID

10-KUST-MW1R-01GW

10-KUST-MW3R-01GW

10-KUST-MW4R-01GW

10J0013-BLK1

10J0013-BS1

PTI0922-02

PTI0969-01

PTI0922-01

Lab Sample ID

10J0013-BLK1

10J0013-BS1

10J0013-MS1

ATI0083-01

ATI0083-03

ATI0083-04

10J0013-MS2

10J0013-DUP1

Method

EPA 200/3005

Prep Batch

8 9 10 11

Analysis Batch: 10J0144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10J0144-BLK1	10J0144-BLK1	total	Water	EPA 6020	10J0144_P
10J0144-BS1	10J0144-BS1	total	Water	EPA 6020	10J0144_P
ATI0083-02	10-KUST-MW2R-01GW	total	Water	EPA 6020	10J0144_P
10J0144-MS1	10-KUST-MW2R-01GW	total	Water	EPA 6020	10J0144_P
10J0144-MSD1	10-KUST-MW2R-01GW	total	Water	EPA 6020	10J0144_P

Prep Batch: 10J0144_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
10J0144-BLK1	10J0144-BLK1	total	Water	EPA 200/3005
10J0144-BS1	10J0144-BS1	total	Water	EPA 200/3005
ATI0083-02	10-KUST-MW2R-01GW	total	Water	EPA 200/3005
10J0144-MS1	10-KUST-MW2R-01GW	total	Water	EPA 200/3005
10J0144-MSD1	10-KUST-MW2R-01GW	total	Water	EPA 200/3005

Fuels

Prep Batch: 10J0028_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
ATI0083-01	10-KUST-MW1R-01GW	total	Water	EPA 3510	_
ATI0083-02	10-KUST-MW2R-01GW	total	Water	EPA 3510	
ATI0083-04	10-KUST-MW4R-01GW	total	Water	EPA 3510	
10J0028-BLK1	10J0028-BLK1	total	Water	EPA 3510	
10J0028-DUP1	ATI0082-02	total	Water	EPA 3510	
10J0028-BS1	10J0028-BS1	total	Water	EPA 3510	
10J0028-MS1	ATI0082-02	total	Water	EPA 3510	
10J0028-BSD1	10J0028-BSD1	total	Water	EPA 3510	
10J0028-MS2	10-KUST-MW2R-01GW	total	Water	EPA 3510	
10J0028-MSD2	10-KUST-MW2R-01GW	total	Water	EPA 3510	
10J0028-MSD1	ATI0082-02	total	Water	EPA 3510	
ATI0083-03	10-KUST-MW3R-01GW	total	Water	EPA 3510	

Analysis Batch: T000555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
ATI0083-02	10-KUST-MW2R-01GW	total	Water	AK102/103	10J0028_P
ATI0083-04	10-KUST-MW4R-01GW	total	Water	AK102/103	10J0028_P
10J0028-BLK1	10J0028-BLK1	total	Water	AK102/103	10J0028_P
10J0028-BS1	10J0028-BS1	total	Water	AK102/103	10J0028_P
10J0028-BSD1	10J0028-BSD1	total	Water	AK102/103	10J0028_P

Fuels (Continued)

Analysis Batch: T000556

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
ATI0083-01	10-KUST-MW1R-01GW	total	Water	AK102/103	10J0028_P
10J0028-DUP1	ATI0082-02	total	Water	AK102/103	10J0028_P
10J0028-MS1	ATI0082-02	total	Water	AK102/103	10J0028_P
10J0028-MS2	10-KUST-MW2R-01GW	total	Water	AK102/103	10J0028_P
10J0028-MSD2	10-KUST-MW2R-01GW	total	Water	AK102/103	10J0028_P
10J0028-MSD1	ATI0082-02	total	Water	AK102/103	10J0028_P
Analysis Batch: T00	0562				
– Lah Sample ID	Client Sample ID	Bron Tuno	Matrix	Mothod	Pron Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
ATI0083-03	10-KUST-MW3R-01GW	total	Water	AK102/103	10J0028_P

Prep Type

total total

total

total

total

total

total

total

total total

Client Sample ID: 10-KUST-MW1R-01GW Date Collected: 09/25/10 09:20 Date Received: 09/27/10 12

