FINAL 2019 TWO PARTY MONITORING REPORT

U.S. Army Garrison Alaska

Contract W911KB-16-D-0005 Task Order W911KB18F0053

February 2020

DEPARTMENT OF THE ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, U.S. ARMY GARRISON ALASKA 1046 MARKS ROAD #6000 FORT WAINWRIGHT, ALASKA 99703-6000

February 20, 2020

Directorate of Public Works

SUBJECT: Submission of the Final 2019 Monitoring Report, Two-Party Sites, to State of Alaska Department Environmental Conservation.

Ms. Erica Blake
Environmental Program Specialist
Alaska Department of Environmental Conservation
610 University Avenue
Fairbanks, AK 99709

Dear Ms. Blake:

This letter documents transmission of the Final 2019 Monitoring Report, Two-Party Sites, on Fort Wainwright to State of Alaska Department Environmental Conservation.

A digital copy of the document will be provided to you and two CD's will be delivered to ADEC in Fairbanks. A copy of the letter is being provided to Mr. Kevin Fraley, Environmental Program Specialist, Alaska Department of Environmental Conservation. If you would like to receive a hard copy of this document, please notify us within the next few weeks.

If you have questions or concerns regarding this action please contact the undersigned at (907) 361-6623 or email brian.m.adams18.civ@mail.mil, Ms. Bri Clark, Alternate Remedial Program Manager (907) 361-3001 or email brianne.r.clark.civ@mail.mil or you may contact Mr. Seth Reedy, Alternate Remedial Program Manager (907) 361-6489 or email seth.a.reedy.civ@mail.mil.

Sincerely,

Brian M Adams

Remedial Project Manager

CF:

HQ, USAG FWA CERCLA Information Repository (w/o encls)

DEPARTMENT OF THE ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, U.S. ARMY GARRISON ALASKA 1046 MARKS ROAD #6000 FORT WAINWRIGHT, ALASKA 99703-6000

February 20, 2020

Directorate of Public Works

SUBJECT: Submission of the Final 2019 Monitoring Report, Two-Party Sites, to State of Alaska Department Environmental Conservation.

Mr. Kevin Fraley
Environmental Program Specialist
Alaska Department of Environmental Conservation
610 University Avenue
Fairbanks, AK 99709

Dear Mr. Fraley:

This letter documents transmission of the Final 2019 Monitoring Report, Two-Party Sites, on Fort Wainwright to State of Alaska Department Environmental Conservation.

A digital copy of the document will be provided to you and two compact discs will be delivered to ADEC in Fairbanks. A copy of the letter is being provided to Ms. Erica Blake, Environmental Program Specialist, Alaska Department of Environmental Conservation. If you would like to receive a hard copy of this document, please notify us within the next few weeks.

If you have questions or concerns regarding this action please contact the undersigned at (907) 361-6623 or email brian.m.adams18.civ@mail.mil, Ms. Bri Clark, Alternate Remedial Program Manager (907) 361-3001 or email brianne.r.clark.civ@mail.mil or you may contact Mr. Seth Reedy, Alternate Remedial Program Manager (907) 361-6489 or email seth.a.reedy.civ@mail.mil.

Sincerely,

Brian M Adams

Remedial Project Manager

CF:

HQ, USAG FWA CERCLA Information Repository (w/o encls)

FINAL

2019 TWO-PARTY MONITORING REPORT

DRMO Two-Party Sites

(ADEC Hazard ID 1122/25010, ADEC File ID 108.38.069.01/108.26.029)

Neely Road Building 3570 Former PX Gas Station

(ADEC Hazard ID 3691, ADEC File ID 108.38.078)

Former Building 1168

(ADEC Hazard ID 1125, ADEC File ID 108.38.069.02)

Former Building 2250

(ADEC Hazard ID 2490, ADEC File ID 108.38.081)

Former Building 3564

(ADEC Hazard ID 25015, ADEC File ID 108.26.028)

Former Building 5110

(ADEC Hazard ID 1677, ADEC File ID 108.38.037)

U.S. Army Garrison Alaska

February 2020

Prepared for

U.S. Army Corps of Engineers, Alaska District

Post Office Box 6898 JBER, Alaska 99506-6898 Contract W911KB-16-D-0005, TO W911KB18F0053

Prepared by

Fairbanks Environmental Services

3538 International Street
Fairbanks, Alaska 99701 (907) 452-1006
FES Project No. 9011-22

TABLE OF CONTENTS

Page Number

EXEC	CUTIVE SUMMARY	vii
1.0	INTRODUCTION	1-1
1.1	Project Overview and Monitoring Report Organization	1-1
1.2	Project Location and Background	1-2
1.3	Project Sites and Source Area Tracking Numbers	1-2
1.4	Site Descriptions	1-3
1.5	Groundwater Cleanup Levels	1-6
2.0	GROUNDWATER SAMPLING AND DATA ASSESSMENT SUMMARY	2-1
2.1	Groundwater Sampling and Analysis	2-1
2.2	Data Quality Summary	2-3
2.3	Long Term Monitoring Optimization	2-3
2.4	Investigation-Derived Waste Handling and Disposal	2-4
2.5	Institutional Controls Inspections	2-4
3.0	DRMO YARD (TWO-PARTY SITES)	3-1
3.1	Monitoring Well Locations and Groundwater Elevations	3-1
3.2	Groundwater Contaminant Analytical Results	3-1
3.3	Geochemical Field Measurements and Analytical Results	3-2
3.4	Contaminant Concentration Trend	3-3
3.5	Summary and Recommendations	3-4
4.0	NEELY ROAD	4-1
4.1	Monitoring Well Locations and Groundwater Elevations	4-1
4.2	Groundwater Contaminant Analytical Results	4-1
4.3	Geochemical Field Measurements and Analytical Results	4-3
4.4	Contaminant Trend and Plume Stability Evaluation	4-4
4.5	Summary and Recommendations	4-5
5.0	FORMER BUILDING 1168	5-1
5.1	Monitoring Well Locations and Groundwater Elevations	5-1
5.2	Groundwater Contaminant Analytical Results	5-1
5.3	Geochemical Field Measurements and Analytical Results	5-1
5.4	Contaminant Concentration Trend and Plume Stability Evaluation	5-2
5.5	Summary and Recommendations	5-2
6.0	FORMER BUILDING 2250	6-1
6.1	Monitoring Well Locations and Groundwater Elevations	6-1

6.2	Grou	ındwater Contaminant Analytical Results	6-1
6.3	Geo	chemical Field Measurements and Analytical Results	6-2
6.4	Cont	aminant Concentration Trend and Plume Stability Evaluation	6-2
6.5	Sum	mary and Recommendations	6-2
7.0	FOF	RMER BUILDING 3564	7-1
7.1	Grou	ındwater Elevations	7-1
7.2	Grou	ındwater Contaminant Analytical Results	7-1
7.3	Geo	chemical Field Measurements and Analytical Results	7-2
7.4	Cont	aminant Trend and Plume Stability Evaluation	7-3
7.5	Sum	mary and Recommendations	7-4
8.0	FOF	RMER BUILDING 5110	8-1
8.1	Mon	toring Well Locations and Groundwater Elevations	8-1
8.2	Grou	ındwater Contaminant Analytical Results	8-1
8.3	Geo	chemical Field Measurements and Analytical Results	8-3
8.4	Cont	aminant Concentration Trend and Plume Stability Evaluation	8-3
8.5	Sum	mary and Recommendations	8-4
9.0	REF	ERENCES	9-1
FIGUR		Project Site Location Man	
Figure '	1-1	Project Site Location Map	
Figure 3		Well Locations and Groundwater Elevations, DRMO Yard (Two-Party) Groundwater Contaminant Concentrations, DRMO Yard (Two-Party)	
Figure 4		Well Locations and Groundwater Elevations, Neely Road Groundwater Contaminant Concentrations, Neely Road	
Figure 5		Well Locations and Groundwater Elevations, Former Building 1168 Groundwater Contaminant Concentrations, Former Building 1168	
Figure 6		Well Locations and Groundwater Elevations, Former Building 2250 Groundwater Contaminant Concentrations, Former Building 2250	
Figure 7		Well Locations and Groundwater Elevations, Former Building 3564 Groundwater Contaminant Concentrations, Former Building 3564	
Figure 8		Well Locations and Groundwater Elevations, Former Building 5110 Groundwater Contaminant Concentrations, Former Building 5110	

TABLES	
Table 1-1	Crosswalk: Source Area to Administrative Tracking Numbers
Table 3-1	Monitoring Well Summary, DRMO Yard Two-Party Sites
Table 3-2	2010-2019 Groundwater Sample Results, DRMO Yard - DRMO1(Two-Party) and DRMO5
Table 3-3	2014-2019 Groundwater Sample Results, DRMO Yard - DRMO2/Former Building 5010
Table 3-4	Mann-Kendall Trend Analysis Summary, DRMO Yard Two Party Sites
Table 4-1	Monitoring Well Summary, Neely Road
Table 4-2	2015-2019 Geochemical and Field Parameters in Groundwater Samples, Neely Road AS/SVE Treatment System
Table 4-3	2015-2019 Groundwater Sample Results, Neely Road
Table 4-4	Mann-Kendall Trend Analysis Summary, Neely Road
Table 5-1	Monitoring Well Summary, Former Building 1168
Table 5-2	2015-2019 Groundwater Sample Results, Former Building 1168
Table 5-3	Mann-Kendall Trend Analysis Summary, Former Building 1168
Table 6-1	Monitoring Well Summary, Former Building 2250
Table 6-2	2010-2019 Groundwater Sample Results, Former Building 2250
Table 6-3	Mann-Kendall Trend Analysis Summary, Former Building 2250
Table 7-1	Monitoring Well Summary, Former Building 3564
Table 7-2	2015-2019 Groundwater Sample Results, Former Building 3564
Table 7-3	Mann-Kendall Trend Analysis Summary, Former Building 3564
Table 8-1	Monitoring Well Summary, Former Building 5110
Table 8-2	2010-2019 Groundwater Sample Results, Former Building 5110
Table 8-3	Mann-Kendall Trend Analysis Summary, Former Building 5110
GRAPHS	
Graph 4-1	DRO Concentrations in Source Area Wells
Graph 4-2	GRO Concentrations in Source Area Wells
Graph 4-3	Benzene Concentrations in Source Area Wells
Graph 4-4	EDB Concentrations in Source Area Wells

GRAPHS (Continued)

Graph 7-1 DRO Concentrations in Former Building 3564 Wells

Graph 8-1 DRO Concentrations in Former Building 5110 Wells

Graph 8-2 Benzene Concentrations in Former Building 5110 Wells

APPENDICES

Appendix A Groundwater Sample Tracking and Analytical Results Tables

Appendix B CDQR and ADEC Checklist

Appendix C Groundwater Sampling Forms, Field Books, and Field Parameter

Summary

Appendix D MAROS Contaminant Trend and Plume Stability Analysis

Appendix E Photographic Log

LIST OF ACRONYMS AND ABBREVIATIONS

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation
AFCEE Air Force Center for Engineering and the Environment

AS air sparge

bgs below ground surface

BTEX benzene, ethylbenzene, toluene and xylene

btoc below top of casing CAP Corrective Action Plan

CDQR Chemical Data Quality Review

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CLOSES Cleanup Operation and Site Exit Strategy

COC contaminant of concern

CUL cleanup level

DERA Defense Environmental Restoration Account
DRMO Defense Reutilization Marketing Office

DO dissolved oxygen
DoD Department of Defense
DRO diesel range organics

E&E Ecology and Environment, Inc.

EDB 1,2-dibromoethane

ENSR ENSR, Inc.

EPA Environmental Protection Agency
FES Fairbanks Environmental Services Inc.

FS Feasibility Study

GRO gasoline range organics

HQAES Headquarters Army Environment System

IBC intermediate bulk container

IC Institutional Control

IDW investigation-derived waste

IRACR Interim Remedial Action Completion Report

ISCO in-situ chemical oxidation

LTMO Long Term Monitoring Optimization

MAROS Monitoring and Remediation Optimization System

mg/L milligrams per liter μg/L micrograms per liter

mV millivolts

NAVD88 North American Vertical Datum of 1988 NGVD29 National Geodetic Vertical Datum of 1929

NRC National Response Corporation
ORP oxidation reduction potential

PCE Tetrachloroethene
OU2 Operable Unit 2

POL petroleum, oil, and lubricants

PX Post Exchange

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

QSM Quality Systems Manual

RA Remedial Action

RI Remedial Investigation
ROD Record of Decision

ROST Rapid Optical Screening Tool
RPM Remedial Program Managers
RRO residual range organics
SGS SGS North America, Inc.
SVE soil vapor extraction
TCE Trichloroethene

TCLP toxicity characteristic leaching procedure

TMB Trimethylbenzene

TSD treatment, storage, and disposal

UFP-QAPP Uniform Federal Policy for Quality Assurance Project Plans

USACE U.S. Army Corps of Engineers UST underground storage tank VOC volatile organic compounds

EXECUTIVE SUMMARY

This report presents the results and analysis of groundwater sampling performed at six Two-Party source areas located on Fort Wainwright in 2019. The six sites are the Defense Reutilization Marketing Office (DRMO) Yard Two-Party sites, Building 3570 Former Post Exchange (PX) Gas Station (Neely Road), Former Building 1168, Former Building 2250, Former Building 3564, and Former Building 5110. Previously these sites have been reported separately.

DRMO Yard Two-Party Sites

There are three Two-Party sites located within the DRMO Yard: the DRMO1 Two-Party site, DRMO2/Building 5010 site, and the DRMO5 site. These sites were all impacted by various petroleum releases that occurred within the DRMO Yard. Groundwater monitoring for these sites have been previously included in the Operable Unit 2 (OU2) monitoring reports. Air sparge (AS) / soil vapor extraction (SVE) systems operated at the DRMO1 and DRMO5 during the 1990s; there was no active treatment at the DRMO2/Building 5010 site although a contaminated soil removal action was conducted. The DRMO1 and DRMO5 sites have been monitored in recent years on a 5-year frequency, coinciding with the Fort Wainwright Five Year Review process. The DRMO2/Building 5110 site has been monitored on an annual basis.

A total of six DRMO Yard wells were sampled, two wells at each site; all samples were submitted for analysis of diesel range organics (DRO), dissolved iron, and sulfate; samples from the DRMO2/Building 5110 site were also submitted for analysis of volatile organic compounds (VOCs). Five of the six DRMO Two-Party site wells had DRO concentrations exceeding the Alaska Department of Environmental Conservation (ADEC) cleanup level (CUL). Naphthalene and 1,2,4-Trimethylbenzene (TMB) also exceeded ADEC CULs in one DRMO2/Building 5110 well. Geochemical data indicates that biodegradation of remaining petroleum hydrocarbon contamination is continuing in each area. Contaminant trend analysis showed that none of the wells have an increasing DRO concentration trend. All three DRMO Yard sites (including DRMO2/Building 5010) are recommended for a five-year sampling frequency, coinciding with Five Year Reviews.

Neely Road

The Neely Road site was the former Post Exchange Gas Station and later operated as auto shop. Building 3570 was demolished in June 2002. An AS/SVE treatment system operated (discontinuously) between 2005 and 2014, and was effective in remediating groundwater contamination with the exception of DRO.

The Neely Road site is currently sampled on a semi-annual basis; five wells were sampled during June and September 2019 events. Samples were submitted for analysis of GRO, DRO, VOCs, dissolved iron, dissolved manganese, and sulfate. DRO, gasoline range organics (GRO), ethylbenzene, 1,2,4-TMB, 1,3,5-TMB, naphthalene, and manganese exceeded ADEC CULs in one or more wells during the 2019 sampling event. Geochemical data indicates that biodegradation

of remaining petroleum hydrocarbon contamination is continuing in each area. Contaminant trend analysis of individual wells showed a variety of trends from "decreasing" to "increasing", and the contaminant mass evaluation indicated an "increasing" trend. These likely reflect some contaminant rebound following the shutdown of the AS/SVE system, however, the plume analysis showed that the plume spread was decreasing.

Former Building 1168

Former Building 1168 was originally a motor pool and vehicle storage facility, and was later used as petroleum testing laboratory. Fuels and solvents were discharged to a leach well located on the site which resulted in groundwater contamination. The Building 1168 site was included as part of OU2.

An AS/SVE system operated at the site between 1994 and 1998, reducing groundwater concentrations below cleanup goals, and was decommissioned in 2003. Benzene and DRO concentrations rebounded in a few wells following shutdown of the treatment system. An in-situ chemical oxidation (ISCO) treatability study was completed during October 2010 to address residual benzene concentrations, and was effective in decreasing benzene concentrations to below the remedial goal. An Interim Remedial Action Completion Report (IRACR) was prepared in 2018 that demonstrated that the remedy was constructed and operated successfully in accordance with the OU2 Record of Decision (ROD). As a result, the Building 1168 site was removed from OU2, and is currently being managed in accordance with the Two-Party Agreement established between ADEC and the U.S. Army.

Groundwater samples are currently collected from three wells on an annual basis and submitted for analysis of DRO, VOCs, dissolved iron, and sulfate. There were no contaminant concentrations that exceeded ADEC CULs in any of the 2019 groundwater samples; the last ADEC CUL exceedances occurred in 2017. Geochemical data indicates that biodegradation of remaining petroleum contamination is continuing. Contaminant trend analysis showed two of the three wells have decreasing DRO trends. Since groundwater sample results have been below ADEC CULs for two years and contaminant trends are "decreasing", the sampling frequency is recommended to be increased to every five years, coinciding with the Five-Year Review.

Former Building 2250

Former Building 2250 was a Quonset hut located on the Fort Wainwright golf course that was used for pesticide storage and mixing. The building was removed in 1991. A Remedial Investigation (RI) conducted at the site did not detect elevated levels of pesticides; however, it did find petroleum, oil, and lubricants (POL) contamination in the soil and groundwater. An AS/SVE system was installed at the site in 1995 and operated until 2004. The AS/SVE system was decommissioned and removed from the site in the summer 2011. The site has been on a five-year sample frequency since 2004.

Groundwater samples were collected from three wells and submitted for analysis of DRO, dissolved iron, and sulfate. DRO exceeded the ADEC CUL in two wells. Geochemical results indicate that groundwater across the area is moderately reduced based upon the negative oxidation reduction potential (ORP), and elevated dissolved iron concentrations. The data supports that remaining petroleum contamination at the site is being anaerobically degraded. The DRO trends in Former Building 2250 wells are varied and are based on a limited data set. Groundwater sampling should continue on a five year frequency coinciding with the Five Year Review.

Former Building 3564

Former Building 3564 was the standby generator plant for the Post between 1954 and 1999. Diesel fuel leaked from underground storage tanks (USTs) associated with the generator. An AS/SVE operated at the site between 1996 and 1998. Groundwater sampling is conducted annually, partly due to the proximity of the site to the Post drinking water well.

Groundwater samples were collected from six wells and submitted for laboratory analysis of DRO, residual range organics (RRO), dissolved iron, and sulfate. One well could not be sampled due to damage to the well casing. Four wells had DRO concentrations exceeding the ADEC CUL in 2019. Groundwater directly downgradient of Former Building 3564 appears to be highly reduced based upon the negative ORP, very high dissolved oxygen (DO), and depleted sulfate concentrations. The data suggests that there is lack of electron acceptors to enable anaerobic biodegradation of remaining petroleum hydrocarbons at the site. However, groundwater in wells located further downgradient and crossgradient have essentially background geochemistry, indicating that the influence of the contaminant plume is not expanding in those directions. Groundwater sampling should continue on a annual frequency.

Former Building 5110

Former Building 5110, which was used as the Range Control Building, was located south of the Richardson Highway. Diesel fuel leaked from a heating oil tank resulting in groundwater contamination. Product recovery was conducted in 1994 with limited success. Groundwater sampling has been conducted on a five-year frequency.

Three wells were sampled in 2019 and submitted for analysis of GRO; DRO; benzene, toluene, ethylbenzene, and xylenes (BTEX); dissolved iron; dissolved manganese; and sulfate. DRO and ethylbenzene exceeded ADEC CULs in all three Former Building 5110 wells that were sampled in 2019. Xylenes and benzene exceeded the ADEC CUL in two and one well, respectively. Contaminant concentrations generally have stable and decreasing trends, and none of the wells have increasing trends for benzene, DRO, or GRO. Groundwater sampling should continue on a five-year frequency coinciding with the Five Year Review.

1.0 INTRODUCTION

This report presents results of the 2019 groundwater sampling events conducted at six Two-Party sites located on Fort Wainwright; Defense Reutilization Marketing Office (DRMO) Yard Two-Party sites, Neely Road Building 3570 Former Post Exchange (PX) Gas Station (Neely Road), Former Building 1168, Former Building 2250, Former Building 3564, and Former Building 5110. Fairbanks Environmental Services (FES) is providing this service under contract to the U.S. Army Corps of Engineers (USACE), Contract Number W911KB-16-D-0005, Task Order W911KB18F0053. The work was guided by the 2019 Two-Party Work Plan (FES, 2019) and the Postwide Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP; FES, 2016).

1.1 Project Overview and Monitoring Report Organization

The purpose of the 2019 sampling effort was to provide current data on groundwater contaminant concentrations for the various Two-Party sites. The data collected are compared to historical data to evaluate trends in contaminant attenuation over time. A description of the procedures and results associated with these activities are presented in the following sections:

- Section 2 Groundwater Sampling and Data Assessment Summary
- Section 3 DRMO Yard (Two-Party Sites)
- Section 4 Neely Road
- Section 5 Former Building 1168
- Section 6 Former Building 2250
- Section 7 Former Building 3564
- Section 8 Former Building 5110
- Section 9 References

Supporting information can be found in the appendices listed below. Additional information not provided in hard copy, such as laboratory reports, are provided in the Supplemental Information folder on the compact disc accompanying this report.

- Appendix A Groundwater Sample Tracking and Analytical Result Tables
- Appendix B Chemical Data Quality Review (CDQR) and Alaska Department of Environmental Conservation (ADEC) Laboratory Data Review Checklists
- Appendix C Groundwater Sampling Forms, Field Notes, and Field Parameter Summary
- Appendix D MAROS Contaminant Trend and Plume Stability Analysis Output
- Appendix E Photographic Log

1.2 Project Location and Background

The Two-Party sites are located on Fort Wainwright, Alaska, which occupies 1,578,304 acres on the east side of Fairbanks to south of Delta, Alaska. The DRMO Yard, Neely Road, Former Building 1168, Former Building 2250, and Former Building 3564 sites are located on the Main Cantonment Area of Fort Wainwright; Former Building 5110 site, the Former Range Control Building, is located south of the Richardson Highway. Figure 1-1 shows the locations of each of the Two-Party sites included in this report.

Fort Wainwright was originally established in 1938 as a cold weather testing station. Currently, primary missions include training of infantry soldiers in the Arctic environment, testing of equipment in Arctic conditions, preparation of troops for defense of the Pacific Rim, and preparation for rapid deployment of troops worldwide. In 2001, Fort Wainwright was selected as the home for third Stryker Brigade Combat Team. Fort Wainwright's mission is to deploy combat ready forces to support joint military operations worldwide and serve as the Joint Force Land Component Command to support Joint Task Force Alaska.

Fort Wainwright is located in the interior of Alaska within the Tanana and Chena River drainage basins. The area is subject to extreme seasonal temperature variations with annual precipitation of approximately 11 inches.

The aquifer material beneath Fort Wainwright is Chena alluvium consisting of sands and sand and gravel mixtures. These deposits are up to 400 feet thick (to bedrock), and are overlain by silt in some areas. Groundwater is relatively shallow across Fort Wainwright, groundwater depths of approximately 8 to 20 feet were measured at the Two-Party sites during 2019. The regional groundwater flow direction is towards the northwest.

1.3 Project Sites and Source Area Tracking Numbers

Table 1-1 summarizes site names, Headquarters Army Environment System (HQAES) site numbers, and ADEC file and hazard identification numbers.

ADEC File HQAES Report Name HOAES Source Area ADEC Hazard ID Number Number 108.38.069.01 1122 (DRMO1/DRMO5) (DRMO1/DRMO5) DRMO Yard **DRMO POL Sites** 02871.1068 Two-Party Sites 108.26.029 25010 (Building 5010) (Building 5010) Neely Road Neely Road POL Point 02871.1078 108.38.078 3691 Former Building Oil Water Separator at 02871.1049 108.38.069.02 1125 1168 Building 1168 Former Building UST Building 2250 02871.1077 108.38.081 2490 2250 Former Building UST Building 3564 02871.1076 25015 108.26.028 3564 Former Building UST Building 5110 02871.1062 108.38.037 1677 5110

Table 1-1. Crosswalk: Source Area to Administrative Tracking Numbers

POL – petroleum, oil, and lubricants; UST – underground storage tank

1.4 Site Descriptions

Groundwater sampling was conducted at six source areas in 2019. The source areas are shown on Figure 1-1, and monitoring results and discussion are included in Sections 3 through 8. Details of the sampling program are described in Section 2.

1.4.1 DRMO Yard Two-Party Sites

The Fort Wainwright DRMO Yard is located on Badger Road near the Richardson Highway. Historical activities conducted at the DRMO Yard have included vehicle maintenance, drum storage, and open burning. The 25-acre site was operated as a vehicle maintenance shop compound from 1945 until 1961 when it was converted to a salvage yard. A treatment, storage, and disposal (TSD) facility for hazardous waste was operated at the DRMO Yard until the early 2000s. Spills have occurred routinely at the DRMO Yard in the past. DRMO no longer utilizes buildings or yard space at the site. The DRMO Yard is now utilized for military vehicle storage and storage for deployed soldiers.

A Remedial Investigation (RI)/Feasibility Study (FS) was performed for all of Operable Unit 2 (OU2) in 1995, and characterized contamination throughout the DRMO Yard (HLA, 1996). The DRMO Yard source area was divided into six sub-areas (DRMO1 through DRMO6) based on investigation findings. A Record of Decision (ROD), prepared following completion of the RI/FS, specified the remedial actions to be undertaken to treat soil and groundwater contamination. Areas of petroleum contamination were addressed under the Two-Party Agreement.

The DRMO1 and DRMO5 Two-Party AS/SVE systems were operated seasonally from 1996 until February 2003. Monitoring of these systems has shown that the majority of volatile contaminant

components have been removed, leaving mostly diesel range organics (DRO) which does not respond well to AS/SVE treatment. Both systems were decommissioned during 2008.

The DRMO1 and DRMO5 sites are monitored on a 5-year sampling frequency while the DRMO2/Building 5010 site is currently monitored annually due to the proximity to a water supply well. DRO is the primary contaminant of concern (COC) at each of the sites.

1.4.2 Neely Road

The Neely Road site (also referred to as Former Building 3570) was the Former Post Exchange (PX) Gas Station and is located at the corner of Neely Road and 11th Street. The station operated between 1955 and 1981, dispensing fuel and servicing vehicles. The station used two 10,000-gallon gasoline underground storage tanks (USTs) and one 550-gallon used oil UST; all three were removed in 1987. The station was used as an Auto Skill Center before being vacated in the late 1990s and demolished in June 2002.

Two RIs were conducted in 2002 and 2003 and identified soil and groundwater petroleum, oil, and lubricants (POL) contamination at the site. A Corrective Action Plan (CAP) was prepared in 2005 that identified a Remedial Action (RA) was required to return the groundwater quality to levels meeting state and federal drinking water standards, and recommended the installation of an air sparge (AS)/soil vapor extraction (SVE) treatment system (ENSR, Inc [ENSR], 2005). The AS/SVE treatment system was installed during late 2005 and expanded in 2009 and 2012. After concentrations of site COCs (with the exception of DRO) had achieved cleanup levels, the decision was reached by the Remedial Program Managers (RPMs) to shut down the treatment system in 2014 and start a contaminant rebound study.

1.4.3 Former Building 1168

The Former Building 1168 site is located on Trainor Gate Road on Fort Wainwright. Building 1168 was originally a motor pool and vehicle storage facility. In the 1960s, the building was converted into a laboratory for analyzing POL. Floor drains in the building connected to an oil/water separator, which connected to a leach well situated about 100 feet southwest of the building. The types of products suspected of having entered the leach well include used oil from engines and transmissions, gasoline, diesel, jet fuel, and solvents. Building 1168 was demolished in the late 1990s. The Building 1168 site was included as part of OU2; the OU2 RI was completed in 1996 and the OU2 ROD was signed in 1997.

An AS/SVE system was installed at the Former Building 1168 in 1994, centered around the leach well. The system was operated between 1994 and 1998 and was effective at reducing groundwater concentrations below cleanup goals. Benzene and DRO concentrations rebounded in a few wells following shutdown of the treatment system. However, evaluation of the groundwater data showed that limited natural attenuation was occurring at this site and

contaminant migration was not evident. As a result, the treatment system was decommissioned by ENSR in 2003.

An in-situ chemical oxidation (ISCO) treatability study was completed during October 2010 to address residual benzene concentrations, and was effective in decreasing benzene concentrations to below the remedial goal (FES, 2017).

Long term groundwater monitoring has been conducted at the site, and sampling results show that the COCs regulated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) have achieved the remedial goals presented in the ROD. The only contaminants remaining in groundwater are petroleum-related and are subject to the CERCLA Petroleum Exclusion (EPA, 1987). As a result, the Building 1168 site was removed from OU2, and is currently being managed in accordance with the Two-Party Agreement established between the ADEC and the U.S. Army.

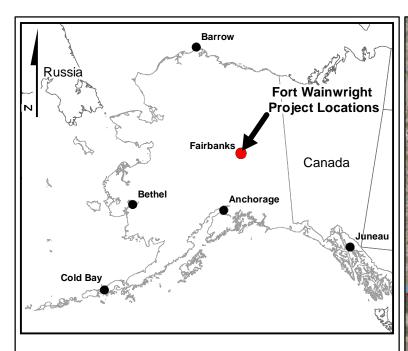
1.4.4 Former Building 2250

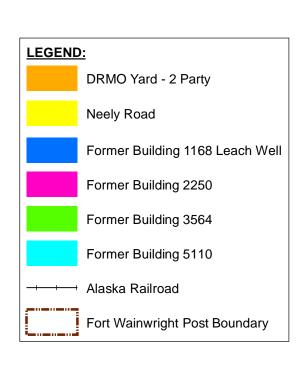
Former Building 2250 was a Quonset hut located on the Fort Wainwright golf course that was used for pesticide storage and mixing. The building was removed in 1991. A UST associated with the building was removed in 1994 (Oil Spill Technology, 1994). The UST at Building 2250 was a clean closure; therefore it was determined that the POL in soil and groundwater at the Building 2250 site was most likely from the floor drains in the Building; however, this was never confirmed. A RI conducted at the site did not detect elevated levels of pesticides; however, it did find POL contamination in the soil and groundwater. An AS/SVE system was installed at the site in 1995 and operated until 2004 (ENSR, 1995). A subsequent Rapid Optical Screening Tool (ROST) investigation showed that remaining subsurface contamination was confined to a limited area. The plume appears to be stable and not increasing. A 2004 Cleanup Operations and Site Exit Strategy (CLOSES) evaluation recommended the Building 2250 site be monitored every 5 years prior to the installation 5-Year Review (CH2M Hill, 2004a). The 5-year sampling schedule was instituted and the site was sampled in 2004, 2010, and 2015. The AS/SVE system was decommissioned and removed from the site in the summer 2011.

1.4.5 Former Building 3564

Former Building 3564 was the standby generator plant for the Post between 1954 and 1999. Arctic diesel fuel for the generators was stored in two 25,000-gallon USTs north of Former Building 3564. USTs at Building 3564 were removed in 1994 (Oil Spill Technology, 1994) and holes were identified in the northernmost tank which resulted in arctic diesel being released to groundwater. A release investigation conducted in 1994 found DRO, gasoline range organics (GRO), and benzene in groundwater (Hart Crowser, 1997). A former leach pit was also located on the north side of Former Building 3564. The pit was connected to a sump pump beneath a diesel generator in Former Building 3564. Water mixed with diesel fuel, lubricating oil, and

antifreeze was pumped into the leach pit. An AS/SVE system was installed in 1996, operated until 1998, and was decommissioned in October 2002. Groundwater monitoring has been conducted at the site since 1996; annual sampling has been conducted at this site since 1999, partly due to the proximity of the site to the Post drinking water well.


1.4.6 Former Building 5110


Former Building 5110, the Former Range Control Building, was located south of the Richardson Highway. The former heating oil UST (#317) was removed in May 1990. For an unknown length of time prior to removal of the UST, the adjacent storage building was not in use but a heating oil UST (#317) was continued to be filled. Given that the fuel stored in the UST was not being consumed for heating, the loss of fuel from the UST was apparently due to leakage. Floating product was observed in well AP-5918 in 1993 (CH2MHILL, 1993). Product recovery was attempted in 1994 in this well but with only limited success.

Subsequent investigations indicated that discontinuous permafrost had substantially reduced the ability of the COCs to migrate and concluded that because of the relatively remote location of the site, nearly flat water table gradient, and distance to the nearest downgradient water-supply well, it was unlikely that remaining groundwater contamination would migrate offsite and affect downgradient receptors. A 2004 CLOSES evaluation recommended the Former Building 5110 site be monitored every 5 years prior to the installation 5-Year Review (CH2M HILL, 2004b). The five-year sampling schedule was instituted and the site was sampled in 2005, 2010, and 2015.

1.5 Groundwater Cleanup Levels

The Fort Wainwright Two-Party sites are governed by the Fort Wainwright Two-Party Agreement (U.S. Army, 1998) and are subject to State of Alaska petroleum regulation requirements. Table C of Title 18, Section 75 of the Alaska Administrative Code [AAC]; (ADEC, 2018) identifies applicable ADEC groundwater cleanup levels.

Note:

1. Coordinate System - Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N Source:

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

3538 International Street Fairbanks, Alaska

USAGAK

Project Site Location Map

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 1-1

Date: 11/19

2.0 GROUNDWATER SAMPLING AND DATA ASSESSMENT SUMMARY

Groundwater sampling was conducted at all sites during June 2019; a second sampling event was conducted at the Neely Road site in September 2019. Groundwater samples were collected from six monitoring wells at the DRMO Yard sites, five monitoring wells at the Neely Road site, three monitoring wells at the Former Building 1168 site, three monitoring wells at the Former Building 2250 site, six monitoring wells at the Former Building 3564 site, and three monitoring wells at the Former Building 5110 site on Fort Wainwright, Alaska.

2.1 Groundwater Sampling and Analysis

Groundwater monitoring wells were sampled to assess contaminant trends over time. Techniques used to purge and sample groundwater were consistent with low-flow sampling methodology (Puls and Barcelona, 1996). This method was developed by the EPA and allows for faster stabilization of geochemical parameters while purging, due to the decreased agitation of the groundwater. The low-flow procedures were used to purge and sample the wells at a rate between 0.03 and 0.15 gallons per minute. Groundwater samples were collected with a submersible pump, employing dedicated telflon-lined tubing for each monitoring well, and groundwater met the stabilization criteria identified in the ADEC Field Sampling Guidance (ADEC, 2019a) prior to sample collection.

Groundwater parameters were measured with a handheld YSI multiparameter instrument connected to a flow-through cell. Measured parameters included pH, temperature, specific conductivity, dissolved oxygen (DO) concentration, and oxidation reduction potential (ORP). Turbidity was also measured using an Oakton turbidity meter. When the parameters stabilized, the flow-through cell was disconnected and samples were collected using the pump set at a low-flow rate. Field parameters were recorded on standard groundwater forms presented in Appendix A and are summarized on Table A-1.

Groundwater samples were submitted for one or more of the following contaminant analyses: DRO by Alaska Method AK 102SV; residual range organics (RRO) by Alaska Method AK 103SV; GRO by Alaska Method AK101; benzene, ethylbenzene, toluene, and xylenes (BTEX) by EPA method 8260C; and volatile organic compounds (VOCs) by EPA Method 8260C. To allow evaluation of groundwater geochemical changes resulting from biodegradation processes, groundwater samples were also submitted for laboratory analysis of dissolved (field-filtered) iron and sulfate by EPA Methods 6020A and 300.0, respectively. Groundwater samples from wells associated with the Neely Road and Former Building 5110 were also analyzed for dissolved manganese using EPA Method 6020A. All project and quality control samples were analyzed by SGS North America, Inc. (SGS) of Anchorage, Alaska.

2.1.1 <u>DRMO Yard (Two-Party Sites)</u>

Groundwater samples were collected from the Two-Party sites within the DRMO Yard on June 19 and 20, 2019 and were submitted for laboratory analysis of DRO, dissolved iron, and sulfate. The samples from AP-7346 and AP-7348 were also submitted for analysis of VOCs. Groundwater sampling activities and results for the DRMO Yard are discussed in Section 3. The following six wells were sampled:

PI-3 MP-4 AP-5826 AP-6806 AP-7346 AP-7348

2.1.2 Neely Road

Groundwater samples were collected twice from the Neely Road site on June 24, 2019 and September 1, 2019 and were submitted for laboratory analysis of VOCs, GRO, DRO, dissolved iron, dissolved manganese, and sulfate. Groundwater sampling activities and results for the Neely Road site are discussed in Section 4. The following five wells were sampled:

AP-8211 AP-9003 AP-9459

AP-9684 AP-9685

2.1.3 Former Building 1168

Groundwater samples were collected from the Former Building 1168 site on June 19 and 20, 2019 and were submitted for laboratory analysis of VOCs, DRO, dissolved iron, and sulfate. Groundwater sampling activities and results for the Former Building 1168 site are discussed in Section 5. The following three wells were sampled:

AP-5751 AP-6809 AP-10037MW

2.1.4 Former Building 2250

Groundwater samples were collected from the Former Building 2250 site on June 19, 2019 and were submitted for laboratory analysis of DRO, dissolved iron, and sulfate. Groundwater sampling activities and results for the Former Building 2250 site are discussed in Section 6. The following three wells were sampled:

AP-5976 AP-7151 AP-7153

2.1.5 Former Building 3564

Groundwater samples were collected from the Former Building 3564 site on June 21 and 24, 2019 and were submitted for laboratory analysis of DRO, RRO, dissolved iron, and sulfate. Groundwater sampling activities and results for the Former Building 3564 site are discussed in Section 7. The following six wells were sampled:

MW3564-1 AP-6729 AP-7178 AP-7183 AP-7189 AP-7191

2.1.6 Former Building 5110

Groundwater samples were collected from the Former Building 5110 site on June 26, 2019 and were submitted for laboratory analysis of BTEX, GRO, DRO, dissolved iron, dissolved manganese, and sulfate. Groundwater sampling activities at the Former Building 5110 site are discussed in Section 8. The following three wells were sampled:

AP-5737 AP-5738 AP-5918R

2.2 Data Quality Summary

The DRMO Yard, Neely Road, and Former Buildings 1168, 2250, 3564, and 5110 groundwater data were reviewed in order to assess whether analytical data met data quality objectives and were acceptable for use. The project data were reviewed for deviations to the requirements presented in the Two-Party UFP-QAPP (FES, 2019), the ADEC Technical Memorandum (ADEC, 2019b), and the Department of Defense (DoD) Quality Systems Manual (QSM), Version 5.1 (DoD, 2017).

Several results were qualified as potential estimates during the data review process; however, no data were rejected. In all cases, the impact to the projects due to the data qualifications was minor. The specific data quality issues found during the review are presented in the CDQR and associated ADEC Laboratory Data Review Checklists included in Appendix B. The reviewed data are presented in Appendix A, and are used in tables and figures throughout the report.

2.3 Long Term Monitoring Optimization

The Monitoring and Remediation Optimization System (MAROS) software was used to evaluate contaminant concentration trends in monitoring wells at each of the Two-Party sites. Plume stability analysis was also performed for the Neely Road and the Former Building 3564 sites; the remaining sites have too few wells to conduct plume analysis. The Air Force Center for

^{*}Well AP-7187 was found damaged and was not sampled.

Engineering and the Environment (AFCEE) developed the MAROS software (AFCEE, 2006) as a tool to evaluate groundwater data trend analysis and is one among several tools that have been recommended for use in Long Term Monitoring Optimization (LTMO) (EPA, 2005).

2.4 Investigation-Derived Waste Handling and Disposal

Investigation-derived waste (IDW) generated during Two-Party field activities in 2019 included purge water and general refuse (disposable tubing, nitrile gloves, etc.) from monitoring well sampling activities. All IDW and other waste streams were managed according to the procedures outlined in the Work Plan (FES, 2019).

Purge water was containerized at the time of sampling in 15-gallon poly drums. The drums were labeled and taken to the Fort Wainwright Defense Environmental Restoration Account (DERA) building for temporary storage. The water in the IDW drums for all POL sites on Fort Wainwright (including Two-Party sites) was then transferred to two 275-gallon intermediate bulk container (IBC) poly tanks. The water was characterized using the laboratory results from the individual wells and a sample from each IBC. The samples from the IBCs were analyzed using the toxicity characteristic leaching procedure (TCLP) for VOCs. Results of the analysis showed that contaminants in the purge water were non-hazardous and the water was disposed as petroleum-contaminated water by National Response Corporation (NRC) Alaska at their facility in Anchorage, AK. The disposal was conducted in accordance with their permit with the Anchorage Water and Wastewater Utility.

Purge water from one well at Neely Road (AP-9685) is considered CERCLA waste due to previous detections of PCE and TCE above the MCL. The purge water from this well was containerized at the time of each sampling event in separate 15-gallon polyethylene drums. The drums were labeled with a unique ID, and clearly identified as "CERCLA Waste". An IDW form was also completed documenting the well ID and purge volume. The drums were taken to the Fort Wainwright Defense Environmental Restoration Account (DERA) building for temporary storage prior to disposal as CERCLA waste.

Complete documentation of the CERCLA waste disposal will be provided in the 2019 IDW Technical Memorandum.

2.5 Institutional Controls Inspections

Institutional Control (IC) inspections were conducted at each of the Two-Party sites in 2019. There were no IC compliance concerns identified at any of the sites. IC inspection results will be detailed in the forthcoming 2019 IC Annual Monitoring Report.

3.0 DRMO YARD (TWO-PARTY SITES)

This section presents the 2019 groundwater monitoring results for the Two-Party sites within the DRMO Yard. Wells were sampled within three separate areas of the DRMO Yard; the DRMO1 Two-Party site, the DRMO2/Building 5010 site, and the DRMO5 site. Three-Party sites within the DRMO Yard are reported in the 2019 OU2 Monitoring Report (FES, 2019b).

3.1 Monitoring Well Locations and Groundwater Elevations

Six wells within the DRMO Yard were sampled; their locations are shown on Figure 3-1. Water levels were measured prior to sampling each well. Monitoring well details, water levels, and groundwater elevations are summarized in Table 3-1. Groundwater elevations were calculated and elevation contours were developed and are shown on Figure 3-1. The groundwater elevations indicate a westerly groundwater flow direction which slightly deviates from the northwesterly regional groundwater flow direction; however, the inferred groundwater flow direction may be influenced by all of the wells being on an east-west plane. Figure 3-2 includes groundwater elevations from past sampling events; the 2019 groundwater elevations appear to be relatively average for the site.

Table 3-1 - Monitoring Well Summary, DRMO Yard Two-Party Sites

Source Area	Well Number	Total Well Depth (feet btoc)	Screened Interval (feet bgs)	Well Elevation (feet - NGVD29)	Date	Water Level (btoc)	Water Elevation (feet - NGVD29)
DRMO1 (Two-	AP-5826	17.2	4.5 - 14.5	453.55	6/19/2019	10.23	443.32
Party)	MP-4	15.0	No Info	452.19	6/19/2019	8.97	443.22
DRMO2/	AP-7346	12.7	4 - 14	451.72	6/19/2019	8.21	443.51
Building 5010	AP-7348	15.3	6 - 16	453.84	6/20/2019	10.29	443.55
DRMO5	PI-3	19.6	No Info	453.47	6/19/2019	11.31	442.16
DIVINOS	AP-6806	20.6	2.1 - 14.5	453.69	6/19/2019	11.33	442.36

bgs - below ground surface btoc - below top of casing

NGVD29 - National Geodetic Vertical Datum of 1929

3.2 Groundwater Contaminant Analytical Results

Six wells were sampled during the 2019 sampling event. Current and historical COC concentrations are summarized on Figure 3-2. Groundwater samples were submitted for laboratory analysis of DRO, dissolved iron, and sulfate as summarized in Table A-1; samples from AP-7346 and AP-7348 were also submitted for analysis of VOCs. Final field measurements recorded prior to groundwater sample collection are presented on Table C-1. Groundwater contaminant concentrations for samples collected at the DRMO1 (Two-Party) and DRMO5 site

between 2010 and 2019 are included in Table 3-2; and contaminant concentrations for samples collected at the DRMO2/Building 5010 site between 2014 and 2019 are included in Table 3-3. Complete analytical results are presented in Table A-2.

Four out of the six wells sampled contained DRO in concentrations that exceeded the ADEC cleanup level. The following sections present results from wells located in the three DRMO Yard areas that were sampled.

3.2.1 DRMO1 (MP-4 and AP-5826)

DRO concentrations in both DRMO1 wells exceeded the ADEC cleanup level (CUL) of 1,500 μ g/L; DRO concentrations in MP-4 and AP-5826 were 4,200 μ g/L and 5,630 μ g/L, respectively. The DRO concentration in MP-4 has exceeded the ADEC CUL in every sampling event except one (September 2002), while the DRO concentration in AP-5826 varies above and below the ADEC CUL. Samples results between 2010 and 2019 are presented in Table 3-2.

3.2.2 DRMO5 (PI-3 and AP-6806)

The DRO concentration in AP-6806 was 9,800 μ g/L, exceeding the ADEC CUL; the DRO concentration in PI-3 was 1,420 μ g/L, just below the ADEC CUL. The DRO concentration in AP-6806 has always exceeded the ADEC CUL since sampling began in September 1994, while the DRO concentration in PI-3 varies above and below the ADEC CUL. Samples results between 2010 and 2019 are presented in Table 3-2.

3.2.3 DRMO2/Building 5010 (AP-7346 and AP-7348)

DRO, 1,2,4-TMB, and naphthalene exceeded ADEC CULs in AP-7348. DRO has always exceeded the ADEC CUL in AP-7348, and 1,2,4-TMB and naphthalene have exceeded the ADEC CUL since sampling those analytes began in 2017. There were no contaminant concentration exceedances in AP-7346; the last contaminant exceedance in this well was in 1998. Sample results between 2014 and 2019 are presented in Table 3-3.

3.3 Geochemical Field Measurements and Analytical Results

In general, the geochemical sample results are consistent with expected changes resulting from anaerobic biodegradation of hydrocarbons. Wells located within the contaminant plume generally have reduced concentrations of electron acceptors, and increased concentrations of biodegradation byproducts. The following geochemical trends indicate that biodegradation is occurring:

• DO concentrations were between 0.49 and 2.52 milligrams per liter (mg/L) at all well locations, indicating that available oxygen is limited for aerobic biodegradation in these wells.

Therefore, anaerobic biodegradation, where ferric iron and sulfate act as electron acceptors, is generally the favorable pathway.

- Background dissolved iron concentrations at Fort Wainwright are typically around 1 mg/L.
 Dissolved iron in DRMO1 and DRMO5 (dissolved iron was not measured in DRMO2/Building 5010 wells) monitoring wells ranged between 2.70 mg/L and 15.4 mg/L, indicating that iron reduction is occurring in each of the areas.
- Background sulfate concentrations at Fort Wainwright are typically around 40 mg/L. Sulfate ranged from 0.883 mg/L to 23.9 mg/L in DRMO1 and DRMO5 monitoring wells (sulfate was not measured in DRMO2/Building 5110 wells). Sulfate concentrations were well below the background, indicating that sulfate reduction may be occurring in each of the areas.
- AP-7348 had the lowest DO concentration (0.49 mg/L) and the most negative ORP (-101.1 millivolts [mV]) indicating that groundwater is highly reduced in the area, which would be expected due to the very high DRO concentration (21,400 μg/L) in the well. The downgradient well (AP-7346) has near background concentrations of DO (around 2 mg/L) and ORP (above zero), and low DRO concentrations; demonstrating that groundwater contamination in the vicinity of AP-7348 appears to attenuate prior to reaching AP-7346.

3.4 Contaminant Concentration Trend

Mann-Kendall trend analysis was performed for the DRMO Yard Two-Party wells using MAROS software to evaluate DRO concentration trends over time. Plume stability trend analysis could not be performed due to an insufficient number of wells. The Mann-Kendall trend was evaluated using groundwater data between 2003 and 2019 for the DRMO1 and DRMO5 sites, which represented the timeframe following the AS/SVE treatment system operation. Since there was no active remediation occurring at the DRMO2/Building 5010 site, the entire groundwater sampling time period of 1997 to 2019 was used for the evaluation. Mann-Kendall results are presented in Appendix D and are summarized in Table 3-4.

Table 3-4. Mann-Kendall Trend Analysis Summary, DRMO Yard Two-Party Wells

Site	Well	Contaminant of Concern
Oite	Wen	DRO
DDMO1 (Two Down)	MP-4	No Trend
DRMO1 (Two-Party)	AP-5826	No Trend
DDMOE	PI-3	Stable
DRMO5	AP-6806	No Trend
DDMO2/Duilding F010	AP-7346	Stable
DRMO2/Building 5010	AP-7348	Decreasing

BOLD indicates DRO concentration exceeded ½ the ADEC CUL in 2019

None of the DRMO Yard Two-Party wells have increasing Mann-Kendall DRO trends. AP-7348 which is located upgradient of the DRMO Water Supply wells has a decreasing trend.

3.5 Summary and Recommendations

DRO is the primary COC at the DRMO Yard sites and appears to be slowly attenuating. None of the wells have increasing contaminant trends. The DRMO2/Building 5010 site has been sampled on an annual basis, in part due to the contaminant plume being upgradient of a water supply well. Since usage of the water supply well has been significantly restricted and the well immediately upgradient of the water supply well has not had contaminant concentrations exceeded ADEC CUL in over 20 years, the groundwater sampling frequency should be reduced to every five years. Groundwater sampling at the DRMO1 and DRMO5 sites should continue on a five-year basis. The next scheduled sampling event for these wells is 2024, in advance of the 2025 Five Year Review.

Table 3-2. 2010 - 2019 Groundwater Sample Results DRMO Yard - DRMO1 (Two-Party) and DRMO5

Well Number	Sample Number	Date		Contaminant Concentrations (µg/L)			
Number			ORP (mV)	Dissolved Oxygen (mg/L)	Dissolved Iron (mg/L)	Sulfate (mg/L)	DRO
	ADEC CLEANUP LEVI	ELS ¹	NA	NA	NE	NE	1,500
DRMO1 (Tw	o-Party)						
	10FW2D03WG	6/2/2010	-74.8	0.25	NA	NA	3,900 QL
-	11FW2D02WG	6/3/2011	84.6	0.79	2.16	20.7	1,600
AP-5826	15WOU210WG	5/13/2015	32.8	0.57	1.87	15.5	1,010
	19FWDY03WG	6/19/2019	-19.5	1.5	2.62	10.3	5630 J
	19FWDY04WG	0/19/2019	-19.5	1.5	2.70	9.94	1700 J
	10FW2D01WG	6/1/2010	-80.4	0.4	NA	NA	2,400 QL
	10FW2D01WG ²	0/1/2010			NA	NA	2,400 QL
MP-4	11FW2D01WG	6/2/2011	50.4	0.9	10.9	4.06	8,000
1117-4	15FWOU205WG	5/12/2015	57.9	0.2	15.1	8.12	3,540
	15FWOU206WG ²	5/12/2015			15.0	8.04	3,160
	19FWDY02WG	6/19/2019	-19.5	2.1	9.95	0.883	4,200
DRMO5							
	10FW2E02WG	6/1/2010	-87.6	0.5	NA	NA	690 QL
PI-3	11FW2E01WG	6/2/2011	46.7	1.3	9.04	28.7	2,700
P1-3	15WOU213WG	5/13/2015	41.7	0.8	5.13	32.9	4,090
	19FWDY01WG	6/19/2019	-16.7	0.8	10.2	23.9	1,420
	10FW2E01WG	6/1/2010	-109.5	0.5	NA	NA	2,000 QL
AP-6806	11FW2E02WG	6/3/2011	45.6	0.9	15.7	26.2	9,300
AP-0000	15WOU212WG	5/13/2015	22.4	0.5	4.75	35.1	2,700
	19FWDY05WG	6/19/2019	22.4	0.5	15.4	16.9	9,800

Notes

Results in green and bold font exceeded ADEC CULs

Data Qualifiers

ND - Not detected at the detection limit (LOD in parentheses; LOQ in parentheses for data prior to 2012.)

- B Result is qualified as a potential high estimate due to contamination present in a blank sample
- J Result is estimated due to a QC issue or because it is less than the LOQ. If result is biased low or high, it is specified as
- "J-" and "J+", respectively (for 2014 data and later).

Acronyms/Abbreviations

DRO - diesel range organics mV - millivolts

LOD - limit of detection NA - not analyzed or not applicable

LOQ - limit of quantitation NE - not established

μg/L - micrograms per liter NGVD29 - National Geodetic Vertical Datum of 1929

mg/L - milligrams per liter ORP - oxidation-reduction potential

¹ 18 AAC 75.345, Table C values (ADEC, 2018)

² Sample is a Field Duplicate of the sample immediately above.

Table 3-3. 2014 - 2019 Groundwater Sample Results DRMO Yard - DRMO2/Former Building 5010

			Geochemi	cal Parameters	Contami	nant Concentratio	ns (μg/L)
Well Number	Sample Number	Date	ORP (mV)	Dissolved Oxygen (mg/L)	DRO	1,2,4- Trimethylbenzene	Naphthalene
ADEC CLEANUP LEVELS ¹			NA	NA	1,500	56	1.7
	14FWOU216WG	10/10/2014	136	1.71	ND(300)	ND (0.5)	ND (5)
	15FWOU208WG	5/13/2015	74.8	0.90	ND(318)	ND (0.5)	ND (5)
	15WOU209WG ²	5/15/2015	74.0	0.90	ND(313)	ND (0.5)	ND (5)
	16FWOU202WG	7/9/2016	59	1.10	ND(600)	ND (0.5)	ND (5)
	16FWOU203WG ²	7/8/2016	39	1.10	194 J,B	ND (0.5)	ND (5)
AP-7346	17FWOU207WG	5/31/2017	-0.4	1.08	ND(318)	ND (0.5)	ND (0.5)
	17FWOU208WG ²	5/31/2017			215 J	ND (0.5)	ND (0.5)
	18FWOU206WG	6/4/2018	27.3	2.27	217 J,B	ND (0.5)	ND (0.5)
	18FWOU207WG ²	0/4/2018			233 J,B	ND (0.5)	ND (0.5)
	19FWDY06WG	6/19/2019	-10	1.92	285 (278) J	ND (0.5)	ND (0.5)
	19FWDY07WG ²	0/19/2019	-10		NA	ND (0.5)	ND (0.5)
	14FWOU218WG	10/10/2014	-0.2	0.4	4,810	18.4	11.1
	15FWOU211WG	5/13/2015	-3.7	0.35	11,100	61.8	42.4
AP-7348	16FWOU204WG	7/8/2016	-18.7	0.34	26,800	95	99 J
AP-/340	17FWOU210WG	5/31/2017	-93.5	0.39	10,700	75.7	86
	18FWOU208WG	6/4/2018	-90.6	0.93	14,000	72.6	67
	19FWDY08WG	6/20/2019	-101.1	0.49	21,400	98.7	60

Notes

Results in green and bold font exceeded ADEC CULs

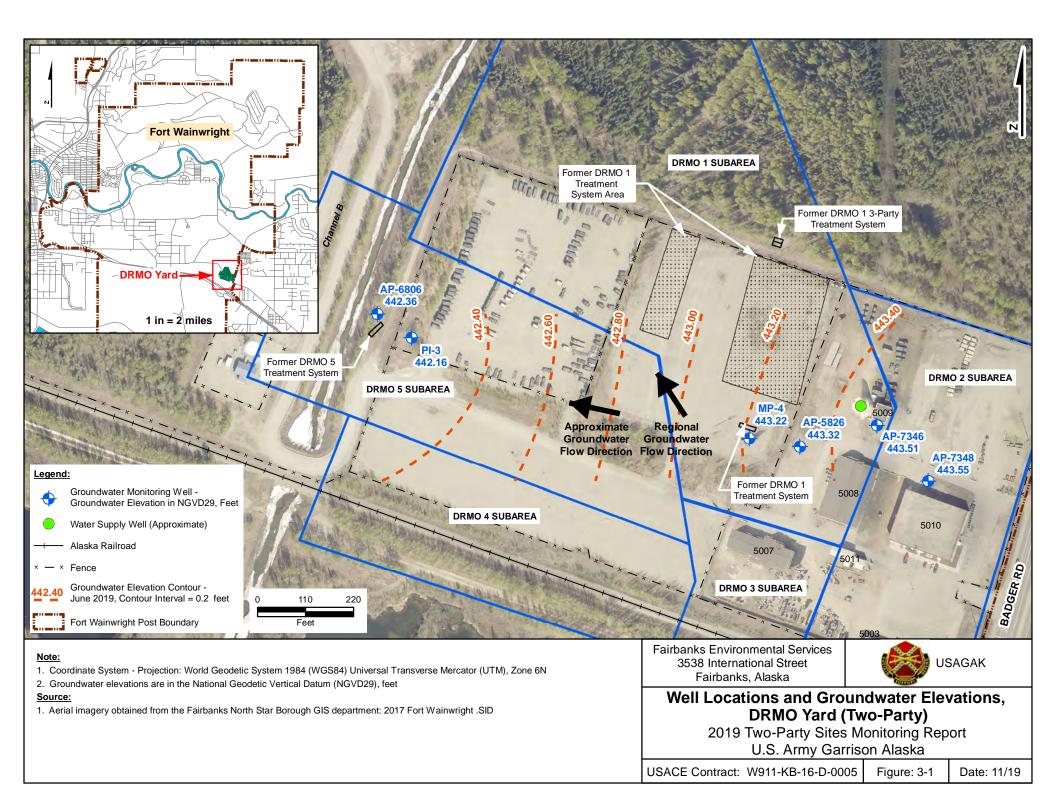
Data Qualifiers

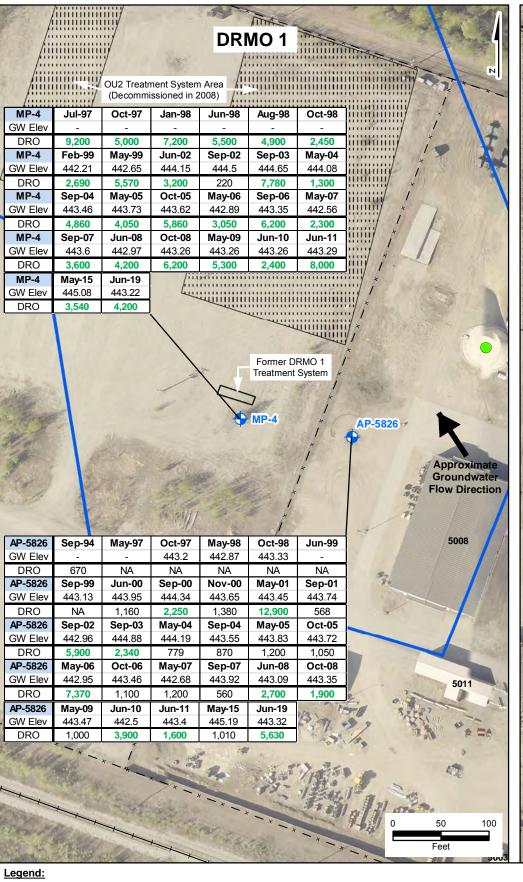
ND - Not detected at the detection limit (LOD in parentheses)

- B Result is qualified as a potential high estimate due to contamination present in a blank sample
- J Result is estimated due to a QC issue or because it is less than the LOQ.

Acronyms/Abbreviations

DRO - diesel range organics mV - millivolts


LOD - limit of detection NA - not analyzed or not applicable


μg/L - micrograms per liter NGVD29 - National Geodetic Vertical Datum of 1929

mg/L - milligrams per liter ORP - oxidation-reduction potential

¹ 18 AAC 75.345, Table C values (ADEC, 2018)

² Sample is a Field Duplicate of the sample immediately above.

DRMO 2 -										
BUILDING 5010										
			DU	ILDIN	G 501	U SOM	C			
		1	*	100	SHIP					
AP-7346	Jun-98	Jul-98	Sep-98	Jul-99	Sep-02	Sep-03	Mark Street Stre			
GW Elev	-	-		-	444.51	445.2	A STATE OF THE STA			
DRO	15,600	200	170	66	R	199				
Benzene	7.2	ND(1)	ND(1)	0.061	R	ND(0.4)				
AP-7346	Sep-04	Oct-05	May-06	Oct-06	May-07	Sep-07	The state of the s			
GW Elev	443.86	443.89	443.12	443.68	442.83	442.61	The same of the sa			
DRO	170	127	137	120	88	89				
Benzene	ND(0.4)	ND(0.4)	ND(0.4)	ND(1)	ND(1)	ND(1)	* PP			
AP-7346	Jun-08	Oct-08	May-09	Jun-10	Jun-11	Aug-12	A.A.			
GW Elev	443.22	443.57	444.01	442.83	443.56	443.92				
DRO Benzene	110 ND(1)	82 0.1	100 ND(1)	89 0.08	66 0.07	62 ND(0.1)				
AP-7346	May-13	Oct-14	May-15	Jul-16	May-17	Jun-18				
GW Elev	442.5	444.78	444.35	444.24	444.05	444.18				
DRO	ND(410)	ND(300)	ND(313)	194	215	223				
Benzene	ND(410)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)				
1,2,4-TMB	-	-	-	-	ND(0.5)	ND(0.5)	原			
Naphthalene	-	-	-	-	ND(0.5)	ND(0.5)	10			
AP-7346	Jun-19					7 13				
GW Elev	443.51			5009	A	A				
DRO	285		THE REAL PROPERTY.	6 /						
Benzene	ND(0.2)		AP-734			4				
1,2,4-TMB	ND(0.5)		/AI-1040	— /						
Naphthalene			A	2000			A A			
	AP-5826									
100	AP-5826		-		7					
*	AP-5826					1				
*	AP-5826				The state of the s	1				
	AP-5826				The state of the s	1	Groundwate			
	AP-5826				The state of the s)	Groundwate			
	AP-5826				THE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLU	A	Groundwate Flow Directio			
	AP-5826					A	Groundwate Flow Directio			
	AP-3820	500	08			A	Groundwate Flow Directio			
	AP-3820		38			A	Groundwate Flow Directio			
	AP-3820		38			A	Groundwate Flow Directio			
	AP-3820		88			5010	Groundwate Flow Directio			
	AP-3820		08				Groundwate Flow Direction			
AP-7348	AP-5820	500		Sep-03	Sep-04	5010	Groundwate Flow Directio			
AP-7348 GW Elev	37.		Sep-02	Sep-03 445.07	Sep-04 443.89		Groundwate Flow Direction			
AP-7348 GW Elev DRO	37.	Jul-99		445.07	443.89	5010 Oct-05 444.04	Groundwate Flow Directio			
GW Elev	Dec-97	500	Sep-02 445.65	-		5010 Oct-05	Groundwate Flow Directio			
GW Elev DRO	Dec-97 - 22,000	Jul-99 - 27,000	Sep-02 445.65 33,000	445.07 33,500 11.4	443.89 27,200	5010 Oct-05 444.04 10,100 0.42	Groundwate Flow Directio			
GW Elev DRO Benzene	Dec-97 	Jul-99 - 27,000 7	Sep-02 445.65 33,000 15	445.07 33,500	443.89 27,200 3.2	5010 Oct-05 444.04 10,100	Groundwate Flow Directio			
GW Elev DRO Benzene AP-7348	Dec-97 - 22,000 NA May-06	Jul-99 - 27,000 7 Oct-06	Sep-02 445.65 33,000 15 May-07	445.07 33,500 11.4 Sep-07	443.89 27,200 3.2 Jun-08	5010 Oct-05 444.04 10,100 0.42 Oct-08	P-7348 Groundwate Flow Direction			
GW Elev DRO Benzene AP-7348 GW Elev	Dec-97 - 22,000 NA May-06 443.34	Jul-99 - 27,000 7 Oct-06 443.82	Sep-02 445.65 33,000 15 May-07 443.04	445.07 33,500 11.4 Sep-07 444.16	443.89 27,200 3.2 Jun-08 443.44	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81	Groundwate Flow Direction P-7348 Fort Wainwright			
GW Elev DRO Benzene AP-7348 GW Elev DRO	Dec-97 - 22,000 NA May-06 443.34 20,200	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12	443.89 27,200 3.2 Jun-08 443.44 21,000	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400	P-7348 Groundwate Flow Direction			
GW Elev DRO Benzene AP-7348 GW Elev DRO Benzene	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6	445.07 33,500 11.4 Sep-07 444.16 15,000 2	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29	Groundwate Flow Direction P-7348 Fort Wainwright			
GW Elev DRO Benzene AP-7348 GW Elev DRO Benzene AP-7348	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49 May-09 443.82 10,000	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10 442.86 11,000	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11 443.76 7,000	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44 14,500	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29 Oct-14 444.74 4,810	Groundwate Flow Direction P-7348 Fort Wainwright			
GW Elev DRO Benzene AP-7348 GW Elev DRO Benzene AP-7348 GW Elev DRO Benzene	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49 May-09 443.82	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10 442.86	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11 443.76	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12 443.87	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29 Oct-14 444.74	Groundwate Flow Direction P-7348 Fort Wainwright			
GW Elev DRO Benzene AP-7348 GW Elev DRO Benzene AP-7348 GW Elev DRO Benzene AP-7348 AP-7348	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49 May-09 443.82 10,000 ND(1) May-15	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10 442.86 11,000 1.2 Jul-16	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11 443.76 7,000 0.55 May-17	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12 443.87 31,000 2.2 Jun-18	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44 14,500 0.6 Jun-19	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29 Oct-14 444.74 4,810	Groundwate Flow Direction P-7348 Fort Wainwright			
GW Elev DRO Benzene AP-7348 GW Elev	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49 May-09 443.82 10,000 ND(1) May-15 444.1	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10 442.86 11,000 1.2 Jul-16 444.36	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11 443.76 7,000 0.55 May-17 444.15	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12 443.87 31,000 2.2 Jun-18 444.38	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44 14,500 0.6 Jun-19 443.55	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29 Oct-14 444.74 4,810	Groundwate Flow Direction P-7348 Fort Wainwright			
GW Elev DRO Benzene AP-7348 GW Elev	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49 May-09 443.82 10,000 ND(1) May-15 444.1 11,100	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10 442.86 11,000 1.2 Jul-16 444.36 26,800	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11 443.76 7,000 0.55 May-17 444.15 10,700	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12 443.87 31,000 2.2 Jun-18 444.38 14,000	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44 14,500 0.6 Jun-19 443.55 21,400	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29 Oct-14 444.74 4,810	Fort Wainwright Post Boundary			
GW Elev DRO Benzene AP-7348 GW Elev DRO Benzene	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49 May-09 443.82 10,000 ND(1) May-15 444.1 11,100 0.49	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10 442.86 11,000 1.2 Jul-16 444.36 26,800 0.62	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11 443.76 7,000 0.55 May-17 444.15 10,700 0.333	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12 443.87 31,000 2.2 Jun-18 444.38 14,000 0.42	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44 14,500 0.6 Jun-19 443.55 21,400 0.58	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29 Oct-14 444.74 4,810	Fort Wainwright Post Boundary			
GW Elev DRO Benzene AP-7348 GW Elev	Dec-97 - 22,000 NA May-06 443.34 20,200 1.49 May-09 443.82 10,000 ND(1) May-15 444.1 11,100 0.49 -	Jul-99 - 27,000 7 Oct-06 443.82 14,000 1.6 Jun-10 442.86 11,000 1.2 Jul-16 444.36 26,800	Sep-02 445.65 33,000 15 May-07 443.04 19,000 1.6 Jun-11 443.76 7,000 0.55 May-17 444.15 10,700	445.07 33,500 11.4 Sep-07 444.16 15,000 2 Aug-12 443.87 31,000 2.2 Jun-18 444.38 14,000	443.89 27,200 3.2 Jun-08 443.44 21,000 1.6 May-13 442.44 14,500 0.6 Jun-19 443.55 21,400	5010 Oct-05 444.04 10,100 0.42 Oct-08 443.81 3,400 0.29 Oct-14 444.74 4,810	Fort Wainwright Post Boundary			

DRMO 5 Sep-94 Oct-96 Jan-97 Jul-97 Oct-97 Jan-98 GW Elev DRO 8,100 4,200 9,200 14,000 4,300 1,900 AP-6806 Jun-98 Aug-98 Oct-98 Feb-99 May-99 Oct-99 **GW Elev** 441.36 441.95 DRO 14,000 1,500 8,470 3.690 2,730 1,530 AP-6806 Apr-00 Jul-00 Sep-00 Nov-00 Sep-01 Jun-02 442.89 442.69 DRO 12,800 1,830 6,860 2,100 2,000 Sep-03 May-05 Oct-05 Sep-02 May-04 Sep-04 **GW Elev** 442.79 443.78 443.41 443.22 443.21 442.64 DRO 1,900 14,800 6,750 3,910 2,340 7,010 AP-6806 May-06 Oct-06 May-07 Sep-07 Jun-08 Oct-08 442.48 442.12 442.38 **GW Elev** 441.79 442.61 442.1 DRO 1,500 3,900 16,000 8,950 2,700 1,900 AP-6806 May-09 Jun-10 Jun-11 May-15 Jun-19 442.57 441.59 442.51 442.36 GW Flev 442 68 DRO 8,200 2,000 9,300 2,700 9.800 AP-6806 Former DRMO 5 Treatment System Approximate Groundwater Flow Direction Sep-00 Nov-00 May-01 Sep-01 Sep-03 May-04 GW Ele 1,920 12,100 2,790 3,790 PI-3 Sep-04 May-05 Oct-05 May-06 Oct-06 May-07 GW Elev DRO 11,000 2,990 1,440 1.500 860 PI-3 Sep-07 Jun-08 Oct-08 May-09 Jun-10 Jun-11 442.55 441.9 442.83 GW Ele DRO 1,500 3,100 2,700 690 1.900 2.700 May-15 Jun-19 442.83 442.16 Acronyms and Abbreviations Units μg/L - micrograms per liter Analytes 1,2,4-TMB - 1,2,4-Trimethylbenzene DRO - Diesel Range Organics AAC - Alaska Administrative Code ADEC - Alaska Department of Environmental Conservation CULs - Cleanup Levels DRMO - Defense Reutilization and Marketing Office NA - not analyzed NA - sample collected, but analysis not performed ND - Not Detected (limit of detection) Data not available

- DRMO 1 Groundwater Monitoring Well

- Water Supply Well (Approximate)
- Alaska Railroad
- 18 AAC 75, Table C, 2018 DRMO 2 / Building 5010 Groundwater Monitoring Well Units in µg/L DRMO 5 Groundwater Monitoring Well 1,500 Benzene 4.6 1,2,4-TMB 56 Naphthalene 1.7 - × Fence

Notes:

ADEC GROUNDWATER CULS

- 1. Sample data shown in GREEN indicate analyte concentration exceeds ADEC CULs (18 AAC 75, Table C)
- 2. DRMO-1 (2-Party), DRMO-5 (2-Party), AND DRMO-1 (3-Party) Treatment Systems were decommissioned in the fall of 2008.
- 3. Starting in 2009, DRMO 2-Party sites are sampled in the spring and DRMO 3-Party sites are sampled in the fall.
- 4. Data flags are not included on figure due to map space limitations. Data flags are presented on Table A-2.
- 5. Groundwater elevations are in the National Geodetic Vertical Datum (NGVD29), feet
- 6. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N
- 1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks Environmental Services 3538 International Street Fairbanks, Alaska

USAGAK

Groundwater Contaminant Concentrations, DRMO Yard (Two-Party)

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 3-2

Date: 11/19

4.0 NEELY ROAD

This section presents the 2019 groundwater monitoring results for the Neely Road site. The first 2019 groundwater sampling event was conducted in June and the second groundwater sampling event was conducted in September.