Prep

Analysis

AK102/103

7/10 12:0	00							
Batch	Batch		Dilution	Batch	Prepared			
Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab	
Prep	GC/MS Volatiles		1	10I0203_P	09/30/10 08:44	CBW	TestAmerica Spokane	
Analysis	EPA 8260B		10	1010203	09/30/10 14:35	ms	TestAmerica Spokane	
Prep	GC Volatiles		1	10l0211_P	09/30/10 13:49	MFH	TestAmerica Spokane	
Analysis	AK 101		1	1010211	09/30/10 19:47	MH	TestAmerica Spokane	
Prep	EPA 3510/600 Series		1	10I0194_P	09/29/10 11:49	ms	TestAmerica Spokane	
Analysis	EPA 8011		1	1010194	09/30/10 10:16	ms	TestAmerica Spokane	
Prep	EPA 200/3005		1	10J0013_P	10/01/10 10:03	JMF	TestAmerica Portland	
Analysis	EPA 6020		1	10J0013	10/02/10 19:20	TNL	TestAmerica Portland	
Prep	EPA 3510		0.7937	10J0028 P	10/06/10 14:31	STL	TestAmerica Anchorage	

10/09/10 16:29 deb

Client Sample ID: 10-KUST-MW2R-01GW Date Collected: 09/25/10 10:45 Date Received: 09/27/10 12:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	GC/MS Volatiles		1	10I0203_P	09/30/10 08:44	CBW	TestAmerica Spokane
total	Analysis	EPA 8260B		1	1010203	09/30/10 15:03	ms	TestAmerica Spokane
total	Prep	GC Volatiles		1	1010211_P	09/30/10 13:49	MFH	TestAmerica Spokane
total	Analysis	AK 101		1	1010211	09/30/10 20:12	MH	TestAmerica Spokane
total	Prep	EPA 3510/600 Series		1	10I0194_P	09/29/10 11:49	ms	TestAmerica Spokane
total	Analysis	EPA 8011		1	1010194	09/30/10 10:40	ms	TestAmerica Spokane
total	Prep	EPA 200/3005		1	10J0144_P	10/05/10 21:07	JMF	TestAmerica Portland
total	Analysis	EPA 6020		2	10J0144	10/06/10 14:57	kah	TestAmerica Portland
total	Prep	EPA 3510		0.813	10J0028_P	10/06/10 14:31	STL	TestAmerica Anchorage
total	Analysis	AK102/103		1	T000555	10/09/10 17:01	deb	TestAmerica Anchorage

1

T000556

Client Sample ID: 10-KUST-MW3R-01GW Date Collected: 09/25/10 11:45 Date Received: 09/27/10 12:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	GC/MS Volatiles		1	10l0203_P	09/30/10 08:44	CBW	TestAmerica Spokane
total	Analysis	EPA 8260B		1	1010203	09/30/10 17:24	ms	TestAmerica Spokane
total	Analysis	EPA 8260B		10	1010203	10/01/10 12:02	ms	TestAmerica Spokane
total	Prep	GC Volatiles		1	10l0211_P	09/30/10 13:49	MFH	TestAmerica Spokane
total	Analysis	AK 101		1	1010211	09/30/10 21:51	MH	TestAmerica Spokane
total	Prep	EPA 3510/600 Series		1	10I0194_P	09/29/10 11:49	ms	TestAmerica Spokane
total	Analysis	EPA 8011		1	1010194	09/30/10 11:53	ms	TestAmerica Spokane
total	Prep	EPA 200/3005		1	10J0013_P	10/01/10 10:03	JMF	TestAmerica Portland
total	Analysis	EPA 6020		1	10J0013	10/02/10 19:24	TNL	TestAmerica Portland
total	Prep	EPA 3510		0.813	10J0028_P	10/06/10 14:31	STL	TestAmerica Anchorage
total	Analysis	AK102/103		1	T000562	10/11/10 12:06	deb	TestAmerica Anchorage