4.1 Monitoring Well Locations and Groundwater Elevations

Five wells at the Neely Road site were sampled during each event; their locations are shown on Figure 4-1. Water levels were measured prior to sampling each well. Monitoring well details, water levels, and groundwater elevations are summarized in Table 4-1. Groundwater elevations were calculated and elevation contours were developed and are shown on Figure 4-1. The groundwater elevation for AP-9003 was not used for the groundwater contours (consistent with past years) as it appears that the well survey elevation is not accurate. Groundwater elevations indicate a northwesterly groundwater flow direction consistent with the regional groundwater flow direction. Figure 4-2 includes groundwater elevations from past sampling events; the 2019 groundwater elevations appear to be relatively average for the site.

Table 4-1 - Monitoring Well Summary, Neely Road

Well Number	Total Well Depth (feet btoc)	Screened Interval (feet bgs)	Well Elevation (feet – NAVD88)	Date	Water Level (feet btoc)	Water Elevation (feet – NAVD88)
AP-8211	22.1	9.5-19.5	453.43	6/24/2019	18.07	435.36
AP-0211	22.1	9.5-19.5	455.45	9/1/2019	15.35	438.08
AD 0003	22.4	10.20	454.06	6/24/2019	19.25	434.81
AP-9003	22. 4	10-20	454.06	9/1/2019	16.51	437.55
AD 0450	22.0	12.0	452.47	6/24/2019	17.22	435.25
AP-9459	22.9	12.9	452.47	9/1/2019	14.48	437.99
AD 0604	24.0	12.22	452.65	6/24/2019	18.31	435.34
AP-9684	24.8	12-22	453.65	9/1/2019	15.58	438.07
AD 060E	22.2	12 2 22 2	440.20	6/24/2019	14.33	435.06
AP-9685	22.2	12.2-22.2	449.39	9/1/2019	11.55	437.84

NAVD88 - North American Vertical Datum of 1988

4.2 Groundwater Contaminant Analytical Results

Five monitoring wells were sampled during each sampling event. Well locations and current and historical groundwater contaminant concentrations are presented on Figure 4-2. Groundwater samples were submitted for laboratory analysis of GRO, DRO, VOC, dissolved manganese, dissolved iron, and sulfate as summarized in Table A-1. Final field measurements recorded prior

to groundwater sample collection are presented on Table C-1. Groundwater contaminant concentrations of samples collected between 2015 and 2019 are included in Table 4-3. Complete analytical results are presented in Table A-3.

Groundwater contaminant concentrations exceeded ADEC CULs in at least one of the 2019 groundwater sampling events in four out of the five wells. The following summarizes 2019 contaminant concentrations that exceeded ADEC CULs.

- DRO exceeded the ADEC CUL in one well, AP-8211, in both 2019 sampling events.
- GRO exceeded the ADEC CUL in AP-8211 in the June 2019 sampling event.
- Ethylbenzene exceeded the ADEC CUL in both sampling events of AP-8211 and the June 2019 sampling event of AP-9003.
- 1,2,4-Trimethylbenzene (TMB) exceeded the ADEC CUL in both sampling events of AP-8211 and the June 2019 sampling event of AP-9684.
- 1,3,5-TMB exceeded the ADEC CUL in both sampling events of AP-8211.
- Naphthalene exceeded the ADEC CUL in both sampling events of AP-8211, AP-9459 (in one of the field duplicates), and AP-9003.
- Manganese exceeded the ADEC CUL in both sampling events of AP-8211, AP-9003, AP-9459, and AP-9684. Although manganese is a naturally occurring metal, manganese groundwater concentrations typically increase as a result of anaerobic biodegradation processes of petroleum hydrocarbons.

4.2.1 Source Area Wells (AP-8211, AP-9003, AP-9459, and AP-9684)

The source area wells include AP-8211, AP-9003, AP-9459, and AP-9684. Previous monitoring reports had focused on four COCs that historically exceeded CULs in source area wells; DRO, GRO, benzene and 1,2-dibromoethane (EDB). However, as a result of changes in ADEC CULs in recent years, additional analytes (ethylbenzene, 1,2,4-TMB, 1,3,5-TMB, naphthalene, and manganese) exceed ADEC CULs. Historical data for the additional analytes is not readily available and thus is not included in contaminant trend analysis.

DRO concentrations in AP-8211 have always been above the ADEC CUL, while DRO concentrations in AP-9459 and AP-9003 have oscillated around the ADEC CUL. Operation of the AS/SVE appeared to have a limited influence on DRO concentrations during system operation; however, DRO concentrations appear to be similar to pre-treatment levels as indicated by Graph 4-1. The DRO concentration in AP-9684 has never exceeded the cleanup level.

GRO concentrations in source area wells are presented on Graph 4-2. GRO concentrations in source area wells declined significantly as a result of the operation of the AS/SVE system and

have been below the ADEC CUL since 2011, with the exception of the June 2019 GRO concentration in AP-8211.

Benzene was not detected above the ADEC cleanup level in any well during 2018. The AS treatment system expansion in 2012 appears to have been successful in reducing the benzene contaminant concentrations. Benzene concentrations in the four source area wells are shown on the Graph 4-3.

EDB has historically exceeded the ADEC CUL in two wells, AP-8211 and AP-9684, as shown on Graph 4-4. EDB was last detected in AP-8211 in 2016, at concentrations below the ADEC CUL. Operation of the AS/SVE system appeared to be effective in decreasing EDB concentrations at the site.

4.2.2 **Downgradient Well (AP-9685)**

The Neely Road site has one downgradient well, AP-9685. Neither DRO nor GRO have ever exceeded the ADEC CUL in this well. Benzene, PCE, and TCE have historically exceeded the ADEC CUL in this well. Benzene concentrations have been below the ADEC CUL in AP-9685 since July 2009 and benzene has not been detected since 2014.

PCE and TCE have sporadically exceeded the current ADEC CUL in AP-9685 since 2008 and are not believed to be related the Neely Road source contamination. Tetrachloroethene (PCE) and trichloroethene (TCE) did not exceed the current ADEC CUL in either 2019 sampling event of AP-9685. The Army has contracted a Preliminary Source Investigation of chlorinated solvents in the vicinity of AP-9685, referred to as the Building 3030 South Loading Dock-Neely Road area, and is scheduled to occur in 2020.

4.3 Geochemical Field Measurements and Analytical Results

In general, the geochemical sample results are consistent with expected changes resulting from anaerobic biodegradation of hydrocarbons. Wells located within the contaminant plume generally have reduced concentrations of electron acceptors, and increased concentrations of biodegradation byproducts. Table 4-2 presents geochemical data for Neely Road wells between 2015 and 2019. The following geochemical trends indicate that biodegradation is occurring:

- DO concentrations were below 1 mg/L in all source area wells, indicating that available oxygen is limited for aerobic biodegradation in these wells. Therefore, anaerobic biodegradation, where ferric iron and sulfate act as electron acceptors, is generally the favorable pathway.
- Background dissolved iron concentrations at Fort Wainwright are typically less than 1 mg/L.
 Dissolved iron in source area monitoring wells ranged between 2.45 mg/L and 16.3 mg/L, indicating that iron reduction is occurring within the source area.

- Background dissolved manganese concentrations at Fort Wainwright are typically less than 1 mg/L. Dissolved manganese in source area monitoring wells ranged between 1.65 mg/L and 5.86 mg/L, indicating that manganese reduction is occurring within the source area.
- Background sulfate concentrations at Fort Wainwright are typically around 40 mg/L; however
 aeration of groundwater through AS can result in elevated sulfate concentrations for many
 years. Elevated but declining sulfate concentrations are evident in AP-8211, AP-9003, and
 AP-9684. These wells were located within the influence of the AS system. While sulfate
 concentrations remain above background within the source, the decreasing sulfate
 concentrations in recent years indicate that sulfate reduction may be occurring as a result of
 anaerobic biodegradation of residual petroleum hydrocarbons.

4.4 Contaminant Trend and Plume Stability Evaluation

The MAROS software was used to evaluate DRO and RRO contaminant trends in individual wells. DRO plume stability was also evaluated using MAROS. The MAROS output is included in Appendix D and the results are summarized in the following sections.

4.4.1 Mann-Kendall Trend

Mann-Kendal Concentration trends for contaminants exceeding ADEC CULs were determined at the Neely Road site for the post-treatment period (1998 through 2019) and are presented in Table 4-4.

Table 4-4. Mann-Kendall Trend Analysis Summary, Neely Road

Wall				Mann-Ke	endall Trend		
Well	GRO	DRO	Benzene	1,2,4-TMB	1,3,5-TMB	Ethylbenzene	Naphthalene
AP-8211	NT	NT	NT	NT	I	NT	NT
AP-9003	I	I	NT	PI	NT	I	I
AP-9459	NT	NT	NT	S	NT	I	NT
AP-9684	PD	PD	D	NT	NT	NT	PD
AP-9685	NT	NT	PD	I	NT	I	I

BOLD indicates contaminant concentration was more than ½ the ADEC CUL in 2019

D – Decreasing, PD – Potential Decreasing, S – Stable, I – Increasing, PI – Potentially Increasing

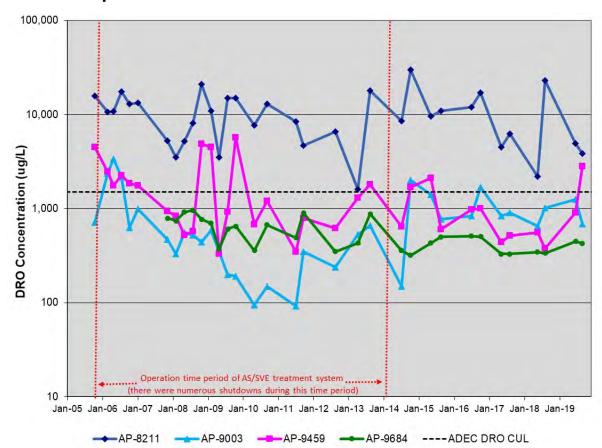
The Mann-Kendall analysis showed a variety of contaminant concentrations trends for wells at the site, however only AP-8211 and AP-9003 had increasing trends for contaminants that exceeded ½ the ADEC CUL in 2019.

4.4.2 Plume Stability Evaluation

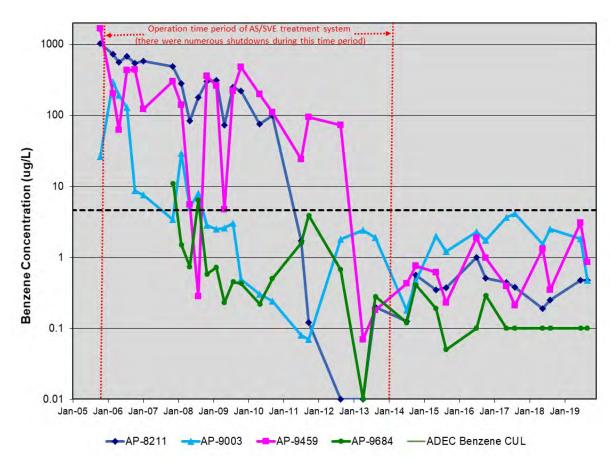
The MAROS software spatial moment analysis was used to evaluate the DRO plume stability based on estimated contaminant mass, the trend in the distance from the source to the center of

mass, and the trend of plume spread around the center of mass. The MAROS output is included in Appendix D and is summarized as follows:

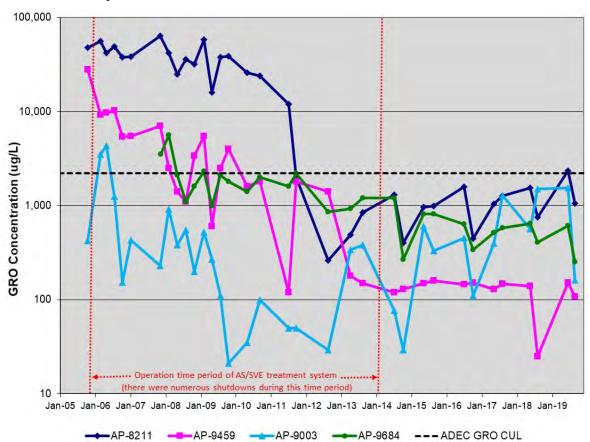
- Analysis showed the DRO contaminant mass had an "increasing" trend which may be the result of the increasing DRO concentration in AP-9003.
- The distance from the center of mass to the source had a "stable" trend.
- The contaminant plume spread had a "decreasing" trend.


4.4.3 <u>Sample Frequency Optimization</u>

The MAROS analysis recommended decreasing the sampling frequency from semi-annual to annual.


4.5 Summary and Recommendations

With the exception of DRO and associated analytes in one well, contaminant concentrations are near or below ADEC CULs. Geochemical data demonstrates that remaining contaminants are continuing to be biodegraded. Since sufficient data has been collected to establish contaminant trends and plume stability, the sampling frequency should be reduced to annual. While seasonal contaminant concentration correlations are not strong at the Neely Road site, there appears to be higher concentrations during lower groundwater elevations, therefore groundwater sampling should occur during spring or early summer.


Graph 4-1 DRO Concentrations in Source Area Wells

Graph 4-3 Benzene Concentrations in Source Area Wells

Graph 4-2 GRO Concentrations in Source Area Wells

Graph 4-4 EDB Concentrations in Source Area Wells

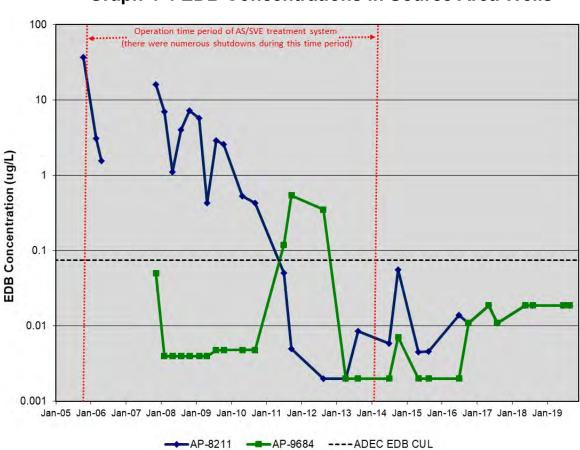


Table 4-2. 2015-2019 Geochemical and Field Parameters in Groundwater Samples **Neely Road AS/SVE Treatment System**

	Sample	Sample	Dissolved	Dissolved	Dissolved	Sulfate
Location	Date	Number	Oxygen	Iron ¹	Manganese ¹	(mg/L)
	4050.0		(mg/L)	(mg/L)	(mg/L)	
	5/11/15	15FWNR04WG	0.24	NE 13.40	0.43 7.25	NE 155
	5/11/15	15FWNR04WG	0.24	13.40	7.23	167
	8/24/15	15FWNR10WG		10.90	6.51	132
	8/24/15	15FWNR11WG ²	0.25	11.30	6.62	125
	7/6/16	16FWNR02WG		10.50	6.43	175
	7/6/16	16FWNR03WG ²	0.41	11.00	7.11	180
AP-8211	10/10/16	16FWNR11WG	0.50	10.10 J	8.50	295
AF-0211	10/10/16	16FWNR12WG ²	0.59	14.10 J	8.88	299
	5/11/17	17FWNR05WG	8.11	3.72	6.24	176
	8/8/17	17FWNR09WG	0.55	7.54	5.78	139
	5/24/18	18FWNR05WG	0.96	6.41	3.80	57.0
	8/10/18	18FWNR11WG	0.94	10.10	3.40	198
	6/24/19	19FWNR05WG	0.53	7.98	5.86	152
	9/1/19	19FWNR07WG	0.57	3.21	4.18	80.7
	5/11/15	15FWNR02WG	0.52	5.46	5.98	63.4
	8/24/15 7/6/16	15FWNR08WG 16FWNR04WG	0.21 0.28	3.61 3.96	3.98 4.54	48.3 45.0
	10/10/16	16FWNR09WG	0.28	3.81	3.15	33.0
	5/11/17	17FWNR01WG		2.78	3.24	34.3
	5/11/17	17FWNR02WG ²	0.42	2.87	3.18	33.9
	8/8/17	17FWNR11WG	0.00	3.13	3.31	38.0
	8/8/17	17FWNR12WG ²	0.06	3.11	3.30	39.0
AP-9459	5/24/18	18FWNR03WG	0.00	4.25	3.60	31.8
	5/24/18	18FWNR04WG ²	0.82	4.23	3.62	32.4
	8/10/18	18FWNR09WG	0.35	4.04	3.12	36.2
	8/10/18	18FWNR10WG ²	0.35	3.95	3.01	36.1
	6/24/19	19FWNR02WG	0.42	7.58	3.45	23.6
	6/24/19	19FWNR03WG ²	0.42	7.62	3.57	26.3
	9/1/19	19FWNR09WG	0.27	3.99	2.82	28.0
	9/1/19	19FWNR10WG ²	0.37	3.76	2.50	28.1
	5/11/15	15FWNR03WG	0.55	4.93	3.61	130.0
	8/24/15	15FWNR09WG	0.50	4.25	2.26	101.0
	7/6/16	16FWNR05WG	0.49	5.51	3.59	97.9
	10/10/16	16FWNR10WG	0.21	0.91	2.86	135.0
AP-9003	5/11/17 8/8/17	17FWNR06WG 17FWNR10WG	0.45 0.7	6.32	4.34 4.76	104.0 96.7
	5/24/18	18FWNR06WG	1.16	7.66 6.86	3.04	56.5
	8/10/18	18FWNR12WG	0.96	6.79	3.40	83.2
	6/24/19	19FWNR04WG	0.68	16.30	5.58	89.0
	9/1/19	19FWNR08WG	0.77	2.45	1.65	63.3
	5/11/15	15FWNR06WG	0.48	0.03	0.38	35.4
	8/24/15	15FWNR13WG	0.65	0.02	0.19	32.6
	7/6/16	16FWNR06WG	0.36	1.35	1.72	48.3
	10/10/16	16FWNR13WG	0.35	0.25	0.02	37.6
AP-9685	5/11/17	17FWNR03WG	0.51	0.21	1.06	45.1
	8/8/17	17FWNR14WG	3.42	ND(0.25)	0.07	31.2
	5/24/18	18FWNR01WG	0.83	ND(0.25)	1.18	36.3
	8/10/18 6/24/19	18FWNR07WG 19FWNR06WG	5.07 2.20	ND(0.25) ND(0.25)	0.0097 0.34	35.5 32.8
	9/1/19	19FWNR06WG 19FWNR12WG	1.82	ND (0.25)	0.581	20.1
	5/11/15	15FWNR01WG	0.55	13.20	2.32	83.6
	8/24/15	15FWNR12WG	0.17	11.80	2.21	52.1
	7/6/16	16FWNR01WG	0.29	9.01	2.06	53.7
	10/10/16	16FWNR08WG	0.29	5.76	1.97	115.0
AP-9684	5/11/17	17FWNR04WG	0.15	10.10	2.37	69.3
AP-9084	8/8/17	17FWNR13WG	0.25	8.92	2.54	75.1
	5/24/18	18FWNR02WG	0.58	7.32	1.94	60.3
	8/10/18	18FWNR08WG	0.58	10.70	2.24	73.9
	6/24/19	19FWNR01WG	0.60	14.80	2.86	76.9
	9/1/19	19FWNR11WG	0.55	9.73	2.27	88.8

Green and bold results exceed current ADEC groundwater cleanup levels

As such, non-detect results are reported to be less than the instrument detection limit.

B - Analyte dedection may be due to cross-contamination btoc - below top of casing

mg/L - milligrams per liter

ND - not detected (LOD in parenthesis)

J - Analyte is reported between the detection limit and LOQ

NE - not established

LOD - limit of detection LOQ - limit of quantitation

¹ Prior to 2011, iron, manganese, and sulfate samples were analyzed employing an Orion field-screening instrument.

² Sample is a field duplicate of the sample immediately above.

³ Cleanup level established from Title 18, Alaska Administrative Code, Section 75.345, Table C (ADEC, 2018)

Table 4-3. 2015-2019 Groundwater Sample Results Neely Road

	Sample	Sample		Geochemica	al Parameters						Contami	nant Concen (µg/L)	trations				
Location	Sample Date	Sample Number	Dissolved Oxygen (mg/L)	Dissolved Iron (mg/L)	Dissolved Manganese (mg/L)	Sulfate (mg/L)	DRO	GRO	Benzene	Ethylbenzene	Xylenes	1,2,4-TMB	1,3,5-TMB	Naphthalene	PCE	TCE	EDB
Al	DEC Cleanup	Levels ¹	NA	NE	0.43	NE	1,500	2,200	4.6	15	190	56	60	1.7	41	2.8	0.075
	05/11/15	15FWNR04WG	0.24	13.40	7.25	155	12,000	950	0.42 J	20 J	96.6 J	250	57 J	69	0.11 J	ND(0.1)	0.0045 J
	05/11/15	15FWNR05WG ²	0.24	13.20	7.23	167	9,600	950	0.35 J	18	93	270	57	74	ND(0.2)	ND(0.1)	ND(0.004)
	08/24/15	15FWNR10WG	0.25	10.90	6.51	132	9,600	960	0.37J,MH,QL	34 QL	132.2 MH,QL	340 QL	48 J,QL	79 QL	ND(0.2)	ND(0.1)	0.0041 J
	08/24/15	15FWNR11WG ²	0.20	11.30	6.62	125	11,000	990	0.37J,MH,QL	32 QL	132.0 MH,QL	340 QL	46 QL	99 QL	ND(0.2)	ND(0.1)	0.0046 J
	07/06/16	16FWNR02WG	0.41	10.50	6.43	175	10,800	1,340 J+	ND(2)	22.8 J	234 J	449 J	75.5 J	138	ND(5)	ND(5)	0.014 J-
	07/06/16	16FWNR03WG ²		11.00	7.11	180	12,000	1,580 J+	ND(2)	31.1 J	327 J	640 J	112 J	184	ND(5)	ND(5)	0.014 J-
AP-8211	10/10/16	16FWNR11WG	0.59	10.10 J	8.50	295	17,800 J	383	0.46 B,J+	1.62 J	46.0	58.9 J	33.0	39.4	ND(0.5)	ND(0.5)	ND(0.0218)
	10/10/16	16FWNR12WG ²		14.10 J	8.88	299	12,200 J	445	0.51 B	2.66 J	57.1	81.8 J	36.9	46.9	ND(0.5)	ND(0.5)	ND(0.022)
	05/11/17	17FWNR05WG	8.11	3.72	6.24	176	4,520	1,040	0.44	18.2	115.0	412	145	121	ND(0.5)	ND(0.5)	ND(0.0375)
	08/08/17 05/24/18	17FWNR09WG	0.55 0.96	7.54 6.41	5.78 3.80	139 57.0	6,220 2,200	1,270 1,540	0.38 J	16.2 22.6	120 114.0	524 389	150 101	135 121	ND(0.5) ND(0.5)	ND(0.5) ND(0.5)	ND(0.0218)
	08/10/18	18FWNR05WG 18FWNR11WG	0.96	10.10	3.40	198	22,900	749	0.19 J 0.25	10.1	81.5	319	101	100	ND(0.5)	ND(0.5)	ND(0.0375) ND(0.0375)
ŀ	06/24/19	19FWNR05WG	0.53	7.98	5.86	152	4,920	2,350 J+	0.23	30.3	202	780	225	201	ND(0.5)	ND(0.5)	ND(0.0375)
ŀ	09/01/19	19FWNR07WG	0.57	3.21	4.18	80.7	3,860	1,060	0.47	17.6	126	482 J	152	150	ND(0.5)	ND(0.5)	ND(0.0375)
	05/11/15	15FWNR02WG	0.52	5.46	5.98	63.4	2,100	150	0.61	0.27 J	0.26 J	1.6 J	2.60	0.59 J,B	ND(0.2)	ND(0.1)	ND(0.004)
	08/24/15	15FWNR08WG	0.21	3.61	3.98	48.3	600 J	160	0.23 J	0.13 J	0.19 J	2.5	3.60	0.44 J,B,QL	ND(0.2)	ND(0.1)	ND(0.004)
	07/06/16	16FWNR04WG	0.28	3.96	4.54	45.0	973	146	1.89	ND(0.5)	ND(1.5)	3.01	3.88	ND(5)	ND(0.5)	ND(0.5)	ND(0.004)
	10/10/16	16FWNR09WG	0.29	3.81	3.15	33.0	1,000	152 B	0.98	0.32 J	ND(1.5)	6.46	5.82	ND(5)	ND(0.5)	ND(0.5)	ND(0.022)
	05/11/17	17FWNR01WG	0.42	2.78	3.24	34.3	339 J,B	109	0.27 J	ND(0.5)	ND(1.5)	1.91	2.64	0.5 J,B	ND(0.5)	ND(0.5)	ND(0.0375)
	05/11/17	17FWNR02WG ²	0.42	2.87	3.18	33.9	442 J,B	130	0.39 J	ND(0.5)	ND(1.5)	1.9	2.6	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.0375)
	08/08/17	17FWNR11WG	0.06	3.13	3.31	38.0	443 J	148	0.21 J	0.35 J	ND(1.5)	3.12	3.61	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.0222)
AD 0450	08/08/17	17FWNR12WG ²	0.00	3.11	3.30	39.0	518 J	118	0.2 J	ND(0.5)	ND(1.5)	3.05	3.45	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.022)
AP-9459	05/24/18	18FWNR03WG	0.82	4.25	3.60	31.8	559 J,B	362 J	1.39	ND(0.5)	ND(1.5)	1.80	2.36	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.0375)
	05/24/18	18FWNR04WG ²	0.02	4.23	3.62	32.4	555 J,B	139 J	1.31	ND(0.5)	ND(1.5)	1.61	2.23	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.0375)
	08/10/18	18FWNR09WG	0.35	4.04	3.12	36.2	347 J	ND(50)	0.35 J	ND(0.5)	ND(1.5)	2.16	2.99	0.53 J	ND(0.5)	ND(0.5)	ND(0.0375)
	08/10/18	18FWNR10WG ²	0.55	3.95	3.01	36.1	375 J	ND(50)	0.35 J	ND(0.5)	ND(1.5)	2.25	3.03	0.58 J	ND(0.5)	ND(0.5)	ND(0.0375)
	06/24/19	19FWNR02WG	0.42	7.58	3.45	23.6	901	125	2.63	3.10	2.81 J	7.14	2.99 J	1.68	ND(0.5)	ND(0.5)	ND(0.0375)
	06/24/19	19FWNR03WG ²	0.12	7.62	3.57	26.3	860	152	3.08	3.99	3.59	9.04	4.39 J	1.86	ND(0.5)	ND(0.5)	ND(0.0375)
	09/01/19	19FWNR09WG	0.37	3.99	2.82	28.0	445 J, B	73.6 J	0.86	0.36 J, B	ND(1.5)	1.73	2.68	0.72 J	ND(0.5)	ND(0.5)	ND(0.0375)
	09/01/19	19FWNR10WG ²		3.76	2.50	28.1	375 J, B	108 J	0.82	0.36 J, B	ND(1.5)	1.88	2.57	1.74 J	ND(0.5)	ND(0.5)	ND(0.0375)
	05/11/15	15FWNR03WG	0.55	4.93	3.61	130.0	1,400	600	2	30	11.8	12	2.0 J	0.88 J,B	ND(0.2)	ND(0.1)	ND(0.004)
	08/24/15	15FWNR09WG	0.50	4.25	2.26	101.0	770 J	330	1.2	8.1	2.7	2.6	0.6 J	4.5	ND(0.2)	ND(0.1)	ND(0.004)
	07/06/16	16FWNR05WG	0.49	5.51	3.59	97.9	834 B	450 J	2.3	67.9	60.4	9.02	0.73 J	ND(5)	ND(0.5)	ND(0.5)	ND(0.004)
	10/10/16	16FWNR10WG	0.21	0.91	2.86	135.0	1,700	110 B	1.74	1.00	ND(1.5)	0.77 J	ND(0.5)	ND(5)	ND(0.5)	ND(0.5)	ND(0.0218)
AP-9003		17FWNR06WG	0.45	6.32	4.34	104.0	831 B	398	3.65	57.4	22.7	21.6	3.72	21.9	ND(0.5)	ND(0.5)	ND(0.0218)
	08/08/17	17FWNR10WG	0.7	7.66	4.76	96.7	902	1,290 J	4.13	181	110	14.3	10.9	43	ND(0.5)	ND(0.5)	ND(0.0217)
	05/24/18	18FWNR06WG 18FWNR12WG	1.16	6.86 6.79	3.04 3.40	56.5 83.2	652 B 1,020	565 1,500 J	1.54 2.49	78 144	7.2 59.7	2.19 27.8	ND(0.5)	5.15 42.4	ND(0.5) ND(0.5)	ND(0.5)	ND(0.0375)
	08/10/18 06/24/19	19FWNR04WG	0.96 0.68	16.30	5.58	89.0	1,020	1,500 J 1,550 J	1.83	173	59.7 66	29.7	10.8 5.38	25.5	ND(0.5) ND(0.5)	ND(0.5) ND(0.5)	ND(0.0375) ND(0.0375)
	09/01/19	19FWNR08WG	0.66	2.45	1.65	63.3	683 B	162	0.47	12.1	2.52 B	2.16	0.41	4.63	ND(0.5)	ND(0.5)	ND(0.0375)
	03/01/13	DAMOUNIAL IEL	0.11	<u> </u>	1.00	00.0	000 D	102	0.47	14.1	2.02 D	2.10	0.41	7.00	IND(U.J)	IND(U.J)	140(0.0373)

Table 4-3. 2015-2019 Groundwater Sample Results Neely Road

	O a mara la	O a manufa		Geochemica	l Parameters						Contami	inant Concen (μg/L)	trations				
Location	Sample Date	Sample Number	Dissolved Oxygen (mg/L)	Dissolved Iron (mg/L)	Dissolved Manganese (mg/L)	Sulfate (mg/L)	DRO	GRO	Benzene	Ethylbenzene	Xylenes	1,2,4-TMB	1,3,5-TMB	Naphthalene	PCE	TCE	EDB
Al	DEC Cleanup	Levels ¹	NA	NE	0.43	NE	1,500	2,200	4.6	15	190	56	60	1.7	41	2.8	0.075
	05/11/15	15FWNR06WG	0.48	0.03	0.38	35.4	140 J,B	ND(25)	ND(0.1)	0.07 J	ND(0.2)	0.12 J,B	ND(0.2)	ND(0.3)	1.2	0.47 J	ND(0.004)
	08/24/15	15FWNR13WG	0.65	0.02	0.19	32.6	110 J	ND(25)	ND(0.1)	ND(0.1)	ND(0.2)	0.46 J	0.1 J	0.19 J,B,QL	2.3	0.7	ND(0.004)
	07/06/16	16FWNR06WG	0.36	1.35	1.72	48.3	287 J,B	35.8 J	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	ND(5)	10.6	3.73	ND(0.004)
	10/10/16	16FWNR13WG	0.35	0.25	0.02	37.6	315 J,B	36.1 J,B	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	ND(5)	5.3	1.01	ND(0.0221)
AP-9685	05/11/17	17FWNR03WG	0.51	0.21	1.06	45.1	213 J,B	46.1 J	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	ND(0.5)	20.0	5.20	ND(0.0221)
/ 0000	08/08/17	17FWNR14WG	3.42	ND(0.25)	0.07	31.2	ND(310)	ND(50)	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	ND(0.5)	1.83	0.32 J	ND(0.0215)
	05/24/18	18FWNR01WG	0.83	ND(0.25)	1.18	36.3	ND(318)	ND(50)	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	ND(0.5)	25.9	5.06	ND(0.0375)
	08/10/18	18FWNR07WG	5.07	ND(0.25)	0.0097	35.5	204 J	ND(50)	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	ND(0.5)	2.70	0.32 J	ND(0.0375)
	06/24/19	19FWNR06WG	2.20	ND(0.25)	0.34	32.8	311 J	ND(50)	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	ND(0.5)	1.24 [0.5]	ND(0.5)	ND(0.0375)
	09/01/19	19FWNR12WG	1.82	ND (0.125)	0.581	20.1	281 J, B	ND(50)	ND(0.2)	ND(0.5)	ND(1.5)	ND(0.5)	ND(0.5)	0.84 J	10.7	1.21	ND(0.0375)
	05/11/15	15FWNR01WG	0.55	13.20	2.32	83.6	430 J	810	0.19 J	0.55	1.8	62	17	0.54 J,B	ND(0.2)	0.18 J	ND(0.004)
	08/24/15	15FWNR12WG	0.17	11.80	2.21	52.1	500 J	810	ND(0.1) QL	0.73 QL	2.5 QL	50 QL	24 QL	2.2 QL	ND(0.2)	ND(0.1)	ND(0.004)
	07/06/16	16FWNR01WG	0.29	9.01	2.06	53.7	509 J,B	634	ND(0.2)	0.34 J	2.56 J	62.7	24.3	ND(5)	ND(0.5)	0.45 J	ND(0.004)
	10/10/16	16FWNR08WG	0.29	5.76	1.97	115.0	505 J,B	338	0.29 J	ND(0.5)	ND(1.5)	29.7	8.66	ND(5)	ND(0.5)	ND(0.5)	ND(0.0219)
AP-9684	05/11/17	17FWNR04WG	0.15	10.10	2.37	69.3	329 J,B	516	ND(0.2)	ND(0.5)	1.11 J	66.5	19.2	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.0221)
	08/08/17	17FWNR13WG	0.25	8.92	2.54	75.1	330 J	583	ND(0.2)	ND(0.5)	ND(1.5)	62.6	17.5	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.0219)
	05/24/18	18FWNR02WG	0.58	7.32	1.94	60.3	346 J,B	646	ND(0.2)	ND(0.5)	ND(1.5)	46.9	18.1	0.37 J	ND(0.5)	ND(0.5)	ND(0.0375)
	08/10/18	18FWNR08WG	0.58	10.70	2.24	73.9	336 J	410	ND(0.2)	ND(0.5)	ND(1.5)	40.7	13.5	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.0375)
	06/24/19	19FWNR01WG	0.60	14.80	2.86	76.9	447 J	614	ND(0.2)	ND(0.5)	ND(1.5)	60.3	22.4	0.45 J	ND(0.5)	ND(0.5)	ND(0.0375)
	09/01/19	19FWNR11WG	0.55	9.73	2.27	88.8	429 J, B	250	ND(0.2)	ND(0.5)	ND(1.5)	21.4	7.33	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.0375)

Notes:

Green and bold results exceed current ADEC groundwater cleanup levels

Abbreviations and Acronyms:

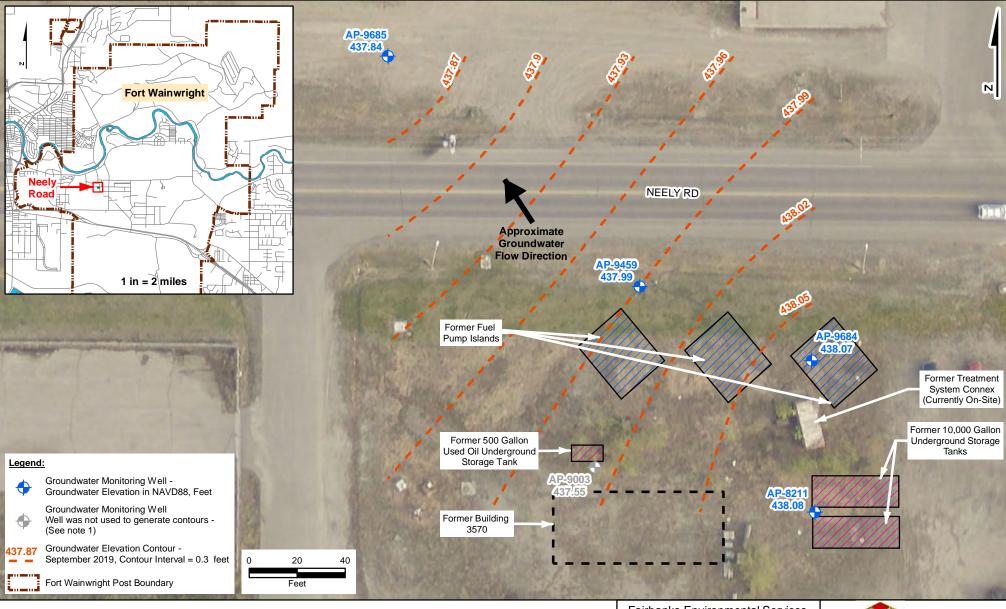
ADEC - Alaska Department of Environmental Conservation

DRO - diesel range organics

GRO - gasoline range organics EDB - 1,2-dibromoethane NA - not analyzed or not applicable

NE - not established

TMB - trimethylbenzene


LOD - limit of detection

Data Qualifiers:

- ND Not detected at the detection limit (LOD in parentheses; LOQ in parentheses for data prior to 2012.)
- B Result is qualified as a potential high estimate due to contamination present in a blank sample
- J Result is estimated due to a QC issue or because it is less than the LOQ. If result is biased low or high, it is specified as "J-" and "J+", respectively (for 2014 data or older).
- Q Result is estimated due to a QC failure (pre-2014 data only). If direction of bias is known, it is further indicated with a "L" (low) or "H" (high) [flag discontinued after 2013].
- M Result is biased due to matrix interference (pre-2014 data only). If direction of bias is known, it is further indicated with a "L" (low) or "H" (high) [flag discontinued after 2013]

 $^{^{1}}$ Cleanup level established from Title 18, Alaska Administrative Code, Section 75.345, Table C (ADEC, 2018)

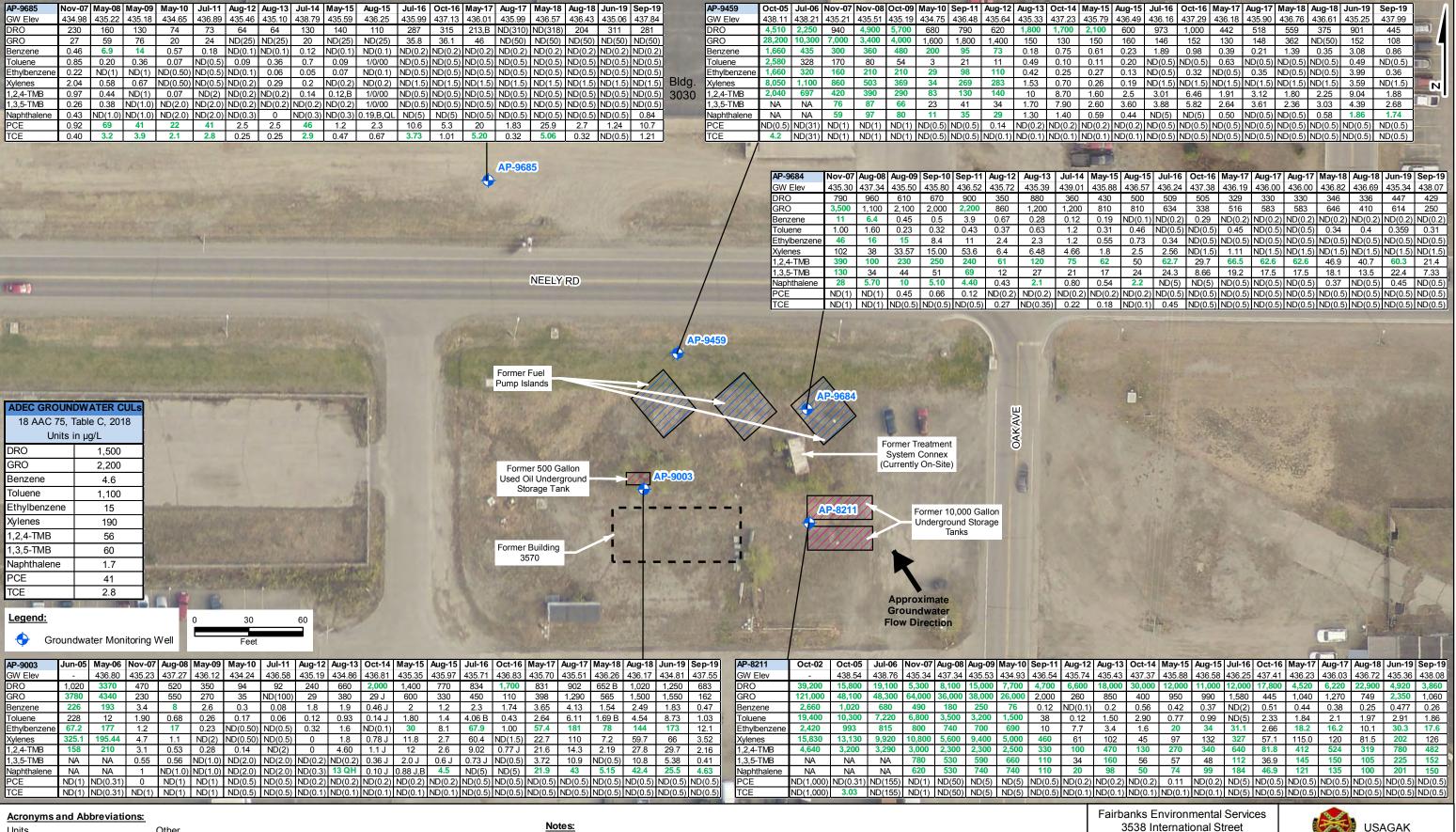
² Sample is a field duplicate of the sample immediately above.

Notes

- 1. The groundwater elevation for well AP-9003 was not consistent with other water elevations. The elevation was not used to generate the groundwater contours.
- 2. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N Source:

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks Environmental Services 3538 International Street Fairbanks, Alaska



Well Locations and Groundwater Elevations, Neely Road

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 4-1

Units

μg/L - micrograms per liter AAC - Alaska Administrative Code

ADEC - Alaska Department of Environmental Conservation Analytes

DRO - Diesel Range Organics GW - groundwater GRO - Gasoline Range Organics
CULs - Cleanup Levels TMB - Trimethylbenzene Elev - elevation NA - not analyzed PCE - Tetrachloroethene

TCE - Trichloroethene ND - Not Detected (limit of detection)

- 1. Sample data shown in GREEN indicate analyte concentration exceeds ADEC CULs (18 AAC 75, Table C)
- 2. Data flags are not included on figure due to map space limitations. Data flags are presented on Table A-3.
- 3. Groundwater elevations are in the North American Vertical Datum (NAVD88), feet
- 4. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

3538 International Street Fairbanks, Alaska

Groundwater Contaminant Concentrations, Neely Road

> 2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 4-2

5.0 FORMER BUILDING 1168

This section presents the 2019 groundwater monitoring results for the Former Building 1168 site.

5.1 Monitoring Well Locations and Groundwater Elevations

Three wells located at the Former Building 1168 site were sampled during 2019; their locations are shown on Figure 5-1. Water levels were measured prior to sampling each well. Monitoring well details, water levels, and groundwater elevations are summarized in Table 5-1. Groundwater elevations were calculated and elevation contours were developed and are shown on Figure 5-1. Groundwater elevations indicate a northwesterly groundwater flow direction consistent with the regional groundwater flow direction.

Well **Total Well** Screened **Elevation** Water Level Water Elevation Well Number Depth Interval Date (feet -(feet btoc) (feet - NAVD88) (feet btoc) (feet bgs) NAVD88) AP-5751 20.3 7-17 444.83 6/19/19 17.58 427.25 AP-6809 27.0 17-27 444.56 6/19/19 17.43 427.13 AP-10037MW 25.3 12-22 445.90 6/20/19 18.67 427.23

Table 5-1 - Monitoring Well Summary, Former Building 1168

5.2 Groundwater Contaminant Analytical Results

Three monitoring wells were sampled during the 2019 sampling event. Well locations and current and historical groundwater contaminant concentrations are presented on Figure 5-2. Groundwater samples were submitted for laboratory analysis of DRO, VOC, dissolved iron, and sulfate as summarized in Table A-1. Final field measurements recorded prior to groundwater sample collection are presented on Table C-1. Groundwater contaminant concentrations of samples collected between 2015 and 2019 are included in Table 5-2. Complete analytical results are presented in Table A-4.

There were no contaminant concentrations that exceeded ADEC CULs in any of the 2019 groundwater samples. The last ADEC CUL exceedances were in the 2017 samples collected from AP-5751; DRO and naphthalene both exceeded the current ADEC CUL in that sample.

5.3 Geochemical Field Measurements and Analytical Results

Table 5-2 presents geochemical data for Former Building 1168 wells between 2015 and 2019. Geochemical results indicate that groundwater in the vicinity of AP-10037MW is highly reduced based upon the negative ORP, elevated dissolved iron, and decreased sulfate concentrations.

This suggests that there is some remaining petroleum contamination in the vicinity of AP-10037MW which is being anaerobically degraded. However, groundwater geochemistry AP-5751 and AP-6809, located directly upgradient and downgradient of AP-10037MW respectively, is near background conditions indicating that remaining contamination in the vicinity of AP-10037MW is limited.

5.4 Contaminant Concentration Trend and Plume Stability Evaluation

Mann-Kendall trend analysis was performed for Former Building 1168 wells using MAROS software to evaluate DRO concentration trends over time. Plume stability trend analysis could not be performed due to an insufficient number of wells. The Mann-Kendall trend was evaluated using groundwater data between 1999 and 2019, the timeframe following the AS/SVE treatment system operation. Mann-Kendall results are presented in Appendix D and are summarized in Table 5-3.

Table 5-3. Mann-Kendall Trend Analysis Summary, Former Building 1168

Well	Contaminant of Concern DRO
AP-5751	Decreasing
AP-6809	Decreasing
AP-10037MW	No Trend

BOLD indicates DRO concentration above ½ ADEC CUL in 2019

The Mann-Kendall analysis showed decreasing DRO trends in both AP-5751 and AP-6809, and no trend in AP-10037MW.

5.5 Summary and Recommendations

There have been no groundwater contaminant concentration exceedances of ADEC CULs in Former Building 1168 wells since 2017. As a result, the groundwater sampling frequency should change to every five years and planned to coincide with Five Year Reviews. The next scheduled sampling event for these wells is 2024, in advance of the 2025 Five Year Review.

Table 5-2. 2015-2019 Groundwater Sample Results Former Building 1168

				Geochemica	l Parameters				Contaminan	t Concentra	tions (µg/L)			
Well Number	Sample Number	Date	ORP (mV)	Dissolved Oxygen (mg/L)	Dissolved Iron (mg/L)	Sulfate (mg/L)	DRO	Benzene	Naphthalene	TCE	PCE	Vinyl Chloride	1,1-DCE	cis-1,2-DCE
ADEC CLEANU	JP LEVEL ¹		NA	NA	NE	NE	1,500	4.6	1.7	2.8	41	0.19	280	36
	15FWOU204WG	5/12/2015	87.2	0.4	0.27	29.7	968 J-	ND(0.2)	ND (5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	16FWOU209WG	7/9/2016	61.4	1.4	0.31	25.3	1,940	0.32 J	ND (5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
AP-5751	17FWOU204WG	5/17/2017	80.2	3.5	0.55	32.7	1,510	0.17 J	3.3	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	18FWOU204WG	6/3/2018	113.1	2.9	ND(0.25)	29.2	1,470	ND(0.2)	1.7	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	19FW6801WG	6/19/2019	84.60	1.50	0.216	30.1	916	ND (0.2)	0.53 J	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	15FWOU202WG	5/12/2015	24.7	0.27	8.3	34.2	677	2.75	ND (5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	15FWOU203WG ²	3/12/2013	27.7	0.27	8.37	34.1	610 J	2.78	ND (5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	16FWOU207WG	7/9/2016	-34.2	0.38	12.2	18.4	1,010	0.52	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	16FWOU208WG ²	7/9/2010	-34.2	0.56	12.5	18.5	1,010	0.5	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
AP-10037MW	17FWOU201WG	5/17/2017	41.9	0.95	14.1	15.7	511 J	1.4	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
AF-1003711W	17FWOU202WG ²	3/17/2017	71.5	0.93	14.6	15.8	932	1.1	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	18FWOU202WG	6/3/2018	-70.0	0.62	20.9	17.6	663	0.68	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	18FWOU203WG ²	0/3/2018	-70.0	0.02	22	17.8	836	0.64	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	19FW6803WG	6/20/2019	-83.6	0.62	23.1	13.1	693	0.45	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	19FW6804WG ²	6/20/2019	-03.0	0.02	23.6	12.8	630	0.47	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	15FWOU201WG	5/12/2015	94.9	0.4	1.3	71.7	567 J	0.48	ND (5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	16FWOU206WG	7/9/2016	101.3	0.62	0.38 J	63.2	922	0.35 J	ND (5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
AP-6809	17FWOU303WG	5/17/2017	59.2	0.61	2.5	66.6	737	0.5	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	18FWOU201WG	6/3/2018	71.9	0.86	0.57	60.1	815	ND(0.2)	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)
	19FW6802WG	6/19/2019	46.0	0.73	0.802	76.5	399	ND(0.2)	ND (0.5)	ND(0.5)	ND(0.5)	ND(0.075)	ND(0.5)	ND(0.5)

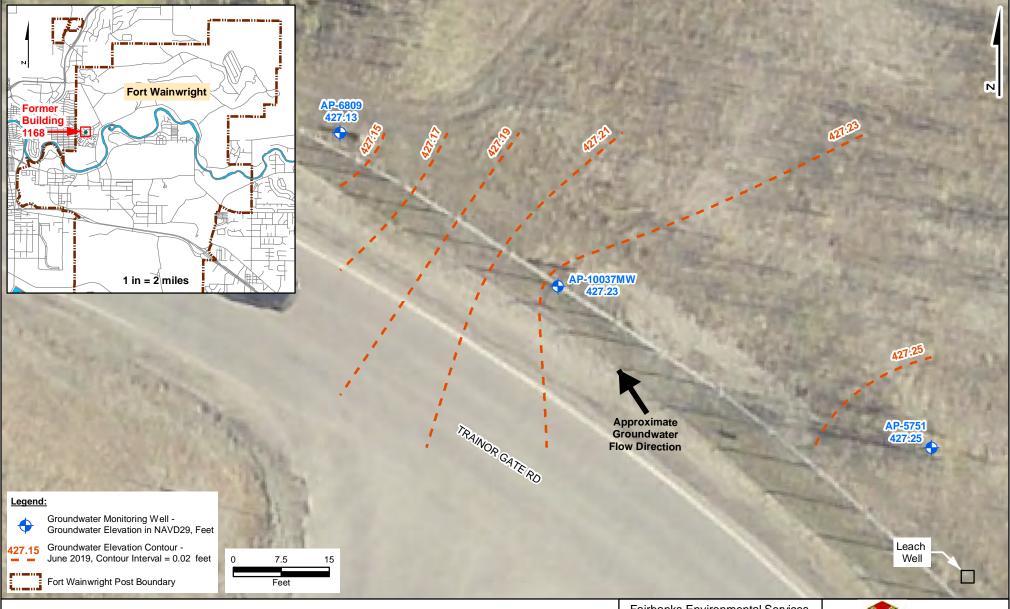
Notes

Results in green and bold font exceeded ADEC CULs

Acronyms/Abbreviations

 $\begin{array}{ll} \text{DCE - dichloroethene} & \mu g/L \text{ - micrograms per liter} \\ \text{DRO - diesel range organics} & mg/L \text{ - milligrams per liter} \end{array}$

PCE - tetrachloroethene mV - millivolts


TCE - trichloroethene NA - not analyzed or not applicable

LOD - limit of detection NE - not established

LOQ - limit of quantitation ORP - oxidation-reduction potential

¹ ADEC Cleanup level from 18 AAC 75.345 (ADEC, 2018)

² Sample is a Field Duplicate of the sample immediately above.

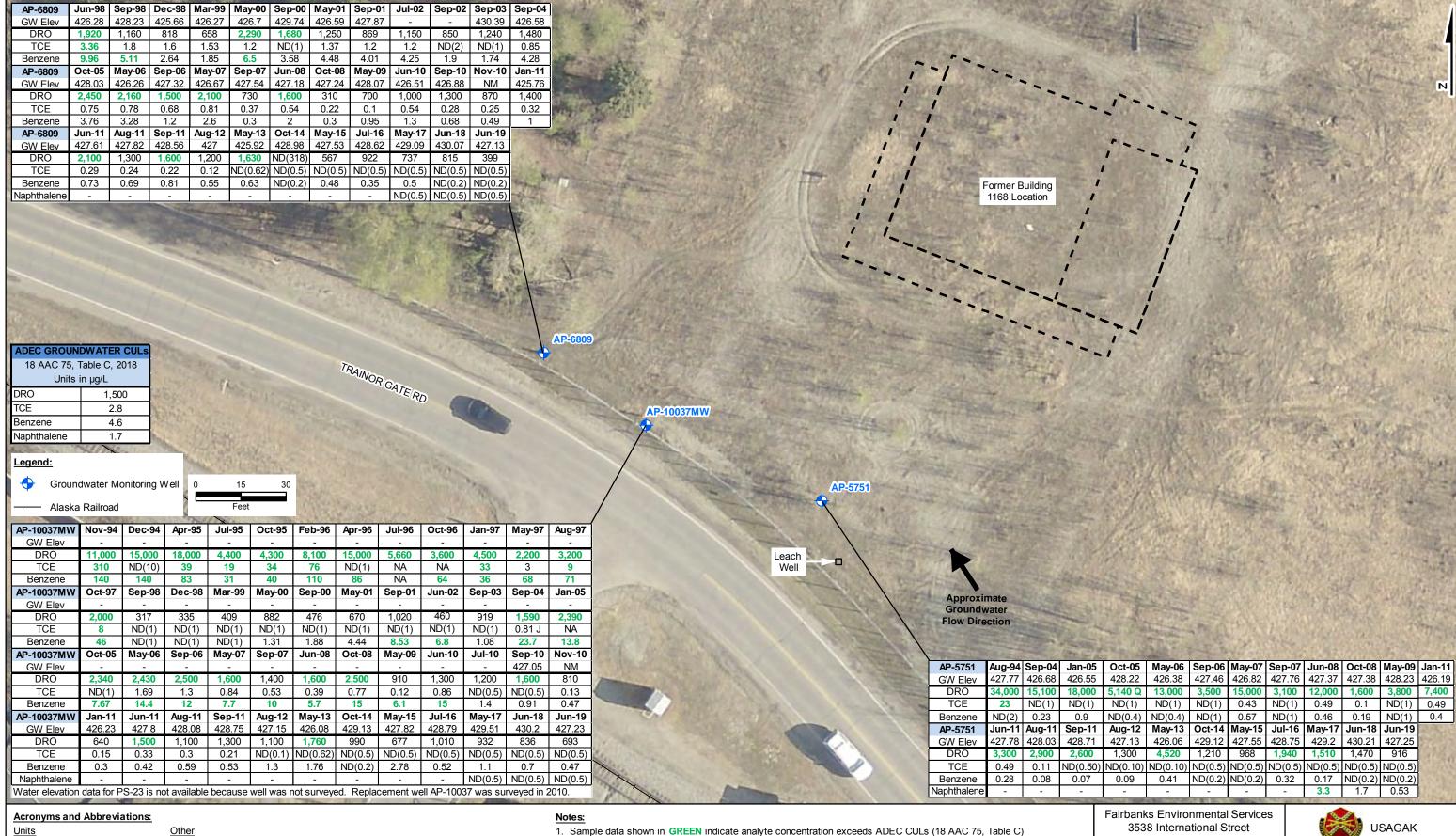
Notes:

- 1. See figure 5-2 for former building 1168 location
- $2. \ \ Coordinate \ System \ \ Projection: World \ Geodetic \ System \ 1984 \ (WGS84) \ Universal \ Transverse \ Mercator \ (UTM), \ Zone \ 6N$

Source

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks Environmental Services 3538 International Street Fairbanks, Alaska



Well Locations and Groundwater Elevations, Former Building 1168

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 5-1

μg/L - micrograms per liter CULs - Cleanup Levels Analytes GW - groundwater

DRO - Diesel Range Organics Elev - elevation TCE - Trichloroethene NA - not analyzed

Other ND - Not Detected (limit of detection)

- 1. Sample data shown in GREEN indicate analyte concentration exceeds ADEC CULs (18 AAC 75, Table C)
- 2. PS-23 was replaced by AP-10037MW in July 2010.
- 3. Regenesis Regenox and ORC-A Injection completed near AP-10037MW in October 2010.
- 4. Data flags are not included on figure due to map space limitations. Data flags are presented on Table A-4.
- 5. Groundwater elevations are in the National Geodetic Vertical Datum (NGVD29), feet
- 6. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N
- 1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks, Alaska

Groundwater Contaminant Concentrations, Former Building 1168

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 5-2

6.0 FORMER BUILDING 2250

This section presents the 2019 groundwater monitoring results for the Former Building 2250 site.

6.1 Monitoring Well Locations and Groundwater Elevations

Three wells located at the Former Building 2250 site were sampled during 2019; their locations are shown on Figure 6-1. Water levels were measured prior to sampling each well. Monitoring well details, water levels, and groundwater elevations are summarized in Table 6-1. Groundwater elevations were calculated and elevation contours were developed and are shown on Figure 6-1. Groundwater elevations indicate a northwesterly flow direction however the limited number of wells limits the accuracy of the flow direction determination.

Table 6-1 – Monitoring Well Summary, Former Building 2250

Well Number	Total Well Depth (feet btoc)	Screened Interval (feet bgs)	Well Elevation (feet – NGVD29)	Date	Water Level (feet btoc)	Water Elevation (feet – NGVD29)
AP-5976	21.6	10-20	453.89	6/19/19	15.97	437.92
AP-7151	29.9	17-27	453.20	6/19/19	15.28	437.92
AP-7153	24.72	15-25	449.7	6/19/19	11.18	438.52

6.2 Groundwater Contaminant Analytical Results

Three monitoring wells were sampled for the 2019 sampling event. Well locations and current and historical groundwater contaminant concentrations are presented on Figure 6-2. Groundwater samples were submitted for laboratory analysis of DRO, dissolved iron, and sulfate as summarized in Table A-1. Final field measurements recorded prior to groundwater sample collection are presented on Table C-1. DRO, dissolved iron, and sulfate concentrations of samples collected between 2010 and 2019 are included in Table 6-2. Complete analytical results are presented in Table A-5.

DRO exceeded the ADEC CUL in two wells, AP-5976 and AP-7151. The DRO concentration in AP-5976 has exceeded every sampling event with the exception of the June 2004 sampling event. The DRO concentration has periodically exceeded the ADEC CUL in AP-7151; the DRO concentration has never exceeded the ADEC CUL in upgradient AP-7153.

6.3 Geochemical Field Measurements and Analytical Results

Table 6-2 includes geochemical data for Former Building 2250 wells between 2010 and 2019. Geochemical results indicate that groundwater across the area is moderately reduced based upon the negative ORP, and elevated dissolved iron concentrations. The data supports that remaining petroleum contamination at the site is being anaerobically degraded.

6.4 Contaminant Concentration Trend and Plume Stability Evaluation

Mann-Kendall trend analysis was performed for the Former Building 2250 wells using MAROS software to evaluate DRO concentration trends over time. Plume stability trend analysis could not be performed due to an insufficient number of wells. The trend was evaluated using groundwater data between 1996 and 2019, and the results are presented in Appendix D and summarized in Table 6-3.

Table 6-3. Mann-Kendall Trend Analysis Summary, Former Building 2250

Maril .	Contaminant of Concern
Well	DRO
AP-5976	No Trend
AP-7151	Probably Increasing
AP-7153	Stable

BOLD indicates DRO concentration above ½ ADEC CUL for 2019

The DRO trends in Former Building 2250 are varied and are based on a limited data set. AP-7151 has a "probably increasing" trend, however the DRO concentration has been below the ADEC CUL in two of the past three sampling events.

6.5 Summary and Recommendations

The installation and sampling of a downgradient well to delineate the extent of groundwater contamination will be considered for the next sampling event which tentatively will occur in 2020.

Table 6-2. 2010 - 2019 Groundwater Sample Results Former Building 2250

Well Number	Sample Number	Date		Geochemical	Contaminant Concentrations (µg/L)		
			ORP (mV)	Dissolved Oxygen (mg/L)	Dissolved Iron (mg/L)	Sulfate (mg/L)	DRO
ADEC CLEAN	IUP LEVELS ¹						1,500
	10FW2202WG	10/28/2010	-65.6	0.19	NA	NA	6,770
AP-5976	15FW2202WG	7/22/2015	-94.4	0.23	14.1	11.2	8,670
AF-3970	19FW2202WG	6/19/2019	-115.1	0.34	15.6	6.22	2,980
	19FW2203WG	0/19/2019	-115.1	0.54	15.5	6.47	3,370
	10FW2201WG	10/28/2010	-71.6	0.62	12.4	19.8	738 J
AP-7151	15FW2201WG	7/22/2015	-92.2	0.30	13.2	24.8	803
	19FW2204WG	6/19/2019	-100	0.53	17.7	18.4	4,380
	10FW2203WG	10/28/2019	-20	1.06	NA	NA	275 J
AP-7153	15FW2204WG	7/22/2015	-77.5	0.30	14.30	34.1	434 J
	19FW2201WG	6/19/2019	-94.8	0.57	8.53	19.6	542 J

Notes

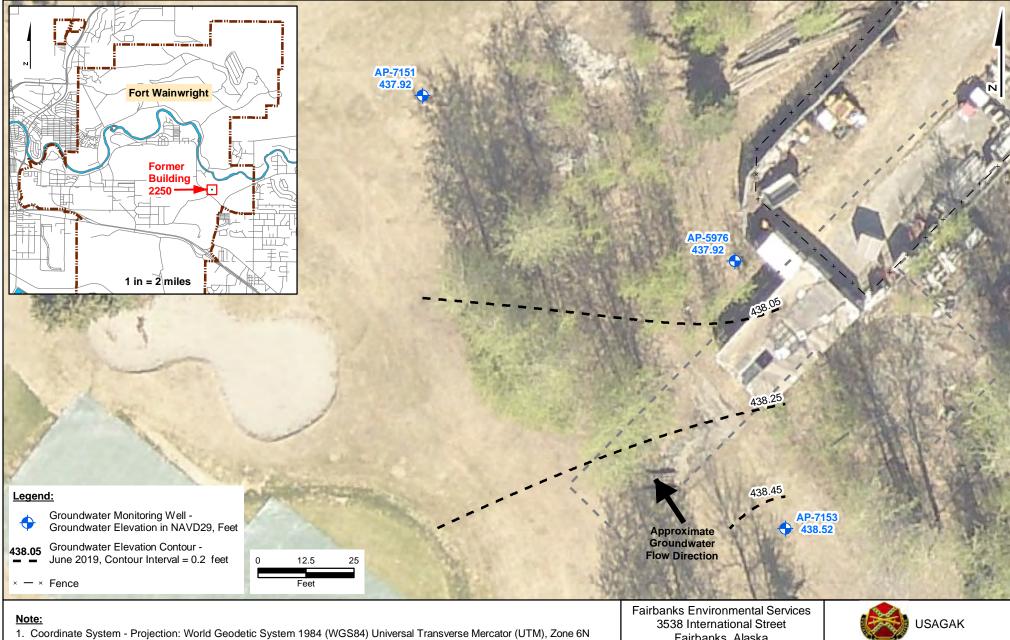
Results in green and bold font exceeded ADEC CULs

Data Qualifiers

ND - Not detected at the detection limit (LOD in parentheses; LOQ in parentheses for data prior to 2012.)

- B Result is qualified as a potential high estimate due to contamination present in a blank sample
- J Result is estimated due to a QC issue or because it is less than the LOQ. If result is biased low or high, it is specified as "J-" and "J+", respectively (for 2014 data and later).

Acronyms/Abbreviations


DRO - diesel range organics mV - millivolts

LOD - limit of detection NA - not analyzed or not applicable LOQ - limit of quantitation ORP - oxidation-reduction potential

μg/L - micrograms per liter mg/L - milligrams per liter

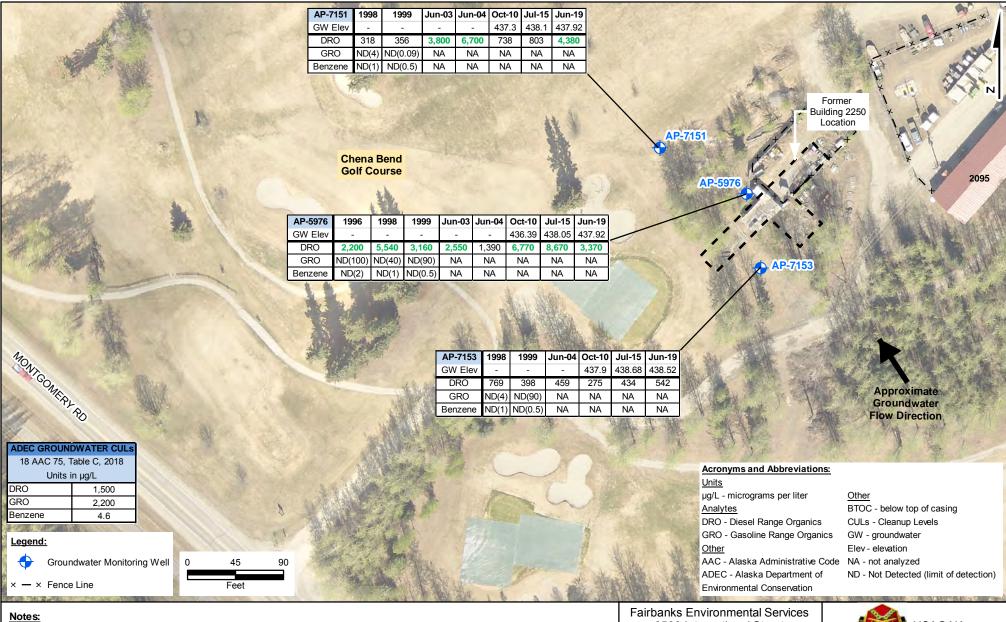
¹ 18 AAC 75.345, Table C values (ADEC, 2018)

² Sample is a Field Duplicate of the sample immediately above.

Source:

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks, Alaska



Well Locations and Groundwater Elevations, Former Building 2250

2019 Two-Party Sites Work Plan U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 6-1

- 1. Sample data shown in GREEN indicate analyte concentration exceeds ADEC CULs (18 AAC 75, Table C)
- 2. Cleanup levels for GRO changed from 1,300 to 2,200 µg/L in October 2008
- 3. Data flags are not included on figure due to map space limitations. Data flags are presented on Table A-5.
- 4. Groundwater elevations are in the National Geodetic Vertical Datum (NGVD29), feet
- 5. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N
- 1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks Environmental Services 3538 International Street Fairbanks. Alaska

USAGAK

Groundwater Contaminant Concentrations, Former Building 2250

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

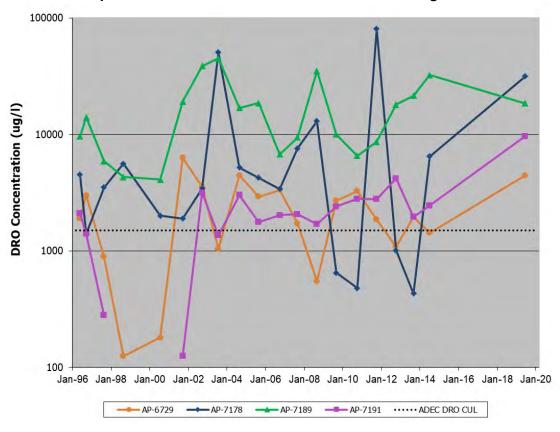
Figure: 6-2

7.0 FORMER BUILDING 3564

This section presents the 2019 groundwater monitoring results for the Former Building 3564 site.

7.1 Groundwater Elevations

Groundwater elevation data were collected prior to sampling each well during the 2019 sampling event. Well AP-7187 could not be sampled in 2019 as the overcasing was bent, preventing the installation of a pump. A comparison of groundwater elevations shows a very slight northwest trend in the groundwater flow direction; however, overall, the groundwater gradient is relatively flat. Well completion data and survey data were not available for MW3564-1. Groundwater levels are shown on Figure 3-1 and Table 3-1 presents groundwater elevations.


Table 7-1 – Monitoring Well Summary, Former Building 3564

Well Number	Total Well Depth (feet btoc)	Well Elevation (feet – NAVD88)	Date	Water Level (feet btoc)	Water Elevation (feet – NAVD88)
AP-6729	26.5	447.93	6/24/19	18.43	429.50
AP-7178	21.33	444.94	6/24/19	14.49	430.45
AP-7183	21.7	447.31	6/24/19	17.91	429.40
AP-7187	17.9	446.41	6/21/19	Wel	l Broken
AP-7189	21.8	446.54	6/24/19	17.02	429.52
AP-7191	21.73	446.92	6/21/19	17.53	429.39
MW3564-1	23.43	NA	6/21/19	18.65	NA

7.2 Groundwater Contaminant Analytical Results

Six wells were sampled during the 2019 sampling event. Current and historical COC concentrations are summarized on Figure 7-2. Groundwater samples were submitted for laboratory analysis of DRO, RRO, dissolved iron, and sulfate as summarized in Table A-1. Final field measurements recorded prior to groundwater sample collection are presented on Table C-1. Contaminant and geochemical concentrations for sampling events between 2015 and 2019 are shown in Table 7-2. Complete analytical results are presented in Table A-6.

Four wells had DRO concentrations that exceeded ADEC CULs in 2019. These wells (AP-6729, AP-7178, AP-7189, and AP-7191) are located directly downgradient of Former Building 3564 and historically have had DRO concentrations exceeding the ADEC CUL. Graph 7-1 presents DRO concentrations in these four wells.

Graph 7-1 – DRO Concentrations in Former Building 3564 Wells

The two additional wells that are sampled in 2019, AP-7183 and MW3564-1, have never had DRO (or any other contaminant) exceeding the ADEC CUL. MW3564-1 is located further downgradient from Former Building 3564; while AP-7183 is located crossgradient of Former Building 3564 and in the direction of a Fort Wainwright water supply well (Building 3559).

RRO also exceeded the ADEC CUL in AP-7178 and AP-7189 but has never exceeded the ADEC CUL in any other well (except AP-7187 which can no longer be sampled).

The AS/SVE treatment system at Former Building 3564 operated for a relatively short period of time (between 1996 and 1998) and did not appear to have a long-term influence in DRO and RRO concentrations. However, the system was effective in remediating GRO and benzene at the site.

7.3 Geochemical Field Measurements and Analytical Results

Table 7-2 includes geochemical data for Former Building 3564 wells between 2015 and 2019. Groundwater directly downgradient of Former Building 3564 appears to be highly reduced based upon the negative ORP, very high DO, and depleted sulfate concentrations. The data suggests

that there is a lack of electron acceptors to enable anaerobic biodegradation of remaining petroleum hydrocarbons at the site. However, groundwater in wells located further downgradient (MW3564-1) and crossgradient (AP-7183) have essentially background geochemistry, indicating that the influence of the contaminant plume is not expanding in those directions.

7.4 Contaminant Trend and Plume Stability Evaluation

The MAROS software was used to evaluate DRO and RRO contaminant trends in individual wells. DRO plume stability was also evaluated using MAROS. The MAROS output is included in Appendix D and the results are summarized in the following sections.

7.4.1 Mann-Kendall Trend

Mann-Kendal concentration trends for DRO and RRO were determined at the Former Building 3564 site for the post-treatment period (1998 through 2019) and are presented in Table 7-3.

Table 7-3. Mann-Kendall Trend Analysis Summary, Former Building 3564

)A/ -!!	Mann-Kendall Trend
Well	DRO
AP-6729	No Trend
AP-7178	No Trend
AP-7183	Increasing
AP-7187	Stable ¹
AP-7189	No Trend
AP-7191	Increasing
MW3564-1	Stable

BOLD indicates DRO concentrations were more than ½ the ADEC CUL in 2019

The Mann-Kendall analysis showed a variety of contaminant concentrations trends for wells at the site, although none of the wells had decreasing DRO trends.

7.4.2 Plume Stability Evaluation

The MAROS software spatial moment analysis was used to evaluate the DRO plume stability based on estimated contaminant mass, the trend in the distance from the source to the center of mass, and the trend of plume spread around the center of mass. The MAROS output is included in Appendix D and is summarized as follows:

• Analysis showed the contaminant mass had an "increasing" trend which is consistent with the increasing DRO concentration trend in several wells.

¹ Based on 2018 concentrations

- The distance from the center of mass to the source had a "stable" trend.
- The contaminant plume spread had a "decreasing" trend.

7.4.3 <u>Sample Frequency Optimization</u>

The MAROS analysis recommended continuing the annual sample frequency.

7.4.4 Well Redundancy

The MAROS analysis showed that there is a small-moderate slope factor (uncertainty of contaminant concentrations) in the vicinity of AP-7187. In addition, well AP-7187 is located on the opposite side (upgradient) to the water supply well, and another downgradient well (AP-7189) is located nearby. It is recommended this well be decommissioned.

7.5 Summary and Recommendations

Groundwater results have showed variability in DRO concentrations, but limited contaminant migration. Continuing annual groundwater sampling is recommended. Well AP-7187 has been damaged, cannot be sampled, and should be decommissioned. The well is located slightly crossgradient of the contaminant source and has had considerably lower DRO/RRO concentrations than AP-7189.

Table 7-2. 2015-2019 Groundwater Sample Results Former Building 3564

Location	Sample	Sample		Geochemical Co	ncentrations			Concentrations g/L)
Location	Date	Number	ORP (mV)	Dissolved Oxygen (mg/L)	Dissolved Iron ¹ (mg/L)	Sulfate (mg/L)	DRO	RRO
AD	EC Cleanup L	_evels ³	NA	NA	NE	NE	1,500	1,100
	7/21/15	15FW6407WG	-121.8	0.32	45.2	0.79	4,440	703
	8/19/16	16FW6407WG	-85.0	0.27	25.5	19.6	2,240	381 J, B
AP-6729	8/3/17	17FW6403WG	-127.1	0.41	28.2	4.5	3,670	476 J
	8/9/18	18FW6407WG	-128.5	0.54	34.5	3.63	6,150	909
	6/24/19	19FW6407WG	-133.6	0.79	60.4	3.2	7,870	837
	7/21/15	15FW6408WG	-83.3	0.25	38.10	6.09	31,500	4,060
	8/19/16	16FW6406WG	-59.2	0.26	20.7	10.9	8,650	1,850
AP-7178	8/3/17	17FW6402WG	-98.1	0.44	54.5	1.25	24,200	4,590
	8/9/18	18FW6406WG	-104.7	0.68	50.8	0.369	33,700	4,530
	6/24/19	19FW6406WG	-61.2	0.90	40.9	0.26	29,270	5,980
	7/21/15	15FW6406WG	49.50	1.24	ND (0.25)	48.0	ND (332)	202 J
	8/19/16	16FW6408WG	41.20	0.85	ND (0.25)	62.5	175 J	204 J, B
AP-7183	8/3/17	17FW6401WG	46.60	1.67	ND (0.25)	51.3	325 J, B	ND (256)
	8/9/18	18FW6408WG	46.00	0.82	ND (0.25)	52.5	227 J	ND (272)
	6/24/19	19FW6405WG	75.30	1.78	ND (0.25)	65.1	ND (283)	ND (236)
	7/21/15	15FW6404WG	70.4	0.00	6.68	16.6	1,840	501 J
	7/21/15	15FW6405WG	-76.4	0.32	6.52	14.8	1,470	193 J
	8/19/16	16FW6405WG	11.30	0.39	9.42	55.7	20,700	2,430
AP-7187	8/4/17	17FW6404WG	-93.5	0.48	7.33	16.6	4,760	249 J
	8/9/18	18FW6405WG	-91.7	1.39	22.3	15.8	8,900	834
	6/24/19			Well Broker	n - Could not Collec	ct Sample	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	7/21/15	15FW6403WG	-93.3	0.21	87.6	1.27	53,600	2,960
	8/19/16	16FW6404WG	-32.9	0.25	42.2	4.6	40,400	2,800
AP-7189	8/4/17	17FW6408WG	-101.6	0.40	84.6	0.7	26,200	1,760
	8/8/18	18FW6404WG	-113.5	1.80	57.8	1.17	33,600	2,190
	6/24/19	19FW6404WG	-102.1	2.55	51.2	0.342	18,500	1,140
	7/21/15	15FW6402WG	-132.4	0.32	57.00	3.8	9,630	837
	8/19/16	16FW6402WG	-61.9	0.30	21.1	7.96	3,950	540 J,B
	8/19/16	16FW6403WG			21.4	7.76	3,660	385 J,B
AP-7191	8/4/17	17FW6406WG	-134.4	0.5	51.0	1.48	4,850	385 J
	8/4/17	17FW6407WG			50.7	1.51	4,060	254 J
	8/8/18	18FW6402WG	-146.1	1.00	38.6	0.694	6,530	584
	8/8/18	18FW6403WG	450	0.40	37.0	0.657	6,310	598
	6/21/19	19FW6402WG	-150	0.49	55.4	3.76	3,230	ND (245)
	7/21/15	15FW6401WG	-33.7	0.41	0.739	44.7	ND (347)	ND (289)
	8/19/16	16FW6401WG	-51	0.34	1.59	28.0	332 J	ND (272)
MW3564-1	8/4/17	17FW6405WG	-31.3	0.95	1.53	40.3	497 J, B	ND (250)
	8/8/18	18FW6401WG	-30.40	1.60	0.80	37.3	ND (329)	ND (274)
	6/21/19	19FW6401WG	-32.6	0.87	0.96	43.5	ND (288)	ND (240)

Notes:

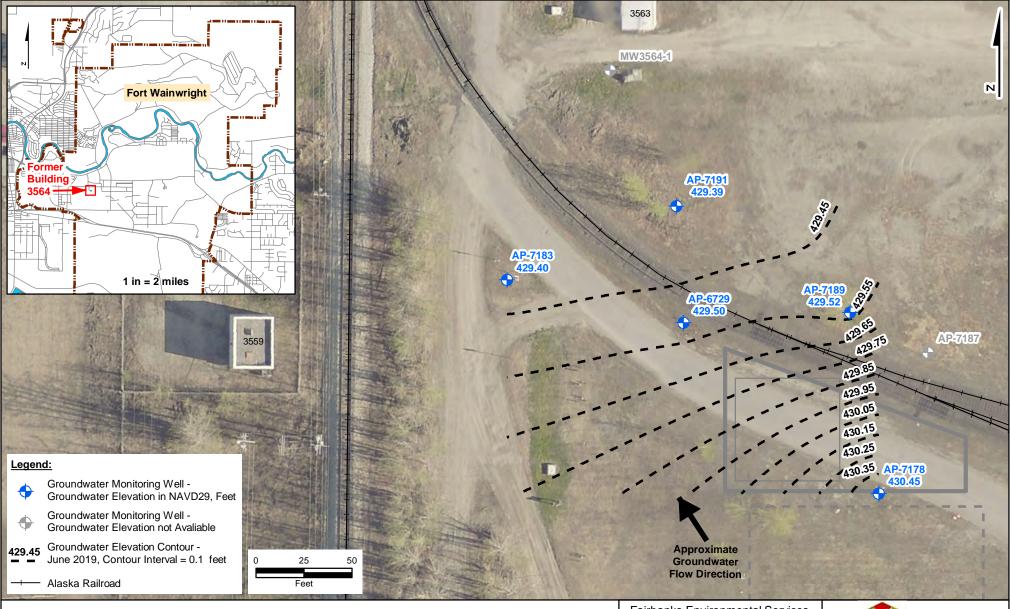
Green and bold results exceed current ADEC groundwater cleanup levels

Data Qualifiers

 \mbox{ND} - Not detected at the detection limit (LOD in parentheses; LOQ in parentheses for data prior to 2012.)

- $\ensuremath{\text{B}}$ Result is qualified as a potential high estimate due to contamination present in a blank sample
- J Result is estimated due to a QC issue or because it is less than the LOQ. If result is biased low or high, it is specified as "J-" and "J+", respectively (for 2014 data and later).

mV - millivolts


Acronyms/Abbreviations

DRO - diesel range organics NE - not established
RRO - residual range organics LOD - limit of detection $\mu g/L - \text{micrograms per liter} \text{LOQ - limit of quantitation}$ mg/L - milligrams per liter ORP - oxidation-reduction potential

NA - not analyzed or not applicable

 $^{^{\}rm 2}$ Sample is a field duplicate of the sample immediately above.

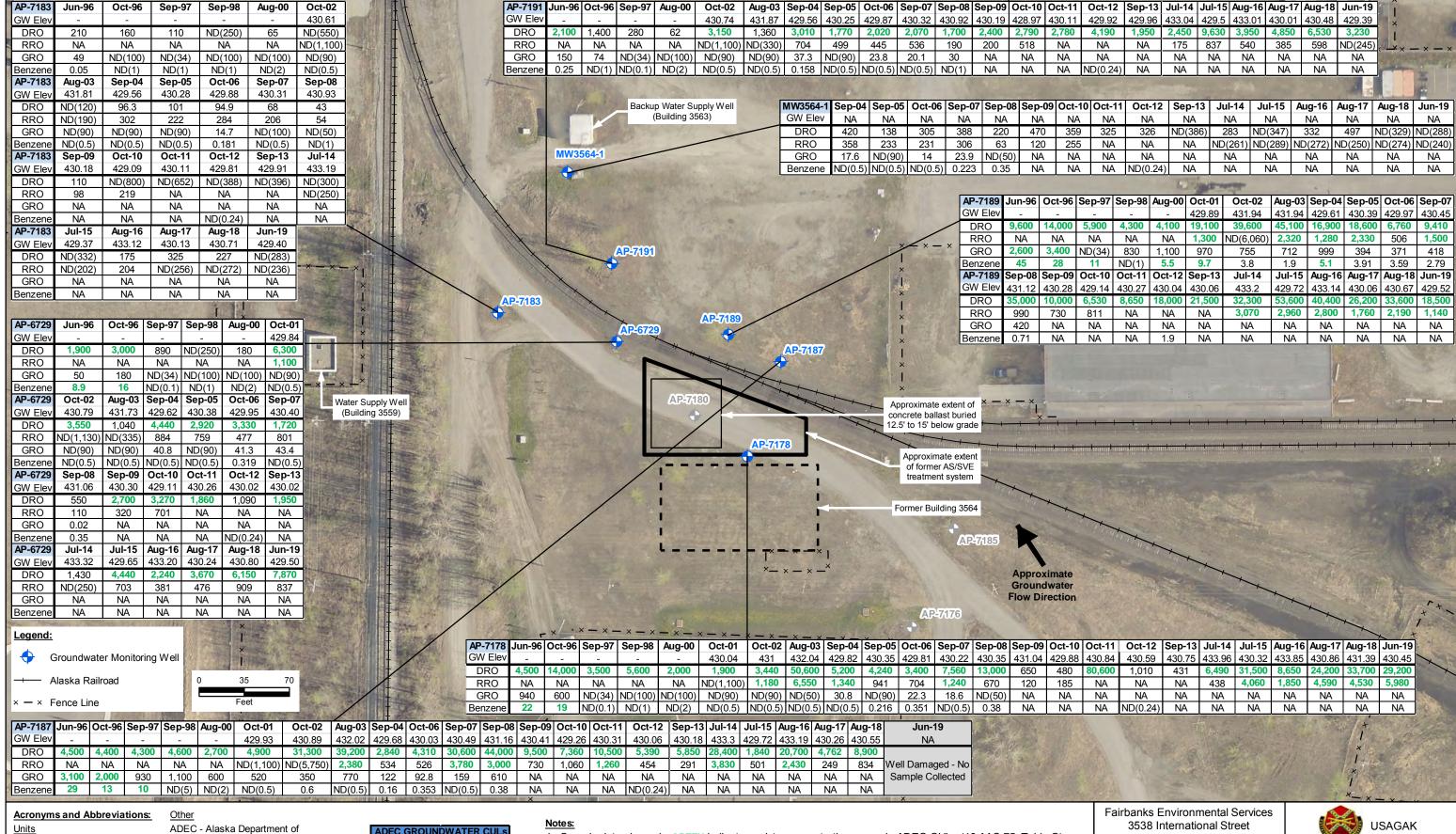
³ Cleanup level established from Title 18, Alaska Administrative Code, Section 75.345, Table C (ADEC, 2018)

Note:

1. Coordinate System - Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N Source:

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks Environmental Services 3538 International Street Fairbanks, Alaska



Well Locations and Groundwater Elevations, Former Building 3564

2019 Two-Party Sites Work Plan U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 7-1

ADEC - Alaska Department of

μg/L - micrograms per liter **Environmental Conservation** BTOC - below top of casing Analytes

CULs - Cleanup Levels DRO - Diesel Range Organics GRO - Gasoline Range Organics GW - groundwater RRO - Residual Range Organics

Other NA - not analyzed

AAC - Alaska Administrative Code ND - Not Detected (limit of detection)

18 AAC 75, Table C, 2018

Units in µg/L

1,500

1,100

2,200

4.6

DRO

RRO

GRO

Benzene

- 1. Sample data shown in GREEN indicate analyte concentration exceeds ADEC CULs (18 AAC 75, Table C)
- 2. Wells no longer sampled are shown in grayscale
- 3. Data flags are not included on figure due to map space limitations. Data flags are presented on Table A-6.
- 4. Groundwater elevations are in the National Geodetic Vertical Datum (NGVD29), feet
- 5. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N
- 1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

3538 International Street Fairbanks, Alaska

Groundwater Contaminant Concentrations, Former Building 3564

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 7-2

8.0 FORMER BUILDING 5110

This section presents the 2019 groundwater monitoring results for the Building 5110 site.

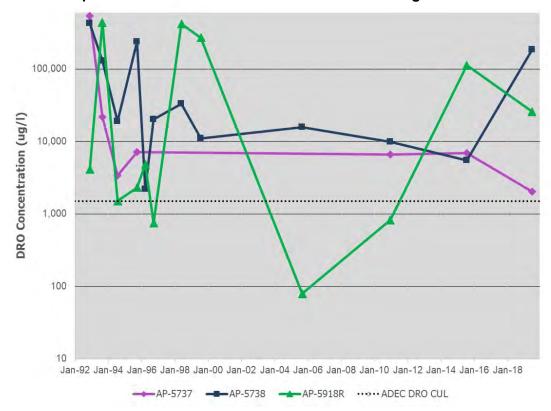
8.1 Monitoring Well Locations and Groundwater Elevations

Three wells located at the Former Building 5110 site were sampled during 2019; their locations are shown on Figure 8-1. Water levels were measured prior to sampling each well. Monitoring well details, water levels, and groundwater elevations are summarized in Table 8-1. The well elevation for AP-5918R is not available and thus the groundwater elevation cannot be determined. In addition, the relative groundwater elevations of the remaining two wells (AP-5737 and AP-5738) is greater (nearly one foot) than would be expected over a relatively small horizontal distance (approximately 30 feet). Groundwater at the site would be expected follow the northwesterly regional groundwater flow direction.

Table 8-1 – Monitoring Well Summary, Former Building 5110

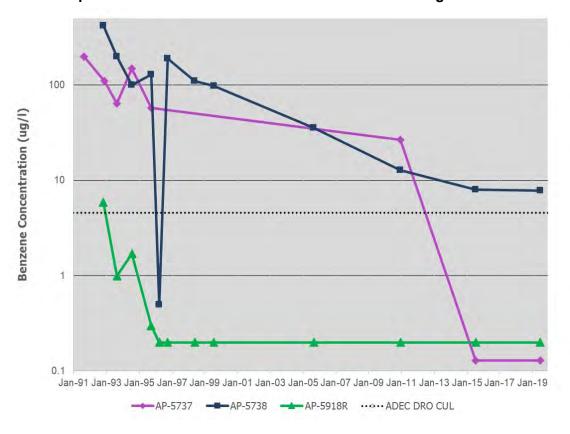
Well Number	Total Well Depth (feet btoc)	Screened Interval (feet bgs)	Well Elevation (feet – NAVD88)	Date	Water Level (feet btoc)	Water Elevation (feet – NAVD88)
AP-5737	20.3	7-17	444.83	6/19/19	17.58	440.57
AP-5738	27.0	17-27	444.56	6/19/19	17.43	439.45
AP-5918R	25.3	12-22	NA	6/19/19	18.67	NA

NA – not available


8.2 Groundwater Contaminant Analytical Results

Three monitoring wells were sampled during the 2019 sampling event. Well locations and current and historical groundwater contaminant concentrations are presented on Figure 8-2. Groundwater samples were submitted for laboratory analysis of GRO, DRO, BTEX, dissolved iron, dissolved manganese, and sulfate as summarized in Table A-1. Final field measurements recorded prior to groundwater sample collection are presented on Table C-1. Groundwater contaminant concentrations of samples collected between 2010 and 2019 are included in Table 8-2. Complete analytical results are presented in Table A-7.

DRO and ethylbenzene exceeded ADEC CULs in all three Former Building 5110 wells that were sampled in 2019. Xylenes exceeded the ADEC CUL in AP-5737 and AP-5738, and benzene and GRO exceeded the ADEC CUL in AP-5738.


DRO concentrations have fluctuated at the Former Building 5110 site, varying by nearly four orders of magnitude in AP-5918R. The DRO concentration was highest in AP-5738 in 2019. DRO concentrations have remained above the ADEC CUL in AP-5737 and AP-5738 in every sampling

event, and has been below the ADEC CUL in only three of 12 sampling events of AP-5918R. Graph 8-1 presents DRO concentrations in Former Building 5110 wells.

Graph 8-1 – DRO Concentrations in Former Building 5110 Wells

Benzene concentrations have decreased by two orders of magnitude in Former Building 5110 wells. While benzene slightly exceeded the ADEC CUL in AP-5738 in 2019; benzene was not detected, or detected below the LOQ, in the other two wells. Graph 8-2 presents benzene concentrations in Former Building 5110 wells.

Graph 8-2 – Benzene Concentrations in Former Building 5110 Wells

8.3 Geochemical Field Measurements and Analytical Results

Table 8-2 presents geochemical data for Former Building 5110 wells between 2010 and 2019. Geochemical results indicate that groundwater in the vicinity of the three monitoring wells located at the site is highly reduced as a result of biodegradation of petroleum hydrocarbons. Low and/or negative ORP, low DO, elevated dissolved iron and manganese, and decreased sulfate concentrations are all indicative of reduced groundwater geochemistry. Biodegradation of remaining petroleum contamination is likely limited by a lack of electron acceptors. However, based upon the decreases over time in benzene and other contaminants, natural attenuation of non-DRO contaminants appears to continue.

8.4 Contaminant Concentration Trend and Plume Stability Evaluation

Mann-Kendall trend analysis was performed for the Former Building 5110 wells using MAROS software to evaluate DRO concentration trends over time. Plume stability trend analysis could not be performed due to an insufficient number of wells. The trend was evaluated using groundwater data between 1991 and 2019, and the results are presented in Appendix D and summarized in Table 8-3.

Table 8-3. Mann-Kendall Trend Analysis Summary, Former Building 5110

Wall	Mann-Kendall Trend										
Well	Benzene	DRO	GRO								
AP-5737	Decreasing	Probably Decreasing	Stable								
AP-5738	Decreasing	No Trend	Stable								
AP-5918R	Probably Decreasing	Decreasing	No Trend								

BOLD indicates DRO concentration above ½ the ADEC CUL in 2019

Table 8-3 indicates that the wells generally have stable and decreasing trends, and none of the wells have increasing trends for benzene, DRO, or GRO.

8.5 Summary and Recommendations

Although contaminant concentrations remain above ADEC CULs, geochemical data demonstrates that contaminant degradation is continuing and trend analysis shows that contaminant concentrations are primarily decreasing or are stable. Groundwater sample frequency should continue every five years and be conducted to coincide with Five Year Reviews. The next scheduled sampling event for these wells is 2024, in advance of the 2025 Five Year Review.

Table 8-2. 2010 - 2019 Groundwater Sample Results Former Building 5110

Well Number				Geoc	hemical Param	eters	Contaminant Concentrations (µg/L)						
	Sample Number	Date	ORP (mV)	Dissolved Oxygen (mg/L)	Dissolved Iron (mg/L)	Dissolved Manganese (mg/L)	Sulfate (mg/L)	GRO	DRO	Benzene	Ethylbenzene	Xylenes	
	ADEC CLEANUP LEVELS ¹			NA	NE	0.43	NE	2200	1500	4.60	15	190	
	10FW5104WG	12/16/2010	NA	NA	NA	NA	NA	2,210	6,660	26.6	35	764	
	15FW5101WG	7/22/2015	3.9	0.69	8.65	1.48	0.373	236	6,860	ND (0.2)	1.95 Q	7.75 Q	
AP-5737	15FW5102WG ²	7/22/2015	5.5		8.5	1.45	0.397	209	6,530	0.13 J	2.96 Q	11.2 Q	
	19FW5102WG 6/26/20	6/26/2019	22.6	0.79	4.88	0.404	0.388	1090 J+	2,030	0.12 J	25.8	216	
	19FW5103WG ²	6/26/2019	22.0	0.79	5.28	0.394	0.418	1260 J+	1,900	0.13 J	30.3	255	
	10FW5102WG	12/16/2010	NA	NA	NA	NA	NA	3780 Q	9800 Q	12.9	59.9	1,486	
AP-5738	10FW5103WG ²	12/16/2010	INA	NA	NA	NA	NA	3700 Q	7,210	13.5	62.2	1,511	
AF-3730	15FW5101WG	7/22/2015	-58.4	0.26	19.7	4.41	0.185	1,360	5,550	8.1	28.2	224	
	19FW5103WG	6/26/2019	-72.8	0.91	35.9	2.34	0.452	6,390	186,000	7.85	204	2,120	
	10FW5101WG	12/16/2010	NA	NA	11.1	NA	20.4	42 J	ND (821)	ND (0.4)	0.7 J	2.32	
AP-5918R	15FW5101WG	7/22/2015	-41.8	0.41	16.0	1.75	7.48	1180 Q	112,000	ND (0.2)	53.2	136	
	19FW5101WG	6/26/2019	-44.4	0.80	14.9	1.630	11	756 J	25,700	ND (0.2)	19.6	94.9	

Notes

Results in green and bold font exceeded ADEC CULs

Data Qualifiers

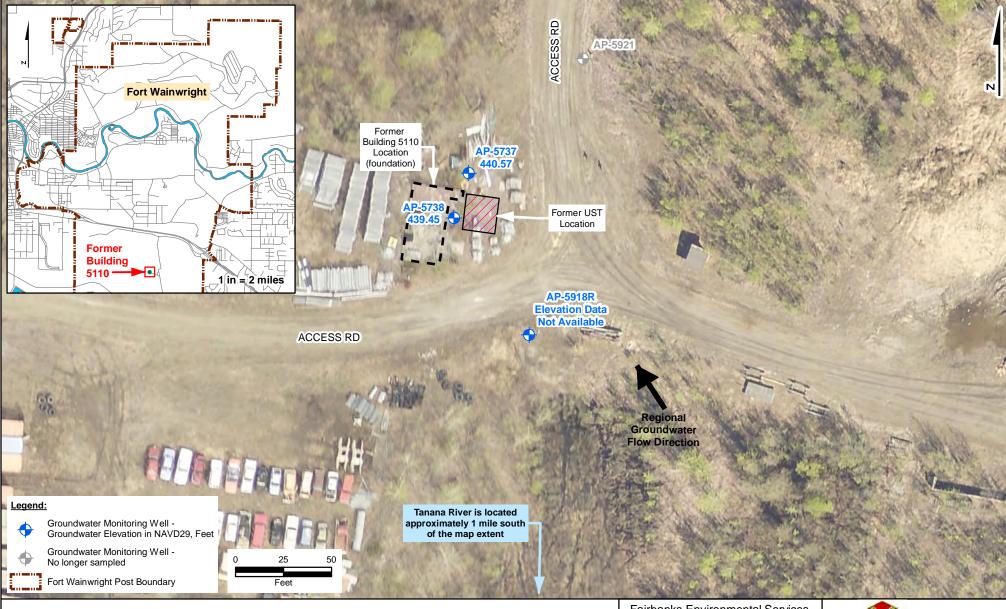
ND - Not detected at the detection limit (LOD in parentheses; LOQ in parentheses for data prior to 2012.)

- B Result is qualified as a potential high estimate due to contamination present in a blank sample
- J Result is estimated due to a QC issue or because it is less than the LOQ. If result is biased low or high, it is specified as "J-" and "J+", respectively (for 2014 data and later).
- Q result qualifed as estimate due to QC failure

Acronyms/Abbreviations

DRO - diesel range organics LOD - limit of detection GRO - gasoline range organics LOQ - limit of quantitation

 $\mu g/L$ - micrograms per liter ORP - oxidation-reduction potential


mg/L - milligrams per liter mV - millivolts

NA - not analyzed or not applicable

NE - not established

¹ 18 AAC 75.345, Table C values (ADEC, 2018)

² Sample is a Field Duplicate of the sample immediately above.

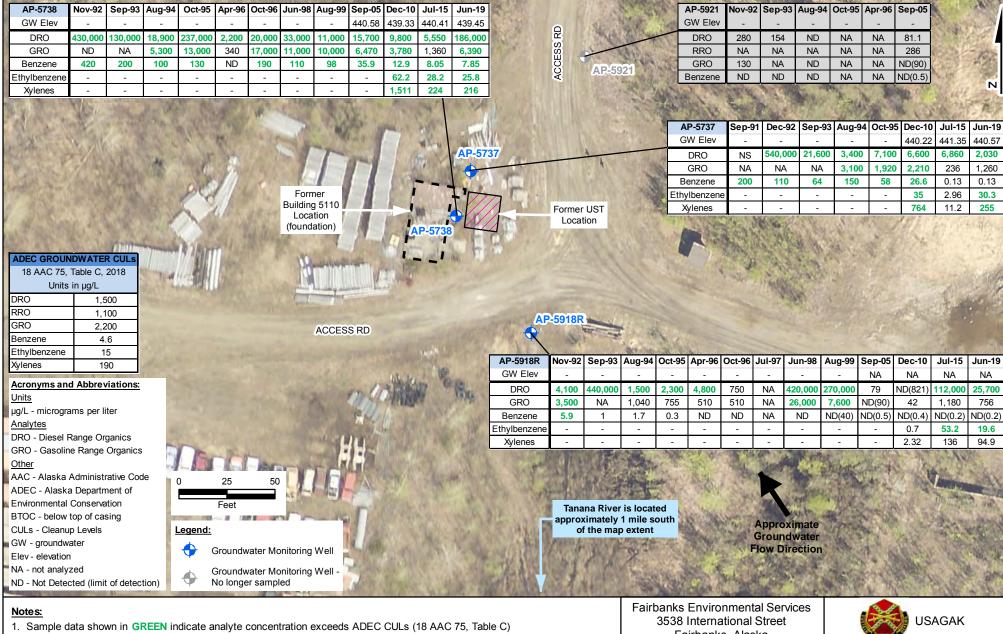
Note:

- 1. Not enough data (only 2 data points) to create groundwater elevation contours
- 2. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N

Source

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks Environmental Services 3538 International Street Fairbanks, Alaska



Well Locations and Groundwater Elevations, Former Building 5110

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005

Figure: 8-1

- 2. Wells no longer sampled are shown in grayscale.
- 3. Data flags are not included on figure due to map space limitations. Data flags are presented on Table A-7.
- 4. Groundwater elevations are in the National Geodetic Vertical Datum (NGVD29), feet
- 5. Coordinate System Projection: World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM), Zone 6N

1. Aerial imagery obtained from the Fairbanks North Star Borough GIS department: 2017 Fort Wainwright .SID

Fairbanks, Alaska

Groundwater Contaminant Concentrations. Former Building 5110

2019 Two-Party Sites Monitoring Report U.S. Army Garrison Alaska

USACE Contract: W911-KB-16-D-0005 Figure: 8-2

9.0 REFERENCES

- Alaska Department of Environmental Conservation (ADEC), 2019a. Field Sampling Guidance. October.
- ADEC, 2019b. Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data. October 2019.
- ADEC, 2018. *18 AAC 75 Oil and Other Hazardous Substances Pollution Control*. As amended through October 27, 2018.
- Air Force Center for Environmental Excellence (AFCEE), 2006. *Monitoring and Remediation Optimization System (MAROS) Users Guide*: Software Version 2.2. Brooks AFB, San Antonio, TX. March.
- CH2M HILL, 2004a. *CLOSES Evaluation, Former Building 2250. Fort Wainwright, Alaska*. June.
- CH2M HILL, 2004b. CLOSES Evaluation, Former Building 5110, Fort Wainwright, Alaska. June.
- Department of Defense (DoD), 2017. *DoD Quality Systems Manual for Environmental Laboratories, Version 5.1.* July
- ENSR Corporation 2005. *Operations, Maintenance, and Monitoring Report for Buildings 1002, 1168, 2250, and Neely Road.* August
- ENSR Corporation 1995. Work Plan for Release Investigations, Buildings 1002, 1168, and 2250, Fort Wainwright, Alaska. July
- Environmental Protection Agency (EPA), 2005. *Roadmap to Long-Term Monitoring Optimization. EPA 542-R-05-003*. May.
- EPA, 1987. Scope of the CERCLA Petroleum Exclusion Under Sections 101(14) and 104(a)(2). July 31, 1987.
- Fairbanks Environmental Services (FES), 2019. 2019 Two-Party Work Plan, U.S. Army Garrison Alaska, June.
- FES, 2018. Interim Remedial Action Completion Report (IRACR), Building 1168 Leach Well Site, Operable Unit 2, U.S. Army Garrison Alaska. December.
- FES, 2017. Former Building 1168 Treatability Study Report, Operable Unit 2, Fort Wainwright, Alaska.
- FES, 2016. 2016 Postwide Uniform Federal Policy for Quality Assurance Project Plans (UFP-QAPP). August.
- Hart Crowser, 1997. UST Release Investigation Fort Wainwright, Alaska. May.
- Harding Lawson Associates (HLA), 1996. *Operable Unit 2 Final Remedial Investigation Report*, Fort Wainwright, Alaska. (Volumes I and II). January 25.

- Oil Spill Technology, 1994. *Underground Storage Tank Closure UST Site Assessment and Recommendations, Fort Wainwright Alaska.* October
- Puls, R.W. and M. J. Barcelona, 1996. *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*. EPA/540/S-95/504. April.
- U.S. Army, 1998. Fort Wainwright CERCLA Federal Facility Agreement, Recommended Action, Fort Wainwright Petroleum Strategy, Fort Wainwright, Alaska. January

APPENDIX A
GROUNDWATER SAMPLE TRACKING AND ANALYTICAL RESULTS TABLES

Table A-1. 2019 Sample Summary Two-Party Sites Fort Wainwright, Alaska

Sample Number	Sample Location	Sample Type	Matrix	Sampler Initials	Sample Date	Sample Time	VOC 8260C	BTEX 8260C	GRO AK101	DRO AK102SV	RRO AK103SV	Dissolved Fe 6020A	Dissolved Mn 6020A	SO4 300.0	Sample Data Group	Cooler ID
DRMO Yard																
19FWDY01WG	PI-3	Primary	WG	СВ	6/19/19	1055				Х		Х		Х	1193255	062002,-03
19FWDY02WG	MP-4	Primary	WG	CB	6/19/19	1210				Х		Х		Х	1193255	062002,-03
19FWDY03WG	AP-5826	Primary/MS/MSD*	WG	CB	6/19/19	1315				X*		X*		Χ*	1193255	062002,-03
19FWDY04WG	AP-4040 (AP-5826)	Field Duplicate of 19FWDY03WG	WG	СВ	6/19/19	1330				Х		Х		Х	1193255	062002,-03
19FWDY05WG	AP-6806	Primary	WG	СВ	6/19/19	1425				Х		Х		Х	1193255	062002,-03
19FWDY06WG	AP-7346	Primary/MS/MSD*	WG	CB	6/19/19	1520	Χ*			Х					1193255	062001,-03
19FWDY07WG	AP-5050 (AP-7346)	Field Duplicate of 19FWDY06WG	WG	СВ	6/19/19	1535	Х								1193255	062001
19FWDY08WG	AP-7348	Primary	WG	AS	6/20/19	1220	Х			Х					1193255	062001,-03
Neely Road					•						•					
19FWNR01WG	AP-9684	Primary	WG	AS	6/24/19	1100	Х		Х	Х		Х	Х	Х	1193407	062601,-02
19FWNR02WG	AP-9459	Primary/MS/MSD*	WG	AS	6/24/19	1215	X*		X*	X*		X*	X*	X*	1193407	062601,-02
19FWNR03WG	AP-8080 (AP-9459)	Field Duplicate of 19FWNR02WG	WG	AS	6/24/19	1230	Х		Х	Х		Х	Х	Х	1193407	062601,-02
19FWNR04WG	AP-9003	Primary	WG	AS	6/24/19	1340	Х		Х	Х		Х	Х	Х	1193407	06260102
19FWNR05WG	AP-8211	Primary	WG	AS	6/24/19	1500	X		X	X		X	X	X	1193407	062601,-02
19FWNR06WG	AP-9685	Primary	WG	AS	6/24/19	1630	Х		Х	Х		Х	Х	Х	1193407	062601,-02
19FWNR07WG	AP-8211	Primary	WG	CB	9/1/19	955	Χ		Х	Х		Х	X	Х	1195158	090301,-02
19FWNR08WG	AP-9003	Primary	WG	CB	9/1/19	1100	Χ		Χ	Х		Х	X	Χ	1195158	090301,-02
19FWNR09WG	AP-9459	Primary/MS/MSD*	WG	CB	9/1/19	1150	X*		X*	X*		X*	X*	Χ*	1195158	090301,-02
19FWNR10WG	AP-8080 (AP-9459)	Field Duplicate of 19FWNR09WG	WG	СВ	9/1/19	1205	Х		Х	Х		Х	Х	Х	1195158	090301,-02
19FWNR11WG	AP-9684	Primary	WG	CB	9/1/19	1245	Χ		Χ	X		X	X	Χ	1195158	090301,-02
19FWNR12WG	AP-9685	Primary	WG	CB	9/1/19	1420	Χ		Χ	X		X	X	Χ	1195158	090301,-02
Former Building 11	168															
19FW6801WG	AP-5751	Primary	WG	AS	6/19/19	1635	Х			Х		Х		Х	1193255	062001,-02,-04
19FW6802WG	AP-6809	Primary	WG	AS	6/19/19	1740	Х			Х		Х		Х	1193255	062001,-02,-04
19FW6803WG	AP-10037MW	Primary/MS/MSD*	WG	AS	6/20/19	1000	X*			Х*		X*		Χ*	1193255	062001,-02,-04
19FW6804WG	AP-6060 (AP-10037MW)	Field Duplicate of 19FW6803WG	WG	AS	6/20/19	1015	Х			Х		X		Х	1193255	062001,-02,-04
Former Building 22	250															
19FW2201WG	AP-7153	Primary	WG	AS	6/19/19	1120				Х	I	Х	I	Х	1193255	062002,-03
19FW2202WG	AP-5976	Primary/MS/MSD*	WG	AS	6/19/19	1250				X*		X*		X*	1193255	062002, 03
19FW2203WG	AP-3030 (AP-5976)	Field Duplicate of 19FW2202WG	WG	AS	6/19/19	1300				X		X		Х	1193255	062002,-03
19FW2204WG	(AP-5976) AP-7151	Primary	WG	AS	6/19/19	1440				Х		Х		Х	1193255	062002,-03
Former Building 35	564				•						•					
19FW6401WG	MW3564-1	Primary	WG	СВ	6/21/19	1050				Х	Х	Х		Х	1193407	062001,-02
19FW6402WG	AP-7191	Primary/MS/MSD*	WG	CB	6/21/19	1205				X*	X*	X*		X*	1193407	062001,-02
	AP-7070	Field Duplicate of 19FW6402WG	WG	СВ	6/21/19	1220				Х	Х	X		Х	1193407	062001,-03
19FW6403WG	(AP-7191)	190700402000				<u> </u>				-	.,		 			
	(AP-7191) AP-7189		WG	CB	6/24/19	1100				X	ı x	X		X	1193407	062001 -03
19FW6404WG	AP-7189	Primary	WG WG	CB CB	6/24/19 6/24/19	1100 1320				X	X	X		X	1193407 1193407	062001,-03 062001 -03
19FW6404WG 19FW6405WG	AP-7189 AP-7183	Primary Primary	WG	СВ	6/24/19	1320				Х	Х	Х		Х	1193407	062001,-03
19FW6404WG	AP-7189	Primary		_												

Table A-1. 2019 Sample Summary Two-Party Sites Fort Wainwright, Alaska

Sample Number	Sample Location	Sample Type	Matrix	Sampler Initials	Sample Date	Sample Time	VOC 8260C	BTEX 8260C	GRO AK101	DRO AK102SV	RRO AK103SV	Dissolved Fe 6020A	Dissolved Mn 6020A	SO4 300.0	Sample Data Group	Cooler ID
Former Building 5110																
19FW5101WG	AP-5737	Primary/MS/MSD*	WG	СВ	6/26/19	1010		Χ*	Χ*	Χ*		X*	X*	Χ*	1193407	062001,-03
19FW5102WG	AP-9090 (AP-5737)	Field Duplicate of 19FW5101WG	WG	СВ	6/26/19	1025		Х	Х	Х		Х	Х	Х	1193407	062001,-03
19FW5103WG	AP-5738	Primary	WG	CB	6/26/19	1115		Χ	Χ	Х		Χ	X	Χ	1193407	062001,-03
19FW5104WG	AP-5918R	Primary	WG	CB	6/26/19	1215		Χ	Χ	Х		Х	X	Х	1193407	062001,-03
Quality Control San	nples															
19FW2PEB01WQ	Rinsate 1	Equipment Blank	WQ	AS	6/20/19	1400	Χ			Χ		Χ		Χ	1193255	062001,-02,-03
19FW2PTB01WQ	Trip Blank	Trip Blank	WQ		6/19/19	800	Х								1193255	062001
19FW2PEB02WQ	Rinsate 2	Equipment Blank	WQ	CB	6/24/19	1700				X	X				1193407	062603
19FW2PEB03WQ	Rinsate 3	Equipment Blank	WQ	AS	6/24/19	1800	Χ		Χ			Χ	Χ	Χ	1193407	062601
19FW2PTB02WQ	Trip Blank	Trip Blank	WQ		6/21/19	800	Χ		Χ						1193407	062601
19FW2PEB04WQ	Rinsate 4	Equipment Blank	WQ	CB	9/1/19	1550	Χ		Χ	Χ		Χ	X	Χ	1195158	090301,-02
19FW2PTB03WQ	Trip Blank	Trip Blank	WQ		9/1/19	800	Х		Χ						1195158	090301

Notes:

All samples were submitted to SGS North America, Inc., of Anchorage, AK for analysis. The standard 21-day turnaround time was requested for all analyses. All work was performed under NPDL work order number 19-098.

BTEX - benzene, toluene, ethylbenzene, xylenes

DRO - diesel range organics Fe - iron

GRO - gasoline range organics

Mn - manganese

RRO - residual range organics

SO4 - sulfate

VOC - volatile organic compound

AS - Aaron Swank CB - Chris Boese

mL - milliliter

MS/MSD - matrix spike/matrix spike duplicate

HCI - hydrochloric acid

HDPE - high-density polyethylene

Water Sample Collection (all samples were field-preserved at 0 to 6°C)

VOC/BTEX - three HCI-preserved, 40 mL VOA vials

GRO - three HCI-preserved, 40 mL VOA vials

DRO/RRO - two HCI-preserved, 250 mL amber bottles

Fe/Mn - one HNO3-preserved, 250 mL HDPE bottle, field-filtered

SO4 - one non-preserved, 125 mL HDPE bottle

^{* -} denotes sample submitted for MS/MSD analysis

Table A-2. 2019 Groundwater Sample Results DRMO Yard Fort Wainwright, Alaska

				Sample ID	19FWDY01WG	19FWDY02WG	19FWDY03WG	19FWDY04WG	19FWDY05WG	19FWDY06WG	19FWDY07WG	19FWDY08WG	19FW2PEB01WQ	19FW2PTB01WQ
Secretary Secretary Secret			Sam	nple Data Group										
No. Proceedings											1193255025			
Note														
According Marco														
August Marie Mar			1	Sample Type	•	,	,	19FWDY03WG	,	,	19FWDY06WG	,	' '	'
Proceedings	Analyte	Method	Units	ADEC CUL ¹										
Fig.	Diesel Range Organics	AK102	μq/L	1,500										-
Fig.	J	CMCCCCA	//	NE	40000 [050]	0050 [050]	0000 [050]	0700 [050]	45400 [050]	• •			ND IOCOL	
11.2 Teachinement 1999, 200 25 25 25 25 25 25 25										-				
11.57-25-25-25-25-25-25-25-25-25-25-25-25-25-	Sullate	E300.0	µg/∟		23900 [300]	003 [100]	10300 [300]	9940 [500]	10900 [300]	-	-	-	ND [100]	-
13.2 Telephoreness	1,1,1,2-Tetrachloroethane				-	-	-	-	-					
13.77etatrox 2.50ff (1.500) 1.500 1.50				, and the same of	-	-	-	-	-			L1		
13.75 International 15.75	, , ,				-	-	-	-	-					
1.50 1.50	, ,				-	-	-	-	-					
1. Calebrandines				-	-	-	-	-	-					
1.5 Delet progresser SPRIGEO 1914 NE					-	-		-	-					
12.3 Informationsement	,				-	-								
1.2 Friedrichterwere	,				-	-								
12.4 Transformersee	, ,-				-	-								
12.4 Trenshipherores					-									
12.000000000000000000000000000000000000	, ,				-	-		-				1		L1
12 Observerbriefer					-			-	_					
					-			-	-			• • •		
1.2 Old Condendame	,													
2.20-interprepare	,									1				
3.3-Friendytherenee	- 1					_			_					
1.3-Dielinfordenzere			-		_	-	-	_	-					
1.5 Definisherspreamer SWR0200C ggl. 4.4					_	-	_	_	_					
1.4 Delicrobentamen	- 1				-	-	-	-	-					
Selection SW200C pgl, No 5.00 No 5.00 No	1,4-Dichlorobenzene	SW8260C		4.8	-	-	-	-	-			ND [0.25]	ND [0.25]	ND [0.25]
Schorotokuene	2,2-Dichloropropane	SW8260C	μg/L	NE	-	-	-	-	-	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Selection SW8200C Upt. Sil. Sil. No. Sil.	2-Butanone	SW8260C	μg/L	5,600	-	-	-	-	-	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]
ACCIDIOTOBLEME	2-Chlorotoluene	SW8260C	μg/L	NE	-	-	-	-	-	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Hispoprofiluleme	2-Hexanone	SW8260C	μg/L	38	-	-	-	-	-	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]
Alberty-2-pertanone	4-Chlorotoluene	SW8260C	μg/L	NE	-	-	-	-	-	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Semicon SW2200C UpU	4-Isopropyltoluene	SW8260C	μg/L	NE	-	-	-	-	-	ND [0.5]	ND [0.5]	4.39 [0.5]	ND [0.5]	ND [0.5]
Strong-bearage SW2260C grad 62 ND 0.5 ND	4-Methyl-2-pentanone		μg/L	6,300	-	-	-	-	-		1.7			
Strong-chirormethane SW8260C ygl. NE NO [0.5] ND [0	Benzene				-	-	-	-	-					
Bromode/horomethane SW280C pg/L 1.3	Bromobenzene			-	-	-	-	-	-			1		1,
Bromonder SW2800C pg/L 33 ND 0.5 N					-	-	-	-	-					
Bromomethane SW8260C yg/l. 7.5					-	-	-	-	-		_ ,			
Carbon disulfide SW8280C Lig/L	Bromoform	01110000	- ' - ' - '										:- :-	:_ :
Carbon tetrachloride	Bromomethane													
Chloroethane SW8260C µg/L 78 - - - ND [0.25] ND														
Chlorostane					-	-		-	-					
Chloroform SW8260C µg/L 2.2 ND [0.5]					-	-		-	-					
Chloromethane SW8260C µg/L 190 - - - - - - ND 0.5 N				·										
cis-1,2-Dichloroethene											_			
SW8260C Hg/L 4.7 ND 0.25 ND														
Dibromochloromethane SW8260C yg/L 8.7 ND [0.25] ND [0.25					-									
Dibromomethane SW8260C µg/L 8.3 - - - - - ND [0.5] ND [7-				-									
Dichlorodifluoromethane SW8260C µg/L 200 - - - - - - ND [0.5] ND					-									
Ethylbenzene SW8260C µg/L 15 ND [0.5] ND [0.5] 9.44 [0.5] ND [0.5	Dichlorodifluoromethane				-									
Hexachlorobutadiene SW8260C µg/L 1.4 ND [0.5] N	Ethylbenzene													
Suppose Supp	Hexachlorobutadiene				-	-	-	-	-					
Methylene chloride SW8260C	Isopropylbenzene				-	-	-	-	-					
Methyl-tert-butyl ether (MTBE)	Methylene chloride				-	-	-	-	-					
Naphthalene SW8260C µg/L 1.7 ND [0.5]	Methyl-tert-butyl ether (MTBE)			_	-	-	-	-	-		_			
n-Butylbenzene SW8260C µg/L 1,000 ND [0.5]	Naphthalene				-	-	-	-	-		•			•
o-Xylene SW8260C µg/L 190 ND [0.5] ND [0.5] 34.2 [0.5] ND [0.5] ND [0.5] Sec-Butylbenzene SW8260C µg/L 2,000 ND [0.5] ND [0.5] ND [0.5] ND [0.5] ND [0.5]	n-Butylbenzene			1,000	-	<u>-</u>	-	-	-					
sec-Butylbenzene SW8260C µg/L 2,000 ND [0.5] ND [0.5] 3.14 [0.5] ND [0.5] ND [0.5]	n-Propylbenzene	SW8260C	μg/L	660	-	-	-	-	=	ND [0.5]	ND [0.5]	6.19 [0.5]	ND [0.5]	ND [0.5]
	o-Xylene	SW8260C	μg/L		-	-	-	-	-		ND [0.5]	34.2 [0.5]		ND [0.5]
Styrene SW8260C µg/L 1,200 ND [0.5] ND [0.5] ND [0.5] ND [0.5] ND [0.5] ND [0.5]	sec-Butylbenzene			·	-	-	-	-	-		ND [0.5]	3.14 [0.5]		
	Styrene	SW8260C	μg/L	1,200	-	-	-	-	-	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]

Table A-2. 2019 Groundwater Sample Results **DRMO Yard** Fort Wainwright, Alaska

			Sample ID	19FWDY01WG	19FWDY02WG	19FWDY03WG	19FWDY04WG	19FWDY05WG	19FWDY06WG	19FWDY07WG	19FWDY08WG	19FW2PEB01WQ	19FW2PTB01WQ
			Location ID	PI-3	MP-4	AP-5826	AP-4040	AP-6806	AP-7346	AP-5050	AP-7348	Rinsate 1	Trip Blank
		San	nple Data Group	1193255	1193255	1193255	1193255	1193255	1193255	1193255	1193255	1193255	1193255
			Laboratory ID	1193255001	1193255002	1193255003	1193255006	1193255007	1193255008	1193255025	1193255011	1193255012	1193255026
			Collection Date	6/19/2019	6/19/2019	6/19/2019	6/19/2019	6/19/2019	6/19/2019	6/19/2019	6/20/2019	6/20/2019	6/19/2019
			Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WQ	WQ
			Sample Type	Primary	Primary	Primary/MS/MSD	Field Duplicate of 19FWDY03WG	Primary	Primary/MS/MSD	Field Duplicate of 19FWDY06WG	Primary	Equipment Blank	Trip Blank
Amelista	Method	Units	ADEC CUI 1	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]
Analyte	Wethod	Units	ADEC CUL ¹	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier
tert-Butylbenzene	SW8260C	μg/L	690	-	-	-	-	-	ND [0.5]	ND [0.5]	0.9 [0.5] J	ND [0.5]	ND [0.5]
Tetrachloroethene (PCE)	SW8260C	μg/L	41	-	-	-	-	•	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Toluene	SW8260C	μg/L	1,100	-	-	-	-	1	ND [0.5]	ND [0.5]	0.75 [0.5] J	ND [0.5]	ND [0.5]
trans-1,2-Dichloroethene	SW8260C	μg/L	360	-	-	-	-	•	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
trans-1,3-Dichloropropene	SW8260C	μg/L	4.7	-	-	-	-	•	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Trichloroethene (TCE)	SW8260C	μg/L	2.8	-	-	-	-	ı	0.35 [0.5] J	0.35 [0.5] J	ND [0.5]	ND [0.5]	ND [0.5]
Trichlorofluoromethane	SW8260C	μg/L	5,200	-	-	-	-	•	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Vinyl acetate	SW8260C	μg/L	410	-	-	-	-	1	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]
Vinyl chloride	SW8260C	μg/L	0.19	-	-	-	-	-	ND [0.075]	ND [0.075]	ND [0.075]	ND [0.075]	ND [0.075]
Xylene, Isomers m & p	SW8260C	μg/L	190	-	-	-	-	,	ND [1]	ND [1]	26.1 [1]	ND [1]	ND [1]
Xylenes	SW8260C	μg/L	190	-	-	-	-	-	ND [1.5]	ND [1.5]	60.3 [1.5]	ND [1.5]	ND [1.5]

Results in green and bold font exceed ADEC CULs

Grey shaded results are non-detect with LODs above ADEC CULs

ADEC CULs are Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27, 2018).

<u>Data Qualifiers</u>:

B - result may be due to cross-contamination

J - result qualified as estimate because it is less than the LOQ or due to a QC failure ND - not detected [LOD presented in brackets]

Acronyms:
CUL - cleanup level
LOD - limit of detection

LOQ - limit of quantitation MS/MSD - matrix spike/matrix spike duplicate

μg/L - micrograms per liter

NE - not established

QC - quality control

WG - groundwater

WQ - water QC sample

Table A-3. 2019 Groundwater Sample Results Neely Road Fort Wainwright, Alaska

			Sample ID	19FWNR01WG	19FWNR02WG	19FWNR03WG	19FWNR04WG	19FWNR05WG	19FWNR06WG	19FWNR07WG	19FWNR08WG	19FWNR09WG	19FWNR10WG	19FWNR11WG	19FWNR12WG
			Location ID	AP-9684	AP-9459	AP-8080	AP-9003	AP-8211	AP-9685	AP-8211	AP-9003	AP-9459	AP-8080	AP-9684	AP-9685
		Sam	nple Data Group	1193407	1193407	1193407	1193407	1193407	1193407	1195158	1195158	1195158	1195158	1195158	1195158
			Laboratory ID	1193407001	1193407002	1193407005	1193407006	1193407007	1193407008	1195158001	1195158002	1195158003	1195158006	1195158007	1195158008
			Collection Date Matrix	6/24/2019 WG	6/24/2019 WG	6/24/2019 WG	6/24/2019 WG	6/24/2019 WG	6/24/2019 WG	09/01/2019 WG	09/01/2019 WG	09/01/2019 WG	09/01/2019 WG	09/01/2019 WG	09/01/2019 WG
			Sample Type	Primary	Primary/MS/MSD	Field Duplicate of 19FWNR02WG	Primary	Primary	Primary	Primary	Primary	Primary/MS/MSD	Field Duplicate of 19FWNR09WG	Primary	Primary
Analyte	Method	Units	ADEC CUL ¹	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]
	A16404			Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier
Gasoline Range Organics Diesel Range Organics	AK101 AK102	μg/L	2,200 1.500	614 [50]	125 [50] 901 [288]	152 [50]	1550 [50] J+ 1250 [288]	2350 [50] J+	ND [50] 311 [288] J	1060 [50] 3860 [283]	162 [50] 683 [288] B	73.6 [50] J 445 [278] J,B	108 [50] J 375 [283] J.B	250 [50] 429 [283] J,B	ND [50] 281 [183] J,B
Diesei Range Organics	AK 102	μg/L	1,500	447 [288] J	901 [200]	860 [288]	1250 [200]	4920 [294]	311 [200] J	3000 [203]	003 [200] B	445 [276] J,D	373 [203] J,B	429 [203] J,D	201 [103] J,D
Sulfate	E300.0	μg/L	NE	76900 [500]	23600 [500]	26300 [500]	89000 [500]	152000 [1000]	32800 [500]	80700 [1000]	63300 [1000]	28000 [200]	28100 [200]	88800 [1000]	20100 [200]
Iron	SW6020A	μg/L	NE	14800 [250]	7580 [250]	7620 [250]	16300 [250]	7980 [250]	ND [250]	3210 [125]	2450 [125]	3990 [125]	3760 [125]	9730 [125]	ND [125]
Manganese	SW6020A	μg/L	430	2860 [5]	3450 [5]	3570 [5]	5580 [5]	5860 [5]	343 [1]	4180 [0.500]	1650 [0.500]	2820 [0.500]	2500 [0.500]	2270 [0.500]	581 [0.500]
1,1,1,2-Tetrachloroethane	SW8260C	μg/L	5.7	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]
1,1,1-Trichloroethane	SW8260C	μg/L	8,000	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1,1,2,2-Tetrachloroethane	SW8260C	μg/L	0.76	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]
1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260C	μg/L	10,000	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]
1,1,2-Trichloroethane	SW8260C	μg/L	0.41	ND [0.2]	ND [0.2]	ND [0.2]	ND [0.2]	ND [0.2]	ND [0.2]	ND [0.200]	ND [0.200]	ND [0.200]	ND [0.200]	ND [0.200]	ND [0.200]
1,1-Dichloroethane	SW8260C	μg/L	28	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1,1-Dichloroethene	SW8260C	μg/L	280	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1,1-Dichloropropene	SW8260C	μg/L	NE	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1,2,3-Trichlorobenzene	SW8260C SW8260C	μg/L	NE 0.0075	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.500] ND [0.500]	ND [0.500] ND [0.500]	ND [0.500] ND [0.500]	ND [0.500] ND [0.500]	ND [0.500] ND [0.500]	ND [0.500] ND [0.500]
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	SW8260C SW8260C	μg/L μg/L	4.0	ND [0.5]	ND [0.5] ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5] ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1,2,4-Trimethylbenzene	SW8260C	μg/L μg/L	56	60.3 [0.5]	7.14 [0.5]	9.04 [0.5]	29.7 [0.5]	780 [5]	ND [0.5]	482 [0.500] J	2.16 [0.500]	1.73 [0.500]	1.88 [0.500]	21.4 [0.500]	ND [0.500]
1,2-Dibromo-3-chloropropane	SW8260C	μg/L μg/L	NE	ND [5]	7.14 [0.5] ND [5]	9.04 [0.3] ND [5]	ND [5]	ND [5]	ND [5]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]
1,2-Dibromoethane	SW8260C	μg/L	0.075	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]
1.2-Dichlorobenzene	SW8260C	μg/L	300	ND [0.51	ND [0.51	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1.2-Dichloroethane	SW8260C	μg/L	1.7	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]
1,2-Dichloropropane	SW8260C	μg/L	8.2	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1,3,5-Trimethylbenzene	SW8260C	µg/L	60	22.4 [0.5]	2.99 [0.5] J	4.39 [0.5] J	5.38 [0.5]	225 [5]	ND [0.5]	152 [0.500]	0.41 [0.500] J	2.68 [0.500]	2.57 [0.500]	7.33 [0.500]	ND [0.500]
1,3-Dichlorobenzene	SW8260C	µg/L	300	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
1,3-Dichloropropane	SW8260C	μg/L	4.7	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]
1,4-Dichlorobenzene	SW8260C	μg/L	4.8	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]
2,2-Dichloropropane	SW8260C	μg/L	NE	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
2-Butanone	SW8260C	μg/L	5,600	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5.00]	11.2 [5.00]	ND [5.00] J	11.5 [5.00] J	ND [5.00]	ND [5.00]
2-Chlorotoluene	SW8260C	μg/L	NE	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
2-Hexanone	SW8260C	μg/L	38	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]
4-Chlorotoluene	SW8260C	μg/L	NE	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
4-Isopropyltoluene	SW8260C	μg/L	NE	1.96 [0.5]	ND [0.5]	0.313 [0.5] J	5.26 [0.5]	25.7 [0.5]	ND [0.5]	16 [0.500]	1.01 [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
4-Methyl-2-pentanone	SW8260C	μg/L	6,300	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]
Benzene	SW8260C	μg/L	4.6	ND [0.2]	2.63 [0.2]	3.08 [0.2]	1.83 [0.2]	0.477 [0.2]	ND [0.2]	0.26 [0.200] J	0.47 [0.200]	0.86 [0.200]	0.82 [0.200]	ND [0.200]	ND [0.200]
Bromobenzene	SW8260C	μg/L	62	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Bromochloromethane	SW8260C	μg/L	NE	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Bromodichloromethane	SW8260C	μg/L	1.3	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250] ND [0.500]	ND [0.250]	ND [0.250] ND [0.500]	ND [0.250]	ND [0.250]	ND [0.250] ND [0.500]
Bromoform Bromomethane	SW8260C SW8260C	μg/L μg/L	33 7.5	ND [0.5] ND [2.5]	ND [0.5] ND [2.5]	ND [0.5] ND [2.5]	ND [0.5] ND [2.5]	ND [0.5] ND [2.5]	ND [0.5] ND [2.5]	ND [0.500] ND [2.50]	ND [0.500] ND [2.50]	ND [0.500] ND [2.50]	ND [0.500] ND [2.50]	ND [0.500] ND [2.50]	ND [0.500] ND [2.50]
Carbon disulfide	SW8260C	μg/L μg/L	810	ND [2.5] ND [5]	ND [2.5] ND [5]	ND [2.5]	ND [2.5] ND [5]	ND [2.5] ND [5]	ND [2.5]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]
Carbon distillide Carbon tetrachloride	SW8260C	μg/L μg/L	4.6	ND [0.5]	ND [0.5]	ND [0.5]	ND [0]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Chlorobenzene	SW8260C	μg/L μg/L	78	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.350]	ND [0.250]	ND [0.250]	ND [0.250]
Chloroethane	SW8260C	μg/L	21,000	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Chloroform	SW8260C	μg/L	2.2	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Chloromethane	SW8260C	μg/L	190	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	0.4 [0.500] J	0.52 [0.500] J	ND [0.500]	0.35 [0.500] J	ND [0.500]	ND [0.500]
cis-1,2-Dichloroethene	SW8260C	μg/L	36	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	0.71 [0.500] J
cis-1,3-Dichloropropene	SW8260C	μg/L	4.7	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]
Dibromochloromethane	SW8260C	μg/L	8.7	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]	ND [0.250]
Dibromomethane	SW8260C	μg/L	8.3	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Dichlorodifluoromethane	SW8260C	μg/L	200	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Ethylbenzene	SW8260C	μg/L	15	ND [0.5]	3.1 [0.5]	3.99 [0.5]	173 [0.5]	30.3 [0.5]	ND [0.5]	17.6 [0.500]	12.1 [0.500]	0.36 [0.500] J,B	0.36 [0.500] J,B	ND [0.500]	ND [0.500]
Hexachlorobutadiene	SW8260C	μg/L	1.4	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Isopropylbenzene	SW8260C	μg/L	450	1.05 [0.5]	0.338 [0.5] J	0.395 [0.5] J	21.3 [0.5]	14.4 [0.5]	ND [0.5]	8.09 [0.500]	3.28 [0.500]	ND [0.500]	ND [0.500]	0.52 [0.500] J	ND [0.500]
Methylene chloride	SW8260C	μg/L	110	ND [2.5]	ND [2.5]	ND [2.5]	ND [2.5]	ND [2.5]	ND [2.5]	ND [2.50]	ND [2.50]	ND [2.50]	ND [2.50]	ND [2.50]	ND [2.50]
Methyl-tert-butyl ether (MTBE)	SW8260C	μg/L	140	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]
Naphthalene	SW8260C	μg/L	1.7	0.45 [0.5] J	1.68 [0.5]	1.86 [0.5]	25.5 [0.5]	201 [5]	ND [0.5]	150 [0.500]	4.63 [0.500]	0.72 [0.500] J,J+	1.74 [0.500] J,J+	ND [0.500]	0.84 [0.500] J,J-
n-Butylbenzene	SW8260C	μg/L	1,000	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]

Table A-3. 2019 Groundwater Sample Results Neely Road Fort Wainwright, Alaska

			Sample ID	19FWNR01WG	19FWNR02WG	19FWNR03WG	19FWNR04WG	19FWNR05WG	19FWNR06WG	19FWNR07WG	19FWNR08WG	19FWNR09WG	19FWNR10WG	19FWNR11WG	19FWNR12WG
			Location ID	AP-9684	AP-9459	AP-8080	AP-9003	AP-8211	AP-9685	AP-8211	AP-9003	AP-9459	AP-8080	AP-9684	AP-9685
		San	nple Data Group	1193407	1193407	1193407	1193407	1193407	1193407	1195158	1195158	1195158	1195158	1195158	1195158
			Laboratory ID	1193407001	1193407002	1193407005	1193407006	1193407007	1193407008	1195158001	1195158002	1195158003	1195158006	1195158007	1195158008
			Collection Date	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019	09/01/2019	09/01/2019	09/01/2019	09/01/2019	09/01/2019	09/01/2019
			Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
			Sample Type	Primary	Primary/MS/MSD	Field Duplicate of 19FWNR02WG	Primary	Primary	Primary	Primary	Primary	Primary/MS/MSD	Field Duplicate of 19FWNR09WG	Primary	Primary
Analyte	Method	Units	4DE0 0111 1	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]
Allalyte	Wethou	Ullits	ADEC CUL ¹	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier
n-Propylbenzene	SW8260C	μg/L	660	6.01 [0.5]	ND [0.5]	0.394 [0.5] J	22.6 [0.5]	26.4 [0.5]	ND [0.5]	16.7 [0.500]	1.95 [0.500]	ND [0.500]	ND [0.500]	2.78 [0.500]	ND [0.500]
o-Xylene	SW8260C	μg/L	190	ND [0.5]	ND [0.5]	ND [0.5]	6.84 [0.5]	11 [0.5]	ND [0.5]	10.5 [0.500] B	0.63 [0.500] J,B	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
sec-Butylbenzene	SW8260C	μg/L	2,000	0.562 [0.5] J	ND [0.5]	ND [0.5]	5.22 [0.5]	4.99 [0.5]	ND [0.5]	2.9 [0.500]	1.25 [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Styrene	SW8260C	μg/L	1,200	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
tert-Butylbenzene	SW8260C	μg/L	690	ND [0.5]	ND [0.5]	ND [0.5]	9.99 [0.5]	9.58 [0.5]	ND [0.5]	6.18 [0.500]	2.02 [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Tetrachloroethene (PCE)	SW8260C	μg/L	41	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	1.24 [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	10.7 [0.500]
Toluene	SW8260C	μg/L	1,100	0.359 [0.5] J	0.419 [0.5] J	0.486 [0.5] J	8.73 [0.5]	2.91 [0.5]	ND [0.5]	1.86 [0.500] B	1.03 [0.500] B	ND [0.500]	ND [0.500]	0.31 [0.500] J,B	ND [0.500]
trans-1,2-Dichloroethene	SW8260C	μg/L	360	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	0.94 [0.500] J
trans-1,3-Dichloropropene	SW8260C	μg/L	4.7	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]
Trichloroethene (TCE)	SW8260C	μg/L	2.8	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	1.21 [0.500]
Trichlorofluoromethane	SW8260C	μg/L	5,200	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]	0.58 [0.500] J	0.49 [0.500] J	ND [0.500]	0.34 [0.500] J
Vinyl chloride	SW8260C	μg/L	0.19	ND [0.075]	ND [0.075]	ND [0.075]	ND [0.075]	ND [0.075]	ND [0.075]	ND [0.0750]	ND [0.0750]	ND [0.0750]	ND [0.0750]	ND [0.0750]	ND [0.0750]
Xylene, Isomers m & p	SW8260C	μg/L	190	ND [1]	2.81 [1]	3.59 [1]	59.1 [1]	191 [1]	ND [1]	115 [1.00]	2.89 [1.00] B	ND [1.00]	ND [1.00]	ND [1.00]	ND [1.00]
Xylenes	SW8260C	μg/L	190	ND [1.5]	2.81 [1.5] J	3.59 [1.5]	66 [1.5]	202 [1.5]	ND [1.5]	126 [1.50]	3.52 [1.50] B	ND [1.50]	ND [1.50]	ND [1.50]	ND [1.50]

Results in green and bold font exceed ADEC CULs
Grey shaded results are non-detect with LODs above ADEC CULs

¹ ADEC CULs are Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27, 2018).