Lab Sample ID: ATI0083-01 Matrix: Water

Lab Sample ID: ATI0083-02

TestAmerica Anchorage

Matrix: Water

Lab Sample ID: ATI0083-03 Matrix: Water

TestAmerica Anchorage 10/12/2010

Client Sample ID: 10-KUST-MW4R-01GW Date Collected: 09/25/10 10:00 Date Received: 09/27/10 12:00

Lab Sample ID: ATI0083-04 Matrix: Water

Lab Sample ID: ATI0083-05

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	GC/MS Volatiles		1	10I0203_P	09/30/10 08:44	CBW	TestAmerica Spokane
total	Analysis	EPA 8260B		1	1010203	09/30/10 17:52	ms	TestAmerica Spokane
total	Analysis	EPA 8260B		10	1010203	09/30/10 18:21	ms	TestAmerica Spokane
total	Prep	GC Volatiles		1	10I0211_P	09/30/10 13:49	MFH	TestAmerica Spokane
total	Analysis	AK 101		1	1010211	09/30/10 22:16	MH	TestAmerica Spokane
total	Prep	EPA 3510/600 Series		1	10I0194_P	09/29/10 11:49	ms	TestAmerica Spokane
total	Analysis	EPA 8011		1	1010194	09/30/10 12:17	ms	TestAmerica Spokane
total	Prep	EPA 200/3005		1	10J0013_P	10/01/10 10:03	JMF	TestAmerica Portland
total	Analysis	EPA 6020		1	10J0013	10/02/10 19:28	TNL	TestAmerica Portland
total	Prep	EPA 3510		0.8772	10J0028_P	10/06/10 14:31	STL	TestAmerica Anchorage
total	Analysis	AK102/103		1	T000555	10/09/10 17:33	deb	TestAmerica Anchorage

Client Sample ID: 10-KOTZ-TB-01GW Date Collected: 09/25/10 08:00 Date Received: 09/27/10 12:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	GC/MS Volatiles		1	10I0203_P	09/30/10 08:44	CBW	TestAmerica Spokane
total	Analysis	EPA 8260B		1	1010203	09/30/10 18:49	ms	TestAmerica Spokane
total	Prep	GC Volatiles		1	1010211_P	09/30/10 13:49	MFH	TestAmerica Spokane
total	Analysis	AK 101		1	1010211	09/30/10 22:41	MH	TestAmerica Spokane

Certification Summary

Client: Oasis Environmental, Inc. Project/Site: 465-009

Laboratory	Authority	Program	EPA Region	Certification ID	Expiration Date
TestAmerica Anchorage	Alaska	Alaska UST	10	UST-067	06/16/11
TestAmerica Anchorage	Alaska	State Program	10	AK00975	06/30/11
TestAmerica Portland		USDA		P330-07-XXXXXX	11/13/10
TestAmerica Portland	Alaska	Alaska UST	10	UST-012	12/26/10
TestAmerica Portland	Alaska	State Program	10	OR00040	04/21/11
TestAmerica Portland	California	State Program	9	2597	09/30/11
TestAmerica Portland	Oregon	NELAC Primary AB	10	OR100021	01/09/11
TestAmerica Portland	Washington	State Program	10	C586	06/23/11
TestAmerica Spokane	Alaska	Alaska UST	10	UST-071	10/31/10
TestAmerica Spokane	Washington	State Program	10	C569	01/06/11

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: Oasis Environmental, Inc. Project/Site: 465-009

Method	Method Description	Protocol	Laboratory
EPA 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL SPK
AK 101	Gasoline Hydrocarbons (n-Hexane to <n-decane) ak101<="" and="" btex="" by="" td=""><td></td><td>TAL SPK</td></n-decane)>		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 6020	Total Metals per EPA 6000/7000 Series Methods		TAL PTL
AK102/103	Diesel Range Organics (C10-C25) and Residual Range Organics (C25-C36) per AK102/RRO		TAL ANC

Protocol References:

=

Laboratory References:

TAL ANC = TestAmerica Anchorage, 2000 West International Airport Road Suite A10, Anchorage, AK 99502-1119, TEL (907) 563-9200

TAL PTL = TestAmerica Portland, 9405 SW Nimbus Avenue, Beaverton, OR/USA 97008, TEL (503) 906-9200