Data Qualifiers:

B - result may be due to cross-contamination

J - result qualified as estimate because it is less than the LOQ or due to a QC failure

ND - not detected [LOD presented in brackets]

Acronyms:
CUL - cleanup level
LOD - limit of detection

LOQ - limit of quantitation

MS/MSD - matrix spike/matrix spike duplicate

μg/L - micrograms per liter

NE - not established

QC - quality control

WG - groundwater WQ - water QC sample

Table A-3. 2019 Groundwater Sample Results Neely Road Fort Wainwright, Alaska

			Sample ID	19FW2PEB02WQ	19FW2PEB03WQ	19FW2PTB02WQ	19FW2PEB04WQ	19FW2PTB03WQ
			Location ID	Rinsate 2	Rinsate 3	Trip Blank	Rinsate 4	Trip Blank
		Sam	ole Data Group	1193407	1193407	1193407	1195158	1195158 1195158010
			Laboratory ID Collection Date	1193407024 6/24/2019	1193407025 6/24/2019	1193407026 6/21/2019	1195158009 09/01/2019	09/01/2019
		'	Matrix	WQ	WQ	WQ	WG	WG
			Sample Type	Equipment Blank	Equipment Blank	Trip Blank	Equipment Blank	Trip Blank
Analyte	Method	Units	ADEC CUL ¹	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier
Gasoline Range Organics	AK101	μg/L	2,200	-	ND [50]	ND [50]	ND [50]	ND [50]
Diesel Range Organics	AK102	μg/L	1,500	ND [283]	-	-	141 [150] J,B	-
Sulfate	E300.0	μg/L	NE	_	ND [100]	_	ND [100]	_
Iron	SW6020A	μg/L	NE NE		ND [250]	-	ND [125]	_
Manganese	SW6020A	μg/L	430	-	0.799 [1] J	-	ND [0.500]	-
					1			ND 10 0501
1,1,1,2-Tetrachloroethane	SW8260C	μg/L	5.7	-	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]
1,1,1-Trichloroethane	SW8260C	μg/L	8,000	-	ND [0.5]	ND [0.5]	ND [0.500] ND [0.250]	ND [0.500] ND [0.250]
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260C SW8260C	μg/L	0.76 10,000	-	ND [0.25] ND [5]	ND [0.25] ND [5]	ND [5.00]	ND [5.00]
1.1.2-Trichloroethane	SW8260C	μg/L μg/L	0.41	-	ND [0.2]	ND [0.2]	ND [0.200]	ND [0.200]
1,1-Dichloroethane	SW8260C	μg/L μg/L	28	-	ND [0.2] ND [0.5]	ND [0.2] ND [0.5]	ND [0.500]	ND [0.500]
1,1-Dichloroethene	SW8260C	μg/L	280	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
1,1-Dichloropropene	SW8260C	μg/L	NE	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
1,2,3-Trichlorobenzene	SW8260C	μg/L	NE	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
1,2,3-Trichloropropane	SW8260C	μg/L	0.0075	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
1,2,4-Trichlorobenzene	SW8260C	μg/L	4.0	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
1,2,4-Trimethylbenzene	SW8260C	μg/L	56	•	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
1,2-Dibromo-3-chloropropane	SW8260C	μg/L	NE	-	ND [5]	ND [5]	ND [5.00]	ND [5.00]
1,2-Dibromoethane	SW8260C	μg/L	0.075	-	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]
1,2-Dichlorobenzene	SW8260C	μg/L	300	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
1,2-Dichloroethane	SW8260C	μg/L	1.7	-	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]
1,2-Dichloropropane	SW8260C	μg/L	8.2	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500] ND [0.500]
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	SW8260C SW8260C	μg/L	60 300	-	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.500] ND [0.500]	ND [0.500] ND [0.500]
1,3-Dichloropropane	SW8260C	μg/L μg/L	4.7	-	ND [0.3]	ND [0.5]	ND [0.250]	ND [0.250]
1,4-Dichlorobenzene	SW8260C	μg/L	4.8		ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]
2,2-Dichloropropane	SW8260C	μg/L	NE	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
2-Butanone	SW8260C	μg/L	5,600	-	ND [5]	ND [5]	ND [5.00]	ND [5.00]
2-Chlorotoluene	SW8260C	μg/L	NE	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
2-Hexanone	SW8260C	μg/L	38	-	ND [5]	ND [5]	ND [5.00]	ND [5.00]
4-Chlorotoluene	SW8260C	μg/L	NE	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
4-Isopropyltoluene	SW8260C	μg/L	NE	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
4-Methyl-2-pentanone	SW8260C	μg/L	6,300	-	ND [5]	ND [5]	3.85 [5.00] J	ND [5.00]
Benzene	SW8260C	μg/L	4.6	-	ND [0.2]	ND [0.2]	ND [0.200]	ND [0.200]
Bromobenzene	SW8260C	μg/L	62 NE	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Bromochloromethane	SW8260C	μg/L	NE 1.2	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500] ND [0.250]
Bromodichloromethane Bromoform	SW8260C SW8260C	μg/L ug/l	1.3 33	-	0.387 [0.25] J ND [0.5]	ND [0.25] ND [0.5]	ND [0.250] ND [0.500]	ND [0.250] ND [0.500]
Bromomethane	SW8260C	μg/L μg/L	7.5	-	ND [0.5] ND [2.5]	ND [0.5] ND [2.5]	ND [2.50]	ND [2.50]
Carbon disulfide	SW8260C	μg/L μg/L	810	-	ND [2.5]	ND [2.5]	ND [5.00]	ND [5.00]
Carbon tetrachloride	SW8260C	μg/L	4.6	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Chlorobenzene	SW8260C	μg/L	78	-	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]
Chloroethane	SW8260C	μg/L	21,000	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Chloroform	SW8260C	μg/L	2.2	-	0.534 [0.5] J	ND [0.5]	ND [0.500]	ND [0.500]
Chloromethane	SW8260C	μg/L	190	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
cis-1,2-Dichloroethene	SW8260C	μg/L	36	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
cis-1,3-Dichloropropene	SW8260C	μg/L	4.7	-	ND [0.25]	ND [0.25]	ND [0.250]	ND [0.250]
Dibromochloromethane	SW8260C	μg/L	8.7	-	0.209 [0.25] J	ND [0.25]	ND [0.250]	ND [0.250]
Dibromomethane	SW8260C	μg/L	8.3	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Dichlorodifluoromethane Ethylhonzone	SW8260C	μg/L	200	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Ethylbenzene Hexachlorobutadiene	SW8260C SW8260C	μg/L	15 1.4	-	ND [0.5]	ND [0.5]	0.68 [0.500] J	ND [0.500]
Isopropylbenzene	SW8260C SW8260C	μg/L μg/L	1.4 450	-	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.500] ND [0.500]	ND [0.500] ND [0.500]
Methylene chloride	SW8260C	μg/L μg/L	110	-	ND [0.5] ND [2.5]	ND [0.5]	ND [2.50]	ND [0.500]
Methyl-tert-butyl ether (MTBE)	SW8260C	μg/L μg/L	140	-	ND [5]	ND [5]	ND [5.00]	ND [5.00]
Naphthalene	SW8260C	μg/L	1.7	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
n-Butylbenzene	SW8260C		1,000	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
n-Butylbenzene	SW8260C	μg/L	1,000	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]

Table A-3. 2019 Groundwater Sample Results Neely Road Fort Wainwright, Alaska

			Sample ID	19FW2PEB02WQ	19FW2PEB03WQ	19FW2PTB02WQ	19FW2PEB04WQ	19FW2PTB03WQ
			Location ID	Rinsate 2	Rinsate 3	Trip Blank	Rinsate 4	Trip Blank
		Sam	ple Data Group	1193407	1193407	1193407	1195158	1195158
			Laboratory ID	1193407024	1193407025	1193407026	1195158009	1195158010
			Collection Date	6/24/2019	6/24/2019	6/21/2019	09/01/2019	09/01/2019
			Matrix	WQ	WQ	WQ	WG	WG
			Sample Type	Equipment Blank	Equipment Blank	Trip Blank	Equipment Blank	Trip Blank
Analysis	Method	Unito	ADEO 0111 1	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]
Analyte	Wethod	Units	ADEC CUL ¹	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier
n-Propylbenzene	SW8260C	μg/L	660	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
o-Xylene	SW8260C	μg/L	190	-	ND [0.5]	ND [0.5]	2.2 [0.500]	ND [0.500]
sec-Butylbenzene	SW8260C	μg/L	2,000	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Styrene	SW8260C	μg/L	1,200	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
tert-Butylbenzene	SW8260C	μg/L	690	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Tetrachloroethene (PCE)	SW8260C	μg/L	41	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Toluene	SW8260C	μg/L	1,100	-	ND [0.5]	ND [0.5]	0.69 [0.500] J	ND [0.500]
trans-1,2-Dichloroethene	SW8260C	μg/L	360	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
trans-1,3-Dichloropropene	SW8260C	μg/L	4.7	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Trichloroethene (TCE)	SW8260C	μg/L	2.8	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Trichlorofluoromethane	SW8260C	μg/L	5,200	-	ND [0.5]	ND [0.5]	ND [0.500]	ND [0.500]
Vinyl chloride	SW8260C	μg/L	0.19	-	ND [0.075]	ND [0.075]	ND [0.0750]	ND [0.0750]
Xylene, Isomers m & p	SW8260C	μg/L	190	-	ND [1]	ND [1]	3.05 [1.00]	ND [1.00]
Xylenes	SW8260C	μg/L	190	=	ND [1.5]	ND [1.5]	5.25 [1.50]	ND [1.50]

Results in green and bold font exceed ADEC CULs
Grey shaded results are non-detect with LODs above ADEC CULs

¹ ADEC CULs are Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27, 2018).

Data Qualifiers:

B - result may be due to cross-contamination

J - result qualified as estimate because it is less than the LOQ or due to a QC failure

ND - not detected [LOD presented in brackets]

Acronyms: CUL - cleanup level

LOD - limit of detection

LOQ - limit of quantitation

MS/MSD - matrix spike/matrix spike duplicate

μg/L - micrograms per liter

NE - not established QC - quality control

WG - groundwater

WQ - water QC sample

Table A-4. 2019 Groundwater Sample Results Former Building 1168 Fort Wainwright, Alaska

			Sample ID	19FW6801WG	19FW6802WG	19FW6803WG	19FW6804WG	19FW2PEB01WQ	19FW2PTB01WQ
			Location ID	AP-5751	AP-6809	AP-10037MW	AP-6060	Rinsate 1	Trip Blank
		Samp	le Data Group	1193255	1193255	1193255	1193255	1193255	1193255
			Laboratory ID Collection Date	1193255019 6/19/2019	1193255020 6/19/2019	1193255021 6/20/2019	1193255024 6/20/2019	1193255012 6/20/2019	1193255026 6/19/2019
			Matrix	WG	WG	WG	WG	WQ	WQ
			Sample Type	Primary	Primary	Primary/MS/MSD	Field Duplicate of	Equipment Blank	Trip Blank
Analyte	Method	Units	ADEC CUL ¹	Result [LOD]	Result [LOD]	Result [LOD]	19FW6803WG Result [LOD]	Result [LOD]	Result [LOD]
Diesel Range Organics	AK102	μg/L	1,500	Qualifier 916 [288]	Qualifier 399 [283] J	Qualifier 693 [283]	Qualifier 630 [294]	Qualifier ND [350]	Qualifier
		Ľ	, , , , , , , , , , , , , , , , , , ,			• •	• 1	1 1	-
Iron Sulfate	SW6020A E300.0	µg/L	NE NE	216 [250] J 30100 [500]	802 [250] 76500 [500]	23100 [250] 13100 [500]	23600 [250] 12800 [500]	ND [250] ND [100]	=
		μg/L					-	• •	-
1,1,1,2-Tetrachloroethane	SW8260C	μg/L	5.7	ND [0.25]	ND [0.250]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	SW8260C SW8260C	μg/L μg/L	8,000 0.76	ND [0.5] ND [0.25]	ND [0.500] ND [0.250]	ND [0.5] ND [0.25]	ND [0.5] ND [0.25]	ND [0.5] ND [0.25]	ND [0.5] ND [0.25]
1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260C	μg/L μg/L	10,000	ND [5]	ND [5.00]	ND [5]	ND [5]	ND [5]	ND [5]
1,1,2-Trichloroethane	SW8260C	μg/L	0.41	ND [0.2]	ND [0.200]	ND [0.2]	ND [0.2]	ND [0.2]	ND [0.2]
1,1-Dichloroethane	SW8260C	μg/L	28	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
1,1-Dichloroethene	SW8260C	μg/L	280	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
1,1-Dichloropropene	SW8260C	μg/L	NE	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	SW8260C SW8260C	μg/L μg/L	NE 0.0075	ND [0.5] ND [0.5]	ND [0.500] ND [0.500]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]
1,2,4-Trichlorobenzene	SW8260C SW8260C	μg/L μg/L	4.0	ND [0.5] ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5] ND [0.5]
1,2,4-Trimethylbenzene	SW8260C	μg/L	56	0.99 [0.5] J	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
1,2-Dibromo-3-chloropropane	SW8260C	μg/L	NE	ND [5]	ND [5.00]	ND [5]	ND [5]	ND [5]	ND [5]
1,2-Dibromoethane	SW8260C	μg/L	0.075	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]	ND [0.0375]
1,2-Dichlorobenzene	SW8260C	μg/L	300	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
1,2-Dichloroethane 1,2-Dichloropropane	SW8260C SW8260C	μg/L	1.7 8.2	ND [0.25] ND [0.5]	ND [0.250] ND [0.500]	ND [0.25] ND [0.5]	ND [0.25] ND [0.5]	ND [0.25] ND [0.5]	ND [0.25] ND [0.5]
1,3,5-Trimethylbenzene	SW8260C SW8260C	μg/L μg/L	60	0.49 [0.5] J	ND [0.500]	ND [0.5] ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5] ND [0.5]
1,3-Dichlorobenzene	SW8260C	µg/L	300	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
1,3-Dichloropropane	SW8260C	μg/L	4.7	ND [0.25]	ND [0.250]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]
1,4-Dichlorobenzene	SW8260C	μg/L	4.8	ND [0.25]	ND [0.250]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]
2,2-Dichloropropane	SW8260C	μg/L	NE .	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
2-Butanone 2-Chlorotoluene	SW8260C SW8260C	μg/L	5,600 NE	ND [5]	ND [5.00] ND [0.500]	ND [5] ND [0.5]	ND [5] ND [0.5]	ND [5] ND [0.5]	ND [5] ND [0.5]
2-Hexanone	SW8260C	μg/L μg/L	38	ND [0.5] ND [5]	ND [5.00]	ND [0.5]	ND [0.5]	ND [5]	ND [5]
4-Chlorotoluene	SW8260C	µg/L	NE NE	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
4-Isopropyltoluene	SW8260C	μg/L	NE	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
4-Methyl-2-pentanone	SW8260C	μg/L	6,300	ND [5]	ND [5.00]	ND [5]	ND [5]	ND [5]	ND [5]
Benzene	SW8260C	μg/L	4.6	ND [0.2]	ND [0.200]	0.45 [0.2]	0.47 [0.2]	ND [0.2]	ND [0.2]
Bromobenzene Bromochloromethane	SW8260C SW8260C	μg/L μg/L	62 NE	ND [0.5] ND [0.5]	ND [0.500] ND [0.500]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]
Bromodichloromethane	SW8260C	μg/L μα/L	1.3	ND [0.25]	ND [0.250]	ND [0.25]	ND [0.3]	0.39 [0.25] J	ND [0.25]
Bromoform	SW8260C	μg/L	33	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Bromomethane	SW8260C	μg/L	7.5	ND [2.5]	ND [2.50]	ND [2.5]	ND [2.5]	ND [2.5]	ND [2.5]
Carbon disulfide	SW8260C	μg/L	810	ND [5]	ND [5.00]	ND [5]	ND [5]	ND [5]	ND [5]
Carbon tetrachloride	SW8260C	μg/L	4.6 78	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Chlorobenzene Chloroethane	SW8260C SW8260C	μg/L μg/L	21,000	ND [0.25] ND [0.5]	ND [0.250] ND [0.500]	ND [0.25] ND [0.5]	ND [0.25] ND [0.5]	ND [0.25] ND [0.5]	ND [0.25] ND [0.5]
Chloroform	SW8260C	µg/L	2.2	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	0.56 [0.5] J	ND [0.5]
Chloromethane	SW8260C	μg/L	190	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
cis-1,2-Dichloroethene	SW8260C	μg/L	36	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
cis-1,3-Dichloropropene	SW8260C	μg/L	4.7	ND [0.25] ND [0.25]	ND [0.250]	ND [0.25]	ND [0.25] ND [0.25]	ND [0.25] 0.22 [0.25] J	ND [0.25]
Dibromochloromethane Dibromomethane	SW8260C SW8260C	μg/L μg/L	8.7 8.3	ND [0.25] ND [0.5]	ND [0.250] ND [0.500]	ND [0.25] ND [0.5]	ND [0.25] ND [0.5]	0.22 [0.25] J ND [0.5]	ND [0.25] ND [0.5]
Dichlorodifluoromethane	SW8260C	μg/L	200	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Ethylbenzene	SW8260C	μg/L	15	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Hexachlorobutadiene	SW8260C	μg/L	1.4	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Isopropylbenzene	SW8260C	μg/L	450	ND [0.5]	ND [0.500]	3.72 [0.5]	4.19 [0.5]	ND [0.5]	ND [0.5]
Methylene chloride Methyl-tert-butyl ether (MTBE)	SW8260C SW8260C	μg/L μg/L	110 140	ND [2.5] ND [5]	ND [2.50] ND [5.00]	ND [2.5] ND [5]	ND [2.5] ND [5]	ND [2.5] ND [5]	ND [2.5] ND [5]
Naphthalene	SW8260C	μg/L μg/L	1.7	0.53 [0.5] J	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
n-Butylbenzene	SW8260C	μg/L	1,000	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
n-Propylbenzene	SW8260C	μg/L	660	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
o-Xylene	SW8260C	μg/L	190	1.36 [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
sec-Butylbenzene	SW8260C SW8260C	µg/L	2,000 1,200	ND [0.5]	ND [0.500] ND [0.500]	0.79 [0.5] J	0.87 [0.5] J	ND [0.5]	ND [0.5]
Styrene tert-Butylbenzene	SW8260C SW8260C	μg/L μg/L	690	ND [0.5] ND [0.5]	ND [0.500] ND [0.500]	ND [0.5] ND [0.5]	ND [0.5] 0.33 [0.5] J	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]
Tetrachloroethene (PCE)	SW8260C	μg/L	41	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Toluene	SW8260C	μg/L	1,100	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
trans-1,2-Dichloroethene	SW8260C	μg/L	360	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
trans-1,3-Dichloropropene	SW8260C	μg/L	4.7	ND [0.5]	ND [0.500]	ND [0.5]	ND [0.5]	ND [0.5]	ND [0.5]
Trichloroethene (TCE) Trichlorofluoromethane	SW8260C SW8260C	µg/L	2.8 5,200	ND [0.5] 1.35 [0.5]	ND [0.500] ND [0.500]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]	ND [0.5] ND [0.5]
Vinyl acetate	SW8260C SW8260C	μg/L μg/L	5,200 410	1.35 [0.5] ND [5]	ND [0.500] ND [5.00]	ND [0.5]	ND [5]	ND [5]	ND [0.5] ND [5]
Vinyl acetate Vinyl chloride	SW8260C	μg/L	0.19	ND [0.075]	ND [0.0750]	ND [0.075]	ND [0.075]	ND [0.075]	ND [0.075]
Xylene, Isomers m & p	SW8260C	μg/L	190	1.18 [1] J	ND [1.00]	ND [1]	ND [1]	ND [1]	ND [1]
Xylenes	SW8260C	μg/L	190	2.54 [1.5] J	ND [1.50]	ND [1.5]	ND [1.5]	ND [1.5]	ND [1.5]

Results in green and bold font exceed ADEC CULs

Grey shaded results are non-detect with LODs above ADEC CULs

¹ ADEC CULs are Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27,

Data Qualifiers:

B - result may be due to cross-contamination

J - result qualified as estimate because it is less than the LOQ or due to a QC failure

J+ - result qualified as estimate with a high-bias due to a QC failure J- - result qualified as estimate with a low-bias due to a QC failure

ND - not detected [LOD presented in brackets]

Acronyms:
CUL - cleanup level
LOD - limit of detection

LOQ - limit of quantitation

MS/MSD - matrix spike/matrix spike duplicate

μg/L - micrograms per liter NE - not established QC - quality control WG - groundwater WQ - water QC sample

Table A-5. 2019 Groundwater Sample Results Former Building 2250 Fort Wainwright, Alaska

			Sample ID	19FW2201WG	19FW2202WG	19FW2203WG	19FW2204WG	19FW2PEB01WQ
			Location ID	AP-7153	AP-5976	AP-3030	AP-7151	Rinsate 1
		San	nple Data Group	1193255	1193255	1193255	1193255	1193255
			Laboratory ID	1193255013	1193255014	1193255017	1193255018	1193255012
			Collection Date	6/19/2019	6/19/2019	6/19/2019	6/19/2019	6/20/2019
			Matrix	WG	WG	WG	WG	WQ
			Sample Type	Primary	Primary/MS/MSD	Field Duplicate of 19FW2202WG	Primary	Equipment Blank
Amalista	Madhad	Haita	4 D E O O U I	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]
Analyte	Method	Units	ADEC CUL ¹	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier
Diesel Range Organics	AK102	μg/L	1,500	542 [300] J	2980 [294]	3370 [300]	4380 [302]	ND [350]
Iron	SW6020A	μg/L	NE	8530 [250]	15600 [250]	15500 [250]	17700 [250]	ND [250]
Sulfate	NE	19600 [500]	6220 [100]	6470 [500]	18400 [500]	ND [100]		

Results in green and bold font exceed ADEC CULs

Grey shaded results are non-detect with LODs above ADEC CULs

¹ ADEC CULs are Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27, 2018).

- <u>Data Qualifiers:</u>
 B result may be due to cross-contamination
- J result qualified as estimate because it is less than the LOQ or due to a QC failure
- J+ result qualified as estimate with a high-bias due to a QC failure
- J- result qualified as estimate with a low-bias due to a QC failure
- ND not detected [LOD presented in brackets]

Acronyms:

CUL - cleanup level

LOD - limit of detection

LOQ - limit of quantitation

MS/MSD - matrix spike/matrix spike duplicate

μg/L - micrograms per liter

NE - not established

QC - quality control

WG - groundwater

WQ - water QC sample

Table A-6. 2019 Groundwater Sample Results Former Building 3564 Fort Wainwright, Alaska

			Sample ID	19FW6401WG	19FW6402WG	19FW6403WG	19FW6404WG	19FW6405WG	19FW6406WG	19FW6407WG	19FW2PEB02WQ	19FW2PEB03WQ
			Location ID	MW3564-1	AP-7191	AP-7070	AP-7189	AP-7183	AP-7178	AP-6729	Rinsate 2	Rinsate 3
		Samp	le Data Group	1193407	1193407	1193407	1193407	1193407	1193407	1193407	1193407	1193407
	<u>;</u>		Laboratory ID	1193407009	1193407010	1193407013	1193407014	1193407015	1193407016	1193407017	1193407024	1193407025
		(Collection Date	6/21/2019	6/21/2019	6/21/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019
			Matrix	WG	WG	WG	WG	WG	WG	WG	WQ	WQ
			Sample Type	Primary	Primary/MS/MSD	Field Duplicate of 19FW6402WG	Primary	Primary	Primary	Primary	Equipment Blank	Equipment Blank
Analyte	Method	Units	ADEC CUL ¹	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier	Result [LOD] Qualifier
Diesel Range Organics	AK102	μg/L	1,500	ND [288]	3230 [294]	3060 [288]	18500 [283]	ND [283]	29200 [283]	7870 [283]	ND [283]	-
Residual Range Organics	AK103	μg/L	1,100	ND [240]	ND [245]	ND [240]	1140 [236]	ND [236]	5980 [236]	837 [236]	ND [236]	-
Sulfate	E300.0	μg/L	NE	43500 [500]	3760 [500] J	5450 [500] J	342 [100]	65100 [500]	260 [100]	3230 [100]	-	ND [100]
Iron	SW6020A	μg/L	NE	963 [250]	55400 [1250]	56500 [1250]	51200 [1250]	ND [250]	40900 [250]	60400 [1250]	-	ND [250]

Results in green and bold font exceed ADEC CULs

Grey shaded results are non-detect with LODs above ADEC CULs

ADEC CULs are Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27, 2018).

Data Qualifiers:

- B result may be due to cross-contamination
- J result qualified as estimate because it is less than the LOQ or due to a QC failure
- J+ result qualified as estimate with a high-bias due to a QC failure
- J- result qualified as estimate with a low-bias due to a QC failure
- ND not detected [LOD presented in brackets]

Acronyms: CUL - cleanup level

LOD - limit of detection

LOQ - limit of quantitation

MS/MSD - matrix spike/matrix spike duplicate

μg/L - micrograms per liter

NE - not established

QC - quality control

WG - groundwater WQ - water QC sample

Table A-7. 2019 Groundwater Sample Results Former Building 5110 Fort Wainwright, Alaska

			Sample ID	19FW5101WG	19FW5102WG	19FW5103WG	19FW5104WG	19FW2PEB02WQ	19FW2PEB03WQ	19FW2PTB02WQ
			Location ID	AP-5737	AP-9090	AP-5738	AP-5918R	Rinsate 2	Rinsate 3	Trip Blank
		Samp	ole Data Group	1193407	1193407	1193407	1193407	1193407	1193407	1193407
			Laboratory ID	1193407018	1193407021	1193407022	1193407023	1193407024	1193407025	1193407026
		(Collection Date	6/26/2019	6/26/2019	6/26/2019	6/26/2019	6/24/2019	6/24/2019	6/21/2019
			Matrix	WG	WG	WG	WG	WQ	WQ	WQ
	Sample Type				Field Duplicate of 19FW5101WG	Primary	Primary	Equipment Blank	Equipment Blank	Trip Blank
Analyte	Method	Units	ADEO 0111 1	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]	Result [LOD]
Analyte	Wethou	Units	ADEC CUL ¹	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier	Qualifier
Gasoline Range Organics	AK101	μg/L	2,200	1090 [50] J+	1260 [50] J+	6390 [500]	756 [50] J+		ND [50]	ND [50]
Diesel Range Organics	AK102	μg/L	1,500	2030 [283]	1900 [288]	186000 [2830]	25700 [273]	ND [283]	-	-
Sulfate	E300.0	μg/L	NE	388 [100]	418 [100]	452 [100]	11000 [500]	-	ND [100]	•
Iron	SW6020A	μg/L	NE	4880 [250]	5280 [250]	35900 [250]	14900 [250]	•	ND [250]	•
Manganese	SW6020A	μg/L	430	404 [1]	394 [1]	2340 [1]	1630 [1]	-	0.799 [1] J	
Benzene	SW8260C	μg/L	4.6	0.12 [0.2] J	0.13 [0.2] J	7.85 [0.2]	ND [0.2]		ND [0.2]	ND [0.2]
Ethylbenzene	SW8260C	μg/L	15	25.8 [0.5]	30.3 [0.5]	204 [10]	19.6 [0.5]	-	ND [0.5]	ND [0.5]
o-Xylene	SW8260C	μg/L	190	50.7 [0.5]	60.7 [0.5]	745 [10]	30.6 [0.5]	-	ND [0.5]	ND [0.5]
Toluene	SW8260C	μg/L	1,100	ND [0.5]	ND [0.5]	12.7 [0.5]	0.43 [0.5] J	-	ND [0.5]	ND [0.5]
Xylene, Isomers m & p	SW8260C	μg/L	190	165 [1]	194 [1]	1370 [20]	64.3 [1]	-	ND [1]	ND [1]
Xylenes	SW8260C	μg/L	190	216 [1.5]	255 [1.5]	2120 [30]	94.9 [1.5]	-	ND [1.5]	ND [1.5]

Results in green and bold font exceed ADEC CULs

Grey shaded results are non-detect with LODs above ADEC CULs

¹ ADEC CULs are Human Health values listed in ADEC Title 18, Alaska Administrative Code, Section 75.345, Table C (revised as of October 27,

Data Qualifiers:

- B result may be due to cross-contamination
- J result qualified as estimate because it is less than the LOQ or due to a QC failure
- J+ result qualified as estimate with a high-bias due to a QC failure
- J- result qualified as estimate with a low-bias due to a QC failure
- ND not detected [LOD presented in brackets]

Acronyms:

- CUL cleanup level
- LOD limit of detection
- LOQ limit of quantitation
- MS/MSD matrix spike/matrix spike duplicate
- μg/L micrograms per liter
- NE not established
- QC quality control
- WG groundwater
- WQ water QC sample

APPENDIX B

CDQR AND ADEC CHECKLISTS

FINAL CHEMICAL DATA QUALITY REVIEW

Two-Party Sites (2019)

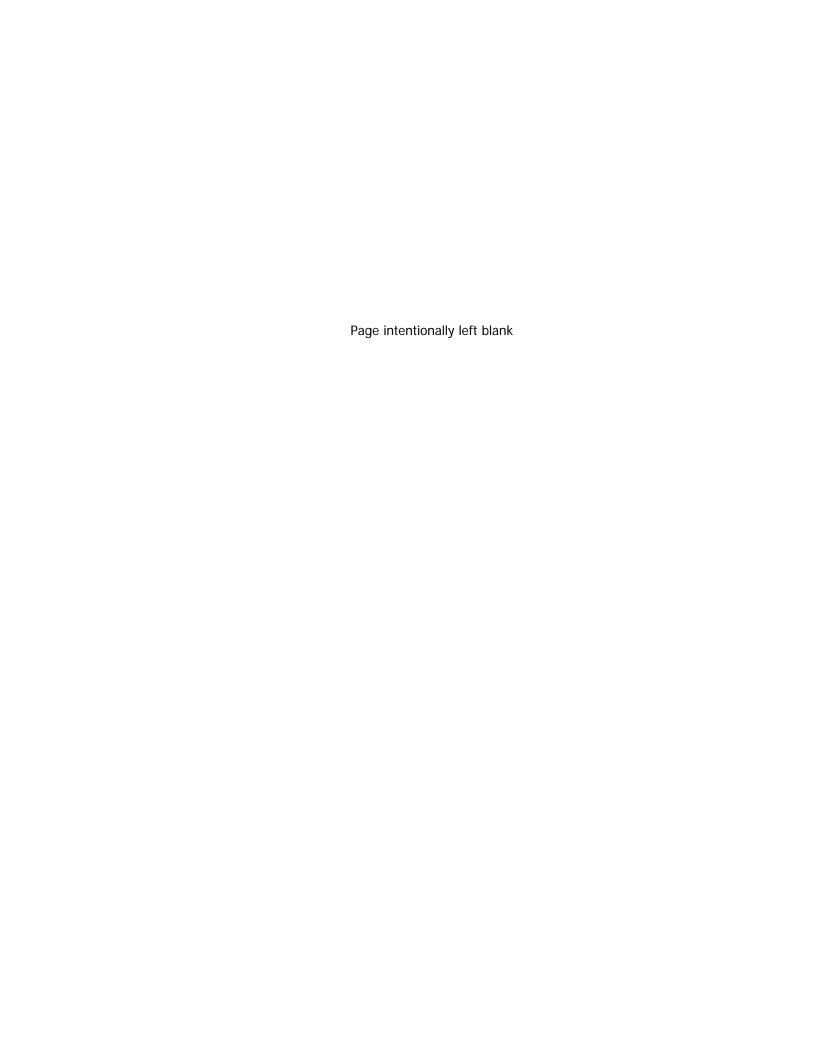
DRMO Yard Neely Road Former Building 1168 Former Building 2250 Former Building 3564 Former Building 5110

NPDL # 19-098

Fort Wainwright, Alaska

Prepared: November 6, 2019

Prepared for and Under Contract to


Army Corps of Engineers - Alaska District

Prepared by

Fairbanks Environmental Services, Inc.

I certify that all data quality review criteria described in Section 1.1 were assessed, and that qualifications were made according to the criteria outlined in the Operable Unit Sites Uniform Federal Policy for Quality Assurance Project Plans.

Vanessa Ritchie Senior Chemist

LIST OF ACRONYMS AND ABBREVIATIONS

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska

B analytical result is qualified as a potential high estimate due to contamination

present in a blank sample

BTEX benzene, toluene, ethylbenzene, and xylenes

°C degrees Celsius

CCV continuing calibration verification
CDQR Chemical Data Quality Review

COC chain-of-custody
CUL cleanup level
DL detection limit

DoD Department of Defense
DQO data quality objective
DRO diesel range organics
EDB 1,2-dibromoethane

ELAP Environmental Laboratory Accreditation Program
EPA United States Environmental Protection Agency

Fe iron

FES Fairbanks Environmental Services, Inc

GRO gasoline range organics
ICV initial calibration verification

J analytical result is qualified as an estimated value because the concentration is less

than the LOQ

J+ analytical result is qualified as an estimated value with a high-bias due to a QC

deviation

J- analytical result is qualified as an estimated value with a low-bias due to a QC

deviation

LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection
LOQ limit of quantitation
µg/L micrograms per liter
mg/L milligrams per liter

Mn manganese

MS matrix spike sample

MSD matrix spike duplicate sample

NA not applicable ND non-detect result

NPDL North Pacific Division Laboratory

PCE tetrachloroethene

Fairbanks Environmental Services Page B-2

LIST OF ACRONYMS AND ABBREVIATIONS - continued

QC quality control

QSM Quality Systems Manual for Environmental Laboratories

R analytical result is rejected and is not suitable for project use

RPD relative percent difference
RRO residual range organics
SDG sample data group
SGS SGS North America, Inc.

UFP-QAPP Uniform Federal Policy for Quality Assurance Project Plans

USACE United States Army Corps of Engineers

VOA volatile organic analysis VOC volatile organic compound

Fairbanks Environmental Services Page B-3

1.0 INTRODUCTION

This Chemical Data Quality Review (CDQR) summarizes the technical review of analytical results generated in support of groundwater sample collection by Fairbanks Environmental Services (FES) at Two-Party sites on Fort Wainwright, Alaska in 2019. The Two-Party sites include DRMO Yard; Neely Road; and Former Buildings 1168, 2250, 3564, and 5110. The groundwater monitoring events are summarized in Section 1.3. Sample summary and analytical results tables are presented in Appendix A.

FES reviewed project and quality control (QC) analytical data to assess whether the data met the designated quality objectives and were acceptable for project use. The project data were reviewed for deviations to the requirements presented in the Final 2019 Two-Party Work Plan (FES, 2019); the Final Postwide Uniform Federal Policy for Quality Assurance Project Plans (UFP-QAPP; FES, 2016); the Alaska Department of Environmental Conservation (ADEC) Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data Technical Memo (ADEC, 2019a); and the Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories (QSM), Version 5.1 (DoD, 2017). The review included evaluation of the following: sample collection and handling, holding times, blanks (to assess contamination), project sample and laboratory QC sample duplicates (to assess precision), laboratory control samples (LCSs) and sample surrogate recoveries (to assess accuracy), and matrix spike sample (MS) recoveries (to assess matrix effects). Calibration curves and continuing calibration verification (CCV) recoveries were not reviewed unless a QC discrepancy was noted by the laboratory in a case narrative. QC deviations that do not impact data quality (e.g., high LCS recovery associated with non-detect results), are not discussed. More elaborate data quality descriptions are reported in the ADEC Laboratory Data Review Checklists, which are included at the end of Appendix B.

Groundwater results and limits of detection (LODs) for non-detect results were compared to ADEC cleanup levels (CULs) presented in Title 18 of the Alaska Administrative Code (AAC) Chapter 75.345, Table C (ADEC, 2018).

Groundwater data quality is discussed in Section 2. Applicable data quality indicators are discussed for each method under separate subheadings. Data which did not meet acceptance criteria have been described and the associated samples and data quality implications or qualifications are summarized. All cited documents within the CDQR are listed in Section 3.

1.1 Analytical Methods and Data Quality Objectives

The analytical methods and associated data quality objectives (DQOs) used for this review were established in the Postwide UFP-QAPP (FES, 2016). The DQOs represent the minimum acceptable QC limits and goals for analytical measurements and are used as comparison criteria during data quality review to determine both the quality and usability of the analytical data. Table B-1 on the following page summarizes the analytical methods employed, and the associated DQO goals for groundwater samples.

Table B-1. Groundwater Analytical Methods and Data Quality Objectives

Parameter	Preparation Method	Analytical Method	Limit of Detection	Precision (RPD, %)	Accuracy (%)	Completeness (%)
Gasoline Range Organics (GRO)	SW5030B	AK101	0.050 mg/L	20	60-120	90
Diesel Range Organics (DRO)	SW3520C	AK102SV	0.300 mg/L	20	75-125	90
Residual Range Organics (RRO)	SW3520C	AK103SV	0.250 mg/L	20	60-120	90
Benzene			0.200 μg/L	20	79-120	90
Toluene			0.500 μg/L	20	80-121	90
Ethylbenzene			0.500 μg/L	20	79-121	90
o-Xylene			0.500 μg/L	20	78-122	90
m,p-Xylene			1.00 µg/L	20	80-121	90
1,2-Dichloroethane	SW5030B	SW8260C	0.250 μg/L	20	73-128	90
1,2,4- Trimethylbenzene (TMB)	300000	3002000	0.500 µg/L	20	79-124	90
1,2-Dibromoethane (EDB)			0.0375 µg/L	20	77-121	90
Tetrachloroethene (PCE)			0.500 μg/L	20	74-129	90
Remaining Volatile Organic Compounds (VOC)			Analyte Specific ^a	20	Analyte Specific ^a	90
Dissolved Iron (Fe) & Manganese (Mn)	SW3010A	SW6020A	250 μg/L (Fe) 1.0 μg/L (Mn)	20	87-118 (Fe) 87-115 (Mn)	90
Sulfate	E300.0	E300.0	100 μg/L	15	90-110	90

¹ The full suite of VOCs was analyzed, but only contaminants of concern at Two-Party sites are shown. Limits for all VOCs are presented in the 2019 Work Plan (FES, 2019) and associated laboratory reports. mg/L – milligram per liter; μg/L – micrograms per liter; RPD – relative percent difference

The six DQO used for this review were accuracy, precision, representativeness, comparability, sensitivity, and completeness.

- Accuracy measures the correctness, or the closeness, between the true value and the quantity detected. It is measured by calculating the percent recovery of known concentrations of spiked compounds that were introduced into the appropriate sample matrix. Surrogate, LCS, and MS sample recoveries were used to measure accuracy for this project. LCS and surrogate recovery criteria are defined in the QSM.
- Precision measures the reproducibility of repetitive measurements. It is measured by calculating the relative percent difference (RPD) between duplicate samples. Laboratory duplicate samples, field duplicate samples, MS and matrix spike duplicate sample (MSD) sample pairs, and LCS and laboratory control sample duplicate (LCSD) pairs were used to measure precision for this project. LCS/LCSD precision criteria are defined in the QSM and field duplicate precision criteria are defined in the ADEC Laboratory Data Review Checklist (water: ≤30%).

Fairbanks Environmental Services Page B-5

- Representativeness describes the degree to which data accurately and precisely represents site characteristics. This is addressed in more detail below.
- *Comparability* describes whether two data sets can be considered equivalent with respect to the project goal. This is addressed in more detail in the following section(s).
- Sensitivity describes the lowest concentration that the analytical method can reliably quantitate, and is evaluated by verifying that the detected results and/or LODs meet the project specific CULs and/or screening levels.
- Completeness describes the amount of valid data obtained from the sampling event(s). It is calculated as the percentage of valid measurements compared to the total number of measurements. The completeness goal for this project was set at 90 percent.

In addition to these criteria for the six DQOs described above, sample collection and handling procedures and blank samples were reviewed to ensure overall data quality. Sample collection forms were reviewed to verify that representative samples were collected and samples were without headspace (if applicable). Sample handling was reviewed to assess parameters such as chain-of-custody (COC) documentation, the use of appropriate sample containers and preservatives, shipment cooler temperature, and method-specified sample holding times. Blank samples were analyzed to detect potential field or laboratory cross-contamination. Each of these parameters contributes to the general representativeness and comparability of the project data. The combination of evaluations of the above-mentioned parameters will lead to a determination of the overall project data completeness.

1.2 Data Qualifiers

Table B-2 below outlines general flagging criteria used for this project, listed in increasing severity, to indicate QC deficiencies. Data were qualified pursuant to findings determined in the review of project data.

Table B-2. Summary of Data Qualifiers

Qualifier	Definition
ND	The analyte was analyzed for, but not detected.
J	The analyte is considered an estimated value. The analyte may be estimated due to its quantitation level (≥ DL and < LOQ), or it may signify that there is a QC deviation and the bias is unknown.
J+	The analyte is considered an estimated value with a high-bias due to a QC deviation.
J-	The analyte is considered an estimated value with a low-bias due to a QC deviation.
В	The analyte is detected in an associated blank. Result is less than 5x or 10x (for the common lab contaminants) the blank concentration. Therefore, the result may be high-biased.
R	Analytical result is rejected because of deficiencies in meeting QC criteria and may not be used for decision making.

DL – detection limit; LOQ – limit of detection

1.3 Summary of Groundwater Samples

A total of 39 groundwater samples (including field duplicates) were collected from monitoring wells at Two-Party site during 2019. The number of samples collected at each site is listed below and also presented in Table A-1 (Sample Summary). Field duplicate samples at each site met the 10 percent frequency requirement of the UFP-QAPP.

- DRMO Yard: 6 primary and 2 field duplicate
- Neely Road: 5 primary and 1 field duplicate (both spring and fall)
- Former Building 1168: 3 primary and 1 field duplicate
- Former Building 2250: 3 primary and 1 field duplicate
- Former Building 3564: 6 primary and 1 field duplicate
- Former Building 5110: 3 primary and 1 field duplicate

Extra volume was collected for MS/MSD samples for every analysis and sample data group (SDG) to assess the potential for matrix interference, at the minimum frequency of 1 per 20 samples. Four equipment blank samples were collected during the sampling events to assess the potential for cross-contamination of the submersible pump. In addition, one trip blank sample accompanied each cooler containing samples for volatile analyses. Samples were analyzed by one or more of the analytical methods presented in Table B-1.

All project and QC samples were analyzed by SGS North America Inc. (SGS) of Anchorage, Alaska. The laboratory is approved by the State of Alaska through the Contaminated Sites Program for applicable methods employed for these projects, with the exception of sulfate by United States Environmental Protection Agency (EPA) Method E300.0 (method E300.0 is not listed as a Contaminated Sites analysis). The laboratory is also certified through the Environmental Laboratory Accreditation Program (ELAP) for all methods employed for these projects.

All groundwater samples were shipped in three SDGs and assigned the SGS report numbers 1193255, 1193407, and 1195158. The sites associated with each report are identified below. A sample summary table (Table A-1) and analytical results tables (Tables A-2 through A-7) are included in Appendix A. Groundwater sample data quality is discussed in Section 2.

- 1193255: DRMO Yard, Former Building 1168, and Former Building 2250
- 1193407: Neely Road (spring), Former Building 3564, and Former Building 5110
- 1195158: Neely Road (fall)

2.0 GROUNDWATER DATA REVIEW QUALITY

This section presents the findings of the data quality review and the resulting data qualifications for groundwater samples. Groundwater samples were analyzed by SGS and are included in three SDGs, as discussed in Section 1.3. See the associated ADEC Laboratory Data Review Checklists for more elaborate data quality descriptions.

2.1 Sample Collection

All monitoring wells were purged and sampled with submersible pumps and four equipment blank samples were collected to evaluate the potential for submersible pump cross-contamination. Equipment blank results are further discussed in Section 2.3. Groundwater sampling activities were recorded on the groundwater sample forms provided in Appendix C. Groundwater sample forms were reviewed to ensure that well drawdown and groundwater parameters met the stabilization criteria identified in the ADEC Field Sampling Guidance (ADEC, 2019b) and the UFP-QAPP (FES, 2016) and that low-flow sampling criteria was employed (Puls and Barcelona, 1996). All samples met stabilization criteria, all samples were collected as presented in the Work Plan (FES, 2019), and all groundwater levels were within the screened intervals at the time of sampling, with the exceptions noted below. Also below is a summary of other notable observations discovered during groundwater sampling activities and/or review of the groundwater sample forms for each site.

DRMO Yard

- Odor was detected on purge water from all wells. Sheen was not observed.
- Well PI-3 was found broken below ground surface (bentonite was observed on the tubing and pump). However, the well casing was not obstructed and a groundwater sample was collected.
- Black staining was observed on dedicated pump tubing in well AP-7346.

Neely Road

- Odor was detected on purge water from all wells with the exception of furthest downgradient well AP-9685. Sheen was not observed on any purge water.
- The well screen for AP-9685 was below the water table during the fall sampling event. Impact to data quality is negligible as free product has not been previously detected in this well.

Former Building 1168

• Neither odor nor sheen was observed on purge water from any well.

Former Building 2250

- Odor was detected on purge water from source area well AP-5976. Sheen was not observed.
- The well screen for upgradient well AP-7153 and downgradient well AP-7151 was below the
 water table during the sampling event. Impact to data quality is negligible as free product has
 not been previously detected in these wells. Source area well AP-5976 was screened across
 the water table.

Fairbanks Environmental Services Page B-8

Former Building 3564

- Odor was detected on purge water from several wells but sheen was not observed.
- Well AP-7187 was found broken below ground surface and could not be sampled. It appears the well overcasing was struck by a vehicle.

Former Building 5110

- Both odor and sheen was observed on purge water from all wells.
- Black hydrocarbon staining was observed on tubing from well AP-5918R.
- The well screen for AP-5918R was 6.5 feet below the water table during the sampling event, and was also below the water table in 2010 (6.5 feet) and 2015 (7.9 feet). Consequently, measurement of potential free product in this well may be compromised.

2.2 Sample Handling

The evaluation of proper sample handling procedures include verification of the following: correct COC documentation, appropriate sample containers and preservatives, cooler temperatures maintained within the ADEC-recommended temperature range (0 to 6 degrees Celsius [°C]), and sample analyses performed within method-specified holding times. No discrepancies were noted upon receipt at the laboratory.

2.3 Blanks

Method blanks, trip blanks, and equipment blanks were utilized to detect potential cross-contamination of project samples. Method blanks detect laboratory cross-contamination, trip blanks assess shipment and storage cross-contamination, and equipment blanks evaluate the potential for cross-contamination associated with wells that were sampled with non-dedicated submersible pumps. The following blank contaminations were noted.

Method Blanks

Method blank samples were analyzed in every batch, as required. Diesel range organics (DRO) was detected in a method blank sample and was also detected in the associated project samples listed below within five times the concentration detected in the method blank sample. Consequently, these DRO results were qualified (B) as potential laboratory cross-contamination. Overall, impact to the project is negligible as all affected data are at least half the concentration of the ADEC CUL. Method blank detections that did not result in data qualification are not discussed here. See the associated ADEC Checklists for further discussion.

 DRO: Neely Road samples 19FWNR08WG through 19FWNR12WG and equipment blank sample 19FW2PEB04WQ (1195158)

Trip Blanks

Trip blank samples were shipped in all coolers containing samples for volatile analyses. Target analytes were not detected any trip blank sample.

Equipment Blanks

All monitoring wells sampled at the Two-Party sites were sampled with submersible pumps and a total of four equipment blank samples were collected during the sampling events to evaluate the potential for submersible pump cross-contamination. Analytes that were detected in the equipment blank samples that resulted in data qualification are discussed below. Equipment blank results are further discussed in the associated ADEC Checklist.

The following analytes were detected in equipment blank samples and were also detected in associated project samples within five times the concentration detected in the equipment blanks. Consequently, these analytical results were qualified (B) as potential submersible pump crosscontamination. Impact to the project was negligible as the affected data were less than the ADEC CUL. Equipment blank detections that did not result in data qualification are not discussed here. See the associated ADEC Checklists for further discussion.

- Ethylbenzene: Neely Road samples 19FWNR09WG and 19FWNR10WG (1195158)
- Toluene: Neely Road samples 19FWNR07WG, 19FWNR08WG, and 19FWNR11WG (1195158)
- o-Xylene: Neely Road samples 19FWNR07WG and 19FWNR08WG (1195158)
- m,p-Xylene: Neely Road sample 19FWNR08WG (1195158)
- Total Xylenes: Neely Road sample 19FWNR08WG (1195158)
- DRO detected in the equipment blank sample may be due to laboratory cross-contamination as indicated by a similar detection in the associated method blank sample (see the Method Blank section above). No additional qualifiers were applied to associated Neely Road samples (1195158).

2.4 Laboratory Control Samples

The LCS/LCSD samples were prepared by adding spike compounds to blank samples in order to assess laboratory extraction and instrumentation performance. The performance of a LCS sample is a requirement for every QC batch to evaluate recovery accuracy. In addition, a LCSD is required for all Alaska fuel methods to evaluate batch precision. All LCS and/or LCSD samples were performed, as required.

The accuracy of analyte recoveries for LCS samples, and precision of the LCS/LCSD sample pair (when applicable), was evaluated. No LCS and/or LCSD accuracy or precision discrepancies resulted in data qualification. See the associated ADEC Laboratory Data Review Checklists for additional information.

2.5 Matrix Spike Samples and Duplicates

MS samples were prepared by adding spike compounds to project samples in order to assess potential matrix interference. The performance of a MS sample analysis is a requirement for every QC batch, at the minimum frequency of 1 for every 20 samples, to evaluate recovery accuracy. In

addition, precision of each QC batch must be evaluated by performing either a MSD sample analysis or a sample duplicate analysis and calculating the RPD. All MS/MSD samples were performed, as required, except for the batches noted below. Adequate volume was submitted for MS/MSD analysis but the laboratory split the samples up into multiple batches. Although matrix interference cannot be evaluated in these batches, batch accuracy and precision was evaluated through LCS/LCSD recoveries.

- GRO: batch VXX34821 (1195158, Neely Road)
- VOC: batches VXX34858 and VXX34892 (1195158, Neely Road)

The accuracy of the analyte recoveries, and the precision of the MS/MSD or laboratory duplicate pairs, was evaluated (when analyzed). The MS/MSD recovery and/or RPD exceedances that resulted in data qualification are summarized below. See the associated ADEC Laboratory Data Review Checklists for discrepancies that did not result in data qualification.

• (1195158) The VOC MSD prepared from Neely Road sample 19FWNR09WG had recoveries of bromomethane (144% vs 141%), naphthalene (134% vs 128%), and 1,2,3-trichlorobenzene (132% vs 129%) above the upper control limit. Of these analytes, only naphthalene was detected in the parent sample. Consequently, the naphthalene results for the parent sample and associated field duplicate sample 19FWNR10WG were qualified (J+) as a potential high estimates. Impact to the project is negligible as the MSD recovery exceedance was not significant (6% high) and the MS recovery was within control limits.

2.6 Surrogates

Surrogate compounds were added to project samples by the laboratory prior to analysis, in accordance with method requirements. Surrogate recoveries were then calculated as percentages and reported by the laboratory as a measure of analytical extraction efficiency. The surrogate recovery discrepancies that resulted in data qualification are summarized below. See the associated ADEC Laboratory Data Review Checklists for potential discrepancies that did not result in data qualification.

• (1193407) GRO surrogate 4-bromofluorobenzene had recovery above the upper control limit (150%) for Former Building 5110 samples 19FW5101WG (188%), 19FW5102WG (206%), and 19FW5104WG (199%); and Neely Road samples 19FWNR04WG (178%) and 19FWNR05WG (152%). Consequently, the detected GRO results for these samples were qualified (J+) as potential high estimates. Four of the five impacted GRO results were less than the ADEC CUL, which is consistent with recent results for these wells. The exception is the GRO result for 19FWNR05WG. This result is potentially high-biased and marginally above the ADEC CUL. Although the result may be high-biased, the recovery exceedance was negligible (2% high) and GRO has historically remained near the CUL in this source area well (AP-8211) since the air sparge treatment system was shut down in 2014. GRO will continue to be monitored in this well.

2.7 Field Duplicates

Eight field duplicate samples were collected and submitted to the laboratory as blind samples during groundwater sampling operations at six Two-Party sites. Field duplicates were collected at a minimum frequency of 10 percent for each analytical method, which meets the requirements of the UFP-QAPP.

Field duplicate results for detected analytes are summarized in Table B-3. In the case where a result was detected in one sample but non-detect in the other, the LOD was used for RPD calculation purposes. The non-detect results are identified with "ND" and the LOD in brackets. In the event that both results are less than the limit of quantitation (LOQ; i.e., J-flagged or non-detect), the RPD was calculated but the comparison criterion is not applicable, per the UFP-QAPP. All (applicable) results for the field duplicate sample pairs were comparable (RPD \leq 30%) except those noted below. Affected results were qualified (J) as estimates due to imprecision in results tables associated with this report. Affected analytes are also identified in grey shading in Table B-3.

- (1193255) DRO (107%) in DRMO Yard samples 19FWDY03WG/19FWDY04WG. Impact to the project is likely negligible as both results were greater than the ADEC CUL, and DRO concentrations are commonly observed near or above the ADEC CUL in this well (AP-5826).
- (1193407) Sulfate (37%) in Former Building 3564 samples 19FW6402WG/19FW6403WG. Impact to the project is negligible as the exceedance was not significant (7% high) and the affected analyte is used to evaluate natural attenuation processes by large (order of magnitude) changes in concentration.
- (1193407) 1,3,5-TMB (38%) in Neely Road samples 19FWNR02WG/19FWNR03WG. Impact to
 the project is negligible as both results were more than an order of magnitude less the ADEC
 CUL, which is consistent for this well (AP-9459) since at least 2013. Moreover, 1,3,5-TMB has
 not exceeded the CUL in this well since 2009.
- (1195158) GRO (38%), 2-butanone (79%), and naphthalene (83%) in Neely Road samples 19FWNR09WG/19FWNR10WG. The affected GRO and 2-butanone data are more than one order of magnitude less than the ADEC CUL. Moreover, GRO has not exceeded the CUL in this well (AP-9459) since 2009. Naphthalene imprecision may be due to matrix interference as suggested by the MSD recovery exceedance. Naphthalene marginally exceeded the ADEC CUL in both the spring and fall 2019 sampling events.

Table B-3. Groundwater Field Duplicate Sample Results Evaluation

Analyte	Method	Units	19FW2202WG ¹ AP-5976 Primary	19FW2203WG ¹ AP-3030 Field Duplicate	RPD, %	Comparison Criteria Met?⁴
Diesel Range Organics	AK102SV	μ g/L	2980 [294]	3370 [300]	12	Yes
Iron	SW6020A	μ g/L	15600 [250]	15500 [250]	1	Yes
Sulfate	E300.0	μ g/L	6220 [100]	6470 [500]	4	Yes

Table B-3 Cont'd. Groundwater Field Duplicate Sample Results Evaluation

Analyte	Method	Units	19FW6803WG ¹ AP-10037MW	19FW6804WG ¹ AP-6060	RPD,	Comparison Criteria Met? ⁴
,			Primary	Field Duplicate	%	Criteria Met?*
Diesel Range Organics	AK102SV	μ g/L	693 [283]	630 294]	10	Yes
Iron	SW6020A	μ g/L	23100 [250]	23600 [250]	2	Yes
Sulfate	E300.0	μ g/L	13100 [500]	12800 [500]	2	Yes
Benzene	SW8260C	μ g/L	0.45 [0.2]	0.47 [0.2]	4	Yes
Isopropylbenzene	SW8260C	μ g/L	3.72 [0.5]	4.19 [0.5]	12	Yes
sec-Butylbenzene	SW8260C	μ g/L	0.79 [0.5] J	0.87 [0.5] J	10	Not Applicable
tert-Butylbenzene	SW8260C	μ g/L	ND [0.5]	0.33 [0.5] J	41	Not Applicable
			19FWDY03WG ¹	19FWDY04WG ¹		
Analyte	Method	Units	AP-5826	AP-4040	RPD, %	Comparison Criteria Met? ⁴
			Primary	Field Duplicate	, ,	
Diesel Range Organics	AK102SV	μ g /L	5630 [283]	1700 [278]	107	No
Iron	SW6020A	μg/L	2620 [250]	2700 [250]	4	Yes
Sulfate	E300.0	μ g /L	10300 [500]	9940 [500]	3	Yes
			19FWDY06WG ¹	19FWDY07WG ¹		
Analyte	Method	Units	AP-7346	AP-5050	RPD, %	Comparison Criteria Met? ⁴
			Primary	Field Duplicate	70	Official met:
1,2-Dichloroethane	SW8260C	μg/L	0.19 [0.25] J	0.18 [0.25] J	5	Not Applicable
cis-1,2-Dichloroethene	SW8260C	μg/L	0.36 [0.5] J	0.34 [0.5] J	6	Not Applicable
Trichloroethene (TCE)	SW8260C	μg/L	0.35 [0.5] J	0.35 [0.5] J	0	Not Applicable
,			19FW5101WG ²	19FW5102WG ²		
Analyte	Method	Units	AP-5737	AP-9090	RPD, %	Comparison Criteria Met? ⁴
			Primary	Field Duplicate	/0	Oriteria Met
Gasoline Range Organics	AK101	μg/L	1090 [50]	1260 [50]	14	Yes
Diesel Range Organics	AK102SV	μg/L	2030 [283]	1900 [288]	7	Yes
Sulfate	E300.0	μ g /L	388 [100]	418 [100]	7	Yes
Iron	SW6020A	μ g/L	4880 [250]	5280 [250]	8	Yes
Manganese	SW6020A	μ g/L	404 [1]	394 [1]	3	Yes
Benzene	SW8260C	μ g/L	0.12 [0.2] J	0.13 [0.2] J	8	Not Applicable
Ethylbenzene	SW8260C	μ g/L	25.8 [0.5]	30.3 [0.5]	16	Yes
o-Xylene	SW8260C	μ g/L	50.7 [0.5]	60.7 [0.5]	18	Yes
Xylene, Isomers m & p	SW8260C	μ g/L	165 [1]	194 [1]	16	Yes
Xylenes	SW8260C	μ g/L	216 [1.5]	255 [1.5]	17	Yes
			19FW6402WG ²	19FW6403WG ²	DDD	Commonless
Analyte	Method	Units	AP-7191	AP-7070	RPD, %	Comparison Criteria Met? ⁴
			Primary	Field Duplicate		
Diesel Range Organics	AK102SV	μg/L	3230 [294]	3060 [288]	5	Yes
Sulfate	E300.0	μ g/L	3760 [500]	5450 [500]	37	No
Iron	SW6020A	μg/L	55400 [1250]	56500 [1250]	2	Yes

Table B-3 Cont'd. Groundwater Field Duplicate Sample Results Evaluation

Analyte	Analyte Method Units AP-		19FWNR02WG ² AP-9459 Primary	19FWNR03WG ² AP-8080 Field Duplicate	RPD, %	Comparison Criteria Met? ⁴
Gasoline Range Organics	AK101SV	μ g/L	125 [50]	152 [50]	19	Yes
Diesel Range Organics	AK102SV	μg/L	901 [288]	860 [288]	5	Yes
Sulfate	E300.0	μg/L	23600 [500]	26300 [500]	11	Yes
Iron	SW6020A	μg/L	7580 [250]	7620 [250]	1	Yes
Manganese	SW6020A	μg/L	3450 [5]	3570 [5]	3	Yes
1,2,4-Trimethylbenzene	SW8260C	μg/L	7.14 [0.5]	9.04 [0.5]	23	Yes
1,3,5-Trimethylbenzene	SW8260C	μg/L	2.99 [0.5]	4.39 [0.5]	38	No
4-Isopropyltoluene	SW8260C	μg/L	ND [0.5]	0.313 [0.5] J	46	Not Applicable
Benzene	SW8260C	μg/L	2.63 [0.2]	3.08 [0.2]	16	Yes
Ethylbenzene	SW8260C	μg/L	3.1 [0.5]	3.99 [0.5]	25	Yes
Isopropylbenzene	SW8260C	μ g/L	0.338 [0.5] J	0.395 [0.5] J	16	Not Applicable
Naphthalene	SW8260C	μg/L	1.68 [0.5]	1.86 [0.5]	10	Yes
n-Propylbenzene	SW8260C	μ g/L	ND [0.5]	0.394 [0.5] J	24	Not Applicable
Toluene	SW8260C	μ g/L	0.419 [0.5] J	0.486 [0.5] J	15	Not Applicable
Xylene, Isomers m & p	SW8260C	μ g/L	2.81 [1]	3.59 [1]	24	Yes
Xylenes	SW8260C	μ g/L	2.81 [1.5] J	3.59 [1.5]	25	Yes
Analyte	Method	Units	19FWNR09WG ³ AP-9459 Primary	19FWNR10WG ³ AP-8080 Field Duplicate	RPD, %	Comparison Criteria Met?
Gasoline Range Organics	AK101	μg/L	73.6 [50] J	108 [50]	38	No
Diesel Range Organics	AK102SV	μg/L	445 [278] J	375 [283] J	17	Not Applicable
Sulfate	E300.0	μg/L	28000 [200]	28100 [200]	6	Yes
Iron	SW6020A	μg/L	3990 [125]	3760 [125]	12	Yes
Manganese	SW6020A	μg/L	2820 [0.500]	2500 [0.500]	0	Yes
1,2,4-Trimethylbenzene	SW8260C	μg/L	1.73 [0.500]	1.88 [0.500]	8	Yes
1,3,5-Trimethylbenzene	SW8260C	μg/L	2.68 [0.500]	2.57 [0.500]	4	Yes
2-Butanone	SW8260C	μg/L	ND [5.00]	11.5 [5.00]	79	No
Benzene	SW8260C	μg/L	0.86 [0.200]	0.82 [0.200]	5	Yes
Chloromethane	SW8260C	μg/L	ND [0.500]	0.35 [0.500] J	35	Not Applicable
Ethylbenzene	SW8260C	μg/L	0.36 [0.500] J	0.36 [0.500] J	0	Not Applicable
Naphthalene	SW8260C	μg/L	0.72 [0.500] J,J+	1.74 [0.500] J+	83	No
Trichlorofluoromethane	SW8260C	μg/L	0.58 [0.500] J	0.49 [0.500] J	17	Not Applicable

The LODs presented for non-detect results were used for RPD calculations.

2.8 **Additional Quality Control Discrepancies**

Additional QC samples and procedures not discussed in the preceding sections of this CDQR are evaluated if deviations are noted by the laboratory in the case narratives. Additional QC samples/procedures may include, but are not limited to, instrument tuning, initial calibration verification (ICV) samples, CCV samples, and internal standards.

¹ – Field duplicate samples associated with SGS report 1193255

Field duplicate samples associated with SGS report 1193407
 Field duplicate samples associated with SGS report 1195158

⁴ – RPD of ≤ 30 percent was used for evaluating water-matrix field duplicate samples

Several QC discrepancies were noted by the laboratory. The discrepancies that resulted in data qualification are summarized below. The discrepancies that did not result in data qualification (e.g., high CCV recoveries but non-detect in associated project samples) are discussed in detail in the associated ADEC Laboratory Data Review Checklists.

- (1195158) VOC analyte 1,2,4-TMB was detected above the calibration range in Neely Road sample 19FWNR07WG and there wasn't sufficient volume for reanalysis. Consequently, the result for this sample was qualified (J) as an estimate. 1,2,4-TMB exceeded the ADEC CUL in this source area well (AP-8211) by an order of magnitude. Since 1,2,4-TMB has exceeded the current ADEC CUL since at least 2002, impact to the project is negligible.
- (1195158) The VOC CCV associated with batch VMS19451 had a recovery of naphthalene below the control criterion (75% vs 80%). Neely Road sample 19FWNR12WG had a naphthalene result reported from this batch and the analyte was qualified (J-) as potentially low biased. Although the sample is low biased, naphthalene is typically non-detect in this downgradient well (AP-9685) so impact to the project is negligible. Moreover, the recovery failure was not significant (5% low) and the LCS/LCSD recoveries were within control limits.

2.9 Analytical Sensitivity

Several project data analytes were reported above the DL but below the LOQ and were thus qualified as estimates due to the unknown accuracy of the analytical method at those concentrations. These data qualifications are not reported again in this CDQR, but they are noted with a "J" in the associated results table in Appendix A.

Analytical sensitivity was evaluated to verify that LODs met ADEC CULs for non-detect results. 1,2,3-Trichloropropane in all samples did not meet the applicable ADEC groundwater CUL listed in 18 AAC 75.345. This analyte may not be detected, if present, at the respective CUL. However, impact to the projects is not significant as the affected analyte is not a contaminant of concern at these Two-Party sites.

2.10 Summary of Qualified Results

Overall, the review process deemed the groundwater project data acceptable for use. Several results were qualified as estimates; however, data quality impact is minor and no data were rejected pursuant to FES's data quality review.

Table B-4 summarizes the qualified groundwater results associated with the sampling events at the Two-Party sites, including the associated sample numbers, analytes, and the reason for qualification.

Table B-4. Summary of Groundwater Data Qualifications

SDG	Sample Numbers	Analytes	Qualification	Explanation
1193255	19FWDY03WG, 19FWDY04WG	DRO	J	Field duplicate imprecision
	19FW5101WG, 19FW5102WG, 19FW5104WG, 19FWNR04WG, 19FWNR05WG	GRO	J+	High biased surrogate recovery
1193407	19FW6402WG, 19FW6403WG	Sulfate	J	Field duplicate
	19FWNR02WG, 19FWNR03WG	1,3,5-Trimethylbenzene	J	imprecision
	19FWNR08WG – 19FWNR12WG, equipment blank 19FW2PEB04WQ	DRO		Method blank contamination
	19FWNR09WG, 19FWNR10WG	Ethylbenzene		
	19FWNR07WG, 19FWNR08WG, 19FWNR11WG	Toluene	В	Equipment blank
	19FWNR07WG, 19FWNR08WG	o-Xylene		contamination
	19FWNR08WG	m,p-Xylene total Xylenes		
1195158	40EMNIDOONG 40EMNID4ONG	Naphthalene	J+	High biased MS and/or MSD recovery
	19FWNR09WG, 19FWNR10WG	GRO 2-Butanone Naphthalene	J	Field duplicate imprecision
	19FWNR07WG	1,2,4-Trimethylbenzene		Calibration range exceedance
	19FWNR12WG	Naphthalene	J-	Low biased CCV recovery

2.11 Completeness

Completeness scores were calculated for each analytical method employed for the project. Scores were obtained by assigning points to 14 different data quality categories during the review process. A maximum of 10 points was awarded for each category; points were based on the number of samples successfully meeting DQOs for that category. Points were subtracted when failure to meet DQOs resulted in data qualification or data rejection. The scores were then summed to determine the total points for a method, and completeness scores were determined as follows: (total points received)/(total points possible) x 100.

A breakdown of the points received for each category and method is shown in Table B-5 on the following page. All Two-Party site data quality categories met the completeness criteria of 90 percent established in the UFP-QAPP for the sampling event. No data were rejected pursuant to the data quality review, and all data may be used, as qualified, for the purposes of the Two-Party Sites Monitoring Report.

Table B-5. Completeness Scores for Groundwater Samples

Data Quality Category	Points VOC	Points GRO	Points DRO	Points RRO	Points Fe/Mn	Points Sulfate
Sample Collection	10	10	10	10	10	10
COC Documentation	10	10	10	10	10	10
Sample Containers/Preservation	10	10	10	10	10	10
Cooler Temperature	10	10	10	10	10	10
Holding Times	10	10	10	10	10	10
Method Blanks	10	10	7	10	10	10
Trip Blanks	10	10	NA	NA	NA	NA
Equipment Blank	8	10	10	10	10	10
LCS/LCSD Recovery & RPD	10	10	10	10	10	10
MS/MSD Recovery & RPD	9	10	10	10	10	10
Surrogate Recovery	10	8	10	10	NA	NA
Field Duplicate	9	9	10	10	10	9
CCV, Internal Stds, other	9	10	10	10	10	10
Sensitivity (DL/LOD)	10	10	10	10	10	10
Total Points Received	135	137	127	130	120	119
Total Points Possible	140	140	130	130	120	120
Percent Completeness	96	100	98	100	100	99

NA – not applicable

3.0 REFERENCES

- Alaska Department of Environmental Conservation (ADEC), 2019a. *Technical Memorandum Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data.* October.
- ADEC, 2019b. Field Sampling Guidance. October.
- ADEC, 2018. *18 AAC 75, Oil and Other Hazardous Substances Pollution Control.* As amended through October 27, 2018.
- Department of Defense (DoD), 2017. *DoD Quality Systems Manual for Environmental Laboratories, Version 5.1.* January.
- Fairbanks Environmental Services (FES), 2019. Final 2019 Two-Party Work Plan. U.S. Army Garrison Alaska. June.
- FES, 2016. Final Postwide Uniform Federal Policy for Quality Assurance Project Plans, Fort Wainwright, Alaska. August.
- Puls, R.W. and M. J. Barcelona, 1996. *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.* EPA/540/S-95/504. April.

Fairbanks Environmental Services Page B-18

Laboratory Data Review Checklist

Completed By:
Vanessa Ritchie
Title:
Senior Chemist
Date:
08/07/19
CS Report Name:
Fort Wainwright Two-Party Sites
Report Date:
07/17/19
Consultant Firm:
Fairbanks Environmental Services
Laboratory Name:
SGS – Anchorage, AK
Laboratory Report Number:
1193255
ADEC File Number:
108.38.069.01 (DRMO1) 108.26.029 (DRMO2; Bldg 5010) 108.38.069.01 (DRMO5) 108.38.081 (Bldg 2250) 108.38.069.02 (Bldg 1168)
Hazard Identification Number:
1122 (DRMO1) 25010 (DRMO2; Bldg 5010) 1122 (DRMO5) 2490 (Bldg 2250)

July 2017 Page 1

1125 (Bldg 1168)

l. <u>]</u>	<u>Labor</u>	<u>ratory</u>			
	a.	Did an A	۸DE	EC CS approved laboratory	y receive and <u>perform</u> all of the submitted sample analyses?
			es	○ No	Comments:
	Ye	s; howev	er, l	EPA Method 300.0 is not	listed as a CS analysis.
				1	another "network" laboratory or sub-contracted to an ratory performing the analyses ADEC CS approved?
		O Y	es	• No	Comments:
	No	t applical	ole,	samples were not transfer	red to another laboratory.
2. <u>(</u>	Chain	of Custo	<u>ody</u>	(CoC)	
	a.	CoC info	orm	ation completed, signed, a	and dated (including released/received by)?
			es	○ No	Comments:
	b.	Correct	Ana	alyses requested?	
			es	○ No	Comments:
3. <u>l</u>	Labor	atory Sai	<u>npl</u>	e Receipt Documentation	
	a.	Sample/	coo	ler temperature document	ed and within range at receipt (0° to 6° C)?
			es	○ No	Comments:
	b.		-	servation acceptable – acid lorinated Solvents, etc.)?	dified waters, Methanol preserved VOC soil (GRO, BTEX,
			es	○ No	Comments:
	c.	Sample	con	dition documented – broke	en, leaking (Methanol), zero headspace (VOC vials)?
			es	○ No	Comments:

1 1	193	225	5
	17	1/.	, ,

	reservation, sam	cies, were they documented? For example, incorrect sample apple temperature outside of acceptable range, insufficient or missing
• Yes	○ No	Comments:
Not applicable	- no discrepancie	es were noted upon sample receipt.
e. Data quality	or usability affe	ected?
		Comments:
No data quality	or usability was	s affected by the sample receipt documentation.
4. <u>Case Narrative</u>	<u>}</u>	
a. Present and	l understandable	??
• Yes	O No	Comments:
b. Discrepand	ies, errors, or Q	C failures identified by the lab?
O Yes	© No	Comments:
The VOC CCV dichloropropar detected in san	ich are discusse / associated with ne and vinyl acet nples in the first	ontinuing calibration verification (CCV) and second source verification different diff
c. Were all co	orrective actions	documented?
• Yes	○ No	Comments:
Corrective acti	ons were not ne	cessary for CCV discrepancies. See section 4b above.
d. What is the	effect on data q	quality/usability according to the case narrative?
		Comments:
done in light o	f them. Any not	s effect on data quality, it only discusses discrepancies and what was table data quality issues mentioned in the case narrative are discussed in this ADEC checklist.
Samples Results		
 Correct ana 	alyses performed	d/reported as requested on COC?
• Yes	© No	Comments:

			_	_		
1	-1	$\boldsymbol{\alpha}$	\sim	$\overline{}$	_	5
		u	-	. ,	_	•

c. All soils reported on a dry weight basis? Yes No Comments: Soil samples were not included in this work order. d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? Yes No Comments: Analytical sensitivity was evaluated to verify that LODs met ADEC cleanup levels (CULs) for not detect results. 1,2,3-Trichloropropane in all samples did not meet the applicable ADEC groundwa CUL listed in 18 AAC 75.345. This analyte may not be detected, if present, at the respective CUI However, impact to the project is not significant as the affected analyte is not a contaminant of concern at these Two-Party sites. e. Data quality or usability affected? Yes No Comments: See discussion above in 5d. CSamples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes No Comments: ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No Comments:		Yes	O No	Comments:
CYes No Comments: Soil samples were not included in this work order. d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? CYes No Comments: Analytical sensitivity was evaluated to verify that LODs met ADEC cleanup levels (CULs) for not detect results. 1,2,3-Trichloropropane in all samples did not meet the applicable ADEC groundwa CUL listed in 18 AAC 75.345. This analyte may not be detected, if present, at the respective CUI However, impact to the project is not significant as the affected analyte is not a contaminant of concern at these Two-Party sites. e. Data quality or usability affected? CYes No Comments: See discussion above in 5d. CSamples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? FYES NO Comments: ii. All method blank results less than limit of quantitation (LOQ)? FYES NO Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		- 103		Comments.
Soil samples were not included in this work order. d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?	c	All soils rep	oorted on a dry	weight basis?
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?		O Yes	• No	Comments:
the project?	Soil	samples we	ere not included	d in this work order.
Analytical sensitivity was evaluated to verify that LODs met ADEC cleanup levels (CULs) for not detect results. 1,2,3-Trichloropropane in all samples did not meet the applicable ADEC groundwa CUL listed in 18 AAC 75.345. This analyte may not be detected, if present, at the respective CUL However, impact to the project is not significant as the affected analyte is not a contaminant of concern at these Two-Party sites. e. Data quality or usability affected? Yes No Comments: See discussion above in 5d. C Samples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes No Comments: ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		-	_	s than the Cleanup Level or the minimum required detection level fo
detect results. 1,2,3-Trichloropropane in all samples did not meet the applicable ADEC groundwa CUL listed in 18 AAC 75.345. This analyte may not be detected, if present, at the respective CUL However, impact to the project is not significant as the affected analyte is not a contaminant of concern at these Two-Party sites. e. Data quality or usability affected? Yes No Comments: See discussion above in 5d. C Samples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes No Comments: ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples.		O Yes	No	Comments:
© Yes ● No Comments: See discussion above in 5d. C Samples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? ● Yes ○ No Comments: ii. All method blank results less than limit of quantitation (LOQ)? ● Yes ○ No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	dete CUI Hov	ect results. L listed in 1 wever, impa	1,2,3-Trichlorop 8 AAC 75.345. ct to the project	propane in all samples did not meet the applicable ADEC groundwa. This analyte may not be detected, if present, at the respective CUL t is not significant as the affected analyte is not a contaminant of
See discussion above in 5d. C Samples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes No Comments: ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	e. l	Data quality	or usability af	fected?
a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes No Comments: ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		O Yes	No	Comments:
a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes No Comments: ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	See	discussion	above in 5d.	
i. One method blank reported per matrix, analysis and 20 samples? • Yes ONo Comments: ii. All method blank results less than limit of quantitation (LOQ)? • Yes ONo Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	C San	<u>nples</u>		
ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	a.]	Method Bla	nk	
ii. All method blank results less than limit of quantitation (LOQ)? Yes No Comments: No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		i. One	method blank r	reported per matrix, analysis and 20 samples?
No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		Yes	○ No	Comments:
No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?				
No target analytes were detected in method blank samples. iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?			method blank re	asults loss than limit of quantitation (LOO)?
iii. If above LOQ, what samples are affected? Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		ii. All 1	nemou biank it	esuits less than finit of quantitation (LOQ):
Comments: No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?				
No target analytes were detected in method blank samples. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	No	• Yes	○ No	Comments:
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	No	• Yes	© No	Comments: ed in method blank samples.
	Not	• Yes	© No	Comments: ed in method blank samples. t samples are affected?
		Yestarget analyiii. If ab	No No tes were detected ove LOQ, what	Comments: ed in method blank samples. t samples are affected? Comments:
Z TO Z TO COMMITTION		Yestarget analyiii. If abtarget analy	© No tes were detecte ove LOQ, what tes were detecte	Comments: ed in method blank samples. t samples are affected? Comments: ed in method blank samples.

v. Data quality or usability affected?
Comments:
See 6aii above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
● Yes ○ No Comments:
LCS/LCSD and MS/MSD samples were reported in all batches as required.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
• Yes • No Comments:
LCS and MS/MSD samples were reported in all batches as required.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
© Yes © No Comments:
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
• Yes • No Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected?
Comments:
All recoveries were within control limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
• Yes • No Comments:
Not applicable. All recoveries were within control limits.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

0.0000000000000000000000000000000000000
Not applicable. All recoveries were within control limits.
c. Surrogates – Organics Only
i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?
• Yes O No Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
• Yes • No Comments:
iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
○ Yes • No Comments:
Not applicable. All recoveries were within control limits.
iv. Data quality or usability affected?
Comments:
Not applicable. All recoveries were within control limits.
d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u>
i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?
(If not, enter explanation below.)
○ Yes • No Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
• Yes • No Comments:
Trip blank sample 19FW2PTB01WQ was included in cooler 062001.

1 1	193	225	5
	17	1/.	, ,

iii. All 1	results less than LOQ?	
• Yes	○ No	Comments:
No target analy	tes were detected in the	e trip blank sample.
iv. If ab	ove LOQ, what sample	es are affected?
		Comments:
No target analy	tes were detected in the	e trip blank sample.
v. Data	quality or usability af	fected?
		Comments:
No target analy	tes were detected in the	e trip blank sample.
e. Field Duplie	cate	
i. One	field duplicate submitt	ted per matrix, analysis and 10 project samples?
Yes	O No	Comments:
Former Bldg 11	168: one field duplicat	riples were collected for six project samples e sample was collected for three project samples
		e sample was collected for three project samples
ii. Subi	mitted blind to lab?	
• Yes	○ No	Comments:
DRMO Yard: Former Bldg 11	sample 19FWDY07W0 168: sample 19FW680	G was a field duplicate of sample 19FWDY03WG G was a field duplicate of sample 19FWDY06WG 4WG was a field duplicate of sample 19FW2202WG
	No target analy iv. If ab iv. If ab No target analy v. Data No target analy e. Field Duplic i. One Yes DRMO Yard: Former Bldg 11 Former Bldg 22 ii. Subn Yes DRMO Yard: Former Bldg 11 Former Bldg 12 Former Bldg 11	No target analytes were detected in the iv. If above LOQ, what sample No target analytes were detected in the v. Data quality or usability after No target analytes were detected in the e. Field Duplicate i. One field duplicate submitter iv. One field duplicate submitter iv. One field duplicate submitter iv. One field duplicate sample submitter iv. Submitted blind to lab? • Yes • No DRMO Yard: sample 19FWDY04We DRMO Yard: sample 19FWDY07We Former Bldg 1168: sample 19FWDY07We Former Bldg 1168: sample 19FWD880

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

© Yes • No Comments:

All detected analytes and contaminants of concern (detected and not detected) are shown in the tables below. In the case where a result was non-detect, the LOD was used for RPD calculation purposes. The non-detect results are identified with "ND" and the LOD in brackets. In the event that both results are less than the LOQ (i.e., J-flagged or non-detect), the RPD was calculated but the comparison criterion is not applicable, per the Postwide UFP-QAPP.

All (applicable) results for field duplicate sample pair 19FW2202WG/19FW2203WG (Building 2250) were comparable (RPD \leq 30%).

All (applicable) results for field duplicate sample pair 19FW6803WG/19FW6804WG (Building 1168) were comparable (RPD \leq 30%).

All (applicable) results for field duplicate sample pair 19FWDY03WG/19FWDY04WG (DRMO Yard) were comparable (RPD \leq 30%) except DRO (107%). Consequently, the DRO results for the duplicate pair were qualified (J) as estimates due to imprecision. Impact to the project is likely negligible as both results were greater than the ADEC CUL, and DRO concentrations are commonly observed near or above the ADEC CUL in this well (AP-5826).

All (applicable) results for field duplicate sample pair 19FWDY06WG/19FWDY07WG (DRMO Yard) were comparable (RPD \leq 30%).

Analyte	Method	Units	19FW2202WG AP-5976 Primary	19FW2203WG AP-3030 Field Duplicate	RPD, %	Comparison Criteria Met?
Diesel Range Organics	AK102SV	μg/L	2980 [294]	3370 [300]	12	Yes
Iron	SW6020A	μ g /L	15600 [250]	15500 [250]	1	Yes
Sulfate	E300.0	μ g /L	6220 [100]	6470 [500]	4	Yes

Analyte	Method	Units	19FW6803WG AP-10037MW Primary	19FW6804WG AP-6060 Field Duplicate	RPD, %	Comparison Criteria Met?
Diesel Range Organics	AK102SV	μg/L	693 [283]	630 294]	10	Yes
Iron	SW6020A	μ g/L	23100 [250]	23600 [250]	2	Yes
Sulfate	E300.0	μ g/L	13100 [500]	12800 [500]	2	Yes
Benzene	SW8260C	μg/L	0.45 [0.2]	0.47 [0.2]	4	Yes
Isopropylbenzene	SW8260C	μ g/L	3.72 [0.5]	4.19 [0.5]	12	Yes
Naphthalene	SW8260C	μ g/L	ND [0.5]	ND [0.5]	0	Not Applicable
sec-Butylbenzene	SW8260C	μ g/L	0.79 [0.5] J	0.87 [0.5] J	10	Not Applicable

tert-Butylbenzene	SW8260C	μ g/L	ND [0.5]	0.33 [0.5] J	41	Not Applicable
-------------------	---------	--------------	----------	--------------	----	----------------

Analyte	Method	Units	19FWDY03WG AP-5826 Primary	19FWDY04WG AP-4040 Field Duplicate	RPD, %	Comparison Criteria Met?
Diesel Range Organics	AK102SV	μg/L	5630 [283]	1700 [278]	107	No
Iron	SW6020A	μ g /L	2620 [250]	2700 [250]	4	Yes
Sulfate	E300.0	μ g /L	10300 [500]	9940 [500]	3	Yes

Analyte	Method	Units	19FWDY06WG AP-7346 Primary	19FWDY07WG AP-5050 Field Duplicate	RPD, %	Comparison Criteria Met?
1,2-Dichloroethane	SW8260C	μg/L	0.19 [0.25] J	0.18 [0.25] J	5	Not Applicable
cis-1,2-Dichloroethene	SW8260C	μ g /L	0.36 [0.5] J	0.34 [0.5] J	6	Not Applicable
Trichloroethene (TCE)	SW8260C	μ g /L	0.35 [0.5] J	0.35 [0.5] J	0	Not Applicable

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

~		1
100	60111	above
1111	CALLET	annv

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

Yes No Not Applicable

Equipment blank sample 19FW2PEB01WQ was included in this work order to assess the potential for cross-contamination of the submersible pump. All samples in this work order were collected with a submersible pump.

i. All results less than LOQ?

O Yes O No

Comments:

All detected analytes were less than the LOQ; however, three analytes were detected at concentrations less than the LOQ.

ii. If above LOQ, what samples are affected?

Comments:

Bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB01WQ at concentrations less than the LOQ. However, none of these analytes were detected in project samples, so no data were impacted.

iii. Data quality or usability affected?

Comments:

See 6fi above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

O Yes	No	Comments:
-------	----	-----------

No other data flags/qualifiers were used.

Laboratory Data Review Checklist

Completed By:
Vanessa Ritchie
Title:
Senior Chemist
Date:
08/08/19
CS Report Name:
Fort Wainwright Two-Party Sites
Report Date:
07/22/19
Consultant Firm:
Fairbanks Environmental Services
Laboratory Name:
SGS – Anchorage, AK
Laboratory Report Number:
1193407
ADEC File Number:
108.38.037 (Bldg 5110) 108.26.028 (Bldg 3564) 108.38.078 (Neely Rd)
Hazard Identification Number:
1677 (Bldg 5110) 25015 (Bldg 3564) 3691 (Neely Rd)

1193407	
1. <u>Laboratory</u>	
Did an ADEC CC and and delicate and an affect of the admitted and and	10

	Yes	O No	Comments:
Y	es; however,	EPA Method 30	00.0 is not listed as a CS analysis.
		•	nsferred to another "network" laboratory or sub-contracted to an as the laboratory performing the analyses ADEC CS approved?
	○ Yes	No	Comments:
N	ot applicable	, samples were	not transferred to another laboratory.
Chai	n of Custody	(CoC)	
a.	CoC inform	nation complete	d, signed, and dated (including released/received by)?
	Yes	O No	Comments:
b.	Correct An	alyses requested	1?
	Yes	O No	Comments:
Labo	oratory Samp	le Receipt Docu	<u>imentation</u>
a.	Sample/coo	oler temperature	e documented and within range at receipt (0° to 6° C)?
a.		○ No	Comments:
a.	Yes	~ 1 10	
a.	• Yes		
	Sample pre		table – acidified waters, Methanol preserved VOC soil (GRO, BTEX, ents, etc.)?
	Sample pre	servation accep	<u> </u>
	Sample pre Volatile Ch	servation accep	ints, etc.)?
	Sample pre Volatile Ch	servation accep alorinated Solve	ints, etc.)?

1	1	9	3	4	0	7
1	1	9	3	4	0	7

	d.	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?						
_		• Yes	○ No	Comments:				
	No	ot applicable -	no discrepar	cies were noted upon sample receipt.				
	e.	Data quality	or usability a	ffected?				
				Comments:				
	No	data quality	or usability v	as affected by the sample receipt documentation.				
4.	C	ase Narrative						
	a.	Present and	understanda	le?				
		Yes	○ No	Comments:				
	b.	Discrepanci	es, errors, or	QC failures identified by the lab?				
		O Yes	No	Comments:				
	su	ırrogate excep	otions discuss	MS/MSD and LCS/LCSD exceptions discussed below in 6d, and ed below in 6c. It also discussed low level quantitation checks (LLQC) exceptions, which are discussed here.				
			-	For arsenic did not meet quality control criteria. However, arsenic was no no data were impacted.	ot			
	The metals CB had detections of nickel and manganese (0.983 µg/L) above the LOQ in analysis batch MMS10556. Nickel was not reported in this work order so no data were impacted. Manganese in the associated project samples was detected at concentrations more than two orders of magnitude greater than the detection in the CB, so no data were qualified.							
	c.	Were all co	rrective actio	ns documented?				
		• Yes	○ No	Comments:				
	C	orrective action	ons were not	necessary for LLQC and CB discrepancies. See section 4b above.				
	d.	What is the	effect on dat	quality/usability according to the case narrative?				
				Comments:				
	do	one in light of	them. Any	iss effect on data quality, it only discusses discrepancies and what was otable data quality issues mentioned in the case narrative are discussed hin this ADEC checklist.				

1	1	93407	
	- 1	7.) 4 ()/	

5. <u>Sa</u>	amples Results						
	a. Correct ana	alyses performe	ed/reported as requested on COC?				
	• Yes	Comments:					
	b. All applical	ble holding tim	nes met?				
	• Yes	○ No	Comments:				
	c. All soils re	ported on a dry	weight basis?				
	© Yes	• No	Comments:				
	Soil samples w	ere not include	ed in this work order.				
	d. Are the rep	_	ss than the Cleanup Level or the minimum required detection level for				
	© Yes	No	Comments:				
	detect results. CUL listed in	1,2,3-Trichlord 18 AAC 75.345 act to the project	duated to verify that LODs met ADEC cleanup levels (CULs) for non- oppropane in all samples did not meet the applicable ADEC groundwater 5. This analyte may not be detected, if present, at the respective CUL. ct is not significant as the affected analyte is not a contaminant of tes.				
	e. Data qualit	y or usability a	ffected?				
	○ Yes	No	Comments:				
	See discussion	above in 5d.					
6. <u>Q</u>	C Samples						
	a. Method Blank						
	i. One method blank reported per matrix, analysis and 20 samples?						
	ii. All	method blank 1	results less than limit of quantitation (LOQ)?				
	• Yes	○ No	Comments:				

however, sulfate was detected at a concentration less than the LOQ.

iii. If above LOQ, what samples are affected?

Comments:

Sulfate was detected in the method blank sample in batch WXX12916 at a concentration less than the LOQ. Sulfate was detected in all associated project samples at concentrations greater than five times of that of the method blank, so no data were qualified.

ıv. Do tl	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?					
Yes	○ No	Comments:				
Not applicable.	See 6aiii above.					

v. Data quality or usability affected?

Comments:

No data were impacted. See 6aii above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes • No Comments:

LCS/LCSD and MS/MSD samples were reported in all batches as required.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes No Comments:

LCS and MS/MSD samples were reported in all batches as required.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

○ Yes • No Comments:

The iron MS and MSD prepared from sample 19FW6402WG (Building 3564) were recovered outside of the control criteria. However, the spike amounts were less than the parent sample concentrations, so control criteria were not applicable. No data were qualified.

The manganese MSD prepared from sample 19FWNR02WG (Neely Road) was recovered outside of the control criteria. However, the spike amount was less than the parent sample concentration, so control criteria were not applicable. No data were qualified.

The laboratory noted that naphthalene did not have acceptable recovery in an MSD sample; however, the MSD sample is a non-client sample and does not impact this project.

laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
○ Yes ○ No Comments:
The VOC LCS/LCSD RPD associated with extraction batch VXX34350 exceeded the control criterion (≤20%) for chloromethane (22%). Chloromethane was not detected in any project sample, so no data were qualified. The recovery of chloromethane in both the LCS and LCSD samples were within acceptance criteria.
v. If %R or RPD is outside of acceptable limits, what samples are affected?
Comments:
No samples were impacted. See 6biii and 6biv above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
● Yes ○ No Comments:
No samples were impacted. See 6biii and 6biv above.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
No samples were impacted. See 6biii and 6biv above
c. Surrogates – Organics Only
i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?
● Yes ○ No Comments:
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
○ Yes • No Comments:
GRO surrogate 4-bromofluorobenzene had recovery above the upper control limit (150%) for Former Building 5110 samples 19FW5101WG (188%), 19FW5102WG (206%), and 19FW5104WG (199%); and Neely Road samples 19FWNR04WG (178%) and 19FWNR05WG (152%). Consequently, the detected GRO results for these samples were qualified (J+) as potential high estimates. Four of the

five impacted GRO results were less than the ADEC CUL, which is consistent with recent results for these wells. The exception is the GRO result for 19FWNR05WG. This result is potentially high-biased and marginally above the ADEC CUL. Although the result may be high-biased, the recovery exceedance was negligible (2% high) and GRO has historically remained near the CUL in this source area well (AP-8211) since the air sparge treatment system was shut down in 2014. GRO will continue

iv. Precision – All relative percent differences (RPD) reported and less than method or

July 2017 Page 6

to be monitored in this well.

	ne sample re clearly def	esults with failed surrogate recoveries have data flags? If so, are the data ined?					
Yes	○ No	Comments:					
iv. Data	quality or u	usability affected?					
		Comments:					
Impact to project	et data was	negligible. See 6cii above.					
d. Trip blank – <u>Soil</u>	Volatile an	nalyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and					
samı	oles?	eported per matrix, analysis and for each cooler containing volatile planation below.)					
Yes	O No	Comments:					
		d to transport the trip blank and VOA samples clearly indicated on the comment explaining why must be entered below)					
• Yes	O No	Comments:					
Trip blank samp	ole 19FW2F	PTB02WQ was included in cooler 062601.					
iii. All r	esults less t	han LOQ?					
Yes	○ No	Comments:					
No target analy	tes were det	ected in the trip blank sample.					
iv. If ab	ove LOQ, v	what samples are affected?					
		Comments:					
No target analy	tes were det	ected in the trip blank sample.					
v. Data	v. Data quality or usability affected?						
		Comments:					
No target analy	tes were det	rected in the trip blank sample.					
•							

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes • No Comments:

Former Bldg 5110: one field duplicate sample was collected for three project samples Former Bldg 3564: one field duplicate sample was collected for six project samples Neely Road: one field duplicate sample was collected for five project samples

ii. Submitted blind to lab?

© Yes ONo Comments:

Former Bldg 5110: sample 19FW5102WG was a field duplicate of sample 19FW5101WG Former Bldg 3564: sample 19FW6403WG was a field duplicate of sample 19FW6402WG Neely Road: sample 19FWNR03WG was a field duplicate of sample 19FWNR02WG

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 = Sample$ Concentration $R_2 = Field$ Duplicate Concentration

© Yes • No Comments:

All detected analytes and contaminants of concern (detected and not detected) are shown in the tables below. In the case where a result was non-detect, the LOD was used for RPD calculation purposes. The non-detect results are identified with "ND" and the LOD in brackets. In the event that both results are less than the LOQ (i.e., J-flagged or non-detect), the RPD was calculated but the comparison criterion is not applicable, per the Postwide UFP-QAPP.

All (applicable) results for field duplicate sample pair 19FW5101WG/19FW5102WG (Building 5110) were comparable (RPD $\leq 30\%$).

All (applicable) results for field duplicate sample pair 19FW6402WG/19FW6403WG (Building 3564) were comparable (RPD \leq 30%) except for sulfate (37%). Consequently, the sulfate results for the duplicate pair were qualified (J) as estimates due to imprecision. Impact to the project is negligible as the exceedance was not significant (7% high) and the affected analyte is used to evaluate natural attenuation processes by large (order of magnitude) changes in concentration.

All (applicable) results for field duplicate sample pair 19FWNR02WG/19FWNR03WG (Neely Road) were comparable (RPD \leq 30%) except 1,3,5-trimethylbenzene (38%). Consequently, the 1,3,5-trimethylbenzene results for the duplicate pair were qualified (J) as estimates due to imprecision. Impact to the project is negligible as both results were more than an order of magnitude less the ADEC CUL, which is consistent for this well (AP-9459) since at least 2013. Moreover, 1,3,5-trimethylbenzene has not exceeded the CUL in this well since 2009.

Analyte	Method	Units	19FW5101WG AP-5737 Primary	19FW5102WG AP-9090 Field Duplicate	RPD, %	Comparison Criteria Met?
Gasoline Range Organics	AK101	μ g/L	1090 [50]	1260 [50]	14	Yes
Diesel Range Organics	AK102SV	μ g/L	2030 [283]	1900 [288]	7	Yes
Sulfate	E300.0	μ g/L	388 [100]	418 [100]	7	Yes
Iron	SW6020A	μ g/L	4880 [250]	5280 [250]	8	Yes
Manganese	SW6020A	μ g/L	404 [1]	394 [1]	3	Yes
Benzene	SW8260C	μ g/L	0.12 [0.2] J	0.13 [0.2] J	8	Not Applicable
Ethylbenzene	SW8260C	μg/L	25.8 [0.5]	30.3 [0.5]	16	Yes
o-Xylene	SW8260C	μ g/L	50.7 [0.5]	60.7 [0.5]	18	Yes
Toluene	SW8260C	μg/L	ND [0.5]	ND [0.5]	0	Not Applicable
Xylene, Isomers m & p	SW8260C	μg/L	165 [1]	194 [1]	16	Yes
Xylenes	SW8260C	μg/L	216 [1.5]	255 [1.5]	17	Yes

Analyte	Method	Units	19FW6402WG AP-7191 Primary	19FW6403WG AP-7070 Field Duplicate	RPD, %	Comparison Criteria Met?
Diesel Range Organics	AK102SV	μ g /L	3230 [294]	3060 [288]	5	Yes
Residual Range Organics	AK103SV	μ g /L	ND [245]	ND [240]	2	Not Applicable
Sulfate	E300.0	μg/L	3760 [500]	5450 [500]	37	No
Iron	SW6020A	μ g/L	55400 [1250]	56500 [1250]	2	Yes

Analyte	Method	Units	19FWNR02WG AP-9459 Primary	19FWNR03WG AP-8080 Field Duplicate	RPD, %	Comparison Criteria Met?
Gasoline Range Organics	AK101	μg/L	125 [50]	152 [50]	19	Yes
Diesel Range Organics	AK102SV	μg/L	901 [288]	860 [288]	5	Yes
Sulfate	E300.0	μg/L	23600 [500]	26300 [500]	11	Yes
Iron	SW6020A	μg/L	7580 [250]	7620 [250]	1	Yes
Manganese	SW6020A	μg/L	3450 [5]	3570 [5]	3	Yes
1,2,4-Trimethylbenzene	SW8260C	μg/L	7.14 [0.5]	9.04 [0.5]	23	Yes
1,2-Dichloroethane	SW8260C	μg/L	ND [0.25]	ND [0.25]	0	Not Applicable
1,3,5-Trimethylbenzene	SW8260C	μg/L	2.99 [0.5]	4.39 [0.5]	38	No
4-Isopropyltoluene	SW8260C	μg/L	ND [0.5]	0.313 [0.5] J	46	Not Applicable
Benzene	SW8260C	μg/L	2.63 [0.2]	3.08 [0.2]	16	Yes
Ethylbenzene	SW8260C	μg/L	3.1 [0.5]	3.99 [0.5]	25	Yes
Isopropylbenzene	SW8260C	μ g/L	0.338 [0.5] J	0.395 [0.5] J	16	Not Applicable
Naphthalene	SW8260C	μg/L	1.68 [0.5]	1.86 [0.5]	10	Yes
n-Propylbenzene	SW8260C	μg/L	ND [0.5]	0.394 [0.5] J	24	Not Applicable
o-Xylene	SW8260C	μg/L	ND [0.5]	ND [0.5]	0	Not Applicable
Tetrachloroethene (PCE)	SW8260C	μg/L	ND [0.5]	ND [0.5]	0	Not Applicable
Toluene	SW8260C	μg/L	0.419 [0.5] J	0.486 [0.5] J	15	Not Applicable
Trichloroethene (TCE)	SW8260C	μg/L	ND [0.5]	ND [0.5]	0	Not Applicable
Xylene, Isomers m & p	SW8260C	μ g/L	2.81 [1]	3.59 [1]	24	Yes
Xylenes	SW8260C	μ g/L	2.81 [1.5] J	3.59 [1.5]	25	Yes

See 6eiii above. f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below). © Yes No Not Applicable Equipment blank samples 19FW2PEB02WQ (DRO/RRO) and 19FW2PEB03WQ (GRO, VOC, sulfate, and iron/manganese) were included in this work order to assess the potential for cross-contamination of the submersible pump. All samples in this work order were collected with a submersible pump. i. All results less than LOQ? Yes No Comments: All detected analytes were less than the LOQ; however, four analytes were detected at concentrations less than the LOQ in one equipment blank sample. ii. If above LOQ, what samples are affected? Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. her Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate? Yes No Comments:	iv. Data qualit	y or usability af	fected? (Use the comment box to explain why or why not.)
f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below). © Yes © No © Not Applicable Equipment blank samples 19FW2PEB02WQ (DRO/RRO) and 19FW2PEB03WQ (GRO, VOC, sulfate, and iron/manganese) were included in this work order to assess the potential for cross-contamination of the submersible pump. All samples in this work order were collected with a submersible pump. i. All results less than LOQ? © Yes © No Comments: All detected analytes were less than the LOQ; however, four analytes were detected at concentrations less than the LOQ in one equipment blank sample. ii. If above LOQ, what samples are affected? Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. her Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?			Comments:
below).	See 6eiii above.		
Equipment blank samples 19FW2PEB02WQ (DRO/RRO) and 19FW2PEB03WQ (GRO, VOC, sulfate, and iron/manganese) were included in this work order to assess the potential for cross-contamination of the submersible pump. All samples in this work order were collected with a submersible pump. i. All results less than LOQ? O Yes No Comments: All detected analytes were less than the LOQ; however, four analytes were detected at concentrations less than the LOQ in one equipment blank sample. ii. If above LOQ, what samples are affected? Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. her Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?	below).		
sulfate, and iron/manganese) were included in this work order to assess the potential for cross- contamination of the submersible pump. All samples in this work order were collected with a submersible pump. i. All results less than LOQ? Yes No Comments: All detected analytes were less than the LOQ; however, four analytes were detected at concentrations less than the LOQ in one equipment blank sample. ii. If above LOQ, what samples are affected? Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. her Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?			
All detected analytes were less than the LOQ; however, four analytes were detected at concentrations less than the LOQ in one equipment blank sample. ii. If above LOQ, what samples are affected? Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. her Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?	sulfate, and iron/mang contamination of the s	anese) were inc	cluded in this work order to assess the potential for cross-
All detected analytes were less than the LOQ; however, four analytes were detected at concentrations less than the LOQ in one equipment blank sample. ii. If above LOQ, what samples are affected? Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. Mer Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?	i. All results	ess than LOQ?	
ii. If above LOQ, what samples are affected? Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. Per Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?	○ Yes ● No		Comments:
Comments: Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. mer Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?	-		
Manganese, bromodichloromethane, chloroform, and dibromochloromethane were detected in equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. Defined and appropriate?	ii. If above LO	Q, what sample	es are affected?
equipment blank sample 19FW2PEB03WQ at concentrations less than the LOQ. Manganese was detected in all project samples at concentrations greater than five times that of the equipment blank sample, so no data were qualified. The remaining aforementioned analytes were not detected in project samples, so no data were impacted. iii. Data quality or usability affected? Comments: See 6fi above. Mer Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?			Comments:
iii. Data quality or usability affected? Comments: See 6fi above. ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?	equipment blank samp detected in all project sample, so no data we	le 19FW2PEB0 samples at conc re qualified. Th	O3WQ at concentrations less than the LOQ. Manganese was centrations greater than five times that of the equipment blank he remaining aforementioned analytes were not detected in
Comments: See 6fi above. ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?			
her Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate?	2 a.u. quan	, or ususing un	
a. Defined and appropriate?	See 6fi above.		
	ner Data Flags/Qualifie	rs (ACOE, AFC	CEE, Lab Specific, etc.)
			-
○ Yes • No Comments:		•	Comments
	∪ Yes • No		Comments:

Laboratory Data Review Checklist

Completed By:		
Vanessa Ritch	ie	
Title:		
Senior Chemis	st	
Date:		
11/05/19		
CS Report Name:		
Fort Wainwrig	ght Two-Party Sites	
Report Date:		
10/25/19		
Consultant Firm:		
Fairbanks Env	rironmental Services	
Laboratory Name:		
SGS – Anchor	rage, AK	
Laboratory Repor	t Number:	
1195158		
ADEC File Numb	er:	
108.38.078 (N	eely Rd)	
Hazard Identificat	ion Number:	
3691		

1195158	
1. <u>Laboratory</u>	

· <u>-</u>	24001410	<u>,,,</u>								
	a. Di	id an ADI	EC CS approved laborator	ry receive and perform all of the submitted sample analyses?						
		Yes	○ No	Comments:						
	Yes; 1	however,	EPA Method 300.0 is not	listed as a CS analysis.						
	b.		•	another "network" laboratory or sub-contracted to an ratory performing the analyses ADEC CS approved?						
		© Yes	No	Comments:						
	Not a	pplicable,	samples were not transfe	erred to another laboratory.						
2. <u>C</u>	Chain of	f Custody	(CoC)							
	a. Co	oC inform	nation completed, signed,	and dated (including released/received by)?						
	r	Yes	○ No	Comments:						
	b. Co	orrect Ana	alyses requested?							
		© Yes	○ No	Comments:						
3. <u>I</u>	_aborato	ory Sampl	e Receipt Documentation	<u>.</u> <u>.</u>						
	a. Sa	ample/coo	ler temperature document	ted and within range at receipt (0° to 6° C)?						
		• Yes	○ No	Comments:						
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?									
		• Yes	○ No	Comments:						
	c. Sa	ample con	dition documented – brok	xen, leaking (Methanol), zero headspace (VOC vials)?						
		Yes	○ No	Comments:						

1	1	OF	1	_	O
1	1	95		5	a

Not applicable - no discrepancies were noted upon sample receipt. e. Data quality or usability affected? Comments: No data quality or usability was affected by the sample receipt documentation. 4. Case Narrative a. Present and understandable?						
e. Data quality or usability affected? Comments: No data quality or usability was affected by the sample receipt documentation. 4. Case Narrative						
Comments: No data quality or usability was affected by the sample receipt documentation. 4. <u>Case Narrative</u>						
No data quality or usability was affected by the sample receipt documentation. 4. <u>Case Narrative</u>						
4. <u>Case Narrative</u>						
a. Present and understandable?						
• Yes • No Comments:						
b. Discrepancies, errors, or QC failures identified by the lab?						
© Yes • No Comments:						
The case narrative described MS/MSD and LCS/LCSD discrepancies which are discussed in section 6b. The case narrative also describes continuing calibration verification (CCV) discrepancies and an analyte detected outside the calibration range, which are discussed below.						
VOC analyte 1,2,4-trimethylbenzene was detected above the calibration range in Neely Road sample 19FWNR07WG and there wasn't sufficient volume for reanalysis. Consequently, the result for this sample was qualified (J) as an estimate. 1,2,4-Trimethylbenzene exceeded the ADEC CUL in this source area well (AP-8211) by an order of magnitude. Since 1,2,4-trimethylbenzene has exceeded the current ADEC CUL since at least 2007, impact to the project is negligible.						
The VOC CCV associated with batches VMS19432 and VMS19438 had recoveries for bromomethane above the control criterion. However, bromomethane was not detected in the associated Neely Road samples so no data were impacted due to the high recoveries.						
The VOC CCV associated with batch VMS19451 had a recovery of naphthalene below the control criterion (75% vs 80%). Neely Road sample 19FWNR12WG had a naphthalene result reported from this batch and the analyte was qualified (J-) as potentially low biased. Although the sample is low biased, naphthalene is typically non-detect in this downgradient well (AP-9685) so impact to the project is negligible. Moreover, the recovery failure was not significant (5% low) and the LCS/LCSD recoveries were within control limits.						
c. Were all corrective actions documented?						
● Yes ○ No Comments:						
See section 4b above.						

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Case narrative does not discuss effect on data quality, it only discusses discrepancies and what was done in light of them. Any notable data quality issues mentioned in the case narrative are discussed above in 4b or elsewhere within this ADEC checklist.

5. <u>s</u>	Sampl	es Results			
	a.	Correct anal	lyses perform	ed/reported as requested on COC?	
		Yes	O No	Comments:	
	b.	All applicab	ole holding tir	nes met?	
		© Yes	○ No	Comments:	
	c.	All soils rep	orted on a dr	weight basis?	
		○ Yes	No	Comments:	
	Soi	il samples w	ere not includ	ed in this work order.	
	d.	Are the report the project?	_	ss than the Cleanup Level or the minimum required detection level for	
		○ Yes		Comments:	
	det CU Ho	ect results. JL listed in 1 wever, impa	1,2,3-Trichlor 8 AAC 75.34	aluated to verify that LODs met ADEC cleanup levels (CULs) for non- opropane in all samples did not meet the applicable ADEC groundwater 5. This analyte may not be detected, if present, at the respective CUL. act is not significant as the affected analyte is not a contaminant of e.	r
	e.	Data quality	or usability	affected?	
		O Yes	No	Comments:	
	See	e discussion	above in 5d.		
6.	QC Sa	<u>mples</u>			
	a.	Method Bla	nk		
		i. One	method blanl	reported per matrix, analysis and 20 samples?	
		• Yes	○ No	Comments:	

ii. All method brank results less than limit of quantitation (LOQ)?
• Yes O No Comments:
All analytes were detected below the LOQ; however, DRO was detected in the method blank sample associated with batch XXX42214 at a concentration (0.182 mg/L) below the LOQ (0.6 mg/L). DRO in Neely Road samples 19FWNR08WG through 19FWNR12WG and equipment blank sample 19FW2PEB04WQ was detected at a concentration within five times that of the method blank. Consequently, the DRO results for these samples were qualified (B) as potential laboratory crosscontamination. Overall, impact to the project is negligible as all affected data are at least half the concentration of the ADEC CUL.
iii. If above LOQ, what samples are affected?
Comments:
See 6aii above.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
• Yes O No Comments:
v. Data quality or usability affected?
Comments:
See 6aii above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
• Yes • No Comments:
LCS/LCSD and MS/MSD samples were reported in all batches as required, with the exception of GRO batch VXX34821 and VOC batches VXX34858 (all analytes) and VXX34892 (chloromethane and naphthalene only). Adequate volume was submitted for MS/MSD analysis but the laboratory split the samples up into multiple batches. Although matrix interference cannot be evaluated in the aforementioned batches, batch accuracy and precision was evaluated by analysis of the LCS/LCSD samples.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
● Yes ○ No Comments:
LCS and MS/MSD samples were reported in all batches as required.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
○ Yes • No Comments:
The LCS and LCSD in batch VXX34838 had recoveries of bromomethane (159%/146% vs 141%) above the upper control limit. However, bromomethane was not detected in the two associated sample in this batch. No data were impacted due to the high recoveries.
The sulfate MS prepared from Neely Road sample 19FWNR09WG was recovered outside of the control criteria. However, the spike amount was less than the parent sample concentration, so control criteria were not applicable. No data were qualified.
The VOC MSD prepared from Neely Road sample 19FWNR09WG had recoveries of bromomethane (144% vs 141%), naphthalene (134% vs 128%), and 1,2,3-trichlorobenzene (132% vs 129%) above the upper control limit. Of these analytes, only naphthalene was detected in the parent sample. Consequently, the naphthalene results for the parent sample and associated field duplicate sample 19FWNR10WG were qualified (J+) as a potential high estimates. Impact to the project is negligible as the MSD recovery exceedance was not significant (6% high) and the MS recovery was within control limits.
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
● Yes ○ No Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected?
Comments:
See 6biii.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
● Yes ○ No Comments:
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
See 6biii.

1	1	9	5	1	5	Q
	- 1	7))	\sim

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? *Yes No Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) *Yes No Comments: iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes No Comments: Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments:	c. Surrogates -	Organics Only							
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No Comments: iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes No Comments: Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments:	i. Are s	surrogate recoveries repor	rted for organic analyses – field, QC and laboratory samples?						
And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No Comments: iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes No Comments: Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments:	Yes	○ No	Comments:						
And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No Comments: iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes No Comments: Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments:									
iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes No Comments: Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	And	project specified DQOs,	if applicable. (AK Petroleum methods 50-150 %R; all other						
flags clearly defined? Yes No Comments: Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	• Yes	○ No	Comments:						
flags clearly defined? Yes No Comments: Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)									
Not applicable. All recoveries were within control limits. iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)		-	led surrogate recoveries have data flags? If so, are the data						
iv. Data quality or usability affected? Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	○ Yes	No	Comments:						
Comments: Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	Not applicable.	All recoveries were with	in control limits.						
Not applicable. All recoveries were within control limits. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	iv. Data	iv. Data quality or usability affected?							
 d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) 			Comments:						
i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes No Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	Not applicable.	All recoveries were with	in control limits.						
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	_	Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and						
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)	samp	oles?	•						
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)		-							
COC? (If not, a comment explaining why must be entered below)	○ Yes	• No	Comments:						
COC? (If not, a comment explaining why must be entered below)									
			± •						
● Yes ○ No Comments:	Yes	O No	Comments:						
Trip blank sample 19FW2PTB03WQ was included in cooler 090301.	Trip blank samp	ole 19FW2PTB03WQ wa	as included in cooler 090301.						
iii. All results less than LOQ?	iii. All r	esults less than LOQ?							
• Yes • No Comments:	Yes	○ No	Comments:						
No target analytes were detected in the trip blank sample.	No target analys	tes were detected in the tr	rip blank sample.						

iv. If above LOQ, what samples are affected?

Comments:

No target analytes were detected in the trip blank sample.

v. Data quality or usability affected?

Comments:

No target analytes were detected in the trip blank sample.

- e. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes
No

Comments:

One field duplicate sample was collected for five project samples.

- ii. Submitted blind to lab?
- Yes
 No

Comments:

Neely Road sample 19FWNR10WG was a field duplicate of sample 19FWNR09WG

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

○ Yes • No Comments:

All detected analytes and contaminants of concern (detected and not detected) are shown in the tables below. In the case where a result was non-detect, the LOD was used for RPD calculation purposes. The non-detect results are identified with "ND" and the LOD in brackets. In the event that both results are less than the LOQ (i.e., J-flagged or non-detect), the RPD was calculated but the comparison criterion is not applicable, per the Postwide UFP-QAPP.

All (applicable) results for field duplicate sample pair 19FWNR09WG/19FWNR10WG were comparable (RPD ≤ 30%) except GRO (38%), 2-butanone (79%), and naphthalene (83%). Consequently, the results of the aforementioned analytes for the duplicate pair were qualified (J) as estimates due to imprecision. The affected GRO and 2-butanone data are more than one order of magnitude less than the ADEC CUL. Moreover, GRO has not exceeded the CUL in this well (AP-9459) since 2009. Naphthalene imprecision may be due to matrix interference as suggested by the MSD recovery exceedance. Naphthalene marginally exceeded the ADEC CUL in both the spring and fall 2019 sampling events.

Analyte	Method	Units	19FWNR09WG AP-9459 Primary	19FWNR10WG AP-8080 Field Duplicate	RPD, %	Comparison Criteria Met?
Gasoline Range Organics	AK101	μg/L	73.6 [50] J	108 [50]	38	No
Diesel Range Organics	AK102SV	μg/L	445 [278] J	375 [283] J	17	Not Applicable
Sulfate	E300.0	μg/L	28000 [200]	28100 [200]	6	Yes
Iron	SW6020A	μg/L	3990 [125]	3760 [125]	12	Yes
Manganese	SW6020A	μg/L	2820 [0.500]	2500 [0.500]	0	Yes
1,2,4-Trimethylbenzene	SW8260C	μg/L	1.73 [0.500]	1.88 [0.500]	8	Yes
1,3,5-Trimethylbenzene	SW8260C	μg/L	2.68 [0.500]	2.57 [0.500]	4	Yes
2-Butanone	SW8260C	μg/L	ND [5.00]	11.5 [5.00]	79	No
Benzene	SW8260C	μg/L	0.86 [0.200]	0.82 [0.200]	5	Yes
Chloromethane	SW8260C	μg/L	ND [0.500]	0.35 [0.500] J	35	Not Applicable
Ethylbenzene	SW8260C	μg/L	0.36 [0.500] J	0.36 [0.500] J	0	Not Applicable
Naphthalene	SW8260C	μg/L	0.72 [0.500] J,J+	1.74 [0.500] J+	83	No
Trichlorofluoromethane	SW8260C	μg/L	0.58 [0.500] J	0.49 [0.500] J	17	Not Applicable

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

~		1
V 00	60111	above.
1700	UCIII	and ve.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

• Yes ONo ONot Applicable

Equipment blank sample 19FW2PEB04WQ was included in this work order to assess the potential for cross-contamination of the submersible pump. All samples in this work order were collected with a submersible pump.

i. All results less than LOQ?

• Yes • No Comments:

O-Xylene and m,p-xylene were detected in the equipment blank sample at concentrations above the LOQ and DRO, 4-methyl-2-pentanone, ethylbenzene, and toluene were detected at concentrations less than the LOQ.

ii. If above LOQ, what samples are affected?

Comments:

The DRO detected in the equipment blank sample may be due to laboratory cross-contamination as indicated by a similar detection in the associated method blank sample. No additional qualifiers were applied. 4-Methyl-2-pentanone was not detected in any project sample so no data were impacted.

Ethylbenzene, toluene, o-xylene, m,p-xylene, and total xylene were detected in the Neely Road samples listed below at concentrations within five time that of the equipment blank. Consequently, these results were qualified (B) as potential pump cross-contamination. Impact to the project was negligible as the affected data were less than the ADEC CUL.

- Ethylbenzene: 19FWNR09WG, 19FWNR10WG
- Toluene: 19FWNR07WG, 19FWNR08WG, 19FWNR11WG
- o-Xylene: 19FWNR07WG, 19FWNR08WG
- m,p-Xylene: 19FWNR08WGtotal Xylenes: 19FWNR08WG
 - iii. Data quality or usability affected?

Comments:

See 6fi above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

○ Yes • No Comments:

No other data flags/qualifiers were used.

APPENDIX C

GROUNDWATER SAMPLING FORMS, FIELD BOOKS, AND FIELD PARAMETER SUMMARY

Table C-1. Two-Party Sites Groundwater Sample Field Measurements

					Field Measurements									
Well ID	Sample ID	Sample Date	Sample Time	Pump Type	Water Depth ¹ (feet btoc)	Water Table Within Well Screen Interval (Y/N)	Drawdown ² (feet)	Temp (°C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Well Stabilized ³ (Y/N)
DRMO Yard														
19FWDY01WG	PI-3	6/19/19	1055	Submersible	11.31	Υ	0.01	4.92	0.489	2.06	6.16	-16.7	24.71	Υ
19FWDY02WG	MP-4	6/19/19	1210	Submersible	8.97	Υ	0.00	6.44	0.458	1.61	6.63	-88.8	2.16	Υ
19FWDY03WG	AP-5826	6/19/19	1315	Submersible	10.23	Υ	0.00	7.54	0.352	1.46	6.62	-19.5	4.28	Υ
19FWDY05WG	AP-6806	6/19/19	1425	Submersible	11.33	Υ	0.01	5.12	0.489	2.52	6.68	-63.8	5.19	Υ
19FWDY06WG	AP-7346	6/19/19	1520	Submersible	8.21	Υ	0.00	5.75	0.387	1.92	6.77	-10.0	3.72	Υ
19FWDY08WG	AP-7348	6/20/19	1220	Submersible	10.29	Υ	0.00	7.63	0.665	0.49	6.17	-101.1	6.82	Υ
Neely Road														
19FWNR01WG	AP-9684	6/24/19	1100	Submersible	18.31	Υ	0.00	10.82	0.908	0.6	6.27	-92.8	6.58	Υ
19FWNR02WG	AP-9459	6/24/19	1215	Submersible	17.22	Υ	0.00	17.15	0.841	0.42	6.68	-101.9	6.12	Υ
19FWNR04WG	AP-9003	6/24/19	1340	Submersible	19.25	Υ	0.00	7.92	1.17	0.68	6.26	-59.5	5.44	Υ
19FWNR05WG	AP-8211	6/24/19	1500	Submersible	18.07	Y	0.00	8.6	1.156	0.53	6.25	-37.5	19.59	Υ
19FWNR06WG	AP-9685	6/24/19	1630	Submersible	14.33	Y	0.00	12.03	0.842	2.2	6.58	17.1	4.29	Υ
19FWNR07WG	AP-8211	9/1/19	955	Submersible	15.35	Y	0.00	9.32	0.936	0.57	6.38	-44.8	10.98	Υ
19FWNR08WG	AP-9003	9/1/19	1100	Submersible	16.51	Y	0.01	8.55	1.02	0.77	6.87	45.0	4.00	Υ
19FWNR09WG	AP-9459	9/1/19	1150	Submersible	14.48	Y	0.01	17.45	0.778	0.37	6.82	-85.0	3.96	Υ
19FWNR11WG	AP-9684	9/1/19	1245	Submersible	15.58	Y	0.01	12.76	0.995	0.55	6.77	-80.1	5.62	Υ
19FWNR12WG	AP-9685	9/1/19	1420	Submersible	11.55	N	0.01	9.62	0.89	1.82	6.93	62.0	4.90	Υ
Former Building	1168													
19FW6801WG	AP-5751	6/19/19	1635	Submersible	17.58	Y	0.00	5.25	0.715	1.50	6.25	84.6	4.73	Υ
19FW6802WG	AP-6809	6/19/19	1740	Submersible	17.43	Y	0.02	5.68	0.73	0.73	6.18	46	32.12	Υ
19FW6803WG	AP-10037MW	6/20/19	1000	Submersible	18.67	Y	0.00	5.23	0.824	0.62	6.49	-83.6	11.42	Υ
Former Building	2250													
19FW2201WG	AP-7153	6/19/19	1120	Submersible	11.18	N	0.00	4.25	0.511	0.57	6.30	-94.8	6.28	Υ
19FW2202WG	AP-5976	6/19/19	1250	Submersible	15.97	Υ	0.00	3.52	0.435	0.34	6.33	-115.1	38.19	Υ
19FW2204WG	AP-7151	6/19/19	1440	Submersible	15.28	N	0.00	4.52	0.536	0.53	6.47	-100	10.66	Υ
Former Building	3564	•												
19FW6401WG	MW3564-1	6/21/19	1050	Submersible	18.65	Y	0.00	14.94	0.84	0.87	7.05	-32.6	11.71	Υ
19FW6402WG	AP-7191	6/21/19	1205	Submersible	17.53	Υ	0.00	7.17	0.903	0.49	6.62	-150	3.29	Υ
19FW6404WG	AP-7189	6/24/19	1100	Submersible	17.02	Y	?	7.62	0.789	2.55	6.41	-102.1	5.98	Υ
19FW6405WG	AP-7183	6/24/19	1320	Submersible	17.91	Y	0.01	9.44	0.961	1.78	6.74	75.3	3.96	Υ
19FW6406WG	AP-7178	6/24/19	1500	Submersible	14.49	Y	0.01	6.32	0.788	0.9	6.34	-61.2	13.29	Υ
19FW6407WG	AP-6729	6/24/19	1550	Submersible	18.43	Y	0.00	7.49	0.858	0.79	6.79	-133.6	6.27	Υ
	AP-7187	6/21/19				Well found damaged	(broken below o	round surf	ace) and could no	t be sampl	ed			
Former Building	5110													
19FW5101WG	AP-5737	6/26/19	1010	Submersible	8.70	Y	0.00	7.18	0.292	0.79	5.98	22.6	11.52	Υ
19FW5103WG	AP-5738	6/26/19	1115	Submersible	10.23	Y	0.01	5.38	0.418	0.91	6.46	-72.8	14.16	Y
19FW5104WG	AP-5918R	6/26/19	1215	Submersible	8.73	N	0.00	3.33	0.430	0.80	6.58	-44.4	1.16	Υ

Notes:

mg/L - milligrams per liter

Acronyms

mS/cm - millisiemens per centimeter mV - millivolts NTU - Nephelometric turbidity units ORP - oxidation reduction potential

¹ Water depth shown was measured on the date shown prior to removing purge water

² Drawdown measured during the last three readings

³ Stabilization parameters described in the ADEC Field Sampling Guidance (ADEC, 2017). Impact to data quality is discussed in the CDQR.