TAL SPK = TestAmerica Spokane, 11922 E. 1st Ave., Spokane, WA/USA 99206, TEL (509) 924-9200

Sample Summary

Client: Oasis Environmental, Inc. Project/Site: 465-009

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
ATI0083-01	10-KUST-MW1R-01GW	Water	09/25/10 09:20	09/27/10 12:00
ATI0083-02	10-KUST-MW2R-01GW	Water	09/25/10 10:45	09/27/10 12:00
ATI0083-03	10-KUST-MW3R-01GW	Water	09/25/10 11:45	09/27/10 12:00
ATI0083-04	10-KUST-MW4R-01GW	Water	09/25/10 10:00	09/27/10 12:00
ATI0083-05	10-KOTZ-TB-01GW	Water	09/25/10 08:00	09/27/10 12:00

Test America Anchorage Cooler Receipt Form	1
(Army Corps. Compliant) Kotzebue Lot M	
WORK ORDER # ATION 2 +33 CLIENT: Uass project: Kotzebue Ust sile	
Date /Time Cooler Arrived <u>1/2+/10</u> 12 : 10 Cooler signed for by: <u>Stephen</u> Com (Print name)	
Preliminary Examination Phase:	4
Date cooler opened: The same as date received or//	5
Cooler opened by (print) Stephen Lan (sign)	
1. Delivered by ALASKA AIRLINES Fed-EX UPS NAC LYNDEN ACLIENT Other:	
Shipment Tracking # if applicable $\frac{\lambda}{\zeta}$ (ζ (include copy of shipping papers in file)	8
2. Number of Custody Seals	Q
Were custody seals unbroken and intact on arrival?	3
3. Were custody papers sealed in a plastic bag?	
4. Were custody papers filled out properly (ink, signed, etc.)?	
5. Did you sign the custody papers in the appropriate place?	
6. Was ice used? 🗌 Yes 🔲 No Type of ice: 🗋 blue ice 🔀 gel ice 🗌 real ice 🗌 dry ice Condition of Ice: Sata	13
Temperature by Digi-Thermo Probe <u>3.0</u> °C Thermometer # <u>72.ec</u> 5 Acceptance Criteria: 0 - 6°C	
7. Packing in Cooler: 🕅 bubble wrap 🗍 styrofoam 🗍 cardboard 🦳 Other:	
8. Did samples arrive in plastic bags?	
9. Did all bottles arrive unbroken, and with labels in good condition? XYes INo	
10. Are all bottle labels complete (ID, date, time, etc.) A Yes No	
11. Do bottle labels and Chain of Custody agree? \square No	
12. Are the containers and preservatives correct for the tests indicated? Xes No	
13. Conoco Phillips, Alyeska, BP H2O samples only: pH < 2? Yes No X. N/A	
14. Is there adequate volume for the tests requested?	
15. Were VOA vials free of bubbles? Image: N/A Image: Yes Image: No If "NO" which containers contained "head space" or bubbles? Image: No	
Log-in Phase:	
Date of sample log-in <u>9/27/10</u> Samples logged in by (print) <u>Stephen lan</u> (sign)	
1. Was project identifiable from custody papers?	
2. Do Turn Around Times and Due Dates agree?	
3. Was the Project Manager notified of status? [¥] Yes No 4. Was the Lab potified of status? [¥] Yes No	
5. Was the COC scanned and copied? Yes No	

.