GROUNDWAT	ER SAMPLE	FORM	DRMO	O YARD Ft. Wainwright, A					
roject #:	901	1-22		Site Location:	DRMO1 / DRM	O2 (Bldg 5010)	DRM05		
Date:	6/19	1/19		Probe/Well #:	PI	- 3			
Time:	10	55	<u>.</u>	Sample ID:	19FWDY 01	WG			
Sampler:	C)	3	-0		1-11	_			
Weather:	PARTLY	CLOVD	7	Outside Temperature: 670F					
QA/QC Sample ID/	Time/LOCID:	-					MS/MSD Performed	? Yes/(lo	
Purge Method:	Peristaltic Pump / S	ubmersible / Bladde	4	Sample Method:	Peristaltic Pum		Hydrasleeve / Bladd	er / Other	
Equipment Used fo	r Sampling:	YSI#	Turbidity Meter #:/	5	Water Level:_	BYE	2		
Free Product Obse	rved in Probe/Wel	1? Yes/No	If Yes, Depth to Produc	t:				111	
Column of Water in	Probe/Well	10.		Sampling Depth	CHEE	VED	INIEK	ITTL	
Total Depth in Probe	/Well (feet btoc):	18	95	Well Screened Across	Below water	table	UNK UNK	Non	
Depth to Water from	TOC (feet):	- 11.	31	Depth tubing / pump into	ake set* approx.	5,6 10	et below top of casing	4550	
Column of Water in	Probe/Well (feet):	= 7	.64	*Tubing/pump intake must	be set approximate	ely 2 feet below the	water table for wells scr	eened across	
Circle: Gallons per	oot of 1.25" (X 0.06	64) or 2" (X 0.163) o	r (X 0.65)	the water table, or in the mi	iddle of the screen	ed interval for wells	screened below the wat	ter table 5	
Volume of Water in	1 Probe/Well Casin	g (gal):	4.9	7, 1-1					
Micropurge well/pr	obe at a rate of 0.0	03 to 0.15 GPM unt	il parameters stabilize or	3 casing volumes have	e been removed	. If well draws	down below tubing	or pump intake	
		eld well using a no	The Court of the Control of the Cont			* 11Y 11			
			Atl	east 3 of the 5 para	meters below	must stabiliz	е	10	
		±3%		±10%			±10%	<0,33 feet after initial	
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown	
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	РH	Potential (mV)	Turbidity (NTU)	Water Level (ft)	
1.3	10	5.08	0.491	4.63	5.99	- 7.5	166.5	11.36	
195	15	5.02	0 490	296	10.10	-102	101.2	11.38	
26	20	4.93	D. UGD	2 111	6.13	-128	69.92	11.38	
3.75	25	4.90	0.489	2.07	10.15	-15 8	47.58	11.38	
39	30	4.93	0.489	2.10	1.15	-155	26.29	11.38	
4.55	35	4.62	10 444	2.08	6.15	-16.0	23.08	11.38	
5.2	40	2.62	0.489	2.06	1.16	-16.7	24.71	11.39	
5.5	FIN	ni	10701	2 00	4.10	4/	1-11	11.07	
0.0	1710	11/				A SECTION			
							-		
		,							
			UB					-	
			00						
			o, why not?						
Did groundwater p	-		, why hour						
Did drawdown stal				and m	11 -	-, , , , -			
Was flowrate betw	-	,	f no, why not?	7 ORM		INT			
Water Color:	glear	Yellow	Orange		Black (Sand/Silt)	Other:	s h	Λ	
	Lock N N		with LOC ID(Y) N	Comments	WEL	L BR	OKEN	BG-5 -	
Well Condition:		Odor: Yes No		Notes/Comments	ING	8 PC	IMP.	3 01	
Well Condition: Sheen: Yes / No				/ - /1					
- 0	es (Circle):	VOC. DROPRISSO	lved Iren, Sulfate	1 10	78	4			

Project #: Date; Time: Sampler:	6/19	11-22		Site Location: Probe/Well #:	DRMO / DRM	O2 (Bldg 5010) /	DRM05			
Time:	6/19	119		Probativati #	/1					
-	121	The second second		Frobe/vveii #.	MP-	4				
Sampler:	4	0		Sample ID:	19FWDY 0Z	WG				
	CB				100	=				
Weather:	PARTLY	LOVE	4	Outside Temperature:	6701			- 2		
QA/QC Sample ID/T	ime/LOCID:			MS/MSD Performed? Yes/ No						
Purge Method: P	eristaltic Pump / §	Cubmersible / Bladder		Sample Method:	Peristaltic Pum	p / Submersible	Hydrasleeve / Bladd	er / Other		
Equipment Used for	r Sampling:	YSI#_6_	Turbidity Meter #:/	3	Water Level:_	BYE	2			
Free Product Obser	ved in Probe/We	II? Yes/No	If Yes, Depth to Produ							
Column of Water in	Probe/Well			Sampling Depth	CREET	VED I	NTERV	AL UI		
Total Depth in Probe	/Well (feet bloc):	14-	55	Well Screened Across	A Below water I	able		ASSU		
Depth to Water from	TOC (feet):	8.9	7	Depth tubing / pump into			et below top of casing			
Column of Water in F	Probe/Well (feet):	= 5.0	58	*Tubing/pump intake must	be set approximate	ly 2 feet below the	water table for wells scr	eened across		
Circle: Gallons per fe	oot of 1.25" (X 0.00	64) or 27 (X 0.163) or		the water table, or in the m	iddle of the screene	ed interval for wells	screened below the wa			
Volume of Water in 1	Probe/Well Casin	ng (gal):	0.96							
Micropurge well/pro	be at a rate of 0.	03 to 0.15 GPM until	parameters stabilize o	r 3 casing volumes hav	e been removed	. If well draws	down below tubing	or pump intake,		
		eld well using a no-p				- A				
			At	least 3 of the 5 para	meters below	must stabiliz	е	<0,33 feet		
		±3%		±10%			±10%	after initial		
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown		
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	pН	Potential (mV)	Turbidity (NTU)	Water Level (ft)		
1.5	10	638	0.458	1.90	6.57	-60.1	6 77	9.00		
2.25	15	6.50	0.459	1.85	6.62	-76.5	5.01	9.00		
3	20	6.900	0.459	1.76	444	-80.1	3.97	9.00		
375	25	6.45	0.459	1.66	4.64	-83.4	2.59	9.01		
4.5	30	6.47	0.459	1.63	6.64	- 855	2 52	9.01		
5.25	35	6.44	0.458	1.61	6.63	-88.8	2.16	9.01		
5.5	FINA	2		10 000						
		/								
								1		
		6	3					46-7-6-2		
		3								
Did groundwater pa	rameters stabiliz	rea Yes / No If no.	why not?							
Did drawdown stab										
Was flowrate between	_	_	io, why not?							
Water Color:	Clear	Yellow	Orange	Brown/	Black (Sand/Sitt)	Other				
Well Condition:	Lock: N		h LOCIDO/N	Comments	And the second					
Sheen: Yes / No	LUCIA	Odor: Yes / No	12001010711	Notes/Comments						
Laboratory Analysi	es (Circle):	VOC. PRO DISSOIVE	ed fron, Sulfate							
Laboratory Analyses (Circle): VOC. PRO Dissolved fron, Sulfate PH checked of samples: D/N Approximate volume added (mL)			e volume added (mL):	HCI= & HNO	· 0					

GROUNDWAT	ER SAMPLE	FORM	DRMO	YARD			Ft. Wainw	right, Alasi
Project #:	901	11-22		Site Location:	DRMO1/DRM	1O2 (Bldg 5010)	DRM05	
Date:	6/10	1/19		Probe/Well #:	AP	-582	26	
ime:	13	15		Sample ID:	19FWDY 0 3	3 wg		
Sampler:	US	,				-		
Weather:	MOST	Y SUNI	vy	Outside Temperature:	720	+		
QA/QC Sample ID/1	Fime/LOCID: / 6	FWDYO	446/13	30/41	- 404	10	MS/MSD Performed	? (Fes) No
Purge Method:	Peristaltic Pump (S	Submersible / Bladder		Sample Method:	Peristaltic Pum	p / Submersible	/ Hydrasleeve / Bladd	er / Other
quipment Used fo	r Sampling:	YSI# 6	Turbidity Meter #:/	3	Water Level:	BYE	2	
ree Product Obse	rved in Probe/We	II? Yes/No	f Yes, Depth to Produc	t:				
Column of Water in	Probe/Well	- N	244 944	Sampling Depth	10'	5010	EEN	
Total Depth in Probe	/Well (feet bloc):	1711	0	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	10.2	3	Depth tubing / pump into	ake set* approx.	12-2	eet below top of casing	9
Column of Water in I	Probe/Well (feet):	= 6.	87	*Tubing/pump intake must	be set approximate			
Volume of Water in 1	1 Probe/Well Casin		1.12	the water table, or in the mi				
top purging and s	ample as a low-yi	eld well using a no-p	E-Artor Paris	east 3 of the 5 para	meters helou	must stabiliz	•	
			AU	TO VINCION	matera below	must stabiliz	L Kiron	<0.33 feet
Field Parameters:		±3% (or ±0.2°C max)	±3%	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initia drawdowr
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	pН	Potential (mV)	Turbidity (NTU)	Water Leve
1.5	10	7.35	0.359	1.27	10.51	-7,5	22,17	10,39
2.25	15	7.52	0.354	1.32	6.57	-10.2	14.68	10.39
3	20	7.55	0.35.2	1.43	6.61	-12 D	10.96	in 29
3.75	ZG	254	0.357	1-42	6.12	-17.1	6.50	10.3
4.5	30	7.54	0.352	1.46	6.62	-19:5	4.28	10.39
E	FINI	12	0		,	1		1
				_				
				(B		1	1	
				- 72	-			
						-	7	
Did groundwater pa Did drawdown stab Was flowrate betwe	oilize? Yes/No	0	why not?					
Water Color:	Clear Lock: (3) / N	2	Orange LOC ID: ON	Comments		Other;		
Sheen: Yes / No		Odor: No		Notes/Comments				
aboratory Analyse	es (Circle):	VOC, DRO Dissolve	diron Sulfate	~	- 70			
oH checked of sam	ıples: ØN	Approximate	e volume added (mL):	HCI = HNQ	=_0			
Purge Water								

GROUNDWAT	ER SAMPLE	FORM	DRMC	YARD			Ft. Wainwr	ight, Alask
Project #:	90	11-22		Site Location:	DRMO1/DRM	O2 (Bldg 5010)	DRM05	
Date:	8/19	119		Probe/Well #:	HP	-080	6	
Time:	14	25		Sample ID:	19FWDY D	WG		
Sampler:	A. CI	3	4		7.11	=		
Weather:	PARTI	y chous)4	Outside Temperature:	1401			
QA/QC Sample ID/T	ime/LOCID:						MS/MSD Performed?	Yes/No
Purge Method: F	eristaltic Pump A	Sybmersible Bladder		Sample Method:	Peristaltic Pum	p / Submersible	/ Hydrasleeve / Bladde	r / Other
Equipment Used fo	r Sampling:	YSI# 6	Turbidity Meter #: /	3	Water Level:	YEZ		
Free Product Obse	TO STATE OF THE	11? Yes/N62	Yes, Depth to Produc	1:				
Column of Water in				Sampling Depth				
Total Depth in Probe	STATE AND ADDRESS.	20.	5/	Well Screened Across	/ Below water	table		
Depth to Water from		11.3	23	Depth tubing / pump int		122	eet below top of casing	
Column of Water in I	4.5	= 10	18	*Tubing/pump intake must				
		64) or 2((X 0.168) or 4	" (Y 0.65)	the water table, or in the m				
		(1.5	the water table, or in the in	nound of the screen	ed interval for well.	screened below the water	ai table
Volume of Water in 1	Probe/vveii Casii	ig (gai).	14)					
				3 casing volumes hav	e been removed	d. If well draws	down below tubing o	r pump intak
stop purging and s	ample as a low-y	leld well using a no-p			20 T T A	TT 2 X 1.6		
			At	least 3 of the 5 para	meters below	must stabiliz	е	<0.33 feet
		±3%	No.	±10%	54.00040	44-44	±10%	after initial
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	pН	Potential (mV)	Turbidity (NTU)	Water Leve (ft)
1.4	10	4-81	0-480	2,12	6-71	-421	15.78	11.38
2.1	15	4.90	0.488	2.37	4.71	-57.5	11.11	11.40
2.8	20	5-07	0.489	2-45	4.70	-606	9.37	11.40
3.5	25	5.16	0.490	2,52	1.70	-63.0	5.55	11.40
4.2	30	5,10	0.485	2,50	6.68	-64,0	5,29	11.40
4.9	35	5.12	0.489	2,52	6.68	-63.8	5,19	11.41
6	FIN	12	-					
1								
		, —						
				Ú12				
				- 6				
		de)	h	l.	-	-		
Did groundwater pa			why not?					
Did drawdown stab		()	1. 16					
Was flowrate between	0		o, why not?		_imports of the land	i water		_
Water Color:	Clear	Yellow	Orange		/Black (Sand/Silt)	Other:	-	
Well Condition:	Lock: Y/N	^	LOC ID: (Y/N	Comments				
Sheen: Yes / No		Odor: Keg / No		Notes/Comments	s:			
	Tar 803	0/	20					
	es (Circle):	VOC, DRO, Discolve	d Iron Sulfate	D	61			
Laboratory Analyse	0							
Laboratory Analyse pH checked of sam	ples: N	Approximat	e volume added (mL):	HCI = HNC	1=			
	ples: (V) N	Approximat	e volume added (mL):	HCI = HNC	=			

GROUNDWAT	ER SAMPLE	FORM	DRMO	YARD			Ft. Wainwr	ight, Alask	
Project #:	901	11-22		Site Location:	DRMO1 ADRM	102 (Bldg 5010)			
Date:	6/19	/19		Probe/Well #:	AP-7346				
lime:	15	20		Sample ID:	nple ID: 19FWDY 06WG				
Sampler:	U		11		2010	1	> V	oc.	
Weather:	PARTI	4 CLOV	04	Outside Temperature	140	-	7 0	NLY	
QA/QC Sample ID/1	Time/LOCID: /	GFUDYO	07W6/1	535/ A	P.50.	50	MS/MSD Performed	Yes/ No	
ourge Method:	Peristallic Pump / S	ubmersible / Bladder		Sample Method:	Peristaltic Pum	p / Submersible	Hydrasleeve / Bladde	r / Other	
Equipment Used for	1 - 1	,	Turbidity Meter #:/	3	Water Level:	YEZ.	prijajasioser biasa	T Galler	
ree Product Obse			f Yes, Depth to Produc	t	11401 20101				
Column of Water in		in resino	res, Depuiso Produc	Sampling Depth					
Total Depth in Probe	100 No. 70 . 19.	11.	71	Well Screened Acros	Relow water	table			
		82	11	Depth tubing / pump in			eet below top of casing		
Depth to Water from	77.01.00	3.	-						
Column of Water in				*Tubing/pump intake mus					
		64) or 2" (X 0.163) or 4	0.57	the water table, or in the n	middle of the screen	ed interval for wells	screened below the water	er table	
Volume of Water in	1 Probe/Well Casir	ig (gal):	0.51						
			parameters stabilize or	3 casing volumes have	ve been removed	d. If well draws	down below tubing o	r pump intake	
stop purging and s	ample as a low-yi	eld well using a no-p		72.500.7					
			At I	east 3 of the 5 para	ameters below	must stabiliz	е	<0.33 feet	
		±3%		±10%		3232	±10%	after initial	
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0,1 units	±10 mV	(<10NTU, ±1NTU)	drawdown	
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	рН	Potential	Turbidity	Water Leve	
(gal)	(min)	(°C)	(mS/cm)	(mg/L)	1 -2	(mV)	(NTU) 20-12	(ft)	
1.4	10	6.00	0.586	1.88	6-53	12	111 60	8.40	
2,1	15	5.85	0.386	1.88	6.62	0.1	14.78	8.40	
7-8	20	5,80	0.386	1.90	6.15	-56	10.05	8.40	
3.5	25	5.75	0.380	1.90	6.11	-6.7	61/9	8.47	
4.2	30	5.73	0.386	1416	6.11	-8.2	6.94	8.42	
4.9	35	5.75	0.381	1.92	6.11	-10.0	3,72	8.45	
5.5	FIN	10/2							
					1				
		-							
				-	6				
				U	\$				
						7			
Did groundwater p	arameters stabiliz	e?.Yes / No If no, v	why not?						
Did drawdown stat	bilize? Yes No	If no, why not?							
Was flowrate between	een 0.03 and 0.15	GPM? Yes/No If no	o, why not?						
Water Color:	Clear	Yellow	Orange	Brown	/Black (Sand/Silt)				
Well Condition:	Lock BIN	Labeled with	LOCIDOIN	Comment	s: BUA	K 51	HINIW	6 01	
Sheen: Yes / No	,	Odor: Yes/ No	HOUNT	Notes/Comment	s: TUE	INC			
			MOUNT	1					
	es (Circle): (VOC. PRO Dissolve	d Iron, Sulfate						
Laboratory Analys			THE RESERVE OF THE PARTY OF THE	1101 (A 1111)	1- A				
Laboratory Analys pH checked of san	nples: P/N	Approximate	e volume added (mL):	HCI = HNC	1				
	nples: Q/N	Approximate	e volume added (mL):	HCI= HNC	4				

GROUNDWAT	TER SAMPLE	FORM	DRMC	YARD			Ft. Wainwi	right, Alas
Project #:	90	11-22		Site Location:	DRMO1 DRM	IO2 (Bldg 5010)	DRM05	
Date:	6/2	0/19		Probe/Well #:	AP-7	348		
rime:	127	io .		Sample ID:	19FWDY 08	WG		
Sampler:		AS						
Veather:	P. Clo	ody		Outside Temperature:	750P			
QA/QC Sample ID/	Time/LOCID:	1-					MS/MSD Performed	Yes(No
ourge Method:	Peristaltic Pump	Submersible/ Bladder		Sample Method:	Peristaltic Pum	p / Submersible	Hydrasleeve / Bladde	er / Other
equipment Used fo	or Sampling:	YSI#9	Turbidity Meter #: 10	_	Water Level:_	Sulinist 15		
ree Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produc	at:				
Column of Water in	n Probe/Well			Sampling Depth				
otal Depth in Probe	e/Well (feet btoc):	15.40	2	Well Screened Across) Below water	table		
Depth to Water from	TOC (feet):	10.2	9	Depth tubing / pump into	ake set* approx.	12.3	eet below top of casing	
Column of Water in	Probe/Well (feet):	1273	3	*Tubing/pump intake must	be set approximate	ely 2 feet below the	water table for wells scre	ened across
Circle: Gallons per	foot of 1.25" (X 0.0	64) of 2" (X 0.163) or	4" (X 0.65)	the water table, or in the m	iddle of the screen	ed interval for well	s screened below the wat	er table
Volume of Water in	1 Probe/Well Casir	ng (gal):	0.83					
	7 21 221 24		2 1 - 1 - 1 - 1 - 1		2.45 1.550.5			CO. 201
		ield well using a no-p		r 3 casing volumes have	e been removed	I. If well draws	down below tubing o	r pump inta
			At	least 3 of the 5 para	meters below	must stabiliz	e	1130
		±3%		±10%			±10%	<0.33 fee after initia
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdow
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	рН	Potential (mV)	Turbidity (NTU)	Water Lev (ft)
1.5	15	7.72	0.663	0.64	6.31	-100.9	14.46	10.39
2.0	20	7.61	0.659	0.52	6.26	-99.0	9.80	10.39
2.5	25	7.65	0.666	0.47	6.22	-100.2	8.14	10.30
3.0	30	7.67	0.663	0.48	6.19	-100,7	7.06	10.39
3.5	35	7.63	0,665	0.49	6.17	-101.1	6.82	10.3
	105.57							7
								1
		- 1						11/
4						V	/	1/
				*				V _
Did groundwater p	arameters stabiliz	te? Yes / No If no.	why not?					
Did drawdown stat	bilize? Yes / No	If no, why not?						
Was flowrate between	een 0.03 and 0.15	GPM? Yes/No If n	io, why not?					
Water Color:	Clear	Yellow	Orange	Brown/	Black (Sand/Silt)	Other:		
Well Condition:	Lock Y/N	Labeled wit	LOCID: Y (N)	Comments	Adde	d new	bolt & I	٥
Sheen: Yes / No		Odor: Yes No		Notes/Comments				
		~	ad lean Culfete					-
Laboratory Analys	es (Circle):	VOC, DRO, Dissolve	d Iron, Sullate					
Laboratory Analys		VOC, DRO, Dissolve	te volume added (mL):	HCI = HNQ	-			
H checked of san				HCI = HNQ	-			
		Approximat		HOI - HNO	If No, why not?			

# ±3%	
Sample ID: 19FVNR 0 WG ampler: A5 feather: (U J ely	
Agreement Seampler: As Seample ID/Time/LOCID: Yellow - clip MS/MSD Performed? Yes with the season of	
Outside Temperature: LS*F ANORC Sample ID/Time/LOCID: Urge Method: Peristaltic Pump (Submersible) Bladder Quipment Used for Sampling: YSI# 9 Turbidity Meter #: 4/4 Water Level: Pdd 50/1/4/5# Tree Product Observed in Probe/Well? Yes/No Outside Temperature: LS*F MS/MSD Performed? Yes May May Depth Used for Sampling: YSI# 9 Turbidity Meter #: 4/4 Water Level: Pdd 50/1/4/5# Tree Product Observed in Probe/Well? Yes/No Outside Temperature: LS*F MS/MSD Performed? Yes Ms/MSD Performed? Ms/	
ACC Sample ID/Time/LOCID: ACC Sample ID/Time/LOCID: ACC	
ACC Sample ID/Time/LOCID: ACC Sample ID/Time/LOCID: ACC	
urge Method: Peristaltic Pump (Submersible) Bladder Sample Method: Peristaltic Pump (Submersible) Hydrasleeve / Bladder / O	her
ree Product Observed in Probe/Well? Yes No. 1 If Yes, Depth to Product: Sampling Depth Sampling Depth	
If Yes, Depth to Product: Sampling Depth Sampling Depth	
olumn of Water in Probe/Well (feet bloc): 24.73 Well Screened Across / Below water table Depth tubing / pump intake set* approx	
well Screened Across / Below water table peth to Water from TOC (feet):	
Depth tubing / pump intake set* approx. 20.3 feet below top of casing olumn of Water in Probe/Well (feet): =	
olumn of Water in Probe/Well (feet): =	
tircle: Gallons per foot of 1.25" (X 0.064) of 2" (X 0.163) or 4" (X 0.65) the water table, or in the middle of the screened interval for wells screened below the water table followed of Water in 1 Probe/Well Casing (gal):	across
licropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pur top purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize ### ### ### ### ### ### ### ### #### ### ### ####	
licropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or purtop purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize ### ### ### ### ### ### #### #### ##	
At least 3 of the 5 parameters below must stabilize 10%	
At least 3 of the 5 parameters below must stabilize ### ### ### ### ### ### ### ### ### #	np intake,
# ±10% ±10% ±10 mV ±10 mV (<10NTU, ±10TU) dr. Water Removed Time Purged Temperature Conductivity Dissolved O ₂ pH Potential Turbidity Water Removed (gal) (min) (°C) (mS/cm) (mg/L) (mV) (NTU) 1. 5 5 70,72 0,903 1,30 6.35 -74.1 7.17 (1.20 1	
Feld Parameters: (or ±0.2°C max) ±3% (<1mg/L, ±0.2 mg/L) ±0.1 units ±10 mV (<10NTU, ±1NTU) draw	0.33 feet
(gal) (min) (°C) (mS/cm) (mg/L) (mV) (NTU) 1.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ter initial awdown
1.5 15 10,72 0.903 1.30 6.35 -74.1 7.17 1	ater Level
	(ft)
70 20 1020 0000 001 101 -010 200	8.39
	2.39
2.5 25 10.80 0.903 0.61 6.21 -86.5 6.85 18	7.39
	8.39
3.5 35 10.82 0.908 0.60 6.27 -92.8 6.58 1	8.39
	7
	1
)
d groundwater parameters stabilize Yes/ No If no, why not?	

ROUNDWAT	ER SAMPLE	FORM	NEELY	ROAD			Ft. Wainwr	ight, Alask
Project #:		11-22		Site Location:		ormer Building 3	570)	
Date:	96/24	1/19		Probe/Well #:	AP-	9459		
Time:	1215			Sample ID:	19FWNR 0 2	L WG		
Sampler:	45		2		65°F			
Weather:	P. Cloud		1.5	Outside Temperature:	621			
QA/QC Sample ID/	rime/LOCID:	19FUNRO	3 WG/1230/ A	P-8080	5m4	C1:P	MS/MSD Performed	Yes/ No
Purge Method:	Peristaltic Pump (Submersible / Bladde	r	Sample Method:	Peristaltic Pum	y Submersible	/ Hydrasleeve / Bladde	er / Other
quipment Used fo	or Sampling:	YSI#_9_	Turbidity Meter #:		Water Level:_	Solialst 15	5	
ree Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produc	et:				
Column of Water in	Probe/Well			Sampling Depth				
otal Depth in Probe	e/Well (feet btoc):	22,74		Well Screened Across				
Depth to Water from	TOC (feet):	- 17.22		Depth tubing / pump inta	ke set* approx.	19.2	eet below top of casing	
Column of Water in	Probe/Well (feet):	= !	5.52	*Tubing/pump intake must b	e set approximate	ely 2 feet below the	water table for wells scre	ened across
Circle: Gallons per t	foot of 1.25" (X 0.0	64) or 2" (X 0.163) o	and the second s	the water table, or in the mid	ddle of the screen	ed interval for well	s screened below the wat	er table
Volume of Water in	1 Probe/Well Casir	ng (gal):	0.90	2				
Micropurge well/pr	obe at a rate of 0.	03 to 0.15 GPM unti	il parameters stabilize o	r 3 casing volumes have	been removed	i. If well draws	down below tubing o	r pump intake
		ield well using a no						- Contraction
			At	least 3 of the 5 parar	meters below	must stabiliz	re	<0.33 feet
		±3%	1.0	±10%			±10%	after initial
Field Parameters:	Commission of	(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	рH	Potential (mV)	Turbidity (NTU)	Water Level (ft)
1.5	15	16,79	0.852	0,45	6.67	-91.6	8.98	17.28
2.0	20	16.90	0.851	0.42	6.67	-95.8	15,05	17.28
2.5	25	17,05	0.847	0,41	6.67	-988	9.98	17.28
3.0	30	1210	0.844	6,42	1.68	-100.8	7.05	17.28
3.5	35	17.15	0,841	0.42	6,68	-101.9	6.12	17.28
32					5=1			
				2				
		171		3		=	ابنو	-y
		1		1				1
Did groundwater p	arameters stabiliz	ze? Yes / No If no	, why not?					
Did drawdown stal	- A							
Was flowrate betw			no, why not?					
Water Color:	(Clear)	Yellow	Orange	Brown/E	Black (Sand/Silt)	Other:	silt on i	nitial p
Well Condition:	Lock Y/N		ith LOC ID: N/N	Comments	0 .	200000000000000000000000000000000000000		
Sheen: Yes / No		Odor: Yes / No		Notes/Comments:				
1327		7,10						
Laboratory Analys	es (Circle):	VOC, GRO. DRO.	Dissolved Iron/Manganes	e, Sulfate				
			ate volume added (mL):					
50.60000 1950		- Phi oviiii						
pH checked of san	127.5							
	E =	Contribution	disposed as IDW/Yes / N	No.	If No, why not			

ROUNDWA	TER SAMPLE	FORM	NEEL	Y ROAD			Ft. Wainwr	ight, Alasi
roject #:	90	11-22		Site Location:	Neely Road (F	ormer Building 3	570)	
ate:	6/74	/19		Probe/Well #:	AI	1-9003		
ime:	1340			Sample ID:	19FWNR 0	WG		
ampler:	15			20 5000				
Veather:	P. Clou	du		Outside Temperature:	65°F			
A/QC Sample ID/	- TOWNER	7		Saleton (suite (suite)	villau	clip	MS/MSD Performed?	Yes/No
urge Method:	Peristaltic Pump (Submersible y Bladder		Sample Method:) Hydrasleeve / Bladde	r / Other
quipment Used fo		^		4		Solinist 15		27. 2.07.1
ree Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produ	uct:				
column of Water in	Probe/Well	-		Sampling Depth				
otal Depth in Probe	e/Well (feet btoc):	22.25		Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	. 19.25	-	Depth tubing / pump inta	ake set* approx.	21.25	eet below top of casing	
Column of Water in	Probe/Well (feet):	= 3.0		*Tubing/pump intake must t	ne set approximat	ely 2 feet below the	water table for wells scre	ened across
	obe at a rate of 0.			or 3 casing volumes have	been remove	d. If well draws	down below tubing o	r pump intal
			A	t least 3 of the 5 parar	meters below	v must stabiliz	e	1 7
		±3%		±10%		-/	±10%	<0.33 fee after initia
ield Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdow
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Lev
(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
1.5	15	8.43	1.165	1.17	6.32	-54.5	17.56	19,35
2,0	20	7.89	1,174	0.81	6.26	-56.2	14.09	19.35
2.5	25	7.95	1.168	10.71	6.26	-57.6	2.23	19.35
3.0	30	7.90	1.132	0.71	6.23	- 56.7	5.15	19.35
3,5	35	7.92	1:170	0.68	6.26	-59,5	5,44	19.35
							2	
							/	>-
		=			\			
								000
		28	20.00					
Lee as any		If no, why not?	why not?					
old drawdown stal			Orange)		Black (Sand/Silt) Other:		
old drawdown stal	Clear	Yellow						
old drawdown stal Vas flowrate betw Vater Color:		Labeled wi	th LOC ID: (Y) N	Comments				
old drawdown stal Vas flowrate betw Vater Color: Vell Condition:	Clear		th LOC ID:(Ŷ) N	Notes/Comments:				
Did groundwater p Did drawdown stal Vas flowrate betw Vater Color: Vell Condition: Sheen: Yes / No	Clear Lock V N	Labeled wi	th LOC ID: (Y) N Dissolved Iron/Mangane	Notes/Comments:				
Old drawdown stal Vas flowrate betw Vater Color: Vell Condition: Sheen: Yes / No	Clear Lock: Y N	Labeled wii Odor/Yes / No VOC, GRO, DRO, E		Notes/Comments:				

	NEE	LY ROAD			Ft. Wainwr	ight, Alaska
ect#: 9011-22		Site Location:	Neely Road (F	ormer Building 3	570)	
2/24/19		Probe/Well #:	AP-	8211		
1500		Sample ID:	19FWNR 0	WG		
pler: HS						
ther: P, Cloudy		Outside Temperature:	65°F			
QC Sample ID/Time/LOCID:			11	low clip	MS/MSD Performed?	Yes/No
e Method: Peristaltic Pump /(Submersible) Bladder		Sample Method:	Peristaltic Puri	p / Submersible	/ Hydrasieeve / Bladde	er / Other
pment Used for Sampling: YSI # 9	Turbidity Meter #:	14	Water Level:_	Solinist	5	
Product Observed in Probe/Well? Yes/No	If Yes, Depth to Prod	luct:				
mn of Water in Probe/Well		Sampling Depth				
Depth in Probe/Well (feet bloc): 21,92		Well Screened Across	/ Below water	table		
h to Water from TOC (feet):		Depth tubing / pump inta	ake set* approx.	20	eet below top of casing	P.
mn of Water in Probe/Well (feet): = 3,85		"Tubing/pump intake must l	be set approximat	ely 2 feet below the	water table for wells scre	eened across
e: Gallons per foot of 1.25" (X 0.064) of 2" (X 0.163) or	a was content.	the water table, or in the mi	ddle of the screen	ed interval for well	s screened below the wat	er table
me of Water in 1 Probe/Well Casing (gal):	0.63	-				
opurge well/probe at a rate of 0.03 to 0.15 GPM until	The second secon	or 3 casing volumes have	e been remove	d. If well draws	down below tubing o	r pump intake,
purging and sample as a low-yield well using a no-				20.00		2
	.A	It least 3 of the 5 para	meters below	must stabiliz	e	<0.33 feet
±3% d Parameters: (or ±0.2°C max)	±3%	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initial drawdown
ter Removed Time Purged Temperature	Conductivity	Dissolved O ₂	pН	Potential	Turbidity	Water Level
(gal) (min) (°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
1.5 15 8.56	1.199	0.90	6.34	50.0	34.29	18.44
2.0 20 8.87	1.179	0.67	6.34	17.6	29.65	18.44
2.5 25 8,63	1,175	0.66	6.30	-4.4	26.76	18.44
3.0 30 8.65	1,169	2.66	6.29	- 19.4	22,72	18.44
3.5 35 8,62	1.163	0.59	6.25	-28.6	20,53	18.44
4.0 40 8.60	1.156	0.53	6.75	-37,5	19,59	18.44
						1
			-		1	-63
					2 V	
		-				
						-
groundwater parameters stabilize? Yes / No If no,						

tate: 47.4 / 19 ProbeWell #: 57.6 # 5 Sample ID: 19FWNR 06 WG sampler: A5 A/GC Sample ID/Time/LOCID: 19FWNR 06 WG A/GC Sample ID/Time/Locid ID/T	GROUNDWAT	TER SAMPLE	FORM	NEEL	Y ROAD			Ft. Wainwi	right, Alas
Sample ID: 19FWNR 06 WG sampler: AS P. Clor of y Outside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Usside Temperature: 70 F Lift Clip MS/MSD Performed? Yes No Water Lovel: Solivar's f IS Well Screened Across / Below water table Depth tubing / pump intake set* approx. 16 3 feet below top of casing clumn of Water in Probe/Well (feet): 1/4.33 Depth tubing / pump intake must be set approxemately 2 feet below the water table for wells screened across. Incle: Gallons per fool of 1.25* (X 0.064) of (X 0.063) or 4* (X 0.65) Incorpurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump intake eld Parameters: At least 3 of the 5 parameters below must stabilize 13% 13% 13% 13% 13% 13% 13% 13	Project #:	901	11-22		Site Location:	Neely Road (Fe	ormer Building 3	3570)	
ampler: A S	ate:	6/24	/19		Probe/Well #:	117-9	685		
Outside Temperature: 70 F A/QC Sample ID/Time/LOCID: Little Clip MS/MSD Performed? Year No Iurge Method: Peristaltic Pump (Submersible) Bladder Sample Method: Peristaltic Pump (Submersible) Hydrasleeve / Bladder / Other apulpment Used for Sampling: VSI# 9 Turbidity Meter #: 14 Water Level: Solice's f 15 Turbidity Meter #: 14 Water Level: So	ime:	16	30		Sample ID:	19FWNR O	WG		
ACC Sample ID/Time/LOCID: Lift Cife MS/MSD Performed? Year No purge Method: Peristaltic Pump (Submersible) Bladder Sample Method: Peristaltic Pump (Submersible) Hydrasleeve / Bladder / Other quipment Used for Sampling: YSI # 9 Turbidity Meter #: 14 Water Level: Solin's + 15 water lable Depth tubing Depth water Level: Solin's + 15 water Lev	ampler:	AS							
ACC Sample ID/Time/LOCID: Comparison Co	Veather:	P. Clo	~dv		Outside Temperature:	70°F			
The proper Method: Peristaltic Pump (Submersible) Hydrasleeve / Bladder / Other Quipment Used for Sampling: YSI # 9 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Turbidity Meter #: 14 Water Level: Selice's f 15 Well Screened Across / Below water table Depth turbing / pump intake set* approximately 2 feet below top of casing obtained in the water table of the water table or in the middle of the screened interval for wells screened across the water table of water in 1 Probe/Well Casing (gal): In the water table, or in the middle of the screened interval for wells screened below the water table or in the middle of the screened interval for wells screened below the water table or purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At lea	A/QC Sample ID/	La 215 3 3 5 6 6				44	L chip	MS/MSD Performed	Yes/No
pulpment Used for Sampling: YSI # 9 Turbidity Meter #: 14 Water Level: Soliw 57 15 Tree Product Observed in Probe/Well? Yes No If Yes, Depth to Product: Sampling Depth Sampling Depth Well Screened Across / Below water table Depth tubing / pump intake set* approx. 16.3 feet below top of casing Probe/Well (feet): - 14.33 Depth tubing / pump intake set* approx. 16.3 feet below top of casing Probe/Well (feet): - 14.33 Depth tubing / pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set approx. 16.3 feet below top of casing Probe/Well (feet): - 14.33 Depth tubing / pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below the water table Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below the water table Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3 feet below top of casing Trubing/pump intake set* approx. 16.3	urge Method:	Peristaltic Pump (S	Submersible / Bladder		Sample Method:	V. S. 23 - 47		/ Hydrasleeve / Bladde	er / Other
column of Water in Probe/Well (feet bitos): 22.10 Well Screened Across / Below water table Depth tubing / pump intake set* approx. 16.3 feet below top of casing obtain of Water in Probe/Well (feet): 14.33 Depth tubing / pump intake set* approx. 16.3 feet below top of casing obtain of Water in Probe/Well (feet): 14.33 Depth tubing / pump intake set* approx. 16.3 feet below top of casing obtain of Water in Probe/Well (feet): 14.33 Depth tubing / pump intake set* approx. 16.3 feet below top of casing obtained of the screened interval for wells screened across the water table or in the middle of the screened interval for wells screened below the water table obtained of the screened interval for wells screened below the water table obtained of the screened interval for wells screened below the water table obtained of the screened interval for wells screened below the water table obtained of the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table obtained on the screened interval for wells screened below the water table of the screened interval for wells screened below the water table of the screened interval for wells screened below the water table of the screened interval for wells screened	The The Party		0	urbidity Meter #: 1		NO. 12.4			
olumn of Water in Probe/Well (feet btoc): 2 2 . 10 Well Screened Across / Below water table peth to Water from TOC (feet):	ree Product Obse	rved in Probe/We	II? Yes/No II	Yes, Depth to Produ	ct:				
total Depth in Probe/Well (feet bitoc): 22.10 Well Screened Across / Below water table pepth to Water from TOC (feet):	olumn of Water in	n Probe/Well		7.7.					
olumn of Water in Probe/Well (feet): = +.77 "Tubing/pump intake must be set approximately 2 feet below the water table for wells screened across the water table of the screened interval for wells screened across the water table of the screened interval for wells screened below the water table of	otal Depth in Prob	e/Well (feet btoc):	22.10			/ Below water	able		
olumn of Water in Probe/Well (feet): = +.77 "Tubing/pump intake must be set approximately 2 feet below the water table for wells screened across the water table of the screened interval for wells screened across the water table of the screened interval for wells screened below the water table of	Depth to Water from	TOC (feet):			Depth tubing / pump inta	ike set* approx.	16.3	feet below top of casing	i
the water table, or in the middle of the screened interval for wells screened below the water table oblume of Water in 1 Probe/Well Casing (gal): 1,27				7	*Tubing/pump intake must t	e set approximate	ely 2 feet below th	e water table for wells scre	eened across
At least 3 of the 5 parameters below must stabilize Conductivity Dissolved 02 pH Potential Turbidity Water Lew (gal) (min) (°C) (mS/cm) (mg/L) 2.0 2.0 2.0 11.73 0.835 3.25 6.68 32.3 9.92 14.46 3.0 3.0 3.0 3.0 12.03 0.836 2.33 0.64 22.8 4.39 14.46 3.5 3.5 3.5 3.5 12.05 0.840 2.30 6.62 20.0 4.71 M.46 4.40 4.40 4.40 3.5 3.5 3.5 12.05 0.840 2.30 6.62 20.0 4.71 M.46 3.5 3.5 3.5 3.5 3.5 0.642 20.0 4.71 M.46 3.5 3.5 3.5 3.5 3.5 3.5 0.642 20.0 4.71 M.46 3.5	Circle: Gallons per	foot of 1.25" (X 0.0	64) of 2" (X 0.163) or 4	" (X 0.65)					
At least 3 of the 5 parameters below must stabilize Conductivity Dissolved 02 pH Potential Turbidity Water Lev (gal) (min) (°C) (mS/cm) (mg/L) 2.0 2.0 2.0 11.73 0.835 3.25 2.5 12.0 0.837 2.76 0.64 26.7 7.50 14.46 3.5 3.5 3.5 3.5 12.05 0.840 2.30 6.62 20.0 4.74 14.46 3.5 3.5 3.5 12.05 0.840 2.30 6.62 20.0 4.74 14.46 3.5 3.5 3.5 12.05 0.840 2.30 6.62 20.0 4.74 14.46 3.5 3.5 3.5 12.05 0.840 2.30 6.62 20.0 4.74 14.46 3.5 3.5 3.5 3.5 0.642 20.0 4.74 4.46									
At least 3 of the 5 parameters below must stabilize \$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-	50 20 10 10 10 10 10 10 10 10 10 10 10 10 10					
10 10 10 10 10 10 10 10					or 3 casing volumes have	been removed	I, If well draws	down below tubing o	or pump intal
### ### ### ### ### ### ### ### ### ##			1 - 0	At	least 3 of the 5 parai	meters below	must stabiliz	ze	Proper.
(gal) (min) (°C) (mS/cm) (mg/L) (mV) (NTU) (f) 1.5 15 11.52 0.828 4.06 6.69 39.9 9.94 14.46 2.0 20 11.73 0.835 3.25 6.68 32.3 9.92 14.46 2.5 25 12.01 0.837 2.76 6.64 26.7 7.50 14.46 3.0 30 12.03 0.836 2.33 6.64 22.8 4.39 14.46 3.5 35 12.05 0.840 2.30 6.62 20.0 4.71 14.46	ield Parameters:		A TANK COMMITTEE OF THE PARTY O	±3%		±0.1 units	±10 mV		<0.33 fee after initia drawdow
1.5 15 11.52 0.828 4.06 6.69 39.9 9.94 14.46 2.0 20 11.73 0.835 3.25 6.68 32.3 9.92 14.46 2.5 25 12.01 0.837 2.76 6.64 26.7 7.50 14.46 3.0 30 12.03 0.836 2.33 6.64 22.8 4.39 14.46 3.5 35 12.05 0.840 2.30 6.62 20.0 4.71 14.46	Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Leve
2.0 20 11.73 0.835 3.25 6.68 32.3 9.92 14.46 2.5 25 12.01 0.837 2.76 0.64 26.7 7.50 14.46 3.0 30 12.03 0.836 2.33 6.64 22.8 4.39 14.46 3.5 35 12.05 0.840 2.30 6.62 20.0 4.71 14.46	(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
2.5 25 12.01 0.837 2.76 6.64 26.7 7.50 14.46 3.0 30 12.03 0.836 2.33 6.64 22.8 4.39 14.46 3.5 35 12.05 0.840 2.30 6.62 20.0 4.71 14.46	-	15	11.52	0.828	4.06	6.69	39.9	9,94	14.40
3.0 30 12.03 0.836 2.33 6.64 22.8 4.39 14.40 3.5 35 12.05 0.840 2.30 6.62 20.0 4.71 14.40	2.0	20	11.73	0,835	3,25	6.68	3Z,3	9.92	14,40
3.5 35 12.05 0.840 2.30 6.62 20.0 4.71 14.40	2.5	25	12.01	0.837	2.76	6.64	26.7	7.50	14.40
			12.03	0.836	2.33	6.64	ZZ.8	4.39	14.40
4.0 40 12.03 0.842 2,20 6.58 17.1 4.29 14.40	3.5	35	12.05	0.840	2.30	6.62		4.71	14.40
	4.0	40	12.03	0.842	2,20	6.58	17.1	4.24	14.40
				1				/	1
				-				10	-
				1			-	1	3
				-			-	1	
							- /	1	
id drawdown stabilize? Yes / No If no, why not?	as flowrate betw	een 0.03 and 0.15	GPM? Yes/No If no	o, why not?					
as flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not?	Vater Color:	Clear	Yellow	Orange	Brown/i	Black (Sand/Silt)	Other		
/as flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not?	Vell Condition:	Lock(Y) N	Labeled with	LOCID: YIN	Comments	Relat	rhed		
/as flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? /ater Color: Clear Yellow Orange Brown/Black (Sand/Silt) Other:			Odor: Yes (No)		Notes/Comments:				
/as flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? /ater Cotor: Clear Yellow Orange Brown/Black (Sand/Silt) Other: /ell Condition: Lock(Y) N Labeled with LOC ID: Y / N Comments: Lell 4 b - W d	heen: Yes/No		Voc one one o	ssolved Iron/Manganes	se. Sulfate				
/as flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? /ater Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other /ell Condition: Lock(Y) N Labeled with LOC ID: Y / N Comments: Lellor Lock heen: Yes / No Odor: Yes (No Notes/Comments:		es (Circle):	VOC, GRO, DRO, DE						
/as flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? /ater Cotor: Clear Yellow Orange Brown/Black (Sand/Silt) Others /ell Condition: Lock(Y) N Labeled with LOC ID: Y / N Comments: Let 4 b + W d		-				. ~			

GROUNDWAT	ER SAMPLE	FORM	NEELY	ROAD			Ft. Wainw	right, Alaska
Project #:	90	11-22		Site Location:	Neely Road (F	ormer Building 3	570)	
Date:	9/1	119		Probe/Well #:	AP-	8211		
Time:	00	155		Sample ID:	19FWNR D) WG		
Sampler: Weather:	PARTI	y CLOUL	SY/WIN	Outside Temperature:	51	OF		
QA/QC Sample ID/	Time/LOCID:						MS/MSD Performed	? Yes/160
Purge Method:	Peristaltic Pump / S	butmersible / Bladder	V	Sample Method:	Peristaltic Pun	p / Submersible	Hydrasieeve / Bladd	er / Other
Equipment Used for	or Sampling:	YSI#_9_	Turbidity Meter #:/	4	Water Level:	13		
Free Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produc	et:				
Column of Water in	Probe/Well	and the same of		Sampling Depth				
Total Depth in Probe	/Well (feet btoc):	22.0	21	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	. 15.3	5	Depth tubing / pump inta	ake set* approx.	16.3	eet below top of casing	g
Column of Water in	Probe/Well (feet):	= 6.6	6	*Tubing/pump intake must			water table for wells scr	reened across
Circle: Gallons per	foot of 1.25" (X 0.0	64) or 27 (X 0.163) or	4" (X 0.65)	the water table, or in the mi	ddle of the screen	ed interval for wells	s screened below the wa	ter table
Volume of Water in	1 Probe/Well Casir	ng (gal):	1.08					
				Y	TALL T SULLES		vii. 2 2 2 1 1 2 2	on Oxor
A contract the second second second second second		03 to 0.15 GPM until ield well using a no-p		r 3 casing volumes have	e been removed	d. If well draws	down below tubing o	or pump intake
		12 7 1	At	least 3 of the 5 para	meters below	must stabiliz	е	
				±10%			±10%	<0.33 feet after initial
Field Parameters:		±3% (or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed	Time Purged	Temperature (°C)	Conductivity	Dissolved O ₂	рH	Potential	Turbidity	Water Level
(gal)	(min)	9.09	(mS/cm)	(mg/L)	10	(mV)	(NTU)	(ft)
1.5	15	8 89	1 007	0.33	6.97	-17.2	28.14	15.37
2	20		h 997	0.55	Demonstration	-201	10 10	15.42
2.5	29	9.07	0.950	0.50	6.90	-371	12.92	15 72
3	30	9 25		1	6.40	-31.5	1270	15.42
		9.30	0.742	0.55	1.22	-421	10.21	15.119
3.5	35	9.32	0.636	0.53	1.38	-42.1	10.16	15 10
4.5	- 1 - 2	7.30	0 756	0.37	17.78	77.8	10.98	13.40
4.5	FIN	916				-		1100
	-6							
		/						
		68						
Did groundwater p	arameters stabiliz	ze? Yes /No If no,	why not?					
Did drawdown stal	bilize? Yes I No	If no, why not?						
Was flowrate betw	een 0.03 and 0.15	GPM? Yes/No If r	o, why not?					
Water Color:	(Clear)	Yellow	Orange	Brown/	Black (Sand/Silt	Other:		
Well Condition:	Lock: N/N	Labeled wit	h LOC ID: O/N	Comments				
Sheen: Yes / No		Odor: ves / No		Notes/Comments				
Laboratory Analys	es (Circle):	VOC, GRO, DRO, D	issolved Iron/Manganes	e, Sulfate				
pH checked of san	nples: NN		e volume added (mL):	7	=_0			
Purge Water	1							
	45	Contained and d	isposed as IDW? Fee / 1	No	If No, why not	,		
Gallons generated: Disposal method*: F	() The same of th			no the DERA Building for cha				
	TUL VVater / GERC	LA VVASIE	curue water stored in	WELLERA BUILDING FOR COL	aracienzadon Dr			

GROUNDWAT	TER SAMPLE	FORM	NEEL	Y ROAD			Ft. Wainwi	right, Alaska
Project #:	90	11-22		Site Location:	Neely Road (F	ormer Building 3	570)	1, 11
Date:	9/1	119		Probe/Well #:	40-	900	3	
Time:	11	60		Sample ID:	19FWNR D	3 wg		
Sampler:	C	13				-		
Weather:	PARTL	4 CLOU	04	Outside Temperature:	5301			
QA/QC Sample ID/	Time/LOCID:	4	/				MS/MSD Performed	Yes/No
Purge Method:	Peristaltic Pump / S	Submersible / Bladder		Sample Method:	Peristaltic Pun	np / Submersible	/ Hydrasleeve / Bladde	er / Other
Equipment Used for			Turbidity Meter #:	14	Water Level:	13		
Free Product Obse		A	f Yes, Depth to Produ	uct:				
Column of Water in	Probe/Well			Sampling Depth				
Total Depth in Probe	CARCON TOPS	22.3	5	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	16.5	-/	Depth tubing / pump inta	ake set* approx.	17.5	eet below top of casing	i
Column of Water in		- 5	84	*Tubing/pump intake must	be set approximat			
		64) or 2" (X 0.163) or 4	4" (X 0.65)	the water table, or in the mi				
Volume of Water in			0.95					
	200	2.5.						
		03 to 0.15 GPM until feld well using a no-p		or 3 casing volumes have	e been remove	d. If well draws	down below tubing of	or pump intake
				t least 3 of the 5 para	meters helov	v must stabilis	·e	
			7.0		motors solor	Thuck oldonia		<0.33 feet
Field Parameters:		±3% (or ±0.2°C max)	±3%	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initial drawdown
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pН	Potential	Turbidity	Water Level
(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
1	10	8.55	1.00h	1-22	7:00	53.0	20.19	16.60
1.5	15	8.60	1.009	10.85	6.89	42.1	10.12	16.63
2	20	8.57	1.015	10.81	6.87	45.5	7.02	16-63
2.5	25	8.52	1-018	0.83	6.81	47.8	3.98	16.63
3	30	8.55	1.020	10.77	6.87	45.1)	4.00	16.64
3.5	FIA	IAL			TOWN A	1		
		7						
							1	1
								-
	/							,
1	4	0						
1	- 0							
Did groundwater p	arameters stabiliz	ze? Yes No If no,	why not?					
Did drawdown stal	bilize? Yes / No	If no, why not?						
Was flowrate betw	een 0.03 and 0.15	GPM? (Pe)No If n	o, why not?	Le .				
Water Color:	Clear	Yellow	Orange	Brown/	Black (Sand/Silt) Other		
Well Condition:	Locky VIND	Labeled with	LOC ID O	Comments				
Sheen: Yes / No		Odor: Yes / No		Notes/Comments				
Laboratory Analys	ses (Circle):	VOC, GRO, DRO, D	issolved Iron/Mangane	se Sulfate				
pH checked of san	1 1 1 Ac.		e volume added (mL)		- 0			
Purge Water	7 -							
Gallons generated:	5.5	Containerized and d	isposed as IDW7 Yes	/ No	If No, why not	7		
Disposal method*: F	DOLAND OFFICE			the DERA Building for ch				
Sampler's Initials:	TR VIENCE	L. I TOOLS	unge maler stored if	Delivery for the		in to diaposi		

GROUNDWAT	TER SAMPLE	FORM	NEELY	ROAD			Ft. Wainw	right, Alaska
Project #:	901	1-22		Site Location:	Neely Road (F	ormer Building 35	570)	
Date:	9/1/	19		Probe/Well #:	AP	- 945	-9	
Time:	115	0		Sample ID:	19FWNR O	9 wg		
Sampler:	1150	5 CB						
Weather:	PARTLY	CLOVE	14	Outside Temperature:	550	F		
QA/QC Sample ID/	Time/LOCID: 10	FWNR	1000/	1205/	10-8	080	MS/MSD Performed	7 (es/ No
Purge Method:	Peristaltic Pump / &	ubmersible / Bladder		Sample Method:			Hydrasleeve / Bladd	er / Other
equipment Used for	or Sampling:	YSI# 9	Turbidity Meter #:	14	Water Level:_	13		
ree Product Obse	erved in Probe/Wel	1? Yes/No	f Yes, Depth to Produc	ot:				
Column of Water in	Probe/Well			Sampling Depth				
Total Depth in Probe	e/Well (feet btoc):	22.	82	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	. 14.4	18	Depth tubing / pump into	ake set* approx.	15.5	et below top of casing	1
Column of Water in	Probe/Well (feet):	- 8	34	*Tubing/pump intake must	be set approximat	ely 2 feet below the	water table for wells scr	eened across
Circle: Gallons per	foot of 1.25" (X 0.06	64) or 2" (x 0.163) or 4	" (X 0.65)	the water table, or in the m	iddle of the screen	ed interval for wells	screened below the wat	er table
Volume of Water in	1 Probe/Well Casing	g (gal):	1.4					
Mary 2011		25 4- 0 45 CDM		3 casing volumes have		d Herrell danser	dame balancia della a	a nome totales
		eld well using a no-p		r 3 casing volumes have	e peen remove	a. II well draws	down below tubing t	or pump make
			Ati	least 3 of the 5 para	meters below	must stabiliz	е	10 XX
		±3%		±10%			±10%	<0.33 feet after initial
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	pH	Potential (mV)	Turbidity (NTU)	Water Level
1.3	10	17.42	0.739	0.38	6.84	-77.9	13.50	14.55
1.95	15	17-48	0.752	0.39	683	-808	10.08	14.55
2.6	20	17.51	0.763	0.40	683	-81.0	7.69	14.55
3.25	25	17.58	0.775	0.39	4.82	-82.2	5.72	1455
3,9	30	17.51	0.776	0.40	682	-833	5.16	14 5
4.55	35	17:45	0.778	6.37	6.82	-85.0	3.96	1456
9	FINI	12					11.27.22.2	1
		1						
		4						
_	-							
	1							-
	OB							
Did groundwater p	parameters stabiliz	e? (es)/No If no,	why not?					
Did drawdown stal	bilize? Yes / No	If no, why not?						
Was flowrate betw	een 0.03 and 0.15	GPM? Yes/No If n	o, why not?					
Water Color:	Clear	Yellow	Orange	Brown/	Black (Sand/Silt	Other:		
Well Condition:	Lock: N N	Labeled with	LOC ID CY / N	Comments	:			
Sheen: Yes / No		Odor; Yes No		Notes/Comments	-			
Section Section	(0)1-1	Vinc one ppe p	issolved Iron/Manganes	- Cultura				
Laboratory Analys pH checked of san	(1)		e volume added (mL):	2	= 0			
1	inpies. UriN	Philorinida		HIVO				
Purge Water	9				SAR AD A			
Gallons generated:			sposed as IDW? Yes / I	No	If No, why not	?		
Disposal method*: I	POL Water / ČERCI	LA Waste	* Purge water stored in	the DERA Building for ch	aracterization pr	ior to disposal		

Project #: Date: Time: Sampler: Weather: QA/QC Sample ID/	9/11 121 CB MOSTER	11-22		Site Location: Probe/Well #:	Neely Road (Fo	ormer Building 3	570)	
Time: Sampler: Weather: QA/QC Sample ID/	-1/-	15		Probe/Well #:	AP-	91011		
Sampler: Veather: QA/QC Sample ID/	-1/-	15				1657		
Veather: QA/QC Sample ID/	-1/-			Sample ID:	19FWNR //	WG		
QA/QC Sample ID/	-1/-				1 .	-		
	Fime/I OCID:	y CLOUD	4	Outside Temperature:	60°F	-		
Purge Method:	imercocio.						MS/MSD Performed	? Yes/ 100
	Peristaltic Pump / S	ubmersible / Bladder		Sample Method:	Peristaltic Pum	p / Somersible	/ Hydrasleeve / Bladd	er / Other
quipment Used fo	or Sampling:	YSI# 9	Turbidity Meter #:_ 1	4	Water Level:_	13		
ree Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produc	st:				
Column of Water in	Probe/Well			Sampling Depth				
Total Depth in Probe	e/Well (feet bloc):	243	1	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	- 15.5	8	Depth tubing / pump into	ake set* approx	16.7	eet below top of casing	3
Column of Water in	Probe/Well (feet):	= 9:	23	*Tubing/pump intake must	be set approximate	ely 2 feet below the	water table for wells scr	eened across
Circle: Gallons per	foot of 1.25" (X 0.0	64) or 2" (X 0.163) or	4" (X 0.65)	the water table, or in the m	iddle of the screen	ed interval for well	screened below the war	ter table
Volume of Water in	1 Probe/Well Casin	ng (gal):	1.5					
Micronurna wall/ne	ohe at a rate of 0	03 to 0 15 GPM until	naramatore etabiliza o	r 3 casing volumes have	a baan removed	I If wall denue	down below tubing	ar numan latake
		eld well using a no-p		s casing volumes have	e been removed	i. If well draws	down below tubing t	or pump intake
			Att	least 3 of the 5 para	meters below	must stabiliz	e	150.00
		±3%		±10%			±10%	<0.33 feet after initial
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Leve
(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
1.2	10	12.25	0.985	1.26	675	-600	13.92	15.6
1.8	15	12.39	0.992	0.89	4.77	-765	8.10	15.68
24	20	12,70	0.993	0.60	677	- 795	4.98	15.6
3	25	12.80	0.993	0.58	6.77	-81.1	7.11	15.65
3.6	30	12.76	0-995	0.55	677	-80.1	5.62	15.69
4.5	FINA	1						
	/							
	/							
1								
		1						
		OB						
Did groundwater p	arameters stabiliz	ze? Yes / No If no,	why not?					
Did drawdown stat	oilize? Yes No	If no, why not?	-					
Was flowrate between	een 0.03 and 0.15	GPM? Yes No If r	o, why not?					
Water Color:	Clear	Yellow	Orange	Brown/	Black (Sand/Silt)	Other:		
Well Condition:	Lock: M/N	Labeled wit	LOC ID: N	Comments	:			
Sheen: Yes / No.		Odor: (es) No		Notes/Comments				
Laboratory Analys	es (Circle):	VOC. GRO. DRO. D	issolved Iron/Manganes	e. Sulfate				
oH checked of sam			e volume added (mL):	A	. 0			
A PARTITION OF	1	- Aprica illus	June Ludes (mts).					
Purge Water	4.5	Charles A		TO.	BIG .			
Gallons generated:	1.		isposed as IDW? Yes/ N		If No, why not?			
Disposal method*: F	OL Water / CERC	LA Waste	* Purge water stored in t	the DERA Building for ch	aracterization pri	or to disposal		

technique.	Site Location: Probe/Well #: Sample ID: Outside Temperature: Sample Method:	Peristaltic Pum Water Level:	p Submersible Able Abl	MS/MSD Performed? / Hydrasleeve / Bladde	er / Other
S, Depth to Product	Sample ID: Outside Temperature: Sample Method: Cit: Sampling Depth Well Screened Across Depth tubing / pump inta *Tubing/pump intake must to the water table, or in the mineral content of the con	Peristaltic Pum Water Level:	p Submersible D. Z. fe day 2 feet below the	/ Hydrasleeve / Bladde	er / Other
S, Depth to Product	Outside Temperature: Sample Method: Ct: Sampling Depth Well Screened Across Depth tubing / pump inta *Tubing/pump intake must to the water table, or in the mineral control of the c	Peristaltic Pum Water Level:	p Submersible D. Z. fe day 2 feet below the	/ Hydrasleeve / Bladde	er / Other
S, Depth to Product	Outside Temperature: Sample Method: Ct: Sampling Depth Well Screened Across Depth tubing / pump inta *Tubing/pump intake must to the water table, or in the mineral control of the c	Peristaltic Pum Water Level:	p Submersible D. Z. fe day 2 feet below the	/ Hydrasleeve / Bladde	er / Other
S, Depth to Product	Sample Method:	Peristaltic Pum Water Level:	p Submersible Able Abl	/ Hydrasleeve / Bladde	er / Other
S, Depth to Product	Sample Method:	Peristaltic Pum Water Level:	p Submersible Able Abl	/ Hydrasleeve / Bladde	er / Other
S, Depth to Product	Sampling Depth Well Screened Across Depth tubing / pump inta *Tubing/pump intake must to the water table, or in the mineral control of the co	Water Level:	lable 17.2 fe loy 2 feet below the	/ Hydrasleeve / Bladde	er / Other
S, Depth to Product	Sampling Depth Well Screened Across Depth tubing / pump inta *Tubing/pump intake must to the water table, or in the mineral control of the co	Water Level:	lable 17.2 fe loy 2 feet below the	eet below top of casing water table for wells scre	eened across
S, Depth to Product	Sampling Depth Well Screened Across Depth tubing / pump inta *Tubing/pump intake must t the water table, or in the mi	lest set approximate of the screen	/7. 2 feet below the	water table for wells scre	ened across
0.65) /-74 neters stabilize of technique.	Sampling Depth Well Screened Across Depth tubing / pump inta *Tubing/pump intake must t the water table, or in the mi	ake set approx.	/7. 2 feet below the	water table for wells scre	ened across
0.65) 1.74 neters stabilize or technique.	Well Screened Across Depth tubing / pump inta *Tubing/pump intake must to the water table, or in the mi	ake set approx.	/7. 2 feet below the	water table for wells scre	ened across
0.65) 1.74 neters stabilize or technique.	Depth tubing / pump inta *Tubing/pump intake must the water table, or in the mi	ake set approx.	/7. 2 feet below the	water table for wells scre	ened across
neters stabilize of technique.	*Tubing/pump intake must the water table, or in the mi	be set approximate	ely 2 feet below the	water table for wells scre	ened across
neters stabilize of technique.	the water table, or in the mi	ddle of the screen			
neters stabilize of technique.			ed interval for wells	screened below the water	er table
technique.	r 3 casing volumes have	been removed			
technique.	r 3 casing volumes have	been removed			
			. If well draws	down below tubing o	r pump intake
At		-13mm+24			
	least 3 of the 5 parai	meters below	must stabiliz	е	<0.33 feet
420/	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initial drawdown
±3%			127, 0.77		
Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Level
(ms/cm)	(mg/L)	100	(mv)		(ft)
0.550	807	4.37	64.0	12.81	11.67
0000	1.92	6.90	42.1	7.86	11.6)
0.837	1-70	6.17	43-8	6.12	11.6)
0.859	190	675	63.5	4.44	116)
0.285	1.85	6.45	43.3	5 55	11:68
9.890	1.82	493	620	4.90	11.68
		W			
	100				
	-				
	A 6/0	9 874 2 07 9 889 1-92 9 889 1-90	9 874 2 07 4.85 9 889 1 92 6.90 8 889 1 90 6.93	0 874 2 07 6.85 64.0 0 889 1-90 6.93 63.8 0 889 1-90 6.93 63.5 0 889 1.85 6.45 63.3	2 874 2 07 6.85 64.0 12.87 2 889 1-90 693 638 6.12 2 889 1-90 693 638 6.12 2 889 1-90 693 63.5 4.44 0 888 1.85 6.45 63.3 5.55

Date: 6/19/19 ProbeWell #: 4P-57-51 Time: 1635 Sample ID: 159-Well #: 159-Well	GROUNDWAT	ER SAMPLE	FORM	FORMER B	UILDING 1168			Ft. Wainw	right, Alask
Sampler D. Sampler D. Sampler D. Sampler D. Outside Temperature:	Project #:	90	11-22		Site Location:			/ell	
ASA Cosample Time LODE Purga Method: Persistatic Pump (Submerability Bladder Supplied Well Programment Submerability Bladder Submerability Bladder Submerability Bladder Submerability Meter R. 14 Water Levers, Scholish 15 Faulpinen ut Used for Sampling: Vall & Trurbidity Meter R. 14 Water Levers, Scholish 15 Faulpinen of Water in ProbeWell Cent Block: 20,500 Well Screening Across, Below water table for Level 15 Scholish 15 Column of Water in ProbeWell (left Block: 20,500 Well Screening Across, Below water table for well screened block people to Water from TOC (lefet): 21,500 Column of Water in ProbeWell (left Block: 21,500 Well Screening Across, Below water table for well screened block people to Water from TOC (lefet): 21,500 Column of Water in ProbeWell (lefet): 21,500 Column of Water in ProbeWell Cent Block: 20,004 Well Screening Across, Below water table for well screened block people to Water from TOC (lefet): 21,500 Column of Water in ProbeWell Cent Block: 21,500 Column of Water in ProbeWell Cent Block: 21,500 Well Screening Across, Below water table for well screened block people to Water Levels for well screened across design of the Water Levels for well screened block people to Water Levels for well screened block people to Water Levels for well screened across design of the ProbeWell Cent Block people water Levels for well screened block people water table for the water table for well screened block people water table for the water table	Date:	6/19/	//9		Probe/Well #:	17P-57	751		
ANGE Semple IDTIMEN.CO.C. MS/MSD Performed? Yes & MS/	Time:	1635			Sample ID:	19FW68 O	WG		
DAGOC Sample (DiffmetLOCID): MS/MSD Performed? Yes (© Sample Methods: Peristatic Pump (Submersibly) Bladder Sample Method: Peristatic Pump (Submersibly) Hydradiener) Bladder (Other Engineered Used for Sampling: Yes (© Turbidity) Meter ## 14	Sampler:	A	5						
Sample Method: Peristatic Pump Submerably (Bladder Other Peristatic Pump Submerably (Bladder Other Peristatic Pump Submerably (Bladder Other Peristatic Pump Submerably (Pydradierva Pydradierva Pydra	Weather:	Cloud	14		Outside Temperature:	70°F			
Equipment Used for Sampling: YSI # 9 Turbidity Meter # 14 Water Level; \$\int_{\text{\$\frac{1}{2}\cdot{1}	QA/QC Sample ID/	Time/LOCID:	-					MS/MSD Performed	? Yes/No
Tree Product Observed in ProbeWell? Yes(6) Dolum of Water in ProbeWell (Feet bloc): Dolum of Water in ProbeWell (feet bloc): Depth to Water from TOC (feet): At least 3 of the 5 parameters below must stabilize (for NoTU, ±1NTU) (feet) (feet): State of the Water from TOC (feet): Depth to Water from TOC (feet): At least 3 of the 5 parameters below must stabilize (for NoTU, ±1NTU) (feet) (feet): State of the Water from TOC (feet): Depth to Water from TOC (feet): Depth to Water from TOC (feet): At least 3 of the 5 parameters below must stabilize (for NoTU, ±1NTU) (feet): State of the Water from TOC (feet): Depth to Water from TOC (feet): Depth to Water from TOC (feet): Vol. From State from TOC (feet): Depth to Water from TOC (feet):	ourge Method:	Peristaltic Pump (Submersible/ Bladde	r	Sample Method:	Peristaltic Pump	Submersible	/ Hydrasleeve / Bladde	er / Other
Cross Product Useserved in Procedwell Page 1 Procedured Sampling Depth Procedured Sampling Depth Procedured (seet bloc): 7. 58				Turbidity Meter #:	_				
Could Depth in Probe/Well (feet too):	ree Product Obse	rved in Probe/We	II? Yes(No)	If Yes, Depth to Produ	uct:	New,	dedicated,	tetlon-line	d to thy
Depth to Valeer from TOC (Red):	Column of Water in	Probe/Well			Sampling Depth		the w	11 for san	oplins.
Tubrigopump intake must be set approximately 2 feet below the water table for wells screened across indice. Galloins per foot of 1.25 (X.0.05) e2* (X.0.05) of 4* (X.0.05) by water table, or in the must be set approximately 2 feet below the water table. The water table for wells screened across followed Valer in 1 Probe-Well Casing (gat): ### Water in 1 Probe-Well Casing (gat): ### Water in 1 Probe-Well Casing (gat): ### At least 3 of the 5 parameters below must stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield well using a no-purge technique. ### At least 3 of the 5 parameters below must stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield well using a no-purge technique. ### At least 3 of the 5 parameters below must stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield well using a no-purge technique. #### At least 3 of the 5 parameters below must stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield volume for the purgent in the purgen	otal Depth in Probe	e/Well (feet btoc):		7	Well Screened Across	Below water t			
tricle: Gallons per foot of 1.25" (X 0.054) & 2" (X 0.153) of 4" (X 0.85) The water table, or in the middle of the screened below the water table followed Casing (gall): D. U.S. Ilicropurae well-probe at a rate of 6.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump in top purping and sample as a low-yield well using a no-purpe technique. At least 3 of the 5 parameters below must stabilize 40.33 and the 5 parameters below must stabilize 40.35 after indicate parameters: (gal) (or 10.2° max) 1.5% (<1mg/l, 3.2 mpl/l) ±0.1 units ±10 mV (<10 MT/l, 11 MT/l) drawdown (mg/l) (min) (C) (mS/cm) (mg/l) (mg/	Depth to Water from	TOC (feet):			Depth tubing / pump into	ake set" approx	19.5	eet below top of casing	1
All purging and sample as a low-yield well using a no-purge technique. All least 3 of the 5 parameters below must stabilize to 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize to 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize countries and the interior of the sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize countries after in display to 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize countries after in display to 3 casing volumes have been removed. If well draws down below tubing or pump in top pump in the p	Column of Water in	Probe/Well (feet):	= 2,0	72	*Tubing/pump intake must	be set approximate	ly 2 feet below th	e water table for wells scr	eened across
Micropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump in top purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize 150% 15	Circle: Gallons per	foot of 1.25" (X 0.0	64) or 2" (X 0.163) or	4" (X 0.65)	the water table, or in the m	ddle of the screene	ed interval for wel	s screened below the wat	er table
At least 3 of the 5 parameters below must stabilize 40.33 h 41.00 41.0	olume of Water in	1 Probe/Well Casir	ng (gal):	0.48					
Al least 3 of the 5 parameters below must stabilize <0.33	Aicropurge well/pr	obe at a rate of 0.	.03 to 0.15 GPM unti	l parameters stabilize o	or 3 casing volumes have	e been removed	. If well draws	down below tubing of	or pump intake
Sield Parameters: 13% 15% 1502 mg/L 10.2 mg/L 10.1 units 10 mV 10% 10 mg/L 10.2 mg	stop purging and s	sample as a low-yi	ield well using a no-						100
Single Parameters Conductivity Dissolved Co. Ph Potential Turbidity Water Removed Time Purged Temperature Conductivity Dissolved Co. Ph Potential Turbidity Water Linguist				At	least 3 of the 5 para	meters below	must stabili:	ze	<0.33 feet
Water Removed Time Purged Temperature Conductivity Dissolved 0; pH Potential Turbidity Water Life (gail) (min) (mg/L) (mg/L) (mg/L) (mg/L) (my/L) (my/L	ield Parameters		The second second second	+3%		±0.1 units	±10 mV		after initial
(gal) (min) (C) (mS/cm) (mg/L) (mV) (NTU) (ft) 1. \$ 15		Time Purged	7 2 2 2 3 3	4,444		1			Water Level
1.5			The second second	The second second		, A.			
1.0						676			18.20
2.15 2.5 5.20 0.723 1.46 6.24 88.1 5.16 18.2 3.0 3.0 5.23 0.714 1.48 6.76 86.6 4.95 19.2 3.5 3.5 5.25 0.715 1.50 6.25 34.6 4.73 18.2 3.5 3.5 5.25 0.715 1.50 6.25 34.6 4.73 18.2 3.6 3.5 3.5 5.25 0.715 1.50 6.25 34.6 4.73 18.2 3.6 3.5 3.5 5.25 0.715 1.50 6.25 34.6 4.73 18.2 3.6 3.6 3.75 3.75 3.75 3.75 3.75 3.6 3.6 3.75 3.75 3.75 3.75 3.75 3.6 3.75 3.75 3.75 3.75 3.75 3.6 3.75 3.75 3.75 3.75 3.6 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.7				2	1 100	-			
3.0 3.0 5,2.5 0.7 1.4 1.48 6.76 86.6 4.95 18.2 3.5 3.5 5,2.5 0.7 1.5 1.50 6.15 94.6 4.73 [8,7] Did groundwater parameters stabilize? Yes/No If no, why not? Did drawdown stabilize? Yes/No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Cotor: Clear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock(Y/N Labeled with LOC ID: (Y/N Comments: Sheen: Yes/No Odor: Yes/No Notes/Comments: Deby Comments: Notes/Comments: Notes/Comments: Deby Comments: Notes/Comments: Notes/					1				_
Did groundwater parameters stabilize? \(\forall \) No \(\forall \) fro, why not? Did drawdown stabilize? \(\forall \) / No \(\forall \) fro, why not? Nas flowrate between 0.03 and 0.15 GPM? \(\forall \) fivil No \(\forall \) fro, why not? Nater Color: \(\forall \) Clear \(\forall \) Yellow \(\forall \) Orange \(\forall \) Brown/Black (Sand/Silt) \(\forall \) Other: Notes/Comments: \(\forall \) Notes/Comments: Laboratory Analyses (Circle): \(\forall \) Odor: Yes \(\forall \) Yo \(\forall \) Approximate volume added (m.L): HCl = \(\forall \) HNQ = \(\forall \) Purge Water Gallons generated: \(\forall \) Containerized and disposed as IDW \(\forall \) Yes/ No \(\forall \) If No, why not? Purge water stored in the DERA Building for characterization prior to disposal						4	2.7		
Did groundwater parameters stabilize Yes/No If no, why not? Did drawdown stabilize? Yes/No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lockt Y/N Labeled with LOC ID: Y/N Comments: Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfiate PH checked of samples: YYN Approximate volume added (mL): HCI = HNQ = Purge Water Gallons generated: H. O Containerized and disposed as IDW/Yes/No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y/N Labeled with LOC ID: Y/N Comments: Sheen: Yes / No Odor: Yes / No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate Per Water Gallons generated: Yes / No If No, why not? Containerized and disposed as IDW/Yes / No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal	,	3-	3.63	0.1412	1.70	0.00	04,-	4.1-	10,00
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y) N Labeled with LOC ID: (Y) N Comments: Sheen: Yes (No Odor: Yes (No Notes/Comments: Laboratory Analyses (Circle): VCC, DRO, Dissolved Iron, Sulfate PH checked of samples: (YY N Approximate volume added (mL): HCI = HNQ =								1	
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y) N Labeled with LOC ID: (Y) N Comments: Sheen: Yes (No Odor: Yes (No Notes/Comments: Laboratory Analyses (Circle): VCC, DRO, Dissolved Iron, Sulfate PH checked of samples: (YY N Approximate volume added (mL): HCI = HNQ =									1
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y) N Labeled with LOC ID: (Y) N Comments: Sheen: Yes (No Odor: Yes (No Notes/Comments: Laboratory Analyses (Circle): VCC, DRO, Dissolved Iron, Sulfate PH checked of samples: (YY N Approximate volume added (mL): HCI = HNQ =								11/	
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y) N Labeled with LOC ID: (Y) N Comments: Sheen: Yes (No Odor: Yes (No Notes/Comments: Laboratory Analyses (Circle): VCC, DRO, Dissolved Iron, Sulfate PH checked of samples: (YY N Approximate volume added (mL): HCI = HNQ =	-		-					100	5
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y/N Labeled with LOC ID: Y/N Comments: Sheen: Yes / No Odor: Yes / No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate Per Water Gallons generated: Yes / No If No, why not? Containerized and disposed as IDW/Yes / No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal				1				/ V	
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y/N Labeled with LOC ID: Y/N Comments: Sheen: Yes / No Odor: Yes / No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate Per Water Gallons generated: Yes / No If No, why not? Containerized and disposed as IDW/Yes / No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal									
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Siit) Other: Well Condition: Lock(Y/N Labeled with LOC ID: Y/N Comments: Sheen: Yes / No Odor: Yes / No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate Per Water Gallons generated: Yes / No If No, why not? Containerized and disposed as IDW/Yes / No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal									
Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock V / N Labeled with LOC ID: V / N Comments: Sheen: Yes / No Odor: Yes / No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate PH checked of samples: Y / N Approximate volume added (mL): HCI = HNQ = HNQ = HNQ = HNQ + HO, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal			1					-	
Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock V/ N Labeled with LOC ID: Ø/ N Comments: Sheen: Yes / No Odor: Yes / No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate PH checked of samples: Y/ N Approximate volume added (mL): HCI = HNQ = HNQ = HNQ = HNQ Purge Water Gallons generated: 4 O Containerized and disposed as IDW/Yes / No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal									
Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Cotor: Clear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock (Y/N Labeled with LOC ID: (Y/N Comments: Sheen: Yes/No Odor: Yes/No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate pH checked of samples: (Y/N Approximate volume added (mL): HCI = HNQ = Purge Water Gallons generated: Gontainerized and disposed as IDW/Yes/No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal	Did groundwater p	arameters stabiliz	ze? Yes / No If no	, why not?					
Water Color: Well Condition: Lock(Y/N) Labeled with LOC ID: (Y/N) Comments: Notes/Comments: Def Checked of samples: (Y/N) Approximate volume added (mL): HCI = HNQ = Purge Water Gallons generated: (Containerized and disposed as IDW/Yes/No If No, why not? Disposal method (POL Water) CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal	Oid drawdown stat	bilize? Yes / No	If no, why not?	-					
Well Condition: Lock(Y/N Labeled with LOC ID: Y/N Comments: Sheen: Yes (No Odor: Yes (No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate OH checked of samples: Y/N Approximate volume added (mL): HCI = HNQ	Was flowrate between	een 0.03 and 0.15	GPM? Yes/No If	no, why not?					
Sheen: Yes (No) Odor: Yes (No) Notes/Comments: Laboratory Analyses (Circle): PH checked of samples: YY N Approximate volume added (mL): HCI = HNQ	Water Color:	Clear	Yellow	Orange	Brown/	Black (Sand/Silt)	Other;		
Laboratory Analyses (Circle): OH checked of samples: (Y) N Approximate volume added (mL): HCI = HNQ	Well Condition:	Lock(Y/N	Labeled w	ith LOC ID: 1 N	Comments				
Approximate volume added (mL): HCI = HNQ =	Sheen: Yes (No)		Odor: Yes No		Notes/Comments				
Approximate volume added (mL): HCI = HNQ =		,							
Purge Water Gallons generated: 4 C Containerized and disposed as IDW/Yes// No If No, why not? Disposal method POL Water CERCLA Waste * Purge water stored in the DERA Building for characterization prior to disposal	Laboratory Analys	es (Circle):							
Gallons generated: 4. Containerized and disposed as IDW/Yes// No If No, why not? Disposal method POL Water CERCLA Waste Purge water stored in the DERA Building for characterization prior to disposal	pH checked of san	nples: (YV N	Approxima	ate volume added (mL)	: HCI = HNQ				
Disposal method POL Water CERCLA Waste * Purge water stored in the DERA Building for characterization prior to disposal	Purge Water								
	Sallons generated:	4.0	Containerized and	disposed as IDW? Yes	No	If No, why not?			
	7	POL Water CERC					or to disposal		
Sampler's Initials:		AS			and the second second second second	***************************************	S. S		