REPORT TO: ADDRESS: RELEASED BY: MPLLC SAMPLED BY: M. PKE PROJECT NUMBER: 465-009 PRINT NAME: M PIKE PROJECT NAME: KOTZEBUE UST SITE CLIENT: OASIS ADDITIONAL REMARKS: RELEASED BY: 10-KUST-MWIR-016W 09/25/10 10920 PHONE: PRINT NAME: 10-KUST-MW3R-DIAW 09/25/10/1145 10-150-72 -TB-6: 64 09/25/10/0800 10-KUST-MW4R-01 w 09/25/10/1000 10-Kust-MW2R-01GW 09/25/10/ THE LEADER IN ENVIRONMENTAL TESTING estAmeric CLIENT SAMPLE IDENTIFICATION ANCH, AKAX 99504 DASIS ENVIRONMENTAL 025 WOTH AVE ENVIRONMENTAL R. BURICH SAMPLING DATE/TIME XEY 10fs FIRM: FIRM: DASIS * * DRO/RRO- AK102/ AK103 GRO/* BTEX+ DRO/* RRO ILEAO* (Pb) X \times GRO / RTEX + EDC. + DCA - AKIOI / SW8260 \times \times \succ 10H HCI HNO3 \times \times \times imes \times \times Х \succ CHAIN OF CUSTODY REPORT * P.O. NUMBER: INVOICE TO ۱ × \times × EDB \times TIME: DATE: TIME: DATE: 9/27/10 OASIS ENVIRONMENTAL 09 50 REQUESTED ANALYSES PRESERVATIVE 40 DAN FRANK PRINT NAME: RECEIVED BY: PRINT NAME: RECEIVED BY: 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 11922 E. First Ave, Spokane, WA 99206-5302 mar Work Order #: MATRIX (W, S, O) • Turnaround Requests less than standard may incur Rush Charge. ars ₹ \leq Ł Z 10 (ERM-Ś FIRM: STD U1 OTHER Specify: TURNAROUND REQUEST # OF Organic & Inorganic Analyses \widetilde{o} exproleum Hydrocarbon Analyses 5 4 3 2 1 0 σ 0 3 4 in Business Days * 3 2 1 <1 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 TRIPBUANK Ms/msb LOCATION/ COMMENTS TEMP: 9 3. O PAGE K-110683 DATE: TIME: TIME: DATE: " / AT-/ O TAL-1000(0408) 1200 TA WO ID <u>^</u> ę ٤ З 3

* TOTAL LEAD _HOUO/6020

10/12/2010

5 6

13

APPENDIX F

ADEC Conceptual Site Model Human Health Scoping Form and Graphic

- Page Intentionally Left Blank -

Human Health Conceptual Site Model Scoping Form

Site Name:	Crowley Kotzebue Former UST Site; BLK 4, LT 1
File Number:	To Be Determined
Completed by:	M. Pike, OASIS Environmental, Inc.

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

🖂 USTs	Vehicles
ASTs	
Dispensers/fuel loading racks	Transformers
Drums	Other:

Release Mechanisms (check potential release mechanisms at the site)

⊠ Spills	⊠ Direct discharge
🗵 Leaks	Burning
	□ Other:

Impacted Media (check potentially-impacted media at the site)

⊠ Surface soil (0-2 feet bgs*)	⊠ Groundwater
Subsurface soil (>2 feet bgs)	Surface water
🖂 Air	🗌 Biota
Sediment	Other:

Receptors (check receptors that could be affected by contamination at the site)

☐ Residents	(adult or	child)	

- \boxtimes Commercial or industrial worker
- \boxtimes Construction worker
- \square Subsistence harvester (i.e. gathers wild foods)
- Subsistence consumer (i.e. eats wild foods)
- Farmer

 \boxtimes Site visitor

 \boxtimes Trespasser

Recreational user

Other:

^{*} bgs - below ground surface

- 2. Exposure Pathways: (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)
- a) Direct Contact -
 - 1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.) $\overline{\times}$

Г

Complete	
il between 0 and 15 feet below the site specific basis.)	e ground surfa
3 in the guidance document)?	
Incomplete	
detected in the groundwater, e future?	$\overline{\times}$
ent or future drinking water	_
of drinking water according	
of drinking water according	
	Complete il between 0 and 15 feet below the site specific basis.) 3 in the guidance document)? Incomplete letected in the groundwater, e future?