Property	WG Submersible Solinist ble 5 19.4 2 feet below the interval for well If well draws must stabilize ±10 mV	MS/MSD Performed A Hydrasleeve / Bladde S LAM feet below top of casing the water table for wells screened below the water table screened below the water table for wells screened below the water table for well screened below tab	eened across eer table
Sampler: A Sample ID: 1974	Submersible Solinist ble 5 19. Y 2 feet below th interval for well If well draws must stabilities	Hydrasleeve / Bladde	eened across eer table
And December: Purple Method: Peristatic Pump Submersible Bladder Sample Method: Peristatic Pump Submersible Hydraticeve Bladder Other	Submersible Solin: 51 ble 5 19. Y 12 feet below th interval for wel If well draws must stability	Hydrasleeve / Bladde	eened across eer table
Notation: Purpose Internation Periodic Periodi	Submersible Solinist ble 5 19.4 12 feet below th interval for well If well draws must stabilize	Hydrasleeve / Bladde	eened across eer table
AND C Sample ID/Time LOCID: Valid	Submersible Solinist ble 5 19.4 12 feet below th interval for well If well draws must stabilize	Hydrasleeve / Bladde	eened across eer table
The product Deserved in Problem (1997) Subject to Sampling Period (1997) S	Submersible Solinist ble 5 19.4 12 feet below th interval for well If well draws must stabilize	Hydrasleeve / Bladde	eened across eer table
Sample Method: Peristalitic Pump Submarphible Bladder / Other	Submersible Solinist ble 5 19.4 12 feet below th interval for well If well draws must stabilize	feet below top of casing the water table for wells screened below the water table screened below tubing of the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for well as down below to the water table for well as down below to the water table for well as down below to the water table for well as down below to the	eened across er table or pump (ntak
True Product Observed in ProbetWell Code (See 1) 15 15 15 15 15 15 15 1	ble [5] 19. Y 1 2 feet below th interval for wel If well draws must stabilize ±10 mV	feet below top of casing the water table for wells screened below the water table screened below the water tables down below tubing of the water tables are tables to be the water tables are tables to be tables to be the water tables to be tables to be the water tables to be tab	er table
Tree Product Observed in Probe-Well? Yesile If Yes, Depth to Product: Sampling Depth Velos Depth in ProbeWell (lees block): 26. 97 Septh to Wider from TOC (lees): 27. 54 Popth towns of Wider in Probet-Well Castle (lees): 27. 54 Popth towns of Wider in Probet-Well Castle (lees): 27. 54 Popth towns may be set approximately 2 feel below fro walter towns screened accross. The waster table, or in the middle of the screened interval for wells screened below the waster table (loes): 28. 4100 Recognition of Wider in Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 40. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 40. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 40. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 40. 4100 Recognition of Wider in 1 Probet-Well Castle (lees): 29. 40. 4100 Recognition of Wider in 1	19. Y 2 feet below th Interval for well If well draws must stabilities	feet below top of casing the water table for wells screened below the water table for wells screened below the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for well as the water table f	er table
Sampling Depth Volat Depth in ProbeWell (belt): 2 (4, 9 7) Vell Screened Across 7 Below writer table 1,5 * 5 + 4.4 * 1.4	19. Y 2 feet below th Interval for well If well draws must stabilities	feet below top of casing the water table for wells screened below the water table for wells screened below the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for well as the water table f	er table
Veil Screened Across Below water tuble 15	19. Y 2 feet below th Interval for well If well draws must stabilities	feet below top of casing the water table for wells screened below the water table for wells screened below the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for well as the water table f	er table
Depth tolong pump intake set* approx. 19. 4. The below top of casing pump intake set approx. 19. 4. The softward from the control of 1.25° (X 0.064) of X 0.1630 of 4° (X 0.65) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) of X 0.065) the control of 1.25° (X 0.064) the control of 1	19. Y 2 feet below th Interval for well If well draws must stabilities	feet below top of casing the water table for wells screened below the water table for wells screened below the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for well as the water table f	er table
Column of Water in Probe/Well (feed): = 9 5 4	2 feet below th interval for well If well draws must stabiliz ±10 mV	ne water table for wells screened below the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for wells screened below tubing of the water table for wells screened below table for wells screened below table for wells screened below table for wells and table for wells screened below table for wells and table for wells screened below table for wells screened below table for wells and table for wells and table for well screened below table for well	er table
the water table or in the middle of the screened interval for wells screened below the water table followed of the water table followed of the screened interval for wells screened below the water table followed of the water table followed on tabl	If well draws must stabiliz	ils screened below the wat s down below tubing of ize ±10%	er table or pump intak
At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize 10% (c1mpl., 20.2 mg/L) 20.3 tea the intropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize At least 3 of the 5 parameters below must stabilize 4.3 tea to 0.3 tea the intropurge technique. At least 3 of the 5 parameters below must stabilize 4.3 tea to 0.3 tea the intropurge technique. 4.1 tea to 0.3 tea the introduce. 4.1 tea to 0.3 te	If well draws must stabiliz	s down below tubing o ize ±10%	or pump intak
At least 3 of the 5 parameters below must stabilize 13% (c1mgh, 30.2 mg/L) 10.1 units 110 mV (c10mf), 13% (c1mgh, 30.2 mg/L) 10.1 units 110 mV (c10mf), 10.2 mg/L) 10	must stabiliz	ize ±10%	
At least 3 of the 5 parameters below must stabilize	must stabiliz	ize ±10%	
At least 3 of the 5 parameters below must stabilize 43% 410% (-1mgR, 30.2 mgR, 1) 20.1 (mits ±10 mV (-10nTU, ±1nTU) (-10nTU) (-10nTU) (-10nTU) (-10nTU) (-10nTU) (-10nTU) (-10nTU) (-10nTU) (-10nTU)	±10 mV	±10%	<0.33 fee
Signature 13%	±10 mV	±10%	<0.33 feet
Valer Removed Time Purged Temperature Conductivity Dissolved O ₂ pH Potential Turbidity Water Lew (gall) (min) (C) (mS/cm) (mg/L) (mg/L) (my/L) (my/L)			6190 150
(gal) (min) (**C) (mS/cm) (mg/L) (mV) (NTU) (ft) 1.5	Potential	(<10NTU, ±1NTU)	
Z.D	(mV)	10.57.2	10.75
7.5	83.4	86.95	17.52
7.5	71.4	90.33	17.53
3.0 30 5.53 1.050 0.77 6.18 52.2 59.20 17.5 3.5 35 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 35 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 3.5 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 3.5 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 3.5 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 3.5 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 3.5 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 3.5 5.08 1.055 0.73 6.18 46.0 32.12 17.5 3.5 3.5 5.08 1.055 0.73 6.18 46.0 32.12 17.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.5 6.18 46.0 32.12 17.5 6.18 46.0 32.12 17.5 6.18 46.0 32.12 17.5 6.18 46.0 32.12 17.5 7.5 4.5 4.5 4.5 4.5 7.5 4.5 4.5 4.5 8.5 4.5 4.5 4.5 8.5 4.5 4.5 4.5 8.5 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 4.5 9.18 4.5 9			17.55
Did groundwater parameters stabilize Yes / No. If no, why not? Did drawdown stabilize? Yes / No. If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No. If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock Y N Labeled with LOC ID / N Comments: Sheen: Yes No. Odor: Yes / No. Odor: Yes / No. Notes/Comments: Notes/Comments:		59.20	17.5
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock Y N Labeled with LOC ID Y N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate		32.12	
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate			
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate		1 /	
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate		4	
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate			
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate			
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate			
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate			
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate			
Did drawdown stabilize? Ves / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Ves/No If no, why not? Water Color: Clear Yellow Orange Brown/Black (Sand/Sitt) Other: Well Condition: Lock(V) N Labeled with LOC ID V/N Comments: Sheen: Yes No Odor: Yes No Notes/Comments: Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate			
Laboratory Analyses (Circle): VOC, DRO, Dissolved Iron, Sulfate	Other;		
oH checked of samples: (Y) N Approximate volume added (mL): HCI = HNQ =			
Purge Water		60.3 52.2 46.0	60.3 78.57 52.2 59.20 46.0 32.12

	AMPLE FORM	FORMER E	BUILDING 1168			Ft. Wainwr	right, Alask
Project #:	9011-22		Site Location:	Former Buildin	ig 1168 Leach W	ell	
Date:	0/20/19		Probe/Well #:	AP-1	0037ML		
Time:	000		Sample ID:	19FW68 0 3	WG		
Sampler:	As					110.00-	
	Cloudy		Outside Temperature:	65 F	110	lla ctp	
QA/QC Sample ID/Time/LOG	CID: 19 FU 680	466/1015	1 AP-606		_/	MS/MSD Performed	Yes No
	Pump Submersible B	-7.75	Sample Method:		np (Submersible	Hydrasleeve / Bladde	er / Other
equipment Used for Sample	ing: YSI# <u>9</u>	Turbidity Meter #:	14	Water Level:	Solinist B		
ree Product Observed in F	Probe/Well? Yes/No	If Yes, Depth to Prod	luct:	Inst	alled new	dedicated +	etlen-liv
Column of Water in Probe/	Vell		Sampling Depth	-	for sam		
otal Depth in Probe/Well (fe	et bloc): 25.	31	Well Screened Across	/ Below water			
Depth to Water from TOC (fe	et): - 18.6	7	Depth tubing / pump inta	ake set* approx.	20.6	eet below top of casing	io
Column of Water in Probe/We	ell (feet): =	6,64	*Tubing/pump intake must t	be set approximat	ely 2 feet below the	water table for wells scre	eened across
ticropurge well/probe at a top purging and sample as						The state of the s	r pump intake
		A	t least 3 of the 5 parai	meters below	v must stabiliz	e	<0.33 feet
ield Parameters:	±3% (or ±0.2°C m	eax) ±3%	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initial drawdown
		re Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Level
Water Removed Time (gal) (m	Purged Temperaturnin) (°C)	(mS/cm)			(mV)	(NTU)	(ft)
	nin) (°C)	4.1	(mg/L)	6.81		(NTU)	(ft) 18.75
(gal) (m	(°C)	(mS/cm)	(mg/L)	6.81	(mV) - 56.0 - 66.1	132.6	18.75
(gal) (m	(C) 5.21 5.25	(mS/cm)	(mg/L)		-56.0		18.75
(gal) (m 1.5 1.5 2.0 2.0	nin) (°C) 5 5.21 5 5.25 5 5.20	(mS/cm) 0.887 0.854	(mg/L) 1,59 0.87 0.71	6.81	- 56.0	63.14	18.75 18.75 18.75
(gal) (m 1.5 14 2.0 2(2.5 2)	(c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(mS/cm) 0.887 0.854 0.833	(mg/L) 1,59 0.87	6.81 6.72 6.64	-56.0 -66.1 -74.7	63.19	18.75
(gal) (m 1.5 1.5 2.0 20 2.5 21 3.0 30	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1,59 0.87 0.71	6.81 6.72 6.64 6.58	-56.0 -66.1 -74.7 -78.9	137.6 63.14 34.04 20.25	18.75 18.75 18.75 18.75
(gal) (m 1.5 1.5 2.0 2.0 2.5 2.0 3.0 3.0 3.5 3.0	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1.59 0.87 0.71 0.66	6.81 6.72 6.64 6.58 6.52	-56.0 -66.1 -74.7 -78.9 -81.1	137.6 63.19 34.64 20.25 15.07	18.75 18.75 18.75 18.75 18.75
(gal) (m 1.5 1.5 2.0 2.0 2.5 2.0 3.0 3.0 3.5 3.0	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1.59 0.87 0.71 0.66	6.81 6.72 6.64 6.58 6.52	-56.0 -66.1 -74.7 -78.9 -81.1	137.6 63.19 34.64 20.25 15.07	18.75 18.75 18.75 18.75 18.75
(gal) (m 1.5 1.5 2.0 2.0 2.5 2.0 3.0 3.0 3.5 3.0	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1.59 0.87 0.71 0.66	6.81 6.72 6.64 6.58 6.52	-56.0 -66.1 -74.7 -78.9 -81.1	137.6 63.19 34.64 20.25 15.07	18.75 18.75 18.75 18.75 18.75
(gal) (m 1.5 1.5 2.0 2.0 2.5 2.0 3.0 3.0 3.5 3.0	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1.59 0.87 0.71 0.66	6.81 6.72 6.64 6.58 6.52	-56.0 -66.1 -74.7 -78.9 -81.1	137.6 63.19 34.64 20.25 15.07	18.75 18.75 18.75 18.75 18.75
(gal) (m 1.5 1.5 2.0 2.0 2.5 2.0 3.0 3.0 3.5 3.0	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1.59 0.87 0.71 0.66	6.81 6.72 6.64 6.58 6.52	-56.0 -66.1 -74.7 -78.9 -81.1	137.6 63.19 34.64 20.25 15.07	18.75 18.75 18.75 18.75 18.75
(gal) (m 1.5 1.5 2.0 2.0 2.5 2.0 3.0 3.0 3.5 3.0	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1.59 0.87 0.71 0.66	6.81 6.72 6.64 6.58 6.52	-56.0 -66.1 -74.7 -78.9 -81.1	137.6 63.19 34.64 20.25 15.07	18.75 18.75 18.75 18.75 18.75
(gal) (m 1.5 1.5 2.0 2.0 2.5 2.0 3.0 3.0 3.5 3.0	(c) 5.21 5.25 5.25 5.20 5.20 5.21 5.21	(mS/cm) 0.887 0.854 0.833 0.831 0.834	(mg/L) 1.59 0.87 0.71 0.66	6.81 6.72 6.64 6.58 6.52	-56.0 -66.1 -74.7 -78.9 -81.1	137.6 63.19 34.64 20.25 15.07	18.75 18.75 18.75 18.75 18.75

ROUNDWAT	ER SAMPLE	FORM	FORMER E	BUILDING 2250			Ft. Wainw	right, Alask
Project #:	11.01	11-22		Site Location:		2250 UST, Qu	onset Hut	
Date:	6/17/19			Probe/Well #:	AP-	7153		
Time:	1/20			Sample ID:	19FW22 Ø [WG		
Sampler:	AS		-		1500			
Weather:	P. Clund	Y		Outside Temperature:	65°F			1
QA/QC Sample ID/1	Time/LOCID:						MS/MSD Performed	7 Yes (No
Purge Method: F	Peristaltic Pump	Submersible //Bladde	r	Sample Method:	Peristallic Pum	Submersible	Hydrasleeve / Bladde	er / Other
quipment Used fo	or Sampling:	YSI# 9	Turbidity Meter #:	14_	Water Level:_	Solinist	- 15	
ree Product Obse	rved in Probe/We	II? Yes(No	If Yes, Depth to Prod	uct:	Ins	halled ne	u tetlon-li	ned tub
Column of Water in	Probe/Well			Sampling Depth		for sub	u tetlon-li	p. Ped.
otal Depth in Probe	e/Well (feet btoc):	22.98		Well Screened Across				
Depth to Water from	TOC (feet):	- 11.18		Depth tubing / pump into	ake set* approx	18 1	eet below top of casing	
Column of Water in F	Probe/Well (feet):	= 11.8		*Tubing/pump intake must	be set approximate	ly 2 feet below the	water table for wells scr	eened across
Circle: Gallons per f	foot of 1.25" (X 0.0	64) or 2" (X 0.163) o		the water table, or in the m	ddle of the screen	ed interval for well:	screened below the wat	er table
olume of Water in 1	1 Probe/Well Casin	ng (gal):	1.92					
dicropurge well/pr	obe at a rate of 0.	03 to 0.15 GPM unt	il parameters stabilize	or 3 casing volumes have	e been removed	. If well draws	down below tubing o	or pump intake
top purging and s	ample as a low-yi	ield well using a no	-purge technique.	A	Cham was	. 2017	11-30-13-2-2	
			A	t least 3 of the 5 para	meters below	must stabiliz	e	<0.33 feet
		±3%		±10%	02/4	36.5%	±10%	after initial
ield Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Level
(gal)	(min)	(°C)	(mS/cm)	(mg/L)	f.v.E	(mV)	(NTU)	(ft)
1.5	15	4.15	0,507	1.05	6,45	-79.6	13,31	11.30
Z.0	25	4.17	0.503	0.79	6.34	-86.2	9.34	11.30
2.5		4,20	0.513	0.69	6.30	- 90.5	8.72	(1.30
3.0	30	4.22	0.514	0.64	6.30	-93.4	6.77	11.30
3,5	35	4.25	0.511	0.37	6-30	-94.8	6.28	11.30
	1							
						1		
			-			1		
					/	1		
			-	1	/			
id groundwater n	arametere etabilia	ze? Yes / No If no	why not?					
Did drawdown stab			, mily note					
Vas flowrate betwe			no, why not?					
Water Color:	Clear	Yellow	Orange	Brown	Black (Sand/Silt)	Other:	S:1+ (Brown)	Blave) "
Well Condition:	Lock: Y /(N		ith LOC ID/Y) N	Comments	7	ount -	threaded a	ep.
Sheen: Yes (No)	LUCK TIN	Odor: Yes //No	TOC ID IN	Notes/Comments		L L L	Tailanter L	7
Meen. 165 NO		July Tea / NO		Notesiconnients	-			
		DRO, Dissolved In	on Sulfate					
aboratory Analysi	es (Circle)		Juniote					
Laboratory Analyse			ate volume added (mL	: HCI = _ HNQ				

ROUNDWAT	ER SAMPLE	FORM	FORMER B	UILDING 2250			Ft. Wainwi	right, Alask
roject #: .	90	11-22		Site Location:	Former Buildin	g 2250 UST, Que	onset Hut	
ate:	6/19/1	9		Probe/Well #:	AP-	5976		
ime:	1250			Sample ID:	19FW22 @2	WG		
ampler:	AS							
leather:	P. C1	oudy	4.00	Outside Temperature:	70.4			
A/QC Sample ID/	Time/LOCID:	9FW2203 W	6 / 1300	1 AP-3030			MS/MSD Performed	Yes No
urge Method:	Peristaltic Pump	Submersible/ Bladder		Sample Method:	Peristaltic Pum	p (Submersible	Hydrasleeve / Bladde	er / Other
quipment Used fo	r Sampling:	YSI# 9	Turbidity Meter #:		Water Level:_	Solinist 15		
ree Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produ	ict:	Inst	alled new	, dedicated	, tetlo.
olumn of Water in	Probe/Well		The state of	Sampling Depth	+	alling in	well for su	b 14:5164
otal Depth in Probe	Well (feet btoc):	21.60		Well Screened Across				
Depth to Water from	TOC (feet):	15.97		Depth tubing / pump into	ake set* approx.	18 10	eet below top of casing	
Column of Water in	Probe/Well (feet):	= AS 21-6 0	5.63	*Tubing/pump intake must	be set approximate	ely 2 feet below the	water table for wells scre	eened across
ircle: Gallons per l	foot of 1.25" (X 0.0	64) or 2" (X 0.163) or		the water table, or in the m	iddle of the screen	ed interval for wells	screened below the wat	er table
olume of Water in	1 Probe/Well Casir	ig (gal):	0.92					
licropurge well/pr	obe at a rate of 0.	03 to 0.15 GPM until	parameters stabilize o	or 3 casing volumes hav	e been removed	I. If well draws	down below tubing o	r pump intake
top purging and s	ample as a low-yi	eld well using a no-p						
			At	least 3 of the 5 para	meters below	must stabiliz	e	<0.33 feet
ield Parameters:		±3% (or ±0.2°C max)	±3%	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initial drawdown
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	рН	Potential (mV)	Turbidity (NTU)	Water Level
1.5	15	4.41	0.430	0.79	6.53	-92.4	188.7	16,05
2.0	20	4.45	9.432	0.61	6.48	-980	175,1	16.05
2,5	25	3.51	0.435	0.49	6.42	-102.1	170.2	16.05
3.0	30	3.50	0.435	0.42	6.37	-105.5	154.8	16.05
3.5	35	3,46	0.436	0.39	6.35	-(08.2	121.4	16.05
4.0	40	3,52	0.435	0,40	6.35	-110.7	92.72	16.05
4.5	45	3.49	0,435	0.37	6.34	-112.3	71.73	16.05
	50	3,50	0.435	0.35	6.33	-113,9	54.12	16.05
5,0	55	3.52	0.435	0.34	6.33	-115.1	38.19	16.05
5.5				1 1 1		_		
	_					1	1	-
						4	2	
						2.1.7		
						1 V		
5.5						70-		
5.5		re? Yes / No If no,	why not?			7 V -		
5.5 Did groundwater p	oilize? (Yes / No	If no, why not?				70-		
5.5 Did groundwater p Did drawdown stat Vas flowrate between	oilize? Yes / No een 0.03 and 0.15	If no, why not? GPM? Yes/No If n	no, why not?			7.0-3	7	3. 1/
Did groundwater p Did drawdown stat Vas flowrate betwee Vater Color:	oilize? Yes / No een 0.03 and 0.15	If no, why not? GPM? Yes/No If n	o, why not? Orange	1-1	Black (Sand/Silt)	Other,	Took 9 L	hile for
Did groundwater p Did drawdown stat Vas flowrate between Vater Color:	oilize? Yes / No een 0.03 and 0.15	If no, why not? GPM? Yes/No If n Yellow Labeled wit	no, why not?	Comments	-	Other:	Took 9 L	hile for
old groundwater polid drawdown state Vas flowrate between Vater Color:	oilize? Yes / No een 0.03 and 0.15	If no, why not? GPM? Yes/No If n	o, why not? Orange	1-1	-	Other:	Took 9 L	hile for
Did groundwater p Did drawdown stat Was flowrate between Water Color: Well Condition: Sheen: Yes / No	oilize? Yes / No een 0.03 and 0.15 Clear Lock: Y N	If no, why not? GPM? Yes/No If n Yellow Labeled wit Odor: Yes/No	Orange	Comments	-	Other,	Took 9 W	hile for
Did groundwater p Did drawdown stat Vas flowrate between Vater Color:	clize? (Yes / No een 0.03 and 0.15 Clear Lock: (Y) N	If no, why not? GPM? Yes/No If n Yellow Labeled wit Odor: Yes/ No DRO, Dissolved Iron	Orange	Comments Notes/Comments	: :	Other.	Took 9 L	hile for

Performed? Yes/No
eve / Bladder / Other d , +e+lon · I. Lump op of casing for wells screened across
eve / Bladder / Other d , +e+lon · I. Lump op of casing for wells screened across
eve / Bladder / Other d , +e+lon · I. Lump op of casing for wells screened across
eve / Bladder / Other d , +e+lon · I. Lump op of casing for wells screened across
eve / Bladder / Other d , +e+lon · I. Lump op of casing for wells screened across
d, teflon. I
op of casing
op of casing
op of casing for wells screened across
for wells screened across
for wells screened across
elow the water table
w tubing or pump in
<0.33 fr 0% after ini
J, ±1NTU) drawdo
bidity Water Li
25 15.3
69 15.3
72 15.3
41 15.3
06 15.3
15
A
11
#12/
1
-
1

GROUNDWAT	ER SAMPLE	FORM	FORMER BU	JILDING 3564			Ft. Wainwr	ight, Alasi
Project #:	901	11-22		Site Location:	Former Buildin	g 3564 Diesel El	ectric Generator Plant	
Date:	6/21	119		Probe/Well #:	MU	1356	4-1	
ime:	10	50		Sample ID:	19FW64 0	wg	3	
Sampler:	CI	3				_		
Weather:	SUN	NY		Outside Temperature:	730	F		
QA/QC Sample ID/1	Time/LOCID:	-					MS/MSD Performed?	Yes/No
Purge Method:	Peristaltic Pump / S	obmersible / Bladde		Sample Method:	Peristaltic Purr	p / Submersible	/ Hydrasleeve / Bladde	er / Other
quipment Used fo		YSI# 9	Turbidity Meter #: /	?	Water Level:	13	, , , , , , , , , , , , , , , , , , , ,	37,6 3341
Free Product Obse		- 0	If Yes, Depth to Produc	1. —				
Column of Water in		III Tushig	ii res, pepii to rioda	Sampling Depth				
Total Depth in Probe	TOTAL DESIGNATION	23.	42	Well Screened Across	A Relow water	table		
Depth to Water from		180	105	Depth tubing / pump Int	appropriate and the		eet below top of casing	
Column of Water in		- 21.	77	*Tubing/pump intake must			200 10 1000 1000	
		64) or 2" (X 0.163) or	AT (V O FE)	the water table, or in the m				
		-	4 (X 0.65)	the water table, or in the in	niddle of the screen	ed interval for well	s screened below the water	er table
Volume of Water in	1 Probe/vveil Casin	ng (gal);	0.77					
the second of the second of the second			l parameters stabilize o	r 3 casing volumes hav	e been remove	d. If well draws	down below tubing o	r pump intal
stop purging and s	ample as a low-yi	ield well using a no-				2.754		
			At.	least 3 of the 5 para	meters below	must stabiliz	re	<0.33 fee
05-20-7-30-97		±3%	900	±10%			±10%	after initia
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)		±10 mV	(<10NTU, ±1NTU)	drawdow
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pН	Potential	Turbidity	Water Leve
(gal)	(min)	(°C)	(mS/cm)	(mg/L)	7.07	(mV)	(NTU)	(ft)
1.3	10	15.54	0.848	0.98	7.07	727	96.92	10.1
1195	15	15.22	0.842	0.89	7.08	-23.7	11 61	18.1
2,6	20	15.00	0.840	0.88	1106	- 24.8	11:91	18.73
3,25	15	15.02	2.840	0.88	7.05	-29.2	12.05	18:1
3,5	30	14.94	0.840	0.81	7:05	-32,6	11.11	18/7
4.5	FINA	4	/	7				
				/				
			/					-
			/					
			,					
P			613					
Did groundwater p	arameters stabiliz	ze? Yes / No If no	, why not?					
Did drawdown stat	oilize? (Ves / No	If no, why not?						
Was flowrate between	een 0.03 and 0.15	GPM? Yes No If	no, why not?					
Water Color;	Qea r	Yellow	Orange	Brown	/Black (Sand/Sill	Other:		
Well Condition:	Lock: N	Labeled w	ith LOC ID: Y/N	Comments	s)			
Sheen: Yes / No)	1-	Odor: Yes /No	10	Notes/Comments	3:			
0		(
	es (Circle):	DRO RRO Dissol	ved Iran (Sulfate					
Laboratory Analys				HCI= 0 HNC	A			
Laboratory Analys	0	Approxima	ate volume added (mL):	HCI = HNC	3=			
pH checked of san	0	Approxima	ate volume added (mL):	HCI = 10 HNC	1= 0			
	0		disposed as IDW?		If No, why not			

GROUNDWAT	ER SAMPLE	: FORM	FORMER BU	ILDING 3564			Ft. Wainw	right, Alask
Project #:	90	11-22		Site Location:	Former Buildin	g 3564 Diesel El	ectric Generator Plant	
Date:	6/2	1/19		Probe/Well #:	AP	-719	1	
Time:	12	05		Sample ID:	19FW64 0	Zwg		
Sampler:	4	B			720			
Weather:	SUN	MY		Outside Temperature:	770	-		
QA/QC Sample ID/1	Time/LOCID: 1	9 PW &	103WG/	1220/1	40-7	070	MS/MSD Performed	Yes No
Purge Method:	Peristaltic Pump / S	Submersible / Bladde	,	Sample Method:	Peristaltic Purr	p / Submersible	/ Hydrasleeve / Bladd	er / Other
Equipment Used fo	or Sampling:	YSI#_9_	Turbidity Meter #:	<u>1</u> 3	Water Level:_	13		
ree Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produc	t				
Column of Water in	Probe/Well			Sampling Depth				
otal Depth in Probe	/Well (feet bloc):	21.	87	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	. 17.	53	Depth tubing / pump into	ake set* approx.	19,50	eet below top of casing	1
Column of Water in I	Probe/Well (feet):	. 4.	34	*Tubing/pump intake must	be set approximate	ely 2 feet below the	water table for wells scr	eened across
Circle: Gallons per f	foot of 1.25" (X 0.0	064) or 27 (X 0.163) or	r 4" (X 0.65)	the water table, or in the m	iddle of the screen	ed interval for wells	screened below the war	er table
Volume of Water in	1 Probe/Well Casin	ng (gal):	0.71					
		.03 to 0.15 GPM unti ield well using a no-	I parameters stabilize or purge technique.	3 casing volumes have	e been removed	f. If well draws	down below tubing o	or pump intak
			Atl	east 3 of the 5 para	meters below	must stabiliz	е	1 55 /
		±3%		±10%			±10%	<0.33 feet after initia
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	рН	Potential	Turbidity	Water Leve
(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
1.5	10	7.09	0.904	0.67	6.99	-132,8	26.33	17.60
7,25	15	7.01	0.904	0.59	6.82	-140.1	17:98	17.61
3	20	(0.Gb	1.904	0.54	6.72	-144.7	12,14	17.6
3.75	19	7,10	6-903	6.52	6,69	- 14/2	5.00	17.6
4.5	30	7.14	0.903	0.50	(0.105	-148.9	3.78	17-6
5.25	25	7.17	0.903	11.49	10.62	-150.0	3,29	17.6
10	FIN	AL	10.7		-	- /	-	15 6 5
4	- 11						1 -	
4								
				/				
				CIZ				
				00	1			
	272247222	-0	A # 10 17 18	-	_			
Did groundwater p	_		, why not?	-				
Did drawdown stat	-	0	in Articles					
Was flowrate between	Λ		no, why not?	- 2/3/4	S. CB. L. SHOUS			
Water Color:	Clear	Yellow	Orange		Black (Sand/Silt)	Other:		
Well Condition:	Lock: N		ith LOC ID: N	Comments				
Sheen: Yes / No		Odor: Yes / No		Notes/Comments	-	-		
	S Carrier Control	.0.0.	\sim					
Marine Present	on /Cirolole	DRØ, RRØ, Dissol	ved Iron, Sulfate	6				
Laboratory Analys	Λ		ete column a add ad tool t	UCL- III	- 20			
pH checked of sam	Λ		ate volume added (mL):	HCI = O HNQ	-0_			
	Λ	Approxima	ate volume added (mL):		=_0			

GROUNDWAT	TER SAMPLE	FORM	FORMER B	UILDING 3564			Ft. Wainw	right, Alas
Project #:	901	1-22		Site Location:	Former Buildin	g 3564 Diesel Ele	ectric Generator Plant	
Date:	6/2	4/15		Probe/Well #:	AP.	7189	7	
Time:	11	00		Sample ID:	19FW64 OL	/ WG		
Sampler:	0	B			-		_	
Weather:	MOSTE	Y CLOV	104	Outside Temperature:	240	F6201	=	
QA/QC Sample ID/	Time/LOCID:						MS/MSD Performed	Yes/No
Purge Method:	Peristaltic Pump / §	Submersible / Bladder		Sample Method:	Peristaltic Pun	p / Submersible	/ Hydrasleeve / Bladde	er / Other
Equipment Used fo			Turbidity Meter #:_/	2	Water Level:	- 2		
Free Product Obse			If Yes, Depth to Produ	ct:				
Column of Water in		(5	7 7 - 21 - 1 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sampling Depth				
Total Depth in Probe	The American	71.0	15	Well Screened Across)/ Below water	table		
Depth to Water from		17.1	02	Depth tubing / pump inta		10	eet below top of casing	
Column of Water in		- 44	0.3	*Tubing/pump intake must				
Circle: Gallons per t	foot of 1,25" (X 0.00 1 Probe/Well Casin		0.8	the water table, or in the mi	iddle of the screen	ed interval for wells	screened below the wat	er table
		03 to 0.15 GPM until eld well using a no-p	ourge technique.	or 3 casing volumes have				or pump inta
			At	least 3 of the 5 para	meters belov	must stabiliz	е	<0.33 fee
Field Parameters:		±3% (or ±0.2°C max)	±3%	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initia drawdow
Water Removed (gal)	Time Purged (min)	Temperature (°C)	Conductivity (mS/cm)	Dissolved O ₂ (mg/L)	рH	Potential (mV)	Turbidity (NTU)	Water Lev
1.5	10	7.80	0.802	4.79	6.01	-64.1	16.77	17.18
2.25	15	7.79	0.795	3,03	6,25	- 79.2	16.58	17.2
3	20	7.78	0.188	2.47	6-34	-92.4	13-79	17.25
3.75	25	7.70	0.789	2.60	6.39	-95.2	10.10	17.
4.5	30	7.66	0.789	2.58	6.41	-100 2	7.97	17-
5-25	35	7.62	0.789	2.55	6.41	-1021	5.88	
6	FINI	12						
				10				
				US				
Did groundwater p	pilize? Yes/ No een 0.03 and 0.15	GPM? Yes/No If r	o, why not? Orange		Black (Sand/Silt) Other:		
Water Color:	Clear	Carlo Landon No. No.	I LOC ID:AYA N	Comments				_
Water Color: Well Condition:	Lock A N	Codor: (Yes)/ No		Notes/Comments:				
Was flowrate between Water Color: Well Condition: Sheen: Yes / No	Lock N	0.00	7	Notes/Comments:				

ROUNDWA	TER SAMPLE	FORM	FURNIER BU	IILDING 3564			Ft. Wainwi	right, Alaska
roject #:	901	1,22		Site Location:	Former Buildin		ectric Generator Plant	
Date:	6/24/	17		Probe/Well #:	41-	7183		
ime:	1320)		Sample ID:	19FW64 0 3	WG		
Sampler:	45	25 04 (1)			6801			
Weather:	MOSTLY	CLOVD	Y	Outside Temperature:	60-1	5		
QA/QC Sample ID/	Time/LOCID:	5					MS/MSD Performed	7 Yes(No)
Purge Method:	Peristaltic Pump / §	obmersible / Bladder	1	Sample Method:	Peristaltic Pum	p / Submersible	/ Hydrasleeve / Bladde	er / Other
quipment Used fo	or Sampling:	YSI#	Turbidity Meter #:	(3)	Water Level:_	13		
ree Product Obse	rved in Probe/Wel	17 Yes/NO	If Yes, Depth to Produc	t:				
Column of Water in	Probe/Well			Sampling Depth				
Total Depth in Probe	e/Well (feet btoc):	21	.85	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	17	.91	Depth tubing / pump inta	ake set* approx.	19.9 1	eet below top of casing	
Column of Water in	Probe/Well (feet):	. 3	.94	*Tubing/pump intake must	be set approximate	ely 2 feet below the	water table for wells scre	eened across
Circle: Gallons per	foot of 1.25" (X 0.06	64) or 2 (X 0.163) or	4" (X 0.65)	the water table, or in the mi	ddle of the screen	ed interval for wells	screened below the wat	er table
Volume of Water in		1	0.64					
114 114					ALSW B INTERNA			
		03 to 0.15 GPM until eld well using a no-	l parameters stabilize or purge technique.	3 casing volumes have	e been removed	i. If well draws	down below tubing o	or pump intake,
			Att	east 3 of the 5 para	meters helow	must stabiliz	e	
		1.00	71.5		notoro bolon	muot blubiii2		<0.33 feet
ield Parameters:		±3% (or ±0.2°C max)	±3%	±10% (<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	±10% (<10NTU, ±1NTU)	after initial drawdown
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Level
(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
1.5	10	9,69	0.975	2,34	6.66	100.3	9.41	18,55
2.25	15	9.62	0.770	2,03	6.68	93.6	7,29	18,0
3	20	9.52	0.967	1.84	6.72	81.1	C.41	18.59
3.75	25	9,49	0.965	1,50	6.74	77.7	3.59	18.6
4.5	30	0 1111	0 961	1,78	10 74	75.3	3.91	18.60
5	FINA	1.77	0.101	1110	4 1	122	2116	10.00
	7							
			/					
		(
				(1)				
	773 TO 740		3.0734		1			
	arameters stabiliz	0	why not?	-				
Did drawdown sta	_		E / 20 ma 2					
	een 0.03 and 0.15		no, why not?			i i i i i i i i i i i i i i i i i i i		
Water Color:	Olean	Yellow	Orange		Black (Sand/Silt)		VANCO	A+ /3
Well Condition:	Lock ₂ Ø/N		th LOC ID: YON	Comments	0 - 0	NOVED	X DUCER	17 12
Sheen: Yes / No		Odor: Yes / NO		Notes/Comments	KEP	LMCED	11	1531
Laboratory Analys	~ ~	DRO, RRO, Dissolv			- 3			
THE OWNER OF STREET	nples: ANN	Approxima	te volume added (mL):	HCI = O HNQ	-0			
pH checked of san								
Purge Water	0							

ROUNDWAT	ER SAMPLE	FURM	FORMER BU	ILDING 3564			Ft. Wainw	right, Alask
roject#:	901	1-22		Site Location:	Former Building	g 3564 Diesel El	ectric Generator Plant	
ate:	6/24	415		Probe/Well #:	AP	7/78		
ime:	15	00		Sample ID:	19FW64 06) WG		
Sampler:	a				7340			
Veather:	MOSTLY	CLOUP	y	Outside Temperature:	130			
A/QC Sample ID/T	ime/LOCID:						MS/MSD Performed	? Yes/ 160
urge Method:	Peristaltic Pump / 6	ubmersible / Bladder		Sample Method:	Peristaltic Pum	p (Submersible)	Hydrasleeve / Bladd	er / Other
quipment Used fo	r Sampling:	YSI#	urbidity Meter #:_	7	Water Level:_	13		
ree Product Obse	rved in Probe/Well	17 Yes/N6) II	Yes, Depth to Produc	t:				
column of Water in	Probe/Well			Sampling Depth				
otal Depth in Probe	/Well (feet bloc):	17.	,43	Well Screened Across	/ Below water	table		
Depth to Water from	TOC (feet):	. 14	149	Depth tubing / pump into	ake set* approx.	1600	eet below top of casing	1
Column of Water in F	Probe/Well (feet):	= 2	.94	*Tubing/pump intake must	be set approximate	ely 2 feet below the	water table for wells scr	eened across
Circle: Gallons per f	oot of 1.25" (X 0.06	34) or 27 (X 0.163) or 4	" (X 0.65)	the water table, or in the m	iddle of the screen	ed interval for wells	s screened below the war	er table
olume of Water in	Probe/Well Casing	g (gal):	0.48					
icronurae well/or	ohe at a rate of 0.0	3 to 0 15 GPM until r	parameters stabilize or	3 casing volumes have	e heen remover	I If well draws	down below tubing	or numn intake
		eld well using a no-p		Touring Tolamos have	0 23011 101110110		demin perem tability	er pump mann
			At I	east 3 of the 5 para	meters below	must stabiliz	e	50000
		±3%		±10%			±10%	<0.33 feet after initial
ield Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	рН	Potential	Turbidity	Water Level
(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
1,5	10	6.42	0.795	1,59	5.98	-30,1	128,1	14.89
2.15	15	6.39	0.793	1.20	4.02	-32.9	74.1	15-06
3	20	6.35	0.793	1.05	4.15	-47.2	55.2	15.15
3.75	25	6.30	0.793	1.00	6.25	-51.5	31,96	15.18
4.5	30	6.30	0.793	0.95	6.28	-567	19.21	15.18
5.25	35	6.31	0 792	0.93	6.31	-592	16007	15.15
6	40	6.32	0.788	0,90	6.34	-612	13.29	15.15
7	FINAL	* /		I I Common to	, , ,			4 346
	11-11-11-11-11							
		4						
			B					
Did groundwater p	arameters stabiliz	e Yes / No If no, v	why not?					
old drawdown stat	oilize? (e) / No	If no, why not?						
Vas flowrate betwe	een 0.03 and 0.15	GPM? Yes/No If no	o, why not?	> INI	THE	1 64	LLON	WUS
Vater Color:	Clear	Yellow	Orange	Brown/	Black (Sand/Silt)	Other:		TUN
Vell Condition:	Lock, N	Labeled with	LOC ID: EN	Comments	FLUS	HMOU	INT	OVE
Sheen: Yes / No		Odor: (Yes) No 5	11647	Notes/Comments				
		0 /	DI OTT					
Laboratory Analys	es (Circle): (DRO, RRO, Dissolve	d Iron, Sulfate					
pH checked of sam			volume added (mL):	HCI = HNQ	-0			
Purge Water								
M. Me statel	-		0					
Sallons generated:		Containerized and di-	sposed as IDW? Yes	lo	If No, why not?			

GROUNDWAT	TER SAMPLE	FORM	FORMER B	UILDING 3564			Ft. Wainwi	ight, Alask
Project #:	901	11-22		Site Location:	Former Buildin	ng 3564 Diesel Ele	ectric Generalor Plant	
Date:	6/24	119		Probe/Well #:	4P-0	0729		
ime:	155	50		Sample ID:	19FW64 07	7 wg /		
iampler:	CB			5.6				
Veather:	PARTLY	1 CLOV	04	Outside Temperature	120	F		
QA/QC Sample ID/	Time/LOCID: -						MS/MSD Performed	Yes/No
Purge Method:	Peristaltic Pumpy S	Submersible / Bladder		Sample Method:	Peristaltic Pun	np / Submersible	/ Hydrasleeve / Bladde	er / Other
quipment Used fo	p.C. recording to	/	Turbidity Meter #:/)	Water Level:	13		
ree Product Obse			f Yes, Depth to Produ	ict:				
Column of Water in			, 100, Departo 1 1000	Sampling Depth				
Total Depth in Probe	LOUI TONY	76.	66	Well Screened Acros	Balow water	table		
		18.	43	Depth lubing / pump in			ot balaw top of cooled	
Depth to Water from		- 10	23					
Column of Water in		-		_*Tubing/pump intake mus				
		64) or 2 (X 0.163) or 4		the water table, or in the r	middle of the screen	ned interval for wells	screened below the wat	ar table
Volume of Water in	1 Probe/Well Casin	ig (gal):	1.3	-				
Micropurge well/pr	obe at a rate of 0.	03 to 0.15 GPM until	parameters stabilize o	or 3 casing volumes ha	ve been remove	d. If well draws	down below tubing o	or pump intak
stop purging and s	sample as a low-yi	eld well using a no-p	urge technique.		Carried Control		M. V. V. M. Z.	
			At	least 3 of the 5 para	ameters belov	v must stabiliz	е	
		±3%		±10%			±10%	<0.33 feet after initia
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdowi
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Leve
(gal)	(min)	(°C)	(mS/cm)	(mg/L)	1	(mV)	(NTU)	(ft)
1.5	10	7.32	0.855	1.11	6.82	-1162	46.92	18.5
2.25	15	7.45	0.857	1.01	6.81	-1297	25-11	18.50
3	20	7.47	0.857	0.89	6.81	-130.5	10-48	18.5
3.2	25	7:45	0.857	0.78	678	-/338	8.88	18.50
4.5	30	7.49	0.858	0.79	6,79	-133.6	6.27	18.50
F	FIN	AL						,
>		1				1		
						1		
							7	
			-					
			-					
			in					-
		-	45		-			_
Did groundwater p	parameters stabiliz	ze? Yes)/ No If no,	why not?					
Did drawdown stal	bilize? Yes / No	If no, why not?						
Was flowrate betw	een 0.03 and 0.15	GPM? Yes No If n	o, why not?					
Water Color:	Clear	Yellow	Orange	Brown	n/Black (Sand/Silt	t) Other:		
Well Condition:	Lock/9/N	Labeled with	LOCID YN	Comment	s:			
Sheen: Yes / No		Odor Yes No		Notes/Comment	s:			
Laboratory Analys	ses (Circle):	DRO, RRO, Dissolve	ed Iron, Sulfate					
pH checked of san			e volume added (mL)	: HCI = HN	Q=			
	Transfer Marie	- A-F-	, and					
Purge Water		Containment	manad ca inum 6	No	If No.	10		
Gallons generated:			sposed as IDW? Yes /		If No, why not			
Disposal method*: I	O B	LA Waste	Purge water stored in	the DERA Building for c	naracterization p	nor to disposal		
Sampler's Initials:	011							

GROUNDWAT	ER SAMPLE	FORM	FORMER B	UILDING 3564			Ft. Wainw	right, Alaska
Project #:	901	11-22		Site Location:	Former Buildin	ng 3564 Diesel Ele	ctric Generator Plan	t
Date:	6/2	1/15		Probe/Well #:	AP	-718	/	
ime:		1		Sample ID:	19FW64	WG M	0 54	mat
Sampler:	C1	3	,					
Veather:				Outside Temperature	:			
A/QC Sample ID/1	Time/LOCID:					- 4	MS/MSD Performed	17 Yes/ No
urge Method:	Peristaltic Pump / S	Submersible / Bladde		Sample Method:	Peristaltic Pun	np / Submersible /	Hydrasleeve / Bladd	ler / Other
quipment Used fo	r Sampling:	YSI #	Turbidity Meter #:		Water Level:			
ree Product Obse	rved in Probe/We	II? Yes/No	If Yes, Depth to Produ	ct:				
olumn of Water in	Probe/Well			Sampling Depth				
otal Depth in Probe	/Well (feet btoc):	17.	55	Well Screened Acros	s / Below water	table		
epth to Water from	TOC (feet):	. (1)	15/	_ Depth tubing / pump in	take set* approx.	fee	et below top of casin	g
Column of Water in I	Probe/Well (feet):			*Tubing/pump intake mus	t be set approximat	tely 2 feet below the	water table for wells so	reened across
ircle: Gallons per f	loot of 1.25" (X 0.0	64) or 2" (X 0.163) or	4" (X 0.65)	the water table, or in the r	middle of the screen	ned interval for wells	screened below the wa	ater table
olume of Water in	1 Probe/Well Casin	g (gal):	_	- DWELL	Book	45 - F	Rom T	0P 01
icropurge well/pro	obe at a rate of 0.	03 to 0.15 GPM unti	l parameters stabilize o					or pump intake,
		eld well using a no-			7,711,711			, , , , , , , , , , , , , , , , , , , ,
			At	least 3 of the 5 part	ameters belov	v must stabilize)	<0.33 feet
		±3%		±10%			±10%	after initial
ield Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdown
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Level
(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
			A 10 1 1	1	-			,
WA	LL C	V45	DAMI	(D) (1	411)	- B	DOKET	1
0			7 - 1 - 2 - 2 - 2	4		0		
150	25.	DID	NOT	SIMP	LE,	PER	C.M.	-
			0-	200	-			
Nt	ZDS	10	BE K	truf	ED	8		
old groundwater p	arameters stabiliz	e? Yes / No If no	, why not?					
id drawdown stat	oilize? Yes / No	If no, why not?						
as flowrate between	een 0.03 and 0.15	GPM? Yes/No If	no, why not?					
Vater Color:	Clear	Yellow	Orange	Brown	/Black (Sand/Silt	t) Other:		
/ell Condition:	Lock: Y / N		ith LOC ID: Y/N	Comment				
heen: Yes / No	Louis 1714	Odor: Yes / No	mreed in 1771	Notes/Comment	1			
ieen. Tes / No		Odor, res/No		Notes/Comment				
aboratory Analysis	on (Circle):	DRO, RRO, Dissol	and Iron Sulfate					
aboratory Analyse H checked of sam			ate volume added (mL):	HCI = HNC) =			
silvenou or sail		- September		TIME	-			
urne Water								
urge Water		Containerized and	dienosed as IDIAD Van /	No	If No why not	2		
allons generated:_	POL Water / CERC		disposed as IDW? Yes /	No the DERA Building for cl	If No, why not			

GROUNDWAT	ER SAMPLE	FORM	FORMER BU	ILDING 5110			Ft. Wainwi	right, Alask
Project #:	90	11-22		Site Location:	Former Buildin	g 5110		4
Date:	6/2	6/19		Probe/Well #:	AP-	5737		
Time:	10	10		Sample ID:	19FW51 0/	WG		
Sampler:	6	B						
Weather:	PARTL	y clou	by	Outside Temperature	650t			
QA/QC Sample ID/1	Time/LOCID: / C	3=W/640	2W6/AF	-9090	1102	5	MS/MSD Performed	Yes No
Purge Method:	Peristaltic Pump / S	Submersible / Bladder	/ //	Sample Method:	Peristaltic Puri	np / Summersible	Hydrasleeve / Bladde	er / Other
Equipment Used fo		1		2	Water Level:	13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Free Product Obse		- ^	f Yes, Depth to Product		1,000,001,00			
Column of Water in		iii resiyo		Sampling Depth				
Total Depth in Probe	Salar Contract	14,10	_	Well Screened Acros	Below water	table		
		2.7		Depth tubing / pump in		10 7	et below top of casing	
Depth to Water from		= 54	~					
Column of Water in I		- Y		*Tubing/pump intake mus				
		64) or 2" (X 0.163) or 4	(x 0.05)	the water table, or in the	middle of the screen	led interval for wells	screened below the wat	er table
Volume of Water in	1 Probe/Well Casir	ng (gal):	0.00					
		AND RECEIVED AND AND AND AND AND AND AND AND AND AN	parameters stabilize or	3 casing volumes ha	ve been remove	d. If well draws	down below tubing o	or pump intak
stop purging and s	ample as a low-y	ield well using a no-p						
		1	At le	east 3 of the 5 par	ameters below	must stabiliz	е	<0.33 feet
		±3%	744	±10%	\ and units	410 mV	±10%	after initia
Field Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L		±10 mV	(<10NTU, ±1NTU)	
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	рН	Potential	Turbidity	Water Leve
(gal)	(min)	7 72	(mS/cm)	(mg/L)	KINT	(mV)	(NTU)	(ft)
1.1	15	1.36	0.289	0.80	100,112	1/-	7617	10.5
2.1		7.25	0.290	- 00	6.07	0/.2	27.56	10.50
3.8	20	7.18	0.290	0.//	6.06	30.0	19.28	10.50
3-3	25	1,20	0.292	0.82	5.99	31.1	10.76	10.5
4.2	30	2115	0.290	0.30	5.98	25-1	11.58	1051
4.7	35	7.13	0.292	0.19	5.98	22.6	11.52	105
5.3	FIN.	17						
)				
			_					
			CB					
								1000
Did groundwater p	arameters stabiliz	ze? Yes / No If no,	why not?					
Did drawdown stat	oilize? Yes / No	If no, why not?						
Was flowrate between	een 0.03 and 0.15	GPM? Yes/No If n	o, why not?					
Water Color:	Clear	Yellow	Orange	Brown	n/Black (Sand/Silt) Other:		
Well Condition:	Lock: (N	Labeled with	LOC ID: WIN	Comment	ts:			
Sheen: Yes No		Odor: Yes No		Notes/Comment	ts:			
		00						
Laboratory Analys	es (Circle):	BTEX, GRO, DRO, L	Dissolved Iron/Manganes	e, Sulfate				
	nples: (Y/N	Approximat	e volume added (mL):	HCI = O HN	g=_0_			
pH checked of sam	ibioo.							
pH checked of sam Purge Water Gallons generated:	5.5	Containerized and di	sposed as IDW? Yes / N	lo	If No, why not	?		

GROUNDWAT	ER SAMPLE	FORM	FORMER BL	JILDING 5110			Ft. Wainwr	ight, Alask
Project #:	901	11-22		Site Location:	Former Buildin	g 5110	~	
Date:	6/26	119		Probe/Well #:	111	5/3	8	
rime:	/1/	5		Sample ID:	19FW51 05	WG		
Sampler:	C/	>			160	-		
Weather:	MOST	y clove	Sy.	Outside Temperature:	6701			
QA/QC Sample ID/1	Time/LOCID:						MS/MSD Performed?	Yes/ No
Purge Method:	Peristaltic Pump / §	Submersible / Bladder		Sample Method:	Peristaltic Puri	p /(Submersible	/ Hydrasleeve / Bladde	er / Other
Equipment Used fo	or Sampling:	YSI# 6	Turbidity Meter #:/	3	Water Level:_	13		-
ree Product Obse	rved in Probe/We	II? Yes/No I	f Yes, Depth to Produc	at:				
Column of Water in	Probe/Well	2001		Sampling Depth				
Total Depth in Probe	Track and the state of	15.	3.2		/ Below water	table		
Depth to Water from		. 10:	77	Depth tubing / pump inta			eet below top of casing	
Column of Water in I	1 22 1 1 1	- 5.	09	*Tubing/pump intake must I				
		64) or 2 (X 0.163) or 4	-					
			0.83	the water table, or in the mi	adie of the screen	ed interval for wells	screened below the water	ar table
Volume of Water in	1 Probe/Well Casin	ng (gal):	00)					
				3 casing volumes have	been remove	d. If well draws	down below tubing o	r pump intak
stop purging and s	ample as a low-yi	eld well using a no-p						
			Ati	least 3 of the 5 parai	meters below	must stabiliz	e	<0.33 feet
		±3%		±10%			±10%	after initia
ield Parameters:		(or ±0.2°C max)	±3%	(<1mg/L, ±0.2 mg/L)	±0.1 units	±10 mV	(<10NTU, ±1NTU)	drawdowr
Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Leve
(gal)	(min)	(°C)	(mS/cm)	(mg/L)	1 00	(mV)	(NTU)	(ft)
1.3	10	6.05	0.424	1.39	6.08	-36.2	65.50	10.7
1.95	15	5,63	0.425	1112	6.58	-52,2	37.92	10.80
2.6	20	5.53	0.425	1.05	6.45	-680	24.40	10.9
3.25	25	5.40	0,421	0.99	6.46	-70.D	18.57	10.90
3.9	30	5 35	0.420	0.95	6.46	-73.1	16.29	10.90
4.55	35	5.38	0.418	0.91	6.46	-72.8	14.16	1091
5	FINA	2						
				Na			11 -	
		9						
)					
			10					
			43					
Old seems division a	aramatara atabilis	te? Yes No If no, v	uhu wata					
Did drawdown stat		_	willy flot?					
Was flowrate between			o, why not?	-		C. Carrier		
Water Color:	Clear	Yellow	Orange	Brown/I	Black (Sand/Silt)	Other:		
Well Condition:	Lock: YN	7	LOCID: WIN	Comments				
Sheen: Yes / No		Odor: Nes / No		Notes/Comments:				
Laboratory Analys	es (Circle):	BTEX, GRO, DRO, D	Dissolved Iron/Mangane	se, Sulfate	- 75			
	ples: N/N	Approximate	e volume added (mL):	HCI = / HNQ	=_0			
pH checked of sam								
pH checked of sam Purge Water	-							
	5	Containerized and di	sposed as IDW? Ves / N	No.	If No, why not	,		

### Field Parameters: ### (or ±0.2°C max) ### ±10% (<1mg/L, ±0.2 mg/L)	Weather:	PHILTE	4 00	MY	Outside Temperature	12		MS/MSD Dardarmad	Vani No
Equipment Used for Sampling: YSI #			Subsparaible (Bladder		Sample Method:	Pacietallic Dum			
Free Product Observed in Probe/Well (**es** **Local Column of Water in Probe/Well (**es** **Local Column of Water in Probe/Well (feet bitoc): Depth to Water from TOC (feet):	1000	The second second		Turbidity Meter #:	7		13	riyurasieeve v biadde	or other
Column of Water in Probe/Well (feet bloc): Depth in Probe/Well (feet bloc): Depth to Water from TOC (feet): Column of Water from TOC (feet): Column of Water in Probe/Well (feet): Circle: Gallons per foot of 1.25" (X 0.064) or 2" (X 0.163) of 4" (X 0.65) Volume of Water in 1 Probe/Well Casing (gal): Micropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump stop purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize 43% (<imag (<inont)="" (c)="" (cing="" (gal)="" (mg="" (min)="" (ms="" (my)="" (x="" 10ntu,="" 10u)="" 10u)<="" after="" cm)="" draws="" frame="" from="" l)="" l,="" mg="" mv="" purged="" td="" the="" units="" ±0.1="" ±0.2="" ±10="" ±10%="" ±1ntu)=""><td></td><td></td><td></td><td></td><td>0 101</td><td></td><td></td><td></td><td></td></imag>					0 101				
Total Depth in Probe/Well (feet btoc): Depth to Water from TOC (feet): Column of Water in Probe/Well (feet): Circle: Gallons per foot of 1.25" (X 0.064) or 2" (X 0.163) of 4" (X 0.85) Well Screened Across / Pelowwater table Depth tubing / pump intake set* approx. Z 0 Z feet below top of casing "Tubing/pump intake must be set approximately 2 feet below the water table for wells screened at the water table, or in the middle of the screened interval for wells screened below the water table or a casing volume of Water in 1 Probe/Well Casing (gal): Micropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump stop purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize Conductivity Dissolved O2 pH Potential Turbidity Water (c1m) (my) (NTU) Turbidity Water (my) (my) (my) (my) (my) (my) (my) (my)				,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Depth to Water from TOC (feet): S		CONTRACT OF STREET	25.	21		s / Below water t	able		
Column of Water in Probe/Well (feet):			8.	73			The Country of the Co	et below top of casing	r
Circle: Gallons per foot of 1.25" (X 0.064) or 2" (X 0.65) the water table, or in the middle of the screened interval for wells screened below the water table Volume of Water in 1 Probe/Well Casing (gal): Micropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump stop purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize At least 3 of the 5 parameters below must stabilize 43% (<1mg/L, ±0.2 mg/L) ±0.1 units ±10 mV (<10NTU, ±1NTU) draw draw (gal) (min) (°C) (mS/cm) (mg/L) (mg/L) (mV) (NTU) At least 3 of the 5 parameters below must stabilize 40.3 after (10NTU, ±1NTU) (my/L) (my			- 16.	48	*Tubing/pump intake mus	t be set approximate	ly 2 feet below the	water table for wells scre	eened across
Volume of Water in 1 Probe/Well Casing (gal):			64) or 2" (X 0.163) or	4" (X 0.65)	the water table, or in the r	niddle of the screene	ed interval for wells	screened below the wat	er table
Micropurge well/probe at a rate of 0.03 to 0.15 GPM until parameters stabilize or 3 casing volumes have been removed. If well draws down below tubing or pump stop purging and sample as a low-yield well using a no-purge technique. At least 3 of the 5 parameters below must stabilize 43% field Parameters: (or ±0.2°C max) ±3% (<10% ±0.1 units ±10 mV ±10% (<10NTU, ±1NTU) after draw draw (<10NTU, ±1NTU) draw (<10NTU, ±1NTU) draw (<10NTU, ±1NTU) Water Removed (min) (°C) (mS/cm) (mg/L) (mg/L) (mV) (NTU) Solution <				2.7	106 1123 010 1012				
At least 3 of the 5 parameters below must stabilize +10% +10% +10% +10 mV (<10NTU, ±1NTU) +10 mV (<10NTU, ±1NTU) +10 mV (<10NTU, ±1NTU) +10 mV (<10NTU, ±10 mV +10 mV (<10NTU, ±10 mV +10 mV									
#3% (or ±0.2°C max) #3% (<1mg/L, ±0.2 mg/L) ±0.1 units ±10 mV (<10NTU, ±1NTU) draw (gal) (min) (°C) (mS/cm) (mg/L) (my/) (mV) (NTU) (NTU) (MTU)					r 3 casing volumes have	ve been removed	. If well draws o	lown below tubing o	or pump inte
Field Parameters: (or ±0.2°C max) (or ±0.2 mg/L) (or ±0.1 mits (or ±0.1 mits (or ±0.1 mits (or ±0.1 mits (or ±0.2 mg/L) (inv)					least 3 of the 5 pag	meters below	must stabilize		
Field Parameters: (or ±0.2°C max) ±3% (<1mg/L, ±0.2 mg/L) ±0.1 units ±10 mV (<10NTU, ±1NTU) draw (min) (°C) (mS/cm) (mg/L) (my/L) (mV) (NTU) (NTU) (my/L) (m				7,11.5	- A.S.	amotoro poloni	made diability	12733	<0.33 fe
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Field Parameters:		1 Aug 1966 - 1965 200 - 1966 -	±3%	2007 200	±0.1 units	±10 mV		after init
1.3 10 3.90 0.443 2.31 6.73 -37.3 4.16 8. 1.45 15 3.61 0.435 1.05 6.60 -38.7 2.92 8 3.65 20 3.50 0.430 0.92 6.57 -401 3.15 8. 3.25 25 3.45 0.430 0.85 6.58 -42 6 1.98 8 29 30 3.33 0.430 0.80 6.58 -44.4 1.16 8	Water Removed	Time Purged	Temperature	Conductivity	Dissolved O ₂	pH	Potential	Turbidity	Water Le
3.95 15 3.61 0.435 1.05 6.60-38.7 2.92 8 3.65 20 3.50 0.430 0.92 6.57-401 3.15 8. 3.25 25 3.45 0.430 0.85 6.58-426 1.98 8 3.9 3.33 0.430 0.80 6.58-444 1.16 8.	(gal)	(min)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(ft)
3.95 15 3.61 0.435 1.05 6.60 -38.7 2.92 8 3.65 20 3.50 0.430 0.92 6.57 -401 3.15 8. 3.25 25 3.45 0.430 0.85 6.58 -42 & 1.98 8 39 30 3.33 0.430 0.80 6.58 -44.4 1.16 8.	1.3	10	3.9D	1.443	2.31	6.73	-37.3	4.16	8.80
3,25 25 3.45 0.430 0.85 6.58 -426 1.98 8 29 30 3.33 0.430 0.80 6.58 -44.4 1.16 8	1.45	15	3.101	0.435	1.05	10-60	- 35.7	2.92	
3,25 25 3.45 0.430 0.85 6.58 -426 1.98 8 29 30 3.33 0.430 0.80 6.58 -44.4 1.16 8	3.05	2.0	3,50		1	4.57	-401	3,15	
39 30 3.33 0.430 0.80 6.58 -44.4 1.16 8.	2,25		3.45	0.430	0.85	6.55	-42 6	1.98	-
	79		3.33	MINTE		14.58	-44.4	1.12	
	211		1	0 100	,	1			
	- 4	1							
						-			
					1		-		
The state of the s					/				
				C	B				
		- 0		why not?					
Did groundwater parameters stabilize? Yes / No If no, why not?	Did drawdown stal	oilize? Yes / No	If no, why not?						
Did groundwater parameters stabilize? Yes / No If no, why not? Did drawdown stabilize? Yes / No If no, why not?	Was flowrate between	een 0.03 and 0.15	GPM? Yes No If r	no, why not?					
	Water Color:	Glear	Yellow	Orange	Brown	/Black (Sand/Sill)	Other		
Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes / No If no, why not?	Well Condition:	Lock: (Y)/ N	Labeled wit	h LOC ID: N	Comment	s:			
Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes No If no, why not? Water Color: Glear Yellow Orange Brown/Black (Sand/Sill) Other:			Odor: Yes / No	STRONG!	Notes/Comment	s:			
Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Glear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock: Y/N Labeled with LOC ID: Y N Comments:	Sheen: Yes / No	c STA	FINING	on t	VBING.				
Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Glear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock: Yellow Labeled with LOC ID: Yellow Comments:	Sheen: Yes/No			A POW BUILD A TW					
Did drawdown stabilize? Yes / No If no, why not? Was flowrate between 0.03 and 0.15 GPM? Yes/No If no, why not? Water Color: Glear Yellow Orange Brown/Black (Sand/Silt) Other: Well Condition: Lock: Yellow Labeled with LOC ID: Yellow Comments:	MACI	es (Circle):	BTEX. GRO. DRO. I	Dissolved Iron/Mangane	se. Sulfate				

Rinsate #:	1	4
Sample ID:	19FUZPEBOIWQ	
Date:	6/20/19	**
Time:	1400	
Analysis:	voc, DRD, Fe, So,	
Well that the	pump was last used on:	AP.10037MW (FB1168)

Equipment blank results used to evaluate pump decontamination procedure @ DRMO Yard (TWO-Party), Building 1168, \$
Building 2250 sites.

Rinsate #:	2
Sample ID:	19 FWZ PEBOZ WQ
Date:	6/24/19
Time:	1100
Analysis:	DRO/RRO ONLY
Well that the	pump was last used on: AP-6729

Equipment blank results to be used to evaluate pump decontamination procedure @ Neely Road, Building 3564, & Building 5110 sites

Rinsate #:	3	
Sample ID:	19FWZPEBO3WQ	
Date:	6/24/19	
Time:	1800	
Analysis:	VOC, FRO, Fe/Ma/Suffete	
Well that the	pump was last used on:	

AP-9459

Equipment blank results to be used to evaluate pump decontamination procedure @ Neely Road, Building 3564, # Building 5110 sites.