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:	Incomplete
Comments:	
3. Ingestion of Wild and Farmed Foods	
Is the site in an area that is used or reasonably could be used for harvesting of wild or farmed foods?	r hunting, fishing, or
Do the site contaminants have the potential to bioaccumulate (se document)?	ee Appendix C in the guidance
Are site contaminants located where they would have the potent biota? (i.e. soil within the root zone for plants or burrowing dep groundwater that could be connected to surface water, etc.)	tial to be taken up into pth for animals, in
If all of the boxes are checked, label this pathway complete:	Incomplete
Comments:	
nhalation- 1. Inhalation of Outdoor Air	
Are contaminants present or potentially present in surface soil b ground surface? (Contamination at deeper depths may require a	between 0 and 15 feet below the evaluation on a site specific basis.)
Are the contaminants in soil volatile (see Appendix D in the g	guidance document)?
If both boxes are checked, label this pathway complete:	Complete
Comments:	

 $\overline{\times}$

 \square
2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Comments:

 \square

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be protective of this pathway.

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be protective of this pathway.

Check the box if further evaluation of this pathway is needed:

Comments:

 \square

 \square

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.
- Chromium is present in soil that can be dispersed as dust particles of any size.

Generally, DEC direct contact soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because it is assumed most dust particles are incidentally ingested instead of inhaled to the lower lungs. The inhalation pathway only needs to be evaluated when very small dust particles are present (e.g., along a dirt roadway or where dusts are a nuisance). This is not true in the case of chromium. Site specific cleanup levels will need to be calculated in the event that inhalation of dust containing chromium is a complete pathway at a site.

Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

APPENDIX A

BIOACCUMULATIVE COMPOUNDS OF POTENTIAL CONCERN

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table B-1 of 18 AAC 75.341 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greather than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5 and inorganic compounds that are listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000).

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5 and inorganic compounds that are listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (K_{ow}) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler, DEC recommends using a log K_{ow} greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS OF POTENTIAL CONCERN

A chemical is identified here as sufficiently volatile and toxic for further evaluation if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater, the molecular weight is less than 200 g/mole (EPA 2004a), and the vapor concentration of the pure component posed an incremental lifetime cancer risk greater than 10^{-6} or a non-cancer hazard quotient of 0.1, or other available scientific data indicates the chemical should be considered a volatile. Chemicals that are solid at typical soil temperatures and do not sublime are generally not considered volatile.

Acetone	Mercury (elemental)
Benzene	Methyl bromide (Bromomethane)
Bis(2-chloroethyl)ether	Methyl chloride (Chloromethane)
Bromodichloromethane	Methyl ethyl ketone (MEK)
Bromoform	Methyl isobutyl ketone (MIBK)
n-Butylbenzene	Methylene bromide
sec-Butylbenzene	Methylene chloride
tert-Buytlbenzene	1-Methylnaphthalene
Carbon disulfide	2-Methylnaphthalene
Carbon tetrachloride	Methyl <i>tert</i> -butyl ether (MTBE)
Chlorobenzene	Naphthalene
Chlorodibromomethane (Dibromochloromethane)	Nitrobenzene
Chloroethane	n-Nitrosodimethylamine
Chloroform	n-Propylbenzene
2-Chlorophenol	Styrene
1,2-Dichlorobenzene	1,1,2,2-Tetrachlorethane
1,3-Dichlorobenzene	Tetrachloroethylene (PCE)
1,4-Dichlorobenzene	Toluene

Dichlorodifluoromethane	1,2,4-Trichlorobenzene
1,1-Dichloroethane	1,1,1-Trichloroethane
1,2-Dichloroethane	1,1,2-Trichloroethane
1,1-Dichloroethylene	Trichloroethane
cis-1,2-Dichloroethylene	2,4,6-Trichlorophenol
trans-1,2-Dichloroethylene	1,2,3-Trichloropropane
1,2-Dichloropropane	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)
1,3-Dichloropropane	Trichlorofluoromethane (Freon-11)
Ethylbenzene	1,2,4-Trimethylbenzene
Ethylbenzene Ethylene dibromide (1,2-Dibromoethane)	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene
Ethylbenzene Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene	1,2,4-Trimethylbenzene1,3,5-TrimethylbenzeneVinyl acetate
Ethylbenzene Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene Hexachloro-1,3-butadiene	1,2,4-Trimethylbenzene1,3,5-TrimethylbenzeneVinyl acetateVinyl chloride (Chloroethene)
Ethylbenzene Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene Hexachloro-1,3-butadiene Hexachlorocyclopentadiene	1,2,4-Trimethylbenzene1,3,5-TrimethylbenzeneVinyl acetateVinyl chloride (Chloroethene)Xylenes (total)
Ethylbenzene Ethylene dibromide (1,2-Dibromoethane) Hexachlorobenzene Hexachloro-1,3-butadiene Hexachlorocyclopentadiene Hexachloroethane	1,2,4-Trimethylbenzene1,3,5-TrimethylbenzeneVinyl acetateVinyl chloride (Chloroethene)Xylenes (total)GRO (see note 3 below)
EthylbenzeneEthylene dibromide (1,2-Dibromoethane)HexachlorobenzeneHexachloro-1,3-butadieneHexachlorocyclopentadieneHexachlorocethaneHydrazine	1,2,4-Trimethylbenzene1,3,5-TrimethylbenzeneVinyl acetateVinyl chloride (Chloroethene)Xylenes (total)GRO (see note 3 below)DRO (see note 3 below)