Rinsate #: 4

Sample ID: 19 FWAREB 04 W Q

LB

Date: 9/1/19

Time: 1550

Analysis: Voc, GRO, DRO, RRO, Fe/Mn, SU4

Well that the pump was last used on: AP-9685

APPENDIX D

MAROS CONTAMINANT TREND AND PLUME STABILITY ANALYSIS

MAROS Summary 11 —Building 5010 Statistical Trend Analysis Summary

MAROS Statistical Trend Analysis Summary

Project: Bldg 5010_2019

Location: Fort Wainwright

Time Period: 12/1/1997 to 6/26/2019

Consolidation Period: No Time Consolidation

Consolidation Type: Average
Duplicate Consolidation: Average
ND Values: 1/2 Detection Limit
J Flag Values: Actual Value

	User N	lame:	FES
-	State:	Alask	a

Well	Source/ Tall	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
DIESEL COMPONENTS								
AP-7346	1	18	12	1.1E-01	1.0E-01	No	S	NT
AP-7348	S	23	23	1,8E+01	1.5E+01	No	D	PD

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

MAROS Summary 12 —DRMO1 Statistical Trend Analysis Summary (Pre-Treatment)

MAROS Statistical Trend Analysis Summary

Project: OU2 DRMO1 2-Party

Location: Fort Wainwright

Time Period: 7/29/1997 to 9/1/2003 Consolidation Period: No Time Consolidation

Consolidation Type: Median

Duplicate Consolidation: Average

ND Values: Detection Limit

J Flag Values: Actual Value

User Name: FES State: Alaska

Well	Source/ Tall	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
DIESEL COMPONENTS								
AP-5826	S	6	6	4.0E+00	1.8E+00	No	NT	NT
MP4	T	10	10	4,6E+00	5.0E+00	No	D	D

Note: Increasing (I): Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D): No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

MAROS Summary 13 —DRMO1 Statistical Trend Analysis Summary (Post-Treatment)

MAROS Statistical Trend Analysis Summary

Project: DRMO1 2-Party User Name: FES

Location: Fort Wainwright State: Alaska

Time Period: 9/15/2003 to 6/19/2019 Consolidation Period: No Time Consolidation

Consolidation Type: Average
Duplicate Consolidation: Average
ND Values: Detection Limit
J Flag Values: Actual Value

Well	Source/ Tall	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
DIESEL COMPONENTS								
AP-5826	s	16	16	2.1E+00	1.2E+00	No	NT	PI
MP4	T	16	16	4,6E+00	4.2E+00	No	NT	NT

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

MAROS Summary 14 —DRMO5 Statistical Trend Analysis Summary (Pre-Treatment)

MAROS Statistical Trend Analysis Summary

Project: OU2 DRMO5 2-Party
Location: Fort Wainwright

State: Alaska

User Name: FES

Time Period: 9/1/2003 to 5/13/2015

Consolidation Period: No Time Consolidation

Consolidation Type: Median
Duplicate Consolidation: Average
ND Values: Detection Limit
J Flag Values: Actual Value

Well	Source/ Tall	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
DIESEL COMPONENTS								
AP-6806	T	14	14	5.5E+00	3.9E+00	No	NT	S
PI3	S	14	14	3.0E+00	2.7E+00	No	S	S

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

MAROS Summary 15 —DRMO5 Statistical Trend Analysis Summary (Post-Treatment)

MAROS Statistical Trend Analysis Summary

Project: DRMO5 2-Party User Name: FES

Location: Fort Wainwright State: Alaska

Time Period: 9/1/2003 to 6/19/2019

Consolidation Period: No Time Consolidation

Consolidation Type: Average
Duplicate Consolidation: Average
ND Values: Detection Limit
J Flag Values: Actual Value

Well	Source/ Tall	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
DIESEL COMPONENTS								
AP-6806	1	15	15	5.8E+00	3.9E+00	No	NT	NT
PI3	S	15	15	2.9E+00	2.7E+00	No	S	S

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

Table E-1. MAROS Statistical Analysis Summary for Neely Road

MAROS Statistical Trend Analysis Summary

Project: Neely Road 2019

Location: Fort Wainwright

User Name: FES State: Alaska

Time Period: 1/1/2014 to 9/1/2019
Consolidation Period: No Time Consolidation

Consolidation Type; Average Duplicate Consolidation: Average ND Values: Detection Limit J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
1,2,4-TRIMETHYLBEN	ZENE							
AP-8211	S	12	12	4.2E-01	4.0E-01	No	NT	NT
AP-9003	T	12	12	1.0E-02	5.8E-03	No	- 3	PI
AP-9459	T	12	12	3.7E-03	2.6E-03	No	S	S
AP-9684	T	12	12	4.9E-02	5.5E-02	No	S	NT
AP-9685	Τ.	12	4	4.0E-04	5.0E-04	No	T	1
1,3,5-TRIMETHYLBEN	ZENE (MESITY)	ENE)						
AP-8211	5	12	12	1.1E-01	1.1E-01	No	PI	- 1
AP-9003	T	12	8	2.6E-03	5.5E-04	No	NT	NT
AP-9459	T	12	12	3.6E-03	3.3E-03	No	NT	NT
AP-9684	T	12	12	1.6E-02	1.8E-02	No	s	NT
AP-9685	T	12	1	4.7E-04	5.0E-04	No	NT	NT
BENZENE								
AP-8211	S	12	10	3.4E-04	3.8E-04	No	S	NT
AP-9003	T	12	12	1.8E-03	1.8E-03	No	NT	NT
AP-9459	T	12	12	9.3E-04	6.8E-04	No	NT	NT
AP-9684	T	12	4	1.5E-04	1.0E-04	No	D	D
AP-9685	T	12	14	1.0E-04	1.0E-04	No	S	PD
PHC as DIESEL FUEL								
AP-8211	S	12	12	1.1E+01	9.8E+00	No	PD	D
AP-9003	T	12	12	1.0E+00	8.7E-01	No	S	NT
AP-9459	т	12	12	8.5E-01	6.2E-01	No	D	D
AP-9684	T	12	12	4.0E-01	3.9E-01	No	NT	D
AP-9685	T	12	7	1.1E-01	6.8E-02	No	PD	D
PHC as GASOLINE								
AP-8211	s	12	12	1.1E+00	1:1E+00	No	NT	PI
AP-9003	T	12	12	5.9E-01	4.2E-01	No	1	Ť
AP-9459	T	12	10	1.4E-01	1.5E-01	No	NT	s
AP-9684	T	12	12	5.9E-01	6.0E-01	No	PO	s
AP-9684		12	4	2.8E-02	2.5E-02	No	NT	NT

MAROS Version 2.2, 2006, AFCEE

Tuesday, November 19, 2019

Page 1 of 2

Table E-1 cont'd. MAROS Statistical Analysis Summary for Neely Road

MAROS Statistical Trend Analysis Summary

All Samples "ND" ? Number Average Number Mann-Linear Median of of Conc. (mg/L) Kendall Trend Regression Trend Source/ Conc. Detects Well Samples (mg/L) Tail

PHC as GASOLINE

Note: Increasing (I): Probably Increasing (PI): Stable (S): Probably Decreasing (PD): Decreasing (D): No Trend (NT): Not Applicable (N/A): Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events): No Detectable Concentration (NDC)

Table E-1 cont'd. MAROS Statistical Analysis Summary for Neely Road

MAROS Statistical Trend Analysis Summary

Project: Neely Road 2019

Location: Fort Wainwright

User Name: FES State: Alaska

Time Period: 1/1/2014 to 9/1/2019
Consolidation Period: No Time Consolidation

Consolidation Type: Average Duplicate Consolidation: Average ND Values: Detection Limit J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
ETHYLBENZENE								
AP-8211	s	12	12	1.8E-02	1,8E-02	No	NT	NT
AP-9003	T	12	11	6.3E-02	4.4E-02	No		1
AP-9459	T	12	6	3.8E-04	4.3E-04	No	1	1
AP-9684	T	12	5	5.4E-04	5.0E-04	No	S	NT
AP-9685	T	12	2	4.3E-04	5.0E-04	No	NT	11
NAPHTHALENE								
AP-8211	s	12	12	1.2E-01	1.2E-01	No	NT	NT
AP-9003	T	12	9	1.2E-02	4.6E-03	No	1	1
AP-9459	T	12	7	6,9E-04	5.0E-04	No	NT	NT
AP-9684	T	12	5	6.6E-04	5.0E-04	No	D	PD
AP-9685	T	12	3	4.7E-04	5.0E-04	No	PI.	1

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) – Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

Table E-1 cont'd. MAROS Statistical Analysis Summary for Neely Road

MAROS Statistical Trend Analysis Summary

Project: Neely Road 2019

Location: Fort Wainwright

User Name: FES State: Alaska

Time Period: 1/1/2014 to 9/1/2019
Consolidation Period: No Time Consolidation

Consolidation Type: Average Duplicate Consolidation: Average ND Values: 1/2 Detection Limit J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
1,2-DIBROMOETHANE (ET	THYLENE DI	BROMID						
AP-8211	s	12	5	8.3E-06	2.0E-06	No	D	D
AP-9684	T	12	1	2.4E-06	2.0E-06	No	S	PD
1,2-DICHLOROETHANE								
AP-8211	s	12	2	2.0E-04	7.5E-05	No	NT	NT
AP-9459		12	2	8.9E-05	7.5E-05	No	S	S
TETRACHLOROETHYLEN	E(PCE)							
AP-9685	Ť	12	12	1.1E-02	4.0E-03	No	NT	NT
TRICHLOROETHYLENE (1	CE)							
AP-9685	T	12	11	1.8E-03	8.4E-04	No	NT	NT

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A): Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

Table E-2. MAROS Spatial Moment Analysis Summary for Neely Road

MAROS Spatial Moment Analysis Summary Project: Neely Road 2019 User Name: FES State: Alaska Location: Fort Wainwright 1st Moment (Center of Mass) 2nd Moment (Spread) **Oth Moment** Estimated Number of Sigma XX Sigma YY Source Effective Date Xc (ft) Yo (ft) Wells Distance (ft) Mass (Kg) (sq ft) (sq ft) 1.2.4-TRIMETHYLBENZENE 7/11/2014 1.0E-02 1,383,371 3,960,261 47 293 269 6 10/13/2014 5.2E-03 1,383,360 3,960,261 473 48 5/11/2015 2.2E-02 1 383 370 3 960 261 347 296 6 8/24/2015 1.4E-02 1,383,369 3,960,261 48 365 308 6 7/6/2016 2.7E-02 1,383,370 3,960,261 47 312 281 10/10/2016 6.1E-03 1 383 363 3.960.265 55 579 418 5/11/2017 3.2E-02 1,383,370 3,960,261 47 319 282 3.0E-02 48 8/8/2017 1.383.370 3.960.262 328 289 6 5/24/2018 1.3E-02 1,383,370 3,960,261 47 344 295 8/10/2018 2.8E-02 1,383,369 3,960,261 48 380 315 6/24/2019 4.4E-02 1 383 369 3 980 263 49 355 308 6 9/1/2019 1.1E-02 1,383,369 3,960,259 47 1,3,5-TRIMETHYLBENZENE (MESITYLENE) 7/11/2014 4 6F-03 1,383,369 3,960,258 46 389 308 6 2.1E-03 1,383,351 62 557 5/11/2015 6.1E-03 1,383,363 3,960,262 54 624 434 8/24/2015 4.5E-03 1,383,362 3,960,264 56 619 436 7/6/2016 5.8E-03 1,383,364 3,960,263 53 546 399 10/10/2016 3.3E-03 1.383.358 3.960.263 59 781 500 5/11/2017 9.7E-03 1,383,365 3,960,261 52 8/8/2017 1.4E-02 1,383,365 3,960,261 546 396 5/24/2018 4.5E-03 1,383,365 3,960,261 52 557 401 8/10/2018 1,2E-02 1,383,364 3,960,261 53 597 418

MAROS Version 2.2, 2006, AFCEE

6/24/2019

7/11/2014

10/13/2014

5/11/2015

8/24/2015

10/10/2016

5/11/2017

8/8/2017

5/24/2018

6/24/2019

7/6/2016

BENZENE

9/1/2019

6.0E-03

3.7E-03

1.8E-04

4.3E-04

5.5E-04

3.5E-04

5.6E-04

6.4E-04

5.6E-04

5.2E-04

4.8E-04

4.5E-04

6.5E-04

1,383,366

1,383,363

1.383.340

1,383,349

1.383,346

1,383,345

1,383,336

1.383,347

1,383,345

1,383,346

1,383,339

1,383,343

1 383 340

3,960,262

3,960,259

3.960.263

3,960,266

3,960,264

3,960,259

3,960,268

3,960,266

3,960,260

3,960,259

3,960,266

3.960.267

Tuesday, November 19, 2019

51

52

75

68

70

68

70

69

68

77

71

76

496

613

1,069

930

1.020

1,073

1,050

972

1.074

1.071

1,070

1,085

1.070

Page 1 of 3

6

6

6

6

6

6

6

374

422

688

593

631

654

628

604

649

652

639

602

Table E-2 cont'd. MAROS Spatial Moment Analysis Summary for Neely Road

Project: Neely Road 2019

Location: Fort Wainwright

User Name: FES

State: Alaska

	Oth Moment	1st M	oment (Cent	er of Mass)	2nd Momen	(Spread)		
Effective Date	Estimated Mass (kg)	Xc (ft)	Yc (ft)	Source Distance (ft)	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells	
BENZENE								
9/1/2019	3.0E-04	1,383,341	3,960,264	74	1,090	652	6	
PHC as DIESEL FUEL								
7/11/2014	4.8E-01	1.383,358	3,960,259	56	772	532	6	
10/13/2014	1.6E+00	1,383,360	3,960,258	55	715	507	6	
5/11/2015	1.3E+00	1,383,357	3,960,261	59	789	541	6	
8/24/2015	9.4E-01	1.383,360	3,960,258	55	709	507	6	
7/6/2016	1.0E+00	1,383,359	3,960,260	56	726	516	6	
10/10/2016	1.4E+00	1,383,360	3,960,259	55	689	499	6	
5/11/2017	7.1E-01	1,383,356	3,960,258	58	824	555	6	
8/8/2017	7.9E-01	1,383,357	3,960,268	57	800	544	6	
5/24/2018	5.9E-01	1,383,353	3,960,260	61	893	594	6	
8/10/2018	1.1E+00	1,383,362	3,960,255	51	635	468	6	
6/24/2019	9,5E-01	1,383,356	3,960,261	59	819	559	6	
9/1/2019	6.8E-01	1,383,357	3,960,259	58	912	555	6	
PHC as GASOLINE								
7/11/2014	2.5E-01	1,383,362	3,960,265	56	595	420	6	
10/13/2014	9.8E-02	1,383,354	3,960,264	63	866	537	6	
5/11/2015	4.2E-01	1,383,360	3,960,266	58	674	455	6	
8/24/2015	3.5E-01	1,383,360	3,960,266	58	673	454	6	
7/6/2016	4.0E-01	1,383,361	3,960,264	57	659	443	6	
10/10/2016	1.7E-01	1,383,355	3,960,265	62	834	523	6	
5/11/2017	3.3E-01	1,383,359	3,960,264	58	713	467	6	
8/8/2017	5.3E-01	1,383,360	3,960,264	57	688	456	6	
5/24/2018	4.6E-01	1,383,359	3,960,266	60	701	459	6	
8/10/2018	3.8E-01	1,383,361	3,960,260	54	694	452	6	
6/24/2019	6.5E-01	1,383,362	3,960,263	55	630	428	6	
9/1/2019	1.8E-01	1,383,361	3,960,259	.54	712	454	6	

Table E-2 cont'd. MAROS Spatial Moment Analysis Summary for Neely Road

Project: Neely Road 2019

Location: Fort Wainwright

User Name: FES State: Alaska

Moment Type	Constituent	Coefficient of Variation	Mann-Kendall S Statistic	Confidence in Trend	Moment Trend
Zeroth Moment:	Mass				
	1.2,4-TRIMETHYLBENZENE	0.60	22	92.4%	PI
	1,3,5-TRIMETHYLBENZENE (MESI	0.57	10	72.7%	NT
	BENZENE	0.30	10	72.7%	NT
	PHC as DIESEL FUEL	0.36	-14	81.0%	s
	PHC as GASOLINE	0.46	18	87.5%	NT
1st Moment: Dis	stance to Source				
	1,2,4-TRIMETHYLBENZENE	0.06	0	47.3%	S
	1,3,5-TRIMETHYLBENZENE (MESI	0.08	-20	90.2%	PD
	BENZENE	0.06	14	81.0%	NT
	PHC as DIESEL FUEL	0.05	12	77.0%	NT
	PHC as GASOLINE	0.05	-26	95.7%	D
2nd Moment: Si	gma XX				
	1,2,4-TRIMETHYLBENZENE	0.33	14	81.0%	NT
	1,3,5-TRIMETHYLBENZENE (MESI	0.26	-8	68.1%	S
	BENZENE	0.05	28	96.9%	1
	PHC as DIESEL FUEL	0.09	14	81.0%	NT
	PHC as GASOLINE	0.11	4	58.0%	NT
2nd Moment: Si	gma YY				
	1.2,4-TRIMETHYLBENZENE	0.19	14	81.0%	NT
	1,3,5-TRIMETHYLBENZENE (MESI	0.15	-8	68.1%	S
	BENZENE	0.04	2	52.7%	NT
	PHC as DIESEL FUEL	0.06	20	90.2%	PI
	PHC as GASOLINE	0.07	-10	72.7%	S

Note: The following assumptions were applied for the calculation of the Zeroth Moment:

Porosity: 0:33 Saturated Thickness: Uniform 10-ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events).

Note: The Sigma XX and Sigma YY components are estimated using the given field coordinate system and then rotated to align with the estimated groundwater flow direction. Moments are not calculated for sample events with less than 6 wells.

MAROS Version 2.2, 2006, AFCEE

Tuesday, November 19, 2019

Page 3 of 3

Table E-2 cont'd. MAROS Spatial Moment Analysis Summary for Neely Road

Project: Neely Road 2					User Nam State: A	e: FES aska	
	Oth Moment Estimated	1st W	oment (Centi	3.00	2nd Momen		Number of
Effective Date	Mass (Kg)	Xc (ft)	Yc (ft)	Source Distance (ft)	Sigma XX (sq ft)	Sigma YY (sq ft)	Wells
ETHYLBENZENE							
7/11/2014	6,9E-04	1,383,354	3,960,251	58	954	526	6
10/13/2014	6.4E-04	1,383,336	3,960,246	74	1.167	603	6
5/11/2015	4.9E-03	1,383,353	3.960,249	58	964	512	6
8/24/2015	3.6E-03	1,383,358	3,960,249	53	836	460	6
7/6/2016	6.9E-03	1,383,353	3,960,249	58	981	512	.6
10/10/2016	1.1E-03	1,383,343	3,960,251	68	1,141	628	6
5/11/2017	6.2E-03	1,383,351	3,960,250	60	1,014	540	6
8/8/2017	8.6E-03	1,383,352	3,960,250	.69	1,009	533	6
5/24/2018	7.1E-03	1,383,352	3,960,250	59	990	528	6
8/10/2018	7.5E-03	1,383,349	3,960,251	63	1,071	571	6
6/24/2019	9.9E-03	1,383,354	3,960,250	.58	956	513	6
9/1/2019	3.6E-03	1,383,351	3,960,250	60	1,018	541	6
NAPHTHALENE							
7/11/2014	2.4E-03	1,383,362	3,960,250	50	673	423	6
10/13/2014	1.0E-03	1,383,354	3,960,252	58	963	524	6
5/11/2015	2.1E-03	1,383,357	3,960,250	54	847	475	6
8/24/2015	5.1E-03	1,383,362	3,960,253	50	667	427	6
7/6/2016	2.2E-03	1,383,360	3,960,249	51	718	432	6
10/10/2016	1.6E-03	1,383,356	3,960,250	56	902	492	.6
5/11/2017	6,9E-03	1,383,359	3,960,249	52	775	449	6
8/8/2017	8.9E-03	1,383,359	3,960,249	52	760	444	6
5/24/2018	4.1E-03	1,383,358	3,960,248	53	797	450	6
8/10/2018	8.3E-03	1,383,358	3,960,250	53	811	462	6

6/24/2019

9/1/2019

8.1E-03

4.7E-03

Tuesday, November 19, 2019

51

54

1,383,361

1,383,357

3,960,249

3,960,251

713

840

429

479

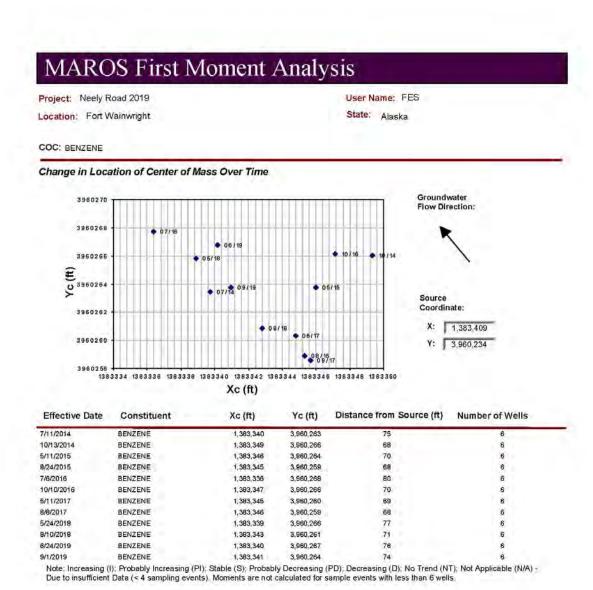
Table E-2 cont'd. MAROS Spatial Moment Analysis Summary for Neely Road

Project: Neely Road 2019 Location: Fort Wainwright

User Name: FES

State: Alaska

Moment Type	Constituent	Coefficient of Variation	Mann-Kendall S Statistic	Confidence in Trend	Moment Trend
Zeroth Moment:	Mass				
	ETHYLBENZENE	0.62	36	99.3%	1
	NAPHTHALENE	0.62	28	96.9%	1
1st Moment: Dis	tance to Source				
	ETHYLBENZENE	0.09	10	72.7%	NT
	NAPHTHALENE	0.05	8	68.1%	NT
2nd Moment: Sig	gma XX				
	ETHYLBENZENE	0.09	10	72.7%	NT
	NAPHTHALENE	0.11	4	58.0%	NT
2nd Moment: Sig	gma YY				
	ETHYLBENZENE	0.08	8	68.1%	NT
	NAPHTHALENE	0.07	8	68.1%	NT


Note: The following assumptions were applied for the calculation of the Zeroth Moment:

Porosity: 0.33 Saturated Thickness: Uniform 10 ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events).


Note: The Sigma XX and Sigma YY components are estimated using the given field coordinate system and then rotated to align with the estimated groundwater flow direction. Moments are not calculated for sample events with less than 6 wells.

Table E-3. MAROS First Moment Analysis Results for Benzene at Neely Road

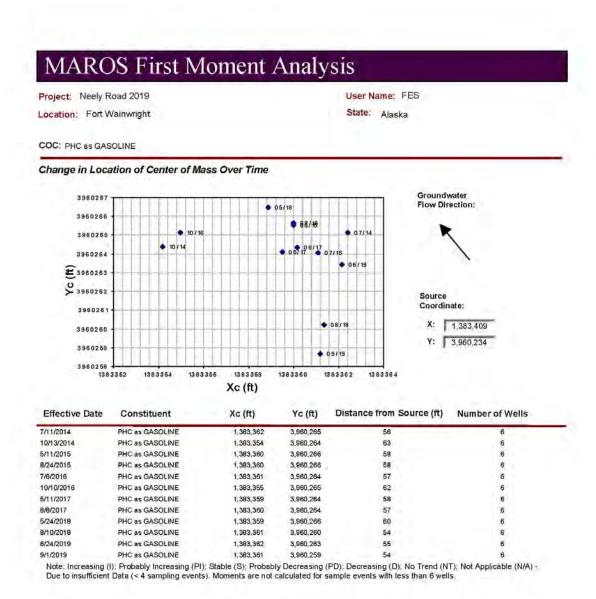

11/19/2019

Table E-4. MAROS First Moment Analysis Results for DRO at Neely Road

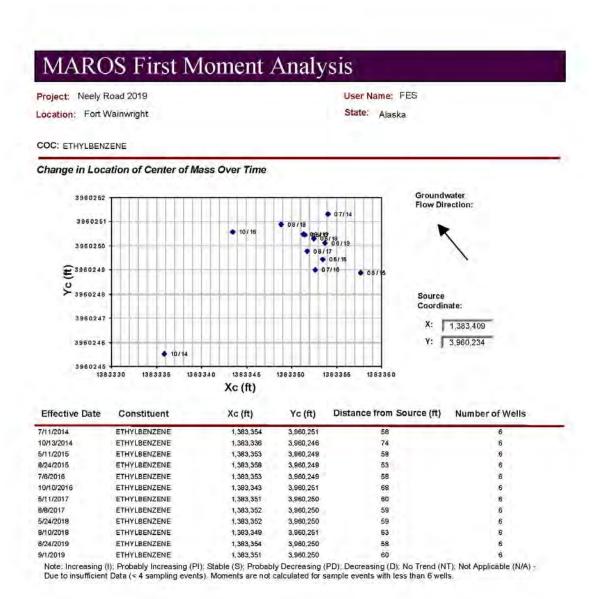

11/19/2019

Table E-5. MAROS First Moment Analysis Results for GRO at Neely Road

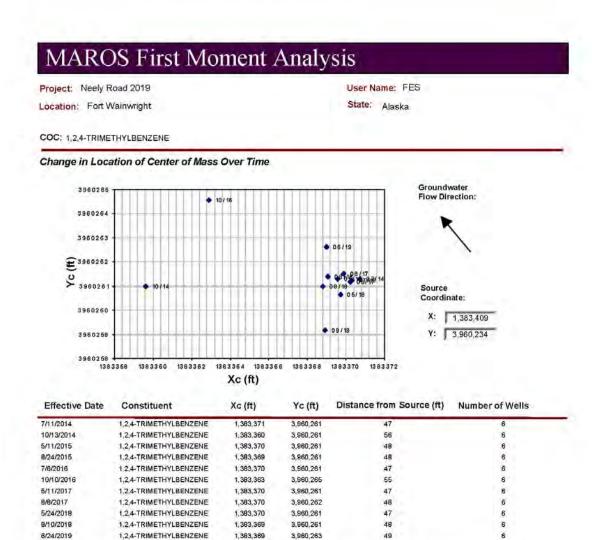

11/19/2019

Table E-6. MAROS First Moment Analysis Results for Ethylbenzene at Neely Road

11/19/2019

Table E-7 MAROS First Moment Analysis Results for 1,2,4-TMB at Neely Road

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.

3,960,259

1,383,369

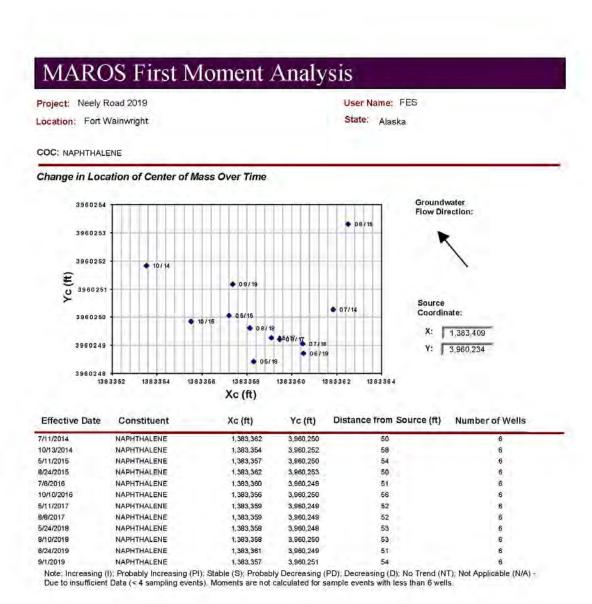
MAROS Version 2.2, 2006, AFCEE

1.2.4-TRIMETHYLBENZENE

11/19/2019

Table E-8 MAROS First Moment Analysis Results for 1,3,5-TMB at Neely Road

MAROS First Moment Analysis User Name: FES Project: Neely Road 2019 State: Alaska Location: Fort Wainwright COC: 1,3,5-TRIMETHYLBENZENE (MESITYLENE) Change in Location of Center of Mass Over Time Groundwater Flow Direction: 3960266 3960264 9 08/15 3960262 (**a**) 3960263 • 07/16 Source Coordinate: 3960260 3960259 X: 1,383,409 Y: 3,960,234 3960258 • 07/14 3960257 1383360 1383365 1383350 1383355 1383370 1383375 Xc (ft)


Effective Date	Constituent	Xc (ft)	Yc (ft)	Distance from Source (ft)	Number of Wells
7/11/2014	1,3,5-TRIMETHYLBENZENE (1,383,369	3,960,258	46	6
10/13/2014	1,3,5-TRIMETHYLBENZENE (1,383,351	3,960,258	62	6
5/11/2015	1,3,5-TRIMETHYLBENZENE (1,383,363	3,960,262	54	6
8/24/2015	1,3,5-TRIMETHYLBENZENE (1,383,362	3,960,264	56	6
7/6/2016	1.3,5-TRIMETHYLBENZENE (1,383,364	3,960,263	53	6
10/10/2016	1,3,5-TRIMETHYLBENZENE (1,383,358	3,960,263	59	6
5/11/2017	1,3.5-TRIMETHYLBENZENE (1,383,365	3,960,261	51	6
8/8/2017	1,3,5-TRIMETHYLBENZENE (1,383,365	3,960,261	52	6
5/24/2018	1,3,6-TRIMETHYLBENZENE (1,383,365	3,960,261	52	6
8/10/2018	1,3.5-TRIMETHYLBENZENE (1,383,364	3,960,261	53	6
6/24/2019	1,3,5-TRIMETHYLBENZENE (1,383,366	3,960,262	51	6
9/1/2019	1,3.5-TRIMETHYLBENZENE (1,383,363	3,960,259	52	6

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.

MAROS Version 2.2, 2006, AFCEE

11/19/2019

Table E-9 MAROS First Moment Analysis Results for Naphthalene at Neely Road

11/19/2019

Table E-10. MAROS Sampling Location Optimization Results for Neely Road

Project: Neely Road 20	19	User Name: FES					
Location: Fort Wainwri	ght		Stat	e: Alaska			
Sampling Events Analyze	d: From Sample Event 17 7/11/2014		mple Event 2019	28			
Parameters used:	Constituent	Inside SF	Hull SF	Area Ratio	Conc. Ratio		
	1,2.4-TRIMETHYLBENZENE	0.2	0.1	0.9	0.8		
	1,3,5-TRIMETHYLBENZENE (ME	0.2	0,1	0.9	0.8		
- 9	1,3,5-TRIMETHYLBENZENE (ME BENZENE	0.2	0.1	0.9	0.8		
- 1			- (2)		1970		

Well	X (feet)	Y (feet)	Removable?	Average Slope Factor*	Minimum Slope Factor*	Maximum Slope Factor*	Eliminated
1,2,4-TRIMETHYLE	BENZENE						
AP-8211	1383408.63	3960234.00	•	0.372	0.270	0.532	
AP-8213	1383372.38	3960196.75	•	0.718	0.631	0.766	
AP-9003	1383317.13	3960253.25	•	0.271	0.045	0.673	
AP-9004	1383227.75	3960213.00	•	0.372	0.077	0.565	
AP-9459	1383337,00	3960329.25		0.245	0.022	0.534	
AP-9684	1383409.00	3960297.25		0.391	0.111	0.626	
1,3,5-TRIMETHYLE (MESITYLENE)	BENZENE						
AP-8211	1383408.63	3960234.00	•	0.438	0.308	0.709	
AP-8213	1383372.38	3960196.75		0.644	0.574	0.714	
AP-9003	1383317.13	3960253,25	•	0.420	0.043	0.614	
AP-9004	1383227.75	3960213.00	•	0.187	0.000	0.492	
AP-9459	1383337.00	3960329.25		0.388	0.040	0.668	
AP-9684	1383409.00	3960297.25	•	0.407	0.192	0.772	
BENZENE							
AP-8211	1383408.63	3960234.00	•	0.101	0.008	0.355	
AP-8213	1383372.38	3960196.75	•	0.539	0.293	0.612	
AP-9003	1383317.13	3960253.25	•	0.426	0.175	0.594	
AP-9004	1383227.75	3960213.00	•	0.611	0.434	0.679	
AP-9459	1383337.00	3960329.25	•	0.224	0.025	0.363	
AP-9684	1383409.00	3960297.25	•	0.418	0.095	0.582	

Tuesday, November 19, 2019

Table E-10 cont'd. MAROS Sampling Location Optimization Results for **Neely Road**

Project: Neely Road 2019 User Name: FES Location: Fort Wainwright State: Alaska

Well	X (feet)	Y (feet)	Removable?	Average Slope Factor*	Minimum Slope Factor*	Maximum Slope Factor*	Eliminated?
AP-8211	1383408.63	3960234.00	•	0.404	0.296	0.521	
AP-8213	1383372.38	3960196.75	•	0.571	0.494	0.642	
AP-9003	1383317.13	3960253.25	•	0.193	0.113	0.269	
AP-9004	1383227.75	3960213.00		0.567	0.401	0.623	
AP-9459	1383337,00	3960329.25	•	0.177	0.002	0.439	
AP-9684	1383409.00	3960297.25		0.152	0.016	0.334	
HC as GASOLINE							
AP-8211	1383408.63	3960234.00	•	0.181	0.018	0.347	
AP-8213	1383372.38	3960196.75	•	0.869	0.798	0.900	
AP-9003	1383317,13	3960253.25		0.361	0.078	0.614	
AP-9004	1383227.75	3960213.00	•	0.631	0.127	0.770	
AP-9459	1383337.00	3960329.25	•	0.294	0.041	0.746	
AP-9684	1383409.00	3960297.25	•	0.270	0.092	0.521	

Note: The Slope Factor indicates the relative importance of a well in the monitoring network at a given sampling event; the larger the SF value of a well, the more important the well is and vice versa; the Average Slope Factor measures the overall well importance in the selected time period; the state coordinates system (i.e., X and Y refer to Easting and Northing respectively) or local coordinates systems may be used; wells that are NOT selected for analysis are not shown above.

*When the report is generated after running the Excel module, SF values will NOT be shown above.

Table E-10 cont'd. MAROS Sampling Location Optimization Results for **Neely Road**

MAROS Sampling Location Optimization Results

Project: Neely Road 2019 User Name: FES Location: Fort Wainwright State: Alaska

Sampling Events Analyzed: From Sample Event 17

7/11/2014 9/1/2019

to Sample Event 28

Parameters used:

Constituent	Inside SF	Hull SF	Area Ratio	Conc. Ratio
ETHYLBENZENE	0.2	0.1	0.9	0.8
NAPHTHALENE	0.2	0,1	0.9	0.8

Well	X (feet)	Y (feet)	Removable?	Average Slope Factor*	Minimum Slope Factor*	Maximum Slope Factor	Eliminated?
ETHYLBENZENE							
AP-8211	1383408.63	3960234.00	•	0.392	0.156	0.766	
AP-8213	1383372.38	3960196.75		0.581	0.197	0.720	
AP-9003	1383317,13	3960253,25	•	0.527	0.089	0.698	
AP-9004	1383227.75	3960213.00	•	0.484	0.061	0.656	
AP-9459	1383337.00	3960329.25	•	0.620	0.041	0.926	
AP-9684	1383409.00	3960297,25	•	0.504	0.031	1.000	
NAPHTHALENE							
AP-8211	1383408.63	3960234.00	•	0.654	0,508	0,846	
AP-8213	1383372.38	3960196.75	•	0.670	0.522	0.736	
AP-9003	1383317.13	3960253.25	•	0.439	0.191	1.000	
AP-9004	1383227.75	3960213.00	•	0.366	0.061	0.598	
AP-9459	1383337.00	3960329.25	•	0.392	0.036	0.776	
AP-9684	1383409.00	3960297.25		0.318	0.000	0.557	

Note: The Slope Factor indicates the relative importance of a well in the monitoring network at a given sampling event; the larger the SF value of a well, the more important the well is and vice versa; the Average Slope Factor measures the overall well importance in the selected time period, the state coordinates system (i.e., X and Y refer to Easting and Northing respectively) or local coordinates systems may be used; wells that are NOT selected for enalysis are not shown above.

* When the report is generated after running the Excel module, SF values will NOT be shown above.

Figure E-1. MAROS Delaunay Results for Benzene Neely Road Wells

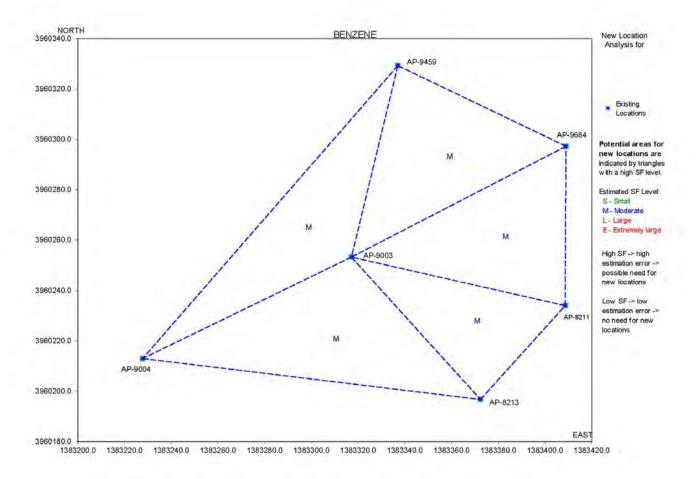


Figure E-2. MAROS Delaunay Results for DRO in Neely Road Wells

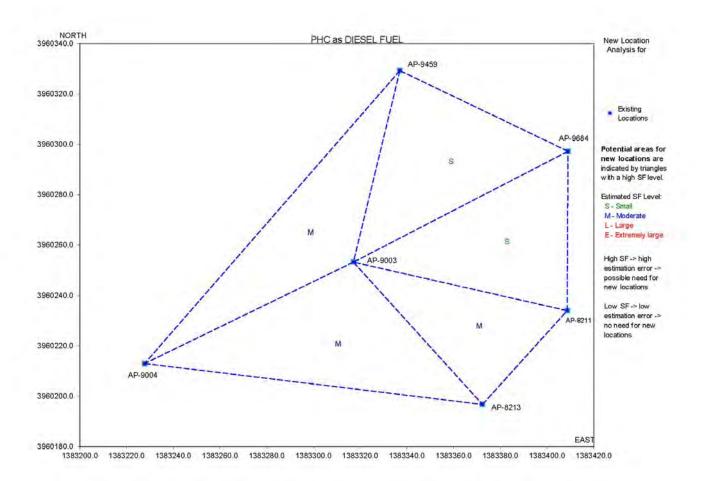


Figure E-3. MAROS Delaunay Results for GRO in Neely Road Wells

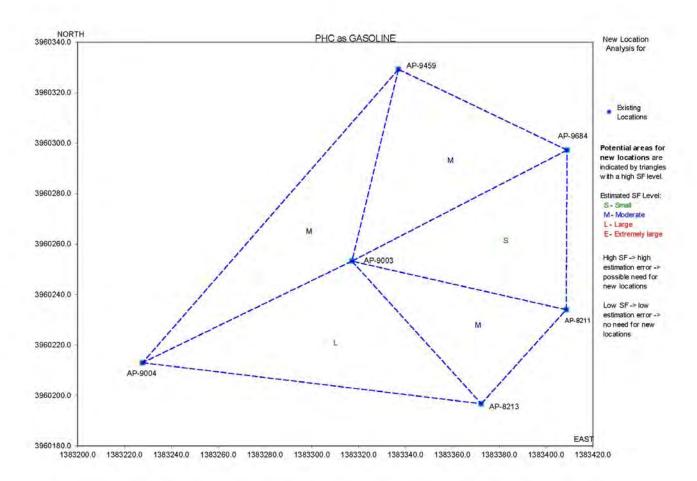


Figure E-4. MAROS Delaunay Results for Ethylbenzene in Neely Road Wells

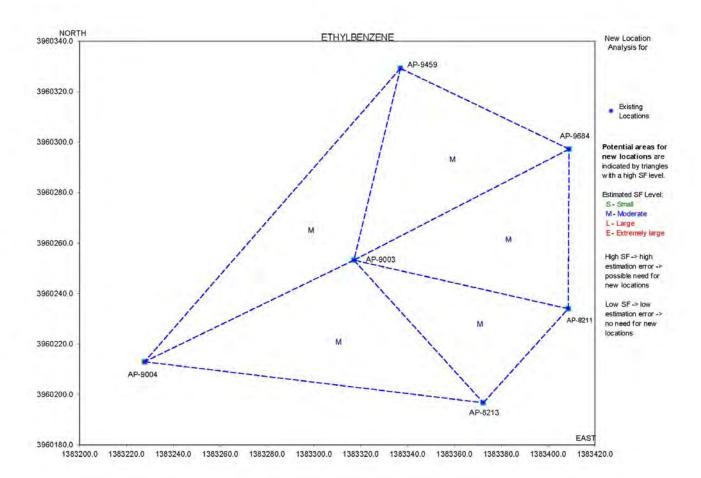


Figure E-5. MAROS Delaunay Results for 1,2,4-TMB in Neely Road Wells

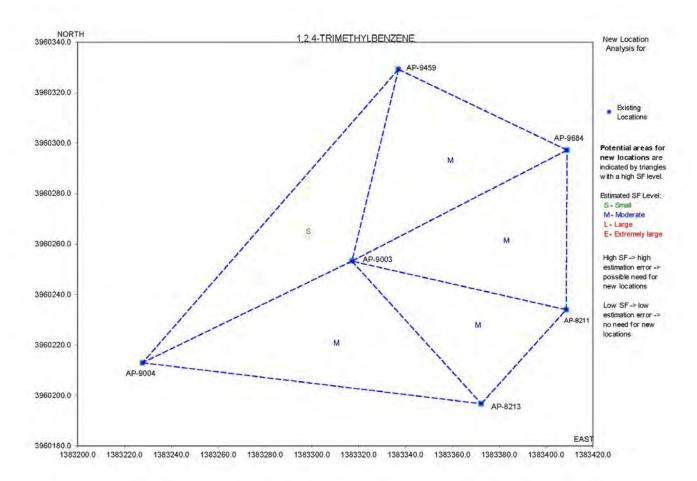


Figure E-6 MAROS Delaunay Results for 1,3,5-TMB in Neely Road Wells

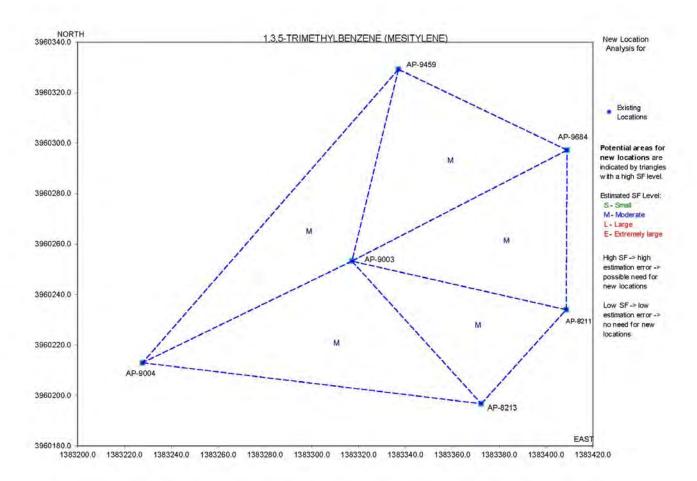


Figure E-7 MAROS Delaunay Results for Naphthalene in Neely Road Wells

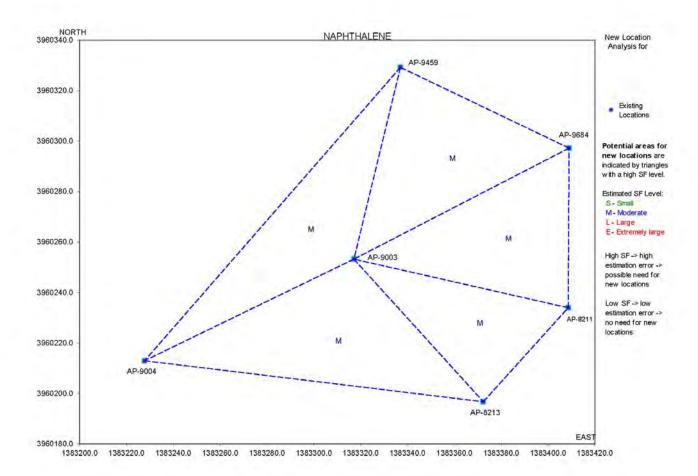


Table E-11. MAROS Sampling Frequency Optimization Results for Neely Road Wells

MAROS Sampling Frequency Optimization Results

Project: Neely Road 2019

User Name: FES

Location: Fort Wainwright

State: Alaska

The Overall Number of Sampling Events: 12

"Recent Period" defined by events: From Sample Event 17 To Sample Event 28

7/11/2014 9/1/2019

"Rate of Change" parameters used:

Constituent	Cleanup Goal	Low Rate	Medium Rate	High Rate
1,2,4-TRIMETHYLBENZENE	0.056	0.028	0.056	0.112
1,3,5-TRIMETHYLBENZENE (ME	0.06	0.03	0.06	0.12
BENZENE	0.0046	0.0023	0.0046	0.0092
PHC as DIESEL FUEL	1.5	0.75	1.5	3
PHC as GASOLINE	2.2	1.1	2.2	4.4

Well	Recommended Sampling Frequency	Frequency Based on Recent Data	Frequency Based on Overall Data
1,2,4-TRIMETHYLBENZENE			
AP-8211	Annual	Annual	Annual
AP-8213	Biennial	Annual	Annual
AP-9003	Annual	Annual	Annual
AP-9004	Biennial	Annual	Annual
AP-9459	Biennial	Annual	Annual
AP-9684	Annual	Annual	Annual
1,3,5-TRIMETHYLBENZENE (MESITYLENE)			
AP-8211	Annual	Annual	Annual
AP-8213	Biennial	Annual	Annual
AP-9003	Biennial	Annual	Annual
AP-9004	Biennial	Annual	Annual
AP-9459	Biennial	Annual	Annual
AP-9684	Biennial	Annual	Annual
BENZENE			
AP-8211	Biennial	Annual	Annual
AP-8213	Biennial	Annual	Annual
AP-9003	Annual	Annual	Annual
AP-9004	Biennial	Annual	Annual
MAROS Version 2.2, 2006, AFCEE	Tuesday, Novemb	cr 19, 2019	Page I

Page E-27

Table E-11 cont'd. MAROS Sampling Frequency Optimization Results for Neely Road Wells

Project: Neely Road 2019

User Name: FES

Location: Fort Wainwright

State: Alaska

Well	Recommended Sampling Frequency	Frequency Based on Recent Data	Frequency Based on Overall Data	
AP-9459	Annual	Annual	Annual	
AP-9684	Biennial	Annual	Annual	
PHC as DIESEL FUEL				
AP-8211	Annual	Annual	Annual	
AP-8213	Biennial	Annual	Annual	
AP-9003	Annual	Annual	Annual	
AP-9004	Biennial	Annual	Annual	
AP-9459	Annual	Annual	Annual	
AP-9684	Biennial	Annual	Annual	
PHC as GASOLINE				
AP-8211	Annual	Annual	Annual	
AP-8213	Biennial	Annual	Annual	
AP-9003	Annual	Annual	Annual	
AP-9004	Biennial	Annual	Annual	
AP-9459	Biennial	Annual	Annual	
AP-9684	Annual	Annual	Annual	

Note: Sampling frequency is determined considering both recent and overall concentration trends. Sampling Frequency is the final recommendation; Frequency Based on Recent Data is the frequency determined using recent (short) period of monitoring data; Frequency Based on Overall Data is the frequency determined using overall (long) period of monitoring data. If the "recent period" is defined using a different series of sampling events, the results could be different.

Table E-11 cont'd. MAROS Sampling Frequency Optimization Results for Neely Road Wells

MAROS Sampling Frequency Optimization Results

Project: Neely Road 2019
User Name: FES
Location: Fort Wainwright
State: Alaska

The Overall Number of Sampling Events: 12

"Recent Period" defined by events: From Sample Event 17 To Sample Event 28

7/11/2014 9/1/2019

"Rate of Change" parameters used:

Constituent	Cleanup Goal	Low Rate	Medium Rate	High Rate
ETHYLBENZENE	0.015	0.0075	0.015	0.03
NAPHTHALENE	0.0017	0.00085	0.0017	0.0034

Well	Recommended Sampling Frequency	Frequency Based on Recent Data	Frequency Based on Overall Data
ETHYLBENZENE			
AP-8211	Annual	Annual	Annual
AP-8213	Biennial	Annual	Annual
AP-9003	Quarterly	Quarterly	Quarterly
AP-9004	Biennial	Annual	Annual
AP-9459	Annual	Annual	Annual
AP-9684	Biennial	Annual	Annual
NAPHTHALENE			
AP-8211	Quarterly	Quarterly	Quarterly
AP-8213	Biennial	Annual	Annual
AP-9003	Quarterly	Quarterly	Quarterly
AP-9004	Biennial	Annual	Annual
AP-9459	Annual	Annual	Annual
AP-9684	Annual	Annual	Annual

Note: Sampling frequency is determined considering both recent and overall concentration trends. Sampling Frequency is the final recommendation; Frequency Based on Recent Data is the frequency determined using recent (short) period of monitoring data; Frequency Based on Overall Data is the frequency determined using overall (long) period of monitoring data. If the "recent period" is defined using a different series of sampling events, the results could be different.

MAROS Statistical Trend Analysis Summary

Project: Bldg 1168_2019 User Name: FES

Location: Fort Wainwright State: Alaska

Time Period: 3/1/1999 to 6/19/2019

Consolidation Period: No Time Consolidation

Consolidation Type: Average

Duplicate Consolidation: Average

ND Values: Detection Limit
J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
PHC as DIESEL FUEL								
AP-10037MW	S	32	32	1.2E+00	1.0E+00	No	NT	NT
AP-5751	S	21	21	5.8E+00	3.1E+00	No	D	D
AP-6809	Т	32	31	1.2E+00	1.2E+00	No	D	D

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

MAROS Statistical Trend Analysis Summary

Project: Bldg 2250_2019 User Name: FES

Location: Fort Wainwright State: Alaska

Time Period: 7/1/1996 to 6/19/2019

Consolidation Period: No Time Consolidation

Consolidation Type: Average

Duplicate Consolidation: Average

ND Values: Detection Limit
J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
PHC as DIESEL FUEL								
AP-5976	S	8	8	4.2E+00	3.3E+00	No	NT	NT
AP-7151	Т	7	7	2.4E+00	8.0E-01	No	PI	NT
AP-7153	S	6	6	4.8E-01	4.5E-01	No	S	S

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

Table D-1. MAROS Statistical Analysis Summary for Former Building 3564

MAROS Statistical Trend Analysis Summary

Project: Bldg 3564_2019

Location: Fort Wainwright

User Name: FES State: Alaska

Time Period: 10/1/2002 to 6/21/2019
Consolidation Period: No Time Consolidation

Consolidation Type; Average
Duplicate Consolidation: Average
ND Values: Detection Limit
J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
PHC as DIESEL FUEL								
AP-6729	Ť	18	18	3.0E+00	2.8E+00	No	NT	PI
AP-7178	s	18	18	1.7E+01	7.0E+00	No	NT	NT
AP-7183	T	18	9	1.2E-01	1.0E-01	No	1.1	0
AP-7187	T	17	17	1.6E+01	9.5E+00	No	S	S
AP-7189	T	18	18	2.4E+01	2.0E+01	No	NT	NT
AP-7191	T	18	18	3.3E+00	2.8E+00	Na	1	1
MVV3564-1	T	16	12	2.8E-01	3.2E-01	No	S	PD

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) – Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

Table D-2. MAROS Spatial Moment Analysis for the Former Building 3564 Site

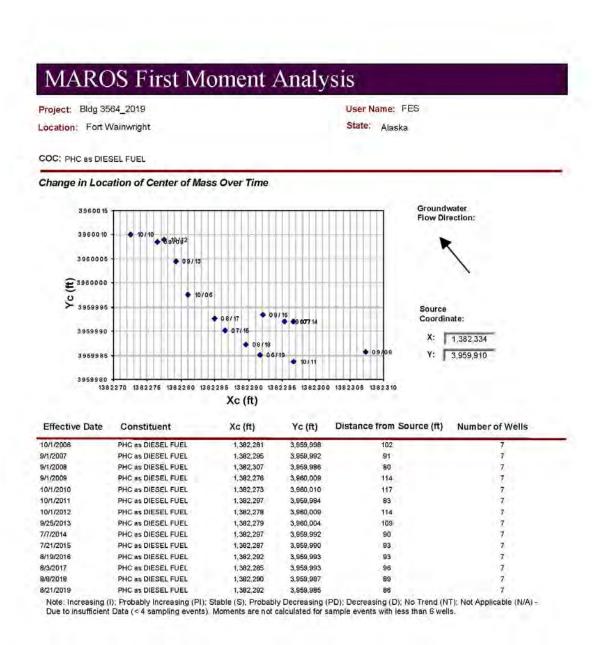
roject; Bldg 3564_2 ocation: Fort Wainw					User Nam State: A	e: FES aska	
	Oth Moment	1st M	oment (Cent	er of Mass)	2nd Momen	(Spread)	
Effective Date	Estimated Mass (Kg)	Xc (ft)	Yc (ft)	Source Distance (ft)	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells
PHC as DIESEL FUEL							
10/1/2006	4.5E+00	1,382,281	3,959,998	102	1,474	1,223	7
9/1/2007	6.4E+00	1.382,295	3,959,992	91	1,491	1,202	7
9/1/2008	9.4E+00	1,382,307	3,959,986	80	1,198	1,040	7
9/1/2009	4.1E+00	1,382,276	3,960,009	114	1,557	1,382	7
10/1/2010	3.5E+00	1.382,273	3,960,010	117	1.553	1,323	7
10/1/2011	1.0E+01	1,382,297	3,959,984	83	1,353	850	7
10/1/2012	4.4E+00	1,382,278	3,960,009	114	1,541	1,449	7
9/25/2013	3.7E+00	1,382,279	3,960,004	109	1,403	1,239	7
7/7/2014	8.7E+00	1,382,297	3,959,992	90	1,405	1,196	7
7/21/2015	1.6E+01	1,382,287	3,959,990	93	1,056	921	7
8/19/2016	1.1E+01	1,382,292	3,959,993	93	1,445	1,201	7
8/3/2017	1.2E+01	1,382,285	3,959,993	96	1,426	1,136	7
8/8/2018	1.6E+01	1,382,290	3,959,987	89	1,262	844	7
	1.3E+01	1,382,292	3,959,985	86	1,168	757	7

Table D-2 cont'd. MAROS Spatial Moment Analysis for the Former Building 3564 Site

Project: Bldg 3564_2019
Location: Fort Wainwright

User Name: FES State: Alaska

Moment Type	Constituent	Coefficient of Variation	Mann-Kendall S Statistic	Confidence in Trend	Moment Trend
Zeroth Moment:	Mass				
	PHC as DIESEL FUEL	0.51	45	99.3%	1
1st Moment: Dis	tance to Source				
	PHC as DIESEL FUEL	0.13	-17	80.6%	S
2nd Moment: Sig	ıma XX				
	PHC as DIESEL FUEL	0.11	-31	95.0%	D
2nd Moment: Sig	gma YY				
	PHC as DIESEL FUEL	0.19	-39	98.2%	D


Note: The following assumptions were applied for the calculation of the Zeroth. Moment:

Porosity: 9.53 Saturated Thickness: -Uniform 18 ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD): Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events).

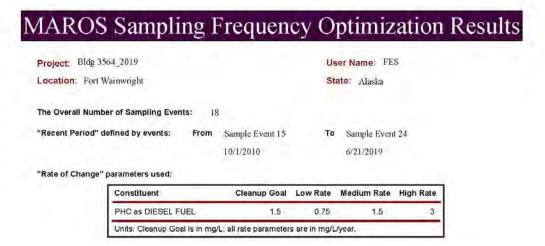

Note: The Sigma XX and Sigma YY components are estimated using the given field coordinate system and then rotated to align with the estimated groundwater flow direction. Moments are not calculated for sample events with less than 6 wells.

Table D-3. MAROS First Moment Analysis Results for DRO at Former Building 3564

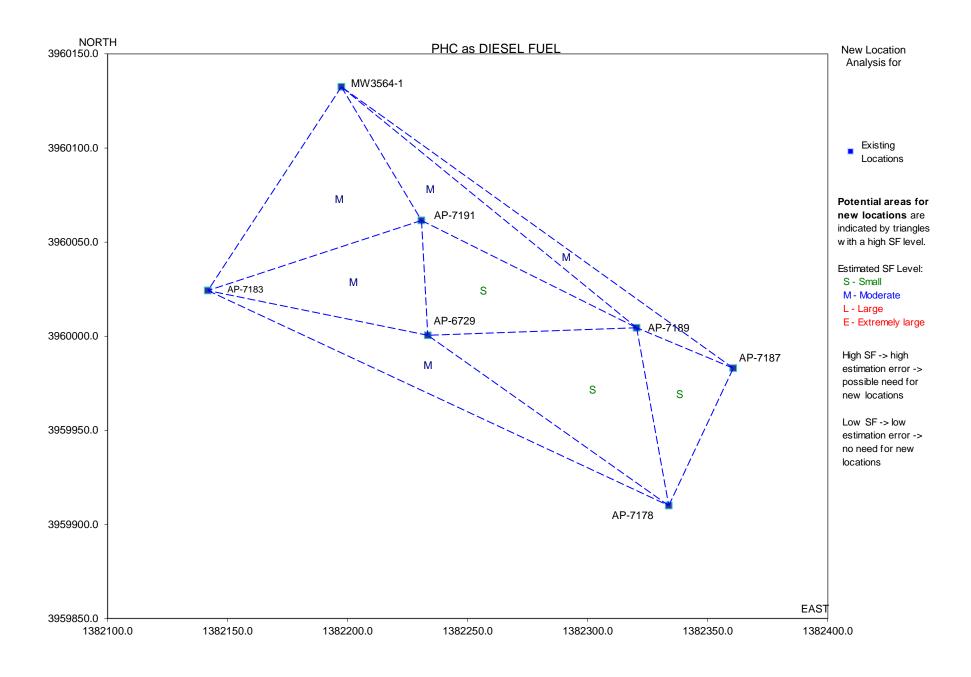

10/9/2019

Table D-4. MAROS Sampling Frequency Optimization Results for the Former Building 3564

Well	Recommended Sampling Frequency	on Recent Data	Frequency Based on Overall Data
PHC as DIESEL FUEL			
AP-6729	Annual	Annual	Annual
AP-7178	Annual	Annual	Annual
AP-7183	Biennial	Annual	Annual
AP-7187	Annual	Annual	Annual
AP-7189	Quarterly	Quarterly	Annual
AP-7191	Annual	Annual	Annual
MW3564-1	Biennial	Annual	Annual

Note: Sampling frequency is determined considering both recent and overall concentration trends. Sampling Frequency is the final recommendation; Frequency Based on Recent Data is the frequency determined using recent (short) period of monitoring data; Frequency Based on Overall Data is the frequency determined using overall (long) period of monitoring data. If the "recent period" is defined using a different series of sampling events, the results could be different.

MAROS Statistical Trend Analysis Summary

Project: Bldg 5110_2019 User Name: FES

Location: Fort Wainwright State: Alaska

Time Period: 9/1/1991 to 6/26/2019

Consolidation Period: No Time Consolidation

Consolidation Type: Average

Duplicate Consolidation: Average

ND Values: Detection Limit
J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
BENZENE								
AP-5737	Т	8	8	8.9E-02	6.1E-02	No	D	D
AP-5738	S	12	11	1.1E-01	9.9E-02	No	D	D
AP-5918R	S	12	4	1.1E-03	5.0E-04	No	PD	PD
PHC as DIESEL FUEL								
AP-5737	Т	7	7	8.4E+01	6.9E+00	No	D	PD
AP-5738	S	12	12	9.2E+01	1.9E+01	No	PD	NT
AP-5918R	S	12	12	1.1E+02	4.5E+00	No	NT	D
PHC as GASOLINE								
AP-5737	Т	5	5	1.7E+00	1.9E+00	No	S	S
AP-5738	S	10	10	7.5E+00	6.4E+00	No	S	S
AP-5918R	S	11	9	3.8E+00	7.6E-01	No	NT	NT

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

The Number of Samples and Number of Detects shown above are post-consolidation values.

APPENDIX E

PHOTOGRAPHIC LOG

Groundwater sampling of AP-7346 (DRMO Yard—DRMO2/Building 5010) (view NW)

Groundwater Sampling of AP-6729 (view N)

Groundwater Sampling of AP-5737 (Former Building 5110) (view NE)

Groundwater Sampling of AP-8211 (Neely Road) (view N)

COMMENTS

Department of Environmental Conservation

SPILL PREVENTION & RESPONSE Contaminated Sites Program

> 610 University Avenue Fairbanks, Alaska 99709 Main: 907.451,2143 Fax: 907.451,2155 www.dec.alaska.gov

> > File: 108.38.076

February 5, 2020

Electronic Delivery Only
Department of the Army
Directorate of Public Works
ATTN: IMFW-PWE (B.Adams)
1046 Marks Road
Fort Wainwright, AK 99703

RE: DEC comments for the Draft 2019 Two Party Monitoring Report, U.S. Army Garrison Alaska, dated January 2020

Dear Mr. Adams:

The Alaska Department of Environmental Conservation (DEC) has completed a review of the above-referenced document describing 2019 groundwater monitoring activities at six, Two-Party sites on Fort Wainwright, Alaska. The six sites are; Defense Reutilization Marketing Office (DRMO) Yard Two-Party sites, Building 3570 Former Post Exchange (PX) Gas Station (Neely Road), Former Building 1168, Former Building 2250, Former Building 3564, and Former Building 5110. Analytical samples were collected for the following petroleum contaminants; gasoline range organics (GRO), diesel range organics (DRO), residual range organics (RRO) and volatile organic compounds (VOCs). Geochemical parameters; dissolved iron and manganese, dissolved oxygen, oxidation-reduction potential and sulfate were also collected to monitor natural attenuation and biodegradation rates of the petroleum contamination.

Based on review of the 2019 results, and review of prior investigations, DEC has recommended additional work at the Former Building 2250 and Former Building 3564 sites. Recent data collected from the Former Building 2250 site indicates the DRO contaminant plume is migrating and not fully delineated. At the Former Building 3564 site, the area to the west and northeast of the existing monitoring well locations do not appear delineated.

DEC has provided review comments (See Enclosure). If there are any questions, please contact me by phone at (907) 451-2182, or by email at erica.blake@alaska.gov.

Sincerely,

Digitally signed by Erica Blake Erua Blake

Date: 2020.02.05 11:58:54 -09'00'

Erica Blake

Environmental Program Specialist

Enclosure: DEC Review Comments

cc (via email): Sandra Halstead, EPA

Brianne Clark, FWA ENVR Seth Reedy, FWA ENVR

Matthew Sprau, FWA ENVR Branch Chief

Bob Hazlett, USACE Robert Glascott, USACE Andrea Beausang, USACE Guy Warren, USACE David Mays, AEC

Amanda Sherman, AEC Kevin Fraley, DEC

REVIEW COMMENTS

PROJECT: Fort Wainwright, AK
DOCUMENT: Draft 2019 Two Party Monitoring Report

ENV	SKA DEPT. OF VIRONMENTAL VISERVATION	DATE: 2/5/20 REVIEWER: Erica Blake and Kevin Fraley (907-451-2104)				
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	RESPONSE	ADEC/EPA RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	RESPONSE
1	General – Table of Contents	DEC could not locate Graph's 4-1, 4-2, 4-3 and 4-4 in the document. These graphs are referenced but don't appear to be included in the document text. Please include the graphs, or remove the references to them.	A	Graphs (which are combined on a single page) were mistakenly not included. The graphs will be included in the Final Report.	A	
2	Section 3.3, Bullet Points, Page 3-2 to 3-3	Statement; "dissolved iron was not measured in DRMO2/Building 5110 wells." Is Building 5110 a typo? Should that be Building 5010? If this is a typo, please revise. If it is a typo, it is in other bullet points in this list.	A	The sentence will be corrected to read "dissolved iron was not measured in DRMO2/Building 5010 wells."	A	
3	Section 3.5 Summary and Recommendations	DEC concurs with the recommendation to change the sampling frequency at the DRMO2/Building 5010 and DRMO5 from an annual frequency to every five years, coinciding with the Five-Year Reviews.	Noted	Understood, the next sampling event is tentatively scheduled for 2024.	A	
4	Figure 3-1 and Figure 3-2	It would be helpful to put the location of the water supply well on the figure for the DRMO 2/Building 5010 site. Please add the location of the water supply well to Figure 3-1.	A	The well location will be shown on the figures as requested.	A	
5	Section 4.5 Summary and Recommendations	DEC concurs with the recommendation to reduce the sampling frequency to annual. Would the annual sampling occur in the spring/summer or the fall? Please clarify in the report text.	A	The following text will be added "While seasonal contaminant concentration correlations are not strong at the Neely Road site, there appears to be higher concentrations during lower groundwater elevations, therefore groundwater sampling should occur during spring or early summer".	A	
6	Section 5.5 Summary and Recommendations	Statement: "As a result, the groundwater sampling frequency should be increased to every five years"	A	Text will be revised as suggested. The next sampling event is tentatively scheduled for 2024.	A	

REVIEW COMMENTS

PROJECT: Fort Wainwright, AK
DOCUMENT: Draft 2019 Two Party Monitoring Report

ENV	SKA DEPT. OF TRONMENTAL SERVATION	DATE: 2/5/20 REVIEWER: Erica Blake and Kevin Fraley (907-451-2104)				
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	RESPONSE	ADEC/EPA RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	RESPONSE
		Using the word 'increased' implies there will be more sampling events, please revise the statement. Suggest, "As a result, the groundwater sampling frequency should change to every five years."				
	Section 6.5 Summary and Recommendations	Based on the results from the 2019 sampling event, and from reviewing historical data for this site, it appears the area to the northwest of the source area has not been delineated or investigated properly. Results for the site indicate the petroleum plume is migrating to the northwest, and the most downgradient well (AP-7151) has a potentially increasing diesel range organics (DRO) trend. DEC has concerns for this migrating petroleum plume, and recommends the plume boundaries be defined. In addition to recommending this site be delineated further, DEC does not concur that this site should continue being sampled every five years, and recommends this site be monitored annually until a better DRO trend can be established.	A	Installation of a downgradient well at the Former Building 2250 site will be considered.	A	
	Section 7.5 Summary and Recommendations	DEC concurs with the recommendation to continue annual groundwater sampling at the Former Building 3564 site and to decommission the damaged AP-7187 monitoring well.	Noted	Understood.	A	
-	Figure 7-2 Former Building 3564	Monitoring well AP-7189 has petroleum detections in the groundwater above DEC cleanup levels. DEC recommends adding	Noted	Release Investigations (RI's) were conducted in 1994 and 1995 to delineate the extent of groundwater	A	

REVIEW COMMENTS

PROJECT: Fort Wainwright, AK
DOCUMENT: Draft 2019 Two Party Monitoring Report

ENV	ASKA DEPT. OF VIRONMENTAL NSERVATION	DATE: 2/5/20 REVIEWER: Erica Blake and Kevin Fraley (907-451-2104)	v			
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	RESPONSE	ADEC/EPA RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	RESPONSE
		a new well in to the area northeast of AP-7189. In past investigations have there been any monitoring wells or temporary wells installed to the west of AP-7183? DEC is concerned that AP-7189 and AP-7183 have increasing trends and there are no results around these areas indicating results are ND. If there are old investigation reports that show these areas have been previously investigated, those references would be helpful to cite and reference.	Noted	contamination at the Former Building 3564 site. The 1994 RI included the sampling of temporary well GPB-6 (north of AP-7187 and AP-7189) there were no detections of GRO, DRO, or BTEX (see attached Figure 6). The 1995 RI included the installation and sampling of temporary wells surrounding the groundwater plume (see attached Figure 4-11). Temporary well location SW11 was located approximately 100 feet north of AP-7187 (northeast of AP-7189). The sample from SW11 was analyzed for GRO, DRO, and VOCs; there were no detections in the sample. AP-7183 has never had any contaminant concentration above the ADEC CUL. Typically, DRO is either not detected in the well or is detected just above the LOD. Although an increasing Mann-Kendall trend was identified for the well it may be the result of higher LOD's in recent sampling events.		
10	Section 8 – General Question	How is this site currently used? Do people visit this area frequently?	Noted	The site is located on the active range and access is restricted. The site is located within the safety danger zone	A	

REVIEW

PROJECT: Fort Wainwright, AK
DOCUMENT: Draft 2019 Two Party Monitoring Report **COMMENTS**

ENV	SKA DEPT. OF TRONMENTAL ISERVATION	DATE: 2/5/20 REVIEWER: Erica Blake and Kevin Fraley (907-451-2104)				
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	RESPONSE	ADEC/EPA RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	RESPONSE
				of the small arms range.		
11	Section 8.5 Summary and Recommendations	DEC concurs with the recommendation to continue groundwater sampling every five years, coinciding with the Five-Year Review, at the Former Building 5110 site.	A	Understood. The next sampling event is scheduled to occur in 2024.	A	
12		- End of comments -				