Notes:

- 1. Bolded chemicals should be investigated as volatile compounds when petroleum is present. If fuel containing additives (e.g., 1,2-dichloroethane, ethylene dibromide, methyl *tert*-butyl ether) were spilled, these chemicals should also be investigated.
- 2. If a chemical is not on this list, and not in Tables B of 18 AAC 75.345, the chemical has not been evaluated for volatility. Contact the ADEC risk assessor to determine if the chemical is volatile.
- 3. At this time, ADEC does not require evaluation of petroleum ranges GRO, DRO, or RRO for the indoor air inhalation (vapor intrusion) pathway.

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

directions below. Do not	ons or engineering/land	hways.	(5)	Identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptors	"F" for future receptors, "C/F" for both current and future receptors, or "I" for insignificant exposure.	Current & Future Receptors		COURCE CO	ts chion file chion file since for s	Other Subsiste Subsiste Constru Farmers file visi Constru Farmers file visi for Subsiste for Subsiste for Subsiste for Subsiste for Subsiste Subsis	C/F C/F C/F	C/F C/F C/F		-					C/F C/F C/F											Revised, 10/01/2010
Instructions: Follow the numbered	consider contaminant concentrati	use controls when describing path			(4)	Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human	Health CSM Scoping Form.	Exposure Pathway/Route			ncidental Soil Ingestion	Dermal Absorption of Contaminants from Soil	nhalation of Fugitive Dust		ngestion of Groundwater	Dermal Absorption of Contaminants in Groundwater	nhalation of Volatile Compounds in Tap Water		nhalation of Outdoor Air	nhalation of Indoor Air	nhalation of Fugitive Dust	ngestion of Surface Water	Dermal Absorption of Contaminants in Surface Water	nhalation of Volatile Compounds in Tap Water		Direct Contact with Sediment		ingestion of Wild or Farmed Foods		
					(3)	Check all exposure media identified in (2).		Exposure Media				Soil Soil				G groundwater				air Ir			🗾 surface water		2	Sediment V D		Diota Ir		
Site: Crowley Former Kotzebue UST Site; Block 4 Lot 1		Completed By: M. Pike, OASIS Environmental, Inc.	Date Completed: 12/03/2010		(1) (2)	Check the media that For each medium identified in (1), follow the could be directly affected top arrow <u>and</u> check possible transport by the release.	(1) if the media acts as a secondary source.	Media Transport Mechanisms	Direct release to surface soil Check soil Minimizion to cutocutace check soil	Surface Vingration to subsurface <u>check groundwater</u> Soil V Migration to groundwater <u>check groundwater</u> (0-2 ft bgs) J Volatilization	Runoff or erosion check surface water	Uptake by plants or animals check biota	Uther (list):	Direct release to subsurface soil check soil	Subsurface V Migration to groundwater check groundwater Soil Volartiization check ar	(2-15 ft bgs) Uptake by plants or animals check blots	Other (list):	Direct release to groundwater check groundwater	Ground-	water How to surface water body check surface water	Uptake by plants or animals check bioted	Z Direct release to surface water check surface water	Surface Volatilization Check air	Water V Sedimentation Check sediment	Other (list):		Direct release to sediment Service and Argension, runoff, or erosion check surface water	Uptake by plants or animals check biota	Other (list):